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Preface

SAP HANA is a database and, as such, stores data. For that data to have any mean-
ing, it must be arranged into data models, maps that describe how specific ele-
ments of data relate to each other. Once arranged, the data should be used by
applications. The operations on this data structure could be simple calculations,
complex machine learning techniques, or anything in between. Most often, the
design of a data model and joins on the tables in a data model relate to the per-
formance of a query or function processing in any database. SAP HANA can
enable application requirements like business function calculations through logi-
cal models used on top of data models. These requirements can range from sim-
ple to complex calculations in distributed, scaled-out environments with billions
of rows to process.

With these calculation models, applications can also find meaningful data insights
by executing machine learning or predictive algorithms. SAP HANA has both
natively embedded predictive algorithms and integrations with R to offer flexibil-
ity. As we move from predictive to simulation and optimization problems, the
challenge of the database is to be versatile in order to perform various complex
data structure operations.

Target Audience

This book expects the reader to be aware of in-memory databases and column-
oriented databases, and have basic exposure to and hands-on experience with
SAP HANA development artifacts. Preferably, the reader will also have basic SQL
and data modeling knowledge. Advanced data modeling topics here start from
basic calculations in straightforward data models and move to performing com-
plex calculations and machine learning or predictive analytic tasks. This book
expects readers to have basic knowledge of and experience with data science-ori-
ented activities and to use such techniques in their regular activities.
15



Preface
Objective

The purpose of this book is to teach developers working in SAP HANA how to
design complex data models that perform optimally. With a lot of flexibility in
performing database tasks in SAP HANA, this book will help readers learn about
the various modeling capabilities in SAP HANA, how to develop complex logic
through these logical models, and how to scale for higher volumes of data. This
advanced modeling book also covers predictive modeling capabilities in SAP
HANA using various algorithm libraries and how to build complex modeling sce-
narios using multiple types of algorithms together. Finally, we will look at per-
forming complex processes (such as simulations and optimizations) in SAP
HANA.

Structure of this Book

This book is organized into two sets of three chapters. The first set will cover data
modeling of both physical and logical models and scenarios from simple to com-
plex. The second set will move to predictive modeling, starting with basic predic-
tive modeling and concluding with performing complex operations for simula-
tions and optimizations.

The following walks through details of the chapters ahead:

� Chapter 1: Types of SAP HANA Models 
This chapter gives an overview of all SAP HANA features and then explains the
workflow to use SAP HANA Studio to leverage each feature. As this book is for
developers who already have SAP HANA experience, we do not provide much
explanation on basic concepts; instead, we focus on elements that usually con-
fuse developers. This chapter covers the SAP HANA modeling paradigm, infor-
mation views (including attribute views, analytic views, and calculation views),
analytic privileges, stored procedures (including SQLScript procedures, L lan-
guage procedures, and R language procedures), and the Application Function
Library (including the Business Function Library and the Predictive Analysis
Library). With the overall understanding gained in this chapter, developers can
move on to other chapters to learn more about SAP HANA models and model-
ing use cases.

� Chapter 2: Modeling Complex Logic 
This chapter explains how to use SAP HANA data models to represent complex
business logic. As it is more flexible and efficient to leverage SAP HANA mod-
16



Preface
eling features to depict complex logic than traditional SQL statements, devel-
opers need to learn how to think in SAP HANA to solve complex problems.

� Chapter 3: Scaling for Large Datasets 
This chapter focuses on solutions for scaling large datasets in SAP HANA. Large
datasets can hinder performance, which is a primary concern for many devel-
opers. SAP HANA provides many features to handle performance, especially
for large tables. We will introduce these features with examples based on our
experience. Developers may need to know how to set up databases and models,
design reporting strategies, and troubleshoot performance issues so as to make
their applications run smoothly against large tables.

� Chapter 4: Basic Predictive Modeling 
In this chapter, we will introduce the predictive analytics lifecycle. We walk
through how to execute lifecycle activities in SAP HANA and provide examples
of how to execute correlations, autocorrelations, component analysis, time
series algorithms, and forecast accuracy measurement, along with exploration
and modeling in SAP HANA. The chapter then introduces various tools, such as
the Application Function Modeler and predictive analytics applications in SAP
HANA for performing data science-oriented tasks.

� Chapter 5: Advanced Predictive Modeling 
Now that you have learned about basic predictive modeling, this chapter looks
at R’s integration with SAP HANA and how to design complex predictive mod-
els that need to scale out in distributed environments. We also will look at
using multiple components such as PAL and R together in single use case for
machine learning activities. The chapter walks through stratification and sam-
pling examples to reduce information transfer without losing the proportional
distribution of data.

� Chapter 6: Simulations and Optimization 
You can use SAP HANA to design simulation and optimization models. This
chapter explains how to perform random variable generation, matrix manipu-
lation operations, and optimizations and simulations, using a case study.

We hope this book provides an advanced look at all aspects of modeling and scal-
ing for complex processing.
17
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Chapter 1 

This chapter introduces the different data models in SAP HANA that will 
be discussed throughout the rest of the book, along with important con-
cepts to keep in mind.

1 SAP HANA Data Models

This chapter provides an overview of the different data models that can be built
in SAP HANA. In this chapter, we describe the three SAP HANA information
views and the analytic privileges that can be applied to them. We then walk
through the stored procedures, which include SQLScript procedures, L language
procedures, and R language procedures. Finally, we will look at the Application
Function Libraries (AFLs), such as the Business Function Library (BFL) and the
Predictive Analysis Library (PAL).

For each model type, the chapter defines the model in question, outlines the cri-
teria for choosing it, and explains its benefits. Subsequent chapters will be orga-
nized based on specific use cases that require the following different types of
models: complex business logic, large datasets, predictive analysis applications,
and simulation and optimization applications.

To begin, we will provide a brief overview of SAP HANA’s database architecture
and resources for further learning offered by SAP.

1.1 SAP HANA Database Architecture Overview

SAP HANA is an in-memory technology platform that is deployable as an appli-
ance or in the cloud. At its core is the SAP HANA database, built for high-perfor-
mance applications. Relevant data is kept in the main memory, and therefore read
operations can run in the main memory.

SAP HANA’s database consists of the index server, name server, statistics server,
preprocessor server, and XS engine. The index server is the main data management
21



SAP HANA Data Models1
component of SAP HANA, containing both the data stores and engines for process-
ing data. In addition to these servers, SAP HANA uses three types of engines based
on the information views: the join, online analytics processing (OLAP), and calcu-
lation engines. The join engine is used for attribute views. Analytic views without
calculated columns use the OLAP engine. Finally, calculation views and analytic
views with calculated attributes use the calculation engine. These engines will be
discussed in greater depth as we walk through the relevant models.

Because a complete look at SAP HANA’s database architecture would be beyond
the scope of this book, we encourage you to take a look at SAP-provided informa-
tional material. For more information on SAP HANA database architecture as it
relates to administration, modeling, and developers, please see the following
resources:

� SAP HANA Administration Guide 
https://help.sap.com/HANA/SAP_HANA_Administration_Guide_en.pdf

� SAP HANA Modeling Guide 
https://help.sap.com/hana/SAP_HANA_Modeling_Guide_en.pdf

� SAP HANA Developer Guide 
http://help.sap.com/hana/sap_hana_developer_guide_en.pdf

Next, we will dive straight into the SAP HANA modeling paradigms and the con-
cepts that you will find throughout the book.

1.2 SAP HANA Modeling Paradigms

Modeling refers to the activity of building models against database tables by creat-
ing modeled (information) views, stored procedures, decision tables, analytic
privileges, and more to depict a business scenario. Figure 1.1 shows a diagram of
the relationship between these different modeling elements in SAP HANA.

In this section, we explain these different elements and how they relate to the
SAP HANA model paradigm.
22



SAP HANA Modeling Paradigms 1.2
Figure 1.1  SAP HANA Models Relationship Diagram

1.2.1 Client and Data Connection

There are two types of clients in SAP HANA: HTTP and SQL. HTTP clients can
connect to the XS server, and applications running in the XS server can execute
SQL statements using a database API.

For the SQL clients, client applications written in C/C++ may choose the ODBC
interface, those written in Java may choose the Java Database Connectivity
(JDBC) interface, those written in Python may choose the Python database API,
and ABAP applications hosted by the ABAP Application Server may use the SAP
HANA-specific Database Shared Library (DBSL) to connect to the SAP HANA
system.
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SAP HANA Data Models1
1.2.2 Modeled Views

Modeled views are also called information views. We create these views with the
modeling tools in SAP HANA Studio. Modeled views are stored in the repository,
and actual database objects are generated from these definitions during their acti-
vation. There are three types of modeled views: attribute views, analytic views, and
calculation views.

There are many benefits to creating modeled views, including the following:

� Modeled views are optimized to exert the power of underlying process
engines; analytic views can leverage the OLAP engine and calculation views can
leverage the calculation engine.

� Modeled views can be used to represent sophisticated or complex business sce-
narios. The execution plan of a query against the modeled view can be well
optimized by removing unnecessary joins or grouping columns.

� The additional metadata generated on modeled views can be leveraged by mul-
tidimensional expression (MDX) clients, such as SAP BusinessObjects Explorer,
SAP BusinessObjects Analysis for Office, and SAP Lumira.

We provide more information on modeled views (information views) in Section 1.3.

1.2.3 Stored Procedures

When information views are not enough to express complex logic or you need to
update tables rather than select them, you can create stored procedures. Stored
procedures can be created with the SQLScript, L, R, and C++ languages. SQLScript
can contain SQL statements, such as SELECT or UPDATE, or calculative engine plan
operators, which can result in higher performance in some cases.

More information on stored procedures can be found in Section 1.5.

Table Functions

You can use SQLScript to write a table function. This function is not very different
from read-only procedures; the only limitation is that it has one single table as its
output. You can use the table function in the FROM clause of queries to facilitate
using the calling procedure with SELECT statements.
24



SAP HANA Modeling Paradigms 1.2
Scalar Functions

You can create a scalar function with SQLScript or L that returns one or more sca-
lar values. Using a user-defined scalar function is the same as using a built-in SQL
function. You can put the functions in a SELECT clause, WHERE clause, or GROUP BY
clause. Scalar functions are compiled with L code, which does not support table
access inside the functions.

1.2.4 C++ (Application Function Libraries)

You can execute application logic written in C++ within SAP HANA; such an
application is created as an AFL. When writing C++ code, programming errors
may affect the stability and availability of the whole server, so writing application
logic in C++ should be restricted to privileged developers. In addition to writing
procedures with C++ code, you can also install additional packages provided by
SAP that are part of SAP HANA AFL, such as the BFL and PAL, both of which are
written in C++ code.

1.2.5 L Language

L is a language designed by SAP for executing procedural code in SAP HANA. You
can use L to express application logic that cannot be expressed with SQL or
SQLScript. However, L is not officially supported. Therefore, consider using
SQLScript whenever possible.

Because L procedures do not contain SQL statements, you can define input and
output parameters as table types and transfer data with table objects. Using L, you
can create scalar functions for which the input and output are both scalar values
instead of table objects. In fact, SQLScript scalar functions and the parts in
SQLScript procedures that contain the imperative code, such as WHILE and IF, are
internally compiled into L code.

1.2.6 R Language

You can use R to create procedures to handle complex statistical computing and
graphics processing. There are several benefits to using R: First, it has become
popular among statisticians and data miners for developing statistical software
and is widely used for advanced data analysis. Currently, you can leverage more
than 4,000 packages using R. Second, the objects handled in R, such as vectors,
25



SAP HANA Data Models1
arrays, and data frames, can be tightly bound with database objects, and the
manipulation of these objects can be performed efficiently on multicore hard-
ware.

1.3 Information Views

Information views are also called modeled views. As previously discussed, there
are three types of information views: attribute view, analytic view, and calcula-
tion view. In this section, we will describe each view in detail.

1.3.1 Attribute Views

Attribute views are used to model an entity based on the relationships among
the attribute data contained in multiple source tables. Attribute views can model
columns, calculated columns, and hierarchies. When you perform multiple
dimension analysis against a cube, you need to create an attribute view on each
dimension.

For example, when you analyze the transactions of a retail company, you can
make reports on sales values based on a location dimension, time dimension, and
goods type dimension. For each dimension, you need to create an attribute view.

In this section, we will look at the steps that need to be performed in these
dimensions.

Location Dimension

As an example, suppose you have the location dimension table LOC; the data defi-
nition language (DDL) is shown in Listing 1.1.

CREATE COLUMN TABLE LOC(
STORE_ID INT,
CITY VARCHAR(20));

Listing 1.1  DDL for Location Dimension Table

Each CITY has a corresponding STATE. The mapping information is in table LOC_
CITY (see Listing 1.2).
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CREATE COLUMN TABLE LOC_CITY(
CITY VARCHAR(20),
STATE VARCHAR(20));

Listing 1.2  DDL for City Dimension Table

You can create the attribute view AT_LOC for the location dimension (see Figure 1.2).

Figure 1.2  Attribute View for Location Dimension

In the attribute view, link the tables LOC and LOC_CITY on column CITY. There are
three columns here: STORE_ID, CITY, and STATE. Each STOTE_ID belongs to a single
CITY, and each CITY belongs to a single STATE. This logic can be expressed through
hierarchies. You can create a hierarchy object H_LOC in the attribute view (see Fig-
ure 1.3).

Figure 1.3  Hierarchy on Location Dimension  
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There are two types of hierarchies in SAP HANA that can be defined by both cal-
culation and attribute views:

� Level hierarchies 
Level hierarchies are usually for aggregation purposes. They consist of one or
more levels. For example, country, province, city for a location hierarchy, and
year, month, and day for a time hierarchy. Members at one level can roll up to
the next higher level in a many-to-one relationship. The attributes for different
levels are on different columns.

� Parent–child hierarchies 
A parent–child hierarchy is a hierarchy in a standard dimension that contains a
parent attribute. You usually use self-joins to represent the logic of a parent–
child hierarchy. When you have two columns, the value of one column rep-
resents the child member, the value of the other column points to a parent
member, and the child member of one record can be the parent member of
another record.

In the example shown in Figure 1.3, the hierarchy consists of three columns, with
rolling-up relations among them. Therefore, when you define the hierarchy,
choose Level Hierarchy as the Hierarchy Type.

For the Node Style, there are three options: Level Name, Name Only, and Name

Path. The node style determines the composition of a unique node ID. The dif-
ferent values for the node styles are explained as follows:

� Level Name 
The unique node ID is composed of the level name and node name—for exam-
ple, [Level 2].[Austin].

� Name Only 
The unique node ID is composed of the level name alone—for example, "Austin".

� Name Path 
The unique node ID is composed of the result node name and the names of all
ancestors apart from the root node—for example, [Texas].[Austin].

In this example, choose Level Name based on what you know about the data. If
there are identical values at different levels, assuming that Washington is a city
name and also a state name, it is not appropriate to choose Name Only, because
using Washington as the node ID can be confusing when determining whether it
is a city or a state.
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If you choose Level Name, then "[Level 1].[Washington]" is the state node and
"[Level 2].[Washington]" is the city node. If there are identical names for different
cities, you need to choose Name Path. Assuming New Jersey has a city named
Dover, and Minnesota also has a city named Dover, it will be confusing when you
specify the node as [Level 2].[Dover]; you need to specify the path as well—for
example, [Minnesota].[Dover] or [New Jersey].[Dover]. Specify the column as
STATE at the first level, the CITY column at the second level, and the STORE_ID col-
umn at the third level.

The Level Type field is used to specify the semantics for the level attributes. For
example, if it shows TIMEMONTHS, this indicates that the attributes of the level
contain a month, such as January. In this case, choose REGULAR, which indicates
that a level does not require any special formatting.

In the MDX client tools, members will be sorted by attribute. To sort the display
of the hierarchy members in ascending or descending order, select the required
option from the Sort Direction dropdown list.

You can set other properties of the hierarchy object in the Advanced tab of the
Edit Hierarchy window (see Figure 1.4).

The following options are found under the Advanced tab (see Figure 1.4):

� Aggregate All Nodes 
This field indicates whether data is posted on the aggregate nodes and whether
it should be shown in the user interface. If it is set to True, the value of the par-
ent will be added to the aggregation of the children when calculating the aggre-
gate nodes. If you are sure that there is no data posted on the aggregate nodes,
then set the option to False; the engine will then calculate the hierarchy faster.

� Default Member 
You may set a default member for the MDX client tools to use the default node.

� Orphan Nodes 
Orphan nodes are nodes that do not have parents or higher levels. You can
choose from one of the following options:

� Root Nodes: Treat orphan nodes as root nodes.

� Errors: Stop processing and show an error.

� Ignore: Ignore orphan nodes.
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Figure 1.4  Advanced Tab to Define a Hierarchy

� Step Parent 
This option is used to put a node under a stepparent node. For example, if some
STORE_IDs do not have an upper level, you can add the node Unknown at the
CITY column, and then specify the stepparent as [Level 2].[Unknown].

� Add a Root Node 
This checkbox can be selected if a hierarchy does not have a root node but
needs one for reporting purposes. When checked, it will create a root node
with the technical name ALL.

� Multiple Parent 
This checkbox indicates whether a hierarchy needs to support multiple parents
for its elements. When checked, the hierarchy contains a node that belongs to
more than one parent. For example, a STORE_ID can belong to two cities. Mul-
tiple parents can cause confusion when drilling down and drilling up.

The definition of the attribute view is stored in XML format in the SAP HANA
repository. To see the XML content, export the attribute view by selecting Export

from the SAP HANA Studio menu bar, under File. You will see the Export win-
dow (see Figure 1.5).
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Figure 1.5  Export Window to Choose SAP HANA Content

Under the SAP HANA Content folder, choose Developer Mode and then click
Next. Then, choose the system you want to export content from and click Next

(see Figure 1.6).

Figure 1.6  Export Window to Choose System

Next, choose the objects you want to export, specify the Target Folder on the
local machine, and click Finish (see Figure 1.7).
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Figure 1.7  Export Window to Choose Objects

When the export finishes, you will see the XML file AT_LOC.attributeview in the
specified folder. Listing 1.3 shows the content of the file.

<?xml version="1.0" encoding="UTF-8"?>
<Dimension:dimension

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:Dimension="http://www.sap.com/ndb/BiModelDimension.ecore"
schemaVersion="1.2" id="AT_LOC" defaultClient="$$client$$"
defaultLanguage="$$language$$" visibility="internal"
dimensionType="Standard">
<origin/>
<descriptions defaultDescription="AT_LOC"/>
<metadata changedAt="2015-05-05 14:56:36.0"/>
<attributes>
<attribute id="STORE_ID" key="true">
<descriptions defaultDescription="STORE_ID"/>
<keyMapping schemaName="TEST" columnObjectName="LOC"

columnName="STORE_ID"/>
</attribute>
<attribute id="CITY">
<descriptions defaultDescription="CITY"/>
<keyMapping schemaName="TEST" columnObjectName="LOC"

columnName="CITY"/>
</attribute>
...
...
<hierarchies>
<hierarchy xsi:type="Dimension:LeveledHierarchy" id="H_LOC"

aggregateAllNodes="true" withRootNode="true"
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nodeStyle="LEVEL_NAME">
<descriptions defaultDescription="H_LOC"/>
<levels>
<level levelAttribute="#STATE"

levelType="MDLEVEL_TYPE_REGULAR" order="1"
orderAttribute="#STATE"/>

<level levelAttribute="#CITY" levelType="MDLEVEL_TYPE_REGULAR"
order="2" orderAttribute="#CITY"/>

<level levelAttribute="#STORE_ID"
levelType="MDLEVEL_TYPE_REGULAR" order="3"
orderAttribute="#STORE_ID"/>

</levels>
</hierarchy>

</hierarchies>
</Dimension:dimension>

Listing 1.3  XML Definition File of the Attribute View

In the XML file, you can see the join definition, attribute definition, and hierarchy
definition. In some cases, you may edit the XML file directly. For example, when
you change the schema and move the view from the development environment
to the production environment, it is tedious to replace the tables one by one in
SAP HANA Studio. Instead, you can make the change in the exported XML files
and reimport the revised versions.

There are two internal input parameters in the XML file: defaultClient ="$$cli-
ent$$" and defaultLanguage="$$language$$". The value of the "$$client$$"
parameter is set by the user’s property. The value of "$$language$$" is set in the
logon window. We will explain these parameters in detail in Section 1.3.2.

When you active the attribute view, you will see the column view in schema
"_SYS_BIC". You can run the column view with the following SQL statement:

SELECT * FROM _SYS_BIC."test/AT_LOC";

In the background, the column view is created with the SQL statement shown in
Listing 1.4.

CREATE COLUMN VIEW "_SYS_BIC"."test/AT_LOC" WITH PARAMETERS(
indexType=6,
joinIndex="TEST"."LOC",
joinIndexType=0,
joinIndexEstimation=0,
joinIndex="TEST"."LOC_CITY",
joinIndexType=0,
joinIndexEstimation=0,
joinCondition=('JOIN_LOC_LOC_CITY_1',"TEST"."LOC","CITY",
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"TEST"."LOC_CITY","CITY",'',16,0),
joinPath=('PATH','JOIN_LOC_LOC_CITY_1'),
viewAttribute=('STORE_ID',"TEST"."LOC","STORE_ID",'PATH','V_LOC',
'attribute','','test/AT_LOC$STORE_ID'),

viewAttribute=('CITY',"TEST"."LOC","CITY",'PATH','V_LOC',
'attribute','','test/AT_LOC$CITY'),

viewAttribute=('STATE',"TEST"."LOC_CITY","STATE",'PATH','V_LOC',
'attribute','','test/AT_LOC$STATE'),

view=('V_LOC',"TEST"."LOC"),
defaultView='V_LOC',
'REGISTERVIEWFORAPCHECK'='1',
OPTIMIZEMETAMODEL=0)

Listing 1.4  DDL of the Column View

The column view is based on the definition of the join index. There are several
types of join indexes: An index type of 6 indicates an attribute view; when an
index type is 5, it is an analytic view; and when an index type is 11, it is a calcu-
lation view. By understanding the syntax of the column view statement, you can
create column views without using the information view tool.

However, objects created with the information view tool can be used to create
other information views with the information view tool, whereas the column
views that are created manually cannot. The column view is well optimized to
leverage the SAP HANA engine and results in better performance than achieving
the same logic with a pure SQL query. For example, to execute a simple join of
two tables, it is usually faster to execute an attribute view including the join than
to use a SELECT statement to make the join.

Time Dimension

In addition to the location dimension, you usually need to create a model for a
time dimension. SAP HANA provides table _SYS_BI.M_TIME_DIMENSION as a calen-
dar table. If there are no rows currently in this table, you can generate the content
of the table with the Generate Time Data tool, found under the Quick Launch

tab of the SAP HANA Modeler perspective of SAP HANA Studio (see Figure 1.8).

If the tab is not shown in SAP HANA Studio, click on the Modeler button to
switch the perspective in the toolbar (see Figure 1.9).

If the Modeler button is not on the toolbar, click on the Window dropdown
menu on the toolbar and navigate to Open Perspective • Modeler. The Quick

Launch tab will appear (see Figure 1.10).
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Figure 1.8  Generate Time Data Tool Under the Quick Launch Tab

Figure 1.9  SAP HANA Modeler Button in Toolbar

Figure 1.10  Modeler Button in Window Dropdown
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Once you are in the SAP HANA Modeler tool, you can create the attribute view
AT_CALENDAR against the calendar table (see Figure 1.11).

Figure 1.11  Attribute Table on Date Dimension

Also create a hierarchy for the date dimension, as shown in Figure 1.12.

Figure 1.12  Hierarchy of the Date Dimension
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In the hierarchy definition window, set the column YEAR as the first level, column
CALMONTH as the second level, and DATE_SQL as the third level. The format of the
CALMONTH column is a year value with a month value, such as 201312. Therefore,
one value of CALMONTH only points to a single year. There is another column,
MONTH, on the calendar table. If the format of the column is only the month value,
then each value on this column points to multiple values of the year. If you
choose the MONTH column at the second level, you need to choose Level Type as
the Name Path. The resulting expression will be [2013].[12], which points to a
unique node.

After you activate the attribute view, you will see a new column view: _SYS_BIC.
"test/AT_CALENDAR".

Other Dimensions

You can also create attribute views for other dimensions, such as goods-related
dimensions, payment method dimensions, customer dimensions, and more.
With attribute views, you can define joins, filters, calculated columns, and hierar-
chies. When you need other kinds of logic, such as aggregation or union, you can
create other kinds of information views.

1.3.2 Analytic Views

Analytic views can be used to model columns, calculated and restricted col-
umns, input parameters, and variables. Analytic views are used to model data
that includes measures. For example, say that you have a transaction table TRANS
that stores a transaction log, and you need to analyze the measures for quantity
and price. You may choose to create an analytic view against the table (see Lis-
ting 1.5).

CREATE COLUMN TABLE "TRANS" (
"TRANS_DATE" DATE,
"TRANS_NO" BIGINT ,
"STORE_ID" INT,
"PROD_ID" INTEGER ,
"SALES_QTY" BIGINT ,
"PRICE" DECIMAL(18,2));

Listing 1.5  DDL of Fact Table TRANS
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Data Foundation

To create an analytic view, you first need to define the data foundation using the
information view tool (see Figure 1.13).

Figure 1.13  Data Foundation of the Analytic View AN_TRAN

Drag table TRANS to the data foundation. In this table, the column names are
straightforward, but in other cases, the column names might be incomprehensi-
ble or misleading. In these situations, you should show the description of each
column in the UI. You can run the statements shown in Listing 1.6 to add com-
ments on each column of the table.

COMMENT ON COLUMN TRANS.TRANS_DATE IS 'Date of transaction';
COMMENT ON COLUMN TRANS.TRANS_NO IS 'ID of transaction';
COMMENT ON COLUMN TRANS.STORE_ID IS 'ID of store';
COMMENT ON COLUMN TRANS.PROD_ID IS 'ID of merchandise';
COMMENT ON COLUMN TRANS.SALES_QTY IS 'Quantity of sold';
COMMENT ON COLUMN TRANS.PRICE IS 'Price of merchandise';

Listing 1.6  Add Comments on Each Column

As shown in Figure 1.14, after adding comments for each column, when you
check the table in the UI, you will find the column name and column description
shown side by side.
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Figure 1.14  Column Name and Description Shown Side by Side

Join Definitions

Next, examine the join definition in the analytic view (see Figure 1.15). Add two
attribute views, AT_CALENDAR and AT_LOC, to join with the data foundation.

Figure 1.15  Join Definition in an Analytic View
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Table AT_CALENDAR is for the time dimension, and table AT_LOC is for the location
dimension. When you run reporting against the analytic view, you can leverage
any column of the linked attribute views. When you use an MDX query, you can
also leverage the hierarchies defined in the attribute views.

A join combines two or more table or view records. There are several types of
joins that you should be aware of:

� Inner joins 
Inner joins return records that show the mapping between two tables and filter
out records without any mapping. When a join is defined as an inner join, it is
always performed when a query is run against an analytic view, regardless of
whatever columns exist in the query.

� Outer joins 
Outer joins include left outer joins and right outer joins. The left outer join
returns all the records on the left table, regardless of whether the record has
mappings on the right table. Similarly, the right outer join returns all the
records on the right table, regardless of whether the record has mappings on
the left table. When running a query against a view containing a left outer join,
the join is performed only when the query contains any column from the right
table. When there is no column from the right table in the query, the join is not
performed. The same is true in reverse for right outer joins. This helps the SAP
HANA engine simplify its execution plan and improve performance. In the run-
ning example, if you set the join between the data foundation and AT_LOC as a
left outer join, then when you run a query to analyze sales on the date dimen-
sion, regardless of the location dimension, the join between the data founda-
tion and AT_LOC will not be performed.

� Referential joins 
Referential joins behave like inner joins, when the query contains columns from
both linked tables. They also behave like outer joins when the query contains
columns from only one of the linked tables. For example, if you set the join
between the data foundation and AT_LOC as a referential join, when the query
does not contain the CITY or STATE column, the join is not performed; when the
query contains the CITY or STATE column, the join is performed like an inner
join, and the records on the data foundation that do not have a mapping row on
AT_LOC will be filtered out. There is an exception when the underlying attribute
view contains an inner join: The referential join in the analytic view will
behave like an inner join regardless of whether the attribute view’s columns
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exist in the query or not. Therefore, if you want the referential join to behave
dynamically based on the query, make sure the underlying attribute view uses
a referential join or outer join instead of an inner join.

With a referential join, you can link time-dependent dimension tables. For
example, a store once belonged to City 1 from 2001 to 2005, and it belonged
to City 2 from 2006 to 2010. Here, you need to create a time-dependent dimen-
sion table to store the history relation between the store and the city, assuming
you use DATE_FROM and DATE_TO columns to store the date range. When you
define the join, you need to set the TRANS_DATE column as a temporal column,
DATE_FROM as a from column, and DATE_TO as a to column.

� Text joins 
Text joins behave like inner joins, but with a restricted language column. This
join is beneficial in multilingual applications. For example, suppose you have a
location dimension table that supports multilingual usage, and for each store ID
there are two records pointing to two languages. Use the LANG column to spec-
ify the language type with value E or D. Then, you can define the join as a text
join and set LANG as the language column. When you log on to SAP HANA, spec-
ify the language value for the logon session. The value is sent to the analytic
view with the internal input parameter $$language$$. A filter based on the
value will be applied to the LANG column, and the analytic view will return the
records that match the language setting of the session.

When you make a join between the data foundation and the attribute view, the
join columns on the data foundation are grayed out. When you need the columns
in the query, you have to use the linked column on the attribute view. For exam-
ple, when you need to use the TRANS_DATE column, you have to use the DATE_SQL
column. For an inner join, there is no difference between TRANS_DATE and DATE_
SQL, because they return only the mapping records; the mapping records have the
same values on the columns.

For a referential join, using DATE_SQL and using TRANS_DATE works differently; if
you use DATE_SQL, the join is performed, and the record of the transaction table
without mapping will be filtered out on the transaction table. If you use TRANS_
DATE, the join is not performed, and the records without mapping will be kept.

For a left outer join, the logic becomes more complex. DATE_SQL no longer points
to the AT_CALENDAR column, but to the TRANS_DATE column on the data founda-
tion. When the DATE_SQL column is used in the query, it returns the value of
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TRANS_DATE, and the join is not performed. In order to perform the join, you need
to add another column of AT_CALENDAR to the query.

To avoid confusion on the join column, it is better to create separate columns for
joins. In attribute view AT_LOC, create an additional column, STORE_ID_J, which
points to STORE_ID. In the attribute view AT_CALENDAR, create an additional col-
umn, DATE_SQL_J, which points to DATE_SQL.

As shown in Figure 1.16, in the analytic view we created additional columns for
STORE_ID_1 and TRANS_DATE_1. The data foundation joins to AT_CALENDAR on
columns TRANS_DATE and DATE_SQL_J. The data foundation then joins to AT_LOC
on columns STORE_ID_1 and STORE_ID_J. Given that the STORE_ID columns for
attribute view AT_LOC and the data foundation have duplicate names, add an
alias of STORE_ID on AT_LOC as AT_LOC_STORE_ID, then you can use the name
STORE_ID to point to the data foundation and use the name AT_LOC_STORE_ID to
point to AT_LOC.

Figure 1.16  Join to Separate Columns

With this approach, the join columns between tables are explicitly separated, and
can be referenced separately in queries. For example, if the join for the data foun-
dation and AT_CALENDAR is an inner join, then you can use either DATE_SQL or
TRANS_DATE, as they return the same result. However, for a referential join or left
outer join, if you do not want to perform the join, choose column TRANS_DATE in
the query; if you do want to perform the join, choose DATE_SQL. The solution is to
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avoid confusion about the owner of the join column. If the query doesn’t need
the join column, you do not have to apply it. For example, in an analytic view, if
you want to aggregate data at the month, quarter, or year level instead of at the
day level, you will not run into this confusion.

You can set the cardinality when defining joins. Appropriate cardinality settings
can help the optimizer choose an optimal execution path. For fact tables, when
joined to a dimension table on the primary key, the cardinality is usually N:1. The
cardinality setting should respect the actual data relation; otherwise, it may lead
to errors or low performance. When the cardinality information is unknown, you
can leave the cardinality setting empty; the system will diagnose the best-suited
cardinality and execute the join.

Calculated Columns

You can also create a calculated column on an analytic view. In the following
example, you have the quantity and price. To calculate the total sales of each trans-
action, you need to create the calculated column SALES_NET (see Figure 1.17).

In the Calculated Columns window, you can set the column as an Attribute or
Measure in the Column Type field according to the nature of the column. In this
case, set it as Measure, because its expression is "PRICE"*"SALES_QTY", and the
value will be aggregated with SUM() in the query. If you select the Calculate

Before Aggregation checkbox, then the calculation is performed for each row.
This can be time-consuming with volume data. When this checkbox is not
selected, the calculation is performed on the aggregation result to improve per-
formance. In this case, the result of SUM("PRICE" * "SALES_QTY") is not equal to
SUM("PRICE")*SUM("SALES_QTY"), so select the checkbox. Alternatively, you can
create a calculated column on the fact table with the following statement:

ALTER TABLE TRANS ADD (SALES DECIMAL(18,2) GENERATED ALWAYS AS
PRICE*SALES_QTY);

You can use the calculated SALES column in the analytic view as well, and it
behaves like a physical column. The performance is better than when defining the
calculation in the analytic view. If the columns of the expression are from differ-
ent tables, you have to define the calculated column in the analytic view.
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Figure 1.17  Calculated Columns

Semantics Nodes

After defining the joins and calculated columns, you can enter the semantics
node. There, you can define the column type, aggregation type, and some periph-
eral settings (see Figure 1.18).

Define the columns TRANS_DATE, STORE_ID, and so on as attributes, because you
can use the columns in the GROUP BY clause or WHERE clause. Define SALES_QTY and
SALES_NET as measures, because you can use the SUM() function on them.
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Figure 1.18  Semantics Node of an Analytic View

Measures

In some cases, you may also need a column for measures in the WHERE clause. For exam-
ple, suppose you use a positive value on SALE_QTY for goods sold and a negative value
for goods returned. You need a filter like "WHERE SALE_QTY>0" in the query when you
analyze the goods sold. When using a measure as a filter, some client tools may filter it
after aggregation and return the wrong result.

To avoid this problem, create separate columns in the data foundation: SALES_QTY and
SALE_QTY_ATT, which both point to one column. Define SALES_QTY as a measure and
SALES_QTY_ATT as an attribute. In an SQL query or other client tools, when the column
is needed in an aggregation function, use SALES_QTY. For a GROUP BY clause or WHERE
clause, use the SALES_QTY_ATT column.

As shown in Figure 1.18, there are three checkboxes in the Properties section:
MultiDimensional Reporting, Allow Relational Optimization, and Enable

Analytic Privilege. When MultiDimensional Reporting is selected, the view
can be consumed with MDX to perform multidimensional reporting; otherwise,
it cannot be consumed with MDX.
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The Allow Relational Optimization checkbox relates to the calculation
engine’s behavior. To understand its use, you need to know how the view is
structured on the backend. If an analytic view has complex logic, such as calcu-
lated attributes, currency conversion, or input parameters, then when it is acti-
vated, it generates a column view with index type 5, a calculation scenario based
on the column view, and another column view with index type 11, which is
based on the calculation scenario. In Listing 1.7, the column view with index type
5 is _SYS_BIC. "test/AN_TRAN/olap".

CREATE COLUMN VIEW "_SYS_BIC"."test/AN_TRAN/olap"
WITH PARAMETERS (indexType=5,
joinIndex="TEST"."LOC",
joinIndexType=2,
joinIndexEstimation=0,
joinIndex="TEST"."LOC_CITY",
...
...
...
characteristic=('PROD_ID',
keyAttribute="PROD_ID",''),
characteristic=('SALES_QTY_ATT',
keyAttribute="SALES_QTY_ATT",''),
'REGISTERVIEWFORAPCHECK'='1',
OPTIMIZEMETAMODEL=0);

Listing 1.7  DDL of Column View Based on an Analytic View Definition

The column view does not contain calculated attributes. Those attributes are
defined in another kind of object called a calculation scenario (see Listing 1.8).

CREATE CALCULATION SCENARIO "_SYS_BIC"."test/AN_TRAN" USING
'[{"__CalculationNode__": true,"name": "dataSource","operation":
{"__OlapDSNodeData__": true,"source": "_SYS_BIC:test/AN_TRAN/olap",
"dataSourceFlags": 0},"attributeVec": [{"__Attribute__": true,
"name": "DATE_SQL","role": 1,"datatype": {"__DataType__": true,
"type": 101,"sqlType":

...

...

...
true,"name": "row.count","role": 2,"datatype": {"__DataType__": true,
"type": 66,"length": 18},"kfAggregationType": 2,"attributeType": 4,
"specialAttrType": 4}]}]';

Listing 1.8  DDL of a Calculation Scenario

A column view _SYS_BIC. "test/AN_TRAN" with index type 11 is generated based
on the calculation scenario (see Listing 1.9).
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CREATE COLUMN VIEW "_SYS_BIC"."test/AN_TRAN" WITH
PARAMETERS (indexType=11,
'PARENTCALCINDEXSCHEMA'='_SYS_BIC',
'PARENTCALCINDEX'='test/AN_TRAN',
'PARENTCALCNODE'='finalAggregation');

Listing 1.9  DDL of a Column View Based on a Calculation Scenario

When you create calculation views, they create similar calculation scenarios.
The calculation scenario is executed in the calculation engine. At runtime, the
calculation engine executes an instantiation process, which transforms a stored
calculation model into an executed calculation model based on a query on top
of a calculation view.

The Allow Relational Optimization checkbox affects the optimization of an
executed calculation model. When it is selected, redundant columns will be
removed from the execution plan and the performance is improved.

Because the calculation engine does not behave relationally, the relational opti-
mization of a query in the calculation engine may cause unexpected results in
some cases. For example, when calculating COUNT(*), it does not specify a pro-
jection list of columns that should be counted. Due to the instantiation process,
the result set of the executed calculation model can vary. To address the poten-
tial problem with COUNT(*), you may use an internal column row.count, which
will return the correct result. Therefore, the query to calculate COUNT(*) can be
revised as follows:

SELECT SUM("row.count") FROM _SYS_BIC."test/AN_TRAN;

Alternatively, you may create a calculated column on the fact table and assign it
the value of constant 1:

ALTER TABLE TRANS ADD (ONE INT GENERATED ALWAYS AS 1);

To calculate the value of COUNT(*), calculate SUM(ONE):

SELECT SUM(ONE) FROM _SYS_BIC."test/AN_TRAN";

However, if you create a calculated attribute—for example, ONE_A with constant
value 1—on the analytic view instead of on the table, it sometimes may behave in
a different way. When we run following query, it returns null:

SELECT SUM(ONE_A) FROM _SYS_BIC."test/AN_TRAN";
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The calculated column in an analytic view is different from that in a table. This is
due to the calculation engine’s instantiation process. Because there are no other
columns in the query except the calculated column, the calculated attribute is not
instantiated, and so it returns null. To fix this, you may change the calculated
attribute to a calculated measure with the Calculated Before Aggregation flag.

The Allow Relational Optimization setting in Figure 1.18 doesn’t impact opti-
mization at the SQL query level. Therefore, whether the checkbox is selected or
not, when we run the following query,

SELECT SUM(C) FROM (SELECT CITY,COUNT(*) C FROM _SYS_BIC."test/AN_
TRAN" GROUP BY CITY);

it will be optimized as follows:

SELECT COUNT(*) FROM _SYS_BIC. "test/AN_TRAN";

Optimization Strategy

Optimization strategies may change with SAP HANA releases. To stay current, refer to
the release notes.

As introduced previously, there is a column view of index type 5 based on a cube
definition and a column view of index type 11 based on a calculation scenario.
These two kinds of column views behave in different ways in some cases. Exam-
ine the following query:

SELECT COUNT(*) FROM (SELECT * FROM _SYS_BIC."test/AN_TRAN");

If the column view is of index type 5, it is executed as follows:

SELECT COUNT(*) FROM _SYS_BIC."test/AN_TRAN";

If the column view is of index type 11, it is executed as follows:

SELECT COUNT(*) FROM (
SELECT DISTINCT DATE_SQL, YEAR, CALMONTH, CALQUARTER, MONTH, WEEK,
QUARTER, DAY, AT_LOC_STORE_ID, CITY, STATE, TRANS_DATE, STORE_ID,
TRANS_NO, PROD_ID

FROM _SYS_BIC."test/AN_TRAN");

Because the execution plans are different, the queries against the different types
of views perform differently and return different results. It is important to check
the execution plan when troubleshooting SQL query issues, because similar que-
ries against different kinds of views can lead to significant differences in the exe-
cution plan.
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When optimization is performed and some columns are removed from the opti-
mized query, it might impact the joins. If a join between the data foundation and
AT_LOC is a referential join, then when the CITY column is in the query, the join
will be executed; otherwise, it is not executed. To enforce the execution of the
join, you may add a filter, such as "WHERE CITY IS NOT NULL", in the query.

With newer revisions of SAP HANA, more features have been introduced, and the
UI has also changed. Examine the semantics node definition window of SAP
HANA Studio version 2.0.15, shown in Figure 1.19.

Figure 1.19  Semantics Node Definition Window in SAP HANA Studio Version 2.0.15

In Figure 1.19, note the following elements:

� Data Category 
This field has two dropdown options: CUBE and Empty. When you choose
CUBE, the analytic view is multidimensional and can be used in an MDX query.

� Default Client 
This setting has three options:

� Session Client 
Controls the behavior of the restriction based on the user’s session client
number. When you create a user, you can specify the user’s Session Client

number (see Figure 1.20).
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Figure 1.20  User’s Session Client Setting

In the table, you can define a column with the name MANDT or CLIENT and use
it to separate the records of datasets from different clients. The client number
can be used to share the same database resource with multiple groups, while
letting each group has a dedicated dataset. For example, you can set a value of
200 for MANDT for company A, and 300 for company B.

If you set Default Client to Session Client, when you run a query against the
analytic view, it applies a filer on the column MANDT or CLIENT according to the
user’s client number. For example, when the user’s client is 200, it applies the
filter as WHERE MANDT='300'. As a result, users with different client numbers will
consume different datasets even with the same query against the same analytic
view. If the client number is not defined on the user, the filter will not be
applied.

The client number of the user will be overridden if you explicitly assign a value
to the internal input parameter $$client$$. For example:

SELECT SUM(SALES) FROM _SYS_BIC."test/AN_VIEW1"
(PLACEHOLDER."$$client$$"=>'300');

The filter will be created with the explicitly assigned value of the parameter,
regardless the actual client number of the user. The client setting doesn’t guar-
antee implementation of authorization; a user with one client value can access
a dataset belonging to a different client value by explicitly assigning a value to
the internal parameter.

� Cross Client 
If this is selected, no filter based on a user’s client number will be applied.

� Fixed Value 
Another option is to set a fixed value, such as 300, on the field. As a result,
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any query against the analytic view will internally combine a filter such as
MANDT='300' or CLIENT=’300’, and the internal parameter $$client$$ will no
longer exist.

� Default Schema 
This setting is for scripted calculation views and has no effect on the analytic
view.

� Enable History 
This checkbox is used to achieve time travel within a history table. When it is
selected, you need to specify an input parameter to retrieve the data version at
a history point.

� Cache Invalidation Period 
You can enable or disable the cache feature with this checkbox. If it is not
selected and the cache feature is disabled, every time you run a query against
the analytic view, the SAP HANA engine will access the underlying tables,
retrieve the data, and execute the joins. This process can be time-consuming
when tables are large.

As shown in Figure 1.19, you can set the Cache Invalidation Period field to
Daily or Hourly. Then, the query result is cached in-memory for the specified
period of time, and other queries will get results from the cache directly instead
of accessing the underlying tables. This will enable better performance. How-
ever, the downside is that the result is not quite up-to-date. The life of the cache
is one day or one hour, according to the field setting. When the cache expires,
the cached result is removed; a query fired after that point will reaccess the
underlying tables, and the new result will be cached.

� Generate Concat Attributes 
This checkbox can be used to improve join performance. When it is selected, it
creates additional calculated columns for the joins based on multiple columns.
For example, when two tables are joined on T1.A=T2.A and T1.B=T2.B, the col-
umn $A$B$ will be created on two tables, and the join will be changed to
T1.$A$B$=T2.$A$B$. Apply this feature with caution, because it may lead to
incorrect results in some cases. Assuming the values of the columns on T1 are
12 and 3 and on T2 are 1 and 23, when they are concatenated, they both
become 123 and the join condition based on the concatenated column is satis-
fied; but this is not the desired behavior.
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Analytic views are executed in the OLAP engine and perform well, especially with
larger tables. When you have to address various reporting requirements, an ana-
lytic view should be the first option to come to mind. Only when there is logic
that cannot be achieved with an analytic view should you use calculation views or
stored procedures.

1.3.3 Calculation Views

Calculation views are used to provide composites of other views, including attri-
bute views, analytic views, or other calculation views. With calculation views,
you can perform more complex data manipulations, such as making joins or
unions of two data flows or adding filters on top of aggregation results.

You can create two types of calculation views: graphical calculation views and
scripted calculation views. In this section, we will look at how to create each type
in turn.

Graphical Calculation View

Graphical calculation views are modeled using the graphical modeling features of
the SAP HANA Modeler. To walk through how to create a graphical calculation
view, suppose you have two fact tables; one is TRANS (mentioned in the previous
section and contains sales records), and the other is PURCHASE, which contains the
purchase records (see Listing 1.10).

CREATE COLUMN TABLE "PURCHASE" (
"PURCHASE_DATE" DATE,
"PURCHASE_NO" BIGINT ,
"STORE_ID" INT,
"PROD_ID" INTEGER ,
"PURCHASE_QTY" BIGINT ,
"PRICE" DECIMAL(18,2));

Listing 1.10  DDL of the PURCHASE Table

Also create the analytic view AN_PURCHASE in the same way as AN_TRAN. When you
want to make a report to show the sales and purchases data side by side, you need
to union the outputs of the two analytic views AN_TRAN and AN_PURCHASE. You can
use a calculation view to achieve this (see Figure 1.21).
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Figure 1.21  Calculation View of CA_SALES_PURCHASE

When you create a calculation view, you can choose what to enter for the Calcu-

lation View Type. There are two option: Graphical and SQL Script. As shown in
Figure 1.21, choose Graphical.

The Subtype field has two options: Standard and Time. Time means that the view
is based on the system calendar table. For all other views, choose Standard. The
Data Category field defines the last node of the view. When set to Dimension or
blank, the last node is a projection; when set to CUBE, the last node is an aggre-
gation, and the view can be consumed with MDX on multidimensional reporting
tools. When you choose CUBE, you can also select the With Star Join checkbox.
This feature is used to simulate an analytic view in a calculation view.

In the calculation view, create a union node and drag the two analytic views AN_
TRAN and AN_PURCHASE to the node (see Figure 1.22). When managing the map-
ping columns between the tables, map the attributes of the same dimension of
the two tables. For example, map the STORE_ID column between the two tables,
and then map the CITY column between the two tables. For measures, create sep-
arate target columns. You will have separate target columns for SALES_QTY and
PURCHASE_QTY and separate target columns for SALES_NET and PURCHASE_NET.
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Figure 1.22  Union Node Definition in a Calculation View

After defining the union node, enter the aggregation node (see Figure 1.23). For
each column that has an attribute, you can click the column or choose Add To

Output from the context menu to add it as an attribute column. For each column
that is a measure, you can choose Add As Aggregated Column from the context
menu to add it as a measure column.

Figure 1.23  Aggregation Node Definition in a Calculation View
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The semantics node window of a calculation view is similar to that of an analytic
view (see Figure 1.24). You can select the Data Category and Default Client

just as you did for the analytic view.

The Execute In field is specifically for calculation views. When it is blank, the
view is executed in the calculation engine. When it is set to SQL Engine, the view
is executed in the SQL engine. Each engine has its own strength. For example, the
calculation engine is good at calculating currency conversion, whereas the SQL
engine is good at optimizing join order. The Execute In field should be custom-
ized on a case-by-case basis to determine which engine should be chosen. Some
native functions are supported only with the column engine and not convertible
such as with date(). When the view contains such functions, you cannot set it to
be executed in the SQL engine.

Figure 1.24  Semantics Node Definition of a Calculation View

Some expressions are handled in different ways. In a calculation engine, the
expression 1+null returns 1, but it returns null in the SQL engine. Therefore, you
can expect to see different results when you switch engines. When the view con-
tains other graphical views that can be executed in different engines or contains
scripted calculation views, different types of views will be optimized separately.
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After the calculation view is activated, you will see the column view CA_SALES_
PURCHASES created in the _SYS_BIC schema. The view is based on a calculation sce-
nario (see Listing 1.11).

CREATE CALCULATION SCENARIO "_SYS_BIC"."test/CA_SALES_PURCHASES"
USING '[{"__CalculationNode__": true,"name": "AN_TRAN","operation":
{"__OlapDSNodeData__": true,"source": "_SYS_BIC:test/AN_TRAN",
"dataSourceFlags": 0},"attributeVec": [{"__Attribute__":
true,"name":

...

...
"Aggregation"}},{"__Variable__": true,"name": "$$language$$",
"typeMask": 512,"usage": 0,"isGlobal": true},{"__Variable__": true,
"name": "$$client$$","typeMask": 512,"usage": 0,"isGlobal": true},
{"__CalcScenarioMetaData__": true,"externalScenarioName":
"test::CA_SALES_PURCHASES"}]'

;
CREATE COLUMN VIEW "_SYS_BIC"."test/CA_SALES_PURCHASES" WITH

PARAMETERS (indexType=11,
'PARENTCALCINDEXSCHEMA'='_SYS_BIC',
'PARENTCALCINDEX'='test/CA_SALES_PURCHASES',
'PARENTCALCNODE'='finalAggregation')

Listing 1.11  DDL of a Column View Based on the Calculation View Definition

Graphical calculation views support the following types of calculation nodes:

� Projection node 
This node is used to define filters and select columns. Usually, you put each
data source, such as an embedded table or view, into a projection node and
apply a filter to cut down data size as early as possible.

� Join node 
This node is to define joins. If one table needs to join multiple tables, you need
to join them one by one in separate nodes. Alternatively, you can create a star
join node and then join from one table to multiple tables at one node. With a
star join, all the tables need to be wrapped into calculation views. Star joins are
like analytic views except they allow you to create measures from different
tables.

You can make inner joins, outer joins, referential joins, and text joins on a cal-
culation view as well, but there is a limitation on text joins. The filter on the
WHERE clause of a query will not be pushed down to the table level when there
is a text join in the calculation view. If this causes performance issues, then you
need to consider a different approach than using a text join.
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On the join node, SAP HANA also supports the spatial join, which enables you
to handle calculations between 2-D geometries performed using predicates,
such as intersects, contains, and more.

� Aggregation node 
This node is used to define aggregation. You can define the aggregation type as
SUM, MIN, MAX, or COUNT. You also can create a counter, which is used to calculate
COUNT DISTINCT.

� Rank node 
With a rank node, you can filter data based on rank. As shown in Figure 1.25,
you can set the Sort Direction as Descending (Top N) or Ascending (Bottom

N). The Threshold field is to set the value of N. Partition By Column sets the
columns to partition the records into multiple windows. In each window, it
returns the top N or bottom N records. The Dynamic Partition Elements

checkbox allows you to choose the columns dynamically from the list under
Partition By Column in case some of these columns do not exist in the query.

Figure 1.25  Rank Node Definition in a Calculation View

Among these nodes, the counter measure in the aggregation node is the most
troublesome. Therefore, you need to use it with caution. Because the calculation
of a counter is impacted by the GROUP BY column, when the workflow is complex,
a query may return different results with different execution paths. For example,
when a view contains a stacked view, if a query has a filter on columns on a
stacked view, then there are different options to calculate the counter. One
option is to push down the filter to a stacked view; another is to apply the filter
to the output of the stacked view. The Transparent Filter option controls the
behaviors filter in the calculation view (see Figure 1.26).
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Figure 1.26  Transparent Filter Flag in a Calculation View

Suppose you want to check the count distinct of PROD_ID in two specific stores
with a query against CA_TRAN2 in which CA_TRAN2 embeds another calculation
view called CA_TRAN. In the CA_TRAN calculation view, add the COUNTER_PROD
counter to calculate the distinct count of PROD_ID. You can set the Transparent

Filter field on the column STORE_ID to True. Also, in the CA_TRAN2 calculation
view, set Transparent Filter on the STORE_ID column to True (see Figure 1.27).

Figure 1.27  Transparent Filter Setting on a Calculation View
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When you run the query in Listing 1.12, it will push down the filter of STORE_ID
IN (2,3) to the CA_TRAN stacked view.

SELECT SUM(COUNTER_PROD)
FROM _SYS_BIC."test/CA_TRAN2"
WHERE STORE_ID IN (2,3);

Listing 1.12  Query with a Column Filter on a Stacked View

The query in Listing 1.12 will be executed as shown in Listing 1.13.

SELECT SUM(COUNTER_PROD)
FROM
(SELECT SUM(COUNTER_PROD) COUNTER_PROD
FROM _SYS_BIC."test/CA_TRAN"
WHERE STORE_ID IN (2,3));

Listing 1.13  Query with the Filter Pushed Down

Otherwise, if you set Transparent Filter to False, the filter will be applied to the
output of the stacked view, and the query will be executed, as shown in Listing
1.14.

SELECT SUM(COUNTER_PROD)
FROM
(
SELECT STORE_ID,SUM(COUNTER_PROD) COUNTER_PROD
FROM _SYS_BIC."test/CA_TRAN2"
GROUP BY STORE_ID
)
WHERE STORE_ID IN (2,3);

Listing 1.14  Query without the Filter Pushed Down

As a result, the common values on the PROD_D column in stores 2 and 3 will both
add up to the measure COUNTER_PROD, returning the wrong count distinct. Based on
your business requirements, you should make the appropriate setting on the flag.

In addition, you can also enforce a column existing in the execution plan with the
Keep option (see Figure 1.28). The CA_TRAN3 calculation view has a stacked ana-
lytic view called AN_TRAN, which contains a referential join between the data foun-
dation and AT_LOC. When you set the Keep flag of the CITY column as True, the
CITY column will exist in the execution plan regardless of whether it exists in the
query, and when the CITY column exists, the referential join will be executed.

Run the following query against the view that has the column with the Keep

option set to True:
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SELECT SUM(SALES_NET),COUNT(PROD_ID)
FROM _sys_bic."test/CA_TRAN3";

Figure 1.28  Keep Flag in a Calculation View

It is parsed as the query shown in Listing 1.15, which has an additional column in
the inner query. The inner query will be executed first, and the final aggregation
will be applied on top of the output. The results might be different because an
underlying referential join is executed.

SELECT SUM(S),SUM(C)
FROM
(
SELECT CITY,SUM(SALES_NET) S,COUNT(PROD_ID) C
FROM _sys_bic."test/CA_TRAN3"
GROUP BY CITY
);

Listing 1.15  Query with Additional Column with the Keep Flag

The output of one node can be the input of another node. With the node-by-
node building approach, you can build complex processing logic. The topology
view of the data flow is like a tree. With SAP HANA’s multiple core engine, the
calculation of data flows can be split into multiple cores and the execution can be
in parallel. If you define a node for which the output points to multiple nodes,
then the calculation engine fails to separate input data flows between Join_1 and
Join_2, causing performance issues (see Figure 1.29).
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Figure 1.29  Calculation View with an Output of a Node Pointing to Multiple Nodes

To address the issue, create a different projection node so that each node points
to a dedicated join node. When the topology view data flow is like a tree, the exe-
cution can be well optimized in the calculation engine (see Figure 1.30). If there
is a filter in the query, the filter can be pushed down to the table level.

Figure 1.30  Calculation View with an Output of Every Node Pointing to a Single Node
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Scripted Calculation View

Another type of calculation view is a scripted calculation view. Such a view is writ-
ten using SQLScript. To create this type of calculation view, choose SQL Script in
the Type field in the Create an Information View window (see Figure 1.31).

Figure 1.31  Scripted Calculation View

For example, if you create a view called CA_TRAN4 to union the output of AN_TRAN
and AN_PURCHASE, you can edit the script as shown in Figure 1.32. var_out is the
table variable used to define the output of the view. You need to define the col-
umns at the output panel. The name, sequence, and data type should be exactly
the same as the columns in the SELECT clause of the var_out variable.
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Figure 1.32  SQLScript Statements in a Scripted Calculation View

After editing the scripts of the view, you can define the View Properties at the
semantics node (see Figure 1.33). There are two fields specific to scripted calcula-
tion views:

� Run With 
This defines the user’s authorization behavior. When it is set to Definer’s

Rights, users who run the view will be applied as the definer of the view. For
example, user A creates the view and has select rights on the underlying table.
If user B has the rights on the view, then user B can run the view even though
user B doesn’t have select rights on the underlying tables. When Run With is
set to Invoker’s Rights, user B should have rights on both the view and under-
lying tables before running the view.

� Default Schema 
You can specify a schema name in the Default Schema field when there is an
unqualified table name in the script. SAP HANA will search the table in the
specified schema.
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Figure 1.33  View Properties of the Scripted Calculation View

When the scripted calculation view is activated, you will see the "_SYS_BIC".
"test/CA_TRAN4/proc" procedure generated (see Listing 1.16).

create procedure "_SYS_BIC"."test/CA_TRAN4/proc" ( OUT var_out "_SYS_
BIC"."test/CA_TRAN4/proc/tabletype/VAR_
OUT" ) language sqlscript sql security invoker reads sql data as
/********* Begin Procedure Script ************/
BEGIN
ta = SELECT CITY,STATE,TRANS_DATE,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TRAN"
GROUP BY CITY,STATE,TRANS_DATE;
tb = SELECT CITY,STATE,PURCHASE_DATE,SUM(PURCHASE_NET) PURCHASE_NET
FROM _SYS_BIC."test/AN_PURCHASE"
GROUP BY CITY,STATE,PURCHASE_DATE;
tc = SELECT CITY,STATE,TRANS_DATE,SALES_NET,NULL PURCHASE_NET
FROM :ta
UNION ALL
SELECT CITY,STATE,PURCHASE_DATE,NULL, PURCHASE_NET
FROM :tb;
var_out = SELECT CITY,STATE,TRANS_DATE,
SUM(SALES_NET) SALES_NET,
SUM(PURCHASE_NET) PURCHASE_NET
FROM :tc
GROUP BY CITY,STATE,TRANS_DATE;
END /********* End Procedure Script ************/

Listing 1.16  DDL of Procedure Generated with the Calculation View Design Tool
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Based on the procedure, the "_SYS_BIC"."test/CA_TRAN4" view is generated as
shown in Listing 1.17.

CREATE COLUMN VIEW "_SYS_BIC"."test/CA_
TRAN4" WITH PARAMETERS (indexType=11,
'PROCEDURE_SCHEMA'='_SYS_BIC',
'PROCEDURE_NAME'='test/CA_TRAN4/proc');

Listing 1.17  DDL of the Column View Based on the Procedure

Behind the scenes, the scripted calculation view is a read-only procedure. There-
fore, you should not have DDL and data manipulation language (DML) state-
ments in the script except SELECT.

In this example, each statement is a declaration of a table variable, which we refer
to as declarative logic. When all the statements in the scripted view are declarative
logic, it gives SAP HANA the freedom to optimize the data flow thoroughly,
resulting in better performance. When this kind of scripted view is used in other
graphical views or scripted views, optimization can go into the view, filters are
pushed down to table level, and columns which do not contribute to the final
results are pruned.

For example, suppose you have the view embedded in another graphical view,
CA_TRAN5. If the query is as follows,

SELECT CITY,SUM(SALES_NET) FROM "_SYS_BIC"."test/CA_TRAN5"
WHERE TRANS_DATE='2015-01-01' GROUP BY CITY;

then the filter is pushed down into CA_TRAN4, and the columns STATE and PUR-
CHASE_NET are removed from the execution plan.

If a scripted view contains statements such as IF/THEN, WHILE/DO, CURSOR, or so on,
we call that imperative logic, and the result set will be materialized before it is
optimized. For example, suppose we have a CA_TRAN4 view with imperative logic
embedded in another graphical view, CA_TRAN5. We then run the following
query:

SELECT CITY,SUM(SALES_NET) FROM "_SYS_BIC"."test/CA_TRAN5"
WHERE TRANS_DATE='2015-01-01' GROUP BY CITY;

The filter will not be pushed down into CA_TRAN4, but will apply to the result set
of the embedded view. The columns STATE and PURCHASE_NET are also material-
ized in the result set.
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In a scripted calculation view, you can use the calculation engine plan operators,
which allow you to bypass the SQL processor during evaluation to directly inter-
act with the calculation engine. To use the calculation engine plan operators,
revise the scripted view as shown in Listing 1.18.

