
www.allitebooks.com

http://www.allitebooks.org

SAP PRES
how offer
Publishing
first-hand
profession

SAP PRES
topics for
http://ww

Joe Darlak
SAP BW:
2014, 652
ISBN 978

James Wo
Getting St
2015, app
ISBN 978

Schneider
ABAP Dev
2014, 609
ISBN 978

Jeffrey Ga
SAP ASE 1
2015, app
ISBN 978
S is a joint initiative of SAP and Rheinwerk Publishing. The know-
ed by SAP specialists combined with the expertise of Rheinwerk
 offers the reader expert books in the field. SAP PRESS features
 information and expert advice, and provides useful skills for
al decision-making.

S offers a variety of books on technical and business-related
 the SAP user. For further information, please visit our website:
w.sap-press.com.

, Jesper Christensen
Administration and Performance Optimization
 pp., hardcover

-1-59229-853-2

od
arted with SAP HANA Cloud Platform
rox. 575 pp., hardcover

-1-4932-1021-3

, Westenberger, Gahm
elopment for SAP HANA
 pp., hardcover

-1-59229-859-4

rbus
6 / Sybase ASE Administration
rox. 725 pp., hardcover
-1-4932-1182-1

www.allitebooks.com

http://www.allitebooks.org

Richard

SAP H
Bremer and Lars Breddemann

®
ANA Administration

www.allitebooks.com

http://www.allitebooks.org

Dear Reader,

In my experience, book writing is one of those things that picks up momentum at
the end. It takes almost a year to get through the entire process, and then—just
when you think you can see the light at the end of the tunnel—the last two months
really do you in. After weekly phone calls, endless reviews of edited (and re-edited,
and re-re-edited) chapters, and back-and-forth debates about how to capitalize
things like BACKINT/BackInt/Backint (read on to find out, curious reader!), the pro-
cess of writing a book can feel like it takes a lifetime.

The end product, though, reflects the effort that went into it. Your authors, Richard
Bremer and Lars Breddemann, have persevered—in the midst of a new baby, an
international move, and more—to write the very first book on SAP HANA adminis-
tration. Though you weren’t there for all the phone calls, dear reader, I trust you’ll
see the time that went into it, and take an equal measure of value from it.

Of course, even a book requires a little tuning every now and then, so we at SAP
PRESS would be interested to hear your opinion. What did you think about SAP
HANA Administration? How could it be improved? As your comments and sugges-
tions are the most useful tools to help us make our books the best they can be, we
encourage you to visit our website at www.sap-press.com and share your feedback.

Thank you for purchasing a book from SAP PRESS!

Kelly Grace Weaver
Editor, SAP PRESS

Rheinwerk Publishing
Boston, MA

kellyw@rheinwerk-publishing.com

http://www.sap-press.com

www.allitebooks.com

http://www.allitebooks.org

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed
to accept and adhere to the copyrights. You are entitled to use this e-book for
personal purposes. You may print and copy it, too, but also only for personal use.
Sharing an electronic or printed copy with others, however, is not permitted, neither
as a whole nor in parts. Of course, making them available on the Internet or in a
company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section
Legal Notes.

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy:

www.allitebooks.com

http://www.allitebooks.org

Imprint

This e-book is a publication many contributed to, specifically:

Editor Kelly Grace Weaver
Copyeditor Melinda Rankin
Cover Design Graham Geary
Photo Credit Shutterstock.com/112252583/© Anteromite
Production E-Book Kelly O’Callaghan
Typesetting E-Book III-satz, Husby (Germany)

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Bremer, Richard.

SAP HANA administration / Richard Bremer and Lars Breddemann. -- 1st edition.

pages cm

ISBN 978-1-59229-952-2 (print) -- ISBN 1-59229-952-0 (print) -- ISBN 978-1-59229-953-9

(ebook) -- ISBN 978-1-59229-954-6 (print and ebook) 1. Database management. 2. Business

enterprises--Data processing. 3. SAP HANA (Electronic resource) I. Breddemann, Lars. II. Title.

QA76.9.D3B7135 2014

005.74--dc23

2014022965

ISBN 978-1-59229-952-2 (print)
ISBN 978-1-59229-953-9 (e-book)
ISBN 978-1-59229-954-6 (print and e-book)

© 2015 by Rheinwerk Publishing Inc., Boston (MA)
1st edition 2014, 1st reprint 2015 with corrections

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface .. 17

Although the variety of components and setup options for SAP HANA may seem confusing, the system is not so complex if you understand the building blocks. The purpose of our first chapter is to help you understand how simple and beautiful SAP HANA systems really are. 23

1 Architecture of the SAP HANA Database 23

1.1 The Basics .. 23
1.2 The Physical View: SAP HANA Servers ... 26

1.2.1 Data and Processing Layer .. 27
1.2.2 Persistence Layer .. 28
1.2.3 Network Layer ... 29

1.3 The Operating System View: Database Processes 29
1.3.1 System Start ... 30
1.3.2 Core Database Processes .. 31
1.3.3 SAP HANA Auxiliary Processes ... 34
1.3.4 Further Auxiliary Processes ... 35

1.4 The Logical View: Internal Architecture of the Database 36
1.4.1 Index Server Architecture ... 37
1.4.2 XS Server Architecture .. 40

1.5 Distributed SAP HANA Systems ... 41
1.5.1 The Name Server in Distributed Systems 43
1.5.2 Distributed Index Servers: Data and Query Distribution ... 44
1.5.3 Distributed Persistence ... 45

1.6 The Appliance Concept of SAP HANA .. 46
1.6.1 SAP HANA Appliance Offerings .. 46
1.6.2 Tailored Data Center Integration 49
1.6.3 Hosting and Cloud Offerings .. 50
1.6.4 Generic Deployment Considerations 51

1.7 Release Cycles of SAP HANA Database Software 53
1.7.1 Support Package Stacks .. 54
1.7.2 Revisions .. 54

1.8 Summary ... 55

There are multiple fundamentally different ways of making use of SAP HANA systems. In this chapter, we give some hints about where you will have to invest time and skills for your planned or running SAP HANA implementations. 57

2 SAP HANA Scenarios: Administration Considerations 57

2.1 SAP HANA as a Database in Application Servers 58
2.1.1 SAP HANA Accelerators for SAP Applications 59
2.1.2 SAP HANA as the Primary Database for

SAP BW Systems .. 60
7

www.allitebooks.com

http://www.allitebooks.org

Contents
2.1.3 SAP HANA as the Primary Database for
SAP Business Suite ... 62

2.2 SAP HANA as a Development Platform .. 64
2.2.1 Data Marts with SAP HANA

(Standalone Implementation) ... 65
2.2.2 Applications in SAP HANA ... 68

2.3 Mixed Scenarios .. 68
2.3.1 SAP HANA Representations of SAP BW Models 70
2.3.2 Consumption of SAP HANA Models through the

SAP BW Layer .. 72
2.4 Summary ... 73

Although installing and updating an SAP HANA database is a task that you will not normally do every day, there are still multiple tools and mechanisms for this purpose. 75

3 Installation and Updates ... 75

3.1 Preparing for Installation and Updates ... 75
3.1.1 Skill Set .. 75
3.1.2 Server Hardware ... 76
3.1.3 Operating System ... 76
3.1.4 File System Setup ... 80

3.2 Tools for Installing and Updating SAP HANA Systems 85
3.2.1 Installation Tools .. 86
3.2.2 Update Tools .. 87

3.3 Installing an SAP HANA Database .. 88
3.3.1 Downloading and Preparing the Software 88
3.3.2 Running the Installation Tool ... 91

3.4 Updating an SAP HANA Database ... 101
3.4.1 Prerequisites .. 102
3.4.2 Steps in an Update ... 106
3.4.3 Running the Update Tool ... 107

3.5 Installing Multiple Instances of an SAP HANA Database on the
Same Physical Server (Nonproduction) ... 110

3.6 Installation and Update in Batch Mode .. 111
3.6.1 Password Treatment ... 112
3.6.2 Preparing the Configuration File 114
3.6.3 Performing the Installation ... 114
3.6.4 Performing the Update ... 115

3.7 Installing and Updating Scale-Out Systems 116
3.7.1 Preparation .. 116
3.7.2 Installing a Scale-Out System with hdblcmgui 117
3.7.3 Updating a Scale-Out System ... 119
8

www.allitebooks.com

http://www.allitebooks.org

Contents
3.8 Troubleshooting .. 119
3.8.1 Log Files of hdblcm .. 119
3.8.2 Useful Tests on the Command Line 120

3.9 Summary ... 121

SAP offers multiple tools for administrators to use with an SAP HANA database system. The main tool is SAP HANA Studio, which you will get to know in this chapter. We also provide an overview of other administration tools available for SAP HANA. 123

4 Administration Tools ... 123

4.1 Introduction to SAP HANA Studio ... 124
4.1.1 Your First Contact with SAP HANA Studio 124
4.1.2 Connecting to SAP HANA Database Systems 127
4.1.3 Principles of Working with SAP HANA Studio 131

4.2 Database Administration with SAP HANA Studio 135
4.2.1 Managing the Database Configuration 136
4.2.2 Starting and Stopping the Database 140
4.2.3 Starting and Stopping Individual Database Processes 144

4.3 Monitoring the Database with SAP HANA Studio 144
4.3.1 Getting an Overview of the Database System 145
4.3.2 Monitoring Views in the Administration Editor 148
4.3.3 The Statistics Service .. 149
4.3.4 Other System Monitors .. 152

4.4 DBA Cockpit for SAP HANA .. 153
4.5 Summary ... 156

In order to achieve the “D” in ACID, in-memory databases also need to write all committed data to disk—and SAP HANA is no exception. This is where the persistence layer comes into play. 157

5 The Persistence Layer .. 157

5.1 Log and Data Volumes: The Data Image on Disk 158
5.1.1 Memory and Disk ... 159
5.1.2 Page Management ... 161
5.1.3 Transaction Logs .. 161
5.1.4 Data Volumes and the Savepoint Operation 174
5.1.5 System Start Procedure .. 184

5.2 Log Backup .. 186
5.2.1 Log Backup Procedure .. 187
5.2.2 Enabling Log Backups ... 188
5.2.3 Managing Log Backups ... 188

5.3 Snapshots .. 189
5.3.1 The Purpose of Snapshots .. 190
5.3.2 Lifecycle of a Snapshot ... 190
5.3.3 Creating a Database Snapshot in SAP HANA Studio 193
5.3.4 Recovering the Database from a Snapshot 195
5.3.5 SQL Syntax for Managing Database Snapshots 198
9

www.allitebooks.com

http://www.allitebooks.org

Contents
5.4 Data Backup and Recovery of the SAP HANA Database 199
5.4.1 Supported Backup Mechanisms .. 199
5.4.2 Properties of Data Backups in SAP HANA 201
5.4.3 Creating Data Backups ... 205
5.4.4 Concepts of Database Recovery .. 209
5.4.5 Recovering the Database .. 213
5.4.6 Technical Recovery Scenarios ... 221
5.4.7 Copying an SAP HANA System Using Database Backups ... 222
5.4.8 Managing Backups: The Backup Catalog 228
5.4.9 Sizing the Backup Storage .. 232
5.4.10 SQL Syntax for Database Backups 233
5.4.11 Relevant System Views and Parameters for Backups 235

5.5 Disaster Recovery Setups and System Replication 236
5.5.1 Storage Replication .. 239
5.5.2 System Replication ... 239

5.6 Summary ... 254

The largest single server you can buy may not contain enough main memory to hold all your data. To allow growing beyond the limits of single servers, SAP HANA offers a concept for setting up distributed database systems called “scale-out.” 255

6 Scale-Out Systems and High Availability 255

6.1 Scaling Out SAP HANA Systems ... 256
6.1.1 The Different Nodes of a Scale-Out System 257
6.1.2 The Master Name Server Concept 259
6.1.3 Distributed Persistence ... 260
6.1.4 Adding Hosts to a Scale-Out System 262
6.1.5 Removing Hosts ... 265

6.2 High Availability with Host Autofailover .. 268
6.2.1 Failover Groups .. 269
6.2.2 Host Failover .. 271
6.2.3 Failback .. 272

6.3 Client Connect in Distributed Systems ... 273
6.4 Summary ... 274

In order to work with a database, one needs an understanding of the objects the database can contain. This chapter will define the concepts behind each of these objects and then give examples of how the objects are used in SAP HANA. 275

7 Objects .. 275

7.1 Common Properties of Database Objects 276
7.1.1 The Database Catalog ... 276
7.1.2 Object Naming and Identifiers .. 278
7.1.3 Users, Schemas, Object Ownership, and Dependencies 279
7.1.4 Object Definition ... 288
7.1.5 System Limits ... 289

7.2 Tables .. 290
10

www.allitebooks.com

http://www.allitebooks.org

Contents
7.3 Triggers and Constraints .. 292
7.3.1 Triggers .. 292
7.3.2 Constraints ... 293

7.4 SQL Views ... 295
7.4.1 View Dependencies .. 299
7.4.2 Performance of SQL Views ... 300
7.4.3 Changing Data through SQL Views 302

7.5 Column Views ... 302
7.6 Sequences ... 305
7.7 Procedures and Functions .. 312
7.8 Synonyms .. 313
7.9 Summary ... 315

Although SAP HANA supports different types of data storage objects, relational tables by far are the most important way to structure and store data. 317

8 Table Types .. 317

8.1 Common Properties of All Tables ... 318
8.2 Row Store Tables ... 319

8.2.1 Properties in SAP HANA ... 320
8.2.2 Multiversion Concurrency Control 322
8.2.3 Indexes .. 323

8.3 Column Store Tables .. 324
8.3.1 Data Storage and Retrieval ... 324
8.3.2 Changing Data: Inserts, Updates, and Deletes 329
8.3.3 Redo Logging and the Delta Store 330
8.3.4 Data Compression .. 332
8.3.5 Space Usage and Internal Columns 333
8.3.6 Indexes .. 335
8.3.7 Multiversion Concurrency Control 338

8.4 Special Types of Tables .. 338
8.4.1 Flexible Schema Tables ... 339
8.4.2 Temporary Tables ... 341
8.4.3 History Tables .. 343
8.4.4 Special Table DUMMY ... 344

8.5 Summary ... 345

Now that you understand the basics of the types of tables in SAP HANA, this chapter will teach you what you need to do with them. 347

9 Working with Tables ... 347

9.1 Loading Tables to and from Memory ... 347
9.1.1 Loading and Unloading of Columns 348
9.1.2 Reload of Tables ... 351
9.1.3 Large Object (LOB) Columns .. 352
11

Contents
9.1.4 Paged Attributes .. 353
9.1.5 Hot/Cold Data Aging Concept .. 354

9.2 Running Delta Merges ... 356
9.2.1 Automerge ... 358
9.2.2 Memory Merge .. 362
9.2.3 Smart Merge .. 363
9.2.4 Hard and Forced Merge ... 364
9.2.5 Critical Merge .. 365

9.3 Partitioning and Distributing Tables ... 365
9.3.1 Round-Robin Partitioning ... 366
9.3.2 Hash Partitioning .. 367
9.3.3 Range Partitioning .. 370
9.3.4 Multilevel Partitioning .. 371
9.3.5 Partition Pruning .. 371
9.3.6 Repartitioning .. 377
9.3.7 Colocated Partitions and Table Replicas 378

9.4 Optimizing Table Distribution and Partitioning 381
9.5 Importing and Exporting Tables ... 395

9.5.1 Exporting Data ... 395
9.5.2 Importing Data ... 401
9.5.3 Custom Excel File Import .. 403

9.6 Checking Tables for Consistency .. 409
9.7 Summary ... 411

Sessions and transactions are the very basic system elements that enable us to communicate with SAP HANA and to process data. Understanding how the database guarantees correct access to shared data and automatically enables parallel query processing is essential. 413

10 Sessions and Transactions .. 413

10.1 Introduction to Sessions and Transactions 413
10.1.1 Lifetime of a Session ... 417
10.1.2 The Session Context ... 424

10.2 Processes and Threads ... 428
10.2.1 Sessions Running in Threads ... 431
10.2.2 Stopping Processes and Threads 438
10.2.3 Canceling a Running SQL Command 440
10.2.4 Killing a Session ... 443
10.2.5 Problems with Session Cancellation 443

10.3 Monitoring Sessions and Transactions .. 445
10.3.1 Using the Session Monitor .. 445
10.3.2 Using the Monitoring Views via SQL 447

10.4 Concurrency and Parallelism .. 451
10.4.1 Types of Parallelism .. 451
10.4.2 Locks and Blocking ... 452
12

Contents
10.4.3 Timeouts .. 457
10.4.4 Multiversion Concurrency Control 458

10.5 Summary ... 465

The repository of SAP HANA offers capabilities to store and manage development artifacts. This chapter describes the SAP HANA repository and the principles of managing repository content. 467

11 Working with the Repository ... 467

11.1 Properties of the SAP HANA Repository .. 467
11.1.1 Accessing the Repository .. 467
11.1.2 The Package Structure of the Repository 471
11.1.3 Repository Content .. 475
11.1.4 The Persistence of the Repository within the Database 476
11.1.5 Ownership of Repository Objects 477

11.2 Creating and Editing Objects in SAP HANA Studio 477
11.2.1 Setting up a Development Project 478
11.2.2 Creating Objects in the Developer Workbench 482
11.2.3 Checking Out a Project ... 484
11.2.4 Concurrent Development ... 485

11.3 Deleting Development Objects in SAP HANA Studio 486
11.3.1 Deleting Objects from the Systems View in

SAP HANA Studio .. 487
11.3.2 Deleting Objects from a Development Project 487

11.4 Mechanisms for Exporting and Importing Objects 488
11.4.1 Developer-Mode Export and Import 488
11.4.2 Delivery-Unit Export and Import 489

11.5 Change Recording and Transports .. 491
11.5.1 Change Recording .. 492
11.5.2 Transporting with the SAP HANA Application

Lifecycle Manager .. 493
11.6 Summary ... 494

The SAP HANA database has its own mechanisms for managing security in the areas of authentication, user management, object ownership, and audit logging. When setting up the security concept for an SAP HANA-based project, an understanding of the specifics in these areas is essential. 497

12 User Management and Security .. 497

12.1 Essential Security-Related Concepts ... 498
12.1.1 Object Ownership .. 498
12.1.2 Stored Procedures in Definer Mode 498

12.2 Database Users .. 498
12.2.1 Creating Database Users ... 499
12.2.2 Modifying Database Users .. 503
12.2.3 Deactivating and Locking Users .. 504
12.2.4 Dropping Database Users ... 506
12.2.5 Built-in Database Users .. 513
12.2.6 Restricted Users ... 515
13

Contents
12.3 Authentication Methods .. 516
12.3.1 Name/Password Authentication 516
12.3.2 Single Sign-On with Kerberos Authentication 520
12.3.3 Further Authentication Methods 523
12.3.4 Enabling Multiple Authentication Methods for

One User .. 524
12.4 Securing SAP HANA’s Network Interfaces 525

12.4.1 External Network Connections to an SAP HANA System ... 525
12.4.2 Encrypting External Network Connections 530
12.4.3 Internal Network Connections .. 532

12.5 Auditing in the Database ... 534
12.5.1 Global Audit Settings ... 535
12.5.2 Audit Policies ... 536
12.5.3 Principles of Auditing in SAP HANA 538

12.6 Summary ... 541

SAP HANA database offers a complex toolbox for granting authorizations to database users. This chapter will help you find your way through the available options. 543

13 Roles and Privileges .. 543

13.1 Database Roles .. 543
13.1.1 Catalog Roles ... 544
13.1.2 Repository Roles .. 546
13.1.3 Catalog Roles vs. Repository Roles 552

13.2 Privileges in the Database Catalog and Repository 553
13.2.1 Privileges Managed in the Catalog of SAP HANA 553
13.2.2 Privileges Managed in the Repository of SAP HANA 559

13.3 Types of Privileges in SAP HANA ... 560
13.3.1 System Privileges .. 560
13.3.2 Object Privileges .. 561
13.3.3 Schema Privileges ... 563
13.3.4 Package Privileges .. 564
13.3.5 Analytic Privileges .. 566
13.3.6 Application Privileges ... 569
13.3.7 Easing Your Mind ... 570

13.4 Critical Privileges and Privilege Combinations 570
13.4.1 Critical System Privileges .. 571
13.4.2 Critical Privilege Combinations ... 573

13.5 Standard Roles for SAP HANA Systems .. 575
13.6 Troubleshooting Authorization Issues ... 575

13.6.1 Finding Information on Granted Privileges and Roles 575
13.6.2 Tracing Missing Authorizations ... 581

13.7 Summary ... 587
14

Contents
If you are about to start a project involving SAP HANA, you need to prepare and set up the system properly to avoid complications during system operation. This chapter gives an overview of what you need to know. 589

14 Planning and Setting Up an SAP HANA System Landscape 589

14.1 Preparation: Sizing, Hardware Choices, and More 590
14.1.1 System Sizing for SAP HANA .. 590
14.1.2 Hardware Choices .. 599

14.2 Planning the System Landscape ... 601
14.2.1 Choosing SAP HANA Deployment Options 603
14.2.2 Application Deployment Options 605
14.2.3 Preparing for Business Continuity Requirements 608
14.2.4 Content Transport .. 614

14.3 Bootstrapping the System .. 615
14.3.1 Preparing the Operating System 616
14.3.2 Preparing the System for Role and User Management 618
14.3.3 Creating Database Administrators and Performing

Initial Administration ... 623
14.3.4 Setting Up Initial Security ... 626
14.3.5 Configuring the System .. 629
14.3.6 Setting Up the Development Platform 632
14.3.7 Preparing for Support Cases ... 637
14.3.8 Final Steps ... 638
14.3.9 Propagating Roles from Development to

Other Landscape Tiers .. 638
14.4 Summary ... 638

Query performance is one of the most important aspects of most SAP HANA projects. To achieve the best possible performance, it’s useful to know the tools that are at your disposal and how to employ them effectively. 639

15 Tools for Performance Analysis ... 639

15.1 Load Diagram .. 639
15.2 Alerts Tab .. 642
15.3 Expensive Statements Trace ... 642
15.4 EXPLAIN PLAN .. 644
15.5 PlanViz .. 645

15.5.1 PlanViz Example ... 646
15.5.2 Analyzing Joins with PlanViz .. 660

15.6 Further Resources .. 668
15.7 Summary ... 669

Your end users complain because “the system is slow.” Last night’s batches didn’t finish. The update process fails. Your developers can no longer activate any data models. These and many more events leave you with two choices: contact SAP Support or find out what’s going wrong. 671

16 Monitoring and Root-Cause Analysis 671

16.1 Monitoring .. 671
16.1.1 Monitoring Views .. 672
15

Contents
16.1.2 Alerting .. 674
16.1.3 External Monitoring Tools .. 674

16.2 Error Messages .. 675
16.2.1 Locating Error Messages ... 676
16.2.2 Interpreting Error Messages .. 680

16.3 Diagnostic Files ... 681
16.3.1 Dump Files ... 681
16.3.2 Trace Files .. 683
16.3.3 Collecting Diagnostic Files for a Support Incident 686
16.3.4 Using the Merged Diagnosis Files Editor 687

16.4 Server Side Traces .. 692
16.4.1 Database Trace and User-Specific Trace 694
16.4.2 End-to-End Trace ... 696
16.4.3 Expensive Statements Trace .. 696
16.4.4 SQL Trace ... 699
16.4.5 Performance Trace ... 700
16.4.6 Kernel Profiler Trace ... 701

16.5 Client-Side Traces .. 701
16.5.1 JDBC Trace ... 701
16.5.2 The ODBC Trace ... 704
16.5.3 SQLDBC Trace .. 705
16.5.4 The ODBO/MDX Trace ... 706

16.6 Summary ... 706

The Authors .. 709
Index ... 711

Service Pages ... I
Legal Notes ... III
16

Preface

In the years since its release in 2011, SAP HANA has grown and matured in an
impressive way. It started as a redundant data store in BI solutions or as an acceler-
ator add-on, and now, several years later, the database can power all business appli-
cations of large corporations. With constantly growing adoption in increasingly seri-
ous use cases, there comes a need for skills in all matters related to the database
system. Although there is no shortage of books related to implementing or market-
ing SAP HANA, the topic of database administration has been somewhat neglected
in the past. In the more than 700 pages that follow, we will address this gap.

Who Should Read This Book?

Database administration does not suddenly become important with the go-live of
a project. On the contrary, system design and the requirements of system opera-
tion must be taken into account when planning the implementation. They will
play an important role during system setup and in the implementation phase—
and if everything has been done well, the administration of the running system
will be a walk in the park.

With this in mind, we developed the contents of this book so that they will aid
project members responsible for the SAP HANA system setup and the definition
of an operational concept for the system.

We did, of course, not ignore the most obvious target group—that is, the admin-
istrators of SAP HANA systems—who will find a wealth of information from sys-
tem architecture through table management and from session handling, backup
mechanisms, and high-availability features to aspects of user management and
security.

In addition, database developers will find valuable information on how to analyze
query performance and efficiently work with traces and log files. They will also
gain insight into how SAP HANA processes information models, procedures, and
SQL statements.
17

Preface
Last but not least, project managers must also understand how proper setup of the
system itself and the operational procedures will be crucial to the success of the
project. Chapter 2 and Chapter 14 in particular have been written for those who
are responsible for SAP HANA projects.

Structure of This Book

When we sat down and planned the table of contents of this book, we felt that the
book should have two major and inseparable themes that would guide the content
creation of each chapter: concepts and skills. Even though there is already a wide
range of publications available on SAP HANA, database administrators will need
an understanding of the database system on a more fundamental level than is usu-
ally provided. At the same time, administrators need the ability to derive from
such conceptual understanding the appropriate actions in a given situation. Expe-
rience is a catalyst for this process, and we used our own experience in working
with SAP HANA systems to include detailed examples or best-practice recommen-
dations throughout the book.

The first two chapters are entirely dedicated to an introduction to the SAP HANA
system and its most typical application in IT landscapes. In all of the following
chapters, you will find a balanced mix of teaching concepts and conveying hands-
on skills. Chapters 3 to 6 are related to the database system, with topics such as
installation and update, persistence and business continuity, and scaling SAP
HANA. Chapters 7, 8, and 9 deal with objects in the database in general and data-
base tables in particular. In Chapters 10 to 13, we cover transaction handling, the
repository as a backend for managing development artifacts, and the topics of
user management, system security, authentication, and authorization. We put
everything learned so far together in Chapter 14 with an end-to-end view of plan-
ning and setting up an SAP HANA system before rounding out the book with an
in-depth discussion of performance and root-cause analysis. A more detailed pre-
view of the chapters follows:

� Chapter 1: Architecture of the SAP HANA Database
We lay the foundation for all the following chapters by zooming into an SAP
HANA system and explaining the core components of the database along with
the boundary conditions of system setups, such as hardware choices, deploy-
ment options, and more.
18

Preface
� Chapter 2: SAP HANA Scenarios: Administration Considerations
SAP HANA systems have a variety of aspects that may be important for the
DBA—depending on how the system is being used. We introduce the most
common usage scenarios, such as BI solutions, SAP BW on HANA, or SAP Busi-
ness Suite on HANA, and highlight the most important skill sets for each sce-
nario.

� Chapter 3: Installation and Updates
The act of installing or updating the database software is in itself fairly simple.
It is the related tasks, such as the preparation of the operating system, that lead
to considerable complexity. In addition to describing these preparatory steps in
detail, we help you to choose the best option from the range of available instal-
lation and update tools, and we guide you through the process of installation
and update, both interactively and in batch mode.

� Chapter 4: Administration Tools
With SAP HANA Studio, SAP delivers a feature-rich tool for the database
administrator. We introduce the basic usage aspects of this tool, as well as an
overview of the SAP HANA flavor of DBA Cockpit—the well-known SAP
NetWeaver standard tool for database administration.

� Chapter 5: The Persistence Layer
In this chapter, we start with a look at data and log writing in SAP HANA. We
then progress to backup mechanisms, including log backup, data backup, and
storage snapshots. Finally, we cover disaster-recovery setups based on SAP
HANA’s system replication technology.

� Chapter 6: Scale-Out Systems and High Availability
SAP HANA systems can be scaled horizontally by combining multiple physical
hosts into one single database cluster. We first describe the working principle
of such scale-out systems and then dive into administration tasks, such as add-
ing or removing hosts. Finally, we describe the high-availability features of SAP
HANA scale-out systems.

� Chapter 7: Objects
In a database system, you find not only tables but also other objects. We use
this chapter to tell you about all the types of objects you can find in SAP HANA,
including tables (briefly), views, indexes, stored procedures, sequences, trig-
gers, and more.
19

Preface
� Chapter 8: Table Types
Tables are the most important kind of object in a database, and we dedicate two
entire chapters to them. In this first one, we explain the different types of tables
that SAP HANA offers, with—of course—a focus on columnar tables.

� Chapter 9: Working with Tables
The second table-centered chapter explains the most important tasks related to
table management in SAP HANA. We cover SAP HANA-specific processes—
such as the loading of tables into main memory or the delta merge procedure—
and we discuss the partitioning and distribution of tables in scale-out systems.

� Chapter 10: Sessions and Transactions
Sessions and transactions are the basic elements that enable applications to
communicate with the database system. Database developers will appreciate
our introduction to session management in SAP HANA, and administrators
need to know how to monitor and manage sessions and transactions.

� Chapter 11: Working with the Repository
The repository is SAP HANA’s store for development artifacts, such as informa-
tion models, stored procedures, or applications. Although this book is not
about developing in SAP HANA, administrators should know about the mech-
anisms of managing development content in the repository.

� Chapter 12: User Management and Security
Database systems often contain sensitive information that must be protected.
We have two chapters related to security topics, starting with coverage of user
management and aspects of system security, such as authentication options,
network encryption, and audit logging.

� Chapter 13: Roles and Privileges
SAP HANA offers two different role concepts and a variety of privilege types
for implementing user authorizations. In this second security-related chapter,
we tell you everything you need to know about roles and privileges.

� Chapter 14: Planning and Setting Up an SAP HANA System Landscape
This chapter starts with a discussion of the most important aspects of planning
SAP HANA systems: sizing, deployment choices, system landscape consider-
ations, and so on. We then guide you step-by-step through the necessary and
recommended postinstallation steps that will lead to a well-prepared SAP
HANA system that is ready for productive usage.
20

www.allitebooks.com

http://www.allitebooks.org

Preface
� Chapter 15: Tools for Performance Analysis
A typical task for a database administrator or a database developer is to assess
the performance of a single statement. Like other systems, SAP HANA offers
multiple tools that may help in this process, and as is the case in other systems,
some of these tools are more useful than others. We briefly introduce all of
these tools, help you choose the most useful ones, and guide you through the
use of the immensely valuable Plan Visualizer tool.

� Chapter 16: Monitoring and Root-Cause Analysis
Our final chapter guides you through the built-in and external offerings for sys-
tem monitoring and then gives an overview of tools and functionalities for
root-cause analysis. These include error messages and diagnostic files gener-
ated by the system as well as traces of the database server and the client inter-
faces.

Whether you read the book cover-to-cover or use it as a reference to look up
details on the task at hand, we are confident that you will learn a great deal about
today’s most exciting SAP product.

Acknowledgments

We would like to thank our families and loved ones for their support and under-
standing over countless long nights and many weekends that we needed to invest
in the completion of this book. To Barbara, Ronja, Luise, and Henrike Bremer:
Without your love and patience, we could not have completed this book.

To Karen: Thank you so much for your support, for your love, and for enduring
“half-day” vacations during the writing phase.

We also thank our colleagues Werner Steyn, Lucas Kiesow, and Marc Hartz for
reading parts of this book and providing valuable feedback. Throughout the past
years, we also had many a good discussion with our colleagues in SAP HANA
development, SAP HANA product management, and the former RIG. Whether
directly related to the book or not, these discussions provided fuel for the text at
hand. In no particular order, we thank Martin Kittel, Torsten Strahl, Henning
Zahn, Elke Zietlow, Rocco Himmer, Werner Thesing, Sascha Schwedes, Martin
Frauendorfer, Nora Roch, Peter Stockinger, Christiane Hienger, Andrea Kristen,
Melanie Handreck, Florian Müller, Ralf Czekalla, Serge Muts, Matt Kangas, and
Mark Heffernan.
21

Preface
We'd also like to thank Kelly Grace Weaver, our editor at SAP PRESS, for her
patience, for competently guiding us through the process of creating our first ever
book, and for helping us to eventually get everything ready. In the final stage of
review, she probably slept even less than we did. Thank you in particular for the
passionate discussions of semantics, the use of language, and details of typeset-
ting—a beautiful change from the daily business of IT.
22

Although the variety of components and setup options for SAP HANA
may seem confusing, the system is not so complex if you understand the
building blocks. The purpose of our first chapter is to help you understand
how simple and beautiful SAP HANA systems really are.

1 Architecture of the SAP HANA Database

Since its first release three years ago, SAP HANA has evolved beyond being just
another relational database management system. In this chapter, we will help you
understand what this means for you, the administrator. In the first few sections,
we will approach SAP HANA from the outside and slowly zoom in, shedding light
on the hardware composition of the system, showing you what the operating sys-
tem will see, and finally looking into the database processes to understand the
internal architecture of the system. In addition to this, we will shed some light on
distributed SAP HANA instances that allow scaling out the database, thereby
increasing data storage and computing capacity. Following this journey into the
database, we will again take a step back and talk about the appliance concept of
SAP HANA before finishing up with some insight into the software release cycle.

1.1 The Basics

Before we really dive into the details, let’s try to make good on our promise in the
chapter’s introduction and spend a page explaining what SAP HANA actually is.
Today, SAP HANA is a technology platform for the new generation of SAP. (Notice
that we say new, not next! SAP HANA is already a reality at SAP.)

The SAP HANA system contains many components that administrators need to
understand (which you’ll learn all about in this book). However, for the interac-
tions of end users and developers in an SAP HANA system, only two are visible:
a relational database system fulfilling the famous ACID requirements (atomicity,
consistency, isolation, and durability) and a development platform and applica-
tion server within the same environment. By bringing application development
23

Architecture of the SAP HANA Database1
and data storage more closely together than in previous SAP systems, SAP HANA
extends the toolset available to SAP developers to cater to all requirements in the
modern world of business software.

Consider the highly simplified architectural overview of systems with SAP HANA
in Figure 1.1; the two main components described in the previous paragraph are
represented by two “server” components of the SAP HANA system. The database
management system is the index server component, and most components of the
development platform reside in the XS server.

Figure 1.1 Simplified View of an SAP HANA System

In Figure 1.1, the world outside of SAP HANA is divided into three parts (we hope
the French do not mind); the client applications inhabit one of these, the admin-

SAP HANA System

XS serverIndex server

Further components

Client Applications
(Consumption)

SAP NetWeaver
systems

(e.g., BW, ECC)

E

Other SQL clients
(e.g., BI server,
BI tools, etc.)

Web browsers,
end-user

applications

End
users

Administration/Development
Tools

Web Browser
Apps for Admin and

Development

SAP HANA Studio

Data flow from external sources

SLT (real time)

SAP Data Services (batch)

Other data provisioning

A

Admins/Developers

SQL

HTTP
24

The Basics 1.1
istrators and developers another, and the external data sources the third. As
opposed to the people of Gaul 2,000 years back, these parts communicate via the
same language—or rather, the same two languages (by and large)—depending on
which component of SAP HANA they converse with. SQL is the most prominent
native language of the index server, and applications of the XS server are mostly
exposed via HTML5 user interfaces.

Because we promised to keep it simple, we will stop here, and feed you the rest
of the details step-by-step in the rest of the chapter. Before we go any further,
though, we want to establish a few definitions that we’ll use consistently through-
out the book:

� Instance
We will use the term SAP HANA instance (or simply instance) to refer to the col-
lection of those processes that make up one SAP HANA environment on a sin-
gle-node database server. For all practical purposes, these are the processes and
programs that are created when you run the install program for the server com-
ponents of the SAP HANA database. The instance consists mainly of the start
processes, the core database processes, and some of the SAP HANA auxiliary
processes (all of which we’ll describe in more detail in this chapter).

As with other SAP systems, an instance has two identifiers: the system ID
(SID)—which is a three-letter alphanumeric identifier starting with a letter—
and the two-digit instance number. The SID uniquely identifies the database
instance. Except for special setups, there is a 1:1 mapping of SID to instance
number, that is, the instance number is often a unique identifier as well. The
instance number is used in defining the internal and external network ports of
the SAP HANA system.

It is possible to install more than one SAP HANA instance on a single physical
database server, and you can even operate SAP NetWeaver and SAP HANA
instances on the same server.

Note

In the context of distributed systems that we will cover in Section 1.5 and in Chapter 6,
we will not use the term “instance.” The reason is that “instance” is a widely used term
in SAP NetWeaver systems, and the concept of instances in distributed SAP NetWeaver
systems can’t be applied perfectly to the individual hosts of a distributed SAP HANA
system.
25

Architecture of the SAP HANA Database1
� System
We will mostly use the term system to refer to the physical database server, the
operating system, and the SAP HANA instance (or instances) installed on that
server, as well as any required auxiliary components.

� Host and scale-out system
We use the term host to refer to a physical machine. A host is a device you can
touch. We continue the definition of system as the entire database system,
including its hardware and software components. A scale-out system therefore is
a collection of multiple hosts, with SAP HANA software running on all of them.

� Node and distributed system
Especially in the context of scale-out systems, we use the term node to refer to
the SAP HANA software that runs on one host. There is, however, no fixed rela-
tionship between a node and a host; that is to say, one can move a node from
one host to another (for example, in a failover situation). There is to our knowl-
edge no good term referring to only the software processes on all hosts of the
database system. We therefore use the term distributed system also to refer to a
collection of multiple nodes.

Within this choice of terminology, we mainly use the term node to define a
semantic relationship. There can be different types of nodes, and the node type
defines the role of this node within the SAP HANA system.

1.2 The Physical View: SAP HANA Servers

Let’s begin the architectural overview with a glimpse at the hardware of an SAP
HANA server. Assume that your server is a typical computer server, consisting of
a mainboard with CPU and RAM, network interfaces, disks, and other devices you
would expect to find in a computer system.

In Figure 1.2, we have cut down the database into its three most prominent inter-
nal and one very important external building blocks: the data and processing
layer, the persistence layer, and the network layer. We will now discuss each of
these building blocks in more detail.
26

The Physical View: SAP HANA Servers 1.2
Figure 1.2 Hardware Building Blocks of an SAP HANA Server

1.2.1 Data and Processing Layer

The heart of SAP HANA is what we call here the data and processing layer, repre-
sented in the hardware world by the main memory and the CPUs (and auxiliary
components). You may have heard that SAP HANA is an in-memory database,
which means that the primary image of all data is in RAM and that all internal
algorithms are optimized to work on data that is present in memory. Put simply,
the database attempts to keep all database tables fully in main memory during reg-
ular operations. This leads to extreme demands for the amount of main memory
installed in the database, and SAP HANA systems come with copious amounts of
this once-rare resource.

The maximally possible amount of main memory in a single database server is
determined by two choices made by SAP:

� The type of CPUs supported
Presently, SAP HANA will only run on the Intel X86 architecture; more specif-

SAP HANA Server

Data & Processing Layer (Main Memory & CPUs)

Persistence Layer

Primary Data Image (RAM)

Column
table

Row
table

Data

Log disks
(either SSD

or NAS)

Data disks
(typically
some SAN
or DAS)

Network Layer
1-10 Gbit ethernet

External Storage
(Typically some NAS;

e.g., NFS)

Data
backup Log

Data and log backup

Log
Log

Log
Log
27

Architecture of the SAP HANA Database1
ically, the database code is optimized for the newer generations of the Intel
XEON architecture (Westmere-EX and Ivy Bridge-EX), making use of its
advanced SIMD instruction sets like SSE3 and SSE4.

At the time of writing, SAP HANA servers can contain a maximum of 8 CPUs
with 10 CPU cores each (15 cores for Ivy Bridge), that is, 80 (120) CPU cores in
total.

� The maximum ratio of main memory to number of installed CPUs
Based on use-case studies, SAP has set a maximum ratio of main memory to
number of installed CPUs of about 16 GB per CPU core for analytic use cases.
In response to these two restrictions, the current generation of SAP HANA serv-
ers comes with at most one or two terabytes (TB) of main memory installed for
the Westmere- and Ivy Bridge-based models, respectively.

For operating SAP Business Suite systems—which have mostly an OLTP work-
load—SAP allows larger amounts of main memory in a single server, bringing
the currently available maximum to 6 TB of RAM.

1.2.2 Persistence Layer

SAP HANA could not be a database if it did not store data on a nonvolatile
medium. Of course, the system also comes with enough disk storage to keep all
data and other required information. Similar to most other database systems, SAP
HANA writes transaction logs synchronously and keeps a full data image in asyn-
chronously updated data volumes.

In general, these two systems come with two dedicated sets of disks. The data vol-
umes always reside on classical discs whose total capacity must equal three times
the installed RAM of the server according to the SAP HANA Server Installation
Guide (downloadable from the SAP Community Network: https://scn.sap.com). For
the log volumes, SAP initially required SSD storage with a capacity equaling the
amount of installed RAM.

Intel’s Processor Architecture

Readers interested in more details about how SAP makes use of Intel’s processor archi-
tecture can consult a joint white paper by Intel and SAP on the topic, which is refer-
enced in “Intel & SAP HANA Solution Brief: Scaling Real-Time Analytics across the
Enterprise—and into the Cloud”:

www.saphana.com/docs/DOC-2592
28

The Operating System View: Database Processes 1.3
In certain systems, classical hard drive technology is also supported. Both sets of
disks need to fulfill SAP’s specifications for data throughput, I/O operations per
second, and so on, which are available to SAP HANA hardware partners. Addi-
tional disks are needed for the software installation of SAP HANA and all related
SAP components.

Although the data and log disks are intrinsic components of the database, SAP
does not define the required nature of the devices to keep data and log backups.
There are two backup methods available: file-based backup and network-pipe-
based backups. For file-based backup, a dedicated storage device must be avail-
able in the file system of the SAP HANA server, and customers are free to choose
the storage technology.

1.2.3 Network Layer

The number of network interfaces required in an SAP HANA system depends on
several aspects of the system setup, such as clustering, implemented high-avail-
ability concepts, and more. These options will be covered later. For now, we will
make some simplifications and only state that an outbound network interface
must be available for SAP HANA to communicate with other IT systems. This
interface must have a nominal throughput of at least 1 gigabit (Gbit), and 10 Gbit
Ethernet is recommended.

Network topologies around SAP HANA systems can vary widely, but generally
speaking SAP HANA can be treated like other databases in terms of network con-
siderations for SAP NetWeaver systems or SAP BusinessObjects BI systems.

1.3 The Operating System View: Database Processes

If you log on to the operating system of an SAP HANA database, the first thing you
will notice is that it is a Linux OS. Up to and including SPS 7, the only supported
operating system was SUSE Linux Enterprise Server (SLES) 11 or SUSE Linux

Internal or External Disks

As for the interesting question of whether the disks are internal to the database server
or whether you may make use of your existing enterprise storage—we’ll get to that in
Section 1.6.
29

Architecture of the SAP HANA Database1
Enterprise Server for SAP Applications 11, most probably on service pack level 2
or 3. With SPS 8, SAP introduced support also for Red Hat Enterprise Linux 6.5;
see SAP Note 2009879.

We have divided the processes that belong to an SAP HANA database server into
four factions, as displayed in Figure 1.3. We will now walk you through this quar-
tet of process groups.

Figure 1.3 Operating System Processes of the SAP HANA Database

1.3.1 System Start

All SAP systems are started by a process named SAP Start Service (see Figure 1.4),
which in Linux operating systems is represented by the sapstartsrv OS process.
SAP HANA is no exception to this rule. You will find sapstartsrv running for
each instance of the SAP HANA database on your server.

SAP HANA Server

Core Database Processes

SAP HANA Auxiliary Processes

Index server

System Start

Further Auxiliary Processes

SAP Start Service

HDB Daemon

Name server

XS server

Compile server

Preprocessor

(Statistics server)

(Script server)SAP Web Dispatcher

HANA Lifecycle Manager

hdb*-processes

SAP host control

SMD Agent

Third-party toolsSAP HANA Studio and client
30

www.allitebooks.com

http://www.allitebooks.org

The Operating System View: Database Processes 1.3
Figure 1.4 Boot Sequence of an SAP HANA System

We will not go into much detail here, because SAP Start Service is well known to
SAP administrators. For those not familiar with the service, it provides function-
ality to start and stop the SAP system along with rudimentary monitoring capabil-
ities, such as access to trace files, logs, and configuration of the system, through a
common API regardless of what SAP system is being monitored.

The generic SAP Start Service only kicks off one single process of the SAP HANA
system, which is called the HDB daemon. Even though the daemon is in fact a core
process of the database, we moved it into the group of processes for system start
to accentuate its purpose. The daemon process has two tasks: start all required
core processes of the SAP HANA database system, and keep them running, that is,
restart them if a process should fail.

The list of required processes is mostly predefined by SAP, but there are a few
choices an administrator can make, because there are a few nonmandatory core
processes in SAP HANA. All processes to be started by the HDB daemon have
entries in the daemon configuration file hdbdaemon.ini.

1.3.2 Core Database Processes

The most interesting processes for us are of course the core database processes.
Purists might argue that our definition is not quite correct, because we include
here the SAP Web Dispatcher, which is not an SAP HANA process but rather a stan-
dard SAP component. However, for our purposes a “core process” is an OS pro-
cess that is started by the HDB daemon, and the SAP Web Dispatcher is one of

SAP Start Service

Documentation for SAP Start Service is available as part of the public documentation of
SAP NetWeaver available via the SAP Help Portal.

Standard SAP Boot Sequence

SAP Start
Service

OS Boot Scripts
/etc/init.d/sapinit

SAP HANA Internal Start Sequence

HDB Daemon

Core Database Processes

Index server

Name server

XS server

Compile server

Preprocessor

(Statistics srv.)

(Script server)SAP Web Disp.

SAP Host
Control
31

Architecture of the SAP HANA Database1
them. It is also the only process whose activity is not monitored in the list of run-
ning services in SAP HANA Studio (Figure 1.5).

Figure 1.5 Active Processes of a Typical SAP HANA Database System

Next, we will give you an idea of the purpose of all of these processes that, com-
bined, represent a fully functioning SAP HANA database. We will choose a some-
what arbitrary ordering, based on what we perceive are the most important pro-
cesses. (Here again, we will keep it simple and provide further details for some
processes in Section 1.4.)

The Index Server

For most practical purposes, the index server is the database process in SAP HANA.
It has the following jobs:

� It provides the SQL interface on SAP HANA’s SQL port.

� It manages all database tables and other objects of the database catalog.

� It processes all SQL queries in the database.

As such, the index server will under normal circumstances have the largest
resource footprint among all the processes on the SAP HANA server—for memory
as well as for CPU usage.

The Name Server

SAP HANA needs a logical view of itself—for example, its components and loca-
tions of data—which is called the topology. The topology is managed by the name
server component. The name server becomes particularly important in distributed
32

The Operating System View: Database Processes 1.3
database systems (which we have not mentioned yet; they will be covered in Sec-
tion 1.5). The name server also hosts the backup manager, responsible for coor-
dinating synchronized backups of all system components.

The XS Server and the SAP Web Dispatcher

Since the beginning, but especially since the SPS 5 release, SAP HANA has been a
development platform built around the integrated database kernel. Of course, the
database itself (index server) offers development capabilities, such as designing
database schemas, views, and SAP HANA data models or stored procedures. The
XS server—which was introduced with SPS 5—targets the development layer on
top of these rather technical tools.

Among the features provided by the XS server, you can find:

� Server-side JavaScript

� OData services and XMLA

� Development of user interfaces (HTML5) with SAPUI5

� Application definitions to expose sets of development artifacts as applications

Applications created in SAP HANA XS server are exposed through HTTP. As a
web-server component, SAP HANA uses the SAP Web Dispatcher, which will be
well-known to all SAP NetWeaver administrators.

The Compile Server

With the release of SAP HANA SPS 6 (revision 60), the compiling of L-script pro-
cedures has been moved from the index server process into the newly established
compile server process. This is a mandatory, automatically installed component of
SAP HANA that, in our experience, you do not need to know much about.

The Preprocessor

For processing unstructured data, SAP HANA’s preprocessor component creates
searchable, full-text indexes and offers capabilities such as tokenization, normal-

SAP Web Dispatcher

Documentation of the SAP Web Dispatcher is available as part of the documentation of
the SAP NetWeaver Application Server on the SAP Help Portal.
33

Architecture of the SAP HANA Database1
ization, stemming, and extraction processing. It might be regarded as a support-
ing component to the index server for text search and text analysis.

The Statistics Server

The statistics server is a database process which provides the statistics service. Start-
ing with SPS 7 (revision 70), it is possible to have the statistics service integrated
into the index server and name server processes, thus eliminating the need for a
dedicated further database process. The statistics server is thus an optional pro-
cess that is enabled in the default configuration of SPS 7.

The Script Server

The script server is an optional component that is at present only required for cer-
tain functionalities associated with the Application Function Library (AFL). It is
not enabled by default.

1.3.3 SAP HANA Auxiliary Processes

All processes mentioned so far are required for the regular operations of an SAP
HANA system. The auxiliary components we discuss next are native parts of SAP
HANA but are only used for specific tasks, such as updating the software.

SAP HANA Lifecycle Manager

Software updates are the main topic of the SAP HANA Lifecycle Manager (HLM),
which is a graphical application that supports updating just the database or all
components of a so-called SAP HANA Support Package Stack (see Section 1.7.1) by
using corresponding components installed on the database server. The frontend
application is available from within the administration tool SAP HANA Studio and
also accessible through a web interface. HLM’s functionality extends beyond
updating, with support for system landscape modification (renaming the system,
provisioning additional database instances, etc.) and more.

Statistics Service

The statistics service, on the other hand, is not optional; it has to be available for the
database to be functional. It is SAP HANA’s offering for information collection, check-
ing, and alerting on all system components.
34

The Operating System View: Database Processes 1.3
In the SPS 8 release of SAP HANA, the functionalities for system lifecycle manage-
ment have mostly been switched off, and hdblcm (discussed ahead) is now the pre-
ferred tool for all related tasks.

The hdb* Tools

SAP HANA comes with a range of command-line tools, which we here summarize
as hdb*-tools, because their names begin with the acronym hdb. These tools are
installed into the directory /usr/sap/<SID>/HDB<instance>/exe. Among these
tools, you can find:

� hdblcm and hdblcmgui
These are new applications for installing and updating the database introduced
with SPS 7. It is planned that hdblcm will become the backend tool used by
HLM in higher support packages.

� hdbsql
This is a command-line SQL console that comes with the client package (it is
thus available on any computer that has the SAP HANA client installed).

� hdbuserstore
This is a secure store for database credentials that can be used for password-free
authentication, for example, in hdbsql. It is also used by SAP NetWeaver Appli-
cation Servers on SAP HANA to store their database credentials. hdbuserstore
is also part of the client package.

SAP HANA Studio and Client

With a fully installed instance of the SAP HANA database, you will always also get
SAP HANA Studio and the client locally installed on the database server. However,
in most cases, database administrators (DBAs) will use a local installation of SAP
HANA Studio to connect to the server. The local installation of these tools is
meant for emergency and bootstrapping DBA tasks when a remote connection is
not available.

1.3.4 Further Auxiliary Processes

As an SAP system, SAP HANA comes with several standard SAP components used
for basic operation and monitoring. There may also be additional components
installed by vendors other than SAP.
35

Architecture of the SAP HANA Database1
SAP Host Agent

The SAP Host Agent is a tool for monitoring and controlling SAP instances. Part of
this tool is the already mentioned SAP Start Service. There are further compo-
nents, for example, saposcol, which collect information on an operating system
level, and saphostctrl, which is used by HLM for providing user access to the
HLM backend (for more information, see Section 12.4.1 in Chapter 12).

SMD Agent

The SAP Solution Manager Diagnostics Agent (SMD Agent) is another tool for col-
lecting status and other monitoring information. In this case, it collects informa-
tion to feed SAP Solution Manager. For information on integrating SAP Solution
Manager with SAP HANA, see https://service.sap.com/solman-hana/.

Third-Party Tools

Depending on preferences and requirements, customers may operate certain non-
SAP software components on their SAP HANA servers, such as antivirus software,
monitoring agents, or backup management tools.

1.4 The Logical View: Internal Architecture of the Database

Let’s now take a look at the architecture within the database core processes. Figure
1.6 shows how these processes interact with each other. In the figure, we only high-
light a few internal components of each of the core processes to keep it simple.

We also show optional services in the figure, such as the script server and the sta-
tistics server. You may remember that the statistics service can be moved from the
dedicated statistics server process into the other database processes. In that setup,
the statistics scheduler will run in the name server, and all other parts of the sta-
tistics service will be integrated into the index server (see Chapter 5 for details).

Further Resources

Database administrators who may not be familiar with traditional SAP landscapes can
find information about the SAP Host Agent in the SAP NetWeaver documentation on
the SAP Help Portal.
36

The Logical View: Internal Architecture of the Database 1.4
Figure 1.6 Internal Architecture of SAP HANA Database

Note that there are two entry points for the interactions of database clients with
the SAP HANA system: the index server for SQL-based requests (including MDX)
and the XS server for HTTP-based requests. Because it is the server relevant for
administrators, this section focuses on the index server. For the sake of complete-
ness, we briefly mention the XS server, but a detailed discussion would be outside
the scope of this book.

1.4.1 Index Server Architecture

Any SQL-based or MDX-based interaction with SAP HANA will enter the index
server component and (assuming successful authentication and authorization
tests) be executed by the SQL processor. Depending on the nature of the query
and the database objects accessed, different internal engines of the database will

Disk Storage

Data Volumes Transaction Log
Volumes

Database Clients (SQL/MDX)

XS Server

Request Handler

Authenti-
cation

Resource Handlers

OData

Session
Manager JavaScriptC++

Static
Content

JavaScript
Runtime

Job
Scheduler

Index Server Inheritance

Persistence Layer SQL Execution

Database Clients (HTML/XMLA)

Script Server

Application Function Libraries
(execution)

Compile
Server

Compile
L-language
functions

Pre-
processor

Preprocessor
Control

Document
Analysis Toolkit

Statistics Server
Statistics Scheduler

Alert Checker Data Collectors

SAP Web Dispatcher

HTTP Server

Alert Tables Statistics Tables

Index Server

Connection and Session Management

Persistence LayerPage
Mgmt.

Logger

Repository

Authenti-
cation

Request Processing

In-Memory Stores

Row
Store

Column Store

SQL Processor …

Search Engine

AFL Framework
Live

Cache

Other Operators

Name Server

Topology and Object Location Information

Backup Catalog Backup Manager
37

Architecture of the SAP HANA Database1
be involved in the query execution, such as the processing engines of the row and
column store. Also—and especially in distributed SAP HANA systems—the name
server component will be involved to find the location of database objects
required for query processing.

For certain functionalities, the index server will delegate a part of the workload to
other processes: to the compile server for compiling functions in the SAP-internal
L-language; to the script server for executing L-functions of the Application Func-
tion Libraries (AFL); or to the preprocessor for creating full text indexes and for
other parts of processing unstructured data. The database clients will not notice
these delegations; they simply converse with the index server.

Both the index server and the XS server make use of SAP HANA’s repository for
storing development artifacts. Although the XS server—which is technically an
extended index server—comes with its own repository, all processes use the
repository in the index server.

Underlying all of these database components is the disk storage, in which those pro-
cesses that control data on their own create data and log volumes; see Chapter 5.

A simplified schematic of the index server is shown in Figure 1.7.

When communicating with the database, clients first need to open a connection
and acquire a session through the connection and session management compo-
nent, which will also involve the authentication manager to validate the creden-
tials provided with the connect attempt.

Upon successful authentication, the clients can send commands to the database,
typically in the form of SQL statements. All statements are executed in the context

L-Language

L-language is an internal, C-like language that is dynamically compiled with an optimiz-
ing compiler. It is not available for application development to SAP HANA users.

Note

Multiple core processes of SAP HANA own data and thus create data and log volumes.
Processes creating data and log volumes are the index server, the name server, the XS
server, the statistics server, and the script server.
38

The Logical View: Internal Architecture of the Database 1.4
of a transaction—coordinated by the Transaction Manager, which is responsible
for transactional isolation and keeping track of open and closed transactions.
Upon events such as committing or rolling back transactions, the Transaction
Manager informs the involved relational stores so that they can take appropriate
action. In combination with the persistence layer, the Transaction Manager is also
responsible for achieving atomic and durable transactions.

Figure 1.7 Internal Architecture of the Index Server

Note

For an in-depth discussion of session and transaction management, including concur-
rency control, see Chapter 10.

Data

Index Server

Request Processing and Execution Control

Connection and Session Management

Stored Procedure
Processor

Planning
Engine

MDX
Engine

Calculation Engine (CE)

Relational Stores

Federation

Row Store

Column Store (CS)
SAP liveCache
in SAP HANA

Persistence Layer
Page Management Logger

Disk Storage

Data
Volumes

Transaction
Log Volumes

Trans-
action

Manager

Repository
Authent-
ication

Manager

Author-
ization

Manager

Metadata
Manager

Database Clients (Application Servers, BI Clients, SAP HANA Studio, …)

External
Data

Sources

SQL Processor
SQL Parser

Plan Cache

Optimizers

CE Optimizer
and Executor

CS
Optimizer

Intrinsic & Custom CE Operators

L Operator

R Operator

CS
Operators

R
Server

Object Store
39

Architecture of the SAP HANA Database1
Actual statement execution involves the components listed under Request Pro-
cessing and Execution Control in Figure 1.7. Statements first have to be parsed,
checked, and optimized to generate an execution plan. Depending on the nature
and content of the statement, different execution engines might be involved, such
as the stored procedure processor (for SQLScript procedures) or the planning
engine.

Several functionalities of the database have been implemented in a common infra-
structure called the calculation engine. To many people, the calculation engine will
be best known for its set of intrinsic calculation engine operators that can be used
within SQLScript procedures. There is, however, more to this engine, such as
operators for L and R, or planning operators.

All of these processing engines operate on top of the in-memory stores of the
database. SAP HANA presently offers four such stores. The most important one is
the column store, which manages column store tables that are typically used to
store application data; it also contains, for example, the text-search capabilities of
the database. The row store is a row-oriented in-memory store, typically used for
system/basis tables (e.g., for basis tables of SAP NetWeaver systems) but not for
application data. Data federation allows transparent access to objects in remote
databases (a concept typically termed Smart Data Access in SAP HANA) and is in
fact a virtual store, as its data has no local persistence within SAP HANA. Finally,
the liveCache is an in-memory object store, well-known from the SAP Business
Suite, where it is used in applications such as the SAP SCM component SAP
Advanced Planning and Optimization (APO).

The Metadata Manager is a component for maintaining metadata of the database
catalog, such as table and view definitions. It is a single metadata catalog for all in-
memory stores, technically implemented as a collection of row store tables.

The interface between the in-memory store and the data volumes on disk is imple-
mented in the persistence layer. This component manages the data pages for the in-
memory stores and their persistence in the data volume; it also controls the writ-
ing of transaction log entries to the log volumes.

1.4.2 XS Server Architecture

As we mentioned earlier, a detailed discussion of the XS server is outside the
scope of this book; however, Figure 1.8 shows a diagram of its basic architecture.
40

www.allitebooks.com

http://www.allitebooks.org

Distributed SAP HANA Systems 1.5
HTML access enters the system through the SAP Web Dispatcher, which delegates
the access request to the XS server. Depending on the request, different proces-
sors in the XS server will be involved in the request processing, for example, the
JavaScript runtime or the OData handler.

In most cases, the request will involve application data, which in SAP HANA is
always stored in one of the relational stores of the index server process. Hence,
the XS server will involve the appropriate index server component for such data
access through a database-internal network protocol (even if both components are
on the same physical server).

Figure 1.8 XS Server Architecture

1.5 Distributed SAP HANA Systems

Now that you know the fundamental concepts behind SAP HANA systems, we
will go one step further and introduce distributed SAP HANA systems.

As we mentioned earlier, the database size of SAP HANA servers is restricted to 2
TB of main memory (6 TB for SAP Business Suite systems). If that was the end of
the story, we would not need to talk about SAP HANA as a serious player in
today’s database market. The way to implement larger database systems is
through scaling out, that is, building database systems that span multiple physical
servers. To avoid confusion with the server processes, from now on we will use
the term host to denote a single physical server machine in an SAP HANA system.
Hence, there can be single-host database systems (which we have covered so far)
and multihost systems, also called distributed systems or scale-out systems.

XS Server

Request Handler

Authenti-
cation

Resource Handlers

OData

Session
Manager JavaScriptC++

Static
Content

JavaScript
Runtime

Job
Scheduler

Index Server Inheritance

Persistence Layer SQL Execution

Database Clients (HTML/XMLA)

SAP Web Dispatcher

HTTP Server

Index Server

Connection and Session
Management

Persistence Layer

Request Processing
41

Architecture of the SAP HANA Database1
In a distributed SAP HANA system, most core components of the system exist on
each of the individual hosts, as depicted in Figure 1.9. In some cases, a component
can play different roles, depending on which host it is running on, such as the
name server, which runs as an active master name server on one host (host 1 in
our figure) and as a read-only slave on the other hosts. In Figure 1.9, we have
marked in bold those components that can play different roles on the different
hosts of the scale-out instance.

Figure 1.9 SAP HANA Core Components in a Distributed System

In this figure, hosts 1 through n are active, that is, they control data and take part
in database operations, such as query executions. The last host is called standby.

Database Clients (HTML/XMLA)

HTTP Proxy

Load Balancing

Host 1

Index Server
(Master)

XS Server, wdisp

Name Server
(Active Master)

Preprocessor

Compile Server

Statistics Server
(optional)

Script Server
(optional)

Daemon

Host 2

Index Server
(Slave)

XS Server, wdisp
(optional)

Name Server
(read only)

Preprocessor

Compile Server

Script Server
(optional)

Daemon

Host n

Index Server
(Slave)

XS Server, wdisp
(optional)

Name Server
(read only)

Preprocessor

Compile Server

Script Server
(optional)

Daemon

Standby

Index Server
(Standby)

Name Server
(read only)

Preprocessor

Compile Server

Script Server
(optional)

Daemon

Database Clients (SQL/MDX)

Common File System

Data
1

Log
1

Data
2

Log
2

Data
n

Log
n

SA
P

 H
A

N
A

 S
ys

te
m

…

…

42

Distributed SAP HANA Systems 1.5
This host is a high-availability component, technically identical to the others, but
on standby and ready to take the workload of an active host that might fail for
whatever reason. For more details on high-availability features in SAP HANA
scale-out systems, see Chapter 6.

In this section, we discuss the three major components that allow SAP HANA to
operate as a single database over several nodes. Conceptually, it boils down to one
index server process per node, which all access a shared storage system. These
multiple index server processes are coordinated by the name server process. Let’s
look into this one by one.

1.5.1 The Name Server in Distributed Systems

In distributed SAP HANA systems, the name server process plays a particularly
important role. It maintains the system topology, which describes the system in
two aspects: the logical description of the database (which hosts exists, what is the
role of the hosts, etc.) and the map of data locations (the mapping of database
objects to hosts and processes on the hosts).

This topology information will be required for query execution in the distributed
database system. In order to avoid excessive network communication, a copy of
the topology is held available on each host.

To avoid the complexities involved in keeping a resource consistent even though
it is changed by multiple processes, there is at any point in time only one name
server process that is allowed to modify topology information. This process is
named the active master name server. All other name servers only hold a read-only
copy of the topology.

Because the topology is a highly critical resource, there is built-in redundancy in
the topology management: The system can have up to three configured name
server masters. One of these—initially the first one that becomes active upon

More on Nodes

Recall our definition of nodes from Section 1.1. In Figure 1.9, the first host houses the
master node of our SAP HANA system, whereas hosts 2 through n house the slave
nodes, and the master and slave nodes combined are the worker nodes. The standby
hosts house standby nodes. In the case of a host failure, the node of the failing host will
be moved to a standby host.
43

Architecture of the SAP HANA Database1
system start, typically the one on the master node—is the active master name
server. The other two masters constantly monitor the availability of the active
master name server. If the active master name server fails, one of the other master
name servers will be appointed the new active master name server and thus gain
write access to the topology. This redundancy process for the name server func-
tionality is independent from the host failover we mentioned earlier.

1.5.2 Distributed Index Servers: Data and Query Distribution

Many data objects in the SAP HANA database can be distributed across multiple
database nodes, either by moving entire objects from one host to another, or—in
the case of database tables—by partitioning the table into multiple physical parti-
tions and distributing these partitions across the nodes (see Chapter 9).

In a scale-out scenario, one of the index server processes plays a special role. It is
called the master index server and typically resides on the first host of the database
system (the order of hosts is determined at installation time). The extended
responsibilities of the master index server include (but are not limited to) the fol-
lowing items:

� Metadata management
Similar to topology management, the metadata catalog of the database is cen-
trally managed and replicated to all other index servers. If metadata changes are
required on an arbitrary host, this host will signal the metadata change to the
Master Metadata Manager on the master index server.

� Transaction management
Transaction handling in distributed architectures requires particular efforts to
ensure consistency throughout the transactions. In SAP HANA, this is imple-
mented via distributed transactions and a two-phase commit mechanism. If a
transaction is started that involves data owned by different index server pro-
cesses, a primary transaction will be started on the Master Transaction Man-
ager, and all other involved index servers will start local transactions that are
linked to this primary transaction.

During the commit phase, the Master Transaction Manager will send requests
to all of these local transactions to prepare the commit and will, upon success-
ful acknowledgement, finally commit the transaction—or upon an error mes-
sage, it will initiate a rollback.
44

Distributed SAP HANA Systems 1.5
� Row store
The row store in SAP HANA can be distributed as well, albeit with a smaller fea-
ture set than the column store. It is, for example, not possible to partition row
store tables. In a typical system configuration, all row store tables of applica-
tions are located on the master index server.

� liveCache
The SAP liveCache cannot be distributed. If implemented in a distributed land-
scape, it will reside on an additional dedicated host (not on the master index
server).

1.5.3 Distributed Persistence

All processes that own data create data and log volumes. Hence, if a system con-
sists of four worker nodes, the four index server processes (and other data-own-
ing processes) will each create a data volume and log volumes. In Table 1.1, we
give an overview of all database processes and whether or not they have their own
data and log volumes on the master or slave nodes of an SAP HANA system.

In the terminology of nodes and hosts we introduced earlier, data volumes in a
distributed SAP HANA system belong to a node, not to a host. This becomes evi-
dent if you consider a failover of a node from one host to another; in this case, the
previous failover-host must assign all data volumes of the worker node on the fail-
ing host.

In order to facilitate host-independent data volumes, they must reside on a com-
mon file system that can be accessed from all hosts of the database system. Such

Process Persistence on Master Persistence on Slave

Index server Yes Yes

Name server Yes No

XS server Yes Yes (if enabled on slave)

Statistics server Yes (if dedicated process) N/A

Script server Yes (if running) Yes (if enabled)

Compile server No No

Preprocessor No No

Table 1.1 Data Persistence in SAP HANA Scale-Out Systems
45

Architecture of the SAP HANA Database1
a common file system may be established by using traditional filer concepts or by
other means, such as file systems that stretch across local disks of multiple hosts.
In SAP HANA setups, this is a choice made by the hardware vendor. We will not
cover vendor-specific details in this book.

1.6 The Appliance Concept of SAP HANA

Initially, SAP HANA was only available as a so-called appliance, that is, a bundle
of SAP software preinstalled on a certified piece of hardware from one of the SAP
HANA certified hardware vendors. By 2014, SAP partially lifted some of the
restrictions related to SAP HANA by introducing a concept called Tailored Data
Center Integration that adds the ability to reuse certain data center components for
an on-premise installation of SAP HANA. Meanwhile, SAP HANA is also available
as a hosting or cloud offering from different service providers, including SAP
itself.

In this section, we will briefly discuss these three installation options. We will
conclude the section by diving into some details of how SAP HANA may and may
not be used.

1.6.1 SAP HANA Appliance Offerings

When planning an on-premise installation of SAP HANA, the easiest way to make
sure the system hardware is tailored for optimal system performance and matches
SAP’s requirements is to choose a system from the wide range of SAP HANA appli-
ance offerings from certified hardware partners.

The list of all certified appliance systems based on the Intel Westmere architecture
is maintained in the Product Availability Matrix (PAM) for SAP HANA, available
on SAP Service Marketplace at https://service.sap.com/sap/support/pam. The certi-
fied systems based on the more recent Intel Ivy Bridge architecture are listed on
SCN at https://scn.sap.com/docs/DOC-52522.

Appliance systems are usually classified by the system size in terms of installed
main memory or other characteristics, such as disk space or number of CPUs, that
follow directly from that choice. For the system sizes of single-host systems, there
is a schema similar to T-shirt sizes in the fashion industry, as listed in Table 1.2. In
this table, we denote Ivy Bridge configurations with the addendum “Ivy” in the
46

The Appliance Concept of SAP HANA 1.6
first column. There is also now more liberty regarding the file system sizes for log
and data volumes, which we indicate by listing typical minimum configurations.

When deciding on a SAP HANA system setup, several aspects have to be consid-
ered. The most important ones—scaling the right size, whether or not the system
should be used for a SAP Business Suite system, and how the actual deployment
will be handled—are discussed next.

Scaling SAP HANA System Sizes

As the amount of data in a database system grows, the system’s hardware needs
to be scaled to accommodate the added data volume (or the increased workload).
In the world of SAP HANA, there are two options available: scale up and scale out.

For database sizes up to 1 TB of RAM, several hardware vendors have setups that
are ready for scale up. You might start with a database size of, say, 256 GB of RAM
and if needed increase the database size to 512 GB or 1 TB of RAM by adding
more CPUs, disk space, and RAM to the existing hardware server.

Size RAM CPUs * Cores Data file system Log file system

XS 128 GB 2 * 10 1 TB 160 GB

S 256 GB 2 * 10 1 TB 320 GB

M 512 GB 4 * 10 2 TB 640 GB

L 1024 GB 8 * 10 4 TB 1280 GB

XS Ivy 128 GB 2 * 15 > 1 TB > 128 GB

S Ivy 256 GB 2 * 15 > 1 TB > 320 GB

M Ivy 512 GB 2 * 15 >= 1.5 TB >= 512 GB

L Ivy 1 TB 4 * 15 >= 3 TB >= 512 GB

XL Ivy 2 TB 8 * 15 >= 6 TB >= 512 GB

Table 1.2 General-Purpose Configurations of SAP HANA Appliance

Amount of Disk Storage Built into SAP HANA Systems

In Table 1.2, we explicitly list file system sizes, not storage sizes, because all hardware
vendors build some sort of redundancy into their storage components. The amount of
installed disk space will typically be much larger than the required file system sizes, at
least for the data and log areas.
47

Architecture of the SAP HANA Database1
Scale-out systems are typically configurations of multiple M- or L-sized hosts, but
some vendors also offer configurations based on S-sized hosts. Be warned,
though, that with most hardware vendors a scale-out system does not use the
same hardware components as a single-host system, especially when it comes to
“external” factors, such as the chassis and so on. As an example, for a given vendor
a single-host system might be delivered as a rack-mounted server, whereas the
same vendor’s scale-out systems are based on blade server technology.

In most cases, the transition from a single-host system (database sizes of up to 1
TB of RAM) to a scale-out system requires an exchange of hardware in the system
being scaled. In most likely all cases, hardware components such as additional net-
work devices, additional disks, or other storage system components will need to
be added.

Specific details on the scalability options are available from the individual hard-
ware vendors.

SAP HANA for SAP Business Suite Systems

The system configurations from Table 1.2 are available for all types of SAP HANA
installations. For SAP Business Suite systems only, with their typical OLTP work-
load and comparatively large amounts of data that is not accessed frequently, spe-
cial configurations are available with a higher ratio of RAM to CPU power, as
listed in Table 1.3. These configurations are not supported for installations other
than SAP Business Suite.

Deployment Process of SAP HANA Appliance Systems

Next to the preselection and certification of hardware components, the appliance
concept comes with further simplifications related to the deployment of an SAP
HANA system. The initial installation of the operating system, file system layout,

RAM CPUs * Cores Data file system Log file system

1 TB 4 * 10 4 TB 1 TB

2 TB 8 * 10 8 TB 2 TB

4 TB 8 * 10 16 TB 4 TB

Table 1.3 SAP HANA Appliance Configurations for Business Suite Systems
48

The Appliance Concept of SAP HANA 1.6
and SAP HANA software will be performed by the hardware vendor so that cus-
tomer teams do not need to have dedicated installation knowledge for SAP HANA
systems.

There is also an integrated support concept, in which SAP customer incidents
serve as a single point of entry for all issues related to the SAP HANA system. SAP
Support will distribute these incidents to the support teams of the hardware or OS
vendor if necessary.

1.6.2 Tailored Data Center Integration

Especially for larger customers with standardized hardware landscapes and tiered
IT operations, the appliance concept for SAP HANA servers will often not fit well
into the existing structure of the data center. To address this situation, SAP started
opening up the appliance concept in 2013 with Tailored Data Center Integration.

In this concept, the supported hardware systems are still restricted to those certi-
fied systems listed in the Product Availability Matrix for SAP HANA. Customers
can, however, buy these servers without disks (this refers to storage for data and
logs) and use their existing enterprise storage systems instead. For this purpose,
the integration of custom storage adapter technologies, such as fiber channel
adapters for SAN boot, is permitted.

Further steps are already planned for Tailored Data Center Integration, such as
opening of the network layer to use the existing enterprise network.

With Tailored Data Center Integration, responsibility is shifted from the hardware
vendor to the project team in multiple areas. One area is the hardware setup—in
particular, the integration of the existing enterprise components into the SAP HANA
server. SAP provides a tool for measuring throughput and latency between the SAP

Note

Not all storage systems are supported in SAP HANA Tailored Data Center Integration.
Supported storage systems will be made available online in SAP’s Partner Information
Center at https://global.sap.com/partners/directories/SearchSolution.epx.

Currently (July 2014), the list of certified storage solutions is available on SCN. “SAP
Certified Enterprise Storage Hardware for SAP HANA” can be found at https://
scn.sap.com/docs/DOC-48516.
49

Architecture of the SAP HANA Database1
HANA server and enterprise storage system as part of the SAP HANA software, start-
ing with SPS 7. Documentation of this tool is available in SAP Note 1943937.

The second area of shifted responsibility is software installation. With Tailored
Data Center Integration, hardware vendors are no longer responsible for installing
the SAP HANA software. Instead, this is (generally speaking) the responsibility of
the project team. SAP only supports SAP HANA installations that have been per-
formed by persons who have successfully achieved the “SAP Certified Technology
Specialist [Edition 2013]—SAP HANA Installation” (E_HANAINS131) certification.

1.6.3 Hosting and Cloud Offerings

In addition to on-premise installations, SAP HANA is also available through host-
ing and cloud offerings. For classical hosting, many service providers offer SAP
HANA as part of their hosting portfolio; contact your favorite service providers
for details.

For cloud offerings, there are presently three categories available:

� Cloud on SAP HANA
Cloud on SAP HANA refers to applications hosted by SAP on SAP HANA hard-
ware, such as SAP Sales and Operations Planning (S&OP).

� Cloud platform services
Developers or partners who want to develop applications on SAP HANA that
can be hosted on cloud infrastructure should look into the SAP HANA Cloud
Platform. This offering allows development and operation of applications on
SAP HANA hosted in SAP’s data centers. The development toolset includes SAP
HANA’s native development capabilities as well as a full, Java-based develop-
ment environment.

For simpler use cases, there is also the SAP HANA One offering, which is a SAP
HANA system hosted on Amazon Web Services. It is mostly intended for test
cases and prototypes but also supported for production usage.

� Cloud infrastructure services
Similar to hosting, SAP HANA cloud infrastructure services allow running SAP
HANA systems (and other components of the SAP landscape) in a “foreign” data
center. One such offering is SAP HANA Enterprise Cloud (HEC); an alternative
offering is the SAP HANA Infrastructure Subscription, presently offered by SAP
and by Amazon Web Services.
50

www.allitebooks.com

http://www.allitebooks.org

The Appliance Concept of SAP HANA 1.6
1.6.4 Generic Deployment Considerations

Regardless of how SAP HANA is installed—on premise or hosted, appliance or tai-
lored—there are certain generic restrictions and guidelines regarding the usage of
the SAP HANA system, especially on production instances. We will now touch on
several of these properties.

Multiple SAP HANA Instances on One Hardware System

If an SAP HANA instance is used in the production tier of a system landscape,
there is only one SAP HANA instance allowed on the physical SAP HANA system.
That is, you must not install multiple SAP HANA instances on the same single-host
or scale-out server in production usage.

In nonproduction tiers of the system landscape, such as development, test, quality
assurance, or sandbox systems, multiple SAP HANA instances may be installed on
the same physical server. See Chapter 3 for details, and refer to SAP’s statement in
SAP Note 1681092.

Multiple Applications on One SAP HANA Instance

If you want to run multiple applications which use (i.e., store data and perform
queries in) the same instance of SAP HANA, the situation is less restrictive but
more complicated. SAP supports concurrent applications on the same SAP HANA
instance in many cases, but there is a body of rules surrounding this topic.

The rule set is maintained in several SAP Notes, starting with SAP Note 1661202.
This note lists all applications that may be set up with the same SAP HANA
instance as the primary database. Because the content of this white list is changing
with time, we will not reproduce it here. The range of applications includes SAP
BW on SAP HANA, custom data marts, accelerators, and many more.

Further Resources

The SAP HANA Cloud Marketplace can be accessed via https://marketplace.saphana.
com/. For more information about SAP HANA Cloud Platform, we recommend www.
saphana.com/community/about-hana/cloud-platform. Finally, an overview of the SAP
HANA cloud offerings (with the exception of Cloud on SAP HANA) is available online at
www.saphana.com/community/about-hana/deployment-options.
51

Architecture of the SAP HANA Database1
For the particular case of planning an SAP BW on SAP HANA system, more detailed
considerations are listed in SAP Note 1666670. The most important of these may
be that SAP does not support running multiple instances of SAP BW on the same
production instance of SAP HANA. For the nonproduction tiers of the system land-
scapes, multiple SAP BW systems may be using the same physical SAP HANA sys-
tem, but each SAP BW instance will need its dedicated SAP HANA instance.

Finally, for the SAP Business Suite, there is a dedicated white list maintained in SAP
Note 1826100, which lists those applications that may be installed on the same data-
base instance and server (in production) as an SAP Business Suite component, with
specific considerations for individual components of SAP Business Suite.

In the scope of this book, more important than the application white lists them-
selves are the administration considerations that should in many cases discourage
you from running multiple applications on the same database—at least if one of
these applications is critical in some sense (security, business processes, etc.). We
briefly mention the most prominent of these considerations here without going
into detail yet; that’s what the rest of the book is for:

� Lifecycle management
You can only patch the entire database software at once, not “the portion of the
database used by application <x>.” The same is true for database backup and
recovery.

� Resource and workload management
The resource and workload management features of SAP HANA currently (as of
SPS 8) are limited in scope but constantly improving. Today, depending on the
criticality of the applications it may not be recommended to operate multiple
applications on the same database system.

� Security
Although you can restrict developers to work only in a certain area of the data-
base system, this is not entirely possible for database administrators and, in
many scenarios, also not for application support staff.

SAP HANA and SAP NetWeaver Application Servers

Starting with SAP NetWeaver 7.40 and SAP HANA SPS 7, operating instances of
SAP NetWeaver Application Server on the same hardware as instances of the SAP
HANA database is supported. See SAP Note 1953429 and www.saphana.com/docs/
DOC-4391 (“Overview—SAP HANA and SAP NetWeaver AS ABAP on One
Server”) for details.
52

Release Cycles of SAP HANA Database Software 1.7
Support of Scale Out for Specific Scenarios

Although scale out is a generic, publically available feature of SAP HANA, manag-
ing data appropriately in a distributed landscape and for performance-critical
application is far from a trivial operation.

Although SAP BW on SAP HANA actively manages data distribution in distributed
SAP HANA instances, such application support is not possible in all circum-
stances, especially not in custom data marts. SAP recommends that customers
planning to use SAP HANA scale out for scenarios other than SAP BW contact SAP
HANA product management for best practices and expert advice.

Virtualization

On-premise operation of SAP HANA on virtualized servers is for production
(since SPS 8) as well as nonproduction (since SPS 6) use, as described in SAP Note
1995460 and www.saphana.com/docs/DOC-3334 (“SAP HANA Virtualized—Over-
view”). Several restrictions apply for the deployment of SAP HANA on virtualized
hardware. We list the most relevant ones here:

� The only hypervisor supported for production usage is VMware vSphere 5.5.
vSphere 5.1 is supported only for nonproduction use.

� Virtual machines must be hosted on certified SAP HANA hardware, and only
single-host systems are supported as hardware platforms.

� The initial VM installation (including SAP HANA instance in the VM) must be
performed by the hardware vendor team or a certified person.

� Memory overcommittment is not supported.

1.7 Release Cycles of SAP HANA Database Software

SAP HANA software is released in two categories of software bundles: Support
Package Stacks and revisions. Support Package Stacks are major releases of SAP
HANA in which new functionality and significant changes can be introduced,
including, in rare cases, even incompatible changes. Revisions are patches to the
software for the purpose of minor improvements and bug fixes.

Note

Scale-out support for SAP Business Suite systems is in a pilot phase as of July 2014.
53

Architecture of the SAP HANA Database1
1.7.1 Support Package Stacks

An SAP HANA Support Package Stack (SPS) is a bundle of the core database soft-
ware (SAP HANA database, client [driver] package, SAP HANA Studio, etc.) with
additional components that are part of (at least certain) SAP HANA license bun-
dles, such as the real-time data replication technology SAP Landscape Transforma-
tion Replication Server (SLT).

Support package stacks presently have a loosely defined release cycle: SAP intends
to release (and has released since the beginning of SAP HANA) a new support
package stack every six months, in May and in November of each year. We write
“loosely defined,” because there are no fixed and committed release dates for
future support package stacks, and it may happen that the release of a support
package stack is delayed by a few weeks.

SAP intends to end the lifecycle of a support package stack a few months after the
release of the successive SPS; customers operating an older SPS level will have to
upgrade to the latest SPS after the end of the lifecycle for their SPS.

1.7.2 Revisions

An SAP HANA revision (also called an SAP HANA Support Package or SP) contains
the core database software, including the database clients and SAP HANA Studio,
as well as certain add-on components, such as the Application Function Libraries
(AFL). Revisions do not follow a fixed release cycle; instead, they are released
when needed. If there are very important bug fixes, there might be two revisions
within two weeks, and there may be a month or more without a new revision.

In order to support better planning of SAP HANA patching, SAP introduced two
special types of revisions, as described in SAP Note 2021789.

SAP HANA Datacenter Service Points

SAP HANA Datacenter Service Point revisions are only released after testing in
SAP’s own production systems. Next to the regular scenario and regression testing
performed for all revisions, they have undergone real-life testing in production
systems with significant workloads, including SAP BW and SAP Business Suite
components. SAP plans to release one such revision for each Support Package
Stack of SAP HANA approximately three months after the release of the SPS.
54

Summary 1.8
SAP HANA Maintenance Revisions

SAP HANA Maintenance Revisions contain major bug fixes and—as opposed to reg-
ular revisions—may be made available on the code base of an older SPS (e.g., for
the code base of SPS 7 after the release of SPS 8). Sometimes, there are restrictions
for updating from a maintenance revision to certain higher revisions; these
restrictions are maintained in SAP Note 1948334.

SAP intends to end provisioning of new maintenance revisions for a given SPS
with the release of the SAP HANA Datacenter Service Point revision of the succes-
sor SPS.

1.8 Summary

You should leave this chapter with a good understanding of the major building
blocks of SAP HANA systems in the hardware world as well as in terms of pro-
cesses running on the operating system of your SAP HANA server.

If you remember that the database server is a typical server and that the three
main processes in the database are the index server (the database itself) and the XS
server (development platform/application server) as the system’s work horses and
the name server (owner of the system topology) as the bookkeeper of the system’s
overall structure, then you have understood the big picture.

You should now also have a basic understanding of the properties of distributed
SAP HANA instances and of the different options of deploying SAP HANA, includ-
ing the concepts of SAP HANA appliances and Tailored Data Center Integration.

We hope that we have accomplished the goal of this chapter: to make you feel that
SAP HANA systems are not that complicated to understand after all. Continue
reading, and we will thoroughly destroy this impression by showing you thou-
sands of fascinating details that administrators can and should know about our
favorite SAP technology platform.
55

There are multiple fundamentally different ways of making use of SAP
HANA systems. In this chapter, we give some hints about where you will
have to invest time and skills for your planned or running SAP HANA
implementations.

2 SAP HANA Scenarios: Administration
Considerations

The nature of SAP HANA projects today can vary wildly. There are typical SAP BW
installations that use SAP HANA as a database instead of other relational database
management systems (RDBMS); there are installations that use SAP HANA as a
data mart platform, with BI tools from SAP or other vendors as a reporting layer;
there are installations that offer a custom-built web application in the XS server on
top of a data mart in SAP HANA’s database; there are installations that use SAP
HANA as an accelerator for existing classical SAP Business Suite systems; and by
now there are also customers who operate their SAP Business Suite systems with
SAP HANA as the primary database.

These different usage scenarios have different levels of complexity with regard to
the processes happening in the database, and thus they also have different
requirements for aspects of system administration.

In this chapter, we sort these use cases into two major groups: one in which an
application server (more specifically, an SAP NetWeaver Application Server) is
involved and SAP HANA merely plays the role of a relational database system; and
a second group, in which SAP HANA is used as a development platform and
potentially even as an application server. We will discuss on a high level what
areas of administration are very relevant in these groups and what ones play a
minor role.

Finally, we will do our best to convince you that reality is in fact more compli-
cated, because you will very likely not have such a nicely defined scenario. The
real world does not bother with our rules of categorization.
57

SAP HANA Scenarios: Administration Considerations2
2.1 SAP HANA as a Database in Application Servers

When we talk about application servers in this book, we have mostly SAP
NetWeaver Application Servers in mind. Its application server capabilities not-
withstanding, we will not consider the SAP BusinessObjects BI server as a con-
tender for the application server category for the simple reason that in scenarios
with an SAP BusinessObjects BI server on top of SAP HANA there is significantly
more direct development and administration required in the database than in a
pure, SAP NetWeaver-based system.

Before considering individual setups, including SAP NetWeaver Application Serv-
ers operating in conjunction with SAP HANA, let’s talk a little bit about SAP
NetWeaver itself.

SAP NetWeaver is a technology platform that includes the SAP NetWeaver Appli-
cation Server and further core components, such as SAP Enterprise Portal, SAP
Business Warehouse, and more. The SAP NetWeaver Application Server is the
runtime for SAP applications that exists in an ABAP and a Java variant. SAP
NetWeaver systems operate on top of databases and thus provide a three-tier
architecture (client, application, and database server). Although this architecture
might introduce performance challenges compared to direct connectivity
between clients and the database, the application server offers a wide range of fea-
tures that assist with the operation of business applications.

An important aspect of the interaction between SAP NetWeaver Application Serv-
ers and databases is that the application server has its own end-user accounts, but
any communication with the database happens via one central technical connec-
tion user in the database. This allows for a strict separation between application
users and database users; at the same time, user management in the database does
not play a big role.

There are three ways in which SAP HANA can be used as a database for an SAP
NetWeaver Application Server: as an accelerator, as a database for SAP BW, and

Further Resources

For a more detailed discussion of the SAP NetWeaver Application Server, we recommend
reading the SAP Help documentation, which can be found at https://help.sap.com/nw_
platform � Application Help � Function-Oriented View � Application Server.
58

SAP HANA as a Database in Application Servers 2.1
as a database for SAP Business Suite. We’ll discuss each of these scenarios in this
section.

2.1.1 SAP HANA Accelerators for SAP Applications

The first and simplest systems with SAP NetWeaver-based applications directly
involving SAP HANA were the so-called accelerators for SAP Business Suite appli-
cations. These accelerators all have in common that an application adds SAP
HANA as a redundant persistent store for its data and uses this persistence to
speed up selected operations (typically read access for reporting purposes but also
for other processes), as depicted in Figure 2.1.

Figure 2.1 Simplified Architecture of an Accelerator System

All accelerated applications have in common that the application itself has been
modified only minimally and that for the end user there are no differences
between the accelerated and nonaccelerated versions, except for greatly improved
performance of the accelerated aspects.

SAP NetWeaver Application Server

SAP Business Suite

Primary
Database

SAP HANA System

Index Server

Persistence
Data Log

Traditional RDBMS

Database Processes

Persistence
Data Log

Accelerated Application (e.g., CO-PA)

Aggregation Levels Read Interface
Other

Components

Secondary
persistence
of selected
tables

Diverted
read
access
59

SAP HANA Scenarios: Administration Considerations2
On SAP HANA, an accelerator requires only minimal administration efforts and
skills. Topics such as user management do not play a role, because all application
access uses the SAP NetWeaver connection user. SAP HANA-side development
also does not play a role in these applications.

Backup and recovery can usually be ignored, because the data in SAP HANA is just
a redundant copy that can simply be reloaded if required. If backup and restore
are used, one faces the usual complications of point-in-time recovery of a second-
ary system, the data content of which needs to be synchronized with the primary
system at all times.

SAP HANA administrators for accelerator systems will thus mostly need a generic
understanding of the database and knowledge of the update process and of trans-
action and session management and similar topics that may play a role for moni-
toring and troubleshooting.

2.1.2 SAP HANA as the Primary Database for SAP BW Systems

In an SAP BW System, SAP HANA can simply be used as the primary database.
You can have more complex scenarios, but the vanilla SAP BW on SAP HANA uses
SAP HANA as a replacement for traditional RDBMS, supported by modifications
under the surface of the SAP BW system to optimize the interaction between SAP
BW and the database for SAP HANA.

The simplified architecture shown in Figure 2.2 will not surprise any reader; it is
an SAP NetWeaver stack running SAP BW and using SAP HANA as the primary
database. Certain functionalities are partially pushed down from the application
server layer into the database layer, for example, in query processing (selected
features of the SAP BW OLAP processor).

For database administrators, this setup does not bring significant new responsi-
bilities compared to operating an SAP BW system on traditional database systems;
they only need to transfer their skills to the new database system.

Of the special aspects of SAP HANA, some play a particularly big role in SAP BW
systems. One such aspect is table management—including table partitioning and
behavior during data loading. Administrators will benefit from a solid under-
standing of this topic; we encourage reading Chapter 9 with particular dedication.

Figure 2.2 includes hints of several technologies that have been newly introduced
with and that are only available in SAP BW 7.4 on top of SAP HANA (SPS 5 or
higher).
60

www.allitebooks.com

http://www.allitebooks.org

SAP HANA as a Database in Application Servers 2.1
Figure 2.2 Architecture of SAP BW on SAP HANA

The first one is a new functionality for nearline storage. In SAP BW, nearline stor-
age (NLS) is a data storage method orchestrated by the NLS interface of the SAP
BW system that transfers data into the dedicated nearline storage system through
the application server layer. As opposed to classical archiving, data in the NLS sys-
tem remains available for reporting if explicitly demanded, typically with a per-
formance penalty compared to online storage in the primary database. With SAP
HANA’s data federation mechanism Smart Data Access (SDA), an NLS integration
based on direct transfer between the primary database (SAP HANA) and the NLS
system (SAP [Sybase] IQ) has become possible, starting with SAP NetWeaver 7.40
SP 5.

There are two more recent developments in SAP BW that make use of the Smart
Data Access feature; a composite provider and the new ODS view allow modeling

SAP HANA System

PersistenceData
Log

Index Server

Relational Stores
Federation Row StoreColumn Store

Request Processing and Execution Control

Stored Procedure
Processor

Planning
Engine

Calculation Engine

SQL ProcessorSQL Parser

Plan Cache

Optimizers

SAP NetWeaver Application Server

SAP Business Warehouse

Primary
Database

Data Modeling

P
ro

ce
ss

O
rc

h
es

tr
at

io
n

Planning

OLAP

Data Management

Functionality
Push Down

Traditional Nearline
Storage (NLS)

SAP (Sybase) IQ

Third-party NLS solutions

NLS based on SDA
(BW ≥ 7.40 SP 5)

SAP (Sybase) IQ

Source Systems

SAP Business Suite

Other

Traditional
ETL

SLT
Replication

Server

Real time Operational
Data Provisioning (ODP)
(BW ≥ 7.40 SP 5)ODS

View
Any Database
61

SAP HANA Scenarios: Administration Considerations2
of data in SAP BW (with or without local persistence in the SAP HANA database)
based on remote data sources exposed through Smart Data Access. Both features
are available with SAP NetWeaver 7.40 SP 5.

Although we will not dive into the details of these SAP BW capabilities, we want
to make administrators aware that the data federation topic can play a role in SAP
BW implementations based on SAP HANA.

Another new and SAP HANA-specific functionality of SAP BW on SAP HANA
(NetWeaver 7.40 SP 5 or higher) is the ability to create data sources based on the
real-time replication technology of SAP Landscape Transformation Replication
Server (SLT). This approach enables simplified data flows by bypassing the usual
data-acquisition layer (PSA) of the SAP BW system and extends the real-time data-
acquisition capabilities of SAP BW.

The previously mentioned extensions in the SAP BW system can have a huge
impact on the SAP BW architecture in a given implementation, both in terms of
interfaces as well as data warehouse architecture. They do not, however, influence
the database administration in a fundamental way.

This will change when you start using the native development capabilities of the
SAP HANA system through the SAP BW layer. We will discuss the impact of such
setups in Section 2.3.

2.1.3 SAP HANA as the Primary Database for SAP Business Suite

SAP Business Suite is the most complex SAP standard application you can operate
on SAP HANA, both in terms of the intrinsic complexity of the application and the
way it makes use of SAP HANA. Although SAP Business Suite on traditional
RDBMS uses the database purely as a data store and handles all application logic in
the application server layer, SAP Business Suite on SAP HANA (Figure 2.3) includes
native SAP HANA content, such as stored procedures or virtual data models that
are used in data-intensive processes of the SAP Business Suite applications. This
also means that in order to operate an SAP Business Suite system you need skills
not only in database administration and SAP NetWeaver administration but also in
managing the SAP HANA repository (see Chapter 11).

Because this mixing of classical SAP NetWeaver techniques and native SAP HANA
development techniques increases the overall system complexity, the SAP Busi-
ness Suite development team intends to decrease the dependency of the SAP Busi-
ness Suite on native SAP HANA content.
62

SAP HANA as a Database in Application Servers 2.1
End users do not access these content objects directly but only through the SAP
Business Suite applications; there are therefore no end-user accounts needed
directly in the database.

Figure 2.3 Architecture of SAP Business Suite on SAP HANA

Note

SAP Business Suite applications do not make use of SAP HANA Live—the native SAP
HANA content offered by SAP for a wide range of SAP Business Suite applications. SAP
HANA Live is, from an administrator’s perspective, another type of data mart (see Sec-
tion 2.2.1).

SAP HANA System

Persistence
Data Log

Index Server

Relational Stores

Row Store

Column Store

Request Processing and Execution Control

Calculation Engine

SAP NetWeaver Application Server

SAP Business Suite Application

Primary
Database

Classical
database usage

Functionality
Implementation

Repository

Content
objects
for SAP
Business

Suite

Live Cache

Stored Procedure
Processor

Planning
Engine

SQL ProcessorSQL Parser

Plan Cache

Optimizers

Tables Activated content

HANA-specific
optimization

Object Store
63

SAP HANA Scenarios: Administration Considerations2
2.2 SAP HANA as a Development Platform

The SAP HANA system can of course also be used outside of SAP NetWeaver-
based landscapes. You may implement new applications simply by using SAP
HANA as a database through its JDBC/ODBC interface; you might make use of the
built-in data mart features; or you might employ the integrated development plat-
form and lightweight application server functionalities of SAP HANA XS.

All of these use cases have generic properties in common that influence the
requirements for system administration and security:

� Development in the database layer
The most obvious consequence of developing in the database (as opposed to
developing in the application server layer) is that there will be database users
with developer privileges. This means that user management will play a role at
least in those landscape tiers that have active developers.

At the same time, application support and administration knowledge of the
development system will become more important. This involves topics such as
application lifecycle management, transports, or change management, and it
also touches on topics such as repository administration or debugging in the
new development environment of SAP HANA. (Note that these topics also play
a role in the SAP NetWeaver Application Server; SAP HANA simply introduces
new tools, different functionalities, and other terminology.)

� Direct access from the end-user network to the database layer
When the application server tier is removed from the system landscape, end
users will need direct access to the database layer. In some cases, for example,
when the access uses the HTTP protocol, it will be possible to install network
proxies, but in many cases, there will be direct communication between the
end-user device and the database server.

� Named end users in the database
In many cases, such a scenario will also require named end users in the data-
base, which will create the need for user management, control of privileges,
and so on, especially in the production tier of the system landscape.

The two most typical scenarios involving SAP HANA-side development and direct
end-user access to the database are SAP HANA-based data marts and applications
developed using SAP HANA’s XS server.
64

SAP HANA as a Development Platform 2.2
2.2.1 Data Marts with SAP HANA (Standalone Implementation)

Data marts are arguably the most typical development scenario in SAP HANA. For
the purpose of this book, a data mart is a redundant store of data in a system that
is dedicated to reporting off of this data set. In many cases, you would build data
marts to remove OLAP-like workload from transactional systems. In this sense, an
SAP BW system also has data mart aspects—but because SAP BW is mainly a data
warehouse and not primarily dedicated to the purpose of reporting, we do not
consider SAP BW systems data marts.

An SAP HANA data mart typically has a number of features, which are depicted in
Figure 2.4 and which we discuss next.

Figure 2.4 Data Mart Scenario with SAP HANA and SAP BI Tools

Data Provisioning

Somehow, you need to get your data into the SAP HANA system. The two most
common tools for this task are SAP Data Services for batch-mode ETL and SAP

BI 4 server

BI Frontends

Semantic layer

Access through
BI Server

(e.g., WebI)

Direct access
(e.g., Analysis

for Office)
O

OS user

B

BI named
user

H

HANA
named

user

Application

SAP HANA System

PersistenceData
Log

Index Server

Relational Stores

Row Store

Column Store

Request Processing and Execution Control

Calculation Engine

Repository

Content
objects

Calculation
views,

analytic
views,

etc.

Stored Procedure Processor

Tables

Activated
content

SQL Processor

Federation

Modeler

SAP HANA Studio
Modeling Component

Create Data
Models

Data Provisioning

SAP Data Services

SLT Real-Time
Replication

Other

Remote
Data

Sources
65

SAP HANA Scenarios: Administration Considerations2
Landscape Transformation Replication Server (SLT). There are other technologies
available, such as data federation, which is called Smart Data Access in SAP HANA
and supports most of the popular database platforms as remote data sources,
including Oracle Database, Teradata Database, Microsoft SQL Server, and Hadoop
clusters. There are also third-party ETL tools certified to work with SAP HANA.

Data provisioning is treated at great length in multiple publications about SAP
HANA, so we will not discuss it here.

Virtual Data Models

Data modeling may refer to the act of creating the physical data model in the data-
base, sometimes also termed “database schema,” that is, the designing of database
tables. It may also refer to the creation of virtual data models on top of the phys-
ical table layout. We will use the term “data modeling” in this second sense.

The primary purpose of such data modeling is to ease the task of report develop-
ment by implementing the semantic relationship between database tables in a
central location. That is, the virtual data model represents a semantically guided
abstraction from the technical database table layout. With a well-defined data
model, this relationship does not need to be recreated individually in each report.

In SAP HANA, virtual data models are created with a data modeling component
embedded into SAP HANA Studio. The modeling objects are three types of views
(called attribute views, analytic views, and calculation views), stored procedures,
and privilege objects to control row-level access to modelled views (called analytic
privileges). Data modeling is covered extensively in a multitude of publications,
and we will only mention this topic when it is directly related to administration
jobs. Analytic privileges are an exception to this rule; we cover them in detail in
Chapter 13.

Data Consumption

The data models in SAP HANA are represented to the outside world as database
views. These views are in most cases consumed by business intelligence (BI) appli-
cations through the SQL interface of the database by using the SQL or MDX query
languages, but they may also be accessed through SAP HANA XS with OData or
XMLA. In the simplified architecture shown in Figure 2.4, we have ignored the
XS-based data consumption.
66

SAP HANA as a Development Platform 2.2
Depending on the BI application used, there might be direct interaction between
the client and the database server, or there might be an intermediate BI server
such as the SAP BusinessObjects BI server. The existence of such an intermediate
server component offers advantages such as network separation and making use
of the user-management capabilities (including identity-management integration)
that might be more advanced than SAP HANA’s present offering. At the same
time, some of these applications—for example, SAP BusinessObjects Web Intelli-
gence or SAP BusinessObjects Dashboards—will increase the system complexity
by introducing another semantic layer on top of SAP HANA.

If reporting applications directly establish a point-to-point connection to the data-
base server, this not only opens up the database layer towards the end-user net-
work, it also means that in virtually all cases each end-user will need a named user
in the database system. As a consequence, questions of user management, authen-
tication, and authorization in the database will play a significant role, and one
should not forget that such a scenario will even introduce the need for end-user-
oriented application support with skills in SAP HANA technologies.

The choice of BI tools to be placed on top of SAP HANA will thus be influenced by
functional considerations, aspects of administration and security, and perfor-
mance requirements. One could probably write an entire book about this partic-
ular topic, but we won’t cover more details here.

User Management and Other Security Aspects

User management plays a two-fold role in data mart scenarios; in the develop-
ment system, development accounts must be managed, which might require com-
plex authorizations but typically only affects a small number of accounts so that
mass maintenance of users may not be necessary.

In the production tier, we will in most cases find named database users for all end
users who retrieve information from the data mart. Hence, user provisioning and
management of users will play an important role, as well as the design and admin-
istration of proper authorizations. Depending on the requirements, you might
also need to implement security audit processes in the database layer.

Content Lifecycle Management

One of the great advantages of virtual data models is that they allow immense flex-
ibility in the process of building and managing data models. Changes to a virtual
67

SAP HANA Scenarios: Administration Considerations2
data model can take effect in mere seconds, because no physical data changes are
required.

If you want to manage this flexibility appropriately, you will need to implement
some lifecycle management; fortunately, SAP HANA offers tooling for this pur-
pose. See Chapter 11 for more details.

If you consider these aspects, you will probably notice that with a data mart, unsur-
prisingly, you find yourself in a world that combines basis administration and appli-
cation administration within the same system. This is no different in SAP HANA
than it is on other databases offering integrated development environments.

2.2.2 Applications in SAP HANA

For our purposes, applications in SAP HANA are applications developed with
tools offered by SAP HANA, such as the XS server and the modeling environment
but also classical database development with stored procedures and so on. This is
opposed to applications developed on top of the SAP HANA system, that is, appli-
cations that make use of SAP HANA’s external SQL or HTTP interfaces to commu-
nicate with the SAP HANA system.

In terms of administration, these systems have mostly the same requirements as
the data marts we discussed in the previous section; they require a combination of
application administration (repository administration, content lifecycle manage-
ment, end-user integration, etc.) and classical database administration.

In addition to data marts, however, there are even more security aspects to be con-
sidered, most of which are related to authentication options that can be configured
on an application level. Because this book is mostly focused on database administra-
tion and not on aspects of the SAP HANA development platform, we will relegate
you to the product documentation of SAP HANA, especially the database adminis-
tration guide and the developer guide: https://help.sap.com/hana/SAP_HANA_
Administration_Guide_en.pdf and https://help.sap.com/hana/SAP_HANA_Developer_
Guide_en.pdf.

2.3 Mixed Scenarios

Until now, we have described nicely separated scenarios with one particular
application using SAP HANA in a particular way. These deployments are only
68

Mixed Scenarios 2.3
extremes in the multidimensional space of thinkable system architectures; reality
will in most cases fall into a spot somewhere away from these fringe areas.

When talking to active or prospective customers of SAP NetWeaver-based sys-
tems on SAP HANA, most of them expect that they will start with a plain vanilla
implementation of their application (i.e., with systems like those we introduced in
Section 2.1) and that there will be pressure to introduce some sort of database-
side development in the future. We will use SAP BW on SAP HANA as the most
common example for such mixed scenarios.

The term SAP BW mixed scenario is often used to refer to an SAP BW implemen-
tation on SAP HANA, in which data modeling using the SAP HANA modeling
component is also employed. There are two fundamentally different ways in
which such data modeling can be used in the context of a SAP BW system:

� SAP HANA data models may be created on top of application data tables of the
SAP BW system (i.e., on top of master data tables and fact tables of InfoCubes
and DataStore objects [DSOs]). These models can then be consumed in the typ-
ical fashion of SAP HANA-based data marts by BI tools, bypassing the SAP BW
BEx and OLAP layers for reporting.

� SAP HANA data models may be created on non-SAP BW tables, for example,
tables provisioned with SAP Data Services or SLT. These data models can then
be exposed within the SAP BW system by means of composite providers, vir-
tual providers, transient providers, and whatever other beautiful tooling the
SAP BW system offers for this purpose.

For both of these cases, one can think of a multitude of good reasons to imple-
ment them or not to implement them; they clearly can provide great value in
extending an SAP BW system with more ad-hoc data modeling techniques.

We will not enter into a battle over the merits and downsides of such solutions
here. It may suffice to say that we certainly do not oppose them. It is, however,
our intention to make you aware that such mixed scenarios do add to the intrinsic
complexity of the SAP BW–SAP HANA compound and thus will create a more
interesting job for the administrators of the SAP HANA database powering the
SAP BW system.

One important aspect of practically running two applications (SAP BW and the
data mart) on the same database system is that in many aspects you cannot sepa-
rate these applications in the database. There is, for example, no application-
69

SAP HANA Scenarios: Administration Considerations2
aware workload management, and processes such as backup/recovery or database
software updates will always affect the entire system.

In Figure 2.5, we display many (though not all) of the ways in which data and
objects can be used within a landscape consisting of an SAP HANA database, SAP
BW on SAP HANA, and BI tools, such as the family of SAP BusinessObjects BI
products.

We have already mentioned the different options for data provisioning for SAP
BW in Section 2.1.2 and for data marts in Section 2.2.1—so there is not much new
in this area except for the fact that in such mixed scenarios the primary database
of the SAP BW system may contain significant amounts of data not managed
through the SAP BW layer.

The more interesting part is the way in which native content of the SAP HANA
system and content of the SAP BW stack may function together. We can distin-
guish two major cases: (a) SAP HANA representations of SAP BW models and (b)
consumption of SAP HANA models through the SAP BW layer. We discuss these
in a bit more detail next.

2.3.1 SAP HANA Representations of SAP BW Models

Starting with SAP NetWeaver 7.40 SP 5, the SAP BW system can create represen-
tations of SAP BW data models (e.g., InfoCubes or DSOs) in the SAP HANA repos-
itory, that is, as analytic views or calculation views. Changes made to the SAP BW
object will automatically be transferred also to the SAP HANA information models.

If there is an association between named users in the SAP HANA system and appli-
cation users in the SAP BW system, this functionality can even include authoriza-
tion management. The SAP BW system can then also generate analytic privileges
and roles in SAP HANA that reproduce as far as possible the authorizations of the
SAP BW application users.

The data models that have been pushed into SAP HANA can be reused and
extended in information models created with the modeling component of SAP
HANA Studio; they can also be directly consumed from BI tools. This is an option
for customers who want to bypass the SAP BW reporting layer (SAP BW’s OLAP
processor and the BEx layer) but require a well-managed data warehouse.

Even though analytics is not the subject of this book, we encourage customers who
consider this option to evaluate how much of the extensive OLAP functionalities of
70

www.allitebooks.com

http://www.allitebooks.org

Mixed Scenarios 2.3
the SAP BW system they are presently using and how much of this can be easily
reproduced using the tools of SAP HANA and the chosen reporting solution.

Figure 2.5 Options for Data Flow and Content Usage in SAP BW Mixed Scenarios

It must be noted also that in SAP NetWeaver 7.30 on SAP HANA it is possible to
generate SAP HANA models representing InfoCubes and DSOs of the SAP BW sys-
tem. In this first release of SAP BW on SAP HANA, however, this mechanism is
not yet integrated in a fashion that would make it generally recommendable.
Instead of having the originating SAP BW system manage the content generated in
SAP HANA—including integration of lifecycle management—the 7.30 implemen-
tation relies on a pull mechanism controlled through a wizard in SAP HANA Stu-
dio. Also, generation and management of data access privileges are far more
mature in the implementation created with SAP BW 7.40.

BI Frontends Indirect Access
(e.g., Explorer, WebI)

Direct Access
(e.g., Analysis, Lumira)

SAP HANA system

Persistence

Data Models

Non-BW Tables

BW
Generated

Federation

Data Provisioning

SAP Data Services

SLT Real-Time
Replication

Other

Remote
Data

Sources

BI 4 Server

Semantic Layer

WebI ServerExplorer Server

SAP HANA
Studio

Modeling
Component

BW Tables

Custom
Developed

SAP NetWeaver BW

Data Mart Layer

Virtual Provider/
Composite Provider

EDW Layer

Data Store Objects

InfoCubes

Open ODS View

Authorization

Roles

Privileges

Generate
Data Models

Include
Data Models

Create
Data Models

Generate

Consume
Data Models

Consume

Create

Data Provisioning

Content Creation/Generation

Data Consumption

Primary DatabaseC
reate

A
u
th

o
rizatio

n

71

SAP HANA Scenarios: Administration Considerations2
These two aspects—synchronized lifecycle management between SAP BW and
SAP HANA objects and consistent reporting authorizations in both worlds—are
particularly important in a system that exposes the same content for consumption
with largely different reporting mechanisms.

2.3.2 Consumption of SAP HANA Models through the SAP BW Layer

The second major use case for mixing SAP HANA’s native capabilities with those of
the SAP BW stack is the consumption of SAP HANA information models in Info-
Providers of the SAP BW system. In general, this approach is driven by the desire
to provide more ad hoc capabilities, such as faster provisioning of new functional-
ities in reports. Because it doesn’t require changes to the physical table layout, the
impact of creating new SAP HANA information models or modifying existing ones
is far smaller than the comparable action in classical SAP BW modeling.

In the SAP BW layer, the SAP HANA information models can be consumed in mul-
tiple types of providers, such as the virtual provider, the composite provider, or
the new open ODS view of SAP BW 7.40 (SP 5 or higher).

In this scenario, the lifecycle of SAP HANA information models and the related
SAP BW objects must be controlled across the interface between the two systems,
and here the integration is not as good as it is in the case described previously.

If SAP HANA information models are only consumed through the SAP BW layer,
tasks such as user management or the creation of reporting authorizations can be
delegated to the SAP BW layer. If the same models can also be consumed directly
through BI tools, one again faces the challenge of synchronizing end-user
accounts and privileges in both sides of the setup.

An SAP BW mixed scenario introduces one major new aspect that did not play a
role in classical SAP BW implementations: Application administration now
extends from the SAP BW layer into the database layer.

This has consequences for database administration, for example, due to the fact
that the database administrators are no longer the only persons with named users
in the database. Also, resources are now consumed by two entirely different
mechanisms, and appropriate monitoring must be set up to account for the needs
of both worlds.

It also makes it necessary to determine the limits of influence of database support
personnel and application support personnel. A good collaboration between the
72

Summary 2.4
teams of database administrators and application administrators will make life
much easier for everyone.

2.4 Summary

The intention of this chapter was to give the reader a feeling for the skill sets that
database administrators will need in their SAP HANA scenario. We have
explained that there is one most important deciding factor: Is the database oper-
ated as persistence for SAP NetWeaver-based applications or not?

In SAP NetWeaver systems, the SAP HANA administrators will need to master the
SAP HANA flavor of classical database administration while user management,
other security aspects, or the operation of SAP HANA’s development platform
will only play a minor role.

In scenarios in which SAP HANA is used as a development system and which
allow direct end-user aspects into the database, these concepts will often play a
dominant role in the administration parts of system setup.

In reality, very often a mixture of those two use cases will be implemented. An
SAP HANA administrator should therefore be prepared to dive also into those
areas of the database system that might be considered less important in the origi-
nal project plan.
73

Although installing and updating an SAP HANA database is a task that
you will not normally do every day, there are still multiple tools and
mechanisms for this purpose.

3 Installation and Updates

Even though for most customers the SAP HANA software will come preinstalled
with the hardware, we recommend that all administrators understand how to
install SAP HANA instances. Once an instance is installed, updates are inevita-
ble—so we discuss both topics in this chapter.

We will first tell you about necessary preparations for installing SAP HANA, out-
line the tools that SAP offers for installing and updating the SAP HANA database,
and tell you why it is easy to choose the most appropriate of these tools. We will
then guide you through the standard processes of installing and updating the data-
base, including step-by-step instructions and including installing and patching
from the command line or in batch mode. We will also offer some advice about
installing and updating scale-out systems and troubleshooting an install.

We will not cover any post-installation steps in this chapter—even if they are
mandatory, such as installing a license key. These actions will be mentioned indi-
vidually in the following chapters of this book, and an overview of all necessary
and recommended postinstallation steps is given in Chapter 14.

3.1 Preparing for Installation and Updates

Installing SAP HANA systems has prerequisites on multiple levels, including the
expected skill set, server hardware, operating system setup, and file system setup.

3.1.1 Skill Set

In the first years of SAP HANA, only trained personnel of SAP HANA hardware
partners were permitted to install the initial instance of the database software on
75

Installation and Updates3
an SAP HANA server. SAP now has partially lifted this restriction and supports
SAP HANA installations if the system has been installed by a certified person. The
installation certification exam SAP Certified Technology Specialist (Edition 2013)—
SAP HANA Installation, booking code E_HANAINS131, is required for database
installations through customer and partner teams.

3.1.2 Server Hardware

The SAP HANA database may only be installed on validated or certified hardware
systems. The list of available server systems is maintained in the Product Avail-
ability Matrix (PAM) for SAP HANA (search for “HANA” on https://ser-
vice.sap.com/sap/support/pam) and for the most recently available server system
on SAP Community Network (SCN) (https://scn.sap.com/docs/DOC-52522).

As stated in Chapter 1, an SAP HANA system based on the Tailored Data Center
Integration concept also requires use of certified or validated appliance hardware,
with exceptions for storage or network components.

3.1.3 Operating System

Prior to SPS 8 of SAP HANA, the only supported OS for SAP HANA systems was
SUSE Linux Enterprise Server 11 (SLES 11) or SUSE Linux Enterprise Server for
SAP Applications 11 (SLES for SAP 11); SLES is thus the focus of this section. We
will not deal with the actual installation and configuration of the operating system
in this book, but we do intend to point you toward all important resources that
will help you. SAP summarizes many OS-related recommendations in SAP Note
1944799. We provide a more extensive view here.

Note

When performing the initial installation of the SAP HANA database software, the install-
ing party also assumes responsibility for the correct installation and configuration of the
operating system and related components (e.g., the file system layout).

Red Hat Enterprise Linux 6.5

With SPS 8, support was added for Red Hat Enterprise Linux 6.5. You can find all infor-
mation regarded to the installation on Red Hat Enterprise Linux 6.5 in SAP Note
2009879.
76

Preparing for Installation and Updates 3.1
Software Packages to Install

SUSE Linux Enterprise Server comes with multiple preselections of installable
software packages, named patterns. For SAP HANA servers, the minimal pattern is
sufficient. In regular SLES 11, this pattern is named “Server Base System,” and in
SLES for SAP 11 it is named “SAP Application Server Base.” In addition to the
package selection from these base packages, SAP HANA requires a small list of
additional packages. As of July 2014, you need the packages listed in Table 3.1
(for the most recent list, refer to the SAP HANA server installation guide at https:/
/help.sap.com/hana_platform/).

Note

Please refer to the PAM or contact your chosen hardware partner to find out whether
your particular SAP HANA server system has been validated for SLES 11, SLES for SAP
11, Red Hat Enterprise Linux 6.5, or all of them. Most server systems are validated for
Service Pack (SP) 2 and SP 3 of their respective SLES flavor, but maintenance for SLES 11
SP 1 ended in late 2013.

Package Comment

gtk2 Use version that comes with the operating system. Required
for some OS-level tools shipped with SAP HANA.

java-1_6_0-ibm Use version that comes with the operating system. Required
for SAP HANA Studio installed on the server.

libicu Use version provided with the operating system. Provides
Unicode libraries.

mozilla-
xulrunner192-1.9.2.xx-x.x.x

Use version provided with the operating system, but at least
the given minimum version. Required by the XS engine.

ntp Recommended for automatic synchronization of server
clock.

sudo Run programs with the privileges of another user: part of
typical Unix administration concepts.

syslog-ng Use version provided with the operating system. Used for
security audit logging.

tcsh Some SAP HANA-related scripts assume the existence of the
tcsh OS shell.

Table 3.1 Required Additional Software Packages on the Server OS
77

Installation and Updates3
In the course of SAP HANA-related support incidents, SAP Support may need
additional software packages. The most commonly required packages are main-
tained by SAP in SAP Note 1855805. We provide the current (July 2014) package
list in Table 3.2 for your convenience.

Operating System Configuration

SAP recommends several changes to the operating system configuration, of which
we summarize the most important ones here. Note that these changes typically
require root access and that in scale-out systems they must be applied on all hosts.
Some changes even require a reboot of the operating system.

libssh2-1 For encrypting network connections.

autoyast2-installation Makes it possible to install SLES automatically in parallel on
multiple servers of identical hardware configuration.

yast2-ncurses Text-mode version of the SUSE OS setup tool yast2.

unrar Tool required to extract the SAP HANA installation medium
download.

Package Comment

bing Point-to-point bandwidth measurement tool

bonnie File system benchmark

cairo Vector graphics library

findutils-locate Tool for locating files

graphviz Graph visualization tools

iptraf TCP/IP network monitor

krb5-32bit MIT Kerberos5 Implementation: libraries

krb5-client MIT Kerberos5 Implementation: client programs

sensors Hardware health monitoring for Linux

sapcrypto Required for SSL encryption of network connections

SAPCAR Tool for extracting SAP archives: also included with the database
installation media

Table 3.2 Additional OS Packages Recommended for Supportability

Package Comment

Table 3.1 Required Additional Software Packages on the Server OS (Cont.)
78

Preparing for Installation and Updates 3.1
� General OS configuration guidelines
SAP publishes optimal configuration settings for the different Service Pack lev-
els of SLES. These settings are listed in SAP Note 1944799—SAP HANA Guide-
lines for Operating System Installation. In particular, see SAP Note 1824819
and SAP Note 1954788 for SLES 11 SP2 and SP3, respectively.

In addition, SAP advises against certain changes to the OS configuration and keeps
a blacklist of known potentially harmful modifications in SAP Note 1731000.

For assisting the support staff with analysis of an SAP HANA system, SAP rec-
ommends keeping track of all changes made to the default OS configuration;
see also SAP Note 1730999.

� Swap space
As opposed to the generic SAP recommendation regarding swap space (SAP
Note 1597355), it is not useful, let alone necessary, to set up swap space in the
amount of twice the installed main memory. Instead, the configured swap
space should at most be 50 GB (in scale-out systems this is the maximum per
host). In fact, we see no reason to configure more than 20 GB of swap space on
an SAP HANA host (which is consistent with SAP’s recommendation in SAP
Note 1310037, which contains installation notes for SLES 11 in the general
context of SAP applications).

� Disable CPU power save mode
The CPUs in SAP HANA servers should always be configured for maximum per-
formance. If the CPUs are configured in a power save mode (such as “on demand”),
then the CPU governor might not handle CPU frequency adaptions efficiently,
leading to high system CPU times. See SAP Note 1890444 for more details.

� Additional non-SAP and non-SUSE software
The SAP HANA database software is designed to make use of all hardware
resources of the database server as efficiently as possible. It is therefore not rec-
ommended to operate other software on the database server unless required
for data center operation. In SAP Note 1730928 and further notes therein, SAP
explains what third-party software may be used on the database server. If a par-
ticular version of such third-party software is known to cause issues with the
SAP HANA database, the software components or versions will be listed in SAP
Note 1730996.

� Recommended file system for storage components
Unless your hardware partner explicitly makes a different choice, SAP recom-
mends the XFS file system for all storage components of the database (data, log,
and software installation); see SAP Note 1944799.
79

Installation and Updates3
� Scale-out systems: connectivity choices
When setting up scale-out systems, the handling of host names as well as the
separation of the external network from the network for internal (inter-node)
communication may be challenging. Refer to SAP Note 1743225 for advice.

� Support connections
It is advisable to prepare system access for SAP Support by means of SAP sup-
port connections as early as possible. Before the actual SAP HANA software is
installed, the most useful connections will be those that enable remote access to
the operating system of the SAP HANA server. Multiple such connections are
available, as listed in SAP Note 1635304, such as the WTS connection (provided
it is possible to connect from the WTS server to the SAP HANA server) or an
SSH connection. These connections require setup on the SAP HANA server and
on the SAProuter.

� Time zone settings
The time zone setting of the operating system also determines the time zone
setting of the SAP HANA database. This affects, for example, time-related
entries in database system tables or the time stamps of entries in the database’s
log files.

3.1.4 File System Setup

Once the server hardware is in place and the operating system is set up correctly,
there is only one important step to do before you can start the actual system
installation, and this is setting up the necessary file systems and the recom-
mended directory structure.

Please always refer to SAP’s documentation for the latest recommendation regard-
ing the file system layout. You can find this in the SAP HANA Server Installation and
Update Guide, which is available at https://help.sap.com/hana_platform/. The file sys-
tem layout proposed by SAP has been stable through the last several support pack-
age stacks. We give you here SAP’s recommendations and a few annotations.

The SAP HANA software itself needs file system space by and large for four cate-
gories of file system objects (and each of these categories should have its own ded-
icated file system):

� Installation path /hana/shared
This is the target directory for the software installation. The binaries of the
database and typically other components, such as SAP HANA Studio and client,
80

Preparing for Installation and Updates 3.1
will be placed here. In a scale-out cluster, this directory must be accessible to all
hosts in the cluster.

When installing an SAP HANA database system with a given SID, a new direc-
tory, /hana/shared/<SID>, will be installed, and all installed software compo-
nents of that instance will reside there. This enables multiple database
instances with different software versions to be installed on the same host.

Note also that trace files written by the database system will end up in this
directory.

SAP’s requirement is that the size of this file system matches the amount of
physical RAM installed in the database host; in a scale-out system, this must be
identical to the sum of the RAM of all worker hosts.

� System instance directory /usr/sap
This is the standard path to the local instance of any SAP system. It contains the
saphostcontrol installation and a directory, /usr/sap/<SID>, for each installed
SAP system instance. In the case of SAP HANA, most of the content of /usr/sap/
<SID> is linked symbolically from /hana/shared/<SID>.

This file system should be at least 50 GB in size. If multiple SAP HANA
instances are installed on one host, you should increase the file system size
accordingly.

This file system is specific to the physical host, including in scale-out clusters
(i.e., it is not a shared file system in a cluster installation).

� Database data volumes /hana/data
There must be a dedicated file system used to store the data volumes of the SAP
HANA database. This file system must have a size equal to three times the
installed main memory of the database host (in scale-out clusters, the total data
storage must equal three times the sum of the amount of main memory
installed on all worker nodes of the system).

In scale-out systems, the data volumes must be available to all hosts in the
scale-out cluster. The most common option is to use some type of shared stor-
age or shared file system. Another option is block storage with the SAP HANA
storage connector API (SAP Note 1900823). The actual technology will depend
on the choice of hardware vendor.

SAP HANA also offers a process to capture a consistent image of the database in
a file system–based snapshot. If the storage system supports efficient means of
creating snapshots, this mechanism can be the fastest way of creating or restor-
81

Installation and Updates3
ing a full data backup. If you plan to make use of snapshots, you should include
the necessary requirements when choosing the storage system hardware.

� Database log volumes /hana/log
For the log volumes of the SAP HANA database, a dedicated file system is
required as well. In single-node instances, this file system will in most cases
reside on a solid state disk, whereas it is usually (but not always) located on reg-
ular storage technology in scale-out clusters.

The size of the log area must equal the amount of main memory installed in the
database host (in scale-out clusters, the sum of the amount of main memory
installed on all worker nodes). For the new Ivy Bridge generation of SAP
HANA servers, different log file system sizes have been introduced; see “SAP
Certified Appliance Hardware for SAP HANA” at https://scn.sap.com/docs/DOC-
52522.

In scale-out clusters, the log area must be available to all hosts in the cluster.
The available options are the same as for the data volumes.

In addition to these mandatory file systems for the database software itself, the
following file systems should not be overlooked. Some of them will be installed in
a standard installation; others are optional but should be included in your system
planning:

� Operating system installation (root file system)
The root file system, containing the installation of the Linux operating system
itself, should be at least 10 GB in size and must use a file system type supported
by the hardware partner and SAP, such as ext3. If you plan to install additional
software components—for example, monitoring software—then make sure
that either the root file system or dedicated additional file systems have suffi-
cient disk space. SAP has no further strict requirements regarding the OS file
system, allowing customers to set up the Linux environment for SAP HANA
systems to match the guidelines of their data centers. This includes, for exam-
ple, the choice to set up swap space on a dedicated storage partition or in a
swap file (setting up a dedicated partition on a fast storage device is clearly rec-
ommended) or to define a dedicated storage partition for temporary files (the
/tmp file system).

� Space for data and log backups
The SAP HANA database offers two distinct targets for data and log backups
(see Chapter 5 for details). The BackInt mechanism enables control of the
82

Preparing for Installation and Updates 3.1
backup system through a third-party backup tool and writing the backups to
network pipes. When using this mechanism, there is no need for a backup file
system on the SAP HANA server. With traditional file-based backups, on the
other hand, the database needs a locally available file system of sufficient size
to maintain data and log backups.

The appropriate sizing of such a backup file system is not a trivial matter, and we
address this challenge in the context of Chapter 5. It is a file system that should,
however, be included in the system planning from the start, and it is the only one
of the mentioned file systems that is not included in the appliance definition and
will not be taken care of automatically by your server hardware vendor.

Any backup—whether file-based or not—should be located on storage devices
external to the originating server hardware, and SAP allows the usual technol-
ogies, such as NFS, for mounting the backup file system into the SAP HANA
server, with the exceptions listed in SAP Note 1820529. Data and log backups
may reside on the same storage device.

In scale-out installations, the file system path for data and log backup must be
the same and valid for all hosts of the cluster. Although it is technically possible
to have individual storage devices for each host all mounted at the same file
system path on their respective hosts, SAP strongly recommends using shared
storage for the backup location.

� Space for provisioning software updates
It can be very useful to prepare a network storage location to provision soft-
ware downloads (e.g., updates of the database software) to your SAP HANA
system. Such a shared location for software images can be very useful if you
maintain multiple SAP HANA systems and want to automate software updates.

Because SAP does not mention a preferred location to place software images
for installation or update of the SAP HANA system, we have taken the liberty
of suggesting the following idea:

Place software updates into the file system path /hana/shared/media. If you are
using a network file system for software provisioning, mount this file system
into the proposed path. If not, this location is a safe place, because it typically

Note

It should be noted that if you do not explicitly set up locations for data and log backup,
these files will be written to a location underneath the installation path /hana/shared.
83

Installation and Updates3
has copious free space (as opposed to the root file system) and does not inter-
fere with the data or log file storage. On small SAP HANA servers, there is a
chance that disk space in /hana/shared can be scarce (remember that the file
system size of /hana/shared must equal the amount of installed main memory).
To give you an estimate of the required disk space, consider that the installa-
tion files of SAP HANA have a size of approximately 10 GB, and you will need
twice that amount temporarily in order to unpack the files. Also, a simple
update of the server software alone amounts to about 3 GB.

