

SAP PRESS is a joint initiative of SAP and Galileo Press. The know-how offered by
SAP specialists combined with the expertise of the Galileo Press publishing house
offers the reader expert books in the field. SAP PRESS features first-hand informa-
tion and expert advice, and provides useful skills for professional decision-making.

SAP PRESS offers a variety of books on technical and business-related topics for
the SAP user. For further information, please visit our website:
http://www.sap-press.com.

Bönnen, Drees, Fischer, Heinz, and Strothmann
OData and SAP NetWeaver Gateway
2014, approx. 665 pp., hardcover
ISBN 978-1-59229-907-2

Schneider, Westenberger, and Gahm
ABAP Development for SAP HANA
2014, approx. 530 pp., hardcover
ISBN 978-1-59229-859-4

Manish Chaitanya
The Complete Guide to SAP NetWeaver Portal
2012, 453 pp., harcover
ISBN 978-1-59229-403-9

Mandy Krimmel and Joachim Orb
SAP NetWeaver Process Integration
2010, 394 pp., hardcover
ISBN 978-1-59229-344-5

Emmanuel Hadzipetros

Architecting EDI with SAP® IDocs

The Comprehensive Guide

Bonn � Boston

Dear Reader,

As readers, we value authors who offer creative, clear, and fresh approaches to
technical topics—especially ones with innumerable moving parts and connected
processes. Similarly, as editors, we enjoy working alongside those energetic authors
to execute these visions, sharing in our readers’ delight with unexpected examples
and colorful characters.

So you can imagine my excitement about beginning work on the second edition
of a project fondly known around the SAP PRESS office as “the Hollywood book”
by Emmanuel Hadzipetros. It stands out as a technical resource with a delightfully
re imagined premise—that of legendary B-movie studio founder Darryl Q. Fernhausen’s
beloved Acme Studios, which seeks to implement an Electronic Data Interchange
system in an SAP environment.

Emmanuel’s brilliant, inventive account of the implementation process is a unique
answer to traditional technical style. As he made adjustments and updates and opti-
mized illustrations for color e-book editions, Emmanuel was organized, reliable, and
judicious as he fine-tuned both the technical content and the story itself. Perhaps
he has a future in film-making.

So as you follow along through the project affectionately called “Plan Q from Outer
Space” by implementation personnel, join our growing Acme team. Since your com-
ments and suggestions are the most useful tools to help us improve our books, we
encourage you to visit our website at www.sap-press.com and share your feedback
about Architecting EDI with SAP IDocs: The Comprehensive Guide.

Emily Nicholls
Editor, SAP PRESS

Galileo Press
Boston, MA

emily.nicholls@galileo-press.com

http://www.sap-press.com

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed
to accept and adhere to the copyrights. You are entitled to use this e-book for
personal purposes. You may print and copy it, too, but also only for personal use.
Sharing an electronic or printed copy with others, however, is not permitted, neither
as a whole nor in parts. Of course, making them available on the Internet or in a
company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section Legal
Notes.

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy:

Imprint

This e-book is a publication many contributed to, specifically:

Editor Emily Nicholls
Acquisitions Edition Editor Kelly Grace Weaver
Copyeditor Pamela Siska
Cover Design Graham Geary
Photo Credit iStockphoto.com/15949465/© sara_winter
Production E-Book Kelly O’Callaghan
Typesetting E-Book Publishers’ Design and Production Services, Inc.

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Hadzipetros, Emmanuel.

Architecting EDI with SAP IDocs : the comprehensive guide / Emmanuel Hadzipetros. — 2nd edi-

tion.

pages cm

ISBN-13: 978-1-59229-871-6

ISBN-10: 1-59229-871-0

ISBN-13: 978-1-59229-872-3

ISBN-13: 978-1-59229-873-0

1. SAP ERP. 2. Electronic data interchange. 3. Enterprise application integration (Computer sys-

tems)

I. Title.

HF5548.33.H35 2013

650.0285’53—dc23

2013031002

ISBN 978-1-59229-871-6 (print)
ISBN 978-1-59229-872-3 (e-book)
ISBN 978-1-59229-873-0 (print and e-book)

© 2014 by Galileo Press Inc., Boston (MA)
2nd edition 2014

7

Contents

Prologue .. 23

ACT I Hollywood, DVDs, and the After-Life of Movies

1 Hollywood’s B-Movie Queen Does SAP and EDI 33

1.1 SAP and EDI: Getting to Know Each Other 34
1.2 A Brief History of Fame: Our Imaginary Dream Factory 35

1.2.1 A Bird’s-Eye View of the Business 37
1.2.2 Enter Plan Q: A New Project Is Born 40
1.2.3 We Define Our Scope .. 41

1.3 Defining Some Basic Ground Rules ... 42
1.3.1 The Technical Environment .. 42
1.3.2 The EDI System .. 42
1.3.3 Nothing but IDocs .. 45
1.3.4 Batch Processing of Large Files 46
1.3.5 XML File Ports ... 47
1.3.6 Partner Profiles .. 48
1.3.7 EDI Mapping Strategy .. 48

1.4 Summary .. 50

2 The Blueprint: Discovery and Documentation 51

2.1 A Business Process Overview .. 52
2.1.1 The As-Is Purchasing Process Flow 52
2.1.2 The As-Is Sales and Distribution Processing Flow 57
2.1.3 Selling the Dream with Vendor Management Inventory ... 59

2.2 Legacy Systems, Data Flows, and Interfaces 63
2.2.1 Title Master and DVD Repository 65
2.2.2 Release Planning and Promotions Systems 66
2.2.3 Legacy SD .. 66
2.2.4 Manufacturing ... 67
2.2.5 Finance .. 67
2.2.6 VMI and StoreData .. 68
2.2.7 EDI .. 69

8

Contents

2.3 Legacy EDI Data Flows .. 69
2.3.1 Replicating Success: Outsourcing Production 70
2.3.2 Order-to-Cash and Legacy EDI 75

2.4 Summary .. 78

3 Designing the New SAP EDI Architecture 79

3.1 The To-Be Systems and Interfaces Emerge 80
3.1.1 The Resource Integration Manager 80
3.1.2 Let’s Get Technical: A More Intimate Look at the RIM ... 83

3.2 Laying the Foundations for EDI: Master Data 87
3.2.1 A Brief Word on Conversion Strategy 87
3.2.2 General Ledger Chart of Accounts and Cost Centers 88
3.2.3 Customer Master Sold-To ... 88
3.2.4 Customer Master Ship-To ... 89
3.2.5 Vendor Master ... 90
3.2.6 Material Master ... 90
3.2.7 Customer Material Info Records 92
3.2.8 Bill of Materials .. 93
3.2.9 Pricing Conditions .. 93

3.3 The Typical Lifecycle of an Order from Gordy 94
3.3.1 VMI Sales Orders ... 95
3.3.2 Catalog Planning .. 100
3.3.3 Purchasing/Manufacturing .. 102
3.3.4 Delivery ... 104
3.3.5 Billing .. 106
3.3.6 Payment ... 108

3.4 Interfaces in the Order-to-Cash Cycle .. 110
3.5 Considering the Project Plan ... 111
3.6 Summary .. 112

ACT II Taming Chaos with Standards—EDI in an SAP Environment

4 EDI: The Ugly Stepsister of E-Commerce 115

4.1 A Brief History of e-Commerce .. 116
4.1.1 A Flowery Beginning for e-Commerce 117
4.1.2 The Berlin Airlift, the Supply Chain, and Transportation ... 117
4.1.3 The Birth of ASC X12 ... 119

9

Contents

4.1.4 Global Trade and E-Commerce: UN/EDIFACT 120
4.1.5 Other EDI Standards .. 122
4.1.6 Communications, VANs, and the Internet 123

4.2 The Anatomy of an EDIFACT Interchange 125
4.3 The Anatomy of an X12 Interchange ... 128

4.3.1 Syntax and Semantics: X12 as Language 130
4.3.2 The Envelope Segments ... 132
4.3.3 Dissecting Gordy’s 850 to Acme 134

4.4 Enveloping and De-enveloping: The X12 in Action 145
4.4.1 Unwrapping an Inbound EDI Interchange 146
4.4.2 Building an Outbound EDI Interchange 147

4.5 Summary .. 148

5 Real-World Business Process Integration with EDI 149

5.1 The Basic EDI Interface ... 150
5.2 Trading Partner Management .. 151
5.3 The Impact of VMI Collaboration through EDI 154
5.4 The Role of Acme’s EDI RIM ... 155

5.4.1 Outbound Services ... 155
5.4.2 Inbound Services .. 164
5.4.3 Archiving EDI Data ... 169

5.5 Reporting EDI Status to SAP ... 171
5.5.1 SAP Status Codes ... 171
5.5.2 Creating Custom Messages ... 174
5.5.3 Mapping the STATUS IDoc ... 175
5.5.4 So How Do We Get the Enveloping Data? 179
5.5.5 The Status Interface Business Process Workflow 182
5.5.6 The 997 Functional Acknowledgment Interface 186

5.6 Putting All the Pieces Together ... 190
5.6.1 Inbound ... 191
5.6.2 Outbound .. 193

5.7 Archiving and Deleting IDocs in SAP ... 196
5.7.1 Archive and Delete ... 196
5.7.2 Deleting IDoc Generated Work Items 204

5.8 Summary .. 207

10

Contents

6 EDI Architecture in SAP: IDoc Basics 209

6.1 Intelligent Messages: The Anatomy of an IDoc 210
6.1.1 Logical Message Type ... 210
6.1.2 IDoc Record Types: External Representation 212
6.1.3 IDoc Record Types: Internal Representation 216
6.1.4 IDoc Basic Type .. 223
6.1.5 IDoc Extended Type ... 225
6.1.6 IDoc Instance ... 225
6.1.7 IDoc File .. 226
6.1.8 XML IDocs ... 226

6.2 IDoc Architecture and the Data Dictionary 230
6.2.1 Domains .. 231
6.2.2 Data Elements .. 232
6.2.3 Fields ... 232
6.2.4 Segments ... 233
6.2.5 IDoc Basic and Extended Types 234

6.3 One-Time EDI Configuration for IDocs in SAP 235
6.3.1 EDI User Name .. 235
6.3.2 Logical System ... 236
6.3.3 Connecting Systems to SAP .. 237
6.3.4 XML File Port ... 239

6.4 Summary .. 241

7 Configuring IDocs in SAP for EDI Exchange 243

7.1 Inbound Configuration is About Posting IDocs 243
7.1.1 Key Values for Inbound IDoc Posting 244
7.1.2 Partner Type .. 245
7.1.3 Inbound Partner Profile for an ORDERS PO 246
7.1.4 Inbound EDI Reference Data .. 252
7.1.5 Tying It All Together: The SAP EDI Inbound Processing

Flow ... 264
7.2 Outbound Configuration Generates IDocs 274

7.2.1 Message Control .. 276
7.2.2 Create an Output Type ... 279
7.2.3 Assign Output Type to a Procedure 283
7.2.4 Condition Records .. 286

11

Contents

7.2.5 The Outbound Partner Profile with Message Control 292
7.2.6 EDI Outbound Reference Data 296
7.2.7 The SAP EDI Outbound Process Flow 300

7.3 Summary .. 308

8 Custom IDocs and IDoc Extensions ... 309

8.1 IDoc Development and Configuration Tools 309
8.1.1 Transaction SE11—Data Dictionary 310
8.1.2 Transaction WE31—Segment Editor 311
8.1.3 Transaction WE30—IDoc Type Editor 312
8.1.4 Transaction WE81—Logical Messages 313
8.1.5 Transaction WE82—Message to Basic Type Link 313
8.1.6 Transaction SE37—Function Editor: Function Groups 313
8.1.7 Transaction SE37—Function Editor: Function Modules ... 315
8.1.8 Transaction SMOD—SAP Enhancements 319
8.1.9 Transaction CMOD—Project Management for SAP

Enhancements .. 320
8.1.10 Transaction WE57—Link Function to Message and

Basic Type .. 321
8.1.11 Transaction BD51—Define IDoc Attributes 322
8.1.12 Transaction WE42—Inbound Process Code 322
8.1.13 Transaction WE41—Outbound Process Code 323

8.2 Building a Custom IDoc: Inbound Inventory Report 324
8.2.1 Custom IDoc Development Workflow 324
8.2.2 Building the IDoc Interface ... 326

8.3 Extending an IDoc: Outbound PO with BOMs 341
8.3.1 IDoc Outbound Development Workflow 341
8.3.2 Create Segment Z1EDP01 .. 348
8.3.3 Build Extension ZORDRS01 .. 348
8.3.4 Link Message to Basic and Extended Types 350
8.3.5 Create the Modification Project 350
8.3.6 Coding the Exit .. 353
8.3.7 Customize Message Control ... 355
8.3.8 Build Outbound Partner Profile 359

8.4 Summary .. 363

12

Contents

ACT III Realizing the Dream—Building Acme’s SAP EDI System

9 Generating the PO for Replication Services 367

9.1 Technical Overview of the Interface .. 368
9.2 Functional Specifications ... 370

9.2.1 Process Overview ... 370
9.2.2 Requirements ... 371
9.2.3 Dependencies .. 371
9.2.4 Assumptions .. 372
9.2.5 Data That Will be Passed to an Outbound Purchase

Order ... 372
9.2.6 Custom Enhancements ... 374
9.2.7 Reconciliation Procedure .. 374
9.2.8 Errors and Error Handling ... 374

9.3 Generating the ORDERS PO with Message Control 374
9.3.1 Message Control Configuration for the ORDERS

Message ... 375
9.3.2 Overview of the End-to-End Process Flow 378

9.4 Technical Specifications .. 382
9.4.1 Technical Requirements ... 382
9.4.2 Dependencies .. 383
9.4.3 Assumptions .. 383

9.5 Mapping Specifications ... 384
9.6 EDI Configuration in SAP .. 388

9.6.1 EDPAR Entries: Transaction VOE4 388
9.6.2 ZEDIXREF Entries ... 388
9.6.3 Partner Profiles: Transaction WE20 390

9.7 Summary .. 392

10 The Inbound Goods Receipt ... 395

10.1 Technical Overview of Interface .. 396
10.2 Functional Specifications ... 398

10.2.1 Process Overview ... 398
10.2.2 Requirements ... 398
10.2.3 Dependencies .. 399
10.2.4 Assumptions .. 400
10.2.5 Data That Will Post to a Material Document 400

13

Contents

10.2.6 Reconciliation Procedure .. 401
10.2.7 Enhancements to the Process ... 402
10.2.8 Errors and Error Handling ... 402

10.3 End-to-End Process Flow .. 402
10.4 Technical Specifications .. 406

10.4.1 Technical Requirements ... 406
10.4.2 Dependencies .. 406
10.4.3 Assumptions .. 407

10.5 Mapping Specifications ... 407
10.6 EDI Configuration in SAP .. 409

10.6.1 EDPAR Entries: Transaction VOE4 409
10.6.2 ZEDIXREF Entries ... 409
10.6.3 Partner Profile: Transaction WE20 410

10.7 Summary .. 411

11 Processing the Incoming Supplier Invoice 413

11.1 Technical Overview of Interface .. 414
11.2 Functional Specifications ... 415

11.2.1 Process Overview ... 416
11.2.2 Requirements ... 416
11.2.3 Dependencies .. 417
11.2.4 Assumptions .. 418
11.2.5 Data That Will Post to an Inbound Supplier Invoice 419
11.2.6 Reconciliation Procedure .. 421
11.2.7 Configuring Logistics Invoice Verification 421
11.2.8 Enhancements to the Process ... 426
11.2.9 Errors and Error Handling ... 426

11.3 End-to-End Process Flow .. 426
11.4 Technical Specifications .. 430

11.4.1 Enhancements to the Process ... 430
11.4.2 Technical Requirements ... 430
11.4.3 Dependencies .. 430
11.4.4 Assumptions .. 431

11.5 Mapping Specifications ... 431
11.6 EDI Configuration in SAP .. 435

11.6.1 Extending Process Code INVL ... 435
11.6.2 EDPAR Entries: Transaction VOE4 436

14

Contents

11.6.3 ZEDIXREF Entries ... 436
11.6.4 Partner Profile: Transaction WE20 436

11.7 Summary .. 438

12 The Inbound Customer Purchase Order 441

12.1 Technical Overview of Interface .. 442
12.2 Functional Specifications ... 443

12.2.1 Process Overview ... 443
12.2.2 Requirements ... 444
12.2.3 Dependencies .. 444
12.2.4 Assumptions .. 445
12.2.5 Data That Will Post to an Inbound Sales Order 446
12.2.6 Reconciliation Procedure .. 447
12.2.7 Enhancements to the Process ... 447
12.2.8 Errors and Error Handling ... 448

12.3 End-to-End Process Flow .. 449
12.3.1 VMI Processing .. 450
12.3.2 EDI 850 Processing .. 452
12.3.3 VMI and EDI Processes Merge 452

12.4 Technical Specifications .. 455
12.4.1 Technical Requirements ... 455
12.4.2 Dependencies .. 455
12.4.3 Assumptions .. 456

12.5 Mapping Specifications ... 456
12.5.1 Structure of the 850 to IDoc Build Array 460
12.5.2 Mapping the Build Array to the Target IDoc 463

12.6 SDQ Processing Program Logic ... 465
12.7 Duplicate Checking Enhancement ... 471

12.7.1 Create Error Message ... 472
12.7.2 Create Modification Project .. 472
12.7.3 Program Flow ... 473

12.8 EDI Configuration in SAP .. 476
12.8.1 EDPAR Entries: Transaction VOE4 476
12.8.2 EDSDC Entry: Transaction VOE2 477
12.8.3 ZEDIXREF Entries ... 477
12.8.4 Partner Profile: Transaction WE20 478

12.9 Summary .. 479

15

Contents

13 Building the Outbound Order Confirmation 481

13.1 Technical Overview ... 482
13.2 Functional Specifications ... 483

13.2.1 Process Overview ... 483
13.2.2 Requirements ... 484
13.2.3 Dependencies .. 485
13.2.4 Assumptions .. 485
13.2.5 Data That Will Pass to an Outbound Order

Confirmation .. 486
13.2.6 Custom Enhancements ... 487
13.2.7 Reconciliation Procedure .. 489
13.2.8 Errors and Error Handling ... 489

13.3 Generating the ORDRSP with Message Control 489
13.3.1 Message Control Configuration for the ORDRSP 489
13.3.2 Overview of the End-to-End Process Flow 495

13.4 Technical Specifications .. 499
13.4.1 Technical Requirements ... 499
13.4.2 Dependencies .. 500
13.4.3 Assumptions .. 500
13.4.4 Extended IDoc Type ZORSDQ01 501
13.4.5 Creating the Extended IDoc Type 501
13.4.6 SDQ Bundling and IDoc Output Program 509

13.5 Mapping Specifications ... 534
13.6 EDI Configuration in SAP .. 538

13.6.1 EDPAR Entries: Transaction VOE4 538
13.6.2 ZEDIXREF Entries ... 538
13.6.3 Partner Profiles: Transaction WE20 539

13.7 Summary .. 544

14 Sending a Shipping Order to the Supplier 547

14.1 Technical Overview of Interface .. 548
14.2 Functional Specifications ... 549

14.2.1 Process Overview ... 550
14.2.2 Requirements ... 551
14.2.3 Dependencies .. 552
14.2.4 Assumptions .. 553

16

Contents

14.2.5 Data That Will Pass to an Outbound Ship Order 554
14.2.6 Enhancements to the Process ... 556
14.2.7 Reconciliation .. 556
14.2.8 Errors and Error Handling ... 557

14.3 Generating a SHPORD IDoc with Message Control 557
14.3.1 Configuring Message Control ... 558
14.3.2 Overview of the End-to-End Process Flow 561

14.4 Technical Specifications .. 565
14.4.1 Technical Requirements ... 565
14.4.2 Dependencies .. 565
14.4.3 Assumptions .. 566

14.5 Mapping Specifications ... 567
14.6 EDI Configuration in SAP .. 570

14.6.1 EDPAR Entries: Transaction VOE4 570
14.6.2 ZEDIXREF Entries ... 570
14.6.3 Partner Profiles: Transaction WE20 571

14.7 Summary .. 573

15 The Inbound Shipping Confirmation .. 575

15.1 Technical Overview of the Interface .. 576
15.2 Functional Specifications ... 577

15.2.1 Process Overview ... 578
15.2.2 Requirements ... 578
15.2.3 Dependencies .. 580
15.2.4 Assumptions .. 580
15.2.5 Delivery Document Data after Ship Confirm Update 581
15.2.6 Enhancements to the Process ... 583
15.2.7 Reconciliation .. 583
15.2.8 Errors and Error Handling ... 584

15.3 End-to-End Process Flow .. 585
15.4 Technical Specifications .. 588

15.4.1 Technical Requirements ... 588
15.4.2 Dependencies .. 588
15.4.3 Assumptions .. 589

15.5 Mapping Specifications ... 590
15.5.1 Hierarchical Structure of the 856 594
15.5.2 The DELVRY03 IDoc .. 599

15.6 EDI Configuration in SAP .. 600

17

Contents

15.6.1 EDPAR Entries: Transaction VOE4 600
15.6.2 ZEDIXREF Entries ... 600
15.6.3 Partner Profiles: Transaction WE20 601

15.7 Summary .. 602

16 The Advanced Shipping Notice to the Customer 605

16.1 Technical Overview of Interface .. 606
16.2 Functional Specifications ... 608

16.2.1 Process Overview ... 608
16.2.2 Requirements ... 609
16.2.3 Dependencies .. 610
16.2.4 Assumptions .. 610
16.2.5 Data That Pass to the IDoc from the Delivery 611
16.2.6 Enhancements to the Process ... 613
16.2.7 Reconciliation .. 614
16.2.8 Errors and Error Handling ... 614

16.3 Generating an ASN IDoc with Message Control 615
16.3.1 Configuring Message Control ... 615
16.3.2 Overview of the End-to-End Process Flow 619

16.4 Technical Specifications .. 626
16.4.1 Technical Requirements ... 626
16.4.2 Dependencies .. 626
16.4.3 Assumptions .. 627

16.5 Mapping Specifications ... 627
16.6 EDI Configuration in SAP .. 632

16.6.1 EDPAR Entries .. 632
16.6.2 PUMA Entries: Transaction VNPU 633
16.6.3 ZEDIXREF Entries ... 634
16.6.4 Partner Profiles: Transaction WE20 634

16.7 Summary .. 636

17 Generating the Outbound Customer Invoice 639

17.1 Technical Overview of Interface .. 640
17.2 Functional Specifications ... 642

17.2.1 Process Overview ... 642
17.2.2 Requirements ... 643

18

Contents

17.2.3 Dependencies .. 644
17.2.4 Assumptions .. 645
17.2.5 Data That Pass to the IDoc from the Billing Document ... 646
17.2.6 Enhancements to the Process ... 648
17.2.7 Enhancement Details ... 648
17.2.8 Reconciliation .. 649
17.2.9 Errors and Error Handling ... 650

17.3 Generating an INVOIC IDoc with Message Control 651
17.3.1 Configuring Message Control ... 652
17.3.2 Overview of the End-to-End Process Flow 655

17.4 Technical Specifications .. 663
17.4.1 Technical Requirements ... 663
17.4.2 Dependencies .. 664
17.4.3 Assumptions .. 664
17.4.4 Purchase Order Number IDoc Edit Report 665

17.5 Mapping Specifications ... 694
17.6 EDI Configuration in SAP .. 697

17.6.1 EDPAR Entries: Transaction VOE4 697
17.6.2 ZEDIXREF Entries ... 697
17.6.3 Outbound Partner Profile: Transaction WE20 698

17.7 Summary .. 700

18 Processing the Inbound Payment Advice 703

18.1 Technical Overview of the Interface .. 704
18.2 Functional Specifications ... 706

18.2.1 Process Overview ... 706
18.2.2 Requirements ... 707
18.2.3 Dependencies .. 708
18.2.4 Assumptions .. 709
18.2.5 Payment Advice Note Data .. 709
18.2.6 Enhancements to the Process ... 711
18.2.7 Reconciliation .. 712
18.2.8 Errors and Error Handling ... 712

18.3 End-to-End Process Flow .. 713
18.3.1 Following the 820 Flow ... 714
18.3.2 An Intelligent Split ... 714
18.3.3 Posting the Payment .. 715

19

Contents

18.4 Technical Specifications .. 717
18.4.1 Technical Requirements ... 717
18.4.2 Dependencies .. 717
18.4.3 Assumptions .. 718
18.4.4 EDI Process to Split Very Large 820s 719
18.4.5 User Transaction Code for the SAP Split Program 724

18.5 Mapping Specifications ... 725
18.6 EDI Configuration in SAP .. 731

18.6.1 EDPAR Entries .. 731
18.6.2 Company Code to Sold-to Party Transaction OCBA 731
18.6.3 Reason Code Conversion .. 732
18.6.4 ZEDIXREF Entries ... 733
18.6.5 Inbound Partner Profile Transaction WE20 734

18.7 Summary .. 735

ACT IV Finishing Touches

19 Extending the Interface: Custom IDoc Tools 739

19.1 EDI to IDoc Trading Partner Conversion 740
19.1.1 The Issue .. 740
19.1.2 The Solution ... 741
19.1.3 Development Work Flow ... 741
19.1.4 Writing the Code ... 746

19.2 Mass Upload of Partner Profiles to SAP 749
19.2.1 The Issue .. 750
19.2.2 The Solution ... 751
19.2.3 Dependencies .. 753
19.2.4 Coding ZEDI_UPLDPP .. 754
19.2.5 Further Automating Partner Profile Processing 762

19.3 Mass Transfer of IDocs between Systems 764
19.3.1 The Issue .. 764
19.3.2 The Solution ... 764
19.3.3 Dependencies .. 765
19.3.4 Program ZEDI_TRNSFIDOCS .. 765

19.4 Sending IDoc Status to an External System 772
19.4.1 The Issue .. 772
19.4.2 The Solution ... 772
19.4.3 Dependencies .. 772

20

Contents

19.4.4 Defining the Distribution Model 773
19.5 Adding Qualifiers to IDoc XML Schema 778

19.5.1 The Issue .. 778
19.5.2 The Solution ... 778
19.5.3 Dependencies .. 778
19.5.4 Extracting an XML Schema from SAP 779
19.5.5 Creating the IDoc Enumerators 781
19.5.6 Using the Enumerator in an IDoc 784

19.6 Summary .. 786

20 Testing the EDI System in SAP ... 787

20.1 IDoc Test Tools ... 788
20.1.1 The Main IDoc Test Tool: Transaction WE19 788
20.1.2 Outbound from Message Control: Transaction WE15 791
20.1.3 Outbound from IDoc: Transaction WE14 792
20.1.4 Status File Testing: Transactions WE18 and WE17 793
20.1.5 Turnaround Utility: Transaction WE12 794
20.1.6 Inbound IDoc File Processing: Transaction WE16 795
20.1.7 Inbound IDocs and startRFC ... 796

20.2 Interface Testing Strategy .. 798
20.2.1 Testing Environments ... 799
20.2.2 Break-Fix Procedures .. 802
20.2.3 Test Teams and Responsibilities 803
20.2.4 Documenting Tests .. 805

20.3 Unit Testing .. 805
20.3.1 Scope ... 806
20.3.2 Criteria for Success ... 806
20.3.3 Dependencies .. 807
20.3.4 Execution ... 807

20.4 String Testing .. 808
20.4.1 Scope ... 808
20.4.2 Criteria for Success ... 809
20.4.3 Dependencies .. 810
20.4.4 Execution ... 810

20.5 Interface Testing ... 815
20.5.1 Scope ... 815
20.5.2 Criteria for Success ... 816

21

Contents

20.5.3 Dependencies .. 817
20.5.4 Execution ... 818

20.6 Integration Testing .. 822
20.6.1 Scope ... 823
20.6.2 Criteria for Success ... 824
20.6.3 Dependencies .. 825
20.6.4 Execution ... 826

20.7 Stress Testing .. 835
20.7.1 Scope ... 836
20.7.2 Criteria for Success ... 837
20.7.3 Dependencies .. 837
20.7.4 Execution ... 838

20.8 Summary .. 839

21 Troubleshooting and Recovery ... 841

21.1 Identifying Issues .. 842
21.1.1 Defining Success .. 842
21.1.2 Defining Failure .. 844
21.1.3 Functional or Business Failure .. 848

21.2 Monitoring and Recovery Tools .. 850
21.2.1 Transaction BD87: The Status Monitor 851
21.2.2 Transaction WE05: The IDoc List 867
21.2.3 Processing Log for Output Control 869
21.2.4 Transaction WE07: Errors History 870
21.2.5 Transaction WE09: IDoc Search by Business Content 871
21.2.6 Transaction WE08: IDoc Interuptus 873

21.3 Recovering from Key Failure Points ... 873
21.3.1 Technical Troubleshooting ... 874
21.3.2 Functional Troubleshooting .. 881

21.4 Summary .. 888

Epilogue .. 889
The Author .. 893
Index ... 895

Service Pages ... I
Legal Notes ... III

23

Prologue

Let’s return to Hollywood and once again take the studio tour of Acme Pictures
and revisit its legendary founder, Darryl Q. Fernhausen.

Since the first edition of this book was published, we’ve had time to reconsider
Acme’s implementation of an Electronic Data Interchange (EDI) system in an SAP
environment. While the first edition covered a lot of ground, it left out even more.
And, frankly, we made some mistakes, not all of which were typos.

This second edition is our attempt to plug some of these gaps. While much of the
original remains, we’ve tried to put more emphasis on the business context and
have added new interfaces from the purchasing cycle.

We have consolidated and expanded our discussions of message control and added
a number of new custom tools and utilities. We have changed our IDoc format
from ASCII to XML and introduced some basic concepts of working with, and
extending, XML schema.

All in all, we hope that the result is a tighter book that covers more subjects in a
clearer manner. But this book is still about SAP and EDI. And the basics haven’t
changed.

EDI is still the most widely used form of electronic commerce in the world today.
It is highly unlikely that this will change anytime soon. EDI has been around for
decades. It is reliable, proven, stable, and supported by long-established standards
developed and maintained by such global bodies as the United Nations, the Inter-
national Organization for Standardization (ISO), GS1, and the American National
Standards Institute (ANSI).

If money talks, EDI has the eloquence of a Shakespearean actor. It supports trillions
of dollars in transactions every year in a wide variety of industries. Many compa-
nies will not buy goods or services from suppliers that cannot exchange standard
business documents through EDI.

In the United States, Wal-Mart, the world’s largest retailer, is at the heart of a gigan-
tic global EDI ecosystem with thousands of suppliers that rivals most governments

24

Prologue

in its use of information and communications technology. If you want to sell to
Wal-Mart, you can do it only through EDI.

The importance of EDI as an enterprise integration application for thousands of
SAP customers is beyond dispute. EDI, and the large-volume batch processing of
business transactions that it enables, is a key element of the SAP environment in
thousands of locations around the world. Where EDI is present, most of the transac-
tional data that flow between SAP and external trading partners are carried by EDI.

With more than 70 percent of the global business software market, SAP is the
business system of record that a majority of EDI consultants, developers, and
production support teams work with every day.

Together, SAP and EDI are the heart, bones, arteries, and brains of modern busi-
ness and government organizations.

So why are we touring an imaginary Hollywood studio? Look beyond the glitz and
the glitter and it is just another business. Acme Pictures is a good model for the
challenges faced by many businesses when they implement SAP and EDI together.

Acme Pictures sells movies on DVD, a consumer product sold through retail, not all
that different from other products that wind up on store shelves around the world.
We could just as easily be talking about video games, pharmaceuticals, carpet, shoes,
software, beverages, snack foods, or the book that I hope you are now enjoying.

For Acme Pictures, it’s a simple equation: The volume of business it does with large
retail chains across North America, and the huge number of documents that this
business generates, can only be managed through EDI.

The other thing, of course, is that Hollywood is a lot of fun. But so is SAP and
EDI, even if the details can get a little dry at times. I’ll never forget the advice of a
project manager during kick-off for an SAP implementation at a steel mill in Ohio:
“Work hard and have lots of fun!”

The fun is in the creative process of designing and building a system that fits the
client’s business. It’s discovering how far you can push the limits of your knowl-
edge to provide your client with a useful system that will support its business for
years to come.

25

Prologue

The Book and Its Audience

Audiences are the lifeblood of Hollywood. Books, too. And while this book will
never be made into a movie, it may provide some useful information to SAP and
EDI consultants, developers, managers, and anyone else implementing, supporting,
or considering EDI in an SAP environment.

This book is the culmination of my 20-year odyssey as an SAP consultant and devel-
oper with a perennial fascination for data flows and integration. It represents ideas
about integration architecture considered throughout my SAP career, which includes
project work in four countries, three continents, and such industries as beverages,
electrical utilities, steel, electronics, textiles, pharmaceuticals, and entertainment.

We will take the studio tour of an SAP EDI implementation project, lovingly referred
to as Plan Q from Outer Space, or just plain Plan Q—in honor of our imaginary
studio’s most famous film.

This project-based approach attempts to deal in a holistic manner with the entire
SAP EDI ecosystem at Acme Pictures, beginning with an overview of the business
it supports, just enough to discuss technical solutions. The real-world business of
a Hollywood studio is far more complex and nuanced than we could describe in
these pages.

This book is not an SAP or EDI programming guide. It does assume an ability to
follow program logic and visualize end-to-end systems. We rely on standards and
standard functionality wherever possible.

Where potential solutions to common problems are presented, we will step through
the process flow and logic. But we will not write the code for you. Consider our
logic as starting points for your own creative exploration. And forgive me in advance
if some of our ideas don’t add up for you.

Our real hope is that this book helps you formulate questions that you may not
have considered. After all, every business, no matter how big or how small, is as
unique as the people who run it.

Structure of the Book

The book loosely follows the phases of our imaginary SAP project with detours for
background information about IDocs and EDI.

26

Prologue

In deference to our Hollywood theme, the book is organized into four acts, which
are meant to build your knowledge of Acme’s business, its systems, and SAP IDoc
and EDI development. A summary of each chapter follows.

Act I—Hollywood, DVDs, and the After Life of Movies

EE Chapter 1—Hollywood’s B-Movie Queen Does SAP and EDI
This chapter introduces Acme Pictures, its visionary founder, Darryl Q. Fern-
hausen, and its unique approach to the movie business. We also touch on SAP
EDI development strategy.

EE Chapter 2—The Blueprint: Discovery and Documentation
In this chapter we document Acme’s DVD business and the legacy systems that
support it. It also provides an overview of key customer and vendor processes,
including purchasing and order-to-cash.

EE Chapter 3—Designing the New SAP EDI Architecture
We present the vision for the new system. We’ll introduce to-be systems and
interfaces, and the Resource Integration Manager (RIM). We also examine the
key business processing cycles enabled by EDI.

Act II—Taming Chaos with Standards: EDI in an SAP Environment

EE Chapter 4—EDI: The Ugly Stepsister of E-Commerce
This chapter covers EDI for SAP professionals, including a brief tour of its fas-
cinating history and introduce the major EDI standards, with special emphasis
on EDIFACT and ANSI X12.

EE Chapter 5—Real-World Business Process Integration with EDI
Relationships and integrating processes between trading partners are at the heart
of EDI. In this chapter we look at the role of Acme’s EDI RIM, with its adapters
and services, and its connections to SAP.

EE Chapter 6—EDI Architecture in SAP: IDoc Basics
In this chapter we discuss Intermediate Documents (IDocs)—the intelligent mes-
sages defined by the Data Dictionary and the underlying logic that determines
how they are used.

EE Chapter 7—Configuring IDocs in SAP for EDI Exchange
From partner profiles to message control and mapping tables, inbound and
outbound IDoc configuration and processing flows in SAP are the focus of this
chapter.

27

Prologue

EE Chapter 8—Custom IDocs and IDoc Extensions
An introduction to IDoc development in SAP. We go over development tools
and process flows and build, code, and configure one custom and one extended
IDoc.

Act III—Realizing the Dream: Building Acme’s SAP EDI System

EE Chapter 9—Generating the PO for Replication Services
This chapter defines the function and technical setup for the outbound purchase
order for replication services to Acme’s contract manufacturer, including con-
figuration of message control to output an ORDERS IDoc.

EE Chapter 10—The Inbound Goods Receipt
In this chapter we discuss the functionality and configuration of inbound inven-
tory adjustments and goods receipt through an EDI X12 867 transaction.

EE Chapter 11—Processing the Inbound Supplier Invoice
We review posting requirements for the inbound supplier invoice for contract
manufacturing services, including invoice verification and configuration.

EE Chapter 12—The Inbound Customer Purchase Order
This chapter examines the inbound X12 850 to ORDERS IDoc customer purchase
order, including logic for SDQ processing and code to block posting of duplicate
POs to SAP Sales Orders.

EE Chapter 13—Building the Outbound Order Confirmation
Covers the generation of the outbound ORDRSP confirmation from an SAP sales
order. We‘ll build an extended IDoc and look at logic for a custom program to
bundle multiple sales orders from the same SDQ PO into a single X12 855 inter-
change.

EE Chapter 14—Sending a Shipping Order to the Supplier
We discuss the outbound SHPORD to X12 830 shipping order to the supplier,
including message control configuration enabling output of IDocs from the SAP
delivery document.

EE Chapter 15—The Inbound Shipping Confirmation
This chapter focuses on the X12 856 shipping confirmation from the vendor,
which updates pick quantity and posts goods issue in the delivery document in
Acme’s SAP system after the order ships.

EE Chapter 16—The Advanced Shipping Notice to the Customer
In this chapter we focus on the advanced ship notice (ASN), which tells the

28

Prologue

customer what to expect in its shipment. We will emphasize the critical business
requirement for accuracy and timeliness and discuss conditions for creating the
DESADV IDoc.

EE Chapter 17—Generating the Outbound Customer Invoice
Here we cover the INVOIC to X12 810 customer invoice, generated from the
SAP billing document. We detail output requirements for the IDoc and step
through a custom ALV grid program for changing the PO number in the IDoc.

EE Chapter 18—Processing the Inbound Payment Advice
The focus of this chapter is the inbound payment advice, which records details
of a customer payment on all invoices, including debits and credits. We also
discuss common issues with very large X12 820 files.

Act IV—Finishing Touches

EE Chapter 19—Extending the Interface: Custom IDoc Tools
Fun with ABAP, ALE, and XML as we look at custom utilities that take advantage
of standard SAP functionality.

EE Chapter 20—Testing the EDI System in SAP
Acme’s testing strategy is the focus of this chapter. We examine the composition
and role of the test team and outline the key test phases.

EE Chapter 21—Troubleshooting and Recovery
Defining success and failure in Acme’s SAP EDI architecture. We’ll look at stan-
dard monitoring tools and consider situations that appear successful but could
lead to errors in later stages of the EDI cycle.

EE Epilogue
With the project complete, the integration team relaxes at a famous Hollywood
watering hole to toast the successful release of an Acme film noir classic and the
success of the new SAP EDI system.

Acknowledgments

If no man is an island, as the English poet and preacher John Donne once observed,
the same is especially true for authors, who often labor in solitude and obscurity.
During the long, lonely hours spent writing a book, it is easy to forget the many
people who enrich our lives and our work every day.

The quest to define, begin, complete, and rewrite this book was a labor of love that
extended over many years. It would have been a mission impossible without the

29

Prologue

people—family, friends, and colleagues—who sometimes endured yawn-inducing
dissertations of SAP integration issues.

First and foremost, this is dedicated to my son and two daughters and especially to
the grandchildren that I’ve been blessed with since publication of the first edition.
The future belongs to you.

To all my family and friends, wherever in or out of this crazy, beautiful world you
may find yourselves: thank you for being you.

A good programmer never stops learning. A good consultant learns so that he can
pass on his knowledge to benefit his client. A passion to learn and to acquire and
pass on new skills is the key to success and to having fun in this business. Learning
means working with other people—listening, studying, discussing, playing, and
poking around systems.

I’ve been lucky in the colleagues that I’ve worked with over the years. I’ve learned
so much from so many people that it’s impossible to remember them all. So thanks
to everybody. You know who you are. It’s been a privilege working with you.

I also want to thank the folks at SAP PRESS for their support and continuing belief
in this project.

Finally, I want to express a heartfelt thank you to the countless numbers of extraor-
dinary working people in Hollywood who labor quietly every day in the offices
and back lots of the studios beyond the glare of the klieg lights.

When the director shouts “Lights…cameras…action!” they turn on the lights, run
the cameras, build the sets, feed the crews, park the star wagons, clean up, and
run the IT systems that keep the business humming.

They are, always have been, and always will be the real stars of Hollywood.

ACT I
Hollywood, DVDs, and the

After-Life of Movies

33

Hollywood studios use SAP and EDI to run their home entertainment
business. Acme Pictures is no exception. We’ll look at its history and unique
business model and introduce Acme’s new SAP EDI implementation. Hold on
to your hats—we’re in for an interesting ride.

1 Hollywood’s B-Movie Queen
Does SAP and EDI

Welcome to Hollywood, the world’s most fabulous dream factory. If it’s true that
dreams are made in this town, these dreams can only be realized on a solid foun-
dation of business.

Like all modern businesses, the dream factory depends on business systems to
manage its processes, keep its documents flowing, and deliver timely and accurate
information to support decision making across the enterprise.

It’s no wonder then that Acme Pictures, our imaginary Hollywood dream factory,
has decided to implement SAP to run its Home Entertainment division, which is
responsible for selling the studio’s movies on DVD to big box stores across the
United States and Canada.

Buying and selling is what Acme Home Entertainment, abbreviated as AHE, is all
about. AHE doesn’t manufacture its own DVDs, nor does it maintain warehouses
to store them. The studio outsources this work to a vendor: Disc Services Inter-
national (DSI).

DSI is a replicator that has the facilities to burn millions of images of Acme’s movies
onto DVDs, and to package, store, and ship them to AHE’s retail customers across
North America. DSI also orders raw materials for AHE when required to complete
a replication order or to replenish inventory in anticipation of future orders.

All this buying and selling would be impossible without electronic data interchange,
more commonly referred to as EDI.

34

Hollywood’s B-Movie Queen Does SAP and EDI1

As in so many other SAP implementation projects around the world, Acme Pictures
plans to build a new EDI system that will connect its trading partners to the new
SAP system. The EDI system will feed SAP virtually all of its transactional data and
route all outbound business documents from SAP to Acme’s customers.

1.1 SAP and EDI: Getting to Know Each Other

The SAP and EDI teams should understand each other’s requirements. On all too
many projects, the two teams operate almost as if the other inhabited a separate
universe.

On the surface, it appears that the structure, conversion, and delivery of IDocs are
the key links between SAP and EDI: the Basis/technical architecture, configuration,
and development.

EE Basis/technical architecture relates to overall system design and connectivity,
including the connections between SAP and EDI and the details of communica-
tions between EDI and the trading partners.

EE Configuration and development in SAP is primarily about setting up the IDoc
interface, customizing IDocs, and writing ABAP code.

EE Configuration and development in EDI is primarily about trading partner man-
agement, adapters, mapping, and business process development.

Within SAP, IDocs are objects that encapsulate a business document or a data
object such as a customer or material master record. Behind each IDoc is program
intelligence that determines the business meaning, the semantics, of the object
encapsulated by the IDoc as well as its place within the document flow that com-
pletes a full-cycle business process (BP).

In other words, the business stands behind each IDoc through the classic SAP mod-
ules of Sales and Distribution (SD), Materials Management (MM), and Financial
Accounting (FI) in the case of Acme Pictures’ current implementation.

The EDI side rarely ventures beyond an imperfect understanding of how you use
IDoc structure in a map. EDI’s focus is rightly on its own realm. At least during
the implementation phase, it dwells on the technical details of trading partner
management, communications and connectivity, mapping, and business process
development.

35

A Brief History of Fame: Our Imaginary Dream Factory 1.2

But EDI has a mission-critical business function: It ties together the business pro-
cesses enabled by the backend business systems of Acme Pictures and its trading
partners.

EDI is not just about exchanging documents. Business documents don’t exist in a
vacuum; they exist as milestone participants in an end-to-end business processing
cycle that results in the completion of a business activity, such as purchasing or
sales, and that ends in an update to accounting and speaks directly to the com-
pany’s bottom line.

It’s in everybody’s interests—the SAP and EDI teams, the implementation project
as a whole, and, most importantly, the business—that both teams understand more
about what each is doing and what each requires. This provides the rich context
for each group to proceed with its own tasks within the overall implementation.

Acme Pictures understands how critical EDI is to the success of its business and its
SAP implementation. The SAP and EDI teams will work closely together throughout
the project to deliver a clean and efficient EDI architecture across both systems to
support the business and its users.

Since we’re in Hollywood, let’s take the quick studio tour. Acme Pictures has a
colorful history and a very interesting business model.

1.2 A Brief History of Fame: Our Imaginary Dream Factory

Let us introduce you to Acme Pictures, affectionately known in the industry as the
B-Movie Queen of Hollywood.

Acme won this accolade the hard way, with a diligent devotion to producing high-
quality works of transcendent mediocrity. Acme’s pictures are stinkers by design.
The studio specializes in low-grade science fiction, pulp horror, alien zombie inva-
sions, and the occasional salacious romp across multiple historical eras; its movies
are so vulgar and incompetently produced that they become objects of a cult-like
devotion.

Acme stumbled on its successful formula more than 50 years ago with the release of
its first smash hit, I Married an Alien from Planet Q in Outer Space. Its poorly written
and ill-conceived plot, scratchy soundtrack, and cheap black-and-white cinema-
tography stunned critics into silence but delighted moviegoers around the world.

36

Hollywood’s B-Movie Queen Does SAP and EDI1

The critics have since warmed to this cult classic, reading into it a metaphor for
Senator Joe McCarthy’s anti-communist witch hunts then sweeping the United
States, particularly the fear they spread through Hollywood. But this was far from
the intent of Acme’s visionary founder, Darryl Q. Fernhausen, who only wanted
to make a quick buck by taking advantage of the science fiction craze at the time.

Fernhausen, who was known around the studio as Darryl Q or The Great Mr. Q,
knew a winning formula when he saw it. He proceeded to build a successful busi-
ness around it. His films never won any Oscars. But they made Fernhausen rich
and transformed Acme into an underappreciated and unloved Hollywood institu-
tion, except for the loyal fans who continue to flock to the theaters for each of the
studio’s much-hyped stink bombs.

Darryl Q was in Hollywood heaven: a movie mogul who could afford to indulge
his taste for Cuban cigars, cocktails at the perpetually film noir Formosa Café, and
platinum blondes with stars in their eyes. Acme Pictures made him more than
enough money to indulge all his pleasures to his heart’s content.

Acme’s fortunes really took off with the birth of the Home Entertainment division
and the release of the studio’s movies to VHS and DVD. Acme’s extensive catalog
of B-movies became a rich source of ongoing revenue. Acme’s new releases inspire
tremendous excitement among legions of loyal fans, many of whom have been
known to line up for days before the very popular DVD release of a particularly
bad film.

Today, at about $500 million a year, Acme’s DVD sales are still booming across
North America, accounting for 60 percent of its revenues, even with the downturn
in the DVD business for other studios. Acme’s biggest customer is Gordy’s Galaxy
of Games & B Flix, affectionately known around Acme as Gordy or Gordy’s Galaxy.
Among other things, Gordy is renowned for geriatric greeters who dress as space
aliens from Acme’s most memorable films.

But most of all, Gordy is all about the business. With more than 2,000 retail outlets
across North America, Gordy’s Galaxy provides Acme Pictures with more than half
of its DVD revenues.

The success of Acme’s business depends on getting DVD movies on to the custom-
ers’ shelves, particularly Gordy. Without EDI in Purchasing and Sales, this would
be an impossible mission.

37

A Brief History of Fame: Our Imaginary Dream Factory 1.2

But this is almost irrelevant. Gordy’s Galaxy mandated that it will do business with
its vendors only through EDI using AS2 (applicability statement 2) communica-
tions across the Internet. It also mandated that ANSI ASC X12 version 5010 be the
standard format for all EDI transactions in North America.

Acme Pictures will do anything to keep Gordy’s Galaxy happy and fully stocked.
If Gordy wants AS2 and X12 5010, that’s what Gordy will get.

1.2.1 A Bird’s-Eye View of the Business

Let’s fly up to 100,000 feet and get a bird’s-eye view of the Purchasing and Sales
processes at Acme Pictures to introduce ourselves to the business context for our
interfaces.

The purchasing process begins with planning and forecasting, as outlined in Figure
1.1. There are important differences between new releases and catalog, but the
key to both is being able to predict demand for particular DVD products from key
customers.

Forecasting is an arcane science and a delicate art that requires data from numer-
ous sources, including open sales orders, inventory, and, for some key customers
(including Gordy), point of sales (POS) data reporting daily and weekly sales and
inventory from all stores.

Purchase orders (POs) for finished goods and raw materials are planned and
approved based on requirements for new release or replenishment product calcu-
lated by the forecast.

For finished goods, a manufacturing PO is released and sent to the replicator, Disc
Services International (DSI). DSI pulls the necessary raw materials from inventory
and burns and packages the disks.

Acme Pictures owns the stock, but DSI keeps the inventory in its warehouse. When
the inventory is consumed and transformed by manufacturing and packaging into
DVDs, DSI sends Acme a goods receipt that updates the PO and posts the finished
goods to inventory in Acme’s system. Raw materials are then flushed from Acme’s
inventory.

38

Hollywood’s B-Movie Queen Does SAP and EDI1

Manufacturing
purchase order

Disc Services International

Goods receipt
posts against PO

Acme Studios

Planning and
forecasting

Replication and packaging
of movies on DVD

Goods received
from production:
Inventory update

DSI sends
vendor invoice

GR completes PO
updates inventory/
accounts payable

Figure 1.1 An Overview of Acme’s Purchasing Process

The process is completed when DSI sends Acme an invoice that closes the PO and
updates accounts payable (AP).

The sales process is outlined in Figure 1.2. At its most basic, a customer purchase
order is sent to Acme for a set number of movie DVDs for each store in the cus-
tomer’s chain.

AHE receives the PO, verifies it, and then drops a shipping order (SO) to the ware-
house run by DSI, which also manages distribution to the customer.

39

A Brief History of Fame: Our Imaginary Dream Factory 1.2

Purchase order
for DVDs

Gordy’s Galaxy

Sends cust invoice
updates AR

Acme Studios—AHE

Receives PO,
verifies, drops

ship order to DSI

Closes purchase
order/updates

inventory

Ships order to
customer’s

distribution centerDisc Services
International
—Warehouse

Receives SO:
pick and pack items

Figure 1.2 Sales Processing Begins with a Customer PO

DSI receives the SO and picks the product from inventory, if there is enough prod-
uct in inventory to fill the order. DSI then packs the product, puts it onto trucks,
and ships it to the customer.

As the truck leaves the loading dock, DSI sends Acme a shipping confirmation that
updates inventory with picking and packing quantities, posts a goods issue, and
closes the order in Acme’s system.

40

Hollywood’s B-Movie Queen Does SAP and EDI1

The sales processing cycle ends when Acme sends the customer an invoice for the
shipped DVD movie products. The invoice updates accounts receivable (AR) in
Acme’s finance system.

This is the heart of Acme’s DVD business, at its most basic, stripped of all the
messy complexities that reside in each leg of these processes. Now we need to
consider the project.

1.2.2 Enter Plan Q: A New Project Is Born

Acme’s Home Entertainment division already has an extensive network of highly
customized legacy systems, including EDI, running mostly on AS400s. These legacy
applications are linked through a complex web of point-to-point file-based interfaces.

We’ll look at these legacy systems in more detail as we examine the as-is state in the
blueprint phase of the project. For now, it is enough to know that Acme manage-
ment decided that it was time to simplify and modernize its technical architecture,
replace key business systems with SAP, upgrade its EDI system, and come up with
a better way to manage the file-based interfaces that will remain after go-live.

They also had to consider the competition: Every major Hollywood studio had
already implemented, was implementing, or planned to implement SAP along with
a new or improved EDI system.

Acme couldn’t afford to stand still. A steering committee of key management deci-
sion makers was formed, an SAP integrator was hired to provide project manage-
ment and consultants, and business users were appointed to an implementation
team. Luckily for Acme, the integrator had a small number of developers who were
experienced with both SAP and EDI.

And so Plan Q from Outer Space, or more simply Plan Q, the name given to Acme’s
SAP project in honor of the studio’s first smash hit, was born with great fanfare
and a flurry of PowerPoint presentations.

Plan Q is a full-cycle SAP implementation for SD, MM, SAP Project Systems (PS),
and FI-CO that includes building a modern EDI middleware system based on Java,
Extensible Markup Language (XML), and business process modeling. There will
also be interfaces between all SAP modules and a number of legacy systems.

It was a project worthy of the Great Mr. Q himself, who long ago joined the Hol-
lywood immortals in that great sound stage in the sky, or wherever else it may be.

41

A Brief History of Fame: Our Imaginary Dream Factory 1.2

Acme management paid homage to Darryl Q at the kick-off meeting and expressed
the belief that he would have approved and was even now smiling on their efforts
from wherever he happened to be in Hollywood Heaven—or that other, much
hotter, place that lies somewhere in the San Fernando Valley.

1.2.3 We Define Our Scope

Plan Q is a big project, but we’re concerned with only one piece of it: a self-contained
subproject focused on the SAP EDI build of the purchasing and order-to-cash cycle
for Gordy’s Galaxy. This includes the following interfaces (direction is in relation
to Acme’s new SAP system):

1. Outbound purchase order for replication services

2. Inbound goods receipt

3. Inbound supplier invoice

4. Inbound customer purchase order

5. Outbound customer purchase order acknowledgment

6. Outbound shipping order to supplier

7. Inbound shipping confirmation

8. Outbound advanced shipping notification (ASN) to customer

9. Outbound invoice to customer

10. Inbound payment advice

Functional and technical specifications for each EDI interface will be documented,
including supporting configuration, mapping specifications, and all related devel-
opment work in SAP and EDI.

Standard SAP IDoc processing is used as much as possible. However, in any SAP
implementation, the ideal of using standard functionality always runs up against
the reality of how business is actually done. There are always complications that
can only be handled with custom configuration or code.

We’ll consider custom solutions to a number of common problems that often crop
up in a real-world SAP EDI implementation, such as ensuring that duplicate POs
don’t post to a sales order in SAP and an approach to handling SDQ—Destination
Quantity—segments in X12 transactions, which group order quantities for up to
10 ship-to locations in one segment.

42

Hollywood’s B-Movie Queen Does SAP and EDI1

Before we begin the build, we need to lay the foundation. This means documenting
Acme’s key business processes as they exist now and as the project team determines
that they should exist in the future, paying special attention to the order-to-cash
cycle for Gordy’s Galaxy. This will give us a better understanding of the business
that Acme’s new SAP EDI architecture will support.

We’ll look at the special role that vendor-managed inventory (VMI) plays in Gordy’s
Galaxy order-to-cash cycle and how legacy systems currently support the business.
At that point, we’ll be ready to present the architecture of the new SAP EDI system,
with its key systems and interfaces.

Laying the foundation also means providing our team members with detailed back-
ground information on EDI and the IDoc interface. It’s important to understand
our processes, tools, and development requirements before we begin building
our interfaces.

1.3 Defining Some Basic Ground Rules

Before we begin, we need to lay down some basic ground rules about our technical
environment and interface development strategy. So let’s outline the major points
of our common approach.