/********* Begin Procedure Script ************/
BEGIN
ta = CE_OLAP_VIEW("_SYS_BIC"."test/AN_TRAN",["CITY","STATE","TRANS_
DATE",SUM("SALES_NET")]);
tb = CE_OLAP_VIEW("_SYS_BIC"."test/AN_PURCHASE",[
"CITY","STATE","PURCHASE_DATE",SUM("PURCHASE_NET")]);
ta1= CE_PROJECTION(:ta,["CITY","STATE","TRANS_DATE","SALES_NET",CE_
CALC('NULL', decimal(18,2)) AS "PURCHASE_NET"]);
tb1= CE_PROJECTION(:tb,["CITY","STATE","PURCHASE_DATE" AS "TRANS_
DATE",CE_CALC('NULL', decimal(18,2)) AS "SALES_NET","PURCHASE_NET"]);
tc = CE_UNION_ALL (:ta1, :tb1);
var_out = CE_AGGREGATION(:tc,[SUM(SALES_NET) AS SALES_
NET,SUM(PURCHASE_NET) AS PURCHASE_NET],["CITY","STATE","TRANS_DATE"]);
END /********* End Procedure Script ************/

Listing 1.18  Scripted Calculation View Using the Calculation Engine Plan Operators

In the script, the CE_OLAP_VIEW() operator selects the columns from a cube.
Examine the following statement:

ta = CE_OLAP_VIEW("_SYS_BIC"."test/AN_TRAN",["CITY","STATE","TRANS_
DATE",SUM("SALES_NET")]);

This returns the same result as the SQL query:

ta = SELECT CITY,STATE,TRANS_DATE,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TRAN"
GROUP BY CITY,STATE,TRANS_DATE;

It is not recommended to mix SQL queries and calculation engine plan operators,
because different types of statements will be optimized separately.

So far, we have explained the three information views. To build models based on
simple joins to represent dimensions, you created attribute views. To build mod-
els to represent star schema and calculated measures, you created analytic views.
For more complex models, you used calculation views, which includes aggrega-
tion on multiple data flows, SQLScript, or other information views.

Now that you are familiar with the three information views, let’s look at how we
can assign analytic privileges to them for users.
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1.4 Analytic Privileges

Analytic privileges control access to SAP HANA data models. Analytic privileges
help you to achieve row-level security on information views. To define analytic
privileges, specify the range of values that a user is permitted to access. When the
user uses the view, a filter based on the analytic privilege will be applied on the
view to retrieve the records that the user is permitted to access. You can define
two types of analytic privileges: classical XML-based analytic privilege and SQL-
based analytic privilege. In this section, we will look at examples of how to use
analytic privileges to control access to SAP HANA models.

1.4.1 Classical XML-Based Analytic Privilege

An XML-based, or classic, analytic privilege allows you to assign selective access
to information views to users based on data combinations.

In this section, we will look at how to create this analytic privilege with an exam-
ple: Suppose a user of a store is permitted to access records of his or her own
store in the analytic view AN_TRAN. In this situation, you can create the analytic
privilege AP_STORE and apply it to the user. In this case, choose the underlying
attribute view AT_LOC on the Select Information Models window when you
create the privilege (see Figure 1.34).

Figure 1.34  Create Analytic Privilege
67



SAP HANA Data Models1
In the analytic privilege definition window, you can define a date range in the
Privilege Validity pane (see Figure 1.35). Within that range, those users with the
privilege are authorized to access the views. Otherwise, they are not authorized.
This defines the privilege from a time perspective.

To define row-level security, first choose the attribute you want to add the restric-
tion to. In this case, choose the STORE_ID column for the AT_LOC attribute view
under the Associated Attributes Restrictions pane. Then, set a filter on the col-
umn under the Assign Restrictions pane.

Figure 1.35  Analytic Privilege Definition Window

There is also an Applicable to all information models checkbox in the Gen-

eral pane. When this checkbox is selected, the privilege is applicable to all mod-
els. If it is not selected, then you can edit the content under the Reference Mod-

els pane and add the models that you want to apply the privilege to. In this case,
choose AT_LOC and AN_TRAN. On the view’s definition, to apply the privilege, you
need to set the Apply Privileges field to Analytic Privileges (see Figure 1.36).
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Figure 1.36  Enable Analytic Privileges in an Information View

After the analytic privilege is activated, you need to grant the privilege to users.
To avoid having to grant the privilege to users one by one, you can create a role,
grant the privilege to the role, then grant the role to users. First, define the role R_
DEMO (see Figure 1.37). On the Package Privilege tab, add the package that you
are using, and then select the REPO.READ checkbox to grant the privilege to this
package.

Figure 1.37  Package Privilege Definition of a Role

Next, under the Object Privileges tab, add the _SYS_BI and _SYS_BIC schemas to
the SELECT and EXECUTE privileges in order to access objects generated with the
modeler. Then, add the REPOSITORY_REST procedure with the EXECUTE privilege in
order to browse the objects of the repository (see Figure 1.38).
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Figure 1.38  Object Privileges Definition of a Role

Next, grant the analytic privilege AP_STORE to the role under the Analytic Privi-

leges tab (see Figure 1.39).

Figure 1.39  Analytic Privileges Definiton of a Role

After the R_DEMO role is created, you can grant it to a user. As shown in Figure 1.40,
under the Granted Roles tab in the user’s definition window, add the R_DEMO role,
then activate the user U1.

Figure 1.40  Granted Roles Definition of a User
70



Analytic Privileges 1.4
When you log on to SAP HANA with the user U1 and run a query against AN_TRAN,
it returns the results with restriction STORE_ID=2.

In addition to defining row-level security, you can leverage the analytic privilege
feature for other purposes—for example, to define the preferred value of an attri-
bute for a user. Suppose for the user U1 you want to set the preference as STORE_
ID=2, and you also want the user to have access to other stores. You can define the
analytic view AN_TRAN with the privilege, and another view, AN_TRAN2, without
the privilege. Create a calculation view CA_TRAN_PRIVI to union the two views
(see Figure 1.41).

Create an input parameter $$RANGE$$. On the node Projection_1, add a
$$RANGE$$!='All' filter. On the node Projection_2, add a $$RANGE$$='All' filter.
Then, run the following query:

SELECT SUM(SALES_NET) FROM _SYS_BIC."test/CA_TRAN_
PRIVI" (PLACEHOLDER."$$RANGE$$"=>'All');

Figure 1.41  Calculation View to Switch Views

This retrieves records from the analytic view without privileges and returns the
SALES_NET value for all stores. Next, run the following query:

SELECT SUM(SALES_NET) FROM _SYS_BIC."test/CA_TRAN_PRIVI";

This retrieves records from the analytic view with privileges, and returns the
SALES_NET value of one store. In this view, you use the privilege to set the pre-
ferred value.
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When you define restrictions in the analytic privilege window, in addition to a
fixed value, you can also choose a catalog procedure or repository procedure if
you want to define more complex logic for the restriction. For example, to define
the repository procedure test::P_PRIVI, make it in the package of a repository
with the SAP HANA Modeler tool (see Figure 1.42). According to the operator of
the restriction, when the operator is “in,” the output of the procedure is a single-
column table.

Figure 1.42  Repository Procedure for Analytic Privileges

You can add objects for which the user has access rights to the procedure and
make complex logic. Because the privilege will be set on the AT_LOC view, you
should not use AT_LOC in the procedure; otherwise, it leads to recursive authori-
zation checking and returns an error. If you need refer to the ID of the user exe-
cuting the procedure, you can use the internal column SESSION_USER.

After activating the procedure, configure the Assign Restrictions field of the
analytic privilege and add the procedure name in the Value field (see Figure
1.43).

Figure 1.43  Restriction Based on the Repository Procedure
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Catalog procedures are made with SQL statements directly, without the SAP
HANA Modeler tool. For example, you can run the statement in Listing 1.19 to
make procedure P_PRIVI2 with the same logic as test::P_PRIVI.

CREATE PROCEDURE TEST.P_PRIVI2 (
OUT VAL_TAB TABLE(STORE_ID INT))
LANGUAGE SQLSCRIPT
SQL SECURITY DEFINER
READS SQL DATA AS
BEGIN
VAL_TAB = SELECT TOP 2 STORE_ID

FROM TEST.LOC
ORDER BY STORE_ID;

END;

Listing 1.19  Catalog Procedure for Analytic Privileges

Then, configure the Assign Restrictions field of the analytic privileges, and add
the catalog procedure name in the Value field (see Figure 1.44).

Figure 1.44  Restriction Based on Catalog Procedure

Before running a query against the view with the privileges, you need to grant the
internal user _SYS_REPO with EXECUTE:

GRANT EXECUTE ON TEST.P_PRIVI2 to "_SYS_REPO" WITH GRANT OPTION;

1.4.2 SQL-Based Analytic Privilege

You can also create a SQL-based analytic privilege if the restriction has more com-
plex logic. In an analytic view, first choose SQL Analytic Privileges for the Apply

Privileges field (see Figure 1.45).
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Figure 1.45  Analytic View with SQL Analytic Privileges

Second, create the SQL analytic privileges (see Listing 1.20).

CREATE STRUCTURED PRIVILEGE AP_LOC1 FOR SELECT
ON _SYS_BIC."test/AN_TRAN"
WHERE store_id LIKE '%2%' OR PROD_ID<5;

Listing 1.20  Statement to Define SQL-Based Analytic Privileges

Third, apply privilege AP_LOC1 to the role (see Figure 1.46).

Figure 1.46  Apply the Privilege to the Role

Then, log on as the user with the R_DEMO role, and run the following query:

SELECT STORE_ID,PROD_ID,sum(SALES_NET)
FROM _SYS_BIC."test/AN_TRAN" GROUP BY STORE_ID,PROD_ID;

The attribute restriction defined in the analytic privileges will be applied on the
view, and the actual query executed will be changed into what is shown in Listing
1.21.

SELECT STORE_ID,PROD_ID,sum(SALES_NET)
FROM _SYS_BIC."test/AN_TRAN"
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WHERE STORE_ID LIKE '%2%' OR PROD_ID<5
GROUP BY STORE_ID,PROD_ID;

Listing 1.21  Query with the Attribute Restriction

SQL-based analytic privileges support not only modeled views, but also SQL
views. Just add the key words WITH STRUCTURED PRIVILEGE CHECK when defining
the view. For example:

CREATE VIEW V1
AS SELECT * FROM TABLE1 WITH STRUCTURED PRIVILEGE CHECK;

In this section, we explained how to use analytic privileges to achieve row-level
security. Compared to other kinds of privileges, which are defined on a table or
schema basis, an analytic privilege can be defined on a row basis. This can help
you manage security at a more detailed granularity.

1.5 Stored Procedures

Stored procedures can be defined with several programming languages and exe-
cuted directly in the database engine. The supported programming languages
include SQLScript, L, R, and C++.

In this section, we will look at these three supported languages and how they
relate to stored procedures.

1.5.1 SQLScript Procedures

SQLScript is the default programming language for stored procedures. Listing
1.22 provides a simple example of a SQLScript procedure.

CREATE PROCEDURE TEST.P_TRAN()
LANGUAGE SQLSCRIPT
AS
BEGIN
SELECT STORE_ID,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TRAN"
GROUP BY STORE_ID;
END;

Listing 1.22  SQLScript Procedure
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This procedure uses LANGUAGE SQLSCRIPT to specify the programming language.
When you call the procedure in SAP HANA Studio, it returns results to the UI.
However, if you need to call the procedure in another procedure or program,
then you need to add an output variable to store the result. SAP HANA supports
table types in a procedure, as shown in Listing 1.23.

CREATE PROCEDURE TEST.P_TRAN
(OUT VAL_OUT TABLE(STORE_ID INT,SALES_NET DECIMAL(18,2)))
LANGUAGE SQLSCRIPT
AS
BEGIN
VAL_OUT = SELECT STORE_ID,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TRAN"
GROUP BY STORE_ID;
END;

Listing 1.23  Procedure with an Output Table Variable

To call the procedure, run the following statement:

CALL TEST.P_TRAN(?);

You can store the result sets of a procedure in a temporary table so that a user can
browse it in a session without re-executing the procedure. To leverage this fea-
ture, call the procedure by adding the words WITH OVERVIEW:

CALL TEST.P_TRAN(?) WITH OVERVIEW;

This returns name of the temporary table, such as "SYSTEM"."VAL_OUT_

555C799BC2E281A9E10000000A06007C", which you can refer to in the session.

When there are no DDLs or other DML statements, such as INSERT, UPDATE, or
DELETE, you can mark the procedure as read-only. SAP HANA’s engine can apply
better optimization for read-only procedures. The identifier words for a read-only
procedure are READS SQL DATA. For read-only procedures, you can generate views
to refer to the result sets and access them with SELECT statements instead of using
CALL. Use WITH RESULT VIEW to assign the view name. The procedure can be
changed as shown in Listing 1.24.

CREATE PROCEDURE TEST.P_TRAN(OUT VAL_OUT TABLE(STORE_ID INT,SALES_
NET DECIMAL(18,2)))
LANGUAGE SQLSCRIPT
READS SQL DATA WITH RESULT VIEW TEST.V_TRAN
AS
BEGIN
VAL_OUT = SELECT STORE_ID,SUM(SALES_NET) SALES_NET
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FROM _SYS_BIC."test/AN_TRAN"
GROUP BY STORE_ID;
END;

Listing 1.24  Procedure with a Result View

To call the procedure with the SELECT statement, run the following query:

SELECT * FROM TEST.V_TRAN;

Make sure there is only one table variable as an output in the procedure. For the
input, you can have multiple variables (see Listing 1.25).

CREATE PROCEDURE TEST.P_TRAN(
IN DATE_FROM DATE,IN DATE_TO DATE,
OUT VAL_OUT TABLE(STORE_ID INT,SALES_NET DECIMAL(18,2)))
LANGUAGE SQLSCRIPT
READS SQL DATA
WITH RESULT VIEW TEST.V_TRAN
AS
BEGIN
VAL_OUT = SELECT STORE_ID,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TRAN"
WHERE TRANS_DATE BETWEEN :DATE_FROM AND :DATE_TO
GROUP BY STORE_ID;
END;

Listing 1.25  Procedure with Input Variables

To pass values in a query, use placeholders. Make sure to add single quotes
around the value, as shown in Listing 1.26.

SELECT * FROM TEST.V_TRAN
('PLACEHOLDER' = ('$$date_from$$', '2011-01-01'),
'PLACEHOLDER' = ('$$date_to$$','2015-01-01'));

Listing 1.26  Pass Values with Placeholders

When an embedded model has input parameters, to use a variable to pass a value
to an input parameter, you need to use the => operator (see Listing 1.27).

CREATE PROCEDURE TEST.P_TRAN2(
IN "DATE_FROM" DATE,IN "DATE_TO" DATE,
OUT VAL_OUT TABLE(STORE_ID INT,SALES_NET DECIMAL(18,2)))
LANGUAGE SQLSCRIPT
READS SQL DATA
WITH RESULT VIEW TEST.V_TRAN2
AS
BEGIN
VAL_OUT = SELECT STORE_ID,SUM(SALES_NET) SALES_NET
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FROM _SYS_BIC."test/AN_TRAN2"
(PLACEHOLDER."$$DATE_FROM$$"=>:DATE_FROM,
PLACEHOLDER."$$DATE_TO$$"=>:DATE_TO)
GROUP BY STORE_ID;
END;

Listing 1.27  Pass Value through an Input Parameter to an Embedded Model

Alternatively, you can create a column view based on a procedure with a separate
DDL statement (see Listing 1.28).

CREATE COLUMN VIEW V_TRAN2 WITH PARAMETERS (
indexType=11,
'PROCEDURE_SCHEMA'='TEST',
'PROCEDURE_NAME'='P_TRAN2');

Listing 1.28  Column View Based on a Procedure

In addition to creating a view based on a procedure, SAP HANA provides another
option to enable you to run procedures with SELECT statements: the table func-
tion. Listing 1.29 shows an example.

CREATE FUNCTION F_T1(VAR_IN VARCHAR(20))
RETURNS TABLE (TRANS_DATE DATE, SALES_NET DECIMAL(18,2))
LANGUAGE SQLSCRIPT
READS SQL DATA
AS
BEGIN
IF :VAR_IN='MAX' THEN
RETURN SELECT TRANS_DATE,MAX(SALES_NET) SALES_NET

FROM _SYS_BIC."test/AN_TRAN"
GROUP BY TRANS_DATE;

ELSE
RETURN SELECT TRANS_DATE,SUM(SALES_NET) SALES_NET

FROM _SYS_BIC."test/AN_TRAN"
GROUP BY TRANS_DATE;

END IF;
END;

Listing 1.29  Table Function

Table functions are a kind of procedure. The output of a table function is a dataset
in the format of a table. You can reference a table function in the FROM clause of a
query—for example, see the following SQL query:

SELECT * FROM F_T1('SUM');

There is not much difference between a table function and a procedure-based col-
umn view; you can choose either based on your preference.
78



Stored Procedures 1.5
Regarding functions, SAP HANA provides a scalar function as well, which sup-
ports scalar values as an output. A limitation of the scalar function is that it cannot
contain SQL statements. Listing 1.30 shows a simple scalar function example.

CREATE FUNCTION F_Factorial(I INT)
RETURNS F INT
LANGUAGE SQLSCRIPT
AS
BEGIN
DECLARE N INT := 2;
F := 1;
WHILE :N <= :I DO
F := :F * :N;
N := :N + 1;
END WHILE;
END;

Listing 1.30  Scalar Funciton

You can use the scalar function in the same way as you use native functions—for
example:

SELECT F_Factorial(5) FROM DUMMY;

As previously discussed, in information views, you can define row-level security
with analytic privileges. in procedures, because everything is scripted, the secu-
rity configuration can be more flexible.

First, if the procedure contains information views, the analytic privileges being
applied on the views is still valid inside the procedure. Second, for source tables
without analytic privileges, you can define row security explicitly for users with
the WHERE clause. To implement this, create a table to store the restriction infor-
mation of row security; for example, see table ROLE_PRIV in Listing 1.31.

CREATE COLUMN TABLE ROLE_PRIV(
ROLE VARCHAR(20),
STORE_ID INT);
INSERT INTO ROLE_PRIV VALUES ('R_DEMO',1);
INSERT INTO ROLE_PRIV VALUES ('R_DEMO',2);

Listing 1.31  Table to Define Attribute Restriction

Again, you usually set the restriction information on the role level and then grant
the role to users. In table ROLE_PRIV, you assign the values of STORE_ID, which the
role needs privilege to access. To find the roles of users, use the SYS.GRANTED_
ROLES system view shown in Listing 1.32.
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CREATE PROCEDURE P_TRAN_PRIV()
LANGUAGE SQLSCRIPT SQL SECURITY DEFINER
AS
BEGIN
SELECT STORE_ID,SUM(SALES_NET)
FROM _SYS_BIC."test/AN_TRAN"
WHERE STORE_ID IN (
SELECT STORE_ID FROM ROLE_PRIV
WHERE ROLE IN (
SELECT ROLE_NAME FROM "SYS"."GRANTED_ROLES"
WHERE GRANTEE=SESSION_USER))
GROUP BY STORE_ID;
END;

Listing 1.32  Script to Achieve Row-Level Security

You can log on with a different user and run the following query:

CALL P_TRAN_PRIV;

If the user has a role on R_DEMO, it returns the SALES_NET for STORE_IDs 1 and 2.
The security mode of the procedure is SQL SECURITY DEFINER. This means that the
user who calls the procedure does not need to have access to the underlying table.
When the procedure is called, the user who is the definer accesses the underlying
table, and a filter is applied to the table to implement row security.

This procedure consists of several levels of nested queries:

� The first level is SELECT ROLE_NAME FROM "SYS"."GRANTED_ROLES" WHERE

GRANTEE=SESSION_USER. This level is used to retrieve the role granted to the
user. Be sure to use SESSION_USER, not CURRENT_USER. The session user is the
actual user calling the procedure, and the current user is the procedure definer,
whose privilege is used to access underlying tables.

� The second level is SELECT STORE_ID FROM ROLE_PRIV WHERE ROLE IN (). This is
used to retrieve the values of STORE_ID that the role needs to access. With the
two levels of nested queries, the filter is made to return the rows for which the
user has privileges.

Although procedures are very flexible, we often avoid creating them when the
same logics can be made with graphical modeled views, because modeled views
are built to adapt to SAP HANA engines and can fully exploit the capabilities of
the hardware. When the logic cannot be handled by graphical modeled views, it
is fine to choose a stored procedure, but inside the stored procedure, you still
have a chance to use a graphical modeled view. For example, if a part of the work-
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flow can be performed with the OLAP engine, it is better to create an analytic
view for this part and leave the other parts of the workflow as script in the pro-
cedure.

1.5.2 L Procedures

The L language is based on concepts from the C/C++ world. You can use L to write
procedures for low-level, high-performance programming. When you write L
procedures, you use the words LANGUAGE LLANG to specify the language. However,
the language is not officially supported yet. Therefore, you need approval from
the SAP HANA database development team before using it.

Listing 1.33 is a simple example of a procedure made with L.

CREATE PROCEDURE P_L1
( IN input0 table(L int,R int),
OUT output0 table(L int,R int) )

LANGUAGE LLANG AS
begin export Void main (Table< Int32 "L" , Int32 "R" > "input0" input0,

Table< Int32 "L" , Int32 "R" > "output0" & output0 )
{ Column<Int32> input0Column1 = input0.getColumn<Int32> ("L") ;
Column<Int32> input0Column2 = input0.getColumn<Int32> ("R") ;
Column<Int32> output0Column1=output0.getColumn<Int32> ("L") ;
Column<Int32> output0Column2=output0.getColumn<Int32> ("R") ;
Size i =0z ;
Size j = 0z ;
Size k = 0z ;
Size num_rows = input0Column1.getSize () ;
while (i < num_rows ) {
if ( i ==

0z || input0Column1.getElement(i) > input0Column2.getElement(j) ) {
output0Column1.setElement(k, input0Column1.getElement(i));
output0Column2.setElement(k, input0Column2.getElement(i));
k = k.next();
j=i;

} i= i.next();
}

}
end;

Listing 1.33  Procedure in L

In the procedure, L does not support access to the database, so you need to trans-
fer data between the database and the procedure through input and output vari-
ables. You can define the table type on the variables.
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In this example, the line IN input0 table(L int, R int) is used to define the input
variable input0 as the table type. For the type int in the database, the corre-
sponding type in L is Int32. For each input/output variable defined with the CRE-
ATE PROCEDURE statement, the corresponding declaration is at the L language main
function, so you have the line Table< Int32 "L_NO" , Int32 "R_NO" > "input0"
input0 to map the input variable and the line Table< Int32 "L_NO", Int32 "R_NO"
> "output0" & output0 to map the output variable.

You can define a variable as column type Column<Int32> to bind the variable to a
table column. To do so, use the getColumn function in the line Column<Int32>
input0Column1 = input0.getColumn<Int32> ("L"). To retrieve the value from a
column at a row, use the getElement()function. To set value on a column at a
row, use the setElement() function.

The procedure’s functionality is to generate an output table based on some row-
level calculation on an input table. This specific logic can be achieved with
SQLScript using an array type. There are some benefits of L that do not exist in
SQLScript. For example, L supports container data types, such as Block, Matric,
Tuple, Dict, and more. Those data structures can be leveraged to perform data
flow execution for complex logic. L contains a math library to provide mathe-
matic functions. Moreover, you can specify parallel execution with the _parallel
modifier, which is useful for improving performance. Listing 1.34 shows the syn-
tax for this modifier.

_parallel {
Func1(para1);

Func2(para2);
Func3(para3);
}

Listing 1.34  To Call Functions in Parallel

1.5.3 R Procedures

To write R procedures, use the words LANGUAGE RLANG in the DDL to specify the
language. You can use R for statistical computing and graphics processing.
Because R is an open-source programming language and is available under a gen-
eral public license, SAP does not provide support for R. In order to integrate SAP
HANA with R, you need to download R from the open-source community and
configure it. This is discussed in greater detail in Chapter 5, Section 5.1.1.
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Let’s walk through a simple example. Suppose you have two tables, TABLEA and
TABLEB. You need to retrieve data from TABLEA and store the result generated in
TABLEB (see Listing 1.35).

CREATE TABLE TABLEA(COLUMNA INTEGER);
INSERT INTO TABLEA VALUES (2);
INSERT INTO TABLEA VALUES (3);
INSERT INTO TABLEA VALUES (1);
CREATE TABLE TABLEB(COLUMNA INTEGER);

Listing 1.35  Definition of the Source Table and Target Table

In the R procedure, you set the type of input variable as TABLEA, and the type of
output variable as TABLEB (see Listing 1.36).

CREATE PROCEDURE P_R1(IN var_in TABLEA, OUT var_out TABLEB)
LANGUAGE RLANG AS
BEGIN
var_out <- as.data.frame(sort(var_in$COLUMNA)^2);
names(var_out) <- c("COLUMNA");
END;

Listing 1.36  A Simple R Procedure Example  

In this procedure, the input and output tables map to data.frame in R. If the data
is not a frame, you need to use the as.data.frame() function to convert it to a
frame. To call the procedure, run the following statement:

CALL P_R1 (TABLEA,?);

This statement reads data from TABLEA and sends the output as the table structure
of TABLEB. To store the output data to a physical table, add WITH OVERVIEW to the
statement:

CALL P_R1 (TABLEA, TABLEB) WITH OVERVIEW;
SELECT * FROM TABLEB;

For the input variable, you can use any table with the same structure as TABLEA,
and for the output variable, you can use any table with the same structure as TAB-
LEB. To avoid any confusion between table names and table types, when defining
the procedure, declare the type of variables as table types instead of table names
(see Listing 1.37).

CREATE PROCEDURE P_R1(IN var_in TABLE(COLUMNA INTEGER), OUT var_
out TABLE(COLUMNA INTEGER))
LANGUAGE RLANG AS
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BEGIN
var_out <- as.data.frame(sort(var_in$COLUMNA)^2);
names(var_out) <- c("COLUMNA");
END;

Listing 1.37  R Procedure to Define Input and Output Variables as Table Types

When you call the procedure with table names as the input and output variables,
the R procedure transfers data to the database tables directly. In some cases, you
do not handle database objects inside R procedure; instead, you use SQLScript
procedures to handle the data transfer and use table variables to transfer a dataset
between R procedures and SQLScript procedures. Listing 1.38 shows an example.

CREATE PROCEDURE P_R2()
LANGUAGE SQLSCRIPT AS
BEGIN
ta = SELECT TOP 100 COLUMNA FROM TABLEA;
CALL P_R1(:ta,tb);
SELECT * FROM :tb;
END;

Listing 1.38  Call R Procedure in a SQLScript Procedure

Using R, you can leverage thousands of packages that provide a variety of statis-
tical and graphical techniques, including linear and nonlinear modeling, classical
statistical tests, time series analysis, and more. Before using a package, make sure
it is installed. To install a new package, run the following command in an R ses-
sion:

install.packages("<the package's name>")

In R procedures, to use a function, you need to specify the package that contains
the function’s definition:

library("<the package's name>")

To show all packages installed on the machine, run the following command:

library()

This command returns a table (see Table 1.1) to list all the packages installed and
their corresponding package descriptions.
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Package Description

base The R Base Package

boot Bootstrap Functions (originally by Angelo Canty for S)

class Functions for Classification

cluster Cluster Analysis Extended Rousseeuw et al.

codetools Code Analysis Tools for R

compiler The R Compiler Package

datasets The R Datasets Package

foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, ...

graphics The R Graphics Package

grDevices The R Graphics Devices and Support for Colours and Fonts

grid The Grid Graphics Package

KernSmooth Functions for kernel smoothing for Wand & Jones (1995)

lattice Lattice Graphics

MASS Support Functions and Datasets for Venables and Ripley's MASS

Matrix Sparse and Dense Matrix Classes and Methods

methods Formal Methods and Classes

mgcv Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness 
estimation

nlme Linear and Nonlinear Mixed Effects Models

nnet Feed-forward Neural Networks and Multinomial Log-Linear Models

parallel Support for Parallel computation in R

rpart Recursive Partitioning

spatial Functions for Kriging and Point Pattern Analysis

splines Regression Spline Functions and Classes

stats The R Stats Package

stats4 Statistical Functions using S4 Classes

survival Survival analysis, including penalised likelihood.

tcltk Tcl/Tk Interface

tools Tools for Package Development

utils The R Utils Package

Table 1.1  Packages Installed on the Machine
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To make a specific calculation, it is better to load specialized packages than to
write one from scratch. For example, you can install package lme4 to deal with
linear and generalized linear mixed-effects models, install package car to deal
with models for applied regression, or install package zoo to deal with time series
objects.

There are more than six thousand packages available at https://cran.r-project.org
that you can leverage in R procedures. For detailed information, refer to the ref-
erence manual on the Comprehensive R Archive Network (CRAN) website: https:/
/cran.r-project.org/web/packages.

1.6 Application Function Library

To execute complex computations without using R procedures, SAP HANA pro-
vides application functions. Application functions are like database procedures
written in C++ and are called from outside to perform data-intensive and complex
operations.

Functions for a particular topic are grouped into the AFL, which includes the BFL
and the PAL.

1.6.1 Business Function Library

The BFL is one of SAP HANA’s AFLs, and it focuses on common business algo-
rithms. The functions in the library can be roughly classified into the following
categories:

� Assets-related functions 
These functions can be used to calculate asset values. They include functions for
diminishing balance depreciation, straight-line depreciation, sum-of-year depre-
ciation, funds, and lease variable.

� Payment-related functions 
These functions can be used to calculate payment values. They include functions
for days outstanding, delay, number of periods, payment, rate, and time sum.

� General balance-calculation functions 
These functions can be used to calculate balances of accounts. They include
functions for feed, feed overflow, forecast, future, present value, and growth.
86

https://cran.r-project.org/web/packages
https://cran.r-project.org/web/packages


Application Function Library 1.6
� Cost-calculation functions 
These functions can be used to calculate cost. They include functions for driver,
forecast dual driver, forecast driver, forecast agents, forecast mix, forecast sen-
sitivity, seasonal simple, seasonal complex, and seasonal simulation.

� Cash flow-related functions 
These functions can be used for cash flow management. They include functions
for inflated cash flow, internal rate of return (IRR), net present value, dis-
counted cash flow, and delay debt.

� Supply chain-related functions 
These functions can be used for supply chain management. They include func-
tions for Outlook, stock flow, stock flow reverse, stock flow batch, and delay
stock.

� General statistics analysis functions 
These functions are not for a specific area; instead, they can be used for general
reporting. They include functions for moving average and moving sum, mov-
ing median, volume driver, year-over-year difference, year-to-date, year-to-
date statistical, cycles, cumulate, decumulate, maximum value, minimum
value, and linear average.

� Miscellaneous functions 
These functions can be used to transform or prepare data for further process-
ing. They include rounding, transform, days, lag, last, proportion, repeat, and
time.

Let’s see how to use the BFL with a simple example of the BFL procedure AFLBFL_
CUMULATE_DECUMULATE_PROC. This procedure has two functions: cumulate and
decumulate, controlled with an input flag. Cumulate is to calculate cumulated
totals; that is, the first record in an output table returns the first record of an input
table, the second record returns the sum of the first and second records of an
input table, the third record returns the sum of the first, second, and third records
of the input table, and so on. Decumulate means to calculate the original series
from the cumulated totals. To call the BFL procedure, run the following query:

CALL _SYS_AFL.AFLBFL_CUMULATE_DECUMULATE_PROC (TBL_IN, TBL_OUT,1)
WITH OVERVIEW;

TBL_IN is the input table with the source series—for example, {1, 3, 6, 4}. TBL_OUT
is the output table. Add WITH OVERVIEW in the statement to save the result to phys-
ical table. The flag value is 1, which means to execute the cumulate function; 0
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means to execute the decumulate function. After calling the procedure, you can
see the output by browsing TBL_OUT:

SELECT * FROM TBL_OUT;

In this example, the output is {1, 4, 10, 14}. You can also call the BFL procedure
inside a SQLScript procedure and transfer the input and output datasets by vari-
ables instead of physical tables:

CALL _SYS_AFL.AFLBFL_CUMULATE_DECUMULATE_PROC (:TBL_A,:TBL_B,1);

There are about 50 procedures in the BFL library, which helps you address the
many types of business algorithms efficiently. Because the complex calculations
can be done within the database, you do not have to transfer volume data from
the database to the application server. The database hardware is powerful enough
to handle the calculations, providing overall good performance.

1.6.2 Predictive Analysis Library

The PAL is another one of SAP HANA’s AFLs, and it focuses on predictive analy-
sis. The PAL functions can be classified into the following categories:

� Clustering algorithms 
This refers to cluster analysis, which is used to group data into clusters, where
similar data in each cluster is similar; the data in different clusters are different.
This category includes five types of functions:

� Anomaly detection is used to find outliers that are discordant with the rest of
the dataset.

� Density-based spatial clustering of applications with noise (DBSCAN) is used on
density-based data to detect the points in low-density regions.

�  K-means is used to partition points into clusters based on their positions and
to determine the lowest sum of the distances between each point and each
partition center.

� Self-organizing maps can be used to visualize high-dimensional data with
low-dimensional views.

� Slight silhouettes can be used to validate clusters of data.

� Classification algorithms 
Classification algorithms identify categories in which new observations belong.
This category includes 10 types of functions:
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� Bi-variate geometric regression models the relationship between a scalar vari-
able (such as y) and a variable denoted as x using geometric functions.

� Bi-variate natural logarithmic regression is used to model the relationship
between a scalar variable and a variable x using natural logarithmic func-
tions.

� Exponential regression models are based on exponential functions.

� Logistic regression models are based on linear functions. They model the rela-
tionship between dependent and independent variables.

� Multiple linear regression and polynomial regression are used to model rela-
tionships among variables.

� C4.5 decision tree and CHAID decision tree are used to create models that pre-
dict the value of target variables based on input variables.

� K-Nearest Neighbor (KNN) is used to classify objects based on the majority
vote of its neighbors.

� Naive Bayes is used to classify objects according to Bayes’ theorem.

� Association algorithms 
These algorithms are used for association analysis, which discovers patterns
related to item-to-item association behavior among a set of items. This category
includes the apriori function, which is used to find frequent subsets among
transaction data.

� Time series algorithms 
These algorithms use future value prediction based on an existing time series.
They include functions based on single exponential smoothing, double expo-
nential smoothing, and triple exponential smoothing.

� Preprocessing algorithms 
These algorithms are used to preprocess data and make it ready for predictive
analysis. They include several types of functions:

� Sampling is used to take samples from a large dataset.

� Scaling range is used to scale data to an appropriate range.

� Binning is used to transform values into bin numbers. The function to con-
vert a category type to a binary vector is used to translate a string attribute
to a numerical column.
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� Inter-quartile range test is used to detect outliers outside the inter-quartile
range.

� Variance test is used to detect outliers based on the standard deviation.

� Social network analysis algorithms 
These algorithms are used for social network analysis. They include the link
prediction function, which is used to predict missing links based on existing
links.

� Miscellaneous algorithms 
This category includes two functions:

� ABC analysis is used to classify objects based on percentage criteria on a par-
ticular measure.

� Weighted score table is used to evaluate a total score with added weight to
represent the importance of each criterion.

Similar to the BFL, when calling a PAL procedure, you need to specify the input
table, output table, and control table, as shown in the following example query:

CALL _SYS_AFL.PAL_ANOMALY_DETECTION(TBL_IN,CONTROL_TBL, TBL_OUT)
WITH OVERVIEW;

The PAL procedure PAL_ANOMALY_DETECTION is used to find the existing data
objects that do not comply with the general behavior or model of the data. You
can define the calculation rules with the control table by specifying parameters
such as DISTANCE_LEVEL, OUTLIER_PERCENTAGE, NORMALIZATION, and more.

PAL procedures are written in C++ and are well optimized by fully leveraging
database hardware. The performance should be better than when writing the
same logic with SQLScript.

1.7 Summary

In this chapter, we introduced the core features of SAP HANA data modeling.
Attribute views provide master data modeling. Analytic views make the joins
between the fact table and master data and define the measures. Calculation
views can embed other information views and represent more complex logic. For
each information view, you can apply a security setting on the view level by
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granting or revoking rights to or from users or roles. Furthermore, with analytic
privileges you can apply row-level security.

For logic that cannot be expressed with graphical models, you can create scripted
calculation views or procedures. Procedures can be made with multiple lan-
guages, such as SQLScript, L, and R. SQLScript provides database control and
process control, and you can also leverage its array feature to perform complex
calculations. L can be roughly characterized as a safe subset of C/C++ that is
enriched by SAP HANA database data types and concepts in order to simplify the
manipulation of and interaction with database objects. R is an open-source pro-
gramming language and software environment for statistical computing and
graphics.

For some common business algorithms, you can install AFLs on top of the SAP
HANA database, which provide several libraries, including the BFL and the PAL.
Without switching to R, you can call BFL or PAL functions in SQLScript proce-
dures to perform advanced data analysis.

In the next chapter, we will begin looking at how to leverage SAP HANA data
models to represent complex logic.
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Chapter 2 

In this chapter, we will look at using SAP HANA data models to represent 
complex business logic.

2 Modeling Complex Logic

A major feature of SAP HANA is its ability to execute complex logic to accelerate
application processes that would otherwise be time intensive within both the
database and application server layers. Within SAP HANA, a number of model-
ing techniques enable developers to model complex logic in various business
scenarios.

This chapter explains how to use SAP HANA data models to present complex
business logic. Each section offers an example of complex logic, such as recursive
logic via a hierarchy and calculating running total, and then explains how to
model the logic in SAP HANA.

2.1 Achieving Recursive Logic with Hierarchies

Recursion involves repeating a process in a similar way. Many approaches can be
taken to achieve recursive logic. A straightforward approach is to make self-joins
as many times as the recursive levels exist. In most cases, this method might not
be appropriate, due to the unknown recursive levels when you are writing the
query. Another approach is to use a stored procedure and loops, but because of
the coding involved, such an option might not be considered the most convenient
method.

Based on these issues, we recommend expressing recursive logic through hierar-
chies. Hierarchies are used to define the relationship between attributes. SAP
HANA can use recursive logic to traverse hierarchy data and provide several nav-
igation functions based on the hierarchy view, which can help you fulfill a variety
of data mining requirements. In this section, we will primarily focus on achieving
recursive logic via hierarchies in SAP HANA.
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2.1.1 Creating Hierarchies with Tables

The first step in achieving recursive logic is to create the hierarchies. This can be
done with either tables, an attribute view, or a calculation view. This section will
focus on creating a hierarchy with a table to hold the hierarchy data.

First, let’s prepare some testing data. We will create a table with two columns,
pred and succ, and they will have a parent-child relationship (see Listing 2.1).

CREATE COLUMN TABLE h_mini_src ( pred VARCHAR(2), succ VARCHAR(2) );
INSERT INTO h_mini_src VALUES ( null, 'A1' );
INSERT INTO h_mini_src VALUES ( 'A1', 'B1' );
INSERT INTO h_mini_src VALUES ( 'A1', 'B2' );
INSERT INTO h_mini_src VALUES ( 'B1', 'C1' );
INSERT INTO h_mini_src VALUES ( 'B1', 'C2' );
INSERT INTO h_mini_src VALUES ( 'B2', 'C3' );
INSERT INTO h_mini_src VALUES ( 'B2', 'C4' );
INSERT INTO h_mini_src VALUES ( 'C3', 'D1' );
INSERT INTO h_mini_src VALUES ( 'C3', 'D2' );
INSERT INTO h_mini_src VALUES ( 'C4', 'D3' );

Listing 2.1  Script to Generate Hierarchy Source Table

The diagram in Figure 2.1 shows the structure of the hierarchy.

Figure 2.1  Structure of the Hierarchy

There are 10 records in the table that show the parent-child relationship between
the nodes. To see the node’s parent’s parent, you will need to continually make
self-joins, as shown in Listing 2.2.

A1

B1 B2

C2 C3C1 C4

D2D1 D3
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SELECT PRED ANCESTOR,SUCC SUBORDINATE
FROM h_mini_src
WHERE PRED IS NOT NULL
UNION ALL
SELECT A.PRED,B.SUCC
FROM h_mini_src A, h_mini_src B
WHERE B.PRED=A.SUCC
AND A.PRED IS NOT NULL
UNION ALL
SELECT A.PRED,C.SUCC
FROM h_mini_src A, h_mini_src B, h_mini_src C
WHERE B.PRED=A.SUCC
AND C.PRED=B.SUCC
AND A.PRED IS NOT NULL;

Listing 2.2  Query to Use Self-Joins to Present Hierarchy 

To figure out the relationship between D3 and A1, you first must find the records
of C4 and D3, then B2 and C4, then A1 and B2. The more levels in a hierarchy, the
more times you have to join.

To avoid using self-joins or stored procedures, you can create a column view and
choose the HIERARCHY type. The following is the data definition language (DDL)
for this process:

CREATE COLUMN VIEW h_mini TYPE HIERARCHY AS SELECT pred, succ
FROM h_mini_src ORDER BY succ;

Now that the hierarchy column view is created, you can check it with the follow-
ing query:

SELECT * FROM h_mini;

The output for this query can be seen in Figure 2.2.

Figure 2.2  Hierarchy View Records
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You will not see much useful information from the output, because there is no
relation information between the nodes. However, if you add multidimensional
expressions (MDX) like navigation functions on the column view, then you will
get the desired output. See the following query:

SELECT query_node, result_node FROM h_mini( "expression" =>
'descendants(*)' );

The asterisk (*) indicates all the nodes referred in the query_node column. The
descendants() function returns all descendant nodes for each query_node in the
result_node column. The query returns all of the nodes of the hierarchy, with
every descendant of each node listed side by side. The resulting output is shown
in Table 2.1.

Query Node Result Node

A1 B1

A1 C1

A1 C2

A1 B2

A1 C3

A1 D1

A1 D2

A1 C4

A1 D3

B1 C1

B1 C2

B2 C3

B2 D1

B2 D2

B2 C4

B2 D3

C3 D1

C3 D2

C4 D3

Table 2.1  Output of a Hierarchy View
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No more self-joins, no more loops in stored procedures: The recursive logic can
be achieved easily using the SELECT statement to browse the hierarchy view.

As previously stated, you can also make hierarchies within an attribute view or
calculation view with recursive logic, which we will look at next.

2.1.2 Creating a Hierarchy in an Attribute or Calculation View

In this section, we will focus on creating a hierarchy with attribute and calcula-
tion views for recursive logic. Let’s begin by looking at how to do this with an
attribute view.

At the semantics layer of the attribute view, you will find the Hierarchies pane,
in which you can design the hierarchy (see Figure 2.3).

Figure 2.3  Creating a Hierarchy in the Attribute View

In the Hierarchy definition window, specify Parent Child Hierarchy for the
Hierarchy Type field. In the Nodes tab, set the SUCC as Child, and PRED as Par-

ent (see Figure 2.4).

You can also run a query against the hierarchy view to retrieve all of the nodes
with an ancestor-descendant relationship:

SELECT query_node, result_node FROM _SYS_BIC."test/AT_HIER/hier/HI"
( "expression" => 'descendants(*)' );
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Figure 2.4  Hierarchy Definition Window

Not only can a hierarchy view be created with a table in an attribute view, it can
also be created with the result sets of complex queries. To see this process in
action, let’s look at how to create a hierarchy in a calculation view.

In this example, suppose we have another table, h_mini_src2 (see Listing 2.3).

CREATE COLUMN TABLE h_mini_src2 ( pred VARCHAR(2), succ VARCHAR(2) );
INSERT INTO h_mini_src2 VALUES ( 'B1', 'E1' );
INSERT INTO h_mini_src2 VALUES ( 'B1', 'E2' );
INSERT INTO h_mini_src2 VALUES ( 'E1', 'F1' );
INSERT INTO h_mini_src2 VALUES ( 'E1', 'F2' );

Listing 2.3  Script to Generate Second Source Table

With a calculation view, you can merge the hierarchies defined in the two tables.
This involves two steps: making a union and making a hierarchy based on the
result set of that union (see Figure 2.5).

You can then run the following query to check the nodes’ relationships against
the merged hierarchy:

SELECT query_node, result_node FROM _SYS_BIC."test/CA_HIER/HI2/hier/
HI2" ( "expression" => 'descendants(*)' );
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Figure 2.5  Hierarchy in a Calculation View

Hierarchy View Name

The actual name of the hierarchy view might change depending on your calculation
view label. Check the objects created under the Column Views folder of the _SYS_BIC
schema for the exact hierarchy view name.

Table 2.2 provides the output results of this query.

Query Node Result Node

A1 B1

A1 C1

A1 C2

A1 E1

A1 F1

A1 F2

A1 E2

A1 B2

A1 C3

A1 D1

Table 2.2  Output of the Query Against the Hierarchy
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2.1.3 Hierarchy View Attributes

The hierarchy view is an important feature of SAP HANA. In this section, we will
look at its attributes in detail. To begin, run the following query to check the con-
tent and bring up its attributes:

SELECT * FROM _SYS_BIC."test/AT_HIER/hier/HI";

The resulting output is shown in Figure 2.6.

The query returns the content of QUERY_NODE, RESULT_NODE, LEVEL, ORDINAL, IS_
LEAF, PATH, PARENTS, CHILDREN, and other columns. To gather a better understand-
ing of each of these attributes, refer to Table 2.3.

A1 D2

A1 C4

A1 D3

B1 C1

B1 C2

B1 E1

B1 F1

B1 F2

B1 E2

E1 F1

E1 F2

B2 C3

B2 D1

B2 D2

B2 C4

B2 D3

C3 D1

C3 D2

C4 D3

Query Node Result Node

Table 2.2  Output of the Query Against the Hierarchy (Cont.)
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Figure 2.6  Hierarchy View Output

Attribute Name Type Description

QUERY_NODE INTEGER, 
STRING

This is the unique name/key/ID of the node the naviga-
tion used as an origin point.

For parent-child hierarchies, the value always corre-
sponds to the node’s unique key (e.g., A1, B1, C1); for 
leveled hierarchies, the value is a combination of the 
node’s level and name, or its key (e.g., [YEAR].[2010], 
[CALMONTH].[201001], [DATE_SQL].[2010-01-25]).

RESULT_NODE INTEGER, 
STRING

This is the unique name/key/ID of the query’s result 
node. The result node is set based on the expression of 
the query; when there is no expression, RESULT_NODE 
points to QUERY_NODE itself. When the expression is, for 
example, Parents(), then RESULT_NODE will point to 
the parents of QUERY_NODE. When a single QUERY_NODE 
has multiple parents, it returns multiple records to show 
all the parents of the node. There are several navigation 
functions that can be used in the query expressions, 
which help you achieve flexible navigation operations on 
top of hierarchies. Again, for leveled hierarchies, the 
value is a combination of the node’s level and name, or 
its key. For recursive hierarchies, the value always corre-
sponds to the node’s unique key.

QUERY_NODE_
NAME

STRING This is the name of the node the navigation used as an 
origin point.

For recursive parent-child hierarchies, the value is always 
identical to QUERY_NODE. For leveled hierarchies, it con-
tains the node’s pure (potentially nonunique) name 
value without any level or path information (e.g., 2010, 
2010-01-25).

Table 2.3  Attribute Description
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You can create SQL queries including the attributes described in Table 2.3 to
browse the data of a hierarchy view. For example, when you search leaf nodes,
you can run the following query:

SELECT QUERY_NODE FROM _SYS_BIC."test/AT_HIER/hier/HI" WHERE IS_LEAF=1;

You can use an MDX query to perform sophisticated cube analysis in the hierar-
chy view. For SQL, you can also enjoy flexible navigation capabilities based on
the hierarchy navigation expressions. A navigation expression argument using
node IDs as an input is able to evaluate the nested navigation functions as well,
thus allowing for complex, multistep navigation within a single expression.

Table 2.4 provides detailed descriptions of some commonly used navigation
functions.

RESULT_NODE_
NAME

STRING This is the name of the query’s result node.

Again, for recursive parent-child hierarchies, the value is 
always identical to RESULT_NODE. For leveled hierar-
chies, it contains the node’s pure (potentially non-
unique) name value without any level or path informa-
tion.

LEVEL INTEGER This represents the distance of the result node from the 
nearest root node above the query node. The value is 0 
at root level, 1 at the first level, 2 at the second level, 
and so on.

LEVEL_NAME STRING This is the name of the result node’s level. For parent-
child hierarchies, the names are LEVEL 00, LEVEL 01, 
LEVEL 02, etc. For leveled hierarchies, the level names 
are similar to ALL, YEAR, CALMONTH, DATE_SQL, etc.

IS_LEAF INTEGER This indicates whether a result node is a branch (0) or a 
leaf (1).

ORDINAL INTEGER This refers to the ordinal number of the result node, 
mainly for purposes of displaying query results.

The exact meaning of the ordinal depends on the query. 
For example, if a query involves no navigation expres-
sion, the output ordinal reflects the natural hierarchy 
node order.

Attribute Name Type Description

Table 2.3  Attribute Description (Cont.)
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The navigation functions provide a lot of flexibility during data analysis. Some
logic that is too complex to achieve with SQL queries can be performed easily
with the MDX-like navigation functions.

In some use cases, the hierarchy relation is constructed in a different way. You
may find it difficult to apply hierarchical features to a table that does not provide
parent-child relationships for each row. Let’s look at an example. Suppose you
have table HIER_SRC2P:

CREATE COLUMN TABLE HIER_SRC2(EMP_ID VARCHAR(2),
N_FROM INT,N_TO INT);

You add some sample records, as shown in Listing 2.4.

INSERT INTO HIER_SRC2 VALUES ('A1',1,15);
INSERT INTO HIER_SRC2 VALUES ('B1',2,5);
INSERT INTO HIER_SRC2 VALUES ('B2',6,14);
INSERT INTO HIER_SRC2 VALUES ('C1',3,3);
INSERT INTO HIER_SRC2 VALUES ('C2',4,4);
INSERT INTO HIER_SRC2 VALUES ('C3',7,10);
INSERT INTO HIER_SRC2 VALUES ('C4',11,13);
INSERT INTO HIER_SRC2 VALUES ('D1',8,8);
INSERT INTO HIER_SRC2 VALUES ('D2',9,9);
INSERT INTO HIER_SRC2 VALUES ('D3',12,12);

Listing 2.4  Script to Generate the HIER_SRC2 Source Table

N_FROM and N_TO specify the authority scope of each user. If user A’s scope covers
user B’s scope, then user A is the superior of user B. It is easy to make a join to
retrieve all of the superior-subordinate or ancestor-descendant relationships (see
Listing 2.5).

SELECT A.EMP_ID DES, B.EMP_ID ANC
FROM HIER_SRC2 A,HIER_SRC2 B
WHERE A.N_FROM>B.N_FROM
AND A.N_TO<B.N_TO;

Listing 2.5  Query to Show Ancestor-Descendant Relationships

The result set of the query cannot be defined as a hierarchy view yet, because all
pairs for the ancestor-descendant relationships are still present, and you only
need pairs that present the parent-child relationships. For example, D1 has three
records: (A1,D1), (B2,D1), (C3,D1). To generate a hierarchy view, D1 should only
have one record, (C3,D1), to show the parent-child relations.
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To make a query show only the parent-child relations, you can use the window
function to set the partition by target Emp_ID, and find the record with the closest
scope. You can then set that record as the parent node and filter out other records
for the target Emp_ID, as shown in Listing 2.6.

SELECT ANC PRED, DES SUCC
FROM
(
SELECT A.EMP_ID DES, B.EMP_ID ANC,ROW_NUMBER() OVER(PARTITION BY
A.EMP_ID ORDER BY B.N_FROM DESC) R
FROM HIER_SRC2 A,HIER_SRC2 B
WHERE A.N_FROM>B.N_FROM
AND A.N_TO<B.N_TO
)
WHERE R=1;

Listing 2.6  Query to Show Parent-Child Relations

The R=1 filter in the query is to return the record that has the closest N_FROM
value—that is, the direct parent of the node. The output shows that the hierarchy
has the same structure as we have shown in previous examples (see Table 2.5).
You can now create a hierarchy view based on the output of the query and union
a record with the largest scope as the root node.

To create the hierarchy, use the CREATE COLUMN VIEW statement with TYPE HIERAR-
CHY (see Listing 2.7). Alternatively, you can create a scripted calculation view and
define the hierarchy in the calculation view.

PRED SUCC

A1 B1

A1 B2

B1 C1

B1 C2

B2 C3

B2 C4

C3 D1

C3 D2

C4 D3

Table 2.5  Parent-Child Relationship Output
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CREATE COLUMN VIEW h_mini2 TYPE HIERARCHY
AS SELECT ANC PRED,DES SUCC
FROM
(
SELECT A.EMP_ID DES, B.EMP_ID ANC,ROW_NUMBER() OVER(PARTITION BY A.EMP_
ID ORDER BY B.N_FROM DESC) R
FROM HIER_SRC2 A, HIER_SRC2 B
WHERE A.N_FROM>B.N_FROM
AND A.N_TO<B.N_TO
)
WHERE R=1
UNION (SELECT TOP 1 NULL,EMP_ID
FROM HIER_SRC2
ORDER BY N_FROM ASC
);

Listing 2.7  Script to Create a Hierarchy View Based on the Query Result

With the hierarchy view created, you can leverage navigation functions on this
view to perform a flexible analysis.

2.2 Transposing Columns and Rows

People may have different preferences when it comes to defining table structures.
Some prefer tables with many columns; others like fewer columns. When pre-
senting data in a UI, you sometimes have to transpose columns to rows or rows to
columns. In this section, we will address these kinds of transposition require-
ments using complex logic.

2.2.1 Column-to-Row Transposition

Let’s look first at a column-to-row transposition. Suppose you have a table called
MARK_R to record students’ school reports (see Listing 2.8).

CREATE COLUMN TABLE MARK_R(
STUDENT VARCHAR(20),
ENGLISH INT,
MUSIC INT,
MATHEMATICS INT,
PHYSICS INT,
BIOLOGY INT);
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INSERT INTO MARK_R VALUES ('JACK',23,54,56,76,43);
INSERT INTO MARK_R VALUES ('DAVID',73,24,96,44,51);

Listing 2.8  Script to Prepare the Source Table MARK_R

Table 2.6 shows the grades in all the subjects for each row.

To transpose the columns to rows, first create a dimension table to save the sub-
ject names (see Listing 2.9).

CREATE COLUMN TABLE SUBJECT(
ONE INT,
SUBJECT_NAME VARCHAR(20));

INSERT INTO SUBJECT VALUES (1,'ENGLISH');
INSERT INTO SUBJECT VALUES (1,'MUSIC');
INSERT INTO SUBJECT VALUES (1,'MATHEMATICS');
INSERT INTO SUBJECT VALUES (1,'PHYSICS');
INSERT INTO SUBJECT VALUES (1,'BIOLOGY');

Listing 2.9  Script to Create a Dimension Table SUBJECT

You need to join all records of the dimension table to all records of the source
table in what is called a Cartesian join. To do so, add a dummy column to the
source table:

ALTER TABLE MARK_R ADD (ONE INT DEFAULT 1);

Then, create a calculation view to make the Cartesian join between the source
table and the dimension table (see Figure 2.7).

In the calculation view CA _ROW_COLUMN, define a calculated column MARK, as
shown in Listing 2.10.

case("SUBJECT_NAME"
,'ENGLISH',"ENGLISH"
,'MUSIC',"MUSIC"
,'MATHEMATICS',"MATHEMATICS"

Student English Music Mathematics Physics Biology

Jack 23 54 56 76 43

David 73 24 96 44 51

Table 2.6  Students’ School Report
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,'PHYSICS',"PHYSICS"
,"BIOLOGY")

Listing 2.10  Formula for the Calculated Column MARK

Figure 2.7  Calculation View to Transpose Columns to Rows

The idea is to first duplicate the rows of the source table with the Cartesian join,
and then for each row use the case() function to return the mark or grade of the
referred subject from the five optional columns:

SELECT STUDENT,SUBJECT_NAME,MARK FROM _SYS_BIC."test/CA_ROW_COLUMN"
ORDER BY STUDENT,SUBJECT_NAME;

The output of the calculation view has a subject name and the grade of the
referred subject, with the different subjects in different rows (see Table 2.7).

Student Subject Name Mark/Grade

David Biology 51

David English 73

David Mathematics 96

David Music 24

David Physics 44

Jack Biology 43

Jack English 23

Jack Mathematics 56

Table 2.7  Output of the Calculation View
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You also can achieve the same result with another approach. Instead of creating
the subject list table, create table SUBJECT_MATRIX, which contains the subject list
within a matrix (see Listing 2.11).

CREATE COLUMN TABLE SUBJECT_MATRIX(
ONE INT,
SUBJECT_NAME VARCHAR(20),
ENG INT,
MUS INT,
MAT INT,
PHY INT,
BIO INT);
INSERT INTO SUBJECT_MATRIX VALUES (1,'ENGLISH' ,1,0,0,0,0);
INSERT INTO SUBJECT_MATRIX VALUES (1,'MUSIC' ,0,1,0,0,0);
INSERT INTO SUBJECT_MATRIX VALUES (1,'MATHEMATICS',0,0,1,0,0);
INSERT INTO SUBJECT_MATRIX VALUES (1,'PHYSICS' ,0,0,0,1,0);
INSERT INTO SUBJECT_MATRIX VALUES (1,'BIOLOGY' ,0,0,0,0,1);

Listing 2.11  Script to Create a Matrix Table SUBJECT_MATRIX 

Now, create a calculation view to cross join the source table MARK_R and the
dimension table SUBJECT_MATRIX. You can create a calculated column MARK with
the following formula:

"ENGLISH"*"ENG"+"MUSIC"*"MUS"+"MATHEMATICS"*"MAT"+"PHYSICS"*"PHY"+
"BIOLOGY"*"BIO"

You can then browse the calculation view and get the same result. There is not
much difference between these two approaches. In most cases, the first approach
can be more convenient, because you do not have to maintain an additional
matrix.

Grouping Sets

The two approaches discussed in the previous section are both based on joining
to an additional table. This might be a convenient way to create the additional

Jack Music 54

Jack Physics 76

Student Subject Name Mark/Grade

Table 2.7  Output of the Calculation View (Cont.)
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table to help you to achieve the complex logic, but depending on the use case,
you may also want a way to transpose the rows without resorting to joins. One
way to do this is to use a union to merge multiple queries against the same table,
but this can be resource intensive. Another way is to use grouping sets. You can
add several grouping sets to one query and have the output contain multiple cop-
ies of the same records.

To differentiate copies from different grouping sets, use the GROUPING_ID ()
function. GROUPING_ID returns an integer value to identify to which grouping set
each row belongs. It is assigned by converting the bit vector generated from
GROUPING SETS to a decimal number, by treating the bit vector as a binary num-
ber. When a bit vector is composed, 0 is assigned to each column specified in
GROUPING SETS and 1 is assigned to the unspecified column. In addition, the
order of the digits is the order as they appear in the GROUPING_ID (). By treating
the bit vector as a binary number, this function returns an integer value as the
output. Therefore, for this table, you can run the query shown in Listing 2.12 to
split each row into five.

SELECT STUDENT,(CASE GROUPING_
ID(ENGLISH,MUSIC,MATHEMATICS,PHYSICS,BIOLOGY)

WHEN 15 THEN 'ENGLISH'
WHEN 23 THEN 'MUSIC'
WHEN 27 THEN 'MATHEMATICS'
WHEN 29 THEN 'PHYSICS'
ELSE 'BIOLOGY' END) SUBJECT,
SUM(ENGLISH) ENGLISH,
SUM(MUSIC) MUSIC,
SUM(MATHMATICS) MATHEMATICS,
SUM(PHYSICS) PHYSICS,
SUM(BIOLOGY) BIOLOGY

FROM MARK_R
GROUP BY GROUPING SETS(
(ENGLISH,STUDENT),
(MUSIC,STUDENT),
(MATHMATICS,STUDENT),
(PHYSICS,STUDENT),
(BIOLOGY,STUDENT));

Listing 2.12  Query to Split Rows with Grouping Sets   

You will see the subject name for each record, which is generated according to
GROUPING_ID(), and each student points to five subjects (see Table 2.8).
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Run the query shown in Listing 2.13 on top of the result set to transpose the col-
umns to rows.

SELECT STUDENT,SUBJECT,CASE SUBJECT
WHEN 'ENGLISH' THEN ENGLISH
WHEN 'MUSIC' THEN MUSIC
WHEN 'MATHEMATICS' THEN MATHEMATICS
WHEN 'PHYSICS' THEN PHYSICS
ELSE BIOLOGY END MARK

FROM
(
SELECT STUDENT,(CASE GROUPING_
ID(ENGLISH,MUSIC,MATHEMATICS,PHYSICS,BIOLOGY)

WHEN 15 THEN 'ENGLISH'
WHEN 23 THEN 'MUSIC'
WHEN 27 THEN 'MATHEMATICS'
WHEN 29 THEN 'PHYSICS'
ELSE 'BIOLOGY' END) SUBJECT,
SUM(ENGLISH) ENGLISH,
SUM(MUSIC) MUSIC,
SUM(MATHEMATICS) MATHEMATICS,
SUM(PHYSICS) PHYSICS,
SUM(BIOLOGY) BIOLOGY

FROM MARK_R
GROUP BY GROUPING SETS(
(ENGLISH,STUDENT),
(MUSIC,STUDENT),
(MATHEMATICS,STUDENT),

Student Subject English Music Math Physics Biology

David English 73 24 96 44 51

Jack English 23 54 56 76 43

David Music 73 24 96 44 51

Jack Music 23 54 56 76 43

David Mathematics 73 24 96 44 51

Jack Mathematics 23 54 56 76 43

David Physics 73 24 96 44 51

Jack Physics 23 54 56 76 43

David Biology 73 24 96 44 51

Jack Biology 23 54 56 76 43

Table 2.8  Using Grouping Sets to Split Rows
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(PHYSICS,STUDENT),
(BIOLOGY,STUDENT)
));

Listing 2.13  Query to Transpose Rows to Columns without a Join

In this query, you use the CASE/WHEN operator to separate the values for each sub-
ject. It returns the same result as the previous approach. This approach is not as
simple as the previous one, but it does provide a new way to duplicate rows with-
out adding joins to an additional table.