A typical file system layout (excluding file systems for database backups and soft-
ware provisioning) for an SAP HANA system is depicted in Figure 3.1. That figure
contains all necessary information to deduce the file system layout of a scale-out
cluster. In single-node systems, the counter <m> always has the value 1, and stor-
age devices marked as “shared” may also be local devices of the database server.

Figure 3.1 Recommended File System Layout for an SAP HANA System

<SID>/

hostctrl

hlm_bootstraps

SMD agent Data:
3 x RAM

10 GB

/ (root file system with
SLES installation)

usr/sap/

50 GB

hana/

data/

<SID>/
mnt0000<m>/

hdb0000<n>/

datavolume_0000.dat
log/

<SID>/
mnt0000<m>/

hdb0000<n>/

logsegment_000_<c>.dat
Log:

1 x RAM
logsegment_000_

directory.dat
shared/

<SID>/
HDB<instance>

hdbstudio

hdblcm

HLM

…

Install
path

1 x RAM

Legend

<m> Node number in scale-
out cluster
Volume ID of service
with own persistence
Log segment counter (eight
digit integer)

<n>

<c>

<instance> Instance number of the
SAP HANA installation

Local storage device

Shared storage device
(accessible to all hosts
in a scale-out cluster)

X GB

Y x RAM
84

Tools for Installing and Updating SAP HANA Systems 3.2
3.2 Tools for Installing and Updating SAP HANA Systems

The SAP HANA database software comes with four different installation tools,
some of which can also be used for updates. In addition, there are also tools that
are only for updates. All of these tools are listed in Table 3.3.

Out of these tools, only the first three listed can be recommended for use in pro-
duction landscapes. The other tools are either deprecated (Unified Installer) or are
not aware of the database system as a whole, focusing just on single components
(hdbinst, hdbupd).

Tool name Purpose GUI Batch
mode

Comment

hdblcm Installation
and update

No Yes Standard tool for nongraphical installa-
tion and update (starting with SPS 7).

hdblcmgui Installation
and update

Yes No Standard tool for GUI-based installa-
tion or update with local logon to data-
base server (starting with SPS 7), using
hdblcm as backend.

HLM Update,
installation
of additional
instances

Yes No Tool for updating the database or add-
ing further instances to an existing
database, with remote access from SAP
HANA Studio or a web browser.

Note: In SPS 8, most of this functional-
ity has been removed from HLM. The
recommended tool for all these actions
is now hdblcm(gui).

hdbinst Installation No No Built-in installer of individual compo-
nents. Should not be used for customer
installations, because it does not install
supporting components (HLM or
similar).

hdbupd Update No No Built-in update program of individual
components. Should not be used in
customer installations.

Unified Installer Installation Yes No Deprecated installation tool, replaced
by hdblcm(gui).

Table 3.3 List of Tools for Installing and Updating SAP HANA
85

Installation and Updates3
It took us just one sentence to cut the offering of installation/update tools in half,
but it will take slightly longer to help you choose the right one from the set of
remaining tools. We will guide you first through the installation and then add a
brief word on the update tools.

3.2.1 Installation Tools

The tool for installing the database (or adding components to the database installa-
tion) is the hdblcm tool, which comes in two flavors: a text-mode installer that can be
used interactively as well as in batch mode via a prepared configuration file and a
graphical variety that guides you through the installation process with an easy-to-
follow wizard. These flavors (or, to make things easier: tools) are named hdblcm and
hdblcmgui, respectively. We will frequently use the notation hdblcm(gui) if an expla-
nation applies to both flavors. Both tools have a lot in common:

� They require OS access with the root user (or an equivalently privileged user)
of the database server.

� They enable the installation of single-node systems and scale-out systems.

� They let you install additional SAP HANA instances on the database server.

� They both use the same installation libraries and thus produce the same log
files for the install process.

� They are available via the “installation and upgrade image” option of the data-
base software as well as the “update and patch” download of updates to the
database server software.

There is a third tool, SAP HANA Lifecycle Manager (HLM), that can only be used
to add an additional instance to an already installed database server; it cannot be
used for performing the initial installation.

Choosing hdblcmgui

In our eyes, hdblcmgui is the perfect tool for someone who does not frequently
install SAP HANA database systems and thus will appreciate a little more guidance

Note

In SPS 8 of SAP HANA, most functionalities for system lifecycle management have been
removed from HLM so that in SPS 8 the only tool for installation and update is the
hdblcm(gui) tool.
86

Tools for Installing and Updating SAP HANA Systems 3.2
and comfort than a text-based tool offers. For example, the tool checks the validity
of entries (file system paths, etc.) and displays comprehensible messages if some-
thing seems to be not in order.

The drawbacks of using the hdblcmgui tool compared to the command-line ver-
sion include the obvious necessity of X-server forwarding when accessing the SAP
HANA server (which may or may not be easy to accomplish in your data center)
and the perceived speed of the application, which sometimes feels a bit unrespon-
sive (but has been improved greatly in SPS 8).

On the other hand, especially when installing a scale-out system, you will be
grateful for the assistance offered by the hdblcmgui application.

Choosing hdblcm

For the regular database installation master who knows what he or she is doing,
the hdblcm command-line tool will typically be the tool of choice, especially when
installing single-node instances. In interactive mode, this is the fastest way to
install a new complete SAP HANA instance, be it the first one on the database
server or an additional system on a nonproduction server. For automated system
provisioning—for example, for server hosting or for setting up training
instances—the batch mode is invaluable.

Choosing HLM

As HLM cannot be used at all for system installation in SPS 8, we do not recom-
mend it.

3.2.2 Update Tools

For updating the SAP HANA system, you can use the hdblcm(gui) tools. The
strengths of these two tools have already been discussed in the context of instal-
lation, and they can be transferred to the update process.

Before SPS 8, the third tool available for updating the database (or adding a new
instance to an existing database installation) is the HLM tool. In our experience,
however, the overall update process is much simpler with hdblcmgui, and this
tool is also more fault tolerant than HLM. Because virtually all functionality has
been removed from HLM in SPS 8, we decided not to cover the tool in this book.
87

Installation and Updates3
3.3 Installing an SAP HANA Database

Now that we have laid the groundwork, we can start our first SAP HANA instal-
lation. First, we will tell you what to download, where to get the files from, and
where to place them. After this, we will guide you step-by-step through the instal-
lation of a single-node system with the graphical hdblcmgui tool.

Unless stated otherwise, all installation steps have to be carried out by the root
user of the Linux operating system.

3.3.1 Downloading and Preparing the Software

In order to install the SAP HANA database, you need to download the installation
image of the software from SAP Service Marketplace. You can find the software at
the following location: https://service.sap.com/swdc/ � Installations and Upgrades �

A-Z Index � H � SAP HANA Platform Edition � SAP HANA Platform Edition 1.0 �

Installation.

From that location, download all files belonging to the support package you want
to install. SAP HANA installation files are offered as self-extracting RAR archives.
The first file therefore has the file type (extension) EXE, and all subsequent files
have the extension RAR. For SPS 7 of SAP HANA, you need to download 10 files
with a total size of almost 10 GB.

Now, let’s assume that you have placed the download into a directory accessible
on your SAP HANA server, for example, the location /hana/shared/media/ that we

Note

Batch-mode installation and upgrade are covered in Section 3.6.

Note

Once you have downloaded all files, do not extract them on a Windows machine using
the self-extract functionality (i.e., do not run the <first_file >.exe file). If you extract the
files on a Windows OS, all file access permissions will be erased, and this will lead to vir-
tually irreparable issues when you try installing the software.

Only extract the download either locally on the SAP HANA server or on a Linux server
from which you can directly provision the extracted archive to the target SAP HANA
server in a way that preserves file access information.
88

Installing an SAP HANA Database 3.3
proposed in Section 3.1.3. We will refer to this location as “<media_path>”
throughout this chapter.

After placing the RAR archive into <media_path>, change into that directory and
unpack the download using the unrar program. Most likely the unrar package will
not have been installed on your SAP HANA system, because it is not part of the
SLES 11 Server Base System. It is, however, part of the SLES 11 distribution and
can thus be added using your preferred method of installing additional packages
from the distribution.

In order to unpack the files, log on with the root operating system user and
change into the <media_path> directory. The extraction will create a directory
labelled with an eight-digit number (we will call this number <dvd_label>). That
number is SAP’s identifier for the installation medium, and it does not have an
obvious translation into SAP HANA version numbers. We therefore recommend
setting up a target directory for the extraction with an appropriate directory
name. For the remainder of this chapter, we will use the placeholder
<installation_base_path> to refer to the location into which you extract the
archive.

Then, unpack the multivolume self-extracting RAR archive using, for example, a
command following the pattern given in Listing 3.1.

Change directories to your software download (if you follow
our suggestion, <media_path> = /hana/shared/media/)
cd <media_path>
Create the target directory for extracting the files
(in our example for SPS 7). With reference to the text
above, the <installation_base_bath> in our example is
<installation_base_path> = <media_path>/SPS7_install/
mkdir SPS7_install
Extract the archive into that target directory
unrar x <dvd_label>_part01.exe SPS7_install/

Listing 3.1 Linux Commands to Extract the SAP HANA Installation Archive

Note

On Linux operating systems, you must extract the installation archives of SAP software
(including SAP HANA) as the root user. The installation process will verify file ownership
during the installation process. See also SAP Note 886535 for extracting multivolume
archives of SAP installation media.
89

Installation and Updates3
After extracting the archive, you will find the following directory and file struc-
ture inside of the target directory of the installation:

� Directory <installation_base_path>/<dvd_label>
Contains multiple files with version information and so on, which will typically
not concern you, except for the file MD5FILE.DAT, which contains the MD5
check sums of every single file of the extracted archive.

� Directory <installation_base_path>/<dvd_label>/DATA_UNITS
This directory contains all components of the SAP HANA database that are part of
the installation medium. For each component, there is one subdirectory within
DATA_UNITS. We list those components that can be deployed in the course of
the database installation in Table 3.4, ordered subjectively by the importance
they play for the installation process of a typical SAP HANA installation.

Component Directory Name(s) Comment

hdblcm HDB_LCM_LINUX_X86_64 New installation programs
hdblcm and hdblcmgui
(recommended as of SPS 7)

SAP HANA database HDB_SERVER_LINUX_X86_64 The software of the SAP
HANA database itself

SAP HANA Studio HDB_STUDIO_LINUX_X86_64

HDB_STUDIO_WINDOWS_X86

HDB_STUDIO_WINDOWS_X86_64

Versions of SAP HANA
Studio for Linux (64 bit),
Windows 32 bit and Win-
dows 64 bit

SAP HANA client HDB_CLIENT_LINUX_X86_64

(and versions for all other supported
architectures)

The client package, including
JDBC driver, ODBC driver
and multiple useful tools

HLM SAPHANALM_LINUX_X86_64 SAP HANA Lifecycle
Manager (HLM)

AFL HDB_AFL_LINUX_X86 Functional extension “Appli-
cation Function Library”

Unified Installer HANA_IM_LINUX__X86_64 Deprecated (as of SPS 7)
installation tool

Hardware Check
Tool

SAP_HANA_HWCCT Tool to verify hardware prop-
erties (for Tailored Data Cen-
ter Integration)

Table 3.4 SAP HANA Components for the Install Process
90

Installing an SAP HANA Database 3.3
There are more components contained in the installation medium, but they do
not play a role in the installation of the database itself. Depending on your
intended usage scenario, you may need to deploy some of these later, using the
installation procedure of the individual component (installation functionality for
these components is not contained in hdblcm):

� Server components to set up the data federation technology Smart Data Access
(SAP_HANA_SDA_10)

� The SAP liveCache add-on for running SAP liveCache integrated in SAP HANA
(HANA_LCAPPS_10_LINUX_X86_64)

� SAP-provided optional content (name starts with HCO_), for example, the
demo content of SAP HANA Interactive Education (SHINE)

� SAP NetWeaver components such as the SAP NetWeaver Kernel, SAP Host
Agent, and SAP Software Provisioning Manager (SWPM), a part of the Software
Logistics (SL) toolset

� SAP HANA Information Composer—a Java-based application that aims to add
agile modeling capabilities on top of SAP HANA’s modeling component

� The RSA-plugin for SAP HANA Studio, which adds functionality that was used
in a deprecated workflow for integrating with SAP Data Services (usually not
needed anymore)

3.3.2 Running the Installation Tool

Now, we are ready to start the actual system installation with the graphical
hdblcmgui tool.

1. As the root user on the Linux operating system of your SAP HANA server, nav-
igate to the location of the hdblcm tools on your installation medium:
<installation_base_path>/<dvd_label>/DATA_UNITS/ HDB_LCM_LINUX_X86_64.
In that directory, start the installation program by executing the command
./hdblcmgui.

This will open the installation tool, which on its first screen shows you the
installable components it detected (Figure 3.2). On this screen, you can also
point the tool to other installation medium locations if necessary. If you pre-
pared the installation software as we advised earlier, you can simply continue
to the next step.
91

Installation and Updates3
Figure 3.2 Detected Installable Components on the First Screen of hdblcmgui

2. The hdblcmgui tool supports the installation of new SAP HANA instances (and
updating existing ones). The second step of the workflow lets you choose
between these two activities; if you are installing the first SAP HANA instance
on a given server, you will not be able to select Update existing system. It will
be grayed out, as shown in Figure 3.3.

Figure 3.3 Choosing the Activity to Perform
92

Installing an SAP HANA Database 3.3
3. Once you have selected Install new system, the next screen of the wizard
offers the installation of additional optional components with the new database
instance (note that the SAP HANA database itself is not optional).

We recommend always installing SAP HANA Studio, SAP HANA client, and
SAP HANA Lifecycle Manager (HLM) with every instance of the database.
These three are useful tools (or contain useful tools) and therefore should be
installed at least with the first instance of SAP HANA on a given server. Even if
you install multiple instances on the same server, it is useful to have local Stu-
dio, client, and HLM installations for each instance, as this is the best way to
guarantee that you always have the perfectly matching version of the addi-
tional tools.

As can be seen in Figure 3.4, we will continue with this minimum recom-
mended setup, installing everything except the Application Function Libraries
(AFL).

Figure 3.4 Selecting Software Components to Install with the SAP HANA Instance

4. The next step (Configure Installation) breaks down into seven substeps, in
which we define all necessary properties of the database system to be in-
stalled. First, we have to tell the installer about the most significant hardware
93

Installation and Updates3
characteristic: Is our database system on a single host, or is it distributed in
a scale-out cluster? In our example, we are installing a single-host database
(Figure 3.5).

Figure 3.5 Choosing the System Type

5. The next piece of information to provide is the basic characteristics of the new
database, as shown in Figure 3.6:

� For Installation Path, we recommend using the default value “/hana/
shared”; this is where the database software will be installed and also where
certain runtime data, such as trace files or configuration files, will be
located.

� The SAP HANA System ID (SID) is the unique identifier of your SAP system
to be installed. In our example, we use the SID “WUP”.

� Finally, choose the Instance Number from the dropdown box. Our database
system “WUP” will be equipped with instance number “42”.

Note

SAP recommends that no two SAP systems within a customer environment should have
the same SID.

The SID must consist of three alphanumeric characters. Only uppercase letters are
allowed, and the first character must be a letter (not a digit). Several possible SIDs are
reserved and cannot be used; see the SAP HANA Server Installation Guide for details.
94

Installing an SAP HANA Database 3.3
Figure 3.6 Entering Properties of the Database System

6. Next on the agenda is the definition of the storage system properties. In this
dialog, we need to enter the locations of the data and log volumes. Note that
you have to enter the SID-specific path names, that is, <data_path>/<SID> and
<log_path>/<SID>. The system will already make appropriate proposals, as you
can see from the automatically inserted suggestions in Figure 3.7.

Note

The Instance Number is a second identifier for the SAP system to be installed, but it
does not need to be unique throughout your system landscape (it must be unique
among the SAP systems installed on a given host or host cluster). In an SAP HANA sys-
tem, the instance number determines the external and internal communication ports of
the software.

The instance number is a two-digit number in the range of 00 to 99.

If you plan to set up a disaster-tolerant SAP HANA system by using the system replica-
tion technology, be aware that such a system will internally need two consecutive
instance numbers: the one you choose here and the next-highest number. Hence, if you
plan to make use of system replication you must not choose instance number 99, and if
you might install multiple SAP HANA instances on the same server and make use of sys-
tem replication, you might want to implement a schema such as “only use even instance
numbers.”
95

Installation and Updates3
The suggested <data_path> directory is /hana/data, and the suggested <log_
path> directory is /hana/log, which leads to the selection of:

� Location of Data Volumes: “/hana/data/WUP”

� Location of Log volumes: “/hana/log/WUP”

Figure 3.7 Defining Locations for Data and Log Storage

7. On the next screen, we have to define the system administrator for the SAP
HANA system on the OS level (Figure 3.8).

For each SAP HANA system with a given <SID>, there is a dedicated adminis-
tration user on the operating system. The name of this user is <sid>adm (all in
lower case), and it will be automatically created by the installation program. In
our case, the user will be named “wupadm”.

All administration users of SAP systems on the Linux operating systems are
added to the group SAPSYS.

Although you cannot change the user and group names, you are free to choose
the user and group IDs. The installation program automatically determines the
first free user and group IDs, and typically there will be no reason to deviate
from this choice.

The following information can be entered or modified from the proposed
input values:
96

Installing an SAP HANA Database 3.3
� Password and Password Confirmation: The password of the <sid>adm OS
user. Choose a password that complies with your IT department’s security
guidance.

� System Administrator Login Shell: The executable program of the OS shell
to use when logging on with the <sid>adm user. Administrators will typi-
cally choose either bash (in modern Linux distributions, the default execut-
able /bin/sh is a symbolic link to /bin/bash) or C-shell (/bin/tcsh). We
leave the choice to your personal preference.

� System Administrator Home Directory: We recommend not changing this
path from its default value.

� System Administrator Timezone: This choice only affects the time zone set-
ting of the operating system administrator; it does not affect the time zone
settings of the database itself. The database time zone is determined from
the global time zone setting of your Linux operating system. In order to
avoid confusion, we recommend setting the user’s time zone to the server’s
time zone.

Figure 3.8 Defining the Administration User on the Operating System
97

Installation and Updates3
8. Your SAP HANA database comes with one preinstalled, logon-enabled data-
base user, which is always named “SYSTEM”. This user is highly powerful, and
it is intended for use during the system setup (bootstrapping) and in emergen-
cies. During times of regular database usage, the SYSTEM user should be
retired (deactivated).

You need to specify and confirm the password for the SYSTEM user (Figure
3.9). If you plan to set up a high level of system security, we do not recom-
mend using the same password for the database user SYSTEM and the OS user
<sid>adm.

Figure 3.9 Setting the Password for the Database Bootstrap User (SYSTEM)

9. HLM uses self-signed SSL certificates in its communication with the database
server. Because internal and external host names may be different, we need to
set up a mapping accordingly.

For example, a given SAP HANA host might have the internal hostname
“hanahost1,” and you might use “hserver01.mycompany.com” externally. In
this case, you would have to fill in “hanahost1” for Hostname and
“hserver01.mycompany.com” for Certificate hostname.

In our example, internal and external host name are identical (Figure 3.10).

10. At this point, all preparations are finished. The installation wizard displays a
summary of all defined properties for the installation (Figure 3.11). If you
agree, you can start the actual installation by clicking Install.
98

Installing an SAP HANA Database 3.3
Figure 3.10 Defining the Hostnames for SAP Host Agent SSL Certificates

Figure 3.11 Summary of the Intended Installation
99

Installation and Updates3
11. While the installation is running, progress bars indicate the progress (Figure
3.12).

Figure 3.12 Progress Indication during the Install Process

12. The installation of a new database on a single-host system typically takes
around 10 minutes. At the end of this process, if all goes well, the database
will be started and ready for your first logon.

Whether or not the installation was successful can easily be seen on the final
screen of the installation wizard (Figure 3.13). This screen also gives access to
the log files of the installation process for the individual components that
have been installed.

If there are errors in the course of the installation, the log files will contain infor-
mation as to what went wrong. In our experience, the installation process is
pretty robust, as long as your system meets the requirements for hardware and
operating system setup.

You can now start using the database system, which means that you should pre-
pare the system for its actual purpose. There is a long list of steps that you should
100

Updating an SAP HANA Database 3.4
follow in order to make sure you have an easily manageable system. We walk you
through typically recommended steps in Chapter 14. (The reason we place that
chapter so far back in the book is that those steps touch virtually every aspect of
database administration.)

Figure 3.13 End of Installation—Indicating Success

3.4 Updating an SAP HANA Database

For updating the database and related components on the database server, there
are in principle three options. You might install all components individually with
their respective installation program, or you might use one of the two tools that

Note

We recommend not removing the extracted installation archive of a given support pack-
age stack from the SAP HANA server if you are operating database instances of that sup-
port package level. You will need the installation packages for the support package stack
if you want to add further instances of the database at a later point in time.
101

Installation and Updates3
can update all system components at once. These tools are the HLM tool and the
hdblcm(gui) tool.

We cannot see a good reason to update each component individually, and out of
the other tools, hdblcm(gui) has proven more robust in our experience compared
to the HLM tool, which appears less tolerant with regards to deviations from a
hypothetical perfect system setup. We will therefore demonstrate a database
update via the hdblcmgui tool. As with installation, the preparations for the
update are more complex than the actual update process. We will therefore give
you as much detail as possible about these prearrangements. The prerequisites for
the graphical tool are the same as those for updating the database using the hdblcm
tool on the command line or in batch mode.

3.4.1 Prerequisites

The most important prerequisite for updating the database is of course the down-
loading of the new software packages and the appropriate placing of those pack-
ages on your SAP HANA server. There are a few more steps that help you perform
the update without glitches.

Choosing the Target Revision for an Update

In most cases, you can directly upgrade the SAP HANA database server software
to any target revision from your current revision. A few restrictions apply if you
are coming from a maintenance revision (see Chapter 1), because these revisions
may have specific requirements regarding the target revisions of updates. These
update paths are listed by SAP in SAP Note 1948334. Even if you upgrade from
one SPS to another, you do not have to first upgrade to the SPS release version
itself; you can usually directly upgrade to the intended target revision. In fact, the
update paths for maintenance revisions in most cases exclude an upgrade to the
initial revision of the successor SPS.

More difficult is—as always—the question of whether you will want to upgrade to
the latest revision or an older one. Generally speaking, you can either upgrade to
revisions of the highest current support package stack, or to the maintenance revi-
sion of the previous support package stack (as long as your system is currently on
the previous SPS level).

In light of SAP’s release strategy, our general advice is not to move to the latest
support package stack (SPS) before the SAP HANA Datacenter Service Point revi-
102

Updating an SAP HANA Database 3.4
sion of that SPS has been released, unless you have specific requirements for new
functionality that may only be available in the latest SPS.

You should keep in mind that SAP intends to stop providing maintenance revi-
sions shortly after the SAP HANA Datacenter Service Point revision of the succes-
sor SPS has been released, so you will need to schedule an SPS upgrade sooner or
later.

Download Archives

Before you can update the database, you will need to download the software pack-
ages to update. The required download files will depend on the set of components
installed on your database server and on the target version of the upgrade.

In theory, you can upgrade either to individual revisions (sometimes also referred
to as individual support packages) or to a higher support package stack. Assuming
that most customers will be operating maintenance revisions before upgrading to
the successor SPS, the upgrade to the SPS release itself will usually be prohibited
by incompatible upgrade paths. We will therefore only cover the case of updating
to a specific revision, for which you will have to download a number of individual
software packages. If you have installed our minimum recommended compo-
nents, you will have to download the following packages:

� SAP HANA Server (Linux X86 64 bit)

� SAP HANA Studio (Linux X86 64 bit)

� SAP HANA Client (Linux X86 64 bit)

� SAP HANA Lifecycle Manager (HLM) (Linux X86 64 bit)

If you have installed add-on components, such as the AFL, you will have to down-
load those packages too.

In addition to the packages for the database server, you will typically also need the
SAP HANA Studio and client for all other platforms on which you are running
these components in your landscapes. In most cases, you should at least download
the 32- and 64-bit Windows versions of SAP HANA Studio and client. You may
operate servers that need the SAP HANA client software on other operating sys-
tems, and you should download the client package for these operating systems as
well.

Next we will only cover updating the software on the SAP HANA database server.
103

Installation and Updates3
All downloads are available from the software download center on SAP Service
Marketplace at https://service.sap.com/swdc � Support Packages and Patches � A-Z

Index � H � SAP HANA Platform Edition � SAP HANA Platform Edition 1.0 �

Entry by Component. At that location, choose the component to download—for
example, HANA database for the database server software—and then the version
for the selected component.

For any given update process, you should always download all required packages
with the same revision level. The HLM tool is an exception, because HLM does
not use the revision labeling of SAP HANA. You should always download the
highest patch level of HLM for the given support package stack.

Unpack Archives

The software updates you downloaded are in the format of SAP Archives (SAR
files). If you update the database using the hdblcm(gui) tool, you will first need to
extract these archives.

In our example, we will assume that you downloaded the archives into a location
that we will call <download_path> on the SAP HANA database server and that you
extracted them into a directory we will refer to as <update_base_path>.

Continuing the suggestions we made in Section 3.3.1, you might choose:

� <download_path> = /hana/shared/media/REV_<x>_download

� <update_base_path> = /hana/shared/media/REV_<x>

Having these two separate locations allows you to easily remove the extracted ver-
sions after a successful update process but still keep the SAR files themselves in
case you need them again at a later point in time.

In order to extract the archives, you will need the SAPCAR program. On any cor-
rectly installed SAP HANA system, this program will already have been installed.
You can find it with the HLM installation for your given instance (SID) in the loca-
tion /usr/sap/hlm_bootstraps/<SID>/HLM/exe/.

With these points in mind, you can unpack the archives by using the syntax given
in Listing 3.2.

Change directories to your software download for the given
revision <x> (if you follow our suggestion,
<download_path> = /hana/shared/media/REV_<x>_download/)
104

Updating an SAP HANA Database 3.4
cd <download_path>
Create the target directory for extracting the files (in
our example, for revision <x>). With reference to the previous
text, the <update_base_bath> in our example is
<update_base_path> = /hana/shared/media/REV_<x>/
mkdir ../REV_<x>
Extract all archive files into that target directory.
Generally, the SAPCAR syntax is
SAPCAR –xvf <.SAR_file> -R <extraction_target_directory>
We will use the SAPCAR installed with our database SID. For
each archive file <file_i>.SAR, run the following statement:
/usr/sap/hlm_bootstraps/<SID>/HLM/exe/SAPCAR
–xvf <download_path>/<file_i>.SAR –R <update_base_path>/

Listing 3.2 Unpacking the Update Archives

Special Treatment for the HLM Package Download

Most SAP HANA archives will extract into a dedicated subdirectory of <update_
base_path>. One exception is the HLM package (file name SAPHANALM*.SAR),
which will extract its content files directly into the target directory of the SAPCAR
command. In a deviation from the guidance given in Listing 3.2, you should cre-
ate a dedicated subdirectory for the HLM tool (e.g., <update_base_path>/HLM)
and extract the HLM archive into that subdirectory.

Also, the update process of the HLM tool itself requires not only the extracted
HLM tool but also the SAR file of the HLM tool in the same directory. You should
therefore copy the SAPHANALM*.SAR file into the target directory for extracting
that file (e.g., <update_base_path>/HLM).

Other Prerequisites

If you update the HLM component of your database system (and if you are not
using HLM itself for the update), you should now stop HLM for the <SID> to be
updated, as shown in Listing 3.3.

/hana/data/shared/<SID>/HLM/stop-hlm.sh –f

Listing 3.3 Stopping the HLM Process for a Given SID

If, as recommended by SAP, you have deactivated the SYSTEM user of your SAP
HANA database, you will have to activate it again for the update process.
105

Installation and Updates3
3.4.2 Steps in an Update

Regardless of which tool you use to update the database, the main steps of updat-
ing the software will always be the same:

1. The update program installs the new software version in a shadow location.

2. The database processes are shut down.

3. The new software version is switched for the old one; because the new soft-
ware version has already been installed on the same file system, this process
takes mere seconds.

4. The database processes are restarted immediately (unless you explicitly pro-
hibit the restart).

During the update of the database software, the hdblcmgui tool will not only
replace the program files of the database software but also update the SAP Host
Agent installed on the database server to the version that is contained in the data-
base software archive (unless the installed version of SAP Host Agent is already
higher than the packaged version, and unless you explicitly disable the SAP Host
Agent update); it will also update the resident hdblcm and hdblcmgui programs in
/hana/shared/<SID>/hdblcm.

Database Downtime during Update

The required restart of the database software naturally has the effect that the data-
base will be unavailable for a period of time. The duration of this downtime
depends on the data content of the database server, as will be explained in Chap-
ter 5. The main contribution to long downtimes comes from the row store. It may
be as short as about one minute if the database has negligible data volume in the
row store—or it may take the better part of half an hour, if the row store is several
hundred GB in size. After loading the row store tables, the database is available to
applications.

Following the restart, it will also take some time until all typically required col-
umn store tables are loaded into main memory. The database will automatically
preload with low priority those tables that were in main memory before the last
shutdown. In addition, any query requiring table columns that are not yet in main
memory will trigger the loading of those columns. It is also possible to mark
entire tables or individual table columns for preload.
106

Updating an SAP HANA Database 3.4
The duration of this warm-up phase depends on the data content of the database
and also on the usage of the data. Especially if the update is performed within a
scheduled downtime window, it is a good idea to define appropriate prewarm
queries to trigger the loading of essential data into main memory and to include
the execution of those queries in the overall update process.

You may need to plan downtimes of all connected components in the course of
the upgrade. This is particularly important for any data-provisioning processes
that target the SAP HANA database. Make sure that no data-loading jobs are active
when you start the upgrade (depending on your scenario, these might include SAP
Data Services jobs, SAP BW process chains, or other jobs); if you are using SLT for
real-time replication, pause all replication jobs.

Near-Zero-Downtime Upgrades

SAP offers a method for near-zero-downtime upgrades for customers who are
running a disaster-tolerant SAP HANA system using the system replication tech-
nology. We cover these in Chapter 5 in the context of system replication.

These near-zero-downtime upgrades will make the downtime during upgrade prac-
tically independent from the data volumes in row store and column store. That is,
there is no significant downtime for loading row store data, and there will be no
significant warm-up phase for loading column store data into main memory.

3.4.3 Running the Update Tool

In order to run the update process in hdblcmgui, it is easiest if you simply run it
as the root user. If that is not possible, you can run the program with other users,
but you will need to enter the root user’s password in the course of the update.

1. As the root user on the Linux operating system of your SAP HANA server, nav-
igate to the location of the hdblcm tools on your installation medium. You have
two options for running the tool:

Either use the version that comes with the SPS installation medium, located
in the file system path <installation_base_path>/<dvd_label>/DATA_UNITS/
HDB_LCM_LINUX_X86_64 (if you followed our guidance in Section 3.3.1,
<installation_base_path> will be /hana/shared/media/SPS<y>_install).
107

Installation and Updates3
Or use the tool version that comes with the SAP HANA database server package
that you want to update to. You will find the hdblcm tools in the file system
path <update_base_path>/SAP_HANA_DATABASE. In our case, this is /hana/
shared/media/REV_<x>/SAP_HANA_DATABASE.

Whichever tool location you choose, start the update program by executing the
command ./hdblcmgui.

2. If you start the update program from the SPS installation medium, the automat-
ically detected component versions are those of the support package stack (Fig-
ure 3.14). You have to make the program aware of the directory into which we
extracted the downloaded archives. Click on Add Component Location... and
enter the <update_base_path> you prepared in Listing 3.2.

Figure 3.14 Entering Installation Source Location
108

Updating an SAP HANA Database 3.4
Make sure to enable searching in subfolders before confirming the pop-up
window. The tool will now scan for SAP HANA software components in the
given path and refresh the list of detected components.

3. In the next step of the wizard, you have to choose to update, and you have to
select the database system to update from the dropdown menu. You can only
update one system at a time.

4. For the selected system, you have to choose the components that you want to
update. Typically, this will be all components that you have downloaded. You
can also use this step to add new components, such as the AFL, if you have
downloaded and extracted the correct version of those (Figure 3.15).

Figure 3.15 Choosing Components to Update or Add

Note

If you started hdblcmgui from the extracted archive of the SAP HANA database server
package in <update_base_path>/SAP_HANA_DATABASE, then the program will auto-
matically detect all components extracted into <update_base_path>.
109

Installation and Updates3
5. In the final interactive step, you have to enter the passwords for the operating
system administrator user <sid>adm and the database administrator user SYS-
TEM. If you used this update process to also add HLM to the system, there
would be an additional step for HLM properties.

6. The next screens of the update wizard will present you with a summary of the
intended update and then a progress indicator during the update process. At
the end of the update process, you will see success or failure messages, and you
will be able to check the update logs of all components.

3.5 Installing Multiple Instances of an SAP HANA Database
on the Same Physical Server (Nonproduction)

SAP supports installing multiple instances of SAP HANA database on the same
physical host but only on systems that are not used in production. If a database
instance is used as production system, it must be the only instance on the host.
One reason for this restriction is that the database software assumes that it has all
hardware resources at its command, and multiple instances may therefore
attempt to overallocate resources, especially CPU time.

In order to make optimal use of their nonproduction hardware, customers may
install multiple database instances, such as development, test, or sandbox sys-
tems, on the same host. When installing such multi-instance systems (typically
referred to in SAP’s documentation as “multi-SID systems”), one must be aware of
several limiting factors, especially in the main memory management.

The database size of an SAP HANA system is limited by the amount of main mem-
ory available to the database. With its primary data image in RAM, the database
can only work efficiently if it has sufficient amounts of memory available. If mul-
tiple databases are installed on the same host, the main memory must be allocated
fairly to prevent memory overcommits.

The SAP HANA database has a database parameter named global_allocation_
limit that limits the amount of extended memory that all processes of one SAP
HANA instance combined may allocate. If the database instances approach this
limit, the parameter will attempt to free memory resources, and in the worst case
it will terminate ongoing transactions.

The first database instance installed on a given host has a default global allocation
limit that is calculated as follows: 90% of the first 64 GB of RAM plus 97% of the
110

Installation and Update in Batch Mode 3.6
RAM above 64 GB. On a 1 TB system (1024 GB), this would amount to 90% of 64
GB + 97% of 960 GB = (57.6 + 931.2) GB = 988.8 GB available to the database. This
typically leaves sufficient memory for the operating system itself and auxiliary
processes, such as monitoring agents. If you add more instances, you will need to
adjust the limit of the existing and the newly installed instances such that the sum
of all allocation limits does not exceed the default setting for a single-instance
installation.

If you install additional instances using HLM, you can modify the allocation limits
of all installed instances and the new instance in the course of the installation pro-
cess. If you use the hdblcm(gui) tool, you will need to verify and potentially adjust
the allocation limits of all instances on the host manually. See Chapter 4 for infor-
mation on how to modify the database configuration. The parameter to modify is
global.ini � [memorymanager] � global_allocation_limit. The unit of measure-
ment for the parameter is megabytes.

3.6 Installation and Update in Batch Mode

If you have to install or update SAP HANA systems frequently, the hdblcm tool will
most probably become your friend. It has been built for interactive as well as non-
interactive installation and update from the command line.

An installation or update process can be described via a set of parameters of the
hdblcm tool. For any required parameter, there are up to three ways of entering
the parameter: You may specify it as a command-line parameter; you may specify
it in a configuration file; or, if the parameter has not been supplied in either of
these two ways, the hdblcm tool will request it interactively.

You can thus run a fully interactive installation or update by not specifying any
parameters on the command line or in the configuration file. You can also run a
fully automated installation or update by specifying all parameters on the com-
mand line or in the configuration file. And you can also mix those options, spec-
ifying some parameters on the command line and some in the configuration file
and have the tool ask you interactively for all others.

Adding a New Instance Using hdblcm(gui)

The process of installing an additional database instance via the hdblm or hdblcmgui
tool is exactly the same as the process for installing the first instance.
111

Installation and Updates3
In addition to checking the SAP HANA Server Installation and Update Guide (https:/
/help.sap.com/hana_platform) for a reference of all parameters and command-line
options, you can also get very useful help from the hdblcm tool itself. The tool can
generate template configuration files for updating or installing the database, and
it can print all supported parameters in a help screen.

Print help screen for installation or update, with
documentation of all possible arguments (native to the
hdblcm tool, as well as passed through to underlying
components such as hdbinst:
./hdblcm --action=install|update --help --pass_through_help
Generate template configuration file for update or
installation:
./hdblcm --action=install|update --dump_configfile_template

Listing 3.4 Assistance Available on the Command Line for Using hdblcm

For many parameters, the install or update program provides well-chosen default
values. In a database system set up following SAP’s recommendations, these
default values will usually be sufficient.

The default values play an important role for batch-mode installation or update. If
you specify the option --batch (or -b), the hdblcm program will insert the default
values for any value not specified on the command line or in the configuration
file.

In this section, we provide simple examples of installing and updating an SAP
HANA system, using a configuration file for typically needed parameters. We will
build the configuration file in such a way that we can use it for installation,
update, or both. We will also demonstrate the proposed way to handle passwords
securely.

3.6.1 Password Treatment

For installation or update of SAP HANA systems, you will need to specify up to
four passwords:

� You will always need to give the password of the <sid>adm database adminis-
trator on the OS and of the SYSTEM database user. At install time, the SYSTEM
user’s password must adhere to the default password policy: eight characters,
at least one lowercase, uppercase, and numeric.
112

Installation and Update in Batch Mode 3.6
� If you start the installation or update with a user other than the root user, or if
you install a scale-out system, you will need to give the root user’s password.

� If you install the first SAP HANA instance on a given server (and if no SAP Host
Agent is installed yet), you will also need to enter a password for the sapadm
user, the administration user of the SAP Host Agent.

Because of security considerations, we cannot recommend specifying these pass-
words on the command line. After all, the passwords will be visible in the oper-
ating system’s process list.

You can enter passwords interactively, but this will not be possible in batch mode.
For a batch-mode installation, you may enter passwords into the configuration
file, but then you’ll have to modify the configuration file if the passwords are
changed. The final and recommended option is to put the parameters into an XML
file, which can be used in the installation or update process. This way, you can
have one generic configuration file that is independent of password changes and
a dedicated password file for each system.

We show an example XML file for all four passwords in Listing 3.5; in this listing,
anything not in bold is a comment.

<?xml version="1.0" encoding= "UTF-8"?>
<Passwords>
 <!-- Password for <sid>adm user: -->
 <password>DontBother!</password>
 <!-- The other entries are self-explanatory: -->
 <system_user_password>WeAlreadyKnow99</system_user_password>
 <!-- Root password not needed if you install a
 single-node system as root -->
 <root_password>AllYourPasswords</root_password>
 <sapadm_password>OfCourse</sapadm_password>
</Passwords>

Listing 3.5 Example XML File for Password Specification

SAP’s recommended way of using this password XML file is to pipe the XML file
content into the invocation of the hdblcm program. This requires using the com-
mand-line option --read_password_from_stdin=xml, which is only available in
batch mode, so we also have to use the option --batch. The password XML file
should be located in a directory that is only accessible to the root user—for exam-
ple, the root user’s home directory. A typical invocation of hdblcm will thus look
like Listing 3.6.
113

Installation and Updates3
cat ~/passwords.xml | ./hdblcm --read_password_from_stdin=xml --batch
--action=<action> [... other parameters]

Listing 3.6 Example Invocation of hdblcm with Password File

3.6.2 Preparing the Configuration File

We recommend specifying all generic but required options in a configuration file
instead of passing them as command-line parameters. In a typical SAP HANA
installation, you will have to change only a very few parameters from their default
values. If a parameter (e.g., a SID) is specified in the configuration file and also
given on the command line, the command-line parameter supersedes the setting
from the configuration file.

Generate the configuration file template as shown in Listing 3.4. You can remove
any unnecessary parameters. A minimal configuration file is shown in Listing 3.7.

[General]
Index (Default: studio,hlm,client)
components=server,hlm,afl,client,studio
[Server]
Root User Name (Default: root)
root_user=lroot
System Administrator Timezone (Default: UTC)
timezone=CET
[LifecycleManager]
Certificate Host Names
certificates_hostmap=ld9506=ld9506

Listing 3.7 Example Configuration File

3.6.3 Performing the Installation

If you install an SAP HANA system in batch mode, adhere to the following instruc-
tions for specifying parameters:

� Parameter --batch must be given on the command line to enable batch-mode.

� action=install must be specified.

� sid=<SID> must be specified.

� number=<instance> should be specified. If not given, the system will automat-
ically choose the lowest available instance number—which might not be
intended, for example, if you are using system replication.
114

Installation and Update in Batch Mode 3.6
� If your root operating system user is not named root, you must specify the cor-
rect name in parameter root_user=<name>.

� When also installing the HLM component, you must specify the parameter
certificates_hostmap=<hostname>=<certificate_hostname>.

In the example configuration file in Listing 3.7, we did not specify action and sid
in the configuration file, so these parameters need to be given on the command
line.

It is useful to redirect the console output of the installation program to a text file
so that you can easily analyze this log at a later point in time if required. Also, and
especially if your network connection to the SAP HANA server may be unreliable,
you might want to use standard Linux functionality, such as nohup or screen, to
protect the installation process from being interrupted by network disconnects.

With our configuration and password files prepared, we can now install a new
SAP HANA instance. In Listing 3.8, we install a new system named NSA with
instance number 52 in batch mode.

Install SAP HANA System NSA with instance number 52, using
a configuration file, with passwords from an XML file.
The output of the installation file is redirected to a log
file, and the process is protected from network disconnects.
nohup cat /root/hana_passwords.xml | ./hdblcm --action=install
 --configfile=/root/install_update_template.cfg
 --sid=NSA --number=52 --read_password_from_stdin=xml
 --batch &> /root/install_log_nsa.txt
Monitor the output during installation.
tail –f /root/install_log_nsa.txt

Listing 3.8 Installing an SAP HANA Instance in Batch Mode

3.6.4 Performing the Update

Performing a DB update in batch mode is very similar to the installation. There
are, however, a few differences:

� You must not enter the instance number; the SID is sufficient.

� When running the installer from the extracted archive of the SAP HANA server,
it does not—at least in our setup—automatically detect the HLM installation
files. We therefore have to use parameter --component_root to point the pro-
gram to our <update_base_path> (/hana/shared/media/REV_72 in our example).
115

Installation and Updates3
In Listing 3.9, we show the command line for updating our newly installed
instance NSA to the release level of the archives extracted into directory /hana/
shared/media/REV_72, using the same configuration and password file as for the
installation.

Update SAP HANA instance NSA in batch mode.
nohup cat /root/hana_passwords.xml | ./hdblcm --action=update
 --configfile=/root/install_update_template.cfg
 --sid=NSA --read_password_from_stdin=xml
 --batch --component_root=/hana/shared/media/REV_72
 &> /root/update_log_nsa.txt
Monitor the update process using tail.
tail –f /root/update_log_nsa.txt

Listing 3.9 Updating Instance NSA in Batch Mode

3.7 Installing and Updating Scale-Out Systems

In the previous sections, we only installed single-node instances of the SAP HANA
database and you might—rightfully—ask yourself whether or not setting up a
scale-out system might be more troublesome. We have some good news: There is
hardly any difference compared to installing and updating single-node systems,
with the obvious difference that you have to manage multiple hosts. In this sec-
tion, we’ll call out the major differences between installing and updating single-
node vs. scale-out systems.

3.7.1 Preparation

When installing a scale-out system, all preparation steps mentioned in Section 3.1
have to be fulfilled on all hosts of the distributed system. In addition, there are a
number of requirements specific to scale-out systems:

� File system layout
The file systems for the installation path (/hana/shared), the data volumes of the
database system (data path /hana/data/<SID>), and the log volumes (log path /
hana/log/<SID>) must exist as a shared file system that is available on all hosts;
see Section 3.1.4. Data and log paths must exist before you start the installa-
tion; the installer will not create them for you.

Especially if you plan to install multiple instances of SAP HANA on the scale-
out hardware, we recommend setting up /hana/data and /hana/log as shared
116

Installing and Updating Scale-Out Systems 3.7
file systems (as opposed to having /hana/data as a local directory on the server
and only /hana/data/<SID> as a shared file system).

� Root operating system user
The root operating system user must be the same on all hosts of the scale-out
cluster, that is, the user must have the same name and password on all hosts.

� DB administrator on operating system (<sid>adm)
The database administrator <sid>adm must have the same user ID and pass-
word on all hosts of the scale-out cluster. If the user does not exist yet, the
installer will create it for you. If, however, the user already exists on at least one
of the hosts (e.g., left over from a previous installation of a system with the
same SID), you will have to manually make sure that the requirements are met.

3.7.2 Installing a Scale-Out System with hdblcmgui

The only difference between installing a scale-out instance and a single-node
instance is that you need to define multiple hosts and their logical roles (worker
or standby) in the course of the installation process. You can therefore follow the
instructions given in Section 3.3.2.

The main difference is the screen for choosing the system type. Here, you must
now select Distributed System, which will present you with further input fields
(Figure 3.16):

� For Root User Name and Root User Password, enter the credentials of the
root OS user that are valid on all hosts.

� For Installation Path, we recommend using the default value /hana/shared.

� You can leave the field Non-standard Shared File System empty in a typical
installation.

� You can add additional hosts one by one via the Add Host... button. This will
open a pop-up window in which you can enter the hostname of the host to add
as well as the host type (worker or standby) and a high-availability group. See
Chapter 6 for more details on these scale-out topics.

Note that the host on which you are running the installation program will
always be added as the first host into your database cluster, and it will be a
worker. This host will not show up in the table of Additional Hosts. You only
need to specify details for the additional hosts. In our example, we are install-
ing a five-host cluster, with four worker hosts and one standby host.
117

Installation and Updates3
The subsequent steps of the installation are again the same as for single-node
instances.

Figure 3.16 Defining the Hosts of a Distributed SAP HANA Instance

Note

You can of course also use the command line version, hdblcm, for the installation of
scale-out systems. However, the tool’s main advantage of batch-mode installation is less
prominent with scale-out systems. The reason is that batch-mode installation is not
independent from the host names, so you cannot use the same configuration file for
installing multiple systems.

If you need to treat systems individually anyway for the singular process of installation,
you may unashamedly enjoy the assistance offered by a graphical tool.
118

Troubleshooting 3.8
3.7.3 Updating a Scale-Out System

There is no difference to the update procedure when updating a scale-out system.
You should only make sure to update a scale-out system while all hosts of the clus-
ter are functioning. Unless it can absolutely not be avoided, you should not per-
form an update in a failover situation.

The update procedure will restart the database software automatically on all hosts
of the scale-out system.

3.8 Troubleshooting

The installation and update process—especially using hdblcm(gui)—is very robust
if the operating system has been set up correctly. If you run into issues during the
installation or update process, you will need to study the log files for details. We
will first show you how to find these log files. After this, we introduce a small set
of command-line tools that will help you to prepare and verify a database instal-
lation.

3.8.1 Log Files of hdblcm

The hdblcm tool writes its log files into dedicated directories for each invocation
of hdblcm or hdblcmgui. These directories are named /var/tmp/hdb_<SID>_
hdblcm_install_<timestamp>, where <SID> is the SID of the SAP HANA system
being installed or updated (the directory name always contains the substring
“install”, regardless of the selected action). In these directories, you will find two
files: hdblcm.log and hdblcm.msg. The log file is easily human readable and in
case of issues typically contains understandable error messages. The message file
hdblcm.msg is more technical and will in most cases only be useful for SAP Sup-
port staff.

During installation or update, hdblcm will invoke install or update programs of the
individual components being installed or updated (database server, SAP HANA
Studio, client ...). The log files of these subprocesses are also placed into /var/tmp.
You can most easily find them by listing the directory contents in temporal order
(ls -ltr /var/tmp) and looking for files and directories whose names start with
“hdb” and that have been created while hdblcm was active.

If you are using hdblcmgui, the tool gives direct access to the log files of all sub-
processes and of the overall installation on the final screen of the install process.
119

Installation and Updates3
3.8.2 Useful Tests on the Command Line

Finally, we offer you a few useful checks on the command line that can help you
during or after the installation process.

Listing All Installed SAP Systems on the Server

Especially if you are installing multiple database instances on the same server, you
will appreciate a quick way to list all SAP systems with their SID and instance
number. This can most easily be achieved using the saphostctrl program, as
shown in Listing 3.10. For each SAP system, the output contains the SID, the
instance number, the hostname, and the version of the SAP Host Agent installed
with the SAP system. Information on the database version can be obtained from
the saphostctrl program with the function ListDatabases.

/usr/sap/hostctrl/exe/saphostctrl -function ListInstances
Inst Info : NSA - 52 - ld9506 - 740, patch 36, changelist 1[...]
Inst Info : WUP - 42 - ld9506 - 740, patch 36, changelist 1[...]
Inst Info : OMG - 01 - ld9506 - 740, patch 36, changelist 1[...]

Listing 3.10 Command Line and Output for Listing All Installed SAP Systems

Checking the Active Processes of a Given Database Instance

You might want to see all running processes on the operating system that belong
to a given instance of the SAP HANA database, for example, after installing or
updating the database instance. If you are logged on to the database server as the
<sid>adm administrator user of the database instance, you can use the HDB info
command, as shown in Figure 3.17.

Figure 3.17 Listing All OS Processes of a Given SAP HANA Instance
120

Summary 3.9
3.9 Summary

The most difficult steps of installing or updating an SAP HANA database system
are the preparatory ones, that is, setting up the file system correctly, downloading
the proper components, and extracting them (or not) appropriately. We spent a
great amount of time on these steps, hopefully clarifying all the important prepa-
ration steps of OS configuration, software downloads, and so on.

Another obstacle can be choosing the right installation or update tool from the
range of SAP’s offerings. We discussed the advantages of the individual tools for
different purposes so that you can make a well-informed choice. In our experi-
ence, the best tool for all circumstances is the hdblcm tool, which supports instal-
lation and update in batch mode, interactively on the command line, and even
with an easy-to-follow wizard in a graphical user interface. Our detailed step-by-
step instructions clarify all questions you might have regarding the installation or
update process using this tool.

We also gave the most important advice on troubleshooting the installation or
update process, pointing out the locations of install logs and introducing useful
checks to verify the success of your install or update activities.

Now that you have learned how to install and update SAP HANA database sys-
tems, you can start using them—and of course, as database administrator, your
first contact will be with the tools for database administration. These are the topic
of the following chapter.
121

SAP offers multiple tools for administrators to use with an SAP HANA
database system. The main tool is SAP HANA Studio, which you will
get to know in this chapter. We also provide an overview of other
administration tools available for SAP HANA.

4 Administration Tools

When asked about their idea of a perfect database administration tool, many
administrators tell us that the best tool is one that they never have to use. This, in
fact, is a statement about the database system itself, rather than a statement about
the administration tools. Quite understandably, administrators do not want to
manually administer their database systems regularly—and they may not even be
able to do that, depending on the number of database systems they are responsi-
ble for. Instead, they need a system that can monitor itself, offers proactive alert-
ing, and can be automated or remotely controlled for any standard administration
tasks.

So why do database vendors create and document administration tools at all? The
answer, naturally, is “because they are needed.” They are needed by small IT
departments for whom the cost of automation is higher than the cost of manual
administration; they are needed for the treatment of exceptional events, that is,
events that occur outside of those repetitive scenarios that are documented in the
operating manual for a given system landscape; they are needed for the first few
steps on a new database system, before any intended automatisms have been set
up; and, last but not least, they are useful for getting to know the database system,
because they provide a sort of guided tour of the more important aspects of the
software.

SAP provides two main tools to SAP HANA administrators: the standalone tool
SAP HANA Studio, which can be installed centrally on the database server and
locally on any Windows or Linux PC, and the SAP HANA flavor of SAP
NetWeaver’s DBA Cockpit program for database administration.
123

Administration Tools4
Because it’s the most important, we will spend the greater part of this chapter
with SAP HANA Studio. In the last section of the chapter, we’ll give an overview
of the SAP HANA-specific functionality in DBA Cockpit.

4.1 Introduction to SAP HANA Studio

There is often confusion about what SAP HANA Studio really is. It is in fact not
easy to give a simple answer, because there is a lot of diverse functionality built
into the software. We will give you our view.

Primarily, SAP HANA Studio is the standard tool for operating and monitoring an
SAP HANA database system. It is a standalone program that is available for Linux
and Windows operating systems. In addition to a number of predefined UI ele-
ments for various typical administration purposes, SAP HANA Studio also offers
an SQL Editor for running arbitrary SQL statements against the database.

Along with administration functionality, the tool also features a data modeling
environment. With this modeler, you can create multidimensional data models
that contain specific optimizations for the purpose of analytical reporting. SAP
HANA Studio also contains an integrated development environment for creating
applications based on SAP HANA XS and SAPUI5.

SAP HANA Studio is based on the Eclipse IDE, and thus its look and feel will be
familiar to many users. It offers multiple predefined perspectives (user-interface
layouts) for different user personas, such as a database administrator, developer,
or modeler.

Throughout this book, we will almost exclusively deal with the administration
aspects of SAP HANA Studio, naturally using the Administration perspective. In
this section, we’ll introduce you to SAP HANA Studio by walking you through its
UI, the process of connecting to an SAP HANA database system, and the basic
principles of working with SAP HANA Studio.

4.1.1 Your First Contact with SAP HANA Studio

In order to start SAP HANA Studio on Windows, execute the hdbstudio.exe pro-
gram; in a standard installation, it resides in C:\Program Files\SAP\hdbstudio\hdb-
studio.exe (64-bit installation of SAP HANA studio) or C:\Program Files (x86)\SAP\
124

Introduction to SAP HANA Studio 4.1
hdbstudio\hdbstudio.exe (32-bit version). The Studio installer will also create
entries in the Windows start menu in the SAP HANA folder. When you start SAP
HANA Studio for the first time, you will be greeted with a Welcome screen from
which you can choose the initial operating mode for your Studio installation, as
shown in Figure 4.1. From the earlier discussion, you will probably have guessed
that this screen in fact lets you choose the perspective to work with.

As a database administrator, you will probably choose Open Administration Con-

sole here. When using SAP HANA Studio, you can change the perspective at any
point in time without even having to restart the program. You can therefore easily
change between different types of system usage if needed.

Before we proceed to more details of SAP HANA Studio, let’s mention that SAP
has invested significantly in enriching the integrated help system of SAP HANA
Studio. You can, for example, access integrated copies of parts of the SAP HANA
product documentation by selecting SAP HANA Help Content (which will open a
new window). Among other items, you can find there the SAP HANA Administra-
tion Guide.

Figure 4.1 Welcome Screen of SAP HANA Studio
125

Administration Tools4
Assuming you have chosen to enter the Administration Console, SAP HANA Stu-
dio will present itself with an initial view of the Administration perspective, as
shown in Figure 4.2.

It is not connected to a database system yet, but SAP HANA Studio nicely shows
the overall UI elements in the default layout of the Administration perspective:
On the left-hand side there is the Systems view, as shown in 1. Once you connect
your Studio to a database system, this view will display a navigator through which
you can access objects of your database system.

The largest screen area, shown in 2, is reserved for “editors.” Most of your work
with SAP HANA Studio will happen in such editors, for example, a Table Editor or
the Administration Editor—a complex user interface summarizing most aspects of
the database system for administrators. We will touch on those editors later.

Figure 4.2 Initial View of the Administration Perspective

Underneath the editor area, there is space for other views (see 3), such as the
Properties view, which displays detailed properties of objects selected in the Sys-

tems view or the active editor in a context-sensitive way. Every time you change
the selected object in the Systems view, and every time you switch to another edi-
tor, the content of the Properties view will be adjusted. In the top-right corner,
there is the perspective switcher, as shown in 4, the fastest way to change
between the different perspectives of SAP HANA Studio.
126

Introduction to SAP HANA Studio 4.1
The major screen areas of SAP HANA Studio can be tabbed, similar to the tabbed
user interfaces of modern web browsers. You can, for example, have multiple edi-
tors open at the same point in time, or there may be multiple additional views
opened in the area for other views (see 3), such as the Error Log in addition to
the Properties view. This error log contains error messages of the Eclipse frame-
work, which, in our experience, are of no relevance to the end user. We therefore
always close the Error Log and never look at it again.

4.1.2 Connecting to SAP HANA Database Systems

The most beautiful administration tool is worth nothing without a backend sys-
tem to administer, so the first thing to do is to connect our SAP HANA Studio
instance to our new database system. We’ll explain the process for this next.

Creating a New Connection

The first step is shown in Figure 4.3. Right-click in the background area, shown in
1, of the Systems view and choose Add System... from the context menu.

Figure 4.3 Connecting to a Database System in SAP HANA Studio

Usage Hint

We will share many useful details with you about working with SAP HANA Studio in the
course of this chapter. The first and most important of these is that in SAP HANA Studio
the context menu is highly important; you will frequently make use of the right mouse
button.
127

Administration Tools4
On the first screen of the wizard that now opens (Figure 4.4), we have to enter the
essential details of the system we want to connect to. Any SAP HANA instance is
uniquely identified by the hostname of the SAP HANA server and the SAP System
ID or the instance number. Because the instance number determines the port of
the SQL interface, connection details are always based on Host Name and
Instance Number.

Figure 4.4 Entering Connection Data

The Host Name usually does not need to be entered in its fully qualified form—
as long as it can be resolved correctly. In a scale-out system, it is sufficient to enter
one of the host names. A good choice is the first host of the cluster, which usually
runs the active master name server and the master index server. SAP HANA Stu-
dio will automatically collect information about all other hosts in the cluster and
will distribute queries. For the Description, you may choose any short term that
suits you.

Locale

The Locale is only relevant for data modeling. Formatting of numbers or dates in the
administration screens of SAP HANA Studio is based on the locale of the operating sys-
tem user who started the program. This is why—because we the authors are German—
our screenshots show German-style formatting of numbers, dates, and so on. Most
importantly, the decimal separator in German formatting is a comma, and the dot is
used for separating orders of magnitudes.
128

Introduction to SAP HANA Studio 4.1
On the second screen of the wizard (Figure 4.5), you must enter the credentials
for the database user you want to use in the connection. This user must already
exist in the database.

Figure 4.5 Entering the Credentials for the Database User to Connect With

If this is the first connection to a freshly installed SAP HANA database system, the
only available user will be SYSTEM. Because we try to convince customers not to
work with the SYSTEM user, we have already prepared our system with a number
of dedicated user accounts. For regular administration purposes, we defined a
database user named “SYSTEM_ADMIN” with appropriate privileges, and we use
that one in the following parts.

SAP HANA Studio supports authentication by database user name/password or by
the current operating system user (Kerberos authentication). Depending on your
setup, choose the appropriate option.

If you are using name/password authentication, we recommend selecting the
checkbox Store User Name and Password in Secure Storage—at least if you are
the only person that has access to the operating system account you use for run-
ning SAP HANA Studio. This option will place your credentials into the secure cre-
dential store of the Eclipse framework so that SAP HANA Studio can authenticate
you automatically in the future.
129

Administration Tools4
SAP HANA Studio usually communicates with the database through its SQL inter-
face. If SSL encryption of SQL connections is enabled, you should make use of
encryption also in your connections with SAP HANA Studio by selecting the
checkbox Connect Using SSL. (For necessary preparations on the server and client
sides, refer to the SAP HANA Administration Guide; you can find this by searching
at https://help.sap.com/hana_platform.)

In some situations, such as during restore of a database backup, the communica-
tion will happen through the interface of the SAP Start Service and uses the HTTP
(port 5<xx>13) or HTTPS (port 5<xx>14) interface (<xx> is the instance number of
your SAP HANA database). To encrypt communication with the SAP Start Service,
select the checkbox Use HTTPS.

Because the third screen of the wizard does not contain content that is needed in
typical use, we can skip it and immediately click Finish. If valid credentials have
been entered, the system connection will be added to the Systems view (Figure
4.6), and you can start working with the SAP HANA database.

If your database user account still uses its initial password, you will now be asked
for a new password. In a pop-up window, you will be asked for the initial pass-
word as well as a new one. Should your chosen new password not comply with
the password policy of the database system, you will be informed about the rules
that you have violated.

Figure 4.6 System Connection Added to SAP HANA Studio

Adding Connections to Further SAP HANA Systems

If you have multiple SAP HANA database systems to manage, you can add connec-
tions to all of these systems within the same instance of SAP HANA Studio. Simply
130

Introduction to SAP HANA Studio 4.1
repeat the procedure for adding the first connection, and enter the connection
details of the additional database.

Adding Connections for Multiple Database Users of One SAP HANA System

If you have multiple database users on the SAP HANA system and want to be able
to work with those users, you do not need to re-enter all connection details.
Instead, as shown in Figure 4.7, you can right-click the top node, shown in 1, of
the system entry of an existing database connection in the Systems view and
choose Add Additional User... from the context menu. This will open a wizard in
which you only need to enter the credentials of the additional database user you
want to connect with.

Figure 4.7 Adding Additional Users for an Existing Database Connection

4.1.3 Principles of Working with SAP HANA Studio

SAP HANA Studio allows you to perform actions on entities of the database sys-
tem. These entities might be database tables or schemas, development objects in
the SAP HANA repository, database users or roles, or even the database itself. You
can navigate to these entities in the navigator tree of the Systems view, and then
execute an action for the selected entity.

Note

In SPS 8, the context menu entry has been changed to Add System with Different

User...; see the right-hand side, shown in 2, of Figure 4.7. The functionality remains
unchanged.

Context Menu in SPS 7 Context Menu in SPS 8
131

Administration Tools4
Many of these actions will open an editor. An editor is always specific to an entity
(object, user, or the system itself), the database system to which this entity
belongs, and the database user who executed the action.

Even though SAP HANA Studio offers a graphical user interface that is easy to
learn and use in general, we will next point out several useful working principles
that will help you make the most efficient use of the software.

Handling Multiple Database Connections

We have already hinted at one important aspect of working with this software:
You can have multiple database connections (combinations of database instance
and database user) registered in your Studio, as was shown in Section 4.1.2. You
must therefore pay attention, choose the entity from the correct system, and per-
form the action with the correct user. It is advisable to only expand the navigator
tree of one system/user combination at a time and to close editors that are no
longer needed.

To provide additional assistance when working with production systems, SAP
HANA offers the option to define the system usage type as of SPS 8. For systems
with usage type production, SAP HANA Studio will display a visual indication and
additional confirmation requests. The system usage type is defined by the data-
base parameter global.ini � [system_information] � usage. Set this to produc-
tion for production-like systems.

Actions in the Systems View

At the top of the Systems view you can find a toolbar with several buttons that
allow you to immediately start selected important actions. These actions will
either be effected on all SAP HANA systems registered in your Studio or on the
currently selected system. In Figure 4.8, we have selected the entry for system
TED with user SYSTEM_ADMIN; this means that system-specific actions would be
executed on system TED, as long as user SYSTEM_ADMIN has the required priv-
ileges.

The System Monitor button, shown in 1, will open an editor containing a con-
densed view of the most important KPIs for all registered SAP HANA systems. The
Administration button, shown in 2, opens the Administration Editor for the
currently selected database system. To open an SQL Editor for the currently
132

Introduction to SAP HANA Studio 4.1
selected system, use the SQL Console button, shown in 3, and search for data-
base tables on the selected systems with the Find Table button, shown in 4.
Finally, there are three buttons that can assist you with handling the navigator
trees if you have a very large number of systems registered in your Studio: The
Find System button, shown in 5, allows you to search for systems by SID, user
name, or folder name (not by description, though); you can Collapse All naviga-
tor trees in the Systems view with the corresponding button, shown in 6; and if
you are currently working with an editor for a given entity (e.g., a database table)
on a given system, with a given database user, you can immediately find that
entity in the corresponding navigator tree by clicking the Link with Editor but-
ton, shown in 7.

In SPS 8, the Find Table button has been removed from the toolbar, and the new
Add System button, shown in 8, has been introduced.

Figure 4.8 Actions Directly Available in the Systems View

Elements of the System Navigator Tree

The system navigator tree is the most important element for your work in SAP
HANA Studio. It has up to five main subtrees, depending on the privileges of the
active database user. In Figure 4.9, we show the navigator tree for two different
users on two different systems: The SYSTEM_ADMIN on system TED, shown in

Usage Hint

The system-specific actions, such as opening the SQL Editor or finding tables, are also
available from the context menu when clicking on the top node of the navigator tree for
a given connection entry.

Toolbar of Systems View in SPS 7

Toolbar of Systems View in SPS 8
133

Administration Tools4
1, has permissions related to database backups, whereas the SECURITY_ADMIN
on system WUP, shown in 2, does not.

On the TED system, shown in 1, we have expanded all main subtrees. These sub-
trees have the following purpose:

3 Backup
The Backup node provides access to the user interface for manually executing,
restoring, and managing database backups.

4 Catalog
The Catalog is a representation of all database objects, such as tables, views,
procedures, or sequences (users or roles are not database objects in the cata-
log). All such objects always belong to a database schema, and the Catalog

folder provides access to schemas and catalog objects.

Figure 4.9 Elements of the System Navigator Tree

5 Content
SAP HANA contains a development environment. If you use this environment,
the design-time versions of development objects will be stored in the so-called

Usage Hint

Many items within the navigator tree perform an action if you double-click on the item.
For example, you can double-click on the top node (the system entry itself) of a naviga-
tor tree for a given connection entry to open the Administration Editor for that system,
or you can double-click on a table in the catalog to enter the Table Definition Editor.
134

Database Administration with SAP HANA Studio 4.2
repository. The repository is structured using a package hierarchy. In SAP
HANA Studio, the Content folder gives access to the package hierarchy and the
design-time objects therein.

Through activation of repository objects, a runtime version can be created.
Depending on the object type, these runtime versions are accessible via the
Catalog or Security folders.

6 Provisioning
Several data provisioning technologies have been developed for or integrated
into SAP HANA, such as Smart Data Access for direct access to tables on remote
systems or SLT for real-time data replication. Such scenarios can be customized
and controlled from the Provisioning folder.

7 Security
Database users and catalog roles can be managed from within the Security

folder. Within that folder, you can also find an additional item named Security

that provides access to security-related functionality, such as audit logging,
password policy, or disk encryption.

4.2 Database Administration with SAP HANA Studio

In this section, we will summarize general administration tasks that you can
accomplish using SAP HANA Studio. These tasks include changing the database
configuration and starting or stopping the entire database system or individual
server processes. Certain specialized administration tasks related to backup, user,
or security administration are covered in dedicated chapters.

Roles

SAP HANA offers two different concepts for creating and managing roles, referred to as
catalog roles and repository roles. Only catalog roles can be created and edited from
within the Security folder of the navigator tree. See Chapter 13 for more details.

Usage Hint

Sometimes, folders in the navigator tree contain a larger number of objects. In this case,
it can be very useful to filter the objects in that folder. Simply right-click on the folder
and select Filter from the context menu in order to enter a filter pattern.
135

Administration Tools4
4.2.1 Managing the Database Configuration

The database configuration of the SAP HANA database is maintained in multiple
configuration files—similar to other database systems. Each component of the
database—the index server, name server, and so on—has its own configuration
file. These configuration files are text files with a pleasantly simple syntax.

Within each configuration file, parameters are grouped into sections. The section
names are enclosed in brackets—for example, [memorymanagement]—and param-
eters are always specified in the format <name>=<value>.

For each parameter, there can at any point in time be up to two or three different
settings. On the file system of the database server, these three layers of parameter
settings are located in three different sets of configuration files:

� Default value
The default value as defined by SAP. It is valid unless a customer-chosen value
is defined.

The default values are maintained in configuration files that in a standard
installation are located in the file system path /hana/shared/<SID>/exe/
linuxx86_64/HDB_<version>/config/.

� System-wide customizing
A customer-defined value that is valid on all hosts of the database system. If for
a given parameter a system-wide customer-chosen value is defined, this over-
rides the default value.

System-wide deviations from the default values can be found in the file system
path /hana/shared/<SID>/global/hdb/custom/config.

� Host-specific customizing
A customer-defined value that is only valid for a given host. Host-specific val-
ues usually exist for the list of database processes on the different hosts,
because some processes will only be running on a subset of hosts. Host-specific
values can also make sense if you are operating an inhomogeneous scale-out
system in which not all hosts have exactly the same hardware setup. A host-spe-
cific customizing overrides system-wide or default values.

Host-specific customizing is not possible for all parameters. In fact, for most
configuration files, host-specific customizing is not available.

On the file system, you can find host-specific parameter settings in the direc-
tory /hana/shared/<SID>/HDB<instance>/<hostname>.
136

Database Administration with SAP HANA Studio 4.2
SAP HANA Studio offers an easy-to-use interface for displaying and changing the
database configuration. We will now show you how to optimally work with this
interface.

Displaying the Database Configuration in SAP HANA Studio

In order to manage the database configuration with SAP HANA Studio, log on
with an administrator user and open the Administration Editor of the database
system. In that editor, navigate to the Configuration tab.

This tab displays the database configuration in a hierarchy on configuration file,
section, and parameter. Initially, all of the configuration files are collapsed. For
the example shown in Figure 4.10, we have expanded the global.ini configuration
file, shown in 1, and, within that file, the sections memorymanager, shown in 2,
and persistence, shown in 3.

Gray diamonds, shown in 4, indicate in which configuration files there are
parameters that deviate from the default values on the system or host level. If cus-
tomizing exists for a given parameter, a green circle, shown in 5, indicates what
value is active system wide or on a given host. In Figure 4.10, we show that the

Warning

Under no circumstances should you edit the configuration files containing default val-
ues. There is never any reason for such modifications.

In regular operation, there is never any reason to modify the other configuration files
directly on the file system. Instead, you should always use the comfortable Configura-
tion Editor in SAP HANA Studio or the provided SQL syntax, or—if available—the Con-
figuration Editor in DBA Cockpit for SAP HANA (see Section 4.4).

Modifying the configuration files on the file system can be necessary if the database
software is not running and can no longer be started for reasons that may be related to
a misconfiguration. This is the only exception to the previously mentioned rule.

The database provides audit logging functionality, which can also log changes to the
database configuration. If you modify the settings directly on the file systems, the data-
base system’s audit-logging mechanism will not capture these changes.

Privilege Information

In order to change database parameters using the Configuration Editor, your database
user must have the system privileges CATALOG READ and INIFILE ADMIN.
137

Administration Tools4
system-wide customizing setting is active for parameter global.ini � [persis-
tence] � basepath_datavolumes.

If host-specific values are not available for a given file, section, or parameter, this
is indicated by the disabled icon, shown in 6.

Figure 4.10 Database Configuration Editor in SAP HANA Studio

When you need to view or change the value of a specific parameter, the fastest
way to find the parameter is often to simply search for the parameter name in the
Filter box, shown in 7. The system starts searching as you type, and the search
finds pattern matches in the names of configuration files, sections, and parame-
ters.

In scale-out systems, the default setup of the Configuration Editor does not show
individual hosts—which administrators of large scale-out systems will appreciate.
If you need to show host-specific values, you can select the hosts to show from the
Hosts dropdown box, shown in 8.
138

Database Administration with SAP HANA Studio 4.2
Changing Database Settings in the Configuration Editor

In order to change a parameter value, double-click on the parameter (you can click
anywhere within the row of the parameter) to open an input box in which you can
specify new system-wide and host-specific values (Figure 4.11).

Figure 4.11 Changing a Parameter

In our example, we are changing the parameter global.ini � [memorymanager] �

global_allocation_limit, shown in 1. The input box displays the Default Value,
shown in 2, on top of a box for the System-wide settings, shown in 3, where you
can enter a New Value that will be valid for all hosts of the database system.

In the Hosts box, shown in 4, a dropdown box, shown in 5, allows you to select
the hosts for which you want to define host-specific settings. These hosts will be
displayed in the area below, giving you the opportunity to enter a New Value,
shown in 6, for each selected host. The input window does not provide any
parameter documentation, be it a definition of the parameter, unit, or measure-
ment, or other interesting properties.

You can always switch back to the default value by clicking the Restore Default

button, shown in 7.
139

Administration Tools4
4.2.2 Starting and Stopping the Database

Under normal circumstances, you will not need to start, stop, or restart the data-
base processes explicitly. Parameter changes that require a system restart or cer-
tain updates or configuration changes to the operating system are among the rare
reasons to shut down the database system.

If you do need to stop or restart the system, though, there are a few things you
should know. This section describes them.

Stopping or Restarting the Database System

There is one golden procedure for stopping or restarting the entire database sys-
tem; this procedure uses SAP HANA Studio to restart the database processes and
monitor the activity in the course of the restart.

To stop or restart the database system, right-click on the system entry in the Systems

view of SAP HANA Studio, and choose the intended action from the context menu.

The system will now ask you for the credentials of the <sid>adm user on the oper-
ating system of the database server (unless these credentials are stored in the
Eclipse Secure Store).

When Do Parameter Changes Take Effect?

Most parameter changes take effect immediately without requiring a restart of the
entire database or the affected database process. The global_allocation_limit
parameter from Figure 4.11 is one of the exceptions.

Unfortunately, there is no consistent documentation of database parameters yet. Some
parameters are documented in different parts of the SAP HANA product documenta-
tion, and others are mentioned in SAP Notes. In most cases, the necessity of a full or
partial system restart is mentioned.

Privilege Information

You can only stop, start, or restart the entire database system if you have the credentials
of the operating system administrator <sid>adm. There are no specific database privi-
leges required.

For those actions, the communication between SAP HANA Studio and the database
server does not use the SQL interface of the database but the HTTP(s) interface of the
SAP Start Service.
140

Database Administration with SAP HANA Studio 4.2
For stop and restart, a wizard appears (Figure 4.12), which allows you to choose
the mechanism of shutting down the system (Shutdown Type):

1 Soft
Soft shutdown allows the database to wait for open transactions to finish. The
system will shut down as soon as all ongoing transactions are closed, but it will
wait at most until the shutdown Date and Time, shown in 2, are reached. The
proposed value for this maximum wait time is 10 minutes.

The soft shutdown also allows the database system to perform a savepoint
operation before stopping the database processes. This will lead to a faster
restart of the system (see Chapter 5).

This is the preferred and recommended method of shutdown.

Figure 4.12 Options for Restarting or Stopping the Entire Database

3 Hard
A hard shutdown instructs the database processes to start the shutdown
sequence immediately. It does not kill the database processes, but it still repre-
sents a graceful shutdown in which the system processes can terminate in a
controlled fashion.
141

Administration Tools4
Compared to the soft shutdown, the database does not wait for open transac-
tions to finish, cancelling them instead. The system also does not trigger a save-
point. The shutdown process itself is therefore faster than with a soft shut-
down. The next database start, on the other hand, will in general take longer
because of the necessary transaction rollback and the greater volume of redo
logs that must be applied.

It may happen in exceptional situations that the graceful shutdown of some data-
base process has no effect, because the process will not react to any reasonable
means of interacting with it. In these cases, you will need to apply more force, and
the database system will—if needed—also kill unresponsive processes. This force-
ful stop will happen if a process has not terminated within a given time interval
after the attempt to gracefully stop it. You can configure this Stop Wait Timeout,
shown in 4, on the stop/restart dialog.

Starting the Database System

If a database is presently shut down, you can also start it up from SAP HANA Stu-
dio: Choose the Start... action from the context menu of the system entry in the
Systems view.

After entering the credentials of the <sid>adm Linux user, you can enter a Start

Wait Timeout value. This value determines the time after which the SAP Start Ser-
vice will consider the system start to have failed.

Monitoring the Database during Start, Stop, or Restart

Once you have selected the Start..., Stop..., or Restart... action, SAP HANA Stu-
dio will open an Administration Editor for the database system in diagnosis mode.
You can manually open this editor (Figure 4.13) by selecting the Open Diagnosis

Mode action from the dropdown menu, shown in 1, of the Administration but-
ton on the toolbar of the Systems view.

The diagnosis mode offers two functionalities: status monitoring of the database
processes on a high level (see Figure 4.14) and access to the diagnosis files of the
database.

The process monitoring in diagnosis mode is limited to the process status. There is
one entry in the table for each process of each node of the database instance. The
colored icons as well as the entries in column Status indicate the status of the given
process, such as Running, Stopping, Stopped, Scheduled, or Initializing.
142

Database Administration with SAP HANA Studio 4.2
Figure 4.13 Manually Opening the Diagnosis Mode

Figure 4.14 System Editor in Diagnosis Mode

If you need more information regarding what happened during the start or stop
process—for example, for troubleshooting if the system does not start up—then
the following diagnosis files are most important (for a problem with processes of
the SAP HANA system with instance number <instance> on host <hostname>):

� The daemon trace file
The daemon process orchestrates the startup of all further database processes.
You can see log entries regarding these actions in the file daemon_<host-
name>.3<instance>00.<max>.trc (we use <max> to denote the maximum value
of the three-digit trace file rotation indicator for the given file).

� The nameserver trace file
During system startup, the name server process performs several consistency
checks of the system topology and other plausibility tests. This is why you can
often find information regarding start-up problems in the name server trace file
nameserver_<hostname>.3<instance>01.<max>.trc.
143

Administration Tools4
� The indexserver trace file
Because the index server is basically “the database,” the highest probability for
issues lies with this process. In case of trouble, check its trace file, indexserver_
<hostname>.3<instance>03.<max>.trc.

4.2.3 Starting and Stopping Individual Database Processes

There may be situations in which you have to restart individual database pro-
cesses (usually referred to as services in the SAP HANA documentation and in SAP
HANA Studio), for example, in order for a parameter change to take effect. In
order to restart a single process, you have to stop or kill it. The daemon process
will immediately realize that the process is not running anymore and restart it.
Under normal circumstances, you should never kill processes. This should only be
necessary if the process is not responding to any interaction.

You can restart processes in the Administration Editor of SAP HANA Studio. In the
editor, go to the tab Landscape, and stay on the first tab, Services. Right-click on
the process you want to restart, and choose the Stop... or Kill... action from the
context menu.

In the same context menu, you can also choose to start all missing services of the
database instance—which may be needed if some services did not start up prop-
erly during a start of the database.

Finally, you can reconfigure the service, which will apply all current parameter set-
tings that do not require a restart. If you follow our recommendations from Section
4.2.1 about managing the database configuration, you will not need this action.

4.3 Monitoring the Database with SAP HANA Studio

SAP HANA offers a wealth of monitoring information in dedicated system views.
Most of these system views are exposed as public synonyms and available
through the SQL interface to all users of the database.

Privilege Information

You need system privilege SERVICE ADMIN to stop, kill, or restart a service. In addition, you
need system privilege CATALOG READ in order to open the Administration Editor.
144

Monitoring the Database with SAP HANA Studio 4.3
The most important monitoring aspects are summarized in user-friendly elements
of the Administration Editor in SAP HANA Studio. The database system also con-
tains a component for proactive alerting in the form of the statistics service.

In this section, we will show you how to gain a first-glance overview of the SAP
HANA database systems that the SAP HANA Studio is connected to. We will cover
monitoring views as windows to the runtime internals of the system and the sta-
tistics service as the bookkeeper of important SAP HANA system operations fig-
ures as well as the alerting functionality based on it. Finally, a brief overlook of
recent additions to the monitoring tool set is provided.

4.3.1 Getting an Overview of the Database System

SAP delivers two system overview screens with SAP HANA Studio. The System

Monitor can be opened using the first button in the toolbar of the Systems view
(see Figure 4.8). It provides a brief overview of the most important aspects of all
SAP HANA databases connected from your SAP HANA Studio.

The System Monitor is presented in a tabular view (Figure 4.15), with one line
per SAP HANA system. The entry for a scale-out instance, shown in 1, can be
expanded to yield one line per host; entries for single-node instances, shown in
2, cannot be expanded.

In the monitor, you can easily determine the overall state of multiple SAP HANA
systems at once. The indicator in the Operational State column will only be
green if all processes of the corresponding instance are alive. You also find disk
and memory usage information here as well as current CPU usage.

By double-clicking on the entry of a given database system, you can navigate for-
ward to the more detailed overview screen of the Administration Editor of the
system. An exception is the Alerts column; double-clicking a cell of that column
will open the alerting information of the corresponding system.

Privilege Information

If you have multiple connections configured for one SAP HANA system, the system
monitor will simply pick the first of these connections alphabetically by user name to
retrieve the relevant system data. That user will need at least system privilege CATALOG
READ and object privilege SELECT on the _SYS_STATISTICS schema in order to display
all information correctly.
145

Administration Tools4
The System Monitor refreshes its display automatically. You can configure this
mechanism through the Properties button, shown in 3.

Many tabular monitoring views have more information to offer than in their ini-
tial configuration. In these cases, there is a Configure Viewer button, shown in
4, which gives access to a configuration screen from which you can add or
remove fields.

Figure 4.15 System Monitor for All Connected SAP HANA Systems

A more detailed system summary (Figure 4.16) can be obtained from the Over-

view tab, shown in 1, of the Administration Editor. This is the initial tab that
opens when you start the Administration Editor for a given SAP HANA database
system.

This overview screen—like many other monitoring screens—can be refreshed
either manually via the Refresh Current Page button, shown in 2, or you can
define an automatic refresh by using the Start Automatic Refresh button and
Update Interval input field, shown in 3.

The Overview screen offers forward navigation to many different detail views by
clicking on any of the underlined texts, as shown in 4. It is divided into several
sections, as follows:

5 General Information
Here you can find important overview information, such as the software ver-
sion of database and operating system, the system size (Single-node or scale-out?

Privilege Information

In order to open the Administration Editor, you need system privilege CATALOG READ.
146

Monitoring the Database with SAP HANA Studio 4.3
Number of nodes?), and more. The forward navigation for the Versions entry
gives an overview of the database version history (date and version for each soft-
ware update).

Figure 4.16 Overview in the Administration Editor for a Scale-Out System

6 Current Alerts and Messages
This area simply gives the number of active alerts of the three categories—high,
medium, and low—with forward navigation to the alert details.

7 SAP HANA Used Memory and Resident Memory
In SAP HANA Used Memory, the system displays the amount of RAM used by
the database processes at the moment and the peak usage since the last data-
base restart in relation to the maximum available memory for all processes of
the instance combined, represented by the Allocation Limit (parameter
global_allocation_limit).

In Resident Memory, on the other hand, the system displays the amount of res-
ident memory on the OS for the database processes and for all processes that
are active on the OS.
147

Administration Tools4
8 CPU Usage
The CPU usage is given for the database processes and for all processes on the
OS as a percentage of the total available CPUs. You can find out the number of
physical CPU cores of the database from the tooltip that appears when you
hover with the mouse over the CPU Usage indicator.

9 Disk Usage
Disk Usage is also split into usage by the database processes and by all pro-
cesses on the OS for the data, log, and trace file systems separately. In most
cases, the trace file system will be the same as that for the system installation (/
hana/shared/<SID>). These are the three file systems into which the database
adds data, so the file system usage must be monitored the most closely.

For a scale-out system (like the one displayed in Figure 4.16), the usage indicators
display the consumption of the given resource for the entire database system as
well as for the host that has the highest usage of the resource.

4.3.2 Monitoring Views in the Administration Editor

The Administration Editor offers a multitude of further monitoring views. At this
point, we will not explain any of these views in particular, as the different moni-
toring views are covered at length in the following chapters.

A typical monitoring view looks like the one in Figure 4.17. In this case, we dis-
play the Threads view, shown in 2, of the Performance tab, shown in 1, of the
Administration Editor for our system TED. You will find elements that we men-
tioned before, such as the Configure Viewer button or the refresh buttons,
shown in 3. On top of the view, there is often an expandable Summary pane,
shown in 4, followed by a tabular view of the monitoring information.

Most monitoring views offer filtering capabilities and other customizing options
that differ from view to view depending on what is most appropriate for the infor-
mation being displayed. In most cases, you can export the current content of the
view to a CSV, HTML, or XML file.

Further Resources

For a complete explanation of memory usage in SAP HANA, please refer to
www.saphana.com/docs/DOC-2299 (“SAP HANA Memory Usage Explained”).
148

Monitoring the Database with SAP HANA Studio 4.3
Figure 4.17 Typical Monitoring View in SAP HANA Studio

Dedicated user interfaces exist for the most important monitoring views offered
by the database system but not for all of them. A further group of important views
is exposed with a simple table viewer in the System Information tab, shown in 6,
of the Administration Editor. The set of views on this tab can be extended by
uploading further SQL queries, as shown, for example, in SAP Note 1969700.

4.3.3 The Statistics Service

The statistics service is SAP HANA’s offering for automated checks and proactive
alerting. It manages a set of monitoring tables and the data collection into these
tables, and it keeps the definition of a number of checks that it invokes using its
built-in scheduler. These checks cover a wide range of database aspects, from
monitoring the fill level of the disks through critical CPU and RAM usage to
license expiration or missing backup configuration. SAP is also open to introduc-
ing new checks and has done so on several occasions in the past—for example,
based on incident reports from customers.

Next, we cover the most important actions in the Alerts tab.

Displaying Alert Information

You can manage and monitor the statistics service from within SAP HANA Studio
by opening the Administration Editor for a given SAP HANA instance and changing
149

Administration Tools4
to the Alerts tab (Figure 4.18). On that tab, you will find an alert Summary, as
shown in 1, which shows the current alerts by priority and check (multiple alerts
of the same check will lead to just one entry here).

Figure 4.18 Overview Screen of the Statistics Service

Below that summary, there is a detailed table, shown in 2, that displays all cur-
rent alerts individually. If you want to also see historic alerts, you can enable this
from the Show dropdown box, shown in 4. At the bottom, the system displays
Check Information, as shown in 3, on all alert checks that are defined in the
database software. This display includes a description of the check and recom-
mended user actions (which, owing to the required brevity, may not always be
helpful). You can also find out whether a given check is scheduled and what the

Privilege Information

In order to view the alerts of the statistics service, you need the SELECT privilege on
schema _SYS_STATISTICS. To also customize the service, you need system privilege
INIFILE ADMIN as well.
150

Monitoring the Database with SAP HANA Studio 4.3
scheduled check interval is. In the column Max Priority, you can see whether
there has ever been an alert for the given check and what the maximum priority
of that alert was.

Finally, you can open a wizard to configure the statistics service by clicking the
Configure... button, shown in 5.

Customizing the Statistics Service

This configuration wizard has three tabs (Figure 4.19). On the first tab, shown in
1, you can customize e-mail alerting by providing information such as an SMTP
server and so on.

Figure 4.19 Customizing the Statistics Service

On the tab Configure Check Thresholds, shown in 2, you can customize thresh-
old values for individual checks if the check is based on threshold values.

Some of the checks monitor slowly changing variables (such as the age of the last
data backup, which is measured in days). These checks are scheduled in intervals
of 6 or 24 hours. On the tab Configure Start Time for Periodic Checks, shown
in 3, you can customize the start time of these checks in order to move them into

Usage Hint

In the list of checks, you can hover over the Check Name fields to see a more detailed
check description, and you can hover over the fields in columns Low, Medium, and High

to see information on the unit of measurement and default values for the given check
threshold.
151

Administration Tools4
appropriate time windows if necessary. In the default configuration, the checks
are executed at 2 a.m. system time (and repeated every 6 or 24 hours).

4.3.4 Other System Monitors

Starting with SPS 7, SAP HANA Studio comes with a number of new system-mon-
itoring dashboards that are based on small SAPUI5 components delivered as part
of the database’s preinstalled content. As of July 2014, there are three distinct
dashboards available:

� Memory Overview
You can open this dashboard by right-clicking on a connection entry in the Sys-

tems view and choosing Memory Overview from the context menu.

The dashboard offers a highly useful summary of the memory consumption of
the database system (see Figure 4.20), including the number of tables, total size
of all tables, and so on. In a scale-out system, the overview is shown per host,
and you can switch between the hosts within the dashboard.

Figure 4.20 The Memory Overview Dashboard for a Scale-Out System

� Resource Utilization
You can open this dashboard by right-clicking on a connection entry in the Sys-

tems view and choosing Resource Utilization from the context menu. You can
152

DBA Cockpit for SAP HANA 4.4
choose the host (in scale-out systems) and one or several KPIs to display from
the KPI groups CPU, Memory, and Disk. To select multiple KPIs from one
group, hold down the (Ctrl) key while selecting.

� Memory Allocation Statistics
The Memory Allocation Statistics dashboard can only be opened for specific
database processes, such as the index server process on a given host. To access
the dashboard, open the Administration Editor, go to the Landscape tab and
the subtab Services, and right-click on the service you want to display. Then,
choose Memory Allocation Statistics from the context menu.

The dashboard breaks down the memory usage of the selected database pro-
cess into components such as row tables, column tables, code segment, and so
on.

The information displayed in these dashboards is based on data collected by the
statistics service, that is, on tables and views in schema _SYS_STATISTICS.

4.4 DBA Cockpit for SAP HANA

Administrators of SAP NetWeaver-based systems will be familiar with Transac-
tion DBACOCKPIT for administration of the SAP system’s database. This transac-
tion has special flavors for all database systems supported by SAP NetWeaver, and
naturally there is also an SAP HANA variant.

DBA Cockpit for SAP HANA is part of any SAP NetWeaver installation that uses
SAP HANA as the primary database and in any SAP NetWeaver system starting
with SAP NetWeaver 7.30 SP 5 as well as in SAP Solution Manager version 7.01

Privilege Information

The usage of all mentioned dashboards requires the privileges granted by role
sap.hana.admin.roles::Monitoring, which comes predelivered with any SAP HANA
system starting with revision 70.

Note

In terms of functional completeness, SAP HANA Studio is the leading system and may
offer some features that are not yet implemented in DBA Cockpit.
153

Administration Tools4
SP 4 or higher. The Performance Warehouse component of DBA Cockpit is only
available in SAP Solution Manager systems.

Because DBA Cockpit generally will be known to most SAP NetWeaver adminis-
trators and the content is very similar to that of SAP HANA Studio, we will keep
this section short. You can find the official documentation for DBA Cockpit for
SAP HANA with the SAP NetWeaver documentation at https://help.sap.com/nw74
under Application Help � Function-Oriented View � Database Administration �

Database Administration for SAP HANA � DBA Cockpit for SAP HANA.

To run DBA Cockpit, you need certain permissions in the SAP NetWeaver system,
and full functionality is only available if the database user has sufficient privileges.
All of these privileges are summarized on the “Authorizations” page in the docu-
mentation of DBA Cockpit. Because this list may change with time, please refer to
the documentation when setting up DBA Cockpit.

After starting DBA Cockpit in an SAP HANA system, a summary screen is dis-
played that is similar to the overview screen of the Administration Console in
SAP HANA Studio (Figure 4.21). It displays generic information, such as the data-
base version, as well as alerts and resource consumption.

In the left-hand panel, you can select further functionalities from the following
groups:

� Current Status
This category offers monitoring information on resource usage and alerts.

� Performance
This section gives access to monitoring views that are relevant to performance
analyses, for example, the threads overview, expensive statements trace, and
more. In SAP Solution Manager systems, you also find the Performance Ware-
house in this section.

� Configuration
The Configuration section displays the overall database configuration (e.g.,
details of a scale-out configuration), and it allows you to read and modify the
database configuration files.

� Jobs
One part of DBA Cockpit for any database system is a scheduling functionality
for database jobs, such as the creation of data backups. This functionality is
available from the Jobs section, including for the SAP HANA database system.
154

DBA Cockpit for SAP HANA 4.4
� Diagnostics
The Diagnostics section gives access to a wide range of diagnosis functional-
ities, starting with an audit log (which is an SAP NetWeaver functionality, not
to be confused with SAP HANA’s intrinsic audit-logging functionality), to an
SQL EXPLAIN PLAN, an SQL Editor, functionality to configure and view the data-
base traces, and more.

The section also contains database-related functionality that is special to SAP
NetWeaver systems, such as the SQLDBC trace or the ability to compare the
state of tables and indexes in the database to the information maintained in the
ABAP dictionary.

� System Information
Finally, as in SAP HANA Studio, for some monitoring views of the database
there is no dedicated UI in the Administration Editor tool. The most important
of these monitoring views are exposed in the section System Information.

Figure 4.21 Overview Screen of DBA Cockpit for SAP HANA
155

Administration Tools4
4.5 Summary

SAP HANA Studio is the tool of choice for active administration and monitoring
of the database system. The main intention of this chapter was to give you guid-
ance on usage aspects of the tool so that you will have no trouble making use of
it in the context of the following chapters. And don’t forget: Help will always be
given to those who remember the (F1) key!
156

In order to achieve the “D” in ACID, in-memory databases also need to
write all committed data to disk—and SAP HANA is no exception. This is
where the persistence layer comes into play.

5 The Persistence Layer

In the early days of SAP HANA, one of the most frequent technical questions we
had to answer was “What happens if you pull the plug?”—alluding to one of the
most prominent features of SAP HANA, namely that it’s an in-memory database.
You may take the fact that one does not hear this question very often anymore—
if at all—as an indication that with SAP HANA, SAP has indeed made an impres-
sion in the database world.

The answer to the now-forgotten question is of course that either the UPS (unin-
terruptable power supply) takes over or the database is switched off abruptly. This
then turns into an opener to an exciting topic: How does the nonvolatile data
store in SAP HANA work? How can I recover if a situation like a sudden power
outage leads to inconsistencies in the data image (because the database processes,
the operating system, and the storage layer may not have time to finish data-mod-
ifying transactions)? How can I continue database operations with as little disrup-
tion as possible? These questions will be answered in the course of this chapter.

Not all databases processes of a running SAP HANA system actively manage data
that needs to be stored persistently. The processes that do—the data-persistent
processes—write data and log files of their own. A consistent state of the database
can only be described by the data persistence of all these processes combined. In
Table 5.1 we list all database processes, pointing out whether or not they are data-
persistent on a master or slave host. In the table we also list the port by which the
processes are identified internally in the database system. You need to know this
port number, because it is used to identify the database process in most monitor-
ing views of the persistence layer. As usual, xx in the port number denotes the
instance number of the database system.
157

The Persistence Layer5
Each data-persistent process also has a volume ID that is unique within the data-
base system. On the file system level, the volume ID is used in the directory
names of data and log volumes. Unfortunately, these volume IDs may differ from
system to system. You have to look them up in monitoring view M_VOLUMES. Only
the name server has a fixed volume ID (ID 1).

This chapter will introduce you to data and log volumes and the backups based on
them as well as disaster recovery setups. In addition, we will present database
snapshots and system replication, leaving you with a broad overview of the topic
of persistency in SAP HANA.

5.1 Log and Data Volumes: The Data Image on Disk

We will start this discussion with the disk-based persistence of the database con-
tents, that is, with the data and log volumes. As we have described in Chapter 3,
any SAP HANA database installation needs dedicated file systems to provide space
for data and log writing. This part of the chapter is about the content of these file
systems.

We will start with a look at the relationship between memory and disk, introduc-
ing the major topics for the following section. The more detailed discussion starts
with an insight into page management in SAP HANA before progressing to trans-
action logs and data volumes. We’ll conclude with a discussion of how the system
start procedure affects the data image.

Process Internal Port Data-Persistent on Master Data-Persistent on Slave

Name server 3xx01 Yes No

Preprocessor 3xx02 No No

Index server 3xx03 Yes Yes

Script server 3xx04 Yes (if enabled) Yes (if enabled)

Statistics server 3xx05 Yes (if dedicated process) N/A

XS server 3xx07 Yes Yes (if enabled on slave)

Compile server 3xx10 No No

Table 5.1 Database Processes in SAP HANA
158

Log and Data Volumes: The Data Image on Disk 5.1
5.1.1 Memory and Disk

As an in-memory database, SAP HANA uses RAM to store the primary image of
data, and it tries to keep all data in the main memory to speed up data manipula-
tion and data retrieval. Given the known volatility of RAM, additional ways of
storing data are required in order to provide durability.

The main storage methods used in the SAP HANA system to achieve durability of
the content of the database system are depicted in Figure 5.1 and discussed ahead:

� Transaction logs
Any write transaction, that is, any modification of the data content of the data-
base system, will be written to a file-based transaction log at the latest when the
write transaction is committed (unless the write transaction affects temporary
tables that do not have disk-based persistence).

Log writing is optimized for high data throughput so that the duration of the
commit phase can be minimized.

Figure 5.1 Persistence Components of SAP HANA Setups

� Data files
One could in principle simply rely on the transaction logs as nonvolatile

SAP HANA Server

Data & Processing Layer (Main Memory & CPUs)

Persistence Layer

Primary Data Image (RAM)

Column
table

Row
table

Data

Log disks
(either SSD
or NAS)

Data Disks
(typically
some SAN
or DAS)

Network Layer
1-10 Gbit ethernet

External Storage
(typically some NAS;

e.g., NFS)

Data
backup

Log
Log

Log
Log

Data and Log Backup

System Replication

Log
Log

Log
Log

Secondary SAP HANA Server

Memory & CPUs

Column/Row Store

Network Layer

Persistence

Data Logsgg
159

The Persistence Layer5
persistence. These logs are, however, not optimized for retrieving data or recon-
structing the database image in the course of a (re)start of the system. This is why
SAP HANA—like other databases—also has data files.

The data files are primarily optimized for the task of rebuilding the in-memory
data image following a system start. Writing to the data files is handled in an
asynchronous background process named savepoint. Unless the data or log vol-
umes are damaged, the full database image can at any point in time be recon-
structed from the data files and those transaction log entries that are more
recent than the latest savepoint operation.

� Data and log backups
Did you notice the word “unless” in the previous paragraph? That is the main
reason for having the data and log backups. In case the stored database content
gets damaged by human error or software or hardware failures, you need a way
to restore it consistently. Data backups are snapshots of the entire database
content at a given point in time, and log backups are needed to roll forward the
recovery to a more recent state than the point of creating the data backup.

� System replication
In order to protect your database system from large-scale disruptions (catastro-
phes) and to minimize downtime in case of system failure, you may implement
redundancy in the form of a disaster-tolerant setup. In the case of SAP HANA,
the database’s native method for implementing such redundancy is called sys-
tem replication. With this mechanism, the primary database system also writes
any data change synchronously or asynchronously to a remote system with
(almost) identical hardware specifications.

It should be noted for completeness that there are also disaster-tolerant setups
available that rely on data replication on the storage level. From the point of
view of the database, these are hardware, not software, solutions.

The mentioned persistence technologies exist in order to protect against the loss
of data changes. There are, however, further data manipulations that do not
change the data content. The database system might, for example, change the
internal representation of a given data set. For readers who are already familiar
with SAP HANA, we can mention the delta merge as an example of such a manip-
ulation. The database can perform these operations entirely on the primary data
set—that is, on the in-memory representation of the data—without having to take
care of immediate nonvolatile persistence. In the case of a system disruption, the
outcome of the operation might be lost. This is, however, not problematic,
because the data content is independent from the way it is represented in the
160

Log and Data Volumes: The Data Image on Disk 5.1
database, and the data manipulation can be repeated at any later point in time.
Changes to the internal data representation are eventually also reflected in the
data file, but the corresponding I/O operations can be deferred to some asynchro-
nous process, for example, to the next savepoint operation.

5.1.2 Page Management

The content of the data files is organized in pages provided and managed by the
persistence layer. Pages are also used to exchange data between the persistence
layer and the in-memory stores. Some of these stores internally organize their
data in pages (for example, the row store), whereas others have their own concept
of memory organization. The column store, for example, relies on organizing
table data in contiguous memory areas for optimal efficiency in accessing the data.
For such data stores, memory pages of the persistence layer are only used for the
data exchange between the in-memory store and the persistence layer. The disk
representation in the data files, however, is always organized in (physical) pages—
regardless of the in-memory store.

The page concept is mostly hidden from end users and administrators, so we will
not spend much time on the topic. It is, however, important for one central com-
ponent of the persistence layer called the converter.

The converter is that part of the persistence layer that maps the logical pages of
the database stores to the physical pages of the data volumes in the so-called con-
verter table. This mapping is essential, because at any given time multiple physical
pages may exist for one logical page, and the converter table is needed to recon-
struct a consistent database image. We will refer to the converter table when
describing the savepoint, data backup, and snapshot operations.

The database supports multiple different page sizes, from 4 KB up to 16 MB. For
a given object, the page size is chosen by the database, depending on object type,
object size, and other criteria. Information on pages and the converter can be
obtained from system views M_DATA_VOLUME_PAGE_STATISTICS and M_CONVERTER_
STATISTICS.

5.1.3 Transaction Logs

Any write transaction in the database system will trigger the writing of a redo log
entry in the database’s transaction logs. An administrator will mostly be interested
in two properties of the log system: the database’s way of managing log files and
161

The Persistence Layer5
the general role of logs in write transactions. We cover both aspects in the follow-
ing sections.

Log Volumes and Log Segments

Each data-persisting process has a log volume containing the log files (named log
segments in SAP HANA). Those volumes are located in the file system path <log_
path>/<SID>/mnt<node_ID>/hdb<volume_ID>/. In a standard installation, the
<log_path> is /hana/log/. The <node_ID> is the ID of the given node in a scale-out
cluster (00001 in a single-node system), and the <volume_ID> is the unique iden-
tifier of the process’s persistence volumes that can be looked up in monitoring
view M_VOLUMES.

The log segments are individual files within the log volumes, named logsegment_
<partition>_<segment_number>.dat. The <partition> may in the future be used
for parallel writing to multiple log segments within one log volume. According to
the SAP HANA Administration Guide for SPS 8, this technology is not yet in use, so
<partition> always has the value “000”.

Log segments are preallocated and preformatted files with a fixed size that is
determined by the parameter [persistence] � log_segment_size_mb of the con-
figuration file of the corresponding service. The default values of the log segment
sizes for all process types are given in Table 5.2.

Note

The term node ID is not used in the SAP HANA software or its documentation, nor is the
term node itself clearly defined. In this book, we use node to refer to the process config-
uration and the data content of one worker host of a scale-out system. In a failover sit-
uation, the node will be moved to a configured standby host. The SAP HANA documen-
tation will sometimes use the term storage partition to refer to the persistence part of
what we call node ID here.

See also the more detailed discussion in Chapter 6.

System Component Service Default Log Segment Size

Name server nameserver 64 MB

Index server indexserver 1024 MB

Table 5.2 Default Sizes for Log Segments
162

Log and Data Volumes: The Data Image on Disk 5.1
The database will write into one given segment until it is full (until its preallocated
size is reached) or has been backed up—whatever happens first. When the switch
to the next log segment must occur, the new file will already have been prepared
by the database in order to avoid wait situations arising from log file creation.

Log segments are kept for as long as needed—that is, until all information con-
tained in the log segment has been transferred to the data file by a savepoint oper-
ation—and until the log segment has been backed up (if log backup is enabled). As
soon as these operations have happened, the log segment can be marked as free
for future re-use. In this way, log segments can be cyclically overwritten by the
database system. We include a detailed discussion of the different modes of man-
aging logs offered by SAP HANA later in this section.

In addition to the log segments, each log volume (directory) also contains a catalog
of the log segments in a file named logsegment_<partition>_directory.dat; again,
the value of <partition> is always “000” in the current release level. The log seg-
ment directory contains information used by the database in the start process to
most quickly figure out which of the available log files contain information that is
needed in addition to the data file.

Information on the log segments is available from the Volumes Monitor in SAP
HANA Studio (see Figure 5.2). You can open this monitor by selecting the Vol-

umes tab, shown in 1, of the Administration Editor.

This monitor is divided into two screen areas: in the upper half, shown in 2, a
summary is presented of all data and log volumes of all data-persistent processes.
The process entries can be expanded to reveal a breakdown into data and log vol-
umes. You can mark any line in this table to display details of all data and/or log
files of the service in the Details table, as shown in 3.

In Figure 5.2, we configured the display to include the Volume ID, as shown in 4.
You can right-click on the background, shown in 5, of the upper table, and select
Configure Table... from the context menu to change the fields being displayed.

Statistics server statisticsserver 64 MB

SAP HANA XS xsengine 8 MB

Script server scriptserver 8 MB

System Component Service Default Log Segment Size

Table 5.2 Default Sizes for Log Segments (Cont.)
163

The Persistence Layer5
Figure 5.2 Volumes Monitor in the Administration Editor of SAP HANA Studio

Instead of using the predefined interface in SAP HANA Studio, you can also
retrieve log volume information from the monitoring view M_LOG_SEGMENTS (List-
ing 5.1). In that listing, we add the process (service) name via a join to the M_VOL-
UMES monitoring view.

SELECT a.host AS hostname, b.service_name, a.volume_id,
 a.segment_id, a.file_name, a.state, a.in_backup,
 a.used_size/1024 AS "USED_SIZE [MB]",
 a.total_size/1024 AS "TOTAL_SIZE [MB]", a.min_position,
 a.max_position, a.hole_position
FROM m_log_segments AS a INNER JOIN m_volumes AS b
 ON a.host = b.host AND a.port = b.port
ORDER BY hostname ASC, service_name ASC, state DESC;

Listing 5.1 SQL Query to Display Log Segment Information

If you run the query from Listing 5.1, you might wonder about the meaning of the
state field. This field is at the heart of our discussion on log modes and log house-
keeping in the following sections.

Log Modes and Log Backup

There are two database parameters that govern how log segments are managed.
Both parameters can be found in the [persistence] section of the global.ini con-
164

Log and Data Volumes: The Data Image on Disk 5.1
figuration file. As the file name suggests, these parameters impact all processes of
the entire database system.

Parameter log_mode may have the values overwrite or normal (log mode legacy is
not available anymore, starting with SPS 7). Log mode normal is the recom-
mended log mode for production systems and any other system that you may
want to recover to arbitrary points in time. How log segments are managed in this
log mode depends on the setting of the parameter enable_auto_log_backup,
which can either be yes or no. Next, we summarize the different log-management
settings:

� Log mode overwrite
In log mode overwrite, the database system will mark log segments as Free as
soon as all contents of the log segment have been transferred to the data file.
Free log segments will be cyclically overwritten. This log mode is only adequate
for systems in which you will never need to recover the database to the latest
consistent state or to arbitrary points in time. You will only be able to recover
the database to a specific data backup. Automatic log backup is not possible in
log mode overwrite.

� Log mode normal without automatic log backup
If you operate the database in log mode normal but do not enable automatic log
backup, the database will mark log segments as Free as soon as their contents
have been written to the data file, or until log_backup_timeout_s has been
reached. The timeout is also defined in the [persistence] section of global.ini
and has a default value of 900 seconds, that is, 15 minutes. Even an idle data-
base will therefore create new log segments of the sizes given in Table 5.2 every
15 minutes.

With this database configuration, log segments in state Free will not be cleaned
up or overwritten by the database. That means that the log volume will fill up
gradually, and you will need to free log segments manually (see the “House-
keeping for Log Segments” section).

� Log mode normal with automatic log backup enabled
If automatic log backup is enabled in log mode normal, the database system will
back up any log segment that is closed, that is, to which the database no longer
writes. A log segment is closed either when it is full or when the log_backup_
165

The Persistence Layer5
timeout_s has been reached. In both cases, the database will switch to the next
log segment.

Log segments that have been backed up and are not needed for system restart
anymore are set to state Free and the database will overwrite them. Therefore,
log full situations are very unlikely in log mode normal with automatic log
backup.

See the sections on savepoint operation (Section 5.1.4) and log backup (Section
5.2) for more information.

Housekeeping for Log Segments

Under normal circumstances, there is no need to interfere with the database sys-
tem’s mechanisms to create and re-use log segments. There can, however, be sit-
uations that lead to the log disk filling up to close to 100%. Examples of such sit-
uations are:

� Massive data loads
If you optimize data loads for maximum throughput but leave log-writing
enabled, you can easily produce hundreds of GB of logs between two save-
points.

� Interruption of the log backup mechanism
This can occur, for example, because of a full backup disk or an unavailability
of a BackInt-connected backup system.

Because the database will not remove log segments of its own accord, these situ-
ations will create hundreds of free log segments, and they can even lead to disk-
full events.

The database offers a safe mechanism to remove such free log segments. In order
to understand this mechanism, we must first take a look at the state that a log seg-
ment can be in.

Note

The log backup mechanism only becomes functional after the first data backup has been
performed. Before this first data backup has occurred, log segments will be overwritten
by the database without log backup as soon as they are not needed for restart; that is,
the database will de facto operate in log mode overwrite.
166

Log and Data Volumes: The Data Image on Disk 5.1
These log segment states are given in Table 5.3. From the table, we can deduce the
typical lifecycle of a log segment: it has to be created, that is, a formatted file of the
configured size has to be generated (state Formatting). The database aims to pre-
pare the log files before they will be used (state Preallocated), but at some point
in time the file will be filled (state Writing). Once the file is full—or when the log
backup mechanism decides to switch to the next log segment—the file is closed.

Now two things need to happen: The savepoint operation must transfer all data
manipulations recorded in the log segment from main memory to the data file
(see Section 5.1.4), so that it is no longer needed for system restart, and if log
backup is enabled (log mode normal), the log segment has to be backed up. All
four combinations of the states of these two events are reflected in the log seg-
ment states Closed, Truncated, BackedUp, and Free.

Only log segments in state Free can be removed from the database. If you
removed segments in states Writing, Closed, or BackedUp, you would not be able
to restart the database system any longer, because a consistent state cannot be

Note

Under no circumstances should you delete log files manually from the file system.
Always use the SQL syntax provided by the database system. See the “Treating Disk-Full
Situations of the Log Volumes” section.

If the log segments on disk do not match the information in the log segment directory file,
the system will not restart, and also point-in-time recovery will no longer be possible.

State Definition

Formatting Segment is being prepared but not yet ready for use.

Preallocated Segment is ready for use but not yet in use.

Writing Segment is in use (being written to).

Closed Segment is closed, still needed for system restart, and not yet backed up.

Truncated Segment is closed, no longer needed for restart, but has not yet been
backed up.

BackedUp Segment is closed and backed up but still needed for system restart.

Free Segment is closed, backed up (or log_mode is overwrite), and no longer
needed for system restart. It can be reused or removed.

Table 5.3 Possible States of Log Segments
167

The Persistence Layer5
created if 100% of the required data is not available. Deleting a segment in state
Truncated would render any older database backup obsolete (as it could not be
used any longer for full or arbitrary point-in-time recovery).

If you have detected an exceedingly large number of log segments, and if you have
understood and eliminated the root cause for this accumulation, you can instruct
the database to remove all free log segments. The only correct way to do this is to
issue the command:

ALTER SYSTEM RECLAIM LOG

Issuing this command will remove all log segments in state Free across all pro-
cesses of all hosts of the database system.

Treating Disk-Full Situations of the Log Volumes

In our experience, disk-full situations mainly arise either from a combination of
using log mode legacy with improper manual log management or from a mal-
functioning log backup system (disk full on the log backup system or another rea-
son that prevents the creation of log backups). In both cases, log segments will
accumulate and not be removed automatically by database processes, eventually
filling up the log volume(s).

Once the log volume is full and the last log segment is filled, the database has no
way to write transaction logs; because even the creation of a new database session
requires the writing of log entries, you will not be able to work with the database
anymore.

If the disk is full but there is still free space in the log segments, you will be alerted
to the situation by the statistics service. In order to treat the situation, you must

Note

If you test the log segment states programmatically (e.g., to test the number of free
segments), be aware that the entries are case sensitive with capitalization, as given
in Table 5.3.

Privilege Information

In order to remove free log segments, an administrator needs the system privilege LOG
ADMIN.
168

Log and Data Volumes: The Data Image on Disk 5.1
understand whether it is the database or files created by other processes that is
using up space. The database’s volume monitoring helps you here; on the Over-

view tab of the Administration Editor, the Disk Usage indicator for your log vol-
ume (Figure 5.3) will show how much disk space is used by the database (Log

Volume Size, shown in 1), how much is used on the disk in total (Total Disk

Usage, shown in 2), and the total size of the volume (Total Disk Size, shown in
3). In our example from a scale-out system, the database only uses about 8 GB,
but all 513 GB of the log volume are occupied.

Figure 5.3 Full Log Volume Shown in Administration Editor

Next, you must free up space on the log disk so that the database can be set to an
active state again, and you can clean up the log volume with the tools of the database.

If the disk is filled up by processes other than SAP HANA, remove these third-
party files. If it is in fact database files filling the disk—namely, log segments—
then your situation will be much more difficult, because you will damage the data-
base if you try to manually delete files from the disk.

If the system is still working, and if there are many log segments in state Free, you
can have the database remove these log segments by using the command ALTER
SYSTEM RECLAIM LOG. In the rest of this section, we will assume that this is not pos-
sible and that you are facing a system that is not responding anymore.

What can you do in order to free up space? One possibility might be to enlarge the
log volume file system. Depending on your storage system setup, this may or may

Note

Never, ever manually delete log segments, not even in a disk-full event. You will not be
able to start the database once you have manually deleted the segments.
169

The Persistence Layer5
not be possible. Assuming that enlarging the log volume file system is not possi-
ble, there is a safe recovery procedure to switch the database to a different log vol-
ume with sufficient space:

1. Identify a target storage volume on your SAP HANA server that is larger than
the original log volume. Let us assume that this volume can be accessed with
file system path <temp_log>.

In the next steps, you will move all existing log segments to this location, and
the database will need some additional space to create new log segments while
you are cleaning up the system. The location <temp_log> should have a free
space of at least 100 GB plus the total size of the original log volume.

2. Shut down the database. If you manipulate the log volume on disk while the
database is online, you are very likely to create inconsistencies.

3. If possible and appropriate, create a disk copy of the database (copy data vol-
umes, log volumes, and installation path; in typical installations, these are /hana/
data/<SID>, /hana/log/<SID>, and /hana/shared/<SID>. This is your emergency
copy in case the recovery procedure fails.

4. On the Linux OS of the database server, move all log segments from the origi-
nal log position <log_path> to the larger, temporary log space <temp_log>:
mv <log_path>/* <temp_log>/

5. Change the database configuration to use <temp_log> as log position; because
the database is probably no longer available, you will have to edit the configu-
ration files manually.

� Make backup copies of the database configuration files (see Section 4.2.1 in
Chapter 4 for details on the locations of these files).

� Make sure to verify the correct configuration in the system-wide and host-
specific configuration files. Change the value of parameter global.ini �

[persistence] � basepath_logvolumes to <temp_log>.

6. Start up the database. Make sure that no large data manipulations (e.g., data
provisioning) will occur.

7. Check if there is a large number of log segments in state Free with a query
against system view M_LOG_SEGMENTS. If yes, continue with the next numbered
step. If not, you need to get the system to mark log segments as free:

� In log mode legacy (which should not be used!), all log segments not
needed for restart should be always be marked as free. If you are in this log
170

Log and Data Volumes: The Data Image on Disk 5.1
mode and there are many log segments, but most of them are not in state
Free, forcing a savepoint (requires system privilege SAVEPOINT ADMIN)
might help: use the ALTER SYSTEM SAVEPOINT command.

� In log mode overwrite, it is virtually impossible to run into log-full situa-
tions, unless you have other processes than your SAP HANA instance filling
up the log disk. The savepoint operation might have been prevented by a
lock situation. This situation should have been resolved with the system
restart, so that the database will list log segments as free.

� In log mode normal with log backup enabled, the log backup must be func-
tioning. If there are issues preventing the database from backing up log seg-
ments, you must address these issues first. If you have many log segments
in state Truncated, this hints at issues with the log backup system.

� In log mode normal without log backup enabled, the behavior is similar to
log mode legacy.

8. Remove Free log segments using the SQL command

ALTER SYSTEM RECLAIM LOG

Monitor that log segments are indeed deleted from the disk.

9. Shut down the database.

10. Reverse the change of log volume—that is, move back the log segments to the
original <log_path>—and change the related database configuration back to its
original state (if you made changes to other system parameters, such as the log
mode, you cannot simply install your backup copy of the configuration files).

11. Start the database.

12. Implement provisions to avoid future log-full situations. For example:

� Enable log backup.

� If log backup is not possible, evaluate whether log mode overwrite is
acceptable.

� Implement regular monitoring and housekeeping of the log volumes and
the log backup location.

Tip

You probably realized how much work it is to free space on the log volume if all space
is occupied by log segments, and you probably never want to be in a situation in which
you need to follow the preceding procedure.
171

The Persistence Layer5
Writing to the Log Segments

Every write transaction writes redo log entries to the log buffers provided by the
database’s logging system. For each process, the database provides a number of
log buffers, configured in parameter log_buffer_count. Each log buffer has a size
determined by parameter log_buffer_size_kb. Log buffers are queued for writ-
ing to the log segment when they are full, but at latest when a write transaction
is committed.

Because transactional durability requires that data is written to disk before a write
transaction ends, log buffers will often be half full when they are flushed to disk.
At the same time, I/O optimizations of the database may allow the writing of com-
mit records of multiple transactions with the same log buffer—given fitting I/O
queuing and commit timing.

Each log entry consists of a unique log position, an indicator for the type of log
entry (insert, update, delete...), an identifier of the write transaction, and addi-
tional information depending on the log entry type.

The database does not write undo information to the transaction logs. The tech-
nical handling of rolling back uncommitted information that may have been writ-
ten to the data file is discussed in Section 5.1.4.

Relevant System Views for Transaction Logs

The system views in Table 5.4 can be used to retrieve information on log seg-
ments, log buffers, and related components.

The simplest way to achieve this goal is to place a dummy file of sufficient size into the
log volume. If you run into a log-full situation, you can buy some time to clean up the
situation by deleting the dummy file.

This file should therefore allocate sufficient disk space to give you, say, 30 minutes of
working time. Let us assume that 50 GB of log space will be appropriate in your case.
Then you can create the dummy file on the Linux operating system using the command:

dd if=/dev/zero of=<log_path>/dummy_allocator bs=1G count=50

where <log_path> must be replaced with the actual file system path to your log volume.
The command will create a file consisting of count=50 blocks of size 1 GB, filled with
ASCII NUL characters.
172

Log and Data Volumes: The Data Image on Disk 5.1
For the full documentation of these views, refer to the SAP HANA SQL and System
Views Reference available at https://help.sap.com/hana_platform.

Relevant Database Parameters for Transaction Logs

The most important parameters governing the log-writing mechanism of the SAP
HANA database are listed in Table 5.5.

View Name Description

M_LOG_SEGMENTS Display all log segments with state, size, log position,
and so on.

M_LOG_PARTITIONS Various performance statistics for each log partition
(for the time being, this is equivalent to “each log
volume”).

M_LOG_BUFFERS Information about the in-memory log buffers, such as
sizes and wait counts.

M_VOLUMES Displays all data and log volumes for all database
services that persist data.

M_VOLUME_IO_TOTAL_STATISTICS File access statistics for all data and log volumes.

M_DISKS Disk configuration and usage statistics for all data,
log, trace, and backup file systems.

Table 5.4 System Views Related to the Transaction Logs

Parameter Section File Description

log_mode [persistence] global.ini Governs how the database
handles transaction logs

enable_auto_
log_backup

[persistence] global.ini Governs whether or not log
backups are created in log mode
“normal”

log_backup_
timeout_s

[persistence] global.ini Time after which the database will
close the currently open log
segment and back it up

logsegment_
size_mb

[persistence] global.ini –
override in
service’s ini

Fixed size of log segments of a
given service (if not specified for
service, value from global.ini is
taken)

Table 5.5 Database Parameters Related to the Transaction Logs
173

The Persistence Layer5
5.1.4 Data Volumes and the Savepoint Operation

The log-writing mechanism is required for achieving transactional durability, but
it is not optimized for retrieving data, and restoring the database from the log
entries is a complex and time-consuming process. Also, log segments are not com-
pressed.

For these reasons, the SAP HANA database—like other database systems—stores
its data image in data files. The process of writing to these files is what we’ll dis-
cuss now.

Data Volumes and Data Files

Each data-persistent process has a data volume containing one data file. The data
volumes are located in the file system path <data_path>/<SID>/mnt<node_ID>/
hdb<volume_ID>/. In a standard installation, the <data_path> is /hana/data/. The
<node_ID> is the ID of the given node in a scale-out cluster (00001 in a single-
node system—again, sometimes referred to as storage partition in the SAP HANA
product documentation), and the <volume_ID> is the unique identifier of the pro-
cess’ persistence volumes that can be looked up in monitoring view M_VOLUMES.

The file name of the data file is datavolume_0000.dat. The only process whose
data volume has two files with relevant information is the active master name
server, whose persistence is always in volume 00001 of node 00001. This name
server process also writes a file with the landscape ID of the database system.

The Savepoint Operation

From the point of view of the persistence layer, the database content is organized
in pages. Any write transaction will modify one or multiple pages, and it is the
task of the savepoint operation to write such changes to the data files.

log_buffer_
count

[persistence] global.ini Number of log buffers per service

log_buffer_
size_kb

[persistence] global.ini Size of log each log buffer

Parameter Section File Description

Table 5.5 Database Parameters Related to the Transaction Logs (Cont.)
174

Log and Data Volumes: The Data Image on Disk 5.1
Simply speaking, the savepoint operation will make sure that all pages listed in the
current converter table are contained in the data file. That is, all pages that have
been modified but not yet written to disk since the last savepoint will be written
to the data file. Internally, the savepoint operation has three phases:

� Phase 1
During this phase, the database writes all changed pages to disk. Write transac-
tions are allowed during this phase, and all page changes occurring during
phase 1 will also be part of the savepoint.

� Phase 2
This is the phase that ensures that the savepoint refers to a unique state of the
database. This state is identified by one particular log position so that during
database restart the processing of transaction logs can start at precisely the
right log position. The savepoint determines this log position by acquiring a
process-wide exclusive change lock. This lock ensures that during phase 2 no
page changes can happen and that no transactions can be started or finished.
The database can now write the current log position as savepoint log position
into the data file, together with a list of open transactions. While the exclusive
lock is held, the database determines the list of all pages that have been mod-
ified in phase 1. The writing to disk of these modified pages is submitted to an
asynchronous I/O process. As soon as this asynchronous process is triggered,
the exclusive consistent change lock can be released, and normal transaction
processing continues.

Phase 2 is named CRITICAL_PHASE in system views M_SAVEPOINTS and M_
SAVEPOINT_STATISTICS.

� Phase 3
During this phase, the pages modified during phase 1 are written to disk. Write
transactions are allowed again during this phase, but any page changes will no
longer be part of the current savepoint.

The list of all pages that make up the database image at the time of the savepoint—
including the mapping of these pages to the physical data pages in the data file—
is also stored in the data file. This list is called the converter table of the savepoint.

By its design, the savepoint will contain committed and uncommitted data
changes. For any uncommitted data change, undo information will be included in
the savepoint.
175

The Persistence Layer5
Savepoints are automatically performed by the database in intervals determined
by parameter global.ini � [persistence] � savepoint_interval. The default
value of 300 seconds should normally not be changed.

It may come as a surprise that a regular savepoint operation is not synchronized
across all processes of the database system. Instead, each process performs save-
points by its own schedule. This minimizes the potential wait times when the sys-
tem acquires the consistent write lock. The restart procedure of the database
acknowledges this behavior when replaying or rolling back distributed transactions.

Further Mechanisms That Write to the Data Files

The savepoint is the operation that ensures consistent and fast restore of the data-
base during system restart. In order to minimize the amount of data that needs to
be written to disk in the course of the savepoint operation, several database pro-
cesses may write to the data file independently from the savepoints.

The best known of these processes is the delta merge operation of the column
store (see Chapter 9). This operation will not change the information stored in the
database but only the internal representation of the information. A delta merge
will replace the entire database image of the table being merged so that massive
amounts of data space will be modified. If the database waited for the next save-
point before writing the new table representation to disk, this would not only
cause massive I/O operations in the course of the savepoint, but it would also allo-
cate copious amounts of page buffers to hold the modified pages available for the
savepoint. A delta merge can therefore write the new main store of the table
directly to the data file without waiting for the next savepoint.

Note

In addition to regular scheduling, savepoints are also triggered by several events of the
database, most importantly by shutdowns, data backups, and database restart, or
because an administrator explicitly initiates a savepoint.

Note

The concepts of the column store’s delta mechanism and transaction logs are often con-
fused. Although we do offer full details in Chapter 9, we feel it is appropriate to spend
a few words here. Column store tables come with their own write-optimized insert
structure called the “delta store” and a read-optimized structure called the “main store.”
176

Log and Data Volumes: The Data Image on Disk 5.1
The second prominent operation that may trigger writing to the data files outside
of savepoint operations is the eviction or unloading of columnar tables or parts of
them from main memory. If a table is evicted that has been modified since the last
savepoint operation, the new or modified data pages belonging to that table will
be written to the data file in the course of this table unload.

Undo Information and Shadow Pages

Undo information is required during system restart, because the database image
on disk—in the transaction logs and in the data files—also contains data from
uncommitted transactions that have to be treated properly during the start proce-
dure. Uncommitted information in the transaction logs can be rolled back based
on the nonexistence of a commit record.

The rollback of uncommitted data in the data files is slightly more complicated.
The database has two different mechanisms for treating the rollback, depending
on whether the uncommitted data has been written to the data file in the course
of the last savepoint or by other processes after the last savepoint.

If uncommitted data is written to the data file as part of the savepoint informa-
tion, undo information is also written to undo pages of the persistence layer so
that the database can explicitly roll back the changes.

When writing into a column store table, the database will fill the delta store in main
memory, and it will write transaction log entries (unless log writing is disabled). At the
same time, the delta store is represented as a list of pages by the persistence layer, and
these pages will be written to the data file with the next savepoint.

In the course of a delta merge, the in-memory representation of the table is completely
rebuilt; a new main store is constructed from the contents of the previous main and
delta stores, and a new delta store is set up. This changes all data pages of the table, and
it is these new data pages that may be written to the data file directly in the course of
the delta merge operation. Because the delta merge operation does not change the data
content of the table, there is no need to write transaction log entries.

In the worst case, the database may crash before the result of the delta merge is written
to disk. After restart, the database will then read the unmerged table representation
from the data file and log segments, and the delta merge can be repeated at a conve-
nient point in time.
177

The Persistence Layer5
For information written since the last savepoint, the database makes use of the
efficient concept of shadow pages; as we said before, the persistence layer orga-
nizes the entire database content in pages. Each table consists of a set of pages of
the persistence layer, called logical pages. Each of these pages has a counterpart in
the data file, called a physical page.

Every time the database creates a consistent image of its data content, this image
comes with a converter table, mapping the logical pages of this consistent image
to the physical pages of the data file. In order to reflect multiple states of the data-
base in one data file, the database can maintain multiple versions of physical
pages. Whenever a logical page, L1, is modified and written to disk after the last
savepoint, the persistence layer does not overwrite the savepoint version, P1, of
the page. Instead, the savepoint version is set to state Free after savepoint—
thus turning P1 into a shadow page. A new physical page, P1’, is assigned to the
new version of the data file.

If the database now crashes before the next savepoint is completed, the database
will open the converter table from the last savepoint. In this converter table, the
logical page, L1, is mapped to the savepoint version, P1, of the data. The new page
version, P1’, will be ignored because it is unknown to the savepoint’s converter
table, thus effectively rolling back any uncommitted data changes contained in
P1’. Committed information in P1’ will be reconstructed from the transaction log.

Delta merges that have not yet been written to the data file will be rolled back in
the same way, which is, of course, an undesired side effect. Remember, however,
that a regular database shutdown will include a final savepoint, so under normal
circumstances a delta merge will not be lost.

Managing Free Space within the Data Files

SAP HANA does not have a concept similar to the table spaces of other database
systems. Because the primary data image is that in RAM, the database size is deter-
mined by the amount of main memory. The disk space for the data files is simply
restricted by the available space in the data volume(s).