1.3.1 The Technical Environment

Our application servers and LAN will run on Windows Enterprise Server. It’s not
an optimal environment, but it’s fairly easy to maintain and to describe. It can
handle all of Acme’s requirements for the foreseeable future.

We’ll be implementing SAP ERP Central Component (ECC) version 6.05 with the 7.2
GUI. It’s not state of the art, but Acme plans an upgrade about a year after go-live.

1.3.2 The EDI System

There are a lot of EDI systems on the market, and we won’t favor any in our
implementation. We will describe a generic no-name system that, like many oth-
ers, is built on Java and XML, makes extensive use of business process modeling,
uses XPath to evaluate and process interface data at runtime, and runs in a Java EE
(J2EE) application server on its own Windows Enterprise Server box.

43

Defining Some Basic Ground Rules 1.3

Interfaces are developed in the EDI system as business processing models (BPMs) or
workflows using the Business Process Modeling Language (BPML), a dialect of XML
used to construct end-to-end workflow models made up of services, adapters, and
connectors implemented as Java objects in the runtime engine of the EDI system.

BPML and its successor BPEL (Business Process Execution Language), which is used
in workflow modeling systems such as Aris Toolset and the SAP NetWeaver Pro-
cess Integration (SAP NetWeaver PI) business process modeling tool, are similar to
scripting languages such as KornShell in that they trigger execution of commands
and program objects within a runtime execution environment.

In the case of SAP NetWeaver PI (formerly known as Exchange Infrastructure,
or XI), this runtime business process engine is an integral part of the integration
server. The integration engine within SAP NetWeaver PI provides services that
enable the execution of program steps that are relevant to transformation and
routing of an interface.

In our generic EDI system, the service and adapter objects each perform one func-
tion, such as the following:

EE Identify whether a message is X12, EDIFACT, or any other standard

EE Execute a map

EE Envelope or de-envelope an EDI transaction

EE Pull metadata from a document

EE Do an SQL read of a table through a JDBC adapter

EE Connect to SAP and send in an IDoc

The BPML code can be handcrafted or generated by a visual modeling tool as ser-
vices or adapters are selected, connected, and configured, a little like assembling
Lego blocks.

The BPML code sample in Listing 1.1 describes an SAP adapter that is called by
the EDI runtime engine. Parameters are passed to the adapter by the <assign> tag
from processing data available at runtime using XPath statements for the following:

EE The SAP application and gateway servers

EE The Gateway host

EE Client number

44

Hollywood’s B-Movie Queen Does SAP and EDI1

EE User name and password

EE EDI port

EE The SAP function module that will import and process the IDoc

EE The full path and file name of the IDoc that is being passed

<operation name="SAPAdapter">
 <participant name="ACM_SAPAdapter_FILE_RFC"/>
 <output message="SAPAdapterInputMessage">
 <assign to="Ashost" from="string(Param/APPServer)">
 </assign>
 <assign to="Client" from="string(Param/Client)">
 </assign>
 <assign to="Gwhost" from="string(Param/GatewayHost)">
 </assign>
 <assign to="Gwserv" from="string(Param/GatewaySrvc)">
 </assign>
 <assign to="IDocPathName"
 from="string(Param/PATHNAME)"></assign>
 <assign to="Passwd" from="string(Param/Pword)"></assign>
 <assign to="Port" from="string(Param/SNDPOR)"></assign>
 <assign to="ProgramID" from="string(Param/PgmID)">
 </assign>
 <assign to="Function" from="string(Param/Function)">
 </assign>
 <assign to="User" from="string(Param/User)"></assign>
 </output>
</operation>

Listing 1.1 Example of an SAP Adapter Defined in BPML

The adapter object is embedded within a chain of connected objects comprising a
business process workflow, which at runtime, would do the following:

1. Execute an SQL statement through a JDBC adapter to read parameters for the
target SAP system from a database table.

2. Call a generic map to plug key values into the control segment of the IDoc being
handed off to SAP.

3. Provide a name for the IDoc file.

4. Call a file system adapter to transfer the IDoc file to a folder on the SAP applica-
tion server.

45

Defining Some Basic Ground Rules 1.3

5. Call the SAP adapter to log in to the target SAP system and make a remote func-
tion call (RFC) to function module EDI_DATA_INCOMING.

The workflow works like a function in SAP. Other business process workflows
performing different runtime tasks, such as routing to or from a trading partner
or de-enveloping, call the SAP adapter workflow at some point during their pro-
cessing cycles.

The SAP adapter manages connections through the SAP Java Connector (JCo). On
the inbound, the adapter makes the RFC to an SAP function through JCo. On the
outbound, the IDoc interface makes the call through an SAP RFC destination, which
calls a listener BP in the EDI system through JCo.

We’ll look at these end-to-end processes in more detail as we cover the EDI system,
installing and using the JCo connector, and RFC communications between SAP and
the EDI system in Chapter 5, Section 5.4.1.

1.3.3 Nothing but IDocs

The IDoc is the warm and fuzzy blanket of SAP interface development strategies,
but skeptical audiences sometimes must be convinced because they may be more
comfortable writing ABAP code to import or export custom flat files.

After a lot of consultation and not a little arguing, Plan Q’s ABAP team lead decided
that all interfaces, whether standard or custom, would be developed using IDocs.

If a standard IDoc and function exists for a particular interface, we’ll use the stan-
dard. If we have to customize or extend it, we’ll customize. If no IDoc exists that
meets the needs of a particular interface, we’ll either extend a standard or build
a custom IDoc from scratch. The extended and custom IDocs will be processed
through a customer exit or a custom IDoc function.

Obviously, we’re preaching to the choir here, or you wouldn’t be reading a book
about architecting EDI using IDocs, but we wanted to repeat the arguments often
used in the past.

The IDoc interface is a wonderful plug-and-play development platform that gives
you most of what you need before you even begin coding, as you will see when
we go through the steps to build and configure custom IDocs in Chapter 8, Custom
IDocs and IDoc Extensions.

46

Hollywood’s B-Movie Queen Does SAP and EDI1

Consider the effort involved in developing an IDoc from scratch. You build a custom
IDoc, beginning with its data elements and segments, and assemble the segments
into a basic type. You then write a function module to process the data.

On the outbound, you populate the IDoc and export it by calling a standard func-
tion module. Inbound IDocs are imported by a standard function and handed off
by the IDoc interface to your custom function where data are read from the IDoc
and posted to a transaction or a table through a function, a batch or direct input
program, or an SQL insert.

Once this is done, a few simple configuration steps plug your custom IDoc and
function into the standard IDoc interface, transforming each into an SAP business
object representing a complete transactional or master data record type with its
own standard interface and self-contained and predictable logic. Your custom IDoc
can then be monitored, processed, reprocessed, reported on, and audited by all
the standard programs and tools available to SAP’s delivered IDocs. It will behave
like every other IDoc in the system.

This is an incredible benefit. The effort required to develop a new IDoc from scratch
isn’t that much greater than the effort to write an ABAP program to process and
export or import a custom flat file.

It’s a win-win situation. Not only do you plug your interfaces into the wide array
of standard IDoc services, you gain tremendous strategic benefits. You can plan
custom interfaces within an architectural framework that provides consistency,
reliability, and a suite of standard tools that is faithful to SAP standards.

You can design and build integration architecture, rather than merely recreate
point-to-point legacy interfaces that use custom programs to shuttle files between
trading partners and internal systems. It future-proofs your client’s investment in
the new system.

1.3.4 Batch Processing of Large Files

It’s impossible to escape a fundamental reality about EDI: it’s mostly about batch
processing of low- to high-volume transmissions that include a wide array of file
sizes, from very small to extraordinarily large.

47

Defining Some Basic Ground Rules 1.3

Acme’s relationship with Gordy’s Galaxy is a case in point. With more than 2,000
stores across North America, Gordy’s Galaxy sends Acme massive quantities of
transactional data.

This begins with daily feeds of store-level sales recorded at the cash register when-
ever an Acme DVD is sold. These daily sales are augmented by a weekly transmis-
sion of inventory remaining on the shelves of each store.

Thousands of sales orders and deliveries are processed for Gordy’s Galaxy every
day involving high-volume data processing and transmission, in both directions
by Acme’s systems.

The relationship also involves ordering large quantities of finished goods and raw
materials from Disc Services International, updates to inventory in multiple systems
and generation of complex customer invoicing with multiple pricing schemes for
goods delivered to stores in all 50 US states and 10 Canadian provinces, a variety
of discounts and special promotions often at the store level, returns processing,
and on and on.

The icing on this cake is the monthly X12 820 Payment Advice sent by Gordy’s
Galaxy. Acme gets only one 820 a month, but each includes detailed payment
information for all invoices and debit and credit memos for the preceding 30-day
payment period. The largest 820 transmissions, recording $20 million in payments
or more, can exceed 30MB at the peak of the holiday shopping season.

So we’re not going to try to reinvent the wheel here. The relationship with Gordy’s
Galaxy is too important to experiment with. Our EDI architecture will be built
on file-based remote function calls (RFCs) into SAP with IDocs collected in the
IDoc database and schedules for batch processing of IDocs defined in the SAP job
scheduler (Transaction SM36).

1.3.5 XML File Ports

File ports can send or receive IDocs in ASCII or XML format. We’ll use XML for all
of Acme’s IDocs. XML IDocs are easier to read. It’s also easier to build test XML
IDoc files from scratch.

We’ll define one XML file port for all of Acme’s IDocs: XML_IDOC.

48

Hollywood’s B-Movie Queen Does SAP and EDI1

XML file ports are used in the partner profile to convert IDocs to XML format and
route them to and from SAP as physical files on the application server. They define
the IDoc file name and the path where it will be stored.

The file port also routes IDocs to and from an external EDI system through RFCs
or scripts or batch files on the SAP application server.

1.3.6 Partner Profiles

Customer partner profiles will be created only for the sold-to partner, not the ship-
to or any other customer type, regardless of how many ship-to locations exist for
any customer.

This implies that the customer master record is set up with the partner function
populated. Each sold-to partner references each one of its ship-to partners (store
locations and distribution centers) in the partner function tab of the customer
master record.

Each ship-to master record, in turn, references its sold-to partner. These data are
stored in table KNVP.

The link between the external customer store location that is mapped to the IDoc
by the EDI transaction and the internal SAP ship-to partner will be managed in
table EDPAR, which is accessible through Transaction VOE4.

1.3.7 EDI Mapping Strategy

EDI mapping strategy can be a topic of debate, particularly if EDI is being imple-
mented for the first time. The basic question is whether to develop one map per
trading partner or a generic map per transaction and version for all trading partners
that use that transaction.

A large number of trading partners means a lot of maps. Many of these maps will
be very similar to maps developed for other partners using the same EDI transac-
tion and version.

Designing a common map for a number of trading partners who use the same
EDI transaction and version works as long as there aren’t that many differences
in the way each of these partners uses the various segments, data elements, and
qualifiers within the standard. If you have to write a lot of conditional IF ... THEN

49

Defining Some Basic Ground Rules 1.3

statements in your mapping logic to deal with partner-specific usage, you’ll want
one or more unique maps.

You also need to consider that different trading partners change their use of EDI
standards over time at different rates. If you build a common map that includes a
trading partner who changes his use of the standard—for example, includes new
data elements or upgrades to a more recent version—you could use the common
map to create a unique map for that partner. This protects you from needing to
do regression testing on the common map when one partner changes his use of
the standard.

The policy for the Acme SAP EDI team will be to thoroughly analyze all trading
partners’ EDI guidelines and production data and, where feasible, to build common
maps for groups of partners using the same EDI transaction and version. Where
this isn’t possible, we’ll build unique maps for one trading partner, transaction,
and version.

Gordy’s Galaxy is one of those special cases because of volume, importance to the
business, command of the standards, and mandates to suppliers. It’s a no-brainer:
Acme will build customer-specific maps for all of Gordy’s EDI transactions.

This illustrates an important point. EDI is more than just an exchange of electronic
documents: It is a relationship with a business partner. And when it comes to a
customer, the old adage holds true: The customer is always right, even when he’s
wrong. After all, the customer is paying the bills.

We also need to consider business logic. It may seem obvious, but SAP will be
the business system of record, and all relevant master and transactional data will
live there. The SAP EDI team will ensure that each map translates accurately. But
all business logic, calculations, and lookups will be confined to SAP, even if this
means writing custom ABAP code.

Our goal, then, is to build maps that simply translate IDocs to X12. We want to
avoid data processing, database lookups, or calculations in the map itself. The cus-
tomer deserves to receive his business documents directly from Acme’s business
system of record.

50

Hollywood’s B-Movie Queen Does SAP and EDI1

1.4 Summary

We’ve introduced Acme Pictures, its unique business, and its need for a new SAP
EDI system. The project is approved, business users are identified, and the consul-
tants are on board. Project scope has been determined.

A lot of interesting development work awaits us. The team is eager to push on.
But first we need to understand the present state of the business and the legacy
systems that support it. That’s where the blueprint phase comes in, which we shall
consider next.

51

 “The past is what you see in your rear-view mirror,” Darryl Q was fond of
saying when he courted a new wife or reconciled with an old director. “It’s
a lot closer than it seems to be.” And so it is for our project team: The past
is the key to the future, as we uncover Acme’s as-is business processes and
legacy systems.

2 The Blueprint: Discovery
and Documentation

The project kicks off with a blueprint aimed at getting a complete picture of Acme’s
as-is business processes and legacy systems. Visio, Word, and Excel will be our best
friends through this process. Functional consultants will hold weeks of workshops
with business users where they will hammer out Acme Home Entertainment’s core
business processes bit by bit.

The following questions are fundamental:

EE What do you do?

EE How do you do it?

EE Why do you do it?

EE With whom?

EE What happens next?

Functional consultants step the business users through each task within each pro-
cess. The goal of these workshops is to capture as much detail as possible about the
business process flows and to identify the points of integration. The information
is sketched out on whiteboards and notepads as business users discuss their jobs
with each other and with the functional consultants, who poke and prod their
memories with questions and comments.

This information feeds Visio process flows and Word narratives that give us a visual
map of the home entertainment business. Describing the present is about planning
for the future: doing business in the new SAP environment.

52

The Blueprint: Discovery and Documentation2

The SAP EDI team is deeply involved. Our focus is Acme’s relationship with
Gordy’s Galaxy of Games & B Flix. We need to understand how the legacy systems
and interfaces support the business. We won’t participate in every workshop, but
we need a basic understanding of the key process flows in Purchasing, Sales and
Distribution, and Finance, particularly the data flows that support them, including
internal interfaces and EDI.

2.1 A Business Process Overview

Acme Home Entertainment (AHE) sells movies on DVD to big box stores across
North America. EDI is the critical component that enables the timely and efficient
electronic transmission of the key business documents that support the buying and
selling that’s at the heart of this business. And so blueprinting begins with the as-is
purchasing process flow.

2.1.1 The As-Is Purchasing Process Flow

AHE outsources the manufacturing, packaging, and distribution of DVDs to a ven-
dor: Disc Services International (DSI). Purchasing is the process of ordering the
goods and services required to manufacture and distribute AHE’s DVDs, including
the following:

EE Raw materials such as blank disks, cases, cover and marketing artwork, stickers,
and plastic wrapping

EE Manufacturing services such as DVD replication, packaging, assembly, and stick-
ering

EE Inventory and distribution services such as storage of raw materials and finished
goods, picking, packing, and shipping to customer locations

Two categories of DVD are promoted and sold by AHE: new release and catalog.
Each has its own requirements in terms of purchasing.

EE New release is a movie title that has completed its theatrical run and is about to
be released to DVD. This process is driven by marketing and promotional time-
lines as well as sales planning and demand forecasting.

53

A Business Process Overview 2.1

EE Catalog is the library of DVD movie titles already in the sales pipeline. Catalog
is primarily about replenishment and is dependent on planning around customer
sales and inventory.

We’ll look at each process flow in a little more detail to give us an overview of the
business context in which EDI operates at AHE.

The Purchasing Process for New Release Titles

Purchasing for new releases is largely about planning around the street date. The
street date is more than just a release date for the new DVD. It’s a sales policy
driven by marketing goals and communicated to all customers at least two weeks
before the release date.

The aim is to control release of the title to the market, build marketing buzz, and
ensure that no retail customer gets the jump on any other for a new DVD product,
particularly one with good sales potential.

Marketing sets the goals for the new release. Sales comes up with a plan to sell it.
This begins about four months before the street date and is focused on the title
rather than on any specific DVD products.

Title is a key concept in the software, video games, publishing, and movie indus-
tries. Title is the highest level of abstraction for the product. It is the object of
copyright and the legal name for the creative work. When copied to a DVD, the
title is assigned attributes and a bill of materials (BOM), transforming it into a
product for sale, or an SAP finished good.

The announce date is another milestone in the marketing and sales plan. It is the
date the DVD release is announced to Acme’s customers, which is about 10 weeks
before the street date.

By the time the announce date rolls around, Sales has reached out to all customers
and has a feel for the demand for the title. A forecast for an initial target quantity
is calculated in Excel based on the emerging marketing goals and sales plan. This
is where the as-is purchasing process flow for new releases begins, outlined in
Figure 2.1.

The forecast is fed into the legacy VMI system and used to calculate components
required to build the DVD product. Marketing and Sales review and update the
initial requirements calculations and approve a final forecast. This happens about
10 weeks before the street date.

54

The Blueprint: Discovery and Documentation2

DSI receives
DVD product
into inventory

Marketing goal/
sales plan

Determine
target quantity
of DVD product

Calculate
comp. req’ts in

spreadsheet

Enter initial
comp. req’ts in
legacy system

Components PO
faxed to DSI

Goods receipt to
Acme inventory

Marketing/sales
OK forecast

Invoice sent
to Acme

Replication and Packaging
Of Movies on DVD

Production PO
sent to DSI

DSI ships goods
to customer

Ship confirm
faxed to Acme

Components PO
created

Components in
stock or ordered
from third party

Components
consumed in
production

Figure 2.1 As-Is Purchasing Process Flow for New Release

When the final forecast is approved and released, production POs are sent to DSI
for the replication and packaging of about a third of the projected volume for the
title on DVD. These expectations for sales of the new release raised by planning
are based largely on experience and faith.

At the same time, POs are released to DSI for the raw material components required
to manufacture the DVD products. DSI maintains inventory for AHE and order raw
materials from third-party suppliers.

DSI orders the necessary components and begins replicating and packaging prod-
uct. The completed DVDs are put into inventory at DSI’s warehouse for shipping,
and its inventory system is updated. DSI also sends a goods receipt that updates
Acme’s inventory when production is completed.

55

A Business Process Overview 2.1

About five weeks before the street date, Acme creates sales orders for each cus-
tomer—and drops component and manufacturing POs to DSI—for the remaining
two-thirds of projected shipments from the final forecast.

One week before the street date, customers begin to place their own orders based
on their sales projections. AHE uses these orders to calculate replenishment demand
for the first month after street date.

DSI ships the completed DVDs to all customers two days before the street date to
ensure they have the product by 12:01 a.m. on the release date. After the DVDs
have been put on the truck, and the truck pulls away from the loading dock, DSI
faxes a shipping confirmation to AHE to complete the PO and update AHE’s inven-
tory systems.

DSI then sends invoices to AHE for all services rendered. Accounts payable (AP) is
updated and the new release purchasing cycle is closed.

The Purchasing Process for Catalog Titles

Requirements calculations for the catalog forecast begin with daily feeds of point
of sales (POS) data and weekly store level inventory counts.

These are fed into the vendor-managed inventory (VMI) system that’s used to calcu-
late replenishment requirements for Acme’s seven biggest customers, which account
for 75 percent of the business. We look at VMI a little more closely in Section 2.2.3.

In addition to VMI data, the catalog forecast needs master and transactional data
from Acme’s legacy systems, including products, BOMs, customer store locations,
open and closed orders, inventory counts, shipments, and a variety of forecasts
and sales plans.

An overview of the catalog processing flow is depicted in Figure 2.2.

The forecast looks at open customer orders, compares ordered products and quanti-
ties against available inventory, and estimates what finished goods and components
AHE will order from DSI to fulfill its customer requirements. The forecast then
calculates replenishment order proposals and AHE’s manufacturing system gener-
ates planned orders that are sent to DSI for replication or fulfillment.

The forecast calculations also check on-hand inventory for the components in the
BOMs for all ordered DVD products to determine whether additional component
purchases are required. Calculated reorder quantities are entered into an Excel

56

The Blueprint: Discovery and Documentation2

spreadsheet, and component POs are created in AHE’s manufacturing system and
sent to DSI for processing.

VMI data feeds
into forecast

Internal data/
orders/inventory
go into forecast

Planned orders
for catalog titles

calculated

Component
qties calc for

planned orders

Component PO
faxed to DSI

Components in
stock or ordered
from third party

Goods receipt to
Acme inventory

Legacy creates
planned orders

for catalog

Invoice sent
to Acme

Components
consumed in
production

Replication and Packaging
Of Movies on DVD

Planned orders
sent to DSI

DSI ships goods
to customer

DSI receives
DVD product
into inventory

Ship confirm
faxed to Acme

Legacy creates
component POs

for DSI

Figure 2.2 As-Is Purchasing Process Flow for Catalog with Production

DSI checks its own inventory and determines the quantity of finished goods for
manufacture and of components it needs to order from external suppliers. It then
begins to fulfill the orders with its on-hand inventory and schedules production
for product that will consume ordered components.

As DSI completes replication and packaging of DVD products, the finished goods
are received into inventory and a goods receipt is sent to Acme.

DSI picks and packs the DVDs and ships them to the customer’s location. When
the truck leaves the loading dock, a shipping confirmation is sent to Acme system
and inventory is manually updated in legacy.

DSI then send its invoices for all goods and services performed for Acme and AP
is updated. The catalog purchasing cycle is now complete.

57

A Business Process Overview 2.1

2.1.2 The As-Is Sales and Distribution Processing Flow

We’ll look at Acme’s sales and distribution cycle with Gordy’s Galaxy in this sec-
tion, outlined in Figure 2.3.

Gordy’s Galaxy

Acme Studios

Store level:
Point of sales

Store level:
Weekly inventory

Store level:
Reserved PO nos

Determination of
customer ordering

requirements

Sales, inventory
open orders,

shipping forecast

Store level:
Capacity calc.

VMI orders
created

Reviewed and
confirmed: credit
and other checks

Ships to Customer

Customer invoice
sent to Gordy

Ship confirm: PGI/
AR is updated

Gordy pays/issues
payment advice

Order confirmation
sent to Gordy

Orders released
and dropped to
DSI warehouse

DSI warehouse

Picking, packing
inventory updated

goods shipped

Advanced ship
notif. to Gordy

Figure 2.3 As-Is Sales and Distribution Process Flow with Inventory

Gordy’s Galaxy is AHE’s biggest customer and the focus of our EDI team’s efforts.
Gordy is also the main driver behind Acme’s adoption of VMI ordering.

58

The Blueprint: Discovery and Documentation2

It all begins with data flows from Gordy’s more than 2,000 store locations across
North America to AHE’s legacy systems. Each time an Acme DVD is bought at one
of Gordy’s stores, the purchase is scanned at the cash register and a record of the
sale is captured to a companywide POS system. The data recorded includes the store
number where the sale was made, Gordy’s item number for the product, the num-
ber of units in the sale, the selling price per unit, and the total amount of the sale.

At the same time, the goods are subtracted from Gordy’s inventory against the
store number that made the sale.

Two data feeds are built from this activity. One bundles daily POS for each store
and is sent every night to AHE. The other bundles weekly inventory counts by
store and is sent to AHE once a week.

A third feed includes reserved purchase order numbers (RPOs) and is sent on an
as-needed basis, when Gordy determines that all current RPOs have been used by
Acme. These are ranges of customer PO numbers generated by Gordy’s Galaxy for
AHE. This is a key element of the VMI process that allows Acme to create customer
POs to replenish all of Gordy’s stores.

These orders are created by calculating requirements based on a variety of data
sources, including but not restricted to the following:

EE Gordy’s POS and inventory feeds

EE Minimum and maximum ordering levels by store number and SKU

EE Shelf dimension data for each of Gordy’s stores

EE Acme’s open and closed orders and inventory

EE Shipping forecasts

EE Master data, including products, BOMs, store locations, and so on

These calculations produce VMI orders for each of Gordy’s stores using the reserved
purchase order numbers. The orders determine how many of each of Acme’s DVD
titles will be sent to each of Gordy’s stores.

After the VMI orders are created, AHE’s Customer Operations department reviews
them, does a credit check, checks stock, and determines purchasing requirements
for raw materials. Customer Operations then releases the order, drops it to the DSI
warehouse, and faxes a copy to Gordy’s as an order acknowledgment that they can
enter into their system as a PO.

59

A Business Process Overview 2.1

DSI checks its inventory and begins to fill the order with on-hand finished goods.
DSI picks and packs the goods from its warehouse, updates its inventory, and
records the movements for transmission to Acme after the goods have been shipped.

If the finished goods are not in stock, DSI manufactures them, checking inventory
for the raw materials to replicate the requested product.

After picking and packing, the DVDs are loaded onto trucks and shipped to one of
Gordy’s distribution centers. When the trucks leave DSI’s loading dock, a shipping
confirmation that includes the pick quantity is sent to Acme.

AHE receives the shipping confirmation and posts it against the shipped order,
closing it and updating inventory. This also updates accounts receivable (AR). At
the same time, Customer Operations generates a copy of the order and sends it
to Gordy’s Galaxy as an advanced ship notice (ASN) to let Gordy know that the
shipment is en route to its distribution center. The ASN must arrive before the
shipment gets to Gordy’s receiving dock.

This ASN gives Gordy’s distribution center a heads-up about what DVD products
are in the shipment and how much of each product is destined for each store.
Gordy won’t accept an invoice until it receives the ASN followed by the product
that is then matched perfectly against the ASN.

So now, AHE can issue an invoice to Gordy’s Galaxy for the shipment. The invoice
is created and sent, and AR is updated. Gordy normally pays after 30 days, with
an electronic transfer to AHE’s bank and the transmission of a payment advice to
AHE’s AR department where the invoice is closed and all relevant general ledger
(GL) accounts are cleared.

The monthly payment is the net of all invoices, debits, credits, returns, promotions,
and so on generated within the 30-day payment period.

2.1.3 Selling the Dream with Vendor Management Inventory

Acme initially jumped into vendor-managed inventory (VMI) because of a mandate
from Gordy’s Galaxy. Gordy wanted to partner with its key vendors to streamline
ordering and manage supply chain costs.

VMI is a relationship between trading partners that is wholly dependent on com-
puter systems and EDI data flows. It gives the vendor the freedom to make decisions
about replenishment based on real-world data.

60

The Blueprint: Discovery and Documentation2

Trading partners share key ordering information such as new and changed store
locations, sales and marketing plans, and actual sales and inventory levels at each
customer store. The goal is to create a replenishment system focused on the buy-
ing habits of shoppers, which is captured by the POS data recorded for each sale
and transmitted to Acme.

This real-world data capture creates unique opportunities to analyze the effec-
tiveness of marketing and sales plans and to quickly adjust strategy and ordering
requirements when initial assumptions don’t quite pan out.

To achieve this symbiotic relationship, the trading partners loosely integrate their
computer systems through EDI transmissions. For Acme Pictures, VMI is an unquali-
fied success. The studio has expanded VMI relationships to its seven largest custom-
ers that account for 75 percent of its total revenues.

The VMI relationship with Gordy, as outlined in Figure 2.4, is driven by AHE’s
systems, particularly EDI data transmissions.

852 POS/RPO
Store invent.

Gordy’s Galaxy

VMI orders
Requirements

forecast

POS/invent/
returns

Acme EDI

Acme store data

Open orders/
invent/returns

Acme VMI

852 flat file

Acme SD

Figure 2.4 VMI Is Used to Create Orders for All of Gordy’s Stores

61

A Business Process Overview 2.1

We’ve already touched briefly on the store-level POS and inventory feeds, and the
reserved purchase order numbers (RPOs) that Acme receives from Gordy’s Galaxy.
These data are sent in an EDI X12 852 transaction. This is characteristic of EDI,
where one transaction can serve multiple purposes.

POS data are identified where the XQ segment has only one date, and there is no
XPO segment, as in the 852 data fragment in Listing 2.1.

ST*852*0001~
XQ*H*20081218~
N9*AD*693887~

Listing 2.1 Identifying POS Data in an 852 Transaction

Weekly inventory is distinguished in the same way as POS but includes a second
end date to the XQ segment to indicate a date range for the count (see Listing 2.2).

ST*852*0001~
XQ*H*20081214*20081220~
N9*AD*693887~

Listing 2.2 Weekly Inventory Identified by a Date Range

RPOs are identified by the presence of one or more XPO segments that contain
PO number ranges assigned to the vendor, as illustrated in the 852 fragment in
Listing 2.3.

ST*852*13730001
XQ*G*20081218
XPO*000011408145*000011408175*9*1033917530001
XPO*000020506131*000020506175*9*1033917530002

Listing 2.3 Populated XPO Segments Define RPO Transmissions

The RPO transaction can also include details of products that have already been
ordered but not yet delivered. This is provided at the line-item level of the transac-
tion and includes the following:

EE The product code in the LIN segment, which, in the case of Gordy’s Galaxy, is
the UPC number

EE The expected delivery date in the ZA segment

EE Quantities of the item expected by each store

62

The Blueprint: Discovery and Documentation2

This is illustrated in the 852 fragment in Listing 2.4. LIN is the highest level of the
item detail loop. The SDQ segment can hold quantity ordering information for up
to 10 stores.

LIN**UP*035143019723*IN*113499
PO4*20
ZA*QP***007*20060307
SDQ*EA*92*00001*40*00002*80*00006*80*00008*100*00009*80
SDQ*EA*92*00022*60*00024*80*00025*96*00028*60*00029*72

Listing 2.4 The SDQ Segment in an 852

We delve more deeply into the structure of EDI transactions in Chapter 4, EDI: The
Ugly Stepsister of E-Commerce. For now, it’s enough to look at the data samples.

The RPOs provide the PO numbers required to post a customer order in Acme’s
system that will be recognized by Gordy’s Galaxy when it receives the ASN announc-
ing delivery of the ordered goods.

Gordy transmits its POS data every night and its inventory once a week. Acme’s EDI
system receives the data, recognizes the sending and receiving systems, identifies
the transaction, determines and executes a translation map that transforms the EDI
file into an internal flat file format, and then posts the flat file to the VMI system.

At the same time, Acme’s legacy systems send VMI daily extracts of master and
transactional data, including customers, store locations, finished goods, open orders,
inventory, sales forecasts, and so on.

VMI sends this legacy, POS, and inventory data to StoreData, a custom system that
maintains a variety of store-level data, including the following:

EE Titles and product numbers

EE Minimum and maximum order levels by title and product

EE Shelf dimensions and positioning

These data drive a complex series of calculations that figure out how much of each
DVD product to order for each of Gordy’s stores. The results of these calculations
are sent back to the VMI system. VMI then creates orders for the customer from
these calculations and assigns the next free PO number from the RPO range that
came in separate 852 transmissions.

63

Legacy Systems, Data Flows, and Interfaces 2.2

Finally, the suggested PO is sent to Acme’s SD system, where a customer order
posts. At this point, the regular sales processing flows kick in.

The 852 is a key transaction in the sales and distribution processing flow between
Gordy’s Galaxy and AHE. The 852 provides critical POS data used to generate cus-
tomer orders and to validate sales and marketing plans. The 852 will not directly
post to SAP in the brave new world, except through the VMI orders calculated and
created by VMI and its associated data feeds.

The VMI system remains untouched in the new SAP EDI architecture. SAP replaces
many of the systems that feed VMI; it also replaces the Legacy SD system that
receives the VMI order feed. VMI is a critical piece of the overall business data
flows and system architecture. We’ll treat the 852 feeds with the deference and
respect they so richly deserve.

2.2 Legacy Systems, Data Flows, and Interfaces

The time has come to look a little more closely at Acme’s legacy systems and inter-
faces and to reconsider business processes that we’ve superficially touched on from
the perspective of the EDI data flows.

Some of Acme’s core legacy business systems and interfaces that impact EDI are
outlined in Figure 2.5.

There are far more legacy systems, and most will be replaced by SAP. There are,
for example, multiple data warehouses, forecasting systems, databases, systems
that track and manage advertising revenue and royalty payments, and many more.
All ultimately feed into finance and the bottom line. Our focus, however, is on a
snapshot of the legacy environment so that we can plan our SAP EDI implementa-
tion for Gordy’s order-to-cash cycle.

Like most companies, Acme built its legacy systems in a piecemeal fashion over a
long period of time. They reside on a variety of boxes and include packaged software
and custom applications. The packaged software has been highly customized, usually
by outside consultants, over 15 years. Interfaces between systems are handled by
file transfers using FTP scripts run as batch scheduled jobs. This is not necessarily
a bad thing, but a lot of redundant data are passed around.

64

The Blueprint: Discovery and Documentation2

FinanceRelease/Sales Planning
and Promotions

StoreData VMI

Ship confirm
updates AP

Legacy SD

EDI

EDI transmissions

852 In

850 In

855 Out

856 In

856 Out

810 Out

820 In

850 Out

867 In

810 In

Order-to-Cash Purchasing

Customer invoice
updates AR

Products: title
attributes, UPC

Manufacturing

VMI orders

Title Master

DVD Repository

Figure 2.5 Acme’s As-Is Core Business Systems and Interfaces

65

Legacy Systems, Data Flows, and Interfaces 2.2

As is often the case with legacy systems that have grown organically from new
requirements, none of these systems are well documented, although IT has pro-
duced a number of very messy Visio flow charts with high-level overviews of the
key systems and data flows.

So though legacy systems might not be pretty, they work. AHE’s business users
have grown comfortable with their idiosyncratic inefficiencies. Users are not par-
ticularly interested in elegant architectures, consolidated data stores, or efficiently
written code. All they care about is being able to do their jobs.

Acme IT wants a more streamlined systems environment. SAP will replace many
of these legacy systems and reduce the number of interfaces. A key benefit for IT is
the consolidation of master and transactional data currently stored across multiple
systems into the SAP data model. In most cases, the users will have to deal with
only one system to do their jobs: SAP.

But that’s future state. Before we can get there, we need to understand how things
work today.

The key systems and data flows refer to a few of the core systems and data feeds
that impact the business of selling Acme’s movies on DVD. This includes purchasing
the goods and services needed to manufacture, store, and ship the finished product.

2.2.1 Title Master and DVD Repository

Title is the approved legal name of the creative work; it is the highest level of
abstraction for a movie. It’s not a product that can be sold to a consumer at a retail
outlet. Title is a property, a legal entity, and the basis for products sold at retail.
Title Master stores only one record for each creative work owned by AHE.

The DVD Repository transforms the title into a product. It assigns specific attri-
butes such as format (wide screen or standard), ISBN and UPC numbers, language,
packaging, sticker requirements, and so on. Each title is linked to many records
in the DVD Repository.

The DVD Repository is the equivalent of the SAP material master for finished goods.
It feeds the product master for both new release and catalog items to Manufactur-
ing, Legacy SD, and the planning, forecasting, and promotions systems. Key data
flows include the following:

EE An on-demand feed of titles to the DVD Repository for the assignment of attri-
butes and creation of products

66

The Blueprint: Discovery and Documentation2

EE Nightly feeds of DVD Repository product master data to Manufacturing, Legacy
SD, and other systems

The Title Master and DVD Repository are custom SQL Server databases with a
Visual Basic frontend.

2.2.2 Release Planning and Promotions Systems

Release planning and promotions are handled by a number of custom systems built
in MS Access, Excel, and MySQL with browser or Visual Basic frontends.

The release planning system plots key milestones in the new release cycle for DVDs,
including such dates as theatrical, announce, release, replication, street, and others.

The promotions system is used to run promotional campaigns. It stores key mar-
keting data such as campaign costs and funding; regional, national, and customer
marketing goals; and customer contact information. Planning reports and sales
forecasts used to predict new release ordering requirements are generated. Key
data flows include the following:

EE On-demand feeds of DVD Repository product attributes inbound

EE Nightly feeds of customers, items, purchase requirements, sales, returns, open
orders, and forecasts from Legacy SD, Manufacturing, and VMI

2.2.3 Legacy SD

Legacy SD is the sales and distribution system that is the entry point for EDI on
the sales side. It is responsible for all types of customer orders, VMI, EDI, returns,
and so on. Shipping orders, invoices, and other customer documents are also
processed here.

Legacy SD holds the complete customer master, including bill-to, store locations,
and contact information, as well as a copy of the finished goods master and current
inventory from Manufacturing. Key data flows include the following:

EE VMI orders from VMI

EE Customer POs, shipping confirmations, and payments from EDI

EE Customer PO acknowledgments, ASNs, and invoices to EDI

EE Finished goods master data, customer item cross-reference, on-hand inventory,
and open vendor POs from Manufacturing

67

Legacy Systems, Data Flows, and Interfaces 2.2

EE Open customer orders, returns, and deliveries to VMI and Manufacturing

EE Updates to AR in Finance, including customer invoices, and payments

Legacy SD is built on a highly customized JDEdwards system on an AS400.

2.2.4 Manufacturing

Legacy Manufacturing is responsible for issuing POs to vendors for the replica-
tion of DVD movie products. It is also used to purchase raw material components
for replication and packaging, and supplies for creative and marketing materials.

Manufacturing is the entry point for EDI in purchasing. It gets finished goods
master data from the DVD Repository and finished goods and some raw material
inventory through EDI transmissions from DSI.

Master data include vendors, materials, some BOMs, and a cross-reference between
the customer and Acme item numbers.

Manufacturing receives vendor invoices and passes them to Finance for AP process-
ing. It also handles basic material resource planning (MRP) using its own on-hand
inventory and open shipping order data from Legacy SD. Key data flows include
the following:

EE Vendor POs and invoices to EDI

EE Goods receipts and inventory adjustments from EDI

EE Open and closed customer orders from Legacy SD

EE BOMs and forecast requirements to Release and Sales Planning

EE Updates to AP in Finance through goods receipts and vendor invoices

Manufacturing resides on its own highly customized JDEdwards instance on the
AS400.

2.2.5 Finance

As the heart and soul of the existing architecture, all key systems feed into Finance.
It handles all financial processing, balancing, and period closings. It contains AP,
AR, cost accounting, fixed assets, and the GL. The Finance system is responsible
for paying the bills, collecting and clearing payments, and providing a variety of
fiscal reports that management loves to pore over.

68

The Blueprint: Discovery and Documentation2

Key data flows into Finance include the following:

EE From manufacturing: open and closed vendor orders, forecasts, inventory adjust-
ments, vendor invoices

EE From SD: open and closed customer orders, sales forecasts, goods receipts, cus-
tomer invoices, and payments for clearing

Finance is a standalone module of the customized JDEdwards system.

2.2.6 VMI and StoreData

VMI is a complex custom application built on an SQL Server database. To most of
Acme’s employees, it is a black box with a voracious appetite for data, including
the following:

EE Daily POS data from customer store locations

EE Open and closed customer orders, daily shipments, and returns

EE RPO numbers from Gordy

EE Open and closed vendor orders for replication of DVD products and for the
purchase of components and services

EE Sales and purchasing forecasts

EE On-hand inventory from customer store locations and DSI

EE Material master data and BOMs

StoreData is a critical element of the VMI environment. It holds shelf-level dimen-
sions for each of Gordy’s stores. It knows how many DVDs can be displayed on
any particular shelf in any of Gordy’s stores in a variety of display options.

This is key to helping VMI calculate how much to deliver to each of Gordy’s stores
to keep shelves stocked and products moving. Key data flows include the following:

EE POS, store level inventory, and new or changed locations from VMI

EE Shelf location and dimension data from Gordy

EE Product packaging dimensions and special display characteristics

StoreData is a custom application built on a MySQL database with a Visual Basic
frontend.

69

Legacy EDI Data Flows 2.3

2.2.7 EDI

The dedicated EDI system communicates directly with VMI, Manufacturing, and
Legacy SD. It handles all the normal functions of an EDI system, including trading
partner management, communications, mapping, and routing to Acme’s internal
systems.

EDI has been around for nearly 15 years and has been largely customized. Most
of its functionality is undocumented, and there are no mapping specifications,
although it can generate mapping reports with code listings for all custom logic.
Its maps cannot be reused by any other EDI system.

Legacy EDI does not support AS2 communications over the Internet. EDI files are
moved to a folder on the network and sent to the trading partner by an AS2 server
rented from an EDI service bureau.

Gordy’s Galaxy, Acme’s most important customer, has mandated that it will
exchange EDI files with vendors only through AS2, so Acme has no choice.

An advantage of AS2 is that it eliminates transmission charges imposed by value
added networks (VANs), which was Acme’s traditional means of EDI communi-
cations. The VAN charges Acme per byte of data transmitted, and these can add
up. At the height of the busy Christmas holiday shopping season, Acme can pay
$15,000 or more a month in VAN usage fees alone.

Though there are setup and maintenance fees with AS2, these monthly charges
are eliminated once it’s up.

2.3 Legacy EDI Data Flows

EDI is mission critical for AHE. Without EDI, it would be impossible to keep all of
Gordy’s more than 2,000 stores across North America stocked with DVDs. Besides,
Gordy will do business with its vendors only through EDI. And what Gordy wants,
Gordy gets.

So now we look a little more closely at the key EDI document transfers that enable
the purchasing, sales, and distribution processes in the legacy systems that we’ve
been touching on.

70

The Blueprint: Discovery and Documentation2

2.3.1 Replicating Success: Outsourcing Production

Hollywood studios make movies, not DVDs. They don’t have the replication facili-
ties to image and package them, the warehouses to store the raw material and
finished product inventories, or the distribution facilities to ship DVDs to their
customers’ store locations.

So thank God for vendors such as Disc Services International. Manufacturing and
shipping DVDs is DSI’s business. DSI has been in that business for years: replicating,
packaging, and shipping DVDs and CDs for movie studios and the music, software,
and publishing industries.

EDI document flows are the backbone of this purchasing process, which is outlined
in Figure 2.6.

Acme Studios DSI

A
cm

e C
orporate Firew

all

EDI X12 850

EDI X12 944

EDI X12 855

EDI X12 810

Acme
Manufacturing

Flat file: PO ack

Flat file:
goods receipt

Flat file:
vendor invoice

Acme EDI
Translation
enveloping/

de-enveloping
routing

Flat file: Mfg PO

Figure 2.6 An Overview of the Purchasing EDI Document Flow

Acme’s Legacy EDI Outbound Process Flow

The EDI document processing flow begins when Acme’s Manufacturing system
issues a vendor PO for replication and packaging of DVDs or for the purchase of
raw materials for manufacturing.

71

Legacy EDI Data Flows 2.3

We’ll look at ordering titles in stock from DSI. The process is the same for all out-
bound interfaces in purchasing and sales and is outlined in Figure 2.7.

Acme
Mfg

AS400

Script: FTP to EDI
server. EDI called

file processed

Acme EDI
enveloping
translation

routing
receipt
of 997

Standalone
AS400

Flat file to
OB EDI server

Acme
AS2 server

997 to Acme
EDI system

Script: FTP sends
Interchange to

AS2 Server

EDI X12 to
OB EDI server

Encypted EDI
X12 message

MDN to Acme AS2

997 from DSI EDI

DSI
AS2 server

Enterprise Scheduler

Figure 2.7 Legacy Outbound EDI Processing Depends on Scheduled Batch Jobs to Move Files
from System to System

The PO is exported from the Manufacturing system as a flat file. It is picked up by
an FTP script at the operating system level, which is triggered by a job scheduler.
The job checks for the existence of a file in an outbound PO directory every hour.

The FTP process moves the file to an inbound PO directory on the EDI server,
which is on a separate box from the Manufacturing system. It triggers a script on
the EDI server that calls a job in the EDI system to pick up the PO file and check
the header for transaction and receiver codes used to identify a conversion map
and execute it.

The map translates the PO flat file to an outbound X12 850 and saves the individual
transactions to another outbound directory for batching and enveloping of multiple
850s into a single transmission.

DSI expects three 850 transmissions a day from Acme: at 5:00 a.m., 3:00 p.m.,
and 11:00 p.m. The enveloping job is called an hour before each transmission.
It picks up all 850 transactions in the batch directory and wraps each one in an
ST-SE envelope. It then collects each ST transaction into a single file and wraps it
in one GS-GE group envelope. The group is then wrapped in one ISA-IE envelope
to create an X12 interchange file.

72

The Blueprint: Discovery and Documentation2

The ISA envelope includes Acme’s EDI sender ID, DSI’s EDI recipient ID, the date
and time of transmission, and an interchange control number. This information is
used in routing the transmission to the proper recipient and in providing a unique
code to allow easy identification of the interchange in the event of an error or a
failure in transmission.

When the enveloping job completes its run, it saves the consolidated EDI file to a
DSI outbound interchange directory. Another job polls that directory every hour.
When it finds an interchange file, the job picks up the file and runs an FTP process
that transfers the interchange to an outbound directory on an AS2 server at the
EDI service bureau that Acme uses for its AS2 transmissions. The service bureau
then encrypts the interchange and sends by AS2 as a secure HTTP/S transmission
across the Internet to DSI’s AS2 server, which decrypts the message and passes it
to DSI’s EDI system for translation and routing to DSI’s business systems.

We need to note two other exchanges before moving on. When the AS2 trans-
mission is received by DSI’s AS2 server, a technical acknowledgment known as a
message disposition notification (MDN) is sent back to Acme’s EDI service bureau.

The MDN informs the sending system that the encrypted EDI message has been
received. It does not imply that the message has been decrypted, translated, and
posted to the recipient’s business system—only that it’s been received.

When the 850 hits the recipient’s EDI system, while it’s being de-enveloped and
just before translation, a 997 acknowledgment interchange is built and sent back
to Acme’s EDI system by AS2 with the following data:

EE The group control number from the GS envelope of Acme’s 850 EDI transmis-
sion

EE A code identifying the transaction sent by Acme

EE Status codes reporting on the success or failure of structural and syntax checks
on the EDI file

The 997 tells the sender that the interchange was received and checked. It does
not imply that the file was successfully translated and posted to the target system.

Acme’s Legacy EDI Inbound Process Flow

This process is reversed for the inbound to Acme. The inbound processing flow is
the same for all inbound EDI transmissions in Purchasing and Sales. The inbound
EDI processing flow is outlined in Figure 2.8.

73

Legacy EDI Data Flows 2.3

Encypted EDI
X12 messageDSI

AS2 server
Acme

AS2 server

Acme Mfg
Flat file
posted

AS400

EDI X12 to
IB EDI server

997 X12 to OB
EDI server

Acme EDI
De-enveloping

translation
routing

generation
of 997

Standalone
AS400

Script: FTP sends
997 to AS2 server

Script: FTP sends
file to mfg server
calls post pgm

997 from Acme
EDI system

MDN to AS2
server

Script: FTP to EDI
server. EDI called

file processed

Flat file to
IB mfg server

Enterprise Scheduler

Figure 2.8 The Legacy Inbound Process Sends Both an MDN and a 997 to DSI as
Acknowledgments

When DSI posts the 850 PO from AHE, it issues an acknowledgment in a flat file
that its EDI system translates to an 855 order acknowledgment. The 855 is sent
by AS2 through a secure HTTP/S transmission to the AS2 server at Acme’s EDI
service provider.

When the encrypted transmission is received by the AS2 server at Acme’s EDI
service bureau, an MDN is generated and sent back to DSI’s AS2 server through
an AS2 HTTP/S transmission. The MDN is always sent to confirm receipt of an AS2
message by an AS2 server.

The 855 is decrypted and sent by FTP to an 855 interchange directory on Acme’s
EDI application server. This directory is polled by a job every hour. If the job finds
a file in the directory, it calls a program in the EDI system that strips the envelopes
away from the transmission.

The de-enveloping job reads the ISA, GS, and ST envelopes to identify the send
and receive partners, the X12 version, and transaction. This information is used
to do the following:

EE Generate a 997 group level acknowledgment to send back to DSI by AS2 to let
them know that the interchange has been received and has passed or failed the
structural and syntax checks

EE Identify a translation map to transform the X12 855 transactions within the
interchange to a custom flat file using an internal Acme format

74

The Blueprint: Discovery and Documentation2

EE Execute the translation map

EE Store the translated file to an outbound order acknowledgment directory on the
EDI system application server

Another scheduled job polls this directory every hour, 15 minutes after the initial
job imports the 855 interchange into the EDI system. If a translated file is found,
a script kicks off an FTP process that moves the translated file into an inbound
directory on the Manufacturing system’s application server.

The FTP script includes a call to a job in the Manufacturing system that imports the
flat file and calls an acknowledgment program that updates the original PO with
the date of acknowledgment and the date the order will be ready for shipping, and
any changes that DSI made to the quantities.

We look at enveloping, de-enveloping, acknowledgments, and other EDI processes
in greater detail in Chapter 4. For now, it’s enough to get a feel for how this all
works in Acme’s legacy EDI system.

Completing the Purchasing Cycle

DSI replicates and packages the DVD order. Any adjustments to inventory through-
out production are sent to Acme’s EDI system in an 867 inventory adjustment that
updates Acme’s inventory in the Manufacturing system.

When replication is complete, the DVDs are picked, packed, and put on a truck for
shipment to Gordy’s distribution centers. As the truck leaves the loading dock, DSI
generates a warehouse receipt in a flat file from its delivery system that includes
the shipped quantity of all items in the original vendor PO and a flag to indicate
whether the entire order was shipped.

This file is translated by DSI’s EDI system to a 944 warehouse receipt and transmit-
ted to Acme’s EDI system by AS2.

Acme’s EDI system translates the 944 to an internal flat file format. It’s picked up
and sent by FTP to the Manufacturing server where it’s imported and posted against
the original vendor PO. It updates the quantities shipped against the open quantities
on each item of the PO. After all items have been confirmed and if the completion
flag is set, a goods receipt is posted against the PO, and the order is closed.

75

Legacy EDI Data Flows 2.3

Acme’s inventory is updated with the finished goods and the raw materials con-
sumed in production are flushed. The flushed materials are determined by reading
BOMs for the finished goods. AP is updated through an internal interface: it now
expects to receive a vendor invoice.

After DSI issues the warehouse receipt, it generates and sends an invoice to its EDI
system. The invoice is translated to an 810 invoice transaction and sent to Acme’s
EDI system by AS2. The 810 is translated to a flat file that is moved by FTP to the
Manufacturing system’s application server.

The invoice file is then uploaded and posted into Manufacturing and sent to AP in
the Finance system through an internal interface.

2.3.2 Order-to-Cash and Legacy EDI

The main focus for our exploration of an EDI architecture in SAP is Gordy’s Galaxy
order-to-cash cycle. We’ll look at how this works in Acme’s legacy systems. The
technical details of the inbound and outbound processing flows for EDI documents
in Sales and Distribution are identical to those in Purchasing. MDNs and 997s are
generated and sent for each inbound transmission and received for each outbound.

Figure 2.9 is an overview of the base sales and distribution EDI flows. For Gordy’s
Galaxy and all VMI customers, it begins with the transmission of an 852 POS
transaction detailing daily sales for all of Acme’s DVD products at each of Gordy’s
retail outlets.

The daily POS is supplemented by weekly transmissions of 852 store-level inven-
tory and intermittent transmissions of reserve PO numbers.

The three 852 feeds are sent to Acme’s EDI system and translated to flat files that
are moved by a scheduled FTP process to the VMI system. The 852 posts to VMI
and replenishment calculations are run, including data from StoreData and other
systems.

Individual orders are generated for each of Gordy’s stores that will receive replenish-
ment product. The orders are collected, consolidated into a single file, and exported
to an outbound directory on the VMI application server.

76

The Blueprint: Discovery and Documentation2

Gordy’s Galaxy

EDI X12 855
PO Ack

DSI

EDI X12 856
ASN

EDI X12 810
Invoice

Acme corporate firewall

EDI X12 852
POS/RPO/Inv

Customer interfaces Vendor interfaces

VMI
PO ack.: go to
DSI ship order

Ship confirm:
go to ASN ...

ASN Customer
invoice

Payment advice DSI ship order

Acme EDI
Translation/enveloping/de-enveloping/routing

EDI X12 856
Ship Confirm

EDI X12 820
Payment

EDI X12 830
Whs Ship Order

Suggested
orders

Acme legacy
Sales and Distribution system

Figure 2.9 Order-to-Cash EDI Document Process Flow for Gordy’s Galaxy

From there, a scheduled job kicks off that picks up the file and moves it by FTP
to an inbound orders directory on the Legacy SD application server and triggers a
program that imports the file and posts it to a customer order.

The order is not finalized until Acme’s customer operations approves it. This
involves a credit check and other confirmations. After the order is approved, a flat
file is exported to an outbound acknowledgment directory on the legacy applica-
tion server.

This acknowledgment is both a simple and a complex process. The acknowledg-
ment is a copy of the order posted. But the order that posts is by individual store
number. We need to collect all of the orders for each store against one PO number
and bundle them into a single EDI transaction with store-level ordering details at
the item level.

77

Legacy EDI Data Flows 2.3

Legacy SD consolidates each order into a single file before exporting it to the
application server. Once in the acknowledgment directory, the scheduler kicks off
a KornShell script that loops through the flat file and reformats it so that product
ordering details for each store are at the item level.

The acknowledgment file is then passed to the EDI system where it is identified,
translated to an 855 transaction set, enveloped, and sent to Acme’s AS2 service
bureau. The AS2 server encrypts and transmits the interchange to Gordy’s AS2
server, which passes it to the EDI system.

At this point, we need to tell DSI how much product to ship to each of Gordy’s
stores. We’re assuming that they’ve already been fed enough POs to replicate all
the DVD products we need to ship. A shipping order is generated in Legacy SD
detailing the quantities of specific DVD product to ship to each of Gordy’s stores.

The shipping order outputs a flat file to the application server. The flat file is
picked up by an FTP process and sent to the EDI system, where it is translated to
a 940 warehouse ship order transaction, enveloped, and sent to DSI by AS2. DSI
receives the 940 and goes into its warehouse to pick and pack the DVD product
and apply any stickers that Gordy’s stores may be expecting. This is detailed in
the shipping order.

The truck is loaded and sent off to Gordy’s distribution centers. DSI’s delivery
system closes the shipping order and generates a flat file shipping confirmation.
DSI’s EDI system translates this file to an 856 shipping confirmation and sends it
to Acme’s EDI system.

The 856 is translated to a flat file and sent into Acme’s legacy system, where it
updates the pick quantity in the open shipping order. When all pick quantities
have been confirmed, the order is closed and inventory released. AR in Finance is
updated through an internal interface.

But the invoice cannot be issued yet. Gordy’s Galaxy must be informed that the
shipment is on its way. Closing the shipping order triggers output of a flat file copy
of the order. This is passed to the EDI system, where it is translated to an 856 ASN,
enveloped, and sent to Gordy’s EDI system.

Gordy won’t accept an invoice until it receives the DVD products and the 856 at
its distribution center and confirms that the goods described in the 856 have all
been received.

78

The Blueprint: Discovery and Documentation2

If the invoice arrives before the 856 ASN, Gordy issues an 864 error message list-
ing the rejected invoices and the reasons for their rejection. We know that Gordy
received the 856 because Gordy sends a 997 confirming receipt of the 856. This
generally comes within an hour of sending the 856.

So now we can generate the invoice. Legacy SD spits it out as a flat file that is trans-
lated by EDI to an 810 customer invoice. The 810 is enveloped and transmitted to
Gordy’s EDI system by AS2.