2.2.2 Row-to-Column Transposition

Next, let’s look at row-to-column transposition. For this example, suppose you
have a source table MARK_C. To create the test playground, insert the result of CA_
ROW_COLUMN into this table (see Listing 2.14).

CREATE COLUMN TABLE MARK_C(
STUDENT VARCHAR(20),
SUBJECT_NAME VARCHAR(20),
MARK INT);

INSERT INTO MARK_C
SELECT STUDENT,SUBJECT_NAME,MARK
FROM _SYS_BIC."test/CA_ROW_COLUMN";

Listing 2.14  Script to Create Table MARK_C

Then, create a calculation view CA_ROW_COLUMN3 against the table (see Figure 2.8).

Figure 2.8  Calculation View to Transpose Rows to Columns
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In Figure 2.8, in the calculation view, we created five calculated columns (see Lis-
ting 2.15).

"ENGLISH"�IF("SUBJECT_NAME"='ENGLISH',"MARK",NULL)
"MUSIC"�IF("SUBJECT_NAME"='MUSIC',"MARK",NULL)
"MATHEMATICS"�IF("SUBJECT_NAME"='MATHEMATICS',"MARK",NULL)
"PHYSICS"�IF("SUBJECT_NAME"='PHYSICS',"MARK",NULL)
"BIOLOGY"�IF("SUBJECT_NAME"='BIOLOGY',"MARK",NULL)

Listing 2.15  Formulas of the Calculated Columns

When you run the following query shown in Listing 2.16, it returns two rows.
Each row has a dedicated column for each subject.

SELECT STUDENT,
SUM(ENGLISH) ENGLISH,
SUM(MUSIC) MUSIC,
SUM(MATHEMATICS) MATHEMATICS,
SUM(PHYSICS) PHYSICS,
SUM(BIOLOGY) BIOLOGY
FROM _SYS_BIC."test/CA_ROW_COLUMN3"
GROUP BY STUDENT;

Listing 2.16  Query to Transpose Rows to Columns

You can see the query output in Table 2.9. The marks/grades that were originally
in different rows are now put in one row in different columns for each student.

Matrix Multiplication

You also can try a matrix multiplication approach to transpose rows to columns.
To do so, first create a calculation view CA_ROW_COLUMN4 to join table MARK_C with
the table SUBJECT_MATRIX on the column SUBJECT_NAME (see Figure 2.9).

In the calculation view, create five calculated columns (see Listing 2.17).

"ENGLISH"�"MARK"*"ENG"
"MUSIC"�"MARK"*"MUS"
"MATHEMATICS"�"MARK"*"MAT"

Student English Music Mathematics Physics Biology

Jack 23 54 56 76 43

David 73 24 96 44 51

Table 2.9  Output of Column to Row Transposition
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"PHYSICS"�"MARK"*"PHY"
"BIOLOGY"�"MARK"*"BIO"

Listing 2.17  Formulas of Calculated Columns

Figure 2.9  Calculation View to Transpose Rows to Columns

When you run Listing 2.18, it returns the same results.

SELECT STUDENT,
SUM(ENGLISH) ENGLISH,
SUM(MUSIC) MUSIC,
SUM(MATHEMATICS) MATHEMATICS,
SUM(PHYSICS) PHYSICS,
SUM(BIOLOGY) BIOLOGY
FROM _SYS_BIC."test/CA_ROW_COLUMN4"
GROUP BY STUDENT;

Listing 2.18  Query to Transpose Columns to Rows Based on Join Results with a Matrix Table

Again, the two approaches are similar. One uses the if() function; the other uses
matrix multiplication to simulate the if() function.

2.2.3 Reversing a Matrix

Now that you understand the methods for transposing columns to rows and vice
versa, we can move on to the process of reversing a matrix. For this example, sup-
pose you have a table MARK_M to show marks/grades in five subjects from five
schools (see Listing 2.19).
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CREATE COLUMN TABLE MARK_M(
SCHOOL VARCHAR(20),
ENGLISH INT,
MUSIC INT,
MATHEMATICS INT,
PHYSICS INT,
BIOLOGY INT);
INSERT INTO MARK_M VALUES ('HARVARD',23,54,56,76,43);
INSERT INTO MARK_M VALUES ('STANFORD',23,54,44,11,67);
INSERT INTO MARK_M VALUES ('QUEEN',43,16,33,88,35);
INSERT INTO MARK_M VALUES ('BOSTON',66,98,71,25,66);
INSERT INTO MARK_M VALUES ('EDWARD',71,29,32,67,19);

Listing 2.19  Script to Create Table MARK_M

The output for the query is shown in Table 2.10.

If you want to compare grades from different schools in each row (see Table 2.10),
you need to change the columns to rows and the rows to columns. You’ll do so in
two steps.

For the first step, you will again need the dimension table SUBJECT. You can create
a calculation view CA_ROW_COLUMN5 to cross join the source table and the dimen-
sion table (see Figure 2.10).

In the calculation view, you can define a calculated column MARK, as shown in Lis-
ting 2.20.

case("SUBJECT_NAME"
,'ENGLISH',"ENGLISH"
,'MUSIC',"MUSIC"
,'MATHEMATICS',"MATHEMATICS"

School English Music Mathematics Physics Biology

Harvard 23 54 56 76 43

Stanford 23 54 44 11 67

Queen 43 16 33 88 35

Boston 66 98 71 25 66

Edward 71 29 32 67 19

Table 2.10  Tables to Show a Matrix
119



Modeling Complex Logic2
,'PHYSICS',"PHYSICS"
,"BIOLOGY")

Listing 2.20  Formula of Calculated Column MARK

Figure 2.10  Calculation View to Transpose Columns to Rows

You can then send the result of the join node to the aggregation node, where
you can transpose the rows to columns in the way we described previously (see
Figure 2.11).

Figure 2.11  Aggregation Node in a Calculation View

At the aggregation node, create five calculated columns (see Listing 2.21).
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"HARVARD"�IF("SCHOOL"='HARVARD',"MARK",NULL)
"STANFORD"�IF("SCHOOL"='STANFORD',"MARK",NULL)
"QUEEN"�IF("SCHOOL"='QUEEN',"MARK",NULL)
"BOSTON"�IF("SCHOOL"='BOSTON',"MARK",NULL)
"EDWARD"�IF("SCHOOL"='EDWARD',"MARK",NULL)

Listing 2.21  Formulas of Calculated Columns for MARK in Different Schools

With the calculation view created, you can run the query shown in Listing 2.22.

SELECT SUBJECT_NAME,SUM(HARVARD) HARVARD,
SUM(STANFORD) STANFORD,
SUM(QUEEN) QUEEN,
SUM(BOSTON) BOSTON,
SUM(EDWARD) EDWARD
FROM _SYS_BIC."test/CA_ROW_COLUMN5"
GROUP BY SUBJECT_NAME;

Listing 2.22  Query to Reverse the Matrix

In the query output shown in Table 2.11, the subject names that were column
names in the source table are distributed to rows. University names that were dis-
tributed to rows become column names.

With these two simple steps, the rows and columns of the source table have been
completely switched.

2.2.4 Merging Data from Multiple Records

Another kind of row-to-column transposition method is to merge data from mul-
tiple records. When you perform aggregation reporting, sometimes you still want
to check further details. For example, when you sum based on state, you may still
want to see the included cities. SAP HANA provides a useful function, STRING_AGG

Subject Name Harvard Stanford Queen Boston Edward

English 23 23 43 66 71

Music 54 54 16 98 29

Mathematics 56 44 33 71 32

Physics 76 11 88 25 67

Biology 43 67 35 66 19

Table 2.11  Result of the Calculation View
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(), that can help in this case. STRING_AGG() returns the concatenation of strings
for each group of records.

For this example, consider the school report table MARK_S (see Listing 2.23).

CREATE COLUMN TABLE MARK_S(
STUDENT VARCHAR(20),
SUBJECT VARCHAR(20),
MARK INT);
INSERT INTO MARK_S VALUES ('David','Maths',23);
INSERT INTO MARK_S VALUES ('David','English',78);
INSERT INTO MARK_S VALUES ('David','Physics',18);
INSERT INTO MARK_S VALUES ('Mike','Maths',53);
INSERT INTO MARK_S VALUES ('Mike','French',38);
INSERT INTO MARK_S VALUES ('Mike','Biology',98);
INSERT INTO MARK_S VALUES ('Alice','Music',83);
INSERT INTO MARK_S VALUES ('Alice','German',68);
INSERT INTO MARK_S VALUES ('Alice','Chemistry',78);

Listing 2.23  Script to Create Table MARK_S

Because each student may have learned different subjects, it is worth listing the
subject names when showing average grades. To do so, run the following query:

SELECT STUDENT,AVG(MARK),STRING_AGG(SUBJECT,',') SUBJECTS
FROM MARK_S GROUP BY STUDENT;

This results in the output shown in Table 2.12.

The subject names are merged as a new column, SUBJECTS. This method allows
you to concatenate strings with a behavior similar to aggregation functions.

2.2.5 Splitting Strings

In some cases, you also may need to split a string into multiple strings. For exam-
ple, when using a stored procedure, you include a list of values in one string and
then pass the string to the stored procedure through an input parameter. In the

Student Avg(mark) Subjects

David 39.666666 Maths, English, Physics

Mike 63 Maths, French, Biology

Alice 76.333333 Music, German, Chemistry

Table 2.12  Example of STRING_AGG()
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stored procedure, you may want to parse the concatenated string back to sepa-
rated values.

The logic is not complex, and you can achieve it with the script shown in Listing
2.24.

CREATE PROCEDURE SPLIT(SOURCE_STR VARCHAR(500),DELIMITER VARCHAR(10))
AS
BEGIN
DECLARE R nvarchar(100) ARRAY;
DECLARE S nvarchar(500);
DECLARE I integer;
S := :SOURCE_STR;
I := 1;
WHILE LOCATE(:S,:DELIMITER) > 0 DO
R[:I] := SUBSTR_BEFORE(S,:DELIMITER);
S := SUBSTR_AFTER(S,:DELIMITER);
I:= :I + 1;
END WHILE;
R[:I] := :S;
T = UNNEST(:R) AS ("ITEM");
SELECT * FROM :T;

END;

Listing 2.24  Stored Procedure to Split String

In the stored procedure, the SOURCE_STR variable is the source string, and the
DELIMITER variable is the delimiter character. When you call the stored proce-
dure, it returns split rows. You can then use the result set as a table in the stored
procedure to join to other tables—for example:

CALL SPLIT('Boston,New York,Seatle,San Fransisco',',')

2.3 Using cube() with Hierarchies

To analyze data based on all dimension combinations, you can leverage the cube
() function.

Let’s begin by looking at an example. Suppose you have table FACT_3 with one
measure and several dimensions (see Listing 2.25).

CREATE COLUMN TABLE FACT_3(
YEAR INT,
CALMONTH INT,
DTE DATE,
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COUNTRY VARCHAR(20),
CITY VARCHAR(20),
SIZE VARCHAR(20),
MODEL VARCHAR(20),
SALES DECIMAL(18,2));
INSERT INTO FACT_3 VALUES (2010,201001,'2010-01-
02','Canada','Toronto','Large','DJ201',25);
INSERT INTO FACT_3 VALUES (2011,201101,'2011-01-
02','US','DC','Small','DJ5',33);
INSERT INTO FACT_3 VALUES (2012,201201,'2012-01-
02','UK','London','Large','DJ44',22);
INSERT INTO FACT_3 VALUES (2010,201003,'2010-03-
02','Canada','Vancouver','Small','DJ201',99);
INSERT INTO FACT_3 VALUES (2010,201001,'2010-03-
02','US','DC','Large','DJ201',33);
INSERT INTO FACT_3 VALUES (2012,201201,'2012-01-
02','Canada','Toronto','Small','DJ201',88);

Listing 2.25  Script to Create Table FACT_3

To analyze SALES from all the combinations of dimensions, you can use the func-
tion cube(), as in Listing 2.26.

SELECT YEAR,CALMONTH,DTE,COUNTRY,CITY,SIZE,MODEL,SUM(SALES)
FROM FACT_3
GROUP BY CUBE(YEAR,CALMONTH,DTE,COUNTRY,CITY,SIZE,MODEL);

Listing 2.26  Use cube() Function

This function returns the results of all possible grouping sets. You can then simu-
late the feature with grouping sets, but you first need to write more lines, like
those shown in Listing 2.27.

GROUP BY GROUPING SETS(
(YEAR,CALMONTH,DTE,COUNTRY,CITY,SIZE,MODEL),
(YEAR,CALMONTH,DTE,COUNTRY,CITY,SIZE),
(YEAR,CALMONTH,DTE,COUNTRY,CITY,MODEL),
(YEAR,CALMONTH,DTE,COUNTRY,SIZE,MODEL),
(YEAR,CALMONTH,CITY,SIZE,MODEL),
(YEAR,COUNTRY,CITY,SIZE,MODEL),

Listing 2.27  Code Example of Grouping Sets

When there are seven dimensions, the grouping set amount is 128. The cube()
feature looks powerful, but when there are hierarchies among the dimensions,
there will be a lot of redundancy in the grouping sets.
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In this example, there are two hierarchies: (YEAR, CALMONTH, DTE) and (COUNTRY,
CITY). A value of DTE always points to a single CALMONTH, and a value of CALMONTH
always points to a single YEAR. Also, a value of CITY always points to a COUNTRY.
When grouping set (YEAR, CALMONTH, DTE) has been calculated, the grouping sets
(DTE), (YEAR, DTE), and (CALMONTH, DTE) become redundant and should be
removed. To make the query more efficient, use the cube() function at the leaf
level of the hierarchies. 

The first step is to run the query, as follows:

SELECT DTE,CITY,SIZE,MODEL,SUM(SALES) SALES
FROM FACT_3 GROUP BY CUBE(DTE,CITY,SIZE,MODEL) ;

To show the upper level of the hierarchies, make the join between the result set
and the hierarchy dimension tables. For a date hierarchy, use table _SYS_BI.M_
TIME_DIMENSION. For a location hierarchy, create the dimension table CITY (see
Listing 2.28).

CREATE COLUMN TABLE CITY(
COUNTRY VARCHAR(20),
CITY VARCHAR(20));
INSERT INTO CITY VALUES('Canada','Toronto');
INSERT INTO CITY VALUES('UK','London');
INSERT INTO CITY VALUES('US','DC');
INSERT INTO CITY VALUES('Canada','Vancouver');

Listing 2.28  Script to Create Table CITY

You can make a view to present the logic for the join between the result set and
the dimension tables (see Listing 2.29).

CREATE VIEW V_CUBE_HI AS
SELECT YEAR,CALMONTH,DTE,COUNTRY,F.CITY,SIZE,MODEL,SALES
FROM
(
SELECT DTE,CITY,SIZE,MODEL,SUM(SALES) SALES
FROM FACT_3
GROUP BY CUBE(DTE,CITY,SIZE,MODEL)
) F
LEFT OUTER JOIN CITY C
ON F.CITY=C.CITY
LEFT OUTER JOIN _SYS_BI.M_TIME_DIMENSION T
ON F.DTE=T.DATE_SQL;

Listing 2.29  Script to Create a View Against the Result of the Query with cube()
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The view does not yet cover all valid dimension combinations. On the date hier-
archy, you have (YEAR, CALMONTH, DTE), but miss (YEAR, CALMONTH) and (YEAR).
On the location hierarchy, you have (COUNTRY, CITY), but miss (COUNTRY). We
will add the missing combinations separately. For the missing date hierarchy, use
the query in Listing 2.30 with a filter on DTE.

SELECT YEAR,CALMONTH,NULL,COUNTRY,CITY,SIZE,MODEL,SUM(SALES)
FROM V_CUBE_HI
WHERE DTE IS NOT NULL
GROUP BY GROUPING SETS(
(YEAR,CALMONTH,COUNTRY,CITY,SIZE,MODEL),
(YEAR,COUNTRY,CITY,SIZE,MODEL));

Listing 2.30  Query to Add Calendar Hierarchy

For the missing location hierarchy, use the query shown in Listing 2.31 with a
filter on CITY.

SELECT YEAR,CALMONTH,DTE,COUNTRY,NULL,SIZE,MODEL,SUM(SALES)
FROM V_CUBE_HI
WHERE CITY IS NOT NULL
GROUP BY YEAR,CALMONTH,DTE,COUNTRY,SIZE,MODEL;

Listing 2.31  Query to Add Location Hierarchy

For the missing combinations of the two hierarchies, use the query shown in
Listing 2.32 with a filter on both DTE and CITY.

SELECT YEAR,CALMONTH,NULL,COUNTRY,NULL,SIZE,MODEL,SUM(SALES)
FROM V_CUBE_HI
WHERE DTE IS NOT NULL
AND CITY IS NOT NULL
GROUP BY GROUPING SETS(
(YEAR,CALMONTH,COUNTRY,SIZE,MODEL),
(YEAR,COUNTRY,SIZE,MODEL));

Listing 2.32  Query to Add a Combination of the Calendar and Location Hierarchies

The final query merges result sets from all four queries (see Listing 2.33).

SELECT YEAR,CALMONTH,DTE,COUNTRY,CITY,SIZE,MODEL,SALES
FROM V_CUBE_HI
UNION ALL
SELECT YEAR,CALMONTH,NULL,COUNTRY,CITY,SIZE,MODEL,SUM(SALES)
FROM V_CUBE_HI
WHERE DTE IS NOT NULL
GROUP BY GROUPING SETS(
(YEAR,CALMONTH,COUNTRY,CITY,SIZE,MODEL),
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(YEAR,COUNTRY,CITY,SIZE,MODEL)
)
UNION ALL
SELECT YEAR,CALMONTH,DTE,COUNTRY,NULL,SIZE,MODEL,SUM(SALES)
FROM V_CUBE_HI
WHERE CITY IS NOT NULL
GROUP BY YEAR,CALMONTH,DTE,COUNTRY,SIZE,MODEL
UNION ALL
SELECT YEAR,CALMONTH,NULL,COUNTRY,NULL,SIZE,MODEL,SUM(SALES)
FROM V_CUBE_HI
WHERE DTE IS NOT NULL
AND CITY IS NOT NULL
GROUP BY GROUPING SETS(
(YEAR,CALMONTH,COUNTRY,SIZE,MODEL),
(YEAR,COUNTRY,SIZE,MODEL));

Listing 2.33  Final Query with All Valid Combinations 

This final query will include all the valid dimension combinations and no redun-
dancies.

2.4 Calculating Running Total

A running total is the summation based on a sequence of numbers, usually a cal-
endar sequence, for which the total at each point covers a fixed range of the
sequence. The ranges at different points can overlap. In this section, we will look
at the steps needed to model this complex logic.

For example, suppose you wanted to perform an analysis to check the sales by
month, and each month you need the amount for not only this month but also
the month before and the month after. That is, the running total of month 2 is the
sum of months 1, 2, and 3; the running total of month 3 is the sum of months 2,
3, and 4; and so on. Let’s explore this solution further. Suppose you have the
transaction table Trans_DTL (see Listing 2.34).

CREATE COLUMN TABLE Trans_DTL(
Trans_DATE DATE,
Trans_No INT,
Prod_ID BIGINT,
Sales_Qty BIGINT,
Sales_Net DECIMAL(18,2));
INSERT INTO Trans_DTL VALUES ('2014-01-01',1243,1,234,23);
INSERT INTO Trans_DTL VALUES ('2014-01-01',132,2,234,23);
INSERT INTO Trans_DTL VALUES ('2014-01-01',133,2,4353,345);
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INSERT INTO Trans_DTL VALUES ('2014-02-01',1243,1,2222,2222);
INSERT INTO Trans_DTL VALUES ('2014-03-01',1243,1,3333,3333);
INSERT INTO Trans_DTL VALUES ('2014-04-01',1243,1,4222,4222);
INSERT INTO Trans_DTL VALUES ('2014-05-01',1243,1,5222,5222);
INSERT INTO Trans_DTL VALUES ('2014-06-01',1243,1,6222,6222);
INSERT INTO Trans_DTL VALUES ('2014-07-01',1243,1,7222,7222);
INSERT INTO Trans_DTL VALUES ('2014-08-01',1243,1,8222,8222);
INSERT INTO Trans_DTL VALUES ('2014-11-01',13243,1,11,1);
INSERT INTO Trans_DTL VALUES ('2014-12-01',13243,1,1,1);

Listing 2.34  Script to Create Table Trans_DTL

In Figure 2.12, you can see the join between transaction table Trans_DTL and
attribute view AT_CALENDAR, based on the calendar table _SYS_BI"."M_TIME_
DIMENSION introduced in Chapter 1.

Figure 2.12  Analytic View to Join the Transaction Table with the Calendar Table

From here, you can run a query to retrieve the sum of sales on a monthly basis
(see Listing 2.35).

SELECT CALMONTH,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY CALMONTH;

Listing 2.35  Query to Browse the Analytic View AN_TRANS

To have the sum of each month include one month before and one month after,
use the window functions LEAD and LAG. The LEAD function returns values of the
offset rows after the current row. The offset should be non-negative with a
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default of 1. The LAG function returns the value of the offset rows before the cur-
rent row. The offset should be non-negative with a default of 1.

In this case, base the sequence of records on the order of CALMONTH. The formula
for the running total is as follows:

current value + value in one record before + value in one record after

Then, run the query shown in Listing 2.36 to calculate the running total.

SELECT CALMONTH,
SUM(SALES_NET)
+LEAD(SUM(SALES_NET)) OVER(ORDER BY CALMONTH)
+LAG(SUM(SALES_NET)) OVER(ORDER BY CALMONTH)
RUNNING_TOTAL
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY CALMONTH;

Listing 2.36  Query to Calculate the Running Total

The month range of the running total is three months. If the range was 12
months, the formula would be much longer.

Let’s try another approach. You can create a table called CALENDAR_RUNNING_TOTAL
to have each month value point to three related month values, then join it with
the output of the analytic view (see Listing 2.37).

CREATE COLUMN TABLE CALENDAR_RUNNING_TOTAL(
CALMONTH INT,
CALMONTH_S INT);
INSERT INTO CALENDAR_RUNNING_TOTAL
SELECT A.CALMONTH,B.CALMONTH
FROM _SYS_BI.M_TIME_DIMENSION A,_SYS_BI.M_TIME_DIMENSION B
WHERE A.DAY=1
AND B.DAY=1
AND B.DATE_SQL>='1999-12-01'
AND A.DATE_SQL>='2000-01-01'
AND A.DATE_SQL BETWEEN ADD_MONTHS(B.DATE_SQL,-1) AND ADD_MONTHS(B.DATE_
SQL,1);

Listing 2.37  Script to Generate a Table for the Running Total

In the table, each value at column CALMONTH points to three values at column
CALMONTH_S. For example, the value 200403 points to 200402, 200403, and
200404 (see Table 2.13).
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Then, run the query shown in Listing 2.38 to get the running total.

SELECT B.CALMONTH,SUM(SALES_NET) RUNNING_TOTAL
FROM _SYS_BIC."test/AN_TRANS" A, CALENDAR_RUNNING_TOTAL B
WHERE A.CALMONTH=B.CALMONTH_S
GROUP BY B.CALMONTH;

Listing 2.38  Query to Calculate the Running Total Based on the Join Result

You can put the logic into a graphical calculation view (see Figure 2.13).

Figure 2.13  Calculation View for the Running Total

The query against the calculation view is shown in Listing 2.39.

SELECT CALMONTH,SUM(SALES_NET)
FROM _SYS_BIC."test/CA_RUNNING_TOTAL"
GROUP BY CALMONTH;

Listing 2.39  Query to Calculate the Running Total Against the Calculation View

CALMONTH CALMONTH_S

200403 200402

200403 200403

200403 200404

200404 200403

200404 200404

200404 200405

… …

Table 2.13  Sample Records
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In this example, we made table CALENDAR_RUNNING_TOTAL join to the output of the
analytic view and made the join happen in the calculation view. Joining table
CALENDAR_RUNNING_TOTAL in the calculation view will perform better than joining
it inside the analytic view. Because the output of an analytic view is aggregated
data and the row count is fewer than that of the source data, a join applied on
fewer rows will run faster.

2.5 Calculating Cumulative Sum

There may be times when you will need to perform a year-to-date (YTD) analysis.
Doing so requires you to calculate the cumulative sum. Cumulative sum is a
sequential analysis technique typically used for monitoring change detection. For
example, to know the inventory on each day, we are not interested in the sales
and purchases on each day, but in the sum of the sales and purchases from the
beginning of the year to the current day: Those are the YTD values.

The formula for the YTD analysis is as follows:

Beginning inventory year values + YTD purchases – YTD sales = daily inventory

To describe the solution to calculate the cumulative sum, we will use the table
Trans_DTL and the analytic view AN_TRANS, shown in Section 2.4. First, check the
sales for each day by running the query shown in Listing 2.40.

SELECT DATE_SQL,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY DATE_SQL;

Listing 2.40  Query to Aggregate the Sum

Next, use the window function shown in Listing 2.41.

SELECT DATE_SQL, SUM(SALES_NET) OVER (PARTITION BY YEAR ORDER BY DATE_
SQL ASC)
FROM (
SELECT DATE_SQL,YEAR,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY DATE_SQL,YEAR
);

Listing 2.41  Query to Calculate Cumulative Sum

When the function SUM() combines with ORDER BY of the window definition, it
returns the cumulative sum. When the order is ASC, it returns the sum from the
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current record to the record pointed by the lowest value of the order by column
in the specified partition. When the order is DESC, it returns the sum from the cur-
rent record to the record pointed by the greatest value of the ORDER BY column at
the specified partition.

In this query, specify the column YEAR as the PARTITION BY column and column
DATE_SQL as the ORDER BY column, and set the order as ASC. So for each day, it
returns the sum from the first day of the year to the current day, which provides
the YTD result.

The approach is straightforward, but it does have its limitations: If there are no
records for a day on the transaction table, you will not be able to see the YTD
result for that day on the result set.

To address this limitation, you need to create a new calendar table, CALENDAR_YTD,
for join purposes. Listing 2.42 shows the code necessary to do so.

CREATE COLUMN TABLE CALENDAR_YTD(
DATE_SQL DATE,
DATE_SQL_S DATE);

INSERT INTO CALENDAR_YTD
SELECT A.DATE_SQL,B.DATE_SQL
FROM _SYS_BI.M_TIME_DIMENSION A,_SYS_BI.M_TIME_DIMENSION B
WHERE A.YEAR=B.YEAR
AND A.DATE_SQL >=B.DATE_SQL;

Listing 2.42  Script to Generate a Table for a Cumulative Sum

Table 2.14 shows one record for the first day of each year, two records for the sec-
ond day of each year, three records for the third day, and so on.

DATE_SQL DATE_SQL_S

2004-01-01 2004-01-01

2004-01-02 2004-01-01

2004-01-02 2004-01-02

2004-01-03 2004-01-01

2004-01-03 2004-01-02

2004-01-03 2004-01-03

Table 2.14  Sample Records
132



Calculating Cumulative Sum 2.5
You can then join this table to the output of the analytic view. This will allow you
to make the record for each day link to all the records from the first day of the
year up to the day that is referred to and then sum the records. You can get the
YTD result with the query shown in Listing 2.43.

SELECT B.DATE_SQL,SUM(SALES_NET)
FROM _SYS_BIC."test/AN_TRANS" A, CALENDAR_YTD B
WHERE A.DATE_SQL=B.DATE_SQL_S
GROUP BY B.DATE_SQL;

Listing 2.43  Query to Calculate the Cumulative Sum Based on the Join Result

Also, you can create a graphical calculation view to make the join (see Figure 2.14).

Figure 2.14  Calculation View for the Cumulative Sum

The query against the calculation view is shown in Listing 2.44.

SELECT DATE_SQL,SUM(SALES_NET)
FROM _SYS_BIC."test/CA_YTD"
GROUP BY DATE_SQL;

Listing 2.44  Query to Calculate the Cumulative Sum Against the Calculation View

The same approach can be applied to MTD (month-to-date), QTD (quarter-to-
date), and so on. You must create a table that contains the day-to-day relationship
for the cumulative total, make the join to distribute the records to each corre-
sponding sum range, and then calculate the sum.
133



Modeling Complex Logic2
2.6 Filtering Data Based on Ranking

When you perform a data analysis, sometimes you may need to filter the data
based on the ranking results. In this section, we will introduce four approaches to
fulfill this requirement:

� Using a subquery

� Using a window function

� Manipulating a concatenated column

� Using a rank node in a calculation view

Let’s explain the scenario with an example based on a medical health tracking
table. Suppose you have the table HOSPITAL to save a patient’s name, his tempera-
ture, and the date when his temperature was checked (see Listing 2.45).

CREATE COLUMN TABLE HOSPITAL(
PATIENT VARCHAR(20),
DTE DATE,
TEMP DECIMAL(5,1)
);
INSERT INTO HOSPITAL VALUES('David','2010-01-02',37.1);
INSERT INTO HOSPITAL VALUES('David','2010-02-02',37.2);
INSERT INTO HOSPITAL VALUES('David','2010-02-03',37.0);
INSERT INTO HOSPITAL VALUES('David','2010-04-02',36.1);
INSERT INTO HOSPITAL VALUES('David','2010-06-02',37.2);

Listing 2.45  Script to Create the Table HOSPITAL

When you create the report, you want to find the last time the patient’s tempera-
ture was checked for each month and record the temperature values for each of
those months. In the following sections, we will look at the different approaches
to find this information.

2.6.1 Using a Subquery

One approach to find the sought-after information using subqueries. To get the
last time the patient’s temperature was checked each month, use the query shown
in Listing 2.46.

SELECT PATIENT,B.CALMONTH,MAX(DTE)
FROM HOSPITAL A, _SYS_BI.M_TIME_DIMENSION B
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WHERE A.DTE=B.DATE_SQL
GROUP BY PATIENT,B.CALMONTH;

Listing 2.46  Query to Get the Latest Record for Each Month

Then, to find the temperature values recorded during those times, and run the
query in Listing 2.47.

SELECT T.PATIENT,T.CALMONTH,S.TEMP
FROM HOSPITAL S,
(
SELECT PATIENT,B.CALMONTH,MAX(DTE) DTE
FROM HOSPITAL A, _SYS_BI.M_TIME_DIMENSION B
WHERE A.DTE=B.DATE_SQL
GROUP BY PATIENT,B.CALMONTH) T
WHERE S.PATIENT=T.PATIENT
AND S.DTE=T.DTE;

Listing 2.47  Query to Get Results for the Latest Record in Each Month

This is the typical way to achieve this type of requirement, but this approach is
not always efficient when it comes to larger tables, given that you have to join the
intermediate result set back to the source table. In the next section, we will look
at how we can remedy this drawback using window functions.

2.6.2 Using Window Functions

When a table is large enough, it can be time-consuming to join the intermediate
result set back to the source table. In this section, we will look at how we can
eliminate the join through the usage of window functions. Using a window func-
tion, you can split the result sets of a query by rows. Listing 2.48 shows the
approach with a window function.

SELECT PATIENT,CALMONTH,TEMP
FROM
(
SELECT PATIENT,B.CALMONTH,TEMP,ROW_
NUMBER() OVER (PARTITION BY PATIENT,B.CALMONTH ORDER BY DTE DESC) R
FROM HOSPITAL A, _SYS_BI.M_TIME_DIMENSION B
WHERE A.DTE=B.DATE_SQL
)
WHERE R=1;

Listing 2.48  Query to Get the Result for the Latest Record in Each Month without Joining Back 
to the Source Table
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In the query, set the window by PATIENT and CALMONTH. Use ROW_NUMBER() to
return the result set sorted by date (DTE field), and then filter to return only the
first record on each window.

2.6.3 Manipulating Concatenated Virtual Columns

Because window functions are not supported in analytic views, we need another
approach to address this requirement. Say that you want to merge the DTE column
with the TEMP column. Calculating the max DTE||TEMP will return the value that
contains the largest DTE. To use this approach, run the query shown in Listing
2.49.

SELECT PATIENT,B.CALMONTH,TO_DECIMAL(SUBSTR_
AFTER(MAX(DTE||'@'||TEMP),'@')) TEMP
FROM HOSPITAL A, _SYS_BI.M_TIME_DIMENSION B
WHERE A.DTE=B.DATE_SQL
GROUP BY PATIENT,B.CALMONTH;

Listing 2.49  Query to Get the Result on the Latest Record in Each Month without Using a 
Window Function

The query then returns the desired result, and you can easily put the logic into the
analytic view (see Figure 2.15).

Figure 2.15  Calculated Column to Concatenate Two Columns

You then can run the query shown in Listing 2.50 against the analytic view.
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SELECT PATIENT, CALMONTH, TO_DECIMAL(SUBSTR_AFTER(MAX(DTE_
TEMP),'@')) TEMP
FROM _SYS_BIC."test/AN_TEMPERATURE"
GROUP BY PATIENT,CALMONTH;

Listing 2.50  Query Against an Analytic View

In Table 2.15, the query returns four records from four months; for each month,
only the last record is retrieved.

2.6.4 Using a Rank Node in a Calculation View

With a rank node in a calculation view, you can define filters based on the rank
result. In Figure 2.16, you can see the definition of calculation view CA_RANK.

Figure 2.16  Rank Node in Calculation View

PATIENT CALMONTH TEMP

David 201001 37.1

David 201002 37

David 201004 36.1

David 201006 37.2

Table 2.15  Output of Filtering Based on the Aggregation of Different Columns
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In the rank node, add the analytic view AN_TEMPERATURE, choose Descend-

ing(Top N) as the Sort Direction, and set the Threshold to 1. Set the Order By

column to DTE_TEMP. Choose columns CALMONTH and PATIENT for Partition

By Column to retrieve the last record in every month for each patient.

After activating the calculation view, run the following query to get the desired
result:

SELECT "PATIENT", "CALMONTH", "TEMP"
FROM "_SYS_BIC"."test/CA_RANK";

2.7 Controlling Join Paths via Filters

When creating joins on SAP HANA data models, you can choose an inner join,
outer join, or referential join. The referential join acts as an inner join when the
joined columns are part of the query; otherwise, SAP HANA does not perform the
join process when running the query. Based on this feature, you can use SAP
HANA models in a very flexible way.

Let’s walk through this feature with an example. Suppose you have a table Trans_
HDR (see Listing 2.51).

CREATE COLUMN TABLE Trans_HDR(
Trans_No BIGINT,
Dep_ID INT,
User_ID INT,
Sales_Amt DECIMAL(18,2));

Listing 2.51  Script to Create Table Trans_HDR

The transaction records shown in the query belong to two companies (A and B).
They have separate user list tables, USERS_A and USERS_B, as shown in Listing
2.52.

CREATE COLUMN TABLE USERS_A(
User_ID INT,
User_name VARCHAR(20));

CREATE COLUMN TABLE USERS_B(
User_ID INT,
User_name VARCHAR(20));

Listing 2.52  Script to Create User Tables
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Figure 2.17 shows the attribute views AT_USERS_A and AT_USERS_B for the two
user list tables and an analytic view that we use with a referential join to link both
attribute views.

Figure 2.17  Referential Join to Link Attribute Views

In the analytic view, create the alias USER_A_ID for the COLUMN USER_ID of AT_
USER_A and the alias USER_B_ID for the COLUMN USER_ID of AT_USER_B. Then, when
you want to perform a complete analysis, run the following query:

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_
HDR" GROUP BY DEP_ID;

When the AT_USER_A and AT_USER_B columns do not exist in the query, the two
referential joins are not executed, and the query returns the results for both com-
panies, because the records that do not map to an attribute view are retained.

When you want to check the transactions for company A, run the following
query:

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR"
WHERE USER_A_ID IS NOT NULL GROUP BY DEP_ID;

Because USER_A_ID exists in the query, the join between TRANS_HDR and AT_
USERS_A is performed, and the query returns the results for company A. In the
same manner, you can run the following query to check the transactions for
company B:

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR"
WHERE USER_B_ID IS NOT NULL GROUP BY DEP_ID;
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If there are users that belong to both companies, and you want to check the trans-
actions that belong to both, you can run Listing 2.53.

SELECT DEP_ID,SUM(SALES_AMT)
FROM _SYS_BIC."test/AN_TRANS_HDR"
WHERE USER_A_ID IS NOT NULL AND USER_B_ID IS NOT NULL
GROUP BY DEP_ID;

Listing 2.53  Query to Retrieve Records Belonging to Both Companies

In the query, the filter USER_A_ID IS NOT NULL forces the join to AT_USERS_A to be
executed, and the filter USER_B_ID IS NOT NULL forces the join to AT_USERS_B to be
executed. Then, the query returns the users that belong to both companies. By
using filters, you can control the join path flexibly. If it is in a stored procedure
and the user wants to control the join path with an input variable, then you can
create the script shown in Listing 2.54.

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR"
WHERE (:INPUT_VAR='A' AND USER_A_ID IS NOT NULL)
OR (:INPUT_VAR='B' AND USER_B_ID IS NOT NULL)
GROUP BY DEP_ID;

Listing 2.54  Query to Control a Join Path with Input Variables in a Stored Procedure-1

In this query, when the value of the input variable is A, you can perform the join
with AT_USERS_A; when the value of input variable is B, you perform the join with
AT_USERS_B.

Alternatively, you can use the OR operator in the query. The OR operator can
control the filter conditions. When one expression of the OR operation is true,
the other expression will be neglected. Therefore, you can write the script as
shown in Listing 2.55.

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR"
WHERE (:INPUT_VAR<>'A' OR USER_A_ID IS NOT NULL)
AND (:INPUT_VAR<>'B' OR USER_B_ID IS NOT NULL)
GROUP BY DEP_ID;

Listing 2.55  Query to Control a Join Path with Input Variables in a Stored Procedure-2

On the calculation view level, when required to enforce a join path, you can
define the filter in a calculation view instead of a query. For example, you can cre-
ate a dedicated calculation view for company A, and in the calculation view you
can add a filter to trigger the transaction table join to AT_USERS_A (see Figure 2.18).
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Figure 2.18  Calculation View to Set the Filter

To check the transaction records of company A, run the following query:

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/CA_TRANS_HDR_A"
GROUP BY DEP_ID;

You can use a left outer join to achieve similar logic, providing even more flexi-
bility. To see it in detail, let’s create a new analytic view, AN_TRANS_HDR2, to
change the referential join to a left outer join (see Figure 2.19).

Figure 2.19  Left Outer Join in an Analytic View
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You may assume that when you have a filter such as USER_A_ID IS NOT NULL, it
should return the transactions for company A only. In fact, when using a left
outer join, the joined column of the right table will be substituted with the joined
column of the left table. Therefore, when you use the column USER_A_ID in a
query, it actually points to USER_ID of TRANS_HDR. Hence, if you want to check the
transactions of company A, you need to choose a different column on AT_USERS_
A. You can run the following query:

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR2"
WHERE USER_A_NAME IS NOT NULL GROUP BY DEP_ID;

If you want to check transactions that do not belong to company B, you can run
the following query:

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR2"
WHERE USER_B_NAME IS NULL GROUP BY DEP_ID;

You can also have flexible combinations of filters. For example, if you want to
check all transactions in company A except the records that belong to both com-
panies, run the query shown in Listing 2.56.

SELECT DEP_ID,SUM(SALES_AMT)
FROM _SYS_BIC."test/AN_TRANS_HDR2"
WHERE USER_A_NAME IS NOT NULL AND USER_B_NAME IS NULL
GROUP BY DEP_ID;

Listing 2.56  Query to Retrieve Records Belonging to Company A Alone

If we want to check the transactions which belong to either company, we use the
query shown in Listing 2.57.

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR2"
WHERE (USER_A_NAME IS NOT NULL AND USER_B_NAME IS NULL)
OR (USER_A_NAME IS NULL AND USER_B_NAME IS NOT NULL)
GROUP BY DEP_ID;

Listing 2.57  Query to Retrieve Records Belonging to Either Company

In this example, we used USER_A_NAME instead of USER_A_ID, but in some cases,
the joined column of the right table is needed. To avoid confusion over the col-
umns in the right and left tables, modify the attribute in the table to add the
joined column to the output twice. You will see two attributes on the output
pane; you can use one for the join and the other for referring to its own column
after the join (see Figure 2.20).
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Figure 2.20  Attribute View to Create Additional Columns for Joined Columns

As shown in Figure 2.20, you can use the USER_ID column for the join and the
USER_ID_2 column to refer to its own column. In this case, we can rewrite the pre-
vious query as follows:

SELECT DEP_ID,SUM(SALES_AMT) FROM _SYS_BIC."test/AN_TRANS_HDR2"
WHERE USER_ID_2 IS NOT NULL GROUP BY DEP_ID;

2.8 Full Outer Join in a Calculation View

Under normal circumstances, graphical calculation views do not support full
outer joins. Usually, when there are such requirements, scripted calculation
views are employed. In this section, we will discuss how to achieve full outer
joins through graphical calculation views using complex logic.

As an example, suppose you are required to execute a full outer join between
TRANS_HDR and TRANS_DTL. The query is shown in Listing 2.58.

SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
FULL OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO;

Listing 2.58  Query with Full Outer Join
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The typical analysis based on the result set is sum() and count(), with the query
shown in Listing 2.59.

SELECT TRANS_NO,DEP_ID,USER_ID,TRANS_DATE,PROD_ID,SUM(SALES_
NET),COUNT(*) C
FROM (
SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
FULL OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO)
GROUP BY TRANS_NO,DEP_ID,USER_ID,TRANS_DATE,PROD_ID;

Listing 2.59  Aggregation Against Result Set of a Full Outer Join

Without using a full outer join, you can leverage other operators (such as a left
outer join, right outer join, inner join, or union) to simulate a full outer join.
First, execute Listing 2.60 to union the result sets of the left outer join and right
outer join.

SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
LEFT OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO
UNION ALL
SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
RIGHT OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO;

Listing 2.60  Query to Union a Left Outer Join and a Right Outer Join

The query returns the result set of a full outer join plus the result set of an inner
join. The result is the same as the result of the query shown in Listing 2.61.

SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
FULL OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO
UNION ALL
SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO;

Listing 2.61  Query to Union a Full Outer Join and an Inner Join

In the result set, each of the records for the inner join results appears twice. Based
on these findings, the correct approach must first union the results of the left
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outer join and right outer join. Then, you need to remove the results of the inner
join. You can achieve this with the query shown in Listing 2.62.

SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
LEFT OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO
UNION ALL
SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
RIGHT OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO
MINUS
SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_NET
FROM TRANS_HDR A
JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO;

Listing 2.62  Query of a Left Outer Join Unioned to a Right Outer Join Minus the Inner Join

However, the MINUS operator removes all the records that match the inner join.
Because there are two copies of the inner join results, both copies are removed,
which is not what we want. Therefore, we need to approach the problem from a
different angle.

What you need in your analysis is SUM(SALES_NET) and COUNT(*). Your objective
is to provide accurate aggregation results on every level. Instead of making the
query return exactly the same records on the detail level, you can make it return
the same result on the aggregation level by running the query shown in Listing
2.63.

SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_
NET,1 C
FROM TRANS_HDR A
LEFT OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO
UNION ALL
SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,B.SALES_
NET,1 C
FROM TRANS_HDR A
RIGHT OUTER JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO
UNION ALL
SELECT A.TRANS_NO,A.DEP_ID,A.USER_ID,B.TRANS_DATE,B.PROD_ID,-B.SALES_
NET, -1 C
FROM TRANS_HDR A
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JOIN TRANS_DTL B
ON A.TRANS_NO=B.TRANS_NO;

Listing 2.63  Union of a Left Outer Join, Right Outer Join, and Inner Join, with Negative Measure 
Values on an Inner Join 

An additional column C in the query is used to represent the count, and you then
use SUM(C) to substitute for COUNT(*). The value of C is 1 for the left outer join and
right outer join and -1 for the inner join. When you aggregate at any level, the
sum of the left and right outer join results will have the sum of the inner join
results subtracted, which means that among the two copies of inner join results,
one copy will be removed. The final result will be the same as for a full outer join.

For SALES_NET, use the formula of –SALES_NET on the inner join result. Here as
well, when you aggregate the column, one of two copies of the inner join results
will be removed.

As shown in Figure 2.21, in the calculation view you can create three join nodes:
one each for the left outer join, right outer join, and inner join. You can also cre-
ate a calculated column C on the left outer join node and the right outer join node
and set the value to 1. On the inner join node, set the value of C to -1. You can also
create a calculated column SALES_NET_N in the inner join node and set the formula
as –SALES_NET.

Figure 2.21  Calculation View to Make a Full Outer Join
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At the union node, map column C from the three join nodes (see Figure 2.22).
Then, map the SALES_NET_N column of the inner join node to the SALE_NET col-
umn of the left outer and right outer join nodes.

Figure 2.22  Union Node Definition

You can calculate the aggregation on any level, and it will return the correct result
of the full outer join (see Listing 2.64).

SELECT DEP_ID,SUM(SALES_NET),SUM(C)
FROM _SYS_BIC."test/CA_FULL_OUTER"
GROUP BY DEP_ID;

Listing 2.64  Query Against the Calculation View for the Full Outer Join

In this query, SUM(C) replaces COUNT(*). If you need COUNT DISTINCT at a given
column, no substitution is needed. See the following example:

SELECT DEP_ID,SUM(SALES_NET),SUM(C),COUNT(DISTINCT USER_ID)
FROM _SYS_BIC."test/CA_FULL_OUTER" GROUP BY DEP_ID;
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2.9 Making Dynamic Queries in a Stored Procedure

We usually avoid adding dynamic queries in stored procedures for performance
and security reasons. However, there are times when you may need to construct
queries dynamically in a stored procedure based on input variables or intermedi-
ate results. In this section, we will explain some approaches for making a query
dynamic without using dynamic SQL. The approaches we will look at include:

� Changing tables dynamically

� Changing filters dynamically

� Changing output columns dynamically

2.9.1 Changing Tables Dynamically

You can change tables dynamically by using input variables to assign tables or
control the table selection. For the first example, suppose you want to use an
input variable to control the stored procedure to select either table FACT_1 or
table FACT_2. You can use an IF/THEN statement in the store procedure to switch
the execution path (see Listing 2.65).

CREATE PROCEDURE DYNAMIC1(IN V VARCHAR(10))
LANGUAGE SQLSCRIPT
AS
BEGIN
IF :V='FACT_1' THEN
SELECT DEP_ID,PROD_ID,SUM(SALES_NET) SALES
FROM FACT_1
GROUP BY DEP_ID,PROD_ID;
ELSE
SELECT DEP_ID,PROD_ID,SUM(SALES_NET) SALES
FROM FACT_2
GROUP BY DEP_ID,PROD_ID;
END IF;
END;

Listing 2.65  Stored Procedure to Switch Tables Based on Input Variables

Pass the name of the table into the input variable when you run the stored pro-
cedure:

CALL DYNAMIC1('FACT_1');

The IF/THEN clause might be slower than a pure SQL query, but you can remove
it and use UNION to link multiple execution paths (see Listing 2.66).
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CREATE PROCEDURE DYNAMIC2(IN V VARCHAR(10))
LANGUAGE SQLSCRIPT
AS
BEGIN
SELECT DEP_ID,PROD_ID,SUM(SALES_NET) SALES
FROM FACT_1
WHERE :V='FACT_1'
GROUP BY DEP_ID,PROD_ID
UNION ALL
SELECT DEP_ID,PROD_ID,SUM(SALES_NET) SALES
FROM FACT_2
WHERE :V='FACT_2'
GROUP BY DEP_ID,PROD_ID;
END;

Listing 2.66  Stored Procedure to Switch Tables without IF/THEN Operator

In the stored procedure DYNAMIC2, you will use UNION ALL to link the two queries.
In each query, use a filter to check the value of the input variable. If it points to
the table, run the query; otherwise, skip the query.

You can also use a table variable and make the tables themselves dynamic in the
stored procedure (see Listing 2.67).

CREATE PROCEDURE DYNAMIC3(
IN V TABLE(TRANS_DATE DATE,

TRANS_NO BIGINT,
DEP_ID INTEGER,
PROD_TYPE INTEGER,
USER_ID INTEGER,
PROD_ID INTEGER,
SALES_NET DECIMAL(18,2)) )

LANGUAGE SQLSCRIPT
AS
BEGIN
SELECT DEP_ID,PROD_ID,SUM(SALES_NET) SALES
FROM :V
GROUP BY DEP_ID,PROD_ID;
END;

Listing 2.67  Stored Procedure to Use Table Variables

When you call a stored procedure with the table name as the input variable, the
table itself can be referred to within the script in the stored procedure. You can
pass not only the table or view names but also the table variables if you call the
procedure inside another procedure. Next, let’s see how to make a filter dynamic.
149



Modeling Complex Logic2
2.9.2 Changing Filters Dynamically

In this section, we will look at the steps involved in changing filters dynamically
within stored procedures.

You can create a sample stored procedure, DYNAMIC4, to filter on DEP_ID, PROD_ID,
and USER_ID (see Listing 2.68).

CREATE PROCEDURE DYNAMIC4(IN V_DEP_ID INT, IN V_PROD_ID INT, IN V_USER_
ID INT)
LANGUAGE SQLSCRIPT
AS
BEGIN
SELECT PROD_TYPE,SUM(SALES_NET) SALE
FROM FACT_1
WHERE DEP_ID=:V_DEP_ID
AND PROD_ID=:V_PROD_ID
AND USER_ID=:V_USER_ID
GROUP BY PROD_TYPE;
END;

Listing 2.68  Stored Procedure to Use Input Variables as Filters

When you execute the stored procedure, you have to pass the values of all three
columns. To make filters dynamic, you can enable a filter or disable a filter. In
addition, you can use certain values (e.g., NULL) in the input variable to disable the
filter on the corresponding column and use other values to enable the filter. To
make it work, you can use the OR operator in the WHERE clause (see Listing 2.69).

CREATE PROCEDURE DYNAMIC5(IN V_DEP_ID INT, IN V_PROD_ID INT, IN V_USER_
ID INT)
LANGUAGE SQLSCRIPT
AS
BEGIN
SELECT PROD_TYPE,SUM(SALES_NET) SALE
FROM FACT_1
WHERE (:V_DEP_ID IS NULL OR DEP_ID=:V_DEP_ID)
AND (:V_PROD_ID IS NULL OR PROD_ID=:V_PROD_ID)
AND (:V_USER_ID IS NULL OR USER_ID=:V_USER_ID)
GROUP BY PROD_TYPE;
END;

Listing 2.69  Stored Procedure to Make a Filter Dynamic

If you do not want to filter on USER_ID, then you can pass the NULL value into the
input variable V_USER_ID when executing the stored procedure. See the following
example:
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CALL DYNAMIC5(1,1,NULL);

In addition to using the OR operator, the input variable can be optional when
calling a stored procedure. You can set an optional default value for the input
variable. For this stored procedure, if you want the query to omit the filter when
no value is passed to the input variable, you can write it as shown in Listing 2.70.

CREATE PROCEDURE DYNAMIC6(IN V_DEP_ID INT DEFAULT NULL, IN V_PROD_
ID INT DEFAULT NULL, IN V_USER_ID INT DEFAULT NULL)
LANGUAGE SQLSCRIPT
AS
BEGIN
SELECT PROD_TYPE,SUM(SALES_NET) SALE
FROM FACT_1
WHERE (:V_DEP_ID IS NULL OR DEP_ID=:V_DEP_ID)
AND (:V_PROD_ID IS NULL OR PROD_ID=:V_PROD_ID)
AND (:V_USER_ID IS NULL OR USER_ID=:V_USER_ID)
GROUP BY PROD_TYPE;
END;

Listing 2.70  Stored Procedure with Optional Input Variables

Then, you can call the stored procedure to pass the value with the token => to the
columns that want filtered and skip the columns that you do not want filtered—
for example:

CALL DYNAMIC6(V_DEP=>1,V_USER=>12);

In addition to using the OR operator, SAP HANA provides an APPLY_FILTER func-
tion to achieve a more flexible filter logic, as shown in Listing 2.71.

CREATE PROCEDURE DYNAMIC7(IN V_FILTER VARCHAR(100))
LANGUAGE SQLSCRIPT
AS
BEGIN
T=APPLY_FILTER(FACT_1,:V_FILTER);
SELECT PROD_TYPE,SUM(SALES_NET) SALE
FROM :T
GROUP BY PROD_TYPE;
END;

Listing 2.71  Stored Procedure to Use APPLY_FILTER Function

You can pass complex filters through the variable V_FILTER when you call the
stored procedure—for example:

CALL DYNAMIC7('USER_ID BETWEEN 1 AND 40000 AND PROD_ID<20');
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So far, you have learned how to change tables and filters dynamically. Next, let’s
look at how to change output columns dynamically.

2.9.3 Changing Output Columns Dynamically

Suppose you want to aggregate dynamically on the dimension levels specified by
input variables. For the tables in the previous examples, you have three input
variables: V_DEP_ID, V_PROD_ID, and V_USER_ID. You need to set the input vari-
ables to Y or N to control the output on whether to include the column (see Listing
2.72).

CREATE PROCEDURE DYNAMIC8(IN V_DEP_ID CHAR(1), IN V_PROD_
ID CHAR(1), IN V_USER_ID CHAR(1))
LANGUAGE SQLSCRIPT
AS
BEGIN
SELECT DEP_ID,PROD_ID,USER_ID,SUM(SALES) SALES
FROM
(
SELECT TOP 1000000000000
CASE WHEN :V_DEP_ID='Y' THEN DEP_ID ELSE NULL END DEP_ID,
CASE WHEN :V_PROD_ID='Y' THEN PROD_ID ELSE NULL END PROD_ID,
CASE WHEN :V_USER_ID='Y' THEN USER_ID ELSE NULL END USER_ID,
SALES
FROM (
SELECT DEP_ID,PROD_ID,USER_ID,SUM(SALES_NET) SALES
FROM FACT_1
GROUP BY DEP_ID,PROD_ID,USER_ID
)
)
GROUP BY DEP_ID,PROD_ID,USER_ID;
END;

Listing 2.72  Stored Procedure to Make Output Columns Dynamic

In the stored procedure, for the first aggregate at the lowest level, and then based
on the input variables, change the values of the dimensions that are not chosen to
NULL; finally, aggregate on all the dimensions. When a dimension’s value is NULL,
the aggregation group by this dimension will be neglected, so the output will
have actual values on the dimensions that are chosen and null values on the
dimensions not chosen. TOP 1000000000000 at the inner query is for performance
tuning; performance is poor without this trick. We will explain its usage in more
detail in Chapter 3, Section 3.5.
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2.10 Showing History Records Side By Side

When comparing data between current periods and periods of the previous years,
it is not uncommon to want this data shown side by side in a report. In this sec-
tion, we will describe the implementation for this specific logic. Again, we are
using the table Trans_dtl, which you created with the script in Listing 2.34, and
assuming you are going to generate the report shown in Table 2.16.

It is not difficult to generate a report for any single year. For example, you can run
the query specifically for the year 2014, as in Listing 2.73.

SELECT MONTH,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
WHERE YEAR=2014
GROUP BY MONTH;

Listing 2.73  Query to Show Result in Current Year

To combine the results from previous years, typically you have to run an analytic
view three times and then union the results in a calculation view.

In the calculation view shown in Figure 2.23, there are three aggregation nodes.
Each returns the aggregation result group by YEAR and MONTH. Aggregation_1 is for

Month Sales Sales_Year-1 Sales_Year-2

01 213.23 234.23 244.3

02 313.23 224.23 248.3

03 453.23 444.23 334.3

04 243.23 254.23 274.3

05 213.23 274.23 144.3

06 223.23 234.23 224.3

07 273.23 264.23 274.32

08 213.23 234.23 244.3

09 213.23 211.23 244.32

10 213.23 222.23 244.31

11 23.23 56.23 244.33

12 23.23 674.23 244.38

Table 2.16  Output of History Comparison
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the current year, aggregation_2 is for the year before (create a YEAR1 calculated
column with formula YEAR+1), and aggregation_3 is for two years before we cre-
ated the YEAR2 calculated column with the formula YEAR+2. At the union node, we
mapped YEAR1 and YEAR2 to the output column YEAR0 at aggregation_1 and cre-
ated separate SALES_NET targets from the three aggregation nodes.

Figure 2.23  Calculation View to Union Result Sets

Run the query shown in Listing 2.74 to generate the report.

SELECT MONTH,SUM(SALES_NET),SUM(SALES_NET_1),SUM(SALES_NET_2)
FROM _SYS_BIC."test/CA_HISTORY1"
WHERE YEAR=2014
GROUP BY MONTH ;

Listing 2.74  Query to Show History Results Side by Side Against the Calculation View

In the query, specify the value of the year as 2014. On the node aggregation_1,
the filter is YEAR=2014, which returns records in 2014. On the node for aggrega-
tion_2, the filter is YEAR+1=2014, which returns records in 2013. On the node for
aggregation_3, the filter is YEAR+2=2014, which returns records in 2012. There-
fore, you can see the records of 2014, 2013, and 2012 side by side in the output.

Instead of using a union, you also can construct the logic with a join (see Listing
2.75).
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SELECT A.MONTH,A.SALES,B.SALES,C.SALES
FROM
(SELECT YEAR,MONTH,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY YEAR,MONTH) A
LEFT OUTER JOIN (SELECT YEAR,MONTH,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY YEAR,MONTH) B
ON A.YEAR=B.YEAR+1 AND A.MONTH=B.MONTH
LEFT OUTER JOIN (SELECT YEAR,MONTH,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY YEAR,MONTH) C
ON A.YEAR=C.YEAR+2
AND A.MONTH=C.MONTH
WHERE A.YEAR=2014;

Listing 2.75  SQL Query to Show History Results Side by Side

When you need the report on a daily basis, someone might try the query shown
in Listing 2.76.

SELECT A.DATE_SQL,A.SALES,B.SALES,C.SALES
FROM
(SELECT DATE_SQL,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY DATE_SQL) A
LEFT OUTER JOIN (SELECT DATE_SQL,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY DATE_SQL) B
ON A.DATE_SQL=ADD_YEARS(B.DATE_SQL,1)
LEFT OUTER JOIN (SELECT DATE_SQL,SUM(SALES_NET) SALES
FROM _SYS_BIC."test/AN_TRANS"
GROUP BY DATE_SQL) C
ON A.DATE_SQL=ADD_YEARS(C.DATE_SQL,2)
WHERE A.DATE_SQL BETWEEN '2014-01-01' AND '2015-01-01';

Listing 2.76  Query to Show History Results Side by Side on a Daily Basis

Unfortunately, there is a bug in the preceding query. Because 2012 is a leap year,
the expression ADD_YEARS('2012-02-29',2) and ADD_YEARS('2012-02-28',2) both
point to 2014-02-28. As a result, when one record at 2014-02-28 on the first data
set joins to two records on the third data set, the record is duplicated, and thus
the query will produce the wrong result.

In addition to containing a bug in the join, the preceding query is not very effi-
cient; you have to browse the analytic view three times to get the result from the
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three years. Therefore, let’s try a different approach that allows us to run the ana-
lytic view only once. You can use calculated columns to define the measures for
the current year and previous years (see Figure 2.24).

Figure 2.24  Analytic View with Calculated Columns for History Records

In an analytic view, you can create the input parameter REPORT_YEAR, which will
set the value as a report year. You can then create two additional calculated mea-
sures to differentiate the measures from the report year: one year before, two
years before (see Listing 2.77).

SALES_0�IF(INT("YEAR")=$$REPORT_YEAR$$,"SALES_NET",NULL)
SALES_1�IF(INT("YEAR")=$$REPORT_YEAR$$-1,"SALES_NET",NULL)
SALES_2�IF(INT("YEAR")=$$REPORT_YEAR$$-2,"SALES_NET",NULL)

Listing 2.77  Formulas for Calculated Columns for SALES_NET in Different Years

Then, run the following query for reporting on a monthly basis (see Listing 2.78).

SELECT MONTH,SUM(SALES_0),SUM(SALES_1),SUM(SALES_2)
FROM _SYS_BIC."test/AN_TRANS_HIST"
(PLACEHOLDER."$$REPORT_YEAR$$"=> '2014')
GROUP BY MONTH;

Listing 2.78  Query to Show History Results Side by Side Against an Analytic View

If you want the report on a daily basis, run the query shown in Listing 2.79. For
this query, also add a filter on the date range to return the records within these
three years for performance reasons.
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SELECT MONTH,DAY,SUM(SALES_0),SUM(SALES_1),SUM(SALES_2)
FROM _SYS_BIC."test/AN_TRANS_HIST"
(PLACEHOLDER."$$REPORT_YEAR$$"=> '2014')
WHERE DATE_SQL BETWEEN '2012-01-01' AND '2014-12-31'
GROUP BY MONTH,DAY;

Listing 2.79  Query to Show History Results Side by Side on a Daily Basis

With calculated columns, you have a lot of flexibility to define formulas. For
example, when using a fiscal calendar instead of a Gregorian calendar, one year
will have 52 weeks, and the other year will have 53 weeks. To find the current
year, first create a DAY1 calculated column that points to January 2 of the current
year:

DAY1 � date(string(component(now(),1))+'-01-02')

Then, define the YEARBEGIN calculated column which is relies on the weekday of
DAY1:

YEARBEGIN � if( weekday("DAY1")<4,adddays("DAY1",-weekday ("DAY1")
-1), adddays("DAY1",-weekday ("DAY1")+7-1))

To find the beginning of the year of previous year, first create a DAY1_1 calculated
column that points to January 2 of the previous year:

DAY1_1 � date(string(component(now(),1)-1)+'-01-02')

Then, define the PREYEARBEGIN calculated column which is relies on the weekday
of DAY1_1.