The database automatically allocates as much space for the data file as it needs. In
order to avoid fragmentation and also reduce I/O wait times, the system will
always keep the data files larger than is currently needed; that is, there will always
178

Log and Data Volumes: The Data Image on Disk 5.1
be free blocks in the data files, so small write operations, such as a savepoint, will
normally not need to allocate disk space.

Therefore, any data file will always have a total size that is larger than its payload.
You can monitor the total size and the used size in system view M_VOLUME_FILES,
or in the Volumes tab of the Administration Editor in SAP HANA Studio, as
shown in Figure 5.4. If you select the data volume of a given service, as shown in
1, the table in the lower half of the screen will show details of the data file in that
volume. Next to the Total Size (MB), shown in 2, which reflects the size of the
data file on the file system, you can also see the Used Size (MB), shown in 3, that
is, the payload of the data volume. As you can see, in our example this payload
only makes up 45% of the allocated file size, as shown in 4.

Figure 5.4 Monitoring the Usage of Data Volumes

In our situation, the overall size of the data volume is small, so there is no need to
worry. But you may find yourself with a data volume size of a terabyte or more,
with a similarly small usage percentage. The typical reason for such situations is
either the deletion of very large tables or intensive data-load operations. If you
load large amounts of data in a short timeframe, the column store’s delta mecha-
nism can lead to large amounts of free space in the data files. The reason is simply
that first the delta store is written to the data file, and then a new table structure
179

The Persistence Layer5
is built during the delta merge. This new table structure will also be written to the
file, before the pages occupied by the delta store can be marked as free.

If there is a large amount of unused space in the data file, the database will of
course occupy this space with new data pages before allocating more disk space.
So in most cases, you do not need to worry about free space in the data file. If,
however, you are operating multiple database instances on the same hardware,
these instances typically share the same data volume, so the large and sparse data
file of one instance might take away data volume space that another instance
needs.

In this or a similar situation, you can shrink the data volume by using the syntax
given in Listing 5.2. In that listing, the optional parameter host:port identifies
the database process whose data file will be shrunk. The port is the internal port
of the process, for example, 3<instance>03 for an index server (see Table 5.1). If
the parameter is not specified, the database of all processes will be shrunk. The
mandatory parameter <perc> gives the intended size of the data file as a percent-
age of the file’s payload. One should always leave some free blocks in the data file;
an overhead of about 20% of the payload is a good value. This leads to a value for
<perc> of 120% of the payload.

// Generic syntax:
ALTER SYSTEM RECLAIM DATAVOLUME [host:port] <perc> DEFRAGMENT;
// To leave an additional 20% of the payload for the index
// server process of host hana01, instance number 42, use:
ALTER SYSTEM RECLAIM DATAVOLUME 'hana01:34203' 120 DEFRAGMENT;

Listing 5.2 Releasing Free Space in the Data Volume

The shrinking will also defragment the data files, moving all occupied pages to the
front of the data file.

Privilege Information

You need system privilege RESOURCE ADMIN in order to reclaim free space in the data
volumes.

Note

Freeing space in the data volume is an I/O-intensive process that can take several min-
utes, impacting system performance during this time.
180

Log and Data Volumes: The Data Image on Disk 5.1
Disk-Full Events of the Data Volumes

If the data volumes are full, that is, all disk space of the data volume is occupied,
then the database system will alert you to a disk-full event. In the Disk Usage sec-
tion of the Administration Console of SAP HANA Studio (Figure 5.5), a Disk-

Full Event, shown in 1, is displayed. Because it is possible that different data vol-
umes are located on different storage devices, there can in principle be multiple
disk-full events at the same time related to different storage devices. This is why
there is also a counter, shown in 2, for active disk-full events, and all events must
be acknowledged individually once you have removed the root cause.

Figure 5.5 Disk-Full Event for the Data Volume

The statistics service will also alert you to disk-full events with messages as shown
in Figure 5.6, see 1, and you can find all disk-full events in monitoring view M_
EVENTS.

Even with a disk-full event, the database will still be operational as long as there
are free pages in the data file so that you can monitor the database system, stop
data provisioning processes, and so on.
181

The Persistence Layer5
If the data disk is full, the recovery procedure is similar to that of a full log volume,
covered in Section 5.1.3. Typically, you will either be able to remove alien files
from the data volume file system or you will be able to enlarge the data volume
file system.

Once you have freed up space on the data volume file system, you can get the
database into an operational state again by acknowledging the disk-full event and
setting it to handled. The database offers SQL commands, as given in Listing 5.3.

// acknowledge the event:
ALTER SYSTEM SET EVENT ACKNOWLEDGED '<host>:<port>' <id>;
// mark the event as handled:
ALTER SYSTEM SET EVENT HANDLED '<host>:<port>' <id>;

Listing 5.3 Acknowledging Disk-Full Events and Marking them as Handled

The event IDs can be obtained from system view M_EVENTS.

Alternatively, you can click on the Disk-Full Events link in the Administration
Editor of SAP HANA Studio. A pop-up window opens, as shown in Figure 5.6; see
2. Use the check boxes, shown in 3, to identify which events you have handled,
and click OK.

After you have successfully resolved a disk-full situation of your data volumes,
there are three things you should do: check if large portions within the data files
are unused, and reclaim this space if appropriate; create dummy files of a fitting
size to reserve disk space in the data volumes (see our proposal for the log vol-
umes); and revise and improve your proactive monitoring and alerting setup to
avoid future disk-full events.

Note

You may be tempted to try and free (reclaim) unused space in the data file in order to
resolve the disk-full event. This will, however, not be successful, because the data file
will temporarily grow a little when you attempt to reclaim space in the data volume file
system.

Privilege Information

System privilege MONITOR ADMIN is required in order to mark events as acknowledged or
handled.
182

Log and Data Volumes: The Data Image on Disk 5.1
Figure 5.6 Disk-Full Alert and Handling Disk-Full Events

Relevant System Views for Data Volumes and Savepoint

The system views in Table 5.6 contain information on the data files and savepoint
operations. In addition, the volumes- and disk-related views from Table 5.4 are
also of interest here.

For the full documentation of these views, refer to the SAP HANA SQL and System
Views Reference available at https://help.sap.com/hana_platform.

View Name Description

M_DATA_VOLUMES File names and sizes of data volumes

M_VOLUME_FILES Total and used size of data and log volumes

M_DATA_VOLUME_SUPERBLOCK_STATISTICS Number of allocated and used super blocks
per data file

M_DATA_VOLUME_PAGE_STATISTICS Usage statistics on pages and superblocks

M_SAVEPOINTS Information on savepoint operations since
system start, including duration, number of
pages written, or resulting size of data file

M_SAVEPOINT_STATISTICS Aggregated information from view M_
SAVEPOINTS

M_EVENTS Details of current disk-full events

Table 5.6 System Views Related to Data Volumes and Savepoint
183

The Persistence Layer5
Relevant Database Parameters for Data Volumes and Savepoint

The savepoint operation is an entirely automatic process for which no user inter-
action or customizing is foreseen. The only potentially interesting parameter for
database administrators is savepoint_interval_s, as given in Table 5.7.

5.1.5 System Start Procedure

When the database system starts, it needs to rebuild the database image from the
information stored on disk. The goal is not to have 100% of the data loaded into
main memory immediately; this would lead to unreasonably long startup times.
Instead, the database will only perform such steps that are essential for its func-
tionality before making its external interfaces available to client programs. Once
the database has started, the data content in main memory will be gradually filled
up during the warm-up phase.

Start Procedure

We summarize here with some simplifications the essential startup steps that lead
to a fully functioning SAP HANA database system. All data-persistent processes
will follow this procedure using their respective data file and log segments.

1. Open the data volume file.
The process opens its data volume file and reads restart information from a
dedicated restart section of the file.

2. Load the converter table from the last completed savepoint.
With the converter table, the system builds the mapping of logical pages to
physical pages in the data file as it existed at the end of the critical phase of the
last completed savepoint. This reflects the database contents at the savepoint
log position.

3. Load the list of open transactions from the last completed savepoint.
This information will be needed to enable rolling back uncommitted data from
the savepoint.

Parameter Section File Description

savepoint_
interval_s

[persistence] global.ini Time between two regular savepoint
operations

Table 5.7 Database Parameters Related to the Transaction Logs
184

Log and Data Volumes: The Data Image on Disk 5.1
4. Load row store tables.
As of SAP HANA SPS 7, all row store tables must be completely in main mem-
ory at all times. Depending on the size of the row store, this step can have a sig-
nificant duration. On standard storage devices without any attempts at optimi-
zation, we have seen throughput rates of about 250 MB/s to 300 MB/s, that is,
load times of about five minutes for a row store of 100 GB.

5. Replay redo log entries.
Redo log entries are read starting with the savepoint log position. The system
creates multiple log replay queues into which the redo log entries are distrib-
uted while being read. Within boundaries set by the requirement to respect
consistency, the system can process the replay queues in parallel. The number
of queues created is equal to the number of logical CPUs of the database host.
On a server with 32 physical CPU cores and Hyper-Threading enabled, 64 log
replay queues will be created.

Following a regular shutdown of the database, nothing will happen during this
step, because the system writes a savepoint during shutdown.

6. Roll back uncommitted transactions.
The system determines all transactions that were marked as unfinished in the
savepoint and also for which no commit records exist in the transaction logs as
well as those transactions for which start records but no commit records are
found in the transaction logs. This is the set of all unfinished transactions in the
database at time of shutdown, and these transactions are now rolled back by
using undo information.

7. Perform a savepoint.
The savepoint ensures that the restored consistent state of the database is fully
recorded in the data files.

The database is now fully restored and operational. Client programs can connect
to and interact with the database system while the in-memory representation of
columnar tables is being built up in the background.

Warm-Up Phase

After restarting the database system, no column tables are in memory. Whenever
the database needs to operate on a columnar table, however, the relevant portion
of the table needs to be in RAM. Typically, this is a set of columns (in partitioned
tables—from one or several partitions) of the table.
185

The Persistence Layer5
Any operation requesting data that is not yet loaded into main memory will trig-
ger the corresponding load operation. Because this I/O work will impact the trans-
actions, the database automatically loads columnar tables into main memory as
follows:

� Tables marked for preload
Columnar tables can be entirely or partially (on a per-column level) marked for
preload. These tables or columns will be loaded first upon system start.

� Tables that were loaded before the last shutdown
Next, the database starts loading those tables or table columns into main mem-
ory that were loaded before the last shutdown. The sequence of data loading is
not based on usage statistics. If you would like to suppress this automatic load-
ing, you can set parameter [sql] � reload_tables of the indexserver.ini config-
uration file to false.

� Other tables
Other tables or columns are only loaded into main memory on request.

Tables are always loaded into memory column-wise. You can control the degree
of parallelism for these load processes via parameter [parallel] � tables_
preloaded_in_parallel of the file indexserver.ini.

Trace File Information Related to the Start Process

The index server process writes interesting and comparatively easy to read infor-
mation into its trace file. If you check the file /hana/shared/<SID>/HDB<instance>/
<hostname>/trace/indexserver_<hostname>.<port>.<max_counter>.trc during or after
system start, you will find information like the time needed for steps such as load-
ing column store tables, replaying the redo logs, rolling back indoubt (uncommit-
ted) transactions, and more. Some of these are regularly updated with progress
information (e.g., the amount of data to still be rolled back).

This information is useful for troubleshooting problems that may occur during
system start, and it also helps to derive an estimate for the probable system start
time as row store data volumes grow.

5.2 Log Backup

For the purpose of recovering the database from a data backup to its latest consis-
tent state, all redo logs are required that have been created since the data backup.
186

Log Backup 5.2
Depending on the quantity of write transactions that have occurred in the mean-
time, the amount of log segments may exceed the storage space available in the
log volume.

Because most of these log segments will not be required for system restart, their
content can be moved away from the log volume as long as this movement hap-
pens in such a way that the database can still access the moved log entries if
needed.

The related database process is named “log backup” and is executed by all data-
persistent processes. We cover in this section the creation and managing of log
backups. Other aspects, such as the role that log backups play during database
recovery, are discussed in Section 5.4 when we describe data backup and recov-
ery.

5.2.1 Log Backup Procedure

If enabled, log backups are executed by all database processes autonomously
whenever a log segment is closed—either because it is full or because the segment
has been in state Writing for log_backup_timeout_s seconds.

Instead of moving the closed log segment to the log backup destination, the data-
base creates a log backup file and copies the payload of the log segment into that
file. For any log segment that is closed because the time limit has been exceeded,
the payload can be much smaller than the allocated size of the log segment, so log
backups usually need significantly less disk space than the original segments.

Log Backup Location and File Names

If file-based backups are used, the log backups are written to the location config-
ured with parameter global.ini � [persistence] � basepath_logbackup; by
default this is the location /usr/sap /<SID>/HDB<instance>/backup/log. You can
change this location, but for the sake of supportability we feel it is a good idea to
keep the default location. You may either use it as a mount point for the network
storage that you hopefully use as a backup drive, or you can turn it into a symbolic
link to the actual mount point of your backup storage.

In a scale-out system, the log backup base path must exist on all hosts of the setup.
It is recommended but not required that the path points to the same shared loca-
tion on all hosts.
187

The Persistence Layer5
SAP HANA also offers a backup mechanism based on network streams called Back-
Int. If a third-party backup tool supporting the BackInt for SAP HANA interface is
used for the management of log backups, then the backup is written into named
pipes at file system location /usr/sap/<SID>/SYS/global/hdb/backint.

The file names of log backups contain an identifier of the log volume, the log par-
tition, the redo log positions of the first and last log entry contained in the backup,
and a unique identifier of the backup: log_backup_<volume_ID>_<partition_ID>_
<first_redo_log_position>_<last_redo_log_position>.<backup_ID>.

Log Backups and Log Segment States

While the log backup is being written, the state of the log segment is either Closed
(if the segment is still needed for system restart) or Truncated. As soon as the log
backup file has been written, an entry is added to the backup catalog, and the state
of the log segment is updated to either BackedUp (if the segment is still required
for system restart) or Free.

5.2.2 Enabling Log Backups

There are three requirements for enabling automatic log backup in SAP HANA:

� You must set the log mode to normal (parameter [persistence] � log_mode of
global.ini).

� You must allow automatic log backups (parameter [persistence] � enable_
auto_log_backup in the same location must be set to yes).

� You must have created at least one data backup.

The first two settings are set correctly for enabling log backup in the default con-
figuration of the database. As long as no data backup has been performed, the sys-
tem will display a related alert with high priority, signaling that you can neither
create log backups nor recover the database in this state. As soon as you create the
first data backup, the system will start backing up the log segments automatically.

5.2.3 Managing Log Backups

Although log backups allow you to keep the log volumes from filling up the log vol-
ume file system completely, you have only deferred the task of active housekeeping
188

Snapshots 5.3
from the log volume file system to the log backup location. In case your log
backup location fills up, any subsequent log backups will fail. As a consequence,
log segments remain in state Truncated and cannot be reused or removed.

Compared to log segments, log backups have the advantage that you can delete
them directly from the file system without damaging the database. You must be
careful not to remove any log backups that may be required to recover the data-
base from the oldest data backup that you intend to keep available.

It is also possible to move log backups to a different location. The recovery pro-
cedure allows you to enter additional log backup destinations.

The SAP HANA database offers an SQL command to remove any data and log
backups that are older than a given data backup safely from the database, and this
technique should be used for the housekeeping of your data and log backups. We
introduce this technique in Section 5.4.8.

5.3 Snapshots

Before we can describe data backups, we need to introduce a fundamental con-
cept, the snapshot, that is at the heart of data backups and other operations in the
database.

A database snapshot is simply a consistent state of the entire database system that
is frozen in the data files so that the physical pages belonging to this state cannot
be removed, overwritten, or altered as long as the snapshot exists.

If you remember the converter table that we described as part of the savepoint
operation, you will probably guess that a snapshot is described by its own con-
verter table. When you create a snapshot, the database performs a global save-
point, that is, a synchronized savepoint operation is executed by all database pro-
cesses. As is the case for a regular savepoint operation, only those pages that have
been modified since the last savepoint will be written to the disk for creating the
snapshot. This creation process is called preparation in the context of snapshots
and typically only takes fractions of a second.

This section will walk you through the basics of snapshots in SAP HANA. We
explain their purpose and lifecycle and three of the major tasks associated with
189

The Persistence Layer5
them: creating a snapshot, recovering the database from a snapshot, and manag-
ing snapshots with SQL.

5.3.1 The Purpose of Snapshots

Database snapshots are sometimes used implicitly by primary processes such as
data backups or system replication. In these cases, you do not need to actively
manage the snapshot.

You can, however, also create database snapshots explicitly. The most common
purpose of this operation is to create a storage copy (storage snapshot) of the data
volumes that can be used to restore or copy the database. Only with such a snap-
shot can the consistency of the data files throughout the database system be guar-
anteed.

Another purpose can be the possibility of resetting the database to a database
snapshot that is active (prepared) in the data files. This is very appropriate in train-
ing systems that need to be reset to the same initial state after each instance of the
training.

As opposed to a database backup, the internal consistency of a snapshot is not ver-
ified by the database kernel at creation time. For this reason, snapshots should
only be regarded as an additional measure in a backup concept that should also
include regular creation of data backups.

5.3.2 Lifecycle of a Snapshot

The life of a database snapshot is influenced by two events; first a database snap-
shot needs to be created, and when it is not needed anymore it needs to be
released or abandoned.

The screen elements in SAP HANA Studio use the terminology Prepare Storage

Snapshot to signal that generating a database snapshot is a necessary preparatory
step for creating a storage snapshot. We will use the terms “create” and “prepare”
equivalently.

Preparing a snapshot triggers a global, synchronized savepoint of the database
system. All physical pages from this savepoint are marked as belonging to the
snapshot. The snapshot also consists of a converter table that maps logical pages
of the persistence layer to their physical pages in the data files. This relationship
190

Snapshots 5.3
is indicated in Figure 5.7 by the dotted line, shown in 1, that encloses the logical
and physical pages at the time of snapshot creation.

While the snapshot exists in the database, its pages cannot be overwritten. Of
course, the database is still fully operational, and again the shadow page concept
is used. In the example of Figure 5.7, a write transaction modifies logical page, L1,
of a given table. With the next savepoint operation, the page modification needs
to be reflected in the data file. There, the original physical page, P1, is kept
unchanged but turned into a shadow page (S1). The modified logical page, L1’, is
written to a new physical page, P1’. The savepoint, shown in 2, contains all phys-
ical pages, including P1’ but not the shadow page S1, whereas the snapshot,
shown in 3, now does not contain P1’ but instead contains the shadow page S1.

If the database snapshot has been created as preparation for a storage snapshot,
you can now copy the data volumes on the file system level.

As soon as the storage snapshot is finished, you can and should release the data-
base snapshot. There are two options for releasing the snapshot, and they only
differ semantically:

� You can confirm the database snapshot and thus indicate to the database that a
storage snapshot has been created that contains the database snapshot.

� Or, you can abandon the database snapshot, indicating that no storage snap-
shot has been created.

With this differentiation, the backup catalog can also contain information on the
availability of database/storage snapshots for the purpose of recovering the data-
base.

When a snapshot is released, all of its shadow pages (those that are not also in
state Free after savepoint) are set to Free and can be reused by the persistence
layer.

Note

At the release level of SPS 8, SAP HANA database only supports a single active snapshot
at any point in time. Because database backups are based on snapshots, in most systems
it is mandatory to release snapshots as soon as they have fulfilled their purpose in order
to not interfere with regular backup operations.
191

The Persistence Layer5
Figure 5.7 Snapshot and Savepoint

Even if you do not create a storage snapshot, the database snapshot can be used to
restore the database to its state at snapshot creation. This is only possible if the
snapshot has not been released. We show this procedure in Section 5.3.4.

Logical
pages

Physical
pages

Table T1

Time

Data File

P1

Physical
Pages of T1

P2 …

Further
Pages

PjPi

Snapshot

Further
Pages

LjLiL1

Logical
Pages of T1

L2 …

Prepare
Snapshot

Table T1

Data File

Physical
Pages of T1

P2 …

Further
Pages

PjPi

Savepoint

Further
Pages

LjLi

Logical
Pages of T1

L2 …

Write
Savepoint

Write transaction
modifying P1 of T1

S1

L1’

P1’

Snapshot

Note

Database snapshots become invalid if at least one process with persistence is restarted.
Thus, a prepared snapshot cannot be used any longer if the database or single processes
has been restarted or crashed. If a database snapshot will be used to copy or recover the
database, it is advisable to create the storage snapshot of the data volumes immediately.

You will not be able to confirm a database snapshot if it has been invalidated. Storage
snapshots with a database snapshot that cannot be confirmed may contain a corrupt
database snapshot and should therefore be disregarded immediately.
192

Snapshots 5.3
5.3.3 Creating a Database Snapshot in SAP HANA Studio

A database snapshot in SAP HANA can be created from the Backup Editor of SAP
HANA Studio (Figure 5.8). On the right-hand side of the Overview tab, shown in
1, you find the (SAP HANA Studio for SPS 7) section Prepared Storage Snapshot,
shown in 2, containing information and tooling for managing database snap-
shots. By clicking on the Storage Snapshot... button, shown in 3, you can enter
a wizard that allows you to create and release database snapshots.

The UI elements have changed in SAP HANA SPS 8 (lower half of Figure 5.8); the
dedicated section for database snapshots has been removed. Instead, database
backup and database snapshot are jointly handled in the left-hand side of the
Backup Editor.

It is also possible to start the Storage Snapshot wizard directly from the navigator
tree in the Systems view of SAP HANA Studio; if you right-click either on the top
node or on the Backup node of the navigator tree, you can choose Storage Snap-

shot... from the context menu.

Figure 5.8 Storage Snapshot Options in the Backup Editor

SPS 7:

SPS 8:
193

The Persistence Layer5
In the Storage Snapshot wizard (Figure 5.9, left-hand side; see 1), the Snapshot

Details area, shown in 2, shows whether or not a snapshot is currently prepared.
If there is no active snapshot, then you can create one by clicking the Prepare but-
ton, as shown in 3.

SAP HANA Studio now asks you to enter a comment for the snapshot, as shown
in 4. This comment will be added to all entries in the backup catalog that are
related to the snapshot. In order to unambiguously identify a particular snapshot,
it is best to choose unique names for each snapshot, for example, by including a
time stamp or similar details.

As soon as you confirm the snapshot comment by clicking the OK button, as
shown in 5, the database snapshot will be created. The duration of this operation
is under normal circumstances very close to the time required to create a database
savepoint; typically we are talking about time periods of the order of magnitude
of one second.

Figure 5.9 Preparing a Storage Snapshot

If the snapshot has been successfully prepared, then the snapshot wizard displays
information on its size (Figure 5.10) in the Snapshot Details section, shown in 1.
The size of a snapshot is the sum of the sizes of all pages in the data file that belong

Privilege Information

You need system privilege BACKUP ADMIN or BACKUP OPERATOR to manage database
snapshots; for using the snapshot wizard, system privilege CATALOG READ is also
required.
194

Snapshots 5.3
to the snapshot. In SPS 8, the snapshot will be prepared asynchronously, the Stor-

age Snapshot wizard will close, and the Backup Editor will be updated with infor-
mation on the prepared snapshot (as shown in the lower half of Figure 5.8). If you
intend to create a storage snapshot based on this database snapshot, you should
do this as soon as possible.

Once a snapshot is prepared, you can Abandon it, as shown in 2, or Confirm it,
as shown in 3, depending on whether or not you have also created a storage snap-
shot. In both cases, you can and should again enter a comment, as shown in 4,
which will also be reflected in the backup catalog of the database.

When confirming, the purpose of the comment is to document the relationship
between the logical database snapshot and the physical storage snapshot, for
example, by entering the ID or path name of the storage snapshot. When aban-
doning, you may, for example, enter the reason for abandoning the snapshot.

Figure 5.10 Snapshot Wizard with Information on Prepared Snapshot

We include information on retrieving the snapshot information from the backup
catalog in Section 5.4.8.

5.3.4 Recovering the Database from a Snapshot

If a database snapshot is still active (prepared) within the data file of the database,
you can reset the database to the data image reflected in the snapshot. Otherwise,
if a storage snapshot has been created from the data volumes while a database
snapshot was active, you can recover the database from the storage snapshot. This
recovery will require that you replace the original data files with the version from
195

The Persistence Layer5
the storage snapshot. Next, we will walk you through an example of creating a
storage snapshot and recovering the database from it.

Creating a Storage Snapshot

In order to create the storage snapshot, you must first prepare it by creating a
database snapshot, as described in Section 5.3.3. After the snapshot has been pre-
pared, you can create the copy of the data volumes. If you plan to make use of
storage snapshots regularly, your storage system will probably provide tools for
efficient block-device replication or similar functions. Because these techniques
depend on your storage hardware and tooling, we simply use the generically
available but inefficient file system copy mechanism.

In the example shown in Listing 5.4, we have prepared a file system for storage
snapshots in /hana/storage_snapshots/<SID>. In this location, we will create a direc-
tory snapshot_01 and copy the entire content of the data volume into this directory.

Prepare snapshot location for our database system TED:
mkdir /hana/storage_snapshots/TED/snapshot_01
Copy data volumes of system TED:
cp -rp /hana/data/TED/* \
 /hana/storage_snapshots/TED/snapshot_01/

Listing 5.4 Creating a Storage Snapshot by Copying the Data Volumes

When the copy is finished, we have created our storage snapshot. We now have to
confirm it. In the confirmation dialog from Figure 5.10, shown in 4, we could enter
the file path “/hana/storage_snapshots/TED/snapshot_01” as External Backup ID.

Recovering the Database from the Snapshot

Now, we can recover the database. As a prerequisite, we need to shut down the
SAP HANA system and replace the data volumes with the version from our stor-
age snapshot. In our simple example, we will perform the actions given in Listing
5.5 after verifying that all database processes are in fact shut down.

Check that all database processes are stopped. You should
only see the sapstartsrv and HDB info itself:
HDB info
Remove the data volumes of the database:
196

Snapshots 5.3
rm –r /hana/data/TED/mnt*
Copy the data volumes from the storage snapshot:
cp –rp /hana/storage_snapshots/TED/snapshot_01/mnt*
 /hana/data/TED/

Listing 5.5 Copying Back the Data Volumes from the Storage Snapshot

Once the operation of copying back the storage snapshot has finished, we can
start the actual snapshot recovery, which is supported in SAP HANA Studio by the
same wizard as recovery from regular data backups. To open this wizard, right-
click on the database entry for the system to recover and select Recover... from
the context menu. Unless the credentials of operating system user <sid>adm are
saved in the Eclipse secure store, you will be asked to enter them now.

In the recovery wizard, choose the recovery type, as you would with a data
backup (see Section 5.4 for a full discussion). If you use the storage snapshot to
copy the database, you can only recover the database to the full backup repre-
sented by the snapshot. If—as in our case—you recover the database from its own
snapshot, and if log segments and log backups are available and undamaged, then
point-in-time recovery is also possible, including restoring the database to its lat-
est consistent state.

In our example, we are choosing to restore the database to its latest consistent
state, as can be seen from the third step of the recovery wizard in Figure 5.11,
which contains an indicator for the Selected Point in Time, shown in 1. The sys-
tem has detected that a snapshot is available in the data files, as shown in 2, and
it has found the External Backup ID, shown in 3, that we entered in the backup
catalog.

During recovery, the system will load the converter table from the snapshot, then
roll forward redo logs, starting from the log position of the snapshot. Redo logs
will be read from log backups and log segments as required.

Note

In our example, we have explicitly shut down the database before recovery. If the data-
base is still online when you start the recovery wizard, it will be shut down. You can also
replace the data volumes with the data files from the storage snapshot after the recovery
wizard has stopped the database system.
197

The Persistence Layer5
Figure 5.11 Recovering the Database from a Storage Snapshot

5.3.5 SQL Syntax for Managing Database Snapshots

In addition to using the Backup Editor of SAP HANA Studio, you can also manage
snapshots through SQL commands. The syntax for creating, confirming, and
abandoning a snapshot is given in Listing 5.6.

// Create a snapshot with comment 'Test Snapshot':
BACKUP DATA CREATE SNAPSHOT COMMENT 'Test Snapshot';
// Read the BACKUP_ID of the snapshot from the backup catalog:
SELECT backup_id, comment FROM "PUBLIC"."M_BACKUP_CATALOG"
 WHERE entry_type_name = 'data snapshot'
 AND state_name='prepared';
// Confirm the snapshot with external ID 'Abcd1234' and
// backup ID as determined in the above query:
BACKUP DATA CLOSE SNAPSHOT BACKUP_ID '<backup_id>'
 SUCCESSFUL 'Abcd1234';
// Abandon the snapshot, adding the comment 'Not needed':
BACKUP DATA CLOSE SNAPSHOT BACKUP_ID '<backup_id>'
 UNSUCCESSFUL 'Not needed';

Listing 5.6 SQL Syntax for Managing Storage Snapshots
198

Data Backup and Recovery of the SAP HANA Database 5.4
5.4 Data Backup and Recovery of the SAP HANA Database

Data backups are the first and most rudimentary step towards protecting the data-
base against the loss of information in case of incidents such as damage to the data
volumes. They contain an image of the database at one point in time in a dedi-
cated set of files.

In combination with log backups and log segments, data backups can be used to
restore the database to any state between the point in time of backup creation and
the latest consistent state preceding the recovery. Data backups can also be used
to copy the database by recovering the database backup in a different (but com-
patible) database instance. This section will walk you through the most important
aspects of data backup and recovery in SAP HANA.

5.4.1 Supported Backup Mechanisms

SAP HANA supports two fundamentally different backup mechanisms. Through
file-based backups, the system writes into backup files located on a file system that
is mounted in the database server(s). This backup location can and should be on
a network file system or similar location. Nevertheless, from the point of view of
the database it creates backup files locally.

SAP HANA also offers a backup mechanism based on network pipes. The system
comes with an interface named BackInt for SAP HANA, which allows the execu-
tion of data backups, shipping of log backups, retrieving of backup information,
and managing backups. Third-party backup tools can implement this interface and
will then act as a middle layer between the database and the backup storage sys-
tem, as shown in Figure 5.12.

When third-party backup tools are used, the responsibilities in the backup system
are shared between multiple parties. SAP delivers the SAP HANA database,
including its BackInt interface, as shown in 1. The backup tool vendor needs to
provide a backup agent to run on the SAP HANA database server. This agent must
implement the BackInt interface and will communicate with the vendor’s backup
system (backup tool). The backup agent and tool are in the responsibility of the
backup tool vendor, as shown in 2. The backup tool will be connected to a backup
storage system of some type, as shown in 3, and manages the data transfer
between the SAP HANA database and that storage system.
199

The Persistence Layer5
Figure 5.12 Integration with Third-Party Backup Tools and BackInt

If an SAP HANA system is configured to use the BackInt interface, then data and
log backups will be sent to named pipes of the BackInt interface. Storage snap-
shots will not be managed by BackInt; you always have to use SAP HANA Studio
or the SQL syntax for storage snapshot management, regardless of the mechanism
used for database backups.

Because backup administration using third-party backup tools heavily depends on
the chosen tool, we only discuss here file-based backups managed via SAP HANA
Studio or SQL syntax. Information on third-party backup tools that have been cer-
tified for use with SAP HANA is contained in SAP Note 1730932.

All generic information in this section applies to both backup mechanisms, so
reading on will also be helpful for users of third-party backup tools.

SAP HANA Server

Data & Processing Layer (RAM & CPUs)

Persistence Layer

Primary Data Image (RAM)

Column
table

Row
table

Data

Log DisksData Disks

Network Layer
1-10 Gbit ethernet

Backup Storage
Data and Log Backup

Data
Backup

Log
Log

Log
Log

Log
Log

Log
Log

B
ackIn

t In
terface

Backup
Agent

Responsibility of SAP Responsibility of Tool Vendor

Third-Party Backup Tool
(SAP Note 1730932)

Customer/
Storage Vendor
200

Data Backup and Recovery of the SAP HANA Database 5.4
5.4.2 Properties of Data Backups in SAP HANA

A data backup in SAP HANA is a full online copy of one particular consistent state
of the entire database system in dedicated backup files. The state is defined by the
log position of the database at the time of executing the data backup. Technically,
the data backup is very similar to a snapshot, with the major difference that all
physical pages mapped by the converter table of the data backup are written to
dedicated backup files instead of simply freezing the snapshot’s pages in the data
files of the database.

Internally, the database performs a database snapshot in order to map all relevant
pages. Then, all physical pages from the snapshot’s converter table are copied into
backup files. The snapshot is automatically released as soon as all pages have been
written to the backup files.

The log position of the data backup is thus the current log position at the time of
the exclusive consistent change lock that is acquired in order to create the snap-
shot. Any database modification happening after this point in time is not reflected
in the data backup.

Note that there is no offline data backup option for SAP HANA. As every data
backup can be used to recover the database into a consistent state, there is simply
no need to shut down the system for a consistent copy.

We give a schematic visualization of the data backup process in Figure 5.13. This
figure is based on the data snapshot creation discussed in Section 5.3.2 and shown
in Figure 5.7.

Assume that the database snapshot, shown in 1, for the data backup has been pre-
pared. The system will start writing all pages of the snapshot to the backup file.
Write transactions are allowed, so modifications of the database content may
occur, which means that a logical page, L1, gets modified, represented by new
state L1’, and this modification is reflected in the data file after the next savepoint
operation, as shown in 2. Page P1 from the snapshot is marked as a shadow page,
S1, and a new physical page, P1’, is created that contains the new content of L1’.

The write operation of the backup process will only transfer the snapshot content
to the backup file. To reflect the fact that there are no shadow pages in a data
backup, the original page P1/S1 from the snapshot is named P1 in the data backup
file, as shown in 3.
201

The Persistence Layer5
Figure 5.13 Creating a Data Backup

Contents of Data Backups

In SAP HANA, a data backup is always a full backup. There is no mechanism for
incremental backups yet. Therefore, every database backup will contain all phys-
ical pages of the current database image.

In scale-out systems, the data backup contains all data from all processes on all
hosts of the system. The consistency of the data backup in such distributed sys-
tems is guaranteed by the global savepoint that is part of the database snapshot on
which the data backup is based.

In the course of creating the data backup, only the physical pages of this snapshot
are copied to the data files. That is to say, the data backup will only contain the
current payload of the data files. Unused blocks or other versions of physical
pages that exist due to the shadow page concept will not be copied. A data backup
is therefore always smaller than the data files (at the time of backup creation).

Note that data backups do not include the configuration files of the database. It is
good practice to create backup copies of the customizing in the system-wide and

Logical
pages

Physical
pages

Table T1

Data File

Physical
Pages of T1

P2 …

Further
Pages

PjPi

Savepoint

Further
Pages

LjLi

Logical
Pages of T1

L2 …

Write
Savepoint

S1

L1’

P1’

Snapshot

Write Pages to
Backup File

Backup File

Physical
Pages of T1

P2 …

Further
Pages

PjPi

Data Backup

P1
202

Data Backup and Recovery of the SAP HANA Database 5.4
host-specific layers of the database configuration and to store these copies with
the data backups. With the exception of the customizing of running services in the
daemon.ini file, successful database recovery will not depend on the database
configuration.

Size of Data Backups

The best estimate of the expected size of a data backup can be obtained from a
query to the system view M_CONVERTER_STATISTICS, as shown in Listing 5.7. That
listing also includes an SQL example to check whether there is sufficient disk size
available on the file system containing the configured data backup location
(parameter [persistence] � basepath_databackup of the file global.ini). Note that
the BACKUP CHECK command will also resolve environment variables of the
<sid>adm operating system user, such as $(DIR_INSTANCE), which expands to /
usr/sap/<SID>/HDB<instance>.

// Query the total size (in bytes) of all allocated pages
// that define the current data image:
SELECT SUM(allocated_page_size) FROM m_converter_statistics;
// Let us assume the answer is 6 487 576 576 bytes. We can
// now check if the data backup file system has enough free
// space (let’s add an extra GB for safety):
BACKUP CHECK
 USING FILE ('$(DIR_INSTANCE)/backup/data')
 SIZE 7487576576;
// Generically, the statement syntax is:
BACKUP CHECK USING FILE ('<path_name>') SIZE <size_in_bytes>;

Listing 5.7 Checking Free Disk Space in the Data Backup Location

The BACKUP CHECK query will return successfully if there is sufficient disk space
available, or it will return error code 14 (cannot allocate enough disk space) if not.

If you would like to automate the backup check, you can create a stored procedure
or some other program following the example we give in Listing 5.8. That proce-
dure will determine the estimated size of the data backup and add an extra GB for
safety. It will then check whether a data path has been customized (which can
only be a system-wide setting). Depending on the outcome of the check, it will
read the value of parameter basepath_databackup either from the SYSTEM or
from the DEFAULT layer of global.ini. Finally, it executes the BACKUP CHECK com-
mand with backup location and estimated backup size as determined earlier.
203

The Persistence Layer5
The procedure does not have a return value. Instead, it will either complete suc-
cessfully (sufficient disk space) or with error code 14 (insufficient disk space).

CREATE PROCEDURE check_backup_space ()
 LANGUAGE SQLSCRIPT
 AS
 v_backup_size BIGINT;
 v_backup_path NVARCHAR(256);
 v_found INTEGER := 0;
 v_statement NVARCHAR(512) := '';
BEGIN
 /* Determine estimated backup size */
 SELECT SUM(allocated_page_size) INTO v_backup_size
 FROM m_converter_statistics;
 /* Add 10^9 bytes (ca. 950 MB) for extra safety */
 v_backup_size := v_backup_size + 1000000000;
 /* Check if there is a system-wide customized backup path */
 SELECT COUNT (*) INTO v_found FROM m_inifile_contents
 WHERE file_name='global.ini' AND layer_name='SYSTEM'
 AND section='persistence' AND key='basepath_databackup';
 IF :v_found = 0 THEN
 /* If not: read DEFAULT value of basepath_databackup */
 SELECT value INTO v_backup_path FROM m_inifile_contents
 WHERE file_name='global.ini' AND layer_name='DEFAULT'
 AND section='persistence' AND key='basepath_databackup';
 ELSE
 /* Otherwise, read SYSTEM-layer value */
 SELECT value INTO v_backup_path FROM m_inifile_contents
 WHERE file_name='global.ini' AND layer_name='SYSTEM'
 AND section='persistence' AND key='basepath_databackup';
 END IF;
 /* Assemble and run the check statement.*/
 v_statement := 'BACKUP CHECK USING FILE (''' ||
 :v_backup_path || ''') SIZE ' || :v_backup_size;
 EXEC v_statement;
END;

Listing 5.8 Procedure for Automatic Backup Space Check

Naming of the Backup Files

A database backup of an SAP HANA system always consists of multiple backup
files. Each data-persistent process will create one backup file (the master name
server creates two). All files will be written to the same file system path defined
in the parameter [persistence] � basepath_databackup.
204

Data Backup and Recovery of the SAP HANA Database 5.4
Data backup file names are built from three components according to the pattern
<basepath_databackup>/<prefix>_<suffix>. In this file name, <prefix> is an
identifier for a particular data backup that can be chosen by the backup adminis-
trator when creating the backup. The system generated <suffix> has three parts:
<suffix> = databackup_<source>_<count>, where <source> is the volume ID of
the data volume whose backup is being created. The system topology is written to
the backup file with <source> = 0. The size of data backup files can be limited, so
that for one process there may be multiple files with consecutive values of
<count>, starting with <count> = 1 for the first file.

A typical backup file for the index server process (which may have volume ID 3)
of database system WUP with instance number 42, in the default backup file loca-
tion, and with backup prefix “Monday_20140230”, would thus be /usr/sap/WUP/
HDB42/backup/data/Monday_20140230_databackup_3_1.

Consistency Checks of Data Backups

Data backups of the SAP HANA database contain consistency check information
both on the level of the backup files and on the level of individual data pages. The
backup consistency can be verified at any time by using tools delivered with the
database software. See Section 5.4.5 for more details on the consistency checks
and especially the test tools.

5.4.3 Creating Data Backups

Data backups can manually be created within the Backup Editor of SAP HANA Stu-
dio. Users with the required privileges can start this editor by double-clicking the
Backup item in the navigator tree of the SAP HANA system in the Systems view of
SAP HANA Studio.

In the Backup Editor (Figure 5.14), you can start the data backup by clicking on
the Open Backup Wizard button, shown in 2, of the Overview tab, shown in 1.
It is also possible to start the backup wizard directly from the navigator tree in the

Privilege Information

In order to create data backups with the Backup Editor, the database user must have
system privilege BACKUP ADMIN or BACKUP OPERATOR and also system privilege CATALOG
READ.
205

The Persistence Layer5
Systems view of SAP HANA Studio (the same privileges are required); if you right-
click either on the top node or on the Backup node of the navigator tree, the you
can choose Back Up... from the context menu.

Figure 5.14 Starting a Data Backup from the Backup Editor

Prerequisites for Running a Data Backup

Data backups can only be created while the database is online. This requires that
all processes of the database are running. In distributed systems with failover
nodes, a data backup can be created in a failover situation as long as all data vol-
umes are assigned to active services.

A data backup is also only possible when no other data backup is running and no
snapshot is prepared. You should check the Status of Currently Running Data

Backups, as shown in 3, and of Prepared Storage Snapshots, as shown in 4, in
the Backup Editor before starting the backup.

Finally, there must be sufficient disk space on the backup storage.

While a data backup is being written, the database can be used as usual. The log
backup system is also not affected by writing data backups.

Running the Backup

In the data backup wizard (Figure 5.15, left-hand side; see 1), you can configure
properties of the backup to be created. If the system is configured to use the Back-
Int interface with a third-party tool, you can choose Destination Type (shown in
2) File or BackInt. With file-based backups (as in our case), you can customize the
Backup Destination, shown in 3, for the backup to be written. That is, you can
206

Data Backup and Recovery of the SAP HANA Database 5.4
change the target directory for writing the backup. The configuration value of
parameter basepath_databackup is prefilled.

Typically, the most important input field is that of the Backup Prefix, shown in 4.
Here, you should choose a term that helps you identify the data backup later on.
A time stamp and/or an indicator for the reason you are creating the backup are
good choices.

Figure 5.15 Running a Data Backup

Before you can start the actual backup, you have to proceed to the second screen
of the backup wizard which will display a summary of the backup to be created.
If you click the Finish button on that screen, the database backup will be started.

You can monitor the backup progress within the wizard. A screenshot from a run-
ning backup is shown in the right-hand side (shown in 5) of Figure 5.15. The wiz-
ard displays the progress for the data volumes of all data-persistent processes.

The same information is available on the Overview tab of the Backup Editor; see
Figure 5.16. The editor displays the overall progress of the data backup in a single
indicator, shown in 1. The progress for individual data volumes can be viewed by
expanding the Details section, as shown in 2. In this way, administrators can
207

The Persistence Layer5
monitor the progress of ongoing database backups, regardless of how and by
whom the backup was started.

Figure 5.16 Monitoring and Cancelling a Backup in the Backup Editor

Once the data backup is finished, the wizard displays a success (or error) message
and offers viewing the log of the backup operation. You can also view the backup
log at any later point in time. The database collects log information for the cre-
ation of all log and data backups in the backup.log file, which is located in the
database server’s trace directory (in a scale-out system, with the trace files of the
master node). From the Overview tab of the Backup Editor, the log file is available
via the Open Log File button, shown in 3.

Cancelling a Running Data Backup

Running data backups can be cancelled in multiple ways:

� If you started the data backup from the Backup Editor of SAP HANA Studio, then
you can cancel it directly in the backup wizard. At the bottom of the progress
monitor, you can find a Cancel Backup button (item 6 in Figure 5.15).
208

Data Backup and Recovery of the SAP HANA Database 5.4
� Any database user with the BACKUP ADMIN system privilege can cancel a running
data backup from the Backup Editor in SAP HANA Studio. On the Overview tab
of the Backup Editor, there is a Cancel Backup button in the top-right corner of
the status section (item 4 in Figure 5.16). This button is only active while a data
backup is running.

� Finally, you can cancel running backups by using an SQL syntax, which we
introduce in Section 5.4.10.

Performance of Writing Data Backups

We have not attempted to run any performance tests or create benchmark infor-
mation in the course of writing this book. It is, however, interesting for adminis-
trators to at least have a ballpark figure of the performance they can expect when
writing data backups.

In simple tests, we have found the write performance of data backups to be of the
order of about 500 GB/h when writing to a local storage system and without
applying any optimizations. If your backup storage is connected to a network file
system or similar system, I/O throughput may be limiting backup performance,
depending on your hardware setup.

If you can ignore I/O throttling, then the performance of writing data backups in
scale-out systems will not be influenced by the number of hosts, because all hosts
will write their data backups in parallel. That is, a scale-out instance with 10
worker nodes, each managing 500 GB of data, may write its entire 5 TB data
backup within one hour if the I/O system provides sufficient throughput.

5.4.4 Concepts of Database Recovery

Database recovery is the process of building new data files of the database from a
data backup (or storage snapshot), the log backups, and the log segments. A recov-
ery always applies to the whole database system; it is not possible to recover indi-
vidual schemas or objects from a backup.

The recovery procedure supports multiple modes of recovery, depending on the
state (or point in time) to which the database shall be recovered:

� Recovery to most recent state (last consistent state)
In this mode, the database will be recovered to the state represented by all com-
mitted transactions before the last shutdown or crash.
209

The Persistence Layer5
The recovery procedure requires a data backup or database snapshot (the more
recent, the better) and all redo log entries from the log position of data backup
or snapshot onwards. In most cases, redo logs will be replayed from log back-
ups and log segments.

Recovery to the last consistent state is the typical recovery mode in case the
data volumes of the database have been damaged or corrupted.

� Recovery to a specific data backup
In this mode, only the information from the backup files will be restored. This
technically resets the database to the log position from the snapshot on which
the database was based.

For recovery, only a data backup or storage snapshot is required. The log area
contents will be erased. That is, you will irreversibly delete any information in
the database that is more recent than the data backup to which you are recov-
ering. The log area will be initialized implicitly—which means that all existing
log segments will be removed, and new ones will be created.

Recovering a system to a specific data backup is most useful for system copies.
In regular operations, it is a rather unlikely option.

� Arbitrary point-in-time recovery
With arbitrary point-in-time recovery, you can recover the system not to a log-
ical state (e.g., “last consistent” or “specific backup”) but to the state it was in at
a particular point in time.

The recovery generally has the same requirements as recovery to the most
recent state.

� Typically this option is used for forensic purposes; if you know that data was
corrupted by a user action, a data load process, or similar, you can reset the
database to a state before the corruption happened. We will not discuss foren-
sic recovery methods here, as they will be heavily dependent on the applica-
tions that were running on the database.

� Recover to a specific log position
The recovery to a specific log position is a technical recovery method that
should only be used by SAP Support. It will basically recover the database to a spe-
cific point in time, but this point will be chosen not by a time marker but by a
log position. Because it is very difficult to map log positions to events in the
physical world, this recovery mode is only meaningful to database experts.
210

Data Backup and Recovery of the SAP HANA Database 5.4
Note that in typical usage scenarios the SAP HANA database or the application
running on it will be connected to other systems. Setting back the state of the
database independently from those connected systems will create an inconsis-
tency that cannot be fixed by means of database administration. If you decide to
recover a production database to any other than the most recent state, make sure
to consult SAP Note 434645 and SAP Note 434647 to understand the implications
to the system landscape.

Recovery Sequence

The exact sequence of a database recovery will depend on the chosen recovery
mode. Generally, a recovery consists of the steps depicted in Figure 5.17. The
recovery will transfer the database from its initial state, shown in 1, to the new
state, shown in 2. In the course of the recovery, the data files, shown in 3, will
be rebuilt.

Figure 5.17 Phases of Database Recovery

SAP HANA Server

Data & Processing Layer (RAM & CPUs)

Old Persistence Layer

Primary Data Image (RAM)

Column
table

Row
table

Data

Log
Segments

Data Files

Backup Storage
Data and Log Backup

Data
Backup

Log
Log

Log
Log

Log
Log

Log
Log

SAP HANA Server

Data & Processing Layer (RAM & CPUs)

New Persistence Layer

Primary Data Image (RAM)

Column
table

Data

Log
Segments

Data Files Log
Log

Log
Log

Phase 1: Recover Backup

Phase 2: Replay Logs

Anything not in log backup

Row
table
211

The Persistence Layer5
There are three phases to the recovery process: In the first phase, shown in 4, a
data backup (or snapshot), shown in 5, is recovered. Technically, new data files,
shown in 3, are created in the data volumes, and all physical pages from data
backup or snapshot are copied into these data files. This phase will occur in any
recovery mode.

In the second recovery phase, shown in 6, redo logs are replayed. The system will
determine the log position of the data backup or snapshot and locate all log back-
ups, shown in 7, and log segments, shown in 8, containing more recent log
entries. The system will replay either all redo log entries (last consistent state) or
all entries until the selected point in time or log position is reached. Phase 2 will
be skipped when recovering to a specific backup or snapshot.

In the third phase—not depicted in Figure 5.17—the database system is restarted.
At the end of this phase, the database system will again be fully available.

Initializing the Log Area

When a system is recovered from its own data backup to its last consistent state
or an arbitrary point in time, the recovery process offers you the option to initial-
ize the log area. If you choose this option, no redo log entries from the log seg-
ments will be replayed. At the end of the recovery process, all existing log seg-
ments in the log volumes will have been deleted, and new segments will be
created as if the system were newly installed.

Initializing the log area might be necessary if the segments are rendered unusable,
for example, by a file system corruption. In this case, you can only recover the
database to the latest committed state in the log backups.

In some situations, initializing the log area is not optional. One such situation is
recovery to a specific data backup or snapshot. In this recovery mode, the system
will always initialize the log area.

The log area must also be initialized when you recover a data backup into a dif-
ferent database, for example, for a system copy.

Note

Under normal circumstances, you should not explicitly initialize the log area when
recovering the database from its own data backup.
212

Data Backup and Recovery of the SAP HANA Database 5.4
If the log area is not initialized, the contents of the log segments can be used in the
course of database recovery. Once recovery is finished successfully, the log seg-
ment contents are not needed anymore, because the new data files contain all the
data of the recovered state. The log segments will remain on disk in state Free and
can be re-used for writing log entries.

5.4.5 Recovering the Database

The actual process of recovering an SAP HANA system is supported by a recovery
wizard in SAP HANA Studio. We will guide you through this wizard for the dif-
ferent recovery modes.

Prerequisites for Recovery

The database system to recover and the data backup used in the recovery process
must fulfill several requirements in order for recovery to be possible:

� Correct number and type of processes
A database backup contains backup files for all data volumes, that is, for all
data-persistent processes of the source system. The target system of the recov-
ery must have the same process configuration, that is, the same number of
index servers, XS servers, script servers, and so on. It is possible to start multi-
ple processes of the same type—for example, multiple index servers—on one
host, so that the number of hosts does not matter.

We include examples of resolving incompatibilities in the topology between
source and target system of backup/recovery in Section 5.4.7.

� Database version
The software version of the target system must be at least as high as that of the
source system. You cannot recover a backup into a system with a lower release
level (revision number).

Exceptions may occur when the source system of the backup is on a mainte-
nance revision level and the target is a support package release; see SAP Note
1948334.

� Credentials
The person executing the recovery procedure must know the password of the
<sid>adm user of the target database system.
213

The Persistence Layer5
Checking Backup Consistency

It is possible to check the backup files before a recovery. For this purpose, SAP
provides two Linux tools named hdbbackupcheck and hdbbackupdiag, which are
installed as part of the database software.

With the hdbbackupcheck tool, you can check backup files one by one for correct-
ness. The check tool supports both file-based backups and the BackInt interface.
You need to run the tool individually for each file (part) of a given data backup;
there is no built-in option to check all files of a given backup.

The parameters tested include simple checks, such as verification of the file size,
and internal information that requires database kernel knowledge, such as the
check of page-wise checksums. However, the check does not perform an actual
recovery.

In order to test a given backup file, including printout of test information, use the
syntax given in Listing 5.9.

The hdbbackupdiag tool, on the other hand, allows you verify that all data and log
backup files needed for a particular recovery are available in the specified loca-
tions. The most important usage options for this case are also given in Listing 5.9.

If not all data and log backups are available in the configured locations, you can
specify a directory in which to search for the latest backup catalog and addition-
ally one alternative location for the data backup as well as multiple alternative
locations for log backups.

The return value of the tool is 0 if the check is successful or 1 if errors occurred.
There is also comprehensive text output that in case of issues indicates why a
recovery with the given backup locations would not be successful.

Generic syntax for hdbbackupcheck
hdbbackupcheck –v <full_backup_filename>
Specific example for hdbbackupcheck:
hdbbackupcheck –v \
 /usr/sap/WUP/HDB42/backup/data/COMPLETE_DATA_BACKUP_0_1
Generic syntax for hdbbackupdiag
hdbbackupdiag --check –u <timestamp> –d <catalog_directory> \
 [--dataDir <data_backup_directory>] \
 [--logDirs <log_backup_directory_1>,<log_backup_dir_2>,...]

Listing 5.9 Using the hdbbackupcheck and hdbbackupdiag Tools
214

Data Backup and Recovery of the SAP HANA Database 5.4
Further information on the tool usage is given in SAP Note 1869119 for hdbback-
upcheck and SAP Note 1873247 for hdbbackupdiag.

Starting the Recovery Process

A database recovery can be started in SAP HANA Studio from the navigator tree
of the system to recover. Right-click on the top node of the navigator tree, and
choose Recover... from the context menu. It does not matter whether the system
is online or offline at this point.

If the system is online, you will be asked to confirm system shutdown. Clicking Can-

cel in this step will abort the recovery procedure and leave the system undisturbed.

Once the system is shut down, you are presented with the first screen of the
recovery wizard (Figure 5.18). This screen offers all four recovery types, with
recovery to a specific log position only available after clicking the Advanced but-
ton, shown in 1. If you choose to recover to a specific point in time or a specific
log position, you will have to enter details accordingly.

Figure 5.18 Recovery Wizard: Choosing the Recovery Type

In our detailed example, we will choose to recover to the most recent state. The
recovery sequence in this mode is the same as that for point-in-time recovery or
215

The Persistence Layer5
recovery to a specific log position. Recovery to a specific data backup has a differ-
ent, but simpler, workflow.

After choosing the recovery type and progressing to the next screen, you have to
enter the locations of the log backups (Figure 5.19). You may wonder why you are
not asked for the data backup location first, and the explanation is simply that the
backup catalog (a list of all data and log backups; see Section 5.4.8) is maintained
together with the log backups. From the backup catalog, the database can deter-
mine a list of all data backups that may potentially serve in a recovery scenario.

Figure 5.19 Recovery Wizard: Entering the Log Backup Location

As location, the wizard initially suggests the content of the basepath_logbackup
parameter, shown in 1. In case you have moved some or all log segments after
they were created, you can enter additional locations. You can also use the hdb-
backupdiag tool to list all data and log backup files required for a recovery; this is
especially useful if you have moved backup files to a different storage location and
need to copy them back for the recovery. See Section 5.4.7 and SAP Note 1821207
for details.

Note

If you have changed the value of the basepath_logbackup parameter since creating the
most recent data backup but have not moved any log backups from their initial location,
216

Data Backup and Recovery of the SAP HANA Database 5.4
When you progress to the next step, the system will look for the most recent ver-
sion of the backup catalog and read information on all available backups that may
be used to recover the database. These backups are listed on the third screen of
the recovery wizard (Figure 5.20). You can select an individual backup to display
details, shown in 1, such as the time of backup creation, its size, and the file sys-
tem location as recorded in the backup catalog. If the data backup has been moved
to a different location, you can enter the new file system path.

Figure 5.20 Recovery Wizard: Choosing the Backup to Recover

then you do not have to change any entry here; the system will find the most recent
backup catalog in the current log backup location. This backup catalog contains the ini-
tial location of each log backup, so the database will be able to locate all log backups.

You really only need to enter other locations here if the most recent backup catalog is
not in the location specified by basepath_logbackup (e.g., when copying a database)
and/or if log backups have been moved from their initial locations.
217

The Persistence Layer5
The system does not automatically check if the listed backups are available in the
recorded location. Backup availability is indicated by the colored icons behind
each data backup, such as the green icon shown in 2. To check a given backup,
highlight it in the table and click the Check Availability button, shown in 3.

Backups are listed in ascending order of estimated recovery time, where the esti-
mate is based on the amount of log entries that will need to be replayed. As can
be seen, the system also shows database snapshots. The snapshot indicated in 4
is not available, showing that it has already been released.

On the next screen of the wizard, you can choose selected additional options (Fig-
ure 5.21). The first option allows you to check for the availability of all required
log backups before the actual recovery starts. It is highly recommended to enable
this option. The system can check on the file system or in a third-party backup sys-
tem using the BackInt interface.

The most dangerous option is the option to initialize the log area (see the discus-
sion in Section 5.4.4). This option is required when copying the database or if the
log volumes are corrupted. In other circumstances, it will probably not be a good
choice to initialize the log area.

If you copy the database using a data backup or storage snapshot, the target sys-
tem will need to be equipped with a new license key. If you already have a
license key available, you can choose to install it as part of the recovery process,
thus eliminating the possibility that you might forget about license key installa-
tion later. You can also install the new license key within the first 90 days after
recovery.

The final screen of the recovery wizard presents a summary screen of the recov-
ery to perform. Check the information on this screen carefully before you
progress, because an incorrect recovery might lead to permanent loss of data
(e.g., if you inadvertently choose to initialize the log area, use the wrong reco-
very type, etc.).

Note

If you initialize the log area in combination with an attempt to recover the database
from its own data backup to its most recent state (or a state more recent than the last
log backup and savepoint), then you will lose data, because only log backups will be
replayed.
218

Data Backup and Recovery of the SAP HANA Database 5.4
Figure 5.21 Recovery Wizard: Further Options

Monitoring a Database Recovery

The first and best place to monitor a database recovery is the recovery wizard,
which will show the recovery progress for all processes of the database individu-
ally in each of the three phases (data recovery, log recovery, and restart), as shown
in Figure 5.22. The recovery phase is shown at in the header area, shown in 1, of
the wizard.

More detailed information for the ongoing recovery process is written into the
backup.log file that is located with the diagnosis files of the master node—typi-
cally /usr/sap/<SID>/HDB<instance>/<hostname>/trace/backup.log. If interested, you
can monitor this file, for example, by using the tail command on the operating
system or by using the Diagnosis Files Editor in diagnosis mode.
219

The Persistence Layer5
Figure 5.22 Recovery Wizard: Monitoring the Recovery Progress

Performance of Database Recovery

As you can see from the monitor (Figure 5.22, shown in 2), the recovery is sched-
uled and performed for all services and all hosts in parallel. Therefore, the speed
of recovery does not depend on the number of hosts in a scale-out system as long
as the I/O system provides sufficient throughput. Ignoring the influence of the I/O
system, the data recovery of a 10-node scale-out instance can be as fast as the data
recovery of a single node of the same host size. This, of course, assumes that data
is uniformly distributed across all nodes and that the amount of data in the single-
node system is equal to the average amount of data per node in the scale-out sys-
tem.

In basic tests, we have observed a data recovery speed that was similar to the per-
formance of writing the data backup.
220

Data Backup and Recovery of the SAP HANA Database 5.4
In the next recovery phase—log recovery—parallelization can be limited by inter-
host dependencies of distributed transactions that need to be replayed.

Cancelling a Database Recovery

The recovery monitor in Figure 5.22 also contains a Cancel Recovery button,
shown in 3. If you cancel the recovery process, the database system will be left in
an inconsistent state and cannot be started normally any longer. The same is true
if the recovery process cannot finish successfully for any other reasons.

If recovery of a database system has been interrupted, then you will need to fix
the underlying issue and repeat the recovery process—maybe by using a different
data backup or storage snapshot or a different recovery type—in order to restore
the database system to a working state.

5.4.6 Technical Recovery Scenarios

There can be different situations that require a database recovery (full recovery
will not be possible in all cases):

� Data area unusable
The data may be unusable because of a file system corruption, human error, or
other reasons that either render the data files unusable or lead to the deletion
of at least one data file.

In this situation, the database can be recovered to its most recent state if a data
backup is available and all log entries are available, starting from the log posi-
tion of the data backup. The log entries may partially reside in log backups or
entirely in the log segments, depending on system settings and timing.

� Log area unusable
If the log area is rendered unusable—which may be caused by something as
small as the manual deletion of a single log segment—the database cannot be
recovered to its most recent state any longer. If a data backup and log backups
are available, you can recover to the most recent state contained in log backups
by starting a recovery to most recent state and choosing to initialize the log area.

Unless you are operating a disaster-tolerant database with system replication,
SAP HANA does not offer a means to write log entries to multiple physical
locations at once. You can try to protect against loss of the log area by setting
up mirroring of the log volumes with storage technology.
221

The Persistence Layer5
� Data and log area unusable
The situation is identical to an unusable log area.

� Recent data or log backups corrupted
If you notice that recent data or log backups are corrupted, then you should cre-
ate a new data backup as soon as possible. If you know that there is a corruption
in the log backups, then you should also remove all affected (and older) log
backups so that nobody can attempt a database recovery using these files.

5.4.7 Copying an SAP HANA System Using Database Backups

In addition to its use in recovering a system in case of a corruption of the database
persistence, homogenous system copy is a potential use case for copying the data-
base. In the terminology used by SAP, a homogenous system copy in SAP HANA
is one from an SAP HANA database to another SAP HANA database (as opposed to
copying the contents of a different database into an SAP HANA database).

The act of copying the database using backup and recovery is trivial in itself. We
use the topic to also discuss how you can resolve typical incompatibilities
between the system topologies of the source and target systems. The two situa-
tions we will discuss are summarized in Table 5.8. In the first case, we are copying
a single-node system, and in the second, we are copying a scale-out instance.

Case Property Source System Target System

1 hostname ld9506 dewdftzldc01

SID WUP CPY

Instance 42 78

Statistics Service Integrated in Name & Index Server Dedicated Process

AFL Installed Not Installed

2 SID TED DUP

Nodes 4+1 3+0

Table 5.8 Cases for System Copy

Note

Database copy using data backups is only supported with file-based backups (release
level SPS 8). The BackInt interface does not yet include functionality for database copy.

If you manage your database backups with third-party tools that implement the BackInt
interface, then you can still use storage snapshots for database copies.
222

Data Backup and Recovery of the SAP HANA Database 5.4
Preparations for a System Copy

Before you start the recovery process for a system copy, make sure to check the
following prerequisites on the target system of the copy:

� Database versions
The target database must already be installed, and its software version must be
at least the same as the software version of the target system.

� Number of processes with persistence
The number of processes of each type in the target system must match the con-
figuration of the source system. It is best to configure the correct number of
instances in the target system before starting the recovery.

� Shut down the target system
The target database must be shut down before you can continue with the next
preparatory steps.

� Remove data and log backups of target system
The configured locations for data and log backups (basepath_databackup and
basepath_logbackup) of the target system must be empty. Otherwise, you may
by mistake choose a backup of the target system for recovery or run into other
difficulties. You must delete the data and log backup files (if there are any) or
move them to a different location if you assume that you might need these
backups again.

� Provide data and log backups for recovery
For the system copy, you can recover either to a specific data backup or to a
specific point in time, up to the most recent state reflected in the log backups
of the source system. Depending on the state you want to copy, you need to
provide either a data backup or a data backup and log backups. See ahead for an
efficient way to determine required backups.

� Location of data and log backups to recover from
By default, the recovery process will search for data and log backups in the con-
figured locations (basepath_databackup and basepath_logbackup) of the target
system. We recommend providing the backup files in a different directory and
pointing the recovery process to this location.

Choosing the Required Data and Log Backups

Depending on your system setup, you may have to copy the backup files from
the source system to the target system. In this case, you will be happy to learn
223

The Persistence Layer5
that the hdbbackupdiag tool can list all data and log backup files required for sys-
tem recovery.

The tool will check the backup catalog and locate the most recent data backup.
Based on that backup, it will determine all log backup files that are needed for
either a full recovery or recovery until a specified point in time.

The output is the list of all backup files needed for the recovery (not including
path names). The syntax for creating this list is given in Listing 5.10, and further
documentation is available in SAP Note 1821207 and SAP Note 1873247.

Generic syntax:
hdbbackupdiag –f –d <log_backup_directory> [-u <timestamp>]
Example invocation for full recovery (most recent state):
hdbbackupdiag –f –d /usr/sap/WUP/HDB42/backup/log

Listing 5.10 Determining Required Backup Files with hdbbackupdiag

Copying the System

The actual system copy is a standard database recovery with a number of exceptions:

� In the recovery wizard of the target database, select the appropriate recovery
mode. Note that point-in-time recovery as well as recovery to the most recent
state will only include log backups. The log segments of the source system can-
not be used in a system copy.

� When you have to enter the log backup location, remove the proposed default
location, and add the path to the log backups that you want to recover from. As
in regular recovery, the database will determine possible recovery paths from
the most recent backup catalog that it finds in this location.

� The next important exception comes when you have to choose the data backup
to base the recovery on. As in any recovery, the system will assume that the
data backup resides in the location obtained from the backup catalog. In a sys-
tem copy, this will most probably not be the correct location. Before checking
the availability of the backup, you must therefore enter the actual backup loca-
tion as Alternative Location.

� Another exception occurs on the Other Settings screen of the recovery wizard;
here you must choose to initialize the log area. The system does not make this
choice automatically.
224

Data Backup and Recovery of the SAP HANA Database 5.4
� In the course of the recovery, the database will erase the license information of
the target system. Because the license key of the source system will not be valid
in the target, the system will be left in a state without a license key. If there was
a license key installed in the target system prior to the recovery, you can rein-
stall this license key. Otherwise, you will have to generate a new license key fol-
lowing the recovery.

If all requirements are met, your system copy will be finished after the successful
recovery. We will, however, now discuss typical problems that may occur if your
source and target systems do not match perfectly.

Resolving Typical Problems: Case One

In case one from Table 5.8, the aspect that will cause trouble in the course of
recovery is the statistics server. In the source system, it has been embedded into
the index and name server processes as described in SAP Note 1917938. In the
target system, it is a standalone process. If you do not realize this before starting
the recovery process, the recovery will abort immediately with an error message,
as shown in Figure 5.23.

Figure 5.23 Recovery Failing with Wrong Number of Processes

Because you have already started the actual system recovery, the system cannot be
started normally any longer. You will first need to perform a successful recovery.
225

The Persistence Layer5
In our case, this can rather easily be corrected by applying the configuration
changes described in SAP Note 1917938. While the database is offline, you cannot
use the recommended tools to modify the configuration files. Instead, you will
have to edit the configuration files manually.

Enabling the statistics service in the name server is a system-wide configuration.
You therefore have to enter the file nameserver.ini in the file system path /usr/
sap/<SID>/SYS/global/hdb/custom/config/, and make sure the file contains a [sta-
tisticsserver] section with parameter active = true, as shown in Figure 5.24.

Figure 5.24 Enabling the Statistics Server in File nameserver.ini

Next, you must set the number of statistics server processes to zero. To do this,
edit the daemon.ini file of your database server (master host in scale-out systems)
in the directory /usr/sap/<SID>/<instance>/<hostname>/. In that file, remove the
entire [statisticsserver] section, including the parameter instances = 1. After
making these adjustments to the configuration files of the target system, you can
simply restart the recovery process.

In the reverse situation, that is, a service missing on the target system, you can
simply add the service to the daemon.ini configuration file of the host. In the case
of the statistics server, you also have to adjust the nameserver.ini file.

Note that the recovery process will leave the instance number and SID of the tar-
get system unchanged. Also, the installation of add-ons, such as the AFL package,

Note

You should check the compatibility of the system landscape prior to starting the recov-
ery. In this case, you can change the configuration with SAP HANA Studio or other rec-
ommended tools. Our procedure should only be used in an emergency.
226

Data Backup and Recovery of the SAP HANA Database 5.4
does not matter. In our case, the AFLs were not installed on the target system
prior to the recovery, and they still will not be afterwards, but they can of course
be installed in the usual way.

Resolving Typical Problems: Case Two

In our second test case, we copy a scale-out system to a system with a smaller
number of worker nodes. Our source system has four worker nodes and one
failover node, whereas the target system only has three worker nodes and no
failover node.

This situation can be resolved, because SAP HANA allows running multiple
instances of the index server process for one database system on the same host.
The relevant number is the number of index server worker processes; we can
ignore any failover nodes.

In order to add a second index server on a given host, you need to modify the dae-
mon.ini file of that host. In section [indexserver.c], set parameter instanceids
= 40. This will add a new index server process that communicates on internal port
3<instance>40.

You can also add multiple additional index server processes on one host. In this
case, set parameter instanceids to a comma-separated list of values starting at 40
with a spacing of 2. For adding three index servers on one host, set parameter
instanceids = 40,42,44 in section [indexserver.c] of the host’s daemon.ini.

Note

For the index server process, there are two key sections in the daemon.ini file: [index-
server] is the section for the one mandatory instance of the process on any SAP HANA
host. You must not make changes to that section. [indexserver.c] is the section for
additional instances of the process on a given host. In the host-specific configuration
files in /usr/sap/<SID>/<instance>/<hostname>/daemon.ini, this section typically does
not exist. When editing the file manually, you can add an entry

[indexserver.c]
instanceids = 40

As before, if you realize the mismatch before starting the recovery, you should make the
necessary changes in the target system by using the Configuration Editor of SAP HANA
Studio.
227

The Persistence Layer5
After applying this configuration change, the recovery can be performed in the
usual way. The recovery process will assign all index server volumes to the con-
figured index server processes. A progress monitor for such a recovery is shown
in Figure 5.25. You can see the recovery progress of two index server processes,
shown in 1, on the second host.

Figure 5.25 Recovery with Multiple Index Servers on One Host

5.4.8 Managing Backups: The Backup Catalog

The set of information that helps the database keep track of all historical data and
log backups is maintained in the so-called backup catalog. It consists of two lists:
the list of all backups that have been performed (including metadata, such as time
or volume IDs, as well as success information) and the list of all backup files that
have been created. Through the unambiguous BACKUP_ID, each backup can be
linked to the list of files it consists of. In the case of log backups, this is a 1:1
228

Data Backup and Recovery of the SAP HANA Database 5.4
relationship (each log backup represents the backing up of exactly one log seg-
ment). In the case of data backups, the single backup process creates multiple files.

In the database, the backup catalog is exposed through two system views: M_BACKUP_
CATALOG contains the list of all performed backups, and M_BACKUP_CATALOG_FILES
reveals all data and log backup files. The views can be joined via field BACKUP_ID.

In the database persistence, the backup catalog is backed up to the configured
location for log backups (configured in parameter basepath_logbackup) every
time that the database writes a data or log backup. In this way, it is available inde-
pendently from the data files and log segments, making sure that as long as the
backup files themselves are available the backup catalog also can be accessed.

The file name of the backup catalog is log_backup_0_0_0_0.<backup_id>. With
every data or log backup, a new version of the backup catalog is written, and old
versions are not deleted automatically.

Because the backup catalog is written also when data backups are created, the sys-
tem will create log backup files (of the backup catalog) even when automatic log
backup is not enabled (e.g., in log mode overwrite).

The backup catalog is used in the recovery process, allowing the database to deter-
mine the best data backup to recover from, and all log backups required for
replaying log entries. It is also essential for housekeeping of the backup files.

Housekeeping: Deleting Data and Log Backups

At some point in time, you will want to start removing old data and log backups
that are no longer needed. You might think that you can simply erase those files
from their storage locations, and technically there is nothing stopping you from
doing this. You should, however, consider the following implications of such
deletions:

Note

If a data backup is overwritten (i.e., if you create another data backup with the same
name in the same location), then the entry of the overwritten backup will be deleted
from the backup catalog.

This is only applicable for file-based backups. When using the BackInt interface, the
naming of backups is delegated to the third-party backup tool.
229

The Persistence Layer5
� Incorrect information in the backup catalog
Because the database does not know that you are deleting files, the information
on available backups in the backup catalog is not updated. The system may
therefore present recovery options that are no longer available.

� Size of the backup catalog
For the same reason, the amount of entries in the backup catalog will continue
growing, making the backup catalog large and potentially slow to search.
Remember that the backup catalog is located in the log backup area and that a
new version is written with every single backup process. A large backup catalog
will waste significant disk space.

� Danger of deleting needed files
If you try to manually determine the backup files to remove, you may wrongly
delete files, for example, log backups that you originally intended to keep for
the purpose of potential recoveries.

The good news is that the database comes with a built-in mechanism for safely
deleting old data and log backups, including the necessary operations on the
backup catalog. For automation, there is an SQL syntax, which we include in Sec-
tion 5.4.10. Here, we introduce the easy-to-use wizard provided in SAP HANA
Studio.

The Backup Editor of SAP HANA Studio (Figure 5.26) gives access to the backup
catalog on its Backup Catalog tab, shown in 1. In the screen section Backup Cat-

alog, shown in 2, all available data backups and storage snapshots are listed.
Available means that the data backup has not been deleted from the backup cat-
alog. In the default view of the table, the backups are sorted by age, with the most
recent backup at the top. If you highlight a data backup, details such as backup
size, original location, file names, and more are shown in the Backup Details area,
shown in 3.

In the rather typical situation in which there is one oldest data backup that you
want to retain, including all options for recovery from this data backup, you can
remove any older data and log backups through a simple procedure:

1. Right-click on the oldest data backup that you want to keep. From the context
menu, shown in 4, choose Delete Older Backups.... This will open a wizard
that will allow you to manage the deletion of all backups that are still listed in
the backup catalog and that cannot be used for a recovery of the backup that
you selected.
230

Data Backup and Recovery of the SAP HANA Database 5.4
2. In the dialog that opens (Figure 5.27, left-hand side; see 1), you can determine
whether you want to only remove the backup information from the backup cat-
alog or whether you also want to physically remove the backups. Physical dele-
tion works for both file-based backups and for third-party tools that implement
the BackInt interface.

3. Once you have made your choice, the system lists all data and log backups
(including backups of the backup catalog) that will be deleted, as shown in 2.
If you click Finish, the system will remove all entries related to these backups
from the backup catalog. If you chose to also physically remove the backup
files, this deletion will be performed asynchronously.

Figure 5.26 Managing Backups and the Backup Catalog in SAP HANA Studio

Note

The physical deletion of file-based backups will attempt to remove the backup files from
their original locations recorded in the backup catalog. If you have moved some of the
files to a different location, the system will ignore this, that is, the files will not be
deleted and the system will not show information or error messages to indicate that
some backup files could not be deleted.

The information on the backup files will be removed from the backup catalog whether
or not all files could be physically deleted.
231

The Persistence Layer5
Figure 5.27 Deleting Older Backups

5.4.9 Sizing the Backup Storage

We can only give a little generic advice on sizing the storage system for your data-
base backups. Simply speaking, the disk space requirements for data backups will
depend on the database size, that is, the payload of the data files, the frequency of
creating data backups, and the retention time of these backups.

The math involved is simple, as can be seen from an example: If you intend to per-
form daily data backups and you always need to keep the backups from the last 30
days, then you will have to plan for approximately 30 times the database payload.

If you already have a database installed with a relevant payload, then you can cal-
culate the expected size of a data backup as shown in Listing 5.7. For proper siz-
ing, you should also have a solid estimate of the database growth in the relevant
timeframe. If the database is not yet filled, your best estimate is that the size of a
data backup will be the same as the expected data size of the database.

The more difficult part is the sizing for log backups, because this depends on the
amount of data changes that occur in the database, which in turn is a unique quan-
tity for each system and timeframe.

When loading data, we have observed that the disk size of log entries created is typ-
ically at least twice the size of the loaded data after compression in SAP HANA; that
is, if you create a column table with data so that the table size in memory is about
10 GB, then the write process will create log entries amounting to at least 20 GB.
232

Data Backup and Recovery of the SAP HANA Database 5.4
At the same time, in a practically idle single-node database system approximately
10 GB of log backups were created in the course of a week.

5.4.10 SQL Syntax for Database Backups

Those administrators who manually manage the backup system will find the wiz-
ards offered in SAP HANA Studio very convenient. In most production operation
scenarios, of course, most administrators will prefer to automate the tasks of cre-
ating and managing backups as much as possible.

If you are already using a backup management solution (backup tool) that sup-
ports the SAP HANA BackInt interface, there can be no doubt: The best choice is
to integrate your SAP HANA databases into your regular backup operations with
this tool.

For all those who are not that lucky, the database offers SQL syntax to create and
manage database backups. In the following short sections, we introduce the typi-
cal usage of these SQL commands. The full documentation is available in the SAP
HANA Administration Guide (and, as of SPS 8, not in the SAP HANA SQL Reference).

In our syntax examples, we will focus on file-based backups only. The SQL syntax
also supports the BackInt interface.

Creating Data Backups

For creating data backups, the system offers the BACKUP DATA statement. The most
important parameter for the statement is the name of the backup to create. You
can choose to either create backup names with the standard file name <file_path>/
<prefix>_<suffix> or with a dedicated directory for each backup set, leading to file
names <file_path>/<suffix>. In the latter case, the <file_path> becomes the custom
part of the backup file names. If a backup of the same name already exists, it will
be overwritten.

Syntax examples for both ways of creating data backups are given in Listing 5.11.

// Generic syntax
BACKUP DATA USING FILE ('<prefix>') [ASYNCHRONOUS]
// Example one: creating files in the configured path
// <basepath_databackup>, with file names
// "BACKUP_NAME_databackup_X_Y"
BACKUP DATA USING FILE ('BACKUP_NAME')
233

The Persistence Layer5
// Example two: creating file with the same name, but in a
// specific directory "/hana/backup":
BACKUP DATA USING FILE ('/hana/backup/BACKUP_NAME')
// Example three: creating files with names databackup_X_Y in
// the directory /hana/backup/BACKUP_ONE/ (if the directory
// does not exist yet, it will be created):
BACKUP DATA USING FILE ('/hana/backup/BACKUP_ONE/')

Listing 5.11 Creating Data Backups Using SQL

While a data backup is running, you can cancel it with the BACKUP CANCEL com-
mand, as shown in Listing 5.12. In order to cancel the backup, you need to know
its backup ID, which you can determine from the backup catalog. In system view
M_BACKUP_CATALOG, you have to find the entry with ENTRY_TYPE_NAME = 'complete
data backup' and STATE_NAME = 'running'.

// Determine the BACKUP_ID of the running data backup:
select BACKUP_ID from M_BACKUP_CATALOG where
 entry_type_name = 'complete data backup' and
 state_name='running'
// Cancel that backup (e.g., ID = 123456789 (integer)):
BACKUP CANCEL 123456789

Listing 5.12 Cancelling a Running Data Backup

Deleting Data and Log Backups

The functionality of the backup catalog wizard in SAP HANA Studio is also avail-
able in SQL; if you have identified the oldest data backup that you want to keep
for the purpose of recovering the database, you can delete all older data and log
backups from the backup catalog and optionally from the file system.

Assuming that the oldest data backup that you want to retain has backup ID
123456789, the SQL syntax needed for deleting any older data backups and any
log backups not required to recover the data backup is given in Listing 5.13.

// Remove all backups "older" than the data backup with
// backup ID 123456789, including physical file deletion
BACKUP DELETE ALL BEFORE BACKUP_ID 123456789 COMPLETE

Listing 5.13 Deleting Backups

Technically, the data and log backups to be deleted can be determined as follows:
For data backups and backups of the backup catalog, all backups can be deleted for
which the backup ID is smaller than the ID of the backup to be retained.
234

Data Backup and Recovery of the SAP HANA Database 5.4
For log backups, the system first needs to read the log position of the data backup
from the backup catalog. It then finds all log backups for which the highest log
position is smaller than the log position of the data backup. This needs to be done
independently for each data volume, because all volumes have their own log
sequences. An SQL query to determine all log backups that may be deleted (again,
with respect to the data backup 123456789) is given in Listing 5.14.

SELECT DISTINCT
 l.destination_path FROM m_backup_catalog_files AS l,
 (SELECT * FROM m_backup_catalog_files
 WHERE backup_id = 123456789) AS d
 WHERE l.destination_type_name = 'file'
 AND ((l.last_redo_log_position IS NOT NULL
 AND l.source_id = d.source_id
 AND l.last_redo_log_position < d.redo_log_position)
 OR (l.source_type_name = 'catalog'
 AND l.backup_id < d.backup_id))
 ORDER BY l.destination_path asc;

Listing 5.14 Finding All Log Backups That May Be Deleted

Automating Backup Management

With the SQL syntax for backup management, it is easy to automate the creation
and management of database backups. One simple way is to use some external
scheduling mechanism to invoke the hdbsql tool in order to create, list, or delete
backups.

An example of such a backup management system is provided and documented in
SAP Note 1651055. That solution uses a bash script for orchestrating data backups
and log backup management. It can be scheduled using the cron daemon of the
Linux operating system of the SAP HANA database server.

5.4.11 Relevant System Views and Parameters for Backups

The system views in Table 5.9 contain information on the backup system.

View Name Description

M_BACKUP_CATALOG List of all data backups, log backups, snapshots, and
backup catalog backups

M_BACKUP_CATALOG_FILES List of all individual backup files

Table 5.9 System Views Related to Data Volumes and Savepoint
235

The Persistence Layer5
For the full documentation of these views, refer to the SAP HANA SQL and System
Views Reference available at https://help.sap.com/hana_platform.

Multiple parameters are relevant for the configuration of the backup system, as
shown in Table 5.10. For full documentation of these parameters, refer to the SAP
HANA Administration Guide available at https://help.sap.com/hana_platform.

5.5 Disaster Recovery Setups and System Replication

SAP HANA offers technologies to increase the availability of the database system
if this is required by the SLAs of the IT department. Such availability enhance-
ments usually serve at least one and typically both of the following purposes:

� Protect against loss of data
Data may be lost through physical damage of the system’s hardware compo-
nents, including disasters that may disable entire data centers; by human
actions that affect entire data files (file deletion or similar); or even through
maleficent manipulation, destruction, or theft.

Parameter Section File Description

basepath_
databackup

[persistence] global.ini Default file system path for
data backups

basepath_
logbackup

[persistence] global.ini File system path for log
backups

enable_automatic_
log_backup

[persistence] global.ini Whether or not to write log
backups in log mode normal

log_mode [persistence] global.ini Must be normal to enable
log backups

log_backup_
timeout_s

[persistence] global.ini Maximum wait time before
the system automatically
backs up a log segment in
state Writing

data_backup_max_
chunk_size

[persistence] global.ini Limit the file size of indivi-
dual files in a data backup
(leads to automatic
splitting); value in MB

Table 5.10 Database Parameters Related to the Transaction Logs
236

Disaster Recovery Setups and System Replication 5.5
� Minimize business downtimes of the IT landscape
There can be planned downtimes (updates, other maintenance, etc.) and un-
planned downtimes (emergency updates, software or hardware failures, etc.).

In general, there are three techniques available in the world of SAP HANA to
address some or all of these requirements, as shown in Table 5.11. The primary
intention of such setups is the protection against so-called disasters, which also
explains the terms Recovery Point Objective (RPO: How many hours of database
content may be lost in a disaster case?) and Recovery Time Objective (RTO: What is
the expected downtime of a single incident?). In Table 5.11, we distinguish
between the technical downtime that ends as soon as the database system is avail-
able again for clients and the business downtime that ends as soon as business
applications can operate again with acceptable performance. In most availability
solutions, the business downtime is significantly higher than the technical down-
time because of the need to load columnar tables into the main memory in order
to reach good performance.

Of the availability techniques in Table 5.11, the standby setup with backup ship-
ment is a trivial setup, and we will not discuss it further. The other two options will
be introduced in the following two sections. Because the topic is relevant only for
a rather small fraction of systems, we will be comparatively brief, with a clear focus
on system replication. A generic overview of the two techniques is shown in Figure
5.28. Both are based on two mostly identical SAP HANA servers in two different
data centers, of which the primary one is active, that is, currently in use, whereas
the secondary is on standby, receiving data updates from the primary system.

Option Protects against RPO RTO

Standby setup with
backup shipment

Loss of data A few hours Up to about one hour

Storage replication Loss of data,
unscheduled
downtimes

Zero
(synchronous),
a few seconds
(asynchronous)

Close to zero
(technical downtime),
tens of minutes
(business downtime)

System replication Loss of data,
scheduled and
unscheduled
downtimes

Zero
(synchronous),
a few seconds
(asynchronous)

Close to zero (technical
and business downtime)

Table 5.11 High-Availability Options in SAP HANA Systems
237

The Persistence Layer5
In SAP HANA system replication, shown in 1, the SAP HANA software of the pri-
mary system not only writes committed data to its own transaction logs but also
sends them to the secondary database, either synchronously or asynchronously.
In regular intervals, the primary system also sends snapshot deltas, that is, collec-
tions of all changes since the last delta shipment. This solution is a feature of the
SAP HANA software, independent from the choice of hardware partner.

Figure 5.28 System Replication and Storage Replication

In storage replication, shown in 2, the data replication is achieved by means of
storage mirroring independently from the database software. Several hardware
partners offer certified solutions for storage replication.

In both setup types, it is possible to not only use the database server in Data Cen-
ter Two as a standby system (which is going to be idle most of the time); you can
also implement an additional set of storage volumes, which can be used for oper-

SAP HANA Server 1

Data & Processing Layer

Data and Log Volumes

Data
Log

SAP HANA Server 1

Data & Processing Layer

Data and Log Volumes

Data
Log

SAP HANA Server 2

Data & Processing Layer

SAP HANA
System
Replication

Storage
Replication

Data Center One Data Center Two

Ship deltas

Synchronous or
asynchronous
writing during

commit

Synchronous or
asynchronous
mirroring on
storage level

Production

Data
Log

Non-Prod

Data
Log

Production Non-Prod

Request snapshot deltas

SAP HANA Server 2

Data & Processing Layer

Production

Data
Log

Non-Prod

Data
Log

Production Non-Prod
238

Disaster Recovery Setups and System Replication 5.5
ating nonproduction systems. In normal operation, while the SAP HANA server in
Data Center One is in production use, the production data will be replicated to the
primary storage volumes, shown in 3, of the database in Data Center Two. Non-
production database instances will be using the secondary storage volumes,
shown in 4. In a failover situation, the nonproduction instances in Data Center
Two must be shut down, and the production instance must be started.

5.5.1 Storage Replication

Storage replication is a technology in which two identical SAP HANA database
servers are located in two data centers that are sufficiently far apart to protect
against disasters affecting both of them but close enough to allow synchronous
mirroring of the storage systems. Typical rules of thumb limit the distance some-
where in the range of 50 km to 100 km (30 to 60 land miles). In early 2014, the
first hardware setups with asynchronous storage replication were made available;
they overcome the latency problem at the cost of an RPO greater than zero (which
is an intrinsic property of any asynchronous replication method). All validated
hardware solutions for storage replications are listed in SAP Note 1755396.

In this system, one side (arbitrarily called DC 1) is fully active, that is, the database
is online and used in production. In the other data center (DC 2), the database is
not online. The storage systems of the two databases are connected with some
kind of mirroring technology, either on a file system or on a block device level.
The precise setup depends on the choice of hardware partner.

In a disaster case that disables DC 1, a switchover procedure must be executed in
which the SAP HANA database in DC 2 is started and all client applications are
redirected to using the database in DC 2.

5.5.2 System Replication

The fundamental design difference between SAP HANA system replication and
storage replication is that the former is a software solution that is part of the SAP
HANA database software, whereas the latter is based on storage technologies. Sys-
tem replication therefore works independently from the chosen hardware tech-
nology. It is recommended (and required in order for the system to be supported
by SAP) to add dedicated network components for the cross-site data shipment,
but technically this is not necessary to set up a working system.
239

The Persistence Layer5
The basic working principle of system replication is based on two different types
of data shipment from the primary to the secondary system:

� Snapshot shipments
In regular intervals, the primary system creates a snapshot and sends those
pages that have been modified since the last snapshot (a delta snapshot) to the
secondary system. These delta shipments are used to update the in-memory
data image of the secondary system.

Snapshot shipping is also used for the initial data transfer.

� Log shipments
Whenever transactions are committed in the primary system, the log entries
are also sent to the secondary system. These log entries are written to the disk
of the secondary system, but they are not replayed in memory. Therefore, the
in-memory image of the secondary system is always as current as the latest
delta snapshot. In a failover situation, the log entries received since the last
delta snapshot shipment need to be replayed.

Three different replication modes are supported, with the following behavior
during the commit phase:

� Synchronous on disk (mode name sync): In order for a commit to be suc-
cessful, data must be written to disk on the primary system and on the sec-
ondary system. This mode has the highest risk protection, but also highest
latency in the commit phase.

� Synchronous in memory (mode name syncmem): The secondary system
acknowledges the commit as soon as it has received the log entries but
before writing them to disk. This mode can reduce the latency by a tiny frac-
tion at the added cost of reduced risk protection.

� Asynchronous (mode name async): The primary system sends the log
entries to the secondary system but does not wait for a response. This mode
is necessary to achieve acceptable commit times when the distance between
the two data centers is too big—usually larger than 100 km/60 miles.

In SPS 8, a fully synchronous mode was introduced in which a commit will be on
hold until the secondary site has acknowledged it—without the time-out that
exists in the synchronous modes sync and syncmen. Details are given in the SAP
HANA Administration Guide.

In addition to providing a standby system with failover capabilities—which is by
and large similar to the functionality provided with storage replication—system
replication creates further options to increase the system availability.
240

Disaster Recovery Setups and System Replication 5.5
It is possible but not mandatory to operate system replication in warm standby
mode, in which the regular snapshot shipment is used to update the in-memory
data image on the secondary system. In this way, the business downtime can be
minimized, because very close to 100% of the data is already loaded into the
memory of the secondary system at any point in time and the phase of memory
warm-up is usually negligible.

If the secondary system is on warm standby, then there is also a procedure for per-
forming near-zero-downtime upgrades of the database software by updating the
secondary system, performing a planned failover, registering the former primary
as the new secondary, and upgrading it.

With the release of SAP HANA SPS 7, the first steps have been made to support
multiple secondary systems. In SPS 7, a chain consisting of a primary system with
one synchronously coupled secondary and an asynchronously coupled tertiary
system is possible.

Hardware Prerequisites for System Replication

System replication requires two fully functional SAP HANA servers, which should
have the same hardware characteristics. In most cases, customers will install two
identical servers.

System replication works with single-node instances as well as scale-out systems.
In a scale-out system, the number of worker hosts has to be identical in both data
centers. It is not possible to operate system replication with multiple index serv-
ers installed on one host.

The number of failover hosts in a scale-out setup is technically irrelevant for the
functionality of system replication. You can build setups with one or more
failover hosts on the primary site and no failover hosts on the secondary. This
will, however, mean that no failover host is available in the “disaster” case, so you
will have to fall back to the original primary site as soon as possible for optimal
availability. If you plan to operate the primary system alternatingly in data centers
one and two, both systems should be identical.

A crucial setup aspect is the network connection between the two data centers. In
synchronous mode, network latency can significantly impact commit times and
therefore write performance. The network connectivity should best be realized
using a dedicated line with as few network hops as possible. SAP formulates no
241

The Persistence Layer5
generic requirement for the network throughput that can be reached on this line.
Instead, it is recommended that the network throughput be sufficient to perform
the initial data shipment within one day. For 1 TB of data content, you will need
a sustained network throughput of about 15 MB/s.

For a detailed discussion of the network setup, please refer to the documentation in
the SAP HANA Administration Guide available at https://help.sap.com/hana_platform/
and the related SAP how-to guide at https://scn.sap.com/docs/DOC-47702.

Software Requirements for System Replication

System replication can only be set up between two installed SAP HANA instances
that meet the following requirements:

� Both instances must have the same SID.

� Both instances must have the same instance number, <i>.

� Instance number <i>+1 must be free on all involved hosts.

� The host names of all SAP HANA hosts in the setup must be unique.

� The software version of the secondary system must be the same as or higher
than the software version of the primary system.

� A valid license must be installed on the primary system. License information
will be replicated to the secondary system.

� The configuration of both systems must be the same. This is particularly impor-
tant for the list of configured processes (embedded statistics service, enabled
script server, scaled XS engine, etc.). If the configuration of one instance is
changed, then the changes must be manually applied on the other instance as
well.

� An initial data backup must have been created on the primary side.

From these prerequisites, it follows directly that it is not possible to set up system
replication between two database instances installed on the same host.

Setting Up System Replication

The initial configuration of system replication consists of only a small sequence of
steps. For the process, you will need to enter the credentials of the <sid>adm
Linux user of the primary and secondary SAP HANA instances.
242

Disaster Recovery Setups and System Replication 5.5
There are command-line tools for setting up system replication and performing
failover actions, and the functionality has also been integrated into SAP HANA
Studio. In our examples, we will make use of the SAP HANA Studio interface,
showing system replication between two scale-out systems. The command-line
syntax is given in the SAP HANA Administration Guide available at https://
help.sap.com/hana_platform/ and the excellent how-to guide on system replication
that is available on SCN at https://scn.sap.com/docs/DOC-47702.

Before you start setting up system replication, you can shut down the secondary
system. The overall setup procedure then consists of the following steps:

� Create data backup on primary side
It is generally recommended to create a data backup on the primary site directly
before setting up system replication. If, however, no data backup has ever been
made for the primary system, then you must create one now.

� Start the system replication wizard
Right-click on the system entry of the primary system in the Systems view of
SAP HANA Studio, and choose System Replication... from the context menu.

� Enable system replication on the primary site
This step makes the necessary definitions on the primary site so that the SAP
HANA system can be part of a system replication setup. In the wizard (Figure
5.29), choose Enable System Replication, as shown in 1. In the next step of the
wizard, shown in 2, you must enter a logical name for the primary system.
Typically, this might be the location or name of the primary data center.

The final screen of the wizard shows a summary, and you can start registration
by clicking the Finish button. Registration of the primary system will take a
few seconds, after which the wizard will be closed.

Figure 5.29 Enabling System Replication on the Primary Site
243

The Persistence Layer5
� Register the secondary system
If the secondary system is still online, you must stop it now.

Restart the system replication wizard (again, for the primary system), and
choose Register Secondary System. In the wizard (Figure 5.30), you have to
enter a logical name, as shown in 1, for the secondary data center, and choose
the replication mode, as shown in 2 (synchronous, synchronous in memory,
or asynchronous). You also need to configure the host name of the secondary
system, as shown in 3 (in scale-out systems, the name of the master host), and
enter the user name and password of the <sid>adm user on the secondary sys-
tem, as shown in 4.

Registration will only set up the secondary system so that it will be part of the
system replication setup as soon as it starts; the registration itself will not trans-
fer any data. This data transfer happens as soon as you start the secondary sys-
tem. It is normally a good choice to automatically start the secondary system
after registration, by selecting the checkbox shown in 5.

Figure 5.30 Registering the Secondary System

When you click the Finish button, the registration, system start, and initial data
shipment will be executed. From this time on, system replication between the
two systems will be active.
244

Disaster Recovery Setups and System Replication 5.5
While system replication is active, the secondary system is started in replication
mode and cannot be accessed on its application interfaces, such as the SQL port.
Communication between primary and secondary system happens on a set of ports
reserved for system replication. Administration actions, such as stopping the sec-
ondary system, can be performed via the SAP Host Agent on the secondary sys-
tem, so this type of functionality is also available in SAP HANA Studio.

Monitoring System Replication

The entire system replication setup can be monitored from the primary system. A
simple status overview is given on the Overview screen of the Administration
Editor for the primary system, as shown in Figure 5.31.

Figure 5.31 Overview Screen Showing System Replication Status

Our screenshot shows the System Replication Status, as shown in 1, during the
phase of initializing the secondary system, that is, during the initial data transfer,
so that not all services are synchronized already, as shown in 2. If you click on the
link for System Replication Status, as shown in 1, forward navigation takes you
to the System Replication area of the Landscape tab in the Administration Editor.

Note

Setting up system replication will overwrite the entire contents of the secondary system.
This includes all database users. Also, the password of the SYSTEM user in the secondary
system will be changed to the one in the primary system.
245

The Persistence Layer5
This monitoring area simply displays the contents of system view M_SERVICE_REP-
LICATION. With this view, you can monitor the progress of the initial data ship-
ment (Figure 5.32), and you can find aggregated information on the data ship-
ment between the primary and secondary systems.

Figure 5.32 Monitoring Replication during Initialization

In order to support automatic detection of a system status that requires a take-
over, SAP provides a Python tool called landscapeHostConfiguration.py, located
in the file system path ${DIR_INSTANCE}/exe/python_support on the database
server. The <sid>adm user on the primary system can invoke this script and inter-
pret the return value. To invoke the script, use the commands given in Listing
5.15.

Run the landscapeHostConfiguration.py script:
python ${DIR_INSTANCE}/exe/python_support \
 /landscapeHostConfiguration.py
Output the return value:
echo $?

Listing 5.15 Using Python Scripts to Monitor System Replication

A takeover is only necessary if the return value is 1, indicating error. Because this
tool will not be able to detect all types of situations requiring a takeover, SAP rec-
ommends always using third-party tools for availability monitoring of system rep-
lication setups.

On the command line, you can check the system replication status with the com-
mand hdbnsutil -sr_state (execute as <sid>adm Linux user on the name server
master host of the current primary system).
246

Disaster Recovery Setups and System Replication 5.5
Working Principles and Parameterization of System Replication

At the heart of system replication are two methods of providing data to the sec-
ondary system: log replication and delta snapshot shipping. We will discuss these
two processes in more detail, including the available parameterization options.

Unless stated otherwise, configuration parameters that we will mention in the fol-
lowing are located in the section [system_replication] of the global.ini configu-
ration file.

Replication Mode
In order to guarantee full data redundancy between the primary and secondary
systems, all write transactions must be replicated to the secondary system upon
commit at the latest. This log replication can be performed synchronously or asyn-
chronously, as determined by the replication mode.

This replication mode can be modified after the initial setup without requiring a
new initialization. This configuration must be made on the secondary system; it
will be automatically applied on the primary. Even though it is maintained in the
database configuration, on the secondary system you must not change it in the
usual way (editing the configuration with SAP HANA Studio or a similar method).
Instead, the command-line utility hdbnsutil has to be used as follows:

� Determine the host of the secondary system that is currently home to the mas-
ter name server. You can see it in the Landscape � Hosts view of the Adminis-
tration Console in SAP HANA Studio, or you can retrieve this host name with
the following SQL query:

SELECT host FROM m_landscape_host_configuration
 WHERE nameserver_actual_role = 'MASTER'

� Log on to the Linux OS of that this master name server host of the secondary
system with the <sid>adm user.

� Stop the current secondary system, for example, by using the sapcontrol com-
mand:

/usr/sap/hostctrl/exe/sapcontrol –nr <instance> -function StopSystem HDB

� Set the replication mode on the secondary system; execute the following com-
mand:

hdbnsutil -sr_changemode --mode=sync|syncmem|async

� Start the secondary system again, for example, by using the sapcontrol com-
mand:
247

The Persistence Layer5
/usr/sap/hostctrl/exe/sapcontrol –nr <instance> -function
StartSystem HDB

Note that the replication mode must always be configured on the secondary sys-
tem, from which the setting will be propagated to the primary.

Log Replication Timeouts
If log replication is temporarily interrupted, for example, by a network discon-
nect, the system does not wait indefinitely in any of the replication modes.
Instead, there is a timeout configured in parameter logshipping_timeout with a
default value of 30 seconds. After this timeout, write transactions will continue
without log replication.

The system will test the network connectivity automatically in intervals specified
by the parameter reconnect_time_interval (the default value is 30 seconds). As
soon as the secondary system is reachable again, a new delta snapshot will be
shipped to the secondary system, and log replication will be resumed.

Snapshot Shipping
With SPS 8, SAP HANA does not replay the shipped log entries on the secondary
site. In order to provide memory preloading on the secondary site and also to
most efficiently build the data volumes there, delta snapshots of the data image
are shipped in regular intervals from the primary site. These shipments must be
requested by the secondary site.

The decision to request such a delta shipment is based on two parameters. A delta
snapshot is obtained at the latest after datashipping_min_time_interval seconds
(default value 600 seconds). If, however, a high log volume has accumulated since
the last delta shipment, the secondary will request a snapshot earlier. The thresh-
old value for the log volume is determined in the parameter datashipping_
logsize_threshold (the default value is 5368709120 bytes, or 5 GB).

Delta snapshots are requested by all processes on the secondary system individu-
ally so that not all shipments will happen at the same time.

Note

Unless, that is, the fully synchronous version of synchronous replication is used, in which
case transactions on the primary system will be blocked when log replication fails. See
the how-to guide on SCN at https://scn.sap.com/docs/DOC-47702.
248

Disaster Recovery Setups and System Replication 5.5
A data snapshot for system replication can maximally remain valid for the time
specified in the parameter datashipping_snapshot_max_retention_time (the
default value is 120 minutes). For more details on the implications, see our dis-
cussion in the “Performing a Takeover” section.

Preloading Tables on the Secondary System
Depending on your requirements, you may choose to preload tables in the sec-
ondary system’s memory or not. Strictly speaking, this only applies to column
tables, as the row store will always be preloaded on the secondary system.

If you set preload_column_tables to true on the primary and secondary system,
then the primary system will include information on the loaded state of column
tables with the delta snapshot shipments, and the secondary system will keep
these tables loaded in its memory. This behavior is particularly important for use
cases in which more data may be loaded in the database than fits into the main
memory (e.g., SAP BW on SAP HANA with hot and warm data management).

Performing a Takeover

If a system takeover must be performed, you need to execute the following steps:

� Perform a takeover on the secondary system
In SAP HANA Studio, right-click on the secondary system in the Systems view,
and choose System Replication... from the context menu. In the system repli-
cation monitor, choose Perform Takeover, as shown in 1.

On the next screen of the wizard, shown in 2, it is usually a good choice to
stop the original primary system (if it is still online), because this makes it most
probable that you can successfully register the old primary as the new second-
ary without needing to perform a full initial data load. If you choose to stop the
old primary system, you will have to enter the credentials of its <sid>adm
Linux user.

Once you click the Finish button, the secondary system will start up in normal
mode and be fully available for applications to connect. If the old primary is
not stopped, it will remain online.

� Make the old primary system operational again
If the takeover was triggered because of an error situation on the old primary
system, the you will have to find the root cause of the error situation and solve
the problem.
249

The Persistence Layer5
Figure 5.33 Performing a Takeover

� Register the old primary as the new secondary system
If the old primary system is still online, you must stop it now.

Using the system replication wizard of the new primary system, register the
old primary as the new secondary system.

Note that in this step you also have to the set the replication mode again; the
originally chosen value is not remembered.

Probably the most interesting question about the registration of the old primary
as the new secondary system is whether or not the data area of the old primary
system can be used as a basis for delta shipments. The answer to this question will
have severe implications on the time needed for this registration.

The good news is that in many situations you will be able to continue using the
original data image in the old primary system. We need, however, to distinguish
the following different situations:

� If the data volumes of the old primary system have been corrupted, then a full
initialization is required.

� If the old primary system has remained online following the takeover, re-use of
its data area might be possible; the snapshot from the last delta shipment
before the takeover must still be available, because any delta shipment can only
be based on that snapshot. The snapshot will remain active for the time period
configured in the parameter [system_replication] � datashipping_snapshot_
max_retention_time from the configuration file global.ini, which defaults to
250

Disaster Recovery Setups and System Replication 5.5
120 minutes. Hence, if you register the old primary system within this time
period you will be able to reuse the last snapshot for new delta shipments.

� If the old primary system has been shut down in the course of the takeover and
is not restarted before the system is registered as the new secondary, then you
will always be able to reuse its data image for new delta shipments.

� If the old primary is stopped after takeover but restarted before being regis-
tered as the new secondary, the snapshot is invalidated if it is older than
datashipping_snapshot_max_retention_time. The time is measured from the
time of snapshot creation, even if the system was offline for most of the time.

� If you have disabled system replication on the old primary system following
the takeover, the snapshot will be dropped with the next system start.

You can check whether or not the original data image is re-used in the trace files
of the index server processes of the new secondary. Among the entries written
during the first system start following registration as secondary, look for an entry
like the one given in Listing 5.16.

PersistenceManag PersistenceManagerImpl.cpp(01821) : replication
snapshot is compatible with primary -> sync primary and secondary
with delta shipping!

Listing 5.16 Trace File Entry if Data from Old Primary Can Be Reused

To enable a seamless reconnect of client applications, the recommended methods
are IP redirection or DNS redirection, depending on your network configuration.

Near-Zero-Downtime Upgrades with System Replication

A system replication setup can be used for updating the database software with
close to zero downtime. On a very high level, the procedure consists of updating
the secondary system, performing a takeover, stopping the old primary, updating
the old primary, and re-registering the old primary as the new secondary system.
There are, however, a few important details to take care of:

� Preparation: Create user store entries
For reasons we will explain in one of the following items, the database must
not be restarted automatically in the course of the update of the old primary
system. Instead, it should only be started when the old primary is registered as
the new secondary. This means that one step that is usually part of the update
251

The Persistence Layer5
procedure will now automatically be performed as part of the restart after reg-
istration as the new secondary. This step is the importing of delivery units into
the database, and for this step the SYSTEM user password is required. The sys-
tem replication process will intrinsically make use of the hdbuserstore to
obtain these credentials with a user store key named SRTAKEOVER. We need to
install this key with the SYSTEM user credentials on all hosts of the system rep-
lication setup.

Log on to each host of the setup with the <sid>adm user, and run the following
command:

hdbuserstore SET SRTAKEOVER <host>:<port> SYSTEM <password>

<host> must be the external hostname of the host; <port> is the SQL port of the
index server: 3<instance>15; and <password> is the password of the SYSTEM
user.

� Preparation: Enable column table preload
Although not strictly necessary in a purely technical sense, having the column
tables preloaded is a requirement for minimizing the business downtime dur-
ing the upgrade.

� Update the secondary system
Run this update in whatever way you prefer. Our personal choice would be the
hdblcm/hdblcmgui tool. It is acceptable and recommended to restart the second-
ary system as part of the update procedure.

� Wait until secondary is in sync again
The update of the secondary system causes a downtime of this system. After its
restart, the system will be synchronized again with the primary. Wait until this
process has finished, for example, by using monitoring view M_SERVICE_REPLI-
CATON or the command hdbnsutil -sr_state.

� Perform a takeover
Perform a takeover on the secondary system, and make sure to shut down the
old primary in the course of the takeover.

� Upgrade the old primary without restart
Upgrade the old primary system. You have to absolutely make sure not to
restart the old primary as part of the update. When using the hdblcm/hdblcmgui
tools, the command-line option --hdbupd_server_nostart suppresses the
restart. Restarting the system before it is registered as the new secondary might
invalidate the data image so that system replication can only be resumed after
252

Disaster Recovery Setups and System Replication 5.5
a full initialization. Depending on the database size, such a full initialization
might last an unacceptably long time.

� Register the old primary as the new secondary and restart it
This brings the system replication setup to fully functional replication again.

For full zero-downtime upgrades, the client connections must not be terminated
when the takeover happens. Recent SAP NetWeaver systems (SAP NetWeaver 7.40
SP 5 or higher, with SAP Kernel 7.41 or higher) offer such a connectivity suspend
feature, described in SAP Note 1913302 and a document at www.saphana.com/docs/
DOC-4358.

Further Landscape Options

In addition to the standard setup involving one primary and one secondary sys-
tem, there are further landscape configurations possible with system replication.
We mention these here for completeness but without further discussion. Details
can again be obtained from the SAP HANA Database Administration Guide at
https://help.sap.com/hana_platform/ and the how-to guide on SCN at https://
scn.sap.com/docs/DOC-47702 (“How to Perform System Replication for SAP HANA”).

In multitier replication, three systems can be connected in a chain, with synchro-
nous replication between the primary and secondary system and asynchronous
replication from the secondary to a tertiary.

It is also possible to operate nonproduction systems (e.g., development or test sys-
tems) on the secondary hardware. In this case, a fraction of the resources (about
10%) will still be needed for the system replication, but the remainder is avail-
able for nonproduction instances. Dedicated storage volumes are required for
the data and log files of the additional instances; they cannot use the production
storage system.

When using the secondary site for nonproduction instances, column tables must
not be preloaded on the secondary system. In a takeover situation, the nonpro-
duction instances must be shut down. Depending on the overall setup, you might
make provisions to operate these instances on either side of the setup.

System Views and Parameters for System Replication

In SAP HANA SPS 8, the only relevant system view for system replication is
M_SERVICES_REPLICATION, which offers information on the replication state of
253

The Persistence Layer5
each process/volume as well as aggregated statistics on the log and snapshot
data shipments.

The most important parameters for system replication are given in Table 5.12. All
of these parameters must be set to equal values on both sides of the setup in order
to ensure seamless operation following a takeover.

5.6 Summary

Having finished this chapter, you have gained insight into how SAP HANA pro-
tects your data and ensures durability. As with any other database platform,
implementing and monitoring an effective backup strategy is key to protect
against data loss and is the most important duty of any DBA.

Parameter Section File Description

logshipping_
timeout

[system_
replication]

global.ini Maximum wait time for response
from secondary during commit
(in seconds).

reconnect_time_
interval

[system_
replication]

global.ini Time interval for trying to recon-
nect after communication failure
(in seconds).

datashipping_min
time_interval

[system_
replication]

global.ini Minimum time interval between
two delta snapshot shipments (in
seconds).

datashipping_
logsize_threshold

[system_
replication]

global.ini If the log volume since the last
delta snapshot exceeds this
quantity (in bytes), a new delta
snapshot will be requested.

datashipping_
snapshot_max_
retention_time

[system_
replication]

global.ini Maximum retention time in the
primary system of the last delta
snapshot (in minutes).

preload_column_
tables

[system_
replication]

global.ini Whether or not column tables
shall be preloaded on the sec-
ondary system for warm standby
(values true or false).

Table 5.12 Relevant Parameters for System Replication
254

The largest single server you can buy may not contain enough main mem-
ory to hold all your data. To allow growing beyond the limits of single
servers, SAP HANA offers a concept for setting up distributed database
systems called “scale-out.”

6 Scale-Out Systems and High Availability

In SAP HANA, you can create database systems that span multiple physical servers
(hosts), as shown in Figure 6.1. These hosts are interconnected with a dedicated
internal network, and they all access a common file system on which the data and
log volumes for all database processes of all hosts are located.

Figure 6.1 Schematic View of a Scale-Out Setup

Volumes of Node nVolumes of Node 2

Host 1

CPU & RAM

Volumes of Node 1

Data
1

Log
1

Data
2

Log
2

Data
n

Log
n

…

Common File System

Host 2

CPU & RAM

Host n

CPU & RAM
…

Standby Host

CPU & RAM

SA
P

 H
A

N
A

 S
ys

te
m

Database Clients (HTML/XMLA)

HTTP Proxy

Load Balancing

Database Clients (SQL/MDX)

Internal Network
255

Scale-Out Systems and High Availability6
The hosts of a scale-out system are built from the same core components (e.g.,
CPU generation) as those of single-node systems. The overall server form factor of
scale-out systems, however, is usually different from that of single-node systems
of the same hardware vendor (as always, there are exceptions).

The scale-out architecture is completely transparent to connecting client applica-
tions; they simply interact with one database system. Distributed execution and
initial data distribution are handled internally by the database. Application devel-
opers or warehouse architects will often prefer to influence the data distribution
in order to optimize the overall system performance (see the discussion in Chap-
ter 9), but for the basic functionality, not even this is absolutely necessary.

When outlining the architecture of SAP HANA systems in Chapter 1, we invested a
number of pages in explaining fundamental concepts involved in scaling SAP HANA
systems. We encourage you to flip back to Chapter 1 and browse again through Sec-
tion 1.5 to refresh your memory of the foundation of scale-out instances.

In the current chapter, we will discuss aspects of database monitoring and admin-
istration that are specific to scale-out systems, with the exception of installation/
update (discussed in Chapter 3) and data distribution (discussed in Chapter 9). We
will start with some more details of the architecture of distributed systems,
including related monitoring aspects, followed by information on adding or
removing hosts. The last two sections are dedicated to high-availability features
and specific aspects of client connectivity in scale-out systems.

6.1 Scaling Out SAP HANA Systems

If an SAP HANA system is scaled out, then the database functionality is stretched
across all worker nodes in the setup. Therefore, all fundamental database pro-
cesses must be available on all worker nodes. By fundamental processes, we refer
to those processes that are essential to provide the core database functionality of
managing and processing data, that is, the index server process with related pro-
cesses (compile server and preprocessor, as well as script server if enabled in the
system) and the name server. The daemon process is also active on each host to
enable the start and, if required, automatic restart of the database processes. In
Figure 6.2, we show the process configuration for all types of nodes in a scale-out
system, indicating in bold if a process is optional on some node or may have dif-
ferent roles on different nodes of the setup.
256

Scaling Out SAP HANA Systems 6.1
Figure 6.2 Database Processes in a Distributed System

With this process-distribution pattern in mind, we now look into how this can be
broken down and applied to your installation. In this section, we will discuss con-
ceptual aspects, such as the different types of nodes, the special role of the name
server, and distributed persistence as well as the practical questions of adding and
removing hosts to the database. Understanding these topics will allow you to suc-
cessfully manage SAP HANA scale-out systems.

6.1.1 The Different Nodes of a Scale-Out System

In a scale-out system, there are three different types of nodes, determined by the
role of the index server process. Two of these, the master and slave nodes, are

Database Clients (HTML/XMLA)

HTTP Proxy

Load Balancing

Host 1

Index Server
(Master)

XS Server, wdisp

Name Server
(Active Master)

Preprocessor

Compile Server

Statistics Server
(Optional)

Script Server
(Optional)

Daemon

Host 2

Index Server
(Slave)

XS Server, wdisp
(Optional)

Name Server
(Read Only)

Preprocessor

Compile Server

Script Server
(Optional)

Daemon

Host n

Index Server
(Slave)

XS Server, wdisp
(Optional)

Name Server
(ReadOnly)

Preprocessor

Compile Server

Script Server
(Optional)

Daemon

Standby

Index Server
(Standby)

Name Server
(ReadOnly)

Preprocessor

Compile Server

Script Server
(Optional)

Daemon

Database Clients (SQL/MDX)

Common File System

Data
1

Log
1

Data
2

Log
2

Data
n

Log
n

SA
P

 H
A

N
A

 S
ys

te
m

…

…

257

Scale-Out Systems and High Availability6
classified as worker nodes, because they play an active role in the database oper-
ation, whereas the standby nodes only come to action in the case of component
failures.

� Master node
In each scale-out system, there is exactly one master node (Host 1 in Figure 6.2).
This is the node with the master index server. The initial location of the master
node is determined at the install time of the system; it is located on the “first” host
of the system—the host on which the installation program was started. Any hosts
added during the installation are added as slave or standby nodes.

The master index server has a number of special responsibilities, such as man-
aging the metadata of the database catalog, being the master transaction man-
ager, or owning the row store (in all common usage scenarios).

� Slave nodes
All additional worker nodes (Hosts 2 through n in Figure 6.2) in a scale-out sys-
tem are so-called slave nodes, with an index server running in slave mode. The
term slave should not be misunderstood as signaling data redundancy or any-
thing similar. It simply means that the node does not have the master index
server and thus does not manage metadata or master transactions.

� Standby nodes
In order to address the increased likelihood of component failures in a scale-out
system, redundant hardware can be added in the form of standby hosts with a
standby node. See Section 6.2 for a detailed discussion of this concept.

The mapping of nodes to hosts can change during the lifetime of a scale-out sys-
tem, as will be explained in Section 6.2. At any point in time, the configuration
and current state of the system landscape can be monitored in the Administration
Editor of SAP HANA Studio (see Figure 6.3). On the Landscape tab, as shown in
1, of the Administration Editor, choose the Hosts subtab, as shown in 2.

This view shows all the hosts in the database system with the Configured, as
shown in 3, and Actual, as shown in 4, Index Server Role. In the same way, the
Configured, shown in 5, and Actual, shown in 6, Name Server Roles are dis-
played; see Section 6.1.2 for an explanation of these roles. Configured refers to
the settings made during system installation. Strictly speaking, however, this con-
figuration can also be modified in a wizard that can be accessed by clicking the
Configure Hosts For Failover Situation button, shown in 7. Under normal cir-
cumstances, it will not be necessary to modify this configuration.
258

Scaling Out SAP HANA Systems 6.1
The Index Server Role (Actual) section, shown in 4, indicates the present situa-
tion, which may be different from the configured one if a failover has happened
since the last system restart.

At the front of the table, column Active, shown in 8, shows whether the pro-
cesses of the database instance on the given hosts are all active (YES) or in another
state, such as STARTING or STOPPING.

Figure 6.3 Host Information in a Scale-Out Instance

In the terminology of hosts and nodes that we introduced earlier, we can interpret
the meaning of the column Host Status, shown in 9, as follows: This column
indicates whether or not the node on the given host fulfills the configured role of
a worker node (OK), a different role than configured (INFO), a standby role
(IGNORE), is nonoperational but expected to be operational pending a failover or
startup (WARNING), or is not operational at all (ERROR). The system is fully oper-
ational if all hosts are in state OK, INFO, or IGNORE.

The same information is exposed by the monitoring view M_LANDSCAPE_HOST_CON-
FIGURATION. See the SAP HANA SQL and System View Reference, which is available
at https://help.sap.com/hana_platform/, for a definition of all fields in this table.

6.1.2 The Master Name Server Concept

Several vital aspects of a scale-out system are controlled by the name server pro-
cess. Most importantly, the name server maintains the system topology, which is
the description of the database landscape (hosts, nodes, ports, hostnames, and
many more aspects) as well as details of the object distribution (which database
object is located on which node). This topology is needed for any query execution
in a distributed landscape. The name server also controls the availability of all pro-
cesses in the database instance and will trigger host failovers if necessary.
259

Scale-Out Systems and High Availability6
This crucial role justifies special availability measures for the name server in a dis-
tributed system. First, only one name server is allowed to modify the topology at
any point in time. This name server is the active master name server, and its
Actual Name Server Role is MASTER. All other name servers will have actual role
SLAVE, meaning that they only have read access to a copy of the topology repli-
cated from the active master name server.

Second, there are three name servers that have a configured master role (if there
are less than three hosts in the system, then the number of master name servers
will equal the number of hosts). At system startup, the active master name server
is located on the system’s configured master host. The other configured master
name servers will continuously monitor the active master for its availability. If
they detect that the active master has become unavailable, one of the remaining
configured masters will be made the active master.

The availability of the active master name server will be verified in multiple ways.
One test is based on the master.lck file that can be found in the data path for the
master node (in directory <basepath_datavolumes>/mnt00001/; typically the file is
at /hana/data/<SID>/mnt00001/master.lck). This file contains two pieces of data:
the hostname of the current active master name server and a random number that
is changed every ten seconds. Even if the other name servers find that the active
master cannot be reached over the network, they will not take over its role if they
observe changes to the master.lck file.

There is no automatic failback of the master name server functionality. That is, if
the original active master fails and another host assumes the role of active master
name server, the original master will be in state SLAVE once it becomes available
again.

6.1.3 Distributed Persistence

The layout of the data and log volumes in a scale-out system can be confusing at
first sight. We try to shed some light on these in Figure 6.4, which only shows the
data volumes; the log volumes are structured identically underneath the directory
configured in parameter basepath_logvolumes. The figure matches the processes
of a master node, shown in 1, and a slave node, shown in 2, to their respective
data areas, shown in 3 and 4. All processes that do not necessarily exist on a node
are marked as optional, and their data volumes are placed in brackets.
260

Scaling Out SAP HANA Systems 6.1
Figure 6.4 Data Volumes in a Scale-Out System

In the default configuration of a scale-out instance, only the master node has more
than one data volume. Of all the processes normally active on slave nodes, only
the index server, shown in 6, has its own persistence. The name server only has
a data volume, shown in 5, on the master node, and the statistics server can only
exist on the master node (if it is configured as a separate process at all).

You may have started additional processes with persistence on the slave nodes,
for example, if you enable the script server (always a system-wide setting) or if
you scale the XS server so that there also can be multiple data volumes for slave
nodes. A standby node, on the other hand, never has data volumes.

Of the volume IDs, only the ID for the name server persistence is hard coded in
the database software; this data volume, shown in 5, always has the ID 1. The

Master Node Volumes
<basepath_datavolumes>/mnt00001

hdb00001

SA
P

 H
A

N
A

 S
ys

te
m

Master Node

Index Server

XS Server

Name Server
(Active Master)

Statistics Server
(optional)

Script Server
(optional)

Other Processes

Slave Node <i>

Index Server
(Slave)

XS Server
(optional)

Name Server
(Slave)

Script Server
(optional)

Other Processes

hdb0000<a>

hdb0000

hdb0000<c>

hdb0000<d>

Volume 1

Volume <a>

Volume

Volume <c>

Volume <d>

Volumes of Slave Node <i>
<basepath_datavolumes>/mnt0000<i>

hdb0000<e>

hdb0000<f>

hdb0000<g>

Volume <e>

Volume <f>

Volume <g>

Common
File System
261

Scale-Out Systems and High Availability6
volume IDs of all other processes are allocated by the software at installation or
configuration time and can change from database to database. This is indicated by
the place holders <a> through <g> for the volume IDs in Figure 6.4.

In order to find the volume ID for a given process, you can query monitoring view
M_VOLUMES.

In the file system, data files are located in a directory structure as follows:

� All data volumes of the system are placed within the directory configured in
configuration parameter basepath_datavolumes.

� For each node, there is a subpath mnt<node_ID>, where <node_ID> is a five
digit number starting with 00001 for the master node. At any point in time,
you can monitor the current assignment of these node-specific subpaths to
hosts in monitoring view M_DISKS.

It should be noted that the SAP HANA software does not make use of the term
node ID, nor does the product documentation. In fact, there is no well-defined
node-ID-like entity in SAP HANA. The entity coming closest to a node ID is the
field STORAGE_PARTITION, for example, in monitoring view M_LANDSCAPE_HOST_
CONFIGURATION. We use the term node ID in this book because we feel that it is
a good fit and simplifies the explanations.

� For each data volume, there is a subdirectory named hdb<volume_ID> within
<basepath_datavolumes>/mnt<node_ID>, where <volume_ID> also is a five-digit
identifier. The list of all volumes and their assignment to hosts is given in mon-
itoring view M_VOLUMES.

6.1.4 Adding Hosts to a Scale-Out System

Adding a new host to a scale-out system is simple, as long as the host itself is pre-
pared properly (hardware and operating system) and the shared file systems are
already mounted. In particular, the SID and instance number of the database must
not yet be in use on the host to be added, and the user ID of the Linux operating
user <sid>adm must still be available (the <sid>adm user has to have the same user
ID on all hosts of a scale-out system). Also, the group ID of the sapsys group must
be the same on all hosts of the system.

No specific privileges are required, but you must know the passwords of the
Linux operating users <sid>adm and sapadm (and of the root user when using the
command-line tools hdbaddhost or hdblcm).
262

Scaling Out SAP HANA Systems 6.1
There are two and a half options available for adding a host. Up to and including
SPS 7, the most prominent one was to use SAP HANA Lifecycle Manager (HLM).
The other one is the hdbaddhost command-line tool, the functionality of which
has in SPS 8 been integrated into the hdblcm(gui) command-line tool. The latter is
the official and recommended variant as of SPS 8.

Using SAP HANA Lifecycle Manager (HLM)

After starting Lifecycle Management for the database system from the Systems

view in SAP HANA Studio, choose the option to Add Additional Hosts.

On the first screen of the wizard, you can specify the network to use—either the
global network of the SAP HANA system or, preferably, the internal communica-
tion network (if it has been set up).

On the second screen (Figure 6.5), you must specify properties of the host to be
added, most importantly the Hostname (if the internal and external host names
are different, this entry is for the internal host name). The system also needs the
password of the sapadm Linux user to set up supporting system components. If
applicable, the external host name also must be provided.

Figure 6.5 Defining Properties of the Host to Add
263

Scale-Out Systems and High Availability6
The host can be added as a Worker or Standby host, and it must be assigned to a
failover group (see Section 6.2.1). The storage partition number is only relevant
when operating a system that uses the storage API.

On the third screen, you can view and if needed modify the memory distribution
on the host to be added, in case you have multiple database systems making use
of this host.

The add host functionality of HLM has been removed in SPS 8.

Using the Command-Line Tool hdbaddhost

The hdbaddhost program is part of the LCM tools that are installed with any SAP
HANA database installation. Each system has its own copy of the tool. For a data-
base system <SID>, the hdbaddhost tool is located in the file system path <install_
path>/global/hdb/install/bin. In a standard installation, the <install_path> is /hana/
shared/<SID>.

The program must be started by the root user on the host to be added. Because the
shared file systems are already mounted, the <install_path> also will be in place
on that host.

The tool can be used interactively, in which case you are prompted for all required
values. If you intend to use the tool in batch mode, the full list of command-line
options is given in the tool’s documentation in the SAP HANA LCM Tools Reference
Guide available at https://help.sap.com/hana_platform/.

Using the hdblcm(gui) Tool

The hdblcm(gui) tool is the official way to add hosts as of SPS 8 (the hdbaddhost
tool is still available, though). You should use the resident version of the tool, that
is, the one installed in /hana/shared/<SID>/hdblcm/ (default naming).

The tool must be started as the root user on any host of the system (one that is
already part of the system or the host to be added), and you can add multiple hosts
in a single procedure.

You can run both tools fully interactively, choosing the action to add a host at run
time. With the command-line tool hdblcm, you can also include the option --
action=add_hosts to immediately go into add-host mode, and you need to specify
the --addhosts=<host> parameter. The value <host> of this parameter must
264

Scaling Out SAP HANA Systems 6.1
include the host name and may optionally include the role and the failover group
of the host, for example:

./hdblcm --action=add_hosts
 --addhosts=hana04:role=worker:group=ha_group2

If you omit the failover group specification, the host will be added to the default
group.

Full information on adding hosts with the hdblcm(gui) tool is given in the SAP
HANA Administration Guide at https://help.sap.com/hana_platform/.

In all three methods of adding a host, the database software on the new host will
be started automatically, by which time the database system has been successfully
extended.

After adding a new host, you will usually need to re-evaluate the table distribution
(see Chapter 9), which is far more complex than adding the host itself.

6.1.5 Removing Hosts

Removing a host refers to configuring the database software so that the host to be
removed will no longer be part of the scale-out cluster. It is not necessarily related
to the physical removal of a host from the database hardware.

The removing of hosts is not a simple task, owing to the fact that before you can
remove a host you must make sure that no data is located on that host. After this

Note

The documentation lists as a prerequisite for adding a host with hdblcm that the system
has been installed with hdblcm. Hence, if your system has been installed by other means
(e.g., Unified Installer) and if it is on the release level of SPS 8 (revision 80) or higher,
you will have to use the hdbaddhost program.

Note

If you need to physically replace a host (e.g., because of a hardware fault), it is not nec-
essary to remove the host from the system configuration. Instead, you can use the
hdbreg program (starting with SPS 8, you can also use the hdblcm program). We cover
the task of exchanging hardware in material that can be downloaded from the book’s
page at www.sap-press.com.
265

Scale-Out Systems and High Availability6
is accomplished, you can safely remove the host from the system, which is done
using HLM (up to SPS 7) or hdblcm(gui) (starting with SPS 8). We discuss these
processes next.