By agreement, Gordy pays within 30 days of receiving the invoice. AR is anxious
that invoices are received and posted, so the 997s and 864s for the 810s are closely
monitored by the EDI support group. AR regularly checks Gordy’s partner website.
If the invoices don’t show up within a couple of days, they call Gordy’s AP depart-
ment to track down the invoices.

Assuming everything goes well, Gordy sends an electronic payment to the bank
and issues a payment document that is sent by EDI as an 820 payment advice.
This contains details of all invoices, debits, credits, rebates, promotional pricing,
returns, and so on, paid by the electronic funds transfer. These are all supported by
documents that exist in Acme’s Legacy SD and Finance systems: invoices, returns
orders, and debit or credit memos sent by Gordy by fax or through an 812 EDI
transmission.

The payments, credits, and debits on the 820 must match all invoices and other
documents in Acme’s systems to clear, or the payment won’t be recorded and the
accounts will be out of balance.

2.4 Summary

So ends our whirlwind tour of Acme’s as-is business and legacy systems process
flows. We spent some effort describing it because it is the basis for our brave new
world of SAP and EDI. Our consultants have been very busy uncovering all this
stuff, and we’re only looking at a simple piece of it.

It’s time now to turn our attention to describing how this will translate to our new
SAP EDI environment.

79

“Never look back,” Darryl Q, the visionary founder of Acme Pictures, would
say whenever he fired a writer who couldn’t get a scene straight—or crooked,
depending on the film. The Great Mr. Q always looked ahead to the next
picture, the next season, the next dollar. And so our project team looks
ahead as we design the architecture for our new SAP EDI system.

3 Designing the New SAP EDI Architecture

For weeks, our functional consultants and their business partners have been busy
as beavers defining Acme’s as-is business processes as completely as the workshops
and memories of business users have allowed.

Our SAP EDI specialist attended many of the workshops to learn what he could
and to offer his views on how EDI could help improve business process flows. He
interviewed key IT and EDI business owners and built a picture of Acme’s legacy
systems and their key interfaces, outlined in Chapter 2.

The technical team documented all internal file formats used to exchange EDI data
with Acme’s trading partners, obtained mapping reports for all legacy maps, and
cataloged all the scripts, batch files, and scheduled jobs that keep the data flowing.

A key working document came out of this exercise: a spreadsheet listing all EDI
transactions by trading partner. It includes columns for the following:

EE EDI sender and receiver IDs, direction, and frequency

EE EDI standards (X12, EDIFACT, TRADACOMS, etc.) and version

EE Communications method (VAN, AS2, or FTP)

EE IP addresses or URLs for VAN mailboxes or AS2 (applicability statement) servers

This is the starting point for our definition of Acme’s new EDI interfaces. If we
add columns to map IDoc messages and basic types to EDI transactions, we have
a preliminary inventory of EDI interfaces in the new system.

80

Designing the New SAP EDI Architecture3

It’s been a lively and stimulating process of discovery. But everybody is anxious
to put it behind them and begin building the new system. First we flesh out the
SAP EDI architecture. And then we need to sell it to Acme Home Entertainment’s
business owners and management.

3.1 The To-Be Systems and Interfaces Emerge

This is the most creative phase of the project. We take what we know about the
business, legacy systems, and interfaces, and then design solutions for our system
build. We’ll take it as a given that Acme has decided on its new EDI system and
that a sandbox is up and running.

Our first task is to define an overall architecture that provides a high-level concep-
tual vision of how the various systems will work together in the brave new world.
This includes SAP, the key legacy systems that will remain after go-live, and Acme’s
EDI trading partners.

3.1.1 The Resource Integration Manager

Figure 3.1 presents an overview of the team’s vision of the new integration archi-
tecture, including EDI.

The integration system is the focal point of the new environment, the traffic cop
managing and monitoring all data flows. The team responsible for EDI and internal
interfaces christened it the Resource Integration Manager (RIM).

All internal and EDI data feeds flow to the RIM. The RIM identifies the source and
target systems and converts the feed to a target format. It then routes the file to its
target system for posting. Internal interfaces move through FTP while EDI uses a
new AS2 perimeter server.

The new integration architecture emerging from the Plan Q’s blueprint phase is
much slimmer than the legacy environment we outlined in Chapter 2. While most
legacy systems are being replaced, some key systems remain:

EE Title Master will feed Project Systems (PS) in SAP

EE Planning and promotions will receive sales data from SAP

EE VMI and StoreData

81

The To-Be Systems and Interfaces Emerge 3.1

Planning and Promotions

VMI

The RIM

EDI/EAI server
adapters and services

JCo connector
AS2 server

IDocs and
IDoc adapter
all interfaces

StoreData

AS2 to/from
trading partners

Title Master

Titles to PS for
tracking costs
FTP adapter

Perimeter server

Open and closed
orders/cust.
FTP adapter

SAP

FTP adapter
VMI cust. data

VMI orders

Figure 3.1 The RIM and the New Integration Architecture

Some of these systems will be replaced in a future Plan Q Phase 2, although not
the Title Master. But that doesn’t affect our current build of the order-to-cash cycle
with Gordy’s Galaxy of Games & B Flix.

Most legacy functionality is rolling into SAP, including the following:

EE General ledger (GL), accounts payable (AP), accounts receivable (AR), payment
clearing, period closings, costing, financial reporting, and all other financial
functions from Finance and other systems to the Financial Accounting and Con-
trolling (FI-CO) module

EE Project planning and costing for titles to the PS module, supported by daily feeds
from the Title Master through the RIM

82

Designing the New SAP EDI Architecture3

EE Customer master data management, customer orders, deliveries, billing, and
other sales and distribution functions from Legacy SD to the Sales and Distribu-
tion (SD) module in SAP

EE Vendor and finished goods master data management, finished goods inventory,
vendor orders, and other purchasing functions to the Materials Management
(MM) module in SAP

EE DVD finished goods attributes and characteristics, such as genre, street date,
theatrical release, ratings, and so on, from the DVD Repository to MM, in two
ways:

EE Classifications and characteristics within the finished goods master

EE Custom fields in a MARA material master table extension or in one or more
linked custom tables

At the same time, functionality that didn’t exist in legacy is being introduced with
SAP. Some of this new functionality that will impact EDI includes the following:

EE Complete raw materials and component master data

EE Bill of material (BOM) master data

EE Raw material and component inventory tracking in Acme’s SAP system through
EDI feeds from DSI

EE Purchasing of raw materials and components by EDI through DSI and directly
from third-party suppliers

EE Daily EDI feeds to DSI of new and changed customer sold-to and ship-to part-
ners, finished goods, raw materials, and BOM master data

EE Daily feeds of master and transactional data from SAP to VMI and other Acme
backend systems and data warehouses, including the following:

EE Customer sold-to and ship-to parties

EE Finished goods and raw materials

EE BOMs

EE Open customer orders

EE Open POs

EE Open deliveries

83

The To-Be Systems and Interfaces Emerge 3.1

3.1.2 Let’s Get Technical: A More Intimate Look at the RIM

AHE opted for an integration system that features an automated workflow engine
rooted in Business Process Modeling Language (BPML). It runs on a J2EE applica-
tion server and uses services and adapters that are strung together with connectors
to build workflows.

The workflows and the objects that they contain are described in BPML and exe-
cuted by Java programs in the runtime workflow engine. The workflows process,
transform, route, and move data from system to system. They encapsulate specific
functionality, like SAP functions. Workflow processing data are stored in XML
documents similar to the Web Services Description Language (WSDL) structured
documents used by SAP NetWeaver PI.

The system is built on a two-tier environment with separate database and appli-
cation servers and a browser GUI. The database is accessed through services that
implement Java Database Connectivity (JDBC) connections.

The adapters—including an SAP IDoc adapter—introduced in Chapter 1, Section
1.3.2, The EDI System, support data transfer and remote application triggering in
a variety of protocols and standards:

EE SAP RFC through the Java Connector (JCo)

EE AS2 through a built-in server that supports encrypted AS1 and AS2 by HTTP
and HTTP/S

EE SOAP transfers through HTTP and HTTP/S

EE FTP and FTP/S

EE DOS and Windows enterprise server file transfers

EE Execution of operating system level programs, commands, and scripts

Mapping

The RIM has a graphical mapping tool and a library of EDI standards that can be
used as interfaces in mapping. IDoc metadata—data that describe the structure,
syntax, and attributes of IDoc basic types—can be imported in a number of ways:

EE XML schema or document type definitions (DTDs), or traditional parser format
in a text file, all generated from Transaction WE60

84

Designing the New SAP EDI Architecture3

EE EDIFECS gXML, a widely supported standard that stores detailed structural and
attribute information in an XML document validated by an accompanying DTD

EE An RFC through the SAP adapter and the JCo to two SAP function modules in
function group EDIMEXT:

EE IDOC_RECORD_READ

EE IDOCTYPE_READ_COMPLETE

EDIMEXT is a standard API that allows external middleware systems, or any program-
mer, to extract IDoc metadata from SAP for use in mapping and other applications.

IDOC_RECORD_READ returns field level metadata—field name, lengths, position, data
types, and so on—for each of the three record types, or segments, that form the
underlying structure of all basic types: the control record (EDI_DC40), data record
(EDI_DD40), and status record (EDI_DS40).

Function IDOCTYPE_READ_COMPLETE returns detailed information about every seg-
ment, data element, and qualifier used by an IDoc basic or extended type and all
logical messages linked to it.

To see for yourself, run IDOCTYPE_READ_COMPLETE with the function module test
tool in Transaction SE37 and enter the following values into the Test Function
Module: Initial Screen:

EE PI_IDOCTYP = IDoc basic type name

EE PI_RELEASE = IDoc release number

EE PI_CIMTYP = IDoc extension name if IDoc has a custom segment

Figure 3.2 shows a slice of the metadata returned for the segments ORDERS05.
Displayed is the segment number, which defines its order in the basic type, name,
version, and segment length.

Both functions read a number of tables that contain the complete structure and
syntax of an IDoc type or extension:

EE IDOCSYN for the order and hierarchical relationships of the segments in an IDoc
type, including the following:

EE Segment name

EE Sequential numbering of segment with the type

EE Hierarchical level of a segment

85

The To-Be Systems and Interfaces Emerge 3.1

EE Name of the parent segment

EE Sequential number of the parent segment

EE Flag marking a parent segment as the beginning of a segment group

EE Minimum and maximum number of segments in a sequence

EE CIMSYN for the order and hierarchical relationships of the segments in an
Extended IDoc type

EE EDIMSG for the link between a basic type and extension and its associated
logical messages

EE EDISEGMENT for header attribute information for all segments in an IDoc basic
or extended type

EE DD04L and DD04T for information on all data elements within each segment
in an IDoc basic or extended type

EE DD03L and DD03T for all field names within each segment

EE DD07L and DD07T for field values stored in domains behind data elements
within each segment

Figure 3.2 A Portion of the Report Listing Segment Metadata

The functions and tables are great fun to play with in the ABAP debugger. They
provide a comprehensive description of how all elements of an IDoc type tie
together to create a coherent and intelligent structure.

In addition, because IDoc segments are structures defined in the SAP Data Diction-
ary, these functions expose you to the tables that store the metadata for all tables,
data types, fields, data elements, domains, and other objects in the dictionary itself.

86

Designing the New SAP EDI Architecture3

The DD* class of tables read extensively by both functions are the heart and soul
of the SAP Data Dictionary.

We repeat this fact more than once as we work our way through this book: Regard-
less of what you do in SAP, the SAP Data Dictionary is your best friend. Learn the
Data Dictionary, and you’ll learn a lot about SAP.

EDI Trading Partner Management

Acme’s new integration system includes functionality to create and manage EDI
trading partner profiles. This is critical to supporting Acme’s trading partner rela-
tionships and includes the following:

EE Identification and location data such as trading partner ID, address, time zone,
and country

EE Communications information for each trading partner, including:

EE Sending and receiving protocol such as AS2, HTTP, FTP, and so on

EE Target URL for outbound transmissions for AS2

EE Target IP address for outbound transmission via VAN

EE User name, password, and other login information for trading partner AS2
servers, VANs, and other systems

EE Mailbox address at source or target VAN

EE Response timeout and retry values

EE Security information such as encryption algorithms and certificates

EE Synchronous or asynchronous delivery mode

EE Acknowledgment receipt and signature types

EE Envelope configuration for each trading partner to support enveloping and de-
enveloping processes, including the following:

EE Interchange, group, and transaction set envelopes by EDI standard (X12,
EDIFACT, TRADACOMS, etc.)

EE EDI sending and receiving trading partner IDs and qualifiers

EE Direction of transmissions

87

Laying the Foundations for EDI: Master Data 3.2

EE EDI transactions and versions

EE Control number sequences for each envelope type

EE Translation map required to convert each transaction

EE Need for a 997 functional acknowledgment and timing of transmission

3.2 Laying the Foundations for EDI: Master Data

It goes without saying that both SAP and EDI depend on a solid foundation of
master data. Before we can consider the processing flows in our system design,
we’ll outline key master data conversions that will impact EDI.

3.2.1 A Brief Word on Conversion Strategy

The conversion strategy at AHE is simple and straightforward. Legacy data are
extracted into flat files and analyzed to see how closely they fit the SAP data model.
Gaps are identified and plugged by business users in spreadsheets.

The data are then saved on the application server in linked flat files that match the
views of the SAP master data object for loading mostly through projects created
in the Legacy System Migration Workbench (LSMW).

While the technical team works out these conversion processes, the business defines
master data creation and maintenance procedures for the production system.

The key master data objects, and their sequence of conversion, are illustrated in
Figure 3.3.

There are a few main points to take away:

EE Customers, vendors, and materials can be loaded in parallel.

EE Ship-to parties are loaded after the sold-to parties.

EE The sold-to partner function is updated with its ship-to parties after the ship-to
parties are loaded.

EE BOMs, pricing conditions, and customer material info records are loaded after
the material master, either in parallel or sequentially.

88

Designing the New SAP EDI Architecture3

GL accounts Cost centers
Customers:

Sold-to

Vendors

Customers:
Ship-to

Customers:
Partner function

Material master:
FG and raw mat.

Customer
material InfoRecBills of material

Pricing
conditions

Figure 3.3 Key Master Data Conversion Objects That Impact EDI

But we digress. This is not the time or the place to get into the nitty-gritty details
of conversion strategy. Instead, we’ll briefly cycle through the key master data
objects that will impact our new SAP EDI environment.

3.2.2 General Ledger Chart of Accounts and Cost Centers

The General Ledger chart of accounts and cost centers are the keys to the financial
system. The chart of accounts is collected from the legacy finance systems into a
spreadsheet where it is cleaned up and restructured for SAP. The chart of accounts
is the first master data object loaded, followed by cost centers.

3.2.3 Customer Master Sold-To

The sold-to customer master record is created next, in this case for Gordy’s Galaxy.
There’s only one sold-to partner for each customer in the North American business.
Invoices are issued to, and payments received from, the sold-to partner.

The sold-to record is the key to building customer EDI partner profiles—partner type
KU—in Transaction WE20. We’ll set up only one partner profile per customer using
the SAP sold-to number. Ship-to parties will not be used to create partner profiles.

89

Laying the Foundations for EDI: Master Data 3.2

The sold-to record posts against Transaction XD01 and is loaded through an LSMW
project using standard conversion program RFBIDE00. Some of the key tables popu-
lated in the customer master load include the following:

EE KNA1
General data; only one record per customer.

EE KNB1
Company code data; one record for each company code to which the customer
is assigned.

EE KNKA
Credit management; customer credit limit.

EE KNVV
Sales area data.

EE KNVP
Customer master partner functions, which link the sold-to party to other cus-
tomer records or partners such as bill-to, payer, and ship-to.

3.2.4 Customer Master Ship-To

The ship-to partner is the customer location—store or distribution center—that
receives a shipment for the sold-to partner. Sales orders, representing goods ordered
by location, are created by ship-to and sold-to partners.

Ship-to partners are loaded after the sold-to customer in a two-step process:

1. The ship-to customer master is created. Each store or distribution center in the
customer’s organization is set up as a ship-to party in SAP. More than 2,000
ship-to customer records will be created in Acme’s SAP system, one for each of
Gordy’s stores and distribution centers.

2. The ship-to customer is linked to the sold-to party through the Partner Func-
tions tab of the ship-to master.

The ship-to party is created with Transaction XD01 through an LSMW project
using standard conversion program RFBIDE00. It writes to the same tables as the
sold-to master.

The next step is to create a link between the sold-to party and all of its ship-to
partners, which is displayed in the Partner functions tab of the Sales Area Data

90

Designing the New SAP EDI Architecture3

level of the customer master record. This link validates the ship-to party against
the sold-to partners during creation of sales orders.

This is a critical relationship throughout the order-to-cash processing cycle in SAP
and for design of our EDI system. In Chapter 5, you’ll see how the ship-to party
is mapped to the sold-to party during standard processing of both inbound and
outbound IDocs.

The update to the sold-to customer record is done against Transaction XD02 through
an LSMW project using standard conversion program RFBIDE00. The update is to
partner function table KNVP.

3.2.5 Vendor Master

Vendors, or suppliers, sell AHE goods and services that enable the sale of movies
on DVD. They are critical to EDI processing and receive purchase and shipping
orders and send inventory and invoices, among other documents.

Vendors also manage inventory and shipping for AHE. We’ll focus on one vendor
in our SAP EDI build for AHE: Disc Services International (DSI).

Vendor partner profiles are created in WE20 with partner type LI.

Vendors are loaded against Transaction XK01 through an LSMW project using
standard conversion program RFBIKR00. Some of the key tables populated in the
vendor master load include the following:

EE LFA1
General data; only one record per vendor.

EE LFB1
Company code data; one record for each company code the vendor has been
assigned to.

EE LFM1
Purchasing organization data; one record for each purchasing organization and
company code the vendor is assigned to.

3.2.6 Material Master

The material master includes both finished goods and raw materials.

91

Laying the Foundations for EDI: Master Data 3.2

Finished goods are the DVD products sold to AHE’s customers. They are fully
defined with specific display formats, broadcast standards, languages, country and
customer versions, packaging, stickers, and so on.

Raw materials include all of the components used to manufacture, promote, market,
and sell movies on DVDs. This includes blank discs, packaging, artwork, cellophane
wrapping, stickers, promotional displays, and artwork for promotional posters.

Raw materials are purchased from AHE’s vendors. Finished goods are manufactured
and packaged. AHE buys manufacturing, packaging, and shipping services from its
vendors, who also manage inventory for both raw materials and finished goods.
AHE owns the inventory. The finished goods are then sold to AHE’s customers.

All of these activities are enabled by the flow of electronic business documents that
the new EDI RIM will manage.

Materials are loaded with Transaction MM01 through an LSMW project using
standard direct input conversion program RMDATIND.

An important link for EDI is created by populating field MARA-EAN11. This maps
the internal SAP material number to either the Universal Product Code (UPC), the
European Article Number (EAN), or GS1’s Global Trade Item Number (GTIN),
which supersedes both.

Some of the key tables populated in the material master load include the following:

EE MARA
General data for material master; one record per material.

EE MARM
Base and alternative units of measure for the material.

EE MVKE
Sales data for the material master; one material record per sales organization
and distribution channel. Relevant for sales and delivery.

EE MARC
Plant data for material; one material record per vendor plant. Relevant for pur-
chasing, production planning, inventory, and delivery.

EE MBEW
Valuation area data for material by vendor plant. Relevant for valuation and
accounting.

92

Designing the New SAP EDI Architecture3

EE MARD
Storage location for material by vendor plant and storage location. Relevant for
inventory.

3.2.7 Customer Material Info Records

The customer material info record (CMIR) links the SAP customer, sales organiza-
tion, distribution channel, and material number to the item number used by that
customer.

This is a key reference for EDI. CMIR is read during IDoc processing to convert
a customer’s item number to the internal SAP material number. We look at this
conversion process in Chapter 7, Section 7.1.4, subsection KNMT: Customer Mate-
rial Info Record.

For AHE, only active finished goods that are being sold to customers will be entered
in CMIR.

CMIRs are loaded against Transaction VD51. There’s no standard conversion object
that can be used in the LSMW. You can run a batch input recording within the
LSMW, but VD51 populates a table control, and each line needs to be populated
with an index. You can’t do this in a batch data communication (BDC) recording,
although you can edit the ABAP code generated by the recording.

A much easier approach is to write a custom ABAP that calls function RV_CUSTOMER_
MATERIAL_UPDATE. Pass a file to the function with the customer, sales organization,
SAP material, and customer item number to table parameter XKNMT_TAB, and set
the update indicator (field XKNMT-UPDKZ) to “I” (for Insert).

Existing records can be updated by setting XKNMT-UPDKZ to “U” or deleted by popu-
lating table parameter XKNMT_TAB instead and setting YKNMT-UPDKZ to “D” (Delete).

The structure of both table parameters is defined by data type VKNMT in the data
dictionary.

Function RV_CUSTOMER_MATERIAL_UPDATE is used by VD51 to create the CMIR and
VD52 to update it. Key tables populated include the following:

EE KNMTK
CMIR header for customer and sales organization data.

EE KNMT
CMIR data table.

93

Laying the Foundations for EDI: Master Data 3.2

3.2.8 Bill of Materials

Next is the bill of materials (BOM), the recipe for the manufactured product. Every
finished good that is manufactured and sold has a BOM.

The BOM is the bedrock of production. It links the SAP finished good with each
raw material component required to produce it.

We’ll load BOMs by calling Transaction CS01 in an LSMW project using standard
BDC conversion program RCSBI010. Key tables populated for the BOM include
the following:

EE MAST
Links the finished good master to the BOM by vendor plant.

EE STKO
BOM header-level data, including BOM ID.

EE STAS
Links BOM header to item level data.

EE STPO
Item-level raw material component data for BOM.

3.2.9 Pricing Conditions

Pricing conditions assign prices for a finished good—by customer, sales organiza-
tion, and distribution center—to a condition type for a specified validity period.

Condition types can hold amounts or calculated values based on specified vari-
ables, such as percentages, quantity, weight, volume, and so on, that are invoked
by predefined procedures.

Incoming EDI orders include prices that post to the sales order against a condition
type that stores the agreed price set for that partner in SAP. If the two match or
are within an accepted tolerance limit, the EDI price is used by SAP. Otherwise,
the buyer and seller work it out.

Pricing condition types include everything that can have a price assigned to it, in
both unit prices and percentages, including the following:

EE Standard unit price for a finished good

EE Sales taxes

94

Designing the New SAP EDI Architecture3

EE Special and standard customer discounts, rewards, and rebates

EE Promotional pricing

EE Customer cash advances

EE Freight and shipping surcharges

EE Gross and net prices

Load pricing conditions through an LSMW project with conversion program
RV14BTCI or IDoc basic type COND_A02 with message COND_A. We’ve gener-
ally used the IDoc.

There are two key pricing condition tables populated and read during IDoc
processing:

EE KONH
Header and administrative data.

EE KONP
Item details.

3.3 The Typical Lifecycle of an Order from Gordy

And so we have a typically beautiful day in southern California. It’s not too hot,
and there are no fires, earthquakes, or mudslides. AHE has even brought a massage
therapist to the back lot to help the team relieve some tension.

You couldn’t ask for a better day for a presentation. You can almost feel the iras-
cible Darryl Q smiling in anticipation from his director’s chair in that great studio
in the sky.

We’ll go over our overall SAP EDI system design by following a typical day in the
lifecycle of an order from Gordy’s Galaxy. The purpose of this exercise is to inform
Acme’s business process owners and managers of our implementation plans and
to get their sign-off.

Figure 3.4 outlines the processing cycles that we’ll focus on. To keep things simple,
our presentation is limited to catalog sales for Gordy’s Galaxy.

95

The Typical Lifecycle of an Order from Gordy 3.3

Payment

Catalog planning
POS/inventory
VMI orders to

SAP sales orders

Delivery: Updates
accounts payable

Purchasing/
manufacturing

FG/raw materials

Billing: Updates
accounts
receivable

Figure 3.4 Key Elements of Our Lifecycle of an Order Tour

Our own slice of this day in the life links six discrete processing chains that close
the circle for buying the goods and services required to sell Acme’s movies on DVD
to stores in Gordy’s chain:

EE VMI orders

EE Catalog planning

EE Purchasing of replication services and components

EE Delivery to the customer

EE Billing

EE Payment

Our interest here is in how EDI supports Gordy’s order-to-cash cycle. This will
help us understand the EDI data flows within the context of the overall business
processing cycle.

3.3.1 VMI Sales Orders

Our day begins with sales order processing, outlined in Figure 3.5.

Gordy’s Galaxy sends an X12 852 to the AHE EDI RIM. The message holds daily
point of sales (POS) or weekly inventory data captured from check-out scans at
each of Gordy’s stores in North America.

96

Designing the New SAP EDI Architecture3

852 X12
POS/invent.

Inventory qties
confirmed

OK

ORDRSP
IDocs

855 X12 ack
to Gordy

Catalog
planning

Begin process

Duplicate
PO check

Delivery
process

Credit
check

NoDelivering plant

VMI processing
(VMI system)

ORDERS
IDoc

Sales order
validations

Sold-to/ship-to
confirmed

Material master
item mapping

Pricing

Credit hold

Reviewed and
released VKM1

SAP sales order
is saved

Figure 3.5 Overview of the To-Be SAP EDI Order-to-Cash Process Flow

The 852 also carries reserved purchase order (RPO) numbers. The RPOs provide a
range of numbers that AHE uses to create POs for Gordy. These POs will post to
SAP as sales orders, one for each store.

The 852 transmissions are translated by the EDI RIM to an internal flat file format
and are posted to the VMI system. To support its calculations, VMI relies on an
interface with DataStore and daily feeds of master and transactional data from SAP.

Daily Data Extracts

These nightly extracts are handled by standard and extended IDocs in SAP that
map to flat files in the RIM for VMI. They include complete and delta extracts. The
most important of these feeds are the following:

97

The Typical Lifecycle of an Order from Gordy 3.3

EE Customer sold-to and ship-to parties using message type DEBMAS

EE Finished goods and raw material masters using message type MATMAS, with a
custom extended type for attributes and additional data stored as classifications,
extensions to MARA, or custom tables linked to MARA

EE BOMs using message type BOMMAT

EE Finished goods inventory using message type MBGMCR

EE Open customer orders using message type ORDERS

EE Open deliveries using message type DESADV

The extracts are triggered by custom programs that populate the IDocs and send
them to the RIM as if they were normal EDI transactions. The RIM recognizes them
as internal interfaces from the IDoc control record fields:

EE PARTYP—Partner Type: equals LS, for logical system

EE SNDPFC—Sending Partner Function: equals ZI, internal interface

They can be further distinguished for programming purposes by populating the
Message Code field in the partner profile, which matches the MESCOD field in
the IDoc control record.

But we’re jumping ahead of ourselves. We discuss the IDoc control record and
partner profile setup in more detail in Chapter 5, Real-World Business Process
Integration with EDI.

Replenishment Calculations

VMI uses these data, along with the calculations from StoreData, to determine
replenishment levels for catalog product for Gordy’s stores. VMI uses these calcula-
tions to build a customer PO for Gordy in a flat file format that bundles the ordered
quantity of each DVD product for each store at the line-item level.

This arrangement is similar to the SDQ segment of an X12 transaction that we saw
illustrated in our brief discussion of the 852 in Chapter 2, Section 2.1.3, Selling
the Dream with Vendor Management Inventory. The line-item level of the order
flat file looks like Listing 3.1.

ITEM*025143
STORE*GRDY01001*40* GRDY01002*80* GRDY01003*15* GRDY01004*92
STORE*GRDY01005*40* GRDY01006*80* GRDY01007*15* GRDY01008*92
ITEM*026825

98

Designing the New SAP EDI Architecture3

STORE*GRDY01001*40* GRDY01002*80* GRDY01003*15* GRDY01004*92
STORE*GRDY01005*40* GRDY01006*80* GRDY01007*15* GRDY01008*92

Listing 3.1 Line Item Segments with Multiple Store Ordering Data by Product, Just Like the SDQ
Segment of an X12 Transaction

The VMI order file is mapped to an ORDERS IDoc message type for posting to SAP.

The challenge is to unravel the line item store order detail so that one SAP sales
order—referencing the VMI order number—is created for each store. Each order
will group all items by one store.

The map needs to create multiple ORDERS IDocs for one VMI order. For a cus-
tomer as large as Gordy, this could result in thousands of sales orders posting to
SAP against the same customer PO.

We’ll have the same issue with non-VMI customers who use SDQ segments in
their 850 PO transactions. We look at mapping strategies to handle this in our
build of the inbound VMI orders interface in Chapter 9, Generating the PO for
Replication Services.

One Order per Store

The newly translated ORDERS IDoc will flow into SAP, one IDoc for each store.
A number of validations will be run during processing of the IDocs before they
create SAP sales orders.

We first confirm that the incoming customer PO has not posted before. Duplicate
orders can result in duplicate shipment of product, which in turn can lead to
unnecessary shipping expenses and penalties from the customer.

This is a custom check that we will program in an IDoc enhancement. We look at
how to code this in Chapter 9, Generating the PO for Replication Services.

Next, the system checks to ensure that the sold-to and ship-to partners exist against
the sales organization defined for the order and that each product ordered exists
in the material master.

Pricing is then calculated at the line-item level using the pricing condition types
defined for the sold-to customer, sales organization, material, and validity date
combination. This includes all unit, discount and promotional prices, and percent-
ages, as well as all relevant taxes.

99

The Typical Lifecycle of an Order from Gordy 3.3

Then inventory is checked to ensure that there are sufficient open quantities of
the ordered items in stock to fill the order. If this check fails, the items must be
ordered from DSI, and the purchasing process kicks off.

If there is enough stock in inventory to cover the order, a credit check runs to
ensure that there’s no credit hold on the customer due to unpaid bills. If the credit
check passes, the sales order is saved.

Under Acme’s VMI arrangement with Gordy, we need to tell them what we’ve
ordered when the sales orders post. Gordy will not accept delivery of product
until this information is in its system. We do this with an order acknowledgment.

When sales orders are saved in SAP, an ORDRSP IDoc is generated for each order. It’s
a copy of the SAP order that will be mapped to an X12 855 order acknowledgment.

Bundling Acknowledgments

The wrinkle in all this is that Gordy wants one acknowledgment per PO, not one
per store-level sales order. Our challenge is to bundle each sales order that posted
against the one VMI suggested order into a single EDI transmission with ordering
data for each DVD product at the line-item level by store and quantity in SDQ
segments.

We can’t do this in a map and there are no standard IDocs with SDQ segments.
We need to write a program or a script in the EDI RIM or in SAP. One approach
is to extend an ORDRSP IDoc with a custom SDQ segment as a child of item-level
segment E1EDP01 and to process it with a custom ABAP program.

When multiple SAP sales orders are saved against one PO with SDQ segments, one
standard ORDRSP IDoc is generated for each sales order and parked in the database
at status 64 with message code BND (bundle) in control record field MESCOD.

The ABAP program then reads all IDocs with BND in the MESCOD field of the
control record. The BND IDocs are bundled into a single custom IDoc by PO num-
ber and sold-to partner. Order quantities for each store are in the custom SDQ
segment at the line-item level.

This leverages the powerful data processing capabilities of ABAP and the fact that
all business data resides in SAP. It also simplifies mapping in the EDI RIM.

We look at the pieces of this process in more detail in our build of the outbound
order acknowledgment in Chapter 13, Building the Outbound PO Acknowledgment.

100

Designing the New SAP EDI Architecture3

When this processing completes, the 855 is sent to Gordy’s EDI system and posted
to its backend business system as an open PO. Gordy now knows what Acme
ordered. We’re ready to move on to delivery processing.

But first we need to do a little planning to accommodate ordering finished products
that we don’t have in stock.

3.3.2 Catalog Planning

Planning is about purchasing manufacturing services to produce finished goods in
Acme’s relationship with DSI, which includes figuring out what components need
to be ordered to complete replication. A simplified view of the catalog planning
process is outlined in Figure 3.6.

VMI processing

VMI order No

Purchasing
process

ZREQT IDoc
to SAP MRP

Material master
maintenance

Yes

No BOM
maintenance

Yes

Catalog demand
by mat/plant

MD61

MRP run MD01
reads SAP

sales orders

FG inventory
checked

Nightly feeds

Process ends
Purchase

orders No

850 customer
orders

Mat. master/
inventory

Open vendor
purch orders

Req’ts calc. for
VMI orders

Open SAP
sales orders BOM

Mat
master

In
stock

852 X12
POS/invent.

Yes

Begin process

Figure 3.6 Overview of the Catalog Planning Process Flow

101

The Typical Lifecycle of an Order from Gordy 3.3

Purchasing is dependent on planning, which begins with EDI POS and store-level
inventory feeds from Gordy’s Galaxy in the 852. This flows into RIM, is transformed
to an internal flat file format, and is sent to VMI, where it feeds a customer forecast.

The customer forecast is also fed by StoreData calculations and by the daily data
extracts we discussed in Section 3.3.1, including open sales orders, material masters,
inventory, and open vendor POs.

VMI then sends a flat file to the RIM with forecast data for finished goods that will
be used by MRP in SAP to build an independent requirement for customer product.
This provides an estimate of how much of a DVD product needs to be produced
by a particular date. The VMI file includes the following:

EE Finished goods material number

EE Vendor plant

EE Schedule date

EE Quantity required

Generate IDoc from Business Object

This flat file is mapped to a custom IDoc that we’ll call ZREQTS. This development
is outside the scope of our order-to-cash cycle for Gordy, but we’ll briefly touch
on the process.

The IDoc is generated from business object BUS3027 for method CREATEFROMDATA
with Transaction BDBG. This converts function BAPI_REQUIREMENTS_CREATE to an
IDoc and generates a function module to process it.

The developer can then add an extension to the custom IDoc in the Segment Editor
(Transaction WE31) to store data that will check the material number, plant, require-
ment type, and version to determine if the independent requirement already exists.

If the requirement doesn’t exist, a new requirement for finished goods is created
using the standard direct input processing in the generated function module. If
a requirement does exist, custom code in the function triggers an update of the
requirement by calling BAPI_REQUIREMENTS_CHANGE.

Before the requirement is either created or changed, the product is validated against
the SAP material master and the BOM. If either check fails, the relevant master
data record is created.

102

Designing the New SAP EDI Architecture3

MRP takes all of these data, reads open sales orders and inventory, and produces
a forecast for finished goods. The basic question is whether this projected demand
can be fulfilled from existing inventory.

If the answer is yes, the process ends, and no further action is taken. If the answer
is no, POs are created for replication and for ordering component materials from
DSI or from a third-party supplier.

3.3.3 Purchasing/Manufacturing

The purchasing process continues our day by picking up where planning leaves
off, as outlined in Figure 3.7.

Purchase order
manufacturing

Purchase order
components

850 PO to
comp. vendor

Components
shipped/received
GR sent to AHE

Invent. updated/
comp. consumed

AP updated

GR in SAP MB01
MvtType 101

with PO/Mat No

Begin process
ME21N

ORDERS
IDoc

ORDERS
IDoc

850 PO to
replicator DSI

Delivery process

Copy of 850
PO to DSI

DVD production
FG to inventory

GR to AHE

DSI sends
810 invoice

944 GR to
MBGMCR

944 GR to
MBGMCR

Figure 3.7 Outline of the Purchasing and Manufacturing Flow

Before DSI can manufacture DVDs for Acme, it needs to know what it’s dealing
with. Every night, Acme sends DSI a number of complete and delta data feeds from
SAP, including the following:

103

The Typical Lifecycle of an Order from Gordy 3.3

EE Finished goods and components master data
Extracted to extended message type MATMAS. RIM translates the IDoc to an
X12 888 item maintenance message and sends it to DSI.

EE Bill of materials master data
Extracted to an extended message type BOMMAT. The EDI RIM translates it to
an X12 832 price and sales catalog and sends it to DSI.

Manufacturing Purchasing Order

The manufacturing or replication PO is created in Acme’s SAP system to purchase
manufacturing services from DSI for a DVD product.

When the PO is saved with Transaction ME21N, an ORDERS IDoc is generated
and sent to the EDI RIM where it is transformed into an X12 850 PO. It is then
routed to DSI’s EDI system, which passes the PO to its backend business system
for posting to an internal order.

DSI generates an acknowledgment to a flat file, which is transformed by its EDI
system to an X12 855 PO acknowledgment. The 855 is sent to the Acme EDI RIM
and transformed to an inbound ORDRSP IDoc. This updates the acknowledgment
number field in the Confirmations tab at the item level of the vendor PO.

Component PO

Acme needs to order raw materials to use in the manufacture of its finished goods.
A component PO is created with Transaction ME21N, generating an ORDERS IDoc
that’s mapped to an 850 X12 in the EDI RIM and sent to the third party component
supplier.

A copy of the order is also sent to DSI in a separate 850 X12 transmission.

The components are shipped to DSI and received into inventory. DSI then sends
Acme a 944 stock transfer with a goods receipt against the third-party components
order.

The 944 goods receipt is transformed by the RIM to an MBGMCR IDoc message
type. The IDoc posts to SAP inventory against the PO number with Transaction
MB01 and movement type 101.

104

Designing the New SAP EDI Architecture3

As an interesting aside, seven transactions can be called by MBGMCR, which was
converted from BAPI_GOODSMVT_CREATE business object BUS2017 method CREATE-
FROMDATA. These transactions are recorded in table T158G and identified by the
GM code in the IDoc’s GM code segment.

Production Completed

Meanwhile, back at DSI, replication and packaging is done. Component materials
have been consumed—blank discs, labels, clamshell cases, cardboard wraparounds,
artwork, stickers, and so on—and the finished goods moved into the warehouse.

This triggers a goods receipts against the PO that is sent as an X12 944 transmission
to the EDI RIM, where it is converted to an MBGMCR IDoc and routed into SAP.

The IDoc posts a goods receipts against the manufacturing PO item using Transac-
tion MB01 with movement type 101. The goods receipt also relieves inventory of
the components consumed during production. The PO is completed after a goods
receipt posts against the full quantity of each item in the order. AP is then updated,
and Acme is ready to receive the vendor invoice.

DSI creates an invoice in its AR system that is sent to their EDI system and trans-
formed into an X12 810. Acme’s RIM receives and translates the 810 to an INVOIC
IDoc, which posts a vendor invoice in SAP against the manufacturing PO number.

3.3.4 Delivery

DSI is also the distributor for Acme’s DVDs. It ships product to all of Gordy’s cus-
tomer distribution centers or directly to their stores. To support delivery processing,
AHE sends several master data extracts from SAP to DSI every night.

The most important of these feeds is the ship-to customer master. It includes all
relevant contact information for customer distribution centers and stores. It is
extracted from SAP into IDoc message types DEBMAS (customer) and ADRMAS
(addresses). These IDocs are converted in the EDI RIM to an X12 816 organizational
relationships transaction and sent to DSI.

Acme collects these data from its customers. Each one handles it differently. Gordy’s
Galaxy regularly sends Acme an 816 with new store locations, address changes,
and store closings, but some customers send an Excel spreadsheet, an ASCII file, a
Word document, or even an email.

105

The Typical Lifecycle of an Order from Gordy 3.3

DSI needs to know what to ship from its warehouse to Gordy. This is handled by
delivery documents from Acme’s SAP system, generated by running the Delivery
Due List with Transaction VL10 or SAP menu path Logistics • Sales and Distribu-
tion • Shipping and Transportation • Outbound Delivery • Create • Collective
Processing of Documents Due for Delivery • Delivery. This begins the delivery
process outlined in Figure 3.8.

SAP delivery
documentBegin process

Delivery due
list VL10

SHPORD
IDoc

830 X12
ship order

856 ship conf
to Acme

DSI picks items
for shipping
records qties

DSI stickers/
packs items for

shipping

DSI ships goods
to Gordy’s dist.

center

SHPCON
IDoc

Delivery document
PGI VL02N

inventory relieved
Billing process

DESADV
IDoc

856 X12 ASN
to Gordy

Figure 3.8 Outline of the Delivery Business Processing Flow

Before deliveries can be created, sales orders must meet certain conditions:

EE There is no delivery block for a credit check or any other reason at the header
or schedule line item levels.

EE The schedule line is due for shipping on the selected date.

EE Delivery quantity is confirmed by an availability check.

Each SAP delivery is generated from one sales order with one ship-to party. The
delivery tells DSI how many units of what items to ship from which DSI warehouse
to which one of Gordy’s distribution centers or stores.

When the delivery is saved, a SHPORD IDoc is generated and sent to the EDI RIM,
which transforms it to an X12 830 warehouse shipping order. The 830 is then sent
to DSI’s EDI system.

106

Designing the New SAP EDI Architecture3

DSI picks, stickers, and packs the DVDs and loads them onto a truck. DSI updates
its inventory at each stage through barcode scans.

When the truck pulls away from the loading dock, the pick quantities for each store
and item in the shipment are bundled into a flat file and sent to DSI’s EDI system.
The file is transformed into an 856 shipping confirmation and sent to Acme’s EDI
RIM where it is converted to a SHPCON IDoc and sent into SAP to post against the
delivery document, update the pick quantity, and trigger a post goods issue (PGI)
with Transaction VL02N.

PGI completes the delivery, which relieves inventory and updates AR in prepara-
tion for invoicing. Before Gordy will accept an invoice from Acme, they need to
know that a shipment is on its way, what ordered items it contains, and which
distribution center or store it’s bound for.

After Acme’s delivery document is updated with the pick quantity and the PGI, a
DESADV IDoc is generated as an advanced shipping notice (ASN) to the customer.
The IDoc is sent to the RIM, transformed into an 856 ASN, and sent to Gordy’s
EDI system. The ASN must post to Gordy’s business system before the shipment
arrives at its distribution center.

When the shipment arrives, Gordy confirms the items against the ASN. If there
are no errors, the goods are received into inventory and AP is updated. Gordy is
now ready to receive AHE’s invoice.

If the ASN is received after the shipment arrives, or there are discrepancies between
the ASN and the shipment, an 824 application advice is sent to Acme detailing the
errors. The errors must be fixed within 24 hours and the ASN resent; otherwise
Acme will not be able to invoice.

If the invoice is sent before the ASN is confirmed, it is rejected, and an X12 864
text message is returned explaining why the invoice was rejected.

3.3.5 Billing

The billing process, outlined in Figure 3.9, kicks off after Gordy receives and con-
firms the ASN against the shipment.

Invoices are generated in SAP by running the Billing Due List for deliveries that
have been PGI’d, with Transaction VF04 or menu path Logistics • Sales and Dis-
tribution • Billing • Billing Document • Maintain Billing Due List.

107

The Typical Lifecycle of an Order from Gordy 3.3

Begin process
Billing due

list VF01, VF04,
VF06, VF31

INVOIC
IDoc

810 invoice
to Gordy‘s

Payment process
Accts receiv.

updated in SAP

Billing doc
created

Errors
864 returned

to Acme

Fix errors and
resend 810

Yes

997 functional
acknowledge

No

Figure 3.9 Billing Kicks Off After the Delivery Has Been PGI’d

Key selections are date range, billing type, and delivery-related flag. We’ll capture
all completed deliveries over a wide date range because they become available for
invoicing on different dates.

As billing documents are created, AR is updated and the system is primed to accept
payment according to the customer’s payment terms—within 30 days in the case
of Gordy’s Galaxy.

Each billing document generates an INVOIC IDoc that is sent to the RIM, trans-
formed into an X12 810 customer invoice, and sent to Gordy’s EDI system, which
posts the invoice to its AP system.

The billing process isn’t quite done yet. We need to confirm that the invoice has
been received. One milestone is receipt of the 997 functional acknowledgment
from Gordy referencing the group control number of Acme’s 810 customer invoice
transmission.

We’ll look at the 997 in more detail in Chapter 4, EDI: The Ugly Stepsister of
E-Commerce. It is triggered during deconstruction of the envelope of the inbound
810 by Gordy’s EDI translator and immediately sent to AHE.

Acme’s EDI production support team watches for this transaction whenever invoices
are sent. It is no guarantee that the invoices were posted in the customer’s sys-
tem—just proof that they were received.

108

Designing the New SAP EDI Architecture3

The other EDI transaction to look for is the 864 text report, which is sent when
errors occur during posting of the invoices to Gordy’s business system. The error
reports are sometimes a little cryptic, but if an 864 comes in for one or more
invoices, the problem must be fixed quickly and the invoice resent.

Acme’s AR department will anxiously check Gordy’s partner website to ensure
that the invoice posted. Even if everything works smoothly, it’s not unusual for
the EDI team to be asked by AR to resend invoices. Sometimes it’s just anxiety,
but sometimes it needs to be done.

The billing process ends when we can confirm that the invoice has posted in the
customer’s business system and is being processed in the normal manner by the
customer’s AP department.

3.3.6 Payment

There’s nothing like a timely payment to cap off a perfect day of business, par-
ticularly from a customer as cooperative and generous as Gordy. Payment is one
process that senior management cares about…a lot.

Just 30 days after the invoice posts to Gordy’s business system, payment is trans-
ferred electronically to AHE’s bank account, and the payment process, outlined in
Figure 3.10, kicks off.

Begin process
Gordy sends

electronic fund
transfer to bank

REMADV
IDoc

Gordy sends
820 pay advice

AR runs
clearing pgm

with F-28

No

Yes
Posts to SAP

payment advice
FBE1

>999
lines

Run pgm
split_payment_

advice

Multiple paymnt
advices split

Figure 3.10 Overview of the 820 Payment Advice and Clearing Process

At the same time that the funds are transferred, Gordy’s system generates a pay-
ment file that its EDI system maps to an X12 820 payment advice.

109

The Typical Lifecycle of an Order from Gordy 3.3

Gordy sends only a few 820s each month, but they can be extremely large, com-
plex files. They reference every invoice and debit or credit memo issued for any
purpose that impacted the net amount of the referenced payment.

The peak holiday shopping season between September and December can lead to
monthly payments of $20 million or more. The 820 reporting of these payments
can contain more than 100,000 segments referencing thousands of documents with
thousands of adjustments for discounts, returns, promotions, rewards, penalties,
and countless other pricing tweaks.

Because of its size, complexity, and high visibility to management, the 820 presents
unique challenges. Did we say “challenges”? What we meant to say was “oppor-
tunities for growth.”

The 820’s size is its most daunting challenge. A $20 million payment can result in
an 820 that exceeds 20MB, which can convert to a REMADV IDoc file greater than
200MB. We look at strategies for processing a very large payment in our build of
the payment advice interface in Chapter 18.

Gordy’s EDI system transmits its 820 to Acme’s RIM, where it is converted to a
REMADV IDoc and sent into SAP to post to a payment document for clearing by
AR against Transaction FBE1.

The SAP payment advice is a holding tank, a temporary document that fronts for
three tables: AVIK (payment header), AVIP (payment documents detail), and AVIR
(subitems of line items). The only purpose for these tables is to feed the clearing
process in AR.

Acme’s AR department clears payments with Transaction F-28 after they have posted
a payment document, which is purged after the payment is cleared.

There is one catch: Payment documents can post with an unlimited number of
line items. The clearing process can handle only 999 lines or less. SAP provides
an ABAP program that is hard-coded to split the payment into documents of 900
lines or less: SPLIT_PAYMENT_ADVICE.

The program calls function REMADV_SPLIT_PAYMENT_ADVICE in function group FRAD
(Payment Advices).

If you want to control the maximum number of lines, copy the split program into
a custom ABAP program that adds the maximum number of lines to a selection
screen parameter.

110

Designing the New SAP EDI Architecture3

For EDI, posting of the payment document ends the payment process.

3.4 Interfaces in the Order-to-Cash Cycle

Our overview of the to-be day-in-the-life processing cycle for an order from Gordy
took us through purchasing and sales. We have a pretty good sense of our business
by now and of where we’re going with the EDI interfaces that will support it. Our
focus is the order-to-cash cycle with Gordy’s Galaxy.

The following are EDI interfaces:

EE Outbound purchase order for replication services
DVDs ordered by Gordy’s are produced by DSI. Acme creates a manufacturing
PO for replication services with Transaction ME21N. The PO generates an
ORDERS IDoc that is sent to the RIM, converted to an outbound X12 850 PO,
and sent to DSI. Covered in Chapter 9.

EE Inbound goods receipt
DSI produces the DVDs and receives the finished goods into inventory, which
also prepares accounts payable for invoicing. The inventory posting sends a file
to DSI’s EDI system, which converts it to a 944 stock transfer with goods receipt.
The 944 is transmitted to Acme’s RIM, converted to an MBGMCR IDoc, and
posted to finished goods stock with Transaction MB01, movement type 101.
Covered in Chapter 10.

EE Inbound invoice from the supplier
DSI generates an invoice for Acme’s manufacturing PO and transmits an 810 to
Acme’s RIM. The RIM converts the 810 to an INVOIC IDoc and sends it into
Acme’s SAP system, where it posts to an MM invoice against the manufacturing
PO. Covered in Chapter 11.

EE Inbound VMI customer purchase order
Gordy sends an X12 852 to the RIM, where it is mapped to a flat file and sent
to VMI to be used to calculate and generate POs for Gordy’s stores. An order
with a reserved PO number is sent from VMI to the RIM, where it maps to one
or more ORDERS IDocs that post to sales orders in SAP, one for each store.
Covered in Chapter 12.

EE Outbound customer order acknowledgment
Each VMI PO can create multiple sales orders, one for each store. When each

111

Considering the Project Plan 3.5

sales orders is saved, one ORDRSP IDoc is generated as an acknowledgment.
The IDocs are bundled into one IDoc per PO with all store item orders in a cus-
tom SDQ segment at the line-item level. The ORDRSP SDQ IDoc is sent to the
RIM to be mapped to an 855 X12 order acknowledgment and transmitted to
Gordy’s Galaxy. Covered in Chapter 13.

EE Outbound shipping order to vendor
When a delivery document is generated from a completed sales order, a SHPORD
IDoc is output and sent to the RIM to be translated to an 830 ship order and
transmitted to DSI with picking, packing, and shipping instructions. Covered in
Chapter 14.

EE Inbound shipping confirmation
DSI picks, packs, and loads the delivery, and the truck pulls away from the ship-
ping dock. An 856 shipping confirmation is sent to Acme’s EDI RIM and con-
verted to a SHPCON IDoc, which updates the delivery document in SAP with
the pick quantity and the post goods issue, relieving inventory. Covered in
Chapter 15.

EE Outbound advance shipping notification
When the PGI posts to Acme’s delivery, a DESADV IDoc is generated, sent to
the RIM, and converted to an X12 856. The ASN is then sent to Gordy’s Galaxy,
which uses it to confirm the delivered goods. Covered in Chapter 16.

EE Outbound customer invoice
After Acme sends the ASN, the Billing Due List is run, and billing documents
created. Each billing document generates an INVOIC IDoc that is sent to the
RIM, converted to an X12 810 invoice, and routed to Gordy’s Galaxy. Covered
in Chapter 17.

EE Inbound payment advice
Gordy pays the invoice with an electronic funds transfer to the bank. At the
same time it sends an X12 820 payment advice to Acme’s RIM with details of
the payment. The 820 is converted to a REMADV IDoc and posted to a payment
advice in Acme’s SAP system for clearing by the AR department. Covered in
Chapter 18.

3.5 Considering the Project Plan

We know from experience that any plan, even Plan Q from Outer Space, will be
revised over the course of the project. But we need a baseline, so we build the first

112

Designing the New SAP EDI Architecture3

cut of our project plan and identify key deliverables, milestones, and tasks that
must be completed before we can bring our baby home.

This important exercise allows our team to think in a detailed way about the tasks
that need to be done to complete this project. A few of the key deliverables, mile-
stones, and tasks include the following:

EE System builds for the RIM and SAP

EE Technical architecture and data flows for all systems

EE Data migration and conversion strategies

EE Identification and compilation of RICEF (reports, interfaces, enhancements, and
forms) list for all SAP and EDI custom development

EE Development tasks for each object on the RICEF list

EE EDI configuration in SAP and the RIM for all trading partners

EE Testing and training strategies and documentation for all phases of testing, cut-
over, and go-live

EE Development and implementation of archiving strategy in SAP and the EDI RIM

3.6 Summary

Our day-in-the life of the to-be SAP EDI system draws to a close. We went over
the new systems and interfaces and touched on the Resource Integration Manager
(the RIM), and its handling of EDI traffic in the new environment. We went over
master data requirements and looked at the typical lifecycle of an order from
Gordy’s Galaxy, from VMI processing to catalog planning, purchasing, delivery,
billing, and payment.

In true Hollywood tradition, the day-in-the-life was a smash hit and management
signed off on our vision. The more superstitious among Acme’s management poured
a glass of bourbon onto the pavement before the main entrance to Soundstage 13,
which is said to be haunted by the tuxedo-clad spirit of the Great Mr. Q.

Acme management asked the team to put together a few papers on EDI and the
IDoc interface, so they could understand better what they were getting into. So
before we begin to build our system, the SAP EDI team agreed to collect some
background information on both. For those who are interested, we will proceed
in Chapter 4 with an introduction to EDI.

ACT II
Taming Chaos with Standards—

EDI in an SAP Environment

115

“I may be drunk and I may be ugly,” Darryl Q once quipped at a Hollywood
party. “But I have lots of money. And that makes me very sexy.” It’s the
same with EDI. There may be more elegant ways to exchange data, but EDI
works and it supports trillions of dollars in business each year. And that
makes EDI very sexy.

4 EDI: The Ugly Stepsister of E-Commerce

Saying “I don’t get no respect” is how the late, great, bug-eyed American comedian
Rodney Dangerfield punctuated his self-deprecating jokes. “I played hide-and-seek
and they wouldn’t even look for me.”

EDI is the Rodney Dangerfield of enterprise systems, the ugly stepsister of e-com-
merce. Underappreciated, misunderstood, and unloved, EDI has been consigned
by many to the graveyard to be replaced by a grab bag of technologies identified
by an alphabet soup of acronyms.

But to paraphrase Mark Twain’s famous quip about his own death, rumors of EDI’s
demise are greatly exaggerated. EDI’s continued success is guaranteed by the long-
term business relationships of the companies that use it.

If you have an important customer, like Gordy’s Galaxy of Games & B Flix, who will
do business only through EDI, you will continue to use EDI until your customer
is ready to tear up his infrastructure and replace it with something new, at great
cost and risk to himself and his partners.

Consider Acme Pictures. Before SAP, all e-commerce was EDI. Acme traded exclu-
sively with key customers and suppliers through EDI for years. The SAP project
provided an opportunity to streamline the data flows. But the plan was to improve
EDI, not replace it.

In addition, since EDI will provide the new SAP system with more than 90 percent
of its transactional data, it is in our interests to have more than a passing under-
standing of EDI.

116

EDI: The Ugly Stepsister of E-Commerce4

4.1 A Brief History of e-Commerce

EDI is one of the most successful business technologies ever devised.

A significant proportion of global commerce depends on the more than 20 million
daily worldwide EDI transactions, according to a report published by Ken Vollmer
of the Forester Foundation in 2007 called B2B Integration Trends: Message Formats,
Alternatives Grow, But EDI Standards Remain The Leading Option For B2B Messaging. In
it, Vollmer asserts that EDI comprises up to 90 percent of all business-to-business
(B2B) e-commerce volume and directly supports more than one-third of US Gross
Domestic Product (GDP).

The US Census Bureau tries to measure this economic activity in its annual e-com-
merce survey available from their website E-Stats—Measuring the Digital Econ-
omy at www.census.gov/eos/www/ebusiness614.htm.