PREYEARBEGIN � if( weekday("DAY1_1")<4,
adddays ("DAY1_1",-weekday ("DAY1_1")-1),
adddays("DAY1_1",-weekday("DAY1_1")+7-1))

Listing 2.80  Formulas to Calculate Previous Fiscal Year Start

The number of days between a day of the current year and the corresponding day
of the previous year is as follows:

PREYEARDAYS � daysbetween("PREYEARBEGIN","YEARBEGIN")

Different companies will have different fiscal years. As such, formulas will need
to be adjusted to accommodate for these differences. As long as the logic can be
put into a calculated column, you can make models work efficiently.
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2.11 Sample Data

Sometimes, you need perform a rough analysis based on partial data, which
requires retrieving some sample data. In this section, we will identify the differ-
ent approaches that can be used to retrieve sample data. These include:

� Using the RAND() value

� Using $rowid$

� Using identity columns

� Using the LIMIT/OFFSET feature

� Using the TABLESAMPLE SYSTEM feature

2.11.1 Using RAND()

The first approach for retrieving sample data is to make a filter based on the func-
tion RAND()—for example:

SELECT * FROM FACT_1 WHERE RAND()<0.1;

When running the query, the value of RAND() will be generated at each record;
the value’s range is from 0 to 1, so it returns 10% of records based on the filter
RAND()<0.1. Each time you run the query, it might return a different result set.
However, because the formula is at the row level, the performance of this query
is not good.

2.11.2 Using $rowid$

Each table in SAP HANA has a hidden $rowid$ column, on which you can add a
filter to return a subset of the table—for example:

SELECT * FROM FACT_1 WHERE "$rowid$" <100000;

If you want to select a different subset, adjust the filter scope:

SELECT * FROM FACT_1 WHERE "$rowid$" BETWEEN 100000 AND 200000;

The value of the $rowid$ column is related to the partition ID. For a table without
a partition, the value ranges from 1 to 18014398509481984. On a partitioned
table, the value for partition 1 starts at 18014398509481985; partition 2 starts at
36028797018963969; partition 3 starts at 54043195528445953; and so on.
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If you want to find out the partition ID of a record, use the formula TO_
INT(("$rowid$"-1) /18014398509481984). If you want to retrieve records on a
particular partition—for example, partition 3—apply a filter on the $rowid$ as fol-
lows:

SELECT * FROM FACT_2 WHERE "$rowid$" between 18014398509481984*3+1
and 18014398509481984*4;

It is important to know that querying on the hidden $rowid$ column is not offi-
cially supported by SAP. Therefore, this option is to be used with caution and at
your own risk. Also, due to triggering some internal processes, you will incur a
performance penalty on queries that contain the hidden column. In general, it is
better to choose features that SAP HANA officially supports.

2.11.3 Using Identity Columns

Next, let’s try to use an identity column for data sampling. Identity columns are
columns with autoincremented values (e.g., 1, 2, 3, 4). You can create an identity
column on the table from which you want to retrieve sample records, as follows:

ALTER TABLE FACT_1 ADD(ID BIGINT GENERATED ALWAYS AS IDENTITY);

This generates a distinct number for each record, and you can perform data sam-
pling with the following query:

SELECT * FROM FACT_1 WHERE ID<100000;

If you want to switch to a different subset, adjust the filter range:

SELECT * FROM FACT_1 WHERE ID BETWEEN 100001 AND 200000;

You can also make advanced configurations on the identity column; the syntax of
its parameter is shown in Listing 2.81.

START WITH <start_value>
| INCREMENT BY <increment_value>
| MAXVALUE <max_value>
| NO MAXVALUE
| MINVALUE <min_value>
| NO MINVALUE
| CYCLE
| NO CYCLE
| CACHE <cache_size>
| NO CACHE

Listing 2.81  Syntax for Identity Column
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For example, if you want the identity number to be cycled for every 10 records,
run the following statement:

ALTER TABLE FACT_
2 ADD(ID BIGINT GENERATED ALWAYS AS IDENTITY (START WITH 1 MAXVALUE 10
CYCLE));

Then, you can retrieve 10% of the records with the following query:

SELECT * FROM FACT_2 WHERE ID=1;

2.11.4 Using LIMIT/OFFSET

You can also perform data sampling with the LIMIT/OFFSET feature. The syntax is
very simple:

SELECT * FROM FACT_1
LIMIT 100000 OFFSET 500000;

This query returns the 100,000 records from 500,001 to 600,000. If you create an
identity column on the table, you do not guarantee that the query will return the
values from 500,001 to 600,000, especially for a partitioned table. When you
want to switch to a different subset, adjust the OFFSET value. One limitation of
this approach is that you can only specify one record range in the query.

2.11.5 Using the TABLESAMPLE SYSTEM

As of SPS 9, SAP HANA has provided a feature called TABLESAMPLE SYSTEM (),
which allows you to set a value from 1 to 100 to specify the percentage of records
to be retrieved from a table. For example, to retrieve 10% of records, run the fol-
low query:

SELECT COUNT(*) FROM FACT_1 TABLESAMPLE SYSTEM(10);

Instead of a row-by-row comparison using a mathematical calculation, the TABLE-
SAMPLE SYSTEM() feature is handled by the SAP HANA engine directly, resulting in
good sampling performance.

So far, we have described several approaches for data sampling in SAP HANA.
There are some differences in the results; the RAND() and TABLESAMPLE SYSTEM()
approaches are similar to each other in results, because both select random
records. The $rowid$, identity column, and LIMIT/OFFSET approaches are also
similar to one another, because they select fixed record sets. Based on your
160



Using a Vertical Union to Join Tables 2.12
requirements, you must determine which approach is more appropriate for your
needs.

2.12 Using a Vertical Union to Join Tables

When two tables have the same row count and a one-to-one relation between
their records, you can use a vertical union to join them. In this section, we explain
how to use a vertical union in detail.

Suppose you want to perform a join between the tables TRANS_DTL and TAX_DTL
(see Listing 2.82).

SELECT A.TRANS_DATE,A.TRANS_NO,A.PROD_ID,A.SALES_NET,B.TAX
FROM TRANS_DTL A, TAX_DTL B
WHERE A.TRANS_DATE=B.TRANS_DATE
AND A.TRANS_NO=B.TRANS_NO
AND A.PROD_ID=B.PROD_ID;

Listing 2.82  Query to Join Two Tables

With a scripted calculation view and a stored procedure, you can use the calcula-
tion engine plan operators. One of the operators, CE_VERTICAL_UNION, unions not
rows, but columns. Let’s see its behavior with the example shown in Listing 2.83.

CREATE PROCEDURE VERTICAL(OUT O
TABLE(TRANS_DATE DATE,
TRANS_NO BIGINT,
SALES_NET DECIMAL(18,2),
TAX DECIMAL(18,2)
)
)
LANGUAGE SQLSCRIPT
AS
BEGIN
A=CE_COLUMN_TABLE(TRANS_DTL,[TRANS_DATE,TRANS_NO,PROD_ID,SALES_NET]);
B=CE_COLUMN_TABLE(TAX_DTL,[TRANS_DATE,TRANS_NO,PROD_ID,TAX]);
O=CE_VERTICAL_UNION(:A,[TRANS_DATE,TRANS_NO,PROD_ID,SALES_NET],:B,[
TAX]);
END;

Listing 2.83  Script to Make a Vertical Union

In this stored procedure, we have merged the two tables and shown the SALES_
NET and TAX columns side by side on each record. This returns the same result as
the join query.
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Prior to executing a vertical union, it is important that the records of the two data-
sets are in the same order. Therefore, before using a vertical union, you need to
sort the tables (see Listing 2.84).

CREATE PROCEDURE VERTICAL2(OUT O
TABLE(TRANS_DATE DATE,
TRANS_NO BIGINT,
SALES_NET DECIMAL(18,2),
TAX DECIMAL(18,2)
)
)
LANGUAGE SQLSCRIPT
AS
BEGIN
A=SELECT TRANS_DATE,TRANS_NO,PROD_ID,SALES_NET FROM TRANS_
DTL ORDER BY TRANS_DATE,TRANS_NO,PROD_ID;
B=SELECT TRANS_DATE,TRANS_NO,PROD_ID,TAX FROM TAX_DTL ORDER BY TRANS_
DATE,TRANS_NO,PORD_ID;
O=CE_VERTICAL_UNION(:A,[TRANS_DATE,TRANS_NO,PROD_ID,SALES_NET],:B,[
TAX]);
END;

Listing 2.84  Script to Sort Tables Before Executing a Vertical Union

It is recommended not to mix SQL queries with calculation engine plan opera-
tors. Mixing calculation engine plan operators and SQL may lead to missed
opportunities for applying optimizations, because calculation engine plan opera-
tors and SQL statements are optimized independently. This is not a strict rule,
however. Sometimes, performance is even better when related steps are opti-
mized independently. In this example, because there are no sorting functions
among the calculation engine plan operators, you have to use SQL queries.

Despite its limitations, the performance of a vertical union is good—and it can
also help you perform complex tasks with regular joins. In this particular exam-
ple, suppose you have a transaction that contains two identical records. This is a
common occurrence, as companies may sell two items of the same product within
a transaction. Therefore, table TRANS_DTL has records as shown in Table 2.17.

TRANS_DATE TRANS_NO PROD_ID SALES_NET

2014-01-01 234244 234 23.98

2014-01-01 234244 234 23.98

Table 2.17  Sample Records in Table TRANS_DTL
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Also, table TAX_DTL has two identical records (see Table 2.18).

When the two tables join on the TRANS_DATE, TRANS_NO, and PROD_ID columns, each
record on the right table maps the two records in the left table. In addition, each
record on the left table maps the two records in the right table. This is a many-to-
many cardinality and will return four records for this transaction, which is not what
you were looking for. On the contrary, when you use a vertical union to join these
two tables, there are not many to many joins, and it returns the right row count.

2.13 Sorting Records

Sorting is a big topic for data analysis. In this section, we will discuss solutions for
sorting in the following complex scenarios:

� Sorting IP addresses

� Sorting with exceptions

� Sorting based on user-defined rules

2.13.1 Sorting IP Addresses

First, let’s examine the requirements for sorting IP addresses. Suppose you have
a table VISIT that contains Internet connection details (see Listing 2.85).

CREATE COLUMN TABLE VISIT(
USER_NAME VARCHAR(20),
IP VARCHAR(20),
CONNCTION_DURATION INT
);
INSERT INTO VISIT VALUES('David Williams','12.234.12.32',345);
INSERT INTO VISIT VALUES('George Anderson','125.234.12.32',23);
INSERT INTO VISIT VALUES('Lucy Smith','48.124.102.16',456);
INSERT INTO VISIT VALUES('Betty Johns','234.77.132.66',35);

Listing 2.85  Script to Create Table VISIT

TRANS_DATE TRANS_NO PROD_ID TAX

2014-01-01 234244 234 2.15

2014-01-01 234244 234 2.15

Table 2.18  Sample Records in Table TAX_DTL
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If you wanted to sort the records by IP address, you could run the following query:

SELECT * FROM VISIT
ORDER BY IP;

In Table 2.19, you can see that the record with IP address 48.124.102.16 is in the
fourth position, because its first digit (4) is greater than the first digits 1, 1, and 3
of the other records. This behavior is due to the data type of the column
(VARCHAR). However, you want the whole number prior to the dot to be com-
pared, so that 48 would be compared to 12, 125, and 234; then, the current
fourth record would be in the second position.

You need to parse the IP column into four integers and sort the records by those
four integers. To perform parsing on the fly, create a user-defined function (see
Listing 2.86).

CREATE FUNCTION PARSESTRING(SOURCE_
STR VARCHAR(500),DELIMITER CHAR(1),POSITION INT)
RETURNS RESULT VARCHAR(100)
AS
BEGIN
DECLARE S nvarchar(500);
DECLARE I integer;
S := :SOURCE_STR;
I := 1;
WHILE :I <:POSITION DO
S := SUBSTR_AFTER(:S,:DELIMITER);
I:= :I + 1;
END WHILE;
IF LOCATE(:S,:DELIMITER) > 0 THEN
S := SUBSTR_BEFORE(:S,:DELIMITER);
END IF;
RESULT:=:S;

END;

Listing 2.86  Function to Parse Strings

USER_NAME IP CONNECTION_DURATION

David Williams 12.234.12.32 345

George Anderson 125.234.12.32 23

Betty Johns 234.77.132.66 35

Lucy Smith 48.124.102.16 456

Table 2.19  Sorting Results
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Given that a user-defined function can be shared by different queries, you should
make it generic. Set three input variables: SOURCE_STR, DELIMITER, and POSITION.
You can then use the function specifying a string, a delimiter, and a position, and
it returns the substring, which is qualified with the appropriate criteria. Run the
following query to check the parsing result:

SELECT PARSESTRING(IP,'.',1), PARSESTRING(IP,'.',2), PARSESTRING(IP,
'.',3),PARSESTRING(IP,'.',4) FROM VISIT;

In Table 2.20, the IP address of each record is parsed into four integers.

Based on the function result, you can run the query in Listing 2.87, and it returns
the expected result.

SELECT *
FROM VISIT
ORDER BY
TO_INT(PARSESTRING(IP,'.',1)),TO_INT(PARSESTRING(IP,'.',2)),TO_
INT(PARSESTRING(IP,'.',3)),TO_INT(PARSESTRING(IP,'.',4));

Listing 2.87  Query to Sort Record Order by IP Address

In Table 2.21, the records are sorted based on the integer of the first part of the IP
address. If there is duplication in the first part, then the second part will be taken
into consideration, and so on for the third and fourth parts.

PAR..(IP,'.',1) PAR..(IP,'.',2) PAR..(IP,'.',3) PAR..(IP,'.',4)

12 234 12 32

125 234 12 32

48 124 102 16

234 77 132 66

Table 2.20  Results of PARSESTRING() Function

USER_NAME IP CONNECTION_DURATION

David Williams 12.234.12.32 345

Lucy Smith 48.124.102.16 456

George Anderson 125.234.12.32 23

Betty Johns 234.77.132.66 35

Table 2.21  Sorting Results Based on Parsing Function
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In the query, we used the TO_INT() function to change the string to an integer.
When you sort records by name, sometimes you expect them to sort by last
name. Similarly, you can use the same user-defined function to achieve this logic:

SELECT * FROM VISIT ORDER BY
PARSESTRING(USER_NAME,' ',2)||' '||PARSESTRING(USER_NAME,' ',1);

In Table 2.22, the records are sorted by last name and first name, so Anderson is
in the first row, Johns is in the second, Smith is in the third, and Williams is in the
fourth.

2.13.2 Sorting with Exceptions

Sometimes, you will have additional conditions when sorting. For example, a
company wants to report on the top three offices, with the added condition that
if the headquarters is not within the top three, then you must report on the top
two offices plus the headquarters. Let’s reuse the content of the previous table
and assume that “George Anderson” is the name of the headquarters (see Listing
2.88).

SELECT * FROM VISIT
WHERE USER_NAME='George Anderson'
UNION ALL
(SELECT TOP 2 * FROM VISIT
WHERE USER_NAME<>'George Anderson'
ORDER BY CONNCTION_DURATION DESC );

Listing 2.88  Query to Retrieve the User-Defined Top Three Records

It is not convenient to make the logic into a graphic calculation view or analytic
view, but you can use a different approach based on the expression of the order
by column (see Listing 2.89).

USER_NAME IP CONNECTION_DURATION

George Anderson 125.234.12.32 23

Betty Johns 234.77.132.66 35

Lucy Smith 48.124.102.16 456

David Williams 12.234.12.32 345

Table 2.22  Sorting Results Based on Last Name
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SELECT TOP 3 * FROM VISIT
ORDER BY CASE WHEN USER_NAME=
'George Anderson' THEN 999999 ELSE CONNCTION_DURATION END DESC;

Listing 2.89  Query to Retrieve the User-Defined Top Three Records with Sorting with Expressions

In this query, you set a value on a specific record that is greater than the value on
the other records and make the top three always include that specific record. This
conveniently achieves the required logic with a single query.

2.13.3 Sorting with User-Defined Rules

Sometimes, you may have to deal with user-defined sorting rules, which can be
more complicated when they combine different languages. Let’s examine a table
that contains foreign characters. Suppose you define a special sorting rule to set
the character sequence as γ, α, β, δ, ε, ζ, η, θ, λ, μ. To make the sorting work, you
can encode the letters with characters that can be normally sorted. For example,
you can use the A, B, C, D, E, F, G, H, I, and J characters to encode the special
characters. In doing this, you create the function detailed in Listing 2.90.

CREATE FUNCTION TRANS_CHAR(SOURCE_CHAR VARCHAR(1))
RETURNS TARGET VARCHAR(1)
AS
BEGIN
DECLARE T NVARCHAR(1) ARRAY:=
ARRAY('A','B','C','D','E','F','G','H','I','J');
DECLARE S NVARCHAR(1) ARRAY:=
ARRAY('γ','α','β','δ','ε','ζ','η','θ','λ','μ');
DECLARE I INTEGER;
I:=1;
WHILE :SOURCE_CHAR <> :S[:I] DO
I:=:I+1;
END WHILE;
TARGET:=:T[:I];
END;

Listing 2.90  Function to Encode a Character

This function is for single-character encoding. To encode a string, you must create
another function (see Listing 2.91).

CREATE FUNCTION TRANS_STRING(SOURCE_STR VARCHAR(500))
RETURNS RESULT VARCHAR(500)
AS
BEGIN
DECLARE I integer;
167



Modeling Complex Logic2
DECLARE L INTEGER;
L := LENGTH(:SOURCE_STR);
I :=1;
RESULT:='';
WHILE :I <= :L DO
RESULT:= :RESULT||TRANS_CHAR(SUBSTRING(:SOURCE_STR,:I,1));
I:= :I + 1;
END WHILE;

END;

Listing 2.91  Function to Encode a String

When using the TRANS_STRING function, the query encodes the characters of the
input string one by one with the previously created TRANS_CHAR function. When
you execute TRANS_STRING('γαβ'), it returns ABC. Also, you can insert the func-
tion in the ORDER BY clause to achieve sorting with a user-defined rule.

You can use user-defined functions both within ORDER BY clauses to sort records
and within GROUP BY clauses to set user-defined grouping rules, or with WHERE
clauses to achieve complex filters.

2.14 Finding Missing Values

Developers often encounter requirements to list the missing dates from a trans-
action table; for example, to list the missing numbers in a sequence. In this sec-
tion, we will discuss several approaches to find missing values, including the fol-
lowing:

� Using the NOT IN clause

� Using a self-join

� Using a vertical union

� Using a window function

To help describe the methods, let’s create a table SEQ1 with some missing values
(see Listing 2.92).

CREATE COLUMN TABLE SEQ1(ID INT);
INSERT INTO SEQ1 VALUES (1);
INSERT INTO SEQ1 VALUES (2);
INSERT INTO SEQ1 VALUES (5);
INSERT INTO SEQ1 VALUES (7);
INSERT INTO SEQ1 VALUES (8);
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INSERT INTO SEQ1 VALUES (13);
INSERT INTO SEQ1 VALUES (14);

Listing 2.92  Script to Create Table SEQ1

In the sections that follow, we will look at the approaches listed previously to find
the missing values.

2.14.1 Using the NOT IN Clause

First, let’s try the NOT IN clause approach. To apply this approach, you need a table
with the full sequence. However, instead of creating the table, you can create a
scripted calculation view to return continuous numbers (see Figure 2.25).

Figure 2.25  Calculation View to List Continuous Numbers

The script for this view is shown in Listing 2.93.

/********* Begin Procedure Script ************/
BEGIN
DECLARE R INTEGER ARRAY;
DECLARE I INTEGER :=1;

WHILE I <=:CNT DO
R[:I]:=:I;
I:=:I+1;
END WHILE;
var_out = UNNEST(:R) AS (NUM) ;

END /********* End Procedure Script ************/

Listing 2.93  Script of the Calculation View to Generate Continuous Numbers

The input parameter is to set the value with which you want the sequence to end.
You can test the calculation view with the following query:
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SELECT * FROM _SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=> 5);

This query returns a list: 1, 2, 3, 4, 5. You can compare the source table with the
full sequence to find out which value is not in the source table. Use the following
query to perform this function:

SELECT NUM FROM _SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=
> 14) WHERE NUM NOT IN (SELECT ID FROM SEQ1);

This will return seven records: 3, 4, 6, 9, 10, 11, and 12. Alternatively, you can
use a NOT EXISTS clause in the query (see Listing 2.94).

SELECT NUM
FROM _SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=> 14)
WHERE NOT EXISTS (SELECT * FROM SEQ1 WHERE ID=NUM);

Listing 2.94  Query to Find Missing Values with the NOT EXISTS Clause

When you check the execution plans of the preceding queries, they are actually
using left outer joins in the background. To put the logic into an SQL query, see
Listing 2.95.

SELECT NUM
FROM _SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=> 14) A
LEFT OUTER JOIN SEQ1 B
ON A.NUM=B.ID
WHERE B.ID IS NULL;

Listing 2.95  Query to Find Missing Values with Left Outer Join

2.14.2 Using a Self-Join

Another solution to find the missing values is to compare the table to itself using
a self-join (see Listing 2.96).

SELECT L.ID + 1 FROM_NUM, MIN(FR.ID) - 1 TO_NUM
FROM SEQ1 L

LEFT OUTER JOIN SEQ1 R ON L.ID = R.ID - 1
LEFT OUTER JOIN SEQ1 FR ON L.ID < FR.ID

WHERE R.ID IS NULL AND FR.ID IS NOT NULL
GROUP BY L.ID, R.ID;

Listing 2.96  Query to Find Missing Values with a Self-Join

There are two left outer joins in this query. The left outer join’s join condition is
L.ID=R.ID-1, and the filter is R.ID IS NULL. This is used to find the missing con-
tinuous number in the table and to make L.ID+1 the starting number of the
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range of missing numbers. The second left outer join’s join condition is
L.ID<FR.ID, and the filter is FR.ID IS NOT NULL. This retrieves the numbers exist-
ing in the table that are greater than the number that does not have continuous
numbering. When the result set is grouped by L.ID, R.ID, MIN(FR.ID),-1
becomes the end number in the range of missing numbers. When you run the
query, it returns three ranges: (3,4), (6,6), and (9,12).

2.14.3 Using a Vertical Union

The query of a self-join is a bit complex. As we previously introduced, you can
substitute a vertical union for a join, and instead of comparing the values on the
sequence, you can compare the values between adjacent records (see Listing
2.97).

CREATE PROCEDURE P_MISSING (OUT O TABLE(NUM_FROM INT,NUM_TO INT))
LANGUAGE SQLSCRIPT
AS
BEGIN
B=(SELECT ID "ID1" FROM SEQ1 ORDER BY ID) UNION ALL SELECT NULL "ID1"
FROM DUMMY;
A=SELECT NULL "ID" FROM DUMMY UNION ALL (SELECT "ID" FROM SEQ1
ORDER BY ID);
C=CE_VERTICAL_UNION(:A,["ID"],:B,["ID1"]);
D=CE_PROJECTION(:C,["ID","ID1",CE_CALC('"ID"+1',INT) AS NUM_FROM,CE_
CALC('"ID1"-1',INT) AS NUM_TO]);
O=CE_PROJECTION(:D,["NUM_FROM","NUM_TO"],'"NUM_FROM" <= "NUM_TO"');
END;

Listing 2.97  Query to Find Missing Values with a Vertical Join

To call the procedure, execute the following:

CALL P_MISSING(?);

As there is no join and no aggregation in the script, a vertical union approach can
be more efficient than the self-join approach.

2.14.4 Using Window Functions

For this particular case, you can also try a window function. Simply run the query
in Listing 2.98 to get the same result.

SELECT ID+1 FROM_NUM,ID2-1 TO_NUM
FROM (
SELECT ID,LEAD(ID) OVER (ORDER BY ID) ID2
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FROM SEQ1)
WHERE ID+1<> ID2;

Listing 2.98  Query to Find Missing Values with a Window Function

The window function first sorts by ID and then compares the values between the
adjacent records. If the gap is greater than 1, there are missing values, and the
range is from the value ID+1 of the current record to the value ID-1 of the next
record.

In addition to the examples shown here, window functions can solve many other
complex problems via simple SQL queries instead of complex stored procedures.
The next section discusses these solutions in further detail.

2.15 Using Window Functions for Complex Grouping

When you slice data by grouping on one dimension and at the same time make
special groups by setting date ranges based on certain rules, graphical models are
not enough to fulfill your needs. Instead, you have to use window functions in
the query.

To better understand how window functions can be used in this scenario, let’s
look at a complex requirement: You need to group data based on the Product ID,
Date, and Price_version, and you also need to check each row in a table to see if
that particular product has a different range of values for Price_version when
compared to the rows below. If yes, then you insert that date where a different
range is encountered into the TO_Date column. If no change is detected, then you
insert a future date of 2100-01-01. In the Total column, place the sum of Sales_
count for the given From_Date/To_Date group. To create the test scenario, execute
the statements shown in Listing 2.98.

CREATE TABLE TRANS_2(
Product_ID INT,
DT DATE,
Price_version INT,
Sales_count INT);
INSERT INTO TRANS_2 VALUES (22,'2010-04-05',5,100);
INSERT INTO TRANS_2 VALUES (22,'2010-04-06',5,80);
INSERT INTO TRANS_2 VALUES (22,'2010-04-07',4,50);
INSERT INTO TRANS_2 VALUES (22,'2010-04-08',5,60);
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INSERT INTO TRANS_2 VALUES (22,'2010-04-09',5,40);
INSERT INTO TRANS_2 VALUES (22,'2010-04-10',5,70);
INSERT INTO TRANS_2 VALUES (22,'2010-04-11',20,300);
INSERT INTO TRANS_2 VALUES (22,'2010-04-12',5,55);
INSERT INTO TRANS_2 VALUES (22,'2010-04-14',5,75);
INSERT INTO TRANS_2 VALUES (22,'2010-04-15',10,150);
INSERT INTO TRANS_2 VALUES (22,'2010-04-16',5,30);
INSERT INTO TRANS_2 VALUES (22,'2010-04-17',5,95);
INSERT INTO TRANS_2 VALUES (22,'2010-04-19',5,60);

Listing 2.99  Script to Create Table TRANS_2

The table TRANS_2 has the records listed in Table 2.23.

This scenario requires you to group the price version along with the date
sequence. For example, the records at 2010-04-05 and 2010-04-06 have the same
value of PRICE_version and need to be grouped together, but the record at 2010-
04-08 cannot be grouped with them even though it has the same value of PRICE_
version, because it is blocked by the record on 2010-04-07, which has a different
value of PRICE_version. The expected output is shown in Table 2.24.

Product_ID DT Price_version Sales_count

22 Apr 5, 2010 5 100

22 Apr 6, 2010 5 80

22 Apr 7, 2010 4 50

22 Apr 8, 2010 5 60

22 Apr 9, 2010 5 40

22 Apr 10, 2010 5 70

22 Apr 11, 2010 20 300

22 Apr 12, 2010 5 55

22 Apr 14, 2010 5 75

22 Apr 15, 2010 10 150

22 Apr 16, 2010 5 30

22 Apr 17, 2010 5 95

22 Apr 19, 2010 5 60

Table 2.23  Records of the Source Table
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When dealing with such complex logic, approach the process on a step-by-step
basis. With each step, you achieve a part of the requirement. For the first step,
run a query that returns the value of Price_version side by side with the value of
the next record. Use the window function LEAD() to retrieve the data from the
subsequent record (see Listing 2.100).

SELECT Product_ID,DT,Price_version,
LEAD(Price_version) OVER (PARTITION BY Product_ID ORDER BY DT) P2,
SUM(Sales_count) Sales_count
FROM TRANS_2
GROUP BY Product_ID,DT,Price_version;

Listing 2.100  Query to Retrieve the Value of Price_version from the Adjacent Record

You can see the result set in Table 2.25. For each value of Price_version, there is
a value in the P2 column to show the subsequent price version. For the last record,
there is no subsequent price version, so there is a null value in the P2 column.

Product_ID Price_version FROM_DATE TO_DATE TOTAL

22 5 Apr 5, 2010 Apr 6, 2010 180

22 4 Apr 7, 2010 Apr 7, 2010 50

22 5 Apr 8, 2010 Apr 10, 2010 170

22 20 Apr 11, 2010 Apr 11, 2010 300

22 5 Apr 12, 2010 Apr 14, 2010 130

22 10 Apr 15, 2010 Apr 15, 2010 150

22 5 Apr 16, 2010 Jan 1, 2100 185

Table 2.24  Expected Output

Product_ID DT Price_version P2 Sales_count

22 Apr 5, 2010 5 5 100

22 Apr 6, 2010 5 4 80

22 Apr 7, 2010 4 5 50

22 Apr 8, 2010 5 5 60

22 Apr 9, 2010 5 5 40

22 Apr 10, 2010 5 20 70

Table 2.25  Result to Show Price_version and the Value of the Adjacent Row
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You can determine the TO_DATE column by comparing the Price_version and P2
columns. If they are not equal, then the values of the DT column become the TO_
DATE values. You can run a query based on the result set of the previous query (see
Listing 2.101).

SELECT *, CASE WHEN Price_version<>P2 THEN DT WHEN P2 IS NULL
THEN '2100-01-01' ELSE NULL END TO_DATE
FROM
(
SELECT Product_ID,DT,Price_version,
LEAD(Price_version) OVER (PARTITION BY Product_ID ORDER BY DT)
P2, SUM(Sales_count) Sales_count
FROM TRANS_2
GROUP BY Product_ID,DT,Price_version);

Listing 2.101  Query to Determine the Date Range for Each Price_version

In Table 2.26, the TO_DATE column shows the last day for the date range of each
PRICE_version. When it is null, it means the record is not on the last day of its
price version.

22 Apr 11, 2010 20 5 300

22 Apr 12, 2010 5 5 55

22 Apr 14, 2010 5 10 75

22 Apr 15, 2010 10 5 150

22 Apr 16, 2010 5 5 30

22 Apr 17, 2010 5 5 95

22 Apr 19, 2010 5 ? 60

Product_ID DT Price_version P2 Sales_count TO_DATE

22 Apr 5, 2010 5 5 100 ?

22 Apr 6, 2010 5 4 80 Apr 6, 2010

22 Apr 7, 2010 4 5 50 Apr 7, 2010

22 Apr 8, 2010 5 5 60 ?

22 Apr 9, 2010 5 5 40 ?

Table 2.26  Result of Query to Generate TO_DATE

Product_ID DT Price_version P2 Sales_count

Table 2.25  Result to Show Price_version and the Value of the Adjacent Row
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Because you need the sum of every Price_version range, you cannot use any fil-
ters; every intermediate result set should keep all the source records. To separate
the records and calculate the sum, you can expand the value of TO_DATE to the
adjacent records that have null values for the column. Run the query shown in
Listing 2.102 using window function MIN().

SELECT *,MIN(TO_DATE) OVER(PARTITION BY Product_ID ORDER BY DT
DESC) TO_DATE2
FROM
(
SELECT * , CASE WHEN Price_version<>P2 THEN DT WHEN P2 IS NULL
THEN '2100-01-01' ELSE NULL END TO_DATE
FROM
(
SELECT Product_ID,DT,Price_version,
LEAD(Price_version) OVER (PARTITION BY Product_ID ORDER BY DT)
P2, SUM(Sales_count) Sales_count
FROM TRANS_2
GROUP BY Product_ID,DT,Price_version));

Listing 2.102  Query to Generate TO_DATE2

Table 2.27 shows the result set. Here, the value of the TO_DATE column is assigned
to the TO_DATE2 column for all records of the corresponding price version.

22 Apr 10, 2010 5 20 70 Apr 10, 2010

22 Apr 11, 2010 20 5 300 Apr 11, 2010

22 Apr 12, 2010 5 5 55 ?

22 Apr 14, 2010 5 10 75 Apr 14, 2010

22 Apr 15, 2010 10 5 150 Apr 15, 2010

22 Apr 16, 2010 5 5 30 ?

22 Apr 17, 2010 5 5 95 ?

22 Apr 19, 2010 5 ? 60 Jan 1, 2100

Product_ID DT Price_version P2 Sales_count TO_DATE

Table 2.26  Result of Query to Generate TO_DATE (Cont.)
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For the last step, use TO_DATE2 as a GROUP BY column in the final query (see Listing
2.103).

SELECT Product_ID,Price_version,MIN(DT) FROM_DATE,TO_DATE2 TO_
DATE,SUM(Sales_count) TOTAL
FROM
(
SELECT *,MIN(TO_DATE) OVER(PARTITION BY Product_
ID ORDER BY DT DESC) TO_DATE2
FROM
(
SELECT * , CASE WHEN Price_
version<>P2 THEN DT WHEN P2 IS NULL THEN '2100-01-01' ELSE NULL END TO_
DATE
FROM
(
SELECT Product_ID,DT,Price_version,
LEAD(Price_version) OVER (PARTITION BY Product_ID ORDER BY DT) P2,
SUM(Sales_count) Sales_count
FROM TRANS_2
GROUP BY Product_ID,DT,Price_version
ORDER BY Product_ID,DT
)))

Product_ID DT Price_
version

P2 Sales_count TO_DATE TO_DATE2

22 Apr 19, 2010 5 ? 60 Jan 1, 2100 Jan 1, 2100

22 Apr 17, 2010 5 5 95 ? Jan 1, 2100

22 Apr 16, 2010 5 5 30 ? Jan 1, 2100

22 Apr 15, 2010 10 5 150 Apr 15, 2010 Apr 15, 2010

22 Apr 14, 2010 5 10 75 Apr 14, 2010 Apr 14, 2010

22 Apr 12, 2010 5 5 55 ? Apr 14, 2010

22 Apr 11, 2010 20 5 300 Apr 11, 2010 Apr 11, 2010

22 Apr 10, 2010 5 20 70 Apr 10, 2010 Apr 10, 2010

22 Apr 9, 2010 5 5 40 ? Apr 10, 2010

22 Apr 8, 2010 5 5 60 ? Apr 10, 2010

22 Apr 7, 2010 4 5 50 Apr 7, 2010 Apr 7, 2010

22 Apr 6, 2010 5 4 80 Apr 6, 2010 Apr 6, 2010

22 Apr 5, 2010 5 5 100 ? Apr 6, 2010

Table 2.27  Query Result to Generate Data for GROUP BY
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GROUP BY Product_ID,Price_version,TO_DATE2
ORDER BY Product_ID, FROM_DATE;

Listing 2.103  Final Query

Table 2.28 shows the result set; the final query generates the expected report.
Although the logic is complex, you can make it with a combination of window
functions in a step-by-step approach.

We have shown the solution with pure SQL queries, but for real transaction
tables with large data volumes, you need to create an analytic view and then put
the script into a view or scripted calculation view to query against the output of
the analytic view.

2.16 Joining Based on a Date Sequence

Inventory analysis may require you to consider the date sequence when making
links. Because purchase and sales records are in different tables, an item sold on
a specific day should be linked to a record in the purchase table according to a
first-in, first-out (FIFO) rule. To do this, you use joins.

Let’s begin with an example. Suppose you have a table that stores purchase infor-
mation such as cost and quantity, and another table that stores information about
sales details. You need to calculate the profit earned from each sale by calculating
the difference between the purchase cost and the sales price. If an item is pur-
chased more than once, it is assumed that the oldest stock will be sold first.

Product_ID Price_version FROM_DATE TO_DATE TOTAL

22 5 Apr 5, 2010 Apr 6, 2010 180

22 4 Apr 7, 2010 Apr 7, 2010 50

22 5 Apr 8, 2010 Apr 10, 2010 170

22 20 Apr 11, 2010 Apr 11, 2010 300

22 5 Apr 12, 2010 Apr 14, 2010 130

22 10 Apr 15, 2010 Apr 15, 2010 150

22 5 Apr 16, 2010 Jan 1, 2100 185

Table 2.28  Result of the Final Query
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To set up the example, first create table T_PURCHASE (see Listing 2.104).

CREATE COLUMN TABLE T_PURCHASE(
P_DT DATE,
ID VARCHAR(10),
QTY INT,
COST DECIMAL(18,2));
INSERT INTO T_PURCHASE VALUES ('2010-01-01', 'A001', 10, 10.5);
INSERT INTO T_PURCHASE VALUES ('2010-02-01', 'A001', 10, 13.25);
INSERT INTO T_PURCHASE VALUES ('2010-03-01', 'A001', 10, 9.75);
INSERT INTO T_PURCHASE VALUES ('2010-01-01', 'A002', 55, 20.0 );
INSERT INTO T_PURCHASE VALUES ('2010-02-15', 'A002', 30, 19.75);

Listing 2.104  Script to Create Table T_PURCHASE

Next, create table T_SALES (see Listing 2.105).

CREATE COLUMN TABLE T_SALES(
S_DT DATE,
ID VARCHAR(10),
QTY INT,
PRICE DECIMAL(18,2));
INSERT INTO T_SALES VALUES ('2010-01-15', 'A001', 7, 15.00);
INSERT INTO T_SALES VALUES ('2010-02-15', 'A001', 5, 19.25);
INSERT INTO T_SALES VALUES ('2010-02-25', 'A001', 3, 18.75);
INSERT INTO T_SALES VALUES ('2010-03-03', 'A001', 7, 13.50);
INSERT INTO T_SALES VALUES ('2010-02-13', 'A002', 50, 23.75);
INSERT INTO T_SALES VALUES ('2010-02-25', 'A002', 25, 22.50);

Listing 2.105  Script to Create Table T_SALES

The purchase cost should be calculated using the FIFO method. For example, in
the second sale of the A001 item, out of the five sold, three were purchased at
$10.50 each, and the other two were purchased at $13.25 each. You need to see
the sales total amount, the cost of what has been sold, the cost of what has not
been sold, and the profit (see Table 2.29).

You can achieve the logic by splitting the records on an item-by-item basis and
joining them at a one-to-one cardinality. Because each particular item has a fixed

ID COST_SOLD SALES PROFIT COST_UNSOLD

A001 257 352 95 78

A002 1,495 1,750 255 197.5

Table 2.29  Expected Output to Calculate Profit
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cost and price, you can find all the items sold and all the items not sold with the
join and the sum based on the join result that will return the expected result. To
do so, you need to split the records. Use the view CA_SEQ, which you created in
Section 2.14.1. This view returns the sequential numbers with the row count as
specified. Running the query in Listing 2.106 returns the split records.

SELECT P_DT,ID,COST,ROW_NUMBER() OVER (PARTITION BY ID ORDER BY P_
DT ASC) ROW_NUMBER
FROM T_PURCHASE A,_SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=
> 100) B
WHERE QTY>=NUM;

Listing 2.106  Query to Split Table T_PURCHASE

The result set is shown in Table 2.30.

For the first record in the purchase table, the quantity is 10, so split the record
into 10 records; follow the same procedure for the other records.

Next, for each ID, use the formula ROW_NUMBER() OVER (PARTITION BY ID ORDER BY
P_DT ASC) to generate the unique number for each item based on the date
sequence.

P_DT ID COST ROW_NUMBER

Jan 1, 2010 A001 10.5 1

Jan 1, 2010 A001 10.5 2

Jan 1, 2010 A001 10.5 3

Jan 1, 2010 A001 10.5 4

Jan 1, 2010 A001 10.5 5

Jan 1, 2010 A001 10.5 6

Jan 1, 2010 A001 10.5 7

Jan 1, 2010 A001 10.5 8

Jan 1, 2010 A001 10.5 9

Jan 1, 2010 A001 10.5 10

Feb 1, 2010 A001 13.25 11

Feb 1, 2010 A001 13.25 12

.. .. .. ..

Table 2.30  Split Rows of T_PURCHASE
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For table T_SALES, repeat the same process (see Listing 2.107).

SELECT S_DT,ID,PRICE,ROW_NUMBER() OVER (PARTITION BY ID ORDER BY S_
DT ASC)
FROM T_SALES A,_SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=> 100) B
WHERE QTY>=NUM;

Listing 2.107  Query to Split Table T_SALES

As shown in Table 2.31, you can also split the rows of the sales table and assign a
dedicated record for each item.

You can then execute a left outer join between the two result sets (see Listing
2.108).

SELECT P.ID,SUM(CASE WHEN S.ID IS NULL THEN NULL ELSE P.COST END) COST_
SOLD,
SUM(S.PRICE) SALES,SUM(S.PRICE)-
SUM(CASE WHEN S.ID IS NULL THEN NULL ELSE P.COST END) PROFIT,
SUM(CASE WHEN S.ID IS NULL THEN P.COST ELSE NULL END) COST_UNSOLD
FROM
(SELECT P_DT,ID,COST,ROW_NUMBER() OVER (PARTITION BY ID ORDER BY
P_DT ASC) SEQ

S_DT ID PRICE ROW_NUMBER

Jan 15, 2010 A001 15 1

Jan 15, 2010 A001 15 2

Jan 15, 2010 A001 15 3

Jan 15, 2010 A001 15 4

Jan 15, 2010 A001 15 5

Jan 15, 2010 A001 15 6

Jan 15, 2010 A001 15 7

Feb 15, 2010 A001 19.25 8

Feb 15, 2010 A001 19.25 9

Feb 15, 2010 A001 19.25 10

Feb 15, 2010 A001 19.25 11

Feb 15, 2010 A001 19.25 12

.. .. .. ..

Table 2.31  Split Rows of Table T_SALES
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FROM T_PURCHASE A,_SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=>
100) B

WHERE QTY>=NUM
) P LEFT OUTER JOIN
(SELECT S_DT,ID,PRICE,ROW_NUMBER() OVER (PARTITION BY ID ORDER BY S_
DT ASC) SEQ
FROM T_SALES A,_SYS_BIC."test/CA_SEQ" (PLACEHOLDER."$$CNT$$"=> 100) B
WHERE QTY>=NUM
) S
ON P.ID=S.ID AND P.SEQ=S.SEQ
GROUP BY P.ID;

Listing 2.108  Query to Join the Tables Item-by-Item

For each item in the purchase query with a mapping row in the sales query
(meaning it was sold), use the formula SUM(CASE WHEN S.ID IS NULL THEN NULL ELSE
P.COST END) to calculate the cost for the parts sold.

For each item in the purchase query without a mapping row in the sales query
(meaning it was not sold), use the formula SUM(CASE WHEN S.ID IS NULL THEN
P.COST ELSE NULL END) to calculate the cost for the unsold part. The output of the
query is shown in Table 2.32.

The split row approach on purchase and sales tables is straightforward, but it can
be less efficient when the quantity is too large. For example, if a given item was
purchased with a quantity of 10,000, it will be split into 10,000 rows.

Consider another, more efficient solution in such a case. Instead of comparing
two tables at each item level, you can create a comparable range based on the date
sequence of the two tables and map the records of the two tables based on the
range comparison. For table T_PURCHASE, use the formula SUM(QTY) OVER(PARTI-
TION BY ID ORDER BY P_DT) to generate the TO_QTY column to specify the range end
value, and then use the formula LAG(TO_QTY) OVER (PARTITION BY ID ORDER BY TO_
QTY) to generate the FROM_QTY column to specify the range start value. Then, run
the query shown in Listing 2.109.

ID COST_SOLD SALES PROFIT COST_UNSOLD

A001 257 352 95 78

A002 1,495 1,750 255 197.5

Table 2.32  Output of the Query
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SELECT ID,COST,QTY,COALESCE(LAG(TO_
QTY) OVER (PARTITION BY ID ORDER BY TO_QTY),0) FROM_QTY,TO_QTY
FROM (
SELECT ID,COST,QTY,SUM(QTY) OVER(PARTITION BY ID ORDER BY P_DT) TO_QTY
FROM T_PURCHASE );

Listing 2.109  Query to Generate Quantity Range of Purchase

In Table 2.33, the result dataset has two additional columns: the FROM_QTY column
and the TO_QTY column, which show the range based on the sequence for each
cost.

For table T_SALES, run the following query to generate the total quantity for each ID:

SELECT ID,SUM(QTY) QTY,SUM(PRICE*QTY) SALES
FROM T_SALES GROUP BY ID;

Table 2.34 shows the result set of the preceding query, which gives the total
quantities and the total sales for each ID.

Next, join the result sets of these two queries on the ID column (see Listing 2.110).

SELECT P.ID,COST, FROM_QTY,TO_QTY,COALESCE(QTY,0) QTY,SALES
FROM
(
SELECT ID,COST,COALESCE(LAG(TO_QTY) OVER (PARTITION BY ID ORDER BY TO_
QTY),0) FROM_QTY,TO_QTY

ID COST QTY FROM_QTY TO_QTY

A001 10.5 10 0 10

A001 13.25 10 10 20

A001 9.75 10 20 30

A002 20 55 0 55

A002 19.75 30 55 85

Table 2.33  Range of Quantity of Table T_PURCHASE

ID QTY SALES

A001 22 352

A002 75 1,750

Table 2.34  Total Quantity and Sales for Each ID
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FROM (
SELECT ID,COST,SUM(QTY) OVER(PARTITION BY ID ORDER BY P_DT) TO_QTY
FROM T_PURCHASE )) P
LEFT OUTER JOIN
(SELECT ID,SUM(QTY) QTY,SUM(PRICE*QTY) SALES
FROM T_SALES
GROUP BY ID) S
ON P.ID=S.ID;

Listing 2.110  Query to Join Two Tables 

Table 2.35 is the result set for the query in Listing 2.110. In the first row, the
value of QTY is 22 and the value of TO_QTY is 10; because 22 is greater than 10, all
of the items are sold in this range. The same is true for the second range. In the
third range, the value of QTY is 22, the value of TO_QTY is 30, and the value of
FROM_QTY is 20; because 20 is less than 22, which is less than 30, 22 minus 20
(i.e., 2) items are sold in this range, and 30 minus 22 (i.e., 8) items are not sold
in this range.

Based on the analysis, you can run Listing 2.111 to generate the report.

SELECT ID,SUM(CASE WHEN COST_SOLD<0 THEN 0 ELSE COST_SOLD END) COST_
SOLD,
MAX(SALES),
MAX(SALES)-SUM(CASE WHEN COST_SOLD<0 THEN 0 ELSE COST_SOLD END) PROFIT,
SUM(CASE WHEN COST_UNSOLD<0 THEN 0 ELSE COST_UNSOLD END) COST_UNSOLD
FROM(
SELECT ID,COST*(LEAST(QTY,TO_QTY)- FROM_QTY) COST_SOLD,
COST*(TO_QTY - GREATEST(QTY,FROM_QTY)) COST_UNSOLD, QTY,SALES
FROM
(SELECT P.ID,COST, FROM_QTY,TO_QTY,COALESCE(QTY,0) QTY,SALES
FROM
(SELECT ID,COST,COALESCE(LAG(TO_QTY) OVER (PARTITION BY ID ORDER BY
TO_QTY),0) FROM_QTY,TO_QTY
FROM (

ID COST FROM_QTY TO_QTY QTY SALES

A001 10.5 0 10 22 352

A001 13.25 10 20 22 352

A001 9.75 20 30 22 352

A002 20 0 55 75 1,750

A002 19.75 55 85 75 1,750

Table 2.35  Join Results of the Two Queries
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SELECT ID,COST,SUM(QTY) OVER(PARTITION BY ID ORDER BY P_DT) TO_QTY
FROM T_PURCHASE )) P
LEFT OUTER JOIN
(SELECT ID,SUM(QTY) QTY,SUM(PRICE*QTY) SALES
FROM T_SALES
GROUP BY ID) S
ON P.ID=S.ID
))
GROUP BY ID;

Listing 2.111  Final Query

Table 2.36 shows the result set of the final query. It has the sales total, the cost for
what has been sold, the cost for what has not been sold, and the profit.

In the query, use the formula COST*(LEAST(QTY,TO_QTY)- FROM_QTY) to return the
intermediate result, COST_SOLD. This allows you to compare the values of QTY and
TO_QTY and take the column with the lesser value to consider only the sold items.
Then, use the formula SUM(CASE WHEN COST_SOLD<0 THEN 0 ELSE COST_SOLD END) to
calculate the final result of COST_SOLD in order to filter out the invalid negative
values that might have been created in the previous step. For the SALES table, use
the formula MAX(SALES) instead of SUM(SALES), because the value of the column is
already aggregated beforehand.

In this section, we described different solutions for handling joins with consider-
ation to date sequences. When there are no direct join columns, you can generate
the join columns, and when there are no direct group by columns, you can gen-
erate those as well.

2.17 Using a Nested Calculation View

For a complex calculation view or stored procedure that contains duplicate parts,
you can make a nested calculation view of a stored procedure to avoid duplication.
When you tune the performance, you do not have to waste effort on duplicating

ID COST_SOLD SALES PROFIT COST_UNSOLD

A001 257 352 95 78

A002 1,495 1,750 255 197.5

Table 2.36  Result from the Query
185



Modeling Complex Logic2
parts, because when a nested view is cached, all views that contain the nested view
can use the cache. The nested calculation view and stored procedure can be more
generic and shared in other places.

In this section, we will show an example of a route analysis and describe the solu-
tion of a nested calculation view. For this example, suppose you have table ROUTE,
which stores the city name, the ID of the flight line to which the city is connected,
and the flight distance (see Listing 2.112).

CREATE COLUMN TABLE ROUTE(
CITY VARCHAR(20),
ROAD_ID VARCHAR(2),
LEN INT
);
INSERT INTO ROUTE VALUES ('A','AB',5);
INSERT INTO ROUTE VALUES ('A','AC',2);
INSERT INTO ROUTE VALUES ('A','AD',4);
INSERT INTO ROUTE VALUES ('A','AE',2);
INSERT INTO ROUTE VALUES ('B','AB',5);
INSERT INTO ROUTE VALUES ('B','BC',1);
INSERT INTO ROUTE VALUES ('B','BF',1);
INSERT INTO ROUTE VALUES ('C','BC',1);
INSERT INTO ROUTE VALUES ('C','CD',5);
INSERT INTO ROUTE VALUES ('C','AC',2);
INSERT INTO ROUTE VALUES ('D','AD',4);
INSERT INTO ROUTE VALUES ('D','CD',5);
INSERT INTO ROUTE VALUES ('F','BF',1);
INSERT INTO ROUTE VALUES ('E','AE',2);
INSERT INTO ROUTE VALUES ('E','EF',1);
INSERT INTO ROUTE VALUES ('F','EF',1);

Listing 2.112  Script to Create Table ROUTE

For the purposes of this example, you want to check the flights from city A to city
B and see which routes are available and which route has the shortest distance.
There might be a lot of combinations when you perform this comparison, but for-
tunately, you only have to consider the routes with limited stops.

Suppose the restriction on the count of stops is less than three. Then, routes such
as A to E + E to F + F to B that contain two stops or fewer will be considered, and
routes containing three or more stops will not be considered. It is difficult to set
this up with a single query, but you can create calculation views one by one.

First, create a CA_R1 calculation view to find the city pairs connected with direct
flights (see Figure 2.26).
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Figure 2.26  Calculation View to Find City Pairs Connected with Direct Flights

In this logic, if two cities are connected to the same line, then the cities are con-
nected. Create a calculated column F= IF("CITY"="CITY2",0,1), and add a filter
as F=1, which filters out records that are connected to themselves. This is a trick
to define the join condition that contains the operator rather than an equality.
You want to define the condition as CITY<>CITY2, and because you cannot define
it as a join condition, define the calculated column F and then filter on it. When
you run the following query, it returns all the city pairs with direct flight lines:

SELECT * FROM _SYS_BIC."test/CA_R1";

In Table 2.37, the CITY and CITY2 columns are the city pairs, the ROAD_ID column
is the line ID, the LEN column is the distance between the city pairs.

CITY CITY2 LEN ROAD_ID

A B 5 AB

A C 2 AC

A D 4 AD

A E 2 AE

B A 5 AB

B C 1 BC

Table 2.37  City Pairs with Direct Lines
187



Modeling Complex Logic2
Based on the first calculation view, you can create the second, CA_R2, which
returns the city pairs connected with one-stop routes (see Figure 2.27).

Figure 2.27  Calculation View to Find City Pairs Connected with One-Stop Routes

Also create the F= IF("CITY"="CITY2",0,1) calculated column, and add a filter as
F=1, which will filter out the records for routes that fly back to the departure city.
Add a LEN=LEN1+LEN2 calculated column, which retrieves the sum of the distances
of the two lines, and a ROAD_ID=ROAD_ID1+'-'+ROAD_ID2 calculated column,
which creates a tracking ID for the connected line. When you run the following
query, it returns all the city pairs connected with one-stop routes:

SELECT * FROM _SYS_BIC."test/CA_R2”;

In Table 2.38, the ROAD_ID column is the concatenation of the line IDs for the
routes with one stop.

B F 1 BF

C B 1 BC

.. .. .. ..

CITY CITY2 LEN ROAD_ID

Table 2.37  City Pairs with Direct Lines (Cont.)
188



Using a Nested Calculation View 2.17
In a similar manner, you can create the third calculation view, CA_R3, which
returns the city pairs connected with two-stop routes, as shown in Figure 2.28.

Figure 2.28  Calculation View to Find City Pairs Connected with Two-Stop Routes

Create the LEN and ROAD_ID calculated columns with the same formulas as in CA_
R2, create a F=IF("CITY"="CITY2" OR instr("ROAD_ID1","ROAD_ID2")>0,0,1) cal-
culated column, and also add a filter as F=1, which filters out records for routes
that fly back to the first city and those that fly back to the second city. When you
run the following query, it returns all the city pairs connected with two-stop
routes:

SELECT * FROM _SYS_BIC."test/CA_R3”;

In Table 2.39, the ROAD_ID column is the concatenated line ID for the routes with
two stops.

CITY CITY2 LEN ROAD_ID

C B 7 AC-AB

D B 9 AD-AB

E B 7 AE-AB

B C 7 AB-AC

D C 6 AD-AC

.. .. .. ..

Table 2.38  City Pairs with One-Stop Routes
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Finally, create a CA_R4 calculation view to union all three views (see Figure 2.29).

Figure 2.29  Calculation View to Union Three Views

Then, you can perform further analysis against this calculation view; for example,
run the following to list all the routes between A and B and compare the distance
of the routes:

SELECT * FROM _SYS_BIC."test/CA_R4"
WHERE CITY='A' AND CITY2='B' ORDER BY LEN;

CITY CITY2 LEN ROAD_ID

D A 11 CD-BC-AB

E A 7 EF-BF-AB

F A 4 BF-BC-AC

B A 10 BC-CD-AD

B A 4 BF-EF-AE

D B 12 CD-AC-AB

C B 14 CD-AD-AB

F B 8 EF-AE-AB

.. .. .. ..

Table 2.39  City Pairs with Two-Stop Routes
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Table 2.40 shows four routes, the shortest of which is AC-BC, with a distance of 3.

The logic for route analysis is complex, but with the step-by-step strategy, you can
achieve it with a nested calculation view level by level, making the structure of
each view much simpler, which greatly reduces the chance of making mistakes.

2.18 Summary

In this chapter, we examined the solutions provided by SAP HANA for tackling
complex scenarios. The examples used in this chapter are simplified to focus on
particular aspects; in the real world, situations can be much more challenging.
However, it is important to remember that complex logic should be achieved
using simple solutions.

SAP HANA provides many features that can be leveraged during modeling. In
each revision, new features are added that provide newer solutions to different
problems and help achieve specific requirements. There may be several ways to
achieve your business requirements. Some approaches may have better perfor-
mance, whereas other approaches may be more flexible. There is no absolute rule
to judge which approach is better; to make a determination, you should compare
overall statistics, including performance, resource consumption, maintenance,
ease of use, and more.

In the next chapter, we will look at the modeling features available for scaling
large datasets.

CITY CITY2 LEN ROAD_ID

A B 5 AB

A B 3 AC-BC

A B 10 AD-CD-BC

A B 4 AE-EF-BF

Table 2.40  Query Results of the Routes Between A and B
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Chapter 3 

In this chapter, we will look at different techniques for scaling large data-
sets using SAP modeling features.

3 Scaling for Large Datasets

This chapter focuses on using SAP HANA features to scale for large datasets. To
take advantage of SAP HANA features, developers translate query logic into mod-
els, but often this is not enough. SAP HANA provides features that benefit from
the SAP HANA engines. For developers, it is time to rethink the way things are
done with SQL queries; SAP HANA is more than just a simple replacement for
SQL.

In this chapter, we will look at various techniques for scaling large datasets. Each
section looks at a carefully chosen scaling topic for enhanced performance.

3.1 Partitioning

To deal with large datasets, the first solution that comes to mind is partitioning.
Rows are limited to two billion for a nonpartitioned table. When the row count of
a table exceeds this limit, you have to partition it (i.e., split the dataset into mul-
tiple slices and distribute them into multiple storage slots).

Partitioning a table has several advantages. When the data of a table is distributed
to multiple nodes over the landscape, a query against the table will be processed
on all these nodes, enabling parallel processing for queries on all nodes. A proper
partition strategy is crucial to achieve good performance while dealing with large
datasets. You can refer to some general recommendations, but there is no simple
rule to follow. A particular partition strategy that works in one case may not work
in another scenario.

In this section, we will look at some partitioning strategies. These strategies
include the following:
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� Round-robin

� Range

� Hash

� Two-level partitioning

3.1.1 Round-Robin Partitioning

To begin we’ll look at round-robin partitioning. Suppose you have a transaction
table that records the details of a sales order comprised of 50 billion rows (see Lis-
ting 3.1).

CREATE COLUMN TABLE Trans_DTL(
Trans_DATE DATE,
Trans_No INT,
Prod_ID BIGINT,
Sales_Qty BIGINT,
Sales_Net DECIMAL(18,2));

Listing 3.1  Definition of Table Trans_DTL

To evenly distribute the rows to 10 nodes, you might try a ROUNDROBIN partition:

ALTER TABLE Trans_DTL PARTITION BY ROUNDROBIN PARTITIONS 100;

Partitioning in this manner eliminates your ability to prune the table effectively.
SAP HANA will always perform a full table scan on any query that does not pro-
vide optimal performance.

3.1.2 Range Partitioning

To leverage partition pruning, you can partition the table by range on the Trans_
DATE column instead of ROUNDROBIN (see Listing 3.2).

ALTER TABLE Trans_DTL partition by range(Trans_DATE)(
PARTITION '2005-01-01'<= values <'2005-02-01',
PARTITION '2005-02-01'<= values <'2005-03-01',
PARTITION '2005-03-01'<= values <'2005-04-01',
PARTITION '2005-04-01'<= values <'2005-05-01',
……
……
PARTITION '2014-09-01'<= values <'2014-10-01',
PARTITION '2014-10-01'<= values <'2014-11-01',
PARTITION '2014-11-01'<= values <'2014-12-01',
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PARTITION '2014-12-01'<= values <'2015-01-01',
PARTITION OTHERS);

Listing 3.2  Alter Statement to Set Partition by Range

Now, when there is a filter on a specific day or date range, SAP HANA will only
scan the partition where the data of that day resides. This technique is called par-
tition pruning. This database optimization feature scans only partitions that con-
tain matching values instead of scanning all partitions, which enables the use of
fewer resources while improving performance significantly.

This partition strategy will also benefit queries that calculate aggregates. Typi-
cally, these are performed on a daily, monthly, or yearly basis—for example:

SELECT SUM(SALES_NET) FROM Trans_DTL WHERE Trans_DATE BETWEEN
'2014-01-01' AND '2014-12-31';

Looking at the current partition strategy, you can see that all records within a par-
ticular month reside in a distinct partition, implying that each year’s records are
within 12 partitions. For the preceding query, SAP HANA would process the data
on the different nodes where the partition resides, significantly reducing data
transfer from one partition to another.

3.1.3 Hash Partitioning

Let’s now see the effects of changing the partition strategy to a HASH partition for
the same field (Trans_DATE):

ALTER TABLE Trans_DTL PARTITION BY HASH(Trans_DATE) PARTITIONS 100;

In general, it is not a good an idea to create a HASH partition by date column,
because, again, you lose pruning capabilities whenever a date range is provided as
a filter in a query. For example:

SELECT SUM(SALES_NET) FROM Trans_DTL WHERE Trans_DATE BETWEEN
'2014-10-01' AND '2014-10-15';

Also, when you combine multiple columns to create a HASH partition, you lose
pruning unless you specify values for all the partition columns in the WHERE clause
of a query. For example, in this table, the columns Trans_No and Prod_ID are most
likely to be used frequently, so the table can be partitioned by HASH(Trans_
No,Prod_ID) using the following syntax:
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ALTER TABLE Trans_DTL PARTITION BY HASH(Trans_No, Prod_ID)
PARTITIONS 100;

This method provides an even distribution of data across partitions, as the com-
bination of Trans_No and Prod_ID will have more distinct values. However, prun-
ing will only happen when both columns are present in the WHERE clause with
equal conditions. For example:

SELECT SUM(SALES_NET) FROM Trans_DTL WHERE Trans_No=11323 AND
Prod_ID=8762;

If both columns are not provided, a full table scan will be applied and pruning
will be lost. The same goes for missing one column or having a range condition,
as follows:

SELECT SUM(SALES_NET) FROM Trans_DTL WHERE Trans_No=11323 AND Prod_ID
> 8762;

Partitioning solutions will vary case by case. As a developer, you need to consider
not only the even distribution of data, but also the join performance. Suppose
you have a table to record the header of transactions Trans_HDR(Trans_No, Dep_
ID, User_ID, Sales_Amt) with two billion rows (see Listing 3.3).