Marking the Host for Removal: Data Relocation

The safe and recommended way of removing all data from a host is to mark the
host for removal in SAP HANA Studio (see Figure 6.6). In the Administration Edi-
tor of SAP HANA Studio, go to tab Landscape, shown in 1, then to Hosts, shown
in 2, right-click on the host to be removed, and choose Remove Host..., as shown
in 3, from the context menu. Carefully read the text in the pop-up window, as
shown in 4, and if you are certain that you do indeed want to remove the host,
click YES to confirm.

The actual removal will be delegated to an asynchronous process that will reorga-
nize the database contents as required. You can monitor the progress of this reor-
ganization on the Landscape � Hosts tab of SAP HANA Studio. Only when the field
REMOVAL STATUS of that table indicates that the reorg is finished or not required
can you progress to the next step and actually remove the host.

Once the host is successfully marked for removal, you can remove it from the sys-
tem configuration. There are different tools available for this task, depending on
the version of SAP HANA that you are using; up to and including SPS 7, the tool
of choice was the HLM tool. Starting with SPS 8, the functionality has been
removed from HLM and added to the hdblcm(gui) tool.

Note

It is strongly recommended that you create a database backup before attempting to
remove a host so that you can recover the system in case something goes wrong with
the removal.

Privilege Information

In order to mark a host for removal, you need system privileges CATALOG READ, DATA
ADMIN, RESOURCE ADMIN, and SERVICE ADMIN. In addition, you need the EXECUTE priv-
ilege on a stored procedure in the SYS schema: SYS.UPDATE_LANDSCAPE_CONFIGURA-
TION.
266

Scaling Out SAP HANA Systems 6.1
Figure 6.6 Marking a Host for Removal in SAP HANA Studio

Removing the Host with HLM (Up to SPS 7)

Up to and including SPS 7, you can remove hosts with the SAP HANA Lifecycle
Manager (HLM). In the HLM tool, select Remove Additional Host, choose the
host to be removed, and click Run. Optionally, you can decide not to remove the
<sid>adm Linux user from the host, and in case there are multiple database
instances active on the host you may want to redistribute the host’s memory
among the remaining instances.

Removing the Host with hdblcm(gui) (Starting with SPS 8)

Starting with SPS 8, hosts should be removed with the hdblcm(gui) tool. The
resident copy of this tool should be used, which is installed in the file system
path /hana/shared/<SID>/hdblcm/.

Note

Removal of the host in HLM will start but fail if you did not mark it for removal as out-
lined previously, leaving the system in an inconsistent state.

When testing such a removal without preparation, we found that after the failed
removal attempt the entry for the scale-out system was missing in the file /usr/sap/saps-
ervices on the host we tried to remove. After adding the entry back to the file (you can
copy the entry from another host and adjust the host name) and starting the database
services on the host, we could successfully mark the host for removal and actually
remove it. We cannot, however, guarantee that this remedy procedure will always work
in such situations.
267

Scale-Out Systems and High Availability6
Whether in GUI mode or on the command line, you can use the tool fully inter-
actively, choosing to remove hosts from the system at runtime. The command-
line flavor can also be started with parameter --action=remove_hosts.

See the documentation in the SAP HANA Administration Guide for further details.

6.2 High Availability with Host Autofailover

In order to understand the relevance of host autofailover, we first have to develop
a feeling for the impact of a fatal component failure on an arbitrary host of a scale-
out system. The following two considerations will guide us to the answer:

� SAP HANA scale-out is based on a shared-nothing architecture, meaning that
any element of the database content is at any time managed by just one system
host. If a host fails within this system, the fraction of the database content man-
aged by this host and the services provided by this host will become unavail-
able. In effect, such a single-host failure renders the entire database system
inconsistent and thus unavailable; if a request needs data or a service from the
failing host, then it will terminate with an error message. We will explain how
this can be prevented in this section.

� In any scale-out system, the likelihood that one of the components fails within
a given time frame will increase as the number of hosts in the system grows.

Putting these two insights together, it becomes evident that the probability of the
database system becoming unavailable grows with the number of hosts in the
scale-out cluster.

This problem can be solved by using the host autofailover functionality, which is
a feature to increase the availability of a scaled SAP HANA instance. This feature
makes it possible to define a standby host that will be activated in the event of a
failing worker host. The standby host will then assume the role of the failing host.

Note

The documentation states as a prerequisite for removing a host with the hdblcm(gui)
tool that this tool has already been used for system installation. If the system has been
installed in a different way (e.g., with the Unified Installer) and if the system is on the
SPS 8 release level (revision 80) or higher, you will have to use the hdbremovehost tool.
This tool is documented in the SAP HANA LCM Tools Reference at https://help.sap.com/
hana_platform/.
268

High Availability with Host Autofailover 6.2
The autofailover function is built upon three concepts, failover groups, host
failover, and failback which are explained in this section.

6.2.1 Failover Groups

In distributed systems with a large number of hosts, you can define multiple
standby hosts. It is also possible to configure disjoint groups of worker hosts with
one or more dedicated standby hosts for each of these so-called failover groups.
The standard failover group is named “default,” and all hosts are placed into that
group unless you explicitly choose differently.

The failover group configuration can already be implemented in the process of
installing the system or when adding hosts, and it can also be changed at a later
point in time. To see the current configuration, go to the Landscape � Hosts tab in
SAP HANA Studio (Figure 6.7) or query the monitoring view M_LANDSCAPE_HOST_
CONFIGURATION.

In our example, the SAP HANA system has five hosts in total, and two failover
groups, shown in 1, named default and ha_group2. As can be seen from the
Index Server Role (ACTUAL), shown in 2, each of the groups has one dedicated
standby host. In failover group default, there are two worker hosts; one of them
is the actual index server and name server master. In failover group ha_group2,
there is just one worker node.

In this configuration, if one of the worker hosts in failover group default fails, the
standby host of this group will take over the role of the failing host. Likewise, if
the worker host in failover group ha_group2 fails, its standby host will take over.

It must be noted, however, that host failover will only happen within one failover
group. Therefore, if both worker nodes in group default fail at the same time,
then the system will become unavailable, because the standby host can only take
over the workload of one worker host.

In column Name Server Role (Configured), shown in 3, you can see that the
standby host of failover group default is also configured as one of the three mas-
ter name servers (currently operating in slave mode). This may seem surprising at
first sight, but it does make sense; the name server process is always active, includ-
ing on standby hosts, and the failover of the name server master functionality to
a standby host will generally be faster than the failover to a worker host. For this
reason, the database system will automatically set up a standby host as the name
server master during installation of a scale-out system.
269

Scale-Out Systems and High Availability6
Figure 6.7 System Landscape with Two Failover Groups

To change the failover group configuration, you can click the Configure Hosts

for Failover Situation button, shown in 4. This opens a configuration wizard
(Figure 6.8), which displays the configured and actual failover configuration in a
table. Within this table, you can directly modify the configuration in columns
Configured Role, shown in 1, and Configured Group, shown in 2.

Figure 6.8 Changing the Failover Configuration

In this wizard, you can also define new failover groups, simply by giving a new
group name to at least one worker or standby host. It is possible to create failover
groups that consist only of worker hosts (but no standby) or vice versa. This obvi-
ously does not make sense, but the wizard will not stop you from making such
configurations. It is therefore very important that you check the spelling of your
failover group configuration carefully.

Note that you can change not only the index server role but also the name server role.
270

High Availability with Host Autofailover 6.2
Before you can actually Save your configuration, as shown in 3, you must Check

it for consistency, as shown in 4. The consistency check will (in the release level
of SPS 8) not detect the previously mentioned questionable configurations of
failover groups without worker or standby hosts.

From a purely statistical point of view, having just one failover group with multi-
ple standby hosts provides higher availability than having multiple failover
groups with one standby host each (in a given system with <x> worker and <y>
standby hosts). Depending on the hardware setup, there may be technical rea-
sons, such as optimized failover times, for having a dedicated standby host within
a given set of hosts.

6.2.2 Host Failover

In order for a host failover to happen, the system must first detect that a worker
host is unavailable. It is important the failover action is not triggered too quickly.
If, for example, an index server process is manually stopped or crashes, the dae-
mon process will immediately trigger the restart of this service. It is more efficient
to wait for the index server to start up again than to failover to a standby host.

If the system determines that the worker host is indeed unavailable, it will trigger
a failover to an available standby host. In the course of the failover, the following
steps are performed by the system:

� The configuration of database processes on the standby host is adjusted to
match the configuration of the failing host. Most processes are configured in
any case on the standby host, but there are exceptions. One is the XS server,
which in a standard configuration is active only on the master host. If the mas-
ter host fails, the XS server must also be started on the standby.

In some cases, such as after an asymmetric system copy, the failing host might
have multiple index servers configured. On a standby host, there is only one
configured index server process, but the additional ones will be started as
required in a failover situation.

� The database processes on the standby host must assign the data volumes of the
failing host.

� All processes with persistence will reconstruct their data image from the data
and log files in the same way as during regular system start. This also includes
loading of row store tables and preloading of columnar tables.
271

Scale-Out Systems and High Availability6
It is difficult to predict the time it will take until a standby host becomes available
in a failover situation. Depending on the type of failure, it might be detected in a
matter of seconds or a few minutes. The actual failover itself is usually a quick pro-
cess, taking mere seconds.

As in regular system startup, the reconstruction of the data image in memory can
take significantly longer. If the failing host carried a sizable amount of row store
data, the index server startup can take several minutes. Once the index server is
online, the columnar tables are still not loaded yet.

6.2.3 Failback

There is no automatic failback once the original worker host becomes available
again. Instead, the original worker host will be configured as the new standby host,
as indicated in Figure 6.9. This avoids having to go through the failover procedure
once again and thus increases the overall availability of the database system.

Figure 6.9 System State Following a Host Failover

Volumes of Node nVolumes of Node 2

Host 1 (worker)

CPU & RAM

Volumes of Node 1

Data 1 Log 1 ……

Common File System

Host 2 (worker)

CPU & RAM

Host n (worker)

CPU & RAM
…

Host n+1 (standby)

CPU & RAM

SA
P

 H
A

N
A

 S
ys

te
m

Data 2 Data nLog 2 Log n

Volumes of Node 1

Data 1 Log 1

Volumes of Node 2

Data 2 Log 2

Volumes of Node n

Data n Log n

Host 1 (worker)

CPU & RAM

…

Host 2 (standby)

CPU & RAM

Host n (worker)

CPU & RAM
…

Host n+1 (worker)

CPU & RAM

SA
P

 H
A

N
A

 S
ys

te
m

� Failure of Host 2

� Failover to standby Host n+1

� Host 2 becomes available again as new standby
272

Client Connect in Distributed Systems 6.3
In this way, the actual roles of the hosts can become different from the configured
roles over time. If the entire database system is restarted, all hosts will again
assume their configured roles.

6.3 Client Connect in Distributed Systems

In a distributed system, the database clients (JDBC/ODBC) will automatically dis-
tribute connections in a round-robin manner to all worker hosts of the database.
It is not necessary to specify all hosts of the setup in the client connection string
in order for this mechanism to work; it is sufficient to specify the master host.

The client software will establish the initial database connection to the master
host and retrieve the list of all worker hosts. Starting from that point, sessions can
be distributed in a round-robin fashion.

In the event that the master host may be unavailable when a client tries to connect
for the first time, the connect attempt will fail. For such situations, it is possible to
specify multiple hosts in the connection string. In Figure 6.10, we show the con-
figuration of the corresponding connection strings in the connection setup for
SAP HANA Studio, as shown in 1, and the MS Windows ODBC registration, as
shown in 3.

Note that in SAP HANA Studio the different host entries must be separated by a
semicolon, as shown in 2, whereas the MS Windows ODBC Data Source Admin-
istrator user interface expects a comma-separated list, as shown in 4.

In applications that use the JDBC or ODBC driver, you always have to use a semico-
lon-separated list of host names in the connection string, as shown in Listing 6.1.

JDBC:
Connect URL: jdbc:sap://<host1>:<port>;<host2>:<port>/
ODBC
Connect URL: "DRIVER=HDBODBC32;UID=<user>;PWD=<password>;SERVER-
NODE=<host1>:<port>;<host2>:<port>;<host3>:<port>;"

Listing 6.1 Connection Strings for Applications That Use JDBC or ODBC

In all of these connection strings, you have to enter <hostname>:<port> for each
host, <port> being the external SQL port of the index server on the host.
273

Scale-Out Systems and High Availability6
It is sufficient to only specify all configured master name servers, because at least
one of them must be operational for the system to be available at all.

Even if multiple hosts are defined in the connection string, sessions that are con-
nected to the failing host at the time of failure will be disconnected, so end users
may have to reconnect or restart applications.

Figure 6.10 JDBC/ODBC Connection String for Scale-Out Systems

6.4 Summary

In most practical aspects, a scale-out system functions just like a single-node sys-
tem, especially when it comes to simple interaction with the database, most mon-
itoring tasks, and so on.

After reading this chapter, you should be aware of the most important design
aspects of scale-out systems, such as the different node types (worker nodes—
which are divided into one master and multiple slaves—and standby nodes) and
the role of the name server in distributed systems. You should also be able to
modify the system landscape by adding or removing hosts.

Last but not least, you should be aware of the host autofailover functionality that
improves overall system availability in scale-out systems. Related to this topic is the
configuration of the connection information for client applications, which in a scale-
out system should always be set up to allow connections in a failover situation.
274

In order to work with a database, one needs an understanding of the
objects the database can contain. This chapter will define the concepts
behind each of these objects and then give examples of how the objects are
used in SAP HANA.

7 Objects

If we look at what is stored in an SAP HANA database, we will find items such as
tables, views, sequences, and so on. These entities are called objects. For every
object in the database, we find additional metadata that specifies it. Also, each
object type has some functional relevance in the database and can do what none
of the other object types can do.

The object types we will discuss in this chapter are listed in Table 7.1 together
with a short description and a reference to the catalog view that describes all
objects of the given type.

Object Type Short Description Catalog View

Table The basic container to store data in the
database

TABLES

Trigger A program that is executed when certain
actions are performed on a table

TRIGGERS

SQL view Standard database view VIEWS where IS_
COLUMN_VIEW ='FALSE'

Column view SAP HANA-specific type of view, used, for
example, in modeling

VIEWS where IS_
COLUMN_VIEW ='TRUE'

Sequences A customizable number generator SEQUENCES

Procedures Programming element with multiple input
and output parameters (scalar or table type)

PROCEDURES

Table 7.1 List of Object Types
275

Objects7
Although the majority of the chapter is devoted to providing some basic informa-
tion about these object types, we will start by discussing object properties that are
common to all objects.

7.1 Common Properties of Database Objects

Before we dive into the different types of objects you’ll find residing in an SAP
HANA database, let’s start by outlining some basic principles of objects in general.
In this section, we’ll introduce you to the following concepts: the database cata-
log; object naming; users, schemas, object ownership, and dependencies; object
definitions; and system limits.

7.1.1 The Database Catalog

A very useful feature of basically every DBMS is that the databases are self-
describing. This means that within every database there are tables or views that
contain information about the objects stored in the database. In SAP HANA, these
views are named catalog views, and they make up the catalog of the database.

As an example, SAP HANA provides a system view simply called TABLES that holds
one record for every table created in the database. This catalog view also provides
information on specific attributes of each table, for example, whether or not the
automatic merge is active for the table (AUTO_MERGE_ON) or the compression set-
tings will automatically be optimized (AUTO_OPTIMIZE_COMPRESSION_ON). When-
ever a table is created, altered, or dropped, SAP HANA will automatically update
the TABLES view so that it will always contain the current state of the tables in the
database.

The TABLES view actually acts like a directory of tables in the database. There are
similar views for all other object types listed in Table 7.1—and also for objects we

Functions Programming element with exactly one out-
put parameter, either scalar or table type

FUNCTIONS

Synonyms Shortcuts for object name resolution—
similar to file system links

SYNONYMS

Object Type Short Description Catalog View

Table 7.1 List of Object Types (Cont.)
276

Common Properties of Database Objects 7.1
will not cover in this chapter, such as the views SCHEMAS, USERS, ROLES, and PRIV-
ILEGES. All database objects are also listed in a type-independent view that is sim-
ply named OBJECTS.

The catalog also keeps track of an internal unique ID for each object created: the
OID. Depending on the object type, this OID sometimes can show up as OBJECT_
OID, TABLE_OID, VIEW_OID, and so on. Usually, the OID is not relevant, but it can
become useful for troubleshooting and problem analysis.

All the database catalog views are accessible to all database users that have the
PUBLIC role assigned to them. As this is the default role for every database user
(with the exception of the restricted users introduced in SPS 8), every database
user in turn has the required privileges to access the catalog views. For all system
catalog views, public synonyms are created by default, making it unnecessary to
specify a schema name, such as SYS or SYSTEM, when accessing the catalog views.

In order to avoid confusion, we will dedicate a short paragraph to a part of the
database system that does not belong to the catalog but still deals with objects: the
repository.

The Repository

The catalog contains a description of all of the currently present objects in the
database. It does not contain any information about objects that are not (yet)
present and in the database; these are typically the design-time objects that are
stored in the repository (consequently, they are also referred to as repository
objects). Such design-time representations are available for many—but not all—
object types. In short, the repository stores and manages all of the development
artifacts and information models created in the Modeler or Development per-
spective of SAP HANA Studio or in the web IDE. Only when those objects are acti-
vated will the corresponding catalog objects (also called runtime objects) be cre-
ated. For information about the repository, see Chapter 11.

Note

The SAP HANA database catalog also contains special system views called monitoring
views. We cover monitoring views in more detail in Chapter 16.
277

Objects7
7.1.2 Object Naming and Identifiers

SAP HANA, like most DBMS, has two ways to handle the names of tables, col-
umns, and objects in general. The default option is used when the object names or
identifiers are written without double quotes (“ ”). (The SAP HANA SQL refer-
ence documentation refers to identifiers without double quotes as undelimited
identifiers.) With this option active, SAP HANA converts lowercase characters to
uppercase and prevents the use of characters that are not alphanumeric. Also, the
first character of the object name cannot be a number.

However, you may have good reasons to choose a “fancy” table name, and you
can do this by enclosing the name in double quotes. This is the second option to
handle identifiers. Including the name in double quotes prevents any automatic
conversion, so “Sales”, ”SALES”, and “sales” are three different names!

Whenever objects with such a delimited identifier need to be accessed, you must
use the exact spelling and the double quotes again. Otherwise, an unknown iden-
tifier or syntax error error message will be returned. In SAP BW systems, a
classic example of this is the SQL access to the database tables in the SAP BW
schema. Although it is not supported by SAP, it is technically possible to directly
read data from those tables, if you have a database user account with the appro-
priate privileges. An often encountered difficulty in such a case is that the table
names in the SAP BW schema typically look similar to this: /BIC/ASALES01.

Let’s look at some examples for the usage of object naming.

Listing 7.1 shows a common mistake that developers used to the ABAP environ-
ment make. Leaving out the double quotes and the capitalization of the table
name works in ABAP but not in SQL.

SELECT count(*) FROM /bic/asales01;

SAP DBTech JDBC: [257] (at 22):
sql syntax error: incorrect syntax near "/": line 1 col 22 (at pos 22)

Listing 7.1 Wrong, but Easy to Type

Example

SALES is allowed as an undelimited object name, but 11-2007/ElephantSales would
be rejected.
278

Common Properties of Database Objects 7.1
Listing 7.2 shows a similar mistake. Using uppercase letters and leaving out the
dashes does not work, either.

SELECT count(*) FROM BIC ASALES01;

SAP DBTech JDBC: [259] (at 21):
invalid table name: Could not find table/view BIC in schema LARS: line
1 col 22 (at pos 21)

Listing 7.2 Different, but Still Wrong

Listing 7.3 shows the correct way. The whole object name, including the dashes,
needs to be in uppercase and enclosed in double quotes.

SELECT count(*) FROM “/BIC/ASALES01”;

COUNT(*)
42

Listing 7.3 Correct, but Added Keyboard Deterioration

7.1.3 Users, Schemas, Object Ownership, and Dependencies

Users, schemas, object ownership, and dependencies are overlapping aspects of
managing objects in a DBMS. Basic functions, such as a functional dependency
between two objects (consider a view using a base table), require a dependency con-
cept. Introducing a namespace concept like a schema requires tracking another kind
of dependency. Finally, assigning ownership of objects in different namespaces
adds another angle into the mix.

Next, we look into the most important aspects of these topics.

Users

The SAP HANA database can be accessed by providing a user name and a logon.
The user account here really is a mechanism to handle object ownership and priv-
ileges. Every command in the SAP HANA database is executed in the context of a
session (see Chapter 10 for more details), and in turn every session has exactly one
user account linked to it. This links every command to the user account and in
turn to the effective privileges that apply to the account at the time of command
execution.
279

Objects7
Another use for this linkage between user account and command execution is to
audit the database. Whenever a command is issued to the database, the audit man-
ager can associate the command with the session details and with the user name.

Schemas

A schema is a namespace. It is a way to group objects together by addressing them
with the same group name. Schemas do not carry any security features. Every user
has a default schema assigned, which is named after the user account name. When-
ever a user tries to access a database object and does not provide a schema name,
SAP HANA uses the default schema as a fallback. When looking up an object in the
default namespace does not succeed, SAP HANA will try to find the object
requested in the PUBLIC schema.

The order of object name resolution therefore is:

1. The provided schema

2. The current schema

3. The public schema

Whenever a matching object name is found in one of the steps, no further evalu-
ation is done. If a schema name is provided (fully qualified object reference), then
no further evaluation steps are performed in cases where the object cannot be
found.

This evaluation process leaves it to the developers to specify the fully qualified
object reference in their SQL commands—leading to an absolute object reference
that does not allow any ambiguities—or to only specify the object name and rely
on the evaluation logic that provides additional flexibility for the actual schema
name. A useful technique for a database developer is, for example, to map com-
monly shared objects into an application user schema via a synonym.

As object names only need to be unique within a given schema, it is possible that
multiple schemas contain, for example, tables with the same name. In fact, this is
quite common. Sometimes, this behavior can lead to false impressions about
which object is currently referenced when no explicit schema name is given. The
easiest way to find this out is to use the EXPLAIN PLAN command, as demonstrated
in the following example.

As a first step, two schemas, s1 and s2, are created, and in each of the schemas a
table, t1, is created and filled with some sample data, as shown in Figure 7.1.
280

Common Properties of Database Objects 7.1
Figure 7.1 Schema Example Table Setup

Checking the table contents leads to the output shown in Figure 7.2.

Figure 7.2 Content of Table T1 in Schemas S1 and S2

Now, if you try to access the table without specifying the schema name it results
in an error message, as Figure 7.3 shows.

Figure 7.3 Invalid Table Name Error Due to Missing Schema Name

In order to be able to access the tables without having to specify the schema name
all the time, SAP HANA provides the SET SCHEMA <SCHEMA_NAME> command.
281

Objects7
Finally, you can use the EXPLAIN PLAN command to check what table from what
schema is used for the query. What this looks like is shown in Figure 7.4.

Figure 7.4 Schema and Table Reference Visible in EXPLAIN PLAN

Another handy use for schemas is that it is possible to use them as a dynamic way
to affect many single objects in one go. For example, when the SELECT privilege
for a schema is assigned to a user or a role and new objects in the schema are cre-
ated, the SELECT privilege on the schema will automatically include the newly cre-
ated objects. Exporting an entire schema is usually much easier than exporting
single selected tables and other such items.

The relevant catalog view from which to find out about schemas is the SCHEMAS
view, which lists all schemas, the schema owner, and whether the current user has
any privileges on the schemas. Also, nearly every specific object type view
(TABLES, VIEWS, INDEXES, SEQUENCES, etc.) provides a SCHEMA_NAME column to indi-
cate the schema that the respective object belongs to.

It is not possible to directly change the schema of an object, just as it is not possi-
ble to change the owner once an object has been created. To still get the desired
effect, that is, to have the objects in a different schema and/or with a different
owner, the object needs to be recreated in the target schema by the user account
that should be the owner of the objects. An easy way to achieve this is to export
the objects with the EXPORT command or the Catalog Objects Export Assistant in
SAP HANA Studio, and import the objects with the RENAME SCHEMA option. Be
aware that to do this the user needs to have the IMPORT system privilege assigned.

Warning

A warning for administrators who frequently use the SQL editor in SAP HANA Studio: In
the default setting SAP HANA Studio uses automatic reconnect when the connection to
the database is lost for any reason. In this case, a new session will be started, and the
current schema is back to the default schema for this user.
282

Common Properties of Database Objects 7.1
In any case, schema design should be considered before the first objects are cre-
ated. Although SAP HANA Studio displays schemas in the navigator window sim-
ilar to how it displays file system folders, it is not easy to copy/move objects
between schemas or users.

Ownership

We have seen that the schema of a table determines if and how the table will be
found by SAP HANA during query execution. From a developer point of view,
tables that belong together should be stored in the same schema. This makes it a
lot easier to maintain security on the tables and provides a common grouping for
administration tasks, for example, to export all tables of an application.

One aspect not covered by schemas is the ownership of objects. Objects are
always owned by the user that created them, even if they are created in a different
schema than the user’s own schema. The only exception to this is with schemas,
for which the desired owner can be provided with the CREATE SCHEMA <schema
name> OWNED BY <owner> command.

Attention needs to be paid if a schema will be deleted via SAP HANA Studio,
because the Delete schema dialogue starts off with the Cascade option as the
default setting and does not provide a list of the affected objects (see Figure 7.5 for
an example).

Figure 7.5 Delete Schema Dialogue with Dangerous Default Setting

As we have seen, using different schemas and object owners can lead to setups
that are rather complex and in which supposedly simple commands can have the
unexpected effect of dropping objects that were not meant to be deleted. This is
especially true for SQL console usage, where no double checks and confirmations
are requested from the user.
283

Objects7
Before we wrap up our discussion of object ownership, let’s look at a brief exam-
ple to illustrate an important rule: When multiple developers create catalog
objects in a shared schema, it is typically desirable to use a shared user to create
the objects in the target schema. This shared user should only be used as the
object owner and does not even need to be able to log on to the system. Instead,
a shared procedure could be written that runs any provided create object com-
mand in the schema owners’ session and grants access to the newly created object
back to the calling user.

The following code illustrates how this can be done:

1. Create a user account for the shared user:

create user DEVSCHEMA password AllMy1000Objects;
grant create schema to DEVSCHEMA;

2. Logged in as the DEVSCHEMA user, create the proxy procedure and grant exe-
cution privilege to the developer users or roles:

create procedure proxyCreateObjectInOtherSchema
 (IN ddlCMD varchar(2000)
 ,IN grantCMD varchar(2000))
language SQLSCRIPT
sql security DEFINER
as
begin
 exec :ddlCMD;
 exec :grantCMD;
end;

grant execute on proxyCreateObjectInOtherSchema to USER_A;
grant execute on proxyCreateObjectInOtherSchema to USER_B;

3. Now, deactivate the DEVSCHEMA account so that it cannot be used to connect to
the SAP HANA database any longer:

alter user DEVSCHEMA deactivate;

4. The development user USER_A now can call the proxy procedure to create
objects as DEVSCHEMA:

call devschema.proxyCreateObjectInOtherSchema
'create column table ATAB3 (aaa_i int, aaa_v varchar (20))'
, 'grant all privileges on ATAB3 to USER_A');

5. Now, let’s check which schema the object is in and who owns it:

select schema_name, table_name
from tables where table_name ='ATAB3';

284

Common Properties of Database Objects 7.1
SCHEMA_NAME TABLE_NAME
DEVSCHEMA ATAB3

select * from ownership where object_name ='ATAB3';

SCHEMA_NAME OWNER_NAME OBJECT_NAME OBJECT_TYPE OBJECT_OID
DEVSCHEMA DEVSCHEMA ATAB3 TABLE 186287

If you now to try to log on to the database as the DEVUSER, logon is denied and
indicated as shown in Figure 7.6.

Figure 7.6 Deactivated User Notification

A very similar technique is used by the information modeler during object activa-
tion. All runtime objects in the catalog are owned by the deactivated user _SYS_
REPO and assigned to the _SYS_BIC schema. However, this only applies if devel-
opers want to create objects directly via SQL DDL instead of using the develop-
ment artifacts for objects in the SAP HANA Development perspective. When the
SAP HANA Development Repository is used, then the objects are always created
in the assigned schema and are owned by _SYS_REPO, just like activated informa-
tion models.

Object Dependencies

SAP HANA tracks dependencies between objects, and eventually ensures that
dependent objects get invalidated or deleted when the main object is modified.
But how can SAP HANA possibly know which objects depend on others? This

Note

DROP SCHEMA and DROP USER must acquire exclusive locks on the objects that
should be dropped before the object can actually be dropped. That means that open
transactions can potentially hold shared or intentional exclusive locks, which makes it
impossible for the DROP SCHEMA/DROP USER command to get the exclusive locks on
these objects. In such a case, the session hangs and waits until either the lock timeout
has arrived or the exclusive lock has been granted.
285

Objects7
information is gathered during the creation of objects in the database and kept up-
to-date over the lifetime of database objects. The database developer does not
need to take care of this.

To review the dependency information kept in the catalog, SAP HANA provides a
system view called OBJECT_DEPENDENCIES. This view contains the schema, object
name, and object type for any base object for which there are dependent objects
and the same set of information for the dependent object.

It contains one row per dependent object, and for each entry an additional col-
umn, DEPENDENCY_TYPE, is maintained. This column can contain values of 1 or 2,
where 1 denotes a direct dependency and 2 any indirect dependency (e.g., a view
that references a synonym that references a table; in such a case, the dependency
synonym-to-table would be direct and the dependency view-to-table would be an
indirect reference).

Reading the view directly can be a bit cumbersome, as shown in Figure 7.7.

Figure 7.7 Reading Directly from the OBJECT_DEPENDENCIES View

Although this view contains all of the required information, it is difficult to use it
to answer the question “what objects depend on any object in my current
schema?”
286

Common Properties of Database Objects 7.1
Rewriting the SQL a little bit, as shown in Listing 7.4, provides a more readable
answer.

select BASE_OBJECT_TYPE
 , '"'||BASE_SCHEMA_NAME ||'"."'
 || BASE_OBJECT_NAME||'"' AS BASE_OBJECT
 , ' === is '|| map (dependency_type, 1, 'directly',
 2, 'indirectly')
 ||' referenced by ==> ' AS REF_TYPE
 , DEPENDENT_OBJECT_TYPE
 , '"'|| DEPENDENT_SCHEMA_NAME || '"."'
 || DEPENDENT_OBJECT_NAME || '"'
 AS DEPENDENT_OBJECT
from (select * from object_dependencies
 where current_user in
 (base_schema_name , dependent_schema_name))
order by base_schemaSELECT count(*) FROM “/BIC/ASALES01”;

COUNT(*)42_name, base_object_name, dependency_type;

Listing 7.4 Using View OBJECT_OWNERSHIP

The output produced by this query is a lot easier to read, as shown in Figure 7.8.

Figure 7.8 Formatted Output of System View OBJECT_DEPENDENCIES
287

Objects7
With this approach, a simple impact analysis of object drops/invalidations can be
quickly performed.

7.1.4 Object Definition

When it comes to working with objects, an often required functionality is to be
able to recreate the DDL command that can create a given object that is active in
the catalog. For repository objects, this is fairly simple, because the complete
actual information that was used to create the object is explicitly stored in the
repository.

For catalog objects, this is somewhat more difficult, because the original DDL
command is not stored in SAP HANA. To ease the task of picking each relevant
piece of information from the catalog views, SAP HANA comes with a built-in
shared procedure called GET_OBJECT_DEFINITION. By calling the procedure with
the schema name and the object name, we can easily create a DDL command that
could create a similar object with the same attributes and settings. This is shown
in Figure 7.9.

Figure 7.9 Example Output for Procedure GET_OBJECT_DEFINITION
288

Common Properties of Database Objects 7.1
One thing to keep in mind with this procedure is that it takes the current actual
version of the object as it is present in the database right now. It does not show
us the actual original version nor can it find out which alterations have been per-
formed on the object since its creation.

As an alternative to this procedure, it is also possible to simply open the definition
of any catalog object by double-clicking its entry in the SAP HANA Studio naviga-
tor and then clicking the Export SQL button in the upper-right corner.

7.1.5 System Limits

Let’s wrap up our discussion of the common properties of database objects with
another element common to most database objects: the technical limits built into
SAP HANA. “How many indexes can I create on a table?” “How many columns can
a primary key have?” These questions and more can be answered by checking the
system view M_SYSTEM_LIMITS, which is shown in Figure 7.10.

Figure 7.10 System View M_SYSTEM_LIMITS

Although the system limits are also documented in SAP HANA SQL and System
Views Reference in Chapter 19 (see https://help.sap.com/hana/SAP_HANA_SQL_
and_System_Views_Reference_en.pdf), using this view can be handy to check the
limitations that apply to the current system.
289

Objects7
With that, we have covered a great deal about general database objects in SAP
HANA. The rest of this chapter will shed light on the specifics of each of the dif-
ferent types.

7.2 Tables

Tables are the central object in any RDBMS, and SAP HANA is no different.
Because tables are covered in depth in Chapter 8 and Chapter 9, this section
focuses only on the basic aspects of tables.

Obviously, database tables exist to store data. From a consumer or client point of
view, how the data is stored and retrieved is completely transparent. This decou-
pling of the conceptual data structure table (the table definition) from the actual
implementation contributed to the enormous success of relational database man-
agement systems. Tables can be seen as a data storage and retrieval API with SQL
as the interface description.

Application developers who want to use the database can focus on the application
logic and do not need to know how and where the data is stored, what is done in
order to guarantee transactional consistency, or how the database caters for pro-
tection against data loss. Moreover, using a relational database freed developers
from writing code to navigate within the database. Whatever the data model looks
like, developers can use SQL to specify conditions that the result data needs to ful-
fill, and SAP HANA will find all matching records. All that matters to the devel-
oper are the table definition and the commands that can be used on it. These are
most often SQL commands, but SAP HANA also offers APIs, such as MDX, CE_-
functions, and so on.

To be very clear on this point, because this is often a topic of concern when col-
umn-oriented databases are used by developers for the first time, there is no
change whatsoever in the SQL that can be used with column store tables compared
to row store tables, with the exception of table-management statements such as
MERGE DELTA OF <COLUMN_STORE_TABLE>. Programming is always done against the
conceptual table, not against the data structure maintained by SAP HANA (or any
other DBMS).

Tables in general consist of at least one column, and every column needs to have
a distinct name in this table. Across tables, column names can be used multiple
290

Tables 7.2
times with different data type definitions and meanings, so attention has to be
paid during the design phase to keep column names clear, short, and expressive.
Although the actual table name does not have any functional relevance, choosing
good names can make all the difference when it comes to understanding your
application and the data design.

SAP HANA provides catalog views for both logical and physical tables. TABLES and
TABLE_COLUMNS refer (mostly) to the logical table and provide an overview of the
table structure that is present in the database. They also cover the rather fixed
attributes of the table implementation. For example, we find information about
whether or not a specific column’s store table should be considered by the
automerge functionality in the TABLES system view (TABLES.AUTO_MERGE_ON).

Information about the current runtime data and the internal implementation data
structures, often called physical tables, can be found in catalog views M_CS_TABLES,
M_CS_COLUMNS, M_CS_ALL_COLUMNS, M_CS_PARTITIONS, M_CS_UNLOADS, M_RS_

TABLES, M_RS_MEMORY, and M_RS_TABLE_VERSION_STATISTICS.

A sometimes overlooked standard feature of SQL tables and columns (and views)
is the option to add comments to provide documentation. This can easily be done
with the COMMENT ON TABLE|VIEW|COLUMN <object_identifier> IS <comment

text> command. Any comment entered will be visible in the respective system
view (column COMMENT). In addition, the comments are used by the Modeler per-
spective in SAP HANA Studio to display long description texts for tables and col-
umns. When tables are replicated from an SAP NetWeaver system via SLT, the
long description text is used to create comments in SAP HANA.

Physical Tables vs. Logical Tables

Clearly, physical tables are no more or less real to the physical world than the concep-
tual or logical tables. Both things exist as electronic states in computer memory. They
are simply two different things; the physical table is the data structure to keep and
retrieve data, and the logical table defines a data interface to it.

Note

A little oddity of comments is that there is no command available to delete an object
comment. In order to get rid of an existing comment, the only option is to set it to an
empty string value.
291

Objects7
7.3 Triggers and Constraints

Although tables are the central object in SAP HANA, there are, of course, others.
The topic of this section is objects that can effect actions in the database when the
contents of a table are changed. The most obvious action is that of a trigger, which
will perform data changes in the background depending on other activities per-
formed on tables.

Constraints, on the other hand, can be used to specify additional conditions that
must be fulfilled for a data manipulation to be successful. Such constraints can be
internal to the table (e.g., a uniqueness constraint), or they may even refer to the
contents of another database table (referential constraints).

In this section, we will briefly look at both concepts in SAP HANA. Although these
objects only exist dependent to tables and not in their own right, they are relevant
and should be familiar to SAP HANA DBAs.

7.3.1 Triggers

Triggers are, to be very blunt, the administrator’s nightmare and should be
avoided whenever possible.

Triggers are small SQLScript programs that are executed whenever the trigger
condition is fulfilled. Such a condition could be the insertion of a row into a table
or the update of a set of rows or the deleting of several otherwise independent
rows. The trigger defined on any of these actions will then be automatically exe-
cuted without further notice.

This is exactly the problem with triggers; if you do not specifically look them up,
then it is impossible to know about triggers being in place when using the data-
base. Although the potential for problems might be small as long as the trigger
performs small, side-effect free operations, a common mistake of database devel-
opers is to embed application logic into triggers. Often, this is done in order to
implement certain “if this, then that” business rules, and triggers seem to be the
right tool for this. As with all nontrivial rule sets, it is virtually impossible to com-
prehend the exact consequences of cascaded rules to the full extent. Chained rules
are typically created when employing triggers for application logic. Given a suffi-
ciently large set of tables fitted with triggers that refer to other tables and taking
into account that there is no way to control the order of trigger execution (it is
292

Triggers and Constraints 7.3
only guaranteed that the triggers will have been completed after COMMIT), it is easy
to envision quite unexpected activity due to what was supposed to be a simple
INSERT into a “harmless” table. In addition to these problems, triggers also do not
provide many administration options.

However, triggers are part of the SQL standard and as such supported by SAP
HANA. Also, SLT replication uses triggers in the source system to keep track of
table data changes so that changed data will be replicated.

Triggers are created by the CREATE TRIGGER command. You can disable and enable
triggers via the ALTER TABLE <table_name> ENABLE|DISABLE TRIGGER [<trigger_
name>] command. When no <trigger_name> is provided, all triggers on the table
will be enabled or disabled.

The main use case for triggers in SAP HANA currently is to implement logging-like
functionality without complex logic. Although it is possible to chain trigger exe-
cution (by default, up to eight chained triggers get executed), doing so is highly
discouraged. This would impact the system performance and can easily create
unpredictable side-effects, because, as mentioned earlier, the order of trigger exe-
cution is not controllable.

Be aware that triggers cannot be executed on partitioned tables for which the par-
titions reside on different hosts and also not on the “slave” parts of replicated
tables.

7.3.2 Constraints

SAP HANA does provide limited support for SQL constraints. Constraints in SAP
HANA exist only as attributes of the tables they are defined on. This means that
there are no database-wide constraints available. Furthermore, constraints in SAP
HANA are not handled as objects on their own, which is why we do not find them
in the OBJECTS system table.

Note

There are no monitoring options available that provide insight into the performance
characteristics of the trigger execution. This makes it rather difficult for the SAP HANA
administrator to estimate the additional overhead for (data manipulation language)
DML execution that triggers create.
293

Objects7
We mention constraints here in the context of triggers because triggers may also
be created implicitly when creating a referential constraint between two tables.
Although the column store natively supports referential constraints and the prop-
agation logic that comes with them (the UPDATE rule and the DELETE rule), row
store tables implement these features by the means of triggers.

These triggers get automatically created when a foreign key constraint is set up
between two tables. Notable here is that the referential constraint checking for
column store tables is not actually performed by the triggers but by the column
store itself. In this case, the triggers are technically superfluous but cannot be
manually removed or modified.

For the administrator, it is useful to know that although SQL standard allows
choosing explicit names for referential constraints (or constraints in general, for
that matter), but does not require it, common practice is to let the database system
choose a name for the constraint automatically. In Listing 7.5, we provide an
example for this and demonstrate how to find the system-generated constraint
name.

ALTER TABLE efashion.shop_facts ADD FOREIGN KEY (shop_id)
REFERENCES efashion.outlet_lookup (shop_id)
ON UPDATE RESTRICT;

select constraint_name from referential_constraints
WHERE (schema_name, table_name) = ('EFASHION', 'SHOP_FACTS');

CONSTRAINT_NAME
_SYS_CONSTRAINT_159651_#24_#F0

Listing 7.5 Referential Constraint Definition

Due to this common practice, checking the CONSTRAINTS or REFERENTIAL_CON-
STRAINTS system views in SAP HANA therefore typically results in lists of gener-
ated constraint names, as shown in Figure 7.11.

The name-generation pattern for this is rather obvious: All system-generated con-
straint names begin with _SYS_, followed by the type of the constraint (e.g., TREE_
CS or CONSTRAINT). The next piece indicates whether the table upon which this
constraint is defined is a row store or a column store table, (_RS_/_CS_), followed
by the table object ID and the column number in the table (for multicolumn con-
straint, a so-called concatenated column will be created, and the constraint then
will refer to this internal column).
294

SQL Views 7.4
Figure 7.11 Example Output from System Views CONSTRAINTS and REFERENTIAL_CON-
STRAINTS

From the example in Listing 7.5, we retrieved constraint name _SYS_CONSTRAINT_
159651_#24_#F0. We can tell that this is a system-generated constraint name for
the table with table ID 159651 on column number 24 of this table. The #F0 indi-
cates that this is a foreign key constraint.

Noteworthy as well is that primary key and unique key constraints are imple-
mented as types of indexes on both row store and column store tables. This means
that the constraint name can be used to look up the corresponding index in the
INDEXES system view, as demonstrated in Figure 7.12.

Figure 7.12 Index Corresponding to a Unique Constraint

7.4 SQL Views

Although tables are the database objects for storing data, views are there to define
reusable access paths to these tables. SQL views, or simply views, are exactly what
the name implies: a way to look at the data. Although the physical data model—
the tables—is rather fixed by the table design, views allow you to access the same
295

Objects7
data in different ways without storing the data multiple times. There is no option
to create indexes, triggers, or statistics and the like on a view.

From a developer standpoint, views are useful because they can be used to wrap
complex SQL logic, lengthy queries, and recurring join constructs into a single
object that can then be used like ordinary tables in queries. Technically, SQL
views are stored SELECT commands, which are executed every time data in a view
is accessed.

A very handy aspect of views is that they allow you to selectively grant access to
only some of the columns of a table or to aggregated data without providing
access to the base objects of the view (tables and maybe other views).

As an example, we look at a simple setup. A table called SHOP_FACTS contains sales
information, and we want to provide information on the top-selling articles with-
out allowing access to the single transactions data.

The table data looks like that shown in Listing 7.6.

SELECT article_id, color_code, shop_id, amount_sold, quantity_sold FROM
shop_facts;

ARTICLE_ID|COLOR_CODE|SHOP_ID|AMOUNT_SOLD|QUANTITY_SOLD
166544 |711 |64 |199.0 |1
166544 |902 |110 |199.0 |1
166544 |902 |185 |199.0 |1
166544 |902 |268 |199.0 |1
155939 |902 |261 |199.0 |1
144940 |902 |185 |199.0 |1
166544 |210 |197 |199.0 |1
144940 |723 |268 |199.0 |1
166544 |210 |3 |199.0 |1
166544 |210 |268 |199.0 |1
...

Listing 7.6 SHOP_FACTS Table

Note

The SQL standard actually specifies triggers on views, but SAP HANA does not provide
this feature.
296

SQL Views 7.4
By accessing the table directly, we see every transaction, along with information
that we are not interested in (e.g., AMOUNT_SOLD).

A select statement to provide a list of the top-ten most sold articles/color combi-
nations could look like Listing 7.7.

select top 10
 article_id, color_code, sum(quantity_sold) as TOT_QUANT_SOLD
from shop_facts
group by article_id, color_code
order by sum(quantity_sold) desc;

ARTICLE_ID|COLOR_CODE|TOT_QUANT_SOLD
166544 |902 |6620
166544 |7008 |6346
177264 |902 |4879
177264 |1103 |4604
166544 |1300 |4591
177264 |731 |4543
155939 |902 |3553
155939 |702 |3453
166699 |902 |2990
177264 |308 |2956

Listing 7.7 Aggregation Select Statement on Table SHOP_FACTS

The obvious problem here is that each user would have to run this statement to
get the correct information. Also, the users would need to have direct access to the
SHOP_FACTS table, which may not be wanted (think of shop managers who are
entitled to see their own shops’ data and the aggregated top-ten information but
not the data of other shops).

In such a case, an SQL view can be handy, as it encapsulates the data access and
the query logic. This is shown in Listing 7.8.

create view top_ten_articles as
select top 10
 article_id, color_code, sum(quantity_sold) as TOT_QUANT_SOLD
from shop_facts
group by article_id, color_code
order by sum(quantity_sold) desc
with read only;

Listing 7.8 SQL View TOP_TEN_ARTICLES
297

Objects7
After its creation, the view can be accessed like any other table, as shown in List-
ing 7.9.

select * from top_ten_articles;

ARTICLE_ID|COLOR_CODE|TOT_QUANT_SOLD
166544 |902 |6620
166544 |7008 |6346
177264 |902 |4879
177264 |1103 |4604
166544 |1300 |4591
177264 |731 |4543
155939 |902 |3553
155939 |702 |3453
166699 |902 |2990
177264 |308 |2956

Listing 7.9 SQL View TOP_TEN_ARTICLES Results Set, Including Aggregated QUANTITY_SOLD
Column

Note that you did not need to provide any aggregate function or order by com-
mand to get the top-ten list. The SELECT privilege on a view is sufficient to read
from the view; it is not necessary to explicitly grant SELECT on the underlying
tables. This is shown in Listing 7.10.

-- As different user:
select * from shop_facts

Could not execute 'select * from top_ten_articles' in 49 ms 447 μs .
SAP DBTech JDBC: [258]: insufficient privilege: Not authorized

select * from efashion.top_ten_articles;

Statement 'select * from efashion.top_ten_articles'
successfully executed in 61 ms 170 μs (server processing time: 24 ms
313 μs)
Fetched 10 row(s) in 0 ms 85 μs (server processing time: 0 ms 0 μs)

Listing 7.10 SELECT Privilege on SQL View vs. Table

When working with SQL views, database developers must be aware of several
inherent properties of these objects. We will discuss in detail the dependency
between a view and its base objects, as well as performance considerations for
SQL views.
298

SQL Views 7.4
7.4.1 View Dependencies

An important aspect of views is that they are technically dependent on the objects
they refer to. If, for example, a view is based on a table and the definition of the
table is changed (for example, a column gets dropped), then all dependent objects,
including views, will be marked as invalid. Invalid views can be dropped, edited,
and recreated, because SAP HANA does not provide an ALTER VIEW command. To
check the current state of a view, system table VIEWS can be used.

We show an example of this in Listing 7.11 through Listing 7.14.

create synonym lars.top_ten_articles
 for efashion.top_ten_articles;

create view top_ten_article_id as
 select article_id
 from top_ten_articles
with read only;

Listing 7.11 Definition of an SQL View Referring a Synonym

In Listing 7.11 we defined an SQL view that refers a table via a synonym and not
directly. This is the starting point for our example in which we will check what
happens when we drop or change the synonym used in the view. In Listing 7.12,
we check the current state of the SQL view in catalog view VIEWS.

select schema_name, view_name, is_valid
 from views where view_name='TOP_TEN_ARTICLE_ID';

SCHEMA_NAME VIEW_NAME IS_VALID
----------- ------------------ --------
LARS TOP_TEN_ARTICLE_ID TRUE

Listing 7.12 Current State of the SQL View

Now, we drop the synonym used in the view and check the state of the view
again, as shown in Listing 7.13.

drop synonym lars.top_ten_articles;

SCHEMA_NAME VIEW_NAME IS_VALID
----------- ------------------ --------
LARS TOP_TEN_ARTICLE_ID FALSE

Listing 7.13 Drop Synonym and Check View
299

Objects7
As we see, the SQL view now is marked as invalid, because the synonym it used
to refer to the table is no longer available. The view cannot be executed any
longer.

Finally, you can recreate the synonym and check the state of the view again, as
shown in Listing 7.14.

create synonym lars.top_ten_articles for efashion.top_ten_articles;

SCHEMA_NAME VIEW_NAME IS_VALID
----------- ------------------ --------
LARS TOP_TEN_ARTICLE_ID TRUE

Listing 7.14 Recreate Synonym and Check View State

As we have seen, sometimes it is not required to actually drop and recreate a view
after dependent objects have been modified. In fact, this is something that should
be avoided, because dropping a view, just like dropping any other object, also
removes the privileges granted on it. After the re-creation of the objects, the priv-
ileges would need to be regranted, which could easily be a difficult and time-con-
suming task, as will be explained in Chapter 13.

7.4.2 Performance of SQL Views

A common misunderstanding about SQL views is that they are inherently slow
performing. In fact, this is not the case, because the SAP HANA query optimizer
automatically includes the SQL command that defined the view in the overall SQL
statement and optimizes the total of it.

For the simple example shown in Listing 7.11, the SAP HANA SQL query opti-
mizer would internally transform the statement from the following:

select * from efashion.top_ten_articles
to
select * from (select top 10
 article_id, color_code, sum(quantity_sold) as TOT_QUANT_SOLD
 from shop_facts
 group by article_id, color_code
 order by sum(quantity_sold) desc)
300

SQL Views 7.4
We see that the SQL optimizer replaces the reference to the view TOP_TEN_ARTI-
CLES (Listing 7.11) with the SELECT statement that defines the SQL view; this is
called inlining.

This yields the same result set and the same execution path (the EXPLAIN PLAN out-
put has been edited for readability) as selecting from the TOP_TEN_ARTICLES view,
as we show by using the EXPLAIN PLAN function in Listing 7.15 and Listing 7.16.

select * from (select top 10
 article_id, color_code,
 sum(quantity_sold) as TOT_QUANT_SOLD
 from shop_facts
 group by article_id, color_code
 order by sum(quantity_sold) desc);

OPERATOR_NAME OPERATOR_DETAILS
COLUMN SEARCH SHOP_FACTS.ARTICLE_ID,
 SHOP_FACTS.COLOR_CODE,
 TOT_QUANT_SOLD (LATE MATERIALIZATION)
 LIMIT NUM RECORDS: 10
 ORDER BY SUM(SHOP_FACTS.QUANTITY_SOLD) DESC
 AGGREGATION GROUPING: SHOP_FACTS.ARTICLE_ID,
 SHOP_FACTS.COLOR_CODE,
 AGGREGATION:
 SUM(SHOP_FACTS.QUANTITY_SOLD)
...

Listing 7.15 EXPLAIN PLAN for Inlined SQL Statement

select * from top_ten_articles;

OPERATOR_NAME OPERATOR_DETAILS
COLUMN SEARCH TOP_TEN_ARTICLES.ARTICLE_ID,
 TOP_TEN_ARTICLES.COLOR_CODE,
 TOP_TEN_ARTICLES.TOT_QUANT_SOLD
 (LATE MATERIALIZATION)
 LIMIT NUM RECORDS: 10
 ORDER BY SUM(SHOP_FACTS.QUANTITY_SOLD) DESC
 AGGREGATION GROUPING: SHOP_FACTS.ARTICLE_ID,
 SHOP_FACTS.COLOR_CODE,
 AGGREGATION:
 SUM(SHOP_FACTS.QUANTITY_SOLD)
...

Listing 7.16 EXPLAIN PLAN for SQL View Statement
301

Objects7
7.4.3 Changing Data through SQL Views

A final fact about SQL views that is often left unnoted is that it is possible to run
INSERT, UPDATE, UPSERT, and DELETE statements against an SQL view. As long as the
view definition allows for mapping the action back to individual records, then the
commands are propagated to the base table(s). Typically, usage of aggregate func-
tions, outer joins, and dynamically computed columns prevent data manipulation
through a join, which makes it a rather seldom-used option in SQL databases.
However, SAP HANA supports this SQL standard feature as well, which also
implies that DML object privileges are available for SQL views, too.

7.5 Column Views

One of SAP HANA’s big promises is to reduce the requirement to store trans-
formed versions of data in tables in order to use them for further reporting. For
example, on classic DBMSs the aggregation of data to certain levels could be so
time intensive that it would be only done in batch runs, and the results would be
stored in separate result tables. Obviously, the data in those result tables would
only be accurate as long as the base data is not changed. But typically this is
exactly the data we want to see changing, because it is data about business pro-
cesses (sales, production, invoices, etc.).

With SAP HANA, on the other hand, transformations such as aggregations, cur-
rency transformation, master data alignment, assignment to organizational units,
and more can be done on the fly. The tools for this in SAP HANA are column
views, which have a flexible computation model.

Figure 7.13 schematically shows how complex data transformations are stacked
on top of each other via column views (in this case, calculation views) and how the
final result can be consumed via SQL or used in further transformations. In the
example calculation view, C1 performs a join of tables A and B. Calculation view
C2 takes the result from C1 and performs an aggregation and a currency conver-
sion. Finally, calculation view C3 uses the output of C2 and processes it in some
SQLScript code.

Column views are a database object type specific to SAP HANA. They basically
provide the SQL interface to the column store engines in SAP HANA (Join Engine,
OLAP Engine, and Calculation Engine). Although this generally means that only
302

Column Views 7.5
column store tables can be used in column views, there are exceptions to this rule.
For example, scripted calculation views can access row store tables, virtual tables
(tables in other databases and made accessible via smart data access [SDA]), or data
sets returned by an R-procedure call.

Figure 7.13 Example of Complex Stacked Transformations in Calculation Views

Column views are typically not created via SQL DDL statements, although this is
technically possible. Instead, they are created during the activation of SAP HANA
information models.

Because all activated information models are stored in the _SYS_BIC schema, that
is where the columns views can be found, via the object navigator Catalog � _SYS_

BIC � Column Views.

It is possible to display the definition for column views, but the actual coding is
stored in unformatted JSON format, as seen in Figure 7.14.

Table A Table B

∑ $

€

SELECT col1, col2 …
FROM C2 WHERE…

Calculation View C3

FOR <loop-var> IN
…

END FOR

SELECT col1, col2 …
FROM C3 WHERE…

Calculation View C1

Calculation View C2
303

Objects7
Figure 7.14 Definition for a Column View

An additional option to inspect the column views in the _SYS_BIC schema is the
Join Viewer (see Figure 7.15), which is available in the context menu when a col-
umn view of type OLAP has been selected. Despite being possibly interesting in
order to review the actual join setup in the active version of an analytic view and
to compare it to the design-time setup, the Join Viewer has not yet played any sig-
nificant role for SAP HANA administrators.

From a consumer’s perspective, column views can be used like SQL views. The
main difference is that column views actually don’t adhere to SQL formalism and
structure, and this has led to several misunderstandings about the expected result
sets for column views. For a more detailed description on the somewhat odd
workings of column views, especially calculation views, please refer to SAP Note
1764658, SAP Note 1764662, and SAP Note 1783880.

The reason for the nonrelational behavior of calculation views is that, unlike SQL
views, column views are not merely wrappers around an SQL statement. Instead,
304

Sequences 7.6
more or less complex data transformation and access logic is saved in a calculation
scenario. The scenario itself is not reachable via SQL, but, as shown in Figure 7.14,
with every calculation scenario a column view gets created. This column view is
what is accessible to SQL and therefore the interface to the calculation scenario.

Figure 7.15 Example Display of the Join Viewer for Analytic Views

As soon as the column view is queried, the calculation scenario is invoked. Again,
unlike SQL views, calculation scenarios take into account what output has been
requested every single time they are called and may remove parts of their calcula-
tion logic from the processing steps when they are technically not required.
Depending on the kind of operation at hand, this might lead to a reduced result
set.

Typically, there are no actions or responsibilities present concerning column
views for the administrator. Column views of all types are fully managed by the
repository or the application that creates them (e.g., SAP BW on SAP HANA uses
column views).

7.6 Sequences

Sequences generate nonrepeating number sequences in a high-performance, lock-
free manner with the possibility for gaps between two numbers. If you are asking
yourself what that means, then read on.
305

Objects7
Imagine you want to store records in a table, and each record should get its own
unique ID number. This can be implemented in many different ways, but it typi-
cally would involve application logic similar to this:

1. SELECT the current lowest/highest number from a table, and add an offset to it,
for example, 1. As other sessions might also want to do the same, the SELECT
needs to be completed with the FOR UPDATE option to set an exclusive lock. All
other sessions that now want to do the same have to wait for the lock to be
released.

2. Now the record gets inserted or updated in the application table with the num-
ber retrieved in the previous step. After the successful INSERT or UPDATE, this
number also has to be stored back in the numbers table. Just in case the
INSERT/UPDATE operation went wrong for any reason (ironically, for example, a
duplicate key or a check constraint error), the current transaction has to be
rolled back. For the number table, this means that the current number does not
get changed and that the exclusive lock is released.

The reason for storing the increased new number only after the actual use of the
number is simply a matter of optimization. If the number table was updated right
after the number was retrieved, then the number table would be modified regard-
less of whether or not the transaction is later rolled back. That in turn could gen-
erate unnecessary undo and redo information in the (hopefully) rather seldom
event of a ROLLBACK.

The problem with this home-brew number dispenser table is that due to the nec-
essary locking, parallel running sessions will have to wait for each other, which
can become a very constraining aspect for systems that need to handle a high
number of parallel transactions. Also, every transaction that wants to use the
number table needs to ensure that it follows the access pattern correctly and only
fetches new numbers with the use of the exclusive lock. Otherwise, numbers
potentially would get used multiple times.

The positive aspect of this technique, however, is that due to the lock-per-use-and-
update-afterwards approach, there cannot be gaps between two subsequentially
generated numbers. Depending on your application requirements, that might be
required (although not very often), and if this is the case, the locking cannot be
avoided.
306

Sequences 7.6
Now, how can sequences help here? Sequences provide this number dispenser
service out of the box. Transactions only need to ask for the next number
(<sequence_name>.nextval), and the sequence object performs all necessary steps
automatically. Internally, sequences check the highest number currently stored in
monitoring table M_SEQUENCES upon first usage since system startup.

The following example demonstrates most options for sequences.

Start by creating a dummy table for which you need a unique ID. We will use a
sequence called things_id_spiller for that. It will deliver values in steps of 10
and cache 100 values. Upon system restart, the current value will be looked up in
the dummy table. Listing 7.17 shows the commands used for that.

create column table things
(id integer primary key,
name varchar(30) default 'UNKNOWN');

CREATE SEQUENCE things_id_spiller
 START WITH 1
 INCREMENT BY 10
 NO MAXVALUE
 NO CYCLE
 CACHE 100
RESET BY (select ifnull(max(id), 0) + 1 from things);

Listing 7.17 Sequence Definition Example

To fetch the next number, you simply select from the sequence as if it had a func-
tion called .nextval, as shown in Listing 7.18.

select things_id_spiller.nextval from dummy;

THINGS_ID_SPILLER.NEXTVAL
1

Listing 7.18 Using the .nextval Function of a Sequence

Once we have selected from .nextval in our session, we can always go back and
review the last provided number with .currval, as demonstrated in Listing 7.19.
Be aware that .currval does not return anything if .nextval has not been exe-
cuted in the current session:
307

Objects7
select things_id_spiller.currval from dummy;

THINGS_ID_SPILLER.CURRVAL
1

Listing 7.19 Using the .currval Function of a Sequence

Trying to use .currval in a second session in fact leads to the error message
shown in Listing 7.20.

select things_id_spiller.currval from dummy;

ERROR:
Could not execute 'select things_id_spiller.currval from dummy' in 186
ms 522 μs .
SAP DBTech JDBC: [326]: CURRVAL of given sequence is not yet defined in
this session:
cannot find currval location by session_id:300513, seq id:203224, seq
version:1
at function __currval__()

Listing 7.20 Using .currval Function of a Sequence without a Prior .nextval Call

Of course, fetching the next value in the second session works and delivers the
next value in line (1 + 10 = 11), as shown in in Listing 7.21.

select things_id_spiller.nextval from dummy;

THINGS_ID_SPILLER.NEXTVAL
11

Listing 7.21 Using .nextval from a Second Session

In order to use the sequences as an ID generator for our table, we can use INSERT
from a subquery command (Listing 7.22). Alternatively, we would have to select
the ID into a variable beforehand and then insert the value in a second step.

insert into things (ID) (select things_id_spiller.currval from dummy);

Listing 7.22 Insert Command with Subquery that Calls the .currval Function of Sequence Spilller

After repeating the insert, the table contents look like Listing 7.23.
308

Sequences 7.6
select * from things;

ID NAME
1 UNKNOWN
11 UNKNOWN

Listing 7.23 Table Data after Using the Different Ways to Insert Records with Sequence-Gener-
ated IDs

Our ID is indeed unique and can serve as a primary key. However, it is only guar-
anteed that no two numbers provided will ever be the same. It is not guaranteed that
there won’t be any gaps between the numbers or that no numbers had been skipped.
If this is not acceptable, then other ID-generating mechanisms need to be employed.

In order to reinitialize the sequence, that is, to get rid of the currently cached val-
ues and get a new set of numbers into the cache, all the administrator has to do is
to run the ALTER SEQUENCE <sequence_name> command without additional param-
eters, as shown in Listing 7.24.

alter sequence things_id_spiller;

select things_id_spiller.nextval from dummy;

THINGS_ID_SPILLER.NEXTVAL
1001

Listing 7.24 Reinitialize a Sequence

In case the database or the indexserver process gets restarted, the current value
is reinitialized by the select statement we provided earlier. Right after the restart,
in this case, we get 12 from the .nextval function and the same result by using
the RESET BY statement (Listing 7.25). Note that the IFNULL() expression is there
to cater to truly empty tables, for which the max() function would yield NULL.

select things_id_spiller.nextval from dummy;

THINGS_ID_SPILLER.NEXTVAL
12

select ifnull(max(id), 0) + 1 from things;

IFNULL(MAX(ID),0)+1
12

Listing 7.25 Simulating the Restart Value for Sequence Reinitializaion
309

Objects7
In case the table used in the RESET BY clause is not available during system startup,
the sequence cannot be initialized, and trying to access it will fail, as we see in
Listing 7.26.

rename table things to things_2;

>>> restart indexserver

select things_id_spiller.nextval from dummy;

ERROR:
Could not execute 'select things_id_spiller.nextval from dummy' in 590
ms 40 μs .
SAP DBTech JDBC: [313]: invalid sequence: RESET BY query is invalid

Listing 7.26 Error in Sequence Reinitialization Due to Table Renaming

In Listing 7.27, we show how changing the RESET BY statement for the sequence
fixes this problem easily.

alter sequence things_id_spiller reset by select ifnull(max(id), 0) + 1
from things_2;

select things_id_spiller.nextval from dummy

THINGS_ID_SPILLER.NEXTVAL
12

Listing 7.27 Updating the RESET BY Clause of a Sequence

Whereas M_SEQUENCES provides a view on the current state of the sequences, cat-
alog table SEQUENCES contains the definition for every sequence.

As we see, sequences also provide the option to do the following:

� Limit the possible numbers to an interval between MIN_VALUE and MAX_VALUE
(in M_SEQUENCES, these are oddly named differently: START_VALUE and END_
VALUE).

� Set the step size in which the sequence should be increased (INCREMENT_BY)
with every call of .nextval.

� Define whether the sequence should wrap around in case it reaches the value
limits (IS_CYCLED).
310

Sequences 7.6
� Specify an SQL query that should be used to determine a new start value when
the sequence gets reset (RESET_BY_QUERY) during system restart. This is espe-
cially useful when sequences are transported between different systems, in
which case the current value might be very different.

� Define a CACHE_SIZE parameter. This parameter holds the size of the sequence
cache as number of cached values. Setting up a sequence cache can lead to bet-
ter performance in scenarios in which many numbers are fetched in a very
short period. As sequence access typically is not a major performance problem,
the recommendation for this is to use the cache conservatively (e.g., 500 val-
ues) and to measure the effect before using larger caches. If a cache has been
specified, SAP HANA will fill the cache with numbers generated by the
sequence, and the following SQL statements will retrieve the .nextval from
the cache. In this way, no waiting for the update of the M_SEQUENCES view is
required. In the case that the server node that holds the cache crashes, the num-
bers within the cache are “lost,” and SAP HANA will restart the sequence with
the current high/low number. This means that if using the cache is necessary
and no large chunks of numbers can be lost, the RESET BY QUERY should be set
so that the restart is done based on the table values.

� In addition to these features, the ALTER SEQUENCE statement provides some
handy tools to work with sequences. For example, a sequence can be increased
by a given value so that it is not required to call .nextval in the loop to get to
a specific number (Listing 7.28).

alter sequence things_id_spiller restart with 5000;
select things_id_spiller.nextval from dummy;

THINGS_ID_SPILLER.NEXTVAL
5000

Listing 7.28 Setting a Sequence to a Specific Number

As we have seen, sequences provide a conveniently packaged object type that
encapsulates many handy functions of a general number dispenser that otherwise
would need to be encoded in the application logic. On top of that, the fact that
sequences are proper catalog objects makes them just as manageable as tables.
They can be exported and imported, monitored via a common monitoring table
(M_SEQUENCES), and protected by SQL privileges (SELECT ON <sequence_name>).
311

Objects7
7.7 Procedures and Functions

Although most of the objects discussed up to this to point are simply the function-
ality built in by SAP HANA developers, procedures and functions allow the data-
base developer to extend built-in functionality. In this way, application logic can
be implemented directly on the database level. Stored procedures and functions
can contain SQLScript code, allowing for procedural/functional processing of
data. Both of them use direct input parameters and can access other input data,
such as common tables during runtime.

A main purpose of these procedural objects is to encapsulate application logic and
make it reusable throughout the system. Very similar to subroutines in other
development environments, it is typical to find hierarchies of procedures calling
other procedures or functions and so forth. Given this, the same rules and heuris-
tics for system decomposition apply as in any other development language (e.g.,
“a function should do one thing and only one thing”); how to implement this is of
course left to the developer. SAP HANA does not enforce design restrictions on
that matter.

The major difference between procedures and functions is the use case and the
form in which each type is actually used. Functions are meant to be used directly
within SQL statements to solve recurring processing requirements. They come in
two different flavors: scalar functions (functions that return a single value of a spe-
cific data type) or table functions (functions that return a single table-type value).

Scalar functions can be used like common functions in SQL statements, for exam-
ple, SELECT myfunction_add10percent(salary) as new_salary FROM employees.
Table functions, meanwhile, can be used like tables, as shown in Figure 7.16.
From an administration point of view, this difference does not matter, because
there is only one function object type in SAP HANA.

Procedures are similar to functions, but they provide the option to return multiple
result values via OUT or IN/OUT parameters and possibly multiple result sets. In
addition to that, it is possible to assign a result view to a procedure so that it can
be executed and so that the result can be worked with as if the procedure was an
SQL view. Just like for SQL views and column views, the source code for func-
tions and procedures is stored in the database catalog and can be reviewed in the
respective catalog views FUNCTIONS and PROCEDURES.
312

Synonyms 7.8
Figure 7.16 Example for a Table Function

Although this is true for both catalog and activated repository objects, it is highly
recommended to use the repository for function and procedure development,
because catalog objects cannot be debugged with the SQLScript debugger, they
cannot be transported, and no version management for catalog objects is pro-
vided. When creating functions or procedures directly in the catalog, it is unfor-
tunately required to drop the existing version of the object before a newer version
can be created, which also is handled automatically when activating the repository
versions.

Besides the usual execute permission management, there are no administration
tasks present for procedures or functions. Currently, in SPS 8, SAP HANA pro-
vides no usage statistics on the object level for functions or procedures that would
allow for system-wide analysis of, for example, impact on the system load.

7.8 Synonyms

Synonyms and public synonyms are other kinds of objects in SAP HANA. They are
shortcuts for the object name resolution in the database and work very much like
file system links in a computer’s file system. In order to access any object, it is nec-
essary to provide the name and the schema of the object. Depending on where the
object is stored logically, this fully qualified object name can become very long
and impractical to work with.
313

Objects7
Synonyms can be created not only for tables or (SQL and column) views but also
for functions and procedures. They cannot be created for users, schemas, or other
synonyms. They have two main use cases:

� Indirect object access
Using synonyms, it is easy to redirect object access from, for example, a table
to a view so that no direct table access is performed. Alternatively, one could
switch between development and test objects that are present in the same SAP
HANA instance.

� Framework or database management objects
Public synonyms are database-wide indirections and valid for all sessions and
users in the database. If the name resolution does not find the addressed
objects in the current schema, then the PUBLIC namespace is searched, and with
that the public synonyms are accessed. Due to this database-wide effect, public
synonyms typically are used for framework or database management object—
such as the SAP HANA system views, for each of which a public synonym is
present.

A good use case for synonyms in SAP HANA is to create shorter names for catalog
objects created through the activation of repository content. For example, a table
name such as "mycompany.myapp1.componentXYZ::THINGS" is still a short name for
a table that has been designed with SAP HANA Core Data Services (CDS). As the
table name follows a specific pattern ("<schema_name>"."<full.package.hierar-
chy>"::"<table_name>"), the resulting table names can be very long.

In order to easily access such tables, synonyms can be created, as shown in Figure
7.17.

Figure 7.17 Example for a Table Synonym
314

Summary 7.9
A little-known specialty of synonyms is that DROP SYNONYM can also drop depen-
dent objects when called with the CASCADE option. The default option RESTRICT
would simply invalidate any dependent object, which can be views, procedures,
triggers, functions, and so on: basically every object that can refer to a synonym.
An example of this is shown in Table 7.2. Here, we can see that the CASCADE option
actually drops the dependent view, thereby removing it from the catalog view
VIEWS.

7.9 Summary

In this chapter, we looked at all relevant database objects that can be found in the
catalog of the SAP HANA database. The main takeaway should be to have an idea
of the purpose of every object type and likewise where to find information about
the objects of any specific object type.

You should also remember that the catalog in SAP HANA is where every session
can find information about the database and the current state of the system. This
catalog is represented by a set of system views, including a dedicated system view
for each object type. As we have seen, the catalog handles objects that are already
present and available for use, but not design-time objects.

DROP SYNONYM DROP SYNONYM (with CASCADE)

create synonym my_things for
"mycompany.myapp1.compo-
nentXYZ::THINGS";

create synonym my_things for
"mycompany.myapp1.compo-
nentXYZ::THINGS";

CREATE VIEW myView as
 SELECT * FROM my_things;

CREATE VIEW myView as
 SELECT * FROM my_things;

DROP SYNONYM my_things; DROP SYNONYM my_things CASCADE;

SELECT view_name,
 is_valid
FROM views
WHERE view_name = 'MYVIEW';

VIEW_NAME IS_VALID
MYVIEW FALSE

SELECT view_name,
 is_valid
FROM views
WHERE view_name = 'MYVIEW';

Fetched 0 row(s)

Table 7.2 Cascade Option for DROP SYNONYM
315

Although SAP HANA supports different types of data storage objects,
relational tables by far are the most important way to structure and store
data.

8 Table Types

Tables are the most fundamental data structure in any relational database. Even
though tables are made up of a set of columns, these columns could not exist in
the database on their own; they can exist only in the compound of a table. In fact,
the whole relational design approach is based on relations that are later mapped
to physical tables, leaving columns as mere attributes of the relations.

SAP HANA, like most other database systems, offers multiple different types of
tables. These types differ in the way the tables are represented internally in the
database. These differences in the internal representation have an impact on cer-
tain aspects of interactions with the table, such as performance for a given kind of
data manipulation or data-retrieval process (that is, for a given type of workload).
It is, therefore, important for a database developer or database administrator to be
able to optimally match table types to different processes or workloads within
their applications. In SAP NetWeaver systems, this matching is taken care of by
the application developers at SAP.

There are two natural choices for the internal representation of tabular data in a
relational database management system (RDBMS): The data may be stored by row
or by column. Most RDBMS use one of these types, and row store data represen-
tation is the most common choice.

SAP HANA is an exception to this rule, allowing for either a row store or a column
store representation for its tables as well as for the conversion of a table from one
type to the other. Virtually all application data in SAP HANA systems will be
stored in tables of these two basic types, and we devote the majority of this chap-
ter and Chapter 9 to introducing the concepts and principles of working with
these objects.
317

Table Types8
There are several other types of tables available in the system for special use cases,
such as temporary tables, flexible schema tables, or history tables. These special
types are based on the basic types (there are, for example, temporary row store
tables and temporary column store tables) but behave very differently from the
basic types in certain aspects. We will spend a few pages working out the special
features of these additional types of tables, but first we will talk about those
aspects of tables that are common to all types.

8.1 Common Properties of All Tables

All database tables describe relations between columns, that is, their structure or
definition consists of a set of columns or fields, and each column has a unique
name within the table and a specific data type. Usually, the table definition also
contains semantic information, such as uniqueness constraints (duplicate values
are not allowed in column <x>), primary key definitions, and so on.

A second common concept of all tables is that of a row (also commonly referred
to as a record or tuple). Each data entry in the database contains of a row, that is,
one value for each field. If a table has a primary key, then each row in the table can
be uniquely identified by the values of the primary key fields.

Applications can interact with database tables by using the interfaces and lan-
guages supported by the database system. The most common language in data-
base systems is SQL, but other languages may be available. SAP HANA does, for
example, offer interfaces for the well-known MDX or OData standards as well as
for SAP HANA-specific APIs, such as CE-functions, that are part of SAP HANA’s
SQLScript syntax for stored procedures.

Regardless of the type of table, interactions of applications with a given table are
based on the table definition. That is to say, an application does not need to know
whether a table is a row store table or a column store table in order to read data
from the table. The SQL command to retrieve a certain data set from a table is thus
independent from the type of the table.

It is, therefore, useful to speak of the table definition as the logical table—basically,
the API offered to applications for interacting with the data represented by the
table—and to refer to the internal representation of the table within the database
as the physical table.
318

Row Store Tables 8.2
8.2 Row Store Tables

The DBMS has to store records that are inserted into a table in some form in the
main memory. The classic approach for relational databases, in which the data is
stored in table form, is to store the data in a form resembling the logical table
structure. Every record is saved as one concatenated chunk of values for every col-
umn in memory. A visual representation of this is shown in Figure 8.1.

Figure 8.1 In-Memory Data Storage of Row Store Tables

In the following sections, we will guide you to the most important aspects of row
store tables for the database developer and the administrator. We first talk about
the advantages and drawbacks of row store table representation in general and in
SAP HANA. Then, we introduce two specific details of row store tables in SAP

Exception

The exceptions to the above rule are long records and columns with very large data
types, for example, LOB (large objects) columns. For such data types, typically some sort
of special storage implementation is provided in most DBMS, and SAP HANA is no dif-
ferent.

ID NAME SALARY GROUP

42 LUCULLUS 1.123 A

128 OCTAVIAN 2.450 A

4711 BLACKBEARD 2.200 B

In-memory storage of
row store data in a page

Logical table layout

System RAM usable for table data

42;LUCULLUS;1.123;A;128
;OCTAVIAN;2.450;A;4711;
BLACKBEARD;2.200;B;
319

Table Types8
HANA: The implementation of multiversion concurrency control allows for lock-
free data access and manipulation while maintaining transactional consistency,
and indexes are a technique for optimizing data access that is also relevant in the
row store of SAP HANA.

8.2.1 Properties in SAP HANA

This design has the obvious benefit of a very direct mapping of the logical table
layout and the operations performed against it to the actual data manipulation
that happens in memory. It is easy to program for the DBMS developer and easy
to understand for the DBA.

A disadvantage here is that structuring the data representation by rows is not very
effective for many typical operations on a relational database. One of the more
obvious inefficiencies in the row-oriented storage is that every value is stored
again for every occurrence of the value within the table. Even with normalized
data models, this repetition of data, especially for very common values, cannot be
prevented, because the foreign key references need to be stored. On top of this,
the reference needs to be resolved during processing by joins, which adds to the
computational effort required in this situation. The less obvious but far more
important issue is that the DBMS cannot directly access a specific column of a
table. Instead, whole data pages need to be transferred to the CPU to scan through
the stored rows in order to identify where values for a specific column are stored.

This data movement from the system’s main memory to the CPU caches—the
memory areas on the chip that CPUs can actually work with—is what impacts per-
formance the most, especially for mass data processing, such as data warehouse
queries and analytics. For a completely different workload, though—namely, the
access of a single or a few records with all of their columns—this storage method
is beneficial, because the required data transformation from the internal storage
to the external representation (also called a projection) to the database client is
minimal.

Note

When records are most often accessed with all columns, and mass data processing and
analysis do not play any role, then row store tables can show better performance than
column store tables.
320

Row Store Tables 8.2
SAP HANA row store tables do come with some important limitations, though:

� Row store tables cannot be partitioned, which limits the possible total size of all
row store tables to the memory available on the single server that the tables are
located on. The exception to this is table replicas; these appear as partitions of
the table they are defined upon.

� SAP HANA offers no compression for row store tables.

� Columns in row store tables cannot be accessed independently and in parallel.
That does not mean that row store tables won’t be processed in parallel,
though. In fact, many operations, such as sorting, grouping, index creation, and
window function processing, can be heavily parallelized.

� Row store tables cannot be displaced from memory. All row store tables need
to be present in memory all the time while the system is up and running. There-
fore, the tables are automatically loaded into memory during system startup,
which might take some time. This in turn prolongs the system startup time, for
example, after a crash or after offline maintenance.

� When row store tables cannot be fully loaded into memory, the system can no
longer be started up.

� Row store tables cannot be directly used as data sources in most types of SAP
HANA information models.

Considering the mentioned limitations of row store tables, we recommend using
column store tables as the default choice. Row store tables should only be used
when column store tables cannot be used.

For SAP NetWeaver systems running on SAP HANA, SAP defines which tables
shall be row store tables. Upon installation or migration of an SAP NetWeaver sys-
tem to an SAP HANA database, the correct assignment is performed automati-
cally. Over time—with the experience gained—this standard assignment of tables
gets updated with newer versions of SAP NetWeaver-based applications. To check

Note

In order to prevent accidental creation of row store tables, the initialization file param-
eter indexserver.ini � [sql] � default_table_type should be set to COLUMN. This
will cause all tables that are created without an explicit table type to be created as col-
umn store tables.
321

Table Types8
the current assignment in your system and see if you need to update it to the cur-
rent version, please see SAP Note 1659383 and SAP Note 1815547.

8.2.2 Multiversion Concurrency Control

Multiversion concurrency control (MVCC) is a well-known technique to allow
parallel access to the same bits of information to multiple sessions, even when one
or more sessions are actively changing this information. This is accomplished by
keeping copies of the original version of the record and presenting each session
with the version appropriate to the sequence of system changes (COMMITs) that the
session had been exposed to.

For the SAP HANA user or developer, this happens automatically, and no addi-
tional care or precautions need to be taken. However, the column store and the
row store implement this feature in quite different ways, each bringing different
consequences for the administrator with it.

For tables placed in the row store, each changed page is copied first and placed
into a chain of page versions with each version reflecting the state of data for a
specific commit point. These page chains are saved in virtual container structures
in memory called undo cleanup files. Monitoring view M_UNDO_CLEANUP_FILES
provides detailed information on these internal virtual file container structures,
but usually it is not necessary for the DBA to look into these. The garbage collector
thread will automatically take care of getting rid of old, unrequired information so
that more main memory is available for current data processing. Be aware that
this will not necessarily lead to more free or usable memory immediately.

One aspect of this garbage collection is, however, important to the DBA; the gar-
bage collector can only remove those old versions of a record for which the
update transactions have been finished (committed or rolled back). In the case of
a transaction modifying tens of thousands of records without committing them,
you may end up in a situation in which large amounts of redundant row store data

Note

Because of the way data pages of row store tables are managed, the row store may
become fragmented in rare circumstances. It is possible to reorganize the row store data
(see SAP Note 1813245), but this operation should be treated with great care.
322

Row Store Tables 8.2
need to be kept in main memory, because there will be tens of thousands of
record locks and new active record versions kept in the database.

This situation can be visualized in the load diagram of SAP HANA Studio in
Administration Console � Performance � Load by displaying the key figures
Acquired Record Locks, Active Transaction ID Range, and Active Versions. A
situation with 100,000 changed records is shown in Figure 8.2.

Because situations like this can become problematic, SAP HANA provides several
alerts and warnings that notify the DBA in case the garbage collection is impaired;
see also SAP Note 1833835.

Figure 8.2 Load Diagram Example for Long-Time-Open Change Transactions

More information on MVCC and the related monitoring and administration tasks
are provided in Chapter 10.

8.2.3 Indexes

Like any other DBMS, SAP HANA provides indexes to speed up record access on
tables. The row store of SAP HANA is specifically designed to work in memory
only, so the internal data structure including the possible secondary indexes are
optimized for that.

For row store tables, two different index types are available: a classic b-tree index
implementation and a cpb+-tree index. The latter stands for “compressed prefix b-
tree index” and is an index structure that is highly optimized to handle character-
based index keys in memory. It uses partial keys to store and navigate within the
index structure.
323

Table Types8
Although it is possible to specify which index type shall be used for a specific
index on a row store table, typically it is not necessary to do so. SAP HANA will
use the cpb+-tree for all indexes that are defined on columns or combinations of
columns that are of string, binary string, or decimal types. For all other data types,
the classic b-tree index will be used.

To review runtime information of indexes on row store tables, monitoring view
M_RS_INDEXES can be used. Indexes on row store tables are not saved to the per-
sistency but rebuilt when the table is loaded into memory. This happens during
index server process startup and can potentially prolong the startup process as can
be observed in the trace file entries written by the index server process during
startup.

8.3 Column Store Tables

Column store tables are the major table data structure used in SAP HANA. Much
of SAP HANA’s high-performing analytical and mass data processing happens
thanks to the benefits of the column store.

Although we cannot completely cover all relevant details of the column store, this
section explains the most important aspects of it. This section covering SAP
HANA’s implementation of column store tables starts with a discussion on how
data is stored and retrieved and how data updates are managed. Then, we advance
to data compression and space usage. We close this section with a view on indexes
and multiversion concurrency on column store tables.

8.3.1 Data Storage and Retrieval

The column store, as the name implies, stores the table record data column by col-
umn and not row by row over many pages. As the information is already stored
in separate data structures, SAP HANA can directly access the columns requested
by an SQL query without needing to read and decode other column data. This also
means that a lot less data needs to be transported from the RAM to the CPU
caches, which, again, saves a lot of time. In addition, multiple CPU cores can work
on several columns at the same time—all due to the separate in-memory data
structures.
324

Column Store Tables 8.3
The next benefit lies in the efficient default data storage in column store tables.
Very often, columns contain repetitive data. Information such as material num-
bers, ZIP codes, or customer IDs are referenced over and over again, which is no
wonder, because the tables should store what business events occurred with these
items. Knowing that, it seems to be logical to store each different value only once
and refer to it when it is used again. This is precisely what SAP HANA does; each
different value of a column is kept in the so-called dictionary of the column and
is assigned an internal value ID.

This value ID currently (as of SPS 8) is a variable-length integer of a maximum 4-
byte integer size. This leads to a maximum of 2,147,483,648 different possible
values that can be stored in any column dictionary. SAP HANA column store
tables actually can only store about two billion records per partition or table,
depending on whether the table is partitioned or not. To store the actual values
per record, only the value IDs are stored one after the other in a contiguous mem-
ory area. Literally, this is a very long string of zeroes and ones that represents the
actual information itself. To know which value belongs to which record, the offset
of the ID is used.

We can see this in Figure 8.3 for the column GROUP. The column contains two dis-
tinct values, A and B. The first two records in the table refer to group A, whereas
the third one refers to group B. This is exactly what we find in the main vector of
the column: The first two entries reference the dictionary entry with value ID 1,
and the third one references value ID 3. By using only the references instead of
the actual values, many base operations on table data—for example, finding
records that contain a specific value—can be immensely sped up, because the task
can be delegated to the CPU cores and their ability to perform operations on
arrays and vectors of data (single instruction, multiple data: SIMD).

Note

The benefit of having the columns stored separately also comes at a price; when SAP
HANA returns complete records, it needs to recombine the correct column data entries
that make up all of the records in the table. We will see how this is done in a very effi-
cient way later in this section.
325

Table Types8
Figure 8.3 Storage of Records in Column Store Tables

Figure 8.4 provides an example of how data is accessed in the column store. To
find the record that matches the WHERE condition ID = 4711, SAP HANA reads the
dictionary of the column ID and retrieves the stored valueID for value 4711. Here,
it is valueID 3. Next, the main vector is scanned completely for all occurrences of
valueID 3. The offset of the occurrence is the offset to be used when reading from
the other columns.

The preliminary result set is created by reading the columns NAME and SALARY at
the offset position found in 2 of Figure 8.4. In order to make the result set read-
able, the actual values for NAME and SALARY now need to be looked up in the col-
umn’s dictionaries.

As we can see, the column GROUP was never touched during this query execution.
Although this access mechanism looks a lot more complex than the one used for
the row store table, splitting it up into so many substeps allows for several impor-
tant optimizations:

In-memory storage of table data in the
column store

Logical table layout

System RAM usable for table data

1|BLACKBEARD
2|LUCULLUS
3|OCTAVIAN

1|42
2|128
3|4711

1|1.123
2|2.200
3|2.450

1|A
2|B

1
2
3
⁞

2
3
1
⁞

1
1
2
⁞

1
3
2
⁞ Main

vector

Diction-
ary

Data structure for
column “GROUP”

ID NAME SALARY GROUP

42 LUCULLUS 1.123 A

128 OCTAVIAN 2.450 A

4711 BLACKBEARD 2.200 B
326

Column Store Tables 8.3
� Cache usage
The dictionary data from 1 can fit completely into the CPU cache of one core.
To find the matching record, it is not required to scan through the full table.

� Benefitting from SIMD instruction sets
In 2, instead of scanning through the full table, an SIMD operation on the col-
umn’s main vector delivers the matching row within a few CPU cycles.

� Parallelization
With the offset information, the next two columns can be accessed in parallel
by two CPU cores to build the preliminary result set in 3.

� Parallel materialization
Finally, in 4, the materialization can be performed in parallel.

� Late materialization
For mass data, SAP HANA supports a bulk materialization that also uses SIMD
CPU instructions to resolve the valueIDs to actual values (late materialization).

Figure 8.4 Example for a Simple Table Access in the Column Store

Logical table layout

“GROUP”

1|A
2|B

1
1
2
⁞

SELECT NAME, SALARY FROM EMP WHERE ID = 4711

(1) Find valueID for ID = 4711 in dictionary

3

(2) Scan main vector to find offset(s) with valueID = 3

3

(3) Result set is valueID 1 from “NAME“ and 2 from

“SALARY“

(4) Materialize result set by resolving dictionary references

ID NAME SALARY GROUP

42 LUCULLUS 1.123 A

128 OCTAVIAN 2.450 A

4711 BLACKBEARD 2.200 B

NAME SALARY

1 2

1|BLACKBEARD
2|LUCULLUS
3|OCTAVIAN

1|1.123
2|2.200
3|2.450

2
3
1
⁞

1
3
2
⁞

“ID” “NAME” “SALARY”

1|42
2|128
3|4711

1
2
3
⁞

NAME SALARY

BLACKBEARD 2.200

Main
vector

Diction-
ary

N
ot

 u
se

d

327

Table Types8
� Intrinsic sorting
Another improvement for read performance is that the entries in the dictionary
are sorted so that in order to find a specific value—for example, the filter con-
dition provided in the WHERE clause of an SQL statement—SAP HANA can easily
perform a binary search in the dictionary.

A side effect of the dictionary encoding is that for most of the data that is usu-
ally stored in columns it works like a compression algorithm that saves storage
space for repeated values. On top of this “accidental” compression—obviously
the dictionary encoding does achieve compression on columns with unique
values, such as primary keys or GUIDs—SAP HANA can compress the main
vector data very effectively. SAP HANA uses several different possible com-
pression algorithms that are automatically selected for the best efficiency based
on the data distribution and clustering in the main vector.

Figure 8.5 Column Store Runtime Information in SAP HANA Studio

Note

The type of compression actually applied on any column can be reviewed in the M_CS_
COLUMNS monitoring view or in the Runtime Information tab of the SAP HANA Studio
Table Editor, as shown in Figure 8.5.
328

Column Store Tables 8.3
8.3.2 Changing Data: Inserts, Updates, and Deletes

The picture of performance improvement radically changes when we try to
change data in the column store structures. Because the column dictionaries may
need to be sorted after, for example, the INSERT of new values into the column,
the new value must be placed right into the dictionary, and a new ID has to be
assigned. Eventually, this means that the dictionary needs to be resorted. To ena-
ble good INSERT and UPDATE performance, the column store provides a separate
data structure for changed data: the delta store.

The delta store is a data container structure in memory that is optimized for high
INSERT performance, as this is the only operation allowed for the delta store.
UPDATEs and DELETEs are handled by marking old entries as invalid and creating
new entries. This is what makes the delta store the insert-only data structure in
the column store.

The advantages in the INSERT speed come at the price of high memory consump-
tion (because no compression takes place in the delta store) and lower read-access
performance. To compensate for this, the delta store is regularly used to update
the optimized columnar data structure of the table, named the main store. This
operation is called delta merge. The important key takeaway here is to realize that
data from column store tables is changed or written only in one structure, the
delta store.

On the other hand, reading the data always happens on both the delta and the
main store. Because this is done by SAP HANA automatically, the application
developer or end user does not have to take care of this—but it does carry some
consequences. For example, it is possible to insert new data into a column store
table without loading the already existing records in the main store first. As all
inserts are performed in the delta store, only the internal ROWID column needs to
be in memory for the INSERT operation. Of course, any column involved in a
unique or primary key constraint that should be enforced needs to be in memory,
too.

Warning

When checking for the memory usage of any column store table, it is important to make
sure that the table is loaded fully to memory (in monitoring view M_CS_COLUMNS, col-
umn LOADED = 'TRUE').
329

Table Types8
8.3.3 Redo Logging and the Delta Store

A misconception that occurs quite often is to assume that the delta store is used
during the recovery process of the database. After all, it contains data change
information just as the redo log does. In reality, the delta store is not persisted at
all. It is a pure in-memory structure that is not represented in the persistency. For
more on persistency in SAP HANA, refer back to Chapter 5.

Figure 8.6 provides an overview of the persistency access for the column store
memory containers.

Figure 8.6 Persistency Access by Main and Delta Store

Further Resources

We have prepared a detailed example that illuminates the usage of the delta store in
data manipulations and data retrieval as well as active management of the delta store.
This material can be downloaded from the book’s page at www.sap-press.com.

1|BLACKBEARD
2|LUCULLUS
3|OCTAVIAN

1|1
2|2
3|3

1|1.123
2|2.200
3|2.450

1|A
2|B

1
2
3
⁞

Main
vector

Diction-
ary

1
1
2
⁞

1
3
2
⁞

2
3
1
⁞

INSERT INTO EMP (ID, NAME, SALARY, GROUP)
VALUES (42, 'TUFFI', 1950, 'W');

Persistence Layer

Data

Log
Log

Log
Log

ID

42

15

⁞

NAME

TUFFI

VARUS

⁞

GROUP

W

C

⁞

SALARY

1.950

3.210

⁞

Log
Buffer

DELTA store, per column

INS (42,'TUFFI',
1950, 'W');

Data changes are
saved—not the whole
data structure. Log
data contains all
affected columns.

Written to data area
directly as represented
in memory.

Read into memory
column wise upon
request

MAIN store, per column

Upon column
loading, all redo
logs since the last
main store save
have to be replayed
to reconstruct delta
store in memory.
330

Column Store Tables 8.3
Although each column of the table has its own delta store, for data change pur-
poses all delta stores for all columns of a table are handled as one combined unit
so that the delta store of the table is at any point in time either entirely loaded into
main memory or not loaded at all.

When new data is inserted, as shown in 1, the values for all columns of the new
tuple are inserted into the delta store: each value into its corresponding column-
related delta store.

Once the data has been written to the delta store, a log entry is written into the log
buffer, as shown in 2, and eventually to the log file in the disk persistence. When
logging is disabled, this is the processing step that is omitted. In the case of a sys-
tem crash, the data in the delta store will be lost.

Because the delta store itself is never written to the data volume files, it has to be
reconstructed following a table unload or a restart. To this end, SAP HANA has to
read and replay all of the data changes that occurred to the table since the main
store was last written to persistency.

Once the changed data is written into the delta store, it is available for processing.
But due to lack of compression, the data-access performance is a lot worse than for
the data in the main store.

Also, the high memory consumption of the delta store entries might impact the
rest of the system, where memory could be put to better use. So, eventually the
data in the delta store should be transferred into the main store. This is done
during the delta merge operation. We go into more detail about delta merges in
Chapter 9.

The process of redo logging is largely different for the main store; here the data is
stored to persistency exactly as it looks in memory, as shown in 4. Each column
can be loaded, unloaded, and written to disk independently from the other col-
umns. Once a column is requested, SAP HANA only needs to read the data for this
specific column and transfer it into memory, as shown in 5.

Note

Because all data changes have to be performed again in the same sequence they had fol-
lowed originally, this might take a long time.
331

Table Types8
Obviously, being able to just read the data as is from the persistency saves a lot of
time compared to the sequential approach of the delta store. Thus, tables with
only main-store data or very little data in the delta store typically load much more
quickly than those with a lot of data in the delta store.

8.3.4 Data Compression

As mentioned earlier, SAP HANA provides additional compression on the column
store main vector structures. Depending on the order of dictionary references in
a main vector, SAP HANA can apply different compression algorithms to it.

The system picks the best compression algorithm for any given sort order auto-
matically based on the present order of values in the main vector of any column.
This means that the compression is affected by the order in which the data gets
loaded into the main vector. To achieve better compression factors, we need to
reorder the table records—but sorting the table affects all columns and may worsen
the compression of other columns when the sort order is altered. Finding the best
possible sort order for a table can become a difficult optimization problem.

Fortunately, DBAs or developers do not need to manually choose the compres-
sion for each column. Instead, SAP HANA does this during compression optimiza-
tion, a processing step that is automatically applied after an automatic delta merge
or smart merge if the table contents have been changed substantially since the last
compression optimization. The thresholds for the optimization compression to
kick in are defined as parameters, as shown in Table 8.1.

These default settings mean that the table compression will only be executed if:

Parameter Name Default Description

Active YES Compression optimization
status

min_change_ratio 1.75 Minimum required changed
row count (ratio)

min_hours_since_last_merge_of_part 24 Minimum hours since the
last merge of a part

min_rows 10240 Minimum required rows

Table 8.1 Thresholds for Optimization Compression
332

Column Store Tables 8.3
� The last delta merge was at least 24 hours ago (min_hours_since_last_merge_
of_part) in order to prevent compression optimization runs that are too fre-
quent.

� At least 10,240 rows (min_rows) are stored in the table (for small tables, the
overall space savings effect typically does not rectify a compression optimiza-
tion run).

� The ratio #of total rows/#of changed rows is smaller than or equal to 1.75 (min_
change_ratio) (it is assumed that the data distribution will be only be impacted
by large-scale data changes).

� The compression optimization is actually active (active).

Compression optimization is an operator-free process of the SAP HANA column
store. However, in cases in which table compression rates are not satisfying, it is
possible to find out about the details of the storage space utilization of column
store tables. We cover this next.

8.3.5 Space Usage and Internal Columns

A very common request for SAP HANA DBAs is to investigate memory usage of
tables, especially for tables in the column store. When looking into this, it
becomes obvious that the runtime information shown in the Table Editor of SAP
HANA Studio does not give you the complete truth; adding up the sizes of all of
the columns of the table will result in a number that is lower than what is reported
as the total memory consumption. The reason for this deviation is that SAP HANA
uses additional hidden internal columns for various purposes on column store
tables. See SAP Note 1986747 for a technical explanation and a reference to
detailed examples. The internal columns that get created can be reviewed in the
monitoring view M_CS_ALL_COLUMNS but unfortunately not in the runtime infor-
mation overview of the Table Editor.

The following table gives an overview of the different types of internal columns
and their major uses. Please note that even though columns with unique values
such as $rowid$ or $trexexternalkey$ can consume a lot of memory, especially

Further Resources

A more detailed discussion of compression optimization can be downloaded from the
book’s page at www.sap-press.com/3506.
333

Table Types8
for large tables, it is not possible to drop these columns, because they are an inte-
gral part of the table data structure in SAP HANA.

Rather unknown but particularly important types of hidden columns are the con-
cat attributes. Up to SPS 7, SAP HANA was not able to efficiently join column store
tables when the join condition spanned multiple columns. To overcome this and
in order to allow using the single-column join algorithms, concatenated columns
were created. These CONCAT_ATTRIBUTE columns consist of the concatenated data
of the involved join columns, as shown in Figure 8.7.

The problem here is that up to SPS 7 these columns were created automatically
whenever a multicolumn join was executed for the first time. The CONCAT_
ATTRIBUTE columns then were kept and maintained, but never automatically
dropped again, so that they would be available for later reuse.

Figure 8.7 Contents of CONCAT_ATTRIBUTES

Column Type Column Name Description

ROWID $rowid$ Row pointer, unique identifier of a
record, internal, cannot be deleted

TREX_UDIV $trex_udiv$ Transaction and visibility manage-
ment, internal, cannot be deleted

TREX_EXTERNAL_KEY $trexexternalkey$ Multicolumn primary key index

CONCAT_ATTRIBUTE $<col1>$<col2>$...$ Multicolumn index, join indexes

Table 8.2 Types of Internal, Hidden Columns of the SAP HANA Column Store
334

Column Store Tables 8.3
As of SPS 7, SAP HANA supports multicolumn joins without CONCAT_ATTRIBUTE
columns along with further decreased usage (and implicit creation) of concate-
nated attributes in SPS 8. The already existing concat attributes can be reviewed
and dropped if required. To do so, use the script HANA_Tables_ColumnStore_
TableColumns from the SQL statement collection available in SAP Note 1969700.
The script lists all columns, including the internal columns, links the CONCAT_
ATTRIBUTE columns back to their origin (multicolumn secondary index or infor-
mation model view), and provides the correct SQL syntax to drop the CONCAT_
ATTRIBUTE column if this is possible.

If the performance advantage of CONCAT_ATTRIBUTE columns is important to your
application, then the recommendation is to explicitly create secondary indexes on
the set of columns that should be used to perform the join. This makes these col-
umns much more visible as what they really are (join indexes) and allows for easy
dropping and transport.

8.3.6 Indexes

It is frequently stated that in columnar databases indexes are not required for
optimizing the performance of data retrieval. Although this is true in most situa-
tions, it is possible to find constellations that can greatly benefit from the creation
of inverted indexes on columnar tables. One such example is that of searching for
a small number of records identified by a single value or few values out of a table
column with billions of unique entries—a typical requirement in OLTP scenarios.
Finding these records requires a search on the dictionary for the value(s) and then
scanning the main vector for all occurrences of the value ID(s). The time for this
scan will increase linearly with the number of entries in the column.

An inverted index for a given column is a list of all individual values in a column
with pointers to all positions at which a given value occurs in the column (Figure
8.8). These pointers will greatly reduce the cost of the previously mentioned main
vector scan.

Inverted indexes are created simply via the CREATE INDEX command. Because the
column store does not support different index types like the row store does, SAP
HANA creates column store indexes regardless of the provided index type.
Inverted indexes are also automatically created when a primary key or unique
constraint is defined on column store tables.
335

Table Types8
Figure 8.8 Inverted Index in SAP HANA Column Store

The inverted index for a column will typically require approximately as much
space in main memory as the main vector of the column, as can be verified with
a check on monitoring view M_CS_ALL_COLUMNS. As is the case with any other
index structures, inverted indexes buy access speed performance with memory
consumption. More important than the relative speedup factor for a given query
is that the access time for the inverted index will stay stable regardless of how
many records are stored in the table. The scan access without the index, on the
other hand, will take longer and longer to perform this lookup as more data is
loaded into the table.

Given the high costs of inverted indexes, questions arise: “When is it sensible to
create indexes?” and of course “On which columns should indexes be created?”
Let’s look at some of the more common reasons to use indexes in a classic row
store RDBMS and see if these reasons are also applicable in the SAP HANA column
store:

� Create indexes in order to enable an index-only access strategy and thereby
avoid touching the table.
This does not make any sense for the SAP HANA column store, as inverted
indexes are part of the column data structure. Reading from the index is work-
ing on the volume of data; the data is simply organized in a different way.

1|GREEN
2|BLUE
3|RED

2
3
3
⁞
2
3
3
2
1
3
1Main Vector

Dictionary

29
1;25;28
2;3;26;27;30

1
2
3
⁞
25
26
27
28
29
30
31

Offset
(not stored)

Inverted Index

Main Store
336

Column Store Tables 8.3
� Create indexes to speed up min/max queries.
Inverted indexes do not help here, because this issue can already be addressed
efficiently via the column dictionary.

� Create indexes to speed up reading data in a sorted way.
Because data must be read from the delta log as well and the index exists in the
main part only, a separate sorting step is required regardless.

It should also be considered that inverted indexes are recreated in memory at the
loading time of the column. This means that there is an additional delay for the
first use after loading.

All of this sounds rather negative and against using inverted indexes, and in fact
the actual use cases for secondary indexes are much rarer than in classic RDBMS.
This is one of the big sales arguments in favor of SAP HANA as a database plat-
form: being able to get rid of indexes and stored precomputed results.

What then is a good indicator for when to create indexes on column store tables?
For SAP Business Suite on SAP HANA, the following approach has been used:

� The application performs many selective lookups on large tables. Even though
the table is large, the result set is rather small.

� SAP Note 1794297 delivers an ABAP report to create secondary indexes in SAP
NetWeaver systems based on the following heuristic:

� Single-column secondary indexes (inverted indexes) are created on column
store tables for tables up to 500,000 records (small tables) when the column
to be indexed has at least 10,000 distinct values, and on tables larger than
500,000 records (large tables) when the column to be indexed has least
1,000 distinct values.

� There are no indexes on time fields, because they are almost always selected
with ranges with poor selectivity.

� Multicolumn indexes are not created, because the penalty of additional
memory occupation will outweigh the usually small performance gain that
can be achieved with multicolumn indexes.

� The (#of records/#of distinct values) of the column to be indexed needs to be
smaller or equal 10,000, as the filtered result set shouldn’t be larger than
10,000 records.
337

Table Types8
8.3.7 Multiversion Concurrency Control

Like row store tables, the SAP HANA column store supports multiversion concur-
rency. This way, no read will ever block another reader or writer in the system,
allowing for much higher parallel throughput.

The way this feature is implemented for column store tables is rather straightfor-
ward. New versions of records are not stored in a separate data structure. Instead,
every new version is placed in the delta store together with validity information
on a transaction level. Once the new version of the record is committed, the last
valid version is provided with end-of-validity information. The new record ver-
sion now is the current version, and the old version is only visible to those trans-
actions that started before the new version became valid. The invalid record ver-
sions will be removed during the delta merge if no active transaction is still able
to access the record in its old version.

All of this happens automatically, and the DBA does not need to take action to
trigger the garbage collection. Because the handling of multiversion concurrency
is so deeply embedded into the core data structures of the column store, there is
no additional data structure to monitor or reorganize.

8.4 Special Types of Tables

In addition to the two basic types of tables we have covered so far, SAP HANA
offers several other types for special use cases. The columnar structure of flexible
schema tables can be extended dynamically as the table is being used by an appli-
cation. Temporary tables are there for data that is not needed beyond the context
of a session or transaction and thus does not need to be written to the persistence
layer. History tables allow running transactions against the state of the table at a
time in the past. Finally, the DUMMY table is an auxiliary table in the database for the

Note

Inverted indexes do not need to be rebuilt or optimized in any way. The inverted index
structure is created once and only once during the delta merge. After that, as a part of
the main store, the index is not going to be changed ever again. This makes it possible
to employ a very dense data structure—especially compared to b-tree indexes that com-
monly have only 50% space usage.
338

Special Types of Tables 8.4
convenience of database developers. We will walk you through the use of these
types of tables.

8.4.1 Flexible Schema Tables

SAP HANA provides the option to create schema flexible tables, which are tables
that enable you to store data in a table for which the structure is not known com-
pletely in advance. This could be useful, for example, for an inbound data-staging
layer.

In classic DBMS, a common workaround design for such problems is to use
generic data models in which the actual physical data model contains metadata
tables to describe the current data model and large shared tables that contain
every value for every record. Although ultimately flexible, such models lead to
severe problems with performance, constraint checking, and access permission
handling, to name just a few.

With flexible schema tables, such a design could be avoided, because the table
adapts to the data that is put into it. Tables with schema flexibility can contain up
to 64,000 columns, whereas standard tables can contain a maximum of 1,000 col-
umns. At least one column needs to be fixed.

Tables with a flexible schema need to be handled differently by the application using
them. Because the table structure is not known when the application is written, SQL
statements have to be dynamically generated to work with the present data.

Unlike classic key:value modelling approaches in fixed schema tables, it is not nec-
essary to read from the same few columns of the table over and over in an eventually
recursive fashion. Instead, a record in a flexible table can be used as if it was a com-
mon table, and access to specific keys (columns) is as fast as with normal tables.

As new flexible columns are defined during INSERT/UPDATE/UPSERT commands, it
is not possible to specify the exact data type at that point. However, the data type

Note

One assumption for flexible schema tables is that the flexible created columns are
sparsely populated—which makes perfect use of the column store, because no data is
saved in columns for rows that do not contain values for this column.
339

Table Types8
can be changed later via ALTER TABLE <table_name> ALTER COLUMN (<column_
name> <data_type>).

To make the concept of flexible schema tables more tangible, we provide the fol-
lowing example. Start with the creation of a table with schema flexibility, as
shown in Listing 8.1.

create column table flex_log (id integer, log_name varchar(20))
 WITH SCHEMA FLEXIBILITY;
select table_name, HAS_SCHEMA_FLEXIBILITY from tables
where table_name ='FLEX_LOG';

TABLE_NAME HAS_SCHEMA_FLEXIBILITY
FLEX_LOG TRUE

Listing 8.1 Creating a Table with Schema Flexibility

You just created a table with schema flexibility; now, enter some data. Note that
the columns you insert the data into in Listing 8.2 do not exist yet.

insert into flex_log (id, log_name, MACHINE_START_TS)
 values (1, 'START_MACHINE', current_time);

insert into flex_log (id, log_name, LOGON_NAME)
 values (2, 'SYSTEM LOGON', cast('LARS' as varchar));

insert into flex_log (id, log_name, MACHINE_STOP_TS)
 values (3, 'STOP_MACHINE',
 cast (current_timestamp as timestamp));

Listing 8.2 Entering Data for Columns That Do Not Yet Exist in the Table

When you select from the table now in Listing 8.3, you will find that the columns
have been created automatically.

select * from flex_log;

ID LOG_NAME MACHINE_START_TS LOGON_NAME MACHINE_STOP_TS
1 START_MACHINE 13:48:49 NULL NULL
2 SYSTEM LOGON NULL LARS NULL
3 STOP_MACHINE NULL NULL 13:56:33

Listing 8.3 Selecting Data from the Dynamically Added Columns
340

Special Types of Tables 8.4
Checking the data type, as shown in Listing 8.4, reveals that all columns that had
been created on the fly are of the type character, which allows them to accept
most values without any data type–matching issues.

select column_name, data_type_name, length, scale, HAS_SCHEMA_FLEXIBIL-
ITY
 from table_columns
where table_name ='FLEX_LOG';

COLUMN_NAME DATA_TYPE_NAME LENGTH SCALE HAS_SCHEMA_FLEX.
ID INTEGER 10 0 FALSE
LOG_NAME VARCHAR 20 NULL FALSE
LOGON_NAME NVARCHAR 5000 NULL TRUE
MACHINE_START_TS NVARCHAR 5000 NULL TRUE
MACHINE_STOP_TS NVARCHAR 5000 NULL TRUE

Listing 8.4 Checking the Data Types of the Dynamically Added Columns

8.4.2 Temporary Tables

Storing data safely and securely in a fully recoverable fashion according to ACID

requirements is key to most databases, and, of course, the same is true for SAP
HANA. There are, however, use cases in which it is fully acceptable, even desir-
able, for data to be only available for a limited time. Such use cases could include,
for example, an intermediate result set that should be put into a table structure for
further use (e.g., to join it with another table) or storing intermittent system infor-
mation, such as application server session states, in a database table.

SAP HANA provides three different table constructs for temporary tables: global
temporary tables, local temporary tables, and no logging tables. Global and local
temporary tables can be used with both row and column storage, but no logging
tables can only be used with column storage.

Global Temporary Tables

Global temporary tables are tables for which the table definition is shared with all
sessions, just like normal tables. The content of the table, however, is only visible
to the current session; as soon as the session ends, the content will be removed.
Global temporary tables can be created both as row or column store tables. Join-
341

Table Types8
ing the table with a column store table will be more efficient when the temporary
table is a column store table as well.

Although the table and its structure show up in system tables such as TABLES,
TABLE_COLUMNS, and the monitoring views for tables, no runtime-specific data, for
example, the number of records in the table, is visible outside of the session that
owns the data.

A common use case for global temporary tables is the recurring exchange of result
sets between SQLScript procedures without table parameters. The structure of the
result set data has to stay fixed in this scenario.

Local Temporary Tables

Local temporary tables are pretty much the same as global temporary tables with
the exception that the entire table existence is limited to the session that the table
was created in. There is a naming convention for local temporary tables: The table
name has to start with a hash sign (#).

No Logging Tables

Column store tables can be created or altered with the NO LOGGING option. The full
option parameter set is:

CREATE COLUMN TABLE ...
 NO LOGGING [RETENTION <retention_period>]

This will create a standard column store table, but none of the changes will be
logged. The table’s delta store will work the same way as usual but without writ-
ing redo log entries into the log buffer. This means that only the table content
stored in the main store can possibly be available after a system restart.

On top of that, it is possible to provide a retention time for the data in the table.
In case the index server process faces memory shortage, it should drop NO LOGGING
tables after a retention time of n seconds, specified as the <retention period>.

Because the existence of this table as well as its contents is not at all reliable, this
kind of table should only be used for cache-like structures of the application using
the database. For example, SAP BW hierarchy information used during query pro-
cessing could be implemented with such tables.
342

Special Types of Tables 8.4
8.4.3 History Tables

One of the features that had been advertised more heavily in the early days of SAP
HANA is history tables, which give the option to see what the data looked like at
some point in the past. With history tables the SAP HANA user can deliberately
choose to not have old, now-invalid records removed from the column store
table. History tables have two additional internal columns—$validfrom$ and
$validto$—that store commit IDs if the update transaction from and to a record
was valid. During an automerge operation, the outdated records are then moved
to a second set of main and delta stores: the history main and history delta. To
manually trigger this data movement, the MERGE HISTORY DELTA OF <table_name>
command is available.

In order to review the old state of a history table, it is necessary to use a session
with AUTOCOMMIT disabled. Then, you can set a session-wide point in time to go
back to. The point in time is specified by a UTC timestamp or an SAP HANA inter-
nal commit ID. The timestamps and commit IDs that had been used for changes in
history tables in the system can be checked in the system table TRANSACTION_HIS-
TORY.

The semantic here is to be able to look at a specific point in time; access to a period
of time is not possible with currently supported standard SQL. That means that it
is not possible to review the change history of a specific record or to compare
what changed in past versions. Because the commit IDs stored in the history

Note

DBAs familiar with other DBMS platforms probably know NO LOGGING tables and
assume that SAP HANA NO LOGGING tables work the same way. This is not the case. In
order to simply disable the creation of redo log entries on column store-tables, use:

ALTER TABLE <table_name> DISABLE DELTA LOG

To disable redo log generation for the whole database, including row store tables, use:

ALTER SYSTEM LOGGING OFF

In both cases, the system needs to be backed up after mass data loading, because none
of the data changes will be recoverable.

Also note that for SAP HANA systems, due to the hardware system specifications, writ-
ing out log data to the log volumes typically is not a major performance bottleneck
when loading data.
343

Table Types8
tables are specific to the SAP HANA system on which the commit ID occurred, it
is not possible to export and import history tables. This is especially true when the
export is done on a different system than the import. Although no error will be
thrown, the historic data will be incorrectly assigned to commit IDs or timestamps
or will simply point to nonexisting commit IDs.

Due to these limitations, most application use cases for time-related databases
cannot be properly handled with history tables—which is why we cannot recom-
mend using them.

8.4.4 Special Table DUMMY

Table DUMMY is a convenience object for the SQL developer. It is used throughout
the system, especially by internal SQL commands, for example, from the statistics
server or statistics service. The table is defined to consist of a single character col-
umn, DUMMY, that holds a single record with value X, as shown in Listing 8.5.

select * from dummy;
DUMMY
X

Listing 8.5 Table DUMMY

On first sight, surely you might ask: “What is so useful about this table?” The
answer is that it is useful to generate result sets with only one record, like the one
in Listing 8.6.

SELECT current_time FROM dummy;

CURRENT_TIME
11:20:32

Listing 8.6 Using Table DUMMY as a Row Generator

Here, the actual content of table DUMMY is not interesting at all. What is important
is the number of records (1), because the function current_time is evaluated for
every record in the result set.

Because SQL functions such as current_time cannot be evaluated out of thin air
but only on records, the DUMMY table can be used to overcome this limitation.
DUMMY is present in every SAP HANA database and is SELECTable by every user. To
344

Summary 8.5
retain the special setup of the one-row/one-column table, no user has INSERT,
UPDATE, DELETE, or TRUNCATE privileges, nor can the table be altered.

Similar tables exist in other DBMS platforms, such as Oracle (DUAL), SAP MaxDB
(DUAL), or IBM DB2 (DUAL). Still other platforms, such as MS SQL Server or SAP
(Sybase) Adaptive Server Enterprise (ASE), support SELECT statements without a
FROM clause and evaluate functions anyway.

In scale-out systems, the table exists once in the row store of each indexserver,
statisticsserver, and xsengine process of the system. This leads to a slightly
odd situation when querying system table TABLES for table DUMMY, because it will
report not one record but the sum of one record per DUMMY table in the system.

8.5 Summary

SAP HANA offers multiple types of tables to choose from. After reading this chap-
ter, you should know the basic properties and appropriate usage scenarios for all
types of tables.

An unusual feature of the database is that it has not just one but two conceptually
different basic types of tables: the row store table and the column store table. Of
these, the most important one for most practical purposes is the column store
table, and we have spent the majority of this chapter discussing its most promi-
nent features. For special purposes, the database also supports temporary tables—
the content of which are not written to disk persistence—flexible schema tables
with a flexible column layout, and other types.

Having introduced the types of tables conceptually, the next chapter is all about
administration tasks related to database tables.
345

Now that you understand the basics of the types of tables in SAP HANA,
this chapter will teach you what you need to do with them.

9 Working with Tables

There is a wealth of functionality available in SAP HANA for working with data-
base tables. For this chapter, we have picked out those items that are most impor-
tant for database administrators in order to understand what is happening in the
database system and how to optimally manage the tables in the system.

We will start with basic functionalities of the column store, such as loading and
unloading columns to and from memory and performing and monitoring delta
merges. Next, we will cover arguably the most difficult topic, namely, the parti-
tioning of tables and the distributing of tables in scale-out systems, including a
discussion of optimizing this process. We’ll conclude the chapter with discussions
of importing/exporting tables and checking tables for consistency.

9.1 Loading Tables to and from Memory

The algorithms for processing data in SAP HANA are optimized for in-memory
data management. It is therefore mandatory that all data that is being worked
with is contained in the main memory. Understanding the mechanism for loading
and unloading data into/from memory is particularly important in two respects:

� At system start time, most database tables are not yet loaded into the main
memory. This is to minimize the time needed for the system start. It is there-
fore important for the DBA to understand if and how tables can be loaded into
the main memory.

� In some situations, even with proper sizing, the main memory available in the
database system may not be sufficient to store all table data and at the same
time accommodate dynamic memory demands for ongoing requests in the sys-
347

Working with Tables9
tem. In such cases, the database may decide to explicitly evict tables or parts of
tables from the main memory.

In this section, we will tell you about all features around modifying the presence
of tables in the main memory. We will start with the manual or automatic loading
and unloading of data before handling the special case of large object columns and
the rather new feature of page-wise loading of columns. We’ll conclude with a dis-
cussion of the hot and cold data concept.

9.1.1 Loading and Unloading of Columns

As an in-memory database, SAP HANA’s main memory is the primary storage for
tables and columns. However, at some point there likely will be more data in the
database then what would fit into memory. Although SAP HANA’s in-memory
storage provides immense benefits in terms of database schema simplicity, pro-
cessing speed, and flexibility, it is not as easy to add more memory to a SAP HANA
server as it is to add more disk space to a classic database.

SAP HANA employs different mechanisms to handle data loading to memory and
data removal from memory. The most prominent feature is the column load/
unload mechanism. The way this works is that, after system restart, no column of
any column store table will be loaded to memory. But as soon as an SQL statement
requires access to a specific column, SAP HANA will load this column (plus at least
the $rowid$ and $udiv$ internal columns, as those are required for consistent data
access) from disk into memory.

Once in memory, the column will stay in memory until a column unload is trig-
gered. Then, the column unload stores the current state of the column to disk and
releases the SAP HANA internal memory container back to the memory manage-
ment facility.

Note

Even though columns are unloaded from memory and the memory is returned to the
memory management system, this does not mean that the memory will be released on
the operating system level.

Instead, the SAP HANA memory management system can now reuse the freed memory
internally, for example, for different columns that need to be accessed now, for interme-
diate result sets, for delta merge working memory, and so on.
348

Loading Tables to and from Memory 9.1
Table-column unloads can be triggered either automatically—when the memory
management finds that this is the only way to free up some memory to satisfy cur-
rent requests—or manually with the UNLOAD command.

The UNLOAD command always triggers the UNLOAD of the complete table, whereas
with the counterpart command LOAD it is possible to selectively load single col-
umns (LOAD <table_name> (<column #1>, <column #2, ...)).

In addition to the manual unloading of column store tables, SAP HANA can also
automatically unload tables when memory shortage occurs. There is no specific
threshold of memory usage that once reached would lead to table unloading.
Instead, SAP HANA tries to keep tables in memory as long as possible. Only when
a memory request from a session cannot be satisfied from the currently available
memory will SAP HANA try to free up memory.

In a first step, possible fragmented free memory will be defragmented so that a
memory request for, say, 10 MB of contiguous memory can be satisfied after merg-
ing two free segments of, say, 7 MB and 4 MB. If there is still not enough free mem-
ory available after memory compaction, then table columns will be unloaded.

In order to not get rid of column that are currently in use or that had been recently
used, SAP HANA employs a least recently used (LRU) list of the columns inter-
nally. After temporary tables and resources have been unloaded first, columns
that have not been touched for the longest time will be unloaded, followed by the
more recently used columns. The unloading will proceed until enough memory is
free and available to fulfill the memory request that kicked off the unloading.

Note

Historically, the MERGE DELTA and LOAD/UNLOAD commands have evolved from the
parameterized UPDATE statement, like UPDATE <table_name> WITH PARAMETERS
(‘OPTIMIZE_COMPRESSION’ = ‘FORCE’).

In versions up to SAP HANA SPS 8, this is still visible in the fact that the required privi-
lege to execute any of those commands to a table is the UPDATE TABLE privilege. This
means that every DBA who should be able to perform any of these commands against
production tables needs to have UPDATE privileges on the tables. Obviously, this is a
highly undesirable situation.

As a workaround, very similar to the workaround for the object ownership problem dis-
cussed in Chapter 7, stored procedures can be implemented to prevent unwanted data
being updated through DBAs or developers.
349

Working with Tables9
Now that we have covered loading and unloading columns, we will dive a bit
deeper and look into three aspects of this topic that are of special interest to the
SAP HANA DBA. The ability to monitor the unload of columns is important in
order to understand system performance and sizing. As possible remedies for
excessive column unloading or reduced query performance after system startup,
we cover unload priorities and column preloading.

Monitoring Column Unloads

Clearly, having columns constantly unloaded and loaded back to memory again
will negatively impact the system’s performance a great deal. In order to monitor
the columns that had been unloaded and what had been the trigger event, the
monitoring view M_CS_UNLOADS is available (Figure 9.1).

Figure 9.1 M_CS_UNLOADS Example Output

As the unload trace information will eventually be overwritten in time, there is
another option to gather unload information, the statistics server table _SYS_STA-
TISTICS.HOST_CS_UNLOADS.

Note

The monitoring view is based on unload trace files. If the unload trace (indexserver.
ini � [unload_trace] � enabled) is disabled, then unloads will not be captured.
350

Loading Tables to and from Memory 9.1
Unload Priority

Under certain conditions, there may be tables that should never get unloaded,
regardless of the memory requests. Or, the other way around, there may be tables
for which it is certain that they will not be used very often after some initial activ-
ity on them. An example for that would be the SAP BW persistent staging area
(PSA) tables.

For such special requirements for unloading behavior, SAP HANA provides the
option to set an unload priority per table. The unload priority is given as a number
between 0 (never unload the table) and 9 (unload this table first). To specify the
unload priority, the ALTER TABLE <table_name> UNLOAD PRIORITY <priority> com-
mand can be used. Alternatively, the unload priority can be provided at table-cre-
ation time. The default setting for unload priority is 5 and is used when no unload
priority has been specified.

Preload of Columns

Depending on the use case, it might not only be desirable to keep specific tables
from being unloaded but also to have them loaded to memory all the time, spe-
cifically immediately after an instance restart. This is done with the following
command:

ALTER TABLE <table_name>
 PRELOAD ALL
 |PRELOAD (<column name #1>, <column name #2>)

Up to SAP HANA SPS 6, the preload of tables was performed before an SQL ses-
sion could be opened with the database. This prolonged the restart time consid-
erably when large tables were marked to be preloaded.

As of SPS 7, the preloading, together with the reloading, of tables happens asyn-
chronously directly after the system restart has finished. That way, the system is
again available for SQL statements that do not require the information of the col-
umns that are still being loaded. Any statement that requires this information will
have to wait until the column data is successfully loaded to memory.

9.1.2 Reload of Tables

The SAP HANA column store generally loads data into memory only when it is
actually requested. That way, only the columns that really get used allocate space
351

Working with Tables9
in memory, and the others are left on disk. A problem with this approach is that
after a system crash or shutdown it may take a long time until all columns that are
necessary for the application to work properly have been reloaded into memory.
Setting up the important tables with the preload option does not particularly help
here, because preload loads all marked tables into memory before SQL access is
allowed. The system is practically unavailable during the table preload. In addi-
tion, it can be difficult to determine which tables or columns are actually required.

Since SPS 6, SAP HANA has had a more suitable feature available to get systems to
a fully functional state after a restart: the table reload. During uptime, SAP HANA
monitors and saves information on what tables and columns are currently in
memory. This information is then used during database restart to asynchronously
load those columns that had been in memory before the restart back into mem-
ory. Figure 9.2 gives an example of the parallel loading activity.

Figure 9.2 Example of Thread Overview during Asynchronous Table Reload after a Restart

You can activate or disable the table reload function with indexserver.ini param-
eter [sql] � reload_tables = true|false. Setting parameter [parallel] � tables_
preload_in_parallel defines the maximum number of tables that will be
preloaded and reloaded in parallel.

9.1.3 Large Object (LOB) Columns

When storing large data in the database, the binary large object (BLOB) and char-
acter large object (CLOB) data types are typically used. For the application devel-
oper, columns of this type can be used as containers for large chunks of data that
352

Loading Tables to and from Memory 9.1
belong to a specific record. Such columns can contain virtually anything, from pic-
tures or video or audio files to PDF documents.

Up to SAP HANA SPS 6, LOB columns were handled like any other column. Once
accessed via an SQL statement, the complete column was loaded into memory and
kept there. Clearly, this strategy comes with the huge drawback that the content
of these large object columns can of course be large. Loading and keeping several
GB of LOB data in memory just to access a small piece of the data would require
a lot of memory that otherwise could be put to better use.

To deal with this problem, SAP HANA introduced hybrid LOB columns with SPS
7. These can be used like any other column, but they will be unloaded early. Even
more important is that every LOB value for every record can be independently
loaded into memory. If just one record is selected, then only the corresponding
LOB values are read into memory. The same is true for unloading LOB data from
the memory. Hybrid LOB entries that have not been used recently will be
unloaded while other values can stay in memory.

A special case within this scenario is the way that SAP NetWeaver uses LOB col-
umns. Instead of actually storing large values, SAP NetWeaver has several tables
in which the LOB data itself is rather small, but the table size in terms of the num-
ber of records is immense.

As of SPS 7, all LOB columns can be configured with a threshold value. As long as
the actual data size in the LOB column is smaller than the threshold in bytes, the
value will be stored in memory. Once the LOB data grows larger, it will be stored
in a separate memory object that will be displaced onto disk immediately after
use.

9.1.4 Paged Attributes

The option to load only parts of column data upon request and leaving the unre-
quested remaining part on disk is helpful not only for LOB columns but also—
depending on the column size—for simple data types. As of SPS 7, SAP HANA

Further Resources

See SAP Notes 1994962 and 2007021 for more information on hybrid LOBs. These SAP
Notes will also explain how to use scripts to perform a mass LOB conversion if you run
a system that was installed on an earlier release of SAP HANA.
353

Working with Tables9
supports this kind of chunk-wise loading of column data to memory with the
paged attribute feature. As described in SAP Note 1871386, it is currently only
possible to ALTER an existing column to switch to the page-wise loading. Only col-
umns that are not part of the primary key and on which no UNIQUE constraint is
defined can be marked as paged attributes.

The internal data structure of a paged attribute column consists of multiple
chunks of data. These chunks require additional structural information, and
accessing data across the chunks is less efficient than working on a contiguous
data, main store structure. The only actual benefit of paged attributes arises when
a very small number of records from of a very large table will be accessed individ-
ually. If the table is not yet in memory, accessing only some of the data chunks can
allow for more efficient access to the data.

9.1.5 Hot/Cold Data Aging Concept

One of the major concerns with handling mass volume data in SAP HANA is deter-
mining what data will reside in the main memory. Ideally, all data would fit into
the main memory, and enough free memory would be left to allow for data
processing. In reality, however, the available amount of memory is constrained by
the hardware or the SAP HANA license. To overcome this problem, SAP HANA
systems and applications implement a data aging concept, also referred to as a hot/
cold data aging concept.

The basic idea here is that data that is heavily used at the moment, such as book-
ings that are being processed right now, last weeks’ sales, and so on, should be
kept in main memory. This kind of data is considered to be hot data. Data that is
no longer of interest for active data processing and that needs to be retained for
purposes such as auditing and large-scale data analysis over a broader timeframe
should be kept available, but not in memory. This kind of data is cold data.

Obviously, there is no way for the database engine to know which data can safely
be considered to be cold, because it cannot foresee what data will be requested
next by the application. Therefore, hot/cold data concepts are all driven by the
application that uses it.

A classic data-aging concept for SAP NetWeaver is data archiving. Here, the appli-
cation provides the logic for how to find related data that should be archived, and
the archiving service of SAP NetWeaver manages to save the data in an archive
354

Loading Tables to and from Memory 9.1
and remove it from the database tables. To access the archived data, the archive
has to be read into the application again.

SAP BW provides a more flexible approach, called nearline storage (NLS). Here,
the retrieval of archived data is automated in the query processing. That way, an
end user can specify if data stored in the NLS should be retrieved, and SAP BW
automatically reads the NLS data during the query execution and incorporates it
into the query result. These solutions are still available with SAP BW on HANA.