Based on the Bureau’s most recent survey (May 2012), the dollar value of EDI
shipments, sales, or revenues in the United States alone in 2010 was around $3
trillion…that’s trillion with a capital T.

This figure is based on total e-commerce bookings of $4.129 trillion in four indus-
try sectors: manufacturing, merchant wholesale, retail, and selected services. EDI
statistics are tracked only for merchant wholesale, where 34.4 percent of total
revenues are e-commerce, of which 73.1 percent is EDI.

But this is a conservative estimate. Manufacturing is the biggest B2B consumer in
this group: 55.3 percent of its total revenues are through B2B transactions, but its
EDI statistics are not tracked by the Bureau.

In addition, the survey does not track B2B activity for such heavy EDI sectors
as government. Nor does it account for the value of efficiencies gained when an
organization automates its business processes and relationships with EDI. It can’t
measure the value of an automated supply chain or of improved service and regu-
latory compliance through EDI.

No matter how you cut it, we’re talking real money here, which would put a big
smile on the face of the Great Darryl Q, who always knew which side his bread
was buttered on. And even if statistics make you dizzy, it doesn’t take a rocket
scientist to see that EDI follows the money.

117

A Brief History of e-Commerce 4.1

4.1.1 A Flowery Beginning for e-Commerce

A rose is but a rose and would be just as sweet by any other name, to loosely
paraphrase Shakespeare. So what do these beautiful symbols of our love for each
other have to do with EDI?

The earliest use of e-commerce can be traced back to a group of florists in the
United States who in 1910 created a cooperative around the brilliant idea of using
communications technology to allow their customers to send flowers to anybody
anywhere in the country on the same day.

The new cooperative used the telegraph to electronically transmit a customer order
to the partner store that was closest to the recipient’s address. The success of the
Florists’ Telegraph Delivery (FTD) created a rich national market that is profitable
to this day. FTD is still a giant in the floral industry.

4.1.2 The Berlin Airlift, the Supply Chain, and Transportation

Another watershed moment occurred amid the drama and saber rattling of the
Berlin Airlift of 1948. West Berlin, with its 2.5 million people, was jointly admin-
istered by the US, Britain, and France, but was surrounded by East Germany, then
controlled by the Soviet Union.

On June 28, 1948, Soviet dictator Josef Stalin ordered an embargo of all rail, road,
and barge traffic to Berlin from West Germany. The West responded with a mas-
sive airlift that would supply the city with more than 4,500 tons of food and other
necessities each day.

Logistics were identified as the critical issue on the first day when only 80 tons
were flown into the besieged city. The response was to set up a logistics team under
Major General William H. Tunner, who had honed his craft ferrying goods by air
between India and China during World War II.

The supply chain was the easy part. Warehouses were clustered on one side of West
Berlin so that goods could be quickly transported from the airfields for distribu-
tion. Flights were scheduled in groups of 20 and landed in Berlin at three-minute
intervals around the clock.

The challenge was delivering paperwork, particularly requests for supplies and
cargo manifests detailing what was onboard each plane. Because Berlin was cut
off, manifests couldn’t be sent in advance of any flight’s arrival. In addition, the

118

EDI: The Ugly Stepsister of E-Commerce4

paperwork came from multiple military organizations with different formats, lan-
guages, and required numbers of copies.

The solution was to design standard forms that could be transmitted by the com-
munications technologies of the day: telex, teletype, and telephone.

It was a huge success. Over 13 months, more than 2 million tons of goods were
flown into West Berlin. The West won a strategic victory in the Cold War when
the Soviets backed down and reopened the land corridor.

This victory made a lasting impression on the logistics experts who participated
in it. The cooperative effort at standardization in support of the distribution of
real-world goods through a well-organized supply chain spawned the birth of EDI
and the ongoing organized development and spread of standards across industries
and between nations.

Shipping and the Birth of Cross-Industry Standards

US Army Supply Sergeant, Edward A. Guilbert—who worked on the standard
manifest during the Berlin Airlift—in the 1960s designed the first set of EDI-like
electronic messages for sending cargo data between his employer, DuPont, and
Chemical Leaman Tank Lines, one of their shippers.

The importance of Guilbert’s achievement is recognized today by the Edward A.
Guilbert E-Business Professional Award given by the Data Interchange Standards
Association (DISA), the body that administers ASC X12 EDI standards, to recognize
contributions in e-commerce message development.

Holland American Lines closed the EDI circle in 1965 by transmitting shipping
manifests by telex that were converted to tape and fed to a computer.

The Transportation Data Coordinating Committee

Railroads, truckers, shippers, and airlines all began to use electronic manifests.
But one critical element was missing: cross-industry standards. A cacophony of
proprietary standards was emerging, making it difficult and expensive for two
companies with different standards to trade through EDI.

In 1968 a group of logistics specialists who had served during the Berlin Airlift
formed the Transportation Data Coordinating Committee (TDCC) to design standards

119

A Brief History of e-Commerce 4.1

for cross-industry EDI transaction sets that could be used by all firms in the trans-
portation industry regardless of mode.

In 1975 the TDCC published the Electronic Data Interchange Standards that later
became the basis for ASC X12 EDI. The first successful transmission of one of the
new transactions soon followed in the railway industry. Within ten years, 90 per-
cent of all railway waybills were transmitted electronically.

The TDCC also worked with computer and communications experts to develop busi-
ness applications to process electronic transactions, which led to direct computer-
to-computer data exchanges and the first electronic purchase order and invoice.

At the same time, large retailers, grocers, auto manufacturers, and others jumped
into the fray, developing proprietary POs and invoices, and aggressively pushing
EDI technologies throughout their web of suppliers. To paraphrase Mao Tse Tung,
a thousand flowers bloomed in the multitude of proprietary message formats
designed by the early adopters of EDI.

4.1.3 The Birth of ASC X12

Enter the American National Standards Institute (ANSI), the folks who gave us
ASCII. In 1979 ANSI created the Accredited Standards Committee (ASC) X12 to
drive the development of open, generic EDI message standards for all industries.

In 1979 ASC released its first EDI standard based on the pioneering work of the
TDCC. Also that year, the grocery and food industry published its Uniform Com-
munication Standard (UCS), based on TDCC EDI standards. Eventually UCS merged
with X12 and is identified today by the suffix UCS in the version data element of
the GS group control segment.

In 1987 the Data Interchange Standards Association (DISA) was founded as the
administrative arm of ASC X12 and today plays a key role in developing and dis-
tributing e-business standards through national, international, and industry groups
and associations.

TDCC moved its transportation, warehousing, and retail standards to X12 in 1989.
These standards became the core of X12M, a dialect of X12 designed for the sup-
ply chain, one of seven, each managed by an industry subcommittee, including
the following:

120

EDI: The Ugly Stepsister of E-Commerce4

EE X12C Communications/controls

EE X12F Finance

EE X12G Government

EE X12I Transportation

EE X12J Technical Assessment

EE X12M Supply Chain

EE X12N Insurance

ASC X12 is the most widely used EDI standard in the world, by more than 300,000
companies in all industries and public service sectors. EDI in North America is
overwhelmingly X12. Our very own Acme Pictures is a busy X12 shop, except for
its overseas customers, who use the UN global standard EDIFACT in continental
Europe and TRADACOMS in the UK.

We look at ASC X12 in more detail in Section 4.3, The Anatomy of an X12 Interchange.

4.1.4 Global Trade and E-Commerce: UN/EDIFACT

International trade was the driving force behind the evolution of global EDI stan-
dards. In the beginning, this meant paper—lots of it.

The cost of paperwork to international trade was measured in a survey by the US
Department of Transportation (DOT) in 1971. DOT found that 46 different docu-
ments, on average, were used for one unit of export/import business with more
than 360 copies. DOT estimated that the US produced 6.5 billion copies of 828
million documents each year to support its international trade.

This mountain of paper generated huge costs. Documentation for an average unit
of export/import business consumed 64 man hours at a cost of $351.04 for a total
of one billion man hours and $6.5 billion a year in the US.

The United Nations was the only body that could address this issue on a global
basis. In the 1960s the UN Economic Council for Europe (UN/ECE) began design-
ing standard forms that could be used across countries and industries. This led to
broad international adoption of UN global standards for document size and format,
number of characters per line, number of lines per box, grouping of field headings
by function, and so on.

121

A Brief History of e-Commerce 4.1

With the expanding use of computers in business, the focus shifted in 1972 to
developing standard data terminologies and a uniform system for automatic pro-
cessing and transmission of trade data and streamlining business processes.

Requirements for electronic data exchange were published in May 1975 in a
document with the euphonious title of TRADE/WP.4/GE.I/R.54, also known as
the Stockholm Charter. While the technical title may lack poetic resonance, its
conclusions are an EDI Magna Carta, defining the principles and ground rules for
developing global EDI standards, including the following:

EE Rules for structuring data should be independent of systems or media.

EE Transmitted data should be legible to humans.

EE The character “'” (Hex 27) should be used to identify segments, while “+” (Hex
2B) and “:” (Hex 3A) delimit data elements and sub-elements.

EE Data element design should be based on existing paper documents.

EE Groups, segments, and data elements should be independent of each other so
that one could be changed without affecting any of the others.

Two teams were set up to begin building global EDI standards based on the Stock-
holm Charter: one focused on standard data elements and codes and the other on
data exchange standards for electronic transmission and computer media such as
magnetic tapes.

The Birth of UN/EDIFACT

The first set of EDI rules for international trade was published in 1981: The Guide-
lines for Trade Data Interchange (GTDI). A joint European North American group—
UN-JEDI—was then charged with trying to reconcile GTDI with US X12 standards.

The UN-JEDI recommendations came out in September 1986 and were used to
design the UN/EDIFACT (UN/Electronic Data Interchange for Administration,
Commerce, and Transport) standard. EDIFACT syntax rules received ISO certifica-
tion (ISO 9735) in 1988 followed by publication of the first message: an invoice
INVOIC. By 2003, responsibility for development of EDIFACT and other global
e-business standards was transferred to the UN Center for Trade Facilitation and
Electronic Business (UN/CEFACT).

122

EDI: The Ugly Stepsister of E-Commerce4

4.1.5 Other EDI Standards

A number of other EDI standards emerged, including some that grew out of verti-
cal industry groups and the UN/GTDI guidelines. We’ll touch briefly on a few of
these standards.

ODETTE

The Organization for Data Exchange by Teletransmission in Europe (ODETTE) was
born in London in 1984 to group national automotive organizations from the UK,
Benelux, France, Germany, Italy, Spain, and Sweden.

OFTP (ODETTE File Transfer Protocol) was published in 1986. It supports direct
transmission of electronic documents across the Internet or through ISDN or X.25
networks. It features encryption, digital signatures, and authentication. Unlike AS2,
OFTP can transmit in both directions (push or pull).

The first three EDI messages, built on UN/GTDI syntax rules, were published the
same year: delivery instruction (DELINS), despatch advice (AVIEXP), and invoice
(INVOIC). By 1989, more than 30 ODETTE messages covered the full spectrum of
the automotive supply chain.

ODETTE began migrating to UN/EDIFACT in 1990 as a subset of the global stan-
dard. Full compliance followed in 2000, when ODETTE agreed with the world’s
largest national auto industry groups to adopt UN/EDIFACT. Today, ODETTE has
been largely replaced by UN/EDIFACT, although the old standards are still in use
at many European auto industry EDI sites.

TRADACOMS

Used primarily in the UK retail sector, TRADACOMS is an early implementation
of UN/GTDI syntax. It was introduced in 1982 and is maintained by GS1 UK, the
British branch of the global GS1 standards body.

TRADACOMS features 26 transactions including orders, invoices, product infor-
mation, delivery confirmation, and so on. It differs from EDIFACT in a number
of important ways:

EE STX/END segments define interchange envelopes instead of UNB/UNZ.

EE MHD/MTR segments define message envelopes rather than UNH/UNT.

123

A Brief History of e-Commerce 4.1

EE The “=” (Hex 3D) character is used to identify the first data element in a segment
rather than the standard data delimiter “+” (Hex 2B).

EE It is UK-specific, so it does not support any currency other than the pound.

Development of TRADACOMS ended in 1995, but British retailers continue to
use it with no sign of changing, even though GS1 UK actively discourages its use
in favor of EDIFACT.

VDA

Germany’s Verband der Automobilindustrie (Association of the Automotive Industry)
began developing EDI standards in 1977 in the wake of an earlier effort to stan-
dardize paper forms, well before release of the UN/GTDI guidelines. Messages and
implementation guidelines were developed for planning, distribution, and invoicing.

VDA messages are flat files with a header, payload, and trailer records, each of
which is identified by a numeric code. The structure of VDA 4905/1 (delivery
instruction), for example, is defined by four segment characteristics:

1. Record type code identifying the function of the segment—for example, 511
header record, 517 packaging data, or 519 trailer record

2. Version number for the record type

3. M/C that identifies field characteristics such as mandatory, conditional, alpha-
numeric (left-justified), or numeric (right-justified)

4. Repetition with a value of 1 or R (for repeat)

Some very large EDI operations, such as Volkswagen, continue to use VDA, along
with ODETTE, ODETTE/EDIFACT, and EDIFACT. The goal, however, is to move
entirely to EDIFACT over time.

4.1.6 Communications, VANs, and the Internet

Even with the emergence of message standards, EDI remained an expensive proposi-
tion. In the days before widespread adoption of SAP, business software was largely
built over time as needed by in-house programmers or contractors, who rarely
documented their work, resulting in a multitude of custom systems with different
levels of functionality and a bewildering array of file formats.

124

EDI: The Ugly Stepsister of E-Commerce4

Data communications proved particularly complex and expensive. In the early
days of EDI point-to-point communication, often across a telephone line at very
slow speeds, was the only option. This was difficult to maintain as the number of
potential EDI partners for any company grew.

Value added networks (VANs) emerged in the 1970s to provide a single secure
point of communications between EDI trading partners. Delivery was guaranteed
across a secure network, and audit tools and reports helped manage data flows.
Costs were high. Charges were by the number of kilo-characters—blocks of 1,024
bytes—transmitted per month, with a monthly minimum. But VANs promised
peace of mind.

AS2

The dramatic growth of the Internet brought new communications standards that
enabled secure transfer of encrypted EDI transactions across the web.

Applicability Statement 2 (AS2) was developed by the Internet Engineering Task
Force (IETF) to enable secure data transmission through HTTP and Secure Multi-
purpose Internet Mail Extensions (SMIME) standards.

EDI, or any other structured data format, files are sent as encrypted SMIME attach-
ments in an AS2 message through an HTTP or HTTP/S post method with synchronous
or asynchronous return of a message disposition notification (MDN) to confirm
that the transmission was received. Security is provided by digital certificates and
authentication.

The biggest advantage of AS2 is cost. Data transmission across the Internet is free,
eliminating VAN costs. But “free” comes at a price, including an AS2 server; static
IP, always-on Internet connection; maintenance of multiple point-to-point inter-
faces; management of certificates; and ongoing personnel costs for maintaining
networks and connections.

In Acme’s case, Gordy’s Galaxy mandated that all its suppliers use AS2. After the
initial investment, Acme had the infrastructure to handle AS2 exchanges with any
trading partner who could support it. Within two years, more than 70 percent of
Acme’s EDI traffic was AS2 and VAN costs plummeted.

The great Darryl Q. wouldn’t have studied EDI’s history or analyzed its global
economic impact. If his customers wanted EDI, he would have built it, and paid
others well to learn everything he needed to know about it, beginning with an

125

The Anatomy of an EDIFACT Interchange 4.2

overview of the two major standards that will work with Acme’s new SAP system.
We’ll begin with EDIFACT, but most of our focus will be ASC X12.

4.2 The Anatomy of an EDIFACT Interchange

The structure of all EDIFACT interchanges follows the same pattern, as illustrated
by the ORDERS message in Figure 4.1.

UNB interchange control header—1 to 1—mandatory

UNG functional group header—1 to N—conditional

UNZ interchange control trailer—mandatory

UNE functional group trailer—conditional

UNH message header—ORDERS—1 to N—mandatory

UNB+UNOA:3+055762322IV:01+4042829000003:14+060227:1145+00000000006316++ORDERS'

Message DATA—payload

Header DATA
BGM+220::9+9'
DTM+2:20060228:102'
RFF+ON:00591701'
NAD+BY+4335347423004::9'

Detail DATA
LIN+1++3259190355897:EN'
QTY+21:10'
LIN+2++3259190355897:EN'
QTY+21:10' ...

UNT message trailer—mandatory

UNT+36+00000000067307´

UNZ+3+00000000006316´

UNH+00000000067307+ORDERS:D:96A:UN´

Figure 4.1 An EDIFACT ORDERS Interchange

EDIFACT is built from the bottom up in a thoughtful and consistent manner. Mes-
sages represent common business documents such as purchase orders and invoices
and are assembled from a reusable library of common segments, data elements, and
qualifier codes maintained in a data dictionary by a UN committee that includes
experts from around the world.

126

EDI: The Ugly Stepsister of E-Commerce4

From the inside, every EDIFACT transmission is composed of the following:

EE One-to-many messages, each defined by one UNH message header and one UNT
trailer. Each message corresponds to one business document such as a PO or
invoice. The message is within the innermost envelope.

EE An optional functional group within one UNG header and one UNE trailer, stor-
ing one or more messages of the same business document type. One or more
functional groups can appear in each interchange, but the group is rarely used
outside North America.

EE A mandatory interchange defined by one UNB interchange control header and
one UNZ trailer. This is the outermost envelope.

The message is constructed of relatively short segments that carry a specific type
of data that can be used in many different business documents. Each segment is
identified by a three-character tag followed by a “+” character and is terminated
by a “'” character.

Segments are made up of data elements identified by a four-character numeric code
separated by the colon character (:). There are two basic types of data elements: ones
that simply store data, in a variety of formats, and ones that qualify the segment or
adjoining data elements with a particular function, format, or other characteristic.

DTM, for example, is the date/time/period segment used in every message. No
other segment carries a date. The type of date or time period stored and its format
in any instance is defined by a qualifier code. Take our DTM segment in the Figure
4.1 sample. The 2 after the tag is a code that identifies the date as the delivery date
requested. The 102 following the date identifies the date format as CCYYMMDD.

Nearly 800 types of dates, times, or periods for documents and events and dozens
of date/time formats are identified by an EDIFACT code. This approach supports
use of the standard across borders and time zones and is characteristic of its inter-
national scope. Every other segment works in the same way.

EDIFACT and IDoc Messages

EDIFACT messages follow the same naming conventions as IDoc logical message
types: a six-character capitalized name that identifies the business document it
represents, although IDocs have strayed from this nomenclature in recent years.
They share the same name for many messages: ORDERS (purchase order), DESADV
(despatch advice), INVOIC (invoice), and REMADV (remittance advice), and so on.

127

The Anatomy of an EDIFACT Interchange 4.2

Both IDoc and EDIFACT messages are designed for global use by as wide an array
of industries as possible.

Conceptually, at a structural design level, EDIFACT and IDoc messages follow a
similar approach. Both have a hierarchical structure composed of sequenced seg-
ments grouped in the following zones:

EE Header control record (IDoc) or envelopes (EDIFACT) defining the parameters
and contents of each message

EE Header data area with document-wide records such as document numbers, dates,
totals and summaries, and so on

EE Detail data area with granular line-item level records

Each segment is assembled from standard data elements that store discrete fields
from the business document they represent. Segments represent a particular type
of data and can be qualified with codes for reuse. They can be collected in hierar-
chical groups of related segments that can be populated once or repeat as often as
necessary to pass all relevant data. Groups of segments can themselves be grouped
within other groups.

The similarity ends there, however. EDIFACT—and all EDI messages—are bridge
documents between two or more systems. They are meant to accurately represent
the output of the sending system. An EDI purchase order has the full legal force
of a paper purchase order. It is a contract and must faithfully represent the data
generated by the sending system.

It’s up to the receiver to accurately convert the EDI bridge document to a format
that can be posted it to the receiving business system. The EDIFACT document is
a neutral container, and the specifics of its use are agreed to by the two partners
in a relationship, usually driven by the buyer.

IDocs are intelligent messages unique to SAP with standard application process-
ing logic behind them. They are key elements of a mature programming interface
with impressive application processing right out of the box as well as unlimited
customization.

IDocs are not neutral containers. They represent the business document, with its
logic and rules, as it has been defined in SAP, the business system of record.

128

EDI: The Ugly Stepsister of E-Commerce4

4.3 The Anatomy of an X12 Interchange

The inbound X12 850 purchase order is an iconic X12 transaction with its own
unique challenges and a critical interface in Acme’s implementation. Its hierarchi-
cal structure, as illustrated in Figure 4.2, is universal across all X12 transactions.

ISA interchange control envelope—1 to 1—mandatory

GS functional group header—PO—1 to N—mandatory

IEA interchange control trailer—mandatory

GE functional group trailer—mandatory

ST transaction set header—850—1 to N—mandatory

ISA*00* *00* *01*103391843 *01*055762322 *050706*093
5*U*00401*000000435*0*P*>~

Transaction DATA area—payload

Header DATA
BEG**SA*988888888**20080615~
CUR*BY*USD~
REF*DP*00085~
REF*IA*0087989~
DTM*001*20080705~

Detail DATA
PO1*1*6*EA*15.98**IN*006548232*UP*79595854521*VN*04698~
PO4*2~
SDQ*EA*UL*0078765656565*2~ ...

SE transaction set trailer—mandatory

SE*47*0001

IEA*1*850000553

ST*850*0001

Summary level DATA
CTT*2~
AMT*GV*127.84~

GE*1*850000553

GS*PO*SENDERID*RECEIVERID*20010327*1506*850000553*X*005010~

Figure 4.2 The Structure of an ASC X12 Interchange

From the inside out, every X12 interchange includes the following elements:

129

The Anatomy of an X12 Interchange 4.3

EE One to many transaction sets defined by the innermost ST transaction set enve-
lope and the SE trailer. The transaction set is a single instance of a business
document such as a PO or invoice. Each transaction set is identified by a three-
digit code such as 850 (PO), 810 (invoice), or 820 (payment advice).

EE One to many groups defined by the GS functional group envelope and the GE
trailer. The group collects one or more transactions of the same set such as POs
or payment advices identified by a function code. In our example, the function
code is PO for purchase order.

The GS envelope identifies the version of its X12 transaction sets. Gordy’s trans-
actions to Acme are always version 5010. While multiple groups can be included
in one interchange, in practice there’s usually only one.

EE The interchange is defined by the ISA interchange control envelope and the IEA
trailer. The interchange contains one or more GS groups, each of which has one
or more transaction sets.

The payload in the transaction set is one instance of a business document, a PO in
our example. It is constructed from sequenced segments, each of which is identi-
fied by a two- or three-character code.

For example, BEG is the beginning segment of the X12 850 transaction set with
identifying data for the document such as PO number and PO date. Unlike EDIFACT,
which only presents dates in the DTM segment, X12 stores dates in many other
segments besides DTM. But X12 also uses DTM in the same way as EDIFACT: to
qualify many different types of dates, times, and periods in many different formats.

In both X12 and IDocs segments are constructed to store a specific type of data
often qualified by codes for use in different documents and contexts. But common
data elements are often shared across multiple segments, which is not consistent
with the EDIFACT standard of a more abstracted architecture where the segment
defines the data element contents.

For example, X12 data elements 0373 (date), 0380 (quantity), and 0234 (product
ID) are used in many different segments besides DTM (Date/Time), QTY (Quan-
tity), and LIN (Item Identification), including segments that do not deal with these
objects as the central subject.

There’s a much tighter relationship between the data element and segment in EDI-
FACT. Date (2380) appears only in DTM; quantity (6060) only in QTY; and product
ID (7140) only in segments that directly deal with ordered product as the central

130

EDI: The Ugly Stepsister of E-Commerce4

subject; these are LIN (Item Number), PIA (Additional Product Info), BII (Bill Item
Identification), and TCC (Transport Charge/Rate Calculations).

IDocs follow X12 in this less strict use of data elements and segments.

4.3.1 Syntax and Semantics: X12 as Language

Let’s consider ASC X12 as a language for a moment. Like all languages, it has syntax
and semantics, two wonderful Greek words that loosely translate as grammatical
structure and meaning or content.

Syntax is defined by grammar, a set of rules about structuring transaction sets
maintained by ASC X12 but harmonized, where relevant, with the syntax rules
developed by UN/CEFACT for EDIFACT. Syntax rules are spelled out in EDI imple-
mentation guidelines available for a price from DISA.

The semantics—or vocabulary—that infuses the grammatical structure with mean-
ing is applied through a data dictionary that includes the following:

EE Code sources

EE Devised by various industry groups to meet their needs

EE Used as qualifiers for data elements

EE Data element dictionary

EE Defines all data elements available for use by all segments

EE Links data elements that require qualifiers to all available codes

EE Segment dictionary

EE Identifies all segments that can be used

EE Tags segments for use in the header, detail, and/or summary sections of the
data area

EE Defines the data elements used within each segment

EE Defines the sequence of data elements used within each segment

EE Transaction set tables

EE Identifies all transaction sets by a three-digit code for all versions of ASC X12,
such as 850

EE Identifies all segments that can be used in each transaction set and version

131

The Anatomy of an X12 Interchange 4.3

EE Defines the sequence of allowable segments for each transaction set and ver-
sion

An overview of how the X12 language is realized is illustrated in Figure 4.3.

Data element
dictionary

Seg dictionary:
Structure of all

segments

Transaction set
and version

Syntax =
grammatical

structure/rules

Semantics =
vocabulary

Txn set table
segments used
and sequence

EDI language

EDI Data Dictionary

Code sources:
Various industry

organizations

Data element
delimiters:

Partner-specific

Figure 4.3 The EDI Language Is Realized through Semantics and Syntax

At the highest level, the data dictionary imparts meaning to the grammatical structure
by linking the data elements and their qualifiers from the code list to the segments,
and linking the segments to the transaction sets and version.

But the standards are flexible so that each partner can adapt them to meet the spe-
cific requirements of his own business and industry, creating something like a local
X12 dialect, to push our language analogy one step further. There’s no dramatic
deviation from the standard. The differences are along the lines of:

EE Selection of transaction sets and version to map to the documents used in the
partner’s business processes

EE Choice of optional data elements and segments to use

EE Selection of a small set of qualifiers from the code lists, which determine busi-
ness usage of segments and data elements

EE Delimiters to use between data elements within segments; X12 delimiters are
selected by the partner, unlike EDIFACT, which provides a set of standard delim-
iter characters that all messages must use

132

EDI: The Ugly Stepsister of E-Commerce4

The details of each partner’s usage are spelled out in his EDI implementation guide-
lines, the starting point for our analysis of his data. It’s important to understand
the partner’s usage so that we can map the X12 to the IDoc in SAP.

But first we need to get a handle on the structure of the X12. We’ll stick with the
850 and begin with an overview of the envelopes.

4.3.2 The Envelope Segments

Envelopes provide the high-level organization and identity for the EDI interchange.
Together, the three envelopes answer the basic questions of who is the sender,
who is the receiver, and what is being sent. We’ll start at the highest level and
work our way down.

The ISA-IEA Interchange Control Envelope

The ISA interchange header and IEA trailer envelope segments define the inter-
change. Unlike all other X12 segments, the ISA header has a fixed length with a
delimiter. Unpopulated data elements filled in with spaces. All other X12 segments
are built of variable-length delimited data elements.

The ISA packages the interchange into a transmission from one sender to one
receiver, allowing the EDI system to identify the source and destination for the
transmission. The key data elements of the ISA segment include the following:

EE A fixed interchange sender ID qualifier

EE Interchange sender ID number

EE A fixed interchange receiver ID qualifier

EE Interchange receiver ID number

EE Interchange creation date

EE Interchange creation time

EE Interchange control segment version number

EE Unique interchange control ID number for the partner and transaction

The IEA trailer has two fields:

EE Number of functional groups in interchange

EE Interchange control ID number from the ISA header

133

The Anatomy of an X12 Interchange 4.3

The GS-GE Group Control Header

The GS group header envelope and GE trailer segments collect one or more ST
transaction sets into a functional group for one transaction type defined by a func-
tion code.

The GS envelope assigns a sender, a receiver, and a version of the X12 standard to
its transaction sets. The sender and receiver do not have to be the same as in the
ISA and can be used to identify different departments for internal routing of the
group and its transactions.

We won’t get that fancy in Acme’s implementation, however. Gordy’s group sender
and receiver will be the same as in the ISA. And Gordy Galaxy will never send
more than one group per interchange.

The following are the key data elements of the GS envelope segment:

EE Functional code that identifies the business function of the transaction sets
within the group—PO for purchase order

EE Sender’s EDI ID number

EE Receiver’s EDI ID number

EE Group control number identifying the current group within the interchange
(often is the same as the Interchange Control ID and is sent back to the sending
party by the receiving party in an X12 997 to acknowledge receipt of an EDI
transmission)

EE Version of the transaction sets in the group (Gordy uses 00510)

The GE trailer only has two fields:

EE Number of transaction sets in group

EE Group control number from GS segment

The ST-SE Transaction Set Header

The ST transaction set header and SE trailer segments identify transaction sets in
a group. Each transaction is one instance of a business document in the sender’s
system and is identified by a three-digit code: 850 for a PO. X12 version 5010 has
318 transaction sets.

We will map the transaction set to and from the IDocs in Acme’s SAP system. The
key data elements of the ST segment include the following:

134

EDI: The Ugly Stepsister of E-Commerce4

EE Transaction set code: 850 for a PO

EE Unique transaction set control ID number

The SE trailer has two fields:

EE Number of transaction set segments including the ST and SE envelopes

EE Unique transaction set control ID number from the ST segment

4.3.3 Dissecting Gordy’s 850 to Acme

Listing 4.1 offers a sample 850 X12 transaction from Gordy.

ST*850*0001~
BEG*00*SA*0099969569**20081202~
CUR*BY*USD~
REF*DP*0099~
REF*IA*0099989~
ITD*05*15*****30~
DTM*001*20081222~
DTM*002*20081205~
DTM*010*20081205~
N9*L1*SPECIAL INSTRUCTIONS~
MTX**IF MULTIPLE DESTINATIONS HAVE SAME SHIP DATE PLEASE~
MTX**SHIP TO FURTHEST DESTINATION FIRST AND CLOSEST LAST~
N1*BT**UL*0999567891299~
N1*SU*ACME STUDIOS~
PO1*1*6*EA*15.98**IN*0065832*UP*999956535219*VN*04698~
PO4*2~
SDQ*EA*UL*0099965656565*2*0099965656566*2*0099965656567*2~
PO1*2*2*EA*15.98**IN*006548234*UP*99995854525*VN*04693~
PO4*2~
SDQ*EA*UL*0099965656568*2~
CTT*2~
AMT*GV*127.84~
SE*23*0001~

Listing 4.1 An 850 PO Transaction Sent by Gordy to Acme

Let’s step through each segment to get a better handle on the transaction. Not all
of these segments will be mapped to our SAP ORDERS IDoc.

135

The Anatomy of an X12 Interchange 4.3

The ST Segment

A transaction set always begins with an ST segment and ends with an SE segment.
It identifies the document, assigns a sequential control number within its functional
group, and counts the number of segments in the transaction set. The ST segment
also begins the header zone of the data area.

The BEG First Segment

BEG is the first segment of the business document for the 850. Its sole purpose is
to identify the beginning of the 850 and to transmit key document numbers and
dates. It is mandatory and occurs only once in the transaction set.

The BEG segment that Gordy sends to Acme is defined in Table 4.1.

Ref ID Data Element Description Usage Value

BEG01 0353 Transaction set purpose code M 00

BEG02 0092 PO type code M SA

BEG03 0324 PO number M 02999

BEG04 0328 Release number O

BEG05 0373 PO date M 20080615

Table 4.1 Structure of the BEG Segment Sent by Gordy to Acme

Each data element is identified by two IDs:

EE A reference (i.e., BEG01) that links it to the segment and to its sequence within
the segment

EE A data element ID assigned by the X12 data element dictionary: 0373 in version
5010, for example, is an eight-digit date with format CCYYMMDD that can be
used in any other segment where a date is required

There are 12 data elements in segment BEG in version 5010 of the X12 standard,
but Gordy only sends Acme these five, and BEG04 is always null. Data elements
left out are optional and can be used to refine the business process.

For example, BEG07—data element 0587—holds the acknowledgment type code
that specifies the type of acknowledgment expected from the vendor for the PO. Data
elements 0324 (PO number) and 0373 (PO date) are both mapped to the SAP IDoc.

136

EDI: The Ugly Stepsister of E-Commerce4

Codes and Qualifiers

We should note the use of the qualifiers in data elements 0353 (BEG01) and 0092
(BEG02). These codes are defined by various industry groups and are linked to data ele-
ments by the version of the X12 standard through the data elements dictionary. Once
assigned, however, codes are not removed.

Data element 0353 defines the purpose of the PO transmitted. It qualifies the entire
transaction. Value 00 defines the transmitted document as an original PO and is a trigger
for action: Create this customer PO in your system. The only other value that Gordy uses
for this element is 22 (information copy) which is never transmitted to Acme.

The action implied by this code is further qualified by data element 0092, with the
value SA for standalone order, identifying the type of PO being sent, which points to
the business document and process that should follow. This is underlined by the other
qualifiers that Gordy can send in 0092:

EE BE: Blanket order with estimated quantities and no firm commitment

EE RL: Release or delivery order against an existing contract or blanket order

These values point to very different types of business documents that may need to be
created—or not—in the receiving SAP system.

This could lead to widely different follow-on business processes. A value of BE in data
element 0092, for example, could trigger a report that is emailed to users rather than
creation of a PO in SAP.

The way these codes are used is one of the key elements that define Gordy’s dialect
of the X12 EDI language. Usage is fully documented in Gordy’s EDI implementation
guidelines for the transaction and version.

We’ll look at codes a little more closely when we discuss the DTM segment in Section
Header Position 060: The DTM Segment below.

The CUR Segment

The CUR segment follows BEG in position 030 of the header. It identifies the
transaction currency. Both data elements reference codes:

EE CUR01: Data element 0098. Entity identifier code. Value: BY for buyer. Quali-
fies trading partner type whose currency is stored.

EE CUR02: Data element 0100. ISO currency codes. Value: USD. This is mapped to
the IDoc.

137

The Anatomy of an X12 Interchange 4.3

The REF Segment

The REF Reference Information segment provides identification data for a variety
of objects, including the customer, vendor, order, and even associated documents
and events.

It can occur multiple times and uses codes in data element 0128 (REF01) to iden-
tify the nature of the data transmitted in 0127 (REF02). Only two codes are sent
by Gordy to Acme:

EE DP: Department number. Identifies an order for Gordy (0099) or for its deep
discount club chain Klub Kazoo (0100). The two are set up as different customer
accounts in Acme’s SAP system. Gordy expects separate delivery and invoices
for both, although it issues only one payment.

EE IA: Internal vendor number. The code Gordy uses in its business system to
identify Acme Studios.

The ITD Segment

ITD stores terms of payment for the order. Terms of payment with Gordy are
entered in Acme’s SAP customer master for Gordy’s sold-to partner record, in the
billing document screen of the sales area data.

When a sales order is created from Gordy’s purchase order in SAP, terms of pay-
ment are pulled from this record. They are not brought in through the IDoc, so
we don’t have to map them.

The segment can occur more than once, but Gordy only sends one instance with
the following data elements:

EE ITD01: Data element 0336. Terms of payment type code. 05 for discount not
applicable.

EE ITD02: Data element 0333. Terms of basis date code. 15 for receipt of goods.

EE ITD07: Data element 0386. Terms of net days. 30 for payment 30 days after
receiving ordered goods.

The DTM Segment

DTM is the date segment and can occur up to 10 times. Each instance holds a dif-
ferent type of date identified by the qualifier in data element 0374 (DTM01). All of

138

EDI: The Ugly Stepsister of E-Commerce4

these dates are mapped to the SAP IDoc. Gordy’s use of the DTM header segment
is described in Table 4.2.

Ref ID Data Element Description Usage Value

DTM01 0374 Date/time qualifier M 001

DTM02 0373 Date M 20080701

Table 4.2 Structure of the DTM Segment Sent by Gordy to Acme

Data element 0374 qualifies the segment and data element 0373. It tells us what
action is expected by what date. It also points to where this date will be mapped
in the IDoc. The following codes are used in data element 0374 in our sample:

EE 001: Cancel after date. Order is to be canceled if goods haven’t been delivered
by this date.

EE 002: Requested delivery date. Goods to be delivered to the ordering store loca-
tion by this date.

EE 010: Requested ship date. Latest date that goods can be shipped to Gordy’s dis-
tribution center to make requested delivery date to the store.

In addition, the selection process for determining what codes to use point to the
way that the business process is managed by the sending partner and to details of
Gordy’s implementation of X12. Of the more than 1,280 possible codes linked to
data element 0374 in X12 version 5010, Gordy uses only seven.

The N9 Extended Reference Loop

We’ve looked at two types of segment so far: standalone single instance and stand-
alone repeating segments.

Segments BEG and CUR each occur only once, whereas REF, ITD, and DTM can be
repeated multiple times. All present a flat structure, following one after the other,
and none has any children.

N9, on the other hand, is a proud parent. It is a loop, a repeating virtual group
that includes more than one child. N9 is the parent and all instances of MTX that
follow are its children.

Our sample transaction features a number of loops, including N9, N1, PO1, and
CTT. We’ll look at each of these in turn.

139

The Anatomy of an X12 Interchange 4.3

All loops are identified in the ASC X12 850 version 5010 standard by a loop ID and
by beginning and end flags. The standard identifies five segments that can occur
within the N9 loop. Each is tagged with the N9 loop ID. N9, the first segment and
the parent, is also tagged with the begin flag. EFI, the last segment, is tagged with
the end flag.

The loop is optional but can occur up to 1,000 times in the transaction. If the N9
loop occurs, the parent N9 segment must appear only once each time the loop is
repeated. All other segments are optional.

Once again, the 850 that Acme receives from Gordy doesn’t include all of the pos-
sible segments in the standard. The structure of Gordy’s N9 loop virtual group is
illustrated in Figure 4.4.

Parent N9. Mandatory. Only 1 instance.
N9*L1*SPECIAL INSTRUCTIONS~

Child MTX. Optional. Multiple iterations.
MTX**IF MULTIPLE DESTINATIONS HAVE SAME SHIP DATE PLEASE~
MTX**SHIP TO FURTHEST DESTINATION FIRST AND CLOSEST LAST~

Loop N9. Optional. Can occur up to 1,000 times.

Figure 4.4 The N9 Loop Is a Virtual Group with a Parent-Child Relationship

N9 is the parent and appears only once in our sample. MTX is the child and occurs
twice, although it can occur many more times. Like the loop itself, MTX is optional
and does not have to occur when an N9 segment is present. However, Gordy uses
this loop to send Acme text messages. N9 never appears more than once in the
transactions that Acme receives from Gordy, and it’s always accompanied by one
or more MTX segments.

Codes qualify the loop and identify the nature of the information being transmit-
ted. The code L1 in data element 0128 (N901) means letters or notes. The nature
of these notes is specified by data element 0127 (N902), which is hard-coded to
read “SPECIAL INSTRUCTIONS.”

The instructions are detailed in the subsequent MTX segments in data element
1551 (MTX02), which holds text. The standard allows up to 4,096 characters in
this data element, but Gordy never sends more than 80.

We don’t have to pass this data element to SAP. If we did, it would be mapped to a
text segment in the IDoc with a text element qualifier. It would then post to a text

140

EDI: The Ugly Stepsister of E-Commerce4

element at the header level of the SAP sales order and would pass to the delivery
document when it’s generated.

There are 1,731 possible codes for data element 0128, but Gordy only uses three
of them and sends only L1 to Acme. In addition to L1, Gordy uses two others:

EE L9: Customer part number

EE LA: Shipping label serial number

The rules for this are documented in Gordy’s 850 implementation guidelines.

The N1 Party ID Loop

When there’s no SDQ segment present, we use the N1 party identification loop to
map the ship-to party to the IDoc, a particularly important piece of data for posting
the SAP sales order. In our 850 sample, N1 isn’t relevant for mapping because the
SDQ segment provides us with the ship-to party.

The mandatory N1 loop can occur up to 200 times. The X12 standard includes 15
segments within the N1 loop, but Gordy uses three (N1, N3, and N4) and gener-
ally only sends Acme one: N1. The other two are for address information and not
relevant to posting sales orders in SAP.

N1 is the parent segment and occurs only once for each iteration of the loop. The
N1 segment that Gordy sends Acme in the 850 is defined in Table 4.3.

Ref ID Data Element Description Usage Value

N101 0098 Entity identifier code M BY

N102 0093 Partner name O

N103 0066 Identification code qualifier M UL

N104 0067 Party ID number M 0234567891299

Table 4.3 Gordy’s N1 Party Identification Segment

Data element 0098 (N101) identifies the type of party stored in the segment: part-
ner, organization, location, or individual. There are 1,500 codes in version 5010
of the ASC X12 standard but Gordy only sends four to Acme:

141

The Anatomy of an X12 Interchange 4.3

EE BY: Buying party for the purchasing organization. Ordered goods will be shipped
to a distribution center for later allocation to stores on an as-needed basis. BY
is always accompanied by another ST N1 segment.

EE ST: Ship-to party, either a store or distribution center. When ST is present there
is no SDQ segment. Each SAP sales order is created for one sold-to and one
ship-to party. When ST is present in the N1 segment, there is only one ship-to
party for the PO. The ship-to party is the only value we’ll map to the IDoc from
Gordy’s N1 segment.

EE BT: Bill-to party.

EE SU: Supplier/manufacturer for the vendor.

BY, ST, and BT are further qualified by the Global Location Number (GLN) in data
element 0067 (N103). We know it’s a GLN from the code UL in data element 0066.

GLN is a unique 13-digit universal code that identifies one department, location,
legal entity, or trading partner. It’s assigned and maintained by GS1, the global
standards organization that replaced European Article Numbering (EAN) Interna-
tional and the US-based Uniform Code Council (UCC). More than 100 GS1 national
member organizations share this global standard.

UCC is now GS1 US, which is responsible for the uniform product code (UPC)
numbers embedded in bar codes. Gordy sends UPC numbers, along with other
item number types, to identify product it wants to order from suppliers.

Another important GS1 standard related to UCC is the Global Trade Item Number
(GTIN), a unique global product code. GTINs identify products, inner packs, cases,
and pallets bearing products in a delivery environment. They show up on purchase
orders, delivery, and payment documents.

GLNs, UPCs, and GTINs share the same basic structure: a company prefix, followed
by a location or item number, and a check digit at the last position. UPCs are 12
digits and GTINs can be 8, 12, 13, or 14 digits in length.

GS1 standards simplify mapping because we only have to deal with one code for
each partner or item—as long as the standards are being used, of course.

In this, Gordy’s has followed the path of virtue. It uses GLNs for all its organiza-
tional units, including purchasing organizations, accounts payable, store locations,
and distribution centers.

142

EDI: The Ugly Stepsister of E-Commerce4

But Acme, like most companies, continues to use its internal SAP identifiers for
customers and products, although it does get UPC numbers for all its finished
goods that are sold.

The only value that we pass to the IDoc from Gordy’s N1 segment is the GLN when
data element 0098 equals ST. In our current example, the ship-to party is in the
SDQ segment, so we map nothing from N1.

The PO1 Item Loop

The PO1 loop stores details of the goods ordered for each of Gordy’s stores or
distribution centers: item numbers, quantities, unit prices, and, when the SDQ is
present, store locations.

The PO1 loop is mandatory and can occur up to 100,000 times in one order. Under
the X12 standard, the PO1 loop can include as many as 36 segments, but Gordy
only sends Acme the three illustrated in Figure 4.5.

Parent PO1. Mandatory. Only 1 instance.
PO1*1*6*EA*15.98**IN*006548232*UP*795958545212*VN*04698~

Child PO4. Optional. Up to 999,999 iterations.
PO4*2~

Loop PO1. Mandatory. Can occur up to 100,000 times.

Child SDQ. Optional. Up to 999,999 iterations.
SDQ*EA*UL*0078765656565*2*0078765656566*2*0078765656567*2~

Figure 4.5 Structure of the PO1 Loop in Our Sample of Gordy’s 850 to Acme

The PO1 segment is the parent, and PO4 and SDQ are its children. PO1 can occur
only once in each instance of the loop, whereas PO4 and SDQ can both occur up
to 999,999 times…in other words, more than once.

Baseline item data is sent in PO1, including item number, total quantity ordered,
and unit price. The structure of the PO1 segment that Gordy sends to Acme is
detailed in Table 4.4.

Ref ID Data Element Description Usage Value

PO101 0350 Line item number M 1

PO102 0380 Total quantity ordered for item M 6

Table 4.4 Gordy’s PO1 Item Details Segment

143

The Anatomy of an X12 Interchange 4.3

Ref ID Data Element Description Usage Value

PO103 0355 Unit of measure O EA

PO104 0212 Unit price O 15.98

PO105 0639 Basis of unit price O

PO106 0235 Item qualifier: Buyer’s item no. M IN

PO107 0234 Item M 006548232

PO108 0235 Item qualifier: UPC M UP

PO109 0234 Item M 795958545212

PO110 0235 Item qualifier: Vendor’s item no. M VN

PO111 0234 Item M 04698

Table 4.4 Gordy’s PO1 Item Details Segment (Cont.)

When an SDQ segment is present, data element 0380 (PO102) contains the total
quantity ordered for the item. Data element 0380 is only mapped to the IDoc when
there is no SDQ present.

Data element 0235 qualifies 0234, which contains the item number. Neither can
appear without the other. In Gordy’s usage, the pair is repeated three times. The
X12 standard allows the two to be repeated up to 10 times in the PO1 segment.
Each pair qualifies a different type of item number.

We’ll map all three to the IDoc. The IN item, the material number set up in Gordy’s
business system, isn’t used in SAP. The VN item is Acme’s SAP material master
number. The UP item is the 12-digit UPC identifier for Acme’s item number. It is
stored in the material master record in SAP, in field EAN11 in table MARA. We’ll
see how these item numbers are evaluated during our discussion of inbound IDoc
processing in SAP in Chapter 5, Real World Business Process Integration with EDI.

Pricing is applied when the sales order is created through pricing conditions associ-
ated with the material and customer. SAP treats the unit price from the X12 850
as a customer expected price. The customer’s price is compared to the price set in
pricing conditions during processing of the IDoc.

If the customer price is different but falls within an accepted tolerance range set
for the pricing condition, say $15 up or down, SAP uses its own price in the sales

144

EDI: The Ugly Stepsister of E-Commerce4

order. If the customer price falls outside the tolerance limit, the sales order is put
on incompletion hold, and pricing is manually corrected after contacting the cus-
tomer and working out who had the correct price.

Segment PO4 is about the physical details of the item, including packaging, weights,
and dimensions. The only value that Gordy ever sends is in data element 0356,
which is the pack quantity. In the examples that we’re looking at here, this value
refers to the number of “eaches” within each pack.

We introduced the SDQ segment in our discussion of the 852 and VMI processing
in Chapter 2, Section 2.1.3, Selling the Dream with Vendor Management Inventory.
It has a simple structure and a single-minded purpose: to report the quantity of
the item ordered by each store location. The base structure of the SDQ is detailed
in Table 4.5.

Ref ID Data Element Description Usage Value

SDQ01 0355 Unit of measure M EA

SDQ02 0066 SDQ location qualifier: GLN M UL

SDQ03 0067 Store location M 0099965656565

SDQ04 0380 Quantity ordered M 2

Table 4.5 The SDQ Segment Tells How Much Each Store Is Ordering

Each SDQ segment always has the unit of measure, a qualifier to identify the type
of location codes reported (GLN identified by qualifier UL), and at least one pair
of data elements: 0067, which holds the GLN number, and 0380, which has the
quantity ordered by that store.

Each SDQ segment that Gordy sends Acme can hold up to 10 pairs of data elements
0067 and 0380. Each PO1 loop can have up to 500 SDQ segments.

The SDQ isn’t as complex as it may seem. The purchasing department orders Acme
movies on DVD for all stores in Gordy’s chain. One bill-to party (AP) gets the
invoice for the order. The PO consolidates ordering requirements for all stores in
the SDQ within each PO1 loop. This is an efficient way to transmit data for a large
organization with a lot of locations.

The challenge is in the mapping. The IDoc build is driven by the way SAP sales
orders are created. Each sales order is for one sold-to and one ship-to party. The

145

Enveloping and De-enveloping: The X12 in Action 4.4

item-level SDQ represents one SAP sales order for each item-location-quantity
combination. The GLN store location in SDQ at the item level must be mapped to
the E1EDKA1 partner segment at the header level of a new ORDERS message on
the IDoc side.

If, for example, we have a PO from Gordy with SDQ segments that hold item-
quantity ordering data for 2,000 stores, we need 2,000 ORDERS IDocs, one for
each store. Each ORDERS IDoc creates one sales order for one ship-to party.

This SDQ unraveling is a common challenge in EDI implementations. We can do it
through a script at the operating system level before the transaction is translated, we
can do it in the map during translation, or we can do it in SAP by writing custom
ABAP code, which is what we’re going to do for Acme.

We’ll look at this challenge more closely when we build our 850-ORDERS interface
in Chapter 12, Inbound Customer Purchase Order.

The CTT Summary Group

Summary information for the transaction is stored in the CTT group. Its use is
optional. Many of Acme’s partners do not include it, but Gordy does. The CTT
segment is the parent and AMT the child. Like the group, both segments can occur
only once.

Gordy uses the CTT segment to report the number of PO1 segments included in
the transaction. This value is in data element 0354 (CTT01).

The AMT segment reports the gross value of all items in the transaction, including
all charges minus allowances. This value is in data element 0782 (AMT02) and is
identified by the GV qualifier in data element 0522 (AMT01).

None of the data in the CTT loop will be mapped to the IDoc.

4.4 Enveloping and De-enveloping: The X12 in Action

EDI envelopes are critical to the processing of an interchange by the integration
system, whether that system is in-house, at a service bureau, or in a cloud-based
platform. The envelopes define and identify the interchange.

The integration system needs to know who the message came from, who it’s going
to, and what it contains. This is done through de-enveloping for inbound messages

146

EDI: The Ugly Stepsister of E-Commerce4

or enveloping for outbound messages. This is the critical step that routes the mes-
sage to the receiver’s business system, regardless of direction. It’s a good place to
start our exploration of message process flows.

4.4.1 Unwrapping an Inbound EDI Interchange

We’ll use the inbound X12 850 PO that maps to an ORDERS IDoc and posts to an
SAP sales order for this example. We’ll assume that there is only one X12 PO in
the batch as we walk through these steps.

1. Acme’s EDI system receives the interchange from the customer. The first step
is to verify that the first segment in the interchange is a valid ISA control enve-
lope.

2. The EDI sender and receiver trading partner ID and qualifiers are identified and
confirmed. The interchange control ID is then checked to confirm that it hasn’t
been sent before.

3. The ISA header and IEA trailer are then stripped from the interchange and the
EDI system is queried for the GS envelope using the sender and receiver IDs,
X12 version (5010), and the function code (PO).

4. The GS header and GE trailer segments are then stripped from the interchange,
and the EDI system queries for the ST envelope linked to the GS envelope using
the transaction set code from the incoming ST – 850.

5. At this point, the system identifies the translation map, which is linked to the
ST envelope through key values from all three: sender, receiver, qualifiers, ver-
sion, and transaction code.

6. The translation map is called and the 850 converted to an ORDERS IDoc file.
The map populates the control segment with the sender, receiver, message and
basic types, and other key values needed to pass checks before being written to
the SAP IDoc database.

7. The IDoc file is sent into SAP by calling a standard RFC function module.

The envelopes are defined in the EDI subsystem and are specific to the trading
partner and X12 version and transaction set.

At Acme Pictures, the inbound ISA points to only one external trading partner ID
and qualifier. All GS functional group and ST transaction set envelopes for that
trading partner link to the ISA through the trading partner ID.

147

Enveloping and De-enveloping: The X12 in Action 4.4

The inbound GS group envelope is further distinguished from the ISA by its ver-
sion and function code, read from the incoming interchange. These keys tie it to
the transaction set envelope which is associated with the translation map and the
IDoc message and basic type: ORDERS.ORDERS05 for the 850.

Gordy’s uses a GLN as their EDI trading partner ID. Acme’s SAP system expects its
customer number in the SNDPRN field of the control segment before it will post
a sales order from Gordy’s incoming PO in the ORDERS IDoc.

We could always hard-code the SAP customer number in the translation map,
assuming we build one map for each trading partner. A better way would be to
look up the SAP number at runtime based on the trading partner IDs and such
other variables as the transaction set, direction, and IDoc types.

We can build this table in the EDI system or in SAP and read it at runtime to identify
the SAP partner number during inbound processing or the EDI trading partner ID
during outbound processing. Not surprisingly, we’re going to build it for Acme
Pictures in SAP. We’ll use a customer exit to do our conversions before the IDoc
interface checks the partner ID.

We look at building and using this custom EDI conversion table in greater detail
in later chapters. For now, it’s enough to know that during inbound processing it
will be read in SAP using key values from the control segment to provide the SAP
customer number to field SNDPRN and the SAP logical system to field RCVPRN.

4.4.2 Building an Outbound EDI Interchange

We’ll use the outbound INVOIC message to Gordy’s Galaxy for this example and
assume two IDocs.

1. The IDocs are batched and exported to a file from Acme’s SAP system and sent
to the EDI system through an RFC to a listening process.

2. The IDoc file is translated in a loop, one at a time, to an ASC X12 810 EDI invoice.

3. Each transaction is packaged into a transaction set by wrapping it with an ST
header and SE trailer.

4. A sequential transaction set control number is assigned to each ST transaction
in the batch.

5. The transaction sets are then packaged into one group by wrapping them in a
GS functional header and GE trailer.

148

EDI: The Ugly Stepsister of E-Commerce4

6. A group control number is assigned to the GS-GE group by reading and incre-
menting the last number used stored in a group control ID table in the EDI
system database.

7. The group is packaged into one interchange by wrapping it in an ISA header
and IEA trailer envelope.

8. An ISA interchange control ID is assigned to the envelope. The last ISA control
number used for an outbound Gordy’s interchange is read from a table in the
EDI system and incremented.

9. The interchange is passed to a communications process for transmission to
Gordy’s by AS2.

4.5 Summary

We’ve completed our brief introduction to EDI and have seen that it has a long and
interesting history. In spite of the numerous predictions of its imminent demise,
it remains a critical part of the world’s economic infrastructure, supporting more
than 20 million transactions a day.

While the ASC X12 standard grew out of the Berlin Airlift and the push to standardize
documents and communications in the transportation industry in the US, the global
UN/EDIFACT standard developed out of the need to rationalize international trade.

We went over the structure of sample EDIFACT and X12 messages and saw that
while there are differences between them, both are consistent standards for the
electronic transmission of business documents based on a data dictionary main-
tained by committees of experts.

In all this, an understanding of the envelopes is critical. The envelopes are the
starting point for both the packaging of an EDI interchange and its processing,
regardless of direction or standard for that matter. The envelopes are also key
to the relationship between EDI and the IDoc interface through their link to the
control segment.

We’ll see this in greater detail in the next chapter as we begin our exploration of
how EDI will actually work with SAP through IDocs at Acme Pictures.

149

For Darryl Q, services and standards meant that his writers stayed sober
long enough to finish a movie. But for the Cinderella studio he built, services
and standards mean an integrated business system built around SAP and
fed by EDI. So let’s look at the nuts and bolts of how our project team will
keep the data flowing seamlessly in and out of SAP.