CREATE COLUMN TABLE Trans_HDR(
Trans_No BIGINT,
Dep_ID INT,
User_ID INT,
Sales_Amt DECIMAL(18,2));

Listing 3.3  Definition of Table Trans_HDR

The join condition of the header and detail tables is on the Trans_No column. You
must avoid cross-node data transfer when performing the join, which can be
achieved by applying the same HASH partition on the two tables, as shown:

ALTER TABLE Trans_DTL PARTITION BY HASH(Trans_No) PARTITIONS 10;
ALTER TABLE Trans_HDR PARTITION BY HASH(Trans_No) PARTITIONS 10;

With the hash partition strategy on the join column, the rows in the same hash
value are distributed to the same physical node. As a result, when performing the
join between the two tables, SAP HANA will not transfer data across nodes.

Defining Partitions after Table Creation

At this juncture, it is important to emphasize defining partitions correctly at the time of
table creation. Once a table is created, a data user has to manually move the partitions
to the destination physical nodes of the server when a repartition is performed.
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The following statement shows the syntax to move partitions:

ALTER TABLE Trans_HDR MOVE PARTITION 1 TO 'hostname:32503' physical;

To avoid moving partitions, you may create partitions with the CREATE TABLE statement
(see Listing 3.4).

CREATE COLUMN TABLE Trans_HDR(
Trans_No BIGINT,
Dep_ID INT,
User_ID INT,
Sales_Amt DECIMAL(18,2))
PARTITION BY HASH(Trans_No) PARTITIONS 10;

Listing 3.4  Definition of Table with Partition Specification 

Because fact tables usually are partitioned and dimension tables usually are not,
to improve the performance of a join between a fact table and a dimension table,
you can create a replica of a dimension table on all nodes to avoid data moving
among nodes when performing a join—for example:

ALTER TABLE Table_name ADD REPLICA AT ALL LOCATIONS;

3.1.4 Two-Level Partitioning

A common misconception among database designers is that more partitions pro-
vide better performance. The greater the amount of partitions, the more system
resources will need to be consumed by the table. Moving data between partitions
is also a resource-consuming activity. Based on our collective experience, a
generic guideline to follow is to have about 200 million to 800 million rows per
partition. In the running example, you can split the 50 billion rows of the table
into 100 partitions with a two-level partition strategy (see Listing 3.5).

ALTER TABLE Trans_DTL PARTITION BY HASH(Trans_No) PARTITIONS 10,
range(Trans_DATE)(
PARTITION '2005-01-01'<= values <'2006-01-01',
PARTITION '2006-01-01'<= values <'2007-01-01',
PARTITION '2007-01-01'<= values <'2008-01-01',
PARTITION '2008-01-01'<= values <'2009-01-01',
……
……
PARTITION '2011-01-01'<= values <'2012-01-01',
PARTITION '2012-01-01'<= values <'2013-01-01',
PARTITION '2013-01-01'<= values <'2014-01-01',
PARTITION '2014-01-01'<= values <'2015-01-01',
PARTITION OTHERS);

Listing 3.5  Alter Statement to Set Partitions by Hash and Range
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This strategy will set 500 million rows per partition for the table. The way this
works is that the first-level partition on HASH(Trans_No) will distribute data to 10
nodes by creating a HASH value on the contents of column Trans_No. The second
level on range(Trans_DATE) will then split the data inside each top-level partition
into 10 partitions based on the range of date values in the Trans_DATE field.

Again, we emphasize here that no single partitioning strategy is the answer. Cir-
cumstances vary the effectiveness of each option, but in this section we presented
common approaches to the problem. A little bit of experimentation is needed to
find the most optimal combination that suffices for all of your requirements.

3.2 Using Input Parameters to Enforce Pruning

Input parameters process calculations input by users during the execution of a
report. They define internal parameterization and are used as placeholders for
unit of measure conversions, currency conversions, and formulas. There are dif-
ferent types of input parameters, such as direct, column, static lists, and those
derived from tables.

For the purposes of scaling large datasets, we will use input parameters to enforce
pruning. As an example, let’s say that a developer needs to run a query against a
10 billion row table to return the results back in less than 10 seconds. The best
option to consider in this situation is an analytic view. There are other options,
such as using pure SQL queries or creating a calculation view, but performance
comparisons have shown that using input parameters with analytic views is the
best choice when underlying tables have large amounts of data.

In an analytic view, it is important to reduce the computational data volume at
the lowest level, even before the join operation is performed. Let’s look at an
example to see how to reduce the data volume in an analytic view. Suppose you
are going to perform the logic shown in Listing 3.6 with an analytic view.

SELECT T.CALMONTH,SUM(SALES_NET)
FROM Trans_DTL F, "_SYS_BI"."M_TIME_DIMENSION" T
WHERE F.Trans_DATE=T.DATE_SQL
AND T.YEAR BETWEEN 2010 AND 2011
GROUP BY T.CALMONTH;

Listing 3.6  Query with Aggregation on a Transaction Table
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In Listing 3.6, table _SYS_BI.M_TIME_DIMENSION is an out-of-the-box SAP HANA
calendar table. You can create the attribute view AT_CALENDAR against the calendar
table, and then join the attribute view to the fact table in the analytic view AN_
TRANS (see Figure 3.1).

Figure 3.1  Analytic View AN_TRANS

After activating the analytic view, run the query shown in Listing 3.7.

SELECT CALMONTH,SUM(SALES_NET)
FROM _SYS_BIC."test/AN_TRANS"
WHERE YEAR BETWEEN 2010 AND 2011
GROUP BY CALMONTH;

Listing 3.7  Query Against Analytic View

This is a typical approach to execute the scenario we mentioned in Chapter 1, Sec-
tion 1.3.2. That being said, for a larger dataset, it is better to fine-tune the model.
In this analytic view, you have not yet reduced the data volume with a filter con-
dition before the join, but are doing so after the join operation. Assuming the
table is partitioned by the range in the Trans_DATE column, you will fail to lever-
age pruning to improve performance.

In order to leverage pruning, you can put a filter on column Trans_DATE. You can
add the filter in the WHERE clause of the queries or add the filter at the data foun-
dation of the analytic view. We recommend adding this filter at the data founda-
tion (see Figure 3.2).
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Figure 3.2  Input Parameters and Filter

To make the filter, first create two input parameters: DATE_FROM and DATE_TO. Then,
create a filter at the TRANS_DATE column (see the filter definition in Figure 3.3).

Figure 3.3  Filter Definition

When you use an analytic view, you need to specify the values for the input
parameters DATE_FROM and DATE_TO (see Listing 3.8).

SELECT CALMONTH,SUM(SALES_NET)
FROM _SYS_BIC."test/AN_TRANS"
('PLACEHOLDER' = ('$$DATE_FROM$$','2010-01-01'),
'PLACEHOLDER' = ('$$DATE_TO$$','2011-12-31'))
GROUP BY CALMONTH;

Listing 3.8  Query Against an Analytic View with a Filter on the Date Range
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For all real-world applications, you will have a date range to analyze business
data, so it is worth setting the filter with input parameters for all the queries
against this analytic view.

3.3 Creating an Index

Working with columnar tables is unique, because each column behaves as an
index; one naturally inherits the high-performance attributes of the column store.
Usually, you do not need to consider creating an index on an SAP HANA data-
base, because the execution process for queries is already optimal in most cases.
However, for a large dataset, there is still a difference between a column and an
index with regards to query performance.

Indexes can be resource-intensive. When creating an index, you need to compare
the performance before the table is indexed and the performance after the table is
indexed. In the unlikely scenario in which there is no performance gain after cre-
ating an index, dropping it would be wise.

Unique indexes or primary keys are more expensive for a large table. For a fact
table, always avoid adding uniqueness constraints. Regardless, it is recommended
to add a primary key on a dimension table.

To facilitate the filter on multiple columns, you can create a composite index. For
example, on the table Trans_DTL(Trans_DATE, Trans_No, Prod_ID, Sales_Qty,
Sales_Net), you can create an index on the Trans_No and Prod_ID columns:

CREATE INDEX idx_trans ON Trans_DTL(Trans_No, Prod_ID);

The index will benefit the query when both columns are in the WHERE clause with
equal conditions. For example:

SELECT SUM(SALES_NET) FROM Trans_DTL WHERE Trans_No=11323 AND
Prod_ID=8762;

The composite index can also benefit the join on multiple columns. For example,
say that you have a table Trans_log(First_name,Mid_name,Last_name,City,
Trans_date, Trans_no,Net), as shown in Listing 3.9.

CREATE COLUMN TABLE Trans_log(
First_name VARCHAR(10),
Mid_name VARCHAR(10),
Last_name VARCHAR(10),
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City VARCHAR(10),
Trans_date DATE,
Trans_no BIGINT,
Net DECIMAL(18,2));

Listing 3.9  Definition of Table Trans_log

You also have another table, Cust_inf(First_name, Mid_name, Last_name, City,
Age, Phone, Company), as shown in Listing 3.10.

CREATE COLUMN TABLE Cust_inf(
First_name VARCHAR(10),
Mid_name VARCHAR(10),
Last_name VARCHAR(10),
City VARCHAR(10),
Age int,
Phone VARCHAR(10),
Company VARCHAR(10));

Listing 3.10  Definition of Table Cust_inf

Assuming the two tables need to be joined on the columns First_name, Mid_name,
Last_name,  and City, in an analytic view, make the join between the tables (see
Figure 3.4).

Figure 3.4  Join on Multiple Columns

To create the composite indexes, run the statements shown in Listing 3.11.
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CREATE INDEX IDX_TRANS_LOG ON Trans_log(First_name, Mid_name,
Last_name,City);
CREATE INDEX IDX_Cust_idx ON Cust_inf(First_name, Mid_name,
Last_name,City);

Listing 3.11  Definition of a Composite Index 

You can run a query against the view before the indexes are created and log the
execution time. Run the same query after the indices are created, compare the
execution time, and then decide whether to keep the indexes.

Composite indexing is used only when all the indexed columns exist in the query
as a filter or a join condition. To also make the index usable for queries without
all the indexed columns, you can create individual indexes for each column, as
shown in Listing 3.12.

CREATE INDEX IDX_TRANS_LOG_F ON Trans_log(First_name);
CREATE INDEX IDX_TRANS_LOG_M ON Trans_log(Mid_name);
CREATE INDEX IDX_TRANS_LOG_L ON Trans_log(Last_name);
CREATE INDEX IDX_TRANS_LOG_C ON Trans_log(City);
CREATE INDEX IDX_Cust_inf_F ON Cust_inf(First_name);
CREATE INDEX IDX_Cust_inf_M ON Cust_inf(Mid_name);
CREATE INDEX IDX_Cust_inf_L ON Cust_inf(Last_name);
CREATE INDEX IDX_Cust_inf_C ON Cust_inf(City);

Listing 3.12  Definition of Separate Indexes for Each Column 

With these indexes created on the tables, if a query has a filter or join on any
indexed column, the index will be used. The actual performance gain depends on
the table size, values distribution, and so on. You need to perform a test to deter-
mine whether to keep the indexes.

For this example, a better approach is to create a calculated column to concate-
nate the columns on each table, then join the two tables on the calculated column
instead of on the four separate columns. The DDL of the calculated column is
shown in Listing 3.13.

ALTER TABLE Trans_log ADD(FULLNAME VARCHAR(50) GENERATED ALWAYS AS
First_name||Mid_name||Last_name||City);
ALTER TABLE Cust_inf ADD(FULLNAME VARCHAR(50) GENERATED ALWAYS AS
First_name||Mid_name||Last_name||City);

Listing 3.13  Definition of Calculated Columns for Concatenated Strings
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In an analytic view, you can select the Generate Concat Attributes checkbox
under the View Properties tab to let the modeler tool automatically create the
calculated column instead of doing it manually.

While joining the columns, the concatenated strings may have ambiguities. For
example, “I sold.” and “Is old.” are different, but when they are concatenated as
‘I’||‘sold’ and ‘Is’||‘old’, they both become ‘Isold’. To avoid ambiguity, you may
add a special character, such as -, between the concatenated columns, as shown
in Listing 3.14.

ALTER TABLE Trans_log ADD(FULLNAME VARCHAR(50) GENERATED ALWAYS
First_name||'-'||Mid_name||'-'||Last_name||'-'||City);
ALTER TABLE Cust_inf ADD(FULLNAME VARCHAR(50) GENERATED ALWAYS AS
First_name||'-'||Mid_name||'-'||Last_name||'-'||City);

Listing 3.14  Definition of Calculated Columns for Concatenated Strings with a Delimiter Character

Then, you can make the join on the concatenated single column instead of the
four separate columns in the analytic view (see Figure 3.5). This results in signif-
icant performance improvement.

Figure 3.5  Join on One Column

In this section, we introduced how to create indexes. Again, indexes can be
resource-intensive, so you should test the actual performance to decide whether
to create them. For the joins on multiple columns, it is better to apply the join on
a calculated column made of concatenated columns than to use an index.
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3.4 Analyzing Query Performance with Tools

SAP HANA provides tools to help analyze query performance. The most commonly
used tools are the explain plan, the visualize plan, and the performance trace.

3.4.1 Explain Plan

The explain plan tool in SAP HANA allows you to see the execution plan of a
query and gives you step-by-step details of how the query will be executed in the
database engine.

To see how this works, we will look at an example. Let’s first see how to generate
an execution plan with the explain plan tool (see Listing 3.15).

SELECT CALMONTH, SALES-(LAG(SALES) OVER (ORDER BY CALMONTH)) SALES_VAR
FROM
(
SELECT CALMONTH,SUM(SALES_NET) SALES
FROM TRANS_DTL T, "_SYS_BI"."M_TIME_DIMENSION" C
WHERE T.TRANS_DATE=C.DATE_SQL
GROUP BY CALMONTH
);

Listing 3.15  Query Example

To check the execution plan of the query, highlight the query in SAP HANA Stu-
dio and select Explain Plan from the dropdown menu (see Figure 3.6).

Figure 3.6  Explain Plan Menu
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SAP HANA Studio will present the execution plan of the query plus the execution
engine type, estimation of output size, cost, and so on (see Figure 3.7).

Figure 3.7  Output of Explain Plan

When a query is sent to SAP HANA, it is parsed into several steps, and each step
is sent to a related engine in a specified sequence. Figure 3.7 shows the following
fields:

� OPERATOR_NAME 
The operator involved at each step.

� OPERATOR_DETAILS 
Provides the details that the engine follows.

� EXECUTION_ENGINE 
Describes which engine the query is executed on.

� OUTPUT_SIZE 
Provides the output row count for each step.

� SUBTREE_COST 
Provides the cost of each step.

You can write one query in multiple ways, then compare the execution plans of
each to see which method is most efficient.

For a single query, some steps can be performed in the column engine, which is
usually faster. Some steps have to be performed in the row engine, which is com-
parably slower. The size and cost are rough estimations that could differ from the
actual run time.

A general thought on the query analysis is to find out which steps are in the row
engine and which steps are in the column engine, then modify the query to
change the steps from the row engine to the column engine.
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3.4.2 Visualize Plan

SAP HANA also provides a way to perform query analysis on graphic views, via
the visualize plan option. To use this option, highlight the query in SAP HANA
Studio and select Visualize Plan from the dropdown menu (see Figure 3.8).

Figure 3.8  Visualize Plan Menu

The output is a graphic view of the execution plan. Each block shows one step. To
check the details of each step, hover your mouse cursor over the relevant block;
a popup box showing further details will appear (see Figure 3.9).

Figure 3.9  Output of Visualize Plan
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3.4.3 Performance Trace

The explain plan and visualize plan functions provide estimated execution infor-
mation on a query. However, to check how a query is actually processed, you
need to use the performance trace function. You can find this function under the
Trace Configuration tab of the Administration panel in SAP HANA Studio (see
Figure 3.10).

Figure 3.10  Administration Panel

You can edit the trace by clicking the Edit button. You will see the popup window
shown in Figure 3.11. Set the Duration (min) field; make it long enough to cover
the query you are going to run. Once the query completes its execution, you can
wait for the trace to stop, or you can stop the trace manually from the Trace Con-

figuration window (see Figure 3.12).
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Figure 3.11  Trace Configuration Popup Window

Figure 3.12  Stop a Performance Trace
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To check the generated performance trace, you need to install X-Windows on a
Microsoft Windows-based operating system. There are several varieties of X-Win-
dows available. For the purposes of this chapter, we will use Cygwin, which is
free to download. Figure 3.13 shows the software name and website address.

Figure 3.13  Cygwin/X Software

Launch the Cygwin Xwin Server application, as shown in Figure 3.14. Right-click
the Xwin icon in the taskbar, and select Applications � xterm from the dropdown
menu.

Figure 3.14  Starting xterm

From the xterm window, type the following command (see Figure 3.15):

ssh –Y user_name@host_name

Here, you choose the user name for the owner of the SAP HANA instance, such as
xxxadm. The host name is the SAP HANA server host name. You will see the mes-
sage Are you sure you want to continue connecting (yes/no)? Type “yes” and
press (Enter). Now, you will see the Password field; type the user’s password.
Next, log on to the Linux server.
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Figure 3.15  Logon to Linux Server

Enter the command “HDBAdmin.sh” in xterm, which will open the Xwin version
of the SAP HANA Administration tool (see Figure 3.16).

Figure 3.16  Xwin Verison of SAP HANA Administration Tool
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From this tool, click the Perf. Trace tab (see Figure 3.16). You can click on the
Start and Stop buttons to start and stop the performance trace. The functionality
is the same as in SAP HANA Studio. To show the performance trace file, click the
Load button. Find the trace file in the /usr/sap/SID/HDBnn/<hostname>/trace
folder, and load the file you have saved. The default file name is perftrace.tpt.

When the performance trace file is loaded, it opens to the Summary tab, which
displays information such as the host name, trace time, and so on (see Figure
3.17).

Figure 3.17  Load Performance Trace File

You can switch to the SQL Plans tab, where you can see the queries captured in
the trace file (see Figure 3.18).

Find the query you want to check, and double-click the line that contains it. You
will see a detailed trace of the query under the Call Pattern tab (see Figure 3.19).
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Figure 3.18  SQL Plans Tab

Figure 3.19  Call Pattern Tab
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The Call Pattern tab contains two panels: The upper panel shows detailed steps,
including Method, Plan, Row count, Duration, and so on. The lower panel pro-
vides a graphic view of the timespan. When you click on a step in the upper panel,
the corresponding timeline in the lower panel will be highlighted, and vice versa.

As you can see, a query is parsed into several steps. Some steps can be processed
in parallel, but some steps depend on other steps. If several steps are handled
with multiple threads and processed within one period, that implies good paral-
lelization. If a step is handled by a single thread that lasts a long time when all the
other steps are delayed pending its completion, that implies a bottleneck in the
query. Identifying bottlenecks can help when solving performance issues.

SAP HANA Engines

It is worth knowing the engines based on the prefixes of method names, such as BwPop-
AggregateParallel. Bw means OLAP engine, Sql means SQL engine, and CE means
calculation engine. Of these engines, the OLAP engine is the most powerful. By check-
ing the method name, you can tell which steps are in faster engines and which are in
slower engines.

3.5 Enforcing Execution Paths

For a complex query, performance may vary when the query is parsed into differ-
ent execution plans. For example, when you have a query with joins for three
tables, different join orders lead to different performance results (i.e., which two
tables should join first, which table should join next).

Fortunately, with SAP HANA you do not have to collect a table’s statistical infor-
mation beforehand. Instead, you benefit from the column engine. In a column
engine, it is easy for the SAP HANA optimizer to get statistical information, such
as row count, distinct value count, maximum, minimum, and so on. As a result,
the SAP HANA optimizer can make appropriate execution plans on the fly. The
SAP HANA optimizer is powerful: When a complex query contains subqueries or
views, the optimizer can break up the wrapping layers and drill up to the table
level to reorganize the join path and aggregation path. Let’s look at a simple
example to see how the execution plan is made (see Listing 3.16).

SELECT A.*
FROM FACT_1 A,
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(SELECT DEP_ID
FROM FACT_2 B, M_TRANS C
WHERE B.TRANS_NO=C.TRANS_NO
) D
WHERE A.DEP_ID=D.DEP_ID;

Listing 3.16  Query with Subquery

Here, you have a subquery in the query to wrap the join of the two tables. When
you check the execution plan, you can see that the join at the subquery is brought
up to the same level as the main query. Then, the SAP HANA optimizer will
decide which join to proceed with based on the table’s statistical information,
regardless of the join order in your original SQL query (see Figure 3.20).

Figure 3.20  Execution Plan of a Reorganized Join Path

However, if the logic of a query is complex and contains multiple join or aggrega-
tion steps, different execution paths will be generated with different intermediate
result sets, and the statistics of these intermediate result sets will not be available
to the SAP HANA optimizer. All the SAP HANA optimizer can do is follow the
general rules to make the execution plan based on the statistics of the underlying
tables.

On the other hand, users who create queries usually have deep knowledge of a
table’s content and might understand the appropriate execution path. Such users
usually wrap the logic with views or subqueries and expect the SAP HANA opti-
mizer to follow the join and aggregation order when generating the execution
plan. Unfortunately, the SAP HANA optimizer has to follow general rules when
parsing the queries, and the actual execution plan can be quite different from
what a user might expect.

Fortunately, there is a way to enforce the execution path and make it the same as
shown in your SQL query or stored procedure. You can use the TOP/LIMIT clause to
enforce the execution path. Let’s look at an example SQL query (see Listing 3.17).

SELECT A.TRANS_DATE,B.TRANS_DESC
FROM FACT_1 A,M_TRANS B
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WHERE A.TRANS_NO=B.TRANS_NO
AND A.TRANS_NO IN (
SELECT C.TRANS_NO
FROM FACT_2 C,M_TRANS D
WHERE C.TRANS_NO=D.TRANS_NO
AND C.DEP_ID=1);

Listing 3.17  Query without TOP/LIMIT Clause

You can see the execution plan in Figure 3.21. The join in the subquery is brought
up to the main query level, which means that the SAP HANA optimizer does not
comply with the join order wrapped in the query.

Figure 3.21  Execution Plan When the Join Path Is Not Enforced

To resolve this, you can try to add a TOP/LIMIT clause to the wrapped logic for
which you want to enforce the execution path. Examine the query using the
LIMIT clause in Listing 3.18.

SELECT A.TRANS_DATE,B.TRANS_DESC
FROM FACT_1 A,M_TRANS B
WHERE A.TRANS_NO=B.TRANS_NO
AND A.TRANS_NO IN (
SELECT C.TRANS_NO
FROM FACT_2 C,M_TRANS D
WHERE C.TRANS_NO=D.TRANS_NO
AND C.DEP_ID=1
LIMIT 1000000000000);

Listing 3.18  Query with LIMIT Clause

Or, you can use the TOP clause in the query, as shown in Listing 3.19.

SELECT A.TRANS_DATE,B.TRANS_DESC
FROM FACT_1 A,M_TRANS B
WHERE A.TRANS_NO=B.TRANS_NO
AND A.TRANS_NO IN (
SELECT TOP 1000000000000 C.TRANS_NO
FROM FACT_2 C,M_TRANS D
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WHERE C.TRANS_NO=D.TRANS_NO
AND C.DEP_ID=1);

Listing 3.19  Query with TOP Clause

The number 10000000000 is an arbitrary value that is supposed to be great
enough to cover the intermediate result. Review the execution plan of the query
in Figure 3.22.

Figure 3.22  Execution Plan When the Join Path Is Enforced

You can see that the join in the subquery is processed first, and then the result
set of the subquery participates in the join at the upper layer. The TOP/LIMIT
clause also impacts the sequence of grouping steps and makes the grouping oper-
ation happen on the result set of the subquery instead of on the upper layer. You
can find the differences by checking the timeline from the performance trace
(see Figure 3.23).

Figure 3.23  Performance Trace on a Query without an Enforced Execution Path
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The performance trace without the enforced execution path has a very long time-
line, which shows the operation on a large dataset. It takes more than two min-
utes to run this particular query. Next, let’s look at the query with the enforced
execution path (see Figure 3.24).

Figure 3.24  Performance Trace on Query with an Enforced Execution Path

From the performance trace on the query with the enforced execution path, you
can see two comparably shorter timelines that show the operation on the two
smaller datasets. It takes less than seven seconds to run this query. This example
uses the TOP/LIMIT clause to split an expensive step into less expensive steps by
enforcing the execution path.

To fine-tune a complex query or stored procedure, you can use the performance
trace tool to get an idea of how the query is performed and to figure out the bot-
tleneck. By testing different execution plans, you can determine whether the bot-
tleneck is due to a bad execution path and also test whether a query with an
enforced execution path can eliminate the bottleneck.

In the next section, we will discuss the less expensive method of using a union
rather than a join.

3.6 Using a Union with Constant Values Instead of a Join

You can make a join in an attribute view, analytic view, calculation view, and so
on. Whatever engine you choose, join operations between large tables are always
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expensive. If possible, you should consider other approaches rather than using a
join. In this section, we will introduce using a union with constant values as an
alternative.

Let’s start with a simple example to see the kinds of joins that can be changed into
unions. Suppose you have a large table Trans_A(Trans_Date, Trans_No, Dep_id,
Pro_id, Sales_net), as shown in Listing 3.20.

CREATE COLUMN TABLE Trans_A(
Trans_Date DATE,
Trans_No BIGINT,
Dep_id INT,
Pro_id INT,
Sales_net DECIMAL(18,2));

Listing 3.20  Definition of Table Trans_A

You also have another table Credit_log(Trans_Date, Trans_No, Dep_id, Pro_id,
Credit_point), as shown in Listing 3.21.

CREATE COLUMN TABLE Trans_B(
Trans_Date DATE,
Trans_No BIGINT,
Dep_id INT,
Pro_id INT,
Credit DECIMAL(18,2));

Listing 3.21  Definition of Table Trans_B

To perform an analysis based on the two tables, use the logic shown in Listing 3.22.

SELECT A.Dep_id,SUM(Sales_net),SUM(Credit)
FROM Trans_A A,Trans_B B
WHERE A.Trans_Date=B.Trans_Date
AND A.Trans_No=B.Trans_No
GROUP BY A.Dep_id;

Listing 3.22  Query to Join Two Tables

You can create this join in a calculation view on the TRANS_DATE and TRANS_NO col-
umns (see Figure 3.25).

At this point, you can run a query based on the calculation view, as shown in Lis-
ting 3.23.
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Figure 3.25  Join Two Tables in a Calculation View

SELECT Dep_id,SUM(Sales_net),SUM(Credit)
FROM _SYS_BIC."test/CA_JOIN_L"
GROUP BY Dep_id;

Listing 3.23  Query Against the Calculation View Using a Join

However, it would be time-consuming to run this query, because both tables are
large. For this particular query, because the Dep_id column has redundancies
across the two tables, you must create two aggregation nodes in the calculation
view, group them by Dep_id, and then join the two result sets on the Dep_id col-
umn. However, by doing this you lose flexibility for analysis at other granulari-
ties.

A recommended approach in this sort of situation is to use a union with constant
values instead of a join. The idea is to concatenate the two tables with the UNION
ALL operator and specify a constant value or NULL for the missing columns on each
table. The logic is shown in Listing 3.24.

SELECT Trans_Date, Trans_No, Dep_id, Pro_id, Sales_net, NULL as Credit
FROM Trans_A
UNION ALL
SELECT Trans_Date, Trans_No, Dep_id, Pro_id, NULL as Sales_net, Credit
FROM Trans_B;

Listing 3.24  Query to Union Two Tables

You can put the logic into a calculation view, as shown in Figure 3.26.

The union node shows that the Trans_Date, Trans_No, Dep_id, and Pro_id col-
umns on Trans_A map their corresponding columns on Trans_B. The Sales_net
and Credit columns do not have mapping columns (see Figure 3.27).
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Figure 3.26  Union with Constant Values

Figure 3.27  Aggregation after Union

After the union, you have an aggregation node with the group by columns Trans_
Date, Trans_No, Dep_id, and Pro_id. As a result, the records of the two tables that
were supposed to be joined will be united in the aggregation process. To analyze
the granularity of Dep_id, you can execute the query shown in Listing 3.25.

SELECT Dep_id,SUM(Sales_net),SUM(Credit)
FROM _SYS_BIC."test/CA_UNION_L"
GROUP BY Dep_id;

Listing 3.25  Query Against the Calculation View Using a Union
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A union with constant values can also handle different kinds of set operations,
such as union, minus/except, intersect, and so on.

As an example, let’s prepare two sets: Set_A with values A, B, C, and D, and
Set_B with values C, D, E, and F. Prepare the tables with the statements shown
in Listing 3.26.

INSERT INTO SET_A VALUES('A');
INSERT INTO SET_A VALUES('B');
INSERT INTO SET_A VALUES('C');
INSERT INTO SET_A VALUES('D');
INSERT INTO SET_B VALUES('C');
INSERT INTO SET_B VALUES('D');
INSERT INTO SET_B VALUES('E');
INSERT INTO SET_B VALUES('F');

Listing 3.26  INSERT Statements to Populate SET_A and SET_B

To identify each set, create a calculated column on each column:

ALTER TABLE Set_A ADD(SET_A_FLAG INT GENERATED ALWAYS AS 1);
ALTER TABLE Set_B ADD(SET_B_FLAG INT GENERATED ALWAYS AS 1);

In the calculation view, make the union with constant values. You can then map
the column IDs between the two tables and set separate target columns for SET_
A_FLAG and SET_B_FLAG (see Figure 3.28).

Figure 3.28  Determine Set with the Flag Column
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The output of the calculation view is the aggregation of SET_A_FLAG and SET_B_
FLAG grouped by column ID (see Figure 3.29).

Figure 3.29  Set the Flag as an Aggregation Column

By filtering the aggregation columns of the calculation view, you can use the fol-
lowing set operations:

� Union 
No filter is needed.

� SQL query logic:
SELECT ID FROM SET_A UNION SELECT ID FROM SET_B;

� Calculation view approach:
SELECT ID FROM _SYS_BIC."test/CA_SET";

The output is {A,B,C,D,E,F}.

� Minus/except 
Set the filter to choose records for SET_A_FLAG, but not SET_B_FLAG.

� SQL query logic:
SELECT ID FROM SET_A MINUS SELECT ID FROM SET_B;

� Calculation view approach:
SELECT ID FROM _SYS_BIC."test/CA_SET" WHERE SET_A_FLAG=1 AND 
SET_B_FLAG IS NULL;

The output is {A,B}.
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� Intersect 
Set the filter to choose records with both SET_A_FLAG and SET_B_FLAG.

� SQL query logic:
SELECT ID FROM SET_A INTERSECT SELECT ID FROM SET_B;

� Calculation view approach:
SELECT ID FROM _SYS_BIC."test/CA_SET" WHERE SET_A_FLAG=1 AND 
SET_B_FLAG=1;

The output is {C,D}.

� Special set operation to select all except intersection
Set filter to include the records that have neither SET_A_FLAG or SET_B_FLAG.

� SQL query logic:
(SELECT ID FROM SET_A MINUS SELECT ID FROM SET_B) 
UNION ALL 
(SELECT ID FROM SET_B MINUS SELECT ID FROM SET_A);

� Calculation view approach:
SELECT ID FROM _SYS_BIC."test/CA_SET" WHERE SET_A_FLAG IS NULL OR 
SET_B_FLAG IS NULL;

The output is {A,B,E,F}.

In addition, the solution can be applied to set operations with more than two
datasets and perform more complex set operations.

In this section, we introduced the use of a union with constant values. Note that
not all types of joins are suitable for replacement with unions; you still need joins
in many cases. In the next section, we will focus on techniques for joins in an ana-
lytic view.

3.7 Manipulating Joins in an Analytic View

In this section, we will look at the specific techniques that can be employed when
manipulating joins in an analytic view. This includes breaking a union of dimen-
sion tables, leveraging the OLAP engine to create nonequi joins in an analytic
view, and modifying tables for analytic views. Let’s begin by looking at breaking
unions of dimension tables.
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3.7.1 Breaking a Union of Dimension Tables

Because the OLAP engine is the most powerful engine in SAP HANA and an ana-
lytic view can fully exploit it, you should try your best to put expensive joins in
an analytic view—but there are some restrictions to note. For example, analytic
views cannot perform union operations. If there is a join between a fact table and
a union of dimension tables, you need a calculation view. However, there is a way
around this that will allow you to harness the improved performance of the ana-
lytic view by eliminating unions from the process. The idea is to split the dimen-
sion table into multiple attribute views and then join to fact tables separately in
the analytic view. This will allow you to efficiently leverage the OLAP engine.

Let’s look at an example that shows how to eliminate the union from the dimen-
sion tables. Suppose you have the fact table Trans_DTL(Trans_DATE, Trans_No,
Prod_ID, Sales_Qty, Sales_Net) and two dimension tables. One dimension table
is Prod_Category_A(Prod_ID, Prod_type, Prod_desc), and the other table is
Prod_Category_B(Prod_ID, Prod_type, Prod_desc). You want to perform the
SQL query shown in Listing 3.27.

SELECT PROD_TYPE,SUM(SALES_NET)
FROM TRANS_DTL A
LEFT OUTER JOIN
(
SELECT PROD_ID,PROD_TYPE,PROD_DESC FROM PROD_CATEGORY_A
UNION
SELECT PROD_ID,PROD_TYPE,PROD_DESC FROM PROD_CATEGORY_B
) B
ON A.PROD_ID=B.PROD_ID
GROUP BY PROD_TYPE;

Listing 3.27  Query to Show the Logic of a Join after Union

For the purposes of comparison, create a calculation view. First, add a node to
union the two tables Prod_Category_A and Prod_Category_B. Next, we add a
node to join the union result set to the fact table Trans_Dtl. Finally, add an aggre-
gation node to aggregate the join result set (see Figure 3.30).

For large datasets, the performance of a calculation view does not measure up to
an analytic view. Therefore, for the best performance, you need to think about
another approach using an analytic view. In this example, you can write the SQL
query in a different way, one that eliminates the union to prepare the logic for an
analytic view (see Listing 3.28).
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Figure 3.30  Calculation View with a Union and Join Nodes

SELECT COALESCE(A.PROD_TYPE,B.PROD_TYPE),SUM(SALES_NET)
FROM TRANS_DTL D
LEFT OUTER JOIN PROD_CATEGORY_A A
ON D.PROD_ID=A.PROD_ID
LEFT OUTER JOIN PROD_CATEGORY_A B
ON D.PROD_ID=B.PROD_ID
GROUP BY COALESCE(A.PROD_TYPE,B.PROD_TYPE);

Listing 3.28  Query to Show the Logic of Multiple Left Outer Joins

Because the union now has been eliminated, you can put the logic into an analytic
view (see Figure 3.31).

For this process to succeed, you must first create separate attribute views for the
dimension tables, then link them to the fact table in the analytic view with a left
outer join. Next, create aliases for the PROD_TYPE column of the attribute views as
PROD_TYPE_A and PROD_TYPE_B. Finally, define the PROD_TYPE calculated column as
follows:

If(Isnull("PROD_TYPE_A"),"PROD_TYPE_B","PROD_TYPE_A")
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Figure 3.31  Analytic View to Break a Union of Dimension Tables

The query against the analytic view is shown in Listing 3.29.

SELECT PROD_TYPE,SUM(SALES_NET)
FROM _SYS_BIC."test/AN_UNION"
GROUP BY PROD_TYPE;

Listing 3.29  Query Against the Analytic View

Real-world scenarios can be more complex than the example we just showed. For
example, assume you have a customer table that is updated three times each year.
If there is a change in a customer record, you add a new record with a version ID
each time. The version ID can have values of 1, 2, or 3, so each customer may
have one, two, or three records in the table. Let’s define the customer table as M_
CUST(CUST_ID, CUST_TYPE, VERSION_ID), as shown in Listing 3.30.

CREATE COLUMN TABLE M_CUST(
CUST_ID INT,
CUST_TYPE INT,
VERSION_ID INT);

Listing 3.30  Definition of Table M_Cust

Now, define the fact table as F_TRANS(TRANS_NO, CUST_ID, SALES_NET), as shown
in Listing 3.31.

CREATE COLUMN TABLE F_TRANS(
TRANS_NO BIGINT,
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CUST_ID INT,
SALES_NET DECIMAL(18,2));

Listing 3.31  Definition of Table F_TRANS

For this example, to make a valid link between the fact table and dimension table,
you have to determine the most current customer record, which should have the
maximum VERSION_ID for each customer, and generate a dataset with has a dis-
tinct CUST_ID, then join the dataset to fact table. The SQL query can be defined as
shown in Listing 3.32.

SELECT D.CUST_TYPE,SUM(SALES_NET)
FROM F_TRANS F
LEFT OUTER JOIN
(SELECT A.CUST_ID,A.CUST_TYPE
FROM M_CUST A,
(SELECT CUST_ID,MAX(VERSION_ID) VERSION_ID
FROM M_CUST
GROUP BY CUST_ID) B
WHERE A.CUST_ID=B.CUST_ID
AND A.VERSION_ID=B.VERSION_ID) D
ON F.CUST_ID=D.CUST_ID
GROUP BY D.CUST_TYPE;

Listing 3.32  Query to Show the Logic of a Join after Aggregation

This can be done easily with a calculation view, though in this case, try the
approach of using an analytic view to improve performance.

First, create three attribute views, AT_CUST_1, AT_CUST_2, and AT_CUST_3, and make
the filter on VERSION_ID with values of 1, 2, and 3 respectively (see Figure 3.32).

Figure 3.32  Attribute View with a Filter on VERSION_ID
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Next, create an analytic view to link the three attribute views to the fact table (see
Figure 3.33).

Figure 3.33  Analytic View to Link Three Attribute Views

In addition, you need to create a calculated column CUST_TYPE. The logic is to get
the CUST_TYPE value from the record for VERSION_ID=3. If that record is not avail-
able, you can get the value from the record for VERSION_ID=2. Otherwise, you
need to get the value from the record for VERSION_ID=1 (see the expression in Fig-
ure 3.34).

Figure 3.34  CUST_TYPE Calculated Column
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The query against the analytic view is shown in Listing 3.33.

SELECT CUST_TYPE,SUM(SALES_NET)
FROM _SYS_BIC."test/AN_UNION_2"
GROUP BY CUST_TYPE;

Listing 3.33  Query Against the Analytic View

Again, the idea is to split the dimension table into multiple attribute views and
join to the fact table separately in the analytic view in order to leverage the OLAP
engine efficiently.

3.7.2 Making Nonequi Joins

You may encounter nonequi joins occasionally; nonequi joins are relatively more
expensive than equi joins. In order to improve the join performance by leverag-
ing OLAP, let’s see how to create nonequi joins in an analytic view. Suppose you
have a fact table TEST_RESULT, as shown in Listing 3.34.

CREATE COLUMN TABLE TEST_RESULT(
TEST_NO BIGINT,
TEST_DATE DATE,
FACTOR INT,
RESULT DECIMAL(18,2)
);

Listing 3.34  Definition of Table TEST_RESULT

To make the playground, create some sample records, as shown in Listing 3.35.

INSERT INTO TEST_RESULT VALUES(1,'2014-01-01',3,32.3);
INSERT INTO TEST_RESULT VALUES(2,'2014-01-01',300,324.5);
INSERT INTO TEST_RESULT VALUES(2,'2014-01-01',3000,3.23);
INSERT INTO TEST_RESULT VALUES(2,'2014-01-01',5000, 98099.12);

Listing 3.35  INSERT Statements of Table TEST_RESULT

You also need a dimension table M_BUCKET, like that in Listing 3.36.

CREATE COLUMN TABLE M_BUCKET(
BUCKET_ID INT,
BUCKET_FROM INT,
BUCKET_TO INT);

Listing 3.36  Definition of Table M_BUCKET

And, you also need to create some sample records, as shown in Listing 3.37.
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INSERT INTO M_BUCKET VALUES(1,0,100);
INSERT INTO M_BUCKET VALUES(2,101,3500);
INSERT INTO M_BUCKET VALUES(3,3501,90000);

Listing 3.37  INSERT Statements of Table M_BUCKET Nonequi Join Operators

The nonequi join operators can be greater than, less than, or between. As an
example, use a BETWEEN operator. Assume that you want to achieve the logic as
shown in Listing 3.38.

SELECT BUCKET_ID,SUM(RESULT)
FROM TEST_RESULT A, M_BUCKET B
WHERE FACTOR BETWEEN BUCKET_FROM AND BUCKET_TO
GROUP BY BUCKET_ID;

Listing 3.38  Query of a Table Join with a Nonequi Condition

To make the join in the analytic view, first create a calculated column for each table:

ALTER TABLE TEST_RESULT ADD(F INT GENERATED ALWAYS AS 1);
ALTER TABLE M_BUCKET ADD(F INT GENERATED ALWAYS AS 1);

Then, join the two tables on this calculated column in the analytic view.

In Figure 3.35, in addition to the join column, we also set the Temporal Column

as Factor on the fact table, set the From Column as BUCKET_FROM, and set the
To Column as BUCKET_TO on the dimension table. This works as a join condi-
tion as “Factor between BUCKET_FROM and BUCKET_TO.”

Figure 3.35  Nonequi Join in an Analytic View
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The query against this analytic view is shown in Listing 3.39.

SELECT BUCKET_ID,SUM(RESULT)
FROM _SYS_BIC."test/AN_NON_EQUI"
GROUP BY BUCKET_ID;

Listing 3.39  Query Against an Analytic View That Has a Join with a Nonequi Condition

Figure 3.36 shows the output.

Figure 3.36  Output of the Nonequi Join Analytic View

This is an example for the BETWEEN operator; if you work with a GREATER
THAN operator, you need to create a calculated column on the dimension table
and set a constant value like 999999, which is large enough, then put the column
into the join definition. Because the logic of A is greater than B is the same as A is
between B and 999999, you can achieve the logic with the same approach.

The temporal column feature was originally designed for time-dependent dimen-
sion tables, but you can expand the capability whenever it is necessary.

3.7.3 Modifying Tables

On the SAP HANA platform, creating physical aggregated tables is not recom-
mended. This allows you to stay close to the original source of information,
which helps manage a single source of truth by retaining data at the most granular
level. This does not mean that you cannot alter the table structure, however. You
can encounter some situations that require you to modify the table structure, gen-
erate dimension data, and so on.

Let’s start with a simple example to show how to modify a dimension table and
make it usable in an analytic view. Suppose you have table Prod_cat(Prod_id,
prod_cat, update_date) that contains time-dependent dimension data (see Lis-
ting 3.40).

CREATE COLUMN TABLE Prod_cat(
Prod_id int,
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Prod_cat int,
Update_date date);

Listing 3.40  Definition of Table Prod_cat

To make the playground, insert some sample records:

INSERT INTO Prod_cat VALUES(1,1,'2013-01-01');
INSERT INTO Prod_cat VALUES(1,2,'2014-01-01');

In this example, the fact table is Trans_DTL(Trans_DATE, Trans_No, Prod_ID,
Sales_Qty, Sales_Net). You expect to join the fact table to the time-dependent
dimension table on the Prod_id column with the valid record. To check if a
record on the dimension table is valid, see whether Update_date is less than or
equal to Trans_DATE and whether Trans_DATE is less than the value of Update_
date on the next record for the particular Prod_id in question. The value of the
Update_date column in the record and the value of the Update_date column in
the subsequent record is the range of validation. If the record is the last one of the
particular Prod_id under review, then the range is from the Update_date column
to a future date. You can put the logic into an SQL query, as in Listing 3.41.

SELECT Prod_cat,SUM(SALES_NET)
FROM TRANS_DTL F,
(SELECT Prod_id,Prod_cat,Update_date DATE_FROM,COALESCE(LEAD(Update_
date) over (PARTITION BY Prod_id ORDER BY Update_date),'2300-12-31')
DATE_TO
FROM Prod_cat) P
WHERE F.Prod_id=P.Prod_id
AND F.TRANS_DATE>=DATE_FROM
AND F.TRANS_DATE<DATE_TO
GROUP BY Prod_cat;

Listing 3.41  Query to Show the Join to Time-Dependent Dimension Table

In this query, you have a window function, which can be handled only on the
row engine; therefore, you cannot put this logic into an analytic view. However,
there is a simple solution to improve the performance. You can easily modify the
structure of the dimension table by adding an additional column, Expire_date,
and set the valid date range for each record with Update_date and Expire_date
(see Listing 3.42).

ALTER TABLE Prod_cat ADD( Expire_date date);
UPDATE Prod_cat A
SET Expire_date =
(SELECT DATE_TO
FROM (
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SELECT Prod_id,Prod_cat,Update_date,COALESCE(LEAD(Update_
date) over (PARTITION BY Prod_id ORDER BY Update_date),'2300-12-31')
DATE_TO
FROM Prod_cat) B
WHERE A.Prod_id=B.Prod_id AND A.Prod_cat=B.Prod_cat AND
A.Update_date=B.Update_date
);

Listing 3.42  Statements to Create Expire_date Column on Table Prod_cat

With the new column created on the dimension table, the query can be simplified
to the query shown in Listing 3.43.

SELECT Prod_cat,SUM(SALES_NET)
FROM TRANS_DTL F, Prod_cat P
WHERE F.Prod_id=P.Prod_id
AND F.TRANS_DATE>=UPDATE_DATE
AND F.TRANS_DATE<EXPIRE_DATE
GROUP BY Prod_cat;

Listing 3.43  Query to Show the Join to the Time-Dependent Dimension Table

You also can make the join in an analytic view. When defining the join on PROD_
ID, set Temporal Column as TRANS_DATE, set Temporal Condition as Exclude

To Include From, set From Column as UPDATE_DATE, and set To Column as
EXPIRE_DATE (see Figure 3.37).

Figure 3.37  Join Definition with the Time-Dependent Dimension Table
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The query against the analytic view is shown in Listing 3.44.

SELECT Prod_cat,SUM(SALES_NET)
FROM _SYS_BIC."test/AN_TRANS_3"
GROUP BY Prod_cat;

Listing 3.44  Query Against the Analytic View with a Join to the Time-Dependent Dimension Table

Next, let’s see how to deal with the logic for long join paths. For example, suppose
the fact table Trans_DTL(Trans_DATE, Trans_No, Prod_ID, Sales_Qty, Sales_Net)
needs to join dimension table Dim_1(Prod_ID,Attr_A) on the Prod_ID column,
and then the table Dim_A needs to join the dimension table Dim_2(Attr_A,Attr_B)
on the Attr_A column, and then Dim_2 needs to join table Dim_3(Attr_B,Attr_C)
on the Attr_B column. The SQL query is shown in Listing 3.45.

SELECT ATTR_C,SUM(SALES_NET)
FROM TRANS_DTL F,DIM_1 A, DIM_2 B,DIM_3 C
WHERE F.PROD_ID=A.PROD_ID
AND A.ATTR_A=B.ATTR_A
AND B.ATTR_B=C.ATTR_B
GROUP BY ATTR_C;

Listing 3.45  Query with a Long Join Path

As shown in Figure 3.38, when you can make the join in an analytic view, the join
path is long between the fact table and the dimension table Dim_3.

Figure 3.38  Long Join Path
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To improve the performance, denormalize the dimension tables by merging them
into one (see Listing 3.46).

ALTER TABLE Dim_1 add (Attr_B int, Attr_C int);
UPSERT Dim_1
SELECT A.PROD_ID,A.ATTR_A,B.ATTR_B,C.ATTR_C
FROM DIM_1 A, DIM_2 B,DIM_3 C
WHERE A.ATTR_A=B.ATTR_A
AND B.ATTR_B=C.ATTR_B;

Listing 3.46  Statement to Denormalize the Dimension Table

With the new denormalized dimension table, the fact table needs to join on a sin-
gle table, and the performance can be improved. The SQL query is shown in Lis-
ting 3.47.

SELECT ATTR_C,SUM(SALES_NET)
FROM TRANS_DTL F,DIM_1 A
WHERE F.PROD_ID=A.PROD_ID
GROUP BY ATTR_C;

Listing 3.47  Query with a Join to Denormalize the Dimension Table

It is very expensive to denormalize a fact table. However, dimension tables are
not volatile and do not change that often. Therefore, it is fine to denormalize
dimension tables when necessary. In summary, you can see from the preceding
examples that table modification can be an option when dealing with perfor-
mance issues for long join paths. Although you usually will not make modifica-
tions on table structures or content, do not hesitate to do so if there is a need. In
the next section, we will continue our discussion of tables with specific reference
to history tables.

3.8 Time Traveling

When performing an analysis, sometimes you are checking not only current data,
but also historic data, such as a customer’s history balance, a warehouse’s history
storage, and so on. For time travel, you may have to capture the yearly, monthly,
weekly, or even daily snapshots of the fact table. Let’s see an example of a table
that contains daily snapshots of inventory data, BOH(SNAPSHOT_DT, PROD_ID,
STORE_ID, ON_HAND). The table contains the SNAPSHOT_DT column to represent the
dates of snapshots, as shown in Listing 3.48.
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CREATE COLUMN TABLE BOH(
SNAPSHOT_DT DATE,
PROD_ID INT,
STORE_ID INT,
ON_HAND INT);

Listing 3.48  Definition of Table BOH

It can be very resource-intensive to store daily snapshots in a table, because a
table with one year of snapshots can be 365 times greater than the original table.
In addition, such a table will contain a lot of redundant records. Each product that
has not changed inventory during the year still consumes 365 records in a table.
As a result, such a table can be quite large, and the performance of the query
against the table can be poor as a result.

3.8.1 History Tables

SAP HANA provides the history table feature to achieve time travel. In this case,
you can create a history table BOH_H, which does not include the SNAPSHOUT_DT
column, as shown in Listing 3.49.

CREATE HISTORY COLUMN TABLE BOH_H(
PROD_ID INT,
STORE_ID INT,
ON_HAND INT,
PRIMARY KEY(PROD_ID,STORE_ID));

Listing 3.49  Definition of History Table BOH_H

There are three ways in which someone can utilize time travel queries and track
historical values:

� Using a commit ID

� Using a UTC timestamp

� Setting a session to an earlier historic moment

In this section, we will explore these methods through an example.

The first step you need to take is to enable the history table. To make a history
table work, you need to set the Auto Commit option to Off under Session in the
SAP HANA Studio Properties tab (see Figure 3.39).
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Figure 3.39  Session Properties

You can insert a record into this history table as follows:

INSERT INTO BOH_H VALUES (1,1,39);
COMMIT;

Then, change the content of the record using the following query:

UPSERT BOH_H VALUES (1,1,98);
COMMIT;

Because the auto commit option is off, you need to perform a delta merge to
complete the operation:

UPDATE BOH_H MERGE DELTA INDEX;

Behind the scenes, there are two hidden columns in the history table: $valid-
from$ and $validto$. When a new record is inserted, it is given a value of the cur-
rent commit ID on the $validfrom$ column and a null value on the $validto$
column. When the record is updated, a new record is inserted with the same pri-
mary key. A new commit ID is set on both the $validfrom$ column of the new
record and the $validto$ column of the previous record. A null value is set on
$validto$ of the new record. When the record is deleted, the null value on
$validto$ of the last record will be replaced by a new commit ID. To check the
values of the commit ID, you may run the following query:

SELECT *, "$validfrom$", "$validto$"

FROM BOH_H ('REQUEST_FLAGS'='ALLROWS');

As shown in Figure 3.40, you can check the valid range of each record from the
output of the query.
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Figure 3.40  Content of the History Table

You can then time travel based on the commit ID:

SELECT * FROM BOH_H AS OF COMMIT ID 3445196;

This returns one record, in which $validfrom$ =3445196. To know the actual time
when each record is valid, you need to check the timestamp of each commit ID.
This information can be obtained from table TRANSACTION_HISTORY, as shown:

SELECT * FROM TRANSACTION_HISTORY ORDER BY COMMIT_ID;

This query returns the commit timestamp of each commit ID. Hence, you can get
the transaction stamping information (called the UTC timestamp) of the commit
ID with the following query:

SELECT COMMIT_TIME FROM TRANSACTION_HISTORY
WHERE COMMIT_ID=3445196;

Figure 3.41 shows the preceding query returning the timestamp of a specific com-
mit ID.

Figure 3.41  UTC Timestamp

Next, you can time travel based on the UTC timestamps:

SELECT * FROM BOH_H AS OF utctimestamp '2015-03-22 18:32:08.128';

Alternatively, you can time travel by setting the session to a history commit ID:

SET HISTORY SESSION TO COMMIT ID 3445196;

Or, set the session to a history UTC timestamp:

SET HISTORY SESSION TO utctimestamp '2015-03-22 18:32:08.128';
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When a session is set to a moment in history, the query against the history table
will return only those records that are valid for that specified moment. After set-
ting the session to a moment in history, perform the following query to retrieve
the records at that moment:

SELECT * FROM BOH_H;

To restore the session back to the current time, run the following statement:

SET HISTORY SESSION TO NOW;

You also can time travel by filtering on the columns $validfrom$ and $validto$
directly. For example, suppose we want to check the records of 2005-01-02. To
do so, can run the query shown in Listing 3.50.

SELECT A.*
FROM BOH_H('REQUEST_FLAGS'='ALLROWS') A
JOIN TRANSACTION_HISTORY B
ON A."$validfrom$"=B.COMMIT_ID
LEFT OUTER JOIN TRANSACTION_HISTORY C
ON A."$validto$"=C.COMMIT_ID
WHERE B.COMMIT_TIME<= '2015-01-02'
AND ("$validto$" IS NULL OR C.COMMIT_TIME> '2015-01-02');

Listing 3.50  Time Travel Query

These three methods allow you to use time travel queries in a number of ways. In
the next section, we will look at how to utilize simulated history tables to traverse
some of the limitations of actual history tables.

3.8.2 Simulated History Tables

History tables can benefit time travel reporting, but they have some limitations:
When you update a table, you always create new records, which makes it hard to
modify the content of history records. Also, the time granularity of a history table
is at the timestamp level, whereas analysis requirements can be on daily, weekly,
monthly, or other intervals; a more detailed granularity can cause an unnecessary
waste of resources.

For example, if your analysis requirement is on a monthly level, then only the last
updated value in each month for a product is needed in the table. Therefore, based
on that analysis requirement, you can create a regular table that simulates a history
table rather than using a history table directly. You can achieve greater flexibility
via this kind of table. Let’s examine table BOH_S as an example (see Listing 3.51).
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CREATE COLUMN TABLE BOH_S(
PROD_ID INT,
STORE_ID INT,
ON_HAND INT,
VALIDFROM DATE,
VALIDTO DATE,
PRIMARY KEY(PROD_ID,STORE_ID,VALIDFROM));

Listing 3.51  Definition of Table BOH_S to Simulate a History Table

There are two visible columns, VALIDFROM and VALIDTO, in the table. You can
insert the values of a date range into these columns, which can be on a daily,
weekly, and monthly basis according to your analysis requirements.

For the purposes of this example, assume you require a monthly basis. For each
PROD_ID and STORE_ID, you have only one record for month 1. If that record is not
changed on month 2, you do not need a new record for month 2; you just need
to make the VALIDFROM and VALIDTO columns of the record include month 2. The
idea is similar to using a history table. When you browse the current data, you
can apply a filter on the VALIDTO column to return the recode where the column
is null, as follows:

SELECT * FROM BOH_S WHERE VALIDTO IS NULL;

When you time travel and browse the data in a particular month, you can apply
a filter and see if the first day of the month is between the VALIDFROM and VALIDTO
columns (see Listing 3.52).

SELECT *
FROM BOH_S
WHERE VALIDFROM<= '2014-01-01'
AND (VALIDTO IS NULL OR VALIDTO> '2014-01-01');

Listing 3.52  Query to Simulate Time Travel

When you perform reporting with the data every month, you can join the table
with a calendar table (see Listing 3.53).

SELECT PROD_ID,STORE_ID,CALMONTH,ON_HAND
FROM BOH_S A,"_SYS_BI"."M_TIME_DIMENSION" B
WHERE B.DAY=1
AND A.VALIDFROM<= B.DATE_SQL
AND (A.VALIDTO IS NULL OR VALIDTO> B.DATE_SQL);

Listing 3.53  Query to Generate a Monthly Report
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Over time, the table becomes larger. If necessary, you can separate the dataset of
the historical data on a yearly basis and partition the table by date range. This
way, the records for different years will be distributed to different partitions, and
you can leverage partition pruning to improve the performance of the query, as
shown in Listing 3.54.

CREATE COLUMN TABLE BOH_S(
PROD_ID INT,
STORE_ID INT,
ON_HAND INT,
VALIDFROM DATE,
VALIDTO DATE,
PRIMARY KEY(PROD_ID,STORE_ID,VALIDFROM))
PARTITION BY RANGE(VALIDFROM)
(PARTITION '2010-01-01'<=VALUES<'2011-01-01',
PARTITION '2011-01-01'<=VALUES<'2012-01-01',
PARTITION '2012-01-01'<=VALUES<'2013-01-01',
PARTITION '2013-01-01'<=VALUES<'2014-01-01',
PARTITION '2014-01-01'<=VALUES<'2015-01-01',
PARTITION '2015-01-01'<=VALUES<'2016-01-01',
PARTITION OTHERS);

Listing 3.54  Definition of Table BOH_S with Partition

Listing 3.54 creates table BOH_S with a partition by year. When inserting a record
into the table, if the range of a record crosses one year, it will be split into multi-
ple records. For example, the record (1,1,23,’2014-10-01’,’2015-03-01’) should
be split into records (1,1,23,’2014-10-01’,’2015-01-01’) and (1,1,23,’2015-01-
01’,’2015-03-01’).

Regarding the data provision of the table, the logic can be expressed in three
steps. Suppose you have the history table BOH_H(PROD_ID, STORE_ID, ON_HAND) as
the source table; perform the following three steps to transfer the records:

1. First, generate the data of the snapshot for each month.

2. Next, retrieve the ON_HAND value of the previous month for each record. If the
value is equal to the value of the current month, filter out the record.

3. Finally, retrieve the value of DATE_SQL from the next record, show it side by
side with the DATE_SQL value of current record, then insert the values into the
target table in the VALIDFROM and VALIDTO columns.

These steps can be written into one SQL statement, as shown in Listing 3.55.
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INSERT INTO BOH_S
SELECT PROD_ID,STORE_ID,ON_HAND,DATE_SQL,COALESCE(LEAD(DATE_
SQL) OVER(PARTITION BY PROD_ID,STORE_ID,YEAR ORDER BY DATE_SQL),
END_MONTH) D1
FROM
(
SELECT PROD_ID,STORE_ID,ON_HAND,DATE_SQL,YEAR,LAG(ON_
HAND) OVER(PARTITION BY PROD_ID,STORE_ID,YEAR ORDER BY DATE_SQL)
ON_HAND1,
ADD_MONTHS(MAX(DATE_SQL) OVER(PARTITION BY PROD_ID,STORE_ID),1)
END_MONTH
FROM
(
SELECT PROD_ID,STORE_ID,ON_HAND,DATE_SQL,YEAR
FROM
(SELECT PROD_ID,STORE_ID,ON_HAND,
B.COMMIT_TIME VALIDFROM,C.COMMIT_TIME VALIDTO
FROM BOH_H('REQUEST_FLAGS'='ALLROWS') A
JOIN TRANSACTION_HISTORY B
ON A."$validfrom$"=B.COMMIT_ID
LEFT OUTER JOIN TRANSACTION_HISTORY C
ON A."$validto$"=C.COMMIT_ID
) S,"_SYS_BI"."M_TIME_DIMENSION" CA
WHERE CA.DAY=1 AND CA.DATE_SQL<'2016-01-01'
AND S.VALIDFROM<= CA.DATE_SQL
AND (S.VALIDTO IS NULL OR VALIDTO> CA.DATE_SQL)
)
)
WHERE ON_HAND<>ON_HAND1 OR ON_HAND1 IS NULL;

Listing 3.55  Script to Generate Data for Table BOH_S

When you generate data from a table that contains snapshots, the logic is similar.
This is a simple example compared to real-world cases, which are usually more
complicated. From the example shown, you can see that data modeling is more
than just dealing with join paths and engine selection; it also entails table design,
application workflow design, and more.

3.9 Storing Temporary Data

In SAP HANA, you can create a temporary table to save intermediate result sets.
There are two types of temporary tables in SAP HANA: global temporary tables
and local temporary tables. As their names suggest, content in these tables is
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temporary and eliminated once the session expires. The key difference between
the local and global types is as follows:

� Local temporary tables 
The structure and content are deleted as soon as the user’s session ends.

� Global temporary tables 
The structure of the table persists. However, the content is deleted after the ses-
sion ends. Because each connection has a different session, the contents of one
session are not visible to others.

There is one key limitation of a temporary table: It cannot be added to an analytic
view. For large datasets, if you want to use an analytic view to leverage the OLAP
engine, then you may need a different approach.

The solution is to create a permanent table to store temporary data. To show how
this works, let’s see examine table Temp1 shown in Listing 3.56.