For SAP BW on SAP HANA, the current NLS implementation integrates with the
SAP (Sybase) IQ database system, which allows a high query performance on
archived data. SAP HANA can use smart data access to directly access the tables
with the archived data in the SAP (Sybase) IQ database. At query time, SAP BW
only needs to send the query to SAP HANA, and it will also automatically retrieve
the archived data if requested. Writing into the SAP (Sybase) IQ database and
deciding what records should be archived is done solely by SAP BW on SAP
HANA. Another functionality used by SAP BW on SAP HANA is the early unload
of column store tables for specific object types (PSA and write-optimized
DataStore objects [DSO]). See SAP Note 1767880 for details on this. With these
approaches, the application—SAP BW on SAP HANA in this case—needs to spec-
ify the data temperature on a table level and also needs to manage the access to
archived data in an NLS.

Wouldn’t it be nicer if the application could simply specify records as hot or cold,
and SAP HANA could then keep the cold data out of memory? This is exactly what
the data aging concept implemented in SAP NetWeaver 7.4 SP5 does. The tables
for which data aging should be used are partitioned in a specific time-dependent
scheme supported by SAP HANA (recognizable by the _DATAAGING column). SAP
NetWeaver provides ABAP code to manage aged data, and the SAP NetWeaver
database interface automatically adds specific extensions to the SQL commands—
for example, WITH RANGE_RESTRICTION('CURRENT')—to signal to SAP HANA what
group of data should be considered.

This partitioning scheme is managed by the SAP NetWeaver application and as
of now is not released for custom development outside of SAP NetWeaver. In
addition, every individual record is marked by the application to be either hot or
cold and is stored in one of the partitions based on this marking. Current hot
records are stored in a “current” partition that is kept in memory. All other
records are moved to cold partitions that are unloaded from memory. SAP
355

Working with Tables9
HANA does not check key uniqueness on those cold partitions when data is
modified in the hot partition, thereby circumventing the need to load the cold
partitions into memory.

These examples for current data aging concepts should make it obvious that SAP
HANA does not and cannot provide a generic data aging mechanism that works
for all applications the same way. Whenever data aging or data lifecycle manage-
ment should be part of the solution built on top of SAP HANA, this does require
logic and development on the application level.

Although there are no specific activities for the SAP HANA administrator around
data aging as of now, the topic should at least not be completely unknown. The
functionality around data aging and data lifecycle management in general is still in
its early stages but will most likely continue to gain importance and attention.

9.2 Running Delta Merges

Changing data in the main store of SAP HANA is very expensive, which is the rea-
son for having a delta store. Consequently, SAP HANA does not provide any com-
mands to change data in the main store directly. Instead, SAP HANA can only cre-
ate a new main store based on the full set of input data. During the delta merge,
this is exactly what happens: The data from the old main store and the delta store
are read, and a new main store is created based on the combined data of both the
old main and the delta stores.

If the design really was that simple, it would have the disadvantage that no data
changes to the table would be allowed while the delta merge process is running,
because otherwise operating the delta store would become very complex. As a
solution to this, a simple yet effective mechanism is in place. Before the delta
merge actually starts, the delta store is briefly locked against changes. A new delta

Further Resources

For more details on data aging features, we recommend the following:

https://help.sap.com/saphelp_nw74/helpdata/en/53/06a0995655488785175d57bef083da/
frameset.htm
https://help.sap.com/saphelp_nw74/helpdata/en/60/cf63e1bbbb49429ee6c35e6ad03a45/
frameset.htm
356

Running Delta Merges 9.2
store memory structure is then created and all data-changing commands fill the
new delta store from there on. This new delta store is identified by delta2 in the
documentation and in the system tables. All table accesses now have to read from
the main store, delta store, and delta2 store to cover all records in the table.

Once the merge is completely finished, a second brief exclusive lock is acquired to
redirect data access to the new main store. Afterwards, the old main and delta
store are invalidated and the memory they allocated is returned to the memory
management for further use.

In Figure 9.3, we see how read requests access the data stored in the original main
store, the original delta store, and the new delta store. The new main store is not
accessible yet to any SQL command. All data-changing operations, on the other
hand, only access the new delta2 store.

Figure 9.3 Delta Merge Data Movement

The diagrams in Figure 9.4 provide a conceptual overview of what data areas are
used over the time during which the delta merge process is active. Also, we see
how the memory usage develops, eventually climbing up to twice the memory
that was required before the merge. Note that although all columns need to be
loaded to memory during delta merge, not all columns will be worked on in par-

Delta store

4 AUGUSTUS 5.800 C

5 JULIUS 7.200 C

⁞ ⁞ ⁞ ⁞

1|BLACKBEARD
2|LUCULLUS
3|OCTAVIAN

1|1
2|2
3|3

1|1.123
2|2.200
3|2.450

1|A
2|B

1
2
3
⁞ Main

vector

Diction-
ary

1
1
2
⁞

1
3
2
⁞

2
3
1
⁞

Main store

Delta2 store

42 TUFFI 1.950 W

15 VARUS 3.210 C

⁞ ⁞ ⁞ ⁞

SELECT NAME, SALARY FROM
EMP WHERE ID = 4711

INSERT INTO EMP …

1|BLACKBEARD
2|LUCULLUS
3|OCTAVIAN

1|1
2|2
3|3

1|1.123
2|2.200
3|2.450

1|A
2|B

1
2
3
⁞ Main

vector

Diction-
ary

1
1
2
⁞

1
3
2
⁞

2
3
1
⁞

New main store

Original table store

New table store

re
ad

s

reads

writes

Merged into new main store

Merged into new main store
357

Working with Tables9
allel; instead, they will be worked on in sets of columns. This way, the delta merge
operation is a little bit less CPU and memory resource hungry.

Figure 9.4 Data Access and Memory Usage during Delta Merge over Time

By default, the new main store will also be written to disk after the delta merge is
finished. This is not done via a regular savepoint. Instead, the column store can
perform the required I/O itself, writing out only the new main store and not any
other data that had been changed in the meantime.

The delta merge functionality has several facets that we will discuss in the follow-
ing sections. We will start with the default behavior of automatic merging and
then treat different special merge mechanisms: the memory merge, smart merge,
manual merge, and critical merge processes.

9.2.1 Automerge

Although knowing about how the delta merge mechanism works in SAP HANA is
interesting, it is nothing that any user or developer of the database wants to think
about. It clearly belongs to the responsibility of the DBMS to manage its internal
data structures, and the end user should not need to take care of this.

To take care of an automatic merge of the delta stores of the column store tables,
SAP HANA has two specific background threads: the MergedogMonitor and the

Main 1

Main 2

Delta 1

Delta 2

Time (delta merge progress)

Write access

read access

Memory usage for delta merge over time

Worst case: 2x memory of Main1 + Delta1

U
se

d
 m

em
o
ry

Time (delta merge progress)
358

Running Delta Merges 9.2
MergeAttributeThread. MergedogMonitor runs every 60 seconds and checks if
tables need to be merged. In a scale-out environment, each node runs a separate
MergedogMonitor thread. If a table should be merged, multiple MergeAt-

tributeThreads are triggered by the MergedogMonitor.

The decision as to whether or not a table should be merged is made by evaluating
the automerge decision function. This function is a configurable indicator func-
tion that allows you to fine tune the automerge process on a system-wide basis. It
takes runtime parameters such as the current size of the delta store in MB (DMS) or
rows (DRC) and the number of rows marked as deleted in the main store (DMR) as
input and returns whether or not a table matches one of the conditions and
should be merged. The relevant parameter is indexserver.ini � [mergedog] �

auto_merge_decision_function.

Also, we want the system to ensure that not too many of those highly expensive
delta merge operations are executed in parallel or too often. To cater to this,
another set of parameters (token_per_table and *merge_priority_func) is avail-
able.

The MergedogMonitor also writes out a warning into the indexserver.trc file
when the size of a delta store exceeds the value of parameter max_delta_memsize
in MB. In order to check on the MergedogMonitor thread, the Threads tab in
Administration Console � Performance in SAP HANA Studio can be used.
Because the default filter for the list of threads only shows the currently active
threads (<active>), it is necessary to specifically include the MergedogMonitor
process, as shown in Figure 9.5.

Note

Although Section 2.6.3 (“The Delta Merge Operation”) of the SAP HANA Administration
Guide covers the configuration of the decision and priority functions extensively, our
advice is to not modify these settings; the majority of problems with the automerge that
we have seen so far resulted from a faulty customization of these functions. This led to
large tables that never got merged and in turn to overly high memory consumption and
decreased performance.

In addition to this, changing this system-wide setting for something as widespread as
the automerge causes a rather big operational effort, because the changed setting needs
to be consistent across the system landscape, typically spawning multiple systems.
359

Working with Tables9
Figure 9.5 Including the MergedogMonitor Thread in the Thread Type Filter

Once the MergedogMonitor thread type is included, it is easy to observe the activ-
ity and the next scheduled check for tables to be merged. Figure 9.6 shows an
example of this.

Figure 9.6 MergedogMonitor Thread in Threads Overview

As we can tell, the thread will resume its duty in 44 seconds. By refreshing the
thread list, we can observe how the seconds are counted down.

If the MergedogMonitor thread does not appear in the list, the time until the next
check is not counted down, or the time until the next check is much longer than
a minute, it is important to check the [mergedog] parameter section for non-
default values, indicated by a little gray diamond next to the parameter value in
the System or Host column of the Configuration tab and reset them if required.
360

Running Delta Merges 9.2
In the case that the MergedogMonitor is active but still shows tables that are
marked for automerge (check system view TABLES, column AUTOMERGE_ENABLED_ON
= TRUE), it is possible to get a detailed insight into the evaluation of the decision
functions by setting the indexserver trace for the trace components mergedog and
mergedogmonitor to level INFO. The resulting trace is quite comprehensive, as
shown in Figure 9.7.

Figure 9.7 Example Trace Ouput for Mergedog and MergedogMonitor

The first place to check for missed delta merges, however, should always be the
M_DELTA_MERGE_STATISTICS monitoring view, as shown in Figure 9.8.

Figure 9.8 M_DELTA_MERGE_STATISTICS View

In order to gain an overview of the delta merge activities in the system, SAP
HANA Studio provides a monitoring statement in Administration Console � Sys-

tem Information � Delta Merge Analysis. (The output of this report requires a
fixed-width character set to be properly readable; therefore, copy and paste the
361

Working with Tables9
output to a text editor.) The overview information shown in Figure 9.9 allows you
to easily spot when many delta merges were executed, how many errors were
reported, what tables were merged the most often, and so on.

Figure 9.9 Example Output for Delta Merge Analysis

9.2.2 Memory Merge

As explained before, SAP HANA saves the new main store after the delta merge
operation is completed. This can be prevented by running the delta merge as a
MEMORY_MERGE. The benefit of the memory merge is that it does not take as long
and does not put I/O load during the merge onto the system. To trigger a memory
merge, the following syntax has to be used:

MERGE DELTA OF <table>
 WITH PARAMETERS ('MEMORY_MERGE' = 'ON');

A possible scenario is high-volume data loading, for which it is not desirable to
have the AUTOMERGE working on the table that is currently loaded. At the same
time, the delta store of a table should not grow too big, for multiple reasons:

� A chunk of data consumes far more memory space in the delta store than it
does in the main store.

� If the delta store grows very large, insert performance decreases.
362

Running Delta Merges 9.2
� Read performance also suffers from large delta stores, because data must
always be retrieved from the main and the (not-read-optimized) delta store.

� Delta merges run longer and need more resources if the delta is very large.

If you can control the process of a significant data load into a column table, then
you can implement a procedure that alternates loading (without automerging)
and explicit memory merges after each chunk. The steps for this are as follows:

1. Disable AUTOMERGE for the table to be loaded to.

2. Load data chunk #1.

3. Run MEMORY_MERGE.

4. Load data chunk #2.

5. Run MEMORY_MERGE.

6. ...

7. Load data chunk #X.

8. Run normal (persisted) MERGE.

9. Enable AUTOMERGE for the table.

It is also possible to change the automerge behavior to memory merge for selected
tables. The command for this is

ALTER TABLE <table_name> DISABLE PERSISTED MERGE

This setting should be used with extreme care, because the new main store will
only be written to disk when the table is unloaded from memory. In the case of a
system crash, the main store has to be completely rebuilt by recovery of log infor-
mation, which can take a long time.

9.2.3 Smart Merge

Another optimization to prevent overexcessive merging is the smart merge. The
smart merge had been introduced for SAP BW on SAP HANA but is suitable for
any application that loads data in a controlled way. The idea is that when the
application manages all data loads (all INSERT, UPDATE, UPSERT, and DELETE com-
mands), then the table really does not need to be monitored for automerge. Also,
it is not desirable to have automerge running on tables that the application is cur-
rently loading data into. Instead, the application can tell SAP HANA whenever a
data-load activity is finished.
363

Working with Tables9
SAP HANA then applies a separate merge-decision function to evaluate whether a
merge is actually required and performs it if necessary. This way, the application
does not need to know about the technical details of the table storage but is still
able to flexibly indicate when a merge would not interfere with the application
logic.

To use the smart merge in your own code, disable automerge for the tables in
question: ALTER TABLE ... DISABLE AUTOMERGE.

Afterwards, the smart merge can be used for this table:

MERGE DELTA OF <table_name>
 WITH PARAMETERS ('SMART_MERGE' = 'ON');

If required, the smart merge parameter can also be combined with the memory
merge parameter:

MERGE DELTA OF <table_name>
 WITH PARAMETERS ('SMART_MERGE' = 'ON',
 'MEMORY_MERGE' = 'ON');

9.2.4 Hard and Forced Merge

Despite automerge being active for most tables, sometimes we may want to man-
ually trigger a delta merge. This can be done via the context menu for table entries
in the object navigator tree in SAP HANA Studio (note: selecting multiple tables by
holding the (Ctrl) key allows you to execute a delta merge for multiple tables).
(Alternatively, we can simply use the MERGE DELTA OF <table_name> command
without any parameters.)

For large partitioned tables, we may have a situation in which data was only
changed in one partition. To prevent the merge activity on the other partitions
(thereby loading those partitions into memory, if they were unloaded), we can
specify the partition name with the merge delta command:

MERGE DELTA OF <table_name> PART <part_id>

Because retrieving the partition ID for this command requires you to check M_CS_
PARTITION or M_CS_TABLES, this command is mostly used for ad hoc merge requests.

Regardless of the different options we can supply for the merge commands, all of
the variants reviewed so far can only request a merge. SAP HANA will then queue
the request, evaluate the decision function, and only execute the request when the
364

Partitioning and Distributing Tables 9.3
table matches the decision rules and when enough system resources are available.
Other merge requests that had been queued up earlier will be processed earlier.

Although this is nice to have in an automated setup, sometimes we actually want
to force a delta merge, for example, to review the data compression, even if the
amount of data in the table does not yet indicate a merge. For this situation, which
is seldom encountered and rather academic, and for other situations there exists
the “do-it-now” version of the merge command: the forced merge.

MERGE DELTA OF '<table_name>'
 WITH PARAMETERS ('FORCED_MERGE' = 'ON').

9.2.5 Critical Merge

As we have seen, SAP HANA provides many options to tune the delta merge proc-
ess by setting up rules and using special parameters for the merge commands.
Unfortunately, rule-based systems have the tendency to truly stick to the rules
and not to what was intended with the rule set. This is no different with the delta
merge in SAP HANA, and situations could occur in which tables are not getting
merged, which leads to massive memory consumption and in turn out-of-mem-
ory errors or crashes. To prevent such things from happening, there is another
rule in place that will trigger the so-called critical merge.

The goal of the critical merge is to be a safety belt for tables with a delta store so
large that a delta merge operation would require more memory than the system
could provide. As the worst case for memory usage during the delta merge is
twice the size of the unmerged main and delta store, the hard technical limit
would be 50 % of the available memory in a single indexserver process.
Approaching that size of a table would require all other tables to be unloaded
from memory—a situation that is practically system downtime.

The critical merge decision function is set by default and should not be changed.

9.3 Partitioning and Distributing Tables

SAP HANA is designed to process large amounts of data with high speed. All data
resides in memory and is immediately accessible. Yet, the very well-known
option to partition tables into smaller units of storage is not only available but
vital to SAP HANA.
365

Working with Tables9
Table partitioning in SAP HANA can serve multiple purposes:

� Distributing data within one table over multiple nodes

� Improving data-loading speed (multiple partitions can be worked on at the
same time)

� Allowing for easy disposal of data by the means of dropping partitions instead
of deleting single records

� Avoiding the two-billion record limitation of column store tables

� Reducing the resource requirement for performing delta merges on recently
changed data

� Allowing unused data to not be loaded into memory, leaving resources avail-
able to other uses

� Improving performance in queries by allowing additional parallel and partition
pruning

� Improving performance of statements spanning multiple tables by keeping
related partitions of different tables together on the same node

SAP HANA provides different ways to partition tables, of which each way sup-
ports one or more purposes, but no partitioning method supports all of them at
once. As of SAP HANA SPS 8, the following partitioning schemes are available:
round-robin partitioning, hash partitioning, range partitioning, and multilevel
partitioning. In this section, we’ll offer a discussion of each. We’ll conclude with
discussions of three other major concepts related to portioning: partition pruning,
repartitioning, and colocated partitioning.

9.3.1 Round-Robin Partitioning

Round-robin partitioning occurs when INSERT data is distributed over all parti-
tions by simply storing every record in a different partition than the record
before. Partitions are not necessarily filled sequentially. Instead, data gets distrib-
uted more evenly the more data is inserted.

There are a few disadvantages to round-robin partitioning:

� Whenever records need to be retrieved, all partitions need to be accessed,
because it is not possible to know upfront which partition holds the records we
are interested in.
366

Partitioning and Distributing Tables 9.3
� It is not possible to determine which partitions do not contain the records with-
out actually accessing the partitions.

� The table must not have a primary key constraint.

There is also one major advantage:

� The equal distribution of records over the partitions does not depend on the
data that is inserted; even very monotonous data sets can be evenly spread over
all partitions.

Round-robin partitioning is appropriate when data-loading performance is critical
and the data, once loaded, will typically be used in its entirety for the queries.

In order to partition a table round-robin style, the CREATE TABLE or ALTER TABLE
command must be used with an appropriate partition by clause as shown for
ALTER TABLE in Listing 9.1.

// Partition table my_tab into four partitions with
// round-robin partitioning
ALTER TABLE my_tab PARTITION BY ROUNDROBIN PARTITIONS 4;

Listing 9.1 Example for Round-Robin Partitioning

As the round-robin partitioning is entirely independent of the data content, it is
not necessary to specify a column on which to base the partitioning.

9.3.2 Hash Partitioning

Hash partitioning uses a group of columns, the partitioning key, to determine the
partition into which any record should be stored. The trick here is that the parti-
tioning key is evaluated by a hash function. This hash function guarantees that the
same output for the same input will be generated every time and that only output
values within a specific range of values will be generated. This means that the
number of possible output values is guaranteed to be limited to the number of
partitions.

A very simple example for a hash function is the modulo operator that returns the
integer part of a remainder for a division. Using the mod function in SQL, we can
easily check how data would be distributed with different column combinations
for the partitioning key in a hash-partitioned table.
367

Working with Tables9
In the example shown in Figure 9.10, we use the bintohex function to turn the
character data in column BBB, the column we want to use as the partitioning key,
into a numeric value. This numeric value is then used with the mod function for the
divisor 4, because we want to check the data distribution over 4 partitions. All val-
ues of BBB are equal, and therefore all records will be placed into the same parti-
tion. This is not the equal data distribution we wanted to achieve.

Figure 9.10 Simulating Hash-Partitioning Data Distribution with the mod() Operator

To have the data spread more evenly over all partitions, we need to include
another column into the partitioning key, AAA in this case. Because AAA is a unique
sequence, it will ensure that the data now will be spread over the partitions
evenly, as shown in Figure 9.11.

Figure 9.11 Simulating Hash-Partitioning Data Distribution with Multicolumn Partition Key
368

Partitioning and Distributing Tables 9.3
By changing the SELECT statement of our simulation example a little bit, we can even
get a prediction of how many records will end up in each partition (Figure 9.12).

Figure 9.12 Simulating Hash-Partitioning Data Distribution, Record Count per Partition

Before actually performing the partitioning, it is recommended that you perform
some analysis of the data distribution and simulate the outcome. Performing the par-
titioning on our example table shows that the simulation was not 100 % accurate but
close enough for all practical purposes. This is shown in Listing 9.2 and Figure 9.13.

alter table part_demo_hash
 partition by HASH (bbb, aaa) partitions 4;

select part_id, record_count
from m_cs_tables
where table_name = 'PART_DEMO_HASH';

Listing 9.2 Partitioning a Table with Hash Partitioning

Figure 9.13 Actual Hash Partitioning Result

In addition, by applying the hash function to the partitioning key data, SAP HANA
can compute in which partition the corresponding record is stored without hav-
369

Working with Tables9
ing to access any partition. This can be very beneficial, especially when table par-
titions are spread across multiple nodes. Also, this feature is used during query
execution to exclude partitions from processing that cannot contain the requested
data (partition pruning).

As a downside, the hash function does not even-out skewed data to equally dis-
tribute data. Instead, if many records share the same values in the partitioning key
columns, then these records will all be stored in the same partition.

9.3.3 Range Partitioning

With range partitioning, single values or value ranges of the partitioning key are
explicitly assigned to a specific partition. This partitioning strategy allows for an
indirect control of which partition a query should run on by providing a where
condition that only includes values stored in the partition.

Also, with range partitioning, partition-level operations such as adding or drop-
ping partitions can be directly mapped to application-level data. That way, it is
easily possible to add a partition, for example, to store the data for sales transac-
tions that are going to happen next quarter. The same is true for deleting, for
example, the transaction data from ten years ago; simply dropping the corre-
sponding partitions will remove that data from the table.

As with hash partitioning, the distribution of data over the partitions is com-
pletely dependent on the data distribution for the partitioning key. Typically, data
clusters that make sense from an application point of view, such as time or date
information, product groups, material types, sales channels, and so on, have
skewed data distribution. Therefore, checking the data distribution of the parti-
tioning key is important before implementing partitioning.

The syntax for range partitioning is shown in Listing 9.3. The partitioning must
always be based on the values of the partition expression. This expression can be
a column or one from a set of supported transformations of a column; in our case,
we use the year calculated on the fly from a date field. A partition can either con-
tain all entries for a single value of the partition expression or a range of values.
You can optionally prepare a rest partition for all records that cannot be assigned
to one of the partitions.

// Create the table for this example
CREATE TABLE my_tab_2 (
 CUSTOMER NVARCHAR(10),
370

Partitioning and Distributing Tables 9.3
 ARTICLE NVARCHAR(10),
 TX_DATE DATE,
 QTY_SOLD INTEGER,
 PRIMARY KEY (CUSTOMER, ARTICLE, DATE));
// Partition the table by range partitioning on field YEAR.
// We create one partition for the years 2000 to 2012,
// one partition each for the years 2013 and 2014,
// and one partition for all other entries.
ALTER TABLE my_tab_2 PARTITION BY RANGE (YEAR(TX_DATE))
 (PARTITION 2000 <= VALUES < 2013,
 PARTITION 2013,
 PARTITION 2014,
 PARTITION OTHERS);

Listing 9.3 Example for Range Partitioning

9.3.4 Multilevel Partitioning

A partial remedy to the mentioned limitations of the different partitioning
options is multilevel partitioning, which is simply the combination of two different
types of partitioning. Very often, the HASH-RANGE partitioning scheme is used
when the data should be evenly spread across different nodes; a time-based con-
dition is used most of the time the data is accessed. In multilevel partitioning, SAP
HANA is able to skip the first level of partitioning and only evaluate the second
level for a query—given that the selection criteria are provided in the right way.

We give an example of this partitioning type as the basis for the next topic: parti-
tion pruning.

9.3.5 Partition Pruning

One very important aspect of partitioning is that it allows the database to reduce
the data set to be searched in a query, if the system can unambiguously determine
from the query restrictions which partitions may return data and which ones may
not. This so-called partition pruning is only possible for hash and range partition-
ing; in round-robin partitioning, the system is oblivious to the data content in the
partitions.

Partition pruning can also be relevant for write operations if not all partitions of
a table are loaded into main memory at the beginning of the write process. The
database can selectively only load those partitions into main memory that are
371

Working with Tables9
needed for this operation. The writing itself only touches the delta store. For the
subsequent delta merge, the main store also must be loaded. Partition-wise load-
ing works for both the main and the delta store.

In the following example, we use a table partitioned with HASH-RANGE multilevel
partitioning to demonstrate partition pruning in write and read operations. We
will also point out typical query patterns that may seem appropriate for enabling
partition pruning but that will not lead to partition pruning by the database. First,
create a table with hash-range partitioning (Figure 9.14). Column CCC is a date col-
umn that will be used for the second-level RANGE partitioning.

Figure 9.14 HASH-RANGE Partition Example Initial State

The partitioning is done by the statement given in Listing 9.4, assigning 4 HASH
partitions on level 1 based on column AAA and three RANGE partitions on the YEAR
component of the date column CCC. Partition OTHERS is there to cater for data of
other years; we do not have separate partitions for them yet.

alter table part_demo_hash_range
 partition by HASH (aaa) partitions 4,
 RANGE (YEAR(ccc))
 (PARTITION VALUE = '2014',
 PARTITION VALUE = '2015',
 PARTITION OTHERS);

Listing 9.4 Example of Multilevel Partitioning

The next step in our example is to unload all partitions and to insert one record
(Listing 9.5). We then verify that not all partitions need to be loaded into main
memory when inserting data into the table (Figure 9.15).

unload PART_DEMO_HASH_RANGE;

insert into PART_DEMO_HASH_RANGE
372

Partitioning and Distributing Tables 9.3
 values (12, 'TESTDATA', date'2014-06-01');
// Now, we check which partitions had been loaded to
// memory in order to store the record
select part_id, record_count, loaded
from m_cs_tables
where table_name = 'PART_DEMO_HASH_RANGE';

Listing 9.5 Testing Partition Pruning for Data Insertion

Figure 9.15 HASH-RANGE Partition Example: Partition-Loading State after INSERT

As you can see, only one partition has been touched by the INSERT. This also
means that later on only this partition will have to perform a delta merge. After
unloading the partitions again, we now SELECT the record that we inserted by
specifying the whole partitioning key set; the where clause of our query restricts
data retrieval in such a way that the database can determine which partitions may
contain data to be returned and which ones cannot. We call this a fully qualified
SELECT. Our query will retrieve exactly one record, which will obviously be in just
one partition. The interesting question is whether or not the partition pruning
will work, that is, whether or not the system will in fact only load this one parti-
tion into main memory. Our test query is given in Listing 9.6, and the loaded state
of the partitions after running the query is shown in Figure 9.16.

select * from PART_DEMO_HASH_RANGE
where aaa = 12
and ccc = date'2014-06-01';

Listing 9.6 Fully Qualified SELECT to Test Partition Pruning
373

Working with Tables9
Figure 9.16 Verifying Partition Loading after Test Query

This time, it seems that a lot more partitions have been touched. But do not be
fooled; only empty partitions have been touched in addition to the actual relevant
partition (PART_ID 10). We can use the PlanViz tool (see Chapter 15) to verify that
only data from partition 10 has been accessed, as shown in Figure 9.17; the query
execution contains searches on partition 10 and its delta store.

Figure 9.17 HASH-RANGE Partition Example: PlanViz Output for Fully Qualified SELECT
374

Partitioning and Distributing Tables 9.3
As an additional check on the partition pruning functionality, it is possible to acti-
vate the PARTITIONING trace with trace level INFO or DEBUG. For our example, this
generates the (reformatted) output shown in Listing 9.7.

d partitioning Pruning.cpp(00510) :
Pruning for index LARS:PART_DEMO_HASH_RANGE (760):
considering part(s) 10 only.
Partition spec is HASH 4 AAA; RANGE year(CCC) 2014,2015,*.
Query values are ((<UNKNOWN> == 12)
 AND (<UNKNOWN> == 2014-06-01)).

Listing 9.7 Result of Partition Trace for Fully Qualified SELECT

You can see that partition pruning works efficiently when all the partition key
information is available. Next, let’s perform a partly qualified selection just based
on the year of the records and check which partitions are touched this time (List-
ing 9.8). Again, we have unloaded the partitions first.

select * from PART_DEMO_HASH_RANGE
where
year(ccc) = 2014;

Listing 9.8 Partly Qualified SELECT

This time all partitions have been touched (Figure 9.18), which can also be con-
firmed with PlanViz (not shown) and the PARTITIONING trace (Listing 9.9). This is
surprising, as only four partitions can contain data for the selected year.

Figure 9.18 Checking Partition Loading after Partly Qualified SELECT
375

Working with Tables9
d partitioning Pruning.cpp(00490) :
Pruning for index LARS:PART_DEMO_HASH_RANGE (760):
all parts have to be considered.
Partition spec is HASH 4 AAA; RANGE year(CCC) 2014,2015,*.
Query values are .
Starting inlist-pruning for LARS:PART_DEMO_HASH_RANGE (760).
Skipping inlist-pruning since no inlist is provided..

Listing 9.9 Partition Trace for Partly Qualified SELECT

The difficulty for the partition pruning function within the SAP HANA optimizer
here is the function expression YEAR(CCC). As of SPS 8, SAP HANA is not able to fig-
ure out that the YEAR(CCC) in the partitioning definition and the YEAR(CCC) in our
query’s where clause are actually the same. To enable the system to skip the first par-
tition level, we need to provide the date range in a different form, as shown in List-
ing 9.10.

select * from PART_DEMO_HASH_RANGE
where
 CCC between date'2014-01-01' and date'2014-12-31'

Listing 9.10 Rewritten Partly Qualified SELECT

The PARTITIONING trace proves that this time only the relevant partitions are
touched (Listing 9.11).

d partitioning Pruning.cpp(00510) :
Pruning for index LARS:PART_DEMO_HASH_RANGE (760):
considering part(s) 1, 4, 7, 10 only.
Partition spec is HASH 4 AAA; RANGE year(CCC) 2014,2015,*.
Query values are ((2014-01-01 <= <UNKNOWN> >= 2014-12-31)).

Listing 9.11 Verifying Partition Pruning for Rewritten Partly Qualified Query

Care must also be taken concerning the data type used in the where clause. To be on
the safe side, ensure that the data type matches the data type used in the partition-
ing function. Something as similar to the working example shown previously as the
following can lead to much worse partition pruning, as shown in Listing 9.12.

// Partly qualified query with not matching data type in where
// clause:
select * from PART_DEMO_HASH_RANGE
where
 CCC between to_timestamp('2014-01-01') and '2014-12-31'

376

Partitioning and Distributing Tables 9.3
// Output in partitioning trace:
d partitioning Pruning.cpp(00510) :
Pruning for index LARS:PART_DEMO_HASH_RANGE (760):
considering part(s) 1, 3, 4, 6, 7, 9, 10, 12 only.
Partition spec is HASH 4 AAA; RANGE year(CCC) 2014,2015,*.
Query values are ((<UNKNOWN> <= 2014-12-31)).

Listing 9.12 Partly Qualified Query with Unmatching Data Type in Where Clause

This time, only partitions 2, 5, 8, and 11 could be eliminated, because only the
upper border condition of the range made it to the pruning operation.

Whatever your primary objective is that you want to achieve with partitioning,
make sure to check the data distribution of your source data first and to check the
actual query processing with PlanViz (see Chapter 12) or the PARTITIONING trace
on trace level INFO or DEBUG.

9.3.6 Repartitioning

Repartitioning of tables simply means changing the partitioning schema of a table.
For most partitioning schemes, this is achieved with an ALTER TABLE ... PARTI-
TION statement that describes what the new partitioning scheme should look like.
For RANGE partitioning schemes, it is possible to specifically DROP or ADD partitions.

Typically, SAP HANA creates the new partitioning scheme by copying the whole
table into a new table structure with the new partition layout. This can easily take
a lot of time and uses a lot of system resources. Luckily, there are two exceptions
to this that improve the situation for the most critical scenarios.

In case the number of HASH partitions needs to be increased—for example,
because new hosts have been added to the scale-out cluster—it is important to
always specify the new number of partitions as a multiple of the old number of
partitions. That way, new partitions will be created colocated with the source par-
tition, and the data copy does not need to transport data via the network. The
same principle applies when reducing the number of partitions.

Technically, it is also possible to create partitioned tables with only one parti-
tion—a common situation when the partitioning specification uses the GET_NUM_
SERVERS function and the table was created on a single node system. In order to
turn those tables into proper unpartitioned tables, the command ALTER TABLE
<table_name> MERGE PARTITIONS is used.
377

Working with Tables9
A caveat here is that for HASH-partitioned tables with only one partition, the com-
mand will return an error, as shown in Listing 9.13.

alter table part_demo_hash merge partitions;

Could not execute 'alter table part_demo_hash merge partitions' in 37 ms 12 μs .
SAP DBTech JDBC:
[2048]: column store error: fail to alter partition:
[2593] Error during split/merge operation;
Source and target partition spec are identical.
Aborting execution.,object=LARS:PART_DEMO_HASHen

Listing 9.13 Merge Error for Hash-Partitioned Tables with Only a Single Partition

The workaround for this is to set the number of partitions to two first, and exe-
cute the merge partitions afterwards.

Alternatively, the table data could be copied into a table without partitioning; after-
wards the original table could be dropped and the new table renamed to the name
of the original table. This will typically be quicker than the workaround, because
the data has to be copied only once, but all dependent objects of the original table
will either be dropped or invalidated and will eventually require reactivation.

9.3.7 Colocated Partitions and Table Replicas

With scale-out systems and the shared nothing approach—a table or table parti-
tion is always only present on one node at any given time—that SAP HANA uses
to distribute the database over many nodes, a new kind of problem can occur.
What if a query accesses a table that had been partitioned and distributed over all
the nodes and needs to join to another partitioned table? It would be great if SAP
HANA could run a partition-wise join, computing the join results locally between
the partitions on each node. A similar scenario would be the join between a par-
titioned, distributed table with a nonpartitioned table. It would be great to be able
to process the join locally, especially when partition pruning would allow running
the query execution on a single node anyway. SAP HANA provides two features
to help with these scenarios.

Colocated Creation of Dependent Tables

If two or more tables are partitioned by the same partitioning key and the data pro-
cessing should happen partition-wise, then the tables should be created within the
378

Partitioning and Distributing Tables 9.3
same transaction (AUTOCOMMIT = OFF). SAP HANA will recognize the shared parti-
tioning pattern and place every matching partition of each table on the same node.

Listing 9.14 provides an example of the creation of colocated partitioned tables.

-- Start an SQL session with AUTOCOMMIT OFF.
create column table header
 (head_id integer primary key, header_info varchar(30))
 partition by HASH (head_id) partitions get_num_servers();

create column table line_items
 (head_id integer, line_seq integer, line_info varchar(30),
 primary key (head_id, line_seq))
 partition by HASH (head_id) partitions get_num_servers();
commit;

select table_name, part_id, host,port
from m_cs_tables
where table_name in ('HEADER', 'LINE_ITEMS',)
order by part_id;

Listing 9.14 Creation of Colocated Partitioned Tables

In Figure 9.19, it is easy to see how each partition of table LINE_ITEMS is placed on
the same node as the corresponding partition of table HEADER.

Figure 9.19 Example for Colocated Table Creation
379

Working with Tables9
After inserting some dummy data, you can now try and see if the node local join
would work; see Listing 9.15.

select
 h.head_id, l.line_seq, l.line_info
from
 header h inner join line_items l
 on h.head_id = l.head_id
where h.head_id = 1;

Listing 9.15 Selecting Data from Colocated Partitioned Tables

As PlanViz clearly shows (Figure 9.20), only the first partition of each table, resid-
ing on the same node, is touched for this join.

Figure 9.20 PlanViz Output for Partition-Wise Join of Colocated Tables

Table Replicas

We can easily extend our example with another table, MASTERDATA, that cannot be
partitioned by the same pattern. In fact, this table is not partitioned at all but
needs to be joined to the LINE_ITEMS table. In order to avoid cross-node join exe-
cution, table replicas replicate the same table data to each node. That way, the
MASTERDATA table is available locally on every node and the joins can be performed
locally.

To set up table replicas for tables, the following command can be used:

ALTER TABLE <table_name> ADD REPLICA AT ALL LOCATIONS

The replicas will show up as partitions in the monitoring views but will contain
the same data on all nodes.
380

Optimizing Table Distribution and Partitioning 9.4
Table replicas come with some important restrictions that need to be considered
before using them:

� Because the replication is performed synchronously at the time at which the
data is changed, the update/insert/delete performance on the replicated table
will be decreased.

� The overall memory consumption will increase, because every replica is a full
copy of the original table.

� Table replication does not work for partitioned tables; thus tables with replicas
can contain a maximum of two billion rows.

� SAP BW on SAP HANA does not support table replication for SAP BW tables.

9.4 Optimizing Table Distribution and Partitioning

To ease the handling of table distribution and partitioning, SAP HANA provides
the landscape redistribution function. In order to illustrate working with the land-
scape redistribution, we walk through a simple example. The setup of our exam-
ple is simple and consists of four tables in two groups. For our example, the actual
table structure does not matter, so all of the tables share the same structure. This
is shown in Listing 9.16.

create schema tabledist;
set schema tabledist;

create column table fact_cube_1
("REQUEST" NVARCHAR(30) DEFAULT '' NOT NULL ,
 "DATAPAKID" NVARCHAR(6) DEFAULT '000000' NOT NULL ,
 "RECORD" INTEGER DEFAULT 0 NOT NULL ,
 "RECORDMODE" NVARCHAR(1) DEFAULT '' NOT NULL ,
 "/BIC/Z1" NVARCHAR(2) DEFAULT '0' NOT NULL ,
 "/BIC/Z10" NVARCHAR(8) DEFAULT '00000000' NOT NULL ,
 "/BIC/Z100" NVARCHAR(8) DEFAULT '00000000' NOT NULL ,
 "/BIC/Z1000" NVARCHAR(8) DEFAULT '00000000' NOT NULL ,
 "/BIC/ZDATE" NVARCHAR(8) DEFAULT '00000000' NOT NULL ,
 "/BIC/ZAMOUNT1" DECIMAL(17,3) DEFAULT 0 NOT NULL ,
 "/BIC/ZAMOUNT2" DECIMAL(17,3) DEFAULT 0 NOT NULL ,
 "/BIC/ZAMOUNT3" DECIMAL(17,3) DEFAULT 0 NOT NULL ,
 PRIMARY KEY ("REQUEST", "RECORD"));

381

Working with Tables9
create column table fact_cube_2 like fact_cube_1;
create column table dso_cube_1 like fact_cube_1;
create column table dso_cube_2 like fact_cube_1;

Listing 9.16 Creating the Tables for the Example

The idea of this example is that there are two different kinds of tables in our appli-
cation: fact tables and DSO tables. For each kind, we want to be able to define dif-
ferent rules for automatic distribution and repartitioning.

However, even though the tables are of different kinds, they might belong to the
same object group in the application. We could, for example, say that the dso_
cube_1 table and the fact_cube_1 table belong together, because they both belong
to the objects that make up cube_1, including the data flows.

Because we expect data flows from table dso_cube_1 to fact_cube_1, it might be
good to keep partitions of those tables together on the same SAP HANA node. To
indicate that the tables belong to certain groups and types, SAP HANA provides
extended ALTER TABLE SQL syntax. This is shown in Listing 9.17.

alter table dso_cube_1 set group type "CUSTOM_DSO";
alter table dso_cube_1 set group name "CUBE_1";

alter table dso_cube_2 set group type "CUSTOM_DSO";
alter table dso_cube_2 set group name "CUBE_2";

alter table fact_cube_1 set group type "CUSTOM_FACT";
alter table fact_cube_1 set group name "CUBE_1";

alter table fact_cube_2 set group type "CUSTOM_FACT";
alter table fact_cube_2 set group name "CUBE_2";

Listing 9.17 Defining Groups and Types for the Tables

Because we have chosen the group types and group names arbitrarily, we need to
tell SAP HANA what rules should apply to tables with these group types and
names. This is done by inserting the rule definition into system table _SYS_
RT.TABLE_PLACEMENT, as shown in Listing 9.18. A complete description of the dif-
ferent parameters available for this table can be found at https://scn.sap.com/com-
munity/hana-in-memory/blog/2013/09/03/sap-hana-landscape-redistribution-with-
sp6 (“SAP HANA Landscape Redistribution with SP6”).
382

Optimizing Table Distribution and Partitioning 9.4
-- rule for fact tables
UPSERT "_SYS_RT"."TABLE_PLACEMENT"
(SCHEMA_NAME, TABLE_NAME, GROUP_NAME, GROUP_TYPE, SUBTYPE, MIN_ROWS_FOR_
PARTITIONING, INITIAL_PARTITIONS, REPARTITIONING_THRESHOLD, LOCATION)
VALUES
('TABLEDIST', '', '', 'CUSTOM_FACT', '', 500000, 3, 500000, 'all')
WHERE SCHEMA_NAME = 'TABLEDIST'
AND TABLE_NAME = ''
AND GROUP_NAME= ''
AND SUBTYPE = '';

-- rule for dso tables
UPSERT "_SYS_RT"."TABLE_PLACEMENT"
(SCHEMA_NAME, TABLE_NAME, GROUP_NAME, GROUP_TYPE, SUBTYPE, MIN_ROWS_FOR_
PARTITIONING, INITIAL_PARTITIONS, REPARTITIONING_THRESHOLD, LOCATION)
VALUES
('TABLEDIST', '', '', 'CUSTOM_DSO', '', 10000, 3, 10000, 'all')
WHERE SCHEMA_NAME = 'TABLEDIST'
AND TABLE_NAME = ''
AND GROUP_NAME= 'CUBE_1'
AND SUBTYPE = '';

Listing 9.18 Defining Distribution Rules for Custom Table Groups

Wherever we enter an empty string or a NULL into the rule record, it indicates a
match on all tables, so we do not, for example, have any restriction on the actual
table name in our example. The rules we set up here are:

� For tables in schema TABLEDIST with the group type CUSTOM_FACT, the mini-
mum number of records the table can have before it gets partitioned into more
than one partition is 50,000. When the table gets partitioned, an initial number
of three partitions will be created, irrespective of whether or not the actual
number of records fills up these partitions. Later partitions will be added when
existing partitions reach the 50,000 records mark.

Note

Initially, the SYSTEM user is the only user with the privileges to access the TABLE_
PLACEMENT table. If other users need to be able to maintain the rules SELECT, INSERT,
UPDATE, and DELETE, then privileges on table _SYS_RT.TABLE_PLACEMENT need to be
granted to these users.
383

Working with Tables9
� For tables with the group type CUSTOM_DSO, the minimum number of records in
the table is 10,000, and for each subsequent 10,000 records a new partition
will be created.

� These are of course just dummy values in order to demonstrate the feature. SAP
BW and SAP Business Suite on SAP HANA typically use much larger values, as
explained in SAP Note 1899817, SAP Note 1781986, and SAP Note 1908075.

SAP HANA comes with a set of default database parameters for the redistribution;
however, SAP Note 1958216 provides revision-dependent recommendations on
how to set the parameters. For our revision 70 scale-out system, the commands to
setup the parameters are shown in Listing 9.19.

ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_execution_count') = 'false' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_execution_time') = 'false' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_memuse') = 'false' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_part_id') = 'false' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_partnum') = 'true' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_partnum_weight') = '1' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_rows') = 'true' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_rows_weight') = '2' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_table_classification') = 'false' WITH RECONFIGURE;
ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini','system') SET ('table_
redist','balance_by_table_subclassification') = 'false' WITH RECONFIGURE;

Listing 9.19 Redistribution Parameter Setup

Note

Up to revision 74 of SAP HANA Studio, there is no option to review the TABLE_GROUP
data via the UI.
384

Optimizing Table Distribution and Partitioning 9.4
Note that all of the parameters relevant to the redistribution are found in the same
area of the configuration files: indexserver.ini � [table_redist].

To start the example, all you need to do is provide some data for the tables. Because
the actual data does not matter here, generate some random data for one table first
and copy different volumes of that data over to the other tables (Listing 9.20).

create sequence demoseq cache 5000;

insert into FACT_CUBE_1 (
 select top 1500000
 'xyz10', 'DP1', demoseq.nextval, 'X',
 to_nvarchar(to_integer(rand() *10)),
 to_nvarchar(to_integer(mod(rand() * 100000, 10))),
 to_nvarchar(to_integer(mod(rand() * 100000, 100))),
 to_nvarchar(to_integer(mod(rand() * 100000, 1000))),
 '20121001',
 to_decimal (rand()*10, 17,3),
 to_decimal (rand()*10, 17,3),
 to_decimal (rand()*10, 17,3)
 from
 objects cross join objects cross join objects
);
insert into FACT_CUBE_2 (select top 1000000 * from FACT_CUBE_1);
insert into DSO_CUBE_1 (select top 15000000 * from FACT_CUBE_1);
insert into DSO_CUBE_2 (select top 1000000 * from FACT_CUBE_1);

Listing 9.20 Dummy Data Creation

Note that the column REQUEST has a constant value; this will be important towards
the end of this example. We can now manually check the locations of the four
tables as well as their assignments to table group types and group names, as
shown in Listing 9.21 and in Figure 9.21.

select * from table_groups;

SCHEMA_NAME TABLE_NAME GROUP_TYPE SUBTYPE GROUP_NAME
TABLEDIST DSO_CUBE_1 CUSTOM_DSO NULL CUBE_1
TABLEDIST FACT_CUBE_2 CUSTOM_FACT NULL CUBE_2
TABLEDIST FACT_CUBE_1 CUSTOM_FACT NULL CUBE_1
TABLEDIST DSO_CUBE_2 CUSTOM_DSO NULL CUBE_2

Listing 9.21 Checking on the Table Group Configuration
385

Working with Tables9
Figure 9.21 Column Table Runtime Information, Including the Table Location (HOST)

To conveniently review the table distribution over the different nodes in a scale-out
setup, SAP HANA Studio provides the Show Table Distribution dialog. Right-click-
ing on the Schema or Tables entry in the navigator shows the menu in Figure 9.22.

Figure 9.22 Show Table Distribution Menu Entry

The Table Distribution view itself is straightforward. Each table is represented by
a row in the upper half of the list. For each host in the SAP HANA system, one col-
umn exists. In the cross-section of the table rows and the host columns, we either
find - (no partition of this table on this host), x (the complete table with less than
two partitions is located on this host), or a list of partition numbers of this table
that are located on this host.
386

Optimizing Table Distribution and Partitioning 9.4
In Figure 9.23, we can easily see that all of the tables for this example are not par-
titioned, and all of them are located on the same host (dewdftzldc02).

Figure 9.23 Table Distribution View

To manually partition the tables or to relocate them to a different host, we could
use the context menu by right-clicking on any table in the upper list and choosing
either Partition Table ... or Move Table.... This time, however, we want to leave
this to SAP HANA.

The UI for the landscape redistribution can be found in SAP HANA Studio �

Administration Console � Landscape Redistribution. The view looks like that
shown in Figure 9.24.

Figure 9.24 Landscape Redistribution View

The left-hand side provides the options to Optimize Table Distribution, Optimize

Table Partitioning, or Save the current setup (Figure 9.25). This last option is
very important; it basically provides an undo option to the last optimization run.
387

Working with Tables9
That way, in case something did not work as expected, it is easy to restore the
old setup.

Optimize Table Distribution will try to place the tables equally over the hosts
according to the specified rules. Optimize Table Partitioning checks if tables need
to be split into more partitions, given their current number of rows as a main
function, but it will also move tables if specified in the rule sets.

Figure 9.25 Saving the Current Table Distribution

After saving the current setup, run the Optimize Table Partitioning function to
reach the dialog shown in Figure 9.26.
388

Optimizing Table Distribution and Partitioning 9.4
Figure 9.26 Optimize Table Partitioning

Note that the slider on the lower end of the list view only limits and selects the
displayed tables in the list. It does not affect which tables are going to be pro-
cessed.

The observant reader will notice that the only action the dialog is about to per-
form is to move tables DSO_CUBE_1 and DSO_CUBE_2 to two different hosts. No
change concerning the partitioning is performed.

After clicking Execute, you will find that the tables are now on different hosts (see
Figure 9.27).
389

Working with Tables9
Figure 9.27 Moved but Still Nonpartitioned Tables

To have your tables partitioned and the partitions then distributed over the dif-
ferent hosts, you need to set up the partitioning scheme first. It is sufficient to
specify just one partition for now, because you will want to use the automatic fea-
ture to create additional partitions later (Listing 9.22).

alter table fact_cube_1 partition by hash (REQUEST) partitions 1;
alter table fact_cube_2 partition by hash (REQUEST) partitions 1;
alter table dso_cube_1 partition by hash (REQUEST) partitions 1;
alter table dso_cube_2 partition by hash (REQUEST) partitions 1;

Listing 9.22 Adding an Initial Partition

Note that by creating the tables with only a single initial partition, the runtime
information in M_CS_TABLES looks exactly the same as it would if a table were not
partitioned. In order to check if a table is indeed partitioned, M_TABLES.IS_PAR-
TITIONED is the relevant indicator column.

Choose the HASH-partitioning function here, because you want to achieve a rather
equal distribution of data over the partitions. Also, you should expect new data
loads to come in their own requests, just as in data load requests in SAP BW, so
the expectation is that every other load request will be stored into a different par-

Note

The table distribution function manages the number and the location of table partitions
but not the partitioning scheme. This function covers some of the dynamic aspects of
table partitioning: adding/merging partitions and placing them on different hosts. It
does not assist with deciding on the actual partitioning; for this, more knowledge about
the table data and the intended usage of the tables is necessary.
390

Optimizing Table Distribution and Partitioning 9.4
tition. Adding the partitioning information with just one partition does not actu-
ally change the data structures in memory, so this step is finished in an instant.

Now you can restart Optimize Table Partitioning again and find that new parti-
tions will be created (see Figure 9.28).

Figure 9.28 Optimize Table Partitioning Adds Partitions to Tables

Checking the result (Figure 9.29) of this run reveals that new partitions have been
created, but unfortunately the new partitions are not already distributed to the
planned hosts.

Figure 9.29 Table Partitioning and Distribution after Partitioning Optimization
391

Working with Tables9
To fix this, run the Optimize Table Distribution function (Figure 9.30).

Figure 9.30 Optimize Table Distribution

After this step is finished successfully, you can review the result again (Figure 9.31).
Now, the tables are partitioned, and the partitions are located on different hosts. On
each of the four hosts of the example, you will find two tables or table partitions.

Figure 9.31 Final Table Partitioning and Distribution
392

Optimizing Table Distribution and Partitioning 9.4
Although the data seems equally distributed, it is not. Currently all our data is
stored in just one of the partitions, because the data we inserted at the begin-
ning of this example is constant for the partitioning key (REQUEST). It is as if
only one large request had been loaded so far. Due to this, the result of the
HASH-partitioning function for all records is the same and directs all records to
the same partition. By clicking on the table row for DSO_CUBE1 on the list in the
Table Distribution overview, we can review the actual data distribution in the
lower list.

This shows that the actual data distribution has tremendous impact on the effect
of partitioning and needs to be evaluated before assumptions about what the data
looks like are made. SAP HANA Studio provides a very useful tool for this: the
Data Preview function, which is available in the context menu of tables in the
navigator tree.

Figure 9.32 shows how conveniently one can click-through the columns of any
table and review the data distribution without writing any SQL code. This is a very
easy way to quickly double-check if your assumptions about data distribution in
columns match reality.

Figure 9.32 Table Data Preview, Distinct Values Tab
393

Working with Tables9
Finally, all optimization runs can be reviewed later on, because they are stored in
the SAP HANA database, as shown in Figure 9.33.

Figure 9.33 Stored Information on Past Optimization Runs

What we have done so far was to evenly distribute the available tables over all
available hosts based on a specific schema. The primary goal of this is to prevent
an overallocation of resources on one host while other hosts are barely used.

Optimizing the data and table distribution for query or data manipulation perfor-
mance is not what the table distribution and partitioning function does. Finding
the optimal partitioning scheme depends on the access pattern to the table data,
for example, which columns are typically in the where clause, what the actual data
distribution looks like, and so on. However, in many cases, having a consistent
strategy for distributing the data over the available nodes in a more or less auto-
matic fashion is more important than tuning the partition setup toward a very
specific query scenario.

Note

Although it can be tempting to use an automatic feature like table distribution and par-
titioning optimization (it sounds like carefree mass data handling), we recommend that
you carefully plan and test the results of using the tool.

As long as not too many tables—maybe around 150 or so—are involved, it might be
more efficient to manually check the memory usage on the available hosts and decide
how to redistribute the table partitions based on that information.

Further Resources

More information on table distribution and placement can be found in the SAP HANA
Administration Guide.
394

Importing and Exporting Tables 9.5
For more detailed information on the setup of redistribution rules and database
parameters, please see SAP Note 1958216, SAP Note 1908075, SAP Note 1899817,
SAP Note 1950099, SAP Note 1819123, SAP Note 1908073, SAP Note 1908082,
and SAP Note 1899817, depending on the scenario and application you are using
on top of SAP HANA.

9.5 Importing and Exporting Tables

Like any other DBMS, SAP HANA offers functionality to export and import data.
Technically speaking, SAP HANA can export data in two formats:

� Comma-separated text files (CSV)

� Binary files that represent the internal structures of a column store table

For row store tables, only the CSV file export is available; although it is possible
to specify binary as the export type, the data will be saved as a CSV file.

The export and import can either be managed from SAP HANA Studio via a GUI
or from the SQL console. When using SAP HANA Studio, the data can be exported
and imported to and from the client running SAP HANA Studio, whereas the SQL
console option only allows server-side export or import of target files. We recom-
mend importing and exporting tables via the GUI from SAP HANA Studio, so that
is the focus of this section. For more information about how to do this using SQL,
we recommend consulting the SAP HANA SQL reference documentation, which is
available at http://help.sap.com/hana_platform/.

9.5.1 Exporting Data

Exporting tables is straightforward with SAP HANA. The main goal is to be able to
export the current state of a set of tables with or without dependent objects, that is,
to move a fully working model, including data, to another SAP HANA system. (The
function is not meant to substitute for proper system integration; such use cases
should be addressed with tools such as SAP SLT, SAP Data Services, and the like.)

Apart from the SCRAMBLE (making the exported CSV file harder to read) and the
STRIP (leaving out objects that can be generated, such as generated columns or
concat attributes) options, the wizard provides a GUI for all EXPORT options (Fig-
ure 9.34).
395

Working with Tables9
Figure 9.34 Export Catalog Object Example: Export Options

After selecting the objects to export—just one table in this example—you can
choose the export format, whether only the DDL or also the data should be
exported, and if dependent objects, such as SQL views, procedures, or informa-
tion models, should be included in the export.

When choosing the export format, you need to consider what should be done
with the exported data. If the only purpose is to restore the exported objects into
the same system again, then choosing binary will allow for the best export and
import performance. In this case, the actual internal table structure will be serial-
ized and saved into the export files. With a binary export file, the import can only
be done as a create-or-replace import. It is not possible to add the rows of the
exported table to an existing table. Also, the table structure must be exactly the
same as the source table structure.
396

Importing and Exporting Tables 9.5
We also need to specify the Export Location. When using Export to Current Cli-

ent, all we have to provide is an empty folder in the file system. The exported
data will then be read in over the network via the JDBC connection of SAP HANA
Studio and written into the files. The Export to Current Client function is lim-
ited to the export of files up to 2 GB. For larger exports, use the Export On Server

function.

With Export on Server, you have to specify an existing folder on the SAP HANA
server that is writable for the <sid>adm user that runs the indexserver process.
The folder has to be present before the export is started, and it either needs to be
empty or the Replace Existing Export... checkbox needs to be selected. Also, in a
scale-out setup, the target folder must be located on a shared mount, because all
indexserver processes will write locally into the same file system path.

Specifying the Number of Parallel Threads provides an option to export multi-
ple tables in parallel. Be aware that this setting does not have any effect when only
one table is exported. The export will work on multiple columns of any exported
table in parallel.

Clicking the Finish button starts the export. As long as the export is running, a
progress dialog is shown in SAP HANA Studio, along with a button to keep the
export running in the background (Figure 9.35).

Figure 9.35 Export Catalog Object Example: The Progress Dialog with the Run
in Background Button
397

Working with Tables9
While the export is running in the background, it is possible to monitor the process
either in the Threads overview of the Performance tab in SAP HANA Studio (see
Figure 9.36) or by querying system table M_EXPORT_BINARY_STATUS (Figure 9.37).

Figure 9.36 Export Catalog Object Example: Export Threads in Thread Overview

In the screenshot in Figure 9.36, we can easily see that even though only one table
is exported, multiple threads are working on the export.

Figure 9.37 Export Catalog Object Example: Export Status in System Table M_EXPORT_
BINARY_STATUS

Checking monitoring table M_EXPORT_BINARY_STATUS usually is only beneficial if
multiple objects get exported, because the status for every row is noted as queued,
working, skipped, done, or failed, but you do not see how far the export for a large
table, for example, has progressed. Also, the system table gets emptied once the
export process is finished, which makes it only useful during long, ongoing exports.

After the successful export, you will find the directory structure in the target file
system folder. Listing 9.23 and Listing 9.24 explain this directory structure in
more detail.
398

Importing and Exporting Tables 9.5
<target folder>

+ export
 + <schema name>
 + <first two letters of object name>
 + <object name>
 + create.info
 + create.sql
 + more object folders with the same two starting letters...
 + more two letter folders...
 + more schema folders...

+ index
 + <schema name>
 + <first two letters of object name>
 + <object name>
 + create.sql
 + data.csv
 + data.ctl
 + data.err
 + data.info
 + table.xml
 + lobs
 + xx_xx_xxxxxxxxxxxx.lob
 + ...
 + more object folders with the same two starting letters...
 + more two letter folders...
 + more schema folders...

Listing 9.23 Directory and File Structure of CSV Exports

In the above listing:

� + export only exists for nontable objects, e.g., views.

� + create.info is a text file describing the exported object.

� + create.sql is a text file with a DDL command to create the object.

� data.csv is the actual data in CSV format.

� data.ctl is the control file for the IMPORT FROM command.

� data.err is the import error file, which is empty for export.

� data.info is the general runtime information (number of records, etc.).
399

Working with Tables9
� + table.xml is an XML representation of the object.

� lobs is the folder for LOB column data.

In the case of a binary export, the object folder in the index hierarchy contains a
different set of files.

+ index
 + <schema name>
 + <first two letters of object name>
 + <object name>
 + attributes
 + attribute_201.bin
 + more attribute_xxx.bin files
 + attributeStore.js
 + create
 + create.sql
 + $delta$.log
 + freeUdivStore
 + RuntimeData
 + table.xml
 + lobs
 + xx_xx_xxxxxxxxxxxx.lob
 + ...
 + more object folders with the same two starting letters...
 + more two letter folders...
 + more schema folders...

Listing 9.24 Export Object File System Hierarchy

In the above listing:

� + attributes is a subfolder with the binary export of the table columns.

� + attribute_201.bin is a binary export file.

� + attributeStore.js is a text file with information about the attribute_
xxx.bin files in JSON format.

� + create is a binary file with an internal command to create the table.

� + create.sql is a text file with a DDL command to create the table.

� + $delta$.log is a binary file containing the delta log data.

� + freeUdivStore is a text file containing record validity data.

� + RuntimeData is a text file with runtime information like M_CS_TABLES.
400

Importing and Exporting Tables 9.5
� + table.xml is an XML representation of the object.

� + lobs is the folder for LOB column data.

Be aware that when exporting column store table data to CSV files, it is typically
difficult to predict the size of the export in the file system. The UNCOMPRESSED_SIZE
information in M_CS_COLUMNS can only be used to approximate the expected
export size. Also, the size of LOB columns needs to be gathered separately.

9.5.2 Importing Data

Once data has been exported, you can import it into SAP HANA again. Two com-
mands are available for this: IMPORT and IMPORT FROM.

IMPORT

IMPORT is used to import data exports generated by EXPORT straightaway with little
or no modification. The command syntax is pretty simple, and not too many
options need to be specified. The command requires only information about where
to look for the export file structure.

IMPORT <object_name_list>
FROM <path>
[WITH <import_option_list>]
[AT [LOCATION] <indexserver_host_port>]

To import the data from the earlier example, all you need to type is the following:

IMPORT ALL FROM '/hana/data/data_staging/csv_test'

With the AT LOCATION clause, you can specify the indexserver node that the
import should run on (in scale-out systems).

The WITH clause allows you to specify how many tables can be imported at the
same time, whether the table data or only the definition will be imported, and—
very usefully—the option to change the schema for the imported tables.

IMPORT FROM

Although the IMPORT command also includes a FROM keyword, the command is
quite different from the more versatile IMPORT FROM command. IMPORT FROM is
meant to help with loading external data and offers several ways to specify the
401

Working with Tables9
input data format, the loading behavior, and error logging either directly in the
command parameters or via a control file (CTL).

The control file itself contains an import statement (IMPORT DATA INTO TABLE), a
source file specification, and a description of the input data format. Note that a
strict one-record-per-line structure is expected; the line delimiter, however, can
be freely defined to support text fields containing carriage returns or line feed
characters. Complex data record structure layouts, for example, EDI-conforming
layouts or dynamic data sets such as XML, cannot be imported directly with the
IMPORT or IMPORT FROM command.

A common question about data imports in migration or demo situations is how to
improve the import speed. For that, two parameters are available: THREADS and
BATCH.

With THREADS, the maximum number of objects that are imported in parallel can
be specified. Note that this does not determine how many indexserver threads
will be active working on a single table. If only one table will be imported, the
parameter does not have any effect on the import performance and can be
ignored. When more tables are going to be imported, it is important to not over-
load the server. The larger the tables and the more columns they have, the lower
the number of THREADS should be chosen. A good starting point may be 10
THREADS, further tuning the number to the actual system thereafter.

The BATCH parameter sets the number of records after which IMPORT should send
a commit. The more often commit is performed, the longer the wait time for the

Note

Although the IMPORT FROM command of SAP HANA is sometimes recommended as the
fastest way to load data from external sources, the recommendation for that should be
to rely on proper data-loading tools, such as SAP Data Services. The CSV file import of
IMPORT FROM makes aggressive use of the CPU cores, which may hamper the overall sys-
tem performance. It also lacks proper error handling and does not support LOB data
types.

Because importing data via the standard interfaces (JDBC, ODBC, or SQLDBC) can lever-
age performance features such as BULK insert/update, statement routing, and client-
based record image creation (not JDBC), it is usually possible to set up data loading with
similar or better performance than is achieved by using the IMPORT FROM command.
402

Importing and Exporting Tables 9.5
import (because commits are processed synchronously, the session has to wait
until it is finished). In some cases, the import performance can be considerably
improved by partitioning the target table, because doing so will allow for parallel
insert into the different partitions.

9.5.3 Custom Excel File Import

A final convenience option to import data has been introduced with SAP HANA
SPS 7: the MS Excel file import in SAP HANA Studio. This function allows you to
directly read from files compatible with MS Excel (CSV, XLS, or XSLX formats)
and either match the file structure to an existing table or create a new table during
the import. The main goal for this option is to enable quick data imports to play
around with the data in SAP HANA or to kick off development activities. The
function is not supposed to be a high-performance import interface for recurring
or ongoing data imports. It should simply make the on-board toolset of SAP
HANA Studio a little bit more complete for typical development and implemen-
tation scenarios.

The whole import is wizard driven. To illustrate it, let’s start off with a little MS
Excel spreadsheet that contains membership data for some kind of club (Figure
9.38).

Figure 9.38 Import File Data Example: The MS Excel Source File
403

Working with Tables9
To open the import wizard in SAP HANA Studio, navigate to File � Import... � SAP

HANA content � Data from Local File, as shown in Figure 9.39.

Figure 9.39 Import File Data Example: Import Wizard Selection

The next wizard window (Figure 9.40) allows you to select the file to be imported,
as shown in 1. If the file is an MS Excel format file, then you can choose which
worksheet should be imported, as shown in 2.

Next, you can specify whether the file contains a header row, as shown in 3. Typ-
ically, it is very helpful to have a header row in order to easily identify the col-
umns during import.
404

Importing and Exporting Tables 9.5
If you want to import only a selection of lines from the file, you can specify the
line range, as shown in 4, or choose Import all data. This will import all the lines
after the header row until the first completely empty line is reached.

Having specified all the import options, you need to define the target table next,
as shown in 5. This can either be an existing table or a new table. Be aware that
the data will be appended to an existing table during the import. If you want to
import the data into a new table with the same structure as an existing one, you
have to create the target table manually before the import.

Figure 9.40 Import File Data Example: Import from Local File Options

Figure 9.41 shows the Manage Table Definition and Data Mappings wizard
page. In the lower part of the screen, as shown in 1, you will see a data preview
that helps you to decide which columns should be mapped and how. By resizing
the dialog window, more lines can be displayed.
405

Working with Tables9
Figure 9.41 Import File Data Example: Edit the Source to Target Mapping

The target table structure has been automatically derived from the input file. The
column names are taken from the header line in the source file, and the data
types are best guesses based on the first couple of lines. Therefore, it is typically
required that you adapt the target data types to what you want the table to actu-
ally look like. In the example, you will see that the Entry date column is auto-
matically mapped to an NVARCHAR column—but DATE might be the more appro-
priate data type.

In this example, the first column of the input file COLUMN_1 is actually empty and
should not be imported. Therefore, we need to select the corresponding column
in the Target Table column list, as shown in 2, and delete it with the – button, as
shown in 3.

The empty COLUMN_1 now is no longer mapped to any target table column and will
be skipped during import, as shown in Figure 9.42.

When you click Next or Finish, the import is started, and you are presented with
a Summary dialog (Figure 9.43).
406

Importing and Exporting Tables 9.5
Figure 9.42 Import File Data Example: Final Mapping of the Input File to the New Table Structure

Figure 9.43 Import File Data Example: Summary View of Imported Data
407

Working with Tables9
Click Finish again to save the data in the target table, and then you can review the
import Job Details messages (Figure 9.44).

Figure 9.44 Import File Data Example: The Import Job Details Overview
408

Checking Tables for Consistency 9.6
After the import, the data is available for use in your newly created target table,
as shown in Figure 9.45.

Figure 9.45 Import File Data Example: The Imported Data in the SAP HANA Table

9.6 Checking Tables for Consistency

Just like any other data storage and processing system, SAP HANA cannot assume
that it will never face any kind of data inconsistency or corruption. Faulty hard-
ware, software bugs, or the sheer complexity of interconnected system compo-
nents nearly guarantee that corruptions will occur at some point.

There are two general aspects of coping with corruptions:

� Finding or identifying database corruptions

� Removing the corruption/recreating the correct state of data

Most DBMS platforms provide functionality to check for the consistency and the
proper working of the storage containers of the database (tables, table partitions,
files, etc.). SAP HANA is no different: It provides a set of stored procedures that
allow you to test for specific corruptions. CHECK_CATALOG_CONSISTENCY performs
checks of the database catalog, whereas CHECK_TABLE_CONSISTENCY performs
checks of the actual table data. Both procedures take the same input parameters:
('<check_action>', '<schema>', '<table>'). (If <schema> or <schema> and
<table> are omitted, then the command will be executed against the whole
schema or the whole database, respectively.)

To find out which check actions are available, an auxiliary procedure, GET_CHECK_
ACTIONS, exists and provides output as shown in Figure 9.46.
409

Working with Tables9
Figure 9.46 Output of the GET_CHECK_ACTIONS Procedure

The procedures can be called interactively in SAP HANA Studio, and the check
result is returned in the form of a result table. In the case that data corruptions have
been found, the return table will contain the schema_name, table_name, object_
type, error_code, and the error_message. Some corruption may be repaired via
the REPAIR_ procedures, but it is highly recommended that you get in touch with
SAP Support to get help with the analysis and remediation of the problem.

Currently, the checks are performed in a single thread and can put considerable
load on the system by loading columns that should be checked into memory. In
their current form, this makes them unsuitable for production system usage.
Thus, SAP recommends running the checks on copied systems. This is good
advice, because the DBA is primarily interested in knowing that it is possible to
recover any lost or corrupted data. Thus, proving that a system that has been
restored to a different SAP HANA hardware setup is corruption free is typically
more important than finding corruptions in the production system.

To the seasoned DBA, this may not sound ideal; there is certainly space for
improvement in the area of consistency checks and corruption handling. How-
410

Summary 9.7
ever, it is worth mentioning that, due to the main memory-centric architecture,
SAP HANA systems do not suffer as often from disk or file system-based corrup-
tions as disk-oriented systems.

9.7 Summary

After reading this chapter, you should understand some of the most important
table-related features of SAP HANA systems: loading tables to and from memory,
running delta merges, and partitioning and distributing tables. In addition to
these three fundamental concepts, you should also know how to export and
import tables and should be aware of the consistency check mechanisms that the
database offers.

Further Resources

For further information on consistency checks and corruption handling, please see the
SAP HANA Administration Guide as well as the SAP Note 1977584, SAP Note 1660125,
and SAP Note 1666976.
411

Sessions and transactions are the very basic system elements that enable
us to communicate with SAP HANA and to process data. Understanding
how the database guarantees correct access to shared data and automati-
cally enables parallel query processing is essential.

10 Sessions and Transactions

This chapter is all about the dynamic interaction of database clients such as SAP
NetWeaver Application Server, MS Excel, or SAP HANA Studio with the SAP
HANA database. We look into the definition of core topics such as sessions, trans-
actions, commands, processes, and threads and how these relate to each other.
We also cover how to transfer these concepts into monitoring and actions for the
SAP HANA administrator.

We will start our discussion by following the lifecycle of a database session and
describing the important metadata information of the session context. We then
cover the relationship between sessions and transactions of the database to pro-
cesses and threads of the operating system. Having covered these fundamental
principles, we can dive into a discussion of the monitoring of sessions and trans-
actions. Finally, we will finish up with the complex topics of concurrency and par-
allelism and the related notions of locks and blocking situations.

10.1 Introduction to Sessions and Transactions

To use SAP HANA as a database management system (DBMS), it is necessary that
users or programs log on to SAP HANA and create a session. The session is the
vehicle for the communication between the database client and SAP HANA in
which all data exchange and processing takes place. It can be understood as the
ongoing conversation between client and server. This conversation provides the
framework for all data processing. For example, the user account and the privi-
leges assigned to it are part of this context, so all data processing that is performed
during this session takes the user’s privileges into account.
413

Sessions and Transactions10
A transaction, on the other hand, is the bracket in which a single command or
multiple commands are executed together as a unit. Either all of the commands
are successfully executed or none are. This is what makes a transaction atomic,
which means that either all data changes that are performed within a transaction
are successfully stored in the database or none of them are.

Finally, commands are the most granular element of client-server interaction in
SAP HANA. Throughout this chapter, we will use the term command instead of
SQL statement, because SQL statements really are just a special type of commands,
and there are other types, such as MDX statements, that are processed in a similar
fashion. However, very often we can find that an SQL statement will map directly
to a command.

Figure 10.1 DB Sessions, Transactions, and Commands in SAP HANA

Session/
ConnectionTransaction #1

Application

SAP HANA Client
Software

SAP HANA Client
Software

Network communication

Close connection

Session context

SAP HANA DB ServerDB Client

?

Implicit transaction start when a first command is send to SAP HANA

Send COMMIT
or ROLLBACK

Transaction #2

Transaction #n

?

Transaction ended

Process
command

Send command #1

Process results Send result set(s)/return code

Command text/statement handle

Process
command

Send command #1

Process results Send result set(s)/return code

Command text/statement handle

Process
command

Send command #1

Process results Send result set(s)/return code

Command text/statement handle

� Peform COMMIT or ROLLBACK
 changes

� Release all locks

� Close transaction
414

Introduction to Sessions and Transactions 10.1
A session can consist of one or more transactions (within one session, transactions
are processed one after the other), and each transaction can consist of one or more
commands (again, within one transaction, the commands are executed one after
the other). Figure 10.1 shows a graphical representation of the dependencies
between sessions, transactions, and commands.

As you can see, all commands are executed within a transaction. Each transaction
is identified with a transaction ID that is unique only for the session, as read-only
transactions don’t require global uniqueness. When commands are executed that
could potentially change data, then the transaction is set to be an update transac-
tion and gets assigned a system global update transaction ID. To distinguish dif-
ferent sessions from each other, each session is assigned a connection ID (sessions
are sometimes referred to as logical connections). This can be easily monitored with
the M_TRANSACTIONS system view, as shown in the following example.

Start a session with AUTOCOMMIT = OFF. The default for connections in SAP HANA
Studio and hsql is to execute a commit after each command. This would not allow
you to run multiple commands in one transaction, which is why you need to
change to AUTOCOMMIT OFF.

The current_connection function returns the ID for your current session/connec-
tion:

select current_connection from dummy;

CURRENT_CONNECTION
303232

You can use it to find information belonging to your session in several system
views.

System view M_TRANSACTIONS contains detailed information on transactions:

select transaction_id, update_transaction_id
from m_transactions
where connection_id = 303232;

TRANSACTION_ID	UPDATE_TRANSACTION_ID
105	0

Here, you only need to look at the TRANSACTION_ID and the UPDATE_TRANSACTION_
ID. You will see that the initial connection is a read-only connection, because
415

Sessions and Transactions10
UDPATE_TRANSACTION_ID is 0. Running a read-only command such as SELECT does
not change the transaction mode:

select * from cpoints;

NAME	POINTS
Carol	7.20
Paul	2.40
Lars	7.10
Louise	4.50

The transaction still is a read-only transaction, because UPDATE_TRANSACTION_ID is
still 0:

select transaction_id, update_transaction_id
from m_transactions
where connection_id = 303232;

TRANSACTION_ID	UPDATE_TRANSACTION_ID
105	0

However, now change a record:

update cpoints set points = 42 where name ='Paul';

Now you can see that the transaction has become an update transaction:

select transaction_id, update_transaction_id
from m_transactions
where connection_id = 303232;

TRANSACTION_ID	UPDATE_TRANSACTION_ID
105	829360

Finally, roll back all changes and end the transaction:

rollback;

Typically, a client application will open a session with SAP HANA and re-use it as
long as the application is active. Because creating a session takes quite some time
for resource allocation on the client and server sides, network communication,
authentication, and so forth, it is usually best to keep the connection open. In
416

Introduction to Sessions and Transactions 10.1
addition to that, inactive or idle sessions don’t require CPU resources and require
only a small amount of memory in the SAP HANA server.

Within the session, the application will then run multiple commands in one or
more transactions. Once the client application no longer requires database access,
the connection is closed, and with it all open transactions are terminated.

Now that you understand the basics of sessions and transactions, the rest of this
section will provide a few more details. In Section 10.1.1, we walk you through
the lifetime of a session; in Section 10.1.2, we give you a bit more detail on the
session context.

10.1.1 Lifetime of a Session

In order to understand how sessions are used in client programs, see Figure 10.2.

Figure 10.2 Lifetime of an SAP HANA Session

Like most other DBMS, SAP HANA uses the client-server communication model.
In this model, the application that will use the database is the database client, and
SAP HANA takes on the role of the database server.

Application

SAP HANA Client
Software

SAP HANA Client
Software

Parse & Optimize
Query

Execute Plan and
Return Result Set(s)

Network communication

Prepare query

Handle on prepared query

Call query/open cursor

Providing parameter values

Fetch results

Close result set/close cursor

Close prep. statement handle

Close connection

Session context

SAP HANA DB ServerDB Client
417

Sessions and Transactions10
To connect to SAP HANA, the client application has to use the SAP HANA client
software. It provides the functionality to communicate with the SAP HANA server
via the network so that the application programmer doesn’t need to implement
this. For that, the client software needs to be installed on the same machine on
which the client application runs. The client software consists of dynamic load-
able libraries or shared objects (DLL libraries on MS Windows systems, SO files
on Linux) that are loaded by the client program. The client libraries provide the
application programming interfaces (APIs) for different programming environ-
ments to communicate with the SAP HANA database. Most often, the standard
APIs JDBC (Java database connectivity) and ODBC (open database connectivity)
are used, but there are also APIs for other environments available (see the SAP
HANA Developer Guide for details on this).

For SAP NetWeaver ABAP systems, the database connectivity is created via a sep-
arate software component, the database interface (DBI). The ABAP DBI basically
consists of two parts:

� The functionality provided to the ABAP work processes, including features such
as buffered tables, OpenSQL, and handling of multiple database connections

� The DBMS vendor-specific database shared library (DBSL, dbhdbslib.dll or
dbhdbslib.so)

The DBSL acts as a conversion layer between the ABAP world and the vendor-spe-
cific database commands and features.

Just like for any other supported DBMS platform, SAP provides a DBSL for SAP
HANA (see SAP Note 1600066). The DBSL in turn uses the SAP HANA client soft-
ware, more specifically the SQLDBC driver (e.g., libSQLDBCHDB.dll on MS Win-
dows systems) that provides the proprietary SAP HANA client API.

Figure 10.3 provides an overview of how the SAP NetWeaver Application Server
ABAP uses the SAP HANA client.

As you can see, even though the SAP NetWeaver Application Server acts as a
server for your business users, with the database it takes on the role of the client.

Note

Important to note here is that client and server in this communication model refer to the
roles of the system components. Although the terms “client” and “server” are also used
to refer to specific pieces of hardware, this is not what we are talking about here.
418

Introduction to Sessions and Transactions 10.1
Figure 10.3 SAP NetWeaver Database Shared Library (DBSL)

With this background information, you’re now ready to learn about each of the
major actions that determine the lifecycle of a session. We discuss each in more
detail next.

Connecting to the SAP HANA Database

The very first step in starting a session is to connect with the SAP HANA database.
To do so, a logon is provided by the client. This needs to be done by one of the
supported authentication methods. See Chapter 12 for details on this.

Once the logon has been processed successfully, SAP HANA will reserve some
memory for the conversation between the client and itself. By this time, the net-
work connection is also chosen, which will be used for subsequent communica-
tions between the server and the client. The SAP HANA client will now receive
information about the system landscape, for example, what other nodes are avail-
able in the case of a scale-out system.

Note

To sum up: Whenever a client application wants to connect to SAP HANA, it needs to
use the SAP HANA client software.

OpenSQL

DBI SQL adaption

SAP NetWeaver

work process (disp+work)
ABAP execution, OPEN
SQL, and native SQL

Native SQL

Database Shared Library (DBSL)
dbhdbslib.dll/dbhdbslib.so

SAP HANA client software
libSQLDBCHDB.dll,
libSQLDBCHDB.so

SAP HANA client software

Mapping to DB specific
client API

OpenSQL processing and

communication with the
ABAP work process

SAP HANA DB
SAP HANA server

Network communication
419

Sessions and Transactions10
You can check the session and connections that are used by different database
users by looking into the monitoring views M_CONNECTIONS and M_CONTEXT_MEM-
ORY. See Section 10.3 for examples of using these system views.

Preparing a Query

After a session has been created and a session connection and context have been
assigned, the client application can send queries to the SAP HANA database and
wait for the results of the commands.

These queries are sent as text strings to the database; whether the text is SQL,
MDX, or some other query language does not matter at this point in time. The
database receives a text string and needs to analyze it so that it can process it. The
process of analyzing a command string is called preparing a statement.

During statement preparation, SAP HANA:

� Breaks the command string into single tokens

� Checks the tokens against the SQL/MDX command grammar

� Creates an internal tree of query expressions and predicates

� Transforms and rewrites the query based on built-in heuristics (e.g., un-nesting
of subqueries, pulling out common expressions, etc.)

� Optimizes the statement on the SQL level

� Produces an internal list of operations that need to be performed to create the
result set of the query (called the execution plan)

Figure 10.4 provides a close-in view of the query preparation part of the session
lifetime.

Later on, when the query should be executed, the execution plan is used by the
different execution engines to process the request and to deliver the requested
result set(s). There can be more than just one result set to a query, for example, if
a stored procedure returns multiple result sets or if an SQL query uses GROUPING

Note

Every session can be seen as a conversation between the client and the server and
comes with a context that sets the general conditions for all data processing that hap-
pens within this session.
420

Introduction to Sessions and Transactions 10.1
SETs (see the SAP HANA SQL reference documentation for the SELECT command
for details on grouping sets).

Figure 10.4 Query Parsing and Optimizing

All of these preparation steps can take some time. If the same statement needs to
be executed more than once, it would be nice to save the prepared statement for
later. This is done in the SQL plan cache, where SAP HANA stores the SQL state-
ment text, the generated plan, and the aggregated runtime statistics once the state-
ment is executed.

This cached SQL plan will be reused once a client wants to prepare or execute a
query with the exact same query text string. Similar statements or statements that
only differ a little bit would require a new preparation run, though. In Table 10.1,
two examples for similar statements are presented that make reparsing necessary.

Example

SELECT * FROM
 product_texts
WHERE product_id = '031';
SELECT /* find product texts*/ * FROM
 product_texts
WHERE product_id = '031';

The two query strings are different,
and each one will be parsed, even
though the only difference is the
comment and doesn’t change the
result set.

Table 10.1 Examples for Nonmatching SQL Statement Strings

Application

SAP HANA client
software

Parse query or fetch
plan from cache

Shared SQL plan cache

Network communication

Prepare query

Handle on prepared query

Call query/open cursor

Providing parameter values

Session context

SAP HANA DB ServerDB Client

� Tokenizing of statement string

� Syntax checks

� Formal query transformation based
 on built-in heuristics

� Optimizes the statement on SQL level

� Produces execution plan

SAP HANA client
software
421

Sessions and Transactions10
Executing a Query

After a statement has been prepared (or found in the Shared SQL cache), a handle
on this statement is sent to the client. The client application can now use the han-
dle to execute the statement over and over again.

By now, we see that an SQL query is very much like other computer program que-
ries: It needs to be compiled before it can be executed, the compiled form of the
statement is stored to speed up subsequent usages of the same query, and it can
take input variables to perform the same computation for different values. These
input variables are called parameters in SAP HANA queries. The query parameters
are denoted by question marks in the SQL statement text.

The benefits of using parameters for queries that will be executed the exact same
way for different search values are as follows:

� The statement will only be parsed once, because the statement text doesn’t
change for different search values. This can save a huge amount of time if the
statement is going to be executed over and over again by the application (e.g.,
select the line items of an order record). “Parse once, execute often” is the key
phrase here.

� The prepared statement will be stored only once in the Shared SQL cache,
thereby saving memory.

� The usage of query parameters prevents SQL injection attacks, because the
value of the parameter can never be interpreted as part of the SQL command.

SELECT * FROM product_texts
WHERE product_id in ('031', '032');
SELECT * FROM product_texts
WHERE product_id in ('031', '032', '031');

The two query strings are different,
and each one will be parsed, even
though the only difference is the
number of values in the in clause.

Example

This is an SQL statement without parameters:

select * from user_parameters where user_name='LARS'

This is an SQL statement with parameters:

select * from user_parameters where user_name= ?

Example

Table 10.1 Examples for Nonmatching SQL Statement Strings (Cont.)
422

Introduction to Sessions and Transactions 10.1
� For programmers, the use of the parameter requires explicit typing on the cli-
ent side, which also prevents coding errors.

Because the client program receives a handle on the prepared statement from SAP
HANA to execute it, it is not even necessary to send the command text to the data-
base again. Instead, the client program can keep the handle in a variable or an
array and reuse it with different parameter values later on.

As long as handles for a statement are not closed, they cannot be removed from
the Shared SQL cache.

To execute the parameterized query, the client needs to provide the parameter
values. In SAP HANA Studio, the SQL Editor provides an input mask for parame-
terized queries, as shown in Figure 10.5.

Figure 10.5 Executing a Parameterized Query in SAP HANA Studio

Note

The SAP NetWeaver DBSL automatically takes care of preparing queries, setting param-
eter values, and keeping the prepared statement handles. In order to speed up database
access, every work process keeps up to 1,000 handles and reuses them when required.

1.

2.

3.

To re-execute the query return
to “Prepared SQL” tab.

Statement with parameter (?)
+ “Execute (F8)”.

Parameter value provided
+ “Execute (F8)”.

Result set for query.
423

Sessions and Transactions10
Fetch Result Sets and Close Cursor

Once the query has been executed, the client application retrieves or fetches the
result record. Because the result set can be larger than the amount of data that can
be sent in one network roundtrip, the records are transferred in chunks to the client.

Although it is possible for the client to not fetch all result records, for example, to
list only the first ten records, usually it’s best to specify the desired number of
rows in the SQL query with the LIMIT n or TOP n clause. Remember that the whole
result set will be materialized in the SAP HANA server’s memory, so requesting
more records than are required is wasting system resources in multiple system
components.

Close Handle on Prepared Statements

The Shared SQL cache keeps reference counter for each statement. Closing the
handle for a parsed statement decreases this counter. Once the reference counter
reaches zero, the statement is a candidate for removal from the Shared SQL cache
(plan eviction).

Close Connection

The last action during the lifetime of a session is to close the connection. This will
implicitly rollback any open transactions, release all SQL locks, and close all pre-
pared query handles and all other resources allocated by the session.

10.1.2 The Session Context

The session context sets the general conditions for all data processing that hap-
pens within a session. The context contains information on the database host to
which the session is connected (important in scale-out systems) and on the data-
base user as well as on the client host from which the session originated (client IP,
process ID of the client program, etc.). It also describes important parameters for
transaction handling, such as the autocommit mode. Finally, the context includes
key-value pair variables that can be freely set for the lifetime of a session. Any ses-
sion can set up to 50 of these variables.

Unlike information stored in tables, the context variables are not persisted by
the database and can only be set by the session they belong to. Nevertheless,
424

Introduction to Sessions and Transactions 10.1
other sessions can read them without requiring further privileges except to read
the M_CONTEXT_VARIABLES monitoring view.

A major use case for session context variables is to provide additional metadata
information about the current session to the database. The following subsections
explain the most important standard context variables.

Session Context LOCALE/LOCALE_SAP Variables

Using context variables can provide additional functionality to your SAP HANA
applications or information models. The logon language and locale information,
for example, is stored via session context variables LOCALE and LOCALE_SAP. Lan-
guage-dependent information models can use the value of these variables to filter
data based on the selected language (either by specifying a text join or an equality
filter for the $$language$$ variable). A common use case for this is that informa-
tion models use language-dependent master data.

The difference between LOCALE and LOCALE_SAP here is simply the locale encoding
scheme. Whereas LOCALE follows the ISO-3166 encoding standard (e.g., de_DE for
German, en_GB for British English, and so on), the LOCALE_SAP contains the SAP
internal single-byte encoding for languages. The SAP HANA server automatically
takes care of filling the LOCALE variables with the correct values based on the locale
settings provided with the logon string that was used to connect to the database.
It is also possible to specify the default locale for a user using ALTER USER <user_
name> PARAMETER SET PARAMETER 'LOCALE' = '<value>'. This value will then be
used when no locale is set in the logon string.

This means that as an SAP HANA user or application developer you don’t need to
care about mapping between both language encodings.

Session Context CLIENT Variable

In SAP HANA, every database user can have a special user parameter, CLIENT,
assigned that can also be used for content filtering in information models or in

Warning

Never store private or sensitive information in the context variables, as the content is
accessible to all database users!
425

Sessions and Transactions10
your own SQL/SQLScript code (filter variable $$client$$). The client as a data-
modeling element has been taken over from the SAP NetWeaver database model
design. To separate the data sets of different application user groups, called cli-
ents, each client-dependent table contains a special column (CLIENT, MANDT) that
contains a three-digit number to denote the client for each record.

The user parameter can be assigned either by using the ALTER USER <user_name>
PARAMETER SET PARAMETER 'CLIENT' = '<value>' command or via the User Editor
in SAP HANA Studio, as shown in Figure 10.6.

Figure 10.6 User Editor Showing the Client Parameter Assigned to a User Account

Internally, the user parameters are stored in system view USER_PARAMETERS and
can be checked as shown in Listing 10.1.

select * from user_parameters where user_name ='ALEX';

USER | PARAME | VAL
ALEX | CLIENT | 100

Listing 10.1 Reading from System View USER_PARAMETERS

Session Context APPLICATION* Variables

Information such as the CLIENT and the LOCALE variables has a direct impact on
how SAP HANA works with queries; the information models can be used in a flex-
ible manner, without the need for additional development effort.
426

Introduction to Sessions and Transactions 10.1
Another functional aspect of session context variables is to provide information
that helps to monitor and troubleshoot an application. The APPLICATION* vari-
ables can contain information about the database client application that is other-
wise not available on the server side. This information includes the actual user
name of the frontend user (APPLICATIONUSER), the name of the client program
(APPLICATION), the current source code position for the client program (APPLICA-
TIONSOURCE), and the version of the client program (APPLICATIONVERSION).

Although this metadata information may not seem to be of great interest at first,
it is extremely useful for monitoring and problem analysis. The values of these
variables for each current session can be checked in the monitoring view
M_SESSION_CONTEXT. By filtering the content to the current session, you can dis-
play the context variables that are currently set for your session.

Listing 10.2 is the output from the SQL statement in the SAP HANA command-
line client tool hdbsql.

select connection_id, key, value
> from m_session_context
> where connection_id = current_connection;
| CONNECTION_ID | KEY | VALUE |
| -------------- | ---------------- | ---------- |
| 254669 | CILENT | 800 |
| 254669 | PROTOCOL_VERSION | 4.1 (1, 4) |
2 rows selected (overall time 163,006 msec; server time 50,364 msec)

Listing 10.2 HDBSQL Output

Compare this with the output of the same SQL statement executed from an SAP
HANA Studio session, as seen in Figure 10.7.

Figure 10.7 SAP HANA Studio Context APPLICATION* Variables
427

Sessions and Transactions10
As you can see, SAP HANA Studio makes good use of these variables and sets all
values according to the usage convention; hdbsql, on the other hand, doesn’t set
any of the APPLICATION* variables.

If you want to make use of the context variables in your own programs, you can
either use the SET/UNSET commands to set or delete the key-value pair variables or
use the CLIENTINFO methods of the JDBC or ODBC drivers.

One of the most important steps during database problem analysis is to find out
which of the sessions currently present on the server belongs to the client appli-
cation in question. The Sessions monitor in SAP HANA Studio (or in Transaction
DBACOCKPIT) answers exactly this question, as Figure 10.8 shows.

Figure 10.8 Sessions Overview in SAP HANA Studio displaying APPLICATION* Variables

10.2 Processes and Threads

As you have seen, sessions are the basis for every command execution and pro-
vide the context in which these commands are executed. Sessions and connec-
tions are all about the conversation between the SAP HANA client and server.
They do not determine how the SAP HANA server actually performs its computa-
tions and processes the requests; the actual execution of command requests is per-
formed by specialized worker threads that are part of the indexserver process.

Note

Context variables have to be set by the client application after a session has been cre-
ated. The SAP NetWeaver DBSL fills APPLICATIONUSER with the user that runs an ABAP
report and APPLICATIONSOURCE with the current ABAP module and source code line
number. This way, it’s easy to find the SAP NetWeaver session that triggered a specific
command or that uses an SAP HANA session.
428

Processes and Threads 10.2
To review the processes that belong to an SAP HANA instance, you can use SAP
HANA Studio Administration perspective � Landscape � Services. The processes
are listed there as services. On the Linux command-line level, you can use the
command HDB info to get this information, as seen in Figure 10.9.

Figure 10.9 Example Output of the HDB Info Command

On the operating system level, a process is the shell in which every program can
run. All resources of the computer, such as CPU time, memory, or I/O devices,
although shared amongst all processes that run in parallel, appear to every process
as if that process was the only one using the resource. This way, all processes are
isolated (or better insulated) from each other.

To allow parallel execution of parts of a program within a program, threads are
available as a lightweight option for the operating system scheduler. One pro-
gram, while still running as a single process on an operating system level, can start
(or “spawn”) several threads that then run as part of itself. With threads, different
parts of the program can now run virtually at the same time and access the same
memory.

Threads see CPU time as if they were the only ones ever running (of course,
because they don’t “see” anything when they are not running), but they do share
the same system memory and all other resources. A program with multiple
threads can actively run on multiple CPU cores at the same time, or threads that
are currently waiting for resource accesses (e.g., disk I/O or network transport)
can let go of the CPU time (yield) and let other threads use the CPU. This shared
429

Sessions and Transactions10
access of resources, specifically main memory, is a huge performance benefit of
threads compared to processes.

In Figure 10.10, we see how threads can run in parallel and how they can access
the same memory areas and resources within their process. However, the mem-
ory access is limited to what every process “sees.” Accessing the memory of
another process is prevented by the operating system.

Figure 10.10 Threads and Resource Access

Therefore, when you want to have multiple processors working on the same data,
threads are a good implementation choice, because they can easily “see” all the
memory of their process. All the threads need to ensure is that they do not acci-
dentally overwrite parts of the memory that other threads were just working on.
This is usually done by some form of access regulation, such as locking, critical
regions, or the like.

This in fact is one of the bigger problems to deal with in multithreaded programs:
managing the access to the common memory of threads within a process. Espe-
cially when high-performance computing needs to occur that optimizes speed by

Process #1

Thread running on CPU

Thread waiting

Process #2

Main Memory (RAM)

T1.1 T1.2 T2.1 T2.2

Every thread can only
directly access memory
that belongs to its own

process.

Threads can overwrite the
memory of other threads.

Locking needs to be in place
to control memory access.
430

Processes and Threads 10.2
reducing CPU cache line invalidation (something that would make it necessary to
transport memory back and forth between CPU and RAM and thus take time),
locks, latches, and mutexes are often not the best choice. To address this while still
retaining the performance benefit of running multiple CPU cores at the same
time, lock-free algorithms are implemented in SAP HANA in certain areas.

We see that although threads allow for better performance, they are not as robust
as single processes, because the memory access is not separated. For example, one
thread could fail and write garbage into the memory. Because the same memory
will then be accessed by the other threads, the garbage data will immediately
affect them, eventually leading to their failure.

We will now explain the multithreaded nature of SAP HANA. We begin with the
relation between threads on the one hand and sessions and database requests on
the other. This relationship also has implications for the stopping of requests, ses-
sions, and threads, which we cover next. We conclude with a discussion of diffi-
culties that may occur when cancelling statements.

10.2.1 Sessions Running in Threads

As mentioned before, the session itself does not permanently map to a specific
process or thread in SAP HANA. This is quite different from many other DBMS
supported by SAP NetWeaver. Very often, these DBMS implement a session to be
bound to a specific process or thread, which makes it easy to follow up on which
SAP NetWeaver work process is using which session on the database and in turn
which process or thread of the DBMS.

Figure 10.11 shows an example of this mapping of threads to a user session.

The session with ConnectionID 300288 started to work on the create column table
... with data command. The purpose of this command is to copy an existing table
with the records stored in it. To process the command, the connection got
assigned to an SQLExecutor thread with Thread ID 12533.

Note

SAP NetWeaver, for example, uses separate disp+work processes that can be stopped
and started independently from each other. These disp+work processes are single
threaded.
431

Sessions and Transactions10
Figure 10.11 Session Spawning JobWorker Threads

Because SAP HANA is a column store database, the task of copying the table can
be split into copying each column. Each column can independently be copied,
which means that it can be done in parallel. To work on the columns in parallel,
a thread for each column is required. Also, these worker threads need to be con-
trolled and coordinated.

The SQLExecutor thread creates JobWorker threads and delegates work to them.
One of these JobWorker threads gets to be the coordinator (thread method
generic), whereas the remaining JobWorker threads actually perform the data-
copy work.

In the Threads overview, you can observe this dependency by checking the Call-

ing and Caller columns. Once a JobWorker is done with its share of data shovel-
ing, it reports back to the coordination thread and then terminates. The coordina-
tion thread waits until all the JobWorker threads are finished and then reports
back to the SQLExecutor thread that called it initially. The JobWorker processes are
created upon demand, and their number is automatically determined by SAP
HANA’s internal job management. This is different from the SQLExecutor threads,
which are typically kept and then reassigned to other connections. This multi-
leveled work-scheduling setup allows for fast assignment of SQLExecutor threads
to incoming commands from open connections as well as dynamic parallelization.

With SAP HANA, this mapping is not fixed. Instead, every session is kept in a ses-
sion pool and stays there idle until the client sends commands to be executed. SAP
HANA employs a set of network listener threads that receive and dispatch the cli-
ent requests to the corresponding sessions.
432

Processes and Threads 10.2
SAP HANA not only handles multiple sessions with multiple threads, it also uses
multithreading for parallelized processing of the workload in one session. We will
now explain this important mechanism before showing how you can monitor
threads on the operating system.

Parallel Processing of Requests

To process requests, sessions get assigned to one of the threads (SQLExecutor)
from a thread pool in SAP HANA. As most of the request can be broken down into
smaller pieces of work, SAP HANA can assign multiple JobWorker threads to one
request and thereby reduce the total runtime of a statement.

As an end user or developer, you do not have to worry about this, because SAP
HANA automatically finds the maximum possible parallelization for every pro-
cessing step. Note that some of the processing steps may not allow for indefinite
parallel processing due to design of algorithms or loss of efficiency (when coordi-
nating the parallel threads consumes more CPU time than what is saved by exe-
cuting the query in parallel).

For a summary of the session assignment and query execution mechanism in SAP
HANA, see Figure 10.12. Every client process, for example, the disp+work pro-
cesses of an SAP NetWeaver instance or a Java program connecting via JDBC, is
logged on to a session in the database server.

When queries need to be executed, the session is assigned to one of the free
SQLExecutor threads. The SQLExecutor threads are created upon SAP HANA star-
tup (the number created is usually twice that of the CPU cores, because SAP HANA
employs Hyper-Threading) and are not terminated under normal circumstances.
As we mentioned, these threads can execute the query, but they can also create
JobWorker threads and then hand work off to them. These JobWorker threads are
created and terminated as required.

Note

One of the design goals for SAP HANA is to provide as many processing resources as
possible to any query so that even complex queries that consist of many processing
steps can be executed quickly. The internal job management via threads is the technical
implementation towards this goal.
433

Sessions and Transactions10
Figure 10.12 Session Thread Allocation

Note that there are many other thread types present and running in any SAP
HANA instance. These threads usually are designated to special background tasks,
such as writing out changed data to disk or creating log backups. Typical admin-
istration tasks for SAP HANA do not involve managing these background tasks, so
we leave discussion of them aside for now.

Watching Threads on OS Level

Sometimes, it can be interesting to look at the SAP HANA processes and threads
on an operating system level. For example, you could realize that the server host
on which SAP HANA is running uses around 700 % CPU, and you might wonder
how that could be.

The first thing to understand in this situation is the math behind this CPU usage
number. Technically, what tools like top do is read CPU usage cycles per interval
(say, every second) and compare this against the total number of CPU cycles dur-
ing this period. Because the CPU normally does not stop when there is no work to

SAP HANA indexserver process

SQLworker-thread

SAP NetWeaver Server

disp+work 1

disp+work 2

JDBC client process

disp+work 3

Session
pool

1

2

3

4

SQLExecutor thread

SQLExecutor thread

SQLworker-threadSQLExecutor thread

JobWorker thread

JobWorker thread

JobWorker thread

JobWorker thread

JobWorker thread

JobWorker thread

Inactive session
doesn’t allocate a
SQLWorker thread
434

Processes and Threads 10.2
do, the cycles are still performed, but the usage accounting groups the cycles into
time spent for user programs/in user mode (%us); which basically means all appli-
cation code; system mode (%sy), which usually covers larger parts of the core oper-
ating system and device drivers; and idle time (%id). There are more categories
available, but for our example it’s sufficient to know these three.

When top is started, the initial screen may look like Figure 10.13, and the figures
are updated every second.

Figure 10.13 Example Output of the top Tool (Unfiltered)

On our server, several SAP HANA instances are running, so we see multiple
hdbindexserver processes. Therefore, we need to focus on one of them, which we
can do by either specifying the -p <process id> parameter or the -u <user name>
parameter when starting top. Let’s use top -u wupadm to look at only get the pro-
cesses belonging to our user (Figure 10.14).

With only the processes included in the output that belong to our system, we
already find something noteworthy: The total CPU usage in user mode (SAP
HANA code runs in user mode) currently makes up for 1.0 % of the total host CPU
usage. However, looking at the %CPU column for our hdbindexserver process, we
see a number around 107 %.
435

Sessions and Transactions10
Figure 10.14 Example Output of top Tool, Filtered for User WUPADM

Which number is correct here? In fact, both. However, they show different aggre-
gation levels.

The number in the header section shows the average CPU usage of every logical
CPU core in the system. This host runs on 80 physical CPU cores with Hyper-
Threading enabled (allowing it to run two processes in parallel on a single CPU
core), which means that the number is probably calculated in the following way:

The second number (%CPU), however, is simply the sum of all CPU usage percent-
ages used by the hdbindexserver process. Because SAP HANA makes heavy use of
running parallel workload through threads, it is easily possible to use more than
one CPU core (1 CPU core = 100 %) at a time. In this case, apparently roughly four
of the 160 possible logical CPU cores have been used, or, to be more precise, the
total number of CPU cycles spent in user mode by the hdbindexserver process
(and all of its threads) was worth 400 % of the standardized single CPU cycles over
the whole system.

us

usus

ususus

%7125,0
160

)%0%114(
 (160)) CPUs logical of(#

) 0%:CPU160CPU3+)2%+5+6+(7:CPU2+)(100%:(CPU1

436

Processes and Threads 10.2
Now, it would be interesting to get at least an idea of what the hdbindexserver
process is doing. With top, it is possible to switch the display to threads mode by
pressing (Shift) + (H). The list then displays single threads and their respective
thread IDs (although the column header still reads PID).

Figure 10.15 Example Output of the top Tool, Filtered for User WUPADM in Threads Mode

As we can tell by the thread names shown in the COMMAND column, there are Job-
Worker threads actively running in parallel as well as a PoolThread. This informa-
tion can be easily matched against the Threads overview in SAP HANA Studio, as
shown in Figure 10.16.

Comparing the Thread ID numbers, we find that the PoolThread (12477) in the
top output is our SqlExecutor (12477) thread that runs our SQL command and
that the JobWorker threads have been spawned to parallelize the work.

Note

To keep things simple, you can think about it like this: There is 1 CPU core for every
100 % in the list output.
437

Sessions and Transactions10
Figure 10.16 Threads Overview with Parallel Running Threads

10.2.2 Stopping Processes and Threads

As explained previously, the operating system manages how much CPU time each
process and each thread can use, but it tracks memory access only on the process
level. Within the memory area of a process, threads can use the memory freely,
and the operating system cannot know which memory belongs to which thread.
This means that the operating system can easily cut off any process from CPU time
and release all of its allocated resources, but it cannot know how to remove a
thread from a running process safely without knowledge of the internal data
structures of the program. For example, what if the thread that is about to be
killed just modified some data and is in between two calculation steps? How
should the operating system’s task or process manager know how to clean this up
properly? The answer is that the operating system cannot know, and thus when a
thread needs to be ended it needs to be done by the process the thread belongs to.

For a multithreaded application, the process that started the thread in the first
place needs to take the necessary steps to stop the thread. The big benefit of this
approach is that the resource cleanup can happen close to where the resource con-
summation happened, so no other piece of code needs to learn how to clean up
this thread’s resource usage. Unfortunately, this comes at a price; for the thread to
be able to perform a kind of self-destruction, it needs to check whether it should
end itself every now and then. The programmer of the thread code needs to
include these checks into the application code, which would look similar to List-
ing 10.3.
438

Processes and Threads 10.2
 1 BEGIN
 2 IF cancelFlag == SET THEN EXIT;
 3 CREATE LIST l;
 4 FOR each row r in table t LOOP
 5 IF r MATCHES CONDITION
 6 ADD r TO LIST l;
 7 END IF;
 8 IF cancelFlag == SET THEN BREAK;
 9 END LOOP;
10 FREE LIST l;
11 EXIT;
12 END

Listing 10.3 Pseudocode for Request Cancellation

The pseudocode in Listing 10.3 gives an example of how a thread could check for
cancellation. The first instruction in the procedure (line 2) checks whether the glo-
bal cancelFlag is set and exits the procedure correctly with no work done if the
flag indeed is set. The next step is to allocate memory for some result, a LIST in
this case.

The procedure then loops over all records of a table and adds those records that
match certain criteria to the result list. In line 8, the cancelFlag is checked again
and the loop will be quit if the flag is set. Below the loop, the list is deleted and the
memory it allocates is freed. If everything is working as it should, the code will
execute nicely, probably not taking too much time, and it finally will release the
memory it used back to the system.

Now, imagine that this thread crashes or that it is killed during the execution of
the loop. In this case, the LIST would be in an unknown state and the memory
could not be properly returned to the system. To address the stopping problem,
the procedure regularly checks for the cancelFlag and cleans up the used
resources. As nice as this approach is, there are two problems:

� The programmer needs to decide in advance where the code should be cancel-
lable. Making this decision can be difficult, because one only wants to check in
situations that could potentially take a long time or hinder other threads from
working. Also, it is very easy in a complex system like a DBMS to fail to foresee
what part of the code could take a long time or block others.
439

Sessions and Transactions10
� Checking for the cancelFlag can be a costly operation that has a severely neg-
ative impact on performance. Especially in SAP HANA, many so-called cache-
conscious algorithms are used that provide high-performance characteristics
and that leverage the CPU internal data-caching structures to work very quickly
on large amounts of data (e.g., scanning a table column). Introducing cancella-
tion check code like the example in Listing 10.3 into such optimized code can
easily destroy the performance benefit, so cancellation checks need to be
placed very carefully.

We see that enabling multithreaded code to gracefully stop leads to a tradeoff
among performance, code maintainability, and system stability. The more often
the flag is checked, the easier it is to stop “bad” threads, but the slower the system
will be in total.

This leads us to an important administration topic.

10.2.3 Canceling a Running SQL Command

Long-running commands or sessions that block other statements from proceeding
can be a problem in database management systems. This is because these com-
mands can affect other sessions by using CPU and memory resources or by keep-
ing locks on records that need to be changed by the other sessions. In the worst
case, this could render the whole system unresponsive.

Fortunately, SAP HANA provides commands to stop the execution of running
statements or to disconnect a session. The first command is:

ALTER SYSTEM CANCEL [WORK IN] SESSION <session_id>

This command can be executed by any user for sessions that belong to this user.
To cancel other users’ sessions, the system privilege SESSION ADMIN has to be
granted prior to running the command.

In Figure 10.17, we see that the user DTX is running an SQL statement in the
right-hand window. As the SQL Editor window is waiting for the statement to fin-
ish and to retrieve the result set, we cannot run the ALTER SYSTEM CANCEL SESSION
command in this window.

Therefore, we use the left SQL Editor window to find out the connection id of the
other running session; in this case, it is connection id 381561.
440

Processes and Threads 10.2
Figure 10.17 Statement Cancellation Example

Figure 10.18 shows the result of the ALTER SYSTEM CANCEL SESSION command. It
took a couple of seconds for the cancellation request to be recognized by the spe-
cific part of the SAP HANA code that was currently running, but then the running
operation was gracefully cancelled and the open transaction was rolled back.

Figure 10.18 Statement Cancelled via SQL Command
441

Sessions and Transactions10
This works because the user who tries to cancel the other session is the same as
the user running the session to be cancelled. If you tried to cancel any other users’
sessions without the ADMIN SESSION privilege, you would get error message [258]:
insufficient privilege: Not authorized.

Clearly, this is a cumbersome way to just abort a running statement. Luckily, SAP
HANA Studio offers an easier way to cancel a running statement that was started
from the SQL Editor, as depicted in Figure 10.19. To provide this functionality,
SAP HANA Studio uses the statement.cancel() method of the JDBC driver that
allows other threads in a Java client application to retrieve the connection id and
to send the cancellation command.

Figure 10.19 Cancel Operation Button for SQL Editor

Although this functionality is handy, it unfortunately cannot be used for state-
ments that were not started from SAP HANA Studio and that run in a different
user context—which is a common scenario with statements that should be can-
celled. Finding the exact correct connection id for such a session on a heavy-duty
SAP HANA system with hundreds of sessions simply by using the SQL commands
shown previously is difficult and error prone.

The Threads monitor in SAP HANA Studio (Administration Console � Perfor-

mance � Threads) is much easier to use. There, we can simply right-click on the
442

Processes and Threads 10.2
session we want to cancel and select Cancel Operation from the context menu, as
shown in Figure 10.20.

Figure 10.20 Cancel Operation in the Threads Monitor

10.2.4 Killing a Session

Sometimes it might be desirable to not only cancel a currently running statement
of a session but to disconnect the session completely. The command for this is
ALTER SYSTEM DISCONNECT SESSION '<CONNECTION ID>' and can be used similarly to
the CANCEL SESSION command. The difference between this and the CANCEL WORK
command simply is that not only will the current command be cancelled but the
session itself will be terminated.

10.2.5 Problems with Session Cancellation

As you have seen, the ability to stop running commands and disconnect sessions
relies on the idea that the session that should be cancelled actively checks for the
cancellation flag to be set. This approach has the drawback that there are situa-
tions in which the session cannot check the flag and thus can never be cancelled.

Note

Disconnecting the session is not a “stronger” way to force the termination of a long-run-
ning command. With either option, the running command first needs to recognize the
cancellation flag and then the transaction rollback must be performed, which also can
take a considerable amount of time. If the CANCEL WORK command did not succeed to
stop a running command, then there is no point in trying DISCONNECT SESSION.
443

Sessions and Transactions10
For example, a session could open a transaction and update a table but not com-
mit the update. Instead, the session no longer does anything and therefore just
holds a lock on the changed record (e.g., think of a user having a data-entry mask
open and unsaved leaving for lunch). If other sessions now need to change this
record as well, they need to wait until the first session releases the lock.

In this situation, a CANCEL SESSION on the lock holder session does not help,
because the session is currently not running any code that could check for the can-
cellation flag. This situation, in which the session is IDLE, can only be resolved by
disconnecting the session.

The problem with this is obvious: What if the client application is currently legit-
imately processing the data and should write the results back to the database? In
this case, the work is lost and the session needs to be restarted. Therefore, it is
important to try to find out why the session is currently inactive while a transac-
tion is open and decide on a case-by-case basis whether or not to disconnect the
session. (We will see how to find out who is running a session in Section 10.3.)

A second problem is that sometimes it takes several minutes until the rollback of
a session is performed and the cancellation is successfully finished. During that
time, there are no visible signs, in the Threads monitor, for example, that the spe-
cific thread is flagged for termination. This might lead to DBAs trying to run the
CANCEL SESSION command over and over again until it works. Clearly, this is futile.

To double-check whether the session control commands have been understood,
you can examine the index server trace file in Listing 10.4.

 [...]
[12351]{301610}[-1/-1] 2013-12-19 03:03:05.410801 i SQLSessionCmd
 Statement.cc(03254) :
 session control command is performed by 301610,
 user=LARS, application user=I028297,
 application source=csns.sql.editor.SQLExecuteFormEditor$1$1
 .run(SQLExecuteFormEditor.java:796);
 , query=ALTER SYSTEM CANCEL SESSION '301611'
[...]

Listing 10.4 Index Server Trace File Excerpt

In the case that a statement or session cancellation does not succeed at all, it could
be that SAP HANA currently executes a routine that does not check (yet) for the
cancelFlag. To find these routines and to improve them, SAP HANA develop-
444

Monitoring Sessions and Transactions 10.3
ment needs to know about them. Such information can be gathered by the means
of a runtime dump. SAP Note 1951590 covers this.

In such a case, unfortunately, the only chances to stop the running session are to
trigger the client to release the lock (if that is possible), to stop the client process,
or, as a very last resort, to stop and restart the whole indexserver process, which
will also end all other sessions.

Therefore, before taking this very last step, consider if the cancellation can wait
until, for example, the majority of users has logged off and important jobs have
finished. Also, you should open an incident with SAP Support for this situation
and make sure to collect the runtime dump so that the root cause can be analyzed
even though the system was restarted. In short, do not rush to cancel threads by
restarting the system!

10.3 Monitoring Sessions and Transactions

We have already covered some important concepts of sessions and threads in SAP
HANA. Now, it is time to see how these concepts can be applied to monitoring the
database. We will begin with the session monitor in SAP HANA Studio and then
introduce you to the monitoring views of the database that are underlying this
monitor.

10.3.1 Using the Session Monitor

To access the session monitor, navigate to Administration Console � Perfor-

mance � Sessions. Figure 10.21 shows most of the functions of the session monitor
at once.

Typically, the list of sessions will be rather large and overwhelming. Therefore, it
is important to filter the list down to the interesting entries. SAP HANA Studio
provides two independent options to filter lists:

� The Quick Filter box on the left side of the screen just above the list

� The list of column filters that can be set by clicking on the Filters... button

With the Quick Filter, you can just type in the search term by which you want to
filter the list. The list will then be searched over all columns, and only those rows
will be displayed that match the search term in any column. Also, the Quick Filter
445

Sessions and Transactions10
will highlight the found search term by using a bold typeface in the list display.
With that ability, the Quick Filter is suitable for quick and simple filtering of the
session list.

Figure 10.21 SAP HANA Studio Session Monitor

For more complex filters that can include several columns with different filter
conditions, the Filters... button can be used. The filter conditions are applied
with a logical AND operation (all filter conditions are applied) so that the list can be
reduced to the interesting sessions effectively.

The summary section shown in Figure 10.21 is initially hidden, but it can be
shown by clicking on the triangle symbol next to the word Summary. Note that
the filters set up for the list are not applied to the summary section.

The context menus for the list rows provide options to cancel a session, to apply
quick filters based on the table cell that was right-clicked, to create a Distinct Val-

ues report for the current column (see Figure 10.22), and also to navigate to other
displays in SAP HANA Studio, for example, to the Threads overview.

Typical questions that can be answered from the Sessions overview include:

� Which sessions are currently active or have open transactions? See columns
Connection Status and Transaction Status.

� Which user triggered this command logged on as DB user SYSTEM? Check col-
umn Application User.
446

Monitoring Sessions and Transactions 10.3
� How many sessions are created from a specific client computer? Add a filter on
the Client IP Address or Host Name and check the Visible Rows counter.

To filter out noise from SAP HANA Studio sessions, the Hide Sessions button pro-
vides built-in filters that remove idle sessions, all SAP HANA Studio sessions
(based on the APPLICATION context variable), or just the Administration Editor ses-
sions (based on the APPLICATION and APPLICATIONSOURCE context variables.)

Figure 10.22 Distinct Values Report for the Application User Column

10.3.2 Using the Monitoring Views via SQL

As mentioned earlier, all information about sessions and connections can be
found in the monitoring view M_CONNECTION. To provide a starting point for using
the view, let’s see what information is available in it.

Running SELECT * FROM M_CONNECTIONS will deliver all information at once, but its
output is barely useful; we would drown in data without being able to understand
what we see. Luckily, the view comes with a column OWN that indicates the record
that contains information about the session that is currently executing the select
command.

By simply executing SELECT * FROM M_CONNECTIONS WHERE OWN = 'TRUE', you just get
back one record, which serves as a starting example. In hdbsql, the result of the
preceding statement looks like Listing 10.5.

select * from m_connections where own = 'TRUE';
HOST,PORT,CONNECTION_ID,TRANSACTION_ID,START_TIME,IDLE_TIME,CONNECTION_
STATUS,CLIENT_HOST,CLIENT_IP,CLIENT_PID,USER_NAME,CONNECTION_
TYPE,OWN,IS_HISTOR
Y_SAVED,MEMORY_SIZE_PER_CONNECTION,AUTO_COMMIT,LAST_ACTION,CURRENT_
STATEMENT_ID,CURRENT_OPERATOR_NAME,FETCHED_RECORD_COUNT,AFFECTED_
447

Sessions and Transactions10
RECORD_COUNT,SENT_
MESSAGE_SIZE,SENT_MESSAGE_COUNT,RECEIVED_MESSAGE_SIZE,RECEIVED_MESSAGE_
COUNT,CREATOR_THREAD_ID,CREATED_BY,IS_ENCRYPTED,END_TIME,PARENT_
CONNECTION_ID,C
LIENT_DISTRIBUTION_MODE,LOGICAL_CONNECTION_ID,CURRENT_SCHEMA_
NAME,CURRENT_THREAD_ID
"coe-he-084",32003,206178,265,"2013-11-28 15:17:13.852639000",0,"RUN-
NING","VIEN60239482A","147.204.250.248",10040,"RDP361_
0","Remote","TRUE","FALSE",7
248,"TRUE","ExecutePre-
pared","885529776966318","",5,0,9824,20,4208,21,16010,"Ses-
sion","FALSE",?,0,"STATEMENT ROUTING",206178,"RDP361_0",16010
1 row selected (overall time 610,884 msec; server time 16,777 msec)

Listing 10.5 Output from M_CONNECTIONS

Clearly, this output is far from readable, and even looking at the same information
in the grid view in SAP HANA Studio does not improve the situation much, as you
can see in Figure 10.23.

Figure 10.23 Query Result from M_CONNECTIONS System View in SAP HANA Studio

You would need to horizontally scroll all the way over to the right to review all
columns. To make the result easier to read, you need to transpose the columns to
rows, for example, via MS Excel or a text editor (Table 10.2).

Column Value

HOST coe-he-084

PORT 32003

CONNECTION_ID 206178

TRANSACTION_ID 265

START_TIME 2013-11-28 15:17:13.852639000

Table 10.2 Transposed Information from M_CONNECTIONS
448

Monitoring Sessions and Transactions 10.3
Now, with this readable output, it’s easy to find information about the session.

IDLE_TIME 0

CONNECTION_STATUS RUNNING

CLIENT_HOST VIEN60239482A

CLIENT_IP 147.204.250.248

CLIENT_PID 10040

USER_NAME RDP361_0

CONNECTION_TYPE Remote

OWN TRUE

IS_HISTORY_SAVED FALSE

MEMORY_SIZE_PER_CONNECTION 7248

AUTO_COMMIT TRUE

LAST_ACTION ExecutePrepared

CURRENT_STATEMENT_ID 885529776966318

CURRENT_OPERATOR_NAME [blank]

FETCHED_RECORD_COUNT 5

AFFECTED_RECORD_COUNT 0

SENT_MESSAGE_SIZE 9824

SENT_MESSAGE_COUNT 20

RECEIVED_MESSAGE_SIZE 4208

RECEIVED_MESSAGE_COUNT 21

CREATOR_THREAD_ID 16010

CREATED_BY Session

IS_ENCRYPTED FALSE

END_TIME ?

PARENT_CONNECTION_ID 0

CLIENT_DISTRIBUTION_MODE STATEMENT ROUTING

LOGICAL_CONNECTION_ID 206178

CURRENT_SCHEMA_NAME RDP361_0

CURRENT_THREAD_ID 16010

Column Value

Table 10.2 Transposed Information from M_CONNECTIONS (Cont.)
449

Sessions and Transactions10
At the very moment of the query execution, the MEMORY_SIZE_PER_CONNECTION
was only 7,248 bytes (302 KB). The connection itself is identified via its
CONNECTION_ID, which also can be found in, for example, the trace files.

Even with this approach to reading the data, it’s still not very comfortable to
manually transpose single rows. Also, interesting additional information, such
as the actual SQL command text that was last executed, would be nice to see;
right now, all we see is the CURRENT_STATEMENT_ID, which we could use to query
the M_PREPARED_STATEMENTS monitoring view.

Fortunately, SAP HANA Studio provides several displays that are much more com-
fortable to use and that combine these system views for us. For every row in the
Threads overview (Administration Console � Performance � Threads), a Details

window can be opened, either by double-clicking on the row or via the context
menu Show Details. Figure 10.24 shows an example of the Threads Details win-
dow listing combined information about the connection, the current transaction,
threads, and the SQL statement. With this set of information, although presented
in a rather long list, we get a comprehensive overview of what a given thread is
currently doing.

Figure 10.24 Thread Details Window
450

Concurrency and Parallelism 10.4
10.4 Concurrency and Parallelism

SAP HANA’s advantage in speed is rooted in many aspects of the design of the sys-
tem. One of these aspects is that single commands can be internally broken down
into smaller pieces of work and processed in parallel on the many CPU cores of an
SAP HANA server.

In Section 10.2.1, we discussed how SAP HANA processes commands in SQLEx-
ecutor threads that can span JobWorker threads to parallelize the work of a single
statement. In the next four subsections, we shed light on the impact of such par-
allelism on the transaction management of the database.

We will begin by working out the different types of parallelism offered in the
database system. Certain kinds of parallel processing can lead to locks or blocking
situations, and we cover these items next, including the closely related timeouts.
Finally, we explain the database system’s multiversion concurrency control mech-
anism that enables the database to avoid locks in reading transactions.

10.4.1 Types of Parallelism

First, it is good to get an idea of the different types of parallelism that can be used
with SAP HANA:

� Interquery parallelization
This means that multiple separate statements can be executed in parallel. This
seems to be an obvious feature, but it is important to understand how this is
implemented. For each statement that should run at the same time as other
statements, there has to be one SQLExecutor thread available. When more ses-
sions want to run commands in SAP HANA than there are SQLExecutor threads,
the requests need to be queued and the sessions have to wait until an SQLExec-
utor thread is available again.

This of course does not mean that an SAP HANA system with, for example, 160
logical CPUs can only handle 160 sessions that are connected at the same time,
but it does mean that only 160 of these sessions can process a request at the
same time. Should more requests need to be processed in parallel than that,
more logical CPUs need to be available. This can either be done by scaling up
the host to a platform that supports more CPUs or CPUs with more cores or by
scaling out to multiple SAP HANA nodes.
451

Sessions and Transactions10
� Intraquery parallelization
This means that single processing steps for a query can be executed in parallel,
because these steps don’t depend on each other. For example, reading data
from multiple columns of one table could be done by two threads on two sep-
arate CPU cores. Or, in case the involved table is partitioned, each table parti-
tion could be worked on by a separate thread. The actual decision about the
degree of parallelism is taken by the SAP HANA query optimizers upon query
execution. That way, the developer or DBA does not need to care about
dynamic system-load situations, but it also means that the actual degree of par-
allelism for a given query cannot be controlled.

To monitor the current interquery parallelization, SAP HANA Studio provides the
overview sections of the Threads and Sessions monitors, as shown in Figure 10.25.

Figure 10.25 Threads and Sessions Summary Views

Checking on the intraquery parallelization is somewhat more difficult, because it
depends on the current system-load situation. However, it’s possible to trace and
visualize a query execution with the Plan Visualizer (PlanViz) tool and to analyze
parallel processing steps for a query (or an SQLScript procedure) with it.

We will look into this tool in more detail in Chapter 15.

10.4.2 Locks and Blocking

Another aspect of parallelism is concurrency or the use of the same resource by
more than one session at a time. Resources for our commands could be any data-
452

Concurrency and Parallelism 10.4
base objects, such as schemas, tables, views, or indexes, as well as records in
tables. SAP HANA employs a locking mechanism to ensure that no session
changes data that is currently worked upon in another session.

For practical matters, there are two relevant lock types, table locks and row locks,
to consider. Depending on the command that will be executed, the locks can be
set in different modes, allowing or preventing other locks of the same type to be
set.

Table 10.3 provides an overview of lock types and lock modes. In this table, DML
stands for data manipulation language, which includes all SQL statements that
change data. DDL stands for data definition language, which includes all SQL state-
ments that define or modify the structure of the database, tables, views, etc.

There are several noteworthy things in this table. First of all, there is no shared
lock mode present. Typically, a shared lock would be used to allow multiple ses-
sions to read the same record at a time but prevent any session from changing this
record. This can be necessary to guarantee the consistent read of records when
multiversion concurrency (MVCC) is not available. SAP HANA never sets shared
locks on records.

The next surprising element is the table lock mode IX (intentional exclusive). This
lock mode practically behaves like a share lock. There can be multiple IX mode

Lock Type Lock Mode Comment

Table lock IX (intentional exclusive) Set by DML commands: INSERT, UPDATE,
UPSERT, DELETE, SELECT FOR UPDATE, and
MERGE DELTA

X (exclusive) Set by LOCK TABLE command and DDL com-
mands like ALTER TABLE, DROP TABLE, CREATE/
DROP INDEX, and TRUNCATE TABLE

Row lock X (exclusive) Set by DML commands: INSERT, UPDATE,
UPSERT, DELETE, and SELECT FOR UPDATE.

Table 10.3 Overview of Lock Types and Modes

Key Takeaway

Reading table rows never sets a lock in SAP HANA.
453

Sessions and Transactions10
locks present on a table at any given time, but no X (exclusive) lock can be set. The
idea here is that the commands that intentionally set an exclusive lock on a row
also need to make sure that the table cannot be locked exclusively by some other
session. This is achieved by the IX lock that is implicitly set when an exclusive row
lock is acquired.

What may not be obvious with IX locks is that these are acquired on the command
level, whereas the records locks are acquired for each single, affected record. In
other words, it is perfectly possible that an UPDATE command acquires an IX lock
on the table but sets no X lock on any record when the WHERE condition does not
fit to any existing record in the table.

Also, we find that running a delta merge on a column store table only sets an IX
lock, which means that other commands that also only need an IX lock can be exe-
cuted while the delta merge is running. The table tells us that this includes all
DML commands. Short and simple: Rows can be inserted, updated, deleted, and
selected while the delta merge is running. However, even though an unrestricted
DELETE is possible during a delta merge, a TRUNCATE command would have to wait,
because it requires an X lock.

We also see that creating an index on a table requires an X lock as well, which
means that, for example, INSERT statements on a large table have to wait until the
CREATE INDEX command has been completed. Depending on the importance of the
table for business transactions, this could lead to serious wait situations in the
business application and eventually block business transactions from being com-
mitted. Therefore, be careful when creating indexes on large tables in production
systems!

Releasing Locks

A common question from new DBAs is “How can we release a table or record
lock?” To do so, there are two transaction control commands: COMMIT and ROLL-
BACK. Because SQL locks are crucial for the DBMS in order to guarantee transac-
tional consistency, the only way to release locks is by ending the transactions that
acquired them in the first place. Session management commands such as ALTER
SYSTEM END SESSION or ALTER SYSTEM DISCONNECT SESSION implicitly trigger a roll-
back and release the locks of the affected session.
454

Concurrency and Parallelism 10.4
Monitoring Locks

To monitor locks, SAP HANA offers two basic monitoring views, M_OBJECT_LOCKS
and M_RECORD_LOCKS, that contain information about current locks, as shown in
Listing 10.6.

update cpoints set points =4.0 where name ='Louise';
select * from m_object_locks;

HOST ld9506
PORT 34203
LOCK_OWNER_TRANSACTION_ID 463
LOCK_OWNER_UPDATE_TRANSACTION_ID 1861041
ACQUIRED_TIME 21.12.2013 03:32:37.92126
SCHEMA_NAME LARS
OBJECT_NAME CPOINTS
OBJECT_TYPE TABLE
LOCK_MODE INTENTIONAL EXCLUSIVE

select * from m_record_locks;

HOST ld9506
PORT 34203
LOCK_OWNER_TRANSACTION_ID 0
LOCK_OWNER_UPDATE_TRANSACTION_ID 1861041
ACQUIRED_TIME 21.12.2013 03:32:37.923777
RECORD_ID OID=0x000001ea, PARTID=0x0, OFFSET=0x60f7203f
SCHEMA_NAME LARS
TABLE_NAME CPOINTS
LOCK_MODE EXCLUSIVE

Listing 10.6 Example Output from Lock-Monitoring Tables

We can find that a single UPDATE command for a single row creates two lock
entries, one for the table and one for the record itself. By comparing the
ACQUIRED_TIME information of both entries, we find that the record lock (...
37.923777) was set a tad later than the table lock (...37.92126). This is due to the
fact that the IX table lock is set for the command first and only thereafter are rows
matching the WHERE condition locked.