5 Real-World Business Process
Integration with EDI

The US Department of Commerce defines EDI on its website in a typically under-
stated bureaucratic fashion as:

A computerized system that allows linked computers to conduct business transactions,
such as invoicing and ordering, over a telecommunications network.

This bare-bones definition misses the boat on standards and on the independence of
EDI from communications technology. We could throw the baby out with the bath
water and demand a more precise definition for our tax dollars from the bureaucrats
at Commerce. But their definition hits the mark in one crucial way: It focuses on
the links between remote systems through business transactions created by EDI.

This link is critical. EDI is about relationships enabled by standards that bring together
trading partners—and their business processes—into a cooperative exchange. The
electronic business documents they exchange are only the tip of the iceberg.

Each PO, shipping order, invoice, or payment is the result of the business process
that produced it: the sequence of actions, both automated and manual, taken by
both trading partners that impact each other.

At the same time, each transacted document is part of a greater business processing
cycle—order-to-cash—that involves both TPs. The processing cycle is only completed
after the last document for each partner posts to his business system and completes
whatever follow-up processing he requires, such as updates to inventory or AR or
AP or to some GL account.

150

Real-World Business Process Integration with EDI5

The EDI standard used by the partners doesn’t care what computer system runs at
either end, nor does it care what data format feeds each system or how the inter-
changes are transmitted from one to the other.

The key thing is that the partners agree on how the standard is going to be used.
One is the buyer, and the other the seller; the buyer drives the relationship and
usage of the standard. In EDI, as in life, he who pays the piper calls the tune.

This relationship can have a dramatic impact on the way both the buyer and seller
end up doing business with each other, and within their own systems and orga-
nizations. We’ll see how this can work in the VMI process. But first, let’s look at
what we need to make this EDI thing work.

5.1 The Basic EDI Interface

A base EDI interface process flow is illustrated in Figure 5.1. This document exchange
is at the heart of all EDI processes.

Document:
ORDERS

Buyer’s EDI
system: Identify,

translate

X12 850

Seller’s EDI
system: Identify,

translate

Document:
XML order

Buyer‘s bus.
application:

Ordering

Seller’s bus.
application:
Cust. order

X12 850

Buyer’s
AS2 server:

Security/send

Seller’s
AS2 server:

Security/receive

TRANSMIT HTTP/S

Figure 5.1 Base EDI Interface Process Flow

The business application in the buyer’s system issues a purchase order. The PO is
exported to a file in an internal format, such as an ORDERS IDoc. The IDoc is sent
to the EDI system, which identifies the sender and receiver; business document
type; EDI standard (X12 or EDIFACT), version, and transaction; the envelope and
translation map; and what happens next.

The EDI system translates the ORDERS IDoc to an X12 850 EDI PO and passes it to
the AS2 server, which encrypts the interchange, applies relevant security parameters,
and sends it to the seller’s AS2 server through an HTTP/S POST.

151

Trading Partner Management 5.2

The seller’s AS2 server authenticates the message, decrypts it, extracts the X12 850
and hands it off to the seller’s EDI system, which runs the same identification steps
that occurred in the buyer’s system. The EDI PO is then translated to an internal
customer order data file format and sent into the seller’s business system where it
posts to an internal customer order.

This is how the business systems at both ends are linked. The key is the X12 EDI
standard that both parties use to transfer structured order data between them. The
X12 standard mediates between the different file formats used by each business
system.

This loosely coupled architecture preserves each partner’s independence and binds
them in a business relationship that provides the foundation to support extensive
customization and rationalization.

5.2 Trading Partner Management

The exchange of documents seems simple enough, doesn’t it? But before we can
begin building our interfaces, the foundation for the relationship needs to be in
place: knowledge of each partner’s requirements.

The key points of this knowledge, from Acme’s point of view for the VMI process
with Gordy’s Galaxy of Games & B Flix, are outlined in Figure 5.2.

Trading partner management is a central feature of any EDI system. It lays the
ground rules and defines the parameters for the business relationship.

Trading partner management begins with a formal agreement. This usually involves
a contract or other document that spells out the relationship and provides techni-
cal information about transactions, security requirements, and communications
protocols.

This agreement feeds trading partner management in Acme’s EDI system. The
trading partner is set up with base contact information and an EDI ID number and
qualifier that will be linked to Acme’s EDI ID and qualifier. Acme can have different
EDI IDs and qualifiers for different partners, but we’re not going to go there. There
are customers who maintain a separate trading partner ID for each transaction, but
this only complicates what should be a very simple and straightforward relationship.

152

Real-World Business Process Integration with EDI5

Trading partner
management

TP agreement:
formalizes EDI

relationship

Security
requirements:

Certs/PGP

Communication
protocols: AS2

AS2 ID

Connection
parameters:
URL/Login

Trading partner
ID and qualifier

Business
processes

Analysis:
business txns:
POS/INV, PO

Partner’s data
requirements

EDI standards
ASC X12

Mapping
requirements

Envelopes/ack
852, 997

Txns/version
852/997 5010

Figure 5.2 Building the Relationship: Setting Up the EDI Partner for VMI

The combination of trading partner ID, Acme EDI ID, and qualifier is the key
that identifies the envelopes in Acme’s EDI RIM for each transaction that will be
exchanged. This key matches the sender and receiver in the ISA interchange and
GS group control envelopes:

EE Inbound: Sender is the trading partner; receiver is Acme’s EDI ID.

EE Outbound: Sender is Acme; receiver is the trading partner EDI ID.

Before we decide what envelopes to set up, we determine what transactions to
exchange with the partner. This was analyzed during the blueprint phase. It resulted
in a number of spreadsheets and other documents that achieved the following:

EE Identified required EDI transactions from legacy and from the design work on
the business process flows for the new SAP EDI environment

EE Mapped the EDI transactions to corresponding IDocs and to the business docu-
ments that they will match up to in SAP

153

Trading Partner Management 5.2

EE Fit these EDI transactions within the process flows that describe the new busi-
ness environment in the to-be SAP EDI system

For Gordy’s Galaxy, we’ll exchange EDI transactions within the order-to-cash pro-
cessing cycle. For now, we’re interested in only one VMI transmission—the 852,
with its three types of data: daily POS, weekly inventory, and reserved purchase
order (RPO) numbers. The to-be process flow for VMI is discussed in greater detail
in Chapter 3, Section 3.3.1, VMI Sales Orders.

The VMI process includes the following internal interfaces:

EE From EDI to the VMI system

EE Between VMI and StoreData and StoreData and VMI

EE Between VMI and SAP

We’ll need envelopes for an X12 852 transaction. Because Gordy needs Acme to
return a 997 functional acknowledgment (FA) for each inbound transaction we
receive, we also need envelopes for an outbound 997. So the following envelopes
are required for the inbound X12 852, with Gordy as the sender and Acme the
receiver:

EE Generic inbound ISA interchange

EE Inbound GS group for function code PD (POS or INV or RPO) and ASC X12 ver-
sion 5010

EE Inbound ST transaction set for transaction code 852

For the outbound 997, Acme is the sender and Gordy the receiver. We need the
following:

EE Generic outbound ISA interchange

EE Outbound GS group for function code FA (functional acknowledgment) and ASC
X12 version 5010

EE Outbound ST transaction set for transaction code 997

Our analysis expanded beyond the simple identification of EDI transactions and
corresponding IDoc message types in SAP. We also analyzed data from production
samples of 852 transactions sent by Gordy in the past few months. This meant
weeks of studying Gordy’s 852 guidelines and poring over EDI data to identify
recurring and occasional patterns of data usage. The goal is to document Gordy’s

154

Real-World Business Process Integration with EDI5

real-world usage so that we can build mapping specifications to support our devel-
opment of translation maps.

In addition, trading partner setup includes the communications and security agree-
ments with Gordy’s Galaxy. This begins with Gordy’s mandate that Acme use AS2
for EDI transmissions.

The AS2 setup includes defining an AS2 ID that can be different from the EDI ID
number. Each partner has its own AS2 ID that it uses for all its AS2 partners. We
could use GLNs or DUNs but whatever we decide to use, it must be documented
in the trading partner agreement.

This ID is entered in the partner’s AS2 profile and included in the header area of
all AS2 transmissions between the two partners.

Connection parameters need to be set up, including the URL endpoint for the
HTTP/S POST to the trading partner’s AS2 server; user name, password, and any
other login parameters required. At the same time, security requirements such as
encryption logarithms—in this case, PGP (Pretty Good Privacy)—are entered, and
AS2 certificates are exchanged between the partners to authenticate transmissions.

5.3 The Impact of VMI Collaboration through EDI

And so Acme’s trading partner relationship with Gordy’s Galaxy for the 852 pro-
cessing cycle is defined and encoded in the RIM. The foundation for the business
collaboration is in place.

So what does this give us? VMI, or vendor-managed inventory, is a particularly
good example because it is a relationship of trust that grants Acme the power to
take over ordering and replenishment for Gordy. Without the close integration
between the systems of both partners enabled by EDI, VMI would be impossible
to pull off.

As the vendor, Acme is responsible for ensuring that Gordy has the stock it needs
in its stores to sell movies on DVD. To do this, Gordy needs to keep Acme informed
of how much stock it’s selling every day and how much it has left in inventory at
the end of each week.

155

The Role of Acme’s EDI RIM 5.4

This is done through the 852 POS and inventory data that feed Acme’s VMI system
so that it can run complex calculations to determine ordering levels for Gordy. This
results in VMI POs for Gordy that are sent into Acme’s SAP system. These POs
post as sales orders and trigger the order-to-cash cycle that stocks Gordy’s store
and ends with a payment for product to Acme.

The impact of this business processing cycle, which is only possible because of EDI,
is profound and far-reaching. Above and beyond the efficiencies that automated
data transfers bring to the back office, the cost savings in reduced paperwork,
and the speed in which business processing cycles complete, EDI has wrought a
significant cultural shift for Gordy’s Galaxy.

Take the issue of store-level inventory. Before VMI and EDI, store managers were
responsible for controlling inventory in their own stores. There was no such thing
as just in time (JIT) delivery of stock. Store managers predicted their own needs
as best they could, which meant they often ordered more than they could sell,
resulting in higher inventory costs.

VMI enabled by EDI freed store managers of this responsibility. They were able to
focus instead on running the store and hiring and firing staff. The enterprise was
able to reduce the level of skills required for this role, which resulted in lowering
the costs of hiring and maintaining store managers.

5.4 The Role of Acme’s EDI RIM

Trading partner management defines the EDI relationship and provides the foun-
dation for the exchange of business documents with Acme’s partners. Acme’s EDI
system—the RIM—provides other services that are supported by trading partner
management and are critical to the completion of the business processing cycle
enabled by EDI. We look at some of them in the following sections.

5.4.1 Outbound Services

Services used to support outbound processing through the EDI RIM are illustrated
in Figure 5.3. We’re using an ORDRSP IDoc to X12 855 interface in our illustration
of the outbound process.

156

Real-World Business Process Integration with EDI5

SAP

RFC to/from EDI

Update database
correlation data
all milestones

Req’t for 997:
Update correlation

to wait/monitor

Build AS2 file
compress/

encrypt/address

HTTP/S call
method post to

Gordy AS2 server

Wait for MDN/
receive MDN

from Gordy AS2

Identify AS2
profile: EndPoint/

security reqts

SAP JCO

IDoc Adapter

IDENTIFY:
Sender/receiver

envelope/txn/vers

EDI RIM: Listener BPM

ORDRSP
XML IDoc

Map: Gordy
ORDRSP-855

translate

Routing rules:
Send X12 to
AS2 server

855 X12 5010
PO ack

Receive 997 in
RIM from Gordy

Figure 5.3 Outbound Processing Steps in Acme’s EDI RIM

Connecting to SAP—The IDoc Adapter and JCo

An IDoc is exported in XML format to a file on the SAP application server. An RFC
is then made to a business process workflow (BP) in the EDI RIM. The export is
handled by standard functions in the IDoc interface, including MASTER_IDOC_DIS-
TRIBUTE, which applies application link enabling (ALE) checks to the IDoc before
calling function EDI_OUTPUT_NEW to export the IDoc through an XML file port and
trigger the RFC.

The BP responds because it was identified as the listener process for outbound
RFCs in the RIM’s IDoc adapter. The workflow picks up the IDoc file from the
SAP application server and passes it to the next processing stage in the EDI RIM, a
process that identifies the sender and receiver, the message type, and map.

The connection between SAP and EDI is through the RIM’s IDoc adapter, which
works through methods in Java classes in the SAP Java Connector (JCo).

157

The Role of Acme’s EDI RIM 5.4

The IDoc adapter is a Java object and can exchange RFCs with SAP if JCo is installed
on the RIM application server and a program name is registered as a service with
Windows server. JCo, through the IDoc adapter, is the RFC server for SAP and
the EDI RIM.

The RIM’s IDoc adapter handles the registration in a configuration screen where we
name a program, a tag that identifies the adapter as a service that can send or receive
RFCs from SAP. The naming convention we use for this registered program tag is:

EDI_<SAP_SYSTEM>_<SAP_CLIENT>

In the three systems and clients in Acme’s base SAP environment, this name
becomes:

EDI_DEV_100

EDI_QAS_100

EDI_PRD_100

We also need to configure an RFC destination in SAP that identifies the program
name we created in the RIM IDoc adapter as a registered server program using
Transaction SM59.

JCo is the connecting tissue between the RFC destination and the IDoc adapter. It
is a middleware toolkit that provides an application programming interface (API)
for exchanging data by RFC communications between SAP and external third-party
Java-based applications, such as Acme’s EDI RIM.

Different EDI systems provide different tools for accessing JCo methods, but instal-
lation boils down to three files:

EE sapjco.jar
Java classes for connecting to SAP in synchronous, asynchronous (tRFC for
transactional RFC), and queued (qRFC) modes. We’ll be using tRFC for the file-
based transfer of EDI documents.

The jar file must be in the Java class path. Acme’s EDI RIM stores it in a \sapjco\
directory in the directory it uses to store its .jar files.

EE librfc32.dll
Stored with the EDI RIM’s .dll library files in a \sapjco\ directory.

EE sapjcorfc.dll
Stored in the same directory as librfc32.dll.

158

Real-World Business Process Integration with EDI5

In addition, a number of Microsoft runtime libraries must be present in the WINNT\
system32 directory, if they aren’t already there:

EE mfc71.dll

EE mfc71u.dll

EE msvcp60.dll

EE msvcp71.dll

EE msvcr71.dll

EE msvcrt.dll

Complete details for installation and use of JCo are on the Connectors page on
the SAP Service Marketplace (http://service.sap.com/connectors). You’ll need login
credentials to get in.

JCo Java classes can also be used to do the following:

EE Create direct connections or connection pools to SAP

EE Create a repository of BAPI and RFC function metadata to enable the population
of function parameters and tables at runtime

EE Directly call RFC functions in SAP through the IDoc adapter

EE Process and manipulate table and field data

EE Handle errors and messages

The EDI team is shielded from all of this because the IDoc adapter in the RIM takes
care of it. All we need to do is configure the adapter to connect to SAP and call an
inbound function to trigger IDoc processing. This adapter configuration includes
the following:

EE Setup of the transfer as file-based RFC rather than ALE

EE SAP application server name or IP address

EE SAP gateway host and service

EE SAP system and client

EE Login credentials: user name, password, and language

EE SAP XML file port. Our naming convention is EDI_IDOC for all ports in all envi-
ronments and clients.

EE Registered server program ID: EDI_DEV_100

159

The Role of Acme’s EDI RIM 5.4

EE Name of listener BP called by the SAP RFC server when it triggers the RIM dur-
ing export of IDocs.

EE Parameters such as maximum number of connections and timeout.

EE RFC function module to call for inbound IDocs: EDI_DATA_INCOMING

Configuration options are fed as parameters to the JCo class methods called by the
IDoc adapter at runtime. We don’t have to do any coding to make this happen. The
adapter and JCo work together to open up the pipe between SAP and the EDI RIM.

Identification and Application of Standards

Before the EDI system can translate our ORDRSP IDoc to an X12 version 5010 855
PO Acknowledgment for Gordy’s Galaxy, it needs to know what it’s dealing with.
The RIM already knows that the file came from SAP and that it’s an IDoc. It needs
three crucial pieces of information:

EE EDI sender (Acme) and receiver IDs (Gordy’s Galaxy)

EE EDI standard (X12), version (5010), and transaction (855)

EE The X12 ST envelope, the first to be called in the enveloping process

Control data for the IDoc are held in the control segment EDI_DC40. Key fields
for identifying the ST envelope are RCVPRN (SAP receiving partner), which can
be mapped to the EDI receiver ID, and IDOCTYP (IDoc Basic Type), which can be
linked to the EDI transaction code.

We also need to pass the EDI sender and receiver partner IDs to complete identifi-
cation of the ST envelope. We’ll pass these two values in the fields SNDLAD (EDI
sender ID) and RCVLAD (EDI receiver ID) of the IDoc control segment EDI_DC40.
We got these from a look-up table during IDoc processing in SAP, as we will see
in Chapter 7, Section 7.2.4.

Identifying the ST envelope gives us the translation map and leads to the GS and
ISA envelopes, each of which provides additional information that helps move
the process along.

Translation

The IDoc is translated at the transaction level. While more than one IDoc per trading
partner can be processed by the RIM, they are translated one at a time in a loop.

160

Real-World Business Process Integration with EDI5

During the translation loop through each IDoc, the map writes key document data
such as IDoc number and SAP document number—the PO and sales order number
for an outbound ORDRSP-855 translation—to a correlation table in the EDI system
database, one value per correlation record. If the translation fails, these values
are not written to the correlation table, although an error record is. In fact, every
key milestone in the IDoc’s processing cycle through the RIM is recorded in the
correlation table.

This correlation table is used by the EDI support team to find transactions and
business documents that have been processed by the RIM for auditing, reporting,
and troubleshooting in production.

The map is developed in a mapping tool included with the integration system and
is specific to Gordy’s Galaxy.

The mapping tool comes with a database of EDI standards that provide the metadata
it needs to build maps. Once imported into the mapping tool, the EDI structures
can be exported as XML Schema (XSD), DTDs, EDIFECS ECS, Sterling DDF, and
other metadata formats for use in custom programs or other mapping and XML
development tools.

The IDocs come out of SAP in a variety of ways, as we saw in Chapter 3, Section
3.1.2, Let’s Get Technical: A More Intimate Look at the RIM, in our discussion of
mapping and IDoc metadata.

Completed maps are checked into the RIM and are available for use in a translation
object as a service in a BP. The translation service is a Java object that is described
and consumed through BPML code and is connected to other Java services in a
process flow. The relationships between each object, the data that pass between
them, and logical conditions that may be applied to program flow through XPath
evaluations are spelled out in the BPML code.

At runtime, the BPML triggers execution of the BPM one service at a time, in the
sequence, and according to the conditions, defined in the BPML.

Enveloping

Translation is intertwined with enveloping and driven by logic in the map and in
BPML and Java code.

161

The Role of Acme’s EDI RIM 5.4

The identification of the ST envelope leads to the identification of the map. This
triggers translation of the IDoc file in a loop, one transaction at a time, and the
application of the ST-SE envelope. As packaging of each transaction set is completed,
the GS functional group and ISA interchange envelopes are identified and applied.

As enveloping proceeds and control numbers are applied to each envelope level,
the correlation table is updated with control and status data about the transaction,
group, and interchange, one value per correlation record, along with date and
timestamps and other values, including the following:

EE Sending EDI partner ID and qualifier

EE Receiving EDI partner ID and qualifier

EE ISA-IEA envelope control number

EE GS-GE envelope control number, function code PR, and EDI version 00510

EE ST-SE control number and transaction set code 855

The system updates correlation data at every event during the processing flow
for each interface, regardless of direction. It stores complete end-to-end control
and status data and pointers to every document generated or processed for every
interface, from transmission to translation to receipt of the 997 acknowledgment.
We will look at how we can use correlation data to provide status information for
monitoring our EDI interfaces in SAP.

Functional Acknowledgment

Creation of the GS-GE group envelope during construction of our outbound 855
triggers insertion of a record in the correlation table telling the system that a 997
acknowledgment is expected within a set time limit—48 hours for Acme’s X12
interfaces, which is more than enough time to indicate a problem with the inter-
change at the receiver’s end.

Acme expects Gordy to send back the following details about its receipt of the EDI
transmission:

EE Group control ID and function code for Acme’s outbound 855

EE Date and time transmission received by Gordy

EE Number of transaction sets in the group

EE Transaction set ID for each business document in the interchange

162

Real-World Business Process Integration with EDI5

EE Status codes reporting whether or not the group and its transaction sets were
accepted, partially accepted, or rejected

A 997 does not confirm successful translation or posting of the 855 PO Acknowl-
edgment to Gordy’s business system.

Routing, Communications, and Security

Routing rules are applied through a BP that passes the translated X12 855 to Acme’s
AS2 server for transmission to the trading partner. The AS2 server is a set of ser-
vices in Acme’s RIM accessed through workflow that are implemented in BPML,
just like all other BPs in the system.

The AS2 server includes such services as the following:

EE AS2 profile management

EE Building AS2 messages from EDI and other documents

EE HTTP client and server adapters

EE Encrypting EDI messages and decrypting AS2 messages

EE Building and parsing AS2 message header data

EE Synchronous and asynchronous send of MDNs

EE AS2 duplicate message checking and error handling

EE File management and database lookups

EE AS2 mailbox creation and support

The BP that passes EDI to the AS2 server reads the AS2 ID from a table in the EDI
database that maps it to the EDI trading partner ID. The AS2 ID points to an AS2
profile that includes such information as:

EE AS2 ID

EE End point URL for the AS2 HTTP/s method post call

EE EDI standards and data types being exchanged

EE SSL settings and cipher strength

EE Certificates used to enforce security provided by the trading partner

EE Encryption and signing protocols and algorithms

EE Delivery mode, which is synchronous for all of Acme’s interfaces

163

The Role of Acme’s EDI RIM 5.4

EE Requirement and delivery mode for an MDN

EE Response timeout values

The AS2 server builds the AS2 message by encrypting the EDI interchange and
prefixing it with a text header that includes transmission and disposition details.
Listing 5.1 shows an example of an AS2 text header.

Host:99.999.9.999:5070
User-Agent:EDI AS2 server
Date:Thu, 2 Dec 2008 21:15:13 GMT
From:NimbyNnNM
AS2-Version:1.1
AS2-From:9998888999001
AS2-To:9999888888001
Subject:EDIINTDATA Batch [#444444]
Message-ID:<20081202161510CEB9999X@9999888888001>
Disposition-Notification-To:NimbyNnNM
Disposition-Notification-Options:signed-receipt-protocol=
optional,pkcs7-signature; signed-receipt-micalg=optional,
sha1
Content-Type:application/pkcs7-mime; smime-type=enveloped-
data; name="smime.p7m"
Content-Disposition:inline; filename="smime.p7m"
Content-Length:1707
URI:/b2bhttp/inbound/as2

Listing 5.1 AS2 Message Text Header

Most of this is self-explanatory. The host is the IP address of the sending AS2 sys-
tem. The sender and receiver are both AS2 IDs linked to the EDI trading partner
IDs in a lookup table. The URI identifies a directory in the target AS2 server where
the transmitted file will be deposited.

The disposition lines tell the receiving system that a notification receipt—an MDN
(message disposition notification)—is expected. They also provide send options for
the receipt such as security requirements and file name for the MDN.

Acme’s AS2 server sends the message through an HTTP/S Post call to Gordy’s
server. The post method transmits the encrypted message and triggers a service in
Gordy’s AS2 server that picks up the file and kicks off its own internal processing.

An MDN is immediately returned to Acme by AS2 to acknowledge receipt of
the message in Gordy’s system. When the AS2 message is decrypted and the GS

164

Real-World Business Process Integration with EDI5

envelope identified, and the 855 is verified, a 997 is generated and sent back to
Acme’s RIM where it updates correlation with a date and time stamp that completes
the outbound process.

5.4.2 Inbound Services

We’ll use an 850 customer PO to ORDERS IDoc interface to illustrate services that
support inbound processing, outlined in Figure 5.4.

850 X12 5010
Decrypt, extract
AS2 850/build
MDN for Gordy

Identify source:
Parse header/
AS2 profile

HTTP/S post to
Gordy AS2 server

MDN, 997 FA

Encrypted AS2
msg for Gordy

Encrypted AS2:
850/MDN

ORDERS XML
PO to SAP

Yes

Generate 997
func. acknowl.

ST envelope 850:
Translation map

Update database
correlation data
all milestones

IDENTIFY:
Sender/receiver
ISA/GS envelope

Translate 850 to
XML ORDERS,

Call IDoc adapter

RFC to EDI function

SAP JCO CONNECTOR

IDoc Adapter
Update database
correlation data,

all milestones

Update database
correlation data,

all milestones

997
reqd

Figure 5.4 Inbound Services in the EDI RIM

Communications, Security, and Routing

Acme’s AS2 server receives an encrypted message carrying an 850 purchase order
from Gordy’s AS2 server by HTTP/S Post. This triggers a BP in the RIM that applies
AS2 server services that does the following:

165

The Role of Acme’s EDI RIM 5.4

EE Parses the AS2 message header and identifies the sender and receiver and an
AS2 profile

EE Checks that the sender and message type match a valid certificate

EE Identifies MDN requirements for the sender

EE Confirms that the incoming AS2 message ID isn’t a duplicate

EE Generates and send an MDN to Gordy by AS2

EE Updates correlation data with details of the transmission and the MDN

The MDN is sent to Gordy before the message is processed and the 850 PO extracted.
It’s an electronic handshake that tells the remote partner that its AS2 message has
been received.

The EDI sender and receiver IDs are identified through a link to the AS2 IDs when
the message is decrypted and the EDI transaction extracted. The server knows from
the AS2 profile that it will hand off the decrypted EDI transaction to another BP
that will de-envelope and translate it.

De-enveloping: Identification and Application of Standards

De-enveloping services are invoked to identify the EDI standard and transaction—
ASC X12 850—and to strip away the envelopes for translation, as discussed in
Chapter 4, Section 4.4.2, Unwrapping an Inbound EDI Interchange.

The interchange is first identified as an X12 message. From the standard, it knows
that the first envelope is an ISA. It reads the sender and receiver IDs and qualifi-
ers, strips away the ISA IEA interchange envelope, and identifies the GS-GE group
envelope.

The service gets the function code and X12 version from the GS header—PO for
purchase order—which leads to the ST transaction set envelope and the map. But
before the transaction sets are translated, the interchange must be acknowledged.

As each envelope is identified and stripped away, the correlation table is updated
with key EDI control and processing data:

EE Sending and receiving EDI partner numbers and qualifiers, as well as the ISA
control number

EE GS-GE envelope control number, function code PO, and X12 version 005010

166

Real-World Business Process Integration with EDI5

EE ST-SE control number, envelope transaction code 850, and linked IDoc message
and basic type ORDERS.ORDERS05

EE Map to call for the 850 to ORDERS XML IDoc translation

Functional Acknowledgment

The inbound GS group envelope identifies the need to send a 997 functional
acknowledgment when a transaction is received. Gordy expects a 997 within six
hours of every 850 it sends and this requirement is identified when the GS envelope
is unwrapped in Acme’s EDI RIM.

The 997 is generated after all transaction sets in the inbound 850 interchange
have been identified and tested for syntax. The number of transactions in the
interchange is pulled from the GE group trailer and the ST control IDs are read as
the transactions sets are unwrapped for translation. At the same time, this control
and processing status data are inserted into the correlation table.

The 997 provides Gordy with the following details about the inbound 850: PO
interchange:

EE Group control number for the inbound 850

EE Date and time that the 997 was generated

EE Group function code (PO) for the inbound 850

EE Number of transaction sets in the group

EE Transaction code 850 for the transaction sets in the group

EE Status codes reporting if the group and transaction sets were accepted, partially
accepted, or rejected by the syntax checks in Acme’s EDI RIM

The 997 FA does not imply that any transaction was successfully translated or that
translated documents posted to Gordy’s business system.

Application errors in the receiving business system are handled by other EDI trans-
missions that report application problems to the sender, by phone calls between the
EDI teams or business users, by troubleshooting in the receiving EDI or business
systems, or some combination of these.

The segments in the 997 that Acme returns to Gordy are listed in Table 5.1.

167

The Role of Acme’s EDI RIM 5.4

Seq ID Segment Description Usage Repeat

010 ST Transaction set header M 1

020 AK1 Functional group response header M 1

AK2 Loop O 999999

030 AK2 Transaction set response header O 1

020 AK5 Transaction set response trailer M 1

030 AK9 Functional group response trailer M 1

040 SE Transaction set trailer M 1

Table 5.1 The X12 997 Version 5010 that Acme Sends to Gordy

The AK1 segment contains the following data elements:

EE 0479: Data element AK101. Inbound transaction function code. PO for the 850
purchase order.

EE 0028: Data element AK102. Group control number for incoming 850.

The AK2 loop stores transaction set response information. Not every partner
sends these data. Acme and Gordy do, which simplifies tracking the response to
individual EDI transactions.

AK2 is a loop and can occur multiple times. But each of its two segments occurs
only once. The AK2 header contains the following data elements:

EE 0143: Data element AK201. Transaction set identifier code: 850 for the incom-
ing customer PO being acknowledged.

EE 0329: Data element AK202. Transaction set control number identifies the spe-
cific 850 transaction set being acknowledged.

The AK5 trailer segment includes the following data elements:

EE 0717: Data element AK501. Transaction set acknowledgment code. Reports on
syntax check on 850 transaction in the EDI RIM. Values:

EE A = Accepted

EE E = Accepted but errors noted

EE R = Rejected

168

Real-World Business Process Integration with EDI5

EE 0718: Data element AK502. Transaction set syntax error code. Identifies syntax
errors if 0717 = R or E in current transaction.

The AK9 segment carries status information about the interchange. Acme uses
four data elements:

EE 0715: Data element AK901. Function group acknowledgment code. Reports
status of syntax check on group in the EDI RIM. Values:

EE A = Accepted

EE E = Accepted but errors noted

EE R = Rejected

EE 0097: Data element AK902. Number of transaction sets in group.

EE 0123: Data element AK903. Number of transaction sets received from count of
transactions de-enveloped.

EE 0002: Data element AK904. Number of accepted transactions from the syntax
check of transaction sets during de-enveloping.

Translation

Translation is at the transaction level in a loop, one document at a time, in the same
sequence that the transaction sets occur in the functional group.

The translation service calls the map, and each X12 850 is converted to an ORDERS
IDoc one transaction set at a time. Each newly translated IDoc is appended to the
bottom of the batch.

The correlation table is updated with the inbound customer PO number. The IDoc
number is not inserted into correlation during inbound processing because the
IDoc number has not been assigned by SAP yet. It’s only assigned when SAP saves
it to the IDoc database.

Inbound Connection to SAP—The IDoc Adapter and JCo

When all transactions have been translated by the map and the translation service,
another BP is called to invoke the services required to move the IDoc file into SAP.

A file adapter service moves the IDoc file to an inbound directory on the SAP appli-
cation server. The IDoc adapter then swings into action. It logs on to SAP through

169

The Role of Acme’s EDI RIM 5.4

JCo and calls function EDI_DATA_INCOMING, the starting point of the IDoc’s journey
through the IDoc interface.

The IDoc adapter manages the connection and logon to SAP and calls the inbound
RFC-enabled function through a number of JCo classes:

EE Connection: Works through client and server classes to connect to SAP. Uses
parameter information from attributes and relies on a number of other classes
to maintain the connection, set traces, manage throughput, return errors, and
break the connection.

EE Attributes: Provides parameters required to log in to SAP.

EE Function template: Gets all metadata and import, export, and table parameters
for RFC-enabled functions from SAP.

EE Function: Represents an RFC function module in SAP with metadata, import,
export, and table parameters provided by the function template.

These classes, their constructors and methods are fully documented in the /docs
directory of the archive containing the JCo .jar and .dll files.

5.4.3 Archiving EDI Data

In a perfect world, everything always works perfectly. But since we don’t live in a
perfect world, sometimes things go wrong no matter how well we plan.

That’s why we archive. The RIM needs to be set up to archive EDI files. Because
archiving is not implemented as a service, we must develop a generic archiving
BP that can be called by outbound and inbound process flows at both the pre-
translation and post-translation stages.

It’s not just about the auditors, although they do demand it. IDocs and EDI mes-
sages are business documents with a lot of money riding on them.

Archiving is required for production support. The EDI support team can’t do its
job without it. There will always be situations when they need to dig up an EDI
transmission or find a 997 to resolve a production problem or answer a customer
or user question.

Good archiving means that it’s easy to find stuff after it’s been archived. We need
simple naming conventions for the archive directories that make it easy for even
the most technophobic AR clerk to find data when he needs to.

170

Real-World Business Process Integration with EDI5

Forget about nodes and numbers and exotic extensions that don’t allow you to
search using a simple tool like Windows search. We want to make life as easy as
we can for everybody else.

The naming convention for all archived EDI files at Acme will be:

<TradingPartnerID>_<EDITxn>_<Date_Time>_<WorkflowID>.txt

For example:

9999888888001_850_20081202_210233_498786.txt

The naming convention for all archived IDoc files will be:

<SAPPartner>_<MesType>_<Date_Time>_<WorkflowID>.txt

For example:

GRDY01_INVOIC_20081202_210233_498786.txt

Both sort archived files by partner ID and transaction or message. This naming
convention assumes that our BPs will be tagged by Acme’s EDI RIM with a work-
flow ID for monitoring and troubleshooting.

Archive folders include direction and date in their naming convention. The con-
vention for naming archive folders will be:

\Archive\<DIR>\<TYPE>\<CCYY>\<MM>\<DD>

The archived files will be saved in the lowest folder level DD, as in these examples:

\Archive\IB\EDI\2013\12\02
\Archive\IB\IDOC\2013\12\02
\Archive\OB\IDOC\2013\12\02
\Archive\OB\EDI\2013\12\02

The archiving BP is invoked by both outbound and inbound translation processes.
Data for construction of the file and directory names for the pre-translation and
post-translation archives is passed from the calling BP, regardless of direction. The
folder and file names are built on the fly using XPath statements.

XPath is also used to apply rules to determine the direction and interface of the
message. The system date is pulled and concatenated by XPath into the directory
and file name. XPath is also used to concatenate other data elements into path and
file names such as constants, transactions, IDocs, and BP workflow IDs.

171

Reporting EDI Status to SAP 5.5

The archive folder path is built only once each day, the first time that a file hits the
system and is archived. After the file name is built, a file system adapter is called to
write the EDI or IDoc file to the DD directory for the date that the file is processed.

5.5 Reporting EDI Status to SAP

SAP provides a handy tool for reporting status information about processing mile-
stones for outbound IDocs in an external EDI system back to SAP: the STATUS IDoc.

The STATUS IDoc—message type STATUS with basic type SYSTAT01—is used to
update outbound IDocs in SAP with a new status record for key processing mile-
stones in the EDI system.

Because STATUS is an IDoc, a status interface is processed with the same EDI RIM
interface services used for all other IDocs.

Our first decision is the EDI milestones that we want to capture. We’ll begin with
the success or failure of the translation step. Later, we may want to add successful
receipt of MDN or the 997. This last requires capturing data during outbound pro-
cessing of an IDoc through the RIM that can be read during inbound 997 processing.

We will discuss requirements for a 997 STATUS interface here, but will stop short
of a full-scale design.

5.5.1 SAP Status Codes

First some background about the status interface. SAP reserves a number of status
codes for reporting the success or failure of outbound IDoc processing in a third-
party EDI system. The codes reference EDI events—processing milestones—for the
IDoc through the EDI system.

The status interface can capture the results of these processing milestones and bring
them into SAP to update the outbound IDoc and make them part of its processing
history as detailed in its control segment and status records.

Table 5.2 lists the SAP status codes reserved for the EDI system.

172

Real-World Business Process Integration with EDI5

Status Code Code Description

04 Error within control information of EDI subsystem

05 Error during translation

06 Translation OK

07 Error during syntax check

08 Syntax check OK

09 Error during interchange handling

10 Interchange handling OK

11 Error during dispatch

12 Dispatch OK

13 Retransmission OK

14 Interchange acknowledgment positive

15 Interchange acknowledgment negative

16 Functional acknowledgment positive

17 Functional acknowledgment negative

22 Dispatch OK, acknowledgment still due

23 Error during retransmission

24 Control information of EDI subsystem OK

36 Electronic signature not performed (timeout)

40 Application document not created in receiving system

41 Application document created in receiving system

Table 5.2 Status Codes for Outbound Processing of IDocs in the EDI RIM

The control segment holds the most recent status recorded against the IDoc, and
the status record stores every status captured throughout the IDoc’s lifecycle, rep-
resenting each processing phase from creation to the endpoint.

For inbound IDocs, the endpoint is status 53—Application document posted. It means
that the business document represented by the IDoc has been created successfully
in SAP. An ORDERS IDoc, for example, successfully created an SAP sales order.

173

Reporting EDI Status to SAP 5.5

We can define our own endpoint for outbound IDocs using a status interface. The
endpoint for Phase 1 of the Acme implementation will be the successful transla-
tion of an IDoc to an EDI message. The following status codes and messages will
get us there:

EE 05: Translation failed for ISA <ISAControlNumber> for TP <ReceiverTrading-
PartnerID>.

EE 06: Translation OK for ISA <ISAControlNumber> for TP <ReceiverTradingPart-
nerID>.

We’ll know if the translation was successful by looking at the IDoc status code in
any of the IDoc monitoring tools such as BD87 or WE02.

If the control segment status equals 06, we only need to confirm that the X12 inter-
change was transmitted to the trading partner. If the status equals 05, we know
that there’s an error in the translation that needs to be investigated.

When we implement the 997-STATUS interface, the endpoint will be the successful
receipt of the FA from the partner’s EDI system. The following status codes and
messages will get us there:

EE 16: OK. 997 recv’d for Txn set <TransactionSetID> Group <GroupControlID>
with status A (Accepted).

EE 17: Error. 997 recv’d for Txn set <TransactionSetID> Group <GroupControlID>
with status R (Rejected).

The status interface is a custom process driven by our map between the outbound
and STATUS IDocs. We can send SAP any text message that we choose. To send
the custom messages that we’re proposing, we need to do three things:

EE Create two custom messages in SAP with two parameters each. We use standard
message class IDOC_ADAPTER, which is designed for IDoc messages. SAP reserves
the number range 900 to 999 for customer messages, so we begin with 900.

EE Map the message class and message number to the status IDoc.

EE Map the ISA control number and trading partner ID to parameter fields in the
STATUS IDoc.

174

Real-World Business Process Integration with EDI5

5.5.2 Creating Custom Messages

You create the custom messages in the SAP Repository (Transaction SE80) by fol-
lowing these steps.

1. Select Repository Information System and click Edit Object to open the Object
Selection dialog. Select the More tab.

2. Select Message Class and enter “IDOC_ADAPTER”, as shown in Figure 5.5.
Click Execute.

Figure 5.5 Custom Messages Are Created in Message Class

3. Click the Messages tab, and select menu option Message Class • Display •
Change to turn on editing.

4. Press (Ctrl)+(End) to get to the end of the number range in the Edit Messages
screen. This takes you to message 999. Scroll up to 900.

5. Enter the following text into message 900. The & (ampersand) character tells
SAP to insert a parameter variable:

Translation OK for ISA & for TP &

6. Enter the following into message 901:

Translation Failed!

175

Reporting EDI Status to SAP 5.5

7. Since you’re here, also enter custom messages for a future 997 status interface
into message numbers 902 and 903 (Figure 5.6):

OK: 997 recv’d for Txn set & Group & with Status A (Accepted)

Error. 997 recv’d for Txn set & Group & with Status R (Rejected)

Figure 5.6 Our Custom Messages in Message Class IDOC_ADAPTER

8. Save the messages, and SAP prompts for a transportable workbench request for
each new message in IDOC_ADAPTER. Assign the new messages to a transport
request, and you’re done.

5.5.3 Mapping the STATUS IDoc

For the translation status, we’ll build a generic STATUS IDoc map that transfers
data from the control segment of any outbound IDoc (EDI_DC40) to the control
and data segments of the STATUS IDoc. This map won’t translate any of the data
segments of the outbound IDoc.

The structure of the STATUS IDoc includes a control segment (EDIDC) and one
data segment (E1STATS) that can be repeated up to 6,500 times. Table 5.3 defines
the IDoc structure.

Segment Description Usage Repeat

EDIDC Control segment for IDoc version 3 M 1

E1STATS CA-EDI: Status record M 6500

Table 5.3 Structure of the STATUS IDoc

All fields in the E1STATS segment hold reference information or message data and
parameters. Table 5.4 details the segment’s fields.

176

Real-World Business Process Integration with EDI5

Pos Field Data Element Description

01 TABNAM EDI_TABNA3 IDoc table name

02 MANDT MANDT SAP client number

03 DOCNUM EDI_DOCNUC Outbound IDoc number

04 LOGDAT EDI_LOGDAT Date of status information

05 LOGTIM EDI_LOGTIM Time of status information

06 STATUS EDI_STATUS Status of outbound IDoc

07 UNAME EDI_UNAME User name

08 REPID EDILREPID ABAP program name

09 ROUTID EDI_ROUTID Name of called subroutine

10 STACOD EDI_STACOD Status code

11 STATXT EDI_STATX_ Text message for status code

12 SEGNUM IDOCSSGNUC SAP segment number reported on

13 SEGFLD EDILSEGFLD Segment field reported on

14 STAPA1 EDILSTAPA1 Status message parameter 1

15 STAPA2 EDILSTAPA2 Status message parameter 2

16 STAPA3 EDILSTAPA3 Status message parameter 3

17 STAPA4 EDILSTAPA4 Status message parameter 4

18 REFINT IDOCSRFINT EDI control ID

19 REFGRP IDOCSRFGRP EDI group control ID

20 REFMES IDOCSRFMES EDI transaction/message control ID

21 ARCKEY IDOCSARKEY Archive link key to file in 3rd party archive

22 STATYP EDI_SYMSTY Message type (A, W, E, S, I)

23 STAMQU EDI_STAMQU Status message qualifier

24 STAMID EDI_STAMID Status message ID

25 STAMNO EDI_STAMNC Status message number

Table 5.4 Fields for Segment E1STATS

177

Reporting EDI Status to SAP 5.5

The STATUS map populates many of these fields with data from the outbound
IDoc control segment.

First we populate the inbound STATUS control segment so that it will pass IDoc
interface checks in SAP. Without the correct values in the control segment, the
STATUS IDoc will fail when it hits SAP.

Table 5.5 details the mapping requirements for the STATUS control segment. All
values are pulled from the control segment (EDI_DC40) of the outbound IDoc or
are hard coded. In some cases, receiver fields in the outbound IDoc control seg-
ment are mapped to sender fields in the inbound STATUS IDoc control segment.

Source IDoc STATUS Comments

MANDT MANDT SAP target client

2 DIRECT Direction 2 = Inbound. Hard-code.

SYSTAT01 IDOCTYP IDoc basic type for STATUS. Hard-code.

STATUS MESTYP IDoc Logical message type STATUS. Hard-code.

RCVPOR SNDPOR OB receiver to IB sender port—EDI_IDOC in all clients and
systems

RCVPRT SNDPRT OB receiver to IB sender partner type

RCVPFC SNDPFC OB receiver to IB sender partner function

RCVPRN SNDPRN OB receiver (SAP customer) to IB send partner

SNDPOR RCVPOR OB sender to IB receiver port

SNDPRT RCVPRT OB send to IB receiver partner type

SNDPFC RCVPFC OB sender to IB receiver partner function

SNDPRN RCVPRN OB sender (SAP Logical System) to IB receiver partner

Table 5.5 Mapping of OB EDI_DC40 to IB SYSTAT01 Control Segment

Table 5.6 details mapping requirements for the E1STATS segment. All values are
pulled from the EDI_DC40 control segment of the outbound IDoc, the EDI enve-
lopes, or are hard-coded.

178

Real-World Business Process Integration with EDI5

Source/Data STATUS Comments

EDI_DS40 TABNAM SAP IDoc status record table name. Hard-code.

MANDT MANDT SAP target client

DOCNUM DOCNUM IDoc number of outbound IDoc

06 STATUS If translation OK, 06, else 05. From map.

EDISYS REPID Processing program identified as EDI system.
Hard-code.

ISACtrlNo STAPA1 ISA interchange control number, from enveloping
data for outbound transaction

EDI Receiver ID STAPA2 EDI partner ID for receiver, from enveloping data for
outbound transaction

ISACtrlNo REFINT ISA interchange control number from enveloping
data for outbound transaction

GSCtrlNo REFGRP GS group control number from enveloping data for
outbound transaction

STCtrlNo REFMES ST transaction set control number from enveloping
data for OB transaction

S STATYP If status = 06, S (Success), else E (Error). Map.

SAP STAMQU Origin of OB message: SAP. Hard-code.

IDOC_ADAPTER STAMID SAP message class for IDocs. Hard-code.

900 STAMNO Custom SAP message number: if status = 06, 900,
else 901. Map.

Table 5.6 Mapping the SYSTAT01 E1STATS Segment

These mapping parameters will build one populated STATUS IDoc type for each
outbound IDoc that was translated, or not, to an X12 transaction during outbound
processing.

The message class in STAMID and message number in STAMNO will pull our
custom SAP messages into the status record of the outbound IDoc. The parameter
values in STAPA1 and STAPA2 will replace the ampersand (&) character in the
status record message in BD87 or any of the other SAP tools that display the IDoc.

The following updates also occur to the outbound IDoc in SAP:

179

Reporting EDI Status to SAP 5.5

EE The status code in field E1STATS-STATUS updates the STATUS field in the con-
trol segment (table EDIDC) and the status record (table EDIDS) of the outbound
IDoc.

EE The ISA interchange control number in field E1STATS-REFINT populates the
outbound IDoc control segment field EDIDC-REFINT.

EE The GS group control number in E1STATS-REFGRP plugs into the outbound
IDoc control segment field EDIDC-REFGRP.

EE The ST transaction set control number in E1STATS-REFMES populates field
EDIDC-REFMES in the outbound IDoc control segment.

These enveloping values create an explicit link between the outbound IDoc, the SAP
business document it encapsulates, and the EDI transaction, group, and interchange
sent to the trading partner. This is a valuable tool for monitoring, reporting, and
troubleshooting in production.

5.5.4 So How Do We Get the Enveloping Data?

It seems simple enough, doesn’t it? The issue is getting at these enveloping data
so we can map them. Different EDI systems handle translation, enveloping, and
de-enveloping differently. We’re making some assumptions about how Acme’s
EDI RIM handles this critical functionality.

1. A correlation table is updated whenever an IDoc is enveloped, de-enveloped,
or translated.

2. IDocs are translated in a loop, one at a time.

3. All data in the source structure are available at runtime when the map is executed.
Source data can be processed programmatically before the translation begins to
write data to the target structure.

4. The mapping tool supports writing rules or exits to identify translation errors
for each outbound IDoc that fails to translate.

5. The mapping tool supports writing rules or exits to read envelope data from the
correlation table during translation.

6. The mapping tool also supports writing rules or exits to insert records in the
RIM database. We’re also assuming that we can build custom tables in the data-
base.

180

Real-World Business Process Integration with EDI5

The outbound map will insert the IDoc number for each IDoc successfully translated
into the correlation table with a key that identifies the number as an IDoc number.
The STATUS map will insert EDI envelope control values from correlation into a
custom table in the RIM database: tbl_STATAck. The structure of tbl_STATAck is
detailed in Table 5.7.

Seq Field Description

010 IDocNum Number of outbound IDoc that was successfully translated

020 TPID EDI TP ID for receiving partner of outbound IDoc

030 ISACtrl ISA interchange control number for EDI transaction built from
outbound IDoc

040 GSCtrl GS group control number for outbound IDoc

050 STCtrl ST transaction set control number for EDI transaction translated
from outbound IDoc

060 FuncCode GS envelope function code for outbound IDoc

070 TxnCode EDI transaction code for outbound IDoc

080 Date Date stamp

090 Time Timestamp

100 BP_ID BP ID for translation BP that triggered table insertion

Table 5.7 Structure of Custom Table tbl_STATAck

The STATUS map reads the correlation table through an exit in a rule to identify
each translated IDoc number as it loops through each outbound IDoc during creation
of the STATUS IDoc. SQL access to correlation is through the IDoc number key:

SELECT IDocNum from tbl_correlation
 WHERE IDocKey = <idoc_key_value>
 and value = <current_IDoc_no>;

The same SQL approach is used for every other value that needs to be pulled from
correlation:

EE EDI receiving partner, the trading partner that will receive the outbound trans-
mission and return the inbound 997

181

Reporting EDI Status to SAP 5.5

EE ISA interchange control number for the outbound EDI transmission

EE GS group control number for the outbound transmission

EE ST transaction set number for the EDI transaction translated from the outbound
IDoc

EE EDI transaction code

EE BP ID for the process that translated the outbound IDoc

These correlation values go into both the STATUS IDoc and the custom table
tbl_STATAck.

In the STATUS IDoc, the correlation values are sent back to SAP to update the
original outbound IDoc with a Translation OK or Failed status.

Correlation values inserted into table tbl_STATAck link the inbound 997 to the
outbound IDoc number it is acknowledging through the Group control ID of the
outbound EDI interchange, which is in the 997. This gives us the connections then
to build an inbound STATUS IDoc map that will update the original outbound IDoc
in SAP with status information from the 997, closing the EDI circle. This kills two
birds with one stone:

1. The STATUS map identifies translated and failed IDocs. Correlation is only
updated with IDoc numbers if the translation succeeds.

If an 810 customer invoice is generated from an INVOIC IDoc, correlation is
updated with the invoice number and the IDoc number. If the translation fails,
correlation is not updated.

2. The STATUS map creates a link between the invoice that Acme sends to Gordy
in the IDoc and the 997 that Gordy sends back.

The INVOIC IDoc in SAP is updated by Gordy’s 997 through the STATUS IDoc
as soon as it comes in. The EDI team know that Gordy received the invoice 810.

So what? Imagine a batch of customer invoices. The INVOIC IDocs are translated
to 810 transactions, wrapped in a group and an interchange. That interchange is
then sent to the customer and an MDN is received.

An hour later, an X12 997 FA is transmitted, translated by the 997-STATUS map,
and sent into SAP where it updates the INVOIC IDoc with status 16—997 received
with no errors reported.

182

Real-World Business Process Integration with EDI5

The customer doesn’t pay, and its AP department asserts that it did not receive the
invoice. But we have an SAP report that checks our IDocs for status 16 (997 OK)
or 17 (997 Error) that Acme’s AR department can run for itself. The report tells the
department that the invoice was sent, received, and acknowledged.

Before AR had this report, it would call EDI and complain loudly and demand that
the invoices be resent. Now the people in AR know that the invoices have been
received so they phone their contacts in the customer’s AP department and tell
them so. The customer’s AP folks check with their EDI team and learn that the
invoices were indeed received but generated a translation error in their EDI system
that forced a minor change to their map.

The fix was tested and put into production, but when they reran the invoice file, it
failed because the ISA control number had already been processed, and duplicate
checking was turned on. At this point, it was a holiday weekend, everybody was
busy, and the invoices fell through the cracks. Stuff happens.

It goes without saying that you’ll need to know how your own EDI system and
mapping tool works to translate this approach into an actual design.

5.5.5 The Status Interface Business Process Workflow

The status interface will be implemented in a BP workflow that will be called after
translation and enveloping is completed in the outbound IDoc process. Every
outbound IDoc will return a STATUS IDoc to SAP.

The basic processing steps for the status interface BP are illustrated in the example
of an outbound INVOIC IDoc in Figure 5.7.

Two billing documents for Gordy’s Galaxy are created in SAP generating two
INVOIC IDocs with IDoc numbers 123456788 and 123456789. The IDocs are
bundled into a file and exported to the EDI system where they hit the translation
step of the outbound process.

IDoc 123456789 translates successfully but 123456788 fails. Gordy’s INVOIC-810
map inserts IDoc number 123456789 into the EDI system’s correlation table. There
is no insert for IDoc 123456788.

183

Reporting EDI Status to SAP 5.5

OB file with 2
INVOIC IDocs

IDoc Nos
123456788
123456789

Translation: Call
STATUS map

Loop on INVOIC

Status 06: Write
OK to STATUS

IDoc 123456789

Build STATUS
IDoc: OK or fail

Insert correlation tab

Cust PO & IDoc no
IDoc 123456789

Read correlation tab

IDoc 23456789—No hit

Read correlation tab

IDoc 123456789—Hit!

Updates OB IDocs:
123456788: 05 Error
123456789: 06 OK
ISA/GS/ST ctrl nos

control/status records

Insert correlation tab

Send and receive IDs,
ISA/GS/ST Cntrl Nos

txn code

Insert tbl_STATAck

IDoc No 123456789
rec’d EDI partner ID,

GS/ST cntl no
GS function code

EDI txn code
Date/time stamp

Translation BPM ID

To be read by
997-STATUS
IB interface

Translation map
to X12 810 called

for both IDocs

IDoc 123456789
translates OK

123456788 fails

EDI enveloping
IDoc 123456789

Call STATUS
interface BP for

both OB INVOIC

Loop 1:
Look up IDoc
123456788

Status 05: Write
error to STATUS
IDoc 123456788

Read correlation in map

Get ISA/GS/ST Ctrl Nos
insert into STATUS IDoc

Loop 2
Look up IDoc
123456789

RFC to RIM

ID

o
c

A
d

ap
te

r
IDoc Adapter

Figure 5.7 Reporting Processing Status of the IDoc Back to SAP

One X12 810 version 5010 EDI transaction comes out of the batch file for IDoc
123456789 and is enveloped. The enveloping process inserts a number of EDI
control and status records into the correlation table, including sender and receiver
partner ID and envelope control numbers, as described in the discussion of out-
bound enveloping in Section 5.4.1, subsection Enveloping.

184

Real-World Business Process Integration with EDI5

The file containing both the failed and translated IDocs is handed off to a transla-
tion service in the status interface BP that maps the outbound INVOIC IDoc file
to the STATUS IDoc.

The STATUS map loops through the IDocs one at a time. IDoc 123456788 is the
first up. It failed to translate to an 810. Using a mapping rule, the status map reads
the correlation table for IDoc 123456788, and there is no hit.

The status map then builds the EDI_DC control segment for the STATUS IDoc from
the EDI_DC40 control segment of IDoc 123456788, as described in the mapping
specifications in Table 5.5. The values that will be inserted into segment E1STATS
are listed in Table 5.8.

Value Field Comments

123456788 DOCNUM Identifies outbound INVOICE IDoc that will be
updated by STATUS.

05 STACOD Error status for translation failure.

EDISYS REPID Identifies the RIM as originating program or routine
for the status.

E STATYP E = Error status.

SAP STAMQU Identifies SAP message.

IDOC_ADAPTER STAMID Identifies EDI message class.

901 STAMNO Identifies custom error message number we created
in message class IDOC_ADAPTER.

EDI_DS40 TABNAM IDoc status record table.

100 MANDT SAP target client number.

Table 5.8 STATUS Values in Segment E1STATS for Failed IDoc

The first STATUS IDoc in the inbound file is now ready to be sent into SAP after
the file is completed.

IDoc 123456789 is mapped next. It successfully translated to an 810. The status
map reads correlation in a mapping rule for IDoc 123456789 and gets a hit. EDI
control data are pulled from the correlation table.