CREATE COLUMN TABLE Temp1(
USER_ID int,
USER_TYPE int,
CURRENT_CONN INT);

Listing 3.56  Definition of Table Temp1

To use this table as a temporary store, the workflow is as follows:

1. In a stored procedure, populate the table with the intermediate result set.

2. Next, use the table in an analytic view.

3. Eventually, delete the data when the task is complete.

In cases where multiple users might be using the table at the same time, you have
to separate each user’s result sets. The example shown in Listing 3.56 includes the
CURRENT_CONN column. When you insert the table, you also update the column
with the value of CURRENT_CONNECTION, which is the session ID. Different users
should have different session IDs. When a user uses the table, a filter on this col-
umn is necessary to retrieve the rows that belong to a user’s individual session.

Let’s explain the detailed workflow with a simple example. Suppose you are ana-
lyzing the fact table F_TRANS and want to slice the data by user type. Here, the
user types are generated based on users’ statistics from the fact table. This analy-
sis involves two steps:
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1. The first step is to generate the intermediate result to show users’ types.

2. The second step is to slice the data in the fact table by users’ types.

You can make an analytic view to join the user type table with the fact table (see
Figure 3.42). Add a filter on the CURRENT_CONN column to separate the result sets
from different sessions.

Figure 3.42  Analytic View with a Filter on the CURRENT_CONN Column

Next, put the logic into the stored procedure P_1 (see Listing 3.57).

CREATE PROCEDURE P_1() LANGUAGE SQLSCRIPT
AS
BEGIN
INSERT INTO TEMP1
SELECT CUST_ID,NTILE(10000) OVER( ORDER BY C), CURRENT_CONNECTION
FROM (
SELECT CUST_ID,COUNT(*) C
FROM "F_TRANS"
GROUP BY CUST_ID);
SELECT USER_TYPE,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TEMP1"
("PLACEHOLDER"."$$SESSION_ID$$"=> CURRENT_CONNECTION)
GROUP BY USER_TYPE;
DELETE FROM TEMP1 WHERE CURRENT_CONN=CURRENT_CONNECTION;
END;

Listing 3.57  Script of the Stored Procedure with a Temporary Table that Is Not Shared
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In this stored procedure, table TEMP1 behaves like a global temporary table, but it
can be utilized by an analytic view.

There are both advantages and disadvantages to this stored procedure. Because it
is not read-only, you may have more performance penalties than a read-only pro-
cedure. However, you will have better performance with an analytic view com-
pared to other kinds of modeled views. In essence, you have to compare the over-
all performance before settling on an optimal approach.

When you use a permanent table to store temporary data, the content does not
have to be invisible to different sessions; the intermediate result set can some-
times be useful for multiple analysis. If you want to save system resources, you
can share the content of the table with other sessions.

Let’s walk through the solution to share intermediate datasets with multiple users
in an example. Again, suppose you want to perform an analysis based on user
type, and the type information is based on user statistics from the fact table. It can
be time-consuming to calculate the type information. Therefore, to improve the
performance, you can save the type information into a permanent table first
when performing the analysis, and then other people can use the content of the
table directly in their analyses.

Suppose the content of the table needs to be renewed on a daily basis. In this
case, add the UPDATE_DATE column to the table to show on which date the records
were updated (see Listing 3.58).

CREATE COLUMN TABLE TEMP2(
USER_ID int,
USER_TYPE int,
UPDATE_DATE DATE
);

Listing 3.58  Definition of Table TEMP2

In the procedure, check if there are any datasets that have already been inserted.
If there are, then use the data directly to generate the report; otherwise, populate
the table with the intermediate result set and then generate the report (see Listing
3.59).

CREATE PROCEDURE P_2() LANGUAGE SQLSCRIPT
AS
V INT ;
BEGIN
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SELECT COUNT(*) INTO V FROM TEMP2 WHERE UPDATE_DATE=TO_DATE(CURRENT_
TIMESTAMP);
IF :V=0 THEN
DELETE FROM TEMP2;
INSERT INTO TEMP2
SELECT CUST_ID,NTILE(10000) OVER( ORDER BY C), TO_DATE(CURRENT_
TIMESTAMP)
FROM (
SELECT CUST_ID,COUNT(*) C
FROM "TEST"."F_TRANS"
GROUP BY CUST_ID);
END IF;
SELECT USER_TYPE,SUM(SALES_NET) SALES_NET
FROM _SYS_BIC."test/AN_TEMP2"
GROUP BY USER_TYPE;
END;

Listing 3.59  Script of SP with Intermediate Data that Can Be Shared

With this approach, it might take some time for the first user to perform the anal-
ysis. When the stored procedure finishes, other users can rely on the intermedi-
ate results on the permanent table, saving a lot of system resources.

There are other ways to reduce resource consumption. In this particular example,
you can make an extraction, transformation, and loading (ETL) job to populate
the physical table of the intermediate result set. Again, there is no simple rule to
follow when deciding on an approach; you have to compare overall performance.

Query Results Cache

As of SAP HANA SPS 09, you can leverage a feature called the query results cache. You
can enable this feature from the View Properties tab and set the Cache Invalidation
Period to daily or hourly. This option is suitable for a view that can be used repeatedly.

3.10 Calculating Count Distinct

It can be time-consuming to calculate count distinct for a large dataset. However,
you can fine-tune a model and make the calculation as efficient as possible. Best
practices include the following:

� Avoid concatenating count columns

� Split large count distinct aggregations into smaller ones
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Let’s start with an example. Suppose you want to run the following query:

SELECT COUNT(DISTINCT TRANS_NO||DEP_ID)
FROM FACT_2;

It is important to note that calculating at the row level is never a good idea here.
Instead, you should remove the concatenation from the query, and change it into
the query shown in Listing 3.60.

SELECT COUNT(*)
FROM (
SELECT DISTINCT TRANS_NO,DEP_ID
FROM FACT_2);

Listing 3.60  Query without Concatenation of Strings

Figure 3.43 defines a counter on an analytic view and adds TRANS_NO and DEP_

IN row columns in the Edit Counter window.

Figure 3.43  Counter with Two Columns

Then run the following query:

SELECT SUM(DC) FROM _SYS_BIC."test/AN_FACT_1";
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If you just stopped here, the performance of the query would not be optimal.
Instead, a better approach is to separate the columns totally, leaving only one col-
umn as the counter and putting the other column into a GROUP BY clause (see Fig-
ure 3.44).

Figure 3.44  Counter with a Single Column

To calculate count distinct, you need two levels of SELECT statements, as shown in
Listing 3.61.

SELECT SUM(DC)
FROM (
SELECT SUM(DC) DC
FROM _SYS_BIC."test/AN_FACT_1"
GROUP BY DEP_ID);

Listing 3.61  Query to Calculate Count Distinct with Two-Level Aggregation

If there are more than two combined columns, perform the same process; leave
one column as a counter, and put the other columns into the GROUP BY clause.
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To address poor performance for count distinct values on a single column against
a large dataset, you need to try a different approach. First, examine the following
query:

SELECT COUNT(DISTINCT TRANS_NO)
FROM FACT_2;

Assuming the table is partitioned by Hash (USER_ID), you can check if there are
multiple distinct values of USER_ID for each TRAN_NO with the following query:

SELECT TRANS_NO
FROM FACT_2 GROUP BY TRANS_NO HAVING COUNT(DISTINCT USER_ID)>1;

If the query returns no rows, you can separate the count distinct calculation on
each individual partition to get the subtotal, and then use SUM() to calculate the
total. To achieve this logic, perform the query in Listing 3.62.

SELECT SUM(C)
FROM (
SELECT COUNT(DISTINCT TRANS_NO) C
FROM FACT_2
GROUP BY USER_ID);

Listing 3.62  Query to Calculate Count Distinct Group by USER_ID

To calculate the query with an analytic view, run Listing 3.63.

SELECT SUM(C)
FROM (
SELECT SUM(DC) C
FROM _SYS_BIC."test/AN_FACT_1"
GROUP BY USER_ID);

Listing 3.63  Query Against an Analytic View to Calculate the Count Distinct Group by USER_ID

With less data being transferred between the partitions, the performance has
been greatly improved.

3.11 Using Cached Views

SAP HANA provides a feature to cache the result sets of views in memory. This
feature benefits users dealing with time-consuming views. With the cache feature
enabled on the view, if the view is frequently used, it accesses underlying tables
once and stores the result set into the cache. The subsequent queries against the
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same view will browse the cached result set instead of accessing underlying
tables, and the execution time can be reduced.

In this section, we will look at two types of cache: a result cache and a view cache.

3.11.1 Defining a Result Cache

Before you use the cache feature, make sure to check the cache setting of Index-
server.ini under the Configuration tab of SAP HANA Studio, as shown in Figure
3.45.

Figure 3.45  Parameters for Cache in Indexserver.ini

There are a few parameters in the Indexserver.ini file for the cache feature, includ-
ing the following:

� resultcache_enabled 
To enable the cache feature, set the value of this parameter to yes. The default
value is no, which means no cache is made.

� resultcache_clear_reconfig 
To clear the cache upon configuration update, set this parameter to yes. The
default value is no.

� resultcache_request_timeout_in_milliseconds 
This parameter defines how long the result cache should wait for requests in a
distributed environment. The default is 0 ms, which means to ignore result
caches on other nodes.

� resultcache_maximum_value_size_in_bytes 
This parameter specifies the maximum size of a result set to be cached. Results
with larger data sizes will not be cached. The default value is 1 million bytes.
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� resultcache_minimum_query_execution_time_in_milliseconds 
This parameter specifies the minimum query execution time to cache a result.
Queries with a lower execution time will not be cached. The default value is
100 ms.

Not all views are suitable for caching; consider the following criteria to determine
whether to cache a view:

� Is the view expensive? If it takes long to run or consumes a lot of system
resources, such as CPU, memory, or network, to run a query against the view,
you may consider caching the view.

� Is the query against the view executed repeatedly?

� Is the result set of the view small? Large caches consume a lot of memory. On
the other hand, if the cache size is not significantly smaller than the underlying
tables, there will be no benefit to use a cache.

� Is stale data acceptable? The data read from the cache might be one hour or one
day older than the current data, so it might not be suitable to use a cache if real-
time data is required.

You can control the behavior of a cache individually with parameters in queries at
run time. The following are a few options for controlling the behavior of a cache:

� To make the query not cache the result, run the following:

SELECT ... FROM _SYS_BIC."test/AN_TRAN" WITH PARAMETERS 
('CACHE'=('OFF'));

� A result cache can be in real-time mode, which makes the query read data from
the underlying view or table instead of caching when the underlying tables or
views are updated. To make the cache in real-time mode, run the following:

SELECT ... FROM _SYS_BIC."test/AN_TRAN" WITH PARAMETERS ('CACHE'=
('REALTIME'));

� Different than a real-time cache, you can define the cache as time-controlled.
The cache will last a specified period of time before it expires. To define the
cache as time controlled at run time, run the following:

SELECT ... FROM _SYS_BIC."test/AN_TRAN" WITH PARAMETERS ('CACHE'=
('TIME_CONTROLLED', '60'));
252



Using Cached Views 3.11
To check how much memory is consumed in a cache, run the following:

SELECT HOST,PORT,CACHE_ID,USED_SIZE FROM M_CACHES;

Table 3.1 shows the results of the preceding query, which returns the statistics of
the cache. The record for which CACHE_ID is CS_QueryResultCache[Realtime]
shows the size of the cached results in real-time mode, and the record for which
CACHE_ID is CS_QueryResultCache[TimeControlled] shows the size of the cached
results in time-controlled mode.

In addition to defining the caches at run time, you can define them at design time
when creating the modeled views. To turn on a cache for a modeled view, edit the
Cache Invalidation Period option under the View Properties tab of the view
and set it to Hourly or Daily (see Figure 3.46).

Figure 3.46  Cache Flag of the Modeled View

When the model is activated, the corresponding column view is created with the
parameter CACHE_INVALIDATION_PERIOD set to HOURLY or DAILY (see Listing 3.64).

HOST PORT CACHE_ID USED_SIZE

bi1-401 31,003 CS_QueryResultCache[Realtime] 6,206,507

bi1-401 31,003 CS_QueryResultCache[TimeControlled] 23,047

Table 3.1  Content of M_CACHES
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CREATE COLUMN VIEW _SYS_BIC."test/AN_TRANS" ... WITH PARAMETERS
('CACHE_INVALIDATION_PERIOD' = 'HOURLY');
CREATE COLUMN VIEW _SYS_BIC."test/AN_TRANS" ... WITH PARAMETERS
('CACHE_INVALIDATION_PERIOD' = 'DAILY');

Listing 3.64  DDL to Set the Cache on the Column View

The views with the cache flag enabled will generate a time-controlled cache. The
cache will last one hour or one day, based on the CACHE_INVALIDATION_PERIOD
setting. When using the cache, you should be aware that the query result might
not be based on the most current data in the underlying tables. If you want cur-
rent data, you can add the parameter ('CACHE'=('OFF')) in the query.

3.11.2 Defining a View Cache

A view cache is another type of cache that can be created on SQL views and cal-
culation views. You can enable the view cache feature by using the ALTER VIEW
statement:

ALTER VIEW _sys_bic."test/CA_SALES_PURCHASES" ADD CACHE RETENTION 60;

This statement makes the calculation view or SQL view cacheable. By defining the
RETENTION parameter in a query, you set the maximum staleness threshold that a
user can see for a cached result. The RETENTION parameter is measured in minutes.

In this case, the cached result set expires in 60 minutes based on the RETENTION
parameter. When you run a query after the cache has expired, the query
accesses the underlying tables again to retrieve the new result set and then
caches it. The RETENTION parameter can be adjusted to satisfy your individual
business requirements.

When the source tables are updated daily with the ETL jobs running every night
and there is no change during the day, you can set the RETENTION parameter to
1,440 minutes. After the first query caches the result set, the cache can be used by
subsequent queries for the whole day.

If the source tables are updated every second, the result set in the cache will not
be quite up-to-date if you set RETENTION to 60 minutes. This cached result set may
miss some records in the underlying tables that were updated in the last 60 min-
utes. Therefore, you need to check if your specific business requirements allow
some degree of staleness before you enable a cache on the view.
254



Using Cached Views 3.11
Disabling the Cache Feature on a View

To disable the cache feature on the view, run the following:

ALTER VIEW _sys_bic."test/CA_SALES_PURCHASES" DROP CACHE;

Defining a Cache with Limited Columns

In many cases, not all columns need to be cached in a view. To define a cache
with limited columns, you can specify the column to be listed with the following
statement:

ALTER VIEW _sys_bic."test/CA_SALES_
PURCHASES" ADD CACHE RETENTION 60 OF DATE_SQL,CITY,SALES_NET;

In this statement, the columns DATE_SQL, CITY, and SALES_NET are set as cache-
able. When you run a query that contains only these three columns, the result
would be cached, as shown:

SELECT DATE_SQL,CITY,SUM(SALES_NET) from _sys_bic."test/CA_SALES_
PURCHASES" GROUP BY DATE_SQL,CITY;

If the query is SELECT * or it contains other columns, the result will not be cached.

Separating Cache Results by Filter Values

A cache can be defined with a specified filter, as shown in the following statement:

ALTER VIEW _sys_bic."test/CA_SALES_PURCHASES" ADD CACHE RETENTION
60 OF DATE_SQL,CITY,SALES_NET FILTER PROD_ID=1;

In the preceding statement, only the result set of the query with filter PROD=1 will
be cached. From one view, we may have different result sets based on different
filters. To cache different result sets for different filter values, we use the question
mark (?) in the cache definition statement, as shown in the following query:

ALTER VIEW _sys_bic."test/CA_SALES_PURCHASES" ADD CACHE RETENTION
60 OF DATE_SQL,CITY,SALES_NET FILTER PROD_ID=?;

You can run multiple queries with different filter values on the PROD_ID column,
which will enable each result set to be cached separately. To check the cache
details, run the following query:

SELECT * FROM M_VIEW_CACHE;
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In Figure 3.47, you can see the result of the query, which shows multiple cached
result sets for the same view. In the DETAILS column, you can see different filter
values.

Figure 3.47  Details of a View Cache in Table M_VIEW_CACHE

Refreshing a Cached Result Set

In addition to filtering capabilities, you can also use refresh parameters to refresh
your cache. Rather than waiting for the expiration of a cached result set, you can
manually refresh the cache to save current results by running the following state-
ment:

ALTER VIEW _sys_bic."test/CA_SALES_PURCHASES" REFRESH CACHE;

Suppose the underlying tables are updated in ETL jobs every night, and it takes a
lot of time to run queries against the view. You can set the retention time of the
view to 1,440 minutes and run the statement after ETL jobs have finished. Then,
all queries against the view the next day can read data from the cache with high
performance, instead of accessing the underlying tables.

You can also refresh a specific cache by specifying the cache ID in the statement,
as shown in the following query:

ALTER SYSTEM REFRESH VIEW CACHE ENTRY 5;

Deleting All or Single Caches

To delete all cached results, run the following statement:

ALTER SYSTEM CLEAR VIEW CACHE;

To delete a single cache by specifying the cache ID, run the following statement:

ALTER SYSTEM REMOVE VIEW CACHE ENTRY 5;

Using Hints

For a view that is cache-enabled, you have the option to use or to ignore the
cache in each query by using a hint. As shown in Listing 3.65, you can add
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HINT(IGNORE_VIEW_CACHE) to make the query read data from the underlying
table instead of using the cache.

SELECT DATE_SQL,CITY,SUM(SALES_NET) FROM _sys_bic."test/CA_SALES_
PURCHASES" WHERE PROD_ID=1 GROUP BY DATE_SQL,CITY WITH HINT(IGNORE_
VIEW_CACHE);

Listing 3.65  Query with Hint to Ignore a Cache

The default behavior of a cache-enabled view is to use the cache in each query
when the hint is not added in the query.

Using a Cache for Time Travel

In Section 3.8, we discussed the methods involved in using both real and simu-
lated history tables for time travel. Cached views can also be used to perform time
traveling in SAP HANA.

Because cached result sets are retrieved from underlying tables during the day
and the cached result is not changed within the retention period, you can take
advantage of the cache feature to achieve time travel by caching multiple result
sets.

For example, suppose you want to analyze the history status of the view CA_
SALES_PURCHASES on an hourly basis. To do this, you can cache the result sets of
the view every hour. To separate the cached result sets, add a dummy input
parameter "TS" to the view. This parameter is used to differentiate the cached
result sets; it does not have a connection to any column in the view. Each hour,
run a query with a value from the timestamp assigned to the input parameter. For
example, for 10:00, run the following:

SELECT * FROM _sys_bic."test/CA_SALES_PURCHASES" (PLACEHOLDER."TS" =>
'2015-06-01 10:00:00');

And for 11:00, run the following:

SELECT * FROM _sys_bic."test/CA_SALES_PURCHASES" (PLACEHOLDER."TS" =>
'2015-06-01 11:00:00');

The results sets of the queries with different input parameter values will be
cached separately. By checking the table for M_VIEW_CACHE, you can find multiple
entries for the view CA_SALES_PURCHASES. After the result sets are cached, you can
access each cached result set by specifying the timestamp values of the input
parameters in the query to achieve time travel.
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For example, to check the history data at 10:00, you can run the following query
to use the cached result captured at 10:00:

SELECT * FROM _sys_bic."test/CA_SALES_PURCHASES" (PLACEHOLDER."TS" =>
'2015-06-01 10:00:00');

In this section, we introduced how to use the cache feature to deal with time-con-
suming views. There are pros and cons for this feature; the pros include improved
performance, whereas the cons include data staleness and additional cache main-
tenance for database users.

3.12 Summary

In this chapter, we explained several ways in which you can improve perfor-
mance when dealing with larger datasets. You can follow some general recom-
mendations, such as partitioning tables, leveraging data pruning, leveraging the
OLAP engine, pushing filters down, and so on. However, because the root causes
of performance issues can differ, it is a good idea to use SAP HANA tools such as
the explain plan, visualize plan, or performance trace to figure out the actual bot-
tleneck before modifying queries or models. In addition, you can also redesign
the database on the server side or redefine an analysis strategy on the client side.

In the next chapter, we will move on to predictive modeling for forecasting, find-
ing anomalies, discovering data relationships, and more.
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Chapter 4 In this chapter, we will look at data mining processes and the predictive 
analytics lifecycle in SAP HANA and discuss the tools and frameworks in 
SAP HANA that enable you to build predictive models.

4 Basic Predictive Modeling

Predictive models can help solve a number of business scenarios by forecasting
the outcome of multiple strategies prior to implementation, finding anomalies in
data, discovering data correlations and relationships, exploring influences on
data, and locating trends based on data history. Through such actions, companies
can make informed investments and as a result more accurately allocate
resources.

Within SAP HANA, SAP Predictive Analytics 2.x works as a frontend tool, pro-
viding both an expert and business user mode. By integrating R with SAP
HANA’s in-memory analytics, SAP HANA has the ability to support a wide range
of predictive analytic scenarios. SAP HANA’s data mining algorithms are
embedded into the database through the Predictive Analysis Library (PAL). In
addition, SAP HANA Studio has the ability to perform data mining processing
with SAP GUI.

Through SAP Predictive Analytics for visualizations, R’s data mining and statis-
tical capabilities, and PAL, SAP HANA has the ability to create advanced predic-
tive data models for countless scenarios. In this chapter, we will look into basic
predictive modeling tasks and data mining processes. We will discuss specific
tools and design considerations for predictive models and perform data mining
tasks in SAP HANA. Let’s begin by looking at the predictive analytics lifecycle in
SAP HANA.

4.1 Predictive Analytics Lifecycle in SAP HANA

In the predictive analytics lifecycle, there are a number of processes that enable
the creation of advanced predictive models. Figure 4.1 illustrates the different
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phases that are usually encountered in the predictive analysis and data mining
processes in SAP HANA.

Figure 4.1  SAP HANA Model Process

The phases shown in Figure 4.1 can be described as follows:

� Data loading  
In this phase, data comes into SAP HANA. The sources of the data can be
applications running within the SAP HANA platform, SAP Business Suite
applications, data loaded through SAP ETL tools, or data management tools.

Data Loading Process

Data loading is beyond the scope of this book. Assume that data is loaded into SAP
HANA through applications, SAP SLT or SAP Data Services, either in real time or
through ETL processes.

� Data exploration and preparation  
Based on the business problem that needs to be solved, in the data exploration
phase you will look for various attributes, associativity, or correlations with
target variables or predictive tasks, using SAP tools such as SAP Predictive
Analytics or SAP HANA Studio to explore data.

Data Exploration and 
Preparation

Modeling

Data Loading

Evaluate
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In the data preparation phase, you will prepare data for algorithms. In SAP
HANA, logical models such as attribute views, analytic views, or calculation
views prepare data with newly derived columns and/or perform minor trans-
formation tasks. If you need to perform complex transformations, we recom-
mend using SQL statements and creating materialized views or tables. In SAP
HANA, you have the flexibility to leverage any of these techniques.

� Modeling 
In this phase, you will create predictive models using various algorithms in SAP
HANA. SAP HANA provides a rich set of techniques to create models by using
native PAL, R algorithms, or SAP InfiniteInsight algorithms.

� Evaluate 
Once the predictive models are created, they are evaluated on a regular basis
for improvement and accuracy. These evaluated models are used regularly for
scoring in production systems.

Now that we’ve looked at the various phases involved in predictive analytics and
data mining, let’s turn our attention to some of the more commonly used models
in the next section. Then, we will discuss predictive algorithms and the Applica-
tion Function Library (AFL). Finally, this section will conclude with an example.

4.1.1 Commonly Used Models

Cross Industry Standard Process for Data Mining (CRISP-DM) and Sample, Explore,
Modify, Model and Assess (SEMMA) are two well-known data mining process mod-
els used in solving data mining problems. The third most followed model after
CRISP-DM and SEMMA is a custom or specific process model. In the sections that
follow, we will look at the two main model types—CRISP-DM and SEMMA—and
their processes.

CRISP-DM

Figure 4.2 depicts data mining process for the CRISP-DM model. CRISP-DM is a
six-stage model that begins by understanding the business requirements for
deploying models. The model’s six phases are as follows:

1. Business understanding  
In this phase, the business requirement is understood and translated into the
data mining problem definition, and the plan for the project is prepared.
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2. Data understanding  
This phase starts with data selection: loading and understanding the data and
generating hypotheses.

3. Data preparation  
In this phase, the raw data is transformed into the usual form for data mining.

4. Modeling 
Here, modeling techniques are applied and calibrated with model parameters.

5. Evaluation 
In this phase, the model output is reviewed from the process to create models
and achieve solutions to business problems.

6. Deployment 
In the final phase, models are deployed in production to enable consumption
by the application.

Figure 4.2  CRISP-DM Model
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The model enhancement cycle starts from the business understanding stage to the
deployment stage. The data loading phase of SAP HANA is equivalent to the busi-
ness data understanding phases of CRISP-DM. The business understanding phase
of CRISP-DM also covers identifying correlations and factors as part of the data
exploration phase in SAP HANA. The rest of the phases are similar to SAP HANA’s
predictive analytics lifecycle phases.

CRISP-DM also deploys models in production as an additional phase. In the case
of SAP HANA, storing and executing models both happen in the SAP HANA
database.

SEMMA

SEMMA is enhanced by SAP HANA’s integration with SAS Analytics using the
SAS Predictive Modeling Workbench for SAP HANA. SEMMA has five phases for
modeling:

1. Sample 
Acquire a representative sample of a large dataset to create models more easily.

2. Explore 
Understand patterns in the data.

3. Modify 
Perform data manipulations and transformations for model execution.

4. Model 
Apply models to the dataset.

5. Assess 
Evaluate the models for reliability and achieving expected results.

Note that these phases are more technical and more aligned to the various SAS
Analytics tools that enable you to perform these activities. In SAP HANA sam-
pling, exploration and modeling is performed in the data understanding and
preparing phase due to the native availability of technical capabilities with the
database itself.
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4.1.2 Predictive Algorithms in SAP HANA

SAP HANA contains algorithms natively in the database, with additional tools to
consume and manage predictive modeling. The algorithms in the SAP HANA
database provide performance enhancements, reduced data movement, and
improved overall efficiency. SAP HANA also enables R algorithms as operators so
that SAP HANA’s calculation power can be combined with open packages of R.

There are a number of predictive tools and algorithms available through SAP
HANA, and Figure 4.3 provides an illustration of some of these elements.

Figure 4.3  Predicitve Analysis in SAP HANA

Let’s take a closer look at the elements of Figure 4.3:

� Application Function Library framework 
This is the core framework library that enables on-demand loading. The func-
tional libraries such as the PAL and the Business Function Library (BFL) are
enabled on an AFL framework controlled and enabled through wrapper proce-
dures. SAP HANA role-based security uses the AFL to control the execution of
AFL procedures.
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� Predictive Analysis Library 
This library provides functions for predictions, machine learning, statistical
algorithms to serve data preparation, classification, regression, association, link
prediction, and more.

� Business Function Library 
This library contains functions needed for applications, especially in the finan-
cial area.

� RLANG procedures  
SAP allows you to write R code in SAP HANA. As an R client, SAP HANA man-
ages the communications and data transformations from the columnar struc-
ture to the R data types and vice versa.

� SAP Predictive Analytics  
SAP Predictive Analytics is an application that can be installed on a desktop or
server. This application supports automated algorithms through which busi-
ness users can choose to work on predictive tasks like classification/regression,
social network analysis, and more, without deep algorithm knowledge. This
tool also supports expert mode to perform all the data mining processes, utiliz-
ing PAL, SAP HANA, and R integration. A data scientist can customize the
parameters of algorithms for their data mining processes. This tool also enables
consumption of local R in a desktop environment.

� SAP HANA Studio  
SAP HANA Studio has different perspectives to perform tasks ranging from
administration to various developments on the SAP HANA platform. Using SAP
HANA Studio as an SAP HANA modeler, you can develop procedures, views,
and more. You can create wrapper procedures on the AFL and consume them
in views and procedures. A graphical editor in SAP HANA Studio called the
Application Function Modeler (AFM) enables the easy creation of wrapper pro-
cedures on the AFL and BFL in SAP HANA.

With these tools, you can develop the phases discussed at the beginning of this
section. Figure 4.4 shows the tools that can be used in each of the phases.
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Figure 4.4  SAP HANA Modeling with Tools

In the subsequent sections, we will look into how to perform each of the phases
in SAP HANA with the help of the aforementioned tools. First, however, the next
section will look at the AFL and its use in predictive modeling.

4.1.3 Application Function Library

The AFL framework provides a consistent way to consume the algorithms pro-
vided by function libraries such as the PAL and BFL while adhering to SAP HANA
security standards. Figure 4.5 shows the architecture overview of the AFL frame-
work.

As shown in Figure 4.5, PAL is consumed through the AFL framework with wrap-
per functions. For every function in PAL or BFL, a wrapper function needs to be
generated for application consumption. The execution of this wrapper procedure
is controlled by access rights set through roles in SAP HANA.

Every algorithm will have a parameter table. The typical structure of this table
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Data Exploration and 
Preparation

l

Modeling

Data Loading

Evaluate

1. SAP Data Services
2. SAP SLT
3. SQL

1. SAP Predictive Analytics
2. SQLScript Procedure 
3. SAP HANA Studio

1. AFL based algorithms
2. Automated algorithms
3. R

1. SAP HANA Studio 
2. SQL
266



Predictive Analytics Lifecycle in SAP HANA 4.1
be populated, and the remaining two columns of the other types will have a null
value. Every function requires different parameters to work, and these act as
inputs for algorithms along with the data. The consumption of these wrapper
functions happens through SQLScript or through script based on a calculation
view. For more information, the PAL reference guide is available at http://
help.sap.com/hana/sap_hana_predictive_analysis_library_pal_en.pdf. Every wrapper
procedure’s input and output parameters are documented in the reference guide.
Before generating a wrapper procedure, you need to understand the input data
and output tables of the algorithms. Input table types are designed for particular
predictive tasks. If you want two different input data types to be processed by an
algorithm in two different invocations, there should be two wrapper procedures.
Each wrapper procedure will have its own input types.

Figure 4.5  AFL Framework

An algorithm is controlled by its set of parameters. Most algorithms require at
least one parameter. In SAP HANA, most algorithm parameters default to generic
values, including the structure of the control table. You can set a few values at
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Figure 4.6  PAL Lifecycle
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However, not all algorithms use training and scoring. Some algorithms involve
unsupervised learning, like k-means, which do not produce a model as an output
but instead create insight results. In such cases, a scoring process is not required.

Now, let’s discuss an example, which we will use in rest of the chapter to explain
how to perform the predictive modeling phases in SAP HANA.

4.1.4 Business Example

This example will look at forecasting the sales of two products: Product A and
Product B. These two products will have unique product IDs (numbers), but we
will refer to them as A and B throughout this chapter.

The initial step for this task is to have a good understanding of the business prob-
lem itself. Some questions that may impact your modeling include the following:
What is the frequency of the forecast, such as a daily forecast, a weekly forecast,
or a sometime-in-the-future forecast? You have to understand what variables the
daily or weekly sales are dependent on, such as seasonality, weather, day of the
week, promotions, effect of competitiveness, and so on. The next step is to get
the dataset for the products—data loading from sales, master data-like promo-
tions, weather calendars, and so on—into SAP HANA.

After loading data into SAP HANA, the next step is to analyze the data. For this
particular example, you want to understand the historic sales time series. A time
series is a sequence of data observations (measures) over successive intervals of
time and can be used to predict future values, which are used extensively for busi-
ness, social, and general public needs. You can perform a correlation with vari-
ables and identify the variables, white noise, and more.

White Noise in Data

White noise or noise in a time series represents uninterpretable or random shocks in the
data. It can include a sudden high increase or decrease of values outside of the mean,
moving average, or standard deviation. If there is no correlation between the different
lags of data, this is referred to as white noise.

This step will also identify which algorithms suit forecasting, such as cause-and-
effect-based regression models, boosting-based algorithms, seasonal-based algo-
rithms, or autoregressive models.
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Once you have identified these factors, you can prepare the data for the training
model. This can be a logical model along with sales and variables or can be mate-
rialized based on the complexity of identified variables. Finally, once you train a
model for forecast, you can evaluate its accuracy and improvise the models in the
evaluate phase.

4.2 Data Exploration

In this section, we will continue to use the forecasting problem introduced in Sec-
tion 4.1.4 and cover the data exploration phase of predictive modeling.

Data exploration involves the following set of activities:

� Understanding the behavior of target data (in this case, sales of a product).

� Understanding the correlations and autocorrelations of time series behavior.

� Understanding the casual attributes for the behavior.

� Determining the model types for training best suited for the task (forecasting)
based on data patterns.

4.2.1 Understanding Sales Data

Let’s consider a simple time series data for product sales in a table. Because this is
a time series, you can create a column table with the SERIES storage class, as
defined in Listing 4.1.

DROP TABLE SALES_SERIES_DATA;
CREATE COLUMN TABLE SALES_SERIES_DATA (
YEAR_WEEK INTEGER not null,
STORE_ID INTEGER not null ,
PROD_ID VARCHAR(10)_ not null ,
SALESQTY double, primary key(STORE_ID,PROD_ID,YEAR_WEEK)
) SERIES (
SERIES KEY(STORE_ID, PROD_ID)
EQUIDISTANT INCREMENT BY 1 MISSING ELEMENTS NOT ALLOWED PERIOD
FOR SERIES (YEAR_WEEK,NULL)
);

Listing 4.1  Series Data Table Creation

Note that the SERIES class definition enables the creation of the time series data.
This gives you the flexibility to use time series functions such as correlation or
Pearson correlation on the data.
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Based on Listing 4.1, the table definition looks as shown in Figure 4.7.

Figure 4.7  Series Table Structure

We have inserted two years of sales quantities for products into the series table
shown in Figure 4.7. The sample sales data should look like Figure 4.8.

Figure 4.8  Series Sample Data
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In SAP HANA Studio, you can observe the time series via Table Data Preview

under the Data Analysis tab. In Figure 4.9, note that overall SALESQTY across
historic time for all products is aggregated. Drag the appropriate columns to the
label access, measure the axes, and choose the proper chart type (see Figure 4.9).
This will let you see whether there are any trends or broader level seasonality/
outliers seen in the data.

Figure 4.9  All Products Time Series

Now, you can focus on individual product sales patterns by choosing a particular
product in the filters. The Product A sales series is shown in Figure 4.10.

The behavior of Product A looks more or less similar to the initial overall sales
pattern in Figure 4.9. This might be due to the fact that the quantity sold of this
product is the most significant percentage in aggregation; the numbers on the y-
axes in Figure 4.9 and Figure 4.10 are close to each other. You can see the trend
of Product B in Figure 4.11.
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Figure 4.10  Product A Sales Series

Figure 4.11  Product B Trend
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Let’s now look at the statistical behaviors of these two products. To do so, gener-
ate a wrapper procedure for the UNIVARSTAT function from PAL as PAL_UNIVARIA-
TESTAT_PROC. Listing 4.2 is sample code for the univariant statistical analysis of
both products. The univariant analysis of distribution function UNIVARSTAT in SAP
HANA provides the following statistical calculations:

� Mean, median, and mode  
The mean, median, and mode provide the average value of distribution, the
middle values of distribution, and the most frequently occurring values of dis-
tribution, respectively. The output of the univariant analysis provides the mean
and median.

� Lower quartile and upper quartile  
The median of the lower half and higher half are referred to as the lower quar-
tile and upper quartile. The median of the entire distribution is considered for
dividing the distribution into two halves. These values will help you under-
stand the value differences in the distribution.

� Variance and standard deviation  
The variance for a population is the calculated average of the squared difference
of each element in the distribution, with a mean of the distribution and the
standard deviation as the square root of the variance. The formula for variance
is σ2 = (Σ (ni – µ)2)/n, where the standard definition (σ) is the square root of the
variance. These values help you understand the spread of distribution in SAP
HANA and also support sample dataset variance and standard deviation with
the DATASET_TYPE parameter.

� Skewness 
This calculation measures the symmetric level of a distribution. Symmetric dis-
tribution will have a mean, median, and mode at the same point with values
that occur at regular frequencies. A higher value of greater than 1 is referred to
as asymmetric.

� Kurtosis 
This calculation measures the flatness or peakedness of the data. A Gaussian dis-
tribution has 0 kurtosis. A negative kurtosis indicates that data is flat, and a pos-
itive kurtosis indicates high peaks in the data.
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Listing 4.2 shows the univariant analysis at work.

DROP PROCEDURE CALL_UNIVAR;
CREATE PROCEDURE CALL_UNIVAR() LANGUAGE SQLScript AS
BEGIN

input1 = SELECT "SALESQTY"

FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = ‘A’
ORDER BY YEAR_WEEK ASC;

control_1 = SELECT * FROM PAL_CONTROL_TBL_U;

CALL "ANIL_FORECAST"."PAL_UNIVARIATESTAT_PROC" (:input1, :control_1,
v_result1);

input2 = SELECT "SALESQTY"

FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = ‘B’
ORDER BY YEAR_WEEK ASC;

CALL "ANIL_FORECAST"."PAL_UNIVARIATESTAT_PROC" (:input2, :control_1,
v_result2);

select * from :v_result1;
select * from :v_result2;
END;

Listing 4.2  Univariant Statistical Analysis Code for Both Products

Note that in the procedure shown in Listing 4.2, the PAL function is called for
both Product A and Product B separately. The other possible approach is to call
PAL once for both Products A and B distributed as two individual columns. You
need to ensure that the sales quantities of each product are available for all the
weeks for each product.

The results of the preceding procedure for each product are shown in Figure 4.12
(Product A) and Figure 4.13 (Product B).
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Figure 4.12  Product A Univariant Statistical Analysis

Figure 4.13  Product B Univariant Statistical Analysis

Both products have a high kurtosis and skewness, which confirms that their peaks
are quite significant. You can also see that these two products show distinct behav-
iors, with cyclic effects shown in Product B and no cycles shown in Product A.

Cyclic Effects in Data

Cyclic effects in data occur when trends or patterns repeat themselves in a particular
season or time period.

To confirm the hypothesis that these two products are exhibiting different behav-
iors, execute the correlation of these two products. In this example, assume that
SALEQTY is in the same unit and that there is no need to normalize the data. In
order to perform this correlation, self-join the table on the YEAR_WEEK column to
get both products’ results for the correct time period. Listing 4.3 shows the self-
join query.

SELECT SE.YEAR_WEEK, SE.SALESQTY A, HW.SALESQTY B
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES" SE
JOIN "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES" HW ON HW.YEAR_WEEK =
SE.YEAR_WEEK
AND SE.PROD_ID = ‘A’ and HW.PROD_ID = ‘B’;

Listing 4.3  Self-Join Table with Distinct Products
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The output of the query in Listing 4.3 is shown in Figure 4.14.

Figure 4.14  Self-Join Output

Now, perform the correlation for the sales patterns of these two products with
the SQL statements shown in Listing 4.4. In SAP HANA, two types of correlations
functions are supported as SQL functions:

� Pearson correlation 
Pearson correlation measures the linear dependency between two products. Its
value is between -1 and 1, with both boundary values inclusive. A positive cor-
relation indicates the movement of the products in the same direction. Nega-
tive values indicate movement in opposite directions. Values towards the
boundaries indicate a strong correlation, and values around zero indicate no
correlation between products. Pearson correlation is calculated via the follow-
ing formula:

ρA,B = Cov(A,B)/(σAσB)

Where:

� Cov(A,B) is the covariance of products A and B

� σA indicates the standard deviation of Product A
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� Spearman correlation 
Spearman correlation measures the strength of association between two
ranked or ordinal variables. It can be used when the non-normality of values
or one of the variables is ordinal. Spearman correlation does not measure a
linear relationship like Pearson correlation. Its measure defines the strength
of associativity.

The usual values of these coefficients is between -1 and 1. The closer to the
boundaries you are, the stronger the correlation (see Listing 4.4).

SELECT CORR(SE.SALESQTY, HW.SALESQTY) PEARSONCORR, CORR_
SPEARMAN(SE.SALESQTY, HW.SALESQTY) SPEARMANCORR
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES" SE
JOIN "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
HW ON HW.YEAR_WEEK = SE.YEAR_WEEK
AND SE.PROD_ID = 'A' and HW.PROD_ID = 'B';

Listing 4.4  Correlation Query

The output for Listing 4.4 is shown in Figure 4.15.

Figure 4.15  Correlation Output

Note that both of the correlation coefficients are close to zero, confirming the
hypothesis that these products exhibit different behaviors.

Ranked Variables

Until now, we have not used any ordinal variables (ranked variables); Spearman correla-
tion is not relevant in such cases.

In our example, we used time series forecasting to explore product behavior.
When you have a different problem to solve, such as determining the probability
of a bank losing a valuable customer (churn analysis) or any association, the tools
you leverage are similar. In such cases, use SAP HANA Studio, SQL-based queries,
and statistical algorithms in PAL. Frontend tools support different types of charts,
allowing you to leverage PAL for statistical analysis. We can also use SAP Predic-
tive Analytics GUI tools to analyze the data further.
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In this section, we looked at the behavior of each product’s sales data using SQL
queries and the SAP HANA Studio Analysis tab as part of the data exploration
phase. In the next section, we will look for factors that influence the behaviors we
have found between Product A and Product B.

4.2.2 Correlation and Autocorrelation

In this section, we will continue the example from previous sections to further
understand the factors that may have affected Product A and B sales behaviors.
Product A has exhibited no cycles or upward trends, and Product B is exhibiting
cyclic sales without any seasonal dependency and no upward or downward
trend. However, there are still sales patterns that need to be interpreted.

You can look at additional data associated with products A and B that may have
impacted sales. General factors could include data such as weather, local events,
holidays, and days of the week (if using daily forecasts). With such data, you can
perform a correlation analysis. You can also perform a factor analysis with spe-
cific business factors, such as the price of the product or promotions to push
more sales, or look at indirect factors, such as the impact of competitive product
sales and availability. Identifying these factors involves a certain amount of
business knowledge to some extent and the availability of data. For instance,
intraday and interday weather data needs to be corroborated with national
weather institutions. Similarly, the granularity of information should be the
same as the historic sales data granularity—for example, weekly information
and/or daily information.

We will present a couple of examples to investigate the hypotheses that Product
B has seasonal-based sales and that Product A has noise within its data that can be
understood by applying factor analysis.

Generate calendar data using SAP HANA Studio, which will populate the data into
table M_TIME_DIMENSION(_XXXX) under schema _SYS_BI. Figure 4.16 shows the
navigation to the calendar object generation.

Open Quick View from the SAP HANA Studio menu, and select Generate Time

Data. Choose the SAP HANA instance on which you want to generate this infor-
mation. Figure 4.16 shows the options for generating time data. Because we are
focusing on the weekly forecast, select Week for Granularity, and input the year
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range. If the information is rolled up from the daily level, the week start date will
affect the number to be considered for the sales aggregation.

Figure 4.16  Generate Time Data

Once you click the Finish button, table M_TIME_DIMENSION_WEEK is populated with
information based on the chosen weekly granularity. Now, enhance this table in
the attribute view to join both the year and week. You can use the month column
from M_TIME_DIMENSION to aggregate the information and perform a correlation.
Listing 4.5 shows two queries that provide a look at the sales correlation between
the sales and month for Product A.

SELECT CORR(M, A), CORR_SPEARMAN(M,A) FROM (
SELECT HW."YEAR_INT", HW.MONTH_INT M, SUM(SE.SALESQTY) A
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES" SE
JOIN "_SYS_BI"."M_TIME_DIMENSION_WEEK" HW ON HW.YEAR_WEEK = SE.YEAR_
WEEK
AND SE.PROD_ID = ‘A’
GROUP BY HW.YEAR_INT, HW.MONTH_INT);

SELECT CORR(M, A), CORR_SPEARMAN(M,A) FROM (
SELECT HW."YEAR_INT", HW.MONTH_INT M, SUM(SE.SALESQTY) A
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES" SE
JOIN "_SYS_BI"."M_TIME_DIMENSION_WEEK" HW ON HW.YEAR_WEEK = SE.YEAR_
WEEK
AND SE.PROD_ID = ‘A’
GROUP BY HW.YEAR_INT, HW.MONTH_INT);

Listing 4.5  Product A Queries for Weekly and Monthly Correlation

Figure 4.17 and Figure 4.18 show the monthly and weekly correlation coeffi-
cients for Product A.
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Figure 4.17  Product A Sales Correlation: Month

Figure 4.18  Product A Sales Correlation: Week

Both of these values confirm that the sales of Product A do not correlate to any
particular season.

Let’s perform the same actions for Product B. Listing 4.6 shows both queries for
correlation (month and week).

SELECT CORR(M, A), CORR_SPEARMAN(M,A) FROM (
SELECT HW.YEAR_INT, HW.MONTH_INT M, SUM(SE.SALESQTY) A
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES" SE
JOIN "_SYS_BI"."M_TIME_DIMENSION_WEEK" HW ON HW.YEAR_WEEK = SE.YEAR_
WEEK
AND SE.PROD_ID = ‘B’
GROUP BY HW.YEAR_INT, HW.MONTH_INT);

SELECT CORR(M, A), CORR_SPEARMAN(M,A) FROM (
SELECT HW.YEAR_INT, HW.WEEK_INT M, SUM(SE.SALESQTY) A
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES" SE
JOIN "_SYS_BI"."M_TIME_DIMENSION_WEEK" HW ON HW.YEAR_WEEK = SE.YEAR_
WEEK
AND SE.PROD_ID = ‘B’
GROUP BY HW.YEAR_INT, HW.WEEK_INT);

Listing 4.6  Product B Correlations: Month and Week

The output for each query is shown in Figure 4.19 and Figure 4.20.

Figure 4.19  Product B Sales Correlation: Month

Figure 4.20  Product B Sales Correlation: Week
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Although you can note cycles in the data, Product B sales are not correlated based
on the month or week, telling you that this product is not seasonal.

Another data exploration method that can better help you understand whether
trend factors and seasonality influence your product data is autocorrelation for
time. In Listing 4.5 and Listing 4.6, you saw the correlation between the two
products and factor analysis via monthly factors. Based on one- and two-period
lags and correlation value trends, you can determine the trends of a product and
also its seasonality. Listing 4.7 shows the autocorrelation and Spearman autocor-
relation with a one-period (one-week) lag to a six period lag. Autocorrelation and
Spearman autocorrelation can be defined as follows:

� Autocorrelation 
A cross-correlation of a signal with itself at different points in time is called
autocorrelation. It will find the similarity of observations with itself with differ-
ent time lags. For detecting appropriate time series models, such as seasonally
based or moving average based, autocorrelation is performed with many lags.
Autocorrelation also helps to detect randomness in the data when performed
with the first lag.

� Spearman autocorrelation 
Spearman autocorrelation is a measure of associativity with rank order data. It
helps to identify trends within the same variable.

SELECT CORR(SALESQTY, LAG1), CORR_SPEARMAN(SALESQTY, LAG1) FROM (
select YEAR_WEEK, PROD_
ID, SALESQTY, LAG(SALESQTY) over (partition by prod_id order by year_
week asc) as LAG1
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'B')
WHERE LAG1 IS NOT NULL
UNION ALL
SELECT CORR(SALESQTY, LAG1), CORR_SPEARMAN(SALESQTY, LAG1) FROM (
select YEAR_WEEK, PROD_
ID, SALESQTY, LAG(SALESQTY,2) over (partition by prod_id order by year_
week asc) as LAG1
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'B')
WHERE LAG1 IS NOT NULL
UNION ALL
SELECT CORR(SALESQTY, LAG1), CORR_SPEARMAN(SALESQTY, LAG1) FROM (
select YEAR_WEEK, PROD_
ID, SALESQTY, LAG(SALESQTY,3) over (partition by prod_id order by year_
week asc) as LAG1
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
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WHERE PROD_ID = 'B')
WHERE LAG1 IS NOT NULL
UNION ALL
SELECT CORR(SALESQTY, LAG1), CORR_SPEARMAN(SALESQTY, LAG1) FROM (
select YEAR_WEEK, PROD_
ID, SALESQTY, LAG(SALESQTY,4) over (partition by prod_id order by year_
week asc) as LAG1
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'B')
WHERE LAG1 IS NOT NULL
UNION ALL
SELECT CORR(SALESQTY, LAG1), CORR_SPEARMAN(SALESQTY, LAG1) FROM (
select YEAR_WEEK, PROD_
ID, SALESQTY, LAG(SALESQTY,5) over (partition by prod_id order by year_
week asc) as LAG1
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'B')
WHERE LAG1 IS NOT NULL
UNION ALL
SELECT CORR(SALESQTY, LAG1), CORR_SPEARMAN(SALESQTY, LAG1) FROM (
select YEAR_WEEK, PROD_
ID, SALESQTY, LAG(SALESQTY,6) over (partition by prod_id order by year_
week asc) as LAG1
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'B')
WHERE LAG1 IS NOT NULL;.

Listing 4.7  Autocorrelation and Spearman Autocorrelation 

If you change the query from Product B to Product A in Listing 4.7, you will
notice an autocorrelation and Spearman autocorrelation for that product.

Figure 4.21 shows the autocorrelation and Spearman autocorrelation for Product
A, with increasing lags of 1 to 6. Clearly, there is no consistent trend found in
either of the autocorrelations, indicating no overall trend for this product. You
can clearly confirm that the peaks are noise, and that you need to interpret other
specific relevant business factors such as sales, etc.

Figure 4.21  Product A Autocorrelation and Spearman Autocorrelation with 
Increasing Lags from 1 to 6
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Figure 4.22 shows the autocorrelation and Spearman autocorrelation for Product
B. Although the autocorrelation shows some trends in longer intervals, the Spear-
man autocorrelation definitely shows a decreasing trend in the data. To a greater
extent, the hypothesis of cycles and trends in Product B is confirmed.

Figure 4.22  Product B Autocorrelation and Spearman Autocorrelation with 
Increasing Lags from 1 to 6

PAL supports time series testing functions to estimate trends, white noise, and
seasonality aspects. These test functions include the following:

� Trend test 
This function tests whether there are any upward or downward trends that
exist in the time series. The two techniques that are supported by this function
are as follows:

� Difference-sign test: This is based on the number of times there is a difference
between the consecutive values in a time series. For a large number of values
in a time series, if the absolute value of difference of the mean is greater,
than the standard deviation of the differences indicates that a trend exists.

� Rank test: This is based on the Mann-Kendall (MK) test for design trends. The
null hypothesis of the test is that there is no trend, and for any given toler-
ance probability the tests will conclude the hypothesis of the trend with an
estimation between -1 and 1, where -1 indicates a negative trend, 1 indicates
a positive trend, and 0 indicates no trend. The minimum length of the time
series has to be 3.

� Seasonality test 
This test identifies the seasonality of the time series by decomposing the time
series. The two different models for decomposing are as follows:

� Additive 
xt = mt + st + yt

� Multiplicative 
xt = mt × st × yt
284



Data Exploration 4.2
Where m, s, and t are trend, seasonality, and random components, respec-
tively. These formulas will satisfy the following property, where d is the length
of the seasonal periods:

� White noise test 
This function will classify the time series as white noise or not using the Ljung-
Box test for autocorrelation with different lags. The Ljung-Box formula for sta-
tistical tests is as follows:

Where  is a sample autocorrelation at lag h, m is the number of lags being
tested, and n is the sample size. Q follows a chi-square distribution.

Because you have created hypotheses for both products, we will continue without
executing these techniques, but you should note that they are important func-
tions to remember.

In this section, we used nonparametric autocorrelations to identify trends and
seasonality aspects within data and parametric correlations with generic parame-
ters, such as month and week. The concepts of correlation are commonly used in
most data analysis and factor analysis. In the next section, we will do more with
the deterministic variable analysis of products A and B.

4.2.3 Deterministic Variables

Deterministic variables are nonrandom variables in the context of other variables.
This means that the value of variables such as sales quantity can be determined
and dependent on other variables, and thus there is no randomness involved in
determining the value of the sales quantity. In other words, a sales quantity can
be calculated using a function in which the variables and outcome of the sales
quantity contain the same set of variable values.

We have populated the time series input table used in Section 4.2.1 with variables
such as price offers and flagged promotions. We will perform an exploration anal-
ysis in SAP HANA Studio to determine whether some of the noise in the data can
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be attributed to these variables. Use SAP HANA Studio to plot a time series using
the offer price changes in correlation with the sales quantities for Product A (see
Figure 4.23).

Figure 4.23  Product A Correlation with Price

Figure 4.23 clearly shows that most of the high sales quantities happen when the
price is reduced and are dependent on the quantum of the price reduced. You also
can see that some low quantum price reductions have no, little, or inconsistent
effect. This may be due to other business factors that need new data to be loaded.
Let’s now observe Product B’s pattern, shown in Figure 4.24.

In Figure 4.24, you can see that there is an impact on sales based on the price
reduction for only a few occasions. However, there are instances in which you
cannot attribute this as a factor because of high sales (peaks) without any price
reduction. Considering all the possible factors, you can execute a multivariant
correlation coefficient and determine the relevant variables for the sales quantity.
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Figure 4.24  Product B Sales with Price

Multivariant analysis in PAL supports the basic statistics of multiple variables,
such as the covariance matrix. There are two options for covariant analysis calcu-
lations:

� Covariance matrix 
The covariance between two variables x and y is calculated using the following
formula:

The covariance of each input variable with all other variables is the covariance
matrix.

� Pearson correlation coefficient matrix 
The Pearson correlation coefficient between two variables is calculated using
the following formula:
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The correlation coefficient of each of the input variables with all other variables
is referred to as the correlation coefficient matrix.

With this function, you can see which two variables are strongly correlated and
also the variables with which the target variable has a strong correlation.

Use the PAL reference guide at help.sap.com/hana/sap_hana_predictive_analysis_
library_pal_en.pdf to build a wrapper procedure for the PAL function MULTI-
VARSTAT; call this wrapper SALES_VARIABLES.

Similar to the code for univariant statistical analysis, Listing 4.8 shows the code
for multivariant analysis.

DROP PROCEDURE CALL_MULTIVAR;
CREATE PROCEDURE CALL_MULTIVAR() LANGUAGE SQLScript AS
BEGIN

input1 = SELECT "SALESQTY" ,
"OFFER_PRICE",
"OUTOFSTOCK_COUNT" ,
"OFFER_FLAG" ,
"SHOW_TYPE" ,
"PROMOTE_TYPE"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'A'
ORDER BY YEAR_WEEK ASC;

control_1 = SELECT * FROM PAL_CONTROL_TBL;

CALL "ANIL_FORECAST"."SALES_VARIABLES" (:input1, :control_1,
v_result1);

input2 = SELECT "SALESQTY" ,
"OFFER_PRICE",
"OUTOFSTOCK_COUNT" ,
"OFFER_FLAG" ,
"SHOW_TYPE" ,
"PROMOTE_TYPE"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'B'
ORDER BY YEAR_WEEK ASC;

CALL "ANIL_FORECAST"."SALES_VARIABLES" (:input2, :control_1,
v_result2);

select * from :v_result1;
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select * from :v_result2;
END;

Listing 4.8  Multivariant Analysis Invocations

With the sales quantity and five other variables, the Pearson correlation matrix
for Product A is shown in Figure 4.25.

Figure 4.25  Product A Multivariant Correlation

You can see that the sales quantity (SALESQTY) has a high correlation with the
OFFER_PRICE factor and that the OFFER_PRICE correlates with the SHOW_TYPE and
PROMOTE_TYPE. Figure 4.23 seemed to indicate that the sales quantity for Product
A is affected by reduced price offers. Based on that data and the data here, you
can confirm this idea statistically.

Similarly, look at Product B’s variable correlation. In Figure 4.26, you can see that
the sales quantity correlates with the offer price, but not as strongly as for Product
A. This again confirms the information suggested by Figure 4.24.

Figure 4.26  Product B Multivariant Pearson Correlation

You can also perform multivariant analysis with Principle Component Analysis
(PCA) to identify good features representation and to reduce high dimensional
space. Let’s look at PCA for both the Product A time series. In PAL, when you exe-
cute PCA you get three outputs, referred to as the loading matrix, relevance table,
and scoring table.

The loading matrix provides the correlation matrix with variable proportions and
is useful for identifying which components move together (see Figure 4.27)
289



Basic Predictive Modeling4
Figure 4.27  Product A PCA Correlations

The relevance table contains the reduced order of variability in the components.
The relevance component matrix for the Product A time series is shown in Figure
4.28.

Figure 4.28  Product A Variable Proportions

The scorings table contains the variability for the component, as shown for Prod-
uct A in Figure 4.29.

Figure 4.29  Product A PCA Scorings Table
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In this section, we looked at using SAP HANA Studio to understand whether cer-
tain variables have an impact on product sales and how to statistically execute the
multivariant analysis of a Pearson correlation with multiple variables in a single
call and PCA. In Section 4.2.2, we looked at correlations (Pearson and Spearman)
and autocorrelations (Pearson and Spearman) using SQL functions, which execute
correlations between two variables.

You have learned how to perform correlations, autocorrelations, casual analyses,
and statistical techniques (univariant and multivariant), which combined with
visualization tools can help interpret data behavior and dependent variable
behavior. We also looked at various data needs and data types, such as time series
data. Refer to the PAL reference guide for more information on the other statisti-
cal algorithms supported in SAP HANA. You must choose an appropriate algo-
rithm for your task and type of data.

In the next section, we will look at what algorithms work best for forecasting and
at the design aspects of performing modeling.

4.3 Data Preparation

With data exploration, you have seen the types of patterns that can be found in a
time series. In this section, we will move into predictive data type definitions and
data preparation, followed by a discussion of various algorithms.

4.3.1 Predictive Data Types

While observing data, column data is classified into one of the following types:

� Nominal or classificatory scale 
Numbers or other symbols are used simply to classify an object or characteris-
tic—for example, the designation of postal zones.

� Ordinal or ranking scale 
If a greater than relationship holds for all pairs of classes of a nominal scale, you
have an ordinal scale—for example, military service ranks.

� Interval scale 
An ordinal scale in which the differences (or distances) between any two num-
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bers on the scale have comparative meaning—for example, the measurement of
temperature.

� Ratio scale 
An interval scale in which the zero point cannot be arbitrarily chosen—for
example, the measurement of mass (as contrasted with temperature, for which
the assignment of zero to different temperatures on alternative scales, such as
Celcius and Fahrenheit, is permissible).

� Random variable 
A variable whose occurrence is governed by a probability density function.

� Categorical type variable 
A variable whose measurement is in the nominal or classificatory scale.

These types or scales are commonly used when describing the type of column or
data expected by algorithms.

4.3.2 Cleaning and Preparing Data

This step is essential; it ensures that cleaned and transformed data is given as an
input in the algorithms to process. Identifying missing values, outliers’ detection
and addressing outliers, normalization of data, and transforming data per algo-
rithm requirements are just a few steps to ensure accurate data in algorithms.

In SAP HANA’s PAL, the following algorithms can be used for data preparation
activities:

� Scale range to normalize data  
Normalization transforms data into consistent units of scale. Algorithms like k-
means, neural networks, and others perform best when data is on a consistent
scale. In SAP HANA, there are three types of normalizations: min-max normal-
ization, z-score normalization, and normalization by decimal scaling. There is
no explicit data preparation required for some of these algorithms, because
they offer normalization as part of their parameters.

� Substitute missing values  
Missing values are often due to technical problems that lead to the actual values
being unavailable. Substituting missing values in SAP HANA is done with
mean, median, and mode values. Some algorithms use moving averages or
trends to substitute for missing values. Some of these options are available as
algorithm parameters.
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� Convert category type to binary type  
This transforms category variables into true or false (1 or 0) value variables
using conditional expressions on category values.

� Anomaly detection  
This technique is used to identify records that are different from other records.
There are various techniques for identifying these records, including the k-
means-based anomaly detection technique.

We will now apply filters on the time series data for our two products. In Figure
4.10 and Figure 4.11, you will see that the sales quantities in the initial time
frame are distinctly different than recent patterns. Therefore, only consider the
last two and half years of sales histories. Note that other scenarios might require
a longer sales history.

In this example, there are a few instances that do not follow typical trends or are
exhibiting different behavior for similar offer prices. You can use anomaly detec-
tion to identify such records in the time series.

The PAL includes an anomaly detection function; you can generate a wrapper
producer for that function and execute the anomaly detection for both products
(see Listing 4.9). You want to find the top 10 anomalies for each product as one of
the input parameters.

CREATE PROCEDURE CALL_AND() LANGUAGE SQLScript AS
BEGIN

input1 = SELECT
"YEAR_WEEK",
"SALESQTY" ,
"OFFER_PRICE"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = 'A' and YEAR_WEEK > 201100 and YEAR_WEEK < 201300
ORDER BY YEAR_WEEK ASC;

control_1 = SELECT * FROM AD_PAL_CONTROL_TBL;

CALL "ANIL_FORECAST"."PAL_ANOMALY_DETECTION_PROC" (:input1,
:control_1, v_result11, v_result12, v_result13);

input2 = SELECT
"YEAR_WEEK",
"SALESQTY" ,
"OFFER_PRICE"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
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WHERE PROD_ID = ‘B’ AND YEAR_WEEK > 201100 and YEAR_WEEK < 201300
ORDER BY YEAR_WEEK ASC;

CALL "ANIL_FORECAST"."PAL_ANOMALY_DETECTION_PROC" (:input2, :control_
1, v_result21, v_result22, v_result23);

insert into ANA_OUT
select 'A', * from :v_result11
union all
select 'B', * from :v_result21;
END;

Listing 4.9  Anomaly Detection 

Figure 4.30 shows the anomalies found for Product A, and Figure 4.31 the same
for Product B.