Note

Unfortunately, the RECORD_ID from M_RECORD_LOCKS does not provide a way to find
out the actual row that the lock belongs to without internal development knowledge.
455

Sessions and Transactions10
Although these system views can be very useful for learning about ongoing lock-
ing situations, typically a DBA will be interested in locks when they cause block-
ing sessions. For that, the Threads monitor in SAP HANA Studio provides an easy-
to-use user interface. To see what this looks like, let’s consider the following
example. The update command in Listing 10.7 will create an exclusive record lock
in addition to the intentional exclusive table lock that was shown in Listing 10.6.

update cpoints set points =4.0
where name ='Louise';

Listing 10.7 Start DB Session #1 with Autocommit OFF

Executing the statement again from a second session (Listing 10.8) will make this
session wait for the lock and thus hang, because it is blocked by the transaction
from session #1.

update cpoints set points =4.5
where name ='Louise';

Listing 10.8 Start DB Session #2 with Autocommit OFF

This leads to the display in SAP HANA Studio Administration Console � Perfor-

mance � Threads shown in Figure 10.26.

Figure 10.26 Blocked Transaction Information in Threads Monitor

Because the first session has already successfully updated the row and is now idle,
you will not find an entry for it in the list of active threads (the Threads monitor
is filtered to <active> threads by default). Remember, an idle session does not
have any threads assigned to it.
456

Concurrency and Parallelism 10.4
The blocked session is marked with an alert icon, and the tooltip information
shows you which transaction is currently holding this lock (463).

You could manually query M_TRANSACTIONS with the Transaction ID, but there is
an easier way; the context menu provides a Navigate to submenu. There, we find
the option to navigate to the Sessions monitor with our current transaction as a
filter or to the Blocked Transaction tab. The latter brings us to the display in Fig-
ure 10.27.

Figure 10.27 Blocked Transactions Overview

Going back to the Threads monitor, the context menu also shows Cancel Opera-

tion (ALTER SYSTEM CANCEL SESSION <ID>). Because the current waiting thread is
still active and can check for the cancellation flag, we could cancel the waiting
thread this way.

As the lock holder is still holding the lock, the situation has not much improved.
In most cases of blocking threads, it is necessary to first understand which session
is holding the lock and why it is required. Then, you can decide how to release the
lock again.

More information on the analysis of lock wait situations can be found in SAP Note
1858357 and the SAP HANA Administration Guide.

10.4.3 Timeouts

Because long-held locks and transactions that had been open for a long time can
have negative effects, such as blocking other sessions or allocating system
resources, SAP HANA provides timeout thresholds for such situations.

Note

It is possible to cancel threads waiting for locks, but it is not possible to cancel an inac-
tive/idle holder of a lock.
457

Sessions and Transactions10
� Idle session timeout
For idle sessions (sessions that do not have any transactions open), the default
timeout is 1,440 minutes (60 × 24). Sessions that stay idle longer than this
timespan will be disconnected.

This timeout can be configured via parameter indexserver.ini � [session] �
idle_connection_timeout. A value of 0 disables the timeout mechanism.

� Idle cursor timeout
Cursors (see the “Executing a Query” section) that are open over a long period
of time allocate system resources and could potentially block garbage collection
in SAP HANA. This timeout parameter (defaulting to 60 × 12 = 720 minutes)
leads to disconnect of the session that opened the cursor.
The parameter to be set is indexserver.ini � [transaction] � idle_cursor_
timeout.

� Lock wait timeout
To prevent sessions waiting too long to acquire a table or a record lock, this
timeout is used. After exceeding the timeout threshold, the waiting transaction
will be rolled back and error message 131: transaction rolled back by lock
wait timeout will be returned. The parameter for this timeout is index-
server.ini � [transaction] � lock_wait_timeout and is given in milliseconds
(!). It defaults to 1,800,000 milliseconds or 180 seconds (three minutes).

To specify the maximum wait time for locks for a specific transaction, as of SPS 7
it is possible to specify the desired timeout via ALTER SYSTEM SET TRANSACTION LOCK
WAIT TIMEOUT.

10.4.4 Multiversion Concurrency Control

We have already seen that reading records in SAP HANA never set locks on the
record or the table that is read. This is done by keeping old versions of records in
the system as long as any transactions could possibly need them. Changing
records does not overwrite the old one; instead, a new version of the record is cre-
ated and used from then on.

Depending on the isolation level active for the data-reading transaction, the old
version of the record can be released after the SELECT statement has finished (iso-
lation level READ COMMITTED) or after the reading transaction has finished (isolation
levels REPEATABLE READ and SERIALIZABLE).
458

Concurrency and Parallelism 10.4
SAP HANA manages version management automatically without user interaction.
Technically, preserving old versions of records is done differently for row store
and column store tables. We discuss this briefly next.

MVCC Row Store

The internal data organization of the row store in SAP HANA is very similar to
classic DBMS. Records are stored on pages and inserts and updates and deletes are
performed in place. To allow for multiversion concurrency control (MVCC), a
before image of the page needs to be stored before any data is changed. This
before image is kept in memory in SAP HANA, just as all table data is.The before
image is also included in the regular savepoints and data backups of SAP HANA so
that during recovery of rolled-back transactions the original records can be recre-
ated.

To monitor the multiversion concurrency control for row store tables, SAP HANA
provides two system views: M_VERSION_MEMORY (Listing 10.9) and M_MVCC_TABLES.

select allocated_memory_size as allocated_mem,
 used_memory_size as used_mem,
 reclaimed_version_size as reclaimed_vers,
 free_memory_size as free_mem
 from
 m_version_memory vm
 join m_services s
 on (vm.host, vm.port) = (s.host, s.port)
where s.service_name ='indexserver'
order by vm.host;

ALLOCATED_MEM|USED_MEM|RECLAIMED_VERS|FREE_MEM
1474560 |1376256 |65536 |32768

Listing 10.9 Output of M_VERSION_MEMORY

In many system views, data is listed for all services on all hosts of a multinode sys-
tem. For SQL processing, only the indexserver process is interesting; therefore
we filter M_VERSION_MEMORY by joining against the M_SERVICES system view.

Once old record versions are not required any longer, they are not immediately
removed from the version management. Instead, garbage collection is performed
asynchronously by a background task (MVCCGarbageCollector). This garbage col-
459

Sessions and Transactions10
lection is referred to as reclaiming version memory and can also be triggered man-
ually via the ALTER SYSTEM RECLAIM VERSION SPACE command. This is typically not
required, and SAP HANA delivers alerts and error messages in the index server
trace file. These regular checks are performed by the background task MvccAnti-
AgerChecker (see Listing 10.101).

 [131520]{-1}[-1/-1] 2013-12-22 22:07:52.068900 e Statement
mvcc_anti_ager.cc(01075) :
long running uncommitted write transaction detected:
 CONNECTION_ID = 301362, LOGICAL_CONNECTION ID = 301362,
 CONNECTION_STATUS = IDLE, HOST = ld9506:34203,
 TRANSACTION_ID = "60", TRANSACTION_TYPE = "USER TRANSACTION",
 UPDATE_TRANSACTION_ID = "1912012", MIN_MVCC_SNAPSHOT_TIMESTAMP = -1,
 TRANSACTION TOTAL EXECUTED TIME = 19449 sec,
 CLIENT_HOST = VIEN60239482A, CLIENT_PID = 3656,
 CURRENT_STATEMENT = "null",
 LAST_STATEMENT = "SELECT VERSION FROM SYS.M_DATABASE"

[131520]{-1}[-1/-1] 2013-12-22 22:07:52.438525 e Statement
mvcc_anti_ager.cc(01505) :
 M_MVCC_TABLES HOST = ld9506:34203,
 NUM_VERSIONS = 23,
 MAX_VERSIONS_PER_RECORD = 3,
 MIN_SNAPSHOT_TS = 492205889,
 GLOBAL_TS = 492205889,
 MIN_READ_TID = 1912011,
 NEXT_WRITE_TID = 1918844

Listing 10.10 Index Server Trace File Excerpt for Long-Running Statement Detection

The second line in the trace file message shown in Listing 10.10 refers to another
system view that we already mentioned: M_MVCC_TABLES. Although the alert refers
to a condition that is only valid for row store tables, it will fire for all transactions,
because a transaction can span multiple statements that use both row store and
column store tables.

The information to look out for is the total number of versions kept in the version
memory (NUM_VERSIONS) and the maximum number of records of any versioned

1 Yes, SAP HANA actually provides antiaging features...!
460

Concurrency and Parallelism 10.4
record (MAX_VERSIONS_PER_RECORD). In general, values below 1,000,000 for NUM_
VERSIONS are not of concern.

To get a better understanding of the view’s content, let’s consider an example.
First, let’s copy the CPOINTS table to the row store table RPOINTS, including the
stored data:

create row table rpoints like cpoints with data;

As you can see, the data was copied over to the row store table:

select * from rpoints;

NAME	POINTS
Carol	7.20
Lars	7.10
Louise	4.50
Paul	44.00

Now let’s update two records from the same transaction:

update rpoints set points=12.2
where name ='Paul';
update rpoints set points=4.1
where name ='Lars';

Unlike most other system views, M_MVCC_TABLES presents data in a key-value fash-
ion, which means that for every value there is separate row in the table instead of
a separate column (see Listing 10.11).

select * from m_mvcc_tables;

HOST |PORT |NAME |VALUE
ld9506|34203|NUM_VERSIONS |2
ld9506|34203|NUM_INSERT_VERSION |0
ld9506|34203|NUM_UPDATE_VERSION |2
ld9506|34203|NUM_DELETE_VERSION |0
ld9506|34203|NUM_GROUP_INSERT_VERSION|0

Listing 10.11 Example Output for M_MVCC_TABLES

This is the reason for the slightly more complex SQL statement used to read this
view.
461

Sessions and Transactions10
We have also joined the TABLES system view just for the row that contains the
TABLE ID so that we see for which table the most versions are held (Listing 10.12).

Select
 mv.host, mv.name, mv.value,
 case
 when 'TABLE_ID_OF_MAX_NUM_VERSIONS'= mv.name
 then (select max(schema_name||'.'||table_name)
 from tables
 where table_oid = to_number(mv.value)
)
 else null
 end as table
from
 M_MVCC_TABLES mv
 join M_SERVICES s
 on (mv.host,mv.port) = (s.host, s.port)
where s.service_name ='indexserver'
and mv.name in ('NUM_VERSIONED_RECORDS'
 ,'MAX_VERSION_PER_RECORD'
 ,'AVG_VERSIONS_PER_VERSIONED_RECORD'
 ,'TABLE_ID_OF_MAX_NUM_VERSIONS')
order by mv.host, mv.name;^

HOST |NAME |VALUE |TABLE
ld9506|AVG_VERSIONS_PER_VERSIONED_RECORD|1.0 |NULL
ld9506|NUM_VERSIONED_RECORDS |2 |NULL
ld9506|TABLE_ID_OF_MAX_NUM_VERSIONS |158534|LARS.RPOINTS

Listing 10.12 M_MVCC_TABLES Output with Joined table_name

In the example in Listing 10.12, we see that currently two records have been ver-
sioned and that on average just one version is kept. Note that this view only
shows the current state and does not provide historical information.

MVCC Concurrency in the Column Store

Unlike the row store, in which records are overwritten upon update or delete, the
column store is designed as an insert-only data structure. Every time a change is
made to a record, the new version of the record is stored in the delta store of the
table together with the information for what transaction onwards the new version
462

Concurrency and Parallelism 10.4
is valid. Once this transaction is committed, the record becomes visible for other
sessions and will be used as the most current version. The old versions of the
record, however, are not yet overwritten or deleted; they keep on existing in the
main or the delta store. SAP HANA will remove the outdated records automati-
cally during a delta merge operation. By storing the old record versions in the
same column table data structures, no additional memory monitoring or admin-
istration is required.

To illustrate this, we have the following example, starting with Listing 10.13. Start
by looking at the runtime details of a column store table CBIG. For that table, the
system view M_CS_TABLES provides all the necessary information.

To start off, it is important for this experiment that the table be completely loaded
into memory; otherwise, the MEM_SIZE_TOTAL figure will change in an unexpected
way.

load cbig all;

select MEMORY_SIZE_IN_TOTAL as MEM_SZ_TOTAL
 , RECORD_COUNT as REC_CNT
 , RAW_RECORD_COUNT_IN_MAIN as RAW_RECS_MAIN
 , RAW_RECORD_COUNT_IN_DELTA as RAW_RECS_DELTA
from m_cs_tables
where table_name ='CBIG';

MEM_SZ_TOTAL|REC_CNT |RAW_RECS_MAIN|RAW_RECS_DELTA
3918973946 |50100000|50100000 |0

Listing 10.13 Total and Raw Record Entries for Example Table CBIG

Execute this statement throughout this example to check the data modifications.
Right now, the table is fully merged. All records are stored in the main store, and
the number of current rows (RECORD_COUNT) equals the number of all rows in the
main store (RAW_RECORD_COUNT_IN_MAIN). This means that no rows have been
marked as invalid.

To prevent automerge from kicking in during our experiment, turn it off quickly
for this table:

ALTER TABLE CBIG DISABLE AUTOMERGE;

First, delete some rows and check the table data structure again (Listing 10.14).
463

Sessions and Transactions10
delete from cbig where record in
 (select top 100000 record from cbig order by record);

MEM_SZ_TOTAL|REC_CNT |RAW_RECS_MAIN|RAW_RECS_DELTA
4128578266 |50000000|50100000 |0
 ^^^^^^^^

Listing 10.14 Table CBIG after Deleting 10,000 Records

Notice that there is a change in the number of currently valid records (decreased)
and the total memory size (increased), but the total number of all records remains
unchanged. Also, the delta store does not contain any changed records.

This makes sense, because writing delete records into the delta store would be
wasteful and unnecessary. To mark records in the main store as deleted or invalid,
it is sufficient to change visibility flags for the records in the main store. Although
the main store is otherwise write protected, setting the visibility flags is both pos-
sible and crucial. It is counterintuitive that deleting records could increase the
memory consumption, so it is best to remember that the DELETE command always
only hides the records from transactions.

As a next test, update some records and check the data structure again (Listing
10.15).

update cbig set recordmode ='-' where record in
 (select top 100000 record from cbig order by record);

MEM_SZ_TOTAL|REC_CNT |RAW_RECS_MAIN|RAW_RECS_DELTA
4310429526 |50000000|50100000 |100000
 ^^^^^^

Listing 10.15 Table CBIG after Updating 10,000 Records

Once again, the total memory size increased, but the total number of records and
the number of visible records stayed the same. What changed is the number of
records in the delta store, which now contains the new, valid versions of the
records.

Finally, trigger the merge operation to see if this cleans up the old versions (20,000
records are no longer valid) and whether memory gets released (Listing 10.16).
464

Summary 10.5
merge delta of cbig;

MEM_SZ_TOTAL|REC_CNT |RAW_RECS_MAIN|RAW_RECS_DELTA
3924672171 |50000000|50000000 |0
 ^^^^^^^^^^^^^ ^^^^^^

Listing 10.16 Table CBIG after Performing a Delta Merge

As you can easily see, memory was released, and the total number of records
equals the number of visible records again.

For the sharp-eyed reader: The reason for the now higher memory requirement
than before the start of the experiment is that the compression of the new main
store after the merge is slightly less efficient. By introducing a new value to the
recordmode column, the overall compression for this column decreased. This is
not a bug; it is the direct consequence of the way the column store works. The
table is still compressed.

10.5 Summary

In this chapter, we covered a broad range of topics, all of which are fundamental
for understanding database request processing in SAP HANA. We showed how all
sessions are mapped to SQLExecutor threads (one thread for each logical CPU
core) and how multiversion concurrency works in practice.

We also described how many monitoring and analysis steps can be performed
conveniently via the SAP HANA Studio graphical user interface and that all infor-
mation is available in system views. This makes SAP HANA not just easy to use for
beginners and for day-to-day routine monitoring tasks but it also allows for data
analysis on the raw data for the experts.

Finally, we analyzed memory consumption for multiversion concurrency control
for both row- and column store tables and explained where deleted and changed
record versions are stored.
465

The repository of SAP HANA offers capabilities to store and manage
development artifacts. This chapter describes the SAP HANA repository
and the principles of managing repository content.

11 Working with the Repository

The persistence and lifecycle management of SAP HANA development artifacts—
for example, for data models, stored procedures, or SAP HANA XS—is handled by
the repository. The repository offers functionality such as content organization in
packages, versioning, export and import, or content transport. It is the technical
foundation of the development capabilities of the SAP HANA system.

In this chapter, we will give a technical introduction to the repository itself,
including the package structure, the concept of delivery units, and the reposi-
tory’s persistence in the database. We will then deal with repository contents,
starting with the creation and deletion of objects and touching on object version-
ing and generic techniques for the import and export of objects before describing
SAP HANA’s built-in mechanism for content transports in a system landscape.

11.1 Properties of the SAP HANA Repository

The most obvious characteristic of the SAP HANA repository is that it provides a
hierarchical structure for organizing content. In this section, we will first describe
the options for accessing the SAP HANA repository and then introduce the pack-
age mechanism and define the term repository content. We will then show you
how the repository itself is persisted inside of the SAP HANA database. Finally,
we’ll offer a brief statement about the ownership of repository objects.

11.1.1 Accessing the Repository

For most administrators and developers in SAP HANA systems, the primary tool
to access the repository is SAP HANA Studio, which offers comfortable editors for
467

Working with the Repository11
most common development objects, such as data models, stored procedures, and
more. The functionality in SAP HANA Studio embraces the needs of developers
and in part that of administrators who are also responsible for the development
platform of the SAP HANA system.

With SPS 7, a web-based development IDE was introduced, which offers simple
access to SAP HANA repository objects for developers but lacks features com-
pared to the functionality in SAP HANA Studio. In addition, an application for
managing the lifecycle of SAP HANA content has existed since SAP HANA SPS 6;
it is usually referred to as SAP HANA Application Lifecycle Management (HALM).

Whatever tool you use, there are two privileges needed to access the SAP HANA
repository:

� Execute on the repository stored procedure
The repository’s functionality is exposed in the database through the stored
procedure REPOSITORY_REST in schema SYS. Developers and administrators
require the EXECUTE privilege on this procedure.

� Package privilege REPO.READ on at least one package
In order to see any content in the repository at all, a user will need the package
privilege REPO.READ on at least one repository package (which may be located
anywhere within the package hierarchy).

The SAP HANA XS applications for working with the repository come with pre-
defined roles for developers and administrators. These roles contain the EXECUTE
privilege on the REPOSITORY_REST procedure, but for obvious reasons they might
not contain the package privileges required for your particular development
project.

The actual steps for accessing the repository differ slightly based on the tool being
used. We’ll discuss the specifics of each next.

Accessing the Repository in SAP HANA Studio

In SAP HANA Studio, the repository is integrated into the Systems view (Figure
11.1) as the Content node, shown in 1. You can expand this node to show the
repository tree. Expand individual packages to navigate to the intended location.
The properties of the presently selected package, as shown in 2, are shown in the
generic Properties view, shown in 3, of SAP HANA Studio.
468

Properties of the SAP HANA Repository 11.1
In Figure 11.1, we show the situation as you will find it in the Administration or
Modeler perspective of SAP HANA Studio. When using the Development per-
spective, the workbench also offers the Repositories view, in which you can see
the repository workspaces that you have set up for your development projects.

Figure 11.1 Accessing the Repository in SAP HANA Studio

Accessing the Repository in the Web IDE

The HTML5-based IDE for SAP HANA development can be reached on any SAP
HANA system with the URL http://<host>:<port>/sap/hana/xs/ide/. In this URL,
<host> denotes a host in your SAP HANA system on which the XS server is run-
ning. <port> is the external communication port of the XS server, usually
80<instance> (or 43<instance> for HTTPS).

Within the web IDE, you can click the Editor icon to start the Editor tool (Figure
11.2), which shows the Content tree and an editor area. If you select objects in
the repository, the editor area will either show a generic editor or—for certain
recognized object types, such as stored procedures—an object-specific editor. The

Privilege Information

A user in the SAP HANA database is required to log on to the web IDE. This user must
have one of the roles sap.hana.xs.ide.roles::Developer or sap.hana.xs.ide.
roles::EditorDeveloper that come preinstalled with your SAP HANA system.
469

Working with the Repository11
editor also allows drag and drop to add objects to the selected repository package.
If you have, for example, the text file representation of an SAP HANA data model
on your local computer, then you can drag that file from Windows Explorer into
the Multi-File Drop Zone and release it (which will implicitly attempt to activate
the object; only if this activation is successful will the object be added to the
repository).

Figure 11.2 Editor of the SAP HANA Web IDE

Accessing the Repository with the SAP HANA Application Lifecycle Manager

The third tool to access the repository is the SAP HANA Application Lifecycle
Manager (HALM). The HALM XS application is available via the URL http://
<host>:<port>/sap/hana/xs/lm/ with the definition of <host> and <port> as stated
earlier.

From the Home screen of the application (Figure 11.3), a multitude of actions is
available. The tiles of this screen act as shortcuts to entries from the application
menu at the top of the screen. Of these tiles, the ones marked with 1 in Figure
11.3 are related to managing the repository structure or its contents, whereas the
ones marked with 2 are related to transporting, exporting, or importing contents.
470

Properties of the SAP HANA Repository 11.1
Figure 11.3 SAP HANA Application Lifecycle Manager (HALM)

11.1.2 The Package Structure of the Repository

The package structure of the repository is mainly self-explanatory, so we only
need to highlight a couple of little-known aspects.

Structural Packages

Packages in the repository can be structural or not. A structural package is a pack-
age that can contain only packages and no content objects. When you create a new
package (regardless of the tool used), it will always be created as a nonstructural
package; you will not be given a choice to influence this property in the creation
process (as of SPS 8). Only SAP HANA Studio allows you to change the package to
a structural one, as shown in Figure 11.4; within the Content tree of the Systems

view, select the package and edit its details. You can access the wizard to edit the
471

Working with the Repository11
package details in two ways: Either right-click on the package and choose Edit

from the context menu, or highlight the package and click on the Edit icon in the
properties view (in Figure 11.1, we have labeled this icon as 4).

Back to Figure 11.4, you can immediately see in SAP HANA Studio whether a
package is structural or not from its icon within the Content tree. For example,
the sap and system-local packages, shown in 1, are structural, whereas our
newly created package system-local.public.richard, shown in 2, is nonstruc-
tural. Unfortunately, the web-based tools do not show whether a package is struc-
tural or not.

Figure 11.4 Structural Packages

Structural packages are very useful to manage the repository structure. You can
define a basic organization-wide repository structure based entirely on structural
packages and create further structural packages for development projects. If mem-
bers from the development teams only have write access to their respective
project packages, this is the first step to a well-managed repository.

Delivery Units

Packages in the repository can be assigned to entities called delivery units. A deliv-
ery unit is a logical collector for packages that belong together, for example, for
the purpose of transporting. A package can at any time only belong to one deliv-
ery unit, but one delivery unit may contain multiple packages.
472

Properties of the SAP HANA Repository 11.1
Delivery units are a fundamental principle for controlled export/import of repos-
itory contents, especially for content transports. We therefore postpone a more
elaborate discussion of this topic until Section 11.4.2.

Native and Imported Packages

The SAP HANA repository further differentiates between native and imported
packages. An imported package is one that came into the system by means of a
delivery-unit import. Such imports may be executed manually for server- or cli-
ent-side imports of delivery units, or they may be implicitly executed as part of a
content transport. In any of these cases, packages originating from such an import
are treated as imported. Any other packages in the database are native packages.
They are usually created either manually in SAP HANA Studio or in other tools, or
they originate from a developer-mode import.

A package (whether native or imported) can technically contain a mixture of
native and imported content. Such mixing of imported and natively created
objects is, however, not good practice in our eyes (there may be justifiable excep-
tions).

In the Content tree in SAP HANA Studio, imported packages are marked with a little
blue arrow (for example, in Figure 11.4, see the sap.hana package, shown in 4).

Privileges on Packages

Privileges on packages are discussed in detail in Chapter 13. Here, we only want
to highlight two properties of package privileges that are important for setting up
the package structure in a manageable way:

� Package privileges are recursive
If a user has a package privilege on a given package, then the privilege extends
to all subpackages.

� There are individual privileges for imported and native content
Except for the REPO.READ privilege, all package privileges exist in one flavor for
native and another for imported objects. This makes it possible to have read-
only imported content within a portion of the repository hierarchy that devel-
opers otherwise have write access to.
473

Working with the Repository11
Defining the Package Structure

Before you start a development project, you should carefully design your package
structure, taking into account not only the intended development projects but
also considerations of manageability and security.

SAP recommends that each organization that develops SAP HANA content (typi-
cally referred to as “vendor” in the related documentation) create one package in
the repository root folder with package name <vendor>. Underneath this package,
the vendor may create whatever they like.

In Chapter 14, we give some advice about setting up the development environ-
ment, including the fundamental package structure.

Special Packages

SAP HANA is delivered with two existing packages. The sap package contains all
SAP-provided content, that is, it is the <vendor> package used by SAP. Naturally,
in a development project started at an organization other than SAP, nobody
should be working in the sap package. Developers may, of course, choose to take
a look at some of the applications provided by SAP to derive ideas about structur-
ing an application project in the repository.

The second special and pre-installed package is the system-local package. This
package is supposed to be used for test purposes only, that is, it is a sandbox in
which developers can experiment. The most important special property of the
system-local package is that the package and all of its contents are not transport-
able. It is technically not possible to assign the system-local package or any sub-
package to a delivery unit.

This restriction has been implemented on purpose so that the usually weakly gov-
erned test artifacts cannot be propagated to a production system. The system-
local package is structural, and it comes with two structural subpackages; gener-
ated is intended for automatically generated content and private for sandbox
packages that are dedicated to individual developers or groups of developers. We
propose adding a third structural subpackage named public in which everyone
can work freely without having to request a private test package. Again, see the
discussion in Chapter 14.
474

Properties of the SAP HANA Repository 11.1
11.1.3 Repository Content

Repository content is our umbrella term for any type of object that can be stored in
the packages of the SAP HANA repository. All repository content objects have in
common that they are design-time descriptions (think “source code”) that can be
activated to generate a runtime object in the database catalog.

In the following lists, we group the different types of content objects by usage
area. Some content types are relevant for multiple use cases and will thus be listed
more than once.

� Modeling artifacts
The best known (and oldest) type of repository content, the objects relevant for
data modeling in SAP HANA, include (as of SPS 8):

� Attribute views: These typically represent master data objects in multidi-
mensional data models.

� Analytic views: These represent multidimensional join models similar to
InfoCubes. They usually join multiple attribute views to a fact table in the
so-called data foundation.

� Calculation views: Generic data models that offer the highest modeling flex-
ibility.

� Stored procedures: Subroutines in the database system that can be used in
SQL queries.

� Decision tables: Objects for a special modeling technique that allows you to
represent certain types of logical decision in a data model.

� Analytic privileges: Privileges that define row-based restrictions for reading
from data models (see the detailed discussion in Chapter 13).

� Security artifacts
Several types of security-related objects can be designed as repository objects:

� Repository roles (also known as design-time roles)—the recommended rep-
resentation of database roles unless you are using an identity management
solution supporting SAP HANA (see the discussion in Chapter 13)

� Analytic privileges

� Schemas and other database objects
You can also define typical database catalog objects, such as schemas, tables,
SQL views, sequences, procedures, and more, in the SAP HANA repository.
475

Working with the Repository11
This is a way to create transportable catalog object definitions. For many of
these objects, SAP HANA offers two ways of defining them. One way is to cre-
ate individual development objects for each entity to be created, for example,
an .hdbtable file that defines a database table.

Alternatively, the Core Data Services (CDS) infrastructure that has existed in
SAP HANA since SPS 7 comes with a data definition language (DDL), which
you can use to describe data models, that is, data types, tables, and table asso-
ciations.

For more details about both methods of creating database objects, see the SAP
HANA Developer Guide, which is available at https://help.sap.com/hana_plat-
form/.

� Applications
The most complete use case of the SAP HANA development platform is the cre-
ation of entire applications. The tooling provided for this purpose adds to the
previously mentioned development artifacts an engine to execute server-side
JavaScript code, web-based data access using OData or XMLA, and the creation
of HTLM5 user interfaces with the SAPUI5 development toolkit.

For details on these development tools, see the SAP HANA Developer Guide at
https://help.sap.com/hana_platform/.

In one package, all object types supported by the SAP HANA repository can be
mixed. For the manageability of the development environment, it is of course rec-
ommended that you create a package structure that separates different types of
development artifacts.

11.1.4 The Persistence of the Repository within the Database

The repository itself is stored in tables of the _SYS_REPO schema in the database.
All repository functionality is exposed via a REST API that is implemented by SAP
HANA Studio and the other tools that can access the repository. This API is not
published for use outside of SAP.

Note

By no means should the contents of the _SYS_REPO schema be modified manually, for
example, by using SQL commands to change the contents of the repository tables. With
such actions, there is a risk of creating inconsistencies in the repository or damaging the
repository contents.
476

Creating and Editing Objects in SAP HANA Studio 11.2
This absence of a published API implies that customers cannot presently generate
or manage repository contents programmatically.

11.1.5 Ownership of Repository Objects

The design-time objects created in the repository do not have owners in a strict
sense. The repository tracks the name of the user who modifies a given object
mostly for the purpose of documentation. Design-time objects can be modified by
any database user that has the REPO.EDIT_NATIVE_OBJECTS (or REPO.EDIT_
IMPORTED_OBJECTS) privilege on the package containing the object—regardless of
who created the object.

Upon activation, most repository objects are turned into runtime objects of the
database (exceptions include, for example, server-side JavaScript programs for
SAP HANA XS or SAPUI5 elements). These runtime objects always belong to the
_SYS_REPO user, regardless of which database user triggered the object activa-
tion.

11.2 Creating and Editing Objects in SAP HANA Studio

Data models in SAP HANA can simply be created using the SAP HANA Modeler

perspective. In that perspective, you can right-click on a package in the repository
and choose to create the intended object. This will open the dedicated editor for
the object type you want to create.

All other repository-based development in SAP HANA Studio—XS application,
design-time roles, or other development artifacts—requires the creation of a
development project in the Developer Workbench. In this workbench, you will
work with development projects and repository workspaces. Development
projects allow you to manage your development.

Privilege Information

The prerequisite for creating or editing objects in a given package is the REPO.EDIT_
NATIVE_OBJECTS package privilege on that package or a parent package. In order to
edit objects that have been imported via a delivery unit import or transported into the
system, the package privilege REPO.EDIT_IMPORTED_OBJECTS on the package or a par-
ent package is required.
477

Working with the Repository11
This section focuses on the creation and editing of objects in SAP HANA Studio.
(Repository objects can also be created during an import or a transport; see Sec-
tion 11.4 and Section 11.5 for details.) Because administrators may need to make
use of the Developer Workbench—for example, for creating and managing repos-
itory roles—we will briefly walk you through the process of setting up a develop-
ment project, creating objects, and checking out a project. We will then tell you
what you need to know about concurrent development.

11.2.1 Setting up a Development Project

In order to work with the Developer Workbench, you must create a development
project. This project will be the central place for managing any development arti-
facts of the project. These artifacts will be stored in a local directory of your com-
puter. By sharing the project with a repository workspace, you can commit
objects into the SAP HANA repository.

There are three main steps involved in setting up a development project. We dis-
cuss these next.

Prepare the Repository

You must set up repository packages to work with. For a project, there are two
options: You can either set up the package hierarchy, including the root package
of the project to be created, or you can create the hierarchy up to the parent of the
project’s root package. In the latter case, the system will create a new package
with the name of the project and make it the project root.

Creating Objects with the Web IDE

An alternative to SAP HANA Studio-based development is the web IDE that was intro-
duced with SPS 7 of SAP HANA. The web IDE allows you to edit all types of repository
content without needing to create development projects. It is thus easier to set up and
more welcoming to the occasional developer. At the same time, the editors provided by
the web IDE are not yet equivalent to those in the Developer Workbench. This includes
graphical editors for special objects such as data models, syntax highlighting, auto com-
pletion, and more.

For details on using the web IDE, see the SAP HANA Developer Guide at https://
help.sap.com/hana_platform/. In our view, the web IDE is presently still inferior to the
SAP HANA Studio editors in many aspects, so we will focus our discussion on SAP
HANA Studio-based development.
478

Creating and Editing Objects in SAP HANA Studio 11.2
In our example, we will be creating a project named My_Project. The aim of this
project is to define persistence objects in a package named SAP_PRESS.persis-
tence.lector. Because the name of the project and its root package are not iden-
tical, we have prepared the package hierarchy, including the project’s root pack-
age. Note that this root package must not be structural.

Create the Repository Workspace

Connect your SAP HANA Studio with the database user for your development and
open the Development perspective. Switch to the Repositories tab, as shown in
Figure 11.5, marked with 1.

Figure 11.5 Creating the Repository Workspace

On this tab, click on the Create Repository Workspace button, as shown in 2, to
start a wizard for setting up the workspace. The most important choice here is to
select the correct system entry, as shown in 3 (SAP HANA database system and
database user), for the development project.
479

Working with the Repository11
The choice of Workspace Root directory, as shown in 4, determines the folder
on your local hard drive in which the local copies of development artifacts from
your project will be stored. The suggestion made by SAP HANA (in SPS 8) will be
acceptable in most situations: In the user’s home directory, a new directory
named hana_work will be created, and in this directory there will be a folder of
which the name specifies database system, instance number, and user name:
<SID>_<instance>_<user>.

You can share multiple projects with the same repository workspace, so work-
spaces do not need to have a name.

Creating and Sharing the Project

With your development user, switch to the Project Explorer tab, as shown in Fig-
ure 11.6, marked as 1. On that tab, create a new project by following the menu
path File � New � Other... � SAP HANA � Application Development � XS Project.
Instead of using the main menu, you can right-click on the background, shown in
2, of the Project Explorer view and choose accordingly from the context menu.

This opens a wizard for creating the project. On the first screen of the wizard,
shown in 3, you only need to enter a project name. Remember that depending on
how you choose to set up the repository package structure, the project name may
become part of the repository path name of your application; in the case of an XS
application, this path name will define the application URL. Therefore, choose the
project name wisely, or manually create the project’s root package (this is what
we will do here).

On the second screen of the wizard, shown in 4, you have to choose the reposi-
tory workspace to connect to. In case you have multiple workspaces defined in
your instance of SAP HANA Studio, it is important to select the right workspace.

If you have already manually created the root package for the project, uncheck the
Add Project Folder as Subpackage checkbox, as shown in 5.

Finally, you can choose the repository package that will contain the project or (as
in our case) the project contents. After you click the Finish button, the project will
be created locally on your hard disk and immediately shared with the repository.
The automatically generated initial project files are thus automatically transferred
to the SAP HANA repository.
480

Creating and Editing Objects in SAP HANA Studio 11.2
Figure 11.6 Creating and Sharing the Project

After the project is shared, you can see these newly created repository objects in
your Repository Workspace (Figure 11.7, left-hand side, shown in 1). These
objects are not displayed in the Content tree of the Systems view, shown in 2.
The reason is that the Systems view by default only shows objects that can be
edited outside of development projects, that is, modeler objects.

Figure 11.7 Objects Shown in the Workspace but Not in the Systems View
481

Working with the Repository11
You can switch on the display of those hidden objects in the SAP HANA Studio pref-
erences: Follow the menu path Window � Preferences � SAP HANA � Modeler �

Content Presentation, and select the checkbox Show all objects. From now on,
you will see entries for nonmodeler objects in the repository representation of the
Systems view, but you will not be able to open, edit, activate, or remove such
objects from here.

11.2.2 Creating Objects in the Developer Workbench

We will show the general workflow of creating repository objects through the
Developer Workbench by using the example of the most simple development
object: a database schema.

Create the Empty Object File

To create an object in the Developer Workbench, switch to the Project Explorer

view and choose from the menu or context menu the path New � Other.... In the
wizard that opens (Figure 11.8), you must in the first step, shown in 1, choose the
type of object to create. If you know the type name, you can search for it in the
input field Wizards, shown in 2. In the second step, shown in 3, you have to
enter the file name. In most cases, the file name must be the same as the object
name, including capitalization. The wizard adds the correct file extension auto-
matically. In our case, the extension is .hdbschema.

Figure 11.8 Creating the Object File
482

Creating and Editing Objects in SAP HANA Studio 11.2
Implement the Object

Once the object file is created, we have to fill it with content. The details of this
process will depend on the type of object to be created. In the case of our database
schema, a simple text editor is opened (right-hand side of Figure 11.9) in which
we have to enter the name of the schema to be created; remember that the schema
name must exactly match the file name of the .hdbschema file.

You have now created and activated a repository object. In the Systems view, you
can verify that in fact a runtime object has been created during the activation.

You can save the object using the Save button in SAP HANA Studio or by typing
the key combination (Ctrl) + (S). This will store the object locally on your hard
drive and (in the default configuration of SAP HANA Studio) also commit it to the
repository.

Figure 11.9 Editing and Activating the Object
483

Working with the Repository11
Activate the Object

To create the corresponding runtime object, you have to activate the object. Right-
click on the object, and choose Team � Activate from the context menu.

11.2.3 Checking Out a Project

If multiple database users need to work on the same project or if contents of a
transported project must be edited in the target system of a transport, then the
project must be checked out from the repository. To check out the project, you
must first create a development workspace for the database user.

In the newly created development workspace, navigate to the package containing
the project (Figure 11.10, left-hand side, shown in 1), and select Check Out and

Import Projects..., shown in 2, from the context menu. In the wizard, shown in
3, select the project to check out, as shown in 4 (the selected package hierarchy
may contain multiple projects).

The project has now been successfully checked out, and you can start working
with its contents in the Project Explorer view of the Developer Workbench.

Note

If you reproduce our example, you may find that the newly created database schema is
not visible to your database user, because SAP HANA Studio will usually only show
those schemas that your database user has object privileges for.

To disable this implicit filtering, right-click on the Catalog node in the Systems view and
choose Filters... from the context menu. In the pop-up box, select the checkbox Display

all Schemas and click OK.

Note

A project can only exist once in an SAP HANA Studio workspace (not to be confused
with a repository workspace). Therefore, a project cannot be created and checked out in
the same instance of SAP HANA Studio.

If the same person needs to work on a project of the same name in multiple systems
(e.g., source and target of a transport landscape), then this person will have to set up an
additional SAP HANA Studio workspace for importing the project.
484

Creating and Editing Objects in SAP HANA Studio 11.2
Figure 11.10 Importing a Project

11.2.4 Concurrent Development

When you check out development objects from the repository into your Devel-
oper Workbench or start editing an object in the SAP HANA modeler or the web
IDE, these objects are not locked. This means that multiple database users may
concurrently edit the same repository object.

Whenever a user saves a modified version of an object to the repository, the sys-
tem checks whether the present version in the repository is identical to the one
that the user checked out or started editing. If the version in the repository has
been changed in the meantime, the user will be presented with a warning and
asked to manage the situation actively.

The development tools offer version comparison and support for merging
changes, as shown in Figure 11.11 for the example of SAP HANA Studio’s Devel-
oper Workbench. In SAP HANA Studio, this tool is available via the context menu
of the object being modified: Team � Merge Tool. You can also see all past ver-
sions in the object history, which you can access from the context menu of the
object: Compare With... � Local History.
485

Working with the Repository11
Figure 11.11 Merge Tool in the Developer Workbench

In the web IDE, you can view version history and compare versions by selecting
the Versions entry from the context menu of the object.

11.3 Deleting Development Objects in SAP HANA Studio

The most important rule about deleting development artifacts is that they must
always be deleted from the repository. This deletion will also trigger the deletion
of the corresponding runtime objects that have been created when the develop-
ment object was activated. If you simply delete the runtime object, its design-time
representation will remain in the repository so that the next activation will create
the runtime object again.

We have to differentiate two different ways of deleting objects: from the Systems

view and from a development project. We discuss these next.

Deleting Objects in the Web IDE

It is also possible to delete objects in the web IDE. As opposed to the Systems view in
SAP HANA Studio, the web IDE does not check for object dependencies. You can thus
delete objects even if they are used within other objects without receiving a warning.

If there are existing dependencies, the object may still show up after deletion in the
repository tree of the web IDE. In such cases, you will have to activate the containing
package in the Systems view of SAP HANA Studio to clean up the situation.

In addition, the web IDE allows the recursive deletion of packages, including all of their
contents.
486

Deleting Development Objects in SAP HANA Studio 11.3
11.3.1 Deleting Objects from the Systems View in SAP HANA Studio

Data modelers will most probably not be using the Developer Workbench; they will
most likely manage their development objects directly in the Systems view of SAP
HANA Studio.

You can only delete an object from the repository if there are no other objects
depending on it (using it). If you attempt to remove an object that is being used by
other objects, then the deletion will fail, and a notification will be shown in the Job

Log of SAP HANA Studio.

For any object, you can open the Where-Used list from the context menu of that
object.

You can delete multiple objects by marking them all with the mouse (hold down the
(Ctrl) key while selecting the individual objects).

It is not possible to delete entire packages if they still contain objects or subpackages.

11.3.2 Deleting Objects from a Development Project

If an object is part of a development project, then the leading entity for all related
development is the project. You therefore also must delete the object from the
Project Explorer. If you delete the object here, it will only be removed from the
project—and thus also from your local file system—but it will remain in the repos-
itory, and the runtime object will continue to exist in the database catalog.

The development workbench does not execute a dependency check; if the object
you delete is used by other repository objects, you will not be warned about this.

In order to complete the deletion, you must now activate a parent container of the
object. This might be a containing folder within your project or the project itself.
After this deletion, all object representations will be deleted from your local file
system, the database repository, and the database catalog.

If the parent container that you activate in this step contains objects that depend on
the deleted object, you will receive related error messages in the activation process.

Given the behavior of the web IDE, we must advise you to be very careful when using it.
If you are certain that a given mass deletion is required, then the web IDE is easier to use
than the SAP HANA Studio deletion mechanisms.
487

Working with the Repository11
11.4 Mechanisms for Exporting and Importing Objects

SAP HANA offers two fundamentally different mechanisms for exporting and
importing repository contents. Developer-mode exports are not well controlled.
In fact, they simply require the same privileges that are needed to perform typical
development tasks in a given repository package, and thus they may be regarded
as yet another option for locally creating content objects.

Delivery-unit exports, on the other hand, are the technical foundation for content
transports within a system landscape and content provisioning from external ven-
dors, such as SAP.

11.4.1 Developer-Mode Export and Import

Any developer who has at least the privileges needed to read the contents of a
given repository package can export these contents into a directory structure on
their client computer. Similarly, the import is available to all database users who
have the privileges needed to create and activate the repository objects contained
in the import.

Figure 11.12 Choosing Objects and the Target Folder for Developer-Mode Export
488

Mechanisms for Exporting and Importing Objects 11.4
Developer-mode export is available from the SAP HANA Studio menu path File �

Export � SAP HANA Content � Developer Mode. In the wizard, select the system
and database user to export from, and then choose the objects to export. Here,
you can select individual objects or entire packages (Figure 11.12). You must also
specify a file system location as the target for the export. Within the selected
folder, a directory hierarchy will be created that reflects the package hierarchy for
all repository objects to be exported. Once you click Finish, the export will be
started. The outcome can be monitored in the Job Log of SAP HANA Studio.

Developer-mode imports work the same way as exports.

11.4.2 Delivery-Unit Export and Import

Delivery-unit exports are the method of choice for any kind of export that needs
to happen in a controlled way, and it may be performed by an administrator as
opposed to a developer.

A standard manual delivery-unit export will contain all objects in those packages
that are assigned to the delivery unit. It is also technically possible to only include
those objects that have been changed since a given time stamp; for most practical
use cases, however, this option does not seem useful.

Exporting Delivery Units

You can create delivery unit exports in the following way:

1. Create a delivery unit
Delivery units can be managed in two places: either in the Quick Launch window
of the Modeler perspective in SAP HANA Studio or in the HALM application.

In SAP HANA Studio, the Quick Launch window opens automatically when
you switch to the Modeler perspective. Alternatively, while using the Mod-

eler perspective you can open this window from the menu path Help � Quick

Launch. In this window, you must first make sure to work with the correct

Privilege Information

You need system privilege REPO.MAINTAIN_DELIVERY_UNITS in order to manage deliv-
ery units.
489

Working with the Repository11
user in the right system. Click the Select System... button to choose the system
and user to work with.

Once the correct connection is chosen, you can click on the Delivery Units...

link of the Quick Launch window to open a wizard in which you can create
delivery units.

In the HALM application, you can find an entry to manage delivery units
directly on the home screen.

Finally, the hdbalm program that is part of the client package for all operating
systems contains functionality to create and manage (but not to deploy) deliv-
ery units.

2. Assign packages to the delivery unit
The wizards for creating and managing delivery units (either in Quick Launch

or in HALM) also offer functionality to add packages to the delivery units.

Alternatively, you can edit packages in the Systems view of SAP HANA Studio,
and choose the delivery unit for the package from a dropdown menu.

3. Export the delivery unit
In SAP HANA Studio, follow the menu path File � Export � SAP HANA Content �

Delivery Unit.

In the HALM application, delivery-unit exports can be reached via the Import

button of the home screen or the Upload/Download menu entry.

The entries to be made in both wizards are self-explanatory.

The result of a delivery-unit export is a single Linux TAR archive compressed with
the gzip command, that is, a TGZ file. If you choose a server-side export, the file
will be located in the file system path /hana/shared/<SID>/HDB<instance>/backup.

Importing Delivery Units

Delivery units can be imported by using the corresponding import wizards in SAP
HANA Studio. Alternatively, if a delivery unit is located on the file system of the

Note

Delivery units can only be created if the [repository] � content_vendor parameter of
file indexserver.ini is set.
490

Change Recording and Transports 11.5
SAP HANA server, then there is a command-line tool to load the delivery unit into
the database.

This tool is named hdbudrep and is located in the file system path /hana/shared/
<SID>/global/hdb/install/bin. This tool is documented as part of the SAP HANA
LCM Tools Reference Guide on https://help.sap.com/hana_platform/. You can also
get usage hints by starting the tool with the option --help. The syntax for using
the tool for the import of a given delivery unit is shown in Listing 11.1.

Create a user store entry named RICHARD for database user
RICHARD—so that the password does not need to be specified
in the call to hdbupdrep
hdbuserstore -i SET <host>:3<instance>15 RICHARD
As <sid>adm user, change to the location of the hdbupdrep
tool:
cd /hana/shared/<SID>/global/hdb/install/bin
Run the tool, specifying a delivery unit "/tmp/du.tgz" and
using the database user RICHARD
./hdbupdrep --delivery_unit=/tmp/du.tgz
 --user_store_key=RICHARD --system_user=RICHARD

Listing 11.1 Loading a Delivery Unit with the hdbupdrep Program

11.5 Change Recording and Transports

If you have a system landscape consisting of a development system, a production
system, and typically one or more tiers in the middle for testing, quality assur-

Privilege Information

The database user provided to the hdbupdrep program needs three privileges: system
privilege REPO.IMPORT; object privilege EXECUTE on procedure SYS.REPOSITORY_REST;
and object privilege SELECT on table _SYS_REPO.DELIVERY_UNITS.

Support Mode Transports

A special type of transport is the support mode transport. This is a transport of an indi-
vidual content object—for example, a data model—with all content and catalog objects
it depends on. It is particularly useful for support incidents related to a content object.
Behind the scenes, the content objects are transported like a delivery-unit export, and
the catalog objects are transported as a binary export (see Chapter 9).
491

Working with the Repository11
ance, or other purposes, then you will need a way to safely propagate content
through this system landscape.

SAP offers three different methods of managing SAP HANA content:

� If SAP HANA content is closely coupled to ABAP developments in an SAP
NetWeaver system, you can encapsulate a delivery unit inside of a regular CTS
transport. This mechanism is called SAP HANA Transport Container (HTC), and
more information is available at https://scn.sap.com/docs/DOC-43035 (“How to
Transport ABAP for SAP HANA Applications with HTC”).

� If you are already using the Extended Change and Transport System (CTS+) for
transports of non-ABAP content, then you can easily integrate SAP HANA con-
tent transports into your CTS+ setup, as described in https://scn.sap.com/docs/
DOC-8576 (“Resources on CTS+”) in the section titled “SAP HANA.”

� For all others, there is also a native transport application shipped with any SAP
HANA system, starting with SPS 6 of the database. This XS application is SAP
HANA Application Lifecycle Manager (HALM), and it can be reached at the URL
http://<host>:<port>/sap/hana/xs/lm/.

In the following sections, we will only discuss the HALM application. The HALM
transports (as well as CTS+ transports of SAP HANA content) can be used in two
fundamentally different modes: You can either transport entire delivery units
with each transport—that is, in a transport the active version of all objects within
the delivery unit will be transported—or you can enable change recording and
only transport released changes.

In the following, we will first describe how to enable change recording, before
giving a brief introduction to setting up transports of either mode in the HALM
application.

11.5.1 Change Recording

Content transports that are based on delivery units will always transport the
entire delivery unit. In many cases, this will be inappropriate. Imagine, for exam-
ple, a situation in which one object in a given package is finished and ready for
transport. A second object within the same package has been modified since the
last transport, but current testing shows that these modifications have in fact bro-
ken the object’s functionality. Because of some emergency, you now must trans-
port the first object into the production system. A full delivery-unit transport will
492

Change Recording and Transports 11.5
also transport the current development version of the second object into your
production system.

Problems like these can be avoided with change recording. This feature provides
the following functionality:

� Objects can be attached to a logical entity called change.

� The first time an object is activated following a transport involving this object,
the object must be attached to a new change.

� Objects within the same package do not need to be attached to the same
change.

� Objects can be moved from one change to another.

� If change recording is enabled in a system, the only transportable entities are
changes; delivery unit transports are no longer available.

� Individual objects can be transported by attaching them to a dedicated change.

� A change must be explicitly released before it can be transported.

� A change can only be released after all contributing developers have approved
their respective contributions.

� If required, a developer may approve foreign contributions—for example, if
another contributor is presently not available to approve their contributions.

Change recording is a system-wide setting; it is either enabled for all development
activities or for none.

11.5.2 Transporting with the SAP HANA Application Lifecycle Manager

The HALM application offers an easy-to-use yet powerful transport mechanism.
On a high level, the following steps are required in order to set up transports
between a source and a target system:

� Prepare a transport user on the source system. This user must have the prede-
livered role sap.hana.xs.lm.roles::Transport.

Privilege Information

The system privileges REPO.MODIFY_CHANGE, REPO.MODIFY_OWN_CONTRIBUTION, and
REPO.MODIFY_FOREIGN_CONTRIBUTION are related to change management.
493

Working with the Repository11
� Prepare a transport management user on the target system. This user must have
the predelivered role sap.hana.xs.lm.roles::Administrator.

� You may define a less privileged user to execute the actual transports. Again,
this user must be set up on the target system and needs the privileges from the
role sap.hana.xs.lm.roles::ExecuteTransport.

� Start the HALM application on the target system—http://<host>:<port>/sap/
hana/xs/lm/—and log on with the transport management user.

� In the application menu, navigate to Transport � System. Here, you can create
an HTTP destination to the source system. This destination will use the trans-
port user on the source system to assemble and provide the transport content.

� Once the destination is set up, go to the Transport � Transports menu entry.
Create a new transport route. A transport route connects the HTTP destination
with one or several delivery units of the source system. In addition, the trans-
port route contains a definition of the type of transport. In general, the options
Full for full delivery-unit exports and Change for transporting of changes are
available.

� At this point, you have set up one complete transport route that can from now
on be used to transport the content objects within the delivery units (or the
changes associated with those delivery units).

Even with change recording, packages must be assigned to delivery units, and
transport routes must be tied to delivery units, so for a given transport route only
those changes will be offered for transport that contain objects of the delivery
unit.

For full details on managing change recording and transports, see the SAP HANA
Developer Guide available at https://help.sap.com/hana_platform/.

11.6 Summary

The repository in SAP HANA offers the technical foundation for managing devel-
opment artifacts. Even though this book is not about developing in SAP HANA,
administrators must have a basic understanding of the related principles, because
they will be confronted with database developers and development objects in the
course of their work.
494

Summary 11.6
We introduced the three most common tools for accessing the repository:

� SAP HANA Studio, which offers two modes of working with the repository: the
Modeler perspective, which allows you to work directly in the Content node
of the Systems view; and the Development Workbench, which features a
project-based approach

� The SAP HANA Application Lifecycle Manager (HALM), which offers managing
capabilities, most notably a transport functionality

� The web IDE, which gives quick access to all types of content objects in the
repository

You should now also understand how the repository is organized with packages
and delivery units. Most importantly, you should have an idea of why it is impor-
tant to define an appropriate package structure in your development system and
what such a structure might look like.

We also spent some time on creating, editing, and deleting objects in the reposi-
tory with SAP HANA Studio.

You will need to get content out of a system and into a system—either as a single
export or as a transport for regular content shipments. In the last two sections of
this chapter, we introduced the capabilities offered by SAP HANA for exporting
and transporting development artifacts.
495

The SAP HANA database has its own mechanisms for managing security
in the areas of authentication, user management, object ownership, and
audit logging. When setting up the security concept for an SAP HANA-
based project, an understanding of the specifics in these areas is essential.

12 User Management and Security

The contents of their database systems are typically among corporations’ most
valuable assets, and one of the key features of a database system is to secure this
data. This requires administrators to take responsibility for three dimensions of
the database:

� Proper authentication and authorization for database users

� Auditing actions and events happening in the database

� Securing the infrastructure of the database system, that is, the operating system
of the database server and especially the network interfaces of the server

In this chapter, we will give you more than just an introduction to all these aspects
of database security. We will explain the main concepts behind security in an SAP
HANA system and then give examples of how to perform the administration tasks
related to these concepts. The topic of authorizations, with discussions of roles
and privileges, will be addressed in Chapter 13.

Note

The terms user and account are often used synonymously in the SAP HANA database and
related product documentation. At the time of writing of this book, database user and
database account cannot be separated in the SAP HANA database.

In SAP HANA’s SQL syntax as well as the corresponding elements of the administration
tools, SAP has chosen the term user. We will therefore always employ the term user
when referring to database users or accounts. That is to say, in this book the user has a
name, a password (or other credentials), privileges, and roles, and the user also owns
objects.
497

User Management and Security12
12.1 Essential Security-Related Concepts

Before we dive into any details, we want to make you aware—on a high level—of
two essential concepts in SAP HANA: catalog object ownership and stored proce-
dures. Understanding these concepts will make it much easier for you to follow all
the intricacies we are going to throw your way in the following sections.

12.1.1 Object Ownership

Strictly speaking, we are talking about catalog objects here (tables, views, stored
procedures, etc.). Such objects in an SAP HANA database are always owned by
their creator. There is no ownership relationship between a catalog object and the
schema it is located in.

There are a few basic additional object ownership rules you should understand:

� Users can—assuming they have the necessary privileges—create catalog objects
in database schemas owned by other users.

� Users can own multiple schemas; a schema does not necessarily belong to a data-
base user of the same name. (If, however, a database schema and owner with
identical names exist, the schema belongs to the database user. If schema <x>
already exists and is owned by user <y>, it is not possible to create user <x>.)

� Objects cannot exist without an owner, and it is not possible to change object
ownership.

� Any catalog object created through the activation of a development artifact in
SAP HANA’s repository is owned by the _SYS_REPO user.

12.1.2 Stored Procedures in Definer Mode

A stored procedure in an SAP HANA database can be created in so-called definer
mode. In this case, there will be an implicit change of user context when a proce-
dure is executed. Regardless of who calls the procedure, the code within the pro-
cedure body will be executed by and with the rights of the user that created the
procedure.

12.2 Database Users

End users can interact with SAP HANA in multiple ways and for multiple pur-
poses. The purposes span widely from database administration, through develop-
498

Database Users 12.2
ment in the database or modification of the contents of the database, to informa-
tion retrieval. The means of interaction includes direct entering of SQL statements
in an SQL editor, interaction through client tools, execution of custom-developed
programs, or access through application servers. Any such interaction happens in
the context of a database user and is limited by the privileges granted to the user.

In order to establish a database session, one must authenticate with the database,
that is, one must specify valid database credentials. These credentials identify the
database username and a means of verification, such as a password or the token
of an external user repository.

In this section, we’ll explain the basic tasks an administrator will have to perform
with respect to database users: creating, modifying, deactivating and locking (or
undoing deactivating and locking), and dropping. We’ll then introduce you to two
specific categories of users: built-in users and restricted users.

12.2.1 Creating Database Users

There are several ways in which you can create users in an SAP HANA database.
For creating a small number of individual users, SAP HANA Studio is typically the
tool of choice. For creating larger numbers of users following very simple rules,
direct creation via SQL syntax is a good option (e.g., for preparing participant
accounts for a classroom exercise, for which all accounts have the same password
and the same set of privileges).

For more complex user management, integration into corporation-wide user-
management processes is necessary. Such integration may be easy, if identity
management software is used that either supports the SAP HANA database or that
can easily be extended to include functionality for the SAP HANA database; or it
can require significant development effort.

When creating a user in the SAP HANA database, you must specify at least one
mechanism for authentication (see Section 12.3). For simplicity, our examples
will be using name/password authentication.

In the following sections, we are going to demonstrate how to create users with
SQL statements and in SAP HANA Studio.

Privilege Information

Database users in an SAP HANA database can only be created by users that have the
USER ADMIN system privilege.
499

User Management and Security12
SQL Syntax for Creating Users

In our experience, the SQL syntax for creating and managing database users is
more frequently used than the graphical user interface in SAP HANA Studio.
There are multiple reasons, partly to do with the ability to automate user-manage-
ment tasks.

Therefore, we first introduce the CREATE USER statement. When creating a user,
there are two mandatory attributes that need to be provided: the username and a
means of authentication. However, the CREATE USER SQL statement also offers
multiple other optional arguments, as listed in Table 12.1.

Parameter Usage

Username Name of the database user to be created. Input is converted to all
uppercase characters.

Means of authentica-
tion

This has to be at least one of the following:

� Password (for name/password authentication), following the
password policy defined in the system

� Kerberos Principle Name (for delegated Kerberos ticket authen-
tication)

� Mapped user name for a given SAML provider

� Subject distinguished name for X.509 authentication

Validity specification To create users with a limited validity span. The user will not be able
to log on (but not be removed) outside of the validity range.

Restriction: The beginning of the validity period must be a time
stamp in the future, i.e., at least 1 second after the execution of the
CREATE USER statement.

It is possible to create the validity period as an open interval:

� Only FROM clause: User is valid from begin date and never
expires.

� Only UNTIL clause: User is valid from time of creation until spec-
ified end date.

Additional user
parameters

Add metadata to the account. The following user parameters exist:

� CLIENT: Specify the SAP client for implicit filtering in queries
against activated data models that include the SAP client field.
In order for this filter to be active, the CLIENT parameter of the
data model needs to be set to dynamic. See the SAP HANA
Modeling Guide for details.

Table 12.1 Parameters for the CREATE USER Command
500

Database Users 12.2
In Listing 12.1, we create a user named “RICHARD_III” with name password
authentication valid throughout the year 2015 and the setting parameters CLIENT
and EMAIL ADDRESS.

CREATE USER RICHARD_III
 password Mickey1928
 VALID FROM '2015-01-01 00:00:00' UNTIL '2015-12-31 23:59:59'
 SET PARAMETER CLIENT='800',
 EMAIL ADDRESS='richard3@dead_kings.gov'

Listing 12.1 Example CREATE USER Statement

Starting January 1, 2015, one can log on to this SAP HANA database with the
newly created user RICHARD_III. The initial password that was given by the
administrator may or may not need to be changed on first logon, depending on
the system’s password policy settings (see Section 12.3.1).

Creating Users in SAP HANA Studio

SAP HANA Studio offers an editor to create and modify database users. The editor
can be accessed from the SAP HANA Systems view in the Administration, Mod-

eling, and Development perspectives (in some perspectives, this view is simply
called Systems). The steps in this process are as follows:

� LOCALE: Specify the default locale for the user. The locale setting
can be used by applications in or on SAP HANA.

� TIME ZONE: The time zone of the user; not used within the data-
base but may be used by applications.

� EMAIL ADDRESS: Like TIME ZONE, this is offered to applications as
metadata information. In the future, EMAIL ADDRESS might be
used for authentication, and thus the system accepts only
unique values.

Note

In SAP HANA SPS 8, so-called restricted users have been introduced (see Section
12.2.6). These users can be created with the CREATE RESTRICTED USER command,
which otherwise has the same syntax as the CREATE USER command.

Parameter Usage

Table 12.1 Parameters for the CREATE USER Command (Cont.)
501

User Management and Security12
1. In the navigator, identify the system/user combination of your database user
for user administration. In our example, this user is named “USER_ADMIN”.

2. Expand the navigator tree to reach the location Security � Users, and right-click
the Users folder. Select New User from the context menu (Figure 12.1).

Figure 12.1 Creating a New User in SAP HANA Studio

The User Editor of SAP HANA Studio (Figure 12.2) offers input fields for the
username, all authentication options, and the CLIENT user parameter. There are
no screen elements to set other user parameters. If these extended properties
must be set, use the SQL syntax.

3. Enter username and specify authentication details, for example, the initial pass-
word of the user. Then, click the green Deploy arrow, as shown in 2, or the
Save button, as shown in 1, or press either the (F8) key or the key combination
(Ctrl) + (S), or use the menu path File � Save.

Starting with SPS 8, one can mark the user as Restricted User, as shown in 3,
which means that the user will be created without the PUBLIC role and will thus
have no privileges assigned to it initially. It can be interesting to work with
restricted users if system security plays a particularly important role; see the dis-
cussion in Section 12.2.6.

Once you have successfully created the new user, it is listed under Security � Users

in the SAP HANA Systems view. The newly created user might only appear after
refreshing the Security � Users folder.

Right-click

Choose
NEWUSER
502

Database Users 12.2
Figure 12.2 The User Editor in SAP HANA Studio

12.2.2 Modifying Database Users

SAP HANA allows you to modify database users in many different aspects, as
listed in Table 12.2. Of the possible user modifications, all except for the granting
and revoking of roles and privileges are technically handled with the ALTER USER
statement. The User Editor in SAP HANA Studio offers functionality for a subset
of the options of the ALTER USER statement—see Table 12.2—and it offers func-
tionality for granting and revoking roles and privileges.

As can be seen from the column “Alter Self?” in Table 12.2, users cannot modify
themselves in critical aspects, with the exception of granting and revoking privi-
leges—and these risks can easily be mitigated through the creation of a few simple
stored procedures (see discussion in Section 14.3.2 of Chapter 14).

Task In Studio? SQL Syntax Alter Self?

Change password Yes ALTER USER <name> PASSWORD <pass-
word>

Yes

Force password
change

No ALTER USER <name> FORCE PASSWORD
CHANGE

No

Table 12.2 The Different Reasons to Modify a User
503

User Management and Security12
12.2.3 Deactivating and Locking Users

In SAP HANA, users can be deactivated or locked. If a user is locked or deacti-
vated, that user will not be able to establish new database sessions. Existing ses-
sions with this user will, however, not be affected.

Exempt user from
password lifetime rule

No ALTER USER <name> DISABLE PASS-
WORD LIFETIME

No

Change authentica-
tion options

Yes Variants of the ALTER USER and other
statements; see Section 12.3

No

Change validity date
range

Yes ALTER USER <name> VALID FROM
'<timestamp>' TO '<timestamp>'

No

Change user para-
meter CLIENT

Yes ALTER USER <name> SET PARAMETER
CLIENT='<client>'

No

Change other user
parameters

No ALTER USER <name> SET PARAMETER
<parameter_name>='<value>'

Yes

Deactivate Yes ALTER USER <name> DEACTIVATE
[USER NOW]

No

Activate Yes ALTER USER <name> ACTIVATE [USER
NOW]

No

Unlock (reset connect
attempts)

Yes ALTER USER <name> RESET CONNECT
ATTEMPTS

No

Remove history of
connect attempts

No ALTER USER <name> DROP CONNECT
ATTEMPTS

No

Grant role or privilege Yes SQL GRANT statement or appropriate
stored procedure call

Partially

Revoke role or
privilege

Yes SQL REVOKE statement or appropriate
stored procedure call

Partially

Privilege Information

All user modifications that can be triggered with an ALTER USER statement require the
issuer of the statement to hold the USER ADMIN system privilege.

For database users to modify themselves (e.g., to change an initial password), the USER
ADMIN system privilege is not required.

Task In Studio? SQL Syntax Alter Self?

Table 12.2 The Different Reasons to Modify a User (Cont.)
504

Database Users 12.2
The reasons for deactivation or locking are as follows:

� Deliberately deactivating a user
A database administrator with the USER ADMIN system privilege can deactivate a
user.

� In SQL, the command ALTER USER <user_name> DEACTIVATE will deactivate
the named user.

� In the User Editor of SAP HANA Studio, the user can be deactivated by click-
ing the Deactivate User... button in the top-right corner of the editor, as
shown in Figure 12.3.

� SAP provides helper procedures to deactivate all users in the database sys-
tem (except for administrators identified by certain system privileges or
users from a white list). These procedures are delivered and documented in
SAP Note 1986645.

� Automatic locking because of too many failed connect attempts
If someone has tried too many times consecutively to logon with the wrong
credentials for a given user, this user will be locked (for details of the configu-
ration, see Section 12.3.1).

� User is outside of its validity specification
Starting with SPS 6 of SAP HANA, users can be created with limited temporal
validity. Outside of this validity range, a user will not be able to establish new
database sessions. The validity range can be defined and changed in the User
Editor of SAP HANA Studio or via the CREATE USER or ALTER USER commands.

In most cases, it requires administrator action to unlock or reactivate a database
user. A user that has been deliberately deactivated can only be reactivated by a
database admin with the USER ADMIN system privilege, and there the admin has
two choices:

� Reactivate the user
In SQL, use the syntax ALTER USER ACTIVATE <user_name>. Or, in the User Editor
of SAP HANA Studio use the button that has now turned into Activate User...,
also depicted in Figure 12.3.

� Set a new password
This option is appropriate for users with authentication method name/pass-
word. This is also possible if multiple authentication methods are enabled for
the user, as long as name/password is among them.
505

User Management and Security12
Users that have been locked automatically because of too many invalid connect
attempts are automatically unlocked after the configurable lock period (which
may be indefinite). Users that are outside of their validity period can only be acti-
vated by modifying their validity period appropriately.

Figure 12.3 Deactivating (Top) and Reactivating (Bottom) a User in SAP HANA Studio

12.2.4 Dropping Database Users

One of the most powerful and most critical actions in an SAP HANA database is
the dropping (deletion) of database users.

The criticality lies in the side effects of dropping users. These side effects are
related to object ownership and to the transitivity in the behavior of granting user
privileges. Before demonstrating the dropping of database users in SAP HANA,
we first give an example of the mentioned side effects.

Object ownership is discussed in detail in Chapter 7 and the dependencies for
privilege granting are discussed in Chapter 13.
506

Database Users 12.2
When you drop a database user, all objects owned by the user must be dropped
as well. The database verifies whether or not the user to be dropped owns data-
base objects. If there are objects owned by the user, one must drop the user with
the cascade option, thus explicitly approving the removal of these objects.

The less obvious side effect relates to privileges granted by the user being
dropped. We will illustrate both side effects with a simple example, starting with
the transitive behavior of granting.

Let us assume that there are three users, A, B, and C, and two catalog roles, R1 and
R2. Initially, A has permission to grant both roles to other users. Then, the grant
actions listed in Table 12.3 occur.

The situation can be easily understood from the result of a query against the sys-
tem view PUBLIC.GRANTED_ROLES, which shows role assignments, including
grantor information; see Figure 12.4.

Figure 12.4 Example: Result of a Query against PUBLIC.GRANTED_ROLES

Privilege Information

Any database user holding the USER ADMIN system privilege may drop database users.

Grantor SQL Statement Comment

A GRANT R1 TO B A grants role R1 to user B.

A GRANT R2 to B WITH ADMIN OPTION A grants role R2 to user B, allowing B to
grant the role to others.

B GRANT R2 to C B grants R2 to C.

Table 12.3 Example: Granting of Roles with ADMIN OPTION
507

User Management and Security12
Now we drop user A. In our example, A was explicitly created as a user that does
not own any objects in the database system; hence, we can simply drop the user.

Rerunning the same query against the PUBLIC.GRANTED_ROLES view shows that
roles R1 and R2 have been revoked from users B and C.

The reason for this behavior is that user B only was assigned to those roles because
user A had granted them. With user A removed from the system, the authority
that gave roles R1 and R2 to user B does not exist anymore. SAP HANA reacts to
this situation by revoking the role from user B, and with the same logic also from
user C.

As with creating database users, there are two ways to drop them: via SQL and via
SAP HANA Studio. We discuss both options next.

SQL Syntax for Dropping Users

Users can be dropped with the DROP USER SQL statement. The statement accepts an
option that can either be RESTRICTED or CASCADE, defaulting to RESTRICTED. This
default is the safe way of deleting users, as it will result in an error message if the
user owns database objects that would be dropped together with the user.

For illustration, we will extend the previous example involving users A, B, and C
a little further with the actions listed in Table 12.4.

Note

In our example, catalog roles (also referred to as runtime roles) have been used explicitly.
The described behavior does not appear if repository (design-time) roles are used; see
Chapter 13 for details.

With repository roles, granting and revoking of roles is performed by means of stored
procedures. These procedures abstract the end-user management of roles from the
technical implementation at the heart of the database, allowing a more application-
friendly role management.

User SQL Statement Comment

A CREATE COLUMN TABLE "T_A1"
 (F_1 VARCHAR(3)
 PRIMARY KEY);

User A creates a table T_A1 in his own
home schema.

Table 12.4 Example: Creation of Objects in Various Schemas
508

Database Users 12.2
In this state, user A owns two database schemas, namely the user’s home schema
A and the newly created schema SCHEMA_A2. User A also created and thus owns a
table T_A1 in schema A and a table T_A2 in schema C. User B created and thus
owns table T_B1 in schema SCHEMA_A2. This situation is depicted in Figure 12.5.

Figure 12.5 Database Tables Created by Various Users in Various Schemas

A CREATE SCHEMA "SCHEMA_A2";

GRANT CREATE ANY ON SCHEMA
 "SCHEMA_A2" TO B;

User A creates a new schema,
SCHEMA_A2,

and grants the CREATE ANY privilege
on that schema to user B.

B CREATE COLUMN TABLE
 "SCHEMA_A2"."T_B1" (
 F_1 VARCHAR(10)
 PRIMARY KEY);

User B creates a table T_B1 in this
schema, SCHEMA_A2.

C GRANT CREATE ANY ON SCHEMA "C" TO A; User C allows user A to create objects
in C’s home schema.

A CREATE COLUMN TABLE
 "C"."T_A2" (
 F_1 VARCHAR(5) PRIMARY KEY);

User A creates a table T_A2 in user C’s
home schema.

User SQL Statement Comment

Table 12.4 Example: Creation of Objects in Various Schemas (Cont.)

AB C

T_B1

SCHEMA_A2
Owner: A

T_A1

A
Owner: A

T_A2

C
Owner: C

Database Schemas

Database Users

Grants CREATE ANY on
schema SCHEMA_A2
to user B

Grants CREATE ANY on
schema Cto user A

Creates and
owns table T_A1

Creates and
owns table T_B1 Creates and

owns table
T_A2
509

User Management and Security12
To attempt to delete the user without deleting depending objects, we use the sim-
ple SQL statement:

DROP USER A

This SQL statement will result in an error message, because user A owns objects
other than empty database schemas.

To see the objects that will be deleted if user A is dropped with the CASCADE
option, we need to combine two pieces of information:

� All objects directly owned by A, including database schemas owned by A

� All objects owned by any arbitrary database user in a schema owned by A

We can retrieve this information in a single SQL query, as shown in Listing 12.2.

 (
 SELECT "SCHEMA_NAME",
 '' AS "OBJECT_NAME",
 'SCHEMA' AS "OBJECT_TYPE",
 "SCHEMA_OWNER" as "OWNER_NAME"
 FROM "PUBLIC"."SCHEMAS"
 WHERE SCHEMA_OWNER = 'A'
 UNION ALL

 SELECT "SCHEMA_NAME", "OBJECT_NAME",
 "OBJECT_TYPE", "OWNER_NAME"
 FROM "PUBLIC"."OWNERSHIP"
 WHERE
 "SCHEMA_NAME" IN
 (SELECT "SCHEMA_NAME" from "PUBLIC"."SCHEMAS"
 WHERE "SCHEMA_OWNER" = 'A')
 OR "OWNER_NAME" = 'A'
) ORDER BY "SCHEMA_NAME" ASC, "OBJECT_NAME" ASC;

Listing 12.2 Query to Retrieve All Objects That Will Be Deleted When Dropping a User

In our example, this query yields the expected result set, as shown in Figure 12.6.
Note that dropping user A would delete objects owned by other users as well as
objects from schemas owned by other users!
510

Database Users 12.2
Figure 12.6 Overview of All Objects That Would Be Deleted if User A Was Dropped

After checking which objects will be deleted when we drop user A and verifying
that it is okay to do so, we can finally drop user A:

DROP USER A CASCADE

Dropping Users in SAP HANA Studio

Like user creation, the dropping of users is supported by a wizard in SAP HANA
Studio. Again, the editor can be accessed from the SAP HANA Systems view in the
Administration, Modeling, and Development perspectives, and again we have
to work with a database user that has the USER ADMIN system privilege. The steps
in this process are as follows:

Note

The system view "PUBLIC"."OWNERSHIP" typically only reveals information for objects
that the querying user has explicit privileges on. An administrator carrying only the USER
ADMIN privilege will therefore generally not see the correct list of objects that would be
deleted if a given user was dropped from the system.

It is therefore advisable to also give the system privilege CATALOG READ to user adminis-
trators, because this will give unfiltered read access to the ownership view.

Note

Dropping user A in our example also deleted objects owned by other users (table T_B1
owned by user B), and it deleted objects located in schemas owned by other users (table
T_A2 in schema C owned by user C).
511

User Management and Security12
1. Expand the navigator tree in the SAP HANA Systems view to expand the Secu-

rity � Users folder, and right-click on the user to be deleted. Select Delete from
the context menu (Figure 12.7). If there are many users in the system, locate
your user via the Find User/Role entry, which is available in the context menus
of the Users and Roles folders.

Figure 12.7 Deleting a User in SAP HANA Studio

2. In the wizard that appears, you can choose whether to drop the user with
option Restrict or Cascade. Choose Cascade to check if the user owns any
objects (Figure 12.8). You can still abort deletion.

Figure 12.8 The Drop User Dialog in SAP HANA Studio
512

Database Users 12.2
After selecting the Cascade radio button, the wizard is updated to show all
objects that will be deleted if user A is dropped.

3. Confirm deletion of the user and objects by clicking the OK button, or abort
deletion by clicking the Cancel button.

12.2.5 Built-in Database Users

SAP HANA comes with a set of built-in database users that is not intended to be
used in regular database operations; with the exception of one, these users are not
even foreseen for database logon.

All users whose name begins with _SYS are built-in users (sometimes referred to
as internal users). These users are not enabled for logon. We will list these users in
alphabetical order:

� _SYS_AFL
Objects of the Application Function Library—that is, the PAL and the BFL
objects) are installed into a schema _SYS_AFL owned by a user _SYS_AFL. Access
to these objects is granted through roles delivered with the libraries.

� _SYS_DATAPROV
SAP HANA offers a way to model data flows for real-time replication technol-
ogies. The only one such technology partially supported in SPS 7 is SAP Land-
scape Transformation (SLT).

The data flow modeler comes with a number of dedicated objects in schema
_SYS_DATAPROV owned by user _SYS_DATAPROV.

� _SYS_EPM
A very useful demo model comes with SAP HANA; it is called SAP HANA Inter-
active Education (SHINE) and it is based on the well-known Enterprise Procure-
ment Model (EPM) from SAP NetWeaver. Catalog objects of the SHINE demo
model belong to user _SYS_EPM and are located in schema _SYS_EPM.

� _SYS_REPO
The _SYS_REPO user is the owner of all repository content as well as the catalog
schema _SYS_REPO, which contains the persistence objects of the SAP HANA
repository.

Note

It may take some time for the system to assemble the information on all objects that will
be deleted.
513

User Management and Security12
� _SYS_STATISTICS
Finally, _SYS_STATISTICS is the user who owns all statistics server data and
executes all periodic checks of the statistics server.

The SYS User

The most special user in SAP HANA database is named SYS and is basically the
owner of the database itself. In the history of SAP HANA, it has always been
impossible to log on with the SYS user.

All objects in schema SYS belong to the user of the same name. Those objects that
are of interest to users, administrators, or developers in the database are exposed
via public synonyms. Most other objects are only accessible to the SYSTEM user
(who cannot grant this privilege to others) or to the holder of the SAP_INTERNAL_
HANA_SUPPORT role.

The SYSTEM User

The best-known and most frequently abused built-in user is the SYSTEM user. It
is the only logon-enabled user among the built-in users, and its password is cho-
sen at the install time of the database. In principle, SYSTEM is just a regular data-
base user.

The purpose SAP assigns to the SYSTEM user is to bootstrap the database system,
that is, to create the initial system setup—a list of objects, users, and roles plus ini-
tial system configuration—that is sufficient to then operate the entire database
system without ever needing the SYSTEM user again.

Therefore, as soon as the bootstrapping is finished, the SYSTEM user is supposed
to be deactivated and only reactivated in case of emergencies.

Note

In early versions of the database, it was possible to change the passwords of these tech-
nical _SYS_* users and use them for logging on to the system. This option was removed
around SPS 6. We have never encountered a situation in which this option would have
been necessary. Conceptually, in a properly managed SAP HANA database, you must
never do this, even if your database is so old that you can do it.
514

Database Users 12.2
Reality shows, however, that virtually no customer team has ever deactivated the
SYSTEM user. It is one intention of this chapter and the next two to give you all
the information you need to successfully run your SAP HANA database as a free
administrator without guiltily switching to SYSTEM every now and then. In Chap-
ter 14, we include a bootstrapping sequence that will help you get rid of the SYS-
TEM user quickly.

12.2.6 Restricted Users

Regular database users are automatically assigned to the PUBLIC role when they
are created. With this role, they have a number of privileges that may be consid-
ered harmful, such as the ability to create objects within their own user schema
(and thus potentially fill up the database). It is also not possible to disallow logging
on via the SQL interface, even if certain users will only need to log in via the HTTP
interface of SAP HANA XS.

In SPS 8, restricted users have been introduced that initially come without any
privileges. These users are therefore not even able to log on to the database. You
can create restricted users either by selecting the corresponding checkbox in the
User Editor or by using the SQL command CREATE RESTRICTED USER.

Restricted users can always log on to the database using HTTP (but you can control
access to the XS applications for each user). If you want to allow them to create via
the JDBC or ODBC interface, you need to grant the RESTRICTED_USER_JDBC_
ACCESS or RESTRICTED_USER_ODBC_ACCESS roles, respectively. These roles are part
of the database software starting with SPS 8. In addition to these roles, you must
grant use-case specific privileges to the users in order for them to work with the
database.

Restricted users are primarily intended for end-user accounts, for example, for
people who are supposed to only interact with SAP HANA through BI tools. These
users will not need to be able to browse the database catalog or to perform other
actions that will be relevant to developers or administrators.

Note

Whether or not a user is restricted is a choice made at creation time. This property can-
not be changed at a later point in time. It is also not possible to grant the PUBLIC role
to a restricted user.
515

User Management and Security12
12.3 Authentication Methods

SAP HANA supports a multitude of standard authentication methods, both on the
SQL interface (standard database access via ODBC/ODBO/JDBC) as well as on the
HTTP/HTTPS interface (SAP HANA XS).

An overview of these authentication methods is given in Table 12.5, and some fur-
ther information is provided in the following sections. Due to the complexity of most
of the authentication methods, these topics cannot be covered here in full depth.

12.3.1 Name/Password Authentication

The most basic form of authentication is by user name and password and is appro-
priate if single sign-on is not possible or not required. SAP HANA comes with a
password policy concept of medium complexity that will in most cases be suffi-
cient to comply with your requirements and not confuse you with too many
options that you are not going to need.

Configuring the Password Policy

The password policy can technically be configured in the configuration files of the
database. However, beginning with SPS 6, SAP HANA offers a security editor with
a comfortable UI for this purpose.

Method SQL (JDBC/ODBC) HTTP(S) (HANA XS)

Name/Password Yes Yes (basic authentication,
form-based login)

Kerberos Yes Yes (SPNEGO)

SAML 2.0 Yes (bearer token) Yes

SAP Logon/Authentication
Assertion Tickets

Yes Yes

X.509 --- Yes

Table 12.5 Overview of Authentication Methods in SAP HANA Database

Privilege Information

The INIFILE ADMIN system privilege is required in order to make changes to the pass-
word policy.
516

Authentication Methods 12.3
You can enter into the Security Editor from the Systems view of SAP HANA Stu-
dio. In the navigation tree of your database system, navigate to the Security folder
and double-click the Security icon therein. The password policy is on the second
tab of the editor; see Figure 12.9.

Figure 12.9 Defining the Password Policy in SAP HANA Studio

In the editor, one can configure the following properties:

� Requirements with respect to password strength: minimal password length and
required character groups.

� The requirement to change an initial password on first logon. Whenever an
administrator changes the password of another user, this password is consid-
ered initial.

Even if you switch off the requirement for users to change an initial password
on first logon, the password lifetime rules stay intact as well as the lifetime of
initial passwords. Hence—depending on the other parameters of the password
policy—users may still have to change initial passwords.

� Lifetime of initial password: If this is exceeded before the user sets his own
password, the user is locked and a user administrator must set a new initial
password.

� Maximum password lifetime: The time span after which a user needs to
change their password. If a user does not change his passwords in time, the
next logon attempt will fail, and if the application used to connect to the data-
517

User Management and Security12
base interprets the error code appropriately, the user will be asked to change
his password.

� Notification of password expiration: Users can receive a warning upon logon
if their password is about to expire within the specified time span.

� Last used passwords: This specifies the number of previously used passwords
that the user is not allowed to reuse.

� Minimum password lifetime: This can be set to prevent users from circum-
venting Last used passwords. It is the amount of time that has to pass after the
last password change before a user is allowed to change their password again.

� Number of allowed failed logon attempts is not quite named appropriately:
The parameter specifies the number of consecutive failed logon attempts at
which a user will be locked. The default setting of six allows five consecutive
failed logon attempts. Upon the sixth consecutive failed logon attempt, the user
will be locked and must be unlocked via an ALTER USER <name> RESET CONNECT
ATTEMPTS statement.

� User Lock Settings: Locked users are unlocked automatically after the specified
amount of time. Starting with SPS 7, one can also lock users indefinitely.

� Maximum duration of user inactivity: Specifies the amount of time after which
a user’s password will be invalidated if the user does not log on to the database.
To enable the user again, a user administrator must set an initial password.

Exempting Users from the Password Policy

It is not possible to completely exempt users from the password policy. For exam-
ple, the password layout rules apply to all password changes of all users, including
the SYSTEM user.

The SYSTEM user will, however, never be locked because of too many failed
logon attempts, and it is the only user in the system that can show this behavior.
It is not possible to exempt other users individually from this rule.

Note

Even if the requirement to change initial passwords on first logon is globally disabled,
the password is treated as initial regarding password lifetime; hence, the password will
expire according to the entry in the Lifetime of Initial Password field.
518

Authentication Methods 12.3
Only the forced password change can be disabled for individual users, via the fol-
lowing SQL syntax:

ALTER USER <name> DISABLE PASSWORD LIFETIME

The password lifetime should only be disabled for technical users, for example,
the connection user of an SAP NetWeaver Application Server or similar users.

Password Blacklist

In the lower half of the Password Policy tab in the Security Editor, we can main-
tain a Password Blacklist (Figure 12.10). One can add individual entries to the
Password Blacklist by using the green plus icon. An entry may represent either
an entire password or a part of a password (at an arbitrary position within the
password) and may or may not be case sensitive.

Figure 12.10 Editor for the Password Blacklist

At the time of writing (SPS 8 of SAP HANA), the Security Editor does not offer an
import wizard to load, for example, CSV files into this table and the password list
is not transportable.

Privilege Information

The password blacklist is maintained in database table _SYS_PASSWORD_BLACKLIST in
the _SYS_SECURITY schema.

In order to manage the blacklist via the SAP HANA Studio editor, a user needs the
SELECT, INSERT, and DELETE privileges on this table.
519

User Management and Security12
When a large number of entries needs to be maintained in the blacklist, it is most
sensible to insert the values from some data source via either a table import or
some kind of programmatic insertion.

Table _SYS_SECURITY._SYS_PASSWORD_BLACKLIST has a simple layout, as can be
seen from Listing 12.3, making it easy to prepare input for this table in an appro-
priate format. For your convenience, we included the data types for the table col-
umns in that listing. The primary key spans all three columns.

SELECT * FROM _sys_security._sys_password_blacklist
==
BLACKLIST_TERM |CHECK_PARTIAL_PASSWORD|CHECK_CASE_SENSITIVE
[NVARCHAR(256)]	[NVARCHAR(6)]	[NVARCHAR(6)]
password |TRUE |FALSE
lars |TRUE |FALSE

Listing 12.3 The Password Blacklist Table

12.3.2 Single Sign-On with Kerberos Authentication

SAP HANA supports Kerberos version 5 for Kerberos-based single sign-on with
Active Directory or Kerberos authentication servers.

The database’s ODBC and JDBC clients natively support the Kerberos Protocol, so
applications using these clients can immediately use authentication based on
domain users. SAP HANA Studio is an example of such a client application.

When using SAP HANA XS applications, Kerberos authentication is supported
starting with SAP HANA SPS 7 by using the Simple and Protected GSSAPI Nego-
tiation Mechanism (SPNEGO), which today is supported by all major web
browsers.

Note

Direct inserts into the password blacklist table are not officially supported by SAP; the
blacklist is supposed to be edited only through the official interface in the Security Edi-
tor.

If you choose to maintain values in this table via direct insert, you should understand
that there is a risk that the table might be renamed or its layout changed in the future.
520

Authentication Methods 12.3
Kerberos can be used for direct client-server authentication (where the client is an
application accessing SAP HANA and the server is the SAP HANA database server),
as shown in Figure 12.11, or with Kerberos delegation through an intermittent
application server, such as the SAP BusinessObjects BI server.

Figure 12.11 Schematic View of Client-Server Kerberos Authentication

Setting Up Kerberos Authentication

There are excellent guides available that describe the steps needed to implement
Kerberos SSO with SAP HANA. The best end-to-end guide, which has been
applied in multiple projects so far, is the how-to guide Single Sign-On with SAP
HANA® Database using Kerberos and Microsoft Active Directory, which is available
as an attachment to SAP Note 1837331.

Further Resources

For more information about SPNEGO, we recommend The Simple and Protected
Generic Security Service Application Program Interface (GSS-API) Negotiation Mecha-
nism by L. Zhu et al. (Network Working Group, October 2005): https://tools.ietf.org/
html/rfc4178.

Authentication
Service (AS)

Ticket Granting
Service (TGS)

Active Directory / Key Distribution Center

Client, e.g., SAP
HANA Studio

Service, i.e., SAP
HANA‘s XS engine

or indexserver

a) Authentication service request:
client sends user ID in cleartext

b) Authentication service response:
AS sends client/TGS-session key
and Ticket-Granting-Ticket (TGT)

c) Ticket Granting Service request:
Client requests authentication
ticket for a given service

d) Ticket Granting Service response:
TGS sends client/service-session
key and client/service ticket

e) Authentication request:
client sends service ticket and
client authenticator

f) Authentication response:
service sends service authenticator
521

User Management and Security12
The guide’s instructions apply to SAP HANA SPS 5 (revision 45 or above) for Ker-
beros authentication on the SQL port and to SAP HANA SPS 7 (revision 70 or
above) for the SPNEGO authentication for SAP HANA XS.

The procedures to set up Kerberos and SPNEGO are almost identical. If Kerberos
authentication is already set up in your database and SPNEGO is to be added, only
a small number of additional steps is required. All of these steps are discussed in
the mentioned how-to guide.

SAP also provides a script to help validate many steps of the Kerberos setup on the
SAP HANA database server. This script is made available as an attachment to SAP
Note 1813724.

Setting up Kerberos requires support from network administrators and Kerberos/
AD administrators along with a good measure of familiarity with the concepts of
ticket-based authentication in general and Kerberos between Linux Servers and
Microsoft Active Directory in particular.

Registering Users for Kerberos Authentication

Users can authenticate using Kerberos if the user is valid and active and if it has
been enabled for Kerberos authentication.

In SAP HANA Studio’s User Editor (see Figure 12.12), select the checkbox for
Kerberos authentication, and enter the user’s External ID into the input field;
then save the user. Note that the External ID must match exactly the format
<user>@<domain> as used in Active Directory, including capitalization.

Figure 12.12 Setting up Kerberos Authentication in SAP HANA Studio
522

Authentication Methods 12.3
Alternatively, you can add the Kerberos External ID in the CREATE USER or ALTER
USER commands. Listing 12.4 shows how to switch from name/password authen-
tication to Kerberos authentication for the existing user RICHARD_III with
domain user name richard_iii@KINGDOM.GOV.

// Add Kerberos authentication:
ALTER USER RICHARD_III
 ADD IDENTITY 'richard_iii@KINGDOM.GOV'
 FOR KERBEROS;
// Optional: Disable password authentication
ALTER USER RICHARD_III DISABLE PASSWORD;

Listing 12.4 SQL Syntax for Switching Authentication to Kerberos

12.3.3 Further Authentication Methods

In addition to name/password and Kerberos authentication, SAP HANA also
offers authentication via other mechanisms, such as SAML or SAP Logon Ticket.
These are not used as frequently in SAP HANA systems so far, and we only cover
them very briefly.

Single Sign-On with SAML 2.0

Especially for web browser single sign-on, the XML-based SAML authentication
protocol is popular. SAP HANA introduced support for the widely used SAML 2.0
protocol for HTTP access (SAP HANA XS) in SPS 6 of the software and added
SAML 2.0 support for SQL access with SPS 7. A wizard to register SAML identity
providers with the database has been added to the Security Editor in SPS 8.

A guide to setting up SAML-based SSO between SAP HANA and the SAP BI tools
is included in SAP Note 1900023.

Authentication via SAP Logon/Authentication Assertion Tickets

Finally, SAP HANA also supports authentication by means of SAP Logon Tickets
or SAP Authentication Assertion Tickets.

For database administrators, who certainly can be excused for not being familiar
with these concepts, the SAP Help Portal offers information on both authentica-
tion mechanisms:
523

User Management and Security12
� For SAP Logon Tickets, see http://help.sap.com/saphelp_nw73/helpdata/en/43/
9d7bb1e08021b5e10000000a1553f6/content.htm?frameset=/en/85/
ba255812404f7b932a30bb309fd5bf/frameset.htm.

� For SAP Authentication Assertion Tickets, see http://help.sap.com/saphelp_
nw73/helpdata/en/85/ba255812404f7b932a30bb309fd5bf/content.htm.

The differences between the two authentication methods are described on SCN at
scn.sap.com/thread/721203.

12.3.4 Enabling Multiple Authentication Methods for One User

As can be seen in Figure 12.12 or Listing 12.4, it is possible to set up multiple
authentication mechanisms for a given user. What authentication method will be
used in a specific scenario will depend on the client application.

As an example, consider the dialog to register a new system or database user in
SAP HANA Studio, as shown in Figure 12.13. In this dialog, you can switch
between Kerberos authentication (Authentication by current operating system

user) and name/password authentication (Authentication by database user).
Depending on which option is selected, SAP HANA Studio will initiate authenti-
cation with the database following the corresponding protocol.

Figure 12.13 Registering a New User in SAP HANA Studio
524

Securing SAP HANA’s Network Interfaces 12.4
12.4 Securing SAP HANA’s Network Interfaces

Having reasonable user management and authentication as well as proper autho-
rizations (see Chapter 13) set up is all good and well. However, if you do not take
care to secure the network connections into the database, then the overall system
will be vulnerable.

In this section, we will provide an overview of the most important internal and
external network connections of the database system and briefly touch on the
topic of encrypting network communication.

12.4.1 External Network Connections to an SAP HANA System

Communication with SAP HANA systems can have multiple purposes. There may
be external communication of some client with the database, and there is internal
communication between different parts of the database system.

External communication is that between a client and the database server. We will
define any external entity that communicates with the database as a client here;
for the sake of simplicity, we will apply this term to human beings and software
programs alike. In this sense, a client may be any of the following:

� An end-user application accessing the database on its SQL port in direct client-
server communication. This would, for example, apply to users of SAP Business-
Objects Analysis for Office or SAP Lumira Desktop.

� An end-user application accessing the database on its HTTP interface in direct
client-server communication. An example of this interaction is the consump-
tion of an SAP HANA XS application with an SAPUI5 interface.

� Communication through an application server, such as SAP NetWeaver or SAP
BusinessObjects BI servers.

� Administration access for purposes of database monitoring, administration,
lifecycle management, or SAP Support.

All typical connections of an SAP HANA system are displayed in Figure 12.14. In
this figure, we depict multitiered network landscapes with three tiers (database
layer, application layer, and end-user layer) and an additional administrator net-
work. In the port numbers, “xx” denotes the two-digit instance number of the SAP
HANA system.
525

User Management and Security12
In the following sections, we will discuss end-user connections and administra-
tion connections separately.

Figure 12.14 External Connections into an SAP HANA System

End-User Connections into an SAP HANA System

End users will typically use SAP HANA services provided via the SQL interface of
the index server (port 3xx15), through the HTTP interface of the XS engine (ports
80xx and 43xx for HTTP and HTTPS, respectively), or indirectly through an appli-
cation server of some sort.

The most usual application servers in the context of SAP HANA systems are SAP
NetWeaver Application Servers and SAP BusinessObjects BI 4.0 servers. We
added an HTTP reverse proxy in the application server network to show that this
is a supported option, too.

End-user apps
Direct access

SQL

Web browsers
Direct access

HTTP

E
End
user

End-user apps
Indirect access

(app server)

End-User Network

Application Server Network

SAP NetWeaver
Application Server

BusinessObjects
BI 4.0 server

SAP HANA
Database Server

Tables, stored
 procedures,

data models, …

Indexserver XS engine

UI5/
Javascript

SQL/MDX
3xx15

HTTP(s)
80xx/
43xx

DatabaseSaphostcontrol
HLM

1128/1129

Instance agent
Start/stop

5xx13/5xx14

hdbrss Support
connection

3xx09

SSH daemon
22

SAProuter
Support connection

SAP internal protocol

Reverse
Proxy

Admin apps

Lifecycle
management

Start/stop

A

Administrator

Administration Network

SAP HANA Studio
Direct access

SQL

Web browser
Direct access

HTTP

SSH client
OS-access

SSH

S

SAP Support

Internet
526

Securing SAP HANA’s Network Interfaces 12.4
The typical persona here is an end user who—depending on the scenario—con-
sumes or even modifies data in SAP HANA. Especially in the nonproduction
instances of a system landscape, you will also have developers in the picture.

The communication ports for end-user access are listed in Table 12.6. It must be
noted that there are several end-user applications that run locally on an end-user
device (desktop computer, notebook, mobile device, etc.) and access the database
through its SQL interface. As there is no reverse SQL proxy, these applications
require direct network access to the database server. The most common such
applications in SAP HANA use cases are:

� SAP BusinessObjects Analysis, edition for Microsoft Office

� SAP Lumira Desktop

� SAP Crystal Reports 2008/2011

� For developers: SAP HANA Studio

Other common applications either use the HTTP(S) interface or intermediate
application servers, so network layer segregation is usually possible.

Note

If you implement any of these applications in the context of your SAP HANA implemen-
tation, then you must open the database’s SQL port to the end-user network.

If there is a small (well-controlled) group of end users that needs such applications, then
you may consider deploying the application on a WTS or a similar system.

Port Communication
Purpose

Protocol Database
Component

Communication Partners

3xx15 SQL communication
with the database

SQLDBC
(JDBC/
ODBC)

indexserver Software:
Application servers, clients
applications with direct DB
access

Personas:
End user, developer

Table 12.6 External Ports for End-User Communication
527

User Management and Security12
Administration Connections in an SAP HANA System

For administrators, there is a wealth of network ports available—and the group of
administrators will typically need all of the connections listed in Table 12.7.

Because SAP HANA Studio is the most important administration tool, administra-
tors will need SQL access to the database.

Certain functionalities in SAP HANA Studio will access other ports than the SQL
port:

� Start/stop of the entire database system
SAP systems are started through an instance agent (sapstartsrv) that can be
remotely accessed via port 5xx13/5xx14 (without/with SSL encryption).

� Using SAP HANA Lifecycle Manager
For tasks such as upgrading the database, adding software components, chang-
ing the scale-out landscape, or deploying further instances, SAP HANA Lifecy-
cle Manager (HLM) is the preferred option before SPS 8. On the SAP HANA
server, the software listens on ports 1128/1129 (without/with SSL encryption).

In addition to SAP HANA Studio, SAP has started building administration appli-
cations using the XS engine that are exposed via the HTTP/HTTPS port. We expect
to see more and more of these applications in the future. They especially are
needed if you deploy end-user applications based on the XS engine.

Access to the operating system of the database server will typically be established
using an SSH connection (port 22).

80xx HTTP communica-
tion with SAP HANA

HTTP xsengine Software:
Either HTTP proxy/
load balancer or web
browsers

Personas:
End-user, developer

43xx HTTPS communica-
tion with SAP HANA

HTTPS xsengine Same as HTTP port 43xx

Port Communication
Purpose

Protocol Database
Component

Communication Partners

Table 12.6 External Ports for End-User Communication (Cont.)
528

Securing SAP HANA’s Network Interfaces 12.4
A very special (but highly recommended) connection type is the SAP HANA Stu-
dio service connection, as described in SAP Note 1592925. This connection allows
SAP Support staff use their locally installed SAP HANA Studio to connect to a cus-
tomer’s SAP HANA database system through an SAProuter. It is the equivalent in
the SAP HANA world to the well-known R/3 support connection.

Port Communication
Purpose

Protocol Database
Component

Communication Part-
ners

3xx15 SQL communication
with the database

SQLDBC
(JDBC/
ODBC)

indexserver Software:
Application servers,
clients with direct DB
access

Personas:
Administrator, in-house
support

3xx17 SQL communication
with the statistics
server

SQLDBC
(JDBC/
ODBC)

statisticsserver
(if installed as sepa-
rate service)

Should not be required
externally; all communi-
cation can go through
indexserver port
3xx15

80xx HTTP communica-
tion with SAP HANA

HTTP xsengine Software:
Either HTTP proxy/
load balancer or web
browsers

Personas:
Administrator, in-house
support

43xx HTTPS communica-
tion with SAP HANA

HTTPS xsengine Same as HTTP port 43xx

3xx09 SAP Support
connection

Internal
SAP pro-
tocol

hdbrss Software:
SAProuter

Personas:
SAP Support staff

1128 SAP HANA Lifecycle
Management

SQLDBC
(JDBC/
ODBC)

saphostcontrol Software:
SAP HANA Studio or
web browser

Personas:
Administrators

Table 12.7 External Communication Ports Required by Administrators
529

User Management and Security12
12.4.2 Encrypting External Network Connections

All external network connections can be encrypted using SSL. Except for the SQL in-
terfaces, different ports are used for the encrypted and the unencrypted connections.

1129

(SSL)

SAP HANA Lifecycle
Management

SQLDBC
(JDBC/
ODBC)

saphostcontrol Same as port 1128

5xx13 Start and stop SAP
HANA instances

SQLDBC
(JDBC/
ODBC)

Instance agent
(sapstartsrv)

Software:
SAP HANA Studio

Personas:
Administrators

5xx14
(SSL)

Start and stop SAP
HANA instances

SQLDBC
(JDBC/
ODBC)

Instance agent
(sapstartsrv)

Same as port 5xx13

22 Operating system
access

SSH SSH daemon Software:
SSH clients

Personas:
Basis admins

Recommendation

SAP recommends using SAP’s Common Cryptographic Library, CommonCryptoLib, for
encrypting network connections to SAP systems. This software component is available
for download on SAP Service Marketplace.

Alternatively, one can use OpenSSL or the older SAP Cryptographic Library. The latter is
only supported for reasons of backwards compatibility.

Further Resources

The steps for setting up SSL encryption for the SQL port are described in the SAP HANA
Security Guide:

https://help.sap.com/hana/SAP_HANA_Security_Guide_en.pdf
This process requires setup on the server as well as on the client or end-user devices. SSL
encryption can also be used for the SQL connection between an SAP NetWeaver Appli-
cation Server and the database.

Port Communication
Purpose

Protocol Database
Component

Communication Part-
ners

Table 12.7 External Communication Ports Required by Administrators (Cont.)
530

Securing SAP HANA’s Network Interfaces 12.4
Enforcing Encryption on External Network Connections

Since SPS 7 of SAP HANA, it is possible to enforce SSL encryption of SQL connec-
tions to HANA. For the other external connections, this feature is already avail-
able in earlier releases.

Encryption of SQL connections can be enforced by setting parameter [communi-
cation] � sslenforce in configuration file global.ini to TRUE.

For enforcing encryption of HTTP connections, there are multiple options:

� Global setting of the web server (SAP Web Dispatcher)
HTTP services are offered through the SAP Web Dispatcher component of SAP
HANA. The configuration of this component can be found in file /usr/sap/
<SID>/HDB<instance>/<hostname>/wdisp/sapwebdisp.pfl. If SSL encryption of
HTTP connections has been configured, you will find one entry each for HTTP
and HTTPS connectivity in this file. Remove (by placing into a comment) the
entry for HTTP connectivity:

icm/server_port_0 = PROT=HTTP

� Firewall configuration
Because different ports are being used for HTTP and HTTPS connectivity, you
can simply use firewall techniques to disallow access to the HTTP port.

For SSL encryption of HTTP connections, the SAP HANA Administration Guide lists the
necessary steps in the context of SAP HANA XS administration tools (as of the docu-
mentation for SAP HANA SPS 8):

https://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf

Finally, you can always find the documentation for previous Support Package Stacks on
SAP Service Marketplace:

https://service.sap.com/hana/

Note

Only enforce encryption of SQL (JDBC/ODBC) access after you have migrated to the
new implementation of the statistics service, in which case it is not running as a dedi-
cated server any longer.
531

User Management and Security12
� Application-specific setting
Each SAP HANA XS application can be configured to allow communication
with and/or without encryption. Details are, again, given in the SAP HANA
Administration Guide.

12.4.3 Internal Network Connections

In certain setup types, you also have to consider internal network connections
within your database system.

One scenario is the implementation of scale out, which enforces communication
between the database services on the individual server nodes that when com-
bined form the database system.

The other scenario is the implementation of disaster-tolerant (DT) setups using
SAP HANA system replication. In this setup, the two database systems that form
the DT cluster need to be able to communicate with each other.

Connections within a Scale-Out Cluster

Within a scale-out cluster, the services of SAP HANA on the different server nodes
communicate with each other through dedicated internal ports. Of the ports listed
in Table 12.8, not all of them exist in all systems. The scriptserver is an optional
component, and since SPS 7 it is possible to migrate the statistics service to a new
implementation that is integrated into the nameserver and indexserver processes.
The “xx” notations in Table 12.8 denote the two-digit instance number of the
database system.

Certified SAP HANA hosts for scale out come with dedicated, set-up network
cards for internal communication. It is recommended to tie the internal commu-
nication ports to these network devices and to operate all hosts of a scale-out sys-
tem in a dedicated private network.

Port Service Comment

3xx00 HDB daemon —

3xx01 nameserver —

Table 12.8 Internal Communication Ports of SAP HANA Systems
532

Securing SAP HANA’s Network Interfaces 12.4
It is technically possible and supported to encrypt internal network communica-
tion. However, if all internal communication ports are tied to the dedicated net-
work devices and only accessible within the cluster-internal network, this encryp-
tion will normally not be required. Because communication encryption adds an
(ever so small) overhead, it is recommended that you do not encrypt the internal
connections within one scale-out system unless you cannot isolate the internal
network.

Connections in Disaster-Recovery Setups Using System Replication

In a disaster-tolerant database system, you set up two (typically identical) systems
in two data centers that are separated by tens, hundreds, or sometimes even thou-
sands of kilometers. Naturally, the database systems in the two data centers must
communicate with each other.

3xx02 preprocessor —

3xx03 indexserver —

3xx04 scriptserver Optional

3xx05 statisticsserver Optional since SPS 7

3xx07 xsengine —

3xx10 compileserver —

3xx40–3xx98 indexserver Only relevant after n:1 recovery of data backup

Note

In single-node setups, the ports for internal communication are bound to localhost
and blocked for external access. It is strongly recommended that you do not change this
setting.

Note

It is not only possible but also strongly recommended to secure the database-internal
communication between the data centers of a disaster-tolerant setup using SSL encryp-
tion. The necessary steps are described in the SAP HANA Security Guide available at
https://help.sap.com/hana_platform/.

Port Service Comment

Table 12.8 Internal Communication Ports of SAP HANA Systems (Cont.)
533

User Management and Security12
The ports used for internal communication in a system replication setup are given
in Table 12.9. In that table, “xy” equals “xx+1”—that is, the instance number of
the database system plus one.

12.5 Auditing in the Database

SAP HANA comes with a built-in audit logging mechanism that allows you to log
security-relevant events of the core database layer and of the repository. All audit-
ing settings are made available through the Security Editor of SAP HANA Studio,
which can be accessed via Systems (or SAP HANA Systems) by double-clicking
Security.

The editor (see Figure 12.15) offers global audit settings in its upper section and
the definition of those events that shall be monitored in the lower section (col-
lected in so-called audit policies).

Port Service Comment

3xy00 HDB daemon —

3xy01 nameserver —

3xy02 preprocessor —

3xy03 indexserver —

3xy04 scriptserver Optional

3xy05 statisticsserver Optional since SPS 7

3xy07 xsengine —

3xy10 compileserver —

Table 12.9 Internal Communication Ports Used for System Replication

Privilege Information

In order to read or modify any information in the Auditing tab of the Security Editor,
system privilege AUDIT ADMIN is required.
534

Auditing in the Database 12.5
Figure 12.15 The Auditing Tab of SAP HANA Studio

12.5.1 Global Audit Settings

There are only two global audit settings available. Changes to these settings take
effect after deploying them via the green arrow button or the (F8) key.

� Auditing Status
Allows switching auditing on and off globally. Obviously, these are very impor-
tant actions to audit; see Section 12.5.3 for details.

� Audit Trail Target
The dropdown box lets you choose between three targets for audit logging.
Starting with SPS 8, multiple targets can be active at one time. In earlier
releases, this was not possible.

� Syslog: The default audit target is the syslog daemon of the operating sys-
tem. You may configure the syslog daemon itself to suit your auditing
needs, for example, by forwarding any SAP HANA audit events to a remote
audit server. In the default configuration of SUSE Linux Enterprise Server,
the syslog output is only readable by the root user of the operating system.

� Database Table: Logging into a database table is a new option that was
introduced with SPS 7 of SAP HANA. If this target is chosen, audit events are
535

User Management and Security12
written into a table in the SYS schema, to which no database user has direct
access. The table is only exposed for reading through public view AUDIT_LOG.
In addition, the database provides the ALTER SYSTEM CLEAR AUDIT LOG UNTIL
<timestamp> command to delete from the audit log table (in order to control
the table size).

� CSV text file: For test purposes, this is the most comfortable audit target.
However, because of the inherent insecurity of this target, this option is not
supported (and obviously is not an appropriate choice) for production
usage. The default target is a file in the trace-file directory of the database
server, which is accessible in SAP HANA Studio’s Administration Editor, tab
Diagnosis Files. You can change the output file for this target in the text box
Directory Name.

Next to the dropdown box for Audit Trail Targets, there is a table in which
you can configure Audit Level Trail Targets, that is, different audit trail tar-
gets for different audit levels (see below for the audit level of an audit policy).
This table has been newly introduced with SPS 8, and it is here that you can
select multiple audit trail targets for each of the audit levels.

12.5.2 Audit Policies

Audit policies can be added or deleted by using the “plus” and “X” icons on top of
the table of audit policies.

Audit policies are defined by multiple properties, each of which is represented by
one column in the table of audit policies:

� Policy
The name of the audit policy. Because the policy name is written to the audit
trail with each event that is logged under the policy, it is a good idea to choose
a useful name (“Policy 123” might be less informative than “Direct Granting of
Privilege”).

� Policy Status
You can disable audit policies without deleting them. The status is either
Enabled or Disabled.

� Audited Actions
To add actions to the policy, click the small ... icon in the Audited Actions cell
of the policy. This brings up a selector for auditable actions, which is divided
536

Auditing in the Database 12.5
into groups of actions that semantically belong together and can be added to
the same audit policy (see Figure 12.16). It is not possible to mix actions from
different groups in the same audit policy.

You can, however, create as many audit policies as you like, and they can all be
active at the same time.

� Audited Actions Status
Sometimes, you may want to only audit actions that were successful or that
failed (for example, it may be of interest to audit all failed logon attempts with
a technical user). Here, you can choose whether the audit policy will log all
events of the selected action, only successful ones, or only failed ones.

� Audit Level
The audit level only serves to structure the output. Each audit policy can have
an administrator defined criticality. The available criticality levels are INFO,
WARNING, ALERT, CRITICAL, and EMERGENCY.

All event messages of a given audit policy will contain the chosen criticality
level, which enables administrators to define alerts based on the audit mes-
sages being logged or to filter the audit messages by criticality.
As an example, if you log all successful logons to the database, this would typ-
ically be level INFO, whereas direct granting of privileges might be CRITICAL
and logon with the SYSTEM user might constitute an EMERGENCY.

In addition to adding semantics to the audit messages, the audit level plays a
role if a given database event would be logged by multiple audit policies. In
this case, only the policy with the highest criticality (in the order given previ-
ously) will log a message.

� Users
Per default, an audit policy will log all events of the configured actions regard-
less of the user who triggered the event.

You can restrict the logging to a list of users, or you can exclude a list of users
from the logging (failed connect attempts only for the SAP<sid> user of an SAP
NetWeaver instance or granting of roles by anyone except for user administra-
tors, for example).

Within one policy, you can either exclude or include users, but you cannot mix
both.
537

User Management and Security12
� Target Object
The logging of some auditable actions can be restricted to certain objects that
might be involved in the action. This applies, for example, to the actions
around Data Definition or Data Query and Manipulation.

Figure 12.16 Selector for Auditable Actions

Modifications to the audit policies are deployed by clicking the green arrow but-
ton or clicking the (F8) key.

12.5.3 Principles of Auditing in SAP HANA

In the following sections, we will discuss a number of important aspects of audit-
ing in SAP HANA that will help you define appropriate audit policies. We will first
discuss very generally what can be audited; after this, we give a brief introduction
to the output structure of audit messages; then, we will warn you how very easy
it is to have unrealistic expectations when restricting audit policies to individual
users; and finally, we will tell you about mandatory audit policies.
538

Auditing in the Database 12.5
What Can Be Audited?

It’s most enlightening to start with events that cannot be audited. Anything that is
not an execution of SQL statements cannot be audited.

SQL statements do not need to be executed by entering them into an SQL editor;
activating or deploying something in SAP HANA Studio or running other applica-
tions that trigger SQL statement execution also can lead to auditable actions.

The execution of an SAP HANA XS application, however, or the recovery of a data-
base backup is not auditable, nor is the changing of database configuration files
with a text editor on the operating system of the database server, or the shutdown
of the database using SAPHostcontrol.

Even if it comes to executing SQL commands, not all of them are auditable. The
setting of a session parameter is such an example of a nonauditable event that is
typically noncritical (but application developers had best not rely on sensitive
information being maintained in a session variable). You will also find some non-
auditable ALTER SYSTEM commands, such as the tracing and trace-file related com-
mands or the commands related to the management of the data and log volumes.

Output Structure of Audit Messages

The most important aspect to be aware of about the output structure of audit mes-
sages is that it is documented in SAP’s product documentation, specifically the
SAP HANA Security Guide.

Second, the structure of the text-file-based audit trails (syslog and CSV text files)
is different from the structure of the table-based audit trail, mostly because of a
different ordering of the output fields.

Such minor differences notwithstanding, all three audit trails give information on
the following aspects of an audited event (we list the corresponding columns of
the AUDIT_LOG table with each aspect, without diving more deeply into details):

� When and where (physically) did the event occur?
TIMESTAMP, HOST, PORT, SERVICE_NAME, CONNECTION_ID

� Where (physically did the event originate from?
CLIENT_HOST, CLIENT_IP, CLIENT_PID, CLIENT_PORT

� Who did it?
USER_NAME, APPLICATION_USER_NAME
539

User Management and Security12
� Why do your security administrators want to log this event?
AUDIT_POLICY_NAME, EVENT_STATUS, EVENT_LEVEL

� What did or did not happen?
EVENT_ACTION, STATEMENT_STRING

� Actions on catalog objects: SCHEMA_NAME, OBJECT_NAME

� Granting/revoking: GRANTEE, PRIVILEGE_NAME, ROLE_NAME, GRANTABLE, (and
potentially object information)

� Configuration changes: FILE_NAME, SECTION, KEY, VALUE, PREV_VALUE (intro-
duced with SPS 8)

Avoiding User-Specific Surprises

In some cases, the user triggering the execution of an auditable action might in the
end not be the database user that actually executes the action. The most promi-
nent audit-relevant example for such a situation is the granting (or revoking) of a
repository role. Such roles are implicitly granted by the _SYS_REPO user; our
database user only triggers this granting by running a stored procedure in definer
mode. That is, our named user executes a procedure, but the code within the pro-
cedure (in particular, the GRANT command) is executed by _SYS_REPO.

Hence, for any granting of repository roles, the audit trails will list the _SYS_REPO
user as USER_NAME. Fortunately for us, the audit trails include also the
APPLICATION_USER_NAME, and if the application in question enters something
meaningful here, we may still receive useful information.

For user-defined stored procedures in definer mode, the situation is similar. Con-
sider the stored procedure in Listing 12.5, which simply reads something from
the built-in pseudotable DUMMY.

CREATE PROCEDURE run_something(OUT MY_NAME VARCHAR(256))
 SQL SECURITY DEFINER
 READS SQL DATA AS
BEGIN
 SELECT SESSION_USER() INTO MY_NAME FROM DUMMY;
END;

Listing 12.5 Minimal Stored Procedure in Definer Mode
540

Summary 12.6
Let’s assume that user RICHARD created this procedure, and user RICHARD_III
executes it, for example, by running CALL richard.run_something(?). In the audit
trail, we will find two entries, as shown in Table 12.10.

Mandatory Audit Policies

If you decide to implement auditing in the database, there are certain events that
need to be audited for the auditing to make any sense at all. These are the events
involving the configuration of the audit mechanism.

For this reason, as soon as auditing is enabled, a built-in policy named Mandato-
ryAuditPolicy is switched on and cannot be disabled. This policy will log any
modification of the audit settings, that is, it will log disabling auditing, changing
the audit trail targets, or adding, modifying, or deleting audit policies.

12.6 Summary

In this chapter, we have touched on the most important aspects of SAP HANA
security—with the exception of role and privilege management, which is covered
in Chapter 13. If you memorize the three core concepts we mentioned at the
beginning of this chapter, you should be able to avoid at least half the pitfalls of
user management or auditing that we covered.

Statement USER_NAME

SELECT "SESSION_USER"() FROM "DUMMY" RICHARD

CALL richard.run_something(?) RICHARD_III

Table 12.10 Audit Log Entries for Stored Procedures in Definer Mode

Note

Even if your audit trail target is the database table, truncating the table (ALTER SYSTEM
CLEAR AUDIT LOG UNTIL <timestamp>) is not logged by the MandatoryAuditPolicy.
541

SAP HANA database offers a complex toolbox for granting authorizations
to database users. This chapter will help you find your way through the
available options.

13 Roles and Privileges

In organizations, members have roles and the authorization to execute actions
related to these roles. In software systems, organization members are represented
by users and the roles they have in physical reality must be translated into actions
and corresponding authorizations in the software system.

The numbers of privileges that exist in a software system such as the SAP HANA
database can be overwhelming. Not only are there many different types of privi-
leges but also a multitude of privilege instances of each type. The database there-
fore offers a concept for grouping privileges into database roles. In this chapter,
we first talk about database roles in general before diving into the details of the
different kinds of privileges SAP HANA has to offer.

The chapter then gives an overview of typical administration tasks in the database
and the related privileges before closing with advice about troubleshooting autho-
rization issues.

13.1 Database Roles

The SAP HANA database offers two different types of roles to collect privileges
into containers. The basic type of role in the SAP HANA database is the so-called
catalog role. These objects are sometimes also referred to as runtime roles, because
they do not have a persistent design-time representation.

The other type of role is the repository role, sometimes referred to as design-time
role, which is created as an object of the SAP HANA repository in the Developer
Workbench and which needs to be activated in order to create the runtime repre-
sentation (see Chapter 11 for a general introduction to the underlying concepts of
the repository).
543

Roles and Privileges13
Next, we will introduce these two types of roles before discussing the differences
between them in Section 13.1.3.

13.1.1 Catalog Roles

Catalog roles are simple containers for grouping multiple privileges and roles into
a single grantable object. They are created either in the Role Editor of SAP HANA
Studio or by using the CREATE ROLE SQL statement.

Any database user who wants to create or drop catalog roles needs the ROLE ADMIN
system privilege. Privileges are granted to or revoked from catalog roles either in
the Role Editor of SAP HANA Studio or by using SQL. When using the SQL syntax,
you have to use either the GRANT/REVOKE statements or the corresponding stored
procedures for privileges originating from objects developed in the SAP HANA
repository, depending on the type and origin of the privilege. See Section 13.2.1
and Section 13.2.2 for details. The Role Editor handles these differences transpar-
ently so that when using the editor you do not need to take care of them.

Catalog roles are granted to users (or other catalog roles) by means of the GRANT
statement and revoked via the REVOKE statement. Alternatively, one can employ
the User or Role Editor of SAP HANA Studio.

The Role Editor can be started from within SAP HANA Studio’s Systems view via
the path <Your_HANA_System> � Security � Roles (right-click) � New Role. The
Role Editor is almost identical to the User Editor, but of course it does not offer
authentication information. Figure 13.1 shows the editor for a role named DUMMY_
ROLE. The Role Editor has different tabs for the different types of privileges that
may be added to the role, such as further roles, system privileges, and so on.

Many privileges and roles can either simply be granted or can be granted with the
option Grantable to other users and roles. For certain privileges, there is no
such GRANT OPTION or ADMIN OPTION, for example, for analytic privileges or appli-
cation privileges.

There is another category of privileges that do not have a GRANT OPTION or ADMIN
OPTION and thus cannot be Grantable to other users and roles; privileges cre-
ated by the activation of a repository object or privileges based on activated repos-
itory objects cannot be granted to a database user by including the GRANT OPTION
or ADMIN OPTION. Instead, these privileges are always granted by using dedicated
stored procedures; see Section 13.2.2.
544

Database Roles 13.1
Figure 13.1 Role Editor for Catalog Roles in SAP HANA Studio

Some privileges are not simple privileges but privileges based on database objects,
for example, the SELECT privilege on a given table. In this case, one has to first
choose the object itself and then include all required privileges on that object, as
shown in Figure 13.2 for the SELECT privilege on table CUSTOMER_TEXTS in schema
DEMO_SCHEMA.

Figure 13.2 Adding an Object Privilege in the Role Editor
545

Roles and Privileges13
Changes to roles (or the creation of a new role) take effect after saving the role.
You save a catalog role either by clicking the Deploy button in the top-right corner
of the Role Editor (the green arrow), or by clicking the Save button (the floppy
disk icon) in the top-left corner of SAP HANA Studio. The keyboard shortcuts are
(F8) or (Ctrl) + (S), respectively.

13.1.2 Repository Roles

Repository roles can only be created as development objects in the SAP HANA
Developer Workbench. Hence, creation and management of these roles requires
setting up a development project (see Chapter 11 for details). The object that
represents a role in the repository is a HDBROLE file, that is, a text file with the
extension .hdbrole that contains the role definition in a specific syntax.

As of the writing of this book (release level SPS 8 of SAP HANA database), the edi-
tor for repository roles is purely text based, but it can be expected that there will
be a UI-supported Role Editor soon.

In order to turn the HDBROLE file into a database object, the role needs to be acti-
vated. In the process of activation, the database system assembles a catalog role
based on the role specification made in the HDBROLE file. This process is per-
formed by the _SYS_REPO database user. In this process, all requirements for
assembling a catalog role must be fulfilled. Most notably, the assembly of the role
is technically a CREATE ROLE statement followed by GRANT statements for all privi-
leges in the role and executed by the _SYS_REPO user.

Next, we’ll outline the most common tasks with respect to repository roles: grant-
ing, editing, and deleting them. Then, we’ll briefly discuss the syntax for assem-
bling repository roles.

Note

The fact that repository roles are assembled by the _SYS_REPO user implies that this
user must be able to grant all privileges to be placed into repository roles, that is, _SYS_
REPO must either be the owner of the privilege or the privilege owner must grant the
privilege to _SYS_REPO, including GRANT OPTION or ADMIN OPTION (see Section 13.2.1).
546

Database Roles 13.1
Granting Repository Roles

It is not possible to grant repository roles to or revoke them from database users or
catalog roles via the GRANT or REVOKE statements. Instead, one must use the stored
procedures delivered for this purpose: GRANT_ACTIVATED_ROLE (<role_name>,
<grantee>) and REVOKE_ACTIVATED_ROLE (<role_name>, <grantee>). The User and
Role Editors in SAP HANA Studio recognize the type of role being granted and
transparently choose the correct mechanism for granting or revoking.

These stored procedures are owned by the _SYS_REPO user and defined in SQL
security mode definer—meaning that regardless of who executes the procedure
the actions defined in the procedure will be executed by the _SYS_REPO user.
Thus, _SYS_REPO will implicitly be the grantor of the role. This makes role grant-
ing and revoking technically independent from the named user who triggered the
grant/revoke action, avoiding complications that occur when using catalog roles.

Editing Repository Roles

It is not possible to grant privileges to the design-time representation of reposi-
tory roles using the SQL GRANT statement or to extend such roles in the Role Editor
(for catalog roles) of SAP HANA Studio. Unfortunately, however, you can techni-
cally grant privileges to the activated version of a repository role with the GRANT
statement. Doing this leads to an inconsistency between the design-time and the
runtime version of the role and hence should be avoided.

The correct way of modifying a repository role is to edit its design-time version in
the repository and then to reactivate the role.

Deleting Repository Roles

You cannot simply delete a repository role by removing its runtime representa-
tion with a DROP ROLE command. The database will not permit this type of dele-
tion; even if it did, the dropping of the runtime object would not remove the
object in the repository.

Instead, you need to remove the role from within your development project in
the SAP HANA repository. After deleting the role, you need to activate the pack-
age or project containing the role to actually perform the deletion. This will
547

Roles and Privileges13
remove the design-time representation from the repository and also the runtime
representation from the database catalog.

Syntax for Assembling Repository Roles

The syntax to be used in HDBROLE files is largely different from the syntax of the
GRANT statement (which will be introduced in Section 13.2.1). Table 13.1 gives an
overview of the syntax for all types of privileges that may be added to a repository
role. Listing 13.1 shows a simple example of an HDBROLE file, including the syn-
tax for including other repository or catalog roles.

-- Comments can be started with a double hyphen
// or with a double forward slash.
// Role hierarchies are built by extending other repository
// roles or catalog roles.
role <package_name>::<role_name>
 extends role <repository_role_1>[, <repository_role_2, ...]
 extends catalog role <cat_role_1>[, <cat_role_2>, ...]
{
 -- The role body contains privilege listings; see Table 13.1.
 -- We show here the inclusion of the SELECT and UPDATE
 -- privilege on a database table.
 -- All privilege definitions must end with a semicolon ";"
 catalog sql object "<schema>"."<table>": SELECT, UPDATE;
}

Listing 13.1 Example HDBROLE File of a Repository Role

One of the most common mistakes in the definition of repository roles is usage of
incorrect capitalization, which will always lead to activation errors. The following
general rules should help you to avoid these errors:

� The keyword for the privilege type (for example, the term catalog sql object
in the example of Listing 13.1) must be in lowercase.

� The case of objects (schema name, table name, package name, etc.) must be
exactly the case used in the definition of the actual objects.

� Finally, the privilege name (e.g., SELECT or CATALOG READ) must be in upper-
case.
548

Database Roles 13.1
Another typical error source is incorrect quoting of objects on which privileges
are granted. There is a simple rule that should help you to avoid such mistakes:

� Whenever directly referring to a catalog object, the schema name and object
name must be individually enclosed in double quotes, as in "schema"."object".

� When referring to repository objects, no double quotes are allowed, such as in
package.sub_package::object.

Privilege Repository Role Syntax

Privileges on Schemas, Objects, and Packages

Privileges on a cata-
log schema, i.e., a
schema created via
SQL in the database
catalog (not through
activation of a repos-
itory object)

catalog schema "<schema>": <privilege_1>
[, <privilege_2>, ...];

Example:

catalog schema "my_schema": SELECT, UPDATE;

Notes:

� The schema name must be placed in double quotes.

� Do not use this syntax for database schemas created through
activation of a repository specification, e.g., an HDBSCHEMA
file or through a core data services definition. For these cases,
use the syntax for schema as stated in the following row.

Privileges on a
schema created
through activation of
a schema definition
in the repository
(HDBSCHEMA file)

schema <package>:<schema_name>.hdbschema:
<privilege_1>[, <privilege_2>, ...];

Example:

schema project_1.objects:my_schema.hdbschema:
SELECT, UPDATE;

Notes:

� Double quotes around the schema or object name are not
allowed.

� .hdbschema and analytic privilege are the only object types
for which you cannot separate package and object by a double
colon and for which you have to specify the file extension.

Privileges on a cata-
log object, e.g.,
SELECT on table

For objects created
directly in the data-
base catalog

catalog sql object "<schema>"."<object>":
 <privilege_1>[, <privilege_2>, ...];

Example:

catalog sql object "my_schema"."TABLE_1": SELECT,
UPDATE;

Table 13.1 Syntax for Adding Privileges to Repository Roles
549

Roles and Privileges13
Privileges on Schemas, Objects, and Packages

Notes:

� Objects can be any type of object that can be placed into a data-
base schema. The object type determines the available privi-
leges.

� The double quotes around schema name and object name are
mandatory.

� Do not use this syntax to grant privileges on objects created
through activation of repository objects, because the privilege
will vanish from the activated role whenever you reactivate the
object in the repository. Instead, use the syntax for sql object
as stated in the following row.

Privileges on a cata-
log object created
through activation of
the repository repre-
sentation of

� SAP HANA Mod-
eler views
(attribute view,
analytic view, or
calculation view)

� Stored proce-
dures

� Sequences

� Tables

sql object <package>::<object>:
 <privilege_1>[, <privilege_2>, ...];

Example (grant EXECUTE right for the activated procedure named
do_something in package project_1.procs):

sql object project_1.procs::do_something: EXECUTE;

Notes:

� Double quotes are not only not needed but not even allowed.

� There is a deprecated syntax that should not be used:

sql object <package>:<object>.<extension>:
 <privilege_1>[, <privilege_2>, ...];

where <extension> can be .hdbtable, .hdbview, .hdbsquence,
.attributeview, .analyticview, .calculationview or .procedure,
depending on the object type.