185

Reporting EDI Status to SAP 5.5

The status map builds the EDI_DC control record for the STATUS IDoc from the
EDI_DC40 control segment of IDoc 123456789. The values that it will insert into
data segment E1STATS are listed in Table 5.9.

Value Field Comments

123456789 DOCNUM Identifies outbound INVOICE IDoc that will be
updated by STATUS.

06 STACOD Success status for translation OK.

EDISYS REPID Identifies the RIM as originating program or routine
for the status.

S STATYP S = Success status.

SAP STAMQU Identifies SAP message.

IDOC_ADAPTER STAMID Identifies EDI message class.

900 STAMNO Identifies custom error message number we created
in message class IDOC_ADAPTER.

987456 STAPA1 ISA interchange control number for 810. Replaces
first ampersand (&) in message 900.

9998888999001 STAPA2 EDI trading partner ID for Gordy. Replaces second
ampersand (&) in message 900.

987456 REFINT ISA control number for 810. Links IDoc to X12
interchange through control record.

987456 REFGRP GS control number for 810. Links IDoc to function
group through control record.

1 REFMES ST transaction set control number for 810. Links
IDoc to transaction through control record.

EDI_DS40 TABNAM IDoc status record table.

100 MANDT SAP target client number.

Table 5.9 STATUS Values in Segment E1STATS for Translated IDoc

At the end of the translation loop through IDoc 123456789, tbl_STATAck is popu-
lated with the IDoc and correlation values listed in Table 5.10.

186

Real-World Business Process Integration with EDI5

Value Field Comments

123456789 IdocNum Successfully translated IDoc.

9998888999001 TPID EDI trading partner ID for Gordy.

987456 ISACtrl ISA interchange control number for 810.

987456 GSCtrl GS group control number for 810.

1 STCtrl ST transaction set control number for 810.

IN FuncCode GS group function code for invoice.

810 TxnCode EDI transaction code or message for 810.

20131202 Date System date in RIM at processing time.

063029 Time System time in RIM at processing time.

154879 BP_ID Work flow ID for OB translation BP.

Table 5.10 IDoc and EDI Values in tbl_STATAck for Translated IDoc

The SQL insert is called in a mapping rule after the outbound IDoc has been suc-
cessfully mapped to the STATUS IDoc:

INSERT into tbl_STATAck (IDocNum)
 VALUES (<current_idoc_no>,<recv_tp_id>,<isa_cntl_no>,
 <gs_cntl_no>,<st_txn_cntl_no>,<gs_func_code>,
 <edi_txn_code>,<date>,<time>,<bp_id>);

The second STATUS IDoc is appended to the inbound IDoc file, and the file is
completed. The file with its two IDocs is then moved to an inbound directory on
the SAP application server, and the SAP adapter calls function EDI_DATA_INCOMING.
The file is picked up and processed by SAP and IDocs 123456788 and 123456789
are updated with their new status.

5.5.6 The 997 Functional Acknowledgment Interface

Now that custom table tbl_STATAck is populated, we can briefly consider the future
inbound 997 FA interface.

We already have our custom table, and if outbound interfaces are set up as described,
we’ll have the data we need to match the outbound INVOIC IDoc with an inbound
acknowledgment, whether that’s an X12 997 or an EDIFACT CONTRL Syntax and
Service Report message.

187

Reporting EDI Status to SAP 5.5

We’ll need a map to translate 997 (or EDIFACT CONTRL) to a STATUS IDoc for
each partner that acknowledges outbound EDI transactions.

For now we’re only concerned with Gordy. It acknowledges Acme’s outbound X12
transmissions at the transactional level. Its 997 includes the AK2 loop, which stores
transaction code and transaction set control numbers for Acme’s outbound X12 810.

This simplifies Gordy’s 997-STATUS map. When the 997 is received and the map
called, a rule or exit will loop through AK2 and read tbl_STATAck for the IDoc
number. The SQL read will look something like this:

SELECT IDocNum ISACtrl from tbl_STATAck
 WHERE TPID = <997_ISA_send_tp_id>
 and GSCtrl = <997_AK102_gsctrl>
 and STCtrl = <997_AK202_stctrl>
 and FuncCode = <997_AK101_func_code>
 and TxnCode = <997_AK201_txncode>

The map then builds the STATUS IDoc, beginning with the EDI_DC control seg-
ment with the values listed in Table 5.11.

Value Field Comment

100 MANDT SAP target client. Hard-code.

2 DIRECT Direction 2 = Inbound. Hard-code.

SYSTAT01 IDOCTYP IDoc basic type for STATUS. Hard-code.

STATUS MESTYP IDoc Logical message type STATUS. Hard-code.

EDI_IDOC SNDPOR Sender port. Hard-code.

KU SNDPRT Sender partner type. Hard-code.

BP SNDPFC Sender partner function. Hard-code.

9998888999001 SNDPRN EDI send partner ID. The EDI partner ID will be
con verted to the SAP sold-to partner through a
 customer exit in the IDoc control segment.

SAPPRD RCVPOR SAP logical receiver port. Hard-code.

LS RCVPRT Logical system receive partner type. Hard-code.

SAPPRD100 RCVPRN SAP logical system ID for receive partner. Hard-code.

Table 5.11 STATUS Values in Segment E1STATS for Translated IDoc

188

Real-World Business Process Integration with EDI5

The map then plugs the values listed in Table 5.12 into the E1STATS data segment
of the SYSTAT01 IDoc type.

Value Field Comments

123456789 DOCNUM Read from tbl_STATAck-IdocNum.

16 STACOD If 997-AK501 = A (Accepted), then write 16 to
target, else write 17 for transaction syntax error.

EDISYS REPID Identifies the RIM as originating program or
routine for the status.

S STATYP If 997-AK501 = A, then write S to target, else
write E for error.

SAP STAMQU Identifies SAP message.

IDOC_ADAPTER STAMID Identifies EDI message class.

902 STAMNO If 997-AK501 = A, then write 902 (OK) to message
number, else write 903 (Error).

987456 STAPA1 ISA interchange control number for 810.

9998888999001 STAPA2 EDI trading partner ID for Gordy from 997.

987456 REFINT ISA control IB for OB 810 from
tbl_STATAck-ISACtrl.

987999 REFGRP GS control ID for OB 810 from 997-AK102
validated against tbl_STATAck-GSCtrl.

1 REFMES ST transaction set number for OB 810 from 997
AK202 validated against tbl_STATAck-STCtrl.

EDI_DS40 TABNAM IDoc status record table.

100 MANDT SAP target client number.

Table 5.12 STATUS Values in Segment E1STATS for Returned 997

This will update the control and status segments of outbound INVOIC IDoc
123456789 with the status reported for the 810 by Gordy’s 997, closing the circle
on the IDoc processing cycle, at least as far as transmission goes.

189

Reporting EDI Status to SAP 5.5

Most customers send acknowledgments at the group level, which means the
transaction set control number for the outbound EDI is not available in the 997.

The key here is the group control number, which is unique for each partner, func-
tion code (transaction), and version. The SQL read of tbl_STATAck depends on
this unique combination. It is enough to pull all the transaction set IDs and IDoc
numbers from tbl_STATAck for the function group. The SQL read would look
something like this:

SELECT IDocNum ISACtrl STCtrl from tbl_STATAck
 WHERE TPID = <997_ISA_send_tp_id>
 and GSCtrl = <997_AK102_gsctrl>
 and FuncCode = <997_AK101_func_code>
 and TxnCode = <If FuncCode = IN, 810, etc>

The other issue with group-level acknowledgments is that we don’t have transac-
tional level status. So we need to pass the group status to each IDoc as the transac-
tion status, which we’ll get from AK901 of the 997.

To do this, we’ll write a mapping rule that calls the SQL read and pulls all of the
IDocNum, ISACtrl, and STCtrl values from all records linked to the group control
number in tbl_STATAck into an array in memory, an internal table in ABAP terms.

The code would then loop through that array to provide E1STATS with the trans-
action set status that would otherwise come from AK501 of the 997 to build
one inbound STATUS IDoc for each outbound ISACtrl, IDocNum, and STCtrl
combination.

The problem is that if AK901 returns a status code of E (accepted but errors noted),
we have no way of identifying the transaction set that failed syntax test. We have
the number of accepted transaction sets in AK904, but this doesn’t identify the
specific ones that failed.

The critical information that we’re trying to collect from this interface is confirma-
tion that the EDI transmission was received by the customer and whether it passed
the syntax check. If there was an error, it will be dealt with by the EDI teams,
probably over the phone. How to handle this situation will no doubt fuel future
discussions about the interface.

The good news is that in a production environment, syntax errors are rare.

190

Real-World Business Process Integration with EDI5

5.6 Putting All the Pieces Together

The beauty of a workflow-based system is that it allows us to design a core busi-
ness processing architecture that leverages reusable, discrete processes to manage
routings or transformations for all of Acme’s data flows between SAP, the RIM,
internal business systems, and external trading partners.

The point of this long and winding sentence is to define a design philosophy: Keep
it simple, clean, and consistent. Our core processing model is built on discrete
BPs—workflows—defined in BPML that link services together to do a specific job
such as communications, routing, translation, archiving, reporting status, sending
data to SAP, and so on.

The base architecture separates communications from data processing and transla-
tion. Whether inbound or outbound, the processing outline can be summarized
in three simple points:

EE Data transmission

EE Message identification, routing, and translation

EE Data transmission

The key to maintaining this simplicity is recognizing the data and their context as
they flow through the system. If each of the base BPs that make up this architecture
can recognize from the data and the environment the four Ws—who, what, where,
and when—of the interface, we’ll be able to drop new trading partners into the
system by doing four things:

EE Building a map

EE Configuring envelopes and other trading partner information

EE Setting up AS2 or other communications profiles or reference tables

EE Writing the occasional XPath rule to provide custom processing for a special
situation for a particular partner

We can’t emphasize strongly enough the importance of maintaining this consis-
tency. EDI is a lynchpin of the enterprise. The vast bulk of business data that will
flow into or out of SAP—sales orders, deliveries, invoices, payments, and all of
their underlying follow-on processing and postings—depend either directly or
indirectly on EDI.

191

Putting All the Pieces Together 5.6

So let’s see how it works. We’ll put the pieces together and follow the end-to-end
process flow between Acme’s new SAP-EDI RIM and its most important customer,
Gordy’s Galaxy of Games & B Flix.

5.6.1 Inbound

The core processes that handle inbound message flow in Acme’s RIM are outlined
in Figure 5.8.

RFC to EDI function
IDoc Adapter

Encrypted
MDN to Gordy

AS2_Send BP:
Build/send 997
by HTTP/S post

Encrypted 997
AS2 to Gordy

IB archive
Archive BP:

Pre-translation
IB EDI archive

Archive BP:
Post-translation
IB IDoc archive

IB archive

SAP_RFC_Send BP:
Get login data call

IDoc adapter

Encrypted AS2
msg from Gordy

EDI extracted
partner/vers/txn.

Next BP identified

Build/send MDN
by HTTP/S Post

De-enveloping BP:
Txn unwrapped,

3 BPs called

Enveloping BP:
Generates OB 997
FA w/ envelopes

Translation BP:
ORDERS IDoc

850 X12 5010
interchange file

HTTP/S post hits.
Acme AS2 calls
BP AS2_Receive

Figure 5.8 Core Inbound Processes for X12 Transmissions in Acme’s RIM

The encrypted transmission is sent by Gordy’s AS2 server to the AS2 server in
Acme’s EDI RIM by an HTTP/S Post that triggers BP AS2_Receive. It reads the
header, identifies the partner’s AS2 profile, and immediately sends an MDN to
Gordy’s AS2 server to acknowledge receipt of the message.

192

Real-World Business Process Integration with EDI5

The AS2 message is decrypted and the de-enveloping BP called. The de-enveloper
identifies the format as X12 and uses the EDI sender and receiver IDs and qualifier
to get the ISA, GS, and ST envelopes; the X12 version, and the transaction set 850.

De-enveloping then calls three different BPs, not necessarily in sequence. One
generates a 997 to Gordy; another calls a pre-translation archiving process; the
third calls the translation BP, which in turn calls a post-translation archive before
it sends the IDoc into SAP.

The outbound enveloping BP builds a 997 FA in response to the inbound 850,
triggered by the acknowledgment flag in the 850’s GS group envelope. It identi-
fies the 997 envelopes from the EDI sender and receiver IDs and qualifiers, builds
the transaction, and wraps it with ST, GS, and ISA envelopes. The 997 includes
the group control number from Gordy’s 850 in the AK1 segment and the status of
each 850 transaction set de-enveloped in AK5.

Enveloping then calls the AS2_Send workflow to transmit the 997 to Gordy and
wait for an MDN response.

Back to the de-enveloper. The envelopes are stripped from the inbound 850 inter-
change, the translation map is identified, and parameters are collected from the
system. Runtime processing data in XML format are then passed along with the
EDI file to the follow-up BPs:

1. The archive BP to store the 850 in a pre-translation X12 archive folder using
XPath to build the path and file name from the direction, date and time, sending
partner, transaction set, and work flow ID number.

2. The translation BP to convert the 850 to an ORDERS.ORDERS05 XML IDoc file.

3. The archive BP from translation to save the IDoc file to the post-translation IDoc
archive folder.

4. SAP_RFC_Send to move the IDoc file to an inbound folder on the SAP applica-
tion server, read login parameters from a custom table, login to SAP, and call
the IDoc adapter. Login parameters include the following:

EE Application server, gateway host, and gateway service

EE File port

EE System number and system ID

EE SAP client

EE EDI IDoc user name and password

193

Putting All the Pieces Together 5.6

The IDoc adapter invokes JCo connection classes to log in to SAP and call RFC
function EDI_DATA_INCOMING, passing the full path and file name of the IDoc file
and XML file port. The function confirms that all IDocs in the file are valid. If they
are, the file is deleted from the application server. If not, an error is returned and
processing stops.

5.6.2 Outbound

The core outbound EDI process flows are outlined in Figure 5.9. It shows a customer
invoice, but all outbound transmissions follow the same path.

810 X12 5010
interchange

RFC to RIM BP
INVOIC IDoc file
picked up by BP IDoc archive

X12 archive
INVOIC IDoc file

sent to status

Insert IDoc no. and
ISA/GS/ST keys to

Tbl_STATAck

Gordy 997 sent
to Acme AS2

Archiving BP:
Pre-translation

before map runs

Archiving BP:
Post-translation
after map runs

Loop on each IDoc
TP/Txn ID/Map

convert/wrap 810

SAP_RFC_Rcv:
Picks up IDoc file,
calls envelope BP

BP Status_IF: Get
translate status
from correlation

Build STATUS
IDoc: OK or fail

Rcv MDN ack
from Gordy

AS2_Send BP:
Build/send 810
by HTTP/S Post

Encrypted810
AS2 to Gordy

X12 archive
Hits AS2_Receive:
Extract X12 997
partner/vers/txn

Insert IDoc no. and
ISA/GS/ST keys to
correlation table

Calls de-envelope:
Unwrap 997. Call
Archive/AckStatus

STATUS map from
997 status for IDoc

in Tbl_STATAck

Get IDoc no. from
Tbl_STATAck for
each OB 810 txn

IDoc Adapter

ID
o

c
A

d
ap

te
r

Phase 2 Plan Q
997-Status IF

2A

Figure 5.9 Key Processes in Outbound Invoice to X12 810 Interface

It begins when a billing document is created in SAP. An outbound IDoc is gen-
erated through message control and exported to an outbound directory on the
application server.

BP SAP_RFC_Rcv in the RIM is called through the RFC destination in the XML file
port. SAP_RFC_Rcv is the registered server program in the RFC destination set up

194

Real-World Business Process Integration with EDI5

with Transaction SM59, which matches the registered program name in the IDoc
adapter in the RIM.

The RFC sends the path and file name of the IDoc file to SAP_RFC_Rcv, which
invokes a file system adapter to pick up the IDoc file from the SAP application server.

SAP_RFC_Rcv passes the IDoc file to enveloping, which extracts the IDoc control
record to read the following keys:

EE RCVPRN
SAP receiving partner. For the invoice, this is Gordy’s bill-to partner in SAP,
which is the same as his sold-to number.

EE RCVPRT
Receiving partner type. KU for customer.

EE RCVPFC
Receiving partner function. BP for bill-to partner.

EE RCVLAD
Gordy’s receiving EDI partner number, read from a custom table in SAP into
the control segment through customer exit code.

EE SNDLAD
Acme’s sender EDI partner number, read by the customer exit.

EE MESTYP
Logical message type. INVOIC for the invoice.

EE IDOCTP
IDoc Basic type. INVOIC02.

These values are used, along with direction, to identify and retrieve the envelopes.
The ST envelope identifies and runs the map, converting the INVOIC IDoc to an
X12 810 version 5010 customer invoice.

The enveloping BP loops through each IDoc, translates it, wraps it in an ST enve-
lope, and assigns a sequential transaction set control number, beginning with 1.
Successful translation inserts the IDoc, billing document, ST control numbers,
enveloping BP instance ID, and other keys into the correlation table. Unsuccessful
translation does not update correlation.

The GS envelope then wraps the translated transaction sets into a group and
assigns a group control number, which is inserted along with the BP instance ID

195

Putting All the Pieces Together 5.6

into correlation. This is followed by the ISA envelope, which updates correlation
with the interchange control number and the BP instance ID.

Archiving is called twice. First the INVOIC file is saved to an outbound pre-trans-
lation IDoc archive folder and then the translated 810 interchange is saved to an
outbound post-translation X12 archive file and folder.

Enveloping then passes the INVOIC IDoc file to BP Status_IF, which loops through
the file and reads correlation for each IDoc number, before mapping the IDoc
control segment to a STATUS IDoc.

If a correlation record is found for the IDoc, status code 06—Translation Success-
ful—is inserted into a STATUS IDoc. If no correlation record is found, status code
05—Translation Failed—is inserted instead. This is the current endpoint for IDoc
processing in Acme’s new SAP system.

After all IDocs have been translated, BP Status_IF sends the STATUS IDocs into SAP
through the IDoc adapter to update the control and status records of the original
outbound INVOIC IDoc.

Meanwhile, enveloping calls AS2_Send and hands off the 810 interchange. BP
AS2_Send identifies Gordy’s AS2 profile (sender and receiver IDs, AS2 endpoint,
and so on), encrypts the 810 interchange, and bundles it into an AS2 message with
a text header.

It then sends the encrypted AS2 message through an HTTP adapter that hits the
endpoint URL in Gordy’s AS2 server with an HTTP/S Post method.

Assuming there are no hiccups, the AS2 message triggers a receiving process in
Gordy’s AS2 server. AS2_Send waits for the MDN, which should come immediately
after the message has been received by Gordy’s system.

The process is completed when Gordy returns an X12 997 FA referencing the GS
and ST transaction set control numbers of the outbound 810 invoice interchange.

The 997 is returned through a normal AS2 inbound process that triggers AS2_Receive
and is handed off to de-enveloping.

During a future phase of Acme’s Plan Q from Outer Space project, a 997-STATUS
interface will be added to feed acknowledgment data to SAP through the STATUS
IDoc. Status 16—Successful receipt of the 997 with no syntax errors—will then be the
endpoint for IDoc processing in SAP.

196

Real-World Business Process Integration with EDI5

5.7 Archiving and Deleting IDocs in SAP

One thing we can be sure of in Acme’s new SAP EDI system is that we are going
to produce a lot of data, particularly if we build the STATUS interface.

The team estimated data volumes for Acme from previous implementations at
several other comparable studios that included a STATUS interface for translation
and 997 acknowledgment.

The team projected that in the first four weeks after go-live about 1.5 million IDocs
would be created with more than 75 million records, including all segments, for
a daily average of about 73,000 IDocs. Nearly 40 percent of these were STATUS
IDocs, or just under 30,000 a day.

But it doesn’t stop there. STATUS IDocs are processed by workflow tasks, each of
which creates dozens of records across at least seven workflow tables, including a
complete history of every action performed.

Workflow tasks also process a range of IDoc errors. Each time an ORDERS IDoc
fails, for example, a task handles the error processing and updates the workflow
tables. This means that even a relatively small implementation can quickly accu-
mulate millions of work item records for IDocs, as well as for all the other business
objects processed through work flow tasks.

All of this can impact performance of applications that read these tables, particularly
SAP Business Workplace Inbox and Outbox, which are often configured to receive
or send error messages for failed IDocs and other business processes.

Clearly, there is a need to define an archiving and deletion policy for IDocs and
the workflow records that they spawn. We’re not going to get into the weeds of
policy here, but we are going to look at the tools that we would use to archive and
delete IDocs in Acme’s SAP system, bearing in mind that we’ve already decided to
archive IDocs files in the EDI RIM.

5.7.1 Archive and Delete

Deleting IDocs from SAP is a two-step process: first you archive, then you delete.
Figure 5.10 outlines the overall process in SAP.

197

Archiving and Deleting IDocs in SAP 5.7

IDoc archive file

Archive setup

Txn FILE: Create
logical file path

definition for IDocs

Txn SARA: Object
IDOC - configure
archive programs

Set logical path
filename for IDOC
and delete settings

Maintain variant/
schedule/spool for
Archive write prgm

Txn SARA:
Archive object

IDOC

Run Write program
production mode:

RSEXARCA

Search for IDoc by
bus. content from
archive: Txn WE10

Run

IDoc archive file

Run Delete prgm
for IDoc archive:

RSEXARCD

IDoc archive file

Reload IDocs from
archive run prgm:

RSEXARCL

Figure 5.10 Overview of IDoc Archive and Delete Process

The basic rule is that only completed IDocs can be archived. IDocs in an error status
can still be reprocessed. This state is recorded in the STATUS field of the control
segment and enforced by an archive flag in Transaction WE47, status maintenance.
Only the status codes listed in Table 5.13 can be archived.

Status Code Description

03 Data passed to port OK

12 Dispatch OK

13 Retransmission OK

18 Triggering EDI subsystem OK

31 Error—no further processing

33 Original of an IDoc that was edited

35 IDoc reloaded from archive

38 IDoc archived

40 Application document not created in target system

41 Application document created in target system

53 Application document posted

Table 5.13 IDoc Status Codes that are Valid for Archiving and Deletion

198

Real-World Business Process Integration with EDI5

Status Code Description

68 Error—no further processing

70 Original of an IDoc that was edited

71 IDoc reloaded from archive

73 IDoc archived

Table 5.13 IDoc Status Codes that are Valid for Archiving and Deletion (Cont.)

Configure Archiving and Delete

Archive configuration begins with a logical path and file name, created with client-
independent Transaction FILE. First we create the logical path.

1. In the Logical File Path Definition Overview screen, click New Entries to
open the Overview of Added Entries screen.

2. Enter the new logical path name as shown in Figure 5.11. The custom object
name should begin with a Z or a Y. Save and the system prompts for a transport
request.

Figure 5.11 Creating a New Logical Path Name for the Archive

3. Next assign an operating system for the archive server and a physical file path
to the logical path.

4. Select the logical path name and double-click the Assignment of Physical Paths
to Logical Path folder.

5. Click New Entries and select Windows NT from the Syntax group dialog.
Enter a physical path on the SAP application server for the archive file. Don’t
forget the <FILENAME> token at the end of the path name. It should look like
Figure 5.12.

199

Archiving and Deleting IDocs in SAP 5.7

Figure 5.12 Assigning a Physical Path to the Logical Path

6. Next define a logical system file name and link it to the logical path.

7. Double-click the Logical File Name Definition, Cross-Client folder and click
New Entries.

8. Enter the following values (as shown in Figure 5.13). Don’t forget to save.

EE Logical file field: “ZACME_IDOC_DEV”

EE Name field: “Acme dev archive logical file”

EE Physical file field: “AcmeIDocArchive” (We’re hard-coding here but this can
be built from system variables that can be replaced at runtime)

EE Data format field: “ASC” for ASCII

EE Application area field: “BC” for SAP NetWeaver

EE Logical path field: “ZARCHIVE_IDOC_ACME_DEVSYS_PATH” for the link

Figure 5.13 Linking a Logical File Name to the Logical Path

Now we link the archive object IDOC to our logical path and filename with Transac-
tion SARA. SAP archives by business object, which for IDocs is, reasonably enough,
IDOC. Note the four Actions buttons in Figure 5.14. They correspond to the four
programs that archive, delete archived IDocs, read, and manage the archive.

200

Real-World Business Process Integration with EDI5

Figure 5.14 Initial Screen for Archiving Transaction SARA

We still need to do a little more configuration.

1. Click Customizing and select Technical Settings from Archiving Object-
Specific Customizing in the dialog box that pops up.

2. The Customizing View for Archiving screen loads. Enter the new logical file
name to link the archive object IDOC to the logical path and file name, as illus-
trated in Figure 5.15.

Figure 5.15 Linking the Logical File Name to the Archive Object IDOC

201

Archiving and Deleting IDocs in SAP 5.7

3. You can also set parameters for the archive and delete program in this screen,
but leave the defaults as they are.

4. Save. The system prompts for a transport request.

Run Write

The Write button triggers ABAP report RSEXARCA. It runs with a variant that defines
selection parameters for the archive, a scheduled job, and spool parameters for
output of the report generated on completion of the job. The variant (as shown
in Figure 5.16) can be used to select IDocs by a variety of parameters common to
most IDoc selection programs in SAP.

Figure 5.16 Variant Parameters for Archive Write Program

202

Real-World Business Process Integration with EDI5

Please note the Processing Options. Test Mode will simulate an archive run but
will not create any archive file. Only Production Mode will create an archived
file in the logical directory configured for the archive.

When the variant, schedule, and spool print parameters are configured, the write
job is ready to run, as illustrated in Figure 5.17. Click Execute (or press (F8)) and
the archive job will run.

Figure 5.17 Write Is Locked and Loaded and Ready to Run

To check the status of the archive, click the green Job Overview button next to
Archive Directory. It will take you directly to the Job Overview screen of the
SAP job scheduler (Transaction SM37) where the job report in the print spool will
list all IDocs, including the number of control, data, and status segments archived
for each IDoc (see Figure 5.18).

Figure 5.18 Sample Spool Request Report for the IDoc Archive Job

203

Archiving and Deleting IDocs in SAP 5.7

Run Delete

The Delete button in Transaction SARA runs ABAP report RSEXARCD, which reads
an archive file and deletes its IDocs from the SAP database.

1. To delete archived IDocs from SAP, click Delete to load the Execute Delete
Program run screen (as shown in Figure 5.19).

Figure 5.19 The Execute Delete Program Screen

2. An archive is selected to identify the IDocs in SAP to delete. Click the Archive
Selection button to open the selection pop-up (as shown in Figure 5.20).

Figure 5.20 Select an Archive to Delete Its IDocs from SAP

3. The archive selection dialog will list all archives successfully saved with the write
program. Select an archive or archive file and click Continue to return to the
Execute Delete Program screen.

4. As with the write program, create a job by clicking Start Date and configure
the output device by clicking Spool Parameters.

5. When all parameters have been maintained, click Execute to kick off Delete at
its scheduled time. To delete IDocs, do not set the Test flag.

EE Check the spool report in the job scheduler for the deletions by clicking the
green Job button, just as with the write program.

204

Real-World Business Process Integration with EDI5

The read program (ABAP RSEXARCR) returns control record keys and link informa-
tion for archived IDocs. Management returns administrative data for the archive,
including IDoc number, status, physical filename, size, date archived, current jobs,
number of objects, and so on.

To reload an archive, use ABAP report RSEXARCL. To find an IDoc in the archive,
use Transaction WE09 or Transaction WE10 (ABAP RSEIDOC9) to search by the
contents of specific data elements and segments. We look at this in more detail in
Chapter 21, Section 21.2, Monitoring and Recovery Tools.

5.7.2 Deleting IDoc Generated Work Items

SAP provides standard programs for mass deletion of work items and their history.
Transaction SWWL (ABAP RSWWWIDE) deletes work items while Transaction SWWH
(ABAP RSWWHIDE) cleans up their history.

But we need to exercise caution. Work items are not only about IDocs. They are also
used for many other processes, including basis, security, and application objects.
As shown in Figure 5.21, the selection screen for SWWL allows us to restrict the
damage to IDocs by selecting tasks. The key is knowing what tasks to use for IDoc
selection and not deleting immediately.

Figure 5.21 Selection Screen of Report RSWWWIDE

205

Archiving and Deleting IDocs in SAP 5.7

The easiest way to understand tasks is as an ABAP program used by SAP workflow
to do one job within a process flow. They are triggered when a specified condition
is met in the processing flow of an IDoc.

For example, task TS30000020 runs when an RFC is made into SAP with an empty
IDoc file. The task sends an error message to the SAP Business Workplace Inbox
(Transaction SBWP) from where it can be used to troubleshoot the problem.

The tasks listed in Table 5.14 are related to IDoc processing and can be used to
select work items for deletion in Transaction SWWL.

Task Description

TS00007989 Outbound, error handling with IDoc. Failed to save IDoc to file.

TS00008068 Inbound, error message with IDoc. Errors with control segment
values.

TS00008070 Outbound, syntax (structural) error in IDoc.

TS00008074 Inbound, syntax (structural) error in IDoc.

TS30000020 Error message without IDoc. IDoc file empty.

TS60001307 Outbound, error message with IDoc packet. Batching error.

TS70008037 Display MC document (outbound w/o IDoc). Failed to generate an
IDoc from message control.

TS70008125 IDoc status report with post-processing (after export).

TS00008068 Inbound, error message with IDoc (configuration).

TS00008070 Outbound, syntax (structural) error in IDoc.

TS00008074 Inbound, syntax error in IDoc (structural, segments).

TS30200090 Processing inbound IDoc by application failure.

TS20000051 IDoc application inbound error. Application posting and system
errors (such as authorization).

TS30000206 IDOC_START_INBOUND. Runs each time a STATUS IDoc comes into
SAP.

Table 5.14 IDoc Tasks for Selection of Work Items to Delete

206

Real-World Business Process Integration with EDI5

There are many other relevant tasks, including one to handle errors for each
major application IDoc. For example, task TS00008046 handles errors for inbound
ORDERS, TS00007949 for REMADV, TS00008056 for INVOIC, and so on.

Tasks are maintained in Transaction PFTC and stored in infotype HRS1201, which
can be viewed with Transaction SE16 if you have authorization. Search for IDoc
tasks by entering *IDOC* into the SWOTP (object type) field in the SE16 selection
screen for the infotype.

Execute Transaction SWWL to return a report that lists all relevant work items for
the tasks and date range entered in the selection screen (as shown in Figure 5.22).
Double-click any task to follow its trail all the way back to the IDoc.

Figure 5.22 Sample Task Delete Report from Transaction SWWL

Tasks can be deleted one at a time, in groups, or all at once from the report. Select
the task or tasks and click Delete (the trashcan icon).

Important Tip

Before deleting any tasks, download all the work item IDs for all the tasks you intend
to delete. You’ll need them to delete work item history with Transaction SWWH. The
ALV List report has a download button at the top of the screen that will output the
report to a text file or spreadsheet. Or select the ID column and press (Ctrl)+(C) to
copy only the IDs.

Deleting Work Item History

Use Transaction SWWH to delete work item history, as shown in Figure 5.23.

Use the work item IDs from Transaction SWWH to select history for deletion.

207

Summary 5.8

Figure 5.23 Delete Work Item History with Work Item IDs

Execute but do not check Delete immediately. A work item history report is
returned displaying every action recorded against the work item ID, as illustrated
in Figure 5.24.

Figure 5.24 Delete Work Item History from the SWWH Report

As with the work item report in Transaction SWWL, history items can be deleted
one at a time, in groups, or all at once.

5.8 Summary

In this chapter we took a deeper dive into the processing flows in Acme’s new
SAP EDI system. We looked at the services that will be used by all processes and
outlined an archiving approach for EDI transactions and IDocs on the RIM.

208

Real-World Business Process Integration with EDI5

We also looked at the STATUS interface that will report to SAP the status of pro-
cessing milestones for IDocs as they pass through the RIM to the trading partner,
including 997 functional acknowledgments.

All this means a lot of data. We won’t archive IDocs in SAP at Acme Pictures, but
we will need a strategy to delete them. So we went over SAP’s standard tools for
archiving and deleting IDocs.

Now it’s time to look at IDocs themselves, and to get a better handle on their struc-
ture and basic configuration. So before we go any further, let’s work on building
the foundations of our knowledge of these intelligent messages.

209

Darryl Q didn’t know IDocs or EDI from a hole in the head, but he knew a
winning team when he saw one. IDocs are the building blocks of EDI in SAP,
and EDI is critical to the success of the Great Mr. Q’s DVD business. It’s
time, then, to begin lifting the veil and learning how IDocs work in SAP.

6 EDI Architecture in SAP: IDoc Basics

Things are getting interesting for the SAP EDI implementation team at Acme Pictures.

We’ve learned a little about EDI standards and technology and where it all fits in
the grand scheme of Acme’s new SAP system, particularly when it comes to its
most important customer, Gordy’s Galaxy of Games & B Flix.

We’ve designed our EDI architecture, the system is installed, and workflows are
being built. The first maps are in the hands of map developers.

The JCo connector has been installed on the EDI application server and the IDoc
Adapter configured for file-based RFC transfer between the RIM and Acme’s SAP
development client in logical system DEV100.

We’ll step through EDI configuration in SAP shortly. But first, our SAP EDI team
lead is a writing fiend who insists on documenting IDoc structure and processing
for the team and for Acme’s future folks.

“You can’t build a house without a foundation,” he’s fond of saying. “And that
foundation always starts with a document and at least one Visio.”

Acme project management is delighted. Many consultants have built systems for
Acme without writing a word about what they did (or thought they did) along the
way. Their systems usually did the job, but Acme IT spent a lot of time, money,
and energy trying to figure out how.

210

EDI Architecture in SAP: IDoc Basics6

6.1 Intelligent Messages: The Anatomy of an IDoc

SAP defines “IDoc” as an intermediate document, pointing to its role in the trans-
fer of data to or from an SAP business document or object, such as a PO, delivery
document, invoice, or customer master record.

This is an accurate definition as far as it goes. Like EDI messages, IDocs are inde-
pendent of the complex application objects—the database and program logic—that
store and process the business documents and objects that are encapsulated by the
IDoc. The IDoc is “intermediate” in that it is a phase, a bridge, in the transfer of a
business document into, out of, or within SAP.

An IDoc is a structured vessel, like an EDI message, with defined hierarchical rela-
tionships. But unlike an EDI message, an IDoc is an intelligent document plugged
into a standard interface with a full suite of message processing services enabled
through database tables and structures, programs, functions, and ABAP classes for
processing, monitoring, displaying, auditing, testing, editing, and building IDocs.

The beauty of this interface is that it’s truly plug and play. A developer can use all
these standard objects in his own custom IDocs, processing functions, and pro-
grams to extend the functionality of the standard interface to meet specific issues
for particular clients.

The word “IDoc” is thrown around a lot on an SAP project. It can mean different
things at different times to different people. We can use the term “IDoc” for any
one of five distinct objects that we will consider here:

1. Logical message type

2. IDoc basic type

3. IDoc extended type

4. IDoc instance

5. IDoc file

Let’s walk through each one.

6.1.1 Logical Message Type

An IDoc can be the name of a logical message type that represents the abstraction
of a business document or record in SAP. It identifies the nature of the object that

211

Intelligent Messages: The Anatomy of an IDoc 6.1

will be transferred and, to a certain extent, its function within a business process.
It also links to the processing logic that will either populate or post the IDoc.

A logical message type can have multiple purposes. Message type ORDERS, for
example, can serve as an outbound supplier purchase order, an inbound customer
sales order, a returns order, and so on.

In addition, message type ORDERS posting to a sales order can be followed by
logical message ORDRSP sent to a customer to confirm receipt of an order or an
ORDCHG sent to request a change in an existing order.

The use of a logical message type within a particular interface or business process
is defined by the following:

EE The application logic it triggers, which provides its transactional context

EE An IDoc basic type, which gives it a structure

EE The data that populates its structure at runtime, which gives it meaning

Naming conventions for logical message types are largely the same as for EDIFACT
EDI standards, but there are key differences between the two:

EE An EDIFACT message has a structure defined by the standard and applied by a
data dictionary.

EE Logical message types have no structure. They derive structure through their
link to a basic type.

EE Logical message types are linked to application and routing logic, while EDIFACT
messages are independent of any processing logic.

The logical message type is the brain of the operation. It bridges structure and logic
through links applied in configuration. It is about the business document, the data
that will inhabit the IDoc, and the ABAP code that will process it, whether that’s
a function module or a workflow task.

We’ll use the following logical message types to build our EDI interfaces at Acme
pictures:

EE ORDERS: Outbound purchase orders and inbound sales orders

EE ORDRSP: Outbound order acknowledgments

EE SHPORD: Outbound deliveries

EE MBGMCR: Inbound goods receipt

212

EDI Architecture in SAP: IDoc Basics6

EE SHPCON: Inbound ship confirmations

EE DESADV: Outbound advanced shipping notices (ASNs)

EE INVOIC: Inbound supplier and outbound customer invoices

EE REMADV: Inbound payment advice

6.1.2 IDoc Record Types: External Representation

IDocs get their record structure, syntax, and hierarchical format from three record
types defined in the SAP Data Dictionary in the following sequence:

EE One control record that contains message-wide administrative data

EE One-to-many data records with application data prefixed by control fields that link
each record back to the control segment and:

EE Identify the segment name of each record

EE Define the sequence of each segment within the IDoc

EE Define the hierarchy level and hierarchical relationships of each segment
within the IDoc.

EE One-to-many status records with a complete audit trail from the moment the IDoc
is written to the database to its final endpoint status

This is true for ASCII and XML IDocs. But the presentation of these record types
for ASCII IDocs is different for an external EDI system than it is for internal use
by SAP. XML IDocs have a simpler, more consistent structure driven by an XSD
schema externally and the IDoc database internally.

SAP outputs the external structure of IDoc record types for use in mapping by EDI
systems when the IDoc metadata is generated in parser format with Transaction
WE60.

External Control Record

The external control record holds message-wide administrative data and is defined
by structure EDI_DC40 (EDI_DC in IDoc Version 3) in the SAP Data Dictionary.
It has a record length of 524 bytes. Table 6.1 is an example of a control record
populated by an external EDI system for an inbound ORDERS message to Acme’s
DEV 100 system.

213

Intelligent Messages: The Anatomy of an IDoc 6.1

Field Value Description

TABNAM EDI_DC40 Name of the Data Dictionary structure that defines the
external control record type.

MANDT 100 SAP target client number.

DOCNUM IDoc number. Generated by SAP when the IDoc is
saved to the IDoc database. If the map writes a value
to this field, it will be overwritten by SAP when the
IDoc is written to the database.

DOCREL 702 SAP version.

STATUS IDoc status. Generated by SAP.

DIRECT 2 Direction. 1 = Outbound, 2 = Inbound.

OUTMOD Output processing mode.

EXPRSS Inbound processing override flag.

TEST Test flag. Only populated if set in the partner profile.

IDOCTYP ORDERS05 IDoc basic type for inbound sales order. Partner profile
key.

CIMTYP IDoc extended type name names custom segment.

MESTYP ORDERS Logical message type. Partner profile key.

MESCOD Message code. Only populated if used in partner
profile in WE20. It then becomes part of the key to
read partner profile table EDP21 (inbound).

MESFCT Message function. See MESCOD.

STD X EDI standard. X = X12, E = EDIFACT.

STDVRS 5010 EDI version.

STDMES 850 EDI transaction code or message.

SNDPOR XML_IDOC SAP sender port. Defined as a file port in WE21.

SNDPRT KU Sender partner type. Partner profile key.

SNDPFC SP Sender partner function. Only if set in partner profile.

SNDPRN GRDY01 Sender partner number. Partner profile key.

Table 6.1 IDoc Control Record Populated by an External EDI System

214

EDI Architecture in SAP: IDoc Basics6

Field Value Description

SNDSAD Sender address. Reserved for future use by SAP.

SNDLAD 01234567US0 EDI sender trading partner ID. To be read from custom
SAP table by user exit on control segment.

RCVPOR SAPDEV SAP receiver port. Always <SAP>+<SysID>.

RCVPRT LS Receiver partner type always logical system.

RCVPFC Receiver partner function.

RCVPRN DEVCLNT100 Receiver partner number. Always SAP logical system
for receiving (DEV) client.

RCVSAD Receiver address. Reserved for future use by SAP.

RCVLAD 9999999USD EDI receiver trading partner ID to be read from
custom SAP table by user exit on control segment.

CREDAT IDoc create date. Generated by SAP.

CRETIM IDoc create time. Generated by SAP.

REFINT 00000133 EDI interchange control number.

REFGRP 133 EDI group control number.

REFMES 1 EDI transaction set control number.

ARCKEY External archive system key for IDoc.

SERIAL Serialization key. Used to process batched IDocs in a
defined sequence.

Table 6.1 IDoc Control Record Populated by an External EDI System (Cont.)

All of these values, except for the EDI trading partner IDs, are provided by the EDI
system. Assuming that the file port, partner profile, and other IDoc configuration
options are in place, this control segment will get the message through the door
and written to the IDoc database.

During outbound processing the interchange, group, and transaction control IDs
are inserted into the control segment by the STATUS interface we discussed in
Chapter 5, Section 5.5, Reporting EDI Status to SAP.

This simplifies the work of the EDI production support team after the system goes
live. It allows us to write reports that link our business document to the IDoc and

215

Intelligent Messages: The Anatomy of an IDoc 6.1

EDI transaction, group, and interchange. This approach involves a little more plan-
ning and creativity, but the benefits are enormous.

Use Transaction SE11 to view the structure of the external control record. Enter
“EDI_DC40” in the Data type selection field, and click Display.

External Data Record

The external data record type is defined by Data Dictionary structure EDI_DD40
(EDI_DD for IDoc Version 3). It has a 63-byte control area and a 1,000-byte SDATA
field for unstructured application data, as illustrated in Figure 6.1.

Control key fields—63 bytes SDATA unparsed data field—1000 bytes

IDoc record type EDI_DD40

Figure 6.1 The External Base IDoc Data Record Type

The control fields include the external name of the IDoc segment and the keys that
define the placement and hierarchical relationships of the record within the IDoc.
The data record type structure is detailed in Table 6.2.

Field Value Description

SEGNAM E2EDK01005 External segment name. The segment name can
be used as a record tag in the EDI mapping tool.

MANDT 100 SAP client number.

DOCNUM IDoc number. Generated by SAP. Links segment
to IDoc number in control record.

SEGNUM 000001 Sequential segment number. Shows position of
segment within the IDoc.

PSGNUM Parent segment number. SEGNUM for parent in
a parent-child relationship. Doesn’t need to be
mapped. SAP identifies this number from the
syntax for the internal IDoc Basic type.

HLEVEL 1 Hierarchy level of segment.

SDATA Unparsed 1,000-byte application data field.

Table 6.2 The Structure of the External IDoc Data Record Type

216

EDI Architecture in SAP: IDoc Basics6

External Status Record Type

Defined by Data Dictionary structure EDI_DS40 (EDI_DS for IDoc Version 3), the
external status record stores the complete lifecycle of an IDoc from creation to
endpoint status. The length of the external status record type is 562 bytes.

The external status record type is not processed by the EDI system, nor is it exported
with the IDoc from SAP.

6.1.3 IDoc Record Types: Internal Representation

Just as the ancient Romans believed that arms make the man, internal IDoc record
types make the IDoc. They provide the structure and hierarchical organization for
IDoc data in the IDoc database and for the schema that format XML IDocs, greatly
simplifying their structure and readability.

Internal record types aren’t seen by the EDI system if they’re working with ASCII
IDocs. But XML IDocs perfectly mirror the structure and naming conventions of
internal record types, except for the control record, which still uses the EDI_DC40
external structure.

Internal record types are about the IDoc database. They are used by SAP to struc-
ture incoming or outgoing application data for insertion into the three tables of
the IDoc database.

During inbound processing, external record types are converted to internal record
types after the IDoc has been imported from the EDI system and before it is writ-
ten to the IDoc database.

During outbound processing, the IDoc is generated from the business document,
structured with the internal record types, assigned a unique IDoc ID number, and
then written to the IDoc database.

After the IDoc has been created in the database, output functions are called and it
is read into a communications IDoc that is structured by the external record types.
It is sent out of SAP to the EDI system.

The three tables of the IDoc database provide the structure for the internal record
types. These tables also store the IDoc records created in the IDoc interface:

217

Intelligent Messages: The Anatomy of an IDoc 6.1

EE EDIDC: One control record per IDoc with a unique IDoc number

EE EDID4: One to many data records linked to the control record through the
unique IDoc number

EE EDIDS: One or more status records linked to the control and data records through
the unique IDoc number

Understanding these tables and the record types that they define is key to under-
standing IDocs in SAP. As far as SAP is concerned, an IDoc does not exist until it
is written to the three tables of the IDoc database.

The organization and structure of an IDoc as defined by the internal record types
of the IDoc database is illustrated in Figure 6.2.

EDIDC—CONTROL record—1 instance

EDIDS—STATUS records—1 to many

EDID4—DATA records—1 to many

Keys:
IDoc No
SAP Sender and Receiver ID
Sender and Receiver Ports
IDoc Logical and Message Type

Header
Item detail
Summary

Keys:
IDoc No
Segment Number
Segment Name
Parent Segment Number
Hierarchy Level
SDATA Unparsed Data Field

Defines segment,
structure and
hierarchical
relationships

Keys:
IDoc No
Status Date and Time
IDoc Status
Message ID´s

Figure 6.2 Internal Record Types Are Defined by the IDoc Database

218

EDI Architecture in SAP: IDoc Basics6

The Internal Control Record Type

The internal control record is defined by the structure of table EDIDC. It identi-
fies the IDoc message and basic type and holds the most up-to-date administrative
and control information about the IDoc’s current processing state in SAP. It has a
record length of 542 bytes.

The key fields of a populated EDIDC control record for an inbound ORDERS IDoc
are listed in Table 6.3. This message posted to Acme DEV 100 from the external
IDoc in Table 6.2. An SAP sales order successfully posted from this IDoc.

Field Value Description

MANDT 100 SAP client number.

DOCNUM 675478 IDoc number. Generated after the IDoc was
converted to the internal format, just before it was
written to the IDoc database.

DOCREL 702 SAP version.

STATUS 53 IDoc status. 53: Application document posted.

DIRECT 2 Direction. 1 = Outbound; 2 = Inbound.

RCVPOR SAPDEV SAP receiver port. Always <SAP>+<SysID>.

RCVPRT LS Receiver partner type: Always logical system.

RCVPRN DEVCLNT100 Receiver partner number. Always SAP logical
system for receiving (DEV) client.

RCVLAD 9999999USD EDI receiver trading partner ID for Acme.

STD X EDI standard. X = X12; E = EDIFACT.

STDVRS 5010 EDI version.

STDMES 850 EDI transaction code or message.

MESCOD Message code. Populated only if used in partner
profile in WE20.

SNDPOR XML_IDOC SAP sender port. File port in WE21.

SNDPRT KU Sender partner type. Partner profile key.

SNDPRN GRDY01 Sender partner number. Partner profile key.

Table 6.3 Table EDIDC Structures the Internal Control Record

219

Intelligent Messages: The Anatomy of an IDoc 6.1

Field Value Description

SNDLAD 01234567US0 EDI sender trading partner ID for Gordy.

REFINT 00000133 EDI interchange control number.

REFGRP 133 EDI group control number.

REFMES 1 EDI transaction set control number.

CREDAT 200080915 Date created on IDoc database.

CRETIM 102454 Time created on IDoc database.

MESTYP ORDERS Logical message type.

IDOCTYP ORDERS05 IDoc basic type for inbound sales order.

CIMTYP IDoc extended type name.

RCVPFC Receiver partner function.

SNDPFC SP Sender partner function.

UPDDAT 200080915 Date IDoc was last changed in the database.
Reflects the most recent status change.

UPDTIM 102632 Time IDoc was last changed in the database.

MAXSEGNUM 100 Total number of data records in the IDoc.

Table 6.3 Table EDIDC Structures the Internal Control Record (Cont.)

The internal control record includes fields that match configuration set up before
we begin exchanging IDocs and it tracks the most recent processing information
about the IDoc, such as date and time of the last update to the control and status
records and the total number of data segments.

It defines the beginning of the IDoc, which exists as a linked set of physical records
in the database. The key is the unique IDoc number that links the control record in
EDIDC to its associated data records in EDID4 and status records in EDIDS. These
linked physical records are the IDoc.

The complete structure of EDIDC can be viewed with Transaction SE11.

Internal Data Record Type

The structure of the internal data record type is defined by transparent table EDID4,
which also stores the IDoc’s data records.

220

EDI Architecture in SAP: IDoc Basics6

The internal data record includes a control area of 71 bytes and a 1,000-byte
SDATA field. The control area stores the IDoc number, the internal segment name,
its sequence, and hierarchical level and relationships within the IDoc. Table 6.4
shows the structure of the internal data record type.

Field Value Description

MANDT 100 SAP client number.

DOCNUM 675478 IDoc number.

COUNTER 000 Cluster table counter.

SEGNUM 000001 Sequential number of segment within the IDoc.

SEGNAM E1EDK01 Internal segment name.

PSGNUM 000000 Parent segment. SEGNUM of its parent segment.

HLEVEL 01 Hierarchy level of segment.

DTINT2 1000 Length of unparsed SDATA field.

SDATA Unparsed 1,000-byte application data field.

Table 6.4 Table EDID4 Provides the Structure for the Internal Data Record

The application data in SDATA is parsed into discrete fields at runtime by Data
Dictionary structures that use the internal segment name.

Internal Status Record Type

The structure of the internal status record type is defined by transparent table
EDIDS, which is also used to store the status records generated by the IDoc inter-
face at key processing milestones in the IDoc’s lifecycle. The length of the status
record is 522 bytes.

Except for status information passed from the external EDI system by the STATUS
interface, status records are created purely within SAP and are never seen by the
EDI system.

Table 6.5 shows the fields and contents of the status record for our inbound ORDERS
IDoc after it successfully posted a sales order.

221

Intelligent Messages: The Anatomy of an IDoc 6.1

Field Value Description

MANDT 100 SAP client number.

DOCNUM 675478 IDoc number.

LOGDAT 20131231 Date status record last updated.

LOGTIM 10:26:32 Time status record last updated.

COUNTR 00003 Sequential counter for status record beginning with 0.

CREDAT 20131231 Date status record created on IDoc database.

CRETIM 102454 Time status record created on IDoc database.

STATUS 53 IDoc status. 53 = Document successfully posted.

UNAME SAP_EDI User name for EDI system in SAP. Used to process IDocs
and run background batch programs.

REPID EDISYS Program that created status record—EDI system.

STATXT &1 &2 has
been saved

Constant text and variables (&) for generation of text
message in status record.

STAPA1 Standard
Order

Message parameter 1. Variable for assembly of text
message for status record. Replaces & character in
STATXT. Standard text constant.

STAPA2 20000099 Message parameter 2. Sales order number created by
IDoc.

STAPA3 Message parameter 3.

STAPA4 Message parameter 4.

STATYP I Type of system message:

EE A: Abend

EE W: Warning

EE E: Error

EE S: Success

STAMQU SAP System that created the message.

STAMID V1 Message class invoked.

STAMNO 311 Standard status 53 information message number.

Table 6.5 Table EDIDS Structures and Stores the Status Record

222

EDI Architecture in SAP: IDoc Basics6

One status record is created for each processing milestone in the IDoc’s lifecycle.
The status sequence provides the complete history of the IDoc as it moves through
SAP and, at Acme Pictures, the EDI RIM.

For inbound IDocs, this sequence is displayed in Table 6.6 from oldest to final
endpoint.

Status Description

50 IDoc added to database.

64 IDoc ready to be transferred to application.

62 IDoc passed to application.

51 Error: Application document not posted.

53 Application document posted. Endpoint.

Table 6.6 The Basic Happy Path Inbound Lifecycle with One Error

For outbound IDocs, the basic IDoc lifecycle is outlined in Table 6.7.

Status Description

01 IDoc created on database.

30 IDoc ready for dispatch to the EDI system.

03 Data passed to port OK.

18 Triggering EDI system OK.

05 Translation failed.

06 Translation OK. Returned by STATUS
interface. Current endpoint.

16 Functional acknowledgment positive.
Endpoint for future 997-STATUS interface.

Table 6.7 Outbound IDoc Lifecycle Processing Sequence

You can view table EDIDS with Transaction SE11. Check out the complete list of
status codes with Transaction WE47.

223

Intelligent Messages: The Anatomy of an IDoc 6.1

6.1.4 IDoc Basic Type

The IDoc basic type is a data structure, not a data container. The basic type gives
the logical message type, and its business document, a structure for the data that
will be processed by the IDoc function.

IDoc data are stored in records that derive their structures from the control, data,
and status record types.

The basic type is composed of one or more segments that exist as structures in
the Data Dictionary. The segments provide the field structure to parse application
data in the SDATA field of the data record for processing by the IDoc interface or
for mapping in the EDI system. The layout of a populated instance of basic type
ORDERS05 in the Test tool for IDoc processing screen (Transaction WE19) in
Figure 6.3 illustrates this organization.

Figure 6.3 ORDERS05 IDoc Basic Type in WE19 Test Tool

It shows the hierarchy of segments beginning with the EDIDC control record at
the top, the segment name of each data record to the left below EDIDC, and the
unformatted SDATA field in white to right of each data record.

Double-click the segment name and a pop-up appears with the parsed fields from
the segment structure in the Data Dictionary. Figure 6.4, for example, shows the
parsed field structure for segment E1EDK02.

224

EDI Architecture in SAP: IDoc Basics6

Figure 6.4 Parsed Data Dictionary Field Structure of Segment E1EDK02

A basic type can be shared with several logical message types. ORDERS05, for
example, is linked to message types ORDERS (purchase or sales orders), ORDRSP
(order response), ORDCHG (order change), REQOTE (request for quotation),
QUOTES (quotation), and DELORD (delivery request). This allows a common data
structure for a variety of business objects—POs, quotes, delivery orders, and so
on—that can populate an instance of the basic type according to their own needs.
The logical message type, through its link to the processing function, determines
the data in the populated IDoc.

Basic types that are shared by multiple message types have comprehensive structures
that can accommodate a variety of application uses. Only a small number of seg-
ments and fields in ORDERS05, for example, are used to create a sales order. The
mapping documents that we produce for Acme’s X12 to IDoc translation identify the
segments and fields that we actually use, after the SD functional team determines
what data they need to create a sales order and support all follow-on functionality.

The syntax for each IDoc basic type—the sequence in which each segment falls and
its hierarchical relationships to other segments—is stored in table IDOCSYN and
is read by function IDOCTYPE_READ_COMPLETE called during IDoc processing from
function EDI_IDOC_SYNTAX_GET.

The link between the message and basic types is passed in the IDoc control record
in fields MESTYP and IDOCTYP. If these fields are not populated by the EDI system
for inbound processing, the IDoc will fail.

The system populates these fields during outbound processing. They match the
message and basic types entered in the outbound partner profile. We look at this
works in our discussions of configuration and output control.

225

Intelligent Messages: The Anatomy of an IDoc 6.1

6.1.5 IDoc Extended Type

An IDoc extended type is a basic type with one or more custom segments. As
customer objects, they begin with a Z.

For Acme’s Plan Q implementation, the naming convention for extended types is
Z_<Basic_Type>. An extended type for ORDERS05 would be Z_ORDERS05. Extended
segments require customization to process them, usually written in customer exits.

The extension must be identified in the outbound partner profile and in the CIMTYP
field of the IDoc control record. It must be passed to SAP in the control segment
for inbound processing as well.