Figure 4.30  Product A Anomalies

Figure 4.31  Product B Anomalies

In order to evaluate the anomalies, put the anomaly results for Product A and
Product B into a table and join the outputs in an attribute view. This will allow
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you to visualize the anomalies along with the time series. Figure 4.32 shows a
simple attribute view between the time series table and output table with a left
outer join.

Figure 4.32  Anomaly Output Analysis Model

If you perform a data preview on the model in Figure 4.32 model and select the
Analysis tab, you will produce various visualizations. Figure 4.33 shows the
anomalies detected along with the time series and offer price for Product A.

Figure 4.33  Anomalies of Product A in the Time Series
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You can see via anomaly detection that high sales frequently occur when a price
reduction offer is being promoted and lower sales when no price reduction is
being promoted. You can attribute the high sales with the same offer price
(anomalies) to some other business activity and introduce an additional variable
(OUTLIER). This gives you the ability to forecast with and without that flag to pre-
pare unprecedented sales. The other approach to adding a new variable is to
identify the new data that is required and follow the modeling process again.

Figure 4.34 shows the anomaly records of Product B in the time series.

Figure 4.34  Anomalies of Product B Plotted in the Time Series

In the case of Product B, note that price reductions do not affect the sales of this
product in peak or low sales. There must be missing data with respect to the offer
price. Therefore, you need to go back and check the initial data load and the busi-
ness application system in which the offer prices were created.

Introducing an anomaly flag as a variable and providing both forecasts with and
without anomalies help in the short term until the process of identifying the
problems in the transaction system, like the offer price setting, or determining
the relevant additional data that explains the behavior is concluded.

Listing 4.9 shows the same code for applying the filters and using anomaly detec-
tion to identify the outliers that you have seen in this section.

In this section, we walked through the data preparation phase in SAP HANA using
an example. You used PAL functions and UI tools during this phase. In the next
section, we will discuss the modeling phase and will continue using Product A
and B sales for the forecasting problem.
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4.4 Modeling

PAL contains functions that allow you to perform various types of predictive
tasks, such as clustering, classification, regression, association, time series, social
network analysis, statistical functions, and preprocessing algorithms. Most often,
preprocessing and statistical functions are used to test distributions, perform ini-
tial exploratory analysis, and execute data preparation.

Predictive models are created by algorithms on data that contain patterns and sta-
tistical information about the data, enabling that information to be applied to
new data to produce predictions or inferences.

4.4.1 Predictive Modeling Tasks

In this section, we will look at the predictive modeling tasks commonly used
along with the algorithms for each respective task. We will be referring to algo-
rithms that are supported in SAP HANA PAL, but please refer to the PAL docu-
mentation for a complete list of algorithms supported.

Clustering

Clustering is the task of grouping data into multiple sets, with similar data put into
each group. The identification of similar data is performed by using techniques
such as identifying centroids or exemplars and determining the distance between
them and data, divisive-based hierarchy creations, or density-based scanning
techniques.

The most renowned technique is k-means, wherein a user has to specify a number
of groups. Affinity propagation is a new technique based on exemplars, and does
not require users to provide number inputs for groups to be identified, similar to
agglomerate hierarchical clustering.

Classification

Classification involves assigning a class to a data record based on the similarity of
the data to other, like-data classes. Classification relies on the probability of an
object belonging to or resembling a class or a propensity to act. An example of
this is classifying a transaction as a fraud transaction based on the similarity of
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this transaction to other fraud transactions. Another example is finding the prob-
ability of a bank losing its high-value customers (propensity to churn).

Typical classification techniques include rule-based models (e.g., decision trees)
and artificial intelligence/mathematical models (e.g., neural networks, support
vector machine, or nonparametric models, such as k-nearest neighbor).

Regression

Regression is a statistical model that estimates the relationship between a depen-
dent variable and an independent variable. This type of model is dependent on
the type of relationship. If the relationship is linear between the dependent and
independent variable, then the model is a mathematical linear equation, referred
to as linear regression.

Most regression models have a continuous dependent variable, excluding the
logistical (logit) regression, which takes a binary categorical variable as its depen-
dent variable but still produces a mathematical model. Usually, when the target
(dependent) variable is categorical, you use classification models, as discussed
earlier. Logistic regression is another alterative that can be used to classify a binary
outcome.

Association

Association analysis helps determine which items should go together based on the
correlations and patterns among them. This is also called basket analysis. It uses
transaction baskets as inputs and identifies patterns or common associations in
those transactions. Algorithms that fall under association analysis include apriori,
FP-growth, and K-Optimal Rule Discovery (KORD).

Time Series

As previously stated, a time series is a sequence of data observations (measures)
over successive intervals of time used to do such things as predict future values.
The complexity of predicting a future value depends on the type of behavior
exhibited in the past—ranging from simple seasonal behavior that is repeatedly
consistent to something that cannot be accurately predicted, based on unknown
factors and inconsistent behavior.
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Algorithms for this task include seasonally based smoothing algorithms, autore-
gressive moving average techniques, linear regression with smoothing and
trends, and supported vector machine regression.

Social Network Analysis

Social network analysis describes links among nodes and enables you to predict
missing or possible links. In the design phase, you identify the input parameters
for algorithms. Then, execute the algorithms until you get satisfactory results. The
changes between algorithm executions during modeling can lead to adding more
variables or changing the algorithm-specific parameters. This cycle of executing
and adding new variables continues until you get satisfactory results.

4.4.2 Setting Control Parameters

Modeling in real time may require you to set algorithm parameters on the fly
before calling PAL functions. In most cases, once these parameters are set, they
do not need to be changed until the model is enhanced.

THREAD_NUMBER is a generic parameter that enables you to make algorithms exe-
cute faster in multiple threads. Similarly, there are algorithm-specific numbers
such as NUM_ITERATIONS for k-means that should be considered for performance.

4.4.3 Creating and Maintaining Models

Models that are created using wrapper procedures work via SAP HANA tables. All
models are stored as CLOB data types with a name. Multiple versions of the same
model can be maintained with different names or in an enhanced table with ver-
sion details and other details. The invocation of a wrapper procedure needs to be
followed by a procedure that enhances the output with additional details or by
inserting new models with version names.

4.4.4 Validating Models

Every model developed needs to be validated. The general practice is to divide
the available data into three partitions for training, validating, and scoring. The
PAL stratified partition function can be used to create partitions for this purpose.
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The stratified partition will ensure that proportional distribution of the data pre-
vails even after partitioning the data.

4.4.5 Scoring Models

In SAP HANA, there are different functions for prediction, and a wrapper proce-
dure needs to be generated. The predict function takes the model table type as an
input along with the other data inputs. Choose a model by name. If you have
enhanced the model into a new table, you need to retrieve model scoring based
on the logic and call the respective prediction function with the model data as one
of the inputs.

4.4.6 Business Example

For products A and B, let’s look at examples of forecasting. You have seen that the
sales forecast is dependent on the offer price. There were also a few outliers in the
data preparation. You enhanced the table with the outlier indicator column, and
for each product marked three outlier records identified through anomaly detec-
tion in Section 4.3.2. In this section, we will create forecasting models, perform
predictions, and evaluate the models. As you have already seen what factors are
included on the sales quantities for both Product A and Product B, you know
there is more inconsistency involved for Product A.

The PAL includes the following time series functions:

� ARIMA (Autoregressive Integrated Moving Average) 
This algorithm is an improvisation of ARMA. It has three parts: AR (autoregres-
sive), for differencing the models to adjust nonstationary time series; moving
average (MA), for which a nonseasonal model is denoted as ARIMA (p, d, q),
where p stands for the autoregressive order, d is the degree of differencing, and
q is the order of the moving average model; and a seasonal model denoted
ARIMA(p,d,q)(P,D,Q)m, in which the capital letters represent the seasonal parts
of autoregressive, differencing, and moving average.

There are three ARIMA variants overall in PAL:

� ARIMA: Standard ARIMA without seasonal and external factors

� ARIMAX: Supports external regression factors and nonseasonal factors

� SARIMA: Seasonal ARIMA

Neither the ARIMA nor SARIMA variant supports external factors.
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� Smoothing 
Smoothing techniques enable you to see patterns and trends in the time series.
Smoothing seasonality allows you to see a trend, and smoothing models iden-
tifies irregularities and smooths the time series. Moving average is the most
commonly used method in smoothing. PAL supports the following smoothing
algorithms:

� Single exponential smoothing: Uses the smoothing constant parameter as an
input and applies smoothing equations to start calculating from the second
observation in the series. Does not adjust to trends.

� Double exponential smoothing: An enhanced version of single exponential
smoothing with additional trend constants as a second parameter.

� Triple exponential: Along with the smoothing trend constants of double expo-
nential smoothing, this algorithm also supports a third seasonal parameter to
adjust the series for seasonality. The estimation of these three parameters is
manual in all functionality.

� Forecast smoothing: All three parameters of triple exponential smoothing are
optional, and the algorithm automatically uses parameter space techniques
and global and local search techniques. The only mandatory input is the
model type chosen: single, double, or triple exponential smoothing.

� Brown exponential smoothing: Used when there is a trend, but no seasonality.

� Croston’s smoothing: If there is intermittent smoothing, Croston’s smoothing
technique estimates the average demand size and the average period
between intermittent demand and also estimates demand.

� Linear regression with damped trend and seasonality
This technique provides damping parameters to avoid overcasting due to an
indefinite increase or decrease in the time series.

You can also perform forecasting using non-time-series algorithms, such as the
following:

� Linear regression 
A linear mathematical equation is created based on the correlation of coeffi-
cients with independent variables. The difference between time series models
and linear regression is that each observation is created as an individual obser-
vation; no sequential analysis of trend or moving average is automatic. This can
be achieved manually with additional variables for such values.
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� Support vector machine  
This algorithm can be used for both classification and regression analysis. It
recognizes patterns from the data using hyperplanes.

Based on hypotheses for Product A and Product B and related factors, select
ARIMA and forecast smoothing for prediction purposes. Specifically, choose ARI-
MAX (Autoregressive Integrated Moving Average), which supports external fac-
tors, because we have identified price reduction and outliers as external factors.
Listing 4.10 creates ARIMAX models.

DROP PROCEDURE CALL_ARIMAX;
CREATE PROCEDURE CALL_ARIMAX() LANGUAGE SQLScript AS
BEGIN

input1 = SELECT
"YEAR_WEEK",
"SALESQTY" ,
"OFFER_PRICE",
"OUTLIER"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = ‘A’ and YEAR_WEEK > 201100 and YEAR_WEEK < 201300
ORDER BY YEAR_WEEK ASC;

control_1 = SELECT * FROM ARIMAX_PAL_CONTROL_TBL;

CALL "ANIL_FORECAST"."PAL_ARIMAXTRAIN_PROC" (:input1, :control_1,
v_result11);

input2 = SELECT
"YEAR_WEEK",
"SALESQTY" ,
"OFFER_PRICE",
"OUTLIER"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = ‘B’ AND YEAR_WEEK > 201100 and YEAR_WEEK < 201300
ORDER BY YEAR_WEEK ASC;

CALL "ANIL_FORECAST"."PAL_ARIMAXTRAIN_PROC" (:input2, :control_1,
v_result21);

insert into PAL_ARIMAX_MODEL_TBL
select 1, ‘A’, * from :v_result11
union all
select 1, ‘B’, * from :v_result21;
END;

Listing 4.10  ARIMAX Model Creation
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Create a wrapper procedure, PAL_ARIMAXTRAIN_PROC, for the PAL ARIMAXTRAIN
function. Then, filter the pre-2011 outlier records and use two years of informa-
tion for training the model. Define PAL_ARIMAX_MODEL_TBL for storing the model
and enhance the standard table with two additional columns. Figure 4.35 shows
a list of columns in the model storage table.

Figure 4.35  Model Storage Structure

The last part of Listing 4.10 inserts the model with an initial version of 1 and the
product ID as the model ID. The overall model table is shown in Figure 4.36.

Figure 4.36  ARIMAX Model for Both Products

The model is a representation of patterns or mathematical parameter values that
can be used for forecasting. These parameters differ from algorithm to algorithm.

Listing 4.11 provides sample code for using the model and forecasting the next
three periods of sales, and also measures the forecast accuracy using PAL forecast
accuracy measures to validate the model.
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DROP PROCEDURE CALL_ARIMAX_FORECAST;
CREATE PROCEDURE CALL_ARIMAX_FORECAST() LANGUAGE SQLScript AS
BEGIN

input1 = SELECT
"YEAR_WEEK",
"OFFER_PRICE",
"OUTLIER"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"

WHERE PROD_ID = ‘A’ and YEAR_WEEK > 201300 and YEAR_WEEK < 201304
ORDER BY YEAR_WEEK ASC;

model_1 = SELECT "NAME", "VALUE" FROM PAL_ARIMAX_MODEL_TBL WHERE
MODEL_ID = ‘A’;

control_1 = SELECT * FROM PAL_ARIMAX_FORECAST_CONTROL_TBL;

CALL "ANIL_FORECAST"."PAL_ARIMAXFORECAST_PROC" (:input1, :model_
1, :control_1, v_result11);

input2 = SELECT
"YEAR_WEEK",
"OFFER_PRICE",
"OUTLIER"
FROM "ANIL_FORECAST"."SALE_SERIES_WITH_ATTRIBUTES"
WHERE PROD_ID = ‘B’ AND YEAR_WEEK > 201300 and YEAR_WEEK < 201304
ORDER BY YEAR_WEEK ASC;

model_2 = SELECT "NAME", "VALUE" FROM PAL_ARIMAX_MODEL_TBL WHERE
MODEL_ID = ‘B’;

CALL "ANIL_FORECAST"."PAL_ARIMAXFORECAST_PROC" (:input2, :model_
2, :control_1, v_result21);

result1 = select 1, ‘A’ PROD_ID, "TIMESTAMP" + 201301 AS YEAR_
WEEK, "MEAN" FORECASTCOL from :v_result11
union all
select 1, ‘B’ PROD_ID, "TIMESTAMP" + 201301 YEAR_
WEEK, MEAN FORECASTCOL from :v_result21;

join1 = select a.PROD_ID, a.YEAR_
WEEK, "SALESQTY" ACTUALCOL, "FORECASTCOL" FORECASTCOL FROM
"ANIL_FORECAST"."SALE_SERIES_WITH_
ATTRIBUTES" a JOIN :result1 b ON a.YEAR_WEEK = b.YEAR_WEEK and
a.PROD_ID = B.PROD_ID;

select * from :result1;
select * from :join1;

input_3 = SELECT ACTUALCOL, "FORECASTCOL" FROM :join1 WHERE
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PROD_ID = ‘A’;
input_4 = SELECT ACTUALCOL, "FORECASTCOL" FROM :join1 WHERE
PROD_ID = ‘B’;

control_3 = SELECT * FROM FA_PAL_CONTROL_TBL;

CALL PAL_FORECASTACCURACYMEASURES_PROC(:input_3, :control_3,
v_fa_result1);
CALL PAL_FORECASTACCURACYMEASURES_PROC(:input_4, :control_3,
v_fa_result2);

select ‘A’, * from :v_fa_result1
union all
select ‘B’, * from :v_fa_result2;

END;

Listing 4.11  ARIMAX Forecast and Validation

The regression variable’s future data is supplied as an input along with the num-
ber of periods to forecast in the algorithm wrapper procedure PAL_ARIMAXFORE-
CAST_PROC for the ARIMAXFORECAST PAL function. The outlier factors for the future
data values are not set to 1, and you can forecast with 1 to see a potential excep-
tion value for case(Peaks). The ARIMAX result contains the future expected sales
value along with 80–95% low and high intervals. We are more interested in the
expected value and the forecast output for the next periods of both products
using ARIMA (see Figure 4.37). Note that the future time period value (the YEAR_
WEEK value) is adjusted in the procedure in a simpler way and in a real scenario
requires a join on table M_TIME_DIME_SION_WEEK CALENDAR.

Figure 4.37  ARIMAX Forecast Output

Next, validate this result and the accuracy of the sales quantities forecasted. First,
assign the future times to the forecast output and then look at the side-by-side
results of the actuals and the forecast, as shown in Figure 4.38.
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Figure 4.38  ARIMAX Forecast Compared with Actuals

Based on these results, you can clearly see the closeness of the actual sales value
to that of the forecasted values for both products A and B. The usual benchmark
for validating the accuracy of a time series model is through standard accuracy
measurements such as Mean Absolute Percentage Error (MAPE) or Mean Absolute
Squared Error (MASE).

The forecast accuracy measures PAL function provides most of the standard error
calculation techniques for forecasting. When you execute this function in Listing
4.11, you can see the accuracy of the models for each of the products, as shown
Figure 4.39.

Figure 4.39  Forecast Accuracy Measures for Each Product

Mean Absolute Deviation (MAD) is the average difference between the actual and
forecast values. This example shows deviations of 9.73 and 5.25. These numbers
are measured in absolute units of the quantities. For Product A, with sales of
about 100 units, an average deviation of 9.75 units is not large. Given the lower
sales of Product B, 5.25 seems a little high for a deviation. Another commonly
used accuracy measure is MASE, for which you want the values to be less than 1.
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The results of Product A seem to be good based on the previous accuracy mea-
surement.

Because there are no new variables, let’s try a different model for Product B. A
simple forecast smoothing algorithm with a single exponential smoothing model
name parameter has produced the forecast shown in Figure 4.40.

Figure 4.40  Forecast Smoothing Output

Similar to the ARIMA model, we will execute the forecast accuracy function for
understanding the model performance. Figure 4.41 shows the accuracy measure-
ment for Product B for the smoothing algorithm. Note that the MAD is 1.88, and
60% below the ARIMA 5.25 result. Also note that MASE is now 1 at 0.62. This is
a much better forecast than determined earlier with ARIMA.

Figure 4.41  Forecast Smoothing Accuracy of Product B

The input parameters of the smoothing algorithm are depicted in Figure 4.42.
The input parameters consist of FORECAST_MODEL_NAME and CYCLE. We have cho-
sen a triple exponential smoothing. Because there are weekly sales, we have con-
figured 52 periods for the cycles.

Figure 4.42  Smoothing Algorithm Input Parameters for Product B
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In this section, we looked at the modeling phase for predictive analysis in SAP
HANA and covered how to validate and maintain models for the products A and
B forecast problem.

We have looked at the predictive analytics lifecycle using both PAL and SQLScript
procedures, but there are additional tools in SAP HANA Studio (e.g., the Applica-
tion Function Modeler and SAP Predictive Analytics 2.2) that can provide alterna-
tive models through R and SAP InfiniteInsight. We will see how to execute these
two models in the next section.

4.5 Creating Models Using SAP Applications on SAP HANA

In this section, we will use two different tools: the Application Function Modeler
(AFM) in SAP HANA Studio and SAP Predictive Analytics, which can be utilized
by data scientists on the SAP HANA platform for models. As discussed in Section
4.1.2, we have looked at various tools and applications available in SAP HANA
that allow us to create various types of data models, and in the next two sections,
we will look at two additional models.

4.5.1 Application Function Modeler

AFM is a graphical model in SAP HANA Studio that facilitates the creation of flow
graphs with SQL and predictive functions together. Flow graphs are created as
SAP HANA repository objects, which can be used to execute the flow graph. In
this section, we will look at an example of AFM in action.

As an example, consider again the forecast for Product A. The following opera-
tions should be fulfilled when selecting your sales tables for products A and B as
input: filter the records for Product A, execute a forecast smoothing algorithm
with a single exponential smoothing model name, and store the result as output
into another table.

Figure 4.43 shows a flow graph creation area panel that lists the possible flow
functions categorized by general operations, such as filter, join, and more, as well
as functions from the AFL, such as the PAL and BFL. The graphical editor enables
you to create the flow with a set of operations for this example in a single info
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graph. Each operation is a node, and each node has properties to configure for
required functionality. One node’s connection to another indicates a data flow
between the nodes, which requires mapping the first node’s output to the input
of the next node. The properties of both nodes and their connections can be set in
the Properties panel below the editor. Figure 4.43 illustrates a flow graph for
forecast smoothing algorithms.

Figure 4.43  Flow Graph for Forecast Smoothing

In Figure 4.43, the flow graph model has an input node that reads the product
time series data table, a preprocessing node with a filter operation to reduce the
number of columns required by the algorithm input and a required product, and
a node to configure the forecast smoothing algorithm and store the results into a
new table.

The parameters panel of the algorithm node shown in Figure 4.44 facilitates the
controlled input of data with mapping from input nodes. Parameters and output
requirements of algorithms and annotations are available in other tabs.
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Figure 4.44  Algorithm Properties Panel

During the activation of the flow graph object, the flow graph generates a stored
procedure that processes the complete logic starting from table reading to the
algorithm output and creates all the table types and wrapper procedures required
for processing.

Some advantages of the AFM tool include generating data mining flows with
table types and tables in a GUI and hiding the complexity of each function’s input
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and output data structures manually. Because this tool manages the input and out-
put of algorithm executions, the modeling, storage, and persistence does not dif-
fer from what we discussed in Section 4.4.

Because this tool does not support logical filtering with complex logic and nonal-
gorithm, SQL-oriented transformations, it can be used when the inputs from
tables are joined and multiple algorithms are executed in simpler scenarios.

4.5.2 SAP Predictive Analytics

SAP Predictive Analytics is an application that supports automated analytics and
expert analytics. Prior to SAP Predictive Analytics 2.x, there were two tools in its
place called SAP InfiniteInsight and SAP Predictive Analysis, respectively. The
SAP Predictive Analytics combined application enables algorithms from SAP
InfiniteInsight, SAP HANA, and R to create models from these algorithms.

The next two sections look at both automated analytics and expert analytics in
greater detail.

Automated Analytics

Automatic analytics provides the following set of algorithms:

� Modeler 
Includes classification/regression, clustering, time series, and association rules
algorithms. Unlike the PAL algorithms, you do not need to be aware of the
inner parameters and technical details of the algorithms. These are automatic
algorithms with minimal user input about how they should behave. The task of
regression or classification is automatic based on whether the target variable is
continuous or categorical.

� Social network 
A network has nodes and connections; if these nodes are people, then the net-
work is considered a social network. There are various types of analytics that are
possible in social networks, such as identifying cliques (subgroups), identifying
probable nodes that perform similar actions as their connections, and more. In
automatic analytics, this set contains social network analysis, colocation analy-
sis, and frequent path analysis.
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� Recommendation 
This feature utilizes social network analysis to recommend products to custom-
ers based on their connections. Using both social network analysis and recom-
mendations can enable use cases such as recommending a next best action
based on node properties.

Each of these sets supports storing and loading models for further analysis.

Let’s perform a time series of one of the products in a stepwise fashion using
automated analytics. Once you have finished loading the data from your table,
the analyze phase enables automatic classification of measurement scales for each
column of the input table. Figure 4.45 shows the automatic classification. This
automatic classification step is important, because the behavior of automatic ana-
lytics algorithms depends on this classification. You should review the analysis
and update the metadata as needed.

Figure 4.45  Analyze the Input Measurement Scales

For this example, keep the default identification, and click the Next button.

The next step is to select the variables. On the screen shown in Figure 4.46, set
the target variables and exclude any variables that are not needed. Note that
some of the automatic algorithms consider only necessary variables and ignore
the rest. These algorithms will also enhance the variables set by creating addi-
tional variables, using techniques such as binning continuous variables into
categorical variables to generate optimal models.
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Figure 4.46  Variable Selection

For a time series, you need to choose the training period (see Figure 4.47).

Figure 4.47  Date Selection for the Time Series
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After choosing the right inputs and generating the model, the model summary is
shown (see Figure 4.48). This model can be autosaved or exported as a script.

Figure 4.48  Training Model Overview

The model details contain the autoregression trends and cycles identified and also
provides accuracy for the models using the MAPE error calculation formula. The
MAPE 0.5 result is slightly higher for Product A than the ARIMA MAPE of 0.13 in
Figure 4.39. You can save this model as a file in disk or as a SQLScript, and exe-
cute the model on the new data for prediction purposes.

The application supports model validation by forecasting and divides the data
into training and validation. With the application, you can validate the models
with these forecasts. Figure 4.49 is the forecast versus the signal provided by the
tool for validating the accuracy of the model.

Automatic analysis provides algorithm execution without needing to have any
deeper knowledge of how to do so by providing various statistics to decide on a
model. Almost the entire predictive analytics lifecycle can be managed by SAP
Predictive Analytics in the automated mode.
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Figure 4.49  Forecast vs. Signal

Expert Analytics

Expert analytics allows users to perform exploratory data analysis and prepare the
data before they perform modeling. The initial phase of this tool connects to SAP
HANA online, which allows you to execute PAL functions and R procedures
through SAP HANA and R locally on the desktop. Expert analytics shares the SAP
Lumira platform to utilize common visualizations and data preparation tech-
niques and contains additional predictive-related processes and visualizations.

This tool has five phases: prepare, visualize, predict, compose, and share. The first
three phases involve business understanding, preparing data, and executing algo-
rithms, and the last two phases are about building storyboards and sharing them
publicly.

Once you connect to the data source, you can initiate the prepare view by clicking
on the Prepare tab. In the prepare view, you filter, create new columns, and
change the semantics of the columns. In Figure 4.50, we have applied the filters
that we need for our product example.
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Figure 4.50  Preparation of Data in Expert Analytics

Once you prepare the data, you can perform an exploratory analysis to under-
stand the product behavior. You can utilize more predictive-specific and
exploratory analysis-oriented visualizations in expert analytics than in SAP
HANA Studio. For example, you can see the impact of the offer price on the
sales quantity in a parallel coordinates chart, as shown in Figure 4.51.

You can clearly see that a higher price reduction leads to higher sales and a lower
price reduction leads to lower sales. Also, you can identify outliers, such as high
sales with lower price reductions and vice versa. With this understanding, you
can create a predictive flow and execute. Take note that there is a lag of algorithm
availability in this tool from PAL, meaning there may not be any newly added
PAL algorithms.

We have used single exponential smoothing, because forecast smoothing is not
available yet. The configuration of parameters is more expert-oriented. Figure
4.52 shows a chain that has nodes for the data source, filtering, and algorithm.
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Figure 4.51  Parallel Coordinates

Figure 4.52  Expert Analytics Flow
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The parameters for specific algorithms are shown as function descriptions.
Advanced properties will allow you to change the detail parameters of the algo-
rithms. You can execute the chain up to any node in the chain. Once you run the
flow, you can see the algorithm-specific visualization to better understand the
results of the algorithm. Chain designing can be found in the designer view. Once
the chain is executed, the results can be analyzed in the results mode. Each node
in the chain can have a specific visualization. For exponential smoothing, look at
the specific line chart, as shown in Figure 4.53.

Figure 4.53  Single Exponential Smoothing Output

Each model can be saved and used for scoring new data in another chain as a
node. All chains are stored in the database.

4.6 Summary

In this chapter, we looked at the SAP HANA predictive analytics lifecycle. You
saw how to execute each phase of the process in SAP HANA, along with the tools
and algorithms to perform analysis on our two example products.

Now that you have explored the basic predictive modeling techniques, in the next
chapter we will move on to more advanced modeling using R and PAL.
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Chapter 5 

In this chapter, we will discuss advanced modeling concepts in SAP 
HANA, including using R and SAP HANA together.

5 Advanced Predictive Modeling

In this chapter, we will address predictive modeling requirements using SAP
HANA’s multiple algorithm providers and the interoperating data between them.
We will use examples to explain how to model the processes for complex scenar-
ios in SAP HANA. Subsequent sections in this chapter will cover enabling Predic-
tive Analysis Library (PAL) functions for real-time consumption and how to use
PAL together with RLANG. Finally, we will look at scaling these procedures for
batch jobs with large datasets.

5.1 R Script Modeling and Design

R is a language and environment for statistical computers and graphics. It is GNU
licensed and provides data mining methods for machine learning, math, statistics,
and predictive analysis algorithms and computations as R packages and distribu-
tions. Most people in the machine learning world leverage R for data science-
oriented jobs.

In this section, we will look at SAP HANA/R interactions, data volumes, and type
compatibilities and an example implementation of stored procedures in RLANG.

5.1.1 SAP HANA and R Integration

SAP HANA is an in-memory database, with most commonly used machine learn-
ing and statistical algorithms available as native functions within the database.
With a vast amount of algorithms available through R packages, if users want to
leverage other SAP HANA functionality, the SAP HANA and R integration helps
them to do so.
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Figure 5.1 illustrates the overall components involved in using the R environ-
ment with SAP HANA.

Figure 5.1  SAP HANA/R Intergration

The calculation engine within SAP HANA establishes a communication channel to
the R environment whenever it encounters an R operator. An R operator can be
used as part of any SQLScript procedure, calculation view, or CALL statement. An
R client in the calculation engine enables you to connect to and communicate
with the R server environment. Communication involves executing R commands
in an R environment, transferring data to the R server, and receiving a response
from the R server. SAP HANA supports the R server and environment running on
different machines, but R cannot coexist in the same machine on which SAP
HANA is running.

On the R server, whenever an R client request indicates a new R session, it forks
the process, and the R client communicates with the child process to execute R
commands from that R operator.

Please refer to the SAP HANA R Integration Guide for details about the configu-
ration and setup between SAP HANA and R at help.sap.com/hana/sap_hana_r_
integration_guide_en.pdf.

SAP HANA

Calculation Engine

R Operator

R Client

R Server

R Environment
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5.1.2 Data Considerations

As shown in Figure 5.1, both SAP HANA and the R server run on two different
machines, and it is important to understand the data transfer between these two
entities. The general rule for executing algorithms is that they run in the database
closer to the data to avoid data movement and to reduce overhead. Following the
same principle by leveraging the native algorithms available in PAL avoids need-
ing to transfer data between the servers.

However, not all algorithms and statistical techniques are natively available in
SAP HANA. Therefore, it is imperative to keep in mind the cost of transferring
this data between the servers before deciding to execute a process in R. Unsuper-
vised learning techniques are the most common techniques used that call for
large data transfer between the servers.

We should consider some data preprocessing techniques, such as sampling with
random replacement, sampling without random replacement, and stratification
sampling, to reduce the amount of data to transfer in these circumstances. In this
section, we will focus primarily on data transfer. Of the sampling techniques,
stratification sampling poses the least amount of sampling errors, because it
maintains the proportions of data distribution and ensures that each subgroup is
represented in the sampled data. Let’s look into stratification sampling further in
the next section.

Stratified Random Sampling

Stratification is the process of identifying and dividing populations into sub-
groups based on values chosen categorically. Each of these subgroups are referred
to as strata or stratum. Within each stratum, systematic or random samplings are
performed to randomly select portions of the data population.

In SAP HANA, there are two methods for stratification in PAL. The first is
through a sampling function, and the second is through a partition function that
divides the dataset into training, testing, and validation datasets. For reducing
the dataset, consider the sampling function. To start, generate a wrapper func-
tion SAMPLING_TEST_PROC with the PAL SAMPLING function using the Application
Function Library (AFL) framework.

Table 5.1 shows the required parameters for stratification. The PERCENTAGE
parameter provides the sampling size. The value of 0.5 as an input is expected to
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provide half of the population as the sampling output. STRATA_NUM is the number
of subgroups to be considered by the algorithm, and COLUMN_CHOOSE is the cate-
gorical column to be used for subgrouping.

Table 5.2 shows the distribution of the distinct values for the chosen column for
stratification. There are two distinct values and the population size of each value
in the X6 column (arbitrary data column).

Table 5.3 shows the distribution of the X6 column after stratification sampling
has been performed. Because we have chosen to sample 50% of values, stratifica-
tion ensures that the proportions of the population are the same; the output in
Table 5.3 shows half the original population for each value of X6.

NAME INTARGS DOUBLEARGS STRINGARGS

1 SAMPLING_METHOD 7 ? ?

2 SAMPLING_SIZE 8 ? ?

3 PERCENTAGE ? 0.5 ?

4 STRATA_NUM 2 ? ?

5 COLUMN_CHOOSE 6 ? ?

Table 5.1  Stratification Sampling Control Parameters

COUNT (*) X6

1 368 1

2 1,188 0

Table 5.2  Input Distribution for the Example Column

COUNT (*) X6

1 184 1

2 594 0

Table 5.3  Output Distribution for Stratified Sampling
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Random Sampling with Replacement

In this technique, the sampling algorithm with replacement will replace the item
selected, and hence the probability of selection for each item remains the same
for every item selected for the sampling.

In order to run this technique, use the same wrapper you generated previously
and the same inputs expected for SAMPLING_METHOD. Let’s set this value to 4 and
rerun the algorithm. Table 5.4 shows the selected sample distribution.

Random Sampling without Replacement

In this technique, each sampling selection algorithm will not replace the item
selected, and hence the probability of each item selected is reduced by an order of
1. Update the SAMPLING_METHOD to 5 and run the algorithm. Table 5.5 depicts the
distribution of X6 after sampling without replacement.

Systemic Sampling

In this technique, the algorithm selects all elements randomly. The SAMPLING_
METHOD is 6 and below.

Count(*) X6

176 1

602 0

Table 5.4  Random Sampling with Replacement

Count(*) X6

606 0

172 1

Table 5.5  Random Sample without Replacement

Count(*) X6

595 0

183 1

Table 5.6  Systemic Sampling
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With nearly 1,600 rows, each technique has a similar output, with deviation
around 10%. However, stratification sampling is able to precisely sample, keeping
the distribution of the stratification column. In addition to these sampling tech-
niques, SAP HANA also supports sampling based on row offsets (First N, Last N,
Middle N, and Every Nth), and each of these aforementioned techniques works
on a row offset.

Each of the techniques discussed thus far enables you to reduce the transfer of
datasets by maintaining the homogeneity of the data. The recommended
approach is to run these techniques in SAP HANA using logical models such as
attribute views, analytic views, calculation views, and/or predictive analytics pre-
processing algorithms. Apart from the preprocessing algorithms, your design
should also consider the data types in the data structures that are being trans-
ferred between the two systems. In the next section, we will cover how to define
these data types.

5.1.3 Data Types and RLANG Script

Put simply, data types indicate data value characteristics. SAP HANA supports
writing R code in a stored procedure. With the CREATE PROCEDURE statement, you
can specify the language as RLANG as follows:

CREATE PROCEDURE GET_TS_CHARACTERISTICS (IN metrics
CLUSTER_TS_CBC_INPUT, OUT cbc CLUSTER_TS_CBC) LANGUAGE RLANG AS BEGIN

RLANG script represents the logic in a stored procedure. The input and output of
these stored procedures must be in the form of table types, which are used to
define the procedure parameters that signify tabular results. The table type is
transformed by SAP HANA into a table-like structure called a data frame in the R
language. Similarly, the output in the RLANG script is also transformed into a
data frame. Upon response from the RLANG server, SAP HANA transforms the
data frame into the relevant table type columns in the memory.

Primitive Types

Primitive types are not supported as data transfer types.

When defining the table types for a stored procedure, we recommend using
shorter data types like numeric types to reduce the amount of data transferred
between the systems.
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Extending the code shown at the beginning of this section, Listing 5.1 shows the
sample table types and RLANG procedure.

DROP TYPE CLUSTER_TS_CBC_INPUT;
CREATE TYPE CLUSTER_TS_CBC_INPUT AS TABLE ("METRIC_
ID" VARCHAR(100), "METRIC_VALUE" DOUBLE);

DROP TYPE CLUSTER_TS_CBC;
CREATE TYPE CLUSTER_TS_CBC AS TABLE ("METRIC_
ID" VARCHAR(100), "CORRELATION" DOUBLE, "HURST" DOUBLE, "SKEWNESS" DOUB
LE, "KURTOSIS" DOUBLE);

CREATE PROCEDURE GET_TS_CHARACTERISTICS (IN metrics CLUSTER_TS_CBC_
INPUT, OUT cbc CLUSTER_TS_CBC) LANGUAGE RLANG AS BEGIN

library(foreach)
library(doParallel)
library(e1071)
library(pracma)

inputMetrics <- metrics
colnames(inputMetrics) <- c("id", "value")
inputMetrics$id <- as.character(inputMetrics$id)

# Find all metric IDs and number of metrics in the input table
lMetrics <- levels(as.factor(inputMetrics$id))
nMetrics <- length(lMetrics)

# Select desired metrics
wantMetrics <- 1:nMetrics

findACF <- function(x) {
acfout <- acf(x, lag.max = 100, plot=F)
return(acfout)

}

performCBC <- function(x, METRIC_ID) {
acfOut <- findACF(x)
CORRELATION <- as.numeric(sum(acfOut$acf[1:2]))
HURST <- as.numeric(round(hurst(x),2))
SKEWNESS = as.numeric(skewness(x))
KURTOSIS = as.numeric(kurtosis(x), na.rm = FALSE, type = 2)

res <- data.frame(METRIC_ID, CORRELATION, HURST, SKEWNESS, KURTOSIS)
return (res)

}
for (i in wantMetrics) {
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finput <- inputMetrics[inputMetrics$id ==lMetrics[i],]
tmp <- performCBC(finput$value, lMetrics[i] )
if (i == 1) {
result <- tmp

} else
result <- rbind(result, tmp)

}
cbc <- result
END;

Listing 5.1  RLANG Procedure for Analyzing the Statistical Behavior of Multiple Time Series 

In Listing 5.1, the input is a time series of multiple products passed to R from SAP
HANA. This procedure measures the statistical behavior of each time series by cal-
culating the kurtosis, skewness, correlation factors, and Hurst. We have defined
all of these measures, with the exception of Hurst, in Chapter 4, Section 4.2.1.

A Hurst exponent classifies a time series as random walk, antipersistent, or per-
sistent. Random walk describes whether there is no correlation among the time
series with various lags. The usual Hurst exponent is around 0.5 for a random
walk. An antipersistent time series will increase and decrease one after another.
This option returns the mean value of the time series due to the increase and
decrease of movements. The usual Hurst exponent value of an antipersistent time
series is between 0 and 0.5. A persistent time series is one in which increase is fol-
lowed by another increase and similarly for decreases in the short term. The
Hurst exponent of the persistent time series is between 0.5 and 1. The result of
Listing 5.1 is a data frame with these three characteristics for each time series.

In this section, we have explained the architecture between SAP HANA and R and
their various design aspects and also looked at an example. In the next section, we
will discuss how to consume predictive analysis models, keeping in mind the var-
ious model types and possible outputs from the algorithms.

5.2 PAL Model Consumption

In Chapter 4, Section 4.4, we saw how to create predictive models. In this section,
we will look at how to consume those models. The consumption of models often
depends on the type of predictive algorithms and the following tasks:
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� Supervised learning  
In supervised learning, an algorithm will take inputs as target variables and
additional variables as independent variables or causal factors on which the tar-
get variable outcome is dependent. Target variables are also called dependent
variables. Understanding dependent variable behavior is often linked to the
quality of the independent variables. The outcome of this task is usually created
as a model that can be applied to new data. Classifications and regressions are
good examples of supervised learning.

� Unsupervised learning  
Unsupervised learning techniques are deep learning techniques in which each
observation is interpreted independently and more complex patterns or hier-
archical depth is created. Unlike supervised learning, where the outcome of the
target variable is locked, in this technique there is no target variable and all
input information is processed to identify the patterns. Neural networks, k-
means (unsupervised clustering), and self-organizing maps are a few examples
of unsupervised learning. An unsupervised learning technique can be followed
by a supervised learning technique to make a model. For example, k-means can
be followed by a decision tree, with the cluster number as the target variable.

In SAP HANA, every wrapper procedure that is generated contains algorithm
results. The following three types of results are possible, and they are dependent
on supervised and unsupervised learning:

� Algorithm-specific results  
These are algorithm outputs. An example of this result type is k-means, which
provides the results with the input data’s ID column and cluster number.

� Summary results 
Summary results provide additional information on the data processed by an
algorithm. For k-means, you can classify information such as distance between
the data point and center, center coordinates, statistical values such as a sum of
squares or the density of a cluster, cluster quality, and so on. Unless a data
science-oriented application is consuming the results, this type of information
is useful for optimizing and enhancing the output of models.

� Model 
The representation of an algorithm output that can be used on new set of data
is called a model. Every supervised learning technique will have a model. Unsu-
pervised learning techniques can also have models, such as apriori (basket
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analysis), in which the model can be applied to retrieve items associated with
a given item. The model is stored in a generic CLOB data structure in SAP
HANA. Predictive Model Markup Language (PMML), a standard way to repre-
sent models across an industry, gives an XML representation of a model, and
each algorithm model has an XML schema. This can be used to consume mod-
els created by various software. PMML has limitations with respect to gener-
alizing the parameters of models, due to several variants of algorithms.

Based on your application needs, models must be applied appropriately. For
example, models can be consumed by applying them to new datasets in real time
to make real-time decisions or by applying them in batch mode for large dataset
combinations. Models can be consumed in a SQLScript procedure and included
as part of calculation views, result views, or can be in a stored procedure.

In order to use a model in a calculation view, you first need to create a SQL
scripted calculation view, as shown in Figure 5.2.

Figure 5.2  Calculation View for Model Scoring

All the values for a wrapper procedure call should be added as output columns in
the calculation view. Once this calculation view is activated, it can be added and
joined/projected with other nodes in the calculation. You can add input parame-
ters to this calculation-like product or store. Prediction values can be joined to the
time to add projections and aggregations for reporting purposes.

You now have seen how PAL models can be consumed for reporting. In the next
section, we will look into model consumption in real time versus batch models.
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5.3 Real-Time Model Consumption vs. Batch Predictive 
Modeling

In this section, we will look at designing predictive analysis models for real-time
use and in batch scenarios. Please refer to the PAL reference guide for creating
wrapper functions and the Application Function Modeler reference guide for
using PAL.

The availability of commonly used predictive analysis algorithms for the in-mem-
ory SAP HANA database has enabled users to provide models for various compel-
ling problems. As an example, you can execute unsupervised learning more fre-
quently, and if required execute it in real time for massive data volumes to make
business decisions quickly. Similarly, the ability to create forecast models for
product and location combinations—which can run into millions of combinations
for retail chain outlets—in a few minutes allows a user to create autoregressive
models on a daily basis for better replenishment purposes.

In the next two subsections, we will look into how to address such scenarios in
SAP HANA for real-time and batch modeling.

5.3.1 Real-Time Model Execution

Because algorithms run in an SAP HANA database, not moving data between the
database and a separate algorithm environment makes algorithm performance
dramatically faster. For example, you can use unsupervised learning, such as
clustering, followed by classification or association within each cluster, to offer
promotions in real time with very large transaction datasets with multithread
processing.

In SAP HANA, there is no significant difference in technique for how you achieve
real-time aspects for models due to the real-time nature of the database platform
itself. Keep the following points in mind when working with real-time data:

� Consider the execution time of the algorithms and responsiveness to the UI.
Algorithms like k-means can group a massive number of records (in the mil-
lions) in a second on SAP HANA.

� The aggregation of data based on algorithm outputs should be straightforward.
However, aggregating against hierarchies requires joining the output in logical
models.
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In most real-time scenarios, the scoring or execution of multiple algorithms in a
single interaction with a user is not required. The output persistence for the next
execution is required, and it can be time-consuming. Because of this, in SAP
HANA, global or local temporary tables should be used.

If multiple algorithms need to be executed in a single user interaction, an ideal
approach is to model using a calculation view and join the hierarchies.

5.3.2 Batch Predictive Model Execution

Batch execution allows you to create, score, and execute many models in the
quickest possible time. Using batch executions, you can perform parallel execu-
tions for microlevel jobs.

Let’s consider a scenario in which you have to forecast next week’s demand for all
products for multiple retail chain locations. Figure 5.3 depicts the forecasting
flow for one product at a time. Analyzing each product involves steps for the SQL
query, training model, and forecast predictions. Some scenarios might involve
calling millions of SQLs executions and training model creation calls—which is
quite an expensive process.

Figure 5.3  Single Product Model

In Figure 5.3, there are two areas in which you can optimize the processing for
better performance: You need to determine how the number of queries in a data-
base can be reduced while still allowing the prediction of product demand at mul-
tiple locations, and you need to reduce the number of calls to train and predict. In
the two sections that follow, we look at both of these areas.

Time series query for a 
single product and location

Execute forecast algorithm
for training

Persist model 
(non-auto regressive)

Predict future value
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Query Reductions

The number of queries at the product level can be reduced if you select all the
product time series with single SQL statements and loop each product in the
result set to predict the future value loop. Here, the focus is to get the predicted
value of each product at the lowest granularity of each location, a technique
referred to as bottom-up forecasting.

There are three possible approaches to reduce the number of queries and perform
parallel processing for each product while improving performance:

� Create a loop in the SQL procedure on the virtual table, and execute multiple
procedures at the same time.

� Create a loop in an RLANG procedure in _doparallel for each product, and
execute multiple procedures at the same time.

� Create a loop in an LLANG procedure with a partition parallel block on the vir-
tual table, and execute multiple procedures at the same time.

Improved performance is possible in SAP HANA with multiple executions of pro-
cedures in parallel and predicting the future product demand values. Although
this is not an option for R procedures with single R services, these procedures can
be optimized if multiple R servers are installed. For an example of _doparallel in
R, please refer to Listing 5.1; for an example of parallel processing in LLANG,
refer to Chapter 6.

Training Reductions

Training reductions depend on the type of modeling task. In the previous section,
the focus was to get the predicted value of each product at the lowest granularity
of each location.

Another possible approach is to perform top-down forecasting. In this technique, a
product with multiple locations is considered with a time series. Once forecasted,
the product is proportioned to each location based on the historic sales propor-
tion for each location. This works well when the time series frequency is suffi-
ciently long (weekly, monthly), resulting in a consistent pattern. If there is too
much deviation in the time series, top-down forecasting will not work.
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The top-down approach for forecasting involves the following steps:

1. Execute the SQL for a product for all locations as an aggregation (execute mul-
tiple products at the same time).

2. For each product and all locations together, create a forecast model and per-
form a prediction.

3. Identify the proportion of sales contributed by each location to overall sales
(each product).

4. Distribute the predicted value as per the proportion of each location.

You can clearly see that this large-scale modeling can result in improved perfor-
mance. However, accuracy depends completely on the consistency of the propor-
tions and the period of historic data considered for calculating the proportions.

In this section, we presented model considerations for batch and real-time mod-
els. The additional factor that needs to be considered for predictive models is the
partitions of large tables in multiple nodes in an SAP HANA deployment. In the
next section, we will look at the impact of data partitions on the predictive mod-
eling process.

5.4 Impact of Data Partitions in Predictive Modeling

The amount of data generated every day is quite large. The data in a database
table is distributed across multiple nodes to cater to growing data volumes using
partitions. Hash, round-robin, and range partitions are single-level partitioning
strategies, and hash-range, round-robin-range, hash-hash, and range-range are
multilevel partitioning strategies. Notable advantages of partitions include paral-
lelization, load balancing, and overcoming size limitations.

During normal SQL query processing, the sequel processing is parallelized on
multiple nodes combined together based on distributed data. However, for pre-
dictive tasks, the data from each node should be combined before invoking
algorithms and executing partitioning on the combined data.

In order to identify patterns in the data, algorithms require relevant data. A com-
mon question to ask is, “Do we need all the data for the algorithms to create
models or detect patterns?” If you do need all the data from all the nodes for the
algorithms, then you need to first combine all the data in a single node (such as
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a master node) and invoke PAL or R. Alternately, invoking PAL could automati-
cally distribute the algorithm execution to the multiple nodes, and the algorithm
could have additional processing to interpret the results from each node and pro-
duce a combined pattern or model. The latter option is cumbersome, however,
because the algorithm outcome itself could be compromised without proper
handling.

Most classification or regression algorithms work with sample data. Creating
models on sample data is also the most commonly used technique. The quality of
the sample data determines the fit of the model for the entire dataset. Some unsu-
pervised learning techniques, such as basket analysis or k-means, might require
an entire data population in order to identify patterns.

Based on your partition strategy and the type of predictive task, executing algo-
rithms on each node and combining the results makes sense. This is especially
true when a dataset is partitioned on business columns representing a store,
region, and so on.

5.5 Using Multiple R Servers and Data Partitions

In this section, we will look into PAL and RLANG procedure performance arti-
facts in an SAP HANA multiple node deployment.

5.5.1 Predictive Analysis Library

Normally, PAL is used in SQLScript stored procedures. The input data for algo-
rithms is calculated or fetched from tables, views, or logical views in SAP HANA.
The complex process involved in fetching data from these multiple nodes is hid-
den from the normal developer when writing a stored procedure and consuming
any of these sources. Because data is aggregated from multiple nodes in distrib-
uted environments by the SAP HANA index server before invoking the PAL func-
tion, PAL is executed most often in the master node in SAP HANA deployment
scenarios. Figure 5.4 shows this normal behavior of SAP HANA when executing
PAL.

Within each node, PAL functions can be scaled with the NUM_THREAD control
parameter. In most scenarios, this scaling is sufficient. For classification prob-
lems, you can perform a sampling stratification or stratification partition to create
333



Advanced Predictive Modeling5
datasets for model training, testing, and validation from the overall population
(see Section 5.1.2). However, there will be some scenarios in which a large set of
products is distributed into individual nodes based on geographies, and certain
algorithms will need to be executed in each dataset.

Figure 5.4  PAL Current Execution Architecture

Like the scenario we discussed in Section 5.3.2, in which the time series were dis-
tributed into multiple nodes per location as part of the partition strategy, you will
not be able to utilize all of the resources for executing PAL from a single node;
instead, you need to utilize PAL from as many resources as possible. In such a sce-
nario, you can execute PAL from various instances, with each instance having a
script server. At this point in time, SAP HANA cannot automatically execute PAL
in each node in which data is available; this execution needs to be handled man-
ually due to the previously mentioned logic about mashing the results.

Suppose that you are working with a table in which daily consolidated sales are
populated with a partition strategy based on location, such as state, region, and so
on. In this scenario, you want to execute forecasting of each product in those
nodes and in all available nodes to which the data is distributed. Figure 5.5 pro-
poses an alternate approach for executing PAL in each of the nodes.

In this approach, you execute the PAL algorithms in each partition node in which
the data is present with a dedicated connection. The procedures in each node
should be parallelized. The advantage of this is that the data is moved to a single
master node, and you can manually scale across the node.

PAL

SAP HANA Master Node

Partition 1 Partition 2 Partition 3

SAP HANA Child Node 1 SAP HANA Child Node 2 SAP HANA Child Node 3

SAP HANA Multiple Node Environment
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Figure 5.5  Alternative Approach for Executing PAL

This technique cannot be applied when data is distributed. An algorithm is
required for all data from other nodes. In most cases, this scenario does not arise
when preprocessing techniques are good enough. This technique is applicable
only when the data on each node is sufficient for the algorithm to run, especially
in multiple or million time series predictions. For unsupervised learning, in
which the data is being taken from multiple nodes, sampling is a better approach.

We have looked at PAL scaling in multiple nodes. Next, we will look at multiple
R servers and scaling within a single R server.

5.5.2 Using Multiple R Servers

R server information is configured in SAP HANA Studio, as shown in Figure 5.6.
In parameter cer_rserve_addresses, you can list the addresses for high availabil-
ity. If SAP HANA cannot reach one address, it will try another one.

Figure 5.6  R Server Configuration

PAL

PAL PAL PAL

SAP HANA Master Node

Partition 1 Partition 2 Partition 3

SAP HANA Child Node 1 SAP HANA Child Node 2 SAP HANA Child Node 3

SAP HANA Multiple Node Environment
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When executing a procedure or view, if there is a call to the RLANG procedure (R
operator), the calculation engine in SAP HANA will invoke the R server.

Within an R procedure, you can scale the R script execution by using packages
such as doParallel or any other CRAN R package to utilize the resources of the R
server, as shown in Listing 5.2.

registerDoParallel()

result <- foreach ( i = wantMetrics, .combine=rbind) %dopar%
{
tmp <- performCBC(inputMetrics[inputMetrics$id ==lMetrics[
i],]$value, lMetrics[i] )

}

Listing 5.2  Sample Scale Up in R

In Listing 5.2, each execution of the loop is performed in parallel to ensure that all
of the cores in the R server are fully utilized. In Figure 5.7, R servers 2 and 3 are
shown as high-availability servers when server 1 cannot be reached by the calcu-
lation engine in SAP HANA.

Figure 5.7  SAP HANA/R Deployment

SAP HANA Master Node

Partition 1 Partition 2 Partition 3

SAP HANA Child Node 1 SAP HANA Child Node 2 SAP HANA Child Node 3

SAP HANA Multiple Node Environment

R Server 1 R Server 2 R Server 3
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This configuration is sufficient in most scenarios, but if you want to leverage
multiple R servers, you can configure different R servers in each of the SAP
HANA nodes and execute the procedure in those nodes as shown in Figure 5.8.
This technique can be useful for partition tables in which data is distributed in
each node. This technique also assumes that running the algorithm inde-
pendently on each node with the consolidation of data from other SAP HANA
nodes is a requirement.

Figure 5.8  Alternative Approach for Partition Tables

We have seen complex algorithm execution scenarios and how to scale them in
SAP HANA using R and PAL. In the next section, we will look into what cases
should be considered when using R and PAL together.

5.6 Modeling Using R and PAL Simultaneously

In the previous chapter, we looked at the sales time series for the products of a
retail store. In some cases, you may have millions of products and store combina-
tions and their respective time series; you will need to understand these time

SAP HANA Master Node

Partition 1 Partition 2 Partition 3

SAP HANA Child Node 1 SAP HANA Child Node 2 SAP HANA Child Node 3

SAP HANA Multiple Node Environment

R Server 1 R Server 2 R Server 3
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series and the group-related products that are similar in their time series proper-
ties. This is also called clustering for time series. From large sets of products, you
can identify groups that exhibit similar statistical behavior. There are many ways
to work within this scenario via techniques such as dynamic time warping, SAP-
based algorithms for time neutrality, and character-based analysis. For the exam-
ple in this section, we will focus on character-based clustering time series.

To perform this operation, you need to characterize each time series with statisti-
cal attributes such as kurtosis, skew, Hurst, and correlation. These attributes can
have additional characteristics, such as quartile deviations with normalized data.
After determining these statistical quartiles, you can group (cluster) these time
series using k-means by calculating the number of clusters.

In SAP HANA, you can get the time series for millions of products by using an
RLANG procedure to get all characteristics of each time series. Listing 5.3 shows
an example of retrieving time series characteristics. Note that it uses the parallel
option for each time series. An alternative to this is to use the LLANG partition
parallel in LLANG within SAP HANA, but you might miss a few statistical charac-
teristics, such as Hurst.

CREATE PROCEDURE GET_TS_CHARACTERISTICS (IN metrics CLUSTER_TS_CBC_
INPUT, OUT cbc CLUSTER_TS_CBC) LANGUAGE RLANG AS BEGIN

library(foreach)
library(doParallel)
library(e1071)
library(pracma)

inputMetrics <- metrics
colnames(inputMetrics) <- c("id", "value")
inputMetrics$id <- as.character(inputMetrics$id)

# Find all metric IDs and number of metrics in the input table
lMetrics <- levels(as.factor(inputMetrics$id))
nMetrics <- length(lMetrics)

# Select desired metrics
wantMetrics <- 1:nMetrics

findACF <- function(x) {
acfout <- acf(x, lag.max = 100, plot=F)
return(acfout)

}
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performCBC <- function(x, METRIC_ID) {
acfOut <- findACF(x)
CORRELATION <- as.numeric(sum(acfOut$acf[1:2]))
HURST <- as.numeric(round(hurst(x),2))
SKEWNESS = as.numeric(skewness(x))
KURTOSIS = as.numeric(kurtosis(x), na.rm = FALSE, type = 2)

res <- data.frame(METRIC_ID, CORRELATION, HURST, SKEWNESS, KURTOSIS)
return (res)

}

registerDoParallel()

result <- foreach ( i = wantMetrics, .combine=rbind) %dopar%
{
tmp <- performCBC(inputMetrics[inputMetrics$id ==lMetrics[
i],]$value, lMetrics[i] )

}

cbc <- result

END;

Listing 5.3  Characteristics of a Time Series

The next step in the exercise is to get the number of clusters needed for the time
series characteristics. Listing 5.4 shows how to calculate the number of possible
clusters in R.

CREATE PROCEDURE GET_TS_NCLUSTERS(IN num_clusters CLUSTER_TS_NUM_
CLUSTERS, OUT nclusters CLUSTER_TS_NUM) LANGUAGE RLANG AS BEGIN

library(foreach)
library(doParallel)
library(e1071)
library(pracma)
library(fpc)

inputKmeans <- num_clusters

numericKM <- data.matrix(inputKmeans, rownames.force = NA)
#identify number of clusters

pamk.best <- pamk(numericKM)
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KNUM <- pamk.best$nc;
nclusters <- data.frame(KNUM)

END;

Listing 5.4  Calculate the Number of Clusters Required for Characteristics of a Time Series

Once you calculate the number of clusters, you can use k-means in SAP HANA to
segment the millions of time series within milliseconds. Generate an AFL wrap-
per procedure for KMEANS "GROUP_TIME_SERIES". Listing 5.5 shows a procedure to
call the cluster calculation, followed by calling PAL KMEANS.

CREATE PROCEDURE EXECUTE_TS(IN cbc CLUSTER_TS_CBC, OUT out2 "_SYS_
AFL"."T_KMEANS_RESULT_ASSIGN", OUT out3 "_SYS_AFL"."T_KMEANS_
CENTERS") LANGUAGE SQLSCRIPT AS BEGIN

numofClustersInput =
select "CORRELATION", "HURST", "SKEWNESS", "KURTOSIS" FROM :cbc;

CALL GET_TS_NCLUSTERS(:numofClustersInput, v_kumn);

kNum = select * from :v_kumn;

UPDATE CTS_KMEANS_CONTROL_TAB SET "intArgs" =
(SELECT TOP 1 KNUM FROM :v_kumn) WHERE "NAME" = 'GROUP_NUMBER';

CALL "GROUP_TIME_SERIES"(:cbc, :out2, :out3);

END;

Listing 5.5  Calling KMEANS 

You can perform overall orchestration in a single procedure that calls characteris-
tics and grouping. In this example, we have shown you how to use both R and
PAL for a single use case.

5.7 Summary

In this chapter, we discussed SAP HANA’s integration with R, design and deploy-
ment options for both batch models and real-time consumption models, using
multiple R servers during data partitioning, and using both PAL and R in a single
use case.

In the next chapter, we will move on to performing more complex operations,
including Monte Carlo simulations and portfolio optimizations.
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Chapter 6 

In this chapter, we will discuss how to design and model optimizations 
and simulations on an SAP HANA platform.

6 Simulations and Optimizations

This chapter explains how to use SAP HANA to design simulation and optimiza-
tion models through an in-depth case study. While considering an equally distrib-
uted portfolio with n symbols/stock securities, we will simulate value-at-risk with
a Monte Carlo simulation using the Geometric Brownian Motion (GBM) model.
This chapter also covers complex operations such as matrix inversion, matrix
algebra, and the creation of mean-covariance matrices with stock securities on an
SAP HANA platform for optimizing an investment portfolio.

Let’s begin by reviewing the parameters of the case study that will serve as a run-
ning example throughout this chapter.

6.1 Case Study

Many countries have stock markets, such as NASDAQ, S&P, and so on. Compa-
nies listed in these markets allow the public to invest in their stocks. These stocks
are traded every working day of the stock market, and investment management
companies create portfolios to manage the investments in these stocks in order to
produce better returns on clients’ investments. The following terms and defini-
tions will be found throughout this chapter and case study:

� Security 
The financial instrument of a listed company in a stock market. The terms sym-
bol and stock are used similarly in this case study.

� Portfolio 
A range of securities in which an organization or individual has invested.

� Security return
The daily return of a security is the difference between the opening value of the
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security and the closing value of the security in the stock market; this is usually
a monetary value. Similarly, the monthly return of a security is the difference
between the opening value on the first trading day of the month and the clos-
ing value on the last trading day of the month.

� Portfolio return
An aggregation of the return on all securities in a portfolio. Similar to a security
return, it can be calculated on a daily or monthly basis.

For the purposes of this chapter, in this case study we will create a portfolio that
includes the top 40 companies traded in NASDAQ. Henceforth, the word portfolio
will refer to a collection of these securities. This portfolio consists of a wide range
of securities from IT, healthcare, and retail industries.

The purpose of this case study is to simulate the value-at-risk for this portfolio, a
statistical technique that is used to measure the level of financial risk for an
investment portfolio over a specified period of time. If the value-at-risk is high,
investment management should consider optimizing the portfolio. In subsequent
sections, we will cover how to optimize the portfolio by maximizing the portfolio
return. We will also define the mathematical models and constraints for optimiz-
ing the portfolio in the process of solving this problem.

Technical Implementation

This chapter focuses only on the technical implementation of simulating the value-at-
risk and optimizing the portfolio return. We will cover how to perform various opera-
tions that are needed for this case study in SAP HANA.

6.2 Monte Carlo Simulation of Value-at-Risk

To simulate value-at-risk for the case study, we will use the Monte Carlo simulation
technique, a popular problem-solving technique for approximating the probabil-
ity of particular outcomes through multiple simulations using random variables.

In this case study, we are calculating the approximate value of the portfolio return
for a future time using multiple trial runs and random variables. Value-at-risk will
be the outcome of this statistical approximation for the future return value.
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There are different statistical models that can be used for approximating value-at-
risk. Here, we will use the GBM model, which uses random variables along with
parameters based on the historic performance of a portfolio.

In this section, we will first look at the various random variable generation tech-
niques in SAP HANA. We will then provide insight into the GBM model before
moving on to designing logical models in SAP HANA. Finally, we will look at and
compare alternative approaches for implementing and simulating value-at-risk.