Package privileges package <package_name>: <privilege_1>
[, <privilege_2>, ...];

Example:

package project_1.procs: REPO.READ,
REPO.ACTIVATED_NATVIVE_OBJECTS;

Other Privileges

System privileges system privilege: <privilege_1>
[, <privilege_2>, ...];

Example:

system privilege: CATALOG READ, BACKUP ADMIN;

Privilege Repository Role Syntax

Table 13.1 Syntax for Adding Privileges to Repository Roles (Cont.)
550

Database Roles 13.1
Other Privileges

Structured privileges
created directly in
the catalog through a
create structured
privilege call

catalog analytic privilege: "<privilege_name>";

Example:

catalog analytic privilege: "my_ap_1";

Note:

� The privilege name must be enclosed in double quotes.

� Do not use this syntax for granting analytic privileges created
through activation of a modeler/development object. Use the
syntax for analytic privilege as in the following row.

� Capitalization of the privilege name must match exactly the
capitalization of the privilege’s catalog object name.

Analytic privilege
created through acti-
vation of an object
from the Modeler or
Development Work-
bench

analytic privilege: <package>:<privilege_name>.
analyticprivilege;

Example:

analytic privilege: project_1.privs:ap_1.
analyticprivilege;

Note:

� Double quotes around the package or privilege name are not
allowed.

� Capitalization of the privilege name must match exactly that
chose during definition of the analytic privilege itself.

� Analytic privilege and .hdbschema are the only object types
for which you cannot separate package and object by a double
colon and for which you have to specify the file extension.

Application
privileges

application privilege: <privilege_name>;

where

<privilege_name> = <application_schema>::<privilege>

Example:

Application privilege: project_1.app::Execute;

Note:

� The capitalization of the privilege name (e.g., Execute in the
example) must match the privilege definition in the XSPRIVI-
LEGES file of the application.

� Double quotes around package name, application name, or
privilege name are not allowed.

Privilege Repository Role Syntax

Table 13.1 Syntax for Adding Privileges to Repository Roles (Cont.)
551

Roles and Privileges13
13.1.3 Catalog Roles vs. Repository Roles

In principle, one can set up an SAP HANA project using either type of role or even
a mix of catalog and repository roles. In practice, however, there are such signif-
icant differences in the management of these two types of roles that the mixing
should be avoided (at least in roles granted directly to database users).

The most compelling reason for choosing catalog roles may be the ability to cre-
ate, modify, drop, grant, and revoke them via a simple and well-documented SQL
syntax, which is not possible with repository roles. The other advantage is the
availability of a user-friendly Role Editor, which does not yet exist for repository
roles (as of SPS 8).

At the same time, catalog roles also have multiple properties that make life more
complicated, so the list of arguments in favor of repository roles is quite extensive:

� All the side effects of managing privileges via the GRANT and REVOKE statements
(Section 13.2.1) also apply to managing catalog roles, whereas they are avoided
when using repository roles.

� Segregation of duties cannot be implemented with catalog roles unless one cre-
ates a dedicated application for the management of roles, including creation,
modification, granting, and revoking of roles. In fact, you might consider
repository roles a built-in application wrapped around catalog roles.

� Catalog roles are not transportable; repository roles, like any other object in the
SAP HANA repository, can be transported.

� Starting with SPS 7, SAP HANA Studio offers a functionality to copy users,
which does not work if catalog roles are granted to the user to be copied.

� SAP prefers usage of repository roles. More and more built-in applications are
delivered with SAP HANA, and these applications come with predelivered
repository roles.

In conclusion, we clearly recommend exclusive use of repository roles when set-
ting up new SAP HANA projects.

You might still consider using catalog roles for projects with minimal security
requirements in the database. This might be the case if SAP HANA is purely used
as the database underneath an SAP NetWeaver Application Server and there is no
intention to ever extend this usage to something that will require more extensive
user management in the database.
552

Privileges in the Database Catalog and Repository 13.2
Catalog roles are also an option if there is an identity-management solution avail-
able that can handle SAP HANA catalog roles. The mechanism for creating, mod-
ifying, granting, and revoking these roles is rather simple, so one can easily create
in the course of a project an application for role management. When it comes to
user management, SAP Identity Management and SAP GRC Access Control can
handle catalog roles in SAP HANA.

13.2 Privileges in the Database Catalog and Repository

The User and Role Editors in SAP HANA Studio offer a uniform UI for granting all
kinds of privileges. Technically, however, there are significant differences
between the way granting works for different types of privileges. This especially
impacts the SQL syntax that an administrator has to use when granting privileges
of certain kinds.

In this section, we introduce two fundamentally different principles of privilege
management that occur in SAP HANA: one for those managed in the catalog and
one for those managed in the repository.

13.2.1 Privileges Managed in the Catalog of SAP HANA

Most privileges in SAP HANA are basic database privileges that only exist as runt-
ime objects in the database catalog. This includes system privileges, which give
access to functionalities of the database (such as creating users, running backups,
etc.), and object privileges, which allow working with objects in the database
(tables, views, procedures, etc.).

These privileges cannot be created; they simply exist. In the case of system privi-
leges, they are a part of the database itself; in the case of object privileges, their
existence is tied to the existence of the database object. In the example of a data-
base table, as soon as the table is created, the SELECT, INSERT, UPDATE, or DELETE
privileges for this table exist as well.

Each privilege in the database catalog is owned by exactly one database user. For
object privileges, the owner of the privileges is the owner of the object. Taking the
example of a database table, if user PLUTO owns the table, PLUTO also owns all
object privileges related to this table.
553

Roles and Privileges13
We will now describe the granting and revoking of different types of privileges.
In addition to the mere technicalities, we will also pay attention to side effects of
revoking privileges, especially when making use of the GRANT or ADMIN options.

Granting Catalog Privileges

Privileges of the database catalog can be granted to database users or roles by
using the GRANT SQL statement.

The syntax of the GRANT statement varies slightly, depending on the type of privi-
lege being granted:

� Granting a system privilege
GRANT <privilege name> TO <grantee> [WITH ADMIN OPTION]

Grants the system privilege to a database user or a catalog role. If the adden-
dum WITH ADMIN OPTION is included, the grantee also has permission to grant
this privilege to other database users or roles.

It is possible to grant multiple system privileges at once by specifying a
comma-separated list of system privileges for <privilege name>.

� Granting privileges on catalog objects
GRANT <privilege_name_1>[, privilege_name_2>, ...] on <object> to

<grantee> [WITH GRANT OPTION]

Grants the object privilege (e.g., SELECT) on the named object (e.g., a table) to
the grantee. Permission to grant that privilege to other users can be given by
specifying the GRANT OPTION.

One can grant multiple object privileges at once by specifying a comma-sepa-
rated list of object privileges for <privilege name>.

� Granting privileges on catalog schemas
GRANT <privilege_name_1>[, <privilege_name_2> ...] ON SCHEMA <schema> TO
<grantee> [WITH GRANT OPTION]

Note

In order to grant a privilege of the database catalog to some other user or role, one must
either be the owner of the privilege or have explicit permission to grant that privilege
(privilege granted with GRANT OPTION or ADMIN OPTION).
554

Privileges in the Database Catalog and Repository 13.2
Behaves just like the granting of object privileges on catalog objects, but has an
effect on the named schema and all objects therein.

� Granting structured privileges
GRANT <structured privilege name> TO <grantee>

Structured privileges are the catalog representation of analytic privileges. In
rare cases, these objects will be created directly via SQL statements (as opposed
to creation as design-time objects in the repository), and only for such rare
cases is the SQL GRANT syntax applicable.

Note the absence of a GRANT/ADMIN option for structured privileges. This means
that only the owner (creator) of the privilege can grant it.

� Granting package privileges
GRANT <privilege_name_1>[, <privilege_name_2>, ...] ON <package> TO
<grantee> [WITH ADMIN OPTION]

Grants the named package privilege(s) (e.g., REPO.READ) on the named package
to the grantee. The privilege is valid for the package itself and all subpackages.
The ADMIN option can be used to allow for granting the privilege to others.

� Granting catalog roles
GRANT <role_name> TO <grantee> [WITH ADMIN OPTION]

This grants the given role to the grantee. If the ADMIN option is specified, then
the grantee can grant the role to others.

Revoking Catalog Privileges

Revoking of privileges works very similarly to granting. Simply replace the term
GRANT with REVOKE and TO with FROM. The GRANT and ADMIN options cannot be
revoked explicitly, and the REVOKE statement does not offer related arguments.

Note

Analytic privileges—that is, the flavor of structured privileges that can be created by
using the SAP HANA Modeler or the Developer Workbench—can only be granted (or
revoked) by using the dedicated stored procedures GRANT_ACTIVATED_ANALYTICAL_
PRIVILEGE (<privilege>, <grantee>) and REVOKE_ACTIVATED_ANALYTICAL_PRIVI-
LEGE (<privilege>, <grantee>).
555

Roles and Privileges13
The most important feature of the REVOKE statement is that only the grantor of a
particular privilege (i.e., the database user that has granted the privilege to the
user) can also revoke it; see the following discussions.

Side Effects of Revoking Privileges Using the REVOKE Statement

There are multiple possible side effects or surprising behaviors related to the
revoking of privileges or roles using the REVOKE statement. The best known—and
documented—side effect lies in the recursive revoking of privileges and is very
similar to the matter we discussed previously in the context of dropping users: If
one makes frequent use of the GRANT or ADMIN options, then there can be a com-
plicated path from the owner of a privilege to an end user that has been granted
that privilege.

Assume user A owns table T_1. User A grants the SELECT privilege on that table,
including the GRANT option, to user B. User B grants this SELECT privilege to user
C. We illustrate this situation in Figure 13.3.

Figure 13.3 Illustration of the GRANT/ADMIN OPTION

In this situation, C has not been directly granted this privilege by the owner, A,
but by another user, B.

T_1

A

B

Owns
table T_1

Grants
SELECT on T_1
with GRANT OPTION

C

Grants
SELECT on T_1

Can read
from T_1
because A
granted
SELECT

Can read from
T_1 because B is
allowed to grant
SELECT and did so
556

Privileges in the Database Catalog and Repository 13.2
If user A now revokes the SELECT privilege on table T_1 from user B, this will
implicitly also revoke the privilege from all users that have been given the privi-
lege by user B.

A less well-known side effect centers on the fact that the REVOKE statement in SAP
HANA does not in fact revoke the privilege from a user but actually simply creates
a database state in which the privilege has not been granted to the grantee by the
user who attempts to revoke it. This plays a role if the same privilege or role has
been granted to the same user by multiple grantors or if the user who revokes is
not the grantor.

To extend our example, let us assume that users A and B both granted the SELECT
privilege on table T_1 to user C, as illustrated in Figure 13.4.

Figure 13.4 Two Users Granting the Same Privilege to a Third User

We can check the "PUBLIC"."EFFECTIVE_PRIVILEGES" view to verify that SAP
HANA keeps track of both grant actions; see Figure 13.5.

Key Takeaway

Privileges and roles are revoked recursively in SAP HANA. This can lead to complex side
effects if the GRANT or ADMIN options are used frequently in privilege management.

T_1

A

B

Owns
table T_1

Grants
SELECT on T_1
with GRANT OPTION

C

Grants
SELECT on T_1

Can read
from T_1
because A
granted
SELECT

Can read from T_1
because B is
allowed to grant
SELECT and did so
and because A
granted SELECT

Grants
SELECT on T_1
557

Roles and Privileges13
Figure 13.5 Granting of One Privilege to One User by Two Different Users

Now, user B revokes that privilege. The REVOKE call will return a success message.
However, the system has revoked the action of granting the privilege to user C by
user B, not the privilege itself. In order to remove the privilege from user C, both
users A and B will have to revoke it.

The somewhat surprising behavior of the REVOKE statement also means that the
REVOKE statement can return a success message even if nothing is revoked at all.
This happens if the user executing the REVOKE statement never granted the privi-
lege to the grantee but technically is allowed to grant it.

The following example will illustrate this behavior. We are again working with
users A, B, and C and table T_1 owned by user A. Again, user A has granted the
SELECT privilege on table T_1 to user B, including the GRANT option, and user B has
granted this privilege to user C. However, A has not granted this privilege to C
directly. Hence, the situation is the same as in Figure 13.3.

Now, user A revokes the SELECT privilege directly from C. The statement execu-
tion is considered successful, because afterwards user C does not have the SELECT
privilege on table T_1 granted by user A. However, nothing has changed in the
system; user C still has the SELECT privilege, with user B as the grantor.

Key Takeaway

The same privilege or role may be granted multiple times to the same user by different
grantors. In such circumstances, each grantor will have to revoke the privilege explicitly
from the grantee.

Key Takeaways

� SAP HANA’s interpretation of the REVOKE statement is different than the natural
expectation of most human beings.
558

Privileges in the Database Catalog and Repository 13.2
Considerations of the GRANT and ADMIN Options

All the above listed side effects around the revoking of individual privileges only
play a role if the GRANT or ADMIN options are used, because only in this case can
there be grantors different from the owner of the privilege.

The side effects also come to play if you use catalog roles and multiple users have
the ROLE ADMIN privilege (which allows the granting of any catalog role in the sys-
tem, i.e., it works similarly to an ADMIN option for all roles in the system).

The GRANT or ADMIN option is implicitly revoked if you revoke a given privilege. It
is not possible to revoke the GRANT or ADMIN option explicitly. In other words: if
you have granted a privilege and by mistake included the GRANT or ADMIN option,
you have to revoke the privilege and grant it again without that option.

13.2.2 Privileges Managed in the Repository of SAP HANA

If you carefully read the section about managing privileges in the catalog of SAP
HANA, you will probably conclude that the concept behind this privilege manage-
ment is highly technical and not adequate for typical requirements in a develop-
ment scenario or other scenarios that require more elaborate user and privilege
management.

SAP HANA’s repository offers more appropriate means to implement privilege
and especially role management. In order to understand some aspects of this priv-
ilege management, we must first explain how the database handles the creation of
database objects through the activation of repository objects.

In SAP HANA, one can maintain design-time versions of objects in the repository.
These design-time objects can be activated in order to create runtime objects. The
actual creation of runtime objects is performed by a technical database user
named _SYS_REPO, who will then be the owner of the activated object.

� It can happen that after successfully revoking a privilege from a database user or role
the user or role still has this privilege.

� After revoking a privilege or role by using the REVOKE statement, you should check
that the privilege has indeed been revoked successfully. Either query the system
views "PUBLIC"."EFFECTIVE_PRIVILEGES" or "PUBLIC.EFFECTIVE_ROLES" or
check the User Editor in SAP HANA Studio.
559

Roles and Privileges13
All of these runtime objects are technically objects of the database catalog—but
management of privileges for such activated objects needs to be handled in a spe-
cial way, because it is not possible to log on with the _SYS_REPO user to use the
GRANT statement for granting the privileges to other users.

In order to grant or revoke privileges on such activated objects, SAP HANA pro-
vides stored procedures that replace the corresponding flavor of the GRANT and
REVOKE statements. Regardless of who triggers the execution of these stored pro-
cedures, they are run in the context of the _SYS_REPO user (in definer mode) so
that the actual grant action is performed by the _SYS_REPO user.

We introduce these stored procedures in the next sections while discussing the
different types of privileges available in the database.

13.3 Types of Privileges in SAP HANA

In SAP HANA, there are six different kinds of privileges, some of them coming in
two different flavors, related to catalog and repository objects. In this section, we
explain the purpose of each privilege type and also introduce the SQL syntax you
have to choose when granting a given type and flavor of privilege.

We expect that after reading this section you might be confused, and you may be
troubled by too many different privilege and syntax flavors. That’s why, in Sec-
tion 13.3.7, we explain that if you set up your system properly you can reduce the
amount of relevant options by a large margin.

13.3.1 System Privileges

System privileges allow the execution of certain actions in the database, such as
creating users, performing database backups, implementing a license key, or
restarting database processes. Many system privileges allow the execution of sig-
nificant database operations, and thus granting of system privileges should be
controlled very carefully.

Note

All privileges related to activated repository objects can simply be added to repository
roles without the need for using these stored procedures.
560

Types of Privileges in SAP HANA 13.3
The following box gives the syntax for granting system privileges in SQL as well
as for inclusion into repository roles. As with all of the following examples, we do
not explicitly list the syntax for revoking the privileges, because it is self-explan-
atory. If in doubt, refer to the SAP HANA SQL Reference, which is available online
at https://help.sap.com/hana_platform/.

Using the SQL GRANT statement, system privileges can only be granted by a data-
base user who has been granted the privilege, including the ADMIN OPTION.

The SAP HANA database offers more than twenty system privileges, and in the
past the list of privileges has been extended with each support package of the
database. At any point in time, the current list of available system privileges is
given in the context of the GRANT statement in the SAP HANA SQL Reference.

13.3.2 Object Privileges

Object privileges give a certain type of access to a database object such as a table,
view, or stored procedure. What kind of access can be given depends on the type
of the object at hand. The types of database objects that come with object privi-
leges are database tables, views, procedures, functions, and sequences.

Syntax for Granting System Privileges

In SQL, use the syntax:

GRANT <privilege_1>[, <privilege_2>, ...] TO <user_or_catalog_role_
name> [WITH ADMIN OPTION]

In repository roles, use the syntax:

system privilege: <privilege_1>[, <privilege_2>, ...];

Further Resources

Instead of listing all available system privileges here, we have assembled a detailed list
of typical administration tasks and all privileges required for these tasks. This material
can be downloaded from the book’s page at www.sap-press.com.

Syntax for Granting Object Privileges

SQL syntax for granting privileges on objects created directly in the catalog:

GRANT <privilege_1>[, <privilege_2>, ...] ON <schema>.<object> to
<user|role>
561

Roles and Privileges13
Privileges on objects created in the database catalog can only be granted by the
object owner (or someone who has the object privilege, including GRANT OPTION).
To find the owner of a catalog object, use the SQL command:

SELECT * FROM "PUBLIC"."OWNERSHIP" WHERE "SCHEMA_NAME"='<schema>' AND
"OBJECT_NAME"='<object>'

Not all object privileges exist for all types of objects. We have compiled an over-
view of the available privileges for the different object types in Table 13.2.

SQL syntax for granting privileges on objects created through activation of a design-time
object in the SAP HANA repository:

CALL "PUBLIC"."GRANT_PRIVILEGE_ON_ACTIVATED_CONTENT" ('<privilege>',
'"<package>::<object>"', '<user|role>');

Note the required single-quote and double-quote placement! Because this can be con-
fusing, we give an explicit example for an analytic view:

Grant SELECT on analytic view AN_DEMO_1 in package project_x.models to user
PLUTO:

CALL "PUBLIC"."GRANT_PRIVILEGE_ON_ACTIVATED_CONTENT" ('SELECT',
'"project_x.models::AN_DEMO_1"', 'PLUTO');

Syntax for inclusion in repository roles if the object has been created directly in the cata-
log (note the mandatory double-quotes around <schema> and <object>):

catalog sql object "<schema>"."<object>": <privilege_1>[, <privilege_
2>, ...];

Syntax for inclusion in repository roles if the object has been created through activation
of a design-time object in the repository:

sql object <package>::<object>: <privilege_1>[, <privilege_2>, ...];

Privilege Schema Table View Procedure/
Function

Sequence

ALL PRIVILEGES X X

SELECT X X X X

INSERT X X X*

UPDATE X X X*

DELETE X X X*

DROP X X X X X

Table 13.2 Map of Object Privileges for the Different Types of Objects
562

Types of Privileges in SAP HANA 13.3
13.3.3 Schema Privileges

Schema privileges are very similar to object privileges. However, a schema privi-
lege has an effect not on a single object but on all objects within the schema. For
example, granting the SELECT privilege on a schema will permit read access to all
tables, views, and sequences in that schema.

The syntax for granting schema privileges is slightly different from the syntax of
granting object privileges.

ALTER X X X

INDEX X X

REFERENCES X X

TRIGGER X X

DEBUG X X** X

EXECUTE X X

CREATE ANY X

Table 13.2 Notes

* INSERT, UPDATE, and DELETE are only available for updatable views. See Section 7.4.3
in Chapter 7.

** Debugging is only available for calculation views (and stored procedures), not for SQL
views, analytic views, or attribute views.

Syntax for Granting Schema Privileges

SQL syntax for granting privileges on schemas created directly in the catalog:

GRANT <privilege_1>[, <privilege_2>, ...] ON SCHEMA <schema_name> TO
<user_or_role>

SQL syntax for granting privileges on schemas created by activating an HDBSCHEMA file
in the repository:

CALL GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT ('<privilege>',
'"<schema_name>"', '<user_or_role>');

Privilege Schema Table View Procedure/
Function

Sequence

Table 13.2 Map of Object Privileges for the Different Types of Objects (Cont.)
563

Roles and Privileges13
All object privileges except for ALL PRIVILEGES are available for schemas; see
Table 13.2.

Privileges on schemas created in the database catalog can only be granted by the
schema owner (or someone who has the schema privilege, including GRANT
OPTION). To find the owner of a database schema, use the SQL syntax:

SELECT "SCHEMA_OWNER" FROM "PUBLIC"."SCHEMAS" WHERE "SCHEMA_NAME" =
'<schema_name>'

13.3.4 Package Privileges

Package privileges are privileges for developers that give access to areas of the
repository (packages). Table 13.3 lists all available package privileges, including a
short description. You will notice that most privileges exist in two flavors: one for
so called native objects or native packages and one for imported objects or
imported packages.

Native objects or packages have been created locally in the SAP HANA database.
Such local creation can happen by means of:

� The SAP HANA Modeler

� The SAP HANA Developer Workbench

� The web IDE for development in SAP HANA

� Developer-mode import of packages (as opposed to imports of delivery units)

Imported objects, on the other hand, are objects that have been imported into the
SAP HANA system by means of a delivery-unit import. Typically, you will encoun-
ter imported objects in the following:

For inclusion in repository roles, if the schema was created directly in the database cata-
log:

catalog schema "<schema_name>": <privilege_1>[, <privilege_2>, ...];

For inclusion in repository roles, if the schema was created by activating an HDBSCHEM
file in the repository (note that this only works if the schema name equals the file name
of the HDBSCHEMA file, and it only works for one schema definition per HDBSCHEMA
file):

schema <package_name>:<schema_name>.hdbschema: <privilege_1>[,
<privilege_2>, ...];
564

Types of Privileges in SAP HANA 13.3
� SAP-delivered repository content, such as applications and other repository
packages shipped with the database, or SAP HANA Live content.

� Packages transported within a multitier SAP HANA system landscape. All SAP
transport mechanisms for SAP HANA content are technically based on export/
import of delivery units.

Package Privilege Explanation

REPO.READ on <package> Gives read-only access to the contents of <pack-
age>, including all subpackages. Basically, one
can open the package contents in editors such as
the SAP HANA Modeler or the editors of the
Developer Workbench but cannot modify them.

Privileges on Native Objects or Packages

REPO.EDIT_NATIVE_OBJECTS on
<package>

Gives write access to all contents of <package>,
including all subpackages.

Read access is not included, so any developer will
always need REPO.READ together with
REPO.EDIT_NATIVE_OBJECTS.

REPO.ACTIVATE_NATIVE_OBJECTS on
<package>

Activate any natively created object within
<package> or its subpackages.

REPO.MAINTAIN_NATIVE_PACKAGES on
<package>

Allows managing repository package <package>,
including all subpackages. Management tasks
include the following:

� Everything in the edit dialog for packages,
e.g., renaming the package, setting a package
comment, or assigning a package to a delivery
unit

� Creating new subpackages or deleting sub-
packages underneath <package>

Note that REPO.EDIT_NATIVE_OBJECTS is also
needed to create new packages underneath
<package> in addition to REPO.MAINTAIN_
NATIVE_PACKAGES.

Privileges on Imported Objects or Packages

REPO.EDIT_IMPORTED_OBJECTS on
<package>

Same as REPO.EDIT_NATIVE_OBJECTS but only
for packages that have been imported via deliv-
ery-unit import.

Table 13.3 Overview of All Available Package Privileges
565

Roles and Privileges13
Using the GRANT statement, package privileges can only be granted by users that
have the package privilege, including the ADMIN OPTION.

13.3.5 Analytic Privileges

Analytic privileges are privileges associated with activated data models, such as
attribute views, analytic views, or calculation views. They can be used to control
the following:

� Object-level access to activated data models

� Row-level restrictions for accessing the content of activated data models

Analytic privileges are development objects that need to be created for all data-
modeling projects, matching the security requirements of the individual project.

Privileges on Imported Objects or Packages

REPO.ACTIVATE_IMPORTED_OBJECTS
on <package>

Same as REPO.ACTIVATE_NATIVE_OBJECTS but
only for packages that have been imported via
delivery-unit import.

REPO.MAINTAIN_IMPORTED_PACKAGES
on <package>

Same as REPO.MAINTAIN_NATIVE_PACKAGES but
only for packages that have been imported via
delivery-unit import.

Syntax for Granting Package Privileges

In SQL, use the syntax:

GRANT <privilege_1>[, <privilege_2>, ...] ON <package_name> TO <role/
user>

In repository roles, the syntax is:

package <package>: <privilege_1>[, <privilege_2>, ...];

 Note

Since SPS 6 of the SAP HANA database, use of analytic privileges for accessing data
models is no longer mandatory. When creating data models, one can explicitly exclude
the need for analytic privileges for the given data model; see Apply Privileges in the top-
right corner of Figure 13.6.

Package Privilege Explanation

Table 13.3 Overview of All Available Package Privileges (Cont.)
566

Types of Privileges in SAP HANA 13.3
If the data model is configured to require analytic privileges, any database user
trying to consume data from the data model will need an analytic privilege that
references this data model. Without such a privilege, the query will fail with an
authorization failure message.

If the user holds an analytic privilege referencing the data model, their access to
the content of the data model will be restricted to certain attribute values as
defined in the analytic privilege.

These restrictions can be defined in two ways:

� Static restrictions mean that the particular restrictions of one user (or a group
of users with the same restrictions) are hardcoded in the analytic privilege
object. This requires the creation of one analytic privilege object for each user
(or group of users) and data model.

� Dynamic restrictions allow for the creation of a single privilege object that
offers the correct restrictions for all users. The actual restriction values for a
user querying the data model are derived at runtime through a stored proce-
dure. In nearly all cases, except for highly trivial ones, you will want to choose
this option. An analytic privilege with dynamic attribute restrictions is often
referred to as a dynamic analytic privilege.

Figure 13.6 Analytic View with Apply Privileges Dropdown Box
567

Roles and Privileges13
Granting Analytic Privileges

It is not possible to grant a typical analytic privilege by using the SQL GRANT state-
ment, because of two properties of analytic privileges:

� They are created in the SAP HANA repository, and thus the activated object
(which is of object type structured privilege) belongs to the _SYS_REPO user. (It
is technically possible to directly create structured privileges in the catalog, by
using the CREATE STRUCTURED PRIVILEGE statement. We cannot, however, rec-
ommend making use of this option.)

� There is no GRANT OPTION or ADMIN OPTION for structured privileges, meaning
that only the owner can grant them.

For granting activated analytic privileges in SQL, the database offers a dedicated
stored procedure.

Further Resources

If you are confused by the preceding descriptions, don’t worry. We have prepared a
detailed example with step-by-step instructions for creating an analytic privilege with
dynamic restrictions. This material can be downloaded from the book’s page at
www.sap-press.com/3506.

Syntax for Granting Analytic Privileges

In SQL, we always have to use the provided stored procedure for granting analytic priv-
ileges:

CALL "PUBLIC"."GRANT_ACTIVATED_ANALYTICAL_PRIVILEGE" ('"<package>/
<privilege>"', '<grantee>')

Here is an example for the sake of clarity: granting the analytic privilege named AP_
DEMO_CUSTOMER_GROUP in package public.demo.privileges to user PLUTO:

CALL "PUBLIC"."GRANT_ACTIVATED_ANALYTICAL_PRIVILEGE"
('"public.demo.privileges:AP_DEMO_CUSTOMER_GROUP"', 'PLUTO');

In repository roles, use the syntax:

analytic privilege: <package>:<privilege>.analyticprivilege;
568

Types of Privileges in SAP HANA 13.3
SQL-Based Analytic Privileges

In SPS 7, SAP introduced SQL-based analytic privileges. These privileges currently
(as of SPS 8) only exist as runtime objects, that is, they cannot be designed in the
repository yet. For this reason, use of SQL-based analytic privileges is not recom-
mended for regular projects.

There is, however, one reason for mentioning them at least briefly: SAP BW 7.40
on SAP HANA can generate data models and corresponding SAP BW analysis
authorizations into the SAP HANA system. For generating the analysis authoriza-
tions, the SAP BW system makes use of SAP HANA’s SQL-based analytic privi-
leges. In these privileges, the restriction can be formulated as an SQL query,
allowing more complex restrictions than regular analytic privileges.

The syntax for creating SQL-based analytic privileges can be found in the SAP
HANA Security Guide available at https://help.sap.com/hana_platform/.

On a single activated view (attribute view, analytic view, or calculation view),
either regular analytic privileges or SQL-based analytic privileges can be enabled,
but not both kinds at the same time. Within a hierarchy of views, the types of
privileges can be mixed. It is, for example, possible to include a view generated by
the SAP BW system (with SQL-based analytic privileges) in a calculation view and
to enable this calculation view for regular analytic privileges.

13.3.6 Application Privileges

Application privileges are part of XS applications and can be used to give access to
the entire application (execute the application) or to functionalities within the
application. They are defined by the application developers. The technical name
of application privileges is composed of the application name and the simple
name of the privilege (e.g., Execute).

The SQL GRANT statement does not offer a syntax to grant application privileges.
Instead, there are stored procedures available for granting and revoking applica-
tion privileges.

Syntax for Granting Application Privileges

In SQL, we must use the system-provided stored procedure:

CALL "PUBLIC"."GRANT_APPLICATION_PRIVILEGE"
('<application_package>::<privilege>', '<user/role>')
569

Roles and Privileges13
13.3.7 Easing Your Mind

We did tell you that you’d be confused when you reached this point, and we
assume that we did not disappoint you. It is time to take a step back and ask your-
self: Do you really need to know all of these details?

And the answer is not an unequivocal “yes.”

It is important to have an idea of what all of the different types of privileges do.
As for all the different syntax flavors for granting different privileges, you will
most likely not need them if you get one thing right, and this is highlighted in the
following box.

If you stick to this rule, you will hardly ever need to run any SQL statement that
grants anything to a user or role, and thus you will not have to worry about the
syntax.

It is only during some preparation steps that you will need to actually grant indi-
vidual privileges; remember that you can only place a privilege into repository
roles if the _SYS_REPO user has this privilege (including GRANT OPTION or ADMIN
OPTION). Thus, whenever you create, for example, a new database schema, the
schema owner will need to grant the privileges on that schema to _SYS_REPO.

13.4 Critical Privileges and Privilege Combinations

As with any authorization system, there are certain privileges and privilege com-
binations in SAP HANA that are so powerful that their use should be avoided or—
if that is not possible—controlled very strictly. Any such list will be subjective, so
here is our personal recommendation of privileges to worry about.

In repository roles, use the following syntax:

application privilege: <application_package>::<privilege>;

The Most Important Rule of Privilege Management

The only type of privilege you should ever grant to database users is a repository role.

Do not use catalog roles, and do not grant privileges directly to users—unless this privi-
lege management is handled by an IDM solution.
570

Critical Privileges and Privilege Combinations 13.4
13.4.1 Critical System Privileges

Although most system privileges enable powerful actions (e.g., SERVICE ADMIN,
which allows for restarting database services), we consider the following privi-
leges especially critical in terms of a security setup whose task is to secure the
integrity of and access to some of your company’s most important assets: its
data.

USER ADMIN

This privilege would be sufficiently critical to warrant careful treatment if it only
allowed the creation of database users. However, with USER ADMIN you can also
drop database users and all catalog objects and schemas (including objects) owned
by them.

Of course, use of the USER ADMIN privilege cannot be avoided, but it is a privilege
worth tracking.

REPO.IMPORT

This might at first sight be surprising. However, REPO.IMPORT allows the import
(including activation) of development objects without requiring further privileges
on the repository, such as package privileges. Hence, the easiest way to slip mod-
ifications to developed objects—such as data models, roles, analytic privileges, or
applications—into a system is the import of a delivery unit, which is allowed for
any holder of this privilege.

In a development scenario, that is, a system landscape in which the SAP HANA
Modeler or the SAP HANA Developer Workbench is being used, you should need
the REPO.IMPORT privilege at least for one user, namely the account used for trans-
porting repository contents. REPO.IMPORT is, for example, included in the role
sap.hana.xs.lm.roles::Transport, which is part of the SAP HANA Application
Lifecycle Management application sap.hana.xs.lm.

ROLE ADMIN

In short, ROLE ADMIN should not be granted in an SAP HANA system. It is not
needed, with one single exception (discussed ahead) if you stick to our advice and
only make use of repository roles (see Section 13.1.3).
571

Roles and Privileges13
ROLE ADMIN allows for creating and dropping catalog roles, and it allows granting
of all catalog roles in the database system. This combination of create and grant
rights will typically violate the requirements of segregation of duties.

The one single exception: There is one catalog role in the system that is predeliv-
ered with SAP HANA, will be required in exceptional circumstances, and cannot be
included in a repository role. This is the powerful role SAP_INTERNAL_HANA_SUP-
PORT, whose name was chosen intentionally; it is a role that should only be given
to SAP Support if requested by SAP Support—and if you care, we do encourage you
to ask why it is requested. This role has a number of interesting properties:

� It can only be granted to one database user at a time (starting with SPS 8 to a
limited, configurable number of database users).

� It cannot be included in other roles, neither catalog roles nor repository roles.

� It contains privileges that are only of value to people who know and understand
the source code of the database and that are not available in any other way.

How do you grant this privilege to SAP Support if nobody in your database system
has ROLE ADMIN? You also cannot grant it to your user admin with GRANT OPTION
and then have your user administrators pass on the privilege to SAP Support.

The answer is simple: Create a stored procedure in definer mode, either in the
repository or in the catalog with user SYSTEM. Make sure the EXECUTE permission
for this procedure is given to your user admins.

This procedure should accept a user name as input parameter and simply grant
SAP_INTERNAL_HANA_SUPPORT to the given user. The procedure definition itself is
simple, as we demonstrate in Listing 13.2.

CREATE PROCEDURE "GRANT_SAP_INTERNAL_HANA_SUPPORT_ROLE"
 (IN GRANTEE VARCHAR(128))
 LANGUAGE SQLSCRIPT
 SQL SECURITY DEFINER
 AS
 v_statement VARCHAR(256);
 found INT := 0;
BEGIN
 -- Prepare error handling in case of invalid grantee
 DECLARE ERRCOND CONDITION FOR SQL_ERROR_CODE 10001;
 DECLARE EXIT HANDLER FOR ERRCOND RESIGNAL;
 -- Check input parameter
 SELECT COUNT(*) INTO found FROM "USERS"
572

Critical Privileges and Privilege Combinations 13.4
 WHERE "USER_NAME" = :grantee;
 IF :found = 1 THEN
 v_statement :=
 'GRANT SAP_INTERNAL_HANA_SUPPORT TO ' || :GRANTEE;
 EXEC v_statement;
 ELSE
 SIGNAL ERRCOND SET MESSAGE_TEXT =
 'INVALID GRANTEE PROVIDED' ;
 END IF;
END;

Listing 13.2 Procedure for Granting Role SAP_INTERNAL_HANA_SUPPORT

Give the EXECUTE privilege on this procedure, including GRANT OPTION, to the _SYS_
REPO user, and from now on you can include this EXECUTE privilege in repository
roles. Thus, your user administrators are empowered to grant the SAP_INTERNAL_
SUPPORT role to SAP Support without violating your security policies.

Again: Do not grant ROLE ADMIN to any user or role in your database, ever.

DATA ADMIN

This is an interesting privilege; it gives the holder the DROP and ALTER privilege on
all catalog objects in the database without requiring any schema or object privi-
leges, meaning that the holder of this privilege can drop any table in the system.
Possibly even worse, they can modify all tables by adding or removing fields.

We believe that DATA ADMIN should not be granted to any user or role in your data-
base.

INFILE ADMIN

A holder of this privilege can modify the database configuration, including
backup locations, password policy, and other beautiful settings. You will need this
privilege, and you want to be careful.

13.4.2 Critical Privilege Combinations

Sometimes, it is not a single privilege that is critical, but it is the combination of
several privileges. This list could probably be infinitely long, but we just discuss
our top three.
573

Roles and Privileges13
Grant Roles and Modify Roles

Nobody who has privileges to modify roles should be allowed to grant these roles.
In a typical SAP HANA system in which only repository roles are used, you should
thus avoid combining the following:

� EXECUTE ON "PUBLIC"."GRANT_ACTIVATED_ROLE", that is, the privilege to grant
repository roles.

� REPO.EDIT_NATIVE_OBJECTS and REPO.ACTIVATE_NATIVE_OBJECTS (as well as the
equivalents for imported objects) on any package in the repository. This in turn
means that user administrators (who are allowed to grant activated roles) must
not have development privileges in the SAP HANA repository.

Similarly, nobody should have permission to modify their own roles, which
means that a person with roles from package <package_1> must not have devel-
oper rights on that package.

Grant Analytic Privileges and Create/Modify Them

Similar to the case of roles, but typically a tad less critical, because here we “only”
speak of data access. The rule is this: Never grant EXECUTE ON "PUBLIC"."GRANT_
ACTIVATED_ANALYTICAL_PRIVILEGE" and system privileges CREATE STRUCTURED
PRIVILEGE or STRUCTUREDPRIVILEGE ADMIN to the same user.

Unlike roles, we do not have to eliminate developing in the repository per se,
because the (re)activation of analytic privileges is controlled by these system privi-
leges.

You should also not combine EXECUTE with privileges that allow modification of
stored procedures or look-up tables for restriction values used in dynamic value
restrictions of analytic privileges.

Cross-Tier Development Rights

Finally, in the best of all worlds, no person should have developer rights in two
systems of the same transport landscape, including developer rights in one system
and transport rights into a higher-level system of the transport landscape.
574

Troubleshooting Authorization Issues 13.6
13.5 Standard Roles for SAP HANA Systems

The SAP HANA system does not come with predelivered standard roles for the
administrator, for user management, or for other typical tasks. Such a set of recom-
mended roles has been published in a how-to guide on SCN at https://scn.sap.com/
docs/DOC-53974.

That guide documents more than 40 roles for database administrators, security
managers, developers, and support staff. The roles are intended as templates to
help project teams set up a good set of roles for secure management of their data-
base systems.

In Chapter 14, we refer to several of the roles proposed in the how-to guide when
describing our proposal for setting up a database system.

13.6 Troubleshooting Authorization Issues

For all software users, there will come a time when they try to do something and
receive a message similar to “not authorized.” If they don’t like the message, they
are likely to approach IT. In this section, we will give you some tips to make those
folks happy.

There are two primary parts to this topic: knowing what authorizations a user has
and finding what authorizations they are missing for the action they are trying to
perform.

13.6.1 Finding Information on Granted Privileges and Roles

The SAP HANA database offers multiple views with information on privileges in
the system. There are views that simply list all available roles and privileges in the
database, and there are views that contain information on privilege granting. We
will give you a brief introduction to all of these views.

Further Resources

If you need to build roles on your own, you will find our extensive list of administration
tasks and related privileges helpful. This material can be downloaded from the book’s
page at www.sap-press.com/3506.
575

Roles and Privileges13
The PRIVILEGES View

From the PRIVILEGES view, you can simply retrieve a list of all system privileges,
package privileges, object privileges, and application privileges that exist in the
database. Except for the application privileges, the view content is static, because
the available system, object, and package privileges do not change.

Note that the object and package privileges listed here are simply the available
privileges that can be granted on an object, for example, SELECT (object privilege)
or REPO.READ (package privilege).

For an administrator, the most interesting piece of information in this view will
probably be the list of all application privileges in the system.

SELECT "NAME", "TYPE" FROM "PRIVILEGES"
 WHERE "TYPE" = 'APPLICATIONPRIVILEGE'

Listing 13.3 Reading All Existing Application Privileges

The STRUCTURED_PRIVILEGES View

The list and definition of all analytic privileges (as well as structured privileges cre-
ated directly via a CREATE STRUCTURED PRIVILEGE call) is available from the
STRUCTURED_PRIVILEGES view.

The view contains multiple records for each analytic privilege, and each record
lists one restriction of the privilege. A restriction can, for example, be one entry
from the list of reference data models, one restriction value defined on one
attribute, or so on.

This can easily be illustrated by an example query against the STRUCTURED_PRIVI-
LEGES view and its output in Listing 13.4 and Figure 13.7, respectively.

SELECT "STRUCTURED_PRIVILEGE_NAME", "RESTRICTION_TYPE",
 "DIMENSION_ATTRIBUTE", "FILTER_TYPE",
 "OPERATOR", "OPERAND"
 FROM "STRUCTURED_PRIVILEGES"
 WHERE "STRUCTURED_PRIVILEGE_NAME" LIKE 'public.demo.%'

Listing 13.4 Reading from the STRUCTURED_PRIVILEGES View

The entries for one particular analytic privilege can be categorized by the field
RESTRICTION_TYPE, where the two most interesting values are as follows:
576

Troubleshooting Authorization Issues 13.6
� CUBERESTRICTION

Each data model in the list of reference models will result in one entry of type
CUBERESTRICTION.

� DIMENSIONRESTRICTION

For each restriction value defined on an attribute field, there will be one entry
of type DIMENSIONRESTRICTION. If the restriction values are obtained from the
return value of a stored procedure, then the FILTER_TYPE is DYNAMIC and the
procedure name can be found in the field OPERAND.

Figure 13.7 Output of a Query against View STRUCTURED_PRIVILEGES

The ROLES View

The names of all database roles, together with the name of the role creator and the
creation time, can be retrieved from the view ROLES. For most practical cases, the
view is not particularly interesting. You can, for example, retrieve the list of all repos-
itory roles with a query such as the one in Listing 13.5 (note that there is no perfect
way of doing this, because catalog roles also can in principle contain the pattern ::).

SELECT "ROLE_NAME", "CREATOR", "CREATE_TIME"
 FROM "ROLES"
 WHERE "ROLE_NAME" like '%::%';

Listing 13.5 Reading the List of all Repository Roles

The GRANTED_PRIVILEGES View

More interesting than just a listing of objects or roles is the question of who has
granted which privilege to whom.

The view GRANTED_PRIVILEGES has a promising name, and for some purposes it
may do what is needed: It shows details of each direct granting of a privilege to a
user or a role.
577

Roles and Privileges13
The drawback of this view is that it cannot answer two typical questions: Which
privileges does user <x> have? Which users carry privilege <y>? Soon, we will
show you the view EFFECTIVE_PRIVILEGES, which answers the first question. For
the second question, SAP HANA does not offer a simple generic answer.

Still, the GRANTED_PRIVILEGES view has its value. For example, you might want to
know which users in your systems have some privileges that have been directly
granted to them (as opposed to granted via a role). A query to answer this ques-
tion that excludes all predelivered system users is given in Listing 13.6.

SELECT "GRANTEE", "GRANTEE_TYPE", "GRANTOR",
 "OBJECT_TYPE", "SCHEMA_NAME", "OBJECT_NAME",
 "PRIVILEGE"
 FROM GRANTED_PRIVILEGES
 WHERE "GRANTEE_TYPE" = 'USER'
 AND "GRANTEE" NOT IN ('SYSTEM', 'SYS', '_SYS_REPO',
 '_SYS_STATISTICS', '_SYS_DATAPROV',
 '_SYS_EPM', '_SYS_AFL')

Listing 13.6 Finding All Users That Have Privileges Granted Directly to Them

The GRANTED_ROLES View

Similar to GRANTED_PRIVILEGES, the view GRANTED_ROLES shows all role assign-
ments in which one role has been granted directly to a user or another role. The
similarity extends to the limited use of this view when it comes to asking the ques-
tion of whether or not a user has been granted a certain role. After all, we can
build unlimited role hierarchies in the database, and we cannot easily query this
view in a way that resolves such hierarchies.

Of course, there are many other useful questions we can answer with the
GRANTED_ROLES view, for example, the question of whether any user in our system
has been assigned to catalog roles. Listing 13.7 contains an example query that
will display any role assignment of a catalog role to users other than the pre-
defined system users in the database.

SELECT "GRANTEE", "GRANTEE_TYPE", "GRANTOR", "ROLE_NAME"
 FROM "GRANTED_ROLES"
 WHERE "ROLE_NAME" NOT LIKE '%::%'
 AND "ROLE_NAME" != 'PUBLIC'
 AND "GRANTEE" NOT IN ('SYSTEM', 'SYS', '_SYS_REPO',
578

Troubleshooting Authorization Issues 13.6
 '_SYS_STATISTICS', '_SYS_DATAPROV',
 '_SYS_EPM', '_SYS_AFL')

Listing 13.7 Finding All Users That Have a Catalog Role Granted to Them

The EFFECTIVE_PRIVILEGES View

If you do want to know all privileges that a given user has, either granted directly
or indirectly through roles or hierarchies of roles, the view EFFECTIVE_PRIVILEGES
is your friend.

The field structure of the EFFECTIVE_PRIVILEGES view is almost identical to that of
the view GRANTED PRIVILEGES. However, we now find a more complex structure
around the grantee.

Consider the query in Listing 13.8 and the output of that query in Figure 13.8. In
the query, we ask for all privileges granted directly or indirectly to user
RICHARD_III. If you recall, we used this noble person in the testing of dynamic
analytic privileges, granting the role reporting_demo_model and nothing else. In
that role, we give the SELECT privilege on three activated data models and we
grant one analytic privilege. We expect to retrieve this information from
EFFECTIVE_PRIVILEGES.

In Listing 13.8, we have removed all privileges granted through the PUBLIC role
for the sake of the clarity of the result.

SELECT "USER_NAME", "GRANTEE", "GRANTEE_TYPE",
 "GRANTOR", "GRANTOR_TYPE",
 "OBJECT_TYPE", "SCHEMA_NAME", "OBJECT_NAME",
 "PRIVILEGE"
 FROM "EFFECTIVE_PRIVILEGES"
 WHERE "USER_NAME" = 'RICHARD_III'
 AND "GRANTOR" != 'PUBLIC'
 AND "GRANTEE" != 'PUBLIC'

Listing 13.8 Retrieving Privileges Granted to User RICHARD_III

Note

Resolving the potentially complex role hierarchies can be an expensive database query.
In order to prevent excessively long-running and resource-hungry queries, it is manda-
tory to include a filter condition on field USER_NAME when querying the EFFECTIVE_
PRIVILEGES view.
579

Roles and Privileges13
A look at the result set of this query in Figure 13.8 may be confusing at first sight.
For each privilege, you see two entries here: one for the privilege being granted
to our role reporting_demo_model through the user _SYS_REPO and another one
for the privilege being granted to user RICHARD_III through role reporting_
demo_model. If we had a more complex role hierarchy, you would see even more
entries for each privilege.

In addition to seeing all privileges granted directly or indirectly to our user, we
can also see the entire role hierarchy through which the privilege has been
granted. This can be very helpful when you have to traverse a complicated autho-
rization setup.

If you are not interested in the entire role hierarchy, simply add the filter condi-
tion WHERE "GRANTEE" = "USER_NAME".

Figure 13.8 Result Set of the Query against the View EFFECTIVE_PRIVILEGES

The EFFECTIVE_ROLES View

The one thing that the view EFFECTIVE_PRIVILEGES does not show us in an
entirely basic way is the list of roles that are granted directly or indirectly to a
given user. Even if we did not mention it here, you would guess that there is an
equivalent view called EFFECTIVE_ROLES.

This view behaves just like EFFECTIVE_PRIVILEGES, so we do not have to describe
it in depth.

An example query is shown in Listing 13.9. In this case, we ask for roles granted
to the SYSTEM_ADMIN user, who has been granted some slightly more interest-
ing roles.
580

Troubleshooting Authorization Issues 13.6
SELECT * FROM "EFFECTIVE_ROLES"
 WHERE "USER_NAME" = 'SYSTEM_ADMIN'

Listing 13.9 Query against the EFFECTIVE_ROLES View

From the result of this query (Figure 13.9), we can see that three roles have been
granted directly to our user: the PUBLIC role and two repository roles named
system_admin_generic and system_admin_preinstalled.

Both repository roles contain other roles. There are three roles included in
system_admin_generic, and one role is included in system_admin_preinstalled.

Figure 13.9 Result of the Query against the EFFECTIVE_ROLES View

13.6.2 Tracing Missing Authorizations

Being able to know which privileges and roles exist in the system and which ones
are granted to a given user is good. However, a typical question that might be
asked is, “Why does the system prevent me from working?”

If the user can explain clearly enough what he is trying to accomplish, you might
have a hunch as to what privileges he is missing. But what if you have no idea
what’s wrong? The solution in this case is an authorization trace. We will show
you how to trace a typical reporting authorization problem step-by-step on the
next pages.

Note

The EFFECTIVE_ROLES view—just like EFFECTIVE_PRIVILEGES—can only be queried
when filtering on field USER_NAME.
581

Roles and Privileges13
Setting the Scene

For this exercise, we will continue with user RICHARD_III and the data model,
analytic privilege, and reporting_demo_model that we have introduced previ-
ously. The present wealth of privileges of that user was shown in our query to the
view EFFECTIVE_PRIVILEGES in Section 13.6.1.

Let’s assume that RICHARD_III attempts to report against another calculation
view for which the poor chap does not have any privileges. For this purpose, we
have built a simple calculation view, CA_TEST_1, in the package pub-

lic.demo.data_models.

Our user runs the query and receives the error message shown in Listing 13.10.
Of course, a typical end user would run the query not in an SQL editor but
through some reporting frontend—and then the frontend would receive the error
message from the database and should display it to the user.

select "CUSTOMER_description", SUM("SALES_VOLUME") as "SALES_VOLUME"
 from _SYS_BIC."public.demo.data_models/CA_TEST_1"
 group by "CUSTOMER_description"
--
Could not execute 'select "CUSTOMER_description", SUM("SALES_VOLUME")
as "SALES_VOLUME" from ...' in 57 ms 113 μs .
SAP DBTech JDBC: [258]: insufficient privilege: Not authorized

Listing 13.10 Authorization Error in Query on view CA_TEST_1

Running an Authorization Trace

With this error message, RICHARD_III approaches IT support. Note that the
error message mentions neither the object being queried nor the type of privi-
lege missing.

The easiest and best way to find what’s missing is to have the user repeat the
action that fails while recording additional trace information related to authoriza-
tions, and the best way to run this trace is by enabling a User-Specific Trace.

Open the Administration Editor of the SAP HANA database system RICHARD_III
is using. In this editor, you can configure the User-Specific Trace on tab Trace

Configuration; see Figure 13.10.
582

Troubleshooting Authorization Issues 13.6
Figure 13.10 The Trace Configuration Tab of the Administration Editor

In the wizard for setting up the User-Specific Trace, make the following entries
(see Figure 13.11):

� Context Name
This is an identifier for the trace and has to be unique. Only alphanumeric char-
acters are allowed. The trace will create a dedicated output file, and the Con-

text Name will be part of the file name. In our case, the Context Name is
AUTHTRACER3.

� Database User
The name of the user whose actions we need to trace; you can only enter a sin-
gle user name here.

� Trace Component
The component for authorization traces is called authorization, and we typi-
cally only need to trace the indexserver processes, even though it does not
hurt to trace on ALL SERVICES.

Note that you will only find this component after selecting the checkbox Show

All Components!
583

Roles and Privileges13
The best way to find the component (once the checkbox is selected), is to sim-
ply start typing the string “authorization” in the search box on top of the Com-

ponent table.

� Trace Level
Useful and comparatively readable trace information is written if we set the
trace level of this component to INFO.

Start the tracing by clicking Finish.

Figure 13.11 Configuration of a User-Specific Trace

While the trace is active, user RICHARD_III will have to re-execute the action that
resulted in authorization issues.
584

Troubleshooting Authorization Issues 13.6
As soon as the user-specific trace has recorded any information (i.e., as soon as
RICHARD_III has encountered authorization issues), a new trace file will appear
on the tab Diagnosis Files of the Administration Editor. You can most easily find
the dedicated trace file by filtering on the Context Name chosen during trace con-
figuration; see Figure 13.12. Simply double-click the file to study its content. The
trace output is shown in Listing 13.11, with the most important bits in bold.

Figure 13.12 Finding the User-Specific Trace in Tab Diagnosis Files

You can see that an SQL_ACT_SELECT action was found to be not authorized. It
would not be wrong to assume that this hints at a missing SELECT privilege on
some object. The object has object ID 155111, and a bit further down you will find
an entry VIEW-155111-public.demo.data_models/CA_TEST_1. This is all you need
to know; your user is missing the SELECT privilege on the data model CA_TEST_1
in package public.demo.data_models.

[29078]{303404}[1597/-1] 2013-12-12 20:49:24.981332 i
 TraceContext TraceContext.cpp(00699) :
 UserName=RICHARD_III, ApplicationUserName=D051516,
 ApplicationSource=csns.sql.editor.SQLExecuteFormEditor$1$1.
 run(SQLExecuteFormEditor.java:796);
[29078]{303404}[1597/-1] 2013-12-12 20:49:24.981151 i
 Authorization SQLFacade.cpp(01181) : UserId(155772) is
 not authorized to do SQL_ACT_SELECT on
 ObjectId(3,0,oid=155111)
[29078]{303404}[1597/-1] 2013-12-12 20:49:24.981361 i
 Authorization SQLFacade.cpp(01493) :
 system-action : none
 SCHEMA-140899-_SYS_BIC : {} , {SQL_ACT_SELECT}
 VIEW-155111-public.demo.data_models/CA_TEST_1 : {} , {SQL_ACT_
SELECT}
 COLUMN-155125-SALES_VOLUME : {SQL_ACT_SELECT}
 COLUMN-155121-CUSTOMER_description :
585

Roles and Privileges13
{SQL_ACT_SELECT}
[29078]{303404}[1597/-1] 2013-12-12 20:49:24.981432 i
 Authorization query_check.cc(02440) : User RICHARD_III
 tried to execute 'select "CUSTOMER_description",
 SUM("SALES_VOLUME") as "SALES_VOLUME"
 from _SYS_BIC."public.demo.data_models/CA_TEST_1"
 group by "CUSTOMER_description"'

Listing 13.11 Output of the Authorization Trace

Add the SELECT privilege on the activated calculation view to the reporting role of
user RICHARD_III, and let him repeat his query.

Unfortunately, it turns out that there is still something missing. The error message
returned is slightly different. Perhaps a different type of privilege is missing; see
Listing 13.12 and compare to the error message in Listing 13.10.

Could not execute 'select "CUSTOMER_description", SUM("SALES_VOLUME") as
"SALES_VOLUME" from ...' in 65 ms 298 μs .
SAP DBTech JDBC: [2048]: column store error: [2950] user is not authorized :

Listing 13.12 New Error Message in the Same Query Against CA_TEST_1

If the authorization trace is still running, then you can simply refresh the contents
of the trace file to see if there is new information. Indeed, there are now a few
lines added to the trace file, as shown in Listing 13.13. Again, we have set the
interesting bits in bold. The trace tells you clearly that your user is missing an ana-
lytic privilege for this view.

[29078]{303404}[1597/-1] 2013-12-12 20:56:48.996832 i
 Authorization ceAuthorizationCheck.cpp(00354) :
 AuthorizationCheckHandler::isAuthorizedToSelect (AP check):
 (Original) User RICHARD_III is not authorized on
 _SYS_BIC:public.demo.data_models/CA_TEST_1en due to XmlAP check
[29078]{303404}[1597/-1] 2013-12-12 20:56:48.997085 i
 Authorization XmlAnalyticalPrivilegeFacade.cpp(01252) :
 UserId(155772) is missing analytic privileges in order to
 access _SYS_BIC:public.demo.data_models/CA_TEST_1
 (ObjectId(21,0,oid=3816)). Current situation:
 AP ObjectId(19,2,oid=167): Not granted.

Listing 13.13 New Output of the Authorization Trace
586

Summary 13.7
Bonus: Finding Analytic Privileges for an Activated Data Model

You could now ask RICHARD_III to apply for the missing privilege. However, you
might want to know if there are analytic privileges existing in the system that
would grant access to the calculation view in question.

You can use the STRUCTURED_PRIVILEGES view to find any such analytic privilege;
see the example query in Listing 13.14. You simply have to look for entries with
CUBERESTRICTIONS on the activated data model you are interested in.

SELECT "STRUCTURED_PRIVILEGE_NAME", "RESTRICTION_TYPE", "DIMENSION_
ATTRIBUTE", "FILTER_TYPE", "OPERATOR", "OPERAND"
 FROM "STRUCTURED_PRIVILEGES"
 WHERE "RESTRICTION_TYPE" = 'CUBERESTRICTION'
 AND "OPERAND" = '_SYS_BIC:public.demo.data_models/CA_TEST_1'

Listing 13.14 Searching for Analytic Privileges on a Given View

13.7 Summary

We did go to great lengths in this chapter in order to get a few simple messages
across:

� Only use repository roles
Do not use catalog roles, and do not grant privileges directly to users.

Using catalog roles, you will face serious obstacles trying to implement reason-
able segregation of duties in the areas of role management and user manage-
ment.

If you grant privileges directly to users, and—against popular belief—also when
using catalog roles, there are multiple difficult-to-control side effects of privilege
management, especially to do with the revoking of roles and privileges.

Use of catalog roles can be acceptable if an appropriate IDM solution is being
used.

� Understand the privileges required for a given action
When you set up your database users and their roles, especially administrators
and developers, first decide on the tasks of the different user groups; then make
a list of the database actions related to these tasks; and finally build database
roles enabling these actions. Take note of the troubleshooting advice in Section
13.6; it can also help for assembling roles.
587

Roles and Privileges13
� Be aware of critical privileges or privilege combinations
We gave our view of critical privileges in Section 13.4. In any case, try to avoid
the ROLE ADMIN and DATA ADMIN system privileges.

� Create analytic privileges intelligently
Analytic privileges with dynamic attribute restrictions help you minimize the
number of analytic privilege objects that you have to build. The stored proce-
dures used for restriction value lookup should be created through repository
objects so that the analytic privilege and the procedure can both be trans-
ported.

Be aware of the combinatorics related to analytic privileges. Especially do not
use the option Applicable to All Information Models!
588

If you are about to start a project involving SAP HANA, you need to pre-
pare and set up the system properly to avoid complications during system
operation. This chapter gives an overview of what you need to know.

14 Planning and Setting Up an SAP HANA
System Landscape

In this chapter, we will combine a lot of what we have covered so far. We will
cover the first steps in an SAP HANA project that will lead to a system that is well-
prepared for production usage.

There are three main parts in this chapter. In the first part (Section 14.1), we will
talk about sizing, the choice of single-node versus scale-out architectures, and
other available form factors. In the second part (Section 14.2), we take a look at
the system landscape from development to the production system and discuss the
options you have for deploying SAP HANA on the different nodes of the land-
scape. The third big block (Section 14.3) covers the actual setting up of the system
after database installation. This bootstrapping process will include items such as
creating database users for the administrator teams, enabling security-relevant
features such as audit logging, and other steps that are necessary for reliable sys-
tem operation.

We will try to develop the chapter in a way that it is useful for both the seasoned
administrator who has already studied the preceding chapters and the project
manager who will usually not have detailed knowledge across all areas. Where
relevant, we will reference the deep-dive sections of previous chapters.

Throughout this chapter, we assume that you are planning an on-premise instal-
lation, so some aspects of our discussion may not be relevant for customers pre-
paring a cloud deployment.
589

Planning and Setting Up an SAP HANA System Landscape14
14.1 Preparation: Sizing, Hardware Choices, and More

When you prepare a project involving SAP HANA, there are three main questions
you will need to answer before you can set out to acquire the system hardware:
What system size is required? Will you build a single-node or a scale-out system?
Will it be an appliance or based on Tailored Data Center Integration?

There are further questions, such as the choice of hardware partner and self-man-
aged system vs. hosting or cloud offerings, which we will not discuss here.

14.1.1 System Sizing for SAP HANA

As in probably all SAP systems, there are two critical aspects that need to be con-
sidered in the system sizing in SAP HANA: data volume and system workload.
Translated to the hardware of the SAP HANA system, these aspects relate to the
available main memory and the CPU power, respectively. Of these two quantities,
the data sizing is by far easier to plan for.

Fortunately, in the vast majority of cases that we have seen, the system sizing has
been and could be primarily based on data volume. The amount of CPU cores
then follows automatically from the form factors offered within the appliance
definition.

We will first discuss the generic sizing approach for SAP HANA memory and CPU
sizing before pointing out specific considerations for typical use cases. Please note
that the sizing procedure must be performed by qualified personnel. SAP Consult-
ing and the SAP HANA hardware partners offer sizing services for SAP HANA.

Memory Sizing

To determine the RAM requirements for a new SAP HANA installation, the most
crucial part is to estimate the memory consumption of the tables in SAP HANA.
Once this figure is known, the memory requirements are easily calculated. To esti-
mate the memory size of the tables to be loaded into SAP HANA, you must con-
sider five steps, as visualized in Figure 14.1. SAP offers tools to support the sizing
process. These tools handle those steps that can be automated, which is at least
steps 2 and 5 of the following procedure. In some use cases, there is also partial
support for steps 3 and 4. We cover these tools in the sections on the individual
use cases that follow:
590

Preparation: Sizing, Hardware Choices, and More 14.1
1 Select the tables that will exist in the SAP HANA system
Setting up a new system or migrating an existing system to a new database
offers great opportunities to think about waste. Removing or not transferring
unnecessary tables or parts of tables is the most efficient way to reduce data
volume. Your SAP HANA use case plays an important role in deciding what is
waste and what is important.

If you plan for a data mart or another type of new system in which tables will
be replicated from one or multiple source systems into your SAP HANA data-
base, then you will have to carefully select the tables to transfer. It may also be
sufficient to only transfer a fraction of the table contents, perhaps those deter-
mined by a transaction date.

Figure 14.1 Memory Sizing for SAP HANA

If you migrate an SAP BW system to SAP HANA, there are usually two categories
of tables that can easily be removed or reduced in size; aggregates and most sec-

Select
Tables

Determine
uncompressed
table sizes

Apply growth
factor

SAP
HANA

NLS

Hot Warm
Consider data archiving
and hot/warm

Apply SAP HANA
compression factor

SAP HANA Disks

Source Database

RAM

SA
P

 H
A

N
A

 System

x GB

y GB
z GB
591

Planning and Setting Up an SAP HANA System Landscape14
ondary indexes are not needed as performance measures in SAP HANA, and
they should therefore not be considered in your SAP HANA database sizing. In
many SAP BW systems, you can also find copious amounts of old logging or
other status information that should normally be cleaned up as part of regular
housekeeping. In the course of a system migration, one will very often find that
one could have been more efficient in this area.

In addition to these trivial ways of reducing the data volume, you may or may
not plan to also modify your warehouse architecture, making use of the
extended capabilities offered by SAP HANA (these capabilities are often sum-
marized under the term LSA++, which stands for the new Layered Scalable
Architecture with SAP HANA features). Such a redesign is entirely optional and
can also be started at a later point in time.

The situation is similar when migrating an SAP Business Suite system to SAP
HANA: Most indexes will not be needed, some tables may not be required any-
more, and housekeeping often offers room for freeing up some space.

2 Determine the uncompressed table sizes
All database systems offer some way of compressing data. The effective com-
pression rate depends on the type of database, even on the software version, on
the data topology, and other factors. It is therefore not possible to define a gen-
eral compression factor to compare the compressed size of data in arbitrary
source databases and in SAP HANA.

Instead, one has to define a nominal data size that is independent from the
source database system. This is the uncompressed size of a table, determined
by the length of the table fields and the number of records in the table.

SAP offers sizing reports to determine these uncompressed sizes in existing
SAP systems for different system types, for example, SAP BW systems or SAP
Business Suite systems. We list the specific information sources in the corre-
sponding dedicated sections.

If, on the other hand, you plan for an entirely new SAP system, you can follow
the standard sizing procedures for the system in question to determine the

Note

For more on LSA++, we recommend the following:

https://scn.sap.com/docs/DOC-35212
592

Preparation: Sizing, Hardware Choices, and More 14.1
uncompressed table sizes. See, for example, SAP QuickSizer at https://ser-
vice.sap.com/quicksizer.

3 Estimate the data growth
Your new SAP HANA system must provide resources to store and operate not
only on the initial data volume; in most cases, the contents of a database system
grow with time. You should include this growth in your system sizing.

4 Consider data archiving or hot-/warm-data concepts
Depending on the SAP HANA use case, you might be able to integrate data
volume-management techniques such as data archiving (e.g., nearline storage) or
hot and warm data concepts. Both options are supported, for example, by SAP
BW on SAP HANA, and SAP BW offers assistance if you plan to employ them.
Hot/warm data is usually referred to as “nonactive data concept” in resources
related to SAP BW on SAP HANA sizing.

If you build a custom data mart, you will not find any tool assistance for setting
up a hot/warm data concept or implementing data aging using, for example,
the Smart Data Access feature for data virtualization. We cannot recommend
trying to implement these techniques in a custom data mart.

With hot/warm data in SAP HANA, there is the possibility of defining unload
priorities for individual tables, so that some tables may be evicted from main
memory very quickly. In SAP BW memory sizing, such tables are accounted for
with a scale factor significantly smaller than 100 %.

5 Apply the appropriate SAP HANA compression factor
Up to this step, we have identified the uncompressed data volume that will be
loaded into SAP HANA initially plus the projected growth over a reasonable
time frame. The final step in the memory sizing is now to apply the compres-
sion factor that we can expect to reach.

Technically, the compression factor that can be reached depends primarily on
the target in-memory store: Columnar tables generally have a much better com-
pression than row store tables. The compression also can be strongly influenced
by the data distribution within a table: Columns with a very high percentage of
unique values will be compressed less efficiently than very sparse columns (see
the discussion in Chapter 8). If an application creates data in a compressed for-
mat, the ability of the database to compress even further will be limited.

In practice, the tools supporting SAP HANA sizing for the individual use cases
make different assumptions regarding the compression factor. The generic siz-
593

Planning and Setting Up an SAP HANA System Landscape14
ing tool assumes a typical compression factor of 7 for columnar tables, based
on overall experience. The tool supporting sizing for an SAP BW migration to
SAP HANA has different compression values for the different object types in an
SAP BW system, based on intensive measurements performed by the develop-
ment team. Similarly, the sizing tool for SAP Business Suite systems includes
application knowledge to optimize the accuracy of the sizing approach.

Once you have determined the memory consumption of the database tables, the
overall memory requirements of the database system generally follow from a sim-
ple rule of thumb: 50 % of the database server’s main memory can be used to store
data, and the other half must be reserved for operating on that data, that is, for
query executions and other workload. Hence, the total memory requirement
<VDB> for the database is twice the expected compressed data volume <VDATA>.

The database server must be able to host more than just the database processes.
There also needs to be RAM available for the operating system itself and typical
auxiliary processes required on the server, such as monitoring agents, backup
tools, and so on. The database system reserves space for such processes by limit-
ing its own maximum memory allocation to the value of parameter global.ini �
[memorymanager] � global_allocation_limit. The default limit is set at approxi-
mately 90 % of the installed physical RAM. It follows that the installed main mem-
ory <VRAM> of the system must at least be 1/0.9 times the memory requirement
of the database processes: <VRAM> = 1/0.9 x <VDB> = 1.11 x 2 x <VDATA>.

Once you have determined the quantity <VRAM>, you can look up the available
server form factors and choose from those servers whose installed memory is as
big as <VRAM> or higher. See Section 3.5 for the precise setting of global_
allocation_limit.

An additional complication arises if you need to size for a scale-out system. In this
case, the required main memory must be split among multiple hosts of identical
installed memory. If, for example, <VRAM> = 2.3 TB (and the use case is not SAP

Note

If you plan to operate multiple applications on the same SAP HANA database server,
then you need to include all of these applications in the sizing process and add their
respective RAM (and potentially CPU) requirements.

The same is true if you operate an SAP NetWeaver Application Server on the database
server, as described in SAP Note 1953429.
594

Preparation: Sizing, Hardware Choices, and More 14.1
Business Suite on SAP HANA), then you may plan a scale-out system consisting of
either five hosts with 512 GB of installed RAM each or three hosts with 1 TB of
installed RAM each.

Depending on the use case, however, the master node of a scale-out system might
be dedicated to “transactional workload” and only contain related tables, whereas
application data underlying the OLAP workload will be distributed across the
slave nodes. In these cases, the data separation between master and slave nodes
must also be considered.

Finally, standby nodes do not play a role in the sizing. The memory requirements
determined in the sizing procedure must be met by using the worker nodes.
Standby nodes should then be added to optimize system availability.

CPU Sizing

The sizing procedure for CPU requirements is less well-defined than the proce-
dure for memory sizing, because it is based on more ambiguous quantities. Gen-
erally speaking, it is assumed that an average active user will cause a certain work-
load on the system. (An active user is a user who is currently logged on to the
system and from time to time triggers database transactions.)

SAP has established a performance standard for measuring system workload named
SAPS (SAP Application Performance Standard). This standard provides a relation-
ship between the hardware of a system and a typical quantum of workload. The
computing power of an SAP-validated server is measured in SAPS, as is the CPU-
requirement of SAP sizing procedures. Hence, if the input provided for CPU sizing
is accurate, then the hardware vendors can easily find a system matching your CPU
requirements.

For the two major use cases of SAP HANA (SAP BW on SAP HANA and SAP Busi-
ness Suite on SAP HANA), there is no specific guidance published regarding CPU
sizing. In most circumstances, it will be sufficient to rely on memory sizing for
these system types. Exceptions are mentioned in the sizing documentation for the

Note

For more information about SAPS, we recommend the following:

https://global.sap.com/campaigns/benchmark/measuring.epx
595

Planning and Setting Up an SAP HANA System Landscape14
particular use cases. We will therefore give details regarding CPU sizing only in
the “Sizing for Generic SAP HANA Use Cases” section.

Sizing for SAP BW on SAP HANA

If you are planning to migrate an existing SAP BW system on “any database” to
SAP BW on SAP HANA, SAP offers a very detailed sizing program that you can
execute in your existing SAP BW system. This program presently (July 2014) has
the following main features:

� Analyzes existing SAP BW system tables, including sampling of table contents

� Most accurate compression estimates, based on the different object and table
types in an SAP BW system

� Automatically separates tables into row store and column store

� Considers nearline storage (extended table concept) and hot/warm classifica-
tion of data

� Can account for data growth estimates

� Automatically adds required uplift for technical factors such as non-Unicode
source systems

� Respects SAP BW-specific best practices for scale-out systems

The details of the SAP BW sizing procedure are constantly adjusted as the capabil-
ities of SAP BW on SAP HANA are extended. We will not cover tool usage in detail
but will refer you to the SAP Notes listed in Table 14.1 instead.

Note Note Name Comment

1637145 SAP BW on HANA: Sizing
SAP In-Memory Database

Master note for sizing SAP BW on SAP HANA.
Do not use the attachments to this note (use
SAP Note 1736976 instead).

1736976 Sizing Report for BW on
HANA

Contains a more accurate sizing report, and the
most up to date documentation attachments
for general SAP BW/SAP HANA sizing, as well
as special considerations for scale-out in SAP
BW on SAP HANA.

1767880 Non-Active Data Concept in
BW on HANA

Information on the hot and warm classification
of data in SAP BW on SAP HANA.

Table 14.1 SAP Notes Related to Sizing for SAP BW on SAP HANA
596

Preparation: Sizing, Hardware Choices, and More 14.1
If instead of a migration an entirely new SAP BW system is planned using SAP
HANA as database, the entry point for SAP HANA sizing is the SAP QuickSizer.

CPU sizing for the SAP HANA database of an SAP BW system is considered unnec-
essary; the critical resource is in virtually all cases the main memory.

Sizing for SAP Business Suite on SAP HANA

Similar to SAP BW, the SAP Business Suite offers a sizing tool that will analyze the
tables in an existing SAP Business Suite system and produce a sizing recommenda-
tion accompanied by detailed output regarding different table categories and so on.

The sizing report recognizes particular properties of the SAP Business Suite sys-
tem such as large object columns (LOBs) that can be configured to reside mainly
on disk since SPS 7 of SAP HANA. Similar to the report for SAP BW sizing, it
includes rule sets for separating tables into row store and column store.

Details for the sizing procedure are published by SAP in the SAP Notes given in
Table 14.2.

1702409 HANA DB: Optimal Number
of Scale Out Nodes for BW
on HANA

Special considerations for using SAP BW on a
scale-out SAP HANA system.

1855041 Sizing Recommendation for
Master Node in BW-on-
HANA

Particular considerations for the master node in
SAP BW on scale-out SAP HANA.

1666670 BW on SAP HANA—Land-
scape Deployment Planning

General consideration for SAP BW system plan-
ning, including options for operating additional
applications on the same SAP HANA server.

Note Note Name Comment

1793345 Sizing for SAP Suite on
HANA

Master note for sizing the SAP HANA system for
SAP Business Suite on SAP HANA.

1872170 Suite on HANA Memory
Sizing

SAP Note providing the sizing report for mem-
ory sizing of the SAP HANA system, including a
detailed FAQ document.

Table 14.2 SAP Notes Related to Sizing for SAP Business Suite on SAP HANA

Note Note Name Comment

Table 14.1 SAP Notes Related to Sizing for SAP BW on SAP HANA (Cont.)
597

Planning and Setting Up an SAP HANA System Landscape14
If no existing SAP Business Suite system is available to run the sizing report, SAP
also gives a rule of thumb for deriving the SAP HANA sizing from the sizing for a
regular disk-based database. See SAP Note 1793345 for the most up-to-date for-
mula.

1781986 Business Suite on SAP
HANA Scale Out

Generic information regarding support of SAP
HANA scale-out in the SAP Business Suite. See
especially the SAP Notes referenced from here,
which contain important technical details, e.g.,
regarding table distribution.

1825774 SAP Business Suite Powered
by SAP HANA—Multi-Node
Support

Restrictions for scale-out support in SAP Busi-
ness Suite on SAP HANA.

1950470 Hardware Prerequisites for
Business Suite on SAP
HANA Scale Out

Specific hardware requirements for restricted
ramp-up for SAP Business Suite on scale-out
SAP HANA.

1826100 Multiple Applications SAP
Business Suite powered by
SAP HANA

Provides a white list of applications related to
the SAP Business Suite that may be installed on
the same database system.

Note

At the time of writing (July 2014), SAP does not yet fully support SAP HANA scale-out
for the SAP Business Suite. The only supported setup is a simple failover scenario con-
sisting of one worker node and one standby node. Scale-out with multiple worker nodes
is not yet generally available for SAP Business Suite on SAP HANA. See SAP Note
1825774 for details and possible changes. The note also contains information on how to
contact SAP if you would like to participate in a restricted availability process for scale-
out in SAP Business Suite on SAP HANA.

Load tests have shown that the mostly transactional workload of an SAP Business Suite
scenario allows lowering the ratio of CPU/RAM on the SAP HANA server. Conse-
quently, there are special hardware setups available for SAP Business Suite on SAP
HANA that come with higher memory and storage configurations compared to the
general-purpose hardware systems. You can find these hardware configurations in the
SAP Product Availability Matrix (at https://service.sap.com/pam/) for systems based on
the Westmere CPU family and on SCN (“SAP Certified Appliance Hardware for SAP
HANA” at https://scn.sap.com/docs/DOC-52522) for systems based on the more recent
Ivy Bridge CPU family.

Note Note Name Comment

Table 14.2 SAP Notes Related to Sizing for SAP Business Suite on SAP HANA (Cont.)
598

Preparation: Sizing, Hardware Choices, and More 14.1
SAP considers memory sizing sufficient for most SAP Business Suite use cases,
with the exception of above-average usage of SAP HANA Enterprise Search (see
SAP Note 1793345).

Sizing for Generic SAP HANA Use Cases

If you are not planning an SAP BW or SAP Business Suite system, then we con-
sider your project a generic SAP HANA use case for the purpose of system sizing.
The sizing guidelines in this section apply to custom data marts as well as acceler-
ator applications and other use cases which do not come with a dedicated set of
sizing rules.

In the generic use case, the database memory will normally be the limiting factor
for system sizing. Such systems will often contain copies of data from other SAP
systems, replicated into SAP HANA by a selection of the available data provision-
ing technologies. For such setups, SAP offers a generic sizing report that may be
executed in the source system(s) to determine the approximate memory footprint
in SAP HANA of the data to be replicated.

This sizing report, as well as up-to-date information about generic compression
factors of row store and column store data, can be obtained from SAP Note
1514966. This SAP Note also contains general rules for CPU sizing.

If the sizing report cannot be used, an approximate sizing can be performed using
SAP QuickSizer at https://service.sap.com/quicksizer.

14.1.2 Hardware Choices

When preparing to acquire your SAP HANA system, you will need to make a few
decisions to determine the boundary conditions of your hardware purchase. The
two most important ones are about binary choices: scale-up versus single-node
and full appliance versus Tailored Data Center Integration. We discuss each of
these two choice briefly. A third important choice concerns the hardware vendor
for your database system, and naturally we will be impartial in this aspect.

Single-Node versus Scale-Out Systems

The first choice related to SAP HANA hardware is the choice between single-node
and scale-out hardware. As a simple rule of thumb, we recommend choosing a
599

Planning and Setting Up an SAP HANA System Landscape14
single-node system whenever possible in order to avoid the added complexity
that is inherent to a clustered system. This complexity starts with the hardware
setup itself, touches on aspects of system administration, and ends with the topic
of data partitioning and distribution for optimal overall system performance.

Hence, if the outcome of your sizing procedure leads to systems that can be built
from a single-node server or a scale-out system, the single-node server should be
preferred. Single-node systems can contain up to 6 TB of RAM for SAP Business
Suite on SAP HANA and up to 2 TB of RAM for all other use cases.

The question is not as simple if the sizing indicates that the initial system will fit
into a single-node server, but estimated data growth puts the system beyond this
hardware limit. In this situation, you have three basic choices:

� Start with scale-out hardware to avoid the necessity of a hardware change in the
foreseeable future.

� Confirm with your hardware vendor whether you can scale-out from hardware
initially purchased as a single-node system.

� Start with a single-node system, and monitor resource consumption carefully.
Be prepared for a hardware exchange to move your database to a scale-out sys-
tem at a later point in time.

You must also keep in mind that not all SAP applications offer unrestricted sup-
port for SAP HANA scale out. The best support is offered by the SAP BW system,
which also actively assists with the questions of optimal data distribution and par-
titioning. There are by now quite a few customers who successfully and mostly
painlessly operate SAP BW installations with scale-out SAP HANA systems.

If system sizing puts you safely into the realm of single-node systems, you still
have a choice to make: Do you buy the smallest available system that is big enough
for initial sizing plus projected data growth? Or do you buy a larger system to
make room for added SAP HANA usage—for example, adding further applica-
tions, unexpected data growth, and so on?

The choice can be made easy if your hardware partner offers SAP HANA servers
that can easily be scaled up by adding additional RAM, CPU, and disk resources
without the need to exchange the entire hardware.

If your hardware partner does not offer such systems, you will have to balance the
cost of larger hardware against the probability of needing to scale up before the
600

Planning the System Landscape 14.2
hardware is written off. In many cases, it will be most cost-efficient to go with the
larger hardware system, at least as far as the hardware is concerned. On the licens-
ing side, SAP offers multiple licensing models by now, of which the traditional
memory-based sizing may be affected by a larger server system (see SAP Note
1704499). In this case, you may be able to license less memory than is physically
installed and force the system to use at most the licensed amount of main memory
by setting the global_allocation_limit parameter accordingly. We gladly refer
you to your SAP sales representative and leave this book free from any further dis-
cussions related to the licensing topic.

Full Appliance versus Tailored Data Center Integration

As we mentioned in Chapter 1, SAP has opened up the hardware requirements to
support hardware for SAP HANA that is based on prevalidated standard SAP
HANA appliances in which customers may replace selected components, such as
the storage system and the network layer, with existing components from their
data center.

To make it simple, Tailored Data Centers allow customers to balance hardware
cost against skills; a full appliance will probably come with a higher price tag, but
it will have all hardware and database software already installed.

The (in most cases) more important aspect relates to the name Tailored Data Cen-
ter Integration; depending on your data center setup, a standard appliance might
simply not fit—either with your rules for acquiring hardware or with the setup of
responsibilities in the data center. In such cases, Tailored Data Center Integration
will allow you to tune the SAP HANA systems in a way that they can meet your
requirements.

14.2 Planning the System Landscape

A typical SAP system landscape consists of at least three and often four or even
more tiers. A four-tier landscape with development, test, quality assurance (QA),
and production system, as depicted in Figure 14.2, can be regarded as a best-
practice setup for typical requirements. In that figure, each tier of the focused
system landscape <1> consists of an application server (which might be an SAP
NetWeaver server, an SAP BusinessObjects BI server, or something similar) that
601

Planning and Setting Up an SAP HANA System Landscape14
interacts with an SAP HANA database system. There will usually be transports of
content between neighboring system tiers. Depending on the use case, there
may be application server content to be transported, SAP HANA content, or
both.

Figure 14.2 Typical Four-Tier System Landscape

One will hardly ever find an isolated system landscape. In most cases, multiple
system landscapes will exist (e.g., an ERP landscape, an SAP BW landscape, a CRM
landscape, and more), and there will be interfaces between these landscapes. In
most cases, there will be one SAP Solution Manager system for certain adminis-
tration aspects of the systems in all landscapes. In the following, however, we will
ignore such external interfaces of a system landscape.

Even if we simply focus on one system landscape, we have a wide variety of topics
to consider: deployment options and sizing for the SAP HANA systems in the dif-

Application
Server/BI Server

SAP HANA

Data Log

Development

Application
Server/BI Server

SAP HANA

Data Log

Test

Application
Server/BI Server

SAP HANA

Data Log

QA

Application
Server/BI Server

SAP HANA

Data Log

Production

SAP System Landscape <1>

SAP Solution
Manager

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports

SAP System Landscape <i>

Development Test QA Production

InterfacesInterfacesInterfacesInterfaces
602

Planning the System Landscape 14.2
ferent tiers of the landscape, deployment options for the applications in the dif-
ferent tiers, business continuity requirements in the different tiers, and also con-
tent transports.

14.2.1 Choosing SAP HANA Deployment Options

When planning the SAP HANA deployment, you have a multitude of options to
choose from. You can install standard appliance hardware or go for Tailored Data
Center Integration; you can install single-node or scale-out systems; you can
install multiple database systems on a single physical server; you may operate the
database on virtualized or physical hardware. And you can in principle choose dif-
ferently on each tier of your system landscape. In the following subsections, we
will help you sort out the majority of options.

Standard Appliance or Tailored Data Center Integration

As explained in Section 14.1.2, there are good reasons for choosing either a stan-
dard appliance or Tailored Data Center Integration. Whatever your choice is, it
will very probably be the same for all tiers of a given system landscape. In any
case, a reasonable QA system must have hardware that is comparable to that of
the production system, and thus these two tiers should be based on the same type
of hardware.

Single-Node or Scale-Out Server

For the production tier, you will in most cases not have a choice; your system siz-
ing will determine whether the database can be a single-node server or has to be
a scale-out cluster. Even if you plan your QA system smaller than the production
one, we urgently recommend that both tiers be based on the same type of hard-
ware—that is, they should both be either single-node or scale-out systems.

Multiple Databases on One Server

Again, this topic is rather easy to sort out. At the time of writing (July 2014), SAP
does not support under any circumstances operating more than one database
instance on a physical server that is host to a production instance. This limitation
is also valid in the scenario of operating SAP HANA productively in virtualized
environments on VMware vSphere 5.5.
603

Planning and Setting Up an SAP HANA System Landscape14
On hardware that is not being used in production, you can set up as many data-
base systems as you like, provided that the hardware is sized appropriately for the
resource utilization of all instances combined.

For more details on virtualization choices and multiple databases, see the discus-
sion in Chapter 1; the installation of multiple database instances on one server
was covered in Chapter 3.

In a typical system landscape, you may consider placing all nonproduction sys-
tems except for the QA system on a single hardware server, as indicated in Figure
14.3. In that figure, the first nonproduction SAP HANA server, shown in 1, hosts
the development and test database instance, as well as other optionally existing
systems, such as sandbox systems.

Figure 14.3 Combining Nonproduction Systems on One Physical Server

You may consider operating the QA system on the same hardware as other non-
production systems. Whether or not this is acceptable will mainly depend on the
existing practice in your data centers and the purpose of the QA system. If it is
used for performance tests, load tests, or other tasks that aim at verifying produc-
tion readiness of developments or other changes, it is best to operate the QA sys-

Application
Server/BI Server

SAP HANA Server

Data Log

Development

Application
Server/BI Server

Test

Application
Server/BI Server

SAP HANA

Data Log

QA

Application
Server/BI Server

SAP HANA

Data Log

Production

SAP System Landscape <1>

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports

DEV Instance

Index
Server

Name
Server

Test Instance

Index
Server

Name
Server

Sandbox

Index Server

Name Server
604

Planning the System Landscape 14.2
tem on dedicated hardware in order to avoid negative impact through other non-
production systems.

It should be noted that it is also possible to install multiple databases with differ-
ent numbers of nodes on scale-out hardware. If you have a nonproduction mult-
inode system that has free memory and CPU resources, then you can add single-
node database systems on the different hosts of the scale-out hardware.

Physical or Virtualized Hardware

In May 2014, SAP announced support for production SAP HANA systems on vir-
tualized hardware using VMware vSphere 5.5. With this announcement, two pre-
vious limitations were lifted, namely the exclusion of production systems and the
missing support for features such as VMware VMotion.

With these changes, operating SAP HANA on virtualized hardware has become a
very reasonable option in all tiers of your system landscape. You will of course
pay a penalty in terms of performance, but you gain hardware abstraction, built-
in availability features, and so on.

The main restriction of the present virtualization support is the limitation to sin-
gle-node hardware with up to four CPU sockets, putting the memory maximum at
1 TB. If you need a larger system, virtualization is not yet an option. For the most
up-to-date state of the offering, please refer to the virtualization roadmap pub-
lished at www.saphana.com/docs/DOC-3334.

If there are no technical limitations in the way, the decision for or against virtual-
ization will depend on your overall data center operation guidelines.

14.2.2 Application Deployment Options

SAP HANA hardware is not inexpensive, and each additional production system
usually requires a number of dedicated preproduction servers, not to mention
that any system comes with associated administration costs. It is therefore tempt-
ing to combine multiple applications (or use cases) on one database system
instead of deploying individual database systems for each application.

Because operating multiple production database instances on one physical server
is not supported, you can only run multiple production applications on one server
if they all connect to the same database instance.
605

Planning and Setting Up an SAP HANA System Landscape14
Multiple Applications in the Production Tier

As discussed in Chapter 1, SAP does not generally oppose the concurrent operation
of multiple applications on the same production database system. The supported
combinations of applications are, however, restricted by white lists that are main-
tained in SAP Note 1661202, SAP Note 1666670, and SAP Note 1826100.

These SAP Notes also mention possible drawbacks of this type of coexistence, for
example, the fact that maintenance operations in the database—such as changes of
the database configuration, system patching, or backup/recovery—will always
affect all applications, even if the cause of the operation is related to one particular
application. There is also no workload separation in the database for the different
applications.

SAP is planning to increase the database functionality to better support multiple
applications. For the time being, however, the existing limitations may represent
a challenge in some data centers.

A typical case in which the limitations can be acceptable is an SAP NetWeaver-
based primary application, for example, SAP BW or an SAP HANA accelerator,
whose data set in SAP HANA is also used in a custom data mart. There are two
main difficulties in this scenario that one has to pay attention to:

� Security
In typical SAP NetWeaver systems, there is seldom significant development
happening in the database, and the security architecture relies on this charac-
teristic. If you create an SAP HANA data mart on the database of the SAP
NetWeaver system, you will introduce a good measure of database develop-
ment, and you will have to make sure that this does not jeopardize the security
setup of the primary application.

This means that you will have to exercise control over the development activi-
ties in those system tiers in which development is permitted and that you will
have to implement content transports also for SAP HANA contents in such a
way that you can operate the production system as read only.

� Workload management
SAP HANA data marts are usually created with the goal of allowing more agile
report development and empowering the end users by giving them maximum
flexibility. Both criteria will lead to comparatively little control over the work-
606

Planning the System Landscape 14.2
load generated by the end users of the data mart. In the absence of prioritiza-
tion or separation of workload, there is a danger that the data mart may nega-
tively impact the primary application.

The measures to take against this possibility are exercising control over the
design of data models and reports to ensure they follow best practices; testing,
testing, and testing before moving new data models and reports to production;
and carefully monitoring the system workload, especially in times of high sys-
tem load.

There is little risk in operating multiple SAP HANA accelerators (CO-PA accelera-
tor, FI-CO accelerator, Customer Segmentation accelerator, etc.) on the same data-
base system. All of these make use of the SAP HANA database in a similar way and
without the need for database development, thus eliminating most security risks
mentioned previously. They are usually not highly critical, because SAP HANA
will only hold a redundant copy of the application data, and the applications
remain operational even if the accelerator solution should fail.

In general, you should consider the criticality of the applications to coexist on SAP
HANA. If one of them is highly critical, you must carefully evaluate whether any
of the other applications may impact its security, stability, or availability. You may
also include provisions for shutting down a less critical application if there are
indications that it endangers other applications on the same database server.

Multiple Applications in Nonproduction Tiers

Even if you decide to operate applications on different individual production
servers, you can cut costs by running the nonproduction instances of these appli-
cations on the same server. Without any doubt, the best option to run such a sce-
nario is to operate multiple database systems on the nonproduction server, each
database system supporting one application (and one landscape tier). We indicate
such a possible system landscape in Figure 14.4.

In that figure, there are two applications, A and B, each of which operate on top
of dedicated SAP HANA servers in the production and QA system tiers.

In the development and test tiers, however, there is only one SAP HANA server,
shown in 1, on which four database instances are installed: one database instance
each for the development and test systems of applications A and B.
607

Planning and Setting Up an SAP HANA System Landscape14
You may, of course, also operate a joint database server for the QA systems of
both applications.

An option that should not be overlooked is the possibility of operating SAP HANA
and SAP NetWeaver Application Server ABAP on the same server, as outlined in
SAP Note 1953429.

Figure 14.4 Multiple Nonproduction Applications on One Physical Server

14.2.3 Preparing for Business Continuity Requirements

The service level agreements for your data center operations will probably con-
tain specifications with respect to business continuity. These requirements will be
another influential factor in the design of your system landscape. The SAP HANA
software comes with several built-in methods to increase system availability. We
summarize these options in Table 14.3. The discussions in the following sections
will help you choose the options needed for your situation.

Development Test QA Production

Application A Application A Application A Application A

SAP System Landscapes <A> and

Application Server/
BI Server DEV A

Application Server/
BI Server Test A

Application Server/
BI Server QA A

SAP HANA QA A

Data Log

Application Server/
BI Server Prod A

DEV Instance A

Index
Server

Name
Server

Test Instance A

Index
Server

Name
Server

SAP HANA Server

Application B

Application Server/
BI Server Test B

Application Server/
BI Server QA B

Application B

Data Log

SAP HANA QA B

Data Log

SAP HANA Prod A

Data Log

Application Server/
BI Server Prod B

Application B

SAP HANA Prod B

Data Log

Test Instance B

Index
Server

Name
Server

DEV Instance B

Index
Server

Name
Server

Application B

Application Server/
BI Server DEV B
608

Planning the System Landscape 14.2
Process Autorestart

The first entry from this table, process autorestart, is a standard feature that exists
in every SAP HANA system and therefore does not need to be given much thought
when you plan your system. It describes the behavior of SAP HANA if one of the
core database processes should fail. Such processes will be immediately and auto-
matically restarted by the daemon process (see Chapter 1).

Host Autofailover

Host autofailover is a solution local to one data center. If you are operating a scale-
out system, this mechanism lowers the likelihood of a total system outage by add-
ing redundant hardware to the system in the form of one or multiple standby
hosts, as discussed in Chapter 6.

Because the administration overhead of operating standby hosts is negligible and
there is comparatively little added hardware cost, we cannot think of a reason to

Option Protects Against Recovery Point
Objective (RPO)

Recovery Time
Objective (RTO)

Process
autorestart

System staying unavail-
able after individual pro-
cess stops/crashes

Zero Close to zero (technical
downtime), up to tens of
minutes (business down-
time)

Host auto-
failover

Downtime because of
individual host failure in
scale-out systems

Zero Close to zero (technical
downtime), tens of min-
utes (business downtime)

Standby setup
with backup
shipment

System outage, loss of
data

Few hours Up to about one hour (time
to recover database)

Storage repli-
cation

System outage, loss of
data, unscheduled down-
times

Zero (synchro-
nous),
few seconds
(asynchronous)

Close to zero (technical
downtime),
tens of minutes (business
downtime)

System repli-
cation

System outage, loss of
data, scheduled and
unscheduled downtimes

Zero (synchro-
nous),
few seconds
(asynchronous)

Close to zero (technical and
business downtime)

Table 14.3 (High) Availability Options for SAP HANA Systems
609

Planning and Setting Up an SAP HANA System Landscape14
not implement standby hosts in a scale-out cluster. Or, to avoid the double nega-
tive, you definitely should include at least one standby host in a planned scale-out
system.

Technically, it is possible to use the autofailover mechanism to establish a full
failover mechanism for a single-node system. You should, however, always con-
sider the alternative approach of setting up system replication between the pri-
mary host and the failover host.

Database Backups

Database backups are the most common form of protecting against loss of data. If
you have this requirement, database backups should be part of your data protec-
tion strategy.

As we discussed in Chapter 5, SAP HANA offers two different ways of creating a
copy of the database contents for the purpose of database recovery. Storage snap-
shots are quick but contain no provisions for checking the internal consistency of
the snapshot with database kernel knowledge. Database backups do contain such
consistency information, but are generally slower to create.

Any backup strategy should therefore incorporate regular database backups, pref-
erably scheduled and managed by a dedicated tool (see the discussion related to
the BackInt for SAP HANA interface in Chapter 5).

You may also create storage snapshots, for example, in a mixed scenario with fre-
quent storage snapshots and less frequent database backups.

The optimal interval between two data backups will vary from customer to cus-
tomer, influenced not only by generic rules in a given data center but also by
recovery performance benchmarks. The time to recover from a data backup of a
given age will be strongly impacted by the amount of log entries that need to be
replayed for the recovery.

Acknowledging that recovery performance cannot easily be predicted, a good
option is to start with a reasonable initial interval, and verify that it is adequate by
running test recoveries under realistic circumstances (using data and log backups
for a system copy on identical or at least comparable hardware).
610

Planning the System Landscape 14.2
If you need to safeguard against system outages that might, for example, be caused
by incidents disabling an entire data center (“disasters”) and if a recovery point
objective (RPO) of a few hours is acceptable, then you may consider setting up a
standby database server in a remote location and regularly ship database backups
to this standby server.

The potential data loss in such a scenario is determined by the time it takes to
write and transfer the database backup. You may reduce the maximum RPO by
working with database snapshots at the cost of consistency checks in the backup
files.

By also replicating log backups to the secondary setup as quickly as possible, you
can reduce the RPO time even further, down to approximately the maximum log
backup interval as specified in parameter log_backup_timeout_s.

Your SAP HANA hardware partner can advise you on suitable hardware setups
that can be used to efficiently transfer backup files from the primary to the sec-
ondary system. Such provisions are not part of standard SAP HANA appliance def-
initions.

Because the hardware of the standby system is (mostly) identical to that of the pri-
mary system, the standby system can be used for nonproduction purposes-typi-
cally as a QA system—during regular operation.

Disaster Recovery with Storage Replication

If a recovery point objective that must be measured in hours rather than seconds
is not acceptable, then you need to look for solutions that can replicate data as it
is committed in the database. Synchronous replication will help you achieve an
RPO of zero in most cases, but it only works for distances between primary and
secondary systems of up to about 100 km. Asynchronous replication methods can
not inherently achieve an RPO of zero, but they will work for larger distances
between data centers.

Note

Do not forget to include backup storage in your system planning. The appliance hard-
ware definitions do not cover dedicated storage technology.
611

Planning and Setting Up an SAP HANA System Landscape14
Storage replication is the hardware-based method for replicating the data and log
volumes of an SAP HANA system. Most hardware partners offer systems for syn-
chronous replication, and the first asynchronous setups have recently been vali-
dated, too.

In most of these solutions, it is possible to operate nonproduction database
instances on the standby site provided that there are dedicated storages available
for data and log volumes of these additional systems.

Although storage replication can lead to an RPO of zero for most cases that would
lead to a loss of data, the business downtime in a failover situation will be signif-
icant. The reason is that the secondary system is always on cold standby and has
to perform a regular database start as part of the failover procedure. If you define
the business downtime to include the time for loading the most important data
sets into main memory, then this downtime can easily reach tens of minutes.

Disaster Recovery with System Replication

The most flexible disaster-recovery solution for SAP HANA is system replication
(see Chapter 5). Not only does it offer synchronous and asynchronous replication
independently from your choice of hardware partner, but you also have the
option to operate the secondary system in warm standby mode, thus minimizing
the need to load tables into the memory of the secondary system during a failover
period.

With system replication, SAP also introduced near-zero downtime upgrades (pro-
vided that table preload on the secondary system is enabled) and similarly near-
zero downtime hardware exchange.

If your SLAs require minimal downtimes in a situation necessitating a failover,
then you need to keep column preload enabled on the secondary site and cannot
use the standby setup for hosting nonproduction systems.

If, on the other hand, you can afford to switch off column preload, then you can
install additional nonproduction instances on the secondary site. A typical choice
would be a QA system, because primary and secondary servers of the replication
cluster will consist of identical hardware. Such a landscape might look like the one
depicted in Figure 14.5, in which two SAP HANA systems in different data centers
are connected in one disaster-recovery cluster, as shown in 1.
612

Planning the System Landscape 14.2
We have only sketched a cohabitation of QA and production system on the data-
base server in Site B. Such a setup will make it necessary to fail back the produc-
tion system to Site A as soon as that hardware becomes available again in order to
continue operating the QA system. It is therefore recommendable to make plans
for operating the nonproduction instances on either site of the DR cluster. You
can then either set up system replication also for the QA system or prepare recov-
ery of the QA system after a failover situation via database backups.

Even when you are operating a DR cluster, you must continue creating regular
database backups to protect the system against failures that the DR method may
not cover (e.g., misbehavior of the replication mechanism).

To keep the picture simple, Figure 14.5 only shows the DR setup of the database
server. Naturally, the design of the application servers and other vital setup com-
ponents must provide a comparable level of availability.

Figure 14.5 Using a DR Setup for Nonproduction Instances

Application
Server/BI Server

Data Log

Development Test QA

Application Server/
BI Server

SAP HANA Site A

Data Log

Production

SAP System Landscape <1>

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports

Trans-
ports Transports

DEV Instance

Index Server

Name Server

SAP HANA Site B

Delta
Snapshots

QA Storage

Data
Log

Production

Data
Log

Logs

QA Production

Application
Server/BI Server

Test Instance

Index Server

Name Server

QA Instance

Index Server

Name Server

Prod Site B

Index Server

Name Server

SAP HANA Server

Application Server/
BI Server

Production
Instance Site A

Index Server

Name Server

DR-Cluster (System Replication)
613

Planning and Setting Up an SAP HANA System Landscape14
14.2.4 Content Transport

Multitier system landscapes serve the purpose of separating the system used in
production from development and testing. This separation requires that there are
means for transporting modifications through the system landscape. Development
can happen in different layers of the system architecture: There may be develop-
ment on the application server side or on the database side. In the case of SAP
HANA, the database side includes classical database development, such as database
object definitions, data models, or stored procedures, but it also comprises appli-
cation development, such as applications using SAP HANA XS and SAPUI5. Gener-
ally, all repository objects can be transported in SAP HANA (see Chapter 11).

For application development on top of SAP HANA, there can be different trans-
port solutions depending on the application technology being used. In the SAP
world, the transport mechanism will usually be either the classical Change and
Transport System (CTS) for ABAP developments or the Extended Change and
Transport System (CTS+) for other supported technologies, such as the SAP
NetWeaver Java stack or the SAP BusinessObjects BI Platform.

For SAP HANA content transports, there are three solutions available. All of these
are technically based on the export and import of delivery units. Each of these
solutions has its own justification depending on the SAP HANA use case and your
existing infrastructure:

� SAP HANA Transport Container
The SAP HANA Transport Container (HTC) is a collection of SAP HANA devel-
opment content that can be embedded as a binary object into a classical ABAP
transport request. This scenario is useful for transport of SAP HANA content
that is only used in the context of an ABAP application. In this case, it makes
sense to transport related SAP HANA and ABAP developments within the same
transport request.

For more information on using HTC, see “How to Transport ABAP for SAP
HANA Applications with HTC” at https://scn.sap.com/docs/DOC-43035.

� Extended Change and Transport System
The Extended Change and Transport System (CTS+) system offers transport of
SAP HANA delivery units. This is the transport method of choice if you have
SAP HANA developments such as data models or SAP HANA XS applications
and if you already use CTS+ for other non-ABAP transports. In this case, you
can easily include your SAP HANA database in your transport setup. Using
614

Bootstrapping the System 14.3
CTS+ is particularly recommended if your SAP HANA developments and other
non-ABAP developments need to be transported synchronously.

For more information on using CTS+ with SAP HANA, see “Resources on
CTS+” at https://scn.sap.com/docs/DOC-8576#HANA.

� SAP HANA Application Lifecycle Manager
If you do not use CTS+ yet, SAP HANA offers a built-in transport system named
SAP HANA Application Lifecycle Manager (HALM). This system is based on an
XS application that is part of the SAP HANA database server since SPS 6. Setting
up HALM for content transports between your SAP HANA systems is a simple
procedure and makes the most sense if you have no need to synchronize these
transports with other non-SAP HANA developments.

The HALM tool is described in the SAP HANA Developer Guide, available at
https://help.sap.com/hana_platform/.

As alternative to the CTS integration with the SAP HANA Transport Container,
you may consider generating SAP HANA content programmatically within your
ABAP applications and thus transporting the SAP HANA content implicitly with
the transport of the generating ABAP code. This is in fact a technique used by SAP
BW 7.40 (SP 5 or higher) to generate views in the SAP HANA repository that cor-
respond to the SAP BW InfoProviders, as described in “SAP First Guidance—SAP
NetWeaver BW 7.40 on HANA View Generation” at https://scn.sap.com/docs/
DOC-52790.

Although technically possible, this method has the drawback that there exists no
documented programmable API of the SAP HANA repository. The method is,
however, very relevant if you intend to directly generate objects in the database
catalog, such as tables, SQL views, or catalog roles.

14.3 Bootstrapping the System

Once your database hardware is delivered to your data center and the database
software is installed, you can start taking possession of the system. There is a mul-
titude of actions that you can and should execute now to make the system ready
for regular usage. These actions include setting up administration user accounts,
installing a license key, basic system configuration, initializing the backup system,
and more.
615

Planning and Setting Up an SAP HANA System Landscape14
There is no natural order in which to perform these steps. The bootstrapping pro-
cess that we propose in this section is guided by the following principles:

� Set up administration accounts as quickly as possible.

� Minimize the number of actions to be performed by the SYSTEM user.

� Deactivate the SYSTEM user as soon as possible.

� Prioritize steps that lead to higher system security.

Even within these principles, the ordering of many steps is somewhat arbitrary,
and the sequence can be changed without jeopardizing the overall procedure.

In our bootstrapping proposal, we assume that the SAP HANA system will be used
in a way that demands database-side user management—for example, a data mart
project or something similar, with named developers and end users in the data-
base. If your project foresees a simpler usage of the database system, then there
may be several steps that can be skipped. We do not include steps that are specific
to an application, such as setting up the data-provisioning procedure.

Our bootstrapping sequence contains the full procedure for one system. Many
parts of the sequence must be performed on all tiers of the system landscape. The
role development is an exception; because we create roles in the SAP HANA
repository they are transportable, and you may choose to transport the roles into
the other system tiers at the beginning of system setup there (see Section 14.3.9).

14.3.1 Preparing the Operating System

Of course, your operating system configuration should have been optimized for
SAP HANA before the database software was installed. There are, however, a
number of provisions that you should now take before you start working with
your shiny new database system.

Note

In an initially installed SAP HANA system, the log area will fill up gradually because the
log mode is set to Normal, but the automatic log backup cannot yet be enabled. You
should complete all steps in Section 14.3.2 and Section 14.3.3 quickly to avoid disk-full
situations. At the end of these sections, you will have set up a functioning backup sys-
tem, including log backups.
616

Bootstrapping the System 14.3
Create a Storage Copy of the Database System

Especially if your database system was shipped as a standard appliance, with the
database software preinstalled by your hardware partner, we recommend that
before you do anything else you create a storage copy of the entire database
server—at least of the directories or mount points /hana/shared, /hana/data, and
/hana/log (assuming standard file system configuration), but preferably the entire
file system. If you for any reason destroy the database software installation during
the setup phase, you can restore the system from these copies without needing to
perform a database installation.

The main reason for this recommendation is that SAP only supports database
installations that have been performed by certified personnel—and if you pur-
chased preinstalled appliances, it is unlikely that you have such people in your
project team.

Set Up Support Connections for SAP Support

One of the trademark capabilities of SAP systems when it comes to supportability
is the enablement of SAP Support personnel to log on to customer systems via
secure, dedicated support connections. If your security policies allow you to open
your systems for SAP Support, you should implement the following support con-
nections on your SAP HANA systems (for a full list of support connections that can
be meaningful in the context of SAP HANA systems, see the central SAP Note
1635304 for SAP HANA support connections):

� SAP HANA Studio connection
Similar to the well-known R/3 support connection, the SAP HANA Studio con-
nection allows SAP Support staff to access your SAP HANA database system from
their locally installed SAP HANA Studio through the SAProuter systems. All
steps to set up these support connections are described in SAP Note 1592925.

For any given support incident, you will also have to define an appropriate
support user. If you experience problems in an early stage of the setup proce-
dure, you may only have the SYSTEM user available. In Section 14.3.7, we
include some considerations for setting up support users.

� Operating system connection
If (and only if) the SAP HANA Studio support connection is not sufficient for
the support case or is not available, then you may have to open a connection to
617

Planning and Setting Up an SAP HANA System Landscape14
the operating system of your SAP HANA database server. The recommended
connection type is the so-called TREX/BWA/HANA support connection, as
described in SAP Note 1058533.

Alternatively, SAP has standard support connections for SSH or VNC access to
backend servers, as described in SAP Note 1275351 and SAP Note 1327257.

� WTS connection
In the case that you cannot set up the SAP HANA Studio connection or one of
the mentioned OS connections, you may still be able to open a connection to a
WTS server in your network from which support staff can connect to the SAP
HANA server using SAP HANA Studio or SSH. WTS connections are also often
needed for supporting SAP BusinessObjects BI tools or SAP Data Services. The
connection is described in SAP Note 605795.

Note that SAP Support staff can only use connections as long as they are open. In
addition, when opening a connection the credentials for an appropriate user must
be given.

You should generally only keep your system connections open as long as they are
needed. It is, however, a good idea to set up the connections so that they can
quickly be opened before the first support incident.

14.3.2 Preparing the System for Role and User Management

Before we do anything else, we want to get you ready for working with dedicated
administration users so that you do not get used to comfortably working along
with the overprivileged SYSTEM user.

To this end, there are three major steps to be taken. You may have to prepare for
secure user logon by making provisions for SSO login mechanisms and encrypted
client connections; you can then set up the environment, roles, and users for role
development; and finally, you can define roles and create users for user adminis-
tration.

Prepare SSO Mechanisms and Client Connection Encryption

If you intend to make use of SSO mechanisms, such as Kerberos authentication
(see Chapter 12), why not introduce this technique right from the start? You can
implement all setup steps for Kerberos authentication without logging on to the
SAP HANA database system. Only when it comes to testing will you need to set up
618

Bootstrapping the System 14.3
the first user account in SAP HANA. Guidance on setting up Kerberos authentica-
tion for SAP HANA is given in the attachment to SAP Note 1837331 and similarly
for SAML authentication in SAP Note 1900023.

You may also want to encrypt client connections into the database. See our dis-
cussion in Chapter 12, and find the necessary setup steps for encrypting SQL con-
nections to SAP HANA in the SAP HANA Security Guide or for encrypting HTTP
connections to SAP HANA XS in the SAP HANA Administration Guide. Both guides
are available at https://help.sap.com/hana_platform/.

Set Up Role Development

Role development is a complex matter, as discussed in Chapter 13. In our eyes,
there are two reasonable ways of managing roles in SAP HANA: You either have
an identity-management (IDM) solution that supports SAP HANA—in this case,
you have to set up role development in a way that is compatible with the IDM
tool—or you natively develop roles in SAP HANA, in which case the concept of
repository roles or design-time roles is most appropriate. In the following discus-
sion, we assume that you will need to design and manage roles with the tools pro-
vided by the database system itself. Following our own recommendation, we will
only consider repository roles.

You may decide to use the roles that are provided alongside the how-to guide. In
this case, you may implement the prerequisites mentioned in the guide and
import the roles with the SYSTEM user. This procedure will define fully usable
roles for role development, user administration, and typical system administra-
tion, including security aspects, such as auditing, disk encryption, and so on.

In the following discussion, however, we will assume that you create roles step-
by-step, mainly for the purpose of showing the relationship between setup steps
and privileges or roles.

Note

SAP does not include standard roles for tasks related to administration of the SAP HANA
database. While working on the manuscript for this book, we defined a template collec-
tion for such standard roles. The documentation of these roles would not have fit into
the scope of the book, but we published it in “How to Define Standard Roles for SAP
HANA Systems” at https://scn.sap.com/docs/DOC-53974. In this chapter, we will fre-
quently refer to this guide, especially when it comes to role definitions.
619

Planning and Setting Up an SAP HANA System Landscape14
To fulfill a typical requirement for segregation of duties, role developers must not
be able to modify roles granted to them. Combined with the privileges needed for
building roles in the repository, it follows that we need to take care when design-
ing the repository structure for role development. The database users who
develop roles need certain privileges to do so. These privileges should be collected
in a repository role, which naturally is located in some repository package <p1>.
All other user roles (roles for administrators, developers, application users, etc.)
will be created and maintained by these role developers. They will need a repos-
itory package <p2> as working space, and in this package they will have all privi-
leges to create, edit, activate, and delete roles. If <p1> and <p2> refer to the same
package, or if <p1> is a subpackage of <p2>, then our role developers will be able
to modify and activate their own roles—thus changing their own privileges and
violating one of the most basic security rules.

In order to avoid such a violation of security principles, we propose a repository
structure for role development as depicted in Figure 14.6. For this proposal, we
assume that all roles to be granted to named database users will be maintained in
one dedicated part of the repository. In our example, this is the space <base_pack-
age>/security—where <base_package> can be an arbitrary location in the repos-
itory provided that no regular database user or developer has full privileges on
<base_package> (remember that if you have a privilege on a package, you have
that same privilege on all subpackages). A typical and recommended choice would
be for customers to use their company name as <base_package>.

Within the security package, we have to separate the roles for role developers
from the roles created by role developers. In our example, there is a protected
package, shown in 1, that contains the roles for role developers and a common
package, shown in 2, that is the working space of the role developers.

You may have other security-related objects to place into the same repository
structure; therefore, we also suggest a roles subpackage in both the protected and
common package. Especially in the common/roles package, you may want to cre-
ate a substructure that reflects the functional areas of the roles.

Now, we can easily describe the actions to be performed with the SYSTEM user in
order to set up role development:

1. Create the necessary repository packages up to <base_backage>/security/pro-
tected/ (do not create the roles package yet) and <base_package>/security/
common/roles (here we do create the roles package).
620

Bootstrapping the System 14.3
2. Role development in SAP HANA Studio requires a development project. Set up
a project for development with the SYSTEM user, using the package <base_
package>/security/protected as the development package.

3. Within the development project, create a new package named roles.

Figure 14.6 Proposed Repository Structure for Role Development

4. Within this new package, create a role that allows role developers to create and
activate roles in the package <base_package>/security/common/roles. The
privileges needed are listed in Table 14.4. In the how-to guide, the correspond-
ing role is named role_builder_native.

5. Now, you can create the database users for role development and grant the role
to these users. From here onwards, all role development will be done by these
database users.

6. Finally, in the how-to guide we suggest the creation of a set of stored proce-
dures related to security management, for example, for granting of repository
roles in a way that is restricted to the role development package or for granting
and revoking the special catalog role SAP_INTERNAL_HANA_SUPPORT. If you want
to make use of such procedures, you should now create them within your “pro-
tected” development project.

Privilege What does it do?

EXECUTE on REPOSITORY_REST General access to the repository

REPO.READ on package <base_package/
security/common/roles

Read content of roles or other objects in
the given package

Table 14.4 Privileges for Role Editors

<base_package>

security

Repository Root

protected

roles

common

roles

S

System

R

Role
Developer

R

Role
Developer

O

Other
Users

Creates roles in

Creates roles in

Roles are

granted to

Roles are

granted to
621

Planning and Setting Up an SAP HANA System Landscape14
Set Up User Management

Now that we have functioning role editors in place, we can easily set up user
administrators:

1. The role developers must create a development project using the package
<base_package>/security/common/roles.

2. The first role that the role developers should create is a role for user manage-
ment. This role may be built along the example of the role user_admin or user_
admin_unrestricted from the how-to guide.

3. As SYSTEM user, create the database user for at least one user administrator
and grant the user administration role to this user.

Now, you have created all the infrastructure needed to build new roles, create
new users, and grant the roles to the users. At this point, we can actually disable
the SYSTEM user, because we can now create dedicated roles and users for all
upcoming steps.

Deactivate the SYSTEM User

The SYSTEM user can be deactivated by any user administrator. It can be done
either in the User Editor of SAP HANA Studio or by using the SQL command:

ALTER USER SYSTEM DEACTIVATE USER NOW

There may be exceptional situations in which you may have to reactivate the SYS-
TEM user, for example, if for whatever reason your one and only user adminis-
trator gets deactivated. If all user administrators including SYSTEM are locked,
then there is an emergency procedure to enable the SYSTEM user and subse-
quently your user admins, described in “Reactivating the SYSTEM User When No

REPO.EDIT_NATIVE_OBJECTS on package
<base_package/security/common/roles

Create and modify objects in the given
package

REPO.ACTIVATE_NATIVE_OBJECTS on package
<base_package/security/common/roles

Activate roles and other objects in the
package

REPO.MAINTAIN_NATIVE_PACKAGES on package
<base_package/security/common/roles

Create, edit, or delete subpackages of
the given package

Privilege What does it do?

Table 14.4 Privileges for Role Editors (Cont.)
622

Bootstrapping the System 14.3
User with USER ADMIN is Available” at https://scn.sap.com/community/hana-in-
memory/blog/2014/04/28/reactivating-the-system-user-when-no-user-with-user-admin-
is-available.

14.3.3 Creating Database Administrators and Performing
Initial Administration

Having deactivated the SYSTEM user, we must now create new users who can
administer the database. The goal of the next few steps is to perform vital initial
administration steps, such as installing a license key and setting up the backup sys-
tem so that it works properly and so that the database can be recovered if needed.

Create Database Administrators

We will now define a general-purpose administrator who can fulfill typical tasks
such as basic monitoring, changing the database configuration, managing data-
base processes, and, if needed, managing database backups.

The role for this user can be built along the proposed system_admin_generic role
of the how-to guide. Typically, you may also want to grant predefined roles that
come installed with the SAP HANA database software and that are included in the
proposed role system_admin_predefined.

Create database users for system administration and grant the administration role
or roles.

Define the Global Allocation Limit

In case your production license does not cover the entire installed RAM of the SAP
HANA database server or you are operating multiple databases on the same
physical server, you should define the parameter [memorymanager] � global_
allocation_limit in configuration file global.ini now to avoid out-of-memory sit-
uations or license violations. The unit of measurement for this parameter is mega-
bytes.

Privilege Information

In order to change this parameter (or any other parameter in the configuration files), you
need system privilege INIFILE ADMIN, which is contained in our proposed role system_
admin_generic.
623

Planning and Setting Up an SAP HANA System Landscape14
Even if you have defined the parameter in the course of system installation, now
is a good time to revisit the parameter values.

Install the License Key

Any SAP HANA database system comes with a temporary license that is valid for
90 days. Within this period, you can use the database system without any restric-
tions. You should, however, install a permanent license as soon as possible.

There is a dialog in SAP HANA Studio that displays license information and also
allows you to install or to delete license keys. You can open this dialog by right-
clicking on the system entry in the Systems view and choosing Properties from
the context menu (Figure 14.7, left-hand side, shown in 1). Within the Properties

dialog, shown in 2, choose the License entry.

If you have purchased an SAP HANA license, you can download the license keys
for your production and nonproduction systems from SAP Service Marketplace.
When requesting the key, you will need to enter the Hardware Key, which is dis-
played as part of the license information.

Once a license key is successfully installed, it becomes active immediately, with-
out the need for a system restart or any further configuration.

Process Configuration

Prior to SAP HANA SPS 7, adding or removing data-persistent processes would
break the backup history, meaning that a new database backup needs to be done
immediately after applying the configuration change. In order to avoid any such
problems, we place this type of configuration change in front of the initialization
of the backup system.

If you already know that you will configure a different set of running database
processes than in a default SAP HANA installation, you should apply this change
as early as possible. Such changes may include:

Privilege Information

To view license information or install new license keys, you need the system privilege
LICENSE ADMIN, which is contained in our proposed role system_admin_generic.
624

Bootstrapping the System 14.3
� Starting the script server (see SAP Note 1650957)

� Migrating the statistics service from a dedicated process into a name and index
server (SAP Note 1917938)

� Scaling SAP HANA XS (see the SAP HANA Database Administration Guide)

Figure 14.7 Installing a License Key

Initializing the Backup System

Data and log backups are written to the locations specified in file global.ini, in
parameters [persistence] � basepath_databackup and [persistence] � basepath_
logbackup, respectively. You should make sure that the locations defined in these
parameters are the right ones; see our discussion in Chapter 5.

Note

If you are using a third-party backup tool implementing the BackInt interface, this is the
right time to configure the tool and the database appropriately. The backup tool will
probably need a database user with certain privileges as defined in the tool’s documen-
tation. You may therefore have to create a dedicated backup user with an accompany-
ing role.
625

Planning and Setting Up an SAP HANA System Landscape14
If the backup locations are correctly defined, then you can perform an initial data-
base backup. The backup will even contain the license key you have installed, so
you will not need to reinstall the license key in case a recovery becomes necessary.

The proposed role system_admin_generic contains the privileges required for
running data backups so that any of the database administrators you have created
in the previous step may execute the backup. Alternatively, we also propose a
backup_admin role in the how-to guide, which you may create along with a corre-
sponding database user.

Once the data backup is finished, you should verify that the system configuration
is set up correctly for automatic log backups (parameter [persistence] � log_mode
must be set to normal and [persistence] � enable_auto_log_backup to yes). If you
do not intend to use log backups, you have to set log_mode to overwrite and
enable_auto_log_backup to no.

14.3.4 Setting Up Initial Security

We have now performed the first necessary steps for ensuring stable system oper-
ation, and it is time to think about security aspects before we start bringing in the
first nonadministration users. In this section, we will define database roles and
users for security-related administration tasks and will configure security settings
such as audit logging and disk encryption.

These tasks are technically not required. Whether or not you need to implement
the steps in this section depends on the security requirement in your project.

Create Security Administrators

In our role concept, a security administrator is a person who can configure secu-
rity-related database properties, such as password policies and so on, and can also
troubleshoot (trace) security-related issues. The corresponding role in the how-to
guide is named security_admin.

Note

As soon as the data backup is finished, the automatic log backup will be enabled auto-
matically. It is therefore important to verify that the location for log backups also is con-
figured correctly.
626

Bootstrapping the System 14.3
In this role, we do not include permissions to manage the audit system of the data-
base. Instead, we foresee a dedicated role for that purpose, named security_
admin_audit, so that you may have different personnel responsible for basic secu-
rity configuration on the one hand and audit management on the other hand. A
third role related to security administration is the audit_operator role, which
allows for managing the database table that may serve as an audit target so that
you can separate managing the audit configuration from managing the audit data.

Configure Password Policy and Password Blacklist

If name/password authorization is being used, then you should revise the pass-
word policy to make sure that it complies with your company requirements. You
may also want to or need to maintain a password blacklist in SAP HANA. Both
actions are enabled by our proposed role security_admin, and the corresponding
database configuration is available from within the Security Editor of SAP HANA
Studio. See also Chapter 12 for details.

Set Up Audit Logging

For many SAP system administrators, audit logging in the database never played
a big role in the past. After all, there was only minimal interaction of natural per-
sons with the database required, because classical SAP systems used the database
for data persistence and nothing else. In an SAP HANA system, there is a higher
probability by far of having named database users for developers and end users in
the database system. In consequence, audit logging in the database will play a
more pronounced role in SAP HANA than in other SAP systems.

If audit logging will play a role in your setup, now is a good time to enable it. See
Chapter 12 for details.

Enable Disk Encryption

SAP HANA offers a functionality to encrypt data at rest, that is, the contents of the
data files. Encryption of the memory contents is not currently foreseen, nor is
encryption of the log segments or backup files. If backup encryption is required,
the most realistic approach is to handle this encryption in a backup management
tool—and this view is shared by SAP.
627

Planning and Setting Up an SAP HANA System Landscape14
Data file encryption can be enabled, disabled, and monitored in the Security Edi-
tor of SAP HANA Studio, as shown in Figure 14.8. Alternatively, data files can be
encrypted via SQL syntax, as given in Listing 14.1.

Figure 14.8 Managing Data Volume Encryption in SAP HANA Studio

Data volume encryption will not happen immediately. The system will start
encrypting with the next savepoint operation. The actual encryption will take
several minutes, obviously depending on the payload of the data volumes. The
overall progress can be monitored in the Security Editor or in monitoring view
M_PERSISTENCE_ENCRYPTION_STATUS.

-- Enable data volume encryption:
alter system persistence encryption on;
-- Moinitor data volume encryption:
select * from M_PERSISTENCE_ENCRYPTION_STATUS;
-- Force an immediate savepoint to decrease the wait time:
alter system savepoint;
-- Switch off data volume encryption:
alter system persistence encryption off;

Listing 14.1 SQL Syntax for Managing Disk Encryption

Privilege Information

System privilege RESOURCE ADMIN is required for managing disk encryption. In the how-
to guide on standard roles for SAP HANA, this privilege is contained in the proposed
roles user_admin_disk_encryption and system_admin_generic.
628

Bootstrapping the System 14.3
14.3.5 Configuring the System

At this point, our system is prepared for stable and secure operation and we can
begin preparing it for day-to-day administration and usage. We will start with the
database configuration, such as preparing alerting and monitoring tasks, setting
up backup scheduling, and more.

Set Up Alerting

Self-monitoring and proactive alerting are among the most important features for
the database administrator, because they drastically decrease the effort of moni-
toring large system landscapes, allowing the administrators to focus on more
demanding tasks. As explained in Chapter 4, the SAP HANA system offers the sta-
tistics service for self-monitoring and alerting. The only push mechanism sup-
ported by the statistics service is email-based alerting, which can be configured
from the Alerts tab of the Administration Editor in SAP HANA Studio.

If email alerting is not appropriate in your data center, the second SAP-supported
way of receiving push notifications from SAP HANA systems is SAP Solution Man-
ager. This tool can connect to SAP HANA systems and receive alerts, and it sup-
ports several industry standards, such as SNMP. If SAP Solution Manager also is
not an option, you may be fortunate enough to find monitoring tools that either
already support SAP HANA or that are easily extendable with some sort of cus-
tomizing. All current alert information can be retrieved from system view
STATISTICS_CURRENT_ALERTS in schema _SYS_STATISTICS.

Note

Data volume encryption will only encrypt the current active payload of the data files. If
the system has already been used for some time, there will usually be some amount of
previously used but now free data pages in the data files. These pages may be overwrit-
ten in the future as the data content of the database grows. Initially, however, they will
not be encrypted and thus will still contain unencrypted information.

It is therefore recommended to enable disk encryption before starting to load business
data into the system. If this is not possible, then you should consider enabling disk
encryption, creating a data backup, and then recovering the database from the backup.
This procedure will create a new, encrypted data volume without unencrypted pages.
629

Planning and Setting Up an SAP HANA System Landscape14
Set Up Expensive Statement Trace

SAP HANA can trace information on expensive statements, that is, statements
whose run time exceeds a configurable threshold. This tracing is disabled in the
initial system configuration. See Chapter 15 for more details.

Set the Default Table Type to Columnar Tables

Because the SAP HANA database supports two fundamentally different table
types—columnar and row store tables—it is not clear without ambiguity what
kind of table will be created when you run a command like CREATE TABLE <table
name> The ambiguity is lifted by the database parameter [sql] � default_
table_type in configuration file global.ini. The default table type in the initial
system configuration is row—so the aforementioned statement would create a
row store table.

Because columnar tables are by far more appropriate for most use cases in SAP
HANA, we recommend changing the default table type to column so that you will
not accidentally create row store tables.

It is, however, good practice to explicitly define the table type in the CREATE TABLE
statement. For full details of specifying table types in the create table statement,
see the SAP HANA SQL and System View Reference, which is available at https://
help.sap.com/hana_platform/.

Set Up Backup Scheduling

Before you start putting your system to regular use, you should set up backup
scheduling with an appropriate frequency; see the discussion in Chapter 5. If you
are using a dedicated backup tool that integrates with SAP HANA, the scheduling
will be simple.

Because SAP HANA itself does not offer a scheduling service, you need to find
other means of backup scheduling. One such way is using a program or script on
the Linux operating system that triggers database backups using the hdbsql tool or
the ODBC/JDBC database client. This program or script can, for example, be
scheduled using the cron daemon of the Linux OS. A working example of such a
solution is contained and documented in SAP Note 1651055. The script in this
SAP Note also contains some rudimentary functionality for defining backup reten-
630

Bootstrapping the System 14.3
tion times, so that backups may be overwritten after a configurable number of
days, and it provides functions for housekeeping on log backup files.

Start System Replication (If Applicable)

In case you are building a disaster-tolerant system using the system replication
technology (see Chapter 5), you may wonder about the optimal point in time to
enable continuous replication.

In principle, you can enable system replication right from the beginning. If, how-
ever, you are planning significant initial data loads into the SAP HANA system,
then we recommend enabling system replication only after these initial data loads
are finished. The reason is that with enabled replication you will ship all data
twice or even three times to the secondary site: first the log entries, then the delta
snapshot. If a given data set is shipped with a delta snapshot before the delta
merge on the table has happened, the merged table will be shipped again with a
later snapshot. The massive delta snapshot shipments can have an influence on
the commit performance (in synchronous replication), thus slowing down the
load process.

Because an initial data load can usually be repeated in the worst case, you will
have to choose between performance optimization of the initial load and mini-
mizing the impact on the source system of the data load. You do, however, also
have data and log backups so that in most circumstances you can avoid having to
reload data from the source system. As final justification for our recommendation,
the main purpose of system replication—increasing the availability of the SAP
HANA system—will normally not play a role at the time of the initial load.

Disable Password Lifetime for Technical Users

For technical users, such as the database user for the database connection of an SAP
NetWeaver system or the SLT user in SAP HANA, you should disable the pass-
word lifetime. Otherwise, the passwords of these technical users will expire and
need to be reset in regular interfaces. If you do not notice imminent password
expirations of such technical users, you will face system downtimes that—
depending on the application—can be accompanied with erratic behavior that
may delay problem analysis.
631

Planning and Setting Up an SAP HANA System Landscape14
You can disable the password lifetime of a database user either in the User Editor
of SAP HANA Studio or by using the SQL syntax:

ALTER USER <name> DISABLE PASSWORD LIFETIME;

We encourage you to remember this task whenever you add technical users to the
database system.