6.1.6 IDoc Instance

An IDoc exists in SAP only after it has been written to the IDoc database.

This means one control record in table EDIDC, one or more data records in EDID4,
and one or more status records in EDIDS, linked together through a common
unique IDoc number. Application data are stored in the SDATA field of the EDID4
data records. The segment name and number, which represent its sequence in the
IDoc, fall in the control key area of the record.

The hierarchical relationships between segments are defined in the parent segment
(PSGNUM) and hierarchy level (HLEVEL) fields in the data record control area.
The parent segment points to the segment number (SEGNUM) of the parent in a
parent-child relationship.

The IDoc is the application object that drives follow-up processing in the interface
after it has been created in the IDoc database. It’s a permanent SAP data object
that lives in the database until it’s archived and purged. Like all data objects, it can
be read, processed, edited, and otherwise manipulated by standard and custom
ABAP programs.

On the inbound, the IDoc creates the SAP business document, such as a customer
sales order (logical message type ORDERS). On the outbound, the IDoc pulls
application data from the SAP business document and passes it to an externally
formatted Communications IDoc that is converted to XML through the XML file
port and transmitted to the EDI RIM.

226

EDI Architecture in SAP: IDoc Basics6

6.1.7 IDoc File

We refer to a file here because we’re using a file-based RFC connection between
SAP and the RIM. It could just as easily be a batch of IDoc data sent into or out of
SAP by ALE transfer through memory.

The IDoc file holds either an XML (which we’ll use at Acme Pictures) or an ASCII
IDoc with the external record format and segment names. The XML IDoc, on the
other hand, is formatted with the internal segment names and the external control
record with the field structure of EDI_DC40. We look at XML IDocs in the next
section.

On the inbound, the IDoc file contains data that has been translated or generated
by an external system. An ASCII IDoc is converted to the internal record types
before it is written to the IDoc database using these functions:

EE IDOC_CTRL_INBOUND_CONVERT for the control record

EE IDOC_DATA_INBOUND_CONVERT for the data records

On the outbound, the externally formatted ASCII IDoc is generated by the system,
after it has been built and written to the IDoc database, by functions:

EE IDOC_CONTROL_OUTBOUND_CONVERT for the control record

EE IDOC_DATA_OUTBOUND_CONVERT for the data records

Status records do not leave SAP and are not converted.

These functions convert IDoc versions 3 and 4 (control records EDI_DC and EDI_
DC40). The system can convert an incoming version 3 to a version 4 IDoc. On
the outbound, the version is determined by the file port, as you’ll see when we
consider file port configuration.

The IDoc file only exists at runtime, although a record of its passage is saved to the
EDI file archive. As far as SAP is concerned, it’s a temporary object with no status
record and no existence until it has been written to the IDoc database.

6.1.8 XML IDocs

Listing 6.1 shows an example of basic purchase order IDoc from Gordy’s to Acme
in XML format.

227

Intelligent Messages: The Anatomy of an IDoc 6.1

<?xml version="1.0" encoding="UTF-8"?>
<ORDERS05>
 <IDOC BEGIN="1">
 <EDI_DC40 SEGMENT="1">
 <TABNAM>EDI_DC40</TABNAM>
 <MANDT>100</MANDT>
 <DOCNUM>0000000134206118</DOCNUM>
 <DOCREL>702</DOCREL>
 <STATUS>30</STATUS>
 <DIRECT>2</DIRECT>
 <IDOCTYP>ORDERS05</IDOCTYP>
 <MESTYP>ORDERS</MESTYP>
 <SNDPOR>XML_IDOC</SNDPOR>
 <SNDPRT>KU</SNDPRT>
 <SNDPRN>GRDY01</SNDPRN>
 <RCVPOR>SAPDEV</RCVPOR>
 <RCVPRT>LS</RCVPRT>
 <RCVPRN>DEVCLNT100</RCVPRN>
 </EDI_DC40>
 <E1EDK01 SEGMENT="1">
 <BELNR>8196733288</BELNR>
 </E1EDK01>
 <E1EDK03 SEGMENT="1">
 <IDDAT>012</IDDAT>
 <DATUM>20131231</DATUM>
 </E1EDK03>
 <E1EDKA1 SEGMENT="1">
 <PARVW>AG</PARVW>
 <PARTN>0001013694</PARTN>
 </E1EDKA1>
 <E1EDKA1 SEGMENT="1">
 <PARVW>LF</PARVW>
 <PARTN>0001014700</PARTN>
 </E1EDKA1>
 <E1EDKA1 SEGMENT="1">
 <PARVW>WE</PARVW>
 <LIFNR>0001013699</LIFNR>
 <NAME1>Pharma1 Pharma</NAME1>
 <STRAS>123 Victory Blvd</STRAS>
 <ORT01>Newark</ORT01>
 <PSTLZ>07103</PSTLZ>
 <LAND1>US</LAND1>
 <REGIO>NJ</REGIO>

228

EDI Architecture in SAP: IDoc Basics6

 </E1EDKA1>
 <E1EDK02 SEGMENT="1">
 <QUALF>001</QUALF>
 <BELNR>8196733288</BELNR>
 <DATUM>20110117</DATUM>
 </E1EDK02>
 <E1EDP01 SEGMENT="1">
 <POSEX>000010</POSEX>
 <MENGE>25000.000</MENGE>
 <MENEE>PCE</MENEE>
 <WERKS>CH01</WERKS>
 <E1EDP19 SEGMENT="1">
 <QUALF>001</QUALF>
 <IDTNR>000000000000991182</IDTNR>
 <KTEXT>SORITOL SR FCT 20MG 3X10 IL</KTEXT>
 </E1EDP19>
 <E1EDP19 SEGMENT="1">
 <QUALF>002</QUALF>
 <IDTNR>8612791311828</IDTNR>
 </E1EDP19>
 </E1EDP01>
 </IDOC>
</ORDERS05>

Listing 6.1 XML IDoc ORDERS.ORDERS05 PO from Gordy’s to Acme

The message is identified by the basic type, which gives the IDoc structure and
is stored within <ORDERS05></ORDERS05> and <IDOC></IDOC>. <IDOC> defines the
start of the data payload by setting the BEGIN attribute to "1". Each new segment
is identified by a SEGMENT attribute set to "1". The control segment is structured by
its external representation EDI_DC40, but every other segment uses the internal
segment name in table EDID4.

The control area in ASCII IDocs that identifies each segment, its sequential order,
and its hierarchical relationships, is absent from XML. Note also that the EDID4
field name for each data element clearly identifies the data in the XML IDoc. ASCII
IDocs store data in fixed length format in SDATA. Field names are not sent. It’s
much easier to read and hand-roll an XML IDoc.

The structure and syntax of the XML IDoc is defined by a schema (XSD) that is
generated by SAP with Transaction WE60 and used by the EDI RIM mapping tool
to identify and convert the message. A small snippet of the XSD schema—up to

229

Intelligent Messages: The Anatomy of an IDoc 6.1

definition of data element MANDT in EDI_DC40—in Transaction WE60 is illus-
trated in Figure 6.5.

Figure 6.5 A Small Slice of the Schema for ORDERS05

The full schema is 7,182 lines of descriptive XML instructions. It’s complex and
verbose, but SAP takes care of all that. All you need to do is generate the schema
in Transaction WE60, download it by selecting menu option XML • Download,
import it into your mapping application, and build an XML map.

It’s even easier to process an XML IDoc in SAP. All it takes is an XML file port. We
look at how to do this in Section 6.3.4, XML File Port. For now, we look at how
the IDoc interface processes XML IDocs.

Inbound Processing

The IDoc file is picked up from the application server by function module EDI_
DATA_INCOMING. The EDI RIM triggers the function and passes it the full path and
filename, and the sender file port name.

230

EDI Architecture in SAP: IDoc Basics6

The first thing EDI_DATA_INCOMING does is call a function that reads the port and
identifies the incoming as either a file or XML port: EDI_PORT_READ. It then con-
firms that the file is a valid XML message and calls function IDOC_XML_FROM_FILE
to convert the XML file to an internal format that SAP can process and save to the
IDoc database.

Outbound Processing

The beauty of the IDoc interface is that it is consistent. Outbound processing of
XML IDocs isn’t all that different from inbound.

Function MASTER_IDOC_DISTRIBUTE is called by the interface after the communica-
tions IDoc has been built and before it is written to the IDoc database. After some
preliminary house-keeping, it calls function EDI_OUTPUT_NEW, which reads the
port from the control segment field RCVPOR and identifies its type with function
EDI_PORT_READ.

If the port is XML, function IDOCS_OUTPUT_IN_XML_FORMAT is called to convert the
communications IDoc to XML format and write the file to a directory on the appli-
cation server based on the XML port settings so that the EDI RIM can pick it up.

6.2 IDoc Architecture and the Data Dictionary

Everything in SAP is defined by the Data Dictionary. The data that describe and
process every object are stored in Data Dictionary tables, including the objects of
the Data Dictionary itself and the ABAP code that runs the entire system.

Get comfortable with digging through the Data Dictionary and you’ll get a really
good handle on SAP. Here’s a tip: All tables that define and describe Data Diction-
ary objects begin with “DD”.

IDocs are no different. All objects that make up the structure and syntax of an IDoc
are defined, stored, and linked to each other in the Data Dictionary. A high-level
view of how these relationships work for IDocs is illustrated in Figure 6.6.

231

IDoc Architecture and the Data Dictionary 6.2

DD03L/DD03T:
Fields: Table/

POS/check table

EDSAPPL: Defines
sequence of fields

in segment

DD07L/DD07T:
Domain qualifiers

value range

DD04L/DD04T:
Data Elements:
Domain/desc

DD01L/DD01T:
Domain attributes:

Name/type/len

EDISEGMENT:
Defines header

level of segments

EDIMSG: Links
logical message to

basic/extended types

EDBAS/EDCIM:
Defines IDoc basic/

extended types header

EDMSG: Defines
logical message

types header

IDOCSYN: Defines
order of segments for
basic/extended types

EDISDEF: Defines
internal/external
segment names

DD02L/DD02T:
Defines technical

attributes of tables

Figure 6.6 IDoc Structure Is Built from Objects in the SAP Data Dictionary

6.2.1 Domains

The domain is the atom of the Data Dictionary and the building block for data
elements and fields.

Domain EDIF1225A is typical. It provides base formatting information and a range of
qualifier values for the ACTION field in segment E1EDK01 in basic type ORDERS05.

Formatting characteristics defined in the domain include data type “CHAR” and
length “3”.

Domain EDIF1225A includes a value range that drives processing options for the
IDoc at runtime. Qualifier options are listed in Table 6.8.

Value Description

Null This field is not used in the message.

000 No particular action required.

001 Reverse entire document.

002 Changes in document header.

003 Changes in one or more items.

Table 6.8 Qualifier Values for Domain EDIF1225A

232

EDI Architecture in SAP: IDoc Basics6

Value Description

004 Changes in header and items.

005 Credit memo display/ERS method.

006 Retroactive price change/clearing invoice.

007 Non-valuated goods receipt.

Table 6.8 Qualifier Values for Domain EDIF1225A (Cont.)

The default action for a null value or for a 000 in an inbound customer PO is to
create a sales order. The value in the IDoc at runtime is provided by the translation
in the EDI system, which is driven by the functional requirement for the document.
In our case, we will only be using the inbound ORDERS to create a sales order.

Domains are defined in table DD01L with text descriptions in multiple languages in
DD01T. Domain qualifiers—value ranges—are stored in tables DD07L and DD07T,
which store text descriptions for each value in multiple languages.

You can view domains in the Data Dictionary with Transaction SE11. Enter
“EDIF1225A” in the Domain selection field, and click Display.

6.2.2 Data Elements

The data element is linked to a domain. It inherits the domain’s field length, value
range, and other attributes and adds a text description and field labels of varying
lengths.

Data element EDIF1225_A, which is built on domain EDIF1225A, adds the text
description “Action code for the whole EDI message.”

Data elements are defined in table DD04L (links to the domain) and table DD04T
(stores the text description in multiple languages).

Data elements can be viewed in the Data Dictionary with Transaction SE11. Enter
data element name “EDIF1225_A” in the Data type selection field, and click Display.

6.2.3 Fields

The field is a local instance of a data element created in a table or structure. It
inherits all the attributes of the domain and data element—formatting, field labels,
text description, value ranges, and so on from the data element.

233

IDoc Architecture and the Data Dictionary 6.2

Fields provide a field structure to the segment through the order of their placement.
The field ACTION, the first field in segment E1EDK01, is built on data element
EDIF1225_A.

A field is created in a table or structure. ACTION was created in the IDoc Segment
Editor (Transaction WE31) for segment E1EDK01. A data element was assigned
to it when it was created, pulling all the properties of the data element and its
underlying domain into the field.

Field definitions are stored in table DD03L through their link to the structure or
table, in this case, E1EDK01, and the data element. Their position in the structure
is one of the keys in DD03L. Field text is stored in table DD03T.

6.2.4 Segments

Segments are the building blocks of IDoc basic and extended types. They are cre-
ated in the IDoc Segment Editor (Transaction WE31) and exist as structures in the
SAP Data Dictionary. Their attributes and field structure are stored in a number of
tables, including the following:

EE EDISEGMENT: Header level data for segment.

EE DD02L: Technical details at header level for tables and structures, including
segments. Text descriptions in multiple languages are in table DD02T.

EE EDISDEF: Internal and external segment names, versions, number of fields, and
create dates and times.

EE DD03L: Field names and attributes for tables and structures, including order of
fields in segments.

EE EDSAPPL: Application structure defining the sequential position of each field
within the segment.

Segments are used in ABAP processing of IDocs to parse application data in the
SDATA field of the data record into discrete fields. Segment names can also be used
in standard and custom monitoring reports to search for IDocs by segment name
and content or to otherwise process them.

The structure of any of these tables can be displayed in the Data Dictionary with
Transaction SE11. The field structure of any segment can be displayed in the Segment
Editor using Transaction WE31 or in the Data Dictionary with Transaction SE11.

234

EDI Architecture in SAP: IDoc Basics6

6.2.5 IDoc Basic and Extended Types

As we have indicated, IDoc basic and extended types are defined through the
sequence and hierarchical relationships of their segments, whether those segments
are standard or custom. IDoc basic or extended types are created in the Develop
IDoc Types editor (Transaction WE30) by assembling released segments that have
a field structure. Each segment is assigned a number of characteristics:

EE Name

EE Mandatory or not

EE Minimum and maximum occurrence within basic type

EE Parent segment number

EE Hierarchy level

A number of tables are used to define basic and extended types and link them to
one or more logical messages, including the following:

EE EDBAS: Header level create and update information about IDoc basic types

EE EDCIM: Header level create and update information about IDoc basic types with
custom segments

EE IDOCSYN: Syntax description for basic types. Defines the selection and sequence
of segments in an IDoc basic or extended type, including the following attributes:

EE Segment name

EE Sequence number within the basic type

EE Name and sequence number of parent segment

EE Mandatory segment flag

EE Minimum and maximum occurrences of segment

EE Hierarchy level

EE EDMSG: Stores logical message types created with Transaction WE81

EE EDIMSG: Stores the link between logical message type and IDoc basic and
extended types created with Transaction WE82

235

One-Time EDI Configuration for IDocs in SAP 6.3

Tip: Tracing IDoc Construction

If you know how to read or debug ABAP code, go through function IDOCTYPE_READ_
COMPLETE. It reads all the key tables used in building the structure of an IDoc basic
type, with all of its segments, data elements, and qualifiers, from the domain level right
through to the link between the logical message and basic types.

6.3 One-Time EDI Configuration for IDocs in SAP

In the next chapter we look at details of inbound and outbound IDoc configuration
for EDI in SAP. There are a number of one-time configuration tasks that set up
SAP for exchanging IDocs with an external EDI system, regardless of the direction
of any interface. More often than not these tasks are handled by the Basis team.

Some of this one-time setup can done through the ALE IMG (Transaction SALE).
For Acme Pictures, these one-time EDI configuration settings include the following:

EE Create an EDI background user to process IDocs in SAP

EE Define a logical system for the SAP client and EDI system

EE Create a connection to the Acme EDI RIM

EE Create a file port for IDoc transfers

The beauty of the ALE IMG is that it presents all IDoc configuration options and
scenarios for EDI or ALE in one screen in the order that they would be set. If you
want more information about the configuration options in the ALE IMG, click on
the page icon next to each heading. An HTML page will open with details about
what that setting does.

6.3.1 EDI User Name

The IDoc adapter in the EDI system needs a user name and password to log in to
SAP to trigger the IDoc interface. We’ll copy WF-BATCH, a standard CPI/C com-
munications user provided by SAP for workflow and background processing, into
a new EDI_USER for Acme’s IDoc processing.

The password for EDI_USER will be DARYLQF1, in honor of Daryl Q. Fernhausen,
the indomitable founder of Acme Pictures.

236

EDI Architecture in SAP: IDoc Basics6

Neither WF-BATCH nor EDI_USER can be used to log in to the SAP front-end
GUI. But both can trigger background batch processing jobs in SAP. EDI_USER
will have authorization to call RFC functions and run IDocs and other programs
in background mode, including create and change of business documents in SAP.

The security will set up EDI_USER with Transaction SU01.

In addition to the EDI username and password, the EDI team will need the follow-
ing information for all SAP systems they’ll exchanging IDocs with:

EE Client number

EE Application server

EE System number

EE Gateway host and service

EE Port or ports to be used for IDoc exchange

6.3.2 Logical System

The logical system represents an SAP system and client that participates in an
exchange of IDocs with the EDI RIM. We’ll also create a logical system for the EDI
RIM to point to the destination for our EDI interfaces.

The SAP logical system name is used by the IDoc interface as the sending partner
in outbound and the receiving partner in inbound exchanges.

The Basis team creates logical systems. To create the logical system for the EDI
RIM, use Transaction BD54 or ALE IMG (Transaction SALE) path Application Link
Enabling (ALE) • Basic Settings • Logical Systems • Define Logical Systems.

You then enter the logical system name for the EDI RIM: EDIDEV100 (see Figure
6.7). This identifies the EDI DEV box that will exchange IDocs with Client 100 of
Acme’s SAP DEV system. Don’t forget to save.

237

One-Time EDI Configuration for IDocs in SAP 6.3

Figure 6.7 Three New Logical Systems in BD54

Logical systems are transportable, so we’ll also create one for QAS and PRD:

EE EDIQAS100

EE EDIPRD100

Logical systems are stored in tables TBDLS and TBDLST. Logical systems can be
transported between SAP environments.

The logical system will also be assigned to the client that will exchange the IDocs
with the EDI RIM. This assignment cannot be transported between clients and must
be entered manually every a new system client is created that will exchange IDocs.

The Basis team assigns the SAP logical system to a client through the IMG path
Application Link Enabling (ALE) • Basic Settings • Logical Systems • Assign
Logical System to Client. This assignment is stored in table T000.

6.3.3 Connecting Systems to SAP

The EDI RIM is connected to SAP through an RFC destination. There are different
types of RFC connections, many of which are used to connect internal SAP systems.
Connection type TCP/IP supports communications with an external system.

The TCP/IP RFC destination represents the target for an RFC through the JCo con-
nector to a listener work flow on the EDI RIM that picks up outbound IDocs for
processing within the EDI system.

The RFC destination is a logical system that points to another system that will be
involved in an exchange of data. It allows an external system to call RFC functions
in SAP and for SAP functions to call target programs in an external system. It’s the
key enabler for communications with the EDI RIM in SAP.

238

EDI Architecture in SAP: IDoc Basics6

The Basis team normally creates the RFC destination with input from the SAP EDI
team. The RFC destination cannot be transported and must be manually created
in each new client.

RFC destinations are created with Transaction SM59 or the ALE IMG path Applica-
tion Link Enabling (ALE) • Communications • Create RFC Connections.

1. Select TCP/IP connections and click Create.

2. Enter the name of the registered program ID in the RFC destination field:
EDI_DEV_100. This is the registered program name we up in the RIM’s IDoc
adapter in Chapter 5, Section 5.4.1, Outbound Services.

3. Select connection type T for TCP/IP from the Connection type dropdown list.

4. Enter a description in the Description 1 field and any additional information
that might be relevant in Description 2 and 3.

5. Make sure the Technical Settings tab is selected.

6. Select the Registered Server Program radio button.

7. Enter the name of the RFC Destination in Program ID. This is the registered
program name that we used in the RFC destination’s name field. This identifies
the target work for the RFC in the EDI system.

8. Enter the local SAP Gateway name or IP address in the Gateway host field.

9. Enter the SAP Gateway service name in the Gateway service field.

10. Save the RFC destination.

To test the RFC destination, click the Test connection button. If JCo is installed
correctly on the EDI application server and the IDoc Adapter is set up on the RIM,
SAP will find the external system and make the connection, at least if both systems
are installed in a Windows environment.

Base RFC destination options are stored in table RFCDES.

During outbound IDoc processing, the RFC destination is identified from table EDI-
POX (EDIPOD for ASCII IDoc file ports), through its link to the XML file port. It’s
called by a C function: RFC_REMOTE_EXEC from function IDOCS_OUTPUT_IN_XML_FORMAT
(IDOCS_OUTPUT_TO_FILE for ASCII file-based transfer), after the IDoc has been
converted to XML, written to the IDoc database, and written to a file in a directory

239

One-Time EDI Configuration for IDocs in SAP 6.3

on the SAP application server. This C function is the trigger that starts the listener
work flow on Acme’s EDI RIM.

6.3.4 XML File Port

As its name implies, the XML file port enables the transfer of a physical XML IDoc
file from SAP. It points to where the file will be written, gives it a name, and trig-
gers the EDI RIM through the RFC destination.

It is a critical piece of configuration for IDocs in SAP for both inbound and outbound
IDocs, as we have already seen.

The SAP EDI team creates the XML file port, although this can also be done by
Basis. The XML file port cannot be transported and must be created manually in
each new client.

The XML file port is created with Transaction WE21 or through the SAP Easy
Access path SAP menu • Tools • ALE • ALE Administration • Runtime Settings •
Port Maintenance.

1. Select port type XML File and click Create.

2. Enter a name into the Port field: “XML_IDOC”. We’ll use the same XML file
port name in all three Acme clients.

3. Enter a text description for the port in the Description field.

4. Select the Unicode radio button. This will add an encoding attribute to the XML
tag at the top of the XML IDoc file:

<?xml version="1.0" encoding="utf-8" ?>

5. In the Outbound file tab, do the following:

EE Select physical directory, and enter a directory path name. Use a logical
directory if you’ve defined one for your IDoc outbox.

EE In the Function module field, select a function to name the IDoc file. We’ll
use EDI_PATH_CREATE_MESTYP_DOCNUM. This uses the logical message type name
and IDoc number of the first IDoc in the XML file as the file name (see Figure
6.8).

240

EDI Architecture in SAP: IDoc Basics6

Figure 6.8 Outbound File Parameters for XML File Port XML_IDOC

6. Save the record, and click on the Outbound: Trigger tab (see Figure 6.9).

Figure 6.9 Outbound Trigger Options for File Port XML_IDOC

7. Click the Autom.start possible checkbox. This is mandatory if you want to
use the RFC destination to trigger processing of outbound IDocs in the EDI
RIM.

8. Enter “EDI_DEV_100” in the RFC destination field.

9. Enter a dummy directory name in the Directory field and a dummy script
name in the Command file field (see Figure 6.9).

10. Save the file port.

241

Summary 6.4

Only outbound settings are defined in the file port, although the port is checked by
the interface during inbound processing as well, as we have seen. The EDI RIM takes
care of the file name and path and the RFC trigger for inbound interfaces. But the
file port name must be in the control segment field SNDPRN of the incoming IDoc.

We’ll only create one XML file port for all EDI transfers at Acme Pictures. Some
sites create multiple file ports to distinguish IDoc flows in the IDoc database for dif-
ferent departments or organizations or for other reasons. This is a design decision.
We only really need one port, so we’re keeping things simple at Acme Pictures.

XML file port definitions are stored in table EDIPOX. ASCII IDoc file port defini-
tions are stored in table EDIPOD.

An Undocumented Opportunity

The Directory and Command file fields in the Outbound: Trigger tab of the XML
file port reflect the days when scripts were called in the operating system to move files
between SAP and an external EDI system. Scripts are not required when an RFC destina-
tion is invoked because it triggers the external application, which pulls in the IDoc file.

The two fields are still mandatory. Their contents are passed to the external application
when the RFC is made, along with the path and file name of the IDoc file. The contents
of the command file fields are passed as export parameters through the C function call
that triggers the EDI RIM through the RFC destination.

The contents of the command file fields are available to the EDI system and can be used
to pass additional information from SAP for custom processing within the EDI system if
this information can be read with XPath queries.

6.4 Summary

We’ve begun to explore IDocs and the IDoc interface in a little more detail. We’ve
looked at IDoc terminology, architecture and its various objects, from domains
and data elements to segments and basic types. The SAP Data Dictionary plays a
critical role in the construction of IDocs. Its tables and structures make it a useful
tool for understanding how IDocs are assembled and structured.

We looked at the differences between internal and external representations of
ASCII IDocs and went over the structure of the all-important control segment that
marks the beginning of every IDoc.

242

EDI Architecture in SAP: IDoc Basics6

The SAP EDI team at Acme Pictures decided to use XML IDocs because they’re easier
to read and hand-build than the more traditional ASCII IDocs. So the team lead
insisted that we introduce the anatomy of an XML IDoc to all of our stakeholders.

We also went over some one-time configuration to enable a communications link
between SAP and an external EDI system that must be set up before we can begin
exchanging IDocs with the EDI RIM.

It’s time to dive deeper now and go over IDoc configuration to support the exchange
of business documents with an external EDI system. In the next chapter we lay
out how we configure Acme’s SAP system to send and receive IDocs with Gordy’s
Galaxy of Games & B Flix through the new EDI RIM.

243

“Make it work!” was one of Darryl Q’s signature lines whenever one of his
directors struggled with the talents of a favorite would-be starlet. Darryl
Q understood that his protégés needed an environment that supported
their potential. Same thing with IDocs—they can do their job only in an
environment that’s been set up to support them. So enter, stage left…
configuration!

7 Configuring IDocs in SAP for EDI Exchange

There’s an old Hollywood saying: “The only thing worse than people talking about
you is people not talking about you.” Acme Pictures’ legendary founder Darryl Q.
Fernhausen understood the truth of this deep in his bones: it’s all about recognition.

Hollywood lives and dies on recognition. From the stars to their agents and the
studio executives, this is a business that can thrive only when it is readily recog-
nized by millions of people around the world.

It’s the same thing with IDocs. They can do their jobs only if the system recog-
nizes them. After all, IDocs by themselves are only entries in tables linked to other
records and to processing functions. Until SAP is told what they are going to do,
with what business document, and for what customer or vendor, they remain pas-
sive, unrecognized records scattered across multiple tables with lots of potential
but no ability to realize it.

Configuration, then, is about setting up the system to recognize when, how, and
for whom to process an IDoc. This recognition, as we will see, is critical at runtime.
So we’ll begin by looking at inbound setup and processing.

7.1 Inbound Configuration is About Posting IDocs

The basic fact about inbound IDocs is that they create a business document in the
receiving SAP system just as a data entry operator would if he or she were entering
data manually from, for example, a paper purchase order.

244

Configuring IDocs in SAP for EDI Exchange7

Inbound configuration tells the system what function to run to post an IDoc to
a business document for one or more trading partners or external systems. This
means matching up control segment keys to system data that are used to recognize
the IDoc, the sending partner or system, and the process to call to post the busi-
ness document.

7.1.1 Key Values for Inbound IDoc Posting

SAP knows what to do with an incoming IDoc from fields in the control segment
EDI_DC40 that must match the inbound partner profile and system keys in the
receiving client. These fields are listed in Table 7.1 in the order in which they
appear in the control record.

Field Description Value

RCVPOR Receiving port. Always a concatenation of
SAP+<SystemID>.

SAPDEV

RCVPRT Receiving partner type. Always logical system. LS

RCVPRN Receiving partner. Always the logical system for the
receiving SAP client.

DEVCLNT100

MESCOD Message code. Identifies different use cases for the same
partner/logical message. Value can be null or anything
else.

MESFCT Message function. Same as MESCOD.

SNDPOR Sending port. The outbound XML port set up with
Transaction WE21.

XML_IDOC

SNDPRT Sending partner type (i.e., customer, vendor, etc.) as
configured in Transaction WE44.

KU

SNDPRN Sending partner. Must exist in receiving system master
data. We’ll be using the sold-to partner for Gordy, at
least for orders.

GRDY01

MESTYP Logical message type for IDoc. ORDERS

IDOCTP IDoc basic type. ORDERS05

RCVPFC Receiver partner function. Always null for inbound IDocs.

Table 7.1 Control Segment Keys Match Inbound Partner Profile

245

Inbound Configuration is About Posting IDocs 7.1

Field Description Value

SNDPFC Receiver partner function (i.e., sold-to partner). Value
can be null or one of a defined list of functions per
partner type.

SP

Table 7.1 Control Segment Keys Match Inbound Partner Profile (Cont.)

7.1.2 Partner Type

Partner type is a critical concept—and a mandatory key—in the creation of a
partner profile, regardless of direction. It defines the type of partner that for the
general header of the partner profile and is used to confirm that the partner exists
in master data.

The confirmation is handled by a form routine in an ABAP program defined with
Transaction WE44. The partner type identifies the master data table to read to
confirm the partner number. The only partner type that is not checked is User.
The seven standard partner types are listed in Table 7.2.

Partner Type Description Table Read

B Bank T012

BP Benefits provider BUT000

GP Business partner BUT000

KU Customer KNA1

LI Vendor LFA1

LS Logical system TBDLST

US User—not checked N/A

Table 7.2 Standard Partner Types for Partner Profiles

Custom partner types can be added with Transaction WE44, although it’s not com-
monly done. You would first create or identify a table to store the partner master
data. Next you would create a form in a custom ABAP program with a simple
SQL statement to check the table each time a new partner number is entered into
a partner profile with the custom partner type. Then you would add the custom
partner type and check program to the table in Transaction WE44.

246

Configuring IDocs in SAP for EDI Exchange7

There are two basic ways to configure partner profiles for an external EDI system.

The first is to use partner type LS (logical system) for all trading partners and
IDocs that would point at the EDI RIM. The advantage of this is that you maintain
only one partner profile for all partners. But it adds a little more complexity to
outbound configuration and makes it more difficult to identify IDocs for specific
trading partners using standard SAP reporting tools.

Logical system is appropriate for system-to-system ALE exchange of IDocs. If you
were working with SAP’s process integration middleware (SAP NetWeaver Process
Integration, for example), you would set up an LS type partner profile for PI and
use other means to identify IDocs for specific trading partners.

The cleaner and more traditional approach to partner profile configuration for EDI
is to use specific partner types such as customer (KU) and vendor (LI). This means
one partner profile for each EDI customer or vendor, which simplifies produc-
tion support, reporting, and auditing in SAP because it’s easy to identify IDocs by
partner number.

We’ll take the old-school approach and work exclusively with customer and ven-
dor partner types in our Acme Pictures SAP EDI project. For now, we’ll look at
inbound configuration, which is simpler than outbound configuration and includes
the following tasks:

EE Create an inbound partner profile for all inbound IDocs

EE Enter inbound reference data to EDI configuration tables for inbound purchase
orders that will post to sales orders

7.1.3 Inbound Partner Profile for an ORDERS PO

Partner profiles exist at a general and directional level, each corresponding to a
table in the SAP Data Dictionary.

Partner profiles define IDoc traffic between the local SAP client and the outside
world, whether that’s another SAP system, SAP NetWeaver PI, or an external,
third-party integration platform, regardless of where it lives.

This definition includes linking a sending (inbound) or receiving (outbound) trad-
ing partner to a logical message and process (function module or workflow) that
triggers application services in the IDoc interface.

247

Inbound Configuration is About Posting IDocs 7.1

It also links to underlying system configuration that is not explicitly entered into
the partner profile. This is especially true for inbound IDocs, illustrated in the base
configuration trail for an inbound partner profile in Figure 7.1.

Header level

EDPP1: Partner,
partner type,

permitted agent

IB parameters

EDP21: Partner
details to message

and process

TBDLST: Logical
system: Receiving

system/client

KNA1: Customer
master record for

GRDY01

Tables: EDIPORT/
EDIPOX: Receiving

XML file port

Figure 7.1 Underlying Relationships of the Inbound Partner Profile

This configuration trail includes background values in the master data used by the
system to validate IDocs during inbound processing and explicit values entered
into the partner profile at the header level (stored in table EDPP1) and inbound
parameters level (stored in table EDP21).

Inbound partner profiles must be unique even if the same partner is sending the
same logical message for different interfaces. This is enforced by the following key
fields in table EDP21:

EE MANDT: SAP client (mandatory; system-assigned)

EE SNDPRN: Sending partner (mandatory)

EE SNDPRT: Sending partner type (mandatory)

EE SNDPFC: Partner function or role (optional)

EE MESTYP: Logical message type (mandatory)

EE MESCOD: Message code (optional)

EE MESFCT: Message function (optional)

EE TEST: Test flag indicating IDoc a test message (optional)

All of these fields must be populated in the IDoc control record and they must
match the values in the inbound partner profile. In addition, the IDoc basic type

248

Configuring IDocs in SAP for EDI Exchange7

is not identified in the inbound partner profile, but it is mandatory in the control
record. The system needs this to identify the structure of the incoming IDoc.

Partner profiles are created with Transaction WE20 or through the SAP Easy Access
menu SAP Menu • Tools • ALE • ALE Administration • Runtime Settings •
Partner Profiles.

We’ll create an inbound partner profile to receive an ORDERS message type for a
customer purchase order from Gordy’s Galaxy in this section. The principles are
the same for all partners and inbound IDocs.

Transporting Partner Profiles

Partner profiles cannot be transported from client to client. Typically, they are recreated
manually each time you move to a different SAP system.

If you have a large number of partner profiles, you can build a custom load program
using standard functions that SAP uses in the Transaction WE20 program to build its
partner profiles. We look at a sample load program in Chapter 19, Section 19.2, Mass
Upload of Partner Profiles to SAP.

An IDoc can also be generated to send partner profiles to a remote system. The logical
message type is SYPART with basic type SYPART01.

Generate IDoc in Transaction WE20 by selecting menu option Utilities(M) • IDoc output
or (Ctrl)+(F8). A pop-up dialog will prompt for a partner number and partner type.
Click the OK checkmark and another dialog will ask for the following values:

EE Partner number

EE Partner type

EE Partner role

EE Message code

EE Message function

All it needs is an outbound partner profile for message type SYPART and a logical system
partner.

This functionality is not meant for mass transport of IDocs. To generate the IDoc, you
need an outbound partner profile for SYPART and the receiving partner whose partner
profile you want to send.

The SYPART partner profile needs to exactly match the key for the call to SYPART and
for the partner profile you want to pull. While not really useful for transporting IDocs,
this is a good way to play with the functionality and data behind partner profiles. It is
recommended as a learning tool.

249

Inbound Configuration is About Posting IDocs 7.1

Create Header Level

The header level is common to inbound and outbound partner profiles. To create
the partner profile header level for Gordy’s Galaxy, follow these steps:

1. Click Create or press function key (F5) in Transaction WE20.

2. Enter “GRDY01” (Gordy’s SAP customer number) in the Partner no. field and
“KU” in Partner Type.

3. Enter the values shown in Figure 7.2 into the fields in the Post processing:
permitted agent tab.

Figure 7.2 The Header Level of the Partner Profile for Gordy

Use your own post-processing permitted agent and don’t forget to save. You can
now add any number of unique inbound and outbound partner profiles for Gordy’s
Galaxy.

Post-Processing Permitted Agent

This is a mandatory entry and is used by the workflow system to route error messages
to SAP Office mail inboxes if workflow error processing is turned on and configured.

The post-processing agent can be a work center, job, organization, person, position, or
user. It’s best to use an organization or position dedicated to IDoc monitoring and support.

Except for the user, which is created by the Basis team, permitted agent types are gen-
erally created by the HR team within an organizational structure in SAP that supports
HR processing.

Inbound Parameters for Gordy’s ORDERS

To create the inbound partner profile for message type ORDERS, follow these steps:

1. Click the Create inbound parameter icon below the inbound parameters table
control on the main Partner Profiles screen, as illustrated in Figure 7.3.

250

Configuring IDocs in SAP for EDI Exchange7

Add icon

Figure 7.3 Add a New Inbound Partner Profile

2. Enter “AG” or “SP” (sold-to) into the Partner role field. The partner number
in control segment field SNDPRN must now be Gordy’s sold-to number. If you
enter “AG”, it will be converted to “SP” for display. But it is saved as “AG” in
the database.

Partner role or partner function is an optional parameter that can be used to
describe a particular type of partner so the values are linked to the partner type.
For example, a customer partner type can be a sold-to, bill-to, ship-to, or many
other partner types. Partner function can be used to create a unique entry for
the same message and partner type.

If the partner function is used, it becomes part of the unique partner function
key in EDP21 and must be populated in the SNDPFC field in the control segment
of an inbound IDoc.

3. Enter “ORDERS” in Message type.

4. Enter ORDE in the Process Code field. This links the logical message type to
IDoc function IDOC_INPUT_ORDERS, which posts the IDoc to a sales order. Double-
click ORDE and you’ll see the link to the function module (as shown in Figure
7.4).

Figure 7.4 Link Between Process Code and Function

Double-click the function name and you’ll land in the ABAP code, if you have
authorization to view code.

251

Inbound Configuration is About Posting IDocs 7.1

Click the right-pointing arrow icon and you’ll land in the Display View “Func-
tion Modules for inbound ALE-EDI”: Details screen. This links the process
code to the function, and objects for the IDoc, IDoc packet or batch of IDocs,
and application (see Figure 7.5).

The two IDoc and IDoc packet objects link to workflow methods and events
that control error processing for the linked message type. These generate the
workflow tasks that we looked at deleting in Chapter 5, Section 5.7.2, Deleting
IDoc Generated Work Items.

Figure 7.5 Another View from the Inbound Partner Profile

The application object links the IDoc to a particular business document, such a
sales or purchase order. It represents an object in the Business Object Reposi-
tory. The link is configured with Transaction WE57. The application object can
also be used to search for IDocs that are linked to particular types of business
document.

5. Back in the Partner Profiles: Inbound parameters screen, select Trigger by
background program under Processing by function module.

This batches IDocs at status 64—IDoc ready to be transferred to application—until
program RBDAPP01 is run to kick off posting of the IDoc to a sales order. This is

252

Configuring IDocs in SAP for EDI Exchange7

a design decision aimed at controlling the flow of IDoc data posting business
documents in Acme’s SAP system.

Selecting Trigger Immediately will post the IDoc to a sales order as soon it has
been saved to the IDoc database.

6. Save. The inbound partner profile will look like Figure 7.6.

Figure 7.6 Inbound Options for Message Type ORDERS

Message code and Message function are optional fields that correspond to the
control segments fields MESCOD and MESFCT. Their purpose is to allow creation
of additional inbound (or outbound) partner profiles for the same message type
and partner.

They can be used, for example, to trigger custom processing on an ORDERS (or
any other) message type to handle a requirement that is not covered by the stan-
dard IDoc.

7.1.4 Inbound EDI Reference Data

Three EDI conversion tables are relevant to the creation of a sales order from an
incoming customer PO, including the following:

253

Inbound Configuration is About Posting IDocs 7.1

EE EDPAR: Converts external to internal SAP partner numbers. Also used for out-
bound orders, order acknowledgments, and invoice IDocs. Another table—
PUMA—converts between external and internal partner numbers for delivery
documents.

EE EDSDC: Identifies sales organization and document type by vendor.

EE KNMT: Customer Material Info Record. Converts external customer material
number to internal SAP material number.

In addition, we’ll build a custom EDI mapping table—ZEDIXREF—in Acme’s SAP
system. It will map the EDI interchange partner ID to the SAP partner number in the
SNDPRN field of the IDoc control segment. The IDoc control segment must match
the partner profile set up for the customer or vendor, direction, and message type.

EDPAR External Partner Number Conversion

The structure of EDPAR is detailed in Table 7.3. The key fields are critical to partner
number conversion.

Field Key Description

MANDT X SAP client.

KUNNR X Internal SAP customer or vendor number. This can come from
SNDPRN, or from an application table depending on the IDoc and
direction being processed.

PARVW X Partner type (such as sold-to, ship-to, vendor, supplier, and so on)
checked against table TPAR.

EXPNR X External partner number in the remote system.

INPNR Internal SAP partner number read linked to KUNNR, PARVW, and
EXPNR. System does not check that this is a valid SAP partner
number.

Table 7.3 Field Structure of the EDPAR Partner Conversion Table

Gordy’s Galaxy has more than 2,000 store locations and distribution centers across
the United States and Canada. Each one has a unique identification number in
Gordy’s internal business system.

254

Configuring IDocs in SAP for EDI Exchange7

Acme has its own unique partner ID for each of its customers, including Gordy’s
sold-to and ship-to partners, assigned by their new SAP system. EDPAR’s job is
to convert the sold-to and ship-to location numbers that Gordy sends in their 850
X12 PO to Acme’s corresponding internal SAP partner number.

This is important. Each sales order is created against one sold-to and one ship-to
partner using Acme’s SAP numbers. Other partner relationships are pulled into
the order from the customer master record of the sold-to partner, including bill-to
and payer partners.

When Gordy sends an 850 PO, its bill-to number, which is an internal purchasing
organization, is stored in the N1 segment with qualifier BT.

The store location is in a header level N1 segment with qualifier UL for Universal
Locator, which is how X12 identifies the GLN. It can also be in one or more SDQ
segments at the line item level, but we’re not concerned with that for now.

Gordy’s supplier ID (that is, the number its system uses to identify Acme Pictures)
is also stored in the N1 segment, with qualifier SU. We’ll see how this is used when
we look at table EDSDC.

We’ll map Gordy’s bill-to, ship-to, and supplier numbers to the E1EDKA1 segment of
the ORDERS IDoc. The bill-to and ship-to will be converted to Acme’s internal SAP
numbers through EDPAR. The supplier number will not be converted by EDPAR.

There’s an interesting wrinkle here. Gordy has a chain of club stores—Klub Kazoo—
with their own customer accounts in Acme’s SAP system: sold-to, bill-to, and ship-to
numbers used for ordering, shipping, and invoicing.

But Gordy pays the bills and is set up as Klub Kazoo’s payer (partner type PY) in
Acme’s customer master. Furthermore, Gordy orders for all its retail and Klub
Kazoo stores in the same 850 interchange using the same EDI sender ID in the ISA
segment and the same sold-to partner in N1 with qualifier BT.

In the control segment, and the partner profile, Acme only uses the sold-to number
for Gordy’s retail for both organizations. But each sales order must post to Acme’s
SAP system with the correct sold-to number and ship-to in E1EDKA1, whether
that’s Gordy’s retail or Klub Kazoo.

Thankfully, retail and club sold-to numbers can be distinguished in the 850 transac-
tion by the department code in the REF segment. If the department code in REF02

255

Inbound Configuration is About Posting IDocs 7.1

is 0001, Acme’s SAP sold-to number is for Gordy’s retail. If REF02 is 0005, the SAP
sold-to number is for Klub Kazoo.

In either case, we will map the department code to E1EDKA1-LIFNR, where
PARVW equals AG.

The ship-to GLNs will also be mapped to E1EDKA1-LIFNR but PARVW will be set
to WE. The supplier number won’t be converted by EDPAR but it will be used to
read EDSDC, as we shall soon see. It will map to E1EDKA1-PARTN and PARVW
will be set to LF.

The control segment partner number in SNDPRN, which must match up with
Gordy’s partner profile, will be read from a custom EDI lookup table in SAP before
the IDoc is written to the IDoc database and is assigned a number, as we’ll see
when we look at custom table ZEDIXREF.

External partner conversion for the inbound purchase order with EDPAR is called
in function IDOC_INPUT_ORDERS, after the IDoc has been written to the database
and is ready for application processing. It occurs in a loop on the data segments
within the form routine INTERPRET_IDOC_ORDERS.

Segment E1EDKA1 can occur up to 99 times. Each time it loops, the code evaluates
the qualifier in PARVW in the following order:

1. AG: Sold-to partner, read from the SNDPRN field of the IDoc control segment
unless the partner type is LS (logical system) or the sold-to is in E1EDKA1-PARTN.

2. LF: Vendor.

3. WE: Ship-to location.

4. SP: Shipping carrier.

5. RE: Invoice recipient.

6. RG: Payer.

7. WK: Destination plant.

8. OTHERS: other partner types recorded in table TPAR.

The logic to convert external to internal SAP partner numbers in EDPAR is the
same for all inbound partner types, and is outlined in Figure 7.7.

256

Configuring IDocs in SAP for EDI Exchange7

Check PARVW
= AG or WE

PARTN used as
sold-to or ship-to
partner in order

Exit IF statement

Yes

Cond 1: IF
PARTN = space &
LIFNR <> space

Implied Cond 2:
PARTN <> space

No

EDPAR read w/
SNDPRN, PARVW,

and EXPNR

EDPAR INPNR
sold-to/ship-to

passed to PARTN

True

Figure 7.7 EDPAR Inbound Partner Number Conversion for Sold-To

1. Partner type is determined from E1EDKA1-PARVW. First up is AG, the sold-to
partner.

2. Condition 1 is true: E1EDKA1-PARTN is null, and E1EDKA1-LIFNR is not null.
The internal SAP partner number is read from EDPAR using the key:

KUNNR = IDOC_CONTROL-SNDPRN (GRDY01)
PARVW = E1EDKA1-PARVW (AG)
EXPNR = E1EDKA1-LIFNR (0001)

3. If EXPNR equals 0001, then INPRN returns Gordy’s internal sold-to number,
which will post to the sales order.

4. If EXPNR equals 0005, then INPRN returns Klub Kazoo’s internal sold-to num-
ber.

5. If INPRN is not found, an error message is returned and the IDoc fails to post
to a sales order.

6. If E1EDKA1-PARTN is not null, it posts to the sales order as the internal SAP
sold-to partner number.

The basic principle is that if PARTN is populated, the system assumes that it is the
internal SAP partner number and there is no conversion. If LIFNR is populated
and PARTN is null, the partner number is external and EDPAR conversion is run.
The ship-to partner is converted in the same way.

The key to making this work is the data we enter into EDPAR with Transaction
VOE4. Figure 7.8 lists the entries we made for this example.

257

Inbound Configuration is About Posting IDocs 7.1

Figure 7.8 EDPAR Entries for Gordy and Klub Kazoo

The left-most column labeled Customer holds Gordy’s sold-to number pulled from
the control segment field SNDPRN. The external (partner) function SP in column
two (labeled Ext.function; converted from AG by the system) and the External
partner number in column four—the department ID from the REF segment of the
X12 850 transaction—maps to the internal SAP sold-to partner in the fifth column
(labeled Int.no.).

Record one holds the internal sold-to partner for Gordy’s retail. Record two has
the internal sold-to partner for Klub Kazoo. Records three and four are ship-to
locations, identified by partner function SH—one for Gordy’s retail and the other
for Klub Kazoo.

The newly converted SAP partner numbers now are ready to be used by the system
to create the sales orders from Gordy’s PO.

EDSDC: Sales Organization

EDSDC does a simple but important conversion critical to the creation of a sales
order. It identifies the sales organization and order type by linking to the internal
sold-to partner number and the vendor number sent by the customer in the 850
transaction.

These values are required to create the sales order with Transaction VA01, whether
the order is being created manually (as in Figure 7.9) or automatically by an IDoc.

The sales organization and order type values can be passed in the IDoc in segment
E1EDK14 (Organizational Data). But they are internal Acme values and Gordy
has no need to keep them or transmit them. We can hard-code them in the map,
but we may need to use different sales organizations or order types based on the
contents of the X12 850 transaction.

258

Configuring IDocs in SAP for EDI Exchange7

Figure 7.9 Creating a Sales Order Manually with EDSDC Values

The vendor can be used to drive different sales organizations or order types for
a customer. It’s not checked by EDSDC, so it can be anything we need it be. But
we’re going to keep this simple in our example.

The structure of EDSDC is detailed in Table 7.4.

Field Key Description

MANDT X SAP client

KUNNR X Customer number 1 (generally an SAP partner number)

LIFNR X Customer’s internal vendor number

VKORG Sales organization

VTWEG Distribution channel

SPART Division

AUART Sales document type

Table 7.4 EDSDC Identifies the Sales Organization

As we have seen, Gordy sends its internal vendor number for Acme in the N1 seg-
ment of the 850 PO with the qualifier SU for supplier. This is mapped to E1EDKA1-
PARTN in the IDoc with partner type LF in PARVW.

EDSDC is also read in function IDOC_INPUT_ORDERS. During the partner process-
ing loop in form INTERPRET_IDOC_ORDERS through segment E1EDKA1, the vendor
number in PARTN (PARVW equals LF) is passed to variable LIEFERANT.

259

Inbound Configuration is About Posting IDocs 7.1

This variable, with the sold-to number converted through EDPAR, is used to read
the sales organization and order type in EDSDC in form CHECK_IDOC_ORDERS using
two keys:

KUNNR = VBAK-KUNNR (Sold-to Partner GRDY01)
LIFNR = LIEFERANT (from E1EDKA1-PARTN with PARVW LF)

We need to create mapping records in EDSDC for Gordy’s retail and Klub Kazoo
sold-to numbers with Transaction VOE2, New Entries. Gordy’s retail entry is
shown in Figure 7.10.

Figure 7.10 EDSDC Sales Organization and Order Type Mapping to Gordy

KNMT: Customer Material Info Record

The Customer Material Info Record (CMIR) in tables KNMTK (CMIR header) and
KNMT (CMIR details) converts the customer’s item number to the internal SAP
material number in the supplier’s system.

The customer’s item number is sent in the PO1 segment at the item detail level of
the 850 transaction. It can occur up to 10 times within PO1 in data element 0234
qualified by data element 0235.

Most of Acme’s customers send between one and three instances of the item number
in the 850. Gordy sends Acme two with the following qualifiers:

EE IN: Buyer’s item number

EE UP: The 12-digit UPC number

The 850 item numbers are mapped to E1EDP19-IDNTR at the item level of the
IDoc with the following qualifiers in field QUALF:

EE 001: Customer material number

EE 003: EAN (European Article Number), which stores either the UPC or GTIN
number

260

Configuring IDocs in SAP for EDI Exchange7

The UPC or GTIN numbers are stored in the SAP material master record in the
EAN/UPC field in the Basic data 1 screen (field MARA-EAN11). If sent in the
IDoc, they’re stored in the sales order at the item level in field VBAP-EAN11 and
displayed in the EAN/UPC field in the Sales A screen.

The conversion process for the external material number is called from form
DETERMINE_MATERIAL in form CHECK_IDOC_ORDERS in function IDOC_INPUT_ORDERS.

It runs after all data have been extracted from the IDoc segments, in a loop on
internal table XVBAP, which stores the item level details of the sales order.

The first check determines whether the sales order is being created against a quote
or contract. If yes, the material in the IDoc is ignored and the item number is pulled
instead from the quote or contract.

If the internal SAP material is present (whether it was pulled from E1EDP19 with
QUAL 002 or from a quote or contract item number), conversion logic is not run.

If, on the other hand, an external item number is sent in E1EDP19 with QUAL 001,
CMIR is read to get the SAP material number with function RV_CUSTOMER_MATE-
RIAL_READ. The following values are passed to the function:

CMR_KDMAT = XVBAP-KDMAT (Customer item from E1EDP19)
CMR_KUNNR = XVBAK-KUNNR (Internal SAP customer number)
CMR_VKORG = XVBAK-VKORG (Sales organization)
CMR_VTWEG = XVBAK-VTWEG (Distribution channel)
CMR_SPART = XVBAK-SPART (Division)

The function reads table KNMT and returns the complete record that matches the
parameters fed to it. The key fields for the CMIR conversion in KNMT are listed
in Table 7.5.

Field Key Description

MANDT X SAP client

VKORG X Sales organization

VTWEG X Distribution channel

KUNNR X SAP customer number

MATNR X SAP material number

KDMAT Customer material number

Table 7.5 KNMT Keys Used in CMIR Item Number Conversion

261

Inbound Configuration is About Posting IDocs 7.1

If the function makes a hit, the SAP material number is returned in a KNMT string
and plugged into the Material field at the item level of the sales order, through
the internal table field XVBAP-MATNR. If there is no hit, an error is returned and
the order does not post.

The customer material number is also posted to the sales order, to the table field
VBAP-KDMAT and the Customer Material field in the item level Order Data
screen, which references customer purchase order data.

The customer material information record is master data. If it is to be used, it should
be part of the standard master data creation process for EDI materials.

CMIR is populated by Transaction VD51 or from the SAP menu path Logistics •
Sales and Distribution • Master Data • Agreements • Customer Material
Information • Create. CMIR records are changed with Transaction VD52 and
displayed with Transaction VD53.

To create a CMIR record linking Acme’s internal SAP to Gordy’s material numbers,
go to Transaction VD51 and follow these steps:

1. Enter Gordy’s sold-to partner number (“GRDY01”) in the Customer field.

2. Enter the sales organization “3000”.

3. Enter the distribution channel “10 and click Execute.

4. Enter Acme’s SAP item (“245”, in our example) in the Material no. field of the
table control.

5. Enter the customer’s item number (“89478522851”) in the Cust. material field.

6. Save the record. It should look like the example in Figure 7.11.

Figure 7.11 CMIR Maps Acme’s SAP to Gordy’s Item Number

262

Configuring IDocs in SAP for EDI Exchange7

This assumes, of course, that all the supporting master data have already been cre-
ated: customers, plants, sales organizations, materials, and so on.

ZEDIXREF: Custom EDI SAP Trading Partner ID Conversion

We also need to convert the EDI trading partner ID that Gordy uses to send and
receive EDI interchanges to the SAP partner numbers that Acme uses to set up its
inbound partner profiles.

As we’ve seen, the IDoc control segment field SNDPRN must match the SAP part-
ner number in the partner profile before SAP can recognize who the IDoc is from.
The RIM is not an extension of SAP and does not natively map between the EDI
trading partner ID’s and the SAP partner numbers.

Besides, it’s not always a one-to-one relationship. Each customer usually has only
one EDI trading partner ID, but not always. There are companies that use multiple
trading partner IDs for different internal organizations.

And SAP can have multiple partner profiles set up for the same customer, with
different partner types and numbers. An inbound sales order, for example, might
be set up for the sold-to partner. But an inbound or outbound delivery could be
set up by the customer’s ship-to location with a different customer number. An
invoice or payment could be set up for a bill-to or payer or other partner type with
a different number from the sold-to.

So we need a table somewhere in the RIM or in SAP that maps the incoming EDI
trading partner ID to the internal SAP partner number, which matches the inbound
partner profile.

For Acme Pictures we’ll build this custom table—we’ll call it ZEDIXREF—in SAP.
Luckily, there is a customer exit called just before the IDoc is written to the IDoc
database that allows us to make last minute changes to the control segment. The
exit—in enhancement SIDOC001—is called during both inbound and outbound
IDoc processing.

We’ll write code in this user exit to read ZEDIXREF during inbound processing to
pick up what we need to complete our control segment.

The structure of ZEDIXREF is listed in Table 7.6.