6.2.1 Random Variable Generation

Randomization is the most important step in calculating value-at-risk outcomes in
a Monte Carlo simulation. SAP HANA supports four distinct random distribution
sampling techniques to generate random variables through the PAL function
DISTRRANDOM: uniform, normal, weibull, and gamma.

In this section, we will look at these four random distribution techniques, their
equations, parameters, and control tables. Then, to better understand the distri-
bution output of the random variables generated, we will discuss binning func-
tionality.

Random Distribution Techniques

In this section, we will look at the four random distribution techniques.

Uniform

Uniform distribution (also known as rectangular distribution) occurs when all inter-
vals are of the same length between each given minimum and maximum value.
The number of sampling values in each interval will be uniform. The probability
of uniform distribution is constant. SAP HANA uses the uniform distribution
function for generating random variables, like the one shown here:

The distribution control table to generate uniformly distributed random numbers
requires minimum and maximum values. Figure 6.1 shows the distribution con-
trol table values as an example.
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Figure 6.1  Uniform Distribution Control Table

The output of these random variables in a uniform distribution looks as shown in
Figure 6.2. The output shows that the number of random variables in each inter-
val is in a similar range.

Figure 6.2  Uniform Distribution of Random Numbers

Shape of Distribution

The bars in Figure 6.2 will change with the next random generation. However, although
the numbers generated are random, the overall pattern will be same. This is true for all
random generation techniques discussed in this chapter.

Normal

A normal distribution is defined with a variant of x, a mean of μ and a variance of
σ2. This distribution usually forms a bell shape. An example of a random variable
SAP HANA generates with the normal distribution is as follows:
344



Monte Carlo Simulation of Value-at-Risk 6.2
There are two parameters that control normal distribution random number gen-
eration: mean and variance. A mean of 0 and variance of 1 are most commonly
used for generating a bell-shaped normal distribution. Figure 6.3 shows the con-
trol parameters for the normal distribution.

Figure 6.3  Normal Distribution Generation Control Parameters

By generating a chart from the Figure 6.3 control values, you can see normally
distributed random numbers, as shown in Figure 6.4.

Figure 6.4  Normal Distribution of Random Variables
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Most Monte Carlo simulations require the normal distribution of random vari-
ables. For such simulations, you want each simulation that is normally distributed
to have a mean of 0 and variance of 1.

The bin shown for the normal distribution technique shows the overall random
sample distribution to be normal while using normal distribution.

Binning

Binning is a way to group number values into small groups or “bins”. We will discuss the
binning functionality in detail in the Binning section.

Aggregating the random numbers shows a mean of 0 and a variance of 1. This is
the technique we will use for the case study.

Weibull

The following equation shows a two-parameter weibull probability density func-
tion of a random variable of SAP HANA:

This distribution is used for survival analysis and life distribution analysis. The K
parameter effects the shape of the distribution, and λ defines the slope or scale of
the distribution. Figure 6.5 shows the weibull distribution input parameters.

Figure 6.5  Weibull Distribution Input Parameters

Figure 6.6 shows the weibull distribution generation in a graphical chart after
generating random numbers, illustrating the distribution along with binning.
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Figure 6.6  Weibull Random Variable Distribution

Gamma

The following equation defines the gamma probability density function with a
shape parameter of K and a scale parameter of θ (this is an exponential distribu-
tion function):

The parameter control table with gamma distribution is shown in Figure 6.7.

Figure 6.7  Gamma Distribution Parameter Values

The result of these parameters is shown in the distribution table in Figure 6.8.
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Figure 6.8  Gamma Distribution of Random Variables

As you can see, these four random variable generation techniques produce differ-
ent distributions based on their parameters.

In the next section, we will look how these results can be understood in SAP
HANA.

Binning

It is not easy to understand the distribution of outputs generated by random vari-
able generators by looking directly at the result sets. As an alternative, you can
leverage the SAP HANA PAL binning functionality to better understand the distri-
bution. Binning is an effective way to understand the distribution of random vari-
ables. All PAL functions are multithreaded and use the processing power of the
SAP HANA servers, and using a binning function is an efficient way of manually
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classifying groups in boilerplate SQL code. You can control the output bins by
using various parameters and potentially avoid writing boilerplate code in SQL.

Using the SAP HANA AFL framework, generate a wrapper procedure called BIN-
NING_VAR_PROC for the BINNING PAL function and use the output of the random
distribution as an input to this procedure to better understand the distribution of
random numbers. Listing 6.1 provides common code for generating random dis-
tributions and viewing the result after binning.

CREATE PROCEDURE MONTECARLO.RANDOM_DISTRIBUTION_BIN (OUT v_
output "MONTECARLO"."PAL_BINNING_RESULT_T")
LANGUAGE SQLScript READS SQL DATA WITH RESULT VIEW
MONTECARLO.BIN_DISTRIBUTION AS
BEGIN

input1= SELECT * from "MONTECARLO"."PAL_DISTRRANDOM_DISTRPARAM_TBL";
input2 = SELECT * FROM "MONTECARLO"."PAL_CONTROL_TBL_ANIL";
CALL "MONTECARLO"."DISTRRANDOM_PROC" (:input1, :input2, dis_inp);

bin_input = SELECT "ID", "RANDOM" AS "VAR" FROM :dis_inp;
control_input = SELECT * FROM "MONTECARLO"."BIN_PAL_CONTROL_TBL";

CALL "MONTECARLO"."BINNING_VAR_PROC"(:bin_input, :control_input,
v_output);

END;

Listing 6.1  Random Variable Generation Code

In Listing 6.1, DISTRRANDOM_PROC will generate a distribution as per the control
parameter and distribution parameter tables. Use the output of the random gen-
eration as an input for the binning function BINNING_VAR_PROC to understand the
distribution.

Random Generation Outputs

The figures provided for each of the random generation techniques are outputs of the
procedure in Listing 6.1, with different control parameter values for random distri-
butions. The result view analysis in SAP HANA Studio is used to produce Figure 6.2,
Figure 6.4, Figure 6.6, and Figure 6.8.

In a control input table for generating random numbers, there are three parame-
ters for generating input numbers:
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� THREAD_NUMBER 
For performance, this displays how many threads to use to generate a distribu-
tion.

� SEED 
Initializes the random generation for pseudo random generation. Here, use 0.

� NUM_RANDOM 
Indicates the number of random variables to be generated.

Figure 6.9 is an example of a control table for generating random variables.

Figure 6.9  Control Table for All Types of Random Sample Distribution

We will use the normal distribution’s random variables in the next section for the
Monte Carlo simulation, define the GBM model along with random variables,
and run simulations for the portfolio return. Based on these simulated outcomes,
we will calculate the value-at-risk.

6.2.2 Simulation Model and Process

A randomly distributed process (also referred as a stochastic process) St is said to
follow the GBM model if it satisfies the following equation, where Wt is a Brown-
ian motion and σ and μ are constants:

The first part (μStdt) of this differential equation is referred to as the drift in time
or trend. The second part of the equation (σStdWt) is called random noise and con-
trols the trajectory of the simulation. Because it is a random approximation in
time, this is a Monte Carlo simulation.

Random Numbers in a GBM Model

In a GBM model, the number of random numbers depends on the input parameters of
the date you want to know the value-at-risk. It can be 10 days in advance, 180 days in
advance, or higher for long-term securities.
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The overall process of a value-at-risk simulation is shown in Figure 6.10.

Figure 6.10  Overall Value-At-Risk Simulation Process

We will describe the process seen in Figure 6.10 step by step:

� Stock quotes 
In this step, we will discuss the data storage of stock market prices.

� Select stocks 
This is the process of creating a portfolio and using that portfolio for a simula-
tion. Because you already have defined a portfolio with the top 40 company
securities in it, continue using that portfolio.

� Calculate return 
In this step, define the SAP HANA logical model for calculating return.

� Simulate portfolio
In this step, discuss the logic for implementing the simulation model.

� Calculate value-at-risk 
In this step, calculate the value-at-risk from the simulation outcomes.

In the following sections, we will implement each of these steps in SAP HANA by
creating a stock table to calculate the value-at-risk.

Stock Quotes

Figure 6.11 shows the table definition of a stock quote with a sample stock. This
table is populated every day from NASDAQ or similar stock markets using SAP
HANA ETL tools.

As previously discussed, a portfolio is combination of various securities, usually
diversified with the various stocks of a company and its weights. For this case
study, we have uniformly distributed the weights of randomly picked stocks to
create a portfolio (see Figure 6.12).

Stock quotes Select stocks Calculate return
Simulate 
portfolio

Calculate VaR
351



Simulations and Optimizations6
Figure 6.11  Stock Quote Table Structure

Figure 6.12  Portfolio Definition Structure

Figure 6.12 is populated with a portfolio that consists of up to 40 securities. Ini-
tially, you will weight each of these securities in your portfolio as 1/40, or 0.025.
Once the initial portfolio is created, you can calculate the portfolio return.

Calculate Return

The monthly return of a stock is calculated as the difference between the values of
a stock on opening day and on the last day of the month. Figure 6.13 shows a
table containing the columns MONTH_LAST and MONTH_FIRST for each month. The
difference between these two values for each month is the monthly return.

A portfolio’s monthly and daily return is the sum of the monthly and daily
returns of all stocks that belong to a portfolio. A calculation view definition that
calculates stock returns is depicted in Figure 6.14.

We will use the calculated daily return to determine the mean and standard devi-
ation of the portfolio, which are used as constants in the GBM simulation.
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Figure 6.13  Monthly Return of a Security

Figure 6.14  Calculation View Definition of Portfolio’s Monthly and Daily Returns
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Simulate Return

Using the concepts covered in Section 6.1 and Section 6.2.1, Listing 6.2 presents
the pseudocode for the Monte Carlo simulation with a GBM model.

select round(AVG(A_R),6), round(STDDEV(A_
R),6), count(*), round(STDDEV(A_R)/sqrt(count(*)),6)
into drift_of_return, stddev_of_return, number_of_time_steps, dt
from (
select DATE_SQL, SUM(DAILY_RETURN*WEIGHT) A_R

from "_SYS_BIC"."montecarlo/AN_STOCK_RETURN"
where ID = :PORTF_ID
and DATE_SQL between :BEGIN_DATE and :END_DATE
group by DATE_SQL

);

TOPROWS := TIME_STEPS * SERIES;

input1 = SELECT * FROM MONTECARLO.PAL_DISTRRANDOM_DISTRPARAM_TBL;
input2 = SELECT * FROM MONTECARLO.PAL_CONTROL_TBL

union
select 'NUM_RANDOM', :TIME_STEPS, null, null from dummy ;

for k in 1 .. :SERIES do
CALL MONTECARLO.DISTRRANDOM_PROC(:input1, :input2, v_output);
eps_list = select top :TIME_STEPS "ID" as row_

id, RANDOM as eps from :v_output;
insert into MONTECARLO.SIM_LOOP_WORK_TEMP select :k, 0, :INIT_

RETURN, :INIT_RETURN, 0 from dummy;
select 0,0 into t,W from dummy;
for i in 1 .. :TIME_STEPS do
select eps into eps from :eps_list where row_id = :i-1;
dW := stddev_of_return*eps*sqrt(dt);
t := dt*i;
W := W + dW;
insert into MONTECARLO.SIM_LOOP_WORK_TEMP
select top 1 :k, :i, RETURN_+RETURN_*(:drift_of_return*:dt+:dW),

(RETURN_2+RETURN_2*(:drift_of_return*:dt+:dW))*exp((:drift_
of_return*t-0.5*:stddev_of_return*:stddev_of_return*:t) + :W),

0 from MONTECARLO.SIM_LOOP_WORK_TEMP where SERIES =
:k order by TIME_STEPS desc;

end for;
end for;

Listing 6.2  Pseudocode for Monte Carlo Simulation
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The following are inputs used in Listing 6.2:

� Portfolio ID  
The portfolio for which you want to simulate the future value-at-risk.

� Date range 
The daily returns of the stocks selected for a given date range.

� Series 
The number of required simulations.

� Time steps 
A future date that requires a value-at-risk to be simulated.

� Reliability 
The confidence level for the value-at-risk.

� Base return 
The future value of this base return will be simulated.

In Listing 6.2, the initial query retrieves the primary parameters from the stock
market data (i.e., the drift and trend that are used for the GBM simulation). Then,
simulation loops deduce the future value of the portfolio.

As shown in Listing 6.2, the Monte Carlo simulation for value-at-risk using the
GBM model involves simulating the daily stock value for the nth day in the future
for m iterations. Then, the lowest value of the nth day, based on a desired confi-
dence level, is used as the value-at-risk. As discussed earlier, the mean and stan-
dard deviation are used as constants for trend/drift in time and random noise
(also referred to as volatility).

The output of the simulation procedure is shown in Figure 6.15 for the base value
of 100 dollars, the number of the simulation as 1, the number of time steps as 5,
and a reliability of 0.99.

The output contains the simulation number in the STEPS column. The TIME_
STEPS column contains the day from the end-date. The RETURN_ column is the
simulated portfolio return. We will use this output to calculate value-at-risk in
the next section.
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Figure 6.15  GBM Simulation Output

Calculate Value-At-Risk

Value-at-risk is the max value of the reliability percent record. This can be calcu-
lated using simple SQL by selecting the top percentage records of the simulation
value for the nth day. Figure 6.16 illustrates how to calculate value-at-risk from a
simulation result created in the previous section.

Figure 6.16  Value-at-Risk Calculation

You can calculate the percent of records that need to be considered for a simula-
tion based on the user input. If the reliability input for the procedure is 0.99, that

- Pick up records where times = 5.
- Pick up the top value of return in worst 1%.
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means value-at-risk is of 99% confidence. In this case, choose 1% of the lowest
RETURNS_ of the simulation. The highest value of this 1% record will be deter-
mined as the value-at-risk. Remember, you are looking at only the nth day of the
simulation; all of the lowest value selections are only for that day.

Now that you have calculated value-at-risk for the simulation output, you will
want to see the distribution of the simulation itself. You used the binning tech-
nique to see the distribution of random variables, and you can effectively use the
same technique to understand the distribution of the simulation of RETURN_OF.
Remember, you are interested in the last day of the simulation.

If you bin the output of the simulated value-at-risk for each of the simulations, the
distribution will resemble that shown in Figure 6.17.

Figure 6.17  Value-at-Risk Simulation Output Distribution

You will notice that the overall simulation is also normally distributed.

One of challenges of pseudocode is that it can be slow due to imperative logic.
One way to optimize its performance is to execute the simulation procedure in
different connection sessions in parallel. In addition to this option, in the follow-
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ing sections we will try another approach to avoid imperative logic with random
distribution.

6.2.3 Avoiding Imperative Logic

Imperative logic in a SQLScript stored procedure prohibits SAP HANA from using
its full processing power due to the sequential nature of the execution require-
ments. Some of the logic can be executed using SQL statements that make use of
parallel processing in SAP HANA. Using set theory or thinking in sets is another
approach to utilizing parallel computing power through SQL processing.

Looking at Listing 6.2, you can see that there are a couple of loops. The first loop
is used for calculating the return for each day. Another loop is used for the num-
ber of simulations. We call this technique a stepwise simulation, which has a loop
simulating each day of a return.

If the number of simulations are large, you can explore generating random distri-
butions once for all simulations and adjust the stepwise processing in the formula
for the Monte Carlo simulation. Listing 6.3 is pseudocode for this new logic in
which we generate the random variables once for all the simulations. We call this
a non-stepwise technique.

select round(AVG(A_R),6), round(STDDEV(A_
R),6), count(*), round(STDDEV(A_R)/sqrt(count(*)),6)
into drift_of_return, stddev_of_return, number_of_time_steps, dt
from (
select DATE_SQL, SUM(DAILY_RETURN*WEIGHT) A_R

from "_SYS_BIC"."montecarlo/AN_STOCK_RETURN"
where ID = :PORTF_ID
and DATE_SQL between :BEGIN_DATE and :END_DATE
group by DATE_SQL

);

TOPROWS := TIME_STEPS * SERIES;

input1 = SELECT * FROM MONTECARLO.PAL_DISTRRANDOM_DISTRPARAM_TBL;
input2 = SELECT * FROM MONTECARLO.PAL_CONTROL_TBL

union
select 'NUM_RANDOM', :TOPROWS, null, null from dummy ;

CALL MONTECARLO.DISTRRANDOM_PROC(:input1, :input2, v_output);

eps_list = select top :TOPROWS "ID" as row_id, CASE WHEN
MOD("ID"+1,:TIME_STEPS) = 0 THEN :TIME_STEPS ELSE MOD("ID"+1,
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:TIME_STEPS) END AS "times",
RANDOM as eps, :dt dt, :stddev_of_return sigma,
:drift_of_return drift_of_return
from :v_output;

eps2 = select "times", sigma*eps*sqrt(dt) dW,
dt*"times" t, sigma*eps*sqrt(dt)*"times" W, sigma, dt,
row_id, drift_of_return from :eps_list;

out1 = select FLOOR((row_id-1)/:TIME_STEPS)+1
"SERIES", "times" as "TIME_STEPS",
(:INIT_RETURN+:INIT_RETURN*(drift_of_return*dt+dW))*exp(
(drift_of_return*t-0.5*sigma*sigma*t) + W) "RETURN_"

from :eps2 order by 1;

Listing 6.3  GBM without a Loop

In Listing 6.3, the random variables are generated once; the GBM processing is
adjusted to cater for the non-stepwise processing required.

Figure 6.18 depicts the overall GBM output without loops.

Figure 6.18  Non-Stepwise GBM Output
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The output visualization in Figure 6.18 is created using SAP BusinessObjects BI to
create visualizations for comparison. The distribution of the simulation in Figure
6.18 is normal. The leftmost four bars in the distribution are the values below and
close to value-at-risk; value-at-risk itself is shown in the visualization. The input
for the model is taken from the user through the controls.

You can also see a comparison of both stepwise and non-stepwise simulations
side by side to observe the differences in calculating value-at-risk. Figure 6.19
shows a comparison of the output of both models.

Figure 6.19  Comparison of Stepwise and Non-Stepwise GBM Models

The light gray region indicates that the number of simulated outcomes is less than
the value-at-risk. The two charts in Figure 6.19 are for two types of simulations;
as noted previously, the random sampling distribution is generated once for the
entire simulation and then for each individual simulation. Value-at-risk for each
technique is different; the random number being distributed once for each simu-
lation seems to be more realistic than the earlier technique.

Value-at-risk values for each of these models differ by a large amount: 15%. Given
that this can be adjusted, there are now two different GBM models: stepwise and
non-stepwise (which is without imperative logic). Values of simulated value-at-
risk are normal distributions in both simulations, but stepwise is closer to the
realistic value and the more preferred method for each simulation.
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The next section looks at parallel processing and its performance-enhancing capa-
bilities for imperative logic.

Using Parallel Processing in LLANG

LLANG is strictly for SAP internal use only, and SAP developers can use it only
through an approval process. This section is applicable for those qualified devel-
opers, and it is only to show possible options in an SAP HANA platform.

In SAP HANA, you can write code in one of the three languages: SQLScript, L, and
R. L is closer to the procedural language, with data structures, operations, and
functions. L in SAP HANA supports parallel processing, which can be used to
achieve better performance for imperative logic. Listing 6.4 is the pseudocode for
the stepwise logic in LLANG.

Void calcVaR( Int32 times_each, Double drift_of_
return, Double stddev_of_return,

Double dt, Int32 init_return,
_shared_read PAL_DISTRRANDOM_DISTRPARAM_T input1, _shared_

read PAL_CONTROL_T input2,
_reset MON_SIM_WORK2_T & monoutput1 )

{

PAL_DISTRRANDOM_DISTRPARAM_T read1 = input1.clone();
PAL_CONTROL_T read2 = input2.clone();
PAL_DISTRRANDOM_RESULT_T read3;

Int32 counter = 0;
Size table_counter = 0z;

Column<Int32> mon_time = monoutput1.getColumn<Int32>("TIME_
STEPS");

Column<Double> mon_return = monoutput1.getColumn<Double>("RETURN_
2");

Column<Int32> mon_var_flg = monoutput1.getColumn<Int32>("VAR_
FLG");

Column<Double> mon_return_org =
monoutput1.getColumn<Double>("RETURN_");
Column<Int32> mon_series = monoutput1.getColumn<Int32>("SERIES");

while (counter < times_each) {

pal::distrRandom(read1, read2, read3);
Column<Int32> idC = read3.getColumn<Int32>("ID");
Column<Double> randomC = read3.getColumn<Double>("RANDOM");
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Size coutContent = 0z;

Double w = Double("0");
Double eps = Double("0");
Double dW = Double("0");
Double t = Double("0");
Double constant = Double("0.5");

Double rETURN2 = Double(init_return);
Int32 index1 = 1;
while ( coutContent < idC.getSize()) {

eps = randomC[coutContent];
dW = stddev_of_return * eps * math::sqrt(dt);

t = dt * Double(index1);
w = w + dW;
Double expInpt = (drift_of_return*t-constant*stddev_of_

return*stddev_of_return*t) + w;
rETURN2 = rETURN2+Double(rETURN2)*(drift_of_

return*dt+dW)*math::exp(expInpt);

mon_time[table_counter] = index1;
mon_return[table_counter] = rETURN2;
mon_var_flg[table_counter] = 0;
mon_return_org[table_counter] = expInpt;
mon_series[table_counter] = 0;

coutContent = coutContent.next();
table_counter = table_counter.next();
index1 = index1 + 1;

}

counter = counter + 1;
}

}

_parallel {
calcVaR( times_each, drift_of_return, stddev_of_

return, dt, init_return, read1, read2, montecarlo1);
calcVaR( times_each, drift_of_return, stddev_of_

return, dt, init_return, read1, read2, montecarlo2);
calcVaR( times_each, drift_of_return, stddev_of_

return, dt, init_return, read1, read2, montecarlo3);
calcVaR( times_each, drift_of_return, stddev_of_

return, dt, init_return, read1, read2, montecarlo4);
calcVaR( times_each, drift_of_return, stddev_of_

return, dt, init_return, read1, read2, montecarlo5);
calcVaR( times_each, drift_of_return, stddev_of_

return, dt, init_return, read1, read2, montecarlo6);
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calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo7);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo8);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo9);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo10);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo11);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo12);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo13);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo14);

calcVaR( times_each, drift_of_return, stddev_of_
return, dt, init_return, read1, read2, montecarlo15);

}

Listing 6.4  LLANG Procedure   

In Listing 6.4, SAP HANA parallelizes the execution of logic in the _parallel
block. We have implemented GBM in a calcVaR function in a LLANG procedure
and called it multiple times in the parallel block (_parallel). This enables us to
perform a large number of simulations in matter of subseconds. One million
Monte Carlo simulations are executed in less than five seconds with this
approach.

With this, you have now seen all of the random variable generation techniques in
SAP HANA and their use in the Monte Carlo simulation for calculating value-at-
risk using the GBM model. You have also seen various alternatives for imple-
menting the simulation and compared the outcomes.

Once an investment manager identifies risk in a portfolio, the next step is to opti-
mize the portfolio for maximize return, which we will cover in the next section.

6.3 Portfolio Optimization

A large number of securities are traded on various bases around the world every
day. An investment portfolio is a combination of various securities with distributed
weights as per diversification rules. Performance of a stock/security is usually
measured by the return of a security for a particular period in time until the time
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in question. The volatility of a portfolio is determined by the weighted volatilities
of the individual security returns. This volatility is also known as risk. The Sharpe
ratio is defined as the ratio of return to risk. The performance of a portfolio is
assessed based on values of the return, risk, and Sharpe ratio. A maximum return
with minimal risk is an ideal expectation for an investment in a portfolio. In other
words, the higher the Sharpe ratio, the higher the return.

Portfolio optimization is the process of maximizing returns and minimizing risk, or
maximizing the Sharpe ratio under specified constraints. One of the critical com-
ponents for optimizing a portfolio is building a variance-covariance matrix that
explains the correlation amongst all the securities in a portfolio. The covariance
matrix return, risk, and Sharpe ratio are defined as follows:

� Return 
, where:

� Wi is the weight of the ith security in a portfolio.

� ri is the return on the ith security (daily or monthly).

� R is the return of a portfolio P.

� n is the number of securities in a portfolio.

� Risk 
, where:

� wi is the weight of the ith security in a portfolio P.

� wj is the weight of the jth security in a portfolio P.

� σi is the variance of the ith security in a portfolio P.

� σj is the variance of the jth security in a portfolio P.

� ρij is the covariance of the ith and jth security in a portfolio P.

� Sharpe ratio 
This is the ratio of return to risk. In this example, we will maximize the return
using matrix algebra, as explained in the following sections.

Figure 6.20 illustrates the overall process to optimize a portfolio.

We will use the same stock definitions and portfolio and return calculations as
introduced previously (see Section 6.2.2). The following sections cover the
remaining processes involved.
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Figure 6.20  Portfolio Optimization Process

6.3.1 Variance-Covariance Matrix

A variance-covariance matrix of a portfolio consists of a correlation of each secu-
rity in a portfolio with others. A variance-covariance matrix can be designed in
two ways in SAP HANA: via a matrix structure or a table structure. The following
two sections look at each option in detail.

Matrix Structure

As shown in Figure 6.21, a matrix structure is dependent on the number of secu-
rities.

Figure 6.21  Matrix Structure

For the matrix structure table design, if you know the securities of a portfolio
beforehand, you can define the physical data model of a table as a matrix struc-
ture as shown in Figure 6.21. If you want to be flexible for optimizing and reop-
timizing purposes and there are different securities to optimize, consider using
SAP HANA flexible tables. A flexible table allows you to add columns dynamically.
In SAP HANA, you can use the SCHEMA FLEXIBILITY expression for this option and
add the columns while performing optimization processes. Listing 6.5 displays
the set SQL statements that will define a flexible table.

Stock
quotes

Select
stocks

Calculate
return

Create
covariance

matrix

Calculate
inverse
matrix

Calculate
expected
returns

Calculate
weights

Repeat until the portfolio has no negative weighted stocks.
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CREATE COLUMN TABLE COVARIANCE(
SECURITY VARCHAR(15),
SECURITY_A DECIMAL(6,3),
SECURITY_B DECIMAL(6,3)
) WITH SCHEMA FLEXIBILITY;

INSERT INTO MONTECARLO.COVARIANCE VALUES ('SECURITY_A', 0.6, 0.7);

Listing 6.5  Flexible Table

With the INSERT statements in Listing 6.6, you can add new columns to this table.
The new columns are SECURITY_C and SECURITY_D, with NVARCHAR(5000) for the
type.

INSERT INTO MONTECARLO.COVARIANCE (SECURITY , SECURITY_A,SECURITY_
B, SECURITY_C) VALUES ('SECURITY_A', 0.6, 0.7, 0.8);
INSERT INTO MONTECARLO.COVARIANCE (SECURITY, SECURITY_A, SECURITY_
B, SECURITY_C, SECURITY_D) VALUES ('SECURITY_A', 0.6, 0.7, 0.8, TO_
DOUBLE(-0.3));

Listing 6.6  Flexible Table Population with New Columns

Irrespective of the value of the new field type, the new column type will be
NVARCHAR. This requires changing additional type conversion operations to
numeric. In Figure 6.22, the columns inserted with INSERT statements are created
with NVARCHAR data types.

Figure 6.22  Table Columns with Flexibility Option

For the portfolio, we have considered more than 2,000 securities, but it would be
difficult to manage the table structure with so many columns. In such a case, the
table structure can be used instead of the matrix structure. The other advantage of
a matrix structure is that building a covariance matrix is possible with the SAP
HANA PAL multivariate statistics function, MULTIVARSTAT.
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Table Structure

A table structure has consistent columns irrespective of the number of securities
and grows with the number of rows. In Figure 6.23, note that only a number of
rows differ based on the number of securities in the portfolio.

Figure 6.23  Table Structure

In the next section, we will see how we can implement and populate a covariance
matrix in the columnar table structure.

Columnar Table

The columnar structure is easier with respect to maintaining a structure; how-
ever, because it is not in a matrix format, you need to rely on low-level data struc-
tures of LLANG on SAP HANA or RLANG for the matrix operations. Because SAP
HANA supports R integration, it would be simplest to perform some of these
activities with R.

Also, it is easier to populate covariance values into a columnar table structure
using the following formula. For a calculation, you need to sum the squares of the
returns for the two securities and use the correlation calculation formula shown
here:

The SQL query shown in Listing 6.7 will calculate covariance for securities.

SELECT ID, RUNID, SYMBOL_A, SYMBOL_B,
NUM1 as "CORR",
COMMONSIZE, "TYPE"

FROM
(
SELECT

:portfId as "ID", :runid as "RUNID", SYMBOL_A, SYMBOL_B,
round(VAR_A,6) VAR_A, round(VAR_B,6) VAR_B,
round((psum / n - sum1 /n * sum2 / n), 6) as "NUM1",
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sqrt((sum1sq - power(sum1, 2.0) / n) * (sum2sq -
power(sum2, 2.0) / n)) as "NUM2",

round(((psum - (sum1 * sum2 / n)) /sqrt((sum1sq -
power(sum1, 2.0) / n) * (sum2sq - power(sum2, 2.0) /
n))),6) AS "CORR",

n AS "COMMONSIZE", 'M' as "TYPE"
FROM
(

SELECT
n1.SYMBOL AS SYMBOL_A,
n2.SYMBOL AS SYMBOL_B,
STDDEV(n1.MONTHLY_RETURN) AS "VAR_A",
STDDEV(n2.MONTHLY_RETURN) AS "VAR_B",
SUM(n1.MONTHLY_RETURN) AS sum1,
SUM(n2.MONTHLY_RETURN) AS sum2,
SUM(n1.MONTHLY_RETURN * n1.MONTHLY_RETURN) AS sum1sq,
SUM(n2.MONTHLY_RETURN * n2.MONTHLY_RETURN) AS sum2sq,
SUM(n1.MONTHLY_RETURN * n2.MONTHLY_RETURN) AS psum,
COUNT(*) as n

FROM :portfolio AS n1
INNER JOIN :portfolio AS n2
ON
n1.YEAR_INT = n2.YEAR_INT AND n1.MONTH_INT = n2.MONTH_INT
GROUP BY
n1.SYMBOL, n2.SYMBOL

)
);

Listing 6.7  Calculating Covariance Matrix Using SQL

Covariance Table Data

With a large number of securities in a portfolio and the easy population of cova-
riance values, a table structure suits our portfolio optimization. The covariance
table structure is shown in Figure 6.24.

Figure 6.24  Covariance Table Structure
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We will populate the table in Figure 6.24 using the SQL in Listing 6.7 for calcu-
lating the correlation factor. Figure 6.25 shows some of the first records of the
covariance table.

Figure 6.25  Sample Output of Covariance Table

The stronger the positive correlation between the two securities, the closer the
value of CORR is to 1. Positively correlated stocks exhibit similar upward or down-
ward movements more often than not. Negative correlation is signified by a value
closer to -1. This indicates a strong inverse movement between two securities.
This information is crucial for the process of optimization and portfolio planning.

Bidirectional Covariance Values

The SQL in Listing 6.7 will populate bidirectional covariance values into the table. You
will have two entries for the covariance of securities ABC and C corporation, with SYM-
BOL_A AS ‘ABC’ and SYMBOL_B 'C', and another entry with the reverse combination
with SYMBOL_A 'C' and SYMBOL_B AS 'ABC'.
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Use SAP BusinessObjects BI tools to visualize covariance analysis based on the
correlation value. Figure 6.26 shows a visualization for the top positive and neg-
ative correlated securities based on the correlation factor.

Figure 6.26  Correlated Securities Movement

In Figure 6.26, notice at the top of the image that if the correlation factor is
greater than 0.79 (strong positive correlation), the securities have a similar trend
of returns. Similarly, negative correlated securities at the bottom of the image
exhibit the same pattern.

In this section, we have seen the various options for creating a covariance matrix.
We populated the covariance matrix between securities in a portfolio in a tabular
format for this case study. We now know how we will use the covariance matrix
for maximizing the portfolio return by defining the matrix algebra models in the
next section.

6.3.2 Modeling for Optimization Constraints and Equations

Portfolio optimization was proposed in 1970 by Harry Max Markowitz using the
covariance matrix and matrix algebra. In the next sections, we will go through the
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model and how we will derive the equations for optimization execution with an
example.

Optimization Model

In this section, we will discuss matrix algebra and derive the optimization equa-
tion for maximizing the return.

The following formula (formula 1) is based on the portfolio optimization theory: 

 ----- (1)

In this example, V stands for variance matrix, W is the weight, R stands for the
return, and r* is the expected return of the portfolio.

You can rewrite this equation for calculating the inverse matrix as follows (for-
mula 2):

 ----- (2)

Finally, let’s represent the above equation (2) in a simplified format (formula 3):

(A) x (W) = R*---- (3)

Where A is the return and variance matrix, W is the weight matrix, and R* is the
return matrix.

Let’s run through an example of a variance matrix and a return matrix to derive
the equations for an optimization based on the preceding simplified formula (3).
Let’s consider an example of a three-by-three variance matrix V, as shown in
Table 6.1.

Symbol A Symbol B Symbol C

Symbol A 0.5 0.2 0.1

Symbol B 0.2 0.6 0.3

Symbol C 0.1 0.3 0.7

Table 6.1  Example Variance Matrix
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Similarly, let’s consider a return matrix for symbols in V for R, as shown in Table
6.2.

Using the example V and R matrix, A is as shown in Figure 6.27.

Figure 6.27  Matrix Example Including the Returns and Variance Matrix

The inverse matrix of A-1 is shown in Figure 6.28.

Figure 6.28  Inverse Matrix of Example A

Given that the expected return is an input, you can derive the weights from for-
mula 2, as shown in Figure 6.29.

R

Symbol A 5

Symbol B 4

Symbol C 3

Table 6.2  Return Matrix Example

=

R 1 Symbol A Symbol B Symbol C

R 0 0 5 4 3

1 0 0 1 1 1

Symbol A 5 1 0.5 0.2 0.1

Symbol B 4 1 0.2 0.6 0.3

Symbol C 1 1 0.1 0.3 0.7

A=
0 0 R
0 0 1
R 1 V

= 

R 1 Symbol A Symbol B Symbol C

R -0.25 1.05 0.5 1.29E16 -0.5

1 1.05 .4.72778 -1.61111 0.222222 2.388889

Symbol A 0.5 -1.61111 0.555556 -1.111111 0.555556

Symbol B 1.29E16 0.222222 -1.111111 2.222222 -1.111111

Symbol C -0.5 2.388889 0.555556 -1.111111 0.555556

A-1
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Figure 6.29  Weight Parameters Based on the Inverse Matrix

As shown in the first two columns of Figure 6.29, the inverse matrix will calculate
each weight as defined here:

W1 = 0.5 * r* – 1.611111
W2 = (1.29 – E16) * r* + 0.222222
W3 = –0.5 * r* + 2.388889

If the calculated weights W1, W2, and W3 are less than 0, then you need to iterate
the process, because you should consider W > 0 as an optimizing constraint.

Once you have the weights calculated for the inverse matrix, write the weights
matrix for formula 2 and the variance matrix (V) for formula 1, as follows:

Next, we want to show that the expected return is always between the minimum
and maximum of R as follows (you will use this in the Sharpe ratio equation):

Return = r* (min(R) <= max(R))

Now, write the defining formula for risk, which is related to the previous formula:

Once you have defined the risk, you can use the Sharpe ratio equation for opti-
mizing the returns:

=

λ1 / 2
λ2 / 2
W1

W2

W3

r*
1
0

A-1 =

–0.25
1.05
0.5

1.29 – E16
–0.5

1.05
–4.72778
–1.61111
0.222222
2.388889

0.5
–1.61111
0.555555
–1.11111
0.555556

1.29E – 16
0.222222
–1.11111
0.222222
–1.11111

–0.5
2.388889
0.555555
–1.11111
0.555556

r*
1
0
0
0

Weight Parameters
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The Sharpe ratio equation will be used to optimize returns. As you have seen in
this section, in order to optimize the Sharpe ratio, you first need to perform a
matrix inversion operation using the covariance matrix built in Section 6.3.1.
Then, use the preceding equation for optimization. The next section will cover
the inverse matrix.

Inverse Matrix

Now that we have defined the covariance matrix in tabular form in the Covari-
ance Table Data section, you need to transform the data into the matrix form and
perform an inverse matrix operation. You will use R to transform and retrieve the
inverse matrix.

To begin, define the input table types of an RLANG procedure. Figure 6.30 shows
the input table type.

Figure 6.30  Inverse Matrix Input Table Type

You only need two output values to optimize the portfolio for each symbol, as
explained in the previous section. Figure 6.31 displays the output table type.

Figure 6.31  Output of Inverse Matrix Procedure

Next, let’s look at the RLANG procedure code. Listing 6.8 displays the RLANG
procedure that will transform the covariance matrix in the table structure to the
matrix structure and calculate the inverse matrix.
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library(plyr)
library(reshape)
library(reshape2)
library(data.table)
Cov_list<-data.table(covariance_list)
Cov_matrix<-cast(Cov_list, SYMBOL_A ~ SYMBOL_B)
Cov_inverse_matrix<-solve(Cov_matrix)
Cov_inverse_matrix_frame<- cbind(row.names(Cov_inverse_

matrix),Cov_inverse_matrix[,c(1:2)])
colnames(Cov_inverse_matrix_frame)<-c("SYMBOL","INVERSE_

RETURN","INVERSE_ONE")
result<-as.data.frame(Cov_inverse_matrix_frame)

Listing 6.8  Transform the Structure and Perform the Inverse Matrix Operation

The previously mentioned R function solve will calculate the inverse of the
matrix, and cast will transform the function from the table format to the matrix
structure. Finally, select the first two values for each security for optimization
and send them back to SAP HANA (see Figure 6.32 for the output values of Lis-
ting 6.8).

Figure 6.32  Output of Inverse Matrix for Optimization
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Insert the output in Figure 6.32 into the WEIGHT_PARAMETER table, which will be
used to calculate the expected result in the next section.

Calculate Expected Return

Next, we will minimize and maximize the return using the derived equation in R
by passing the relevant parameters of A, B, and C calculated in SAP HANA and
leveraging the optimized function in R to calculate the expected return.

Begin by defining the input table type for the RLANG procedure, as shown in
Figure 6.33.

Figure 6.33  Input Table Type to Optimize Function

You can then calculate A, B, and C for the model as follows using SAP HANA SQL
(see Listing 6.9).

select sum(A) as A,sum(B) as B,sum(C) as C,sum(max_return) as MAX_
RETURN,sum(min_return) as MIN_RETURN from
(
select sum(CORR*IR_A*IR_B) as A, sum(CORR*(IR_A*IO_B+IR_B*IO_
A)) as B, sum(CORR*IO_A*IO_B) as C, null as max_return, null as min_
return
from(
select M.SYMBOL_A, M.SYMBOL_B, M.CORR as CORR, WP_A.INVERSE_

RETURN as IR_A, WP_A.INVERSE_ONE as IO_A, WP_B.INVERSE_RETURN as IR_
B, WP_B.INVERSE_ONE as IO_B
from "MONTECARLO"."COV_MATRIX_NN" as M
inner join "MONTECARLO"."WEIGHT_PARAMETR" as WP_A
on M.SYMBOL_A = WP_A.SYMBOL
inner join "MONTECARLO"."WEIGHT_PARAMETR" as WP_B
on M.SYMBOL_B = WP_B.SYMBOL

Listing 6.9  Calculation Equation Parameters in SQL 
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In addition to the Listing 6.9 code, also select the minimum and maximum
returns of the securities to pass them as an input to the RLANG procedure. Listing
6.10 is the pseudocode of the RLANG procedure.

library(data.table)
p<-data.table(r_input)
A<-p[1,A]
B<-p[1,B]
C<-p[1,C]
max_return<-p[1,MAX_RETURN]
min_return<-p[1,MIN_RETURN]
f<- function(x) x/(A*x^2+B*x+C)
xopt_max<- optimize(f=f,interval=c(min_return,max_return),tol=

0.000001,maximum=T)
xopt_min<- optimize(f=f,interval=c(min_return,max_return),tol=

0.000001)
expected<-matrix(c(xopt_max$maximum,xopt_max$objective,xopt_

min$minimum,xopt_min$objective), nrow=1, ncol=4)
colnames(expected)<-c("OPTIMIZED_EXPECTED_RETURN","OPTIMIZED_

SHARPE_RATIO","MINIMUM_EXPECTED_RETURN","MINIMUM_SHARPE_RATIO")
result<-as.data.frame(expected)

Listing 6.10  Optimize the Return

Note that the optimize function definition is defined in the model, which is fol-
lowed by calling the minimize and maximize optimized functions. The outputs of
the optimized functions are maximized and minimized returns with their respec-
tive Sharpe ratios.

Redistribute the portfolio by assigning weights, using the maximum expected
return OPTIMIZED_EXPECTED_RETURN from the procedure in Listing 6.10 to achieve
maximum returns. You will store this output in a table in SAP HANA.

Calculate Weights

As per the model, a new weight can be calculated based on the maximized
expected return and the inverse matrix as a1r* + b1 for a security. Use following
SQL statements to calculate the same:

calculated_weights = select :portfId, :runid, :expected_
return, SYMBOL, INVERSE_RETURN * :expected_return + INVERSE_ONE
from "MONTECARLO"."WEIGHT_PARAMETER";

The output looks like that shown in Figure 6.34 for securities in a portfolio.
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Figure 6.34  New Weights Calculated

The overall expected return of the portfolio with the new weights calculated in
Figure 6.34 can be calculated as shown in Listing 6.11.

portfolio_return =
select :portfId, :runid, :expected_return, var_, :expected_return/
var_
from(
select sum(CORR*WEIGHT_A*WEIGHT_B) as var_
from (
select M.CORR as CORR, W_A.WEIGHT as WEIGHT_A, W_

B.WEIGHT as WEIGHT_B
from "MONTECARLO"."COV_MATRIX_NN" as M
inner join :calculated_weight as W_A
on M.SYMBOL_A = W_A.SYMBOL and W_A.ID = :portfId and W_A.RUNID =

:runid and W_A.EXPECTED_RETURN = :expected_return
inner join :calculated_weight as W_B
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on M.SYMBOL_B = W_B.SYMBOL and W_B.ID = :portfId and W_B.RUNID =
:runid and W_B.EXPECTED_RETURN = :expected_return

)
);

Listing 6.11  Calculating New Weights

The output of Listing 6.11 looks like that shown in Figure 6.35.

Figure 6.35  New Portfolio Return Based on the New Calculated Weights

In this section, we performed an inverse matrix operation to get the weights for
each security. We then derived the optimization equation from the matrix algebra
and performed the matrix transformation. Finally, we calculated the maximum
expected returns using the optimization function.

We still need to recalculate the portfolio weights until the constraints of optimi-
zation are met, which we will cover in the next section.

6.3.3 Executing Optimization Models

One of the constraints of a portfolio is that there should not be any negative
weights; that is, weights should be greater than 0.

A new portfolio can be created by removing the negatively weighted securities
from recalculated weights and performing the same iterative process of optimiz-
ing until you reach a portfolio optimized without negative stocks.

In this example, a portfolio optimization simulation exercise with 2,742 securities
is executed 12 times to remove all negative stocks—and finishes in under 10 min-
utes. Figure 6.36 shows a set of optimal portfolios with a defined level of
expected return (known as an efficient frontier) from which the calculated Sharpe
ratio and risk derived from the simulation are depicted.
379



Simulations and Optimizations6
Figure 6.36  Efficient Frontier of Portfolio Optimization

6.4 Summary

In this chapter, we discussed how to perform a Monte Carlo simulation to calcu-
late value-at-risk using a GBM model. During the simulation process, we pre-
sented various random variable generation and imperative logic techniques. We
also described how to perform matrix algebra based on portfolio optimization in
SAP HANA. During this process, we also looked at matrix data design and matrix
operations such as the inverse matrix and using optimized functions.

This completes our journey through advanced data modeling in SAP HANA. In
this book, we looked at SAP HANA modeling capabilities, how to build complex
models for complex logic, and how to scale these models for high performance.
Together, we explored how the SAP HANA platform allows us to perform predic-
tive modeling using R and PAL together for predictive models. We concluded the
book by looking at a simulation and optimization case study for performing data
structure operations in SAP HANA. With this book, you should now be able to
model complex logic in SAP HANA, build predictive models with R, PAL, and
more, and utilize performance tools to enhance your SAP HANA data models.
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_SYS_BI.M_TIME_DIMENSION, 199
$rowid$, 158
$validfrom$, 239
2-D geometries, 57

A

ABC analysis, 90
Affinity propagation, 297
AFL, 25, 86, 308, 349

framework, 267
AFM, 310
Aggregated column, 54
Aggregation, 122, 144

level, 145
node, 29, 54, 57, 120, 153

Algorithm
parameters, 267
specific results, 327

ALTER VIEW, 254
Analytic privileges, 45, 67

create, 67
Analytic view, 24, 34, 37, 66, 71, 129, 153

data foundation, 38
history records, 156
manipulating joins, 225
modifying tables, 232
nonequi joins, 231

Ancestor-descendant relationship, 108
Ancestors, 105
Anomalies, 294
Anomaly detection, 88, 293
Application Function Library � AFL
Application Function Modeler (AFM), 265, 

308, 329
Application functions, 86
APPLY_FILTER, 151
ARIMA, 300, 307

variants, 300
ARIMAX, 300, 302, 305
Array type, 82
Ascendants, 105
Assess, 263

Assets-related functions, 86
Assign restrictions, 68, 72
Association

algorithms, 89
analysis, 298

Asymmetric distribution, 274
Attribute definition, 33
Attribute view, 24, 26, 34, 66

dimensions, 37
linked, 229

Auto commit, 237
Autocorrelation, 279, 282
Automatic analytics, 311

B

Base return, 355
Batch predictive modeling, 329, 330
BFL, 25, 87

function categories, 86
library, 88

Bidirectional covariance values, 369
Binning, 89, 348, 357
Bi-variate geometric regression, 89
Bi-variate natural logarithmic regression, 89
Block, 82
Bottleneck, 214
Brown’s exponential smoothing, 301
Business algorithms, 86
Business Function Library � BFL
Business understanding, 261

C

C++, 23, 24, 25, 90
Cache

filter values, 255
hints, 256
invalidation period, 51, 253
limited columns, 255
no cache, 252
refreshing, 256
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Cache (Cont.)
result cache, 251
time controlled, 252
view cache, 250, 254, 257

Calculate
before aggregation, 43
expected return, 376
profit, 179
return, 351, 352
weights, 377

Calculated
attribute, 47
column, 43, 48, 203
measures, 66

Calculation engine, 24, 55, 320
plan operators, 66, 161
scenario, 47

Calculation view, 24, 34, 47, 52, 66, 111, 116, 
187, 267, 353
filtering, 141
model, 328
nested, 185
type, 53

Calendar table, 34, 128, 132, 199
Call pattern, 212
Cardinality, 179
Cartesian join, 111
Cash flow-related functions, 87
Catalog procedures, 73
Categorical type variable, 292
CE_VERTICAL_UNION, 161
CHAID decision tree, 89
Chain designing, 318
Character-based analysis, 338
Children, 103
Churn analysis, 278
Classical XML-based analytic privilege, 67
Classification, 297, 327, 333

algorithms, 88
Clients, 23
Cluster analysis, 88
Clustering, 297, 338

algorithms, 88
Column

adding comments, 38
engine, 206
type, 43

Column (Cont.)
view, 34, 96

Columnar table, 367
Commit ID, 237
Complex
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processing logic, 60
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Concatenated
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table, 350

Correlated securities, 370
Correlation, 279, 326, 338
Cost-calculation functions, 87
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Count distinct, 247

aggregation, 247
count(), 144
Countermeasure, 57
Covariance matrix, 287

return, 364
Covariance table data, 368
Covariance-variance matrix

matrix structure, 365
table structure, 367

CRISP-DM, 261
Cross client, 50
Croston’s smoothing, 301
Cumulate, 87
Cumulative sum, 131
Cyclic effects, 276
Cygwin Xwin Server, 210

D

Daily return, 341
Data

analysis, 272
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Data (Cont.)
category, 49, 53
connection, 23
exploration, 260, 270
filtering, 134
foundation, 38, 41, 59
frame, 326
granularity, 279
loading, 260
merge, 121
mining, 259
partitions, 332, 333
preparation, 261, 262, 291
provision, 242
pruning, 195, 198
types, 324
volume, 198

Data definition language (DDL), 203
Data modeling, 21

complex logic, 93
data.frame, 83
Database Shared Library (DBSL), 23
Datasets, 193
Date
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hierarchy, 125
range, 355
sequence, 178

DDL statement, 78
Decision tree, 89
Declarative logic, 65
Decumulate, 87
Default

client, 49
schema, 51, 63

Definer’s rights, 63
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applications with noise (DBSCAN), 88
Dependent variables, 327
Deployment, 262
Descendants, 105
descendants(), 96
Deterministic variables, 285
Developer mode, 31
Dict, 82
Difference, 105
Difference-sign test, 284

Dimension tables
denormalized, 236
M_BUCKET, 230
split, 225
time-dependent, 233

Dimensions, 26, 66, 123
levels, 152
tables, 111

Distribution, 357
Double exponential smoothing, 301
Drift in time, 350
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Dynamic

filter, 148, 150
output columns, 148, 152
queries, 148
tables, 148
time warping, 338

E

Edit hierarchy, 29
Embedded model, 78
Enable history, 51
Equations, 370
Equijoins, 230
Errors, 29
ETL, 260, 351

jobs, 254
Evaluation, 262
Execution

path, 148, 214
plan, 40, 48, 59, 170, 205

Exemplars, 297
Expert analytics, 315
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regression, 89
smoothing, 316

F
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cache, 255
controlling join paths, 138
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Filters (Cont.)
dynamic, 150
push down, 57
range, 159
ranking, 134

Financial risk, 342
First-in, first-out (FIFO) rule, 178
Fiscal calendar, 157
Fixed value, 50
Flexible tables, 365
Flow graph, 309
Forecast, 303

accuracy measures, 303
model, 332
smoothing, 301, 309

Full outer join, 146
calculation view, 143

G

Gamma distribution, 347
Gaussian distribution, 274
GBM

random numbers, 350
stepwise and non-stepwise, 360
without loops, 359

General balance calculation functions, 86
Generate time data, 34
Geometric Brownian Motion (GBM), 343
Global temporary tables, 243, 244
GNU licensed, 319
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time, 240
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full outer joins, 143
nodes, 56

Graphics processing, 25
Gregorian calendar, 157
Group by, 177
Grouping sets, 113, 114, 124
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H

Hash, 195, 196, 250
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attribute view, 97
calculation view, 98
create, 94, 97
cube(), 123
dates, 125
definition, 33
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table, 94
view attributes, 100
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Hints, 256
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moment, 237
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side-by-side, 155

History tables, 237
simulated, 240

HTTP clients, 23
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exponent, 326

I

Identical records, 163
Identity column, 159
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parallel processing, 361
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Input (Cont.)
variables, 77

Inputtable, 107
Integer, 266
Inter-quartile range test, 90
Intersect, 104, 224
Interval scale, 291
Inventory analysis, 178
Inverse matrix, 374
Investment portfolio, 342
Invoker’s rights, 63
IP address, 164, 165
IS_LEAF, 102

J

Java Database Connectivity (JDBC), 23
Join, 40, 154

analytic view, 224
cardinality, 43
columns, 42
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enforce path, 140
index, 34
manipulating, 224
node, 56, 120
paths, 138, 215
tables, 220
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K-means, 88, 269, 340
Kurtosis, 274, 326, 338

L

L, 24, 25, 81
container data types, 82
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Large datasets, 21
Leaves, 103
Left outer join, 40, 41, 141, 170, 181
Level, 102

hierarchies, 28

Level (Cont.)
name, 28

LEVEL_NAME, 102
LIMIT, 216
LIMIT/OFFSET, 160
Linear regression, 298, 301
Ljung-Box formula, 285
LLANG, 331, 361

partition parallel, 338
procedure, 363

Loading matrix, 289
Local temporary tables, 243, 244
Location

dimension, 40
hierarchies, 28, 125

Logistic regression, 89, 298
Long join path, 235
Loops, 331, 358
Lower quartile, 274

M

Mann-Kendall (MK) test, 284
MAPE (Mean Absolute Percentage Error), 314
MASE (Mean Absolute Squared Error), 307
Math library, 82
Matric, 82
Matrix

multiplication, 117
reverse, 118
structure, 365

MDX clients, 24, 29
Mean, 274
Measure, 43, 45

column, 54
Median, 274
Members, 103
Min-max normalization, 292
Minus/except, 223
Miscellaneous algorithms, 90
Missing values, 168, 292
Modeled views, 22
Modeler, 34, 311
Modeling, 22, 261, 262, 297

R and PAL, 337
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consumption, 329
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validation, 299

Modify, 263
Monte Carlo simulation, 342
Month-to-date (MTD), 133
Multidimensional expression (MDX), 102
Multidimensional reporting, 45
Multilevel partitions, 332
Multiple

linear regression, 89
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Multithread processing, 329
Multivariant statistical analysis, 287
Multivariate statistics, 366
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Naive Bayes, 89
Name

only, 28
path, 28
server, 21

Navigation function, 102, 106, 107
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Nodes, 28, 106
Nominal or classificatory scale, 291
Nonequi joins, 224, 230

operators, 231
Non-stepwise simulation, 358
Normal distribution, 344
Normalization by decimal scaling, 292
NOT EXISTS clause, 170
NOT IN clause, 169

O

Object privileges, 69
OLAP engine, 24, 52, 224
Optimization, 341, 364

applications, 21
contraints and equations, 370
model, 371, 379
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strategies, 48

OR operator, 140
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Outer join, 40, 138
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Package privilege, 69
PAL, 25, 63, 86, 88, 259, 268, 319, 333, 
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architecture, 334
calling a procedure, 90
function categories, 88
model consumption, 326
scaling, 335
stratification, 321
time series functions, 300
using R, 337

Parallel
coordinates, 317
execution, 82
processing, 331, 361

Parent, 28, 103
Parent-child

hierarchies, 28, 97
relationship, 94, 109

Parsing, 164
Partitioning, 193

by column, 57
Hash, 250
moving, 197
range, 194
round-robin, 194
strategies, 193
tables, 196, 337
two level, 197

Payment-related functions, 86
Pearson correlation, 270, 277

coefficient matrix, 287
Performance

tools, 205
trace, 205, 208, 212, 217

Permanent table, 246
temporary data, 244
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Polynomial regression, 89
Portfolio, 341, 342

equally distributed, 341
ID, 355
optimization process, 363, 365
return, 342

Predictive algorithms, 15, 264
Predictive analysis, 88

applications, 21
Predictive Analysis Library (PAL) � PAL
Predictive analytics lifecycle, 259
Predictive data, 291
Predictive modeling

advanced, 319
basic, 259
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tasks, 297

Preprocessing algorithms, 89, 324
Preprocessor server, 21
Price version, 173, 174
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Principle Component Analysis (PCA), 289, 291
Privilege validity, 68
Programming languages, 75
Projection node, 56, 61
Purchase cost, 178
Python, 23

Q

Quarter-to-date (QTD), 133
Query

performance, 205
reductions, 331

Query results cache, 247
QUERY_NODE, 101
QUERY_NODE_NAME, 101

R

R, 24, 25, 82, 83, 319, 324, 361
multiple servers, 333, 335
packages, 85, 319

Random
noise, 350

Random (Cont.)
numbers, 344
walk, 326

Random distribution, 343
shape, 344

Random variable, 292
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Randomization, 343
Range, 194
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Rank
filtering data, 134
test, 284

Rank node, 57, 134
calculation view, 137

Ranked variables, 278
Ratio scale, 292
Real-time

cache, 252
mode, 252
model consumption, 329
model execution, 329

Recommendation, 312
Recursion, 93
Recursive logic, 93
Reference models, 68
Referential join, 40, 41, 59, 138
Regression, 298, 327, 333
Relational optimization, 45, 47
Relevance table, 290
Reliability, 355
Repository procedure, 72
Result cache, 251
RESULT_NODE, 101
RESULT_NODE_NAME, 102
resultcache_clear_reconfig, 251
resultcache_enabled, 251
resultcache_maximum_value_size_ 
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resultcache_minimum_query_execution_
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Return, 364
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Right outer join, 40, 144
Risk, 364
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procedures, 265
Root nodes, 29

add, 30
Round-robin partitions, 194, 332
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Row engine, 233
Row-level security, 67
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data, 270
price, 178

Sample, 263
data, 158
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systematic, 323
with random replacement, 321
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without replacement, 323

SAP Business Suite, 260
SAP BusinessObjects Analysis for Office, 24
SAP BusinessObjects BI, 360, 370
SAP BusinessObjects Explorer, 24
SAP Data Services, 260
SAP GUI, 259
SAP HANA, 49
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data connection, 23
data models, 21
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developer guide, 22
engines, 22, 214
modeling guide, 22
modeling paradigms, 22
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predictive analysis, 264
R deployment, 336
R integration, 320
repository, 30

SAP HANA Modeler, 34, 52
SAP HANA Studio, 24, 33, 259, 265
SAP InfiniteInsight, 308

algorithms, 261
SAP Lumira, 24, 315
SAP Predictive Analytics, 265, 311
SARIMA, 300
Scalar functions, 25, 79
Scaling range, 89

normalize data, 292
Scoring, 300
Scripted calculation view, 52, 62, 161, 169
Seasonal dependency, 279
Seasonality test, 284
Security, 75, 341

return, 341
Seed, 350
Self-join, 94, 277

missing values, 170
Self-organizing maps, 88
Semantics

layer, 97
node, 44, 55

SEMMA, 261, 263
Series, 270, 355
Session

client, 49
historical moment, 240

Set theory, 358
Sharpe ratio, 364, 373, 379
Siblings, 103
Simulation, 341

applications, 21
history tables, 240
portfolio, 351
return, 354

Single character encoding, 167
Single exponential smoothing, 301, 318
Single-level partitioning, 332
Skewness, 326, 338
Slight silhouette, 88
Smoothing, 301
Snapshot, 242
Social network, 299, 311

analysis algorithms, 90
Sorting, 163

IP addresses, 163
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Sorting (Cont.)
user-defined rules, 167
with exception, 166

Spatial join, 57
Spearman autocorrelation, 282
Spearman correlation, 278
Special set operation, 224
Split rows, 115
SQL

clients, 23
engine, 55
plans, 212
queries, 162, 223
views, 75

SQL-based analytic privilege, 67, 73
SQLScript, 24, 62, 75, 84, 267, 361
Stacked view, 57
Standard deviation, 274
Star joins, 53, 56

node, 56
Star schema, 66
Statistical

behaviors, 274
computing, 25

Statistics server, 21
Stepparent, 30
Stepwise simulation, 358
Stock, 341

markets, 341
quotes, 351
select, 351

Stored procedure, 24, 75, 122, 161
dynamic queries, 148
join path, 140
switch tables, 149
temporary data, 246

Storyboard, 315
Stratification, 321, 322

partition, 333
Stratified random sampling, 321
String, 266

concatenate, 122
encoding, 167
parse, 164
splitting, 122

STRING_AGG, 121
Subquery, 134

Subtree, 107
sum(), 131, 144
Supervised learning, 327
Supply chain-related functions, 87
Symbol, 341
Symmetric distribution, 274
Systemic sampling, 323

T

Table, 148
_SYS_BI.M_TIME_DIMENSION, 34
functions, 24, 78
HIER_SRC2P, 108
hierarchies, 94
LOC, 26
MARK_R, 110
modification, 232
sample system, 160
sorting, 162
structures, 110, 367
SUBJECT_MATRIX, 113
TRANS, 38
types, 324
verticle union, 161

Temporal column, 231
Temporary

data storage, 243
store workflow, 244
table, 76, 243

Text joins, 41, 56
Thread number, 350
Time

data, 280
dimension, 34, 40
hierarchies, 28
neutrality, 338
steps, 355

Time series, 269, 270, 298
algorithms, 89
characteristics, 339
persistent, 326

Time traveling, 236
cache, 257
history tables, 237
simulated history table, 240

TIME_CONTROLLED cache, 252
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TOP/LIMIT, 216
Top-down forecasting, 331
Trace configuration, 208
Training reductions, 331
Transparent filter, 57
Transposition, 110

columns to rows, 110, 115
rows to columns, 116

Trend, test, 284
Triple exponential smoothing, 301

U

UI, 76
Uniform distribution, 343
Union, 104, 114, 144, 223, 225

node, 54, 147
with constant values, 218

UnionAll, 104
Unique index, 201
Univariant statistical analysis, 274
Unsupervised

clustering, 327
learning, 269, 321, 327, 329, 335

Upper quartile, 274
UTC timestamp, 237, 239

V

Value-at-risk, 342, 351, 356
randomization, 343

Variance, 274
Variance-covariance matrix, 365
Vector machine, 302

Vertical union, 161
performance, 162

View cache, 254
Visualize plan, 207
Volatility, 355, 364

W

Weibull distribution, 346
Weighted score table, 90
Weights, 377, 379
White noise test, 269, 285
Window functions, 131, 134, 135, 176, 233

complex grouping, 172
LEAD and LAG, 128
missing values, 171

Wrapper function, 266

X

XS engine, 21
xterm, 210
X-Windows, 210

Y

Year-to-data (YTD), 131

Z

Z-score normalization, 292
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