14.3.6 Setting Up the Development Platform

Up to this point, the steps covered in our bootstrapping sequence are not just rec-
ommended but in fact essential on any system, regardless of the system use case.
If you intend to do any development in the repository of your SAP HANA system,
the following additional steps will help you to set up the repository and other
aspects of the development platform in a controlled way.

Set the Vendor Name in the System Configuration

The first step for setting up the development system may be surprising: You need
to define the vendor property of our development system. This property will only
be needed if you create delivery units later on—either for manual export or for
content transports.

The vendor will most probably be your company name or something similar. You
can set it in system parameter [repository] � content_vendor of the file index-
server.ini.

Set Up Database Users for Managing the Development Platform

As a next step, we must set up database users that can manage the development
aspects of our SAP HANA systems. We suggest a number of administration roles
around the development platform in the roles how-to guide. These roles are
intended as starting points, and we expect that most customer teams will need to
modify them to serve their particular requirements.

Note

Even if you do not plan any data modeling, XS application development, or other obvi-
ous database-side development, you may make use of the development platform in SAP
HANA. The most probable case is role management with repository roles.
632

Bootstrapping the System 14.3
You may consider the following database users:

� Repository manager
A user who can define the package structure of the repository and create deliv-
ery units. In the proposed role repo_manager, we also give read and activation
rights to this user but no privilege to edit individual objects.

� Repository export manager
A user who can manually export repository contents. Please see the security
considerations in the how-to guide for the role repo_exporter.

� Repository import manager
A user who can manually import repository contents. Again, please pay atten-
tion to the security considerations for the role repo_importer. We strongly sug-
gest that you do not implement this role or grant the privileges within this role
to users of security-critical systems.

� HALM transport manager
If you choose to make use of SAP HANA’s built-in content transport application
named HALM, then you will need a database user who can set up the transport
system. The proposed role content_transport_manager from the how-to guide
describes a user who can perform this transport system configuration. Database
users with this role will be needed on all systems that are the target of such
transports (or, more precisely, in all SAP HANA systems on which transports
are managed; in the default configuration, a transport between two systems is
always managed from the target system).

� HALM transport executor
Once the transport system is technically set up, you will need a database user
with the privileges from the role content_transport_executor on the target
system of the transport (and also on the system from which the transport is
being managed, in case these two are not the same).

� HALM transport source user
On the source system of a transport, there must be a database user who can
provide the content export for the transport. The role for this user is named
content_transport_source in the how-to guide.

In addition to these administration users, you will also need developers, testers,
and other related users. The privileges to be granted to these users will strongly
depend on the area of development and also on the database contents, schema
633

Planning and Setting Up an SAP HANA System Landscape14
layout, and more. Some information on typical development roles is given in the
how-to guide.

Define and Create the Fundamental Package Structure

The package structure in the SAP HANA repository is more than just a tool for
organizing development artifacts. It also defines the URLs (and thus names) of XS
applications, the names of roles in the SAP HANA repository, and more.

It is also difficult (data modeling) or even almost impossible (most other develop-
ment aspects) to modify the package structure underlying an existing develop-
ment project without breaking all internal dependencies between objects in this
development project.

We therefore encourage you to take some time to set up a package structure and
define rules for application developers before creating the developer users. Based
on the generic discussion in Chapter 11, we suggest that you create the following
packages:

� Public playground for all developers
In order for developers to be able to test without having to first request a ded-
icated testing space, we suggest creating a structural subpackage named public
within the system-delivered package system-local.

� Package for developments that shall be promoted to production
Any development that is supposed to be eventually transported to the produc-
tion system tier should happen within a dedicated repository package. It is
SAP’s recommendation that each customer or vendor create their own package
directly underneath the root of the SAP HANA repository. We will refer to this
package as <vendor>.

SAP does not give further guidance regarding the repository structure. Based
on security concerns, however, we make at least one recommendation: We
assume that you will create security-relevant objects such as roles, privileges,
or stored procedures related to security administration within the <vendor>
package. If this is the case, you must make sure that security-related develop-
ments and other developments do not happen within the same branch of the
repository tree. You might, for example, create a structure as follows:

� <vendor>.security: Any security-related development

� <vendor>.applications: Contains all XS applications to be developed
634

Bootstrapping the System 14.3
� <vendor>.foundation: General-purpose development artifacts that may be
used across applications

� <vendor>.vdm: Contains virtual data models (that are not specific to just one
application)

� Private test packages for projects and individuals—on request
Whenever a project team or an individual requires a testing area with access
restricted to only select database users, they should be able to request that such
a package is created within the system-delivered package system-local.pri-
vate.

An otherwise empty repository for a company named SAP-PRESS with our pro-
posed repository layout is shown in Figure 14.9.

Enable SAP HANA Change Recording/Change Management

As we outlined in Chapter 11, it is now possible to set up content transports in
such a way that not all objects modified since the last transport will be trans-
ported. This development mode is named SAP HANA Change Recording (SPS 8)
or SAP HANA Change Management (SPS 7). If change recording is enabled, devel-
opers can assign objects to a change—and the change (containing one or multiple
objects) can be released for transport after all contributions within the change
have been explicitly approved by their respective responsible developers.

Figure 14.9 Proposed Repository Layout
635

Planning and Setting Up an SAP HANA System Landscape14
Change recording affects all developments in a given SAP HANA system (with the
exception of developments in the system-local package). It is not possible to
have some projects use change recording and others not.

The choice for or against SAP HANA Change Recording therefore affects all users
that work within the SAP HANA repository, including role developers. In our
eyes, the feature clearly improves the manageability of the SAP HANA system,
and we therefore recommend enabling it. To ensure that you have a consistent
transport mechanism throughout the entire development project, it is best to
decide for or against change recording before any serious development happens
in your system.

You can enable change recording from within the SAP HANA Application Lifecy-
cle Management (HALM) application, which can be accessed via the URL http://
<hostname>:<port>/hana/xs/lm/xs/ (where <hostname> is the name of a host run-
ning the XS server, and <port> is the XS engine’s HTTP port, typically defined as
80<instance>, <instance> being the instance number of the SAP HANA system).
You need to log on to the application with a database user that has the predeliv-
ered role sap.hana.xs.lm.roles::administrator. This role is contained in the
repo_manager role proposed in the roles how-to guide.

Within the HALM application (Figure 14.10), the SETTINGS tab gives you the
option to enable change recording/management.

Figure 14.10 Enabling Change Recording
636

Bootstrapping the System 14.3
Set Up SAP HANA Content Transports

Finally, it is time to set up content transports for your SAP HANA system. We
described the different transport options in Section 14.2.4 (and also in Section
11.5 of Chapter 11). Based on your scenario and existing infrastructure, you can
choose the most appropriate transport mechanism and set it up.

14.3.7 Preparing for Support Cases

There will come a time when you need support from SAP for your SAP HANA sys-
tem. You should already have set up your support connections. Now, it is time to
prepare the creation of support users in the database. It is a best practice to create
a new support user for each support incident and only grant the necessary privi-
leges to each user.

Define Roles for Support Users

The exact layout of roles for support users depends on the SAP HANA use case to
which an incident is related. In the roles how-to guide, we suggest several support
users for general database support as well as for application support (related to
SAP HANA-side development, such as data modeling).

Prepare for Granting of Special SAP Support Role

SAP HANA systems also come with a predefined role named SAP_INTERNAL_HANA_
SUPPORT. This role combines multiple privileges that cannot be granted in any
other way. The role is intended only for employees of SAP HANA development
support and should only be granted if absolutely required. Because it contains
rather powerful privileges, it can only be granted to a limited number of users at
a time (up to SAP HANA SPS 7, only to one user; starting with SPS 8, the number
of users is configurable in system parameter [authorization] � internal_
support_user_limit of the file global.ini).

It is a catalog role; if you followed our recommendations, you will have no user in
the system that can grant the role (granting the role would require the ROLE ADMIN
privilege, which we recommend not to use; hence, the only user that might grant
the role is the SYSTEM user, and it should be locked). In the roles how-to guide,
we described stored procedures that you can create to grant and revoke the role.
You should consider implementing such stored procedures to prepare for the
granting and revoking of this special support role.
637

Planning and Setting Up an SAP HANA System Landscape14
14.3.8 Final Steps

It is time to say “Congratulations!” You have now set up a manageable SAP HANA
system. The last thing to do is to execute a database backup that will freeze the sys-
tem state directly after this initial set up. Do not forget to also make backup copies
of the configuration files for system-wide (/hana/shared/<SID>/global/hdb/custom/
config) and host-specific configurations (/hana/shared/<SID>/HDB<instance>/<host-
name>). Then, have a nice cup of coffee.

14.3.9 Propagating Roles from Development to Other Landscape Tiers

Didn’t we say you were done? We are not taking this back. This final section sim-
ply contains advice on initially transporting your developed roles into the other
landscape tiers. After all, many of the setup steps will require appropriate user
privileges, so it will help to have all roles in all tiers of your system landscape.

There are two recommended ways to perform this initial transport. The first one is
to set up the transport mechanism at this early step. You may create the necessary
system users manually with the SYSTEM user. When using the SAP HANA Lifecycle
Management (HALM) application, you will need to have a source user with the
sap.hana.xs.lm.roles::Transport role in each system that is a source of a transport
and an administration user with the sap.hana.xs.lm.roles::Administrator role in
every system from which you manage transports (usually in all target systems). If you
do not always manage transports locally in the target systems, you will also need a
transport target user with the sap.hana.xs.lm.roles::Transport role in each target
system. All of these roles come predelivered with your SAP HANA system.

Alternatively, you can manually assign the packages containing your developed
roles to a delivery unit, and transport this delivery unit by means of export/
import. See the roles repo_exporter and repo_importer of the roles how-to guide
for the required privileges.

14.4 Summary

If your system landscape has been poorly planned, you will probably have a lot of
trouble managing it. This is as true for SAP HANA setups as it is for any other type
of IT system. We have therefore walked you through the process of getting started
with SAP HANA from a technical point of view, beginning with system planning
and finishing with the initial system setup.
638

Query performance is one of the most important aspects of most SAP HANA
projects. To achieve the best possible performance, it’s useful to know the
tools that are at your disposal and how to employ them effectively.

15 Tools for Performance Analysis

A major question that any DBA needs to answer is “Is the system running okay?”
Obviously, this question is very general and leaves a lot of room for interpreta-
tion. Nevertheless, SAP HANA provides a number of options that will help you
answer this question. In this chapter, we look at some of the most important tools
for analyzing system and query performance in SAP HANA.

Performance-related tasks for the DBA most often boil down to two activities:

� General monitoring of the system performance

� Analyzing and probably improving single-query performance

We’ll discuss both of these, but, given the high degree of tool support for the
monitoring part, we feel there is higher demand for better understanding single-
query performance analysis. Therefore, we will put a strong emphasis on single-
query performance in this chapter.

The chapter starts with discussions of the load diagram, the Alerts tab, and the
expensive statements trace—all useful tools for understanding the overall well-
being of the system. We then dive into two functionalities for analyzing single-
statement performance: the EXPLAIN PLAN and, most importantly, the PlanViz tool.
We close the chapter with a brief collection of pointers to other important
resources on SAP HANA performance.

15.1 Load Diagram

The load diagram (Figure 15.1) visible in SAP HANA Studio � Administration

Console � Performance � Load provides a graphical representation of some per-
formance- and operation-related figures, such as CPU utilization, number of SQL
639

Tools for Performance Analysis15
statements/sec, number of blocked statements, and so on. The graph is based on
the nameserver.trc file written by every local nameserver process. The file itself is
written to in a circular manner, always overwriting the oldest records with the
newest ones.

The amount of time covered by this trace file depends on the sampling rate, which
can be changed if required (as shown in 1) directly in the UI. The default sam-
pling rate of one sample every 10 seconds should be sufficient for general moni-
toring. Higher sampling rates will lead to more data and thereby to a quicker over-
writing of the old data. Therefore, we recommend cranking up the sampling rate
only for specific, short-period monitoring actions.

Figure 15.1 SAP HANA Load Diagram

As with all monitoring tools, setting the right scope of data to be looked at can
make the difference between getting insight, drowning in data, and starving for
information. The most effective option to reduce the amount of data displayed is
to set the Time Frame borders (as shown in 2). If the graph stays empty even
though KPIs (shown in 3) and hosts (shown in 4) have been selected to be dis-
played, simply click on the X icons in the date-selector boxes to delete the selec-
tion. Concerning the actual selection of KPIs, it is important to be clear about what
should be monitored. Otherwise, the graph easily becomes completely filled with
incomprehensible lines. Indexserver � CPU & Memory Used, Indexserver �
640

Load Diagram 15.1
Threads � Active SQLExecutors, and Waiting SQLExecutors are good general
starting selections.

Unfortunately, it is not possible to change the plot style or color for specific KPIs,
so either look up the color encoding in the selection box or try to hover over a
plotted data line. After a moment, a tool tip with the KPI name should appear.

Two often overlooked but very practical features for the load diagram are the
autorefresh (shown in 6) and the copy to clipboard (shown in 7) functions.
Autorefresh can turn the load diagram into a very simple permanent monitoring
dashboard. The copy to clipboard function actually places a screenshot of the cur-
rent graph into the clipboard. This is particularly useful when documenting cer-
tain system states, for example, the normal workload or a problematic situation.

A similar overview with a more modern graphic display is provided by the
Resource Utilization view (Figure 15.2). Although it provides less functionality
than the load diagram, the Resource Utilization display may be useful for a quick
interactive analysis. The graphics response times are much better than the in the
load diagram. This makes an exploratory way to work with it feasible.

Figure 15.2 Resource Utilization View

Note

The load diagram typically is used to get an overview impression of the instance and not
for detailed root-cause analysis.
641

Tools for Performance Analysis15
15.2 Alerts Tab

One of the simplest tools to you as a DBA is the Alerts tab, visible in SAP HANA
Studio’s Administration Console and Alerts tab (Figure 15.3).

Figure 15.3 SAP HANA Studio Alerts Tab

Although alerts generally are not specifically targeted towards performance prob-
lems, alert types such as Host CPU Usage, Long-Running Statements, or Long-

Running Blocking Situations can provide early pointers to issues that can slow
the system down. The list of past and present alerts combined with the option to
filter on alerts allows for a quick and easy check if certain alerts occurred only
recently or have a standing history in the system. This certainly can be a good
starting point for further investigations.

15.3 Expensive Statements Trace

The setup and the technical specifics of the expensive statements trace are
described in Chapter 16. Here, we focus on how to use the trace data effectively.

A major use case for the expensive statements trace list is the identification of the
top x expensive statements. The idea here is that those statements that take the
642

Expensive Statements Trace 15.3
most time to execute not only use most of the resources but also provide the most
potential for improvement.

In order to yield such a top x list, it is necessary to set up the output list (Figure
15.4). First, the displayed columns should be reduced (shown in 1) in order to
speed up the display. The columns shown on the Available Columns side of the
configuration dialog (shown in 4) usually can be safely ignored. Next, the list
should be filtered (shown in 2) to not include SAP HANA system users, such as
SYSTEM or the _SYS_* users. Finally, the resulting list should be sorted (as shown
in 3) by the DURATION_MICROSEC column from large to small values.

Figure 15.4 Expensive Statements List Setup

Once expensive statements have been identified, the single statement analysis can
be started via the context menu navigation to the PlanViz for the selected SQL
statement. (PlanViz is discussed in Section 15.5.)

Note

Again, for more information about the expensive statements trace, see Chapter 16.
643

Tools for Performance Analysis15
15.4 EXPLAIN PLAN

The EXPLAIN PLAN was a particularly popular feature in legacy RDBMS systems,
because it usually shows how the database will execute an SQL statement. The
EXPLAIN PLAN is similar in SAP HANA, with some important differences.

First, unlike in other databases, the costs presented in the EXPLAIN PLAN do not
represent an abstract time unit. Instead, it is an internal representation of
expected computational effort.

The other important aspect is that SAP HANA only partly predetermines the exe-
cution path of a query during the parse and optimize phase. When using column
views, like analytic views or calculation views, SAP HANA does an ad hoc optimi-
zation based on the actual query that accesses the column views. This includes a
new cost evaluation based on the query restriction from the WHERE clause as well as
removing unrequested columns from the whole execution chain (column pruning).

Because the EXPLAIN PLAN only has access to the result of the SQL parsing and opti-
mization phase, any access to column views are more or less a dead end for anal-
ysis with the EXPLAIN PLAN.

In Figure 15.5, we see a formatted EXPLAIN PLAN for a query accessing a column
view. Unfortunately, the original formatting of the EXPLAIN PLAN is not easy to read.
The only effective way that we know to read it is to copy and paste the result for the
EXPLAIN PLAN command to the clipboard via (Ctrl) + (C), Copy Rows. From there,
it can be easily entered into a spreadsheet application, such as MS Excel. Make sure
to format the columns to wrap text and to display the text at the top of the cells.

Figure 15.5 EXPLAIN PLAN Displayed in MS Excel
644

PlanViz 15.5
Access to the column view _SYS_BIC.demo/SALES_COMP is the lowest level of infor-
mation available in the EXPLAIN PLAN. Usually helpful figures like TABLE_SIZE/
OUTPUT_SIZE are set to some fixed fantasy value (10,000 rows) that does not have
anything to do with what will be returned from the column view.

The takeaway for the EXPLAIN PLAN is that it does not provide crucial information
about query processing once column views are involved. Because column views
are a major tool for creating SAP HANA applications, this limitation is pretty
severe.

Another downside of the EXPLAIN PLAN is that it always only shows the planned
execution, not the actual execution. Therefore, it is not possible to find deviations
of, for example, the expected from the actual record count numbers that have to
be processed by every step of a query.

A useful feature of the EXPLAIN PLAN, however, is the EXECUTION_ENGINE column
that indicates for each processing step, for statements that do not involve column
views, in which engine it will be processed. As switching engines is particularly
expensive, finding and avoiding those switches can be a performance-tuning
opportunity.

15.5 PlanViz

The Plan Visualizer, or PlanViz, tool in SAP HANA is the primary tool to under-
stand query runtime performance. The tool is based on two components:

� A server-side internal procedure that will execute the statement to be analyzed
and that collects runtime information. The internal procedure produces an
XML file containing all of the collected runtime information.

� A graphical UI that processes the XML data and creates different graphical repre-
sentations of it.

This split design makes it possible, for example, to create PlanViz files in SAP
NetWeaver and save them to disk, even if it is not possible to display the files in
SAP NetWeaver directly. Most often, PlanViz is used from within SAP HANA Stu-
dio. Also, as the internal procedure is part of the database catalog, it is always
updated to the latest capabilities of the SAP HANA engine it is running on. The UI
part, on the other hand, is downward compatible and can display any file gener-
ated by the older revisions of SAP HANA.
645

Tools for Performance Analysis15
The technical handling of the PlanViz tool is simple compared to the far more
difficult capability of correctly interpreting the details it provides or applying
this understanding to improvements of the information model or query design.
For this reason, we decided not to walk you through the tool elements one by
one but to design a real-life use case instead. We will show the use of the PlanViz
tool and interpretations of the information it provides in the context of this
example. We will then dedicate the second part of this section to coverage of the
different join implementations in SAP HANA and how you can analyze them
with the PlanViz tool.

15.5.1 PlanViz Example

To show you the functionality and recommended usage patterns for the PlanViz
tool, we will walk you through a complete example analysis of query runtime.

We will first set the scene by introducing the data model on which our example
is based, as well as the example query we will analyze. We will then show how
you can use the different features of the PlanViz tool to retrieve and interpret
detailed information on the actual query execution. Finally, we will derive poten-
tial improvements for the data model and implement and verify them. In the
course of this discussion, we will touch on all elements and functionalities of the
PlanViz tool that you will need for typical single-query analyses.

The Calculation View

The example we are going to examine is based on the calculation view SALES_COMP
shown in Figure 15.6. The view is rather simple; it is supposed to show the sales-
related key figures AMOUNT_SOLD, QUANTITY_SOLD, and MARGIN from two years next
to each other. That way, a year-to-year comparison will take place—a common
pattern in reporting (and thus data modeling) projects.

Note

Our example is based on a query against an SAP HANA information model; this has been
the most common scenario for the use of PlanViz so far. The tool is, however, equally
useful for the analysis of any SQL query against regular database tables or views.
646

PlanViz 15.5
The calculation view is based on an analytic view, SALES, that is queried twice:
once for each year, 2001 and 2002 in our example. The results from these analytic
view requests are then joined together so that records from one year always
match records from the other year. By filtering on the YR attribute, you ensure
that the correct years are selected for the comparison.

Figure 15.6 Demo Information Model Overview SALES_COMP
647

Tools for Performance Analysis15
The Query Result

The actual SQL query that uses the calculation view (Figure 15.7) simply performs
the comparison on the SHOP_ID level, leaving out the other modeled attributes,
such as CATEGORY or COLOR. The base SALES_FACT table contains roughly 90,000
records, and the query returns 13 records in about 350 ms with about 120 ms of
server processing time.

Although this is well below one second and therefore acceptable for most inter-
active analytic use cases, the question is, “Is this as quick as possible?”

Figure 15.7 SALES_COMP Result Set

Calling PlanViz

To understand what SAP HANA does in order to process the query, we choose
Visualize Plan from the context menu in the SQL Editor. A dialog box about
switching the perspective to the PlanViz perspective may be displayed, and con-
firming it ensures that all relevant UI displays are visible during the analysis.

The first output PlanViz generates is just a graphical version of the EXPLAIN PLAN
(shown in Figure 15.8; compare with Figure 15.5), and we do not see any actual
runtime figures. This output also ends at the column view access. To actually start
the PlanViz run, Execute has to be selected. Now, the internal procedure is called
and executes the statement, including fetching the whole result set.
648

PlanViz 15.5
Figure 15.8 PlanViz Initial View—Graphical EXPLAIN PLAN

Note

The standard SQL Editor in SAP HANA Studio always limits the number of records to
be returned. Very often, this will speed up the total query execution by a large factor,
because not all records have to be completely materialized and transported to the
client.

PlanViz, however, will internally fetch all records, because the materialization of the
result set is an important part of the query execution. This can lead to much higher runt-
imes of queries when executed in PlanViz.
649

Tools for Performance Analysis15
PlanViz User Interface

Once the statement has been completely executed, the main diagram is displayed
(Figure 15.9). Although using PlanViz is pretty straightforward, we briefly look
into some aspects that turned out to be useful when working with the tool.

Figure 15.9 PlanViz after Statement Execution

Note

Note that some features, such as the network location indication (shown in 6), are only
available with SAP HANA Studio SPS 8 and later.
650

PlanViz 15.5
The first element to point out is the overview map tool (shown in 1) that can be
brought up by clicking on the icon in the title bar. For small query graphs, this
might seem superfluous, but this tool becomes a lifesaver as soon as the plans get
more complicated. Another very useful feature is the save option available via the
disk icon in the icon bar. Figure 15.10 shows the Save Plan dialog with the option
to save the PlanViz either as a screenshot in various graphic file formats or as a
PLV file.

PlanViz files are in fact pseudo-XML files that contain all information of the Plan-
Viz execution and can be loaded back via File � Open File... in SAP HANA Studio.
This provides the ability to save an interactive PlanViz file and, if you choose,
share it with others. The files can be opened and analyzed without any access to
the system on which they were created.

Figure 15.10 Save PlanViz Dialog with File Type Selection

The next item of note are the triangles within the boxes (shown in 2). Each of the
boxes represents a unit of work that is performed during query processing. When
we want to look inside this unit of work, we need to click on the black triangle.
The box then will be enlarged and show what processing happens inside.

Tip

It is highly recommended that you save the PlanViz PLV files as soon as the query exe-
cution is finished. This is especially true for very long-running statements.

In the case that this does not happen and PlanViz accidentally closes or SAP HANA Stu-
dio crashes or something else destroys the current PlanViz, it can pay to check the SAP
HANA Studio workspace folder, that is, c:\Users\<username>\hdbstudio. In there, all
PlanViz plans are stored as temporary files named temp_xxx.plv.
651

Tools for Performance Analysis15
On the bottom of the window, there is a timeline display (shown in 3) that pre-
sents a horizontal bar for each processing box visible in the upper area. Both the
timeline and the main area are synchronized, so clicking and selecting an activity
in one of them will automatically select the corresponding item in the other.

Mapping the Information Model to PlanViz

To get to an understanding of what is happening in PlanViz, it is usually a good
start to map the single operations of the information model to the PlanViz output.

Every box in the PlanViz output represents a so-called plan operator (POP). The
names of the plan operators provide a hint as to which execution engine processes
them. POP names starting with CE are executed in the calculation engine, those
starting with BW are executed in the OLAP engine, and those starting with JE are
executed in the join engine.

In the PlanViz display, data flows from bottom to top. That is, our query result is
at the top of the view, and the actual data retrieval from database tables is at the
bottom. The plan operators in between represent the transformations needed in
order to get from the data in the tables to the desired output of the data model. In
the modeler interface for calculation views, the data flow direction is also from
bottom up. The nodes of the calculation view can be matched to the plan opera-
tions almost 1:1.

As our example is rather simple, the mapping is not too difficult. In the calculation
view, we have the result node (implicitly containing a projection), an aggregation,
and a filter on top of a join of data retrieved from two analytic views.

Note

Note that detailed and simple display styles are available for the plan operators in Plan-
Viz. When zooming out, PlanViz will automatically switch to the simple display mode in
order to keep the plan operator labels readable.

Note

The individual plan operators are not documented (SPS 8). In many cases, however, the
names are sufficiently descriptive to make an educated guess.
652

PlanViz 15.5
In PlanViz, we find a node representing a calculation search; expanding this node,
we find multiple POPs (Figure 15.11). As you would expect from a calculation
search, they are all ce-POPs; there is a CeProjectionPop, a CeAggregationPop, a
CeJoinPop, and two CeOlapSearchPop nodes. It does not seem bold to assume that
these can be mapped to the intrinsic projection of the result node, the aggregation
node, the join node, and the analytic view inputs of our calculation view. Once
you have figured out the mapping, take a closer look at the provided information.

Notable here is that the input to this POP is not just the result of the underlying
CeJoinPop; there is also an input of 13 records from an analytical search—queries
against analytic views—fed into the aggregation. Checking back with the result
set, you will find that this matches the number of groups created by the aggrega-
tion. This segregation of different computation steps—here creating the grouping
buckets and aggregating data into those buckets—is one of the techniques often
employed by SAP HANA to increase the level of parallel computation within a
query.

The second input feed to the aggregation is the actual data; resulting from the
CeJoinPop, we see that 41,888 rows are fed into the aggregation. Such row num-
bers are information to be looked out for when trying to find potential bottle-
necks in a query execution. A rule of thumb here is that the more records are
moved between POPs, the more time will be needed.

Another way to look at this is to compare the number of rows that feed into a POP
with the number of resulting rows. If this number is not decreased, then the POP
effectively performed a row-wise operation, which typically takes a relatively long
time.

Farther down in the PlanViz, we find that the CeJoinPop is fed from two
CeOlapSearchPop instances. These are calculation engine wrapper POPs that are
used to call the OLAP engine and to access the analytic views. The CeOlapSearch-
Pop instances are the Sales2002 and Sales2001 boxes in the calculation view, and
both map to the same analytic view, SALES. This information can be found in the
yellow details pop-up window.

Taking a look at the record numbers that result from the analytical search POPs,
we find that both of them return more than 62,000 records. Given that we are
interested in a highly aggregated view of the data (the query result is just 13
records), this could be a first indication of a potential performance issue.
653

Tools for Performance Analysis15
Figure 15.11 Mapping the Calculation View to PlanViz

By hovering over any of the boxes, a Details pop-up window appears that con-
tains information on the specific box. Let’s look into one of them in more detail
in Table 15.1.

Detail Pop-Up Line Explanation

Name:
CeOlapSearchPop

Type of the plan operation.

ID:

cs_plan158779_dewdftzldc01_30003_pop1

Internal ID within this execution
plan.

Summary:
CeOlapSearchPop: 6 columns processed
and 3 keyfigures

A brief summary of what this POP is
doing.

Execution Time (Inclusive):
53,644 ms

The time spent in this POP, including
all referenced POPs.

Table 15.1 Interpretation of the Details for a Typical Plan Operator
654

PlanViz 15.5
Execution Time (Exclusive):
53,644 ms

The time spent in this POP without
the referenced POPs.

Execution Start Time:

40,823 ms

Start time of this POP within this exe-
cution of the statement.

Execution End Time:
94,467 ms

End time of this POP within this exe-
cution of the statement.

CPU Time (User):

10 ms

CPU time used. This number is cur-
rently not to be trusted because CPU
time accounting is not yet fully
implemented.

Calc. Node Name:
Sales2002

The Calculation node name.

This maps directly to the calculation
view, which makes it very helpful in
mapping the PlanViz to the model.

PerformanceTracer:
2014-06-17 19:43:47.966 detail:
:searchTable=53337
2014-06-17 19:43:47.966 table: _SYS_
BIC:demo/SALES, detail: >>> ceDetails >>>
:prepareSO=0:search(65308)=53:pp_
rename=0:pp_removeAttrs=0:setRe-
sult(65308)=0: --> overall time=53 <<<
ceDetails <<<

Internal details. We have not yet
found a useful application for this.

Column Processed:
QUANTITY_SOLDsum

The column(s) processed in this
request.

PythonTrace:
.setNodeName('Sales2002')
.setUseInternalTable()
pi = fuzzypy.CePlanInput()
pi.setName('SALES')
.addPopInput(pi)
.addViewAttribute('SHOP_ID',
datatype=73, sqlType=3, sqlLength=5)
.addViewAttribute('YR', datatype=83,
sqlType=36, sqlLength=5)
.addViewAttribute('CATEGORY',
datatype=83, sqlType=36, sqlLength=30)
.addViewAttribute('FAMILY_NAME',
datatype=83, sqlType=36, sqlLength=30)
.addViewAttribute('COLOR_LABEL',
datatype=83, sqlType=36, sqlLength=255)

The Python trace section is by far the
most cryptic one.

It directly relates to the internal
structure of the plan operator and
the parameters vary between differ-
ent plan operators.

Although this is not documented and
might change in the future, as it is not
an open API, there still is useful infor-
mation to be found.

.setUseInternalTable() indicates
that the result will be stored in an
internal table.

Detail Pop-Up Line Explanation

Table 15.1 Interpretation of the Details for a Typical Plan Operator (Cont.)
655

Tools for Performance Analysis15
At this point in the analysis, we have a rough idea what is happening here: The
analytic view SALES is queried twice, each time with the appropriate filter for the
year. Still, a lot of records are transferred between the POPs in this PlanViz.

The Timeline Display

In order to confirm if this really is a problem, we need to find out about the time
used for each of the POPs. The tool to use here is the Timeline at the bottom of the
PlanViz window (Figure 15.12).

Figure 15.12 Timeline Display for the PlanViz Example

.addViewAttribute('WEEK_IN_YEAR',
datatype=73, sqlType=3, sqlLength=5)
.setLocale('BINARY')
.setUserSchema('LARS')
.setPlanOperationFlags(4096)
qo = fuzzypy.QueryEntry()
qo.setLocation('YR')
qo.setValue('2002', '', 'EQ')
qo.setValueType('single_quoted')
qo.setRowType('ATTRIBUTE')
qo.setContentType(fuzzypy.CT_CONTENT)
qo.setFuzzySimilarity(-1)
qo.setLanguage('NONE')
qo.addTermAction(fuzzypy.TA_EXACT)
qo.setSearchTermFlags(1)
.addPreQueryEntry(qo)
.addKeyfigure('MARGIN', 1, 100,
sqlType=7, sqlLength=8)
.addKeyfigure('AMOUNT_SOLD', 1, 100,
sqlType=7, sqlLength=8)
.addKeyfigure('QUANTITY_SOLD', 1, 73,
sqlType=3, sqlLength=5)
.addPlaceholder('$$language$$', 'E')
.setSource('_SYS_BIC:demo/SALES')

qo = fuzzypy.QueryEntry()
qo.setLocation('YR')
qo.setValue('2002', '', 'EQ')

The qo (query optimizer) section
shows that the filter conditions are
handed down to this POP.

.setSource('_SYS_BIC:demo/
SALES') shows where the data is
coming from. This can be a table or
another information model, as is the
case in this example.

Detail Pop-Up Line Explanation

Table 15.1 Interpretation of the Details for a Typical Plan Operator (Cont.)
656

PlanViz 15.5
In the Timeline display, we find that in fact accessing the analytic views takes a
major part of the processing time, even though both of the analytic views are pro-
cessed in parallel. From the 165,682 ms the total execution took, including com-
piling and fetching the result set, this step alone consumed 55,005 ms, close to
one-third of the total time. Note that in these 55 ms, the time for the data transfer
to the next POP, eventually to a different node, is also included.

Remodeling the Calculation View

If we could cut down the number of records resulting from the OLAPSearchPop,
this in turn would also decrease the time required for the aggregation POP,
because less data would have to be processed. This is in fact what we achieve if we
go back and change the model so that we can combine the aggregated data instead
of the line-item-level data.

Instead of a join, we are now using a UNION operation to combine the two data
sets from the analytic views (Figure 15.13). As UNION will just append one result
set after the other, SAP HANA can do this without actually moving the data.
Instead, at the end of one result set a memory pointer simply can point to the
next result set.

Figure 15.13 Remodeled Example Calculation View

UNION Column Mapping

The only difficulty with using the UNION operation in this example is how to bring
the results from both results next to each other. For that, a common trick is used:
657

Tools for Performance Analysis15
The Sales2001 analytic view will deliver 0 values for all 2002 measures, and the
Sales2002 analytic view will do the same with the 2001 measures. Because the
data will be aggregated via SUM in the next step, the duplicate lines will be merged
into single lines carrying the measures for both years. To achieve this in a calcu-
lation view, the UNION operator has to be set up with column mappings, as Figure
15.14 shows.

Figure 15.14 Column Mappings for the UNION Operator

Executing the query with this remodeled view already shows that it runs quicker
and returns the same data in around 260 ms with around 35 ms of server process-
ing time. Compared to the 350 ms with around 120 ms of server processing time
of the original version, the actual processing time was cut down to a third of the
original time.

Still, the total execution time is still at roughly two thirds. This is due to the fact
that in this case the total execution time is dominated by the time required to
transport the data to the client. Because you get the same number of rows back
with the remodeled view, this time will stay the same.
658

PlanViz 15.5
Improved Execution PlanViz

Looking at the PlanViz for this model confirms our assumption on the execution
steps. In Figure 15.15, you can see that the overall layout of the execution remains
unchanged.

Figure 15.15 PlanViz of Remodeled View
659

Tools for Performance Analysis15
The CeAggregationPop still retrieves the 13 records for the aggregation groups
from a separate call to the analytic views and the actual to-be-aggregated rows
are still delivered from the POP below it. But now, you can see that only 13
rows are fed into the aggregation POP. In fact, even the CeUnionPop only has to
cope with 26 rows, because the whole aggregation operation was pushed down
to the analytic view POPs. Checking the timeline for this execution results in
Figure 15.16.

Figure 15.16 Timeline of Remodeled View

Now, all the access to the analytic views is much quicker and takes only a very
small share of the total runtime.

Conclusion

You should now know how to use and read PlanViz. A general best practice here
is to not get lost in overly detailed observations. Instead, focusing on large data
transfers and operations that contribute a large share to the total runtime are
effective strategies in finding opportunities to improve performance.

15.5.2 Analyzing Joins with PlanViz

Joins are often among the most expensive contributors to query execution. We
will now explain the two most important join implementations in SAP HANA and
how to analyze join operations with the PlanViz tool.

There are two major difficulties many users experience when analyzing join que-
ries with PlanViz. The first one is understanding which execution engine does
what. The second one is understanding the way in which the database processes
join. We will start with a look at the execution engines. The names of the execu-
tion engines can be pretty misleading, so let’s look at this in a little more detail:
660

PlanViz 15.5
� Join engine
Performs joins between column tables and can perform filtering, simple
aggregation/distinct functions, and sorting and projecting the result set. The
main purpose is to provide general join functionality to column store tables.

� OLAP engine
This engine was originally coupled to analytic views but can also be dynamically
invoked by SQL executed statements and calculation views. The main purpose is
to support a star schema, such as aggregation queries. Aggregation groups and
joins are typically executed at the same time, and special features such as text
join or temporal join are supported. The use case for this engine is aggregation
and short table chains that should be joined. When calculations are included in
analytic views, this will typically lead to a calculation view that gets created as a
wrapper around the analytic view. In the activated column views, the analytic
view can then be identified by the /olap suffix. The OLAP engine is also the first
engine to support and exploit partitioned and distributed tables and replicas.

� Calculation engine
The calculation engine is the native execution engine for calculation views.
These are all about being reusable and stackable elements in larger calculation
constructs. A large number of native POPs is supported, including joins, pro-
jections, calling analytic views, passing queries to an R server, and so on. The
high flexibility and extensibility of the calculation engine make it the execution
engine for all cases that cannot be handled in the other two engines. The calcu-
lation engine also comes with its own join implementation.

We see that the feature set of the different execution engines does overlap quite
a bit. Every engine can perform operations such as filtering and projecting col-
umns or joining tables. Which engine is best used when is always dependent on
the problem at hand.

After understanding what the execution engines are, the second hurdle for devel-
opers and DBAs used to other databases is to understand the processing of joins.
We’ll go into that in a little more detail next.

Joins in PlanViz—Join Engine Join

To see how joins are processed in SAP HANA, we will again look at an example.
The SQL statement we are going to analyze is shown in Listing 15.1.
661

Tools for Performance Analysis15
select f.shop_id, a.family_name, sum (MARGIN) as "MARGIN"
from efashion.shop_facts f
 inner join efashion.article_lookup a
 on f.article_id = a.article_id
group by f.shop_id, a.family_name

Listing 15.1 Join Processing and Aggregation Example Statement

The statement is nothing more than a straightforward inner join with a simple
aggregation. Executing it as-is leads to join engine usage and produces a surpris-
ingly complex PlanViz. The reason for this apparent complexity is—again—that
decomposing the different tasks that need to be performed for this query can
yield much higher parallel degrees of processing.

As the processing of joins in any of the mentioned engines tends to appear rather
complex at first sight, we will take you through the simplest case—a join in the
join engine—in three steps.

Join Engine Join: Part 1 of 3
The very first step of the join processing (Figure 15.17) is already concerned with
optimizing performance. Instead of simply reading all records from the SHOP_FACT
table and joining them to the ARTICLE_LOOKUP table, SAP HANA does the sensible
thing and preaggregates the large table first. If we supplied filter conditions, they
would have been applied in the Search on Table/Delta POPs. The job of the
JEEvalPrecond POP here is to turn the row pointers found in the table into an
internal intermediate data structure, JEPlanData. This data structure represents
the rows without actually materializing them. By doing that, a lot of intermediate
memory is saved, and the processing can continue to leverage the SIMD instruc-
tion set processor commands.

Next, JEDistinctAttribute prepares the groups for aggregation, and JECreate-
NTuple delivers the values for the aggregated column MARGIN. Don’t get fooled by
the Sorted Merge Join text here. This relates to the join between the groups and
the aggregated column, not to the join of two tables.

After the aggregation, the number of records to be joined from the fact table now
is only 4,220 rows and is stored in an intermediate temporary table by the Result
Assembly and the Create Temp Index POPs.
662

PlanViz 15.5
Figure 15.17 Join Engine Join: Part 1 of 3

Join Engine Join: Part 2 of 3
Based on the temporary intermediate result set containing the reduced join data
from the fact table, the actual join processing between the two tables can now
663

Tools for Performance Analysis15
start. The Reduction Phase POP (Figure 15.18) deals with using the join condition
to reduce the number of resulting rows. The POPs JEStep1 to JEStep4 prepare
data structures for the following processing steps. That is the reason for the mul-
tiple data streams that leave these POPs and feed into different subsequent steps.
Which JEStep POPs are employed in a query depends on the query and the pos-
sible optimizations.

Figure 15.18 Join Engine Join: Part 2 of 3
664

PlanViz 15.5
The actual join is then performed in the JECreateNTuple POP that now only needs
to process 2,110 and 211 records.

Join Engine Join: Part 3 of 3
The POPs that are executed after the join is performed combine the joined result
set with the grouping and aggregation operations that we requested in the SQL
query. This is now done in the Grouping, Aggregation, and Result Assembly POPs
(Figure 15.19).

Figure 15.19 Join Engine Join: Part 3 of 3

Joins in PlanViz—OLAP Engine Join

With the insight into join processing in the join engine, we now compare this to
the join processing of the OLAP engine. To do this, we usually would have to
665

Tools for Performance Analysis15
build an analytic view that resembles the logic in our SQL statement. Fortunately,
by using the WITH HINT (OLAP_PARALLEL_AGGREGATION) syntax, SAP HANA can do
this on the fly. To understand the OLAP engine join, we break the processing
down into two major steps.

OLAP Engine Join: Part 1 of 2
In Figure 15.20, we see that BwPopJoin13 (a combined BwPopJoin1 and BwPopJoin3
that could be used in other scenarios) creates intermediate data structures of type
BwDimFn based on the two columns SHOP_ID and ARTICLE_ID that will be used as
the group by attributes in our query. BwPopAggregateParallel creates a Parallel-
HashMap data structure as the result of a highly parallelized aggregation process.
With this and with the actual row information from the BwPopJoin13 POPs,
BwPopBuildResultParallel creates an intermediate result set table.

Figure 15.20 OLAP Engine Join: Part 1 of 2
666

PlanViz 15.5
OLAP Engine Join: Part 2 of 2
At this point, the OLAP engine already is at half of the overall processing. Figure
15.21 shows the remaining steps. The intermediate table now is joined to the
ARTICLE_LOOKUP table, just as is done in the join engine.

Figure 15.21 OLAP Engine Join: Part 2 of 2

The POPs used for this are BwPopJoin1Inwards and BwPopJoin3Inwards. Again,
these POPs create BWDimFn data structures that feed into the BwPopAggregatePar-
667

Tools for Performance Analysis15
allel and BwPopBuildResultParallel POPs. The latter also takes the Parallel-
HashMap generated by the BWPopAggregateParallel POP and produces the final
result set in the form of an internal temporary table.

Here, we see that in order to perform parallel aggregation, the data from the column
store tables needs to be prepared and converted first into special data structures
BWDimFn and ParallelHashMap. This data type conversion usually only pays off for
larger amounts of data, so the OLAP engine is not the best choice for all joins.

15.6 Further Resources

Performance analysis is a broad topic and could easily fill a book on its own.
Although this chapter covers the most important features in detail, the following
resources should not go unmentioned; they provide helpful insights and tools for
a lot of other performance-related topics.

� The Performance Analysis Guide available at help.sap.com/hana_appliance.

� SAP Note 1969700 contains a growing number of SQL statements for various
use cases. Some of them, for example, HANA_Resources_CPUAndMemory_History
or HANA_Workload, provide easy-to-use overviews of the system usage over
time.

� SAP Note 1858357 covers steps to analyze situations in which sessions seem to
be stuck due to concurrent access of shared resources.

� SAP Note 1890444 addresses configuration issues that could affect perfor-
mance negatively.

� Because the options and techniques for performance-related analysis con-
stantly evolve, a book like this can never be at the latest state. To keep updated
on these topics, SAP FAQ Note 2000002 should be subscribed to in the SAP
Service Marketplace.

Note

The actual implementation of joins in any execution engine of SAP HANA will evolve
over time and is not officially documented. None of the processing steps are guaranteed
to be executed or maintained in future revisions.

However, we believe that the preceding walkthrough provides a good starting point for
understanding more about query processing in SAP HANA.
668

Summary 15.7
15.7 Summary

In this chapter, we provided an overview of different tools and techniques to
understand and improve query performance in SAP HANA. If there is one main
takeaway, then it might be that it is key not to get lost in details too early. Instead,
filter out relevant information—for example, the longest running contributors to
the Timeline view in PlanViz.

The second item to remember is that PlanViz is the tool of choice for single-state-
ment analysis. SAP HANA also provides a great deal of performance-related infor-
mation in monitoring views, statistics service views, the load diagram, and other
places—and this wealth of information can easily be confusing. Knowing the
question that should be answered is the most important step to finding the
answer in of all this information.
669

Your end users complain because “the system is slow.” Last night’s batches
didn’t finish. The update process fails. Your developers can no longer
activate any data models. These and many more events leave you with two
choices: contact SAP Support or find out what’s going wrong.

16 Monitoring and Root-Cause Analysis

Troubleshooting or analyzing problems, errors, and unwanted system behavior
and finding options to fix or work around them can be looked at as a science, an
art, a craft, or a mix of all of them. Typically, good troubleshooters do have a good
understanding of the concepts of the system, follow an analytical approach, and
usually have a gut feeling about what might be causing the issue at hand. Equally
important is the capability to find critical information in order to better under-
stand a given problem.

One prerequisite for developing an intuitive feeling for the system’s overall well-
being is to understand and adequately use its monitoring capabilities. Although
we have discussed some monitoring topics in their relevant chapters throughout
the book, we will touch upon general monitoring topics at the beginning of this
chapter. We’ll then progress to functionalities and techniques relevant for hand-
ling individual incidents. To this end, we will start with log and error messages
displayed to developers and administrators using SAP HANA Studio and then
move on to information collected in diagnostic files and traces of the database
server and clients.

16.1 Monitoring

Monitoring describes a regular or continuous observation of system characteris-
tics. The system may collect information on its own (self-monitoring), or admin-
istrators may check certain parameters of a system in a manual procedure.
Although the latter is, of course, technically possible, manual monitoring is inef-
ficient and will not play a role in our discussion. We will instead focus on the self-
671

Monitoring and Root-Cause Analysis16
monitoring capabilities of SAP HANA—starting with an introduction of the mon-
itoring views of the database and its statistics service. We will not ignore the
related topics of accessing the information collected by the system and imple-
menting proactive alerting mechanisms. Finally, we will briefly discuss external
tools for monitoring SAP HANA systems, including SAP Solution Manager.

16.1.1 Monitoring Views

The SAP HANA system comes with a large number of tables and views that offer
information on the system state. Some of these views describe the comparatively
static structural content of the database system, that is, the definitions of database
objects. These views make up the database catalog and were the topic of Chapter
7. The monitoring views that we will cover here are very volatile and dynamically
reflect the system state. The content of these views is not stored in the database
but computed on the fly based on what is currently in memory. This means that
the contents of these views will be gone after an instance restart. As an example,
monitoring view M_DELTA_MERGE_STATISTICS—which provides information on
delta merge executions—only shows the data since the last system restart. For a
historic view on some of these monitoring views, the statistics server takes regular
snapshots and stores the information in the _SYS_STATISTICS schema.

Sometimes the data content of monitoring views changes so quickly and is so sen-
sitive to different workloads that looking at the absolute total numbers would not
provide the desired insight. Instead, it would be interesting to see the change of
figures since a specific point in time (e.g., the amount of log data since the start of
the data-loading process). For such requirements, SAP HANA comes with a special
kind of monitoring view, the resettable views, identifiable by the _RESET suffix. As
an example, we use the M_LOG_SEGMENTS view and the resettable twin view M_LOG_
SEGMENTS_RESET.

In Figure 16.1, we see the output of M_LOG_SEGMENTS, shown in 1, which is a list
of all processed log segments for the whole SAP HANA instance for every log seg-
ment that was created since the instance was restarted. Depending on the work-
load of the instance, this could mean lots of entries that might be difficult to read.
Also, there is no information about the creation time of the log segments, which
makes it hard to figure out how many log segments have been created in a certain
period of time. By using the command alter system reset monitoring view
672

Monitoring 16.1
M_LOG_SEGMENTS_RESET, a reset timestamp for every entry is created, and the data
is now visible in M_LOG_SEGMENTS_RESET, as shown in 2.

Figure 16.1 Output from M_LOG_SEGMENTS and Its RESET Variant

An important detail here is that the reset of the monitoring view does not remove
entries from the views. Instead, the _RESET views either carry a reset timestamp or
certain counters or key figures in the view are initialized while the records are
kept in place. This might be confusing at first, but it makes comparisons between
two reset actions easier; after the reset no records will be missing, but the mea-
sured values will be set to zero.

SAP HANA Studio as well as the DBA Cockpit for SAP HANA offer dedicated user
interfaces for working with the most important monitoring views. In many cases,
these user interfaces offer a mixture of administration functionality and monitor-
ing capabilities; we described these aspects in Chapter 4.

Information on all available system views is given in the SAP HANA SQL and Sys-
tem Views Reference at https://help.sap.com/hana_platform/.
673

Monitoring and Root-Cause Analysis16
16.1.2 Alerting

The statistics service of SAP HANA performs checks of vital system characteristics
and raises alerts when needed. Whenever an alert is raised or the criticality of an
alert changes, an entry is written to table STATISTICS__ALERTS in schema _SYS_
STATISTICS. For most practical purposes, the subset of alerts exposed by view
STATISTICS_CURRENT_ALERTS in the same schema is most relevant.

The built-in method of pushing or distributing alerts is email-based alerting. We
described the configuration of the statistics service, including setting up email
alerting, in Chapter 4.

If this is not sufficient within your data center setup, there are other means of
receiving alert information. The SAP-proposed way is to integrate SAP HANA
with your SAP Solution Manager system and make use of SAP Solution Manager’s
alerting infrastructure. SAP Solution Manager supports several industry stan-
dards, such as SNMP, and many third-party tools for monitoring SAP systems
come with connectors for SAP Solution Manager.

If SAP Solution Manager is not an option either, you can also pull alert informa-
tion from the SAP HANA system directly by querying the tables and views of the
statistics service. For the purpose of receiving all current alerts from the database,
it is sufficient to query the view STATISTICS_CURRENT_ALERTS in schema _SYS_
STATISTICS in appropriate intervals.

16.1.3 External Monitoring Tools

Operators of large and diverse data centers must implement a common monitor-
ing infrastructure that encompasses all systems. In most cases, it is therefore not
a priority that the system to be monitored provides a feature-complete monitor-
ing environment ready for the end user, but it must provide interfaces or APIs
that monitoring solutions can connect to. In the case of SAP HANA, all monitoring
and alerting information collected by the database system is exposed to external
applications through database views. Thus, monitoring solutions can easily access
this information via the database’s SQL interface.

Although we cannot cover such external tools in the scope of this book, we will
briefly point you to information related to the integration of SAP’s standard offer-
ing, SAP Solution Manager, and of third-party tools with SAP HANA.
674

Error Messages 16.2
Integration with SAP Solution Manager

SAP’s standard solution for managing complex IT landscapes is SAP Solution Man-
ager. By now, SAP HANA is integrated into SAP Solution Manager to the same
level as other SAP platforms, so anyone familiar with the tool can easily use it to
monitor, administrate, and troubleshoot SAP HANA systems. The integration
includes, for example the functionality of alerting, workload and change analysis,
and end-to-end tracing.

You can find the documentation for integrating SAP Solution Manager with SAP
HANA at https://service.sap.com/solman-hana.

Third-Party Tools

The SAP Integration and Certification Center (https://scn.sap.com/community/icc)
offers certification processes for specialized tools, for example, for monitoring tools,
backup tools, ETL tools, and BI tools, and several third-party tools have been certi-
fied already. You can see a list of all tools certified for SAP HANA in the SAP Partner
Information Center at www.sap.com/partners/directories/SearchSolution.epx. For
Certification Category, choose SAP Certified—Integration with SAP HANA.

If your monitoring solution does not yet support SAP HANA but can connect to
SAP Solution Manager, then you can set up Solution Manager integration for SAP
HANA and use the Solution Manager system as a propagation layer. Alternatively,
your solution might offer a generic database connector that you can customize for
SAP HANA using either the JDBC or ODBC database client.

16.2 Error Messages

Error messages are your first hint that there is a problem in the system—and also
your first step in solving it. In many cases, these error messages already provide
the crucial bit of information you need: the date and time when the error
occurred, on which node it occurred, with which user account, which database
objects and which processes were involved, and so on.

In this section, we’ll introduce you to the two most basic tasks in working with
error messages: finding out where they are and understanding what they’re tell-
ing you.
675

Monitoring and Root-Cause Analysis16
16.2.1 Locating Error Messages

Depending on the application that uses the database, error messages are pre-
sented at various different locations. SAP NetWeaver-based systems use their own
log and trace file infrastructure, for example, Transactions ST22 (Short Dumps)
and ST11 (Developer Traces), to make error messages accessible to the adminis-
trator. Other applications will use different facilities to store error information;
for the SAP HANA DBA, it is important to find out about these. Otherwise, it is
very difficult to know what kind of problem is present.

To help you in this task, we’ll walk you through finding error messages for the
two most common types of errors: errors displayed in SAP HANA Studio and
errors that occur during model activation.

Errors Displayed in SAP HANA Studio

SAP HANA Studio presents error messages typically either in the lower section of
the screen, where the tabs Job Log (Figure 16.2) and Error Log (Figure 16.3) are
displayed, or in the section below an SQL Editor window.

Figure 16.2 SAP HANA Studio Job Log View

Figure 16.3 SAP HANA Studio Error Log View
676

Error Messages 16.2
Depending on the current perspective and tool used, error messages are some-
times also displayed in the top area of a dialog window. Figure 16.4 shows an
example for such editor-specific error output in the Table Editor.

Figure 16.4 Editor-Specific Error Output

Model Activation Errors

When activating or deploying information models, errors are reported by a failed
activation job, as shown in Figure 16.5.

Figure 16.5 Failed Model Activation in SAP HANA Studio

Double-clicking on the failed job entry will bring up an error message summary.

If the error message is not a simple one, the job details (as shown in Figure 16.6)
are barely helpful in finding the cause for them. However, selecting Open Job Log

File from the context menu provides access to a much better readable represen-
tation of the activation log data (Figure 16.7).
677

Monitoring and Root-Cause Analysis16
The activation logs are automatically saved in the local user’s SAP HANA Studio
work folder, typically in the folder %USERPROFILE%\hdbstudio\com.sap.ndb.stu-
dio.bi.logs. This way, the log files can be inspected again or sent to SAP Support
even if the error message window was closed in SAP HANA Studio.

Figure 16.6 Job Details Display for Failed Activation

Note

Activation log files are not automatically deleted, so, depending on the amount of acti-
vations a user routinely performs, cleaning up this folder regularly might be the right
thing to do.
678

Error Messages 16.2
Figure 16.7 Job Log File Showing the Error Information in a More User-Friendly Way
679

Monitoring and Root-Cause Analysis16
16.2.2 Interpreting Error Messages

Once the error message has been found, we need to make sense of it. Often, error
messages contain multiple layers of error-related information that need to be
looked at.

Consider the following example error output:

Could not execute 'alter table customers add primary key (ID, NAME)'
in 576 ms 810 μs .
SAP DBTech JDBC: [2048]: column store error: set int type and
constraint error: [56] constraint NOT NULL violation

This example error output has three pieces of information. First, it identifies the
problem: SAP HANA Studio could not execute the command. The remaining text is
delivered by the SAP HANA JDBC driver, indicated by the header SAP DBTech JDBC:.

Second, the actual error message details are printed. [2048] is a common error
message for the column store. Without additional information, it does not tell us
what the problem was, but there is also auxiliary error information: set int type
and constraint error:. This makes it clear that something went wrong with the
constraint handling.

Finally, the third piece of information in this message is [56] constraint NOT NULL
violation. This information gives you the root cause of the problem: The NOT
NULL constraint, implicitly enabled when adding a primary key constraint, is vio-
lated.

The meaning of error codes can be looked up either in the system table M_ERROR_
CODES or in the SAP HANA SQL and System Views Reference � SQL Reference � SQL

Error Codes, which is available both on https://help.sap.com/hana_appliance and
in the built in documentation in SAP HANA Studio. Unfortunately, not every

Note

Unfortunately, error messages are often badly formatted or not formatted at all. There-
fore, it is usually a good idea to copy and paste the full error text into a text editor and
reformat the message there. Insert line breaks whenever there is a new error code, a
colon (:), or a semi-colon (;). Sometimes, SQLScript code especially can generate n and
t characters in trace files and error messages. These n’s and t’s represent newline and
tabulator characters, and replacing them with actual newline and tab characters in a text
editor makes the error output far more readable.
680

Diagnostic Files 16.3
error code is documented this way. In case an undocumented error code requires
further clarification, a support call with SAP should be opened.

Alternatively, a new service for finding error documentation and troubleshooting
help is https://answers.saphana.com. This website is a meta-search engine covering
not only the complete set of documentation but also SCN content, training docu-
ments, and the like. A direct integration of the website into SAP HANA Studio is
available via an Eclipse plug-in that has to be installed separately.

16.3 Diagnostic Files

Diagnostic files are text files in which the database logs events that may help to
analyze issues that have occurred in the database, similar to the kernel logs of SAP
NetWeaver systems. All of these files are collected on the file system of the SAP
HANA database server and are exposed in SAP HANA Studio � Administration

Editor � Diagnosis Files.

There are two generally different types of such diagnostic files. Dump files are
written in exceptional circumstances, such as out-of-memory situations or system
crashes, and contain information that will be useful for understanding the root
cause of the issue. Trace files contain the output of the database kernel’s logging
mechanism.

In this section, we will first tell you about the most important aspects of these files
and then introduce two tasks that are useful for working with them: collecting
diagnostic information on your database system (for example, in order to provide
it as auxiliary material to SAP Support), and analyzing trace file contents on your
own (via a handy interface in SAP HANA Studio that provides a combined view of
all diagnosis files of all services in the database system).

16.3.1 Dump Files

Whenever SAP HANA cannot gracefully handle an error situation, the system
needs to abort and crashes or ends a current thread. Instead of writing out a mem-
ory dump that might be gigantic and take hours to write to disk, SAP HANA cre-
ates a text file that contains nearly everything that could be helpful for under-
standing the system state that led to the crash/abort. This text file is called a crash
dump file and can be found in the Diagnosis Files tab. All crash dump files have
681

Monitoring and Root-Cause Analysis16
the characters *.crashdump*. as part of the file name. That way, it is easy to find
these files in the list of diagnosis files. Apart from the actual crash dump files, SAP
HANA can produce dump files with a similar internal structure, such as runtime
dump files (*.rtedump.*), emergency dump files (*.emergencydump.*), and out-
of-memory dump files (*.oom.*).

The structure of the dump files follows a common layout; refer to Figure 16.8 for
an example. A header section that indicates when and where the dump file was
created is followed by a table of contents. After that, the content is printed in sec-
tions, each starting with the section name in brackets and ending with [OK].

Figure 16.8 Crash Dump File
682

Diagnostic Files 16.3
When displayed in SAP HANA Studio, the dump files can be easily navigated by
pressing the (Ctrl) key and clicking on the then-visible hyperlinks in the table of
contents.

16.3.2 Trace Files

Trace files (sometimes named log files) are another type of diagnostic file that
represents the output layer of the database kernel’s logging mechanism (named
“database trace”). As opposed to dump files, they are continuously written to by
the individual database processes. The criticality and consequently the amount of
information written to these files depends on the configuration of the database
trace (see Section 16.4.1). Each service/process on every host writes into its own
set of trace files, the name of which is constructed from the service name, host
name, port name, and a running sequence number. The file system location of the
trace files written by the services of a given host is /hana/shared/<SID>/<host-
name>/trace. In addition, the trace file folder on each host contains all crash dump
and runtime dump files. For most of the trace files, SAP HANA employs an auto-
matic retention mechanism that keeps up to ten files of a maximum of 10 MB size
for each process before the oldest file is deleted and a new file is created. The
parameters of this file rotation can be configured (Table 16.1).

Besides the standard trace files, simply named by <servicename>_<hostname>.
<portno>.<sequence>.trc, there is one single alert file for each service into which
only trace messages of the highest priorities are written. Especially if the current
trace settings lead to a high volume of entries in the regular trace files, it can be
easier to find information relevant to a specific error situation in the alert traces.
Instead of a file rotation for these alert files, they have a configurable maximum
size. Once that size is reached, the oldest file contents will be overwritten. Alert
files are simply named <service>_alert_<host>.trc.

Note

A common pitfall here is that by default SAP HANA Studio will read only the first 1,000
rows of the dump file. Due to this, many sections will not be loaded into the Diagnosis
Files Editor. The table of contents entries referring to these sections will then remain
unlinked. To overcome this, simply choose Show Entire File in the selector at the upper
edge of the editor window.
683

Monitoring and Root-Cause Analysis16
As Figure 16.9 shows, the trace files for a distributed SAP HANA instance are well
spread across different servers and file system folders. The goal behind this rather
complex trace/log file handling is twofold:

� To prevent loss of potentially important operational information by deleting
data too early

� To keep the files in manageable sizes and numbers

Figure 16.9 Trace Files in SAP HANA

The default settings for trace/log file handling are suitable for a wide range of sce-
narios. In fact, we never saw a requirement to actually change them in any cus-
tomer system. However, the global.ini � [trace] parameters shown in Table
16.1 can be changed to customize the behavior.

Host 1

Index Server

XS Server, wdisp

Name Server

Preprocessor

Compile Server

Statistics Server

Script Server

Daemon

Host local file
system

…

<servicename>_<hostname>.<portno>.<seq>.trc

001

/usr/sap/<SID>/HDB<Inst.No.>/<hostname>/trace
Alias: cdtrace

chain of 1 active
+ 9 retained files

Host 2

Index Server

XS Server, wdisp

Name Server

Preprocessor

Compile Server

Script Server

Daemon

Host n

Index Server

XS Server, wdisp

Name Server

Preprocessor

Compile Server

Script Server

Daemon

Host local file
system

001

Host local file
system

001
…

684

Diagnostic Files 16.3
The trace files written out by the SAP HANA processes follow a common format.
Any message written to the trace files starts with the same set of data. Let’s look
at the following example to understand this data better (see also Table 16.2):

[4869]{301828}[67/1325299] 2014-06-09 21:18:46.357168 i TraceContext
TraceContext.cpp(00699) : UserName=LARS, ApplicationUserName=I028297,
ApplicationName=HDBStudio

Parameter Name (Default Value) Description

compressioninterval (10) Interval in seconds to check for large trace files to be
compressed

flushinterval (5) Interval in seconds for trace data to be flushed out
into trace files

maxalertfilesize (50000000) Maximum size in bytes for alert files

maxfiles (10) Maximum number of sequence files to be kept

Maxfilesize (10000000) Maximum size in bytes for other trace files, includ-
ing crash dump files

Table 16.1 Trace File Handling Parameter Settings

Traceline component Meaning

[4859] O/S thread ID of the thread that issued the trace line

{301828} Connection ID of the session

[67/1325299] Transaction ID/update transaction ID, if applicable;
otherwise -1

2014-06-09 21:18:46.357168 Timestamp

i Trace level indicator (i = info, d = debug,
w = warning...)

TraceContext Name of the trace component

TraceContext.cpp(00699) Source code module and location

UserName=LARS,
ApplicationUserName=I028297,
ApplicationName=HDBStudio

Trace line message

Table 16.2 Trace Line Components
685

Monitoring and Root-Cause Analysis16
Understanding this information can be very useful, such as when following the
trace output of a single session through a trace file while other threads write out
their trace output in between.

16.3.3 Collecting Diagnostic Files for a Support Incident

The Diagnostics Files tab allows for downloading single and multiple files to the
local computer on which SAP HANA Studio runs. However, collecting all the diag-
nosis files typically required for a support incident (dump files, alert files, trace
files, etc.) can be cumbersome. To make this easier, SAP HANA Studio provides
the Collect option in the Diagnosis Files tab (Figure 16.10).

Figure 16.10 Collect Diagnosis Information in SAP HANA Studio

Clicking the Diagnosis Information button provides a dropdown list for either
triggering a new collection of diagnosis information or accessing and managing
the already existing information. Clicking Collect... brings up a selection window
(Figure 16.11) in which you can choose between two options:

� Create a collection of the already available trace and dump files, eventually
including current selections from monitoring views from the live system. For
this option, you can also provide a filter for the maximum age of files to be
included.

� Create so-called runtime dumps. These are files containing current runtime
information for all threads and excerpts from monitoring views.

As of SPS 8, the time selection in this dialog is redesigned to be more flexible, and
runtime dumps now can be set up to be taken in a series. This can be helpful for
analyzing ongoing problem situations.
686

Diagnostic Files 16.3
Figure 16.11 Collect Diagnosis Information Selection Dialog

16.3.4 Using the Merged Diagnosis Files Editor

As you have seen, it can be difficult to locate trace file messages for a specific issue
in all the different trace files. In order to find the detailed error output for an issue
in a scale-out environment, the DBA would need to review the indexserver traces
that cover the time when the error occurred on every single host.

To allow for a more efficient approach, SAP HANA provides the Merged Diagno-

sis Files Editor (also available in Transaction DBACOCKPIT in SAP NetWeaver
systems). This function is available in SAP HANA Studio � Administration Con-

sole � Diagnosis Files � Merge Diagnosis Files....

Clicking the button opens a preselection dialog from which the DBA can limit the
amount of data that should be processed (Figure 16.12). The longer the time range
chosen, the more data will need to be processed, and the longer it will take to
gather all information.
687

Monitoring and Root-Cause Analysis16
Figure 16.12 Merge Diagnosis Files Selection Dialog

After clicking the OK button, SAP HANA Studio runs a query against system view
M_MERGED_TRACES with the selection criteria provided. Selecting from this system
view will trigger a scan of all trace files of all services (indexserver, statis-
ticsserver, xsengine, etc.) based on the provided selection criteria. Although the
view can of course be accessed via SQL, it is highly discouraged, because the result
set is not buffered. To compensate for this, SAP HANA Studio selects the result of
this first query into a local temporary table. All further selections will be per-
formed against this temporary table.

Once the data is read into the temporary table, the Merged Diagnosis Files Edi-

tor (Figure 16.13) is opened; it contains the trace data that is available for the
specified time frame.

Note

Try to limit the data as much as possible; this will make working with the combined
trace file output much quicker and smoother. Finding the right scope of log/trace file
information is key to a quick and efficient error analysis.
688

Diagnostic Files 16.3
Figure 16.13 Merged Diagnosis Files Editor

Once opened, the time frame cannot be changed; instead, the editor needs to be
closed and reopened to select a different time frame.

At the top of the window, a time slider (shown in 1) can be used to change the
displayed time frame within the boundaries of the selection that was made earlier.

Much more important than using the time slider is to open the filter settings
(shown in 2). Because you are now looking at the combined trace output from all
services and all hosts, chances are that most of the data displayed will not be of
importance (read: noise) to you.

Depending on the type of analysis that should be performed, the filtering strategy
(shown in 3) can be either to exclude what definitively is not relevant (e.g.,
uncheck all services except indexserver) or to include only certain types of mes-
sages (e.g., only trace level ERROR and WARNING).
689

Monitoring and Root-Cause Analysis16
It’s important for the work with the merged trace files to configure what columns
will be actually displayed in the main part of the window. This is done via the con-
text menu option Configure Columns... (shown in 4).

We recommend including the columns Database User, Application User, Trace

File, and Connection ID and to exclude Source and Thread ID. (The last two typ-
ically do not help in understanding a specific error, whereas the first four help to
navigate to the source trace file and to map the error message to other parts of the
technology stack.) This is shown in Figure 16.14.

Figure 16.14 Configure Columns for Merged Diagnosis Files Editor

Once all filtering is done and the data is actually displayed, errors and warnings
are indicated in the right navigation gutter (shown in 5) with yellow and red
boxes. Clicking on those boxes navigates to the corresponding message in the list.

Note

A little remark concerning the usage of the filter form needs to be made; up until revi-
sion SPS 8, the Time Range filter can only be changed with the date/time picker by click-
ing on the calendar icon. Free text entry is not possible. Also, the standard keyboard
shortcuts for copy and paste are not active in the filter text boxes, which can be irritat-
ing. To copy and paste, the context menu needs to be used.
690

Diagnostic Files 16.3
On the left-hand side of the text grid (shown in 6), plus icons appear when the dis-
played trace text spans multiple lines. Initially, each message will be shown on a sin-
gle line; by clicking on the plus icon, the message can be unfolded to a full display.

Sometimes, the error message text can be too long to fit completely into the dis-
play window, though (Figure 16.15).

Figure 16.15 Long Trace Message in Merged Diagnosis Files Editor

In this case, the message text is truncated, and the line # Text is truncated #

(Hold CTRL and click to show more...) is displayed. Holding down the (Ctrl) key
will turn the text into a link, and clicking it opens a dialog window that displays
the full text of the message (Figure 16.16).

Figure 16.16 Trace Text Dialog Window
691

Monitoring and Root-Cause Analysis16
Once an error message is identified, it can be copied and pasted; a specific save-
to-file option is not available.

16.4 Server Side Traces

Some problems with SAP HANA will not create error messages. Instead, to under-
stand the cause of the issue, additional information about internal data processing
is required. SAP HANA can create additional output of runtime information by
means of traces. The traces can be configured, activated, and deactivated in SAP

HANA Studio � Administration Console � Trace Configuration (Figure 16.17).

Figure 16.17 SAP HANA Studio Trace Configuration

Note

The traces available in the Trace Configuration tab are server-side traces. They do not
cover client-side processing. We discuss client-side traces in more detail in Section 16.5.
692

Server Side Traces 16.4
Most of the server-side traces are aimed at core developers of SAP HANA, SAP
HANA development support, or people that otherwise intimately know the inter-
nal functions, data structures, and algorithms. In short, this means that only some
of the trace options are actually useful for the typical DBA. The two traces that are
the most relevant for us are the database trace (with its variants, user-specific trace
and end-to-end trace) and the expensive statements trace, and these are covered
in detail. Of all the other traces offered by the database system, you may in rare
circumstances also encounter the SQL trace, performance trace, and kernel pro-
filer, and we mention them briefly. Table 16.3 provides an overview of the differ-
ent server-side trace types in an SAP HANA system, including an indication of the
most typical usage or target group. For your convenience, we also include other
information collectors that can be useful for system or incident analyses, such as
the SQL plan cache or PlanViz.

Note

Be aware that activating trace output can (not must) decrease performance of the data-
base system and will likely increase trace file filling speed.

Trace Type Useful For

Database trace (with the variants user-
specific and end-to-end trace)

Single incident analysis; on full detail level,
only relevant for SAP HANA development

Expensive statements trace System overview single statement analysis

SQL trace (Python trace) SAP HANA development

Performance trace and function profiler SAP HANA development

Kernel profiler SAP HANA development

Load diagram System overview—the big picture

Statistics server System overview—the big picture

SQL plan cache System overview/single statement analysis

Explain plan Single statement analysis

Plan Visualizer (PlanViz) Single statement analysis

Table 16.3 Overview of Server-Side Traces in SAP HANA
693

Monitoring and Root-Cause Analysis16
16.4.1 Database Trace and User-Specific Trace

The database trace is the logging mechanism of the SAP HANA kernel. It is the col-
lection of text messages created by the database processes to provide error mes-
sages or other output that can help an administrator or an SAP HANA developer
understand what happened in the database system. Although each database pro-
cess maintains its own trace, the tracing follows the same principles throughout
the system. We will explain these principles here.

The difference between database trace and user-specific trace is clear by the
names. In the database trace, the DBA can set up traces for the whole SAP HANA
instance, regardless of the user that runs the session. This can be useful when
user-independent activities, e.g., the Mergedog thread, should be traced. The user-
specific trace can access the same trace information but also apply a filter for a
specific user or application user (the content of the session context variable
APPLICATION_USER).

To distinguish the current user-specific trace settings from the default trace, a
Context Name has to be provided for each user-specific trace. This context name
will be added to the trace file name of a user-specific trace so that it is easy to find
the corresponding files. The overall system’s database trace is always written to
the diagnosis files covered in Section 16.3.2. The Database User field (Figure
16.18) allows filtering on one specific user. It is not possible to activate the trace
for multiple users. To trace multiple users at the same time, the database trace
must be used.

Alternatively or in addition to the database user, Application User can be used to
filter the trace output, for example, to a specific end user in an SAP NetWeaver
system for which all connections to SAP HANA are performed with the same tech-
nical user.

The different traces that can be set up are organized in so-called trace compo-
nents. These are groups of internal functions that have a shared duty. For exam-
ple, trace component sqloptstep will write information on SQL query transfor-
mation and optimization into the trace file.

Every trace can be set either for all SAP HANA service types or separately just for
one service type. Note that it is not possible to activate a trace for any service only
on specific nodes. Any trace setting will be applied to all services of the same ser-
vice type across the SAP HANA instance landscape.
694

Server Side Traces 16.4
Figure 16.18 User-Specific Trace Settings Dialog

For every trace topic, a trace level can be chosen to select the amount of trace
information produced. The available trace levels are designed to start with
NONE and range to DEBUG, and every next level includes the output of the lev-
els before:

� <DEFAULT>: Output level when no trace level is specified.

� NONE: No trace output will be written out.

� FATAL: Only very critical errors will be written out (seldom used so far).

� ERROR: Trace output will be written out only for errors.

� WARNING: Warnings will be written out.
695

Monitoring and Root-Cause Analysis16
� INFO: General runtime information is written out.

� DEBUG: Very detailed runtime and debugging information is written out.

Typically, either trace level INFO or DEBUG are used to write additional informa-
tion into the trace files.

In order to deselect a previously selected trace setting, simply select <DEFAULT>.
To deselect all selected trace settings at once, click the Restore Defaults button.

16.4.2 End-to-End Trace

The end-to-end trace of SAP Solution Manager collects information on all system
components involved in an end-user interaction. In a BI query started in SAP Busi-
nessObjects Web Intelligence against an SAP BW system on SAP HANA, this trace
would collect information on the BI server, the SAP BW system, and the SAP
HANA database server. On the SAP HANA system, the end-to-end trace will gen-
erate trace files, just like a user-specific trace. The string end-to-end-trace is used as
context in the trace file name.

The end-to-end trace settings do not activate or deactivate a specific trace. Instead,
you can specify the levels for the SAP HANA-side tracing for the two different
trace levels SAP_PASSPORT_HIGH and SAP_PASSPORT_MEDIUM of the end-to-
end trace.

16.4.3 Expensive Statements Trace

You’ll recall our discussion of the expensive statements trace in Chapter 15, due
to its important role in performance analysis. Because it is also a monitoring tool,
we’ll briefly discuss it here as well.

One of the most important global monitoring options is the expensive statements
trace of SAP HANA (Figure 16.19). Any statement execution running longer than
the Threshold Duration (μs; in microseconds = 1/1.000.000 seconds) will be
recorded in the expensive statements trace. Together with the statement text,
runtime-related information such as the parameters used for parameterized state-
ments, time spent waiting for locks, and so on is stored. So technically the expen-
sive statements trace should instead be called the long-running statements trace,
696

Server Side Traces 16.4
because lock wait times don’t make a statement more or less expensive (requiring
high effort to compute).

Figure 16.19 Expensive Statements Trace Settings

Even on SAP HANA systems, there are usually still many commands that will take
longer than the default threshold of 1 second.

To make working with the expensive statements trace effective, it is a good idea
to limit the recorded statements to the interesting ones. This can be done by spec-
ifying user or application user filters to include only actual application-related
users. _SYS_... users might show long statement runtimes (e.g., _SYS_STATISTICS
regularly runs data collection statements that may take some time), but they do
not impact end-user performance and cannot be tuned by the DBA.

Another obvious filter is the actual threshold. To find out what would be a good
value for the threshold, we can use the system view M_SQL_PLAN_CACHE after the
system has running for some time and is in normal condition. The SQL statement
shown in Figure 16.20 retrieves an upper-bound threshold and shows which
share of the statements would be below this upper-bound threshold.
697

Monitoring and Root-Cause Analysis16
Figure 16.20 Expensive Statements Trace—Choosing a Threshold Value

It is easy to see that in this specific system most statements stay well below the
1,000,000 μs default value. In fact, only the top 5 % of all statements run longer
than that. The maximum runtime is a couple of hundred seconds in this case, so
setting the expensive statements trace threshold to something conservative like
5,000,000 μs should keep the amount of collected data small but focused on pos-
sible performance culprits.

Once the trace is activated, the collected data can be reviewed in SAP HANA Stu-

dio � Administration Console � Performance � Expensive Statements Trace (Fig-
ure 16.21). Key to working successfully with the usually long list is, again, to use
sorting (e.g., by DURATION_MICROSEC) and to use the filter conditions. Via the con-
text menu, it is possible to navigate to the PlanViz of the selected statement. (Refer
back to Chapter 15 for more about PlanViz.)

With SPS 8, SAP HANA Studio also provides navigation between the expensive
statements trace and the SQL plan cache list in the Performance tab.
698

Server Side Traces 16.4
Figure 16.21 Expensive Statements Trace List

A major advantage of the expensive statements trace against the SQL plan cache is
that the expensive statements trace focuses on actual execution and keeps track of
every single statement execution. This includes the parameters (if used for the
statement). With this, the expensive statements trace is the only option to access
the call parameters of statements that had been executed in the past.

16.4.4 SQL Trace

The SQL trace captures commands that are sent to SAP HANA and can, depending
on the settings, provide information on the total runtime and the error code of
the command execution and print out the actual result set of queries into the
trace files. It can (and should) be configured to record only the commands exe-
cuted by a single user or a comma-separated list of users, as shown in Figure
16.22. A useful feature is the ability to filter not on the actual database user but
by the application user. In an SAP NetWeaver system on SAP HANA, this appli-
cation user is the named user in the SAP NetWeaver system. The functionality
also works with any other application that uses a single-connection user in the
SAP HANA database and sets the application user session parameter in its inter-
actions with SAP HANA.
699

Monitoring and Root-Cause Analysis16
It is also possible to restrict the tracing to certain types of commands (e.g., only
DDL commands) and even to single database objects.

Figure 16.22 Configuration of the SQL Trace

As the SQL trace does not provide information on the actual SAP HANA internal
processing of a command, but only on the input or output, this trace lends itself
to rather general investigations and data collection. A typical use case is finding
the actual SQL statement generated by an application.

16.4.5 Performance Trace

The performance trace allows you to collect a range of different information on
request processing in SAP HANA. This includes SQL execution plans, column
store plans, execution times, function profile information for internal functions
that deliver this kind of data, and the like.
700

Client-Side Traces 16.5
The data produced by this trace is only readable by the HDBAdmin tool, which is
neither documented nor supported and typically only used by SAP HANA core
developers.

Because most of the information that is gathered by this performance trace is now
available via PlanViz and the expensive statements trace, the performance trace is
of no practical relevance to the SAP HANA DBA.

16.4.6 Kernel Profiler Trace

The kernel profiler trace samples the SAP HANA internal function calls and col-
lects statistics on how long specific functions have been active, how much time is
spent waiting, and which internal function called which other function.

Information produced by this kernel trace really only make sense to someone
with intimate knowledge of the SAP HANA source code and the functions used.
This makes this kernel trace irrelevant for the practical purposes of a DBA.

Use this trace only when asked by SAP HANA Support.

16.5 Client-Side Traces

Sometimes, it can be important to understand what functions of the database cli-
ent API are called by a program. Also, it might be relevant to see the exact com-
munication between the client program and the SAP HANA database. For that,
there are a number of client traces available. Depending on which client library is
used (ODBC, JDBC, SQLDBC, ODBO, etc.), a different trace has to be used.

Content-wise, the traces contain very similar information, although the trace for-
mat is quite different with every trace. Because the full interpretation of the traces
typically requires a very deep understanding of the SAP HANA communication
protocol, we will restrict the discussion to the most important aspects.

16.5.1 JDBC Trace

The JDBC trace can be activated either by the application using the JDBC driver or
externally if the application does not provide the option to activate the trace. To
set up the JDBC trace externally, the JDBC driver JAR file has to be used, as shown
in Figure 16.23.
701

Monitoring and Root-Cause Analysis16
Figure 16.23 Setting Up an External JDBC Trace

When you run the command java -jar ngdbc.jar (this is the actual JDBC driver
file), a dialog box opens that allows you to specify trace settings. Typically impor-
tant here is the location of the trace file to be created (Trace File Folder) and the
file size limitation.

Note that the JDBC trace settings are only valid for the user environment for
which they have been set up—not for the whole system. If the process that should
be traced runs in another user context, the JDBC trace settings need to be applied
within this user context to be effective.

The resulting trace file for the JDBC trace is an XML-like text file that contains the
applications’ calls of the JDBC API methods and the communication packets
exchanged with the SAP HANA database server. Figure 16.24 shows an example
of a JDBC trace file.

Note

The file size limitation can be especially important for long-term tracing tasks, such as
those on an application server, for which the occurrence of the event that should be
captured cannot be controlled. In such a situation, it is better to accept the loss of trace
data than to risk a file-system-full situation on the application server.
702

Client-Side Traces 16.5
Figure 16.24 JDBC Trace Example

A special convenience case for setting up the JDBC trace is present in SAP HANA
Studio. The trace can be activated in the Properties dialog for every system/logon
maintained in the Systems navigator tree.

Once activated, the state is indicated by the systems icon in the navigator tree and
with a hover-over text box, as shown in Figure 16.25. This feature can be quite
useful to find out about commands sent by SAP HANA Studio.

Important to remember here is that the JDBC trace is a local client trace, and acti-
vating it in SAP HANA Studio does not imply that JDBC connections from other
applications will be traced, too.

Figure 16.25 JDBC Trace Indication in SAP HANA Studio
703

Monitoring and Root-Cause Analysis16
16.5.2 The ODBC Trace

Just like the JDBC trace, the ODBC trace is a database client API trace. Therefore,
it traces calls to the ODBC API and parts of the communication between the client
and the SAP HANA database on the client host on which it is started. It can be acti-
vated by running the tool hdbcodbc_cons (.exe), located in the client software
installation folder; see Figure 16.26.

Figure 16.26 ODBC Client Trace Activation

To activate the ODBC client trace for all processes executed in the current user’s
session, it is sufficient to specify the TRACE API ON switch:

hdbodbc_cons TRACE API ON.

The default location for the trace file is the current directory from which hdbodbc_
cons is being executed.

To get a full list of possible commands for the ODBC trace, it is sufficient to exe-
cute the program without any switches or together with the -h (help) switch.

There are two common pitfalls that often lead to trace files that just don’t seem to
get written. The first pitfall is that the ODBC trace has been set up for the wrong
bit version of the ODBC driver. On MS Windows client platforms, popular pro-
grams such as MS Excel are typically 32-bit programs that need to use the 32-bit
ODBC client library. The 32-bit version of the client software is located in c:\Pro-
gram Files(x86)\SAP\hdbclient\ (default), and only the hdbodbc_cons program
there can activate the trace for 32-bit clients. Likewise, 64-bit applications make
use of the 64-bit ODBC driver, and their interactions with the database can only
be traced with the 64-bit hdbodbc_cons program.
704

Client-Side Traces 16.5
The second pitfall is the aforementioned default location of the ODBC trace. Typ-
ically, the DBA would navigate to the client software folder to start the ODBC
trace there. By default, this means that the trace file will be written to the client
software installation folder, for example, c:\Program Files(x86)\SAP\hdbclient\, as
shown in Figure 16.26. Note that the %p in the file name is the process ID of the
traced process.

Because the program files folders are MS Windows system folders, these cannot
be changed with standard user privileges. In turn, the trace file will not be written
at all (and no error message will be shown). To change this, the trace file location
needs to be changed to a folder that can be written to (Figure 16.27).

Figure 16.27 ODBC Trace Changed Location

For more information, SAP Note 1993254 provides an overview of ODBC trace
functions.

16.5.3 SQLDBC Trace

The SQLDBC API is an SAP-owned propriety database client interface that is
mainly used by the SAP NetWeaver database interface layer. In most cases, the
trace can be conveniently activated via Transaction DBACOCKPIT.

In case the trace needs to be activated and the DBA Cockpit application is not avail-
able (e.g., during a system copy/load with R3Load), the client software installation
folder contains the program hdbsqldbc_cons. This trace settings program works
similarly to the ODBC trace tool. In fact, most of the switches are precisely the same.

SAP Note 1993251 covers this trace tool.

Note

It is only the bit version of the client program that matters here. The bit version of the
client host’s operating system is irrelevant.
705

Monitoring and Root-Cause Analysis16
16.5.4 The ODBO/MDX Trace

When using MDX-based clients, such as the MS Excel integration for SAP HANA,
database access is performed via the ODBO (not ODBC) connection. The MDX
trace can be set up only when defining the connection settings in the Advanced

tab of the Data Link Properties dialog (Figure 16.28).

Figure 16.28 MDX/ODBO Trace

Just like the ODBC driver, the ODBO driver uses the SQLDBC driver for server-
side communication, and, just as with the ODBC driver, it is possible to activate
the SQLDBC trace in one go here. Typically, though, the SQLDBC trace is only
usable for SAP HANA development.

16.6 Summary

In this chapter, we have walked you through the tools and functionalities offered
by SAP HANA for root-cause analysis. A generic prerequisite for troubleshooting
incidents is proper system monitoring so that workload statistics and other
information is at hand. You should now be able to identify and work with the
706

Summary 16.6
monitoring views offered by the database system, including the handy resettable
views.

The larger part of the chapter was dedicated to root-cause analysis for individual
incidents. This topic is highly complex, and the appropriate tools and techniques
depend on the circumstances:

� To a database developer or administrator using SAP HANA, the entry point to
troubleshooting is the error messages displayed in SAP HANA Studio. We
explained the different types of error messages and best practices for under-
standing them.

� For any kind of root-cause analysis, the server-side traces and information writ-
ten to other diagnostic files can become relevant. After reading the chapter, you
should now know the location and purpose of these important files, and you
also should know which of the server-side traces are relevant for DBAs and
which ones are not. If you need to manually analyze the database traces, the
Merged Diagnosis Files Editor will be a helpful tool. If you need to provide sys-
tem diagnosis information to SAP Support, SAP HANA Studio offers a wizard to
easily collect this information.

� In many cases, the incident to be analyzed will bridge the boundary between
the SAP HANA database system and the client system, so trace information may
be needed from both sides. We explained how to activate SAP HANA tracing on
both server and client sides.

As a final remark, successful root-cause analysis requires not only experience with
the system to be analyzed but also a fair amount of perseverance.
707

The Authors

Dr. Richard Bremer has worked on SAP’s in-memory tech-
nologies since 2008, starting as a support consultant for SAP
BW Accelerator, and moving to the SAP HANA topic in 2010,
working in the RIG / Customer Solution Adoption (CSA)
team. He led the global SAP HANA CSA program before mov-
ing on to SAP HANA product management. Richard has sup-
ported dozens of SAP HANA implementation projects with
expertise on data modeling, security, database administra-
tion, and system landscape design. He enjoys sharing knowl-

edge and teaching front-line technologies to SAP consultants, customers, and part-
ners. He is a frequent contributor to SAP TechEd events and SAP User Group
meetings.

Lars Breddemann has been working with database manage-
ment systems since 1998 as a developer, DBA, supporter, and
systems architect. Having worked in SAP AGS product sup-
port since 2003, he has experience with multiple database
technologies (Oracle, SAP MaxDB/liveCache), SAP Business
Warehouse, and, since 2010, SAP HANA. In 2011, he moved
to the Customer Solution Adoption (CSA) team, where he
assumed the role of SAP HANA expert. Specializing in core
database technology, development, supportability, and per-

formance analysis, Lars educated hundreds of users, partners, and colleagues and
has been called into projects around the globe as the go-to authority. Lars is an
acclaimed SAP TechEd speaker, a leading SCN contributor and moderator, and was
appointed as one of the first SAP HANA Distinguished Engineers in 2012.
709

Index

A

Accelerators, 59
ACID, 23
Active user, 595
ADMIN SESSION, 442
ADMIN statement, 559
Administration Editor, 125, 145, 164

monitoring views, 148
Overview screen, 146

Alerts, 149, 629, 642, 674
ALTER SYSTEM CANCEL SESSION, 441
ALTER SYSTEM DISCONNECT SESSION, 443
ALTER SYSTEM RECLAIM VERSION SPACE,

460
Analytic privileges, 475, 566

granting, 568
SQL-based, 569

Analytic views, 66, 475
Appliance, 46
APPLICATION, 427
Application Function Library (AFL), 34
APPLICATION* variables, 427
APPLICATIONSOURCE, 427
APPLICATIONUSER, 427
APPLICATIONVERSION, 427
Architecture, 26

data and processing layer, 27
network layer, 29
persistence layer, 28
processes, 29
servers, 26

Attribute views, 66, 475
Attributes, 353
Auditing, 534

global settings, 535
mandatory policies, 541
policies, 536
principles, 538

Authentication, 516
enabling multiple methods, 524
Kerberos, 520

Authentication (Cont.)
name/password, 516
password policy configuration, 516
SAP Logon tickets, 523

Authorizations, 543, 575
tracing, 581
troubleshooting, 575

Automerges, 358

B

BackInt, 82, 166, 188, 199
Backup

file-based, 29
network-pipe-based, 29

Backup and recovery, 199, 625, 630
automating, 235
copying, 222
database parameters, 236
properties, 201
supported mechanisms, 199
system reviews, 235

Backup catalog, 228
incorrect information, 230
size, 230

Backup Editor, 205
Backup files, 214
Backup storage, 232
Binary large object (BLOB), 352
Blocking, 452
Bootstrapping, 615

encryption, 618
operating system, 616
role and user management, 618

C

Calculation engine, 40, 661
Calculation views, 66, 475
Catalog, 276, 553

objects, 275
711

Index
Catalog roles, 544
vs. repository roles, 552

Change recording, 491, 635
Character large object (CLOB), 352
CLIENT, 425
CLIENTINFO, 428
Cold data, 354
Column store tables, 40, 324

changing data, 329
compression, 332
data storage and retrieval, 324, 326
delta store, 330
indexes, 335
internal columns, 333, 334
inverted indexes, 336
MVCC, 338
optimizations, 326
persistency, 330
redo logging, 331

Column views, 302
definition, 304

Columns, 350
hybrid LOB, 353
LOB, 352
monitoring, 350
preload, 351
unload, 351

COMMIT, 454
Common Cryptographic Library, 530
Compile server, 33
Compression, 328, 332, 593
CONCAT_ATTRIBUTE, 334
Concurrency, 451, 452
Concurrent development, 485
Configuration, 629

alerting, 629
database users, 632
vendor name, 632

Constraints, 292, 293
Content transports, 614, 637
Converter, 161
Converter table, 178
CPU, 27, 28
Crash dump files, 681
CREATE USER, 500
Critical merges, 365
CTS+, 614

D

DATA ADMIN, 573
Data aging, 354
Data backups, 160, 201

cancelling, 208
choosing, 223
consistency checks, 205
contents, 202
creation, 205, 233
deleting, 229, 234
naming files, 204
prerequisites, 206
running, 206
size, 203
SQL syntax, 233

Data consumption, 66
Data definition language (DDL), 453
Data federation, 40
Data files, 159, 174

free space, 178
page management, 161

Data manipulation language (DML), 453
Data marts, 65

and data consumption, 66
and data provisioning, 65
and life cycle management, 67
and user management, 67
and virtual data models, 66
features, 65

Data modeling, 66
SAP BW on SAP HANA, 69

Data provisioning, 65
Data volumes, 158, 174

database parameters, 184
disk full, 181
system views, 183

Database backups, 610
Database Configuration Editor, 138

database settings, 139
Database recovery, 209

arbitrary point-in-time, 210
cancellation, 221
log area, 212
monitoring, 219
most recent state, 209
performance, 220
712

Index
Database recovery (Cont.)
phases, 211
process, 213
scenarios, 221
sequence, 211
specific data backup, 210
wizard, 216

Database shared library, 418
Database users, 632

HALM transport executor, 633
HALM transport manager, 633
HALM transport source user, 633
repository export manager, 633
repository import manager, 633
repository manager, 633

DBA Cockpit, 153, 673
functionalities, 154

DBSL, 418, 419, 423, 428
Decision tables, 475
Definer mode, 498
Delivery units, 472

import and export, 489
Delta merges, 176, 356

analysis, 361
auto, 358
critical, 365
data access, 358
data movement, 357
memory, 362

Deployment, 51, 603
applications, 605, 606, 607
multiple apps on one instance, 51
multiple databases on one server, 603
physical hardware, 605
SAP NetWeaver Application Server, 52
scale-out, 53, 603
single-node, 603
standard appliance, 603
Tailored Data Center Integration, 603
virtualization, 53, 605

Developer Workbench, 555
create object, 482

Development, 478
prepare repository, 478
set up a project, 478

Diagnosis Mode, 143
Diagnostic files, 681

collecting, 686

Disaster recovery, 236, 533, 611
storage replication, 611
system replication, 612

Distributed systems (see Scale-out systems)
DSOs, 71
Dump files, 681

E

EFFECTIVE_PRIVILEGES view, 579
EFFECTIVE_ROLES view, 580
Encryption, 530, 531
Error messages, 675

locating, 676
model activation, 677
SAP HANA Studio, 676
understanding, 680

Expensive statements trace, 630, 642, 696
EXPLAIN PLAN, 644
EXPORT, 401
Exporting, 395

example, 397

F

Failback, 272
Failover groups, 269

configuration, 270
wizard, 270

Functions, 312
example, 313

G

Garbage collection, 459
Global allocation limit, 623
GRANTED_PRIVILEGES view, 577
GRANTED_ROLES view, 578

H

Hadoop, 66
HALM, 470, 493, 633
713

Index
Hard shutdown, 141
Hardware, 590, 599
HDB daemon, 31
HDB info, 429
hdbaddhost, 264
hdbinst, 85
hdblcm, 35, 85, 114
hdblcm(gui)

adding hosts, 264
removing hosts, 267

hdblcmgui, 35, 85, 91, 111
installation, 86, 91
installing scale-out systems, 117
updates, 107

hdblm, 111
updates, 111

hdbsql, 35, 427
hdbupd, 85
hdbuserstore, 35
High availability, 237, 268, 609
HLM, 34, 85, 86, 93, 105, 263

adding hosts, 263
removing hosts, 267

Hosts, 26, 41
adding, 262
auto-failover, 268, 609
failover, 271
removing, 265
standby host, 43

Hot data, 354
Hyper-Threading, 436

I

Idle cursor timeout, 458
IMPORT, 401
IMPORT FROM, 401
Imported packages, 473
Importing, 401

Excel file, 403
Index server, 24, 32

architecture, 37, 39
distributed, 44
master, 44

Index server process, 256
InfoCubes, 71

Installation, 75, 88
batch mode, 111
components, 90
defining administration user, 97
defining hostnames, 99
defining locations, 96
downloading software, 88
entering properties, 95
file system setup, 80
hardware, 76
instance number, 94
memory, 110
multiple instances, 110
OS configuration, 78
passwords, 112
scale-out, 116
setting passwords, 98
skills, 75
software packages, 77
system type, 94
tools, 85, 86
troubleshooting, 119

Instance, 25
distributed (see Scale-out systems)

Intel, 28, 46
Inverted indexes, 336
Ivy Bridge, 46

J

JDBC/ODBC, 64, 273
JobWorker, 432, 451
Join engine, 661

K

Kerberos, 500, 520, 618
register users, 522
setup, 521

L

Large object (LOB), 352
Latches, 431
Least recently used (LRU), 349
714

Index
License keys, 624
Lifecycle management, 67
Linux OS, 29, 170
liveCache, 40, 45
L-language, 38
Load diagram, 639
LOCALE, 425
LOCALE_SAP, 425
Lock wait timeout, 458
Locks, 431, 452

IX (intentional exclusive), 453
monitoring, 455
releasing, 454

Log backups, 160, 164, 186
choosing, 223
deleting, 229, 234
enabling, 188
location and file names, 187
log segment states, 188
managing, 188
procedure, 187

Log modes, 164
normal, automatic backup, 165
normal, no automatic backup, 165
overwrite, 165

Log segment
file names, 162
location, 174

Log segments, 162
default sizes, 162
directory, 163
housekeeping, 166
location, 162
SQL query, 164
states, 167
writing to, 172

Log volumes, 158, 162
disk full, 168

Logical pages, 178
LSA++, 592

M

M_CONTEXT_VARIABLES, 425
M_MVCC_TABLES, 459, 460
M_SERVICES, 459

M_SESSION_CONTEXT, 427
M_VERSION_MEMORY, 459
MAX_VERSIONS_PER_RECORD, 461
MDX, 37
Memory, 110, 347

loading and unloading columns, 348
Memory Allocation Statistics dashboard, 153
Memory merge, 362
Memory Overview dashboard, 152
MergdogMonitor, 359
MERGE DELTA, 349
Merged Diagnosis Files Editor, 687, 690
MergedogMonitor, 360
Merges

hard and forced, 364
smart, 363

Metadata management, 44
Metadata Manager, 40

Master Metadata Manager, 44
Microsft SQL Server, 66
Mixed scenarios, 68

SAP BW, 69
SAP BW on SAP HANA, 71

Monitoring, 144, 671
expensive statements trace, 630
locks, 455
SAP Solution Manager, 675
third-party tools, 675
via SQL, 447
views, 148, 672

Multihost systems (see Scale-out systems)
Multiversion Concurrency Control (see

MVCC)
Mutexes, 431
MVCC, 322, 338, 458

column store, 462
row store, 459

mvcc_anti_ager.cc, 460
MvccAntiAgerChecker, 460
MVCCGarbageCollector, 459

N

Name server, 32, 43, 259
active master name server, 43
master, 43, 259
715

Index
Native packages, 473
Nearline storage (NLS), 61, 355
Network layer, 29
Nodes, 26, 43, 162, 257

ID, 162, 262
master, 258
master node, 43
slave, 258
slave node, 43
standby, 258
standby node, 43
worker node, 43

NUM_VERSIONS, 460

O

Object ownership, 498
Objects, 275

common properties, 276
definition, 288
dependencies, 279, 285
functions, 312
identifiers, 278
naming, 278
ownership, 279, 283
procedures, 312
sequences, 305
synonyms, 313
system limits, 289
tables, 290
triggers, 292
types, 275

OData, 33, 41, 66
OLAP engine, 661
Operating system connection, 617
Oracle, 66

P

Package structure, 634
defining, 474

Packages
privileges, 473
special, 474

Paged attributes, 353

Parallelism, 451
interquery, 451
intraquery, 452
types, 451

Parallelization, 327
Parameter [authorization]

internal_support_user_limit, 637
Parameter [communication]

sslenforce, 531
Parameter [indexserver.c]

instanceids, 227
Parameter [memorymanager]

global_allocation_limit, 111, 594, 623
Parameter [parallel]

tables_preloaded_in_parallel, 186
Parameter [persistence]

basepath_databackup, 203, 204, 625
basepath_logbackup, 187, 625
basepath_logvolumes, 170
data_backup_max_chunk_size, 236
enable_auto_log_backup, 165, 173, 188, 626
log_backup_timeout_s, 165, 173, 187
log_buffer_count, 174
log_buffer_size_kb, 174
log_mode, 165, 173, 188, 626
log_segment_size_mb, 162
logsegment_size_mb, 173
savepoint_interval_s, 176

Parameter [repository]
content_vendor, 490, 632

Parameter [sql]
default_table_type, 630
reload_tables, 186

Parameter [statisticsserver]
active, 226
instances, 226

Parameter [system_information]
usage, 132

Parameter [system_replication]
datashipping_logsize_threshold, 248
datashipping_min_time_interval, 248
datashipping_snapshot_max_retention_time,

249, 250
logshipping_timeout, 248
preload_column_tables, 249
reconnect_time_interval, 248
716

Index
Parameter settings, 136
changes, 140
default value, 136
host-specific customizing, 136
system-wide customizing, 136

Partitioning, 365
co-located, 378
hash, 367
multilevel, 371
optimization, 381
pruning, 371
range, 370
repartitioning, 377
round robin, 366
table replicas, 378

Passwords, 516
blacklist, 519
policy, 518

Performance analysis, 639
Alerts tab, 642
expensive statements trace, 642
EXPLAIN PLAN, 644
load diagram, 639
PlanViz, 645

Persistence layer, 28, 40, 157
master server, 158
slave server, 158

Persistent staging area (PSA), 351
Physical data model, 66
Physical pages, 178
Plan eviction, 424
Planning engine, 40
PlanViz, 452, 645

analyzing joins, 660
calculation view, 646
example, 646
joins, 661, 665
mapping information model, 652
query result, 648
timeline display, 656
user interface, 650

Preprocessor, 33
Privileges, 543, 553

analytic, 66, 566, 569
catalog, 553
combinations, 570
critical, 570
granting, 554

Privileges (Cont.)
object, 561
package, 564
repository, 559
revoking, 555
schema, 563
system, 560
types, 560

PRIVILEGES view, 576
Procedures, 312
Process auto-restart, 609
Process configuration, 624
Processes, 29, 31, 144, 413, 428

auxiliary, 34
core, 31
stopping, 438

Projects
checking out, 484
create and share, 480
setup, 478

Q

Queries, 420
executing, 422
parsing, 421

R

Recovery Point Objective, 237
Recovery Time Objective, 237
Red Hat Enterprise Linux 6.5, 30, 76
Release cycles, 53
REPO.IMPORT, 571
Repository, 277, 467

access, 467
access in SAP HANA Studio, 468
access in web IDE, 469
package structure, 471
persistence, 476
prepare packages, 478
properties, 467

Repository content, 475
applications, 476
modeling artifacts, 475
ownership, 477
717

Index
Repository content (Cont.)
schemas, 475
security artifacts, 475

Repository objects
creating, 477
delete from development project, 487
delete from system view, 487
deleting, 486
editing, 477
exporting, 488
importing, 488

Repository roles, 546
adding privileges, 549
assembling, 548
deleting, 547
editing, 547
granting, 547
vs. catalog roles, 552

Repository Workspace, 479
Resource Utilization dashboard, 152
Revisions, 54

SAP HANA Datacenter Service Point, 54
SAP HANA Maintenance Revisions, 55

REVOKE statement, 555
side effects, 556

ROLE ADMIN, 571
Role Editor, 545
Roles, 543, 619, 638

catalog roles, 544
repository roles, 546
standard, 575

ROLES view, 577
ROLLBACK, 454
Root cause analysis, 671
Row lock, 453

X (exclusive), 453
Row store, 40, 45
Row store tables, 319, 322

indexes, 323
limitations in SAP HANA, 321
MVCC, 322
properties, 320

Runtime dump, 445

S

SAML 2.0, 523
SAP (Sybase) IQ, 61

SAP Business Suite on SAP HANA, 62, 592
appliance configuration, 48
scale-out, 53
sizing, 597

SAP BW on SAP HANA, 60, 569, 593
architecture, 61
consumption, 70, 72
data modeling, 70
new developments, 60
sizing, 596

SAP GRC Access Control, 553
SAP HANA

administration tools, 123
appliance, 46
appliance concept, 46
applications, 68
architecture, 23, 37
as a database, 58
as a development platform, 64
as an accelerator, 59
cloud, 50
configuration, 629
data marts, 65
database processes, 29
deployment, 51, 603
for SAP Business Suite, 62
for SAP BW, 60
hardware, 590
high availability, 268
implementation options, 57, 58
installation, 75
landscape setup, 589
mixed scenarios, 68
objects, 275
performance analysis, 639
persistence layer, 157
privileges, 543
release cycles, 53
roles, 135, 543
scale-out, 41
security, 626
servers, 26
starting and stopping, 140
system, 26
tables, 347
updating, 75

SAP HANA Application Lifecycle Manager (see
HALM)
718

Index
SAP HANA cloud, 50
infrastructure services, 50
platform services, 50

SAP HANA Cloud Marketplace, 51
SAP HANA Core Data Services (CDS), 314
SAP HANA development, 64

in the database layer, 64
named end users, 64
separate AS tier, 64

SAP HANA Interactive Education (SHINE), 513
SAP HANA Lifecycle Manager (see HLM)
SAP HANA Live, 63
SAP HANA Modeler, 555
SAP HANA Server Installation Guide, 28
SAP HANA Studio, 35, 124, 413

actions, 132
add users, 131
connect to database, 127, 129, 130
connection, 617
creating users, 502
database configuration, 136, 137
deleting users, 512
monitoring, 144
multiple database connections, 132
principles, 131
removing hosts, 267
Role Editor, 545
Session Monitor, 446
system navigator tree, 133, 134
UI, 124

SAP HANA Transport Container (HTC), 614
SAP HANA XS, 64, 66
SAP Host Agent, 36
SAP Identity Management, 553
SAP NetWeaver Application Server, 52, 58,

413, 594
SAP NetWeaver Database Shared Library (see

DBSL)
SAP QuickSizer, 593
SAP Sales and Operations Planning (S&OP), 50
SAP Solution Manager, 675
SAP Solution Manager Diagnostics Agent

(SMD Agent), 36
SAP Start Service, 30, 36

documentation, 31
sapstartsrv, 30

SAP Support, 617, 637

SAP Web Dispatcher, 31, 33
SAPCAR, 104
SAProuter, 529
SAPS (SAP Application Performance Stan-

dard), 595
SAPUI5, 33
Savepoints, 141, 174

database parameters, 184
system views, 183
three phases, 175

Scale-out systems, 26, 41, 48, 599
adding hosts, 262
client connect, 273
connection security, 532
data volumes, 261
database processes, 257
hosts, 256, 259
installation, 116, 117
nodes, 257
persistence, 45, 260
schematic, 255
updates, 116, 119

Scale-up systems, 47
Schemas, 279, 280
Security, 497, 626

administration connections, 528
disaster recovery, 533
disk encryption, 627
end-user connections, 526
external connections, 525
internal network connections, 532
network interfaces, 525
password policy, 627
scale-out system connections, 532
security administrators, 626

Sequences, 305
example, 307

Servers, 26
Session context, 424

variables, 425, 426
Session Monitor, 445
Sessions, 413, 417

canceling, 443
close, 424
close handle, 424
connecting, 419
monitoring, 445
719

Index
Sessions (Cont.)
preparing queries, 420
preparing statements, 420
requests, 433
result sets, 424
running in threads, 431

Sessions monitor, 428
Shadow pages, 177
Single sign-on, 520

SAML 2.0, 523
Single-node systems, 599
Sizing, 47, 589, 590

CPU sizing, 595
data marts, 596, 599
memory sizing, 590, 591
SAP BW on SAP HANA, 596

Smart Data Access, 40, 61, 593
Smart merges, 363
Snapshots, 189, 240

creating, 196
creation, 193
lifecycle, 190
preparation, 189
purpose, 190
recovering database, 195, 196
SQL syntax, 198
storage options, 193
storage snapshot, 190
wizard, 195

Soft shutdown, 141
SQL plan cache, 421
SQLExecutor, 431, 451
SQLScript, 40, 302
Statistics server, 34
Statistics service, 34, 149, 151, 168, 226
Storage partition, 162, 174
Storage replication, 238, 239
Stored procedures, 475, 498

processor, 40
Structural packages, 471
STRUCTURED_PRIVILEGES view, 576
Support Package Stack (SPS), 34, 54
SUSE Linux Enterprise Server 11, 76
Synonyms, 313

example, 314
use cases, 314

SYS, 514

SYS_AFL, 513
_SYS_DATAPROV, 513
_SYS_EPM, 513
_SYS_REPO, 546
_SYS_STATISTICS, 514
System copy, 223

typical problems, 225, 227
System landscape

four tier, 602
System Monitor, 132, 146
System replication, 160, 236, 238, 239, 534,

631
hardware prerequisites, 241
monitoring, 245
setup, 242
software requirements, 242
views and parameters, 253
zero downtime, 251

System setup
business continuity requirements, 608
development platform, 632
hardware, 590
planning, 601

System start, 184
warm-up phase, 185

SYSTEM user, 514, 616, 622

T

Table lock, 453
IX (intentional exclusive), 453
X (exclusive), 453

Tables, 290, 338, 347
column store, 324, 630
common properties, 318
consistency, 409
dependent, 378
distribution, 365, 386
DUMMY, 344
export, 395
flexible schema, 339
global temporary, 341
history, 343
import, 395
loading, 347
local temporary, 342
no logging, 342
720

Index
Tables (Cont.)
partitioning, 365
physical vs. logical, 291
reload, 351
replicas, 380
row store, 319
temporary, 341

Tailored Data Center Integration, 46, 49, 601
Takeover, 249
Teradata database, 66
Threads, 413, 428, 438

JobWorker, 432
on OS level, 434
stopping, 438

Timeouts, 457
idle cursor, 458
lock wait, 458

Tools, 123
Trace files, 683
Traces

client-side, 701
database, 694
end-to-end, 696
expensive statements, 630, 696
JDBC, 701
ODBC, 704
performance, 700
server-side, 692, 693
SQL, 699
SQLDBC, 705
user-specific, 583, 694

Transaction DBACOCKPIT, 153
Transaction logs, 159, 161

database parameters, 173
system views, 172

Transaction management, 44
Transactions, 413

monitoring, 445
Transports, 491

support mode, 491
Triggers, 292
Two-phase commit, 44

U

Undo information, 177
Unified Installer, 85

Updates, 75, 101
batch mode, 111, 115
choosing components, 109
downtime, 106
HLM package download, 105
installation source, 108
near-zero downtime, 251
passwords, 112
prerequisites, 102
scale-out, 116
steps, 106
tools, 85, 87
troubleshooting, 119

USER ADMIN, 571
User management, 67, 497, 622
USER_PARAMETERS, 426
Users, 279, 497, 498

built-in, 513
creation, 499
creation in SAP HANA Studio, 501
creation with SQL, 500
deactivating, 504
deleting, 512
dropping, 506
dropping in SAP HANA Studio, 511
dropping with SQL, 508
locking, 504
modifying, 503
restricted, 515
support, 637

User-specific trace, 584
configuration, 584
output, 586

V

Views
changing data, 302
column, 302
dependencies, 299
monitoring, 447, 672
performance, 300
SQL, 295

Virtual data models, 66
Virtualization, 53
VMware, 603, 605
Volumes Monitor, 163
721

Index
W

Worker threads, 432
WTS connection, 618

X

X.509, 500
XMLA, 33
XS server, 24, 33

architecture, 40
features, 33
722

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do
recommend it, for example, by writing a review on http://www.sap-press.com. If
you think there is room for improvement, please get in touch with the editor of the
book: kellyw@rheinwerk-publishing.com. We welcome every suggestion for improve-
ment but, of course, also any praise!

You can also navigate to our web catalog page for this book to submit feedback or
share your reading experience via Twitter, Facebook, email, or by writing a book
review. Simply follow this link: http://www.sap-press.com/3506.

Supplements

Supplements (sample code, exercise materials, lists, and so on) are provided in your
online library and on the web catalog page for this book. You can directly navigate
to this page using the following link: http://www.sap-press.com/3506. Should we
learn about typos that alter the meaning or content errors, we will provide a list
with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP
PRESS, please feel free to contact our reader service: support@rheinwerk-publishing.
com.

i

ii

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand information
on our current publishing program. Here, you can also easily order all of our books
and e-books. Information on Rheinwerk Publishing Inc. and additional contact
options can also be found at http://www.sap-press.com.

iii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation
rights are reserved by the author and Rheinwerk Publishing; in particular the right
of reproduction and the right of distribution, be it in printed or electronic form.

© 2015 by Rheinwerk Publishing Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you
may print the e-book for personal use or copy it as long as you store this copy on
a device that is solely and personally used by yourself. You are not entitled to any
other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third
parties. Furthermore, it is not permitted to distribute the e-book on the Internet,
in intranets, or in any other way or make it available to third parties. Any public
exhibition, other publication, or any reproduction of the e-book beyond personal
use are expressly prohibited. The aforementioned does not only apply to the e-book
in its entirety but also to parts thereof (e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark
may not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy. If you, dear reader, are not this person, you are violating
the copyright. So please refrain from using this e-book and inform us about this
violation. A brief email to info@rheinwerk-publishing.com is sufficient. Thank you!

iv

Trademarks

The common names, trade names, descriptions of goods, and so on used in this
publication may be trademarks without special identification and subject to legal
regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo,
mySAP, mySAP.com, SAP Business Suite, SAP NetWeaver, SAP R/3, SAP R/2, SAP
B2B, SAPtronic, SAPscript, SAP BW, SAP CRM, SAP EarlyWatch, SAP ArchiveLink,
SAP HANA, SAP GUI, SAP Business Workflow, SAP Business Engineer, SAP Business
Navigator, SAP Business Framework, SAP Business Information Warehouse, SAP
interenterprise solutions, SAP APO, AcceleratedSAP, InterSAP, SAPoffice, SAPfind,
SAPfile, SAPtime, SAPmail, SAP-access, SAP-EDI, R/3 Retail, Accelerated HR, Acceler-
ated HiTech, Accelerated Consumer Products, ABAP, ABAP/4, ALE/WEB, Alloy, BAPI,
Business Framework, BW Explorer, Duet, Enjoy-SAP, mySAP.com e-business platform,
mySAP Enterprise Portals, RIVA, SAPPHIRE, TeamSAP, Webflow, and SAP PRESS are
registered or unregistered trademarks of SAP SE, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs,
neither the publisher nor the author, editor, or translator assume any legal respon-
sibility or any liability for possible errors and their consequences.

	Preface
	1 Architecture of the SAP HANA Database
	1.1 The Basics
	1.2 The Physical View: SAP HANA Servers
	1.2.1 Data and Processing Layer
	1.2.2 Persistence Layer
	1.2.3 Network Layer

	1.3 The Operating System View: Database Processes
	1.3.1 System Start
	1.3.2 Core Database Processes
	1.3.3 SAP HANA Auxiliary Processes
	1.3.4 Further Auxiliary Processes

	1.4 The Logical View: Internal Architecture of the Database
	1.4.1 Index Server Architecture
	1.4.2 XS Server Architecture

	1.5 Distributed SAP HANA Systems
	1.5.1 The Name Server in Distributed Systems
	1.5.2 Distributed Index Servers: Data and Query Distribution
	1.5.3 Distributed Persistence

	1.6 The Appliance Concept of SAP HANA
	1.6.1 SAP HANA Appliance Offerings
	1.6.2 Tailored Data Center Integration
	1.6.3 Hosting and Cloud Offerings
	1.6.4 Generic Deployment Considerations

	1.7 Release Cycles of SAP HANA Database Software
	1.7.1 Support Package Stacks
	1.7.2 Revisions

	1.8 Summary

	2 SAP HANA Scenarios: Administration Considerations
	2.1 SAP HANA as a Database in Application Servers
	2.1.1 SAP HANA Accelerators for SAP Applications
	2.1.2 SAP HANA as the Primary Database for SAP BW Systems
	2.1.3 SAP HANA as the Primary Database for SAP Business Suite

	2.2 SAP HANA as a Development Platform
	2.2.1 Data Marts with SAP HANA (Standalone Implementation)
	2.2.2 Applications in SAP HANA

	2.3 Mixed Scenarios
	2.3.1 SAP HANA Representations of SAP BW Models
	2.3.2 Consumption of SAP HANA Models through the SAP BW Layer

	2.4 Summary

	3 Installation and Updates
	3.1 Preparing for Installation and Updates
	3.1.1 Skill Set
	3.1.2 Server Hardware
	3.1.3 Operating System
	3.1.4 File System Setup

	3.2 Tools for Installing and Updating SAP HANA Systems
	3.2.1 Installation Tools
	3.2.2 Update Tools

	3.3 Installing an SAP HANA Database
	3.3.1 Downloading and Preparing the Software
	3.3.2 Running the Installation Tool

	3.4 Updating an SAP HANA Database
	3.4.1 Prerequisites
	3.4.2 Steps in an Update
	3.4.3 Running the Update Tool

	3.5 Installing Multiple Instances of an SAP HANA Database on the Same Physical Server (Nonproduction)
	3.6 Installation and Update in Batch Mode
	3.6.1 Password Treatment
	3.6.2 Preparing the Configuration File
	3.6.3 Performing the Installation
	3.6.4 Performing the Update

	3.7 Installing and Updating Scale-Out Systems
	3.7.1 Preparation
	3.7.2 Installing a Scale-Out System with hdblcmgui
	3.7.3 Updating a Scale-Out System

	3.8 Troubleshooting
	3.8.1 Log Files of hdblcm
	3.8.2 Useful Tests on the Command Line

	3.9 Summary

	4 Administration Tools
	4.1 Introduction to SAP HANA Studio
	4.1.1 Your First Contact with SAP HANA Studio
	4.1.2 Connecting to SAP HANA Database Systems
	4.1.3 Principles of Working with SAP HANA Studio

	4.2 Database Administration with SAP HANA Studio
	4.2.1 Managing the Database Configuration
	4.2.2 Starting and Stopping the Database
	4.2.3 Starting and Stopping Individual Database Processes

	4.3 Monitoring the Database with SAP HANA Studio
	4.3.1 Getting an Overview of the Database System
	4.3.2 Monitoring Views in the Administration Editor
	4.3.3 The Statistics Service
	4.3.4 Other System Monitors

	4.4 DBA Cockpit for SAP HANA
	4.5 Summary

	5 The Persistence Layer
	5.1 Log and Data Volumes: The Data Image on Disk
	5.1.1 Memory and Disk
	5.1.2 Page Management
	5.1.3 Transaction Logs
	5.1.4 Data Volumes and the Savepoint Operation
	5.1.5 System Start Procedure

	5.2 Log Backup
	5.2.1 Log Backup Procedure
	5.2.2 Enabling Log Backups
	5.2.3 Managing Log Backups

	5.3 Snapshots
	5.3.1 The Purpose of Snapshots
	5.3.2 Lifecycle of a Snapshot
	5.3.3 Creating a Database Snapshot in SAP HANA Studio
	5.3.4 Recovering the Database from a Snapshot
	5.3.5 SQL Syntax for Managing Database Snapshots

	5.4 Data Backup and Recovery of the SAP HANA Database
	5.4.1 Supported Backup Mechanisms
	5.4.2 Properties of Data Backups in SAP HANA
	5.4.3 Creating Data Backups
	5.4.4 Concepts of Database Recovery
	5.4.5 Recovering the Database
	5.4.6 Technical Recovery Scenarios
	5.4.7 Copying an SAP HANA System Using Database Backups
	5.4.8 Managing Backups: The Backup Catalog
	5.4.9 Sizing the Backup Storage
	5.4.10 SQL Syntax for Database Backups
	5.4.11 Relevant System Views and Parameters for Backups

	5.5 Disaster Recovery Setups and System Replication
	5.5.1 Storage Replication
	5.5.2 System Replication

	5.6 Summary

	6 Scale-Out Systems and High Availability
	6.1 Scaling Out SAP HANA Systems
	6.1.1 The Different Nodes of a Scale-Out System
	6.1.2 The Master Name Server Concept
	6.1.3 Distributed Persistence
	6.1.4 Adding Hosts to a Scale-Out System
	6.1.5 Removing Hosts

	6.2 High Availability with Host Autofailover
	6.2.1 Failover Groups
	6.2.2 Host Failover
	6.2.3 Failback

	6.3 Client Connect in Distributed Systems
	6.4 Summary

	7 Objects
	7.1 Common Properties of Database Objects
	7.1.1 The Database Catalog
	7.1.2 Object Naming and Identifiers
	7.1.3 Users, Schemas, Object Ownership, and Dependencies
	7.1.4 Object Definition
	7.1.5 System Limits

	7.2 Tables
	7.3 Triggers and Constraints
	7.3.1 Triggers
	7.3.2 Constraints

	7.4 SQL Views
	7.4.1 View Dependencies
	7.4.2 Performance of SQL Views
	7.4.3 Changing Data through SQL Views

	7.5 Column Views
	7.6 Sequences
	7.7 Procedures and Functions
	7.8 Synonyms
	7.9 Summary

	8 Table Types
	8.1 Common Properties of All Tables
	8.2 Row Store Tables
	8.2.1 Properties in SAP HANA
	8.2.2 Multiversion Concurrency Control
	8.2.3 Indexes

	8.3 Column Store Tables
	8.3.1 Data Storage and Retrieval
	8.3.2 Changing Data: Inserts, Updates, and Deletes
	8.3.3 Redo Logging and the Delta Store
	8.3.4 Data Compression
	8.3.5 Space Usage and Internal Columns
	8.3.6 Indexes
	8.3.7 Multiversion Concurrency Control

	8.4 Special Types of Tables
	8.4.1 Flexible Schema Tables
	8.4.2 Temporary Tables
	8.4.3 History Tables
	8.4.4 Special Table DUMMY

	8.5 Summary

	9 Working with Tables
	9.1 Loading Tables to and from Memory
	9.1.1 Loading and Unloading of Columns
	9.1.2 Reload of Tables
	9.1.3 Large Object (LOB) Columns
	9.1.4 Paged Attributes
	9.1.5 Hot/Cold Data Aging Concept

	9.2 Running Delta Merges
	9.2.1 Automerge
	9.2.2 Memory Merge
	9.2.3 Smart Merge
	9.2.4 Hard and Forced Merge
	9.2.5 Critical Merge

	9.3 Partitioning and Distributing Tables
	9.3.1 Round-Robin Partitioning
	9.3.2 Hash Partitioning
	9.3.3 Range Partitioning
	9.3.4 Multilevel Partitioning
	9.3.5 Partition Pruning
	9.3.6 Repartitioning
	9.3.7 Colocated Partitions and Table Replicas

	9.4 Optimizing Table Distribution and Partitioning
	9.5 Importing and Exporting Tables
	9.5.1 Exporting Data
	9.5.2 Importing Data
	9.5.3 Custom Excel File Import

	9.6 Checking Tables for Consistency
	9.7 Summary

	10 Sessions and Transactions
	10.1 Introduction to Sessions and Transactions
	10.1.1 Lifetime of a Session
	10.1.2 The Session Context

	10.2 Processes and Threads
	10.2.1 Sessions Running in Threads
	10.2.2 Stopping Processes and Threads
	10.2.3 Canceling a Running SQL Command
	10.2.4 Killing a Session
	10.2.5 Problems with Session Cancellation

	10.3 Monitoring Sessions and Transactions
	10.3.1 Using the Session Monitor
	10.3.2 Using the Monitoring Views via SQL

	10.4 Concurrency and Parallelism
	10.4.1 Types of Parallelism
	10.4.2 Locks and Blocking
	10.4.3 Timeouts
	10.4.4 Multiversion Concurrency Control

	10.5 Summary

	11 Working with the Repository
	11.1 Properties of the SAP HANA Repository
	11.1.1 Accessing the Repository
	11.1.2 The Package Structure of the Repository
	11.1.3 Repository Content
	11.1.4 The Persistence of the Repository within the Database
	11.1.5 Ownership of Repository Objects

	11.2 Creating and Editing Objects in SAP HANA Studio
	11.2.1 Setting up a Development Project
	11.2.2 Creating Objects in the Developer Workbench
	11.2.3 Checking Out a Project
	11.2.4 Concurrent Development

	11.3 Deleting Development Objects in SAP HANA Studio
	11.3.1 Deleting Objects from the Systems View in SAP HANA Studio
	11.3.2 Deleting Objects from a Development Project

	11.4 Mechanisms for Exporting and Importing Objects
	11.4.1 Developer-Mode Export and Import
	11.4.2 Delivery-Unit Export and Import

	11.5 Change Recording and Transports
	11.5.1 Change Recording
	11.5.2 Transporting with the SAP HANA Application Lifecycle Manager

	11.6 Summary

	12 User Management and Security
	12.1 Essential Security-Related Concepts
	12.1.1 Object Ownership
	12.1.2 Stored Procedures in Definer Mode

	12.2 Database Users
	12.2.1 Creating Database Users
	12.2.2 Modifying Database Users
	12.2.3 Deactivating and Locking Users
	12.2.4 Dropping Database Users
	12.2.5 Built-in Database Users
	12.2.6 Restricted Users

	12.3 Authentication Methods
	12.3.1 Name/Password Authentication
	12.3.2 Single Sign-On with Kerberos Authentication
	12.3.3 Further Authentication Methods
	12.3.4 Enabling Multiple Authentication Methods for One User

	12.4 Securing SAP HANA’s Network Interfaces
	12.4.1 External Network Connections to an SAP HANA System
	12.4.2 Encrypting External Network Connections
	12.4.3 Internal Network Connections

	12.5 Auditing in the Database
	12.5.1 Global Audit Settings
	12.5.2 Audit Policies
	12.5.3 Principles of Auditing in SAP HANA

	12.6 Summary

	13 Roles and Privileges
	13.1 Database Roles
	13.1.1 Catalog Roles
	13.1.2 Repository Roles
	13.1.3 Catalog Roles vs. Repository Roles

	13.2 Privileges in the Database Catalog and Repository
	13.2.1 Privileges Managed in the Catalog of SAP HANA
	13.2.2 Privileges Managed in the Repository of SAP HANA

	13.3 Types of Privileges in SAP HANA
	13.3.1 System Privileges
	13.3.2 Object Privileges
	13.3.3 Schema Privileges
	13.3.4 Package Privileges
	13.3.5 Analytic Privileges
	13.3.6 Application Privileges
	13.3.7 Easing Your Mind

	13.4 Critical Privileges and Privilege Combinations
	13.4.1 Critical System Privileges
	13.4.2 Critical Privilege Combinations

	13.5 Standard Roles for SAP HANA Systems
	13.6 Troubleshooting Authorization Issues
	13.6.1 Finding Information on Granted Privileges and Roles
	13.6.2 Tracing Missing Authorizations

	13.7 Summary

	14 Planning and Setting Up an SAP HANA System Landscape
	14.1 Preparation: Sizing, Hardware Choices, and More
	14.1.1 System Sizing for SAP HANA
	14.1.2 Hardware Choices

	14.2 Planning the System Landscape
	14.2.1 Choosing SAP HANA Deployment Options
	14.2.2 Application Deployment Options
	14.2.3 Preparing for Business Continuity Requirements
	14.2.4 Content Transport

	14.3 Bootstrapping the System
	14.3.1 Preparing the Operating System
	14.3.2 Preparing the System for Role and User Management
	14.3.3 Creating Database Administrators and Performing Initial Administration
	14.3.4 Setting Up Initial Security
	14.3.5 Configuring the System
	14.3.6 Setting Up the Development Platform
	14.3.7 Preparing for Support Cases
	14.3.8 Final Steps
	14.3.9 Propagating Roles from Development to Other Landscape Tiers

	14.4 Summary

	15 Tools for Performance Analysis
	15.1 Load Diagram
	15.2 Alerts Tab
	15.3 Expensive Statements Trace
	15.4 EXPLAIN PLAN
	15.5 PlanViz
	15.5.1 PlanViz Example
	15.5.2 Analyzing Joins with PlanViz

	15.6 Further Resources
	15.7 Summary

	16 Monitoring and Root-Cause Analysis
	16.1 Monitoring
	16.1.1 Monitoring Views
	16.1.2 Alerting
	16.1.3 External Monitoring Tools

	16.2 Error Messages
	16.2.1 Locating Error Messages
	16.2.2 Interpreting Error Messages

	16.3 Diagnostic Files
	16.3.1 Dump Files
	16.3.2 Trace Files
	16.3.3 Collecting Diagnostic Files for a Support Incident
	16.3.4 Using the Merged Diagnosis Files Editor

	16.4 Server Side Traces
	16.4.1 Database Trace and User-Specific Trace
	16.4.2 End-to-End Trace
	16.4.3 Expensive Statements Trace
	16.4.4 SQL Trace
	16.4.5 Performance Trace
	16.4.6 Kernel Profiler Trace

	16.5 Client-Side Traces
	16.5.1 JDBC Trace
	16.5.2 The ODBC Trace
	16.5.3 SQLDBC Trace
	16.5.4 The ODBO/MDX Trace

	16.6 Summary

	The Authors
	Index