263

Inbound Configuration is About Posting IDocs 7.1

Field Key Description

MANDT X SAP client number

DIRECT X IDoc Direction

STDMES X EDI transaction or message

MESTYP X IDoc logical message type

IDOCTP X IDoc basic type

CIMTYP IDoc extension

SNDPRN SAP sender partner number

RCVPRN SAP receiver partner number

SNDLAD EDI sender trading partner number

RCVLAD EDI receiver trading partner number

Table 7.6 Structure of Custom Table ZEDIXREF

During inbound processing, we’ll read fields SNDPRN and RCVPRN into the same
fields in the IDoc from ZEDIXREF using the following control segment keys:

EE EDIDC-DIR: Direction

EE EDIDC-STDMES: EDI transaction or message, mapped from the EDI transaction
set

EE EDIDC-MESTYP: IDoc logical message type

EE EDIDC-IDOCTP: IDoc Basic type

EE EDIDC-CIMTYP: IDoc extension

EE EDIDC-SNDLAD: EDI sender trading partner number, mapped from the inter-
change sender ID

EE EDIDC-RCVLAD: EDI receiver trading partner number, mapped from the inter-
change receiver ID

We get into the details of the development effort in Chapter 19, Section 19.1,
Mapping the EDI Trading Partner to the Control Segment.

This table needs to be populated for each IDoc EDI interface we configure in SAP.
For Gordy’s inbound ORDERS purchase order message, we’ll add the values listed
in Table 7.7.

264

Configuring IDocs in SAP for EDI Exchange7

Field Value Description

DIRECT 2 Direction inbound

STDMES 850 EDI PO transaction

MESTYP ORDERS IDoc message type

IDOCTP ORDERS05 IDoc basic type

CIMTYP IDoc extension

SNDPRN GRDY01 SAP send partner: Gordy’s customer number in Acme’s
system

RCVPRN DEVCLNT100 SAP receive partner: Acme SAP logical system

SNDLAD 01234567US0 EDI send trading partner ID

RCVLAD 9999999USD EDI receive trading partner ID

Table 7.7 ZEDIXREF Entry for the Inbound 850 from Gordy

These entries will allow our code to find the correct SAP send and receive partner
numbers and then pass them to the SNDPRN and RCVPRN fields of the IDoc con-
trol segment before it is written to the database. Without these values, the IDoc
would fail.

7.1.5 Tying It All Together: The SAP EDI Inbound Processing Flow

The beauty of the IDoc interface is that all IDocs are processed in the same way.
When you understand how one works, you pretty well understand how they all
work.

This is especially true for inbound processing, which is all about posting a busi-
ness document in SAP. In our example, this would be a sales order created from
an inbound XML ORDERS.ORDERS05 IDoc converted from an 850 customer PO
from Gordy.

To enable inbound processing for Gordy’s ORDERS, we need the following:

EE An XML file port: XML_IDOC

EE A partner profile for Gordy with inbound parameters:

EE Partner function SP (AG in database) for sold-to partner

EE Message type ORDERS

265

Inbound Configuration is About Posting IDocs 7.1

EE Process code ORDE, linked to function IDOC_INPUT_ORDERS

EE Trigger by background program selected

EE Inbound EDI reference data set up for Gordy in EDPAR, EDSDC, and our custom
table ZEDIXREF

The inbound EDI IDoc process flow in SAP for this configuration is outlined in
Figure 7.12.

Function EDI_
DATA_INCOMING
Filename/XML port

Identify/confirm
port name/type as

XML file port

Apply ALE services,
write IDoc to DB
Status 50 to 64

Reads IDocs from
database based on
selection param.

Post sales order
IDoc status to 53

Delete IDoc file
on SAP app server

IDoc Adapter RFC

EDI RIM

RIM exports
ORDERS file

Acme SAP

Get XML IDoc file

Confirm IDoc file
contains valid XML

Call exit to change
control segment w/
ZEDIXREF values

Extract XML IDocs
into itab from file

Get IB processing
data for partner

profile keys

Run RBDAPP01 to
process batched
ORDERS IDocs

G
et and store ID

ocs

Process code from
partner profile read
for appl. function

Function called to
Post sales order

IDoc status to 62

Build BDC data
from IDoc,

call transaction

P
rocess ID

oc

Figure 7.12 Inbound EDI Processing Flow in the IDoc Interface

266

Configuring IDocs in SAP for EDI Exchange7

These steps are implemented by a series of standard function modules that perform
the real work of the IDoc interface. Functions that retrieve and kick off inbound
processing of IDocs are in function group EDIN. Other function groups are called
on to post the IDoc to a business document. We’ll look at the key processing steps
as we go through the flow for a typical inbound ORDERS.ORDERS05 IDoc. Here’s
how it works.

Getting and Storing the IDocs

The EDI RIM calls RFC function EDI_DATA_INCOMING in SAP through the IDoc
adapter. The full path and file name to the IDoc file and the name of the XML file
port are passed to the function.

The port type (in this case, XML) is identified and verified for XML file port XML_
IDOC in table EDIPORT with function EDI_PORT_READ.

If it isn’t found, an error message is returned. Otherwise, the system checks the
port type and calls function IDOC_XML_FROM_FILE with the file and port name as
parameters.

The IDoc file is read into an internal table through a string and the first line checked
to confirm that it is valid XML. The system then checks to see whether the file has
already been processed by reading table EDFI2 with function EDI_EDFI2_READ in
function group EDFI2.

If an instance of the current record in the IDoc file is found in EDFI2, the file has
already been processed, an error is returned, and the import fails.

This means that there was an interruption during an earlier run and the file was not
fully processed. The system creates an entry in EDFI2 during inbound processing to
keep track of the last processed IDoc in the file. This entry is deleted once the file
is processed, unless there’s an interruption for any reason, and processing ceases.

To reprocess the IDocs from the failed file, you need to either change the name of
the file or delete the entry from EDFI2.

You’ll probably want to get Basis involved if you decide to delete the entry. Or
you can call function EDI_EDFI2_DELETE to delete the entry from EDFI2. Just pass
the full path and file name to the function import parameter from the test tool in
the Function Builder through Transaction SE37 or SE80.

If there is no record of the current IDoc in EDFI2, the system writes one.

267

Inbound Configuration is About Posting IDocs 7.1

A process of confirmation and conversion then begins. The second node of the
XML file is read to confirm that the tag name for each IDoc is <IDOC BEGIN="1">
and the control record is identified to confirm the beginning of each IDoc.

The control record is then converted from XML to a structured string. Next the
external control segment structure EDI_DC40 is converted to the internal EDIDC
with function IDOC_CTRL_INBOUND_CONVERT, and it is updated with direction, client
number, receiver port, and release number, and the IDoc number field is cleared.

The IDoc data are then converted from XML into a string with the EDIDD structure
and appended to the control segment.

Once these conversions are run and the IDocs are built into strings within
the internal table, the IDocs are written to the IDoc database with function
IDOC_INBOUND_WRITE_TO_DB.

But first the system offers a last chance to modify the control record by calling func-
tion EDI_CONTROL_RECORD_MODIFY that invokes EXIT_SAPLEDI1_001 in enhancement
SIDOC001 (Transaction SMOD). The entire control record is passed to the user
exit and all of its fields can be changed before the IDoc is saved to the database.

This is where we’ll read our custom EDI lookup table ZEDIXREF to get the internal
SAP partner number linked to the EDI trading partner ID, direction, and transaction.

Function IDOC_INBOUND_PROCESS_DATA_GET is then called to confirm that the control
record matches the partner profile key, defined in the key structure EDK21 using
the following control segment values:

EE SNDPRN: SAP send partner number (mandatory)

EE SNDPRT: Partner type (mandatory)

EE SNDPFC: Partner function (optional)

EE MESTYP: Message type (mandatory)

EE MESCOD: Message code (optional)

EE MESFCT: Message function (optional)

EE TEST: Test flag (optional)

The IDoc will fail if these control record fields do not exactly match the values in
the partner profile key. All optional fields are mandatory if they have been set in
the partner profile.

268

Configuring IDocs in SAP for EDI Exchange7

IDOC_INBOUND_PROCESS_DATA_GET reads the process code linked to the application
function that posts the IDoc to the business document. It also retrieves the pro-
cessing mode that determines if the IDoc is batched or posted immediately. In our
example, the function returns 3, which means the IDoc posts through background
batch processing.

The system is now ready to save the IDoc to the database. This is managed by a
number of functions:

EE EDI_DOCUMENT_OPEN_FOR_CREATE
Builds a control record structure and the first status record: 50—IDoc added to
database.

EE EDI_SEGMENTS_ADD_BLOCK
Builds data records.

EE EDI_DOCUMENT_STATUS_SET
Builds status records and sets the final create status: 64—IDoc ready to be trans-
ferred to application. Updates the control record structure with the final status.

EE EDI_DOCUMENT_CLOSE_CREATE
Checks IDoc syntax, assigns the next available IDoc number (function NUMBER_
GET_NEXT), and inserts IDoc control, data, and status records to the IDoc database.

The IDoc has now been created on the IDoc database and is ready to post to a
business document, assuming there have been no errors and the status has been
set to 64.

The last piece of house-keeping run by EDI_DATA_INCOMING is to delete the XML
IDoc file from its folder on the application server and to delete its record in EDFI2
using function EDI_EDFI2_DELETE.

Posting the Application Document

Because the partner profile was set for background processing, the IDoc is parked
in the database at status 64 until ABAP report RBDAPP01 runs, either in the back-
ground by a scheduled job or directly online.

In a nutshell, RBDAPP01 reads IDocs stored at status 64 or 66 (waiting for predecessor
IDoc in serialization) from parameters in its selection screen. It then identifies and
calls the IDoc processing function that posts them to their business documents (in
this example, a vendor’s sales order) from a customer purchase order.

269

Inbound Configuration is About Posting IDocs 7.1

The selection screen for RBDAPP01 offers several options that correspond to fields
in the IDoc control segment (as shown in Figure 7.13), including the following:

EE IDoc number or numbers.

EE Creation date and time.

EE IDoc status.

Figure 7.13 Selection Screen for Inbound Processing Program RBDAPP01

EE Message type.

EE Sender partner type, number, and partner function.

EE Pack size (number of IDocs sent in a packet).

270

Configuring IDocs in SAP for EDI Exchange7

EE Object type from the Business Object Repository that links an IDoc to a business
document—2032 for a sales order or 2012 for an outbound purchase order or
inbound purchase order acknowledgment.

EE Output list. Triggers creation of a report list of all IDocs selected and exported.

Variants are typically created for RBDAPP01 to focus on particular selection values,
such as Sender partner number and Message type. Variants are used to schedule
jobs in the SAP Job Scheduler (Transaction SM37) and to control IDoc processing
by doing the following, for example:

EE Limiting execution to a particular range of IDoc numbers, messages, partner or
group of partners

EE Controlling the number of IDocs to be processed in a single batch by a back-
ground job

EE Activating parallel processing to break up large numbers of IDocs into packets
that can be processed in separate parallel background tasks

When RBDAPP01 kicks off, the control record table EDIDC is read to get all IDocs at
status 64 or 66 that match the selection screen options. In our example, these are
message type ORDERS for sender partner type KU (customer), partner GRDY01,
and partner function SP (sold-to partner).

The control segments are read into an internal table, which is used to identify all
partner profiles for the IDocs and to build another internal table with the structure
of EDP21, which stores the inbound partner profile.

This second internal table drives processing of the IDocs identified from EDIDC in
batches of common partner types, numbers, and message types.

Function ALE_FTCH_DATA_SEGMENTS_OF_IDOC is called, once for each packet, to get
all IDoc data records for the control segments pulled from EDIDC for the partner
profile defined batch.

Function APPLICATION_IDOC_POST_IMMEDIAT is called, once for each packet, after
the data segments for all control records in the batch are pulled from the database
and stored in an internal table with the structure EDIDD.

The IDoc control and data records are then passed to function IDOC_START_INBOUND,
which reads the process code for the IDocs. This is linked to the partner profile
through the control record.

271

Inbound Configuration is About Posting IDocs 7.1

The process code links the message type to the processing application, which could
be a function module or a workflow. The process code and process type is returned
by function IDOC_INBOUND_PROCESS_DATA_GET with the control segment passed as
the import parameter.

The system then checks for the type of process code identified. If the type is workflow
or task, the IDoc is passed to function IDOC_WORKITEM_INBOUND_CREATE. A STATUS
IDoc, for example, would be processed by the workflow function.

The ORDERS message is normally processed by a function module linked to pro-
cess code ORDE.

Function IDOC_INPUT is called when the system determines that the process type is
function module. It needs to identify the processing function linked to the process
code. It does this by reading table TBD52 with the function code as key.

TBD52 links the process code to both workflow events and a processing func-
tion module. Our sales order process code ORDE is linked in TBD52 to function
IDOC_INPUT_ORDERS.

Process attributes for the function are read from table TBD51. In this case, IDOC_
INPUT_ORDERS is identified as a batch input process that uses a call transaction and
allows the display of dialog screens if run in foreground mode.

Assuming no errors, the next step, after the usual round of ABAP checks, is to call
function IDOC_INPUT_ORDERS with the IDoc control and data records, along with
some flags and message structures required by the system.

The name of the processing function is passed to a field in a string with the structure
of TBD52—PIF_EVENT_INFO. It’s invoked dynamically through a function call on
the variable PIF_EVENT_INFO-FUNCNAME, which holds the function name read from
TBD52, as illustrated by the call Listing 7.1.

CALL FUNCTION pif_event_info-funcname
 EXPORTING
 input_method = pi_input_method
 mass_processing = pi_mass_processing
 IMPORTING
 workflow_result = pe_workflow_result
 application_variable = pe_application_variable
 in_update_task = pe_in_update_task
 call_transaction_done = pe_call_transaction_done

272

Configuring IDocs in SAP for EDI Exchange7

 TABLES
 idoc_contrl = pxt_idoc_control
 idoc_data = pxt_idoc_data
 idoc_status = t_appl_idoc_status
 return_variables = pet_return_variables
 serialization_info = t_serialization_info
 EXCEPTIONS
 wrong_function_called = 1
 OTHERS = 3.

Listing 7.1 The IDoc Processing Function Name Is Determined at Runtime

The parameters of the function call are identical to those of all IDOC_INPUT_<MESSAGE>
functions.

This triggers IDOC_INPUT_ORDERS, and the status is updated to 62—IDoc passed to
application.

IDOC_INPUT_ORDERS loops on the IDoc control records and processes each segment
in turn within an END ... WHILE loop in the form routine IDOC_INTERPRET_ORDERS,
in the following basic manner:

WHEN 'E1EDKA1'.
 MOVE IDOC_DATA-SDATA TO E1EDKA1.
 PERFORM ZUORDNEN_ORDERS_E1EDKA1.
-additional data is from IDOC (customer exit)--
 SY-SUBRC = 0.
 PERFORM CUSTOMER_FUNCTION_IDOC USING IDOC_DATA.

WHEN determines the segment name. The data record is moved into a string with
the field structure of the basic type segment, in this case E1EDKA1, which stores
partner identification and address data. A form is then called that handles any pro-
cessing required from the segment, which ends in the data moved to a structure or
internal table based on VBAK, sales order header, VBAP, sales order item, or some
other table, structure, or variable associated with the sales order.

If this processing is successful, another form routine is called to invoke a customer
function that allows custom processing of the data in the IDoc and the populated
structures and segments.

When segment E1EDKA1 is processed, the EDPAR partner conversion logic is
applied that we described in our discussion of EDPAR in Section 7.1.4.

273

Inbound Configuration is About Posting IDocs 7.1

After all segments have completed processing, sales organization and order type
data are pulled from table EDSDC and the CMIR material number conversion is
run if the customer has not sent Acme’s item number and if CMIR has been set up.

After all of the checks and house-keeping are done, the data are moved to an internal
table with the structure BDCDATA for the call transaction. BDCDATA is a standard
batch input processing structure that is very familiar to most ABAP programmers.
It contains the following fields:

EE PROGRAM: Name of dialog program being called for a screen

EE DYNPRO: Screen number for the dialog program

EE DYNBEGIN: BDC screen start flag indicates whether the screen being populated
is the first screen in the transaction

EE FNAM: Fully qualified name of field to be populated

EE FVAL: Used to pass value to field in BDC session, including data and codes to
command fields that move processing along or save the record

Finally, the call transaction to VA01 is run in background mode. It mimics the
manual entry of all the values in BDCDATA into each field and screen in its normal
sequence. If successful, a sales order is created and a success message returned.

IDOC_INPUT_ORDERS then returns control to function IDOC_INPUT, which handles
clean-up processing, any messages returned by the call transaction, and the build
of the status records.

IDoc control and status records are updated to 53, and the new sales order number
is passed to a success message in the status record.

We haven’t looked at error trapping throughout this process. At every checkpoint,
and at the completion of every process, errors are trapped by checking the internal
control field SY-SUBRC. If SY-SUBRC is not equal to 0, an error is returned and a
message built and inserted into the status record.

If the call transaction fails, error information is returned from the failed Dynpro
and passed back to the IDoc status record with code 51—Application document not
posted—and a message identifying the nature of the error and where it occurred.

274

Configuring IDocs in SAP for EDI Exchange7

7.2 Outbound Configuration Generates IDocs

Outbound processing is a little more complicated than inbound. It is about gen-
erating IDocs from business documents or records. This is done through message
control, by an ABAP program, or with change pointers that output an IDoc when-
ever a master data object is created or changed.

Either way, the end result is that data are collected and an IDoc is built and sent
to an external system or partner, in our case Acme’s EDI RIM. The EDI RIM, for
its part, needs to recognize the transaction and the receiving partner so that it can
figure out what to do with the IDoc.

To generate an outbound IDoc for Acme’s EDI RIM, the following configuration
must be in place:

1. RFC Destination

2. XML File Port

3. Message control for SD and MM documents

4. A unique outbound partner profile with message control

Extending our inbound purchase order example, we’ll configure and follow the
processing flow for an outbound ORDRSP PO acknowledgment. The IDoc will be
generated from the sales order created by Gordy’s inbound purchase order.

In addition to the base outbound configuration, we’ll also need entries in the fol-
lowing EDI lookup tables:

EE EDPAR: Conversion of Acme’s internal ship-to partner to Gordy’s store location
numbers

EE KNMT: CMIR conversion of Acme’s internal SAP material to Gordy’s own mate-
rial number

EE ZEDIXREF: Identification of Gordy’s EDI interchange partner ID from Acme’s
SAP sold-to number, message type, basic type, and direction

Key interface values will be passed to the control segment from the partner profile
and the sending SAP system. These keys, listed in listed in Table 7.8, allow the EDI
RIM to identify, map, and route the outbound ORDRSP IDoc.

275

Outbound Configuration Generates IDocs 7.2

Field Description Value

RCVPOR Receiving port. The outbound XML port set up with
Transaction WE21.

XML_IDOC

RCVPRT Receiving partner type (e.g., customer, vendor, etc.), as
configured in Transaction WE44.

KU

RCVPRN Receiving partner from master data. Sold-to partner for
Gordy retail or Klub Kazoo.

GRDY01

MESCOD Message code. Identifies different use cases for the
same partner/logical message. Value can be null or
anything else.

MESFCT Message function. Same as MESCOD.

SNDPOR Sending port. Always a concatenation of
SAP+<SystemID>.

SAPDEV

SNDPRT Sending partner type. Always logical system. LS

SNDPRN Sending partner. Always the logical system for the
sending SAP client.

DEVCLNT100

MESTYP Logical message type for IDoc. ORDRSP

RCVPFC Receiving partner function. Always null for outbound
IDocs.

SNDPFC Sending partner function (i.e., sold-to partner). Value
can be null or one of a defined list of functions per
partner type.

SP

IDOCTP IDoc basic type. ORDERS05

Table 7.8 Control Segment Values for the EDI RIM

In addition, the extension will be passed if one has been configured for the IDoc
and is present in the partner profile. We’ll also add some values of our own to
the partner profile for custom processing on the way out SAP and in the EDI RIM.

We’ll begin by looking at configuring message control.

276

Configuring IDocs in SAP for EDI Exchange7

7.2.1 Message Control

Message or output control is a way of configuring SAP to automatically generate
one or more IDocs under specific conditions for a particular business document.
It is similar to setting up print, fax, email, or any other type of output.

Message control is only used to generate IDocs for Sales and Distribution (SD) and
Materials Management (MM) documents. Other modules, such as FI, and master
data distribution generate IDocs with ABAP programs.

Message control can be confusing and SAP doesn’t explain it very clearly. You need
to actually do it. Hand-on exposure is the easiest way to learn it, particularly if you
can debug the code, follow the processing flow, and understand the lookup tables
used to generate an IDoc from a business document.

Message control is tied to the partner profile. It must be unique for each instance
of an IDoc message generated for a receiving party through an outbound partner
profile.

We’ll begin by looking at the different elements of message control and how they
tie together to produce an IDoc. At its most basic, message control links a business
document for a partner to a partner profile for a message and basic type to the
application that will generate and send the IDoc, illustrated in Figure 7.14.

SD/MM document:
Sales order

Document type
business partner/

organization

Partner profile:
Message type/

basic type

Function or task to
collect order data

and build IDoc

Figure 7.14 Message Control Links a Document to an IDoc Build Function

These links are established through the three major message control settings in the
outbound partner profile, all of which can be customized to your heart’s content:

EE Application code
Groups application documents that can generate IDocs through message control.
In SD, these include the following:

EE V1: Sales documents, including quotations, contracts, sales orders, confirma-
tions, scheduling agreements, and others

277

Outbound Configuration Generates IDocs 7.2

EE V2: Shipping documents, including delivery notes, shipping notifications,
shipping orders, packing lists, cross-docking deliveries, and many others

EE V3: Billing documents, including invoices, invoice lists, and others

EE Message type
Identifies the business document, the type of output it can generate, and the
conditions that apply to its output, such as an order confirmation linked to a
particular sales organization, customer, and order type.

EE Process code
Links a message type to the function module that reads the business document,
builds the IDoc, writes it to the database, and calls export processing to send it
to its destination.

For Gordy’s Galaxy, five IDoc message types will require message control:

EE ORDRSP
Order acknowledgment to the customer created when the sales order is saved

EE ORDERS
Purchase order for replication services from a contract supplier output when
the PO is saved in Acme’s system

EE DESADV
Shipping order to the distributor generated when delivery document is saved

EE DESADV
Advanced shipping notification to the customer triggered after the post goods
issue is posted to the outbound delivery

EE INVOIC
Invoice to the customer triggered when the billing document is saved

We’ll step through setting up message control to generate an ORDRSP IDoc when
a sales order is created from an inbound purchase order from Gordy. Later in this
chapter, we step through the processing flow that is called to generate the IDoc
when the sales order is saved.

But first a few words about the unique keys that tie message control to the partner
profile. These keys control how we apply message control to a partner and an IDoc
logical message type.

278

Configuring IDocs in SAP for EDI Exchange7

Message Control Keys

Message control objects assigned to a particular partner profile are stored in table
EDP12. The key fields in this table define the message control options for a partner
profile. The following fields make up the key for table EDP12:

EE MANDT: SAP client (mandatory; system assigned)

EE RCVPRN: Receiving partner (mandatory; links to the same field in the partner
profile)

EE RCVPRT: Partner type (mandatory; links to the same field in the partner profile)

EE RCVPFC: Partner function or role (optional; links to the same field in the partner
profile)

EE KAPPL: Message control application (mandatory)

EE KSCHL: Message or output type (mandatory)

EE AENDE: Change flag in message control (optional)

The first four must match exactly to the outbound partner profile, stored in table
EDP13. The last three, which define the message control objects, must not be
repeated in any other partner profiles that use the first four key fields.

There are times when we will need to set up message control for more than one
partner profile for the same partner, partner type, partner function, and logical
message type. In practical terms, this means we need a custom output type when we
build different partner profiles for the same partner and logical message to handle
different business use cases, such as a PO confirmation with no special processing
or one flagged for bundling into an extended IDoc with a custom SDQ segment.

It’s generally good practice to use custom output types for all interfaces. But we’ll
stick to the standards where possible in our examples. Where we need a custom
output type, we’ll copy the standard and adjust as necessary.

Custom Message Control: Basic Steps

Custom message control is set up with the following steps:

1. Create an output type against an application code and assign it an access sequence.

2. Assign the output type to a procedure within the application.

3. Create condition records for the output type and access sequence.

279

Outbound Configuration Generates IDocs 7.2

4. Use the application code and output type in the message control screen of the
outbound partner profile.

Figure 7.15 outlines these tasks.

Txn VV31: Create
condition records

sales org/cust.

Condition type:
Copy BA00 to
custom ZBA0

Txn: NACE
Select application

code: V1 Sales

Output program:
RSNASTED form
edi_processing

Txn:NACT
Copy output type

BA00 to ZBA0

Select access
sequence 0003
sales org/cust.

Partner function
SP for output
medium EDI

Txn NACZ:
Procedure V10000

order output

Txn WE20: Use
applic./output type
in partner profile

Define output type Set procedure Enter conditions Partner profile

Figure 7.15 Creating Message Control for an Outbound Invoice

7.2.2 Create an Output Type

We’ll create a custom output type by copying an existing standard one. Follow
these steps:

1. Call Transaction NACE.

2. Select application V1 Sales and click Output types (see Figure 7.16) to open
the Output Types: Overview in display mode.

280

Configuring IDocs in SAP for EDI Exchange7

Figure 7.16 Application Codes for Sales Documents in NACE

3. Select menu path Table View • Display • Change or press (Ctrl)+(F1) and then
select standard output BA00 (order confirmation). Click Copy as or press (F6).

4. Change the name of the output type to “ZBA0” and enter a description for the
PO confirmation. Make sure the Access to conditions and Multiple issuing
checkboxes are both set (see Figure 7.17).

The Access to conditions checkbox tells the system to identify output by
searching condition records. The Multiple issuing checkbox allows us to gen-
erate the same output for the same partner more than once.

Figure 7.17 Renaming Output Type BA00 to ZBA0

5. Assign the access sequence in the General data tab. We’ll keep the standard
0003 for SalesOrg/Customer.

The access sequence is critical to generating IDoc output. It defines the tables
that are read to get the conditions that have been defined to build an IDoc, the

281

Outbound Configuration Generates IDocs 7.2

sequence in which these tables are read at runtime, and the keys that link the
output type to the partner and document.

Sequence 0003 will generate an ORDRSP IDoc when any sales order is created
against a defined Acme sales organization and Gordy’s sold-to partner number.
This link will be specified in the condition table.

We can restrict these conditions even further, but this will be worked out by
the functional teams as they fine-tune their configuration for sales orders and
other documents that support the business relationship between Gordy and
Acme Pictures.

6. Select the following in the Default values screen (see Figure 7.18). Please note
that these values are defaults for the output type that can be overridden through
configuration and condition records.

EE Choose Send immediately (when saving the application) from the Dispatch
time dropdown. This generates an IDoc when the sales order is saved.

EE Choose EDI from the Transmission Medium dropdown. This generates
IDocs for EDI transmission.

EE Choose SP Sold-to party from the Partner Function pop-up. This gener-
ates an IDoc for the sold-to to party in the sales order. If you enter “AG”, it
will be converted to SP.

Figure 7.18 Default Values for Output Type Processing Options

7. Press (Enter). A dialog opens to inform you that the entry to be copied has
dependent entries. Click Only copy entry to copy only the values in the Out-
put Types: Detail screen from BA00 to ZBA0.

282

Configuring IDocs in SAP for EDI Exchange7

If you copy all dependent entries, all configuration options in output type BA00
are copied into ZBA0. But it will not copy the procedure or any conditions
records created for BA00.

8. The Output types: Overview screen is returned in change view. Select output
ZBA0, and double-click the Processing routines folder to open the Process-
ing routines: Overview screen.

9. We’ll add the program name and form that will generate the IDoc after the
sales order is saved. Click New entries to open the Details of Added Entries
screen.

10. Enter the following values into the Details of Added Entries screen (see
Figure 7.19):

EE Transm.Medium: “EDI”

EE Program (Processing 1): “RSNASTED” for the standard SAP IDoc output
program. You can also use a custom ABAP output program. Use RSNASTED
as a model.

EE FORM routine: “EDI_PROCESSING”, which identifies and calls the func-
tion that will build the IDoc, writes it the database, sends it to the outbound
IDoc processing function, and updates its status record.

Figure 7.19 Assigning the Processing Program and Form Routine

11. Press (Enter) and double-click the Partner functions folder to open the
Partner Functions: Overview screen.

283

Outbound Configuration Generates IDocs 7.2

12. Click New entries and select EDI in the Medium field and SP (sold-to party)
in the Funct field, as shown in Figure 7.20. Click Save.

Figure 7.20 Assigning Output Medium to the Sold-To Party for ZBA0

7.2.3 Assign Output Type to a Procedure

Next we will assign the output type to a procedure. Procedures drive the use and
function of condition tables, which define output parameters. Procedures also link
the output type to a business document such as an order, a contract, or a quotation.

The procedure determines, for example, that an IDoc will be generated from a sales
order as a PO confirmation. This can be further refined with standard and custom
ABAP rules in a requirement that allows generation of the IDoc only if specific
conditions are met within the sales order.

Return to Transaction NACE, select Application code V1, and click Procedures
to open the Procedures Overview screen, as illustrated in Figure 7.21.

Figure 7.21 Procedures Overview with Order Output Selected

The Usage field refers to the application functionality that the condition tables
are determining. The system supports 28 usages, including pricing, transportation
routing, material determination, and so on. B represents output.

284

Configuring IDocs in SAP for EDI Exchange7

1. Select procedure V10000 Order Output, and double-click the control folder
to open a list of output types linked to the procedure.

2. Select BA00 Order Confirmation, and click the Copy As icon. All BA00 values
are copied into a table control except for the Counter.

3. Change the name of the output type in the CTyp column from BA00 to ZBA0.
Change the Cntr field value to 0 (see Figure 7.22).

Figure 7.22 Assigning the Output Type to the V10000 Procedure

The column headings in Figure 7.22 refer to the following values:

EE Step defines the sequence in which conditions are evaluated within the proce-
dure at runtime. A step number is unique.

EE Counter is the access number of the conditions within the step. This is most
relevant for pricing procedures.

EE CTyp (condition type) is the output type and is used by the procedure to deter-
mine the type of document generated, like our PO confirmation.

EE Requirement is an ABAP rule that defines document conditions for output gen-
eration.

Don’t forget to save. The output type is assigned to the procedure.

Requirements Defined by ABAP Code

View the ABAP code behind requirement 2 for output type ZBA0 by selecting the
requirement and pressing (F4) to open the Routines pop-up. Select requirement
2 and click the Source text icon (see Figure 7.23) or press (F5) to open the code
in the ABAP Editor.

Requirement 2 is an ABAP form routine called just before the sales order is saved.
The code is displayed in Listing 7.2.

285

Outbound Configuration Generates IDocs 7.2

Source text

Figure 7.23 Requirement Code is Read in Routines Pop-Up

FORM KOBED_002.
*Create the output if the the sales document is complete.
 SY-SUBRC = 0.
 IF KOMKBV1-UVALL NE 'C'.
 SY-SUBRC = 4.
 EXIT.
 ENDIF.
 IF KOMKBV1-COSTA NE SPACE AND KOMKBV1-COSTA NE 'C'.
 SY-SUBRC = 4.
 EXIT.
 ENDIF.
 IF NOT KOMKBV1-LIFSK IS INITIAL.
 IF KOMKBV1-LIFSK NE TVLS-LIFSP.
 SELECT SINGLE * FROM TVLS WHERE LIFSP = KOMKBV1-LIFSK.
 ENDIF.
 IF SY-SUBRC = 0 AND
 TVLS-SPEDR NE SPACE.
 SY-SUBRC = 4.
 EXIT.
 ENDIF.
 ENDIF.
*No output if the credit block is set.
 IF KOMKBV1-CMGST CA 'BC'.
 SY-SUBRC = 4.

286

Configuring IDocs in SAP for EDI Exchange7

 EXIT.
 ENDIF.
ENDFORM.

Listing 7.2 Requirement 2 Only Allows Output of Completed Orders

Requirement 2 checks a number of flags in KOMKBV1 to confirm that the order is
complete before it allows output to be issued. It begins by setting system variable
SY-SUBRC to 0. If SY-SUBRC still equals 0 when the checks are completed, output is
issued. If not, no IDoc is generated.

KOMKBV1 is an internal table filled from header, status, and item-level business
data from the sales order on save, including all the flags that define order comple-
tion status. KOMKBV1 is populated by function KOMKBV1_FILL in function group
V61B (output control conditions).

The following flags are checked by requirement 2:

EE KOMKBV1-UVALL NE 'C': Overall completion status of the sales order header.
Value C indicates the order is complete at the header level.

EE KOMKBV1-COSTA NE 'SPACE' and NE 'C': If space, then the order is not relevant
for confirmation and the check is passed. If not space, then it must equal C to
pass; all schedule lines must be confirmed by MM.

EE KOMKBV1-LIFSK NOT INITIAL: Block of code checks that there is no delivery or
printing block on the order. From the Delivery block field of the Sales screen
at the header level of the sales order.

EE KOMKBV1-CMGST CA 'BC': Confirms that there is no credit block on the order.

Custom requirements can be created in the IMG with Transaction V/27 or Transac-
tion SPRO and path Sales and Distribution • Basic Functions • Output Control •
Define Requirements.

Requirements are numbered. SAP reserves numbers above 900 for customer-coded
requirements.

7.2.4 Condition Records

The final step in configuring message control is to enter condition records, which
are linked to the output type and access sequence and are used by the system to

287

Outbound Configuration Generates IDocs 7.2

decide whether, in our example, an ORDRSP IDoc should be generated for a partner
when a sales order is saved.

Before we create our condition records, we’ll look at the access sequence that we
selected for output type ZBA0.

Access Sequence

The access sequence is directly linked to an output type, which assigns it a docu-
ment type to evaluate for output at runtime. In the case of ZBA0, that document
type is a purchase order confirmation to be sent by EDI.

The procedure links that output type to a sales order and to requirements—busi-
ness rules—for generation of an order confirmation IDoc.

The access sequence takes these links one step further to a trading partner, logical
system, or any other partner or document key that specifies who gets a PO confir-
mation under the business rules defined by the procedure.

The access sequence does this by defining three objects that are critical to output
control:

1. The condition tables that are used to store and access condition records

2. The sequence in which those condition tables are read at runtime

3. The fields used to read those tables: the key combination or access that is similar
to options on the selection screen of a program

The access fields for output type ZBA0 are pulled from the Data Dictionary com-
munications structure KOMKBV1, which passes sales document header data to
output control when the document is saved.

The access fields are used to read the condition table that stores the output param-
eters for the document being saved for a trading partner, regardless of partner
type. The condition values define output for the document and partner: print, EDI,
ALE, fax, and so on.

Output type ZBA0, copied from standard type BA00, has 8 standard access sequences,
numbered from 0001 through 0011, as illustrated in Figure 7.24. Access sequences
can be customized with Transaction NACX against an application such as V1 for sales.

288

Configuring IDocs in SAP for EDI Exchange7

Figure 7.24 Standard Access Sequences Copied from Output Type BA00

Access sequence 0003, used in our custom output type ZBA0, includes the follow-
ing key field combination from KOMKBV1:

EE VKORG: Sales organization

EE KNDNR: Sold-to party

Return to NACE, select application V1, and click Access sequences. From the
Overview Access Sequence screen, select access sequence 0003, and double-click
the Accesses folder to open the Accesses: Overview screen (see Figure 7.25).

Figure 7.25 Access Sequence 0003 with Table 001

Note that requirements can also be called through an access sequence to further
refine conditions for output. These are the same requirements we saw in the pro-
cedure. The access sequence applies them more selectively.

Number 1 in the Tab column refers to table B001 that will be used to store condi-
tion records for the key combination. The tables can be numbered from 1 to 999,
but each application gets its own range. These tables are based on B000, which
SAP provides as a template for creating condition tables for message control. B000
provides the following fields that must be present in all condition tables:

289

Outbound Configuration Generates IDocs 7.2

EE MANDT: SAP client.

EE KAPPL: Application for output type, such as V1 for sales.

EE KSCHL: Output type, such as our ZBA0.

EE VAKEY: 100 byte variable key replaced in the condition tables, such as B001,
by the access sequence field key. When a condition record is created in the
condition table the access sequence values are inserted into VAKEY in table
NACH, which stores detailed header information for each condition record for
all applications and output types.

EE KNUMH: Unique output condition record generated when the condition record
is created that links NACH to the condition table.

The access sequence completes the key for reading the condition table used for
the output type. In the case of access sequence 0003 for output type ZBA0, this
is the full key:

EE MANDT: SAP client

EE KAPPL: V1

EE KSCHL: ZBA0

EE VKORG: Sales organization

EE KNDNR: Sold-to party

To look at the access sequence, select access 10 in the Accesses: Overview screen,
and double-click Fields to open the Fields: Overview screen, as displayed in
Figure 7.26.

Figure 7.26 The Fields Assigned to Access Sequence 0003

This record describes data flow at the time the sales order is saved and the system
begins its evaluation of output possibilities. The document fields VKORG and

290

Configuring IDocs in SAP for EDI Exchange7

KUNNR flow into the access sequence fields VKORG and KNDNR in the sales docu-
ment communication structure KOMKBV1.

They are then available for use as a key, with the application and output type, to
read the record in the condition table—in our case B001—that determines what
actually gets output for our sold-to party. The condition record drives the actual
output of our IDoc.

To output an order confirmation for Gordy’s purchase order by EDI, we will cre-
ate a condition record against our access sequence using the following key values:

EE VKORG: Sales organization 3000 Los Angeles

EE KNDNR: Sold-to partner GRDY01 Gordy’s Galaxy

Create Condition Records for the PO Confirmation

There are two ways to get at the condition record data entry screen for the PO
confirmation.

One is through Transaction NACE. Select application V1 and click the Conditions
record button to open the Output Types pop-up listing all output types defined
for the application. Select ZBA0 and click the Conditions record button at the
bottom of the pop-up (or press (F2)) to open the Change EDI PO Confirm (ZBA0):
Selection screen, as illustrated in Figure 7.27.

Figure 7.27 Condition Record Selection Screen for Output Type ZBA0

Enter a sales organization (in our example, 3000 for USA Los Angeles) and click
Execute or press (F8).

You can also use Transaction VV11, which opens the Create Output – Condition
Records screen. Enter output type ZBA0 and click the Key combination button to
open the Key Combination pop-up listing all the accesses available for the access
sequence and output type (see Figure 7.28).

291

Outbound Configuration Generates IDocs 7.2

Figure 7.28 Select an Access from Key Combination

Either way, you’ll land in the Create Condition Records: Fast Entry table control.
Enter the following values:

EE Customer: “GRDY01”

EE Funct (partner function): “SP” or “AG”

EE Medium: “6” for EDI

EE Date/Time: “4” for send immediately

EE Language: “EN” for English

Click Save to create the condition record.

Remember Gordy’s club chain Klub Kazoo? We could use a condition record to
output a confirmation IDoc from a Klub Kazoo sales order to Gordy’s retail sold-
to partner. This would mean creating only one outbound partner profile for both
sold-to partners and sending the EDI transmission to the one trading partner ID
for both organizations.

To do this, enter the following values into the table control:

EE Customer: “GCLB01” for Klub Kazoo

EE Funct: “SP” or “AG”

EE Partner: “GRDY01” to map Klub Kazoo to Gordy’s sold-to partner for output
type ZBA0

EE Medium: “6” for EDI

EE Date/Time: “4” for send immediately

EE Language: “EN” for English

The entries will look like Figure 7.29.

292

Configuring IDocs in SAP for EDI Exchange7

Figure 7.29 Condition Records for Gordy’s Galaxy PO Confirmation

This condition record identifies who gets the EDI PO confirmation, not who cre-
ated the purchase order and subsequent sales order.

If Partner is populated when message control evaluates the condition record, its
value is checked against the partner profile and plugged into the RCVPRN (receive
partner) field of the IDoc control segment. If it isn’t populated, Customer is used
instead.

Save the condition records.

A Hint about Loading Condition Records

Understand the table structure of your condition records and you can write a simple ABAP
program to load conditions from a file with an SQL insert. You only need to populate table
NACH and the BXXX conditions table for the key combination of your access sequence.

7.2.5 The Outbound Partner Profile with Message Control

Now that we have configured output control, we’ll need an outbound partner
profile for Gordy’s Galaxy and message type ORDRSP.

Like the inbound profile, the outbound partner profile links a trading partner to
a logical message and process. The difference is that the outbound partner profile
supports identification of the process for generating an IDoc from a business docu-
ment through message control. An overview of these relationship is displayed in
Figure 7.30.

293

Outbound Configuration Generates IDocs 7.2

Header level OB parameters

TBDLST: Logical
system: Sending

system/client

KNA1: Customer
master record for

GRDY01

Tables: EDIPORT/
EDIPOX: Sending

XML file port

EDP12: Partner
details to output to

process code

Message control

EDPP1: Partner,
partner type,

permitted agent

EDP13: Partner
details to port and

message details

Figure 7.30 Underlying Relationships of the Outbound Partner Profile

A partner profile must be unique for each interface that it will be used for, even if
the same message type is used for different purposes.

Outbound partner profile settings are stored in table EDP13. The key fields in this
table, listed here, define unique partner profile settings that determine the particular
usage of a logical message type for a receiving partner:

EE MANDT: SAP client (mandatory; system-assigned)

EE RCVPRN: Receiving partner (mandatory)

EE RCVPRT: Partner type (mandatory)

EE RCVPFC: Partner function or role (optional)

EE MESTYP: Logical message type (mandatory)

EE MESCOD: Message code (optional)

EE MESFCT: Message function (optional)

EE TEST: Test flag indicating IDoc a test message (optional)

The contents of all the key fields will be passed to the corresponding fields of the
IDoc control record. Null is an acceptable value for the optional data elements.

The IDoc basic type is not part of the key, but it is a mandatory field in the partner
profile and must be populated. The basic type tells the system how to structure
the logical message.

IDoc extension and view are also optional fields that are not part of the key. But if
either is being used in an IDoc, they must be included in the partner profile; other-
wise, the system won’t know to call them to refine the structure of the basic type.

294

Configuring IDocs in SAP for EDI Exchange7

To create the partner profile for our ORDRSP message to Gordy:

1. Go to Transaction WE20 and find the partner profile we created for Gordy dur-
ing inbound configuration.

The same outbound partner profile will be used for the retail and club chains.
The condition record will determine the partner profile to call for the club chain
by mapping partner GCLB01 to Gordy’s retail GRDY01.

2. Click the Create Outbound Parameter icon just below the outbound table
control.

3. Enter the following values into the Outbound parameters screen:

EE Partner Role field: “SP” (sold-to)

EE Message Type field: “ORDRSP”

EE Receiver port field: “XML_IDOC”

EE Output Mode area:

 − Collect IDocs option: Collect batches IDocs at status 30—IDoc ready for
dispatch—until program RSEOUT00 runs to export them through the file
port.

 − Start subsystem option: Set to trigger the EDI RIM through the file port
and RFC destination.

EE Basic type: “ORDERS05”

4. Save the partner profile. The Outbound Options screen should look like Figure
7.31.

5. Click on the Message Control tab and then the Insert row icon to create a
unique message control record, as discussed in Section 7.2.1, Message Control.
Enter the following values:

EE Application: “V1” for sales document

EE Message type: “ZBA0” for the output type

EE Process code: “SD10”, which links to IDoc processing function IDOC_OUT-
PUT_ORDRSP.

EE Change message checkbox: Leave null to trigger generation of an IDoc every
time the sales order is changed. If it’s not set, an IDoc will only be output
when the sales order is first created.

295

Outbound Configuration Generates IDocs 7.2

Figure 7.31 Setting Up Message Type ORDRSP in Outbound Options

The system checks that the change flag is null the first time that an IDoc is gen-
erated when the business document is created and saved. If you want to also
output an IDoc each time the document changes, create another message control
entry that includes a checked change flag, as illustrated in Figure 7.32.

Figure 7.32 Message Control Options for ORDRSP

296

Configuring IDocs in SAP for EDI Exchange7

We will also enter EDI-specific values to pass to the IDoc control record. These
values will help identify EDI data for the RIM and provide additional EDI-specific
search criteria for the IDoc in SAP. Follow these steps.

1. Go to the EDI Standard tab at the edge of the message control.

2. Enter the following values in the EDI Standard tab:

EE EDI Standard: “X” for X12

EE Message type: “855” for the X12 transaction

EE Version: “005010” for the X12 transaction version

The completed screen should look like Figure 7.33.

Figure 7.33 EDI Standards Are Passed to the IDoc Control Record

3. Save the partner profile.

Now that output control and a partner profile are set up, the system is ready to
generate an ORDRSP IDoc each time Acme creates a sales order for Gordy. We still
need to add some reference data to help the process along.

7.2.6 EDI Outbound Reference Data

We looked at the EDI reference tables we need to post SD documents during
inbound processing in Section 7.1.4. We’ll use two of the same tables for outbound
processing of the order confirmation:

EE EDPAR: Internal to external partner conversion.

EE ZEDIXREF: Custom table to convert control segment partner number and IDoc
message and basic type to the receiving EDI trading partner ID and transaction
set.

External to internal material number conversion was done during inbound pro-
cessing; we don’t have to do it outbound. The supplier’s material number posted
to the sales order so it will be available to the IDoc.

297

Outbound Configuration Generates IDocs 7.2

EDPAR

The values we entered into EDPAR for inbound processing for Figure 7.8 will also
work for outbound. We have an inbound sold-to and ship-to conversion for Gordy’s
retail and Klub Kazoo. All are linked to Gordy’s retail sold-to number, GRDY01.

Outbound partner processing with EDPAR is a little more restrained than inbound.
For the ORDRSP order confirmation IDoc only the sold-to, vendor, personnel, con-
tact person, or unloading point numbers (for the ship-to party) will be converted
through EDPAR.

For the purposes of our PO confirmation, the standard EDPAR routine will only
return the external sold-to partner for Gordy or Klub Kazoo. If the customer needs
to receive his external ship-to number, we have two choices:

1. Store it in the customer master record for the ship-to partner, in the Acct at
cust. field in the Sales screen of the Sales Area Data.

The external ship-to number will automatically flow into the IDoc when the
order confirmation is generated. This means, of course, that you need to create
a sales view by sales organization, distribution channel, and division for each
ship-to partner.

2. Write a customer exit to read EDPAR at the end of the XVBPA processing loop
for the ship-to partner (PARVW = "WE") using function SD_INT_TO_EXT_PART-
NER_NUMBER during the build of segment E1EDKA1, in either CUSTOMER-FUNCTION
'002' or GV_BADI_SD_ORDRSP_IDOC_OUTPUT->IDOC_DATA_APPEND.

3. Both exits are called in the form CUSTOMER_FUNCTION at the end of the XVBPA
loop. The code would be run for the ship-to party, or for whoever else you
wanted to convert to an external number.

The master data option is possible because of how the external conversion is handled
during outbound processing.

It begins with a loop on XVBPA, an internal table for VBPA, which stores all partner
records for the sales order. In the first pass, it gets the sold-to partner number
and passes it to variable KUNAG that’s used to read the KUNNR field in EDPAR. KUNAG
is never cleared during loop processing of XVBPA. EDPAR is always read with the
sold-to party as the KUNNR key.

The next check is for the partner function from the partner profile. This gets the
value for the internal partner number key in EDPAR-INPNR. Only the following
partner functions are checked:

298

Configuring IDocs in SAP for EDI Exchange7

EE KU: Sold-to partner. Passes XVBPA-KUNNR to variable INT.

EE LI: Vendor. Passes XVBPA-LIFNR to variable INT.

EE PE: Personnel number. Passes XVBPA-PERNR to variable INT.

EE AP: Contact person. Passes XVBPA-PARNR to variable INT.

EE OTHERS: Passes XVBPA-ABLAD, unloading point, to variable INT. This only goes to
the ship-to party.

Function SD_INT_TO_EXT_PARTNER_NUMBER is then called to read EDPAR for the
external partner number with parameters:

EE KUNAG: Sold-to partner.

EE INT: Internal SAP partner number for partner type.

EE XVBPA-PARVW: Partner function in the current loop pass.

For the order confirmation the partner function coming out of the sales order is
typically:

EE AG (SP): Sold-to party

EE RE (BP): Bill-to party

EE RS (PY): Payer party

EE WE (SH): Ship-to partner

EDPAR is then read by the function with the following SQL statement:

SELECT * FROM EDPAR
 WHERE KUNNR = CUSTOMER_NUMBER (KUNAG)
 AND PARVW = PARTNER_ROLE (INT)
 AND INPNR = INTERNAL_PARTNER_NUMBER. (XVBPA-PARVW)

If a hit is made—and in our example, only the sold-to partner will return a hit—then
a variable is populated with the external partner number and processing returns
to the IDoc function.

The external partner number is then passed to E1EDKA1-LIFNR.

If nothing is found, an exception is raised, the function terminates, and processing
returns to the IDoc function. Another function—VIEW_KNVV—is then called with
the current partner number in XVBPA-KUNR, regardless of partner type, and the
sales organization. It returns table KNVV, which stores sales area data from the
customer master record, including the external partner number from field EIKTO.

299

Outbound Configuration Generates IDocs 7.2

If the external partner number is in KNVV-EIKTO it will be passed to E1EDKA1-LIFNR.

ZEDIXREF: EDI Trading Partner IDs

Our custom EDI lookup table ZEDIXREF works the same way for outbound process-
ing as inbound, although the values, listed in Table 7.7, are different.

Field Value Description

DIRECT 1 Direction outbound

STDMES 855 EDI PO confirmation transaction

MESTYP ORDRSP IDoc message type

IDOCTP ORDERS05 IDoc basic type

CIMTYP IDoc extension

SNDPRN DEVCLNT100 SAP logical system: send partner

RCVPRN GRDY01 SAP receive partner: Gordy’s sold-to customer number
in Acme’s system

SNDLAD 01234567US0 EDI send partner: Gordy’s trading partner ID for Acme

RCVLAD 9999999USD EDI receiver partner: Gordy’s trading partner ID for Gordy

Table 7.9 ZEDIXREF Entry for the Outbound 855 to Gordy

The table is read in the same enhancement used for inbound—SIDOC001. The
outbound read pulls the SNDLAD and RCVLAD fields from table ZEDIXREF into
the same fields in the IDoc using the following key fields from the control record:

EE EDIDC-DIR: Direction

EE EDIDC-STDMES: EDI transaction or message, mapped from the EDI transaction
set

EE EDIDC-MESTYP: IDoc logical message type

EE EDIDC-IDOCTP: IDoc Basic type

EE EDIDC-CIMTYP: IDoc extension

EE EDIDC-SNDPRN: SAP sender partner number

EE EDIDC-RCVPRN: SAP receiver partner number

This will then be used by the EDI RIM to identify envelopes and routing for the
outbound 855 transmission.

300

Configuring IDocs in SAP for EDI Exchange7

7.2.7 The SAP EDI Outbound Process Flow

Outbound processing for EDI in SD and MM builds an IDoc from a business docu-
ment using message control, saves it to the application server in an XML file, and
then triggers the EDI RIM through an RFC to a listening workflow.

We’ll illustrate this process by following the progress of an outbound purchase
order confirmation ORDRSP IDoc to Gordy.

To enable outbound processing for Gordy’s ORDRSP, we need the following:

EE RFC destination EDI_DEV_100

EE XML file port XML_IDOC

EE Message control configured for output type ZBA0

EE Condition records entered for sales organization and sold-to partners GRDY01
(Gordy retail) and GCLB01 (Gordy’s Klub Kazoo)

In addition, we need a partner profile for Gordy with the following outbound
parameters:

EE Outbound Options tab:

EE Partner function: “SP” for sold-to partner

EE Message type: “ORDRSP”

EE Receiver port: “XML_IDOC”

EE Output mode: Collect IDocs and Start subsystem (3)

EE Basic type: “ORDERS05”

EE Message Control tab:

EE Application: “V1”

EE Standard message type: “ZBA0”

EE Process code: “SD10”, which links to function IDOC_OUTPUT_ORDRSP.

EE EDI Standard tab:

EE EDI standard: “X” for X12

EE Message type: 855 purchase acknowledgment

EE Version: “005010”

301

Outbound Configuration Generates IDocs 7.2

Figure 7.34 shows a high-level view of the outbound EDI process flow. These steps
are implemented in ABAP code through function modules that access a mix of
configured and master data tables. We’ll look at some of the key processing points
as we step through the flow.

Gordy sales order
Saved—VA01

KOMKBV1 filled
w/ partner & sales

order data

Output type with
transmission med./
acc. seq. identified

Condition table
read in loop on

acc. seq./acc. no.

Sales order saved
to database

Reads partner
profile—confirms
partner, msg cntl

Builds cntrl record
gets IDoc function
name from TEDE1

Calls function to
build IDoc from

sales order

ORDRSP IDoc
generated

IDoc written to
database

status 01 > 30

Prgm RSEOUT00
OB processing IDoc
read from database

ORDRSP written
to file at status 03

Function master_
idoc_distribute
ALE OB services

RFC call with file name

Call exit to change
control segment w/
ZEDIXREF values

Acme SAP

Access no. with
condition table no.
identified—B001

Procedure identif.
If req’t found

req’t form called

Output record for
sales ord. inserted

to table NAST

Processing prgm/
form for output

read from TNAPR

Pgm RSNASTED
from edi_processing

identified/called

Comm. header/
NAST work table

updated

EDI RIM

EDI RIM OB
processing ...

RIM picks up file
deletes from SAP

app server

Figure 7.34 An Overview of Outbound IDoc Processing Flow

302

Configuring IDocs in SAP for EDI Exchange7

Building Output

A sales order is created and saved from an incoming purchase order ORDERS IDoc
from Gordy with Transaction VA01.

Header and partner data from the sales order are passed to communications struc-
ture KOMKBV1, with function COMMUNICATION_AREA_KOMKBV1, which immediately
calls function KOMKBV1_FILL.

Communications structure KOMKBV1 includes the following values:

EE Sales order number

EE Sales organization

EE Distribution channel

EE Division

EE Partner function

EE Sold-to party

EE Ship-to party

The system identifies message control objects through a series of table reads in
function MESSAGING, which is called before the sales order is assigned a number
and then saved by function RV_SALES_DOCUMENT_ADD. These output objects include
the following:

EE Application: V1

EE Procedure: V10000. Note that the requirement is identified and called if one
exists in the procedure.

EE Output type: ZBA0

EE Access sequence: 0003

EE Access number 10 with key field combination:

EE VKORG: Sales organization

EE KNDNR: Sold-to party

EE Condition table: 001 (B001)

Function SD_COND_ACCESS called within MESSAGING reads the condition table within
a loop on table T682I, which links the application, access sequence, and access
number to the condition table number.

303

Outbound Configuration Generates IDocs 7.2

The condition table is read in a loop because multiple access numbers within the
access sequence for our application could be found in table T682I. The condition
records are further broken down by output type, partner number, and partner
type. Multiple outputs could be configured for each: print, EDI, fax, and so on.

In our example, the condition record in table B001 determines that output type
ZBA0 for application V1 for sold-to partner Gordy (GRDY01) in sales organization
3000 will be output by EDI as soon as the sales order is saved.

If the sales order is for Gordy’s Klub Kazoo chain, the condition record will tell
the system that sold-to partner GLCB01 is mapped to sold-to partner GRDY01 for
generation of an IDoc using output type ZBA0. GRDY01, rather than GLCB01, will
be the IDoc receiver checked against the partner profile and mapped to the control
segment field RCVPRN.

An output record for the sales order is prepared for table NAST based on the con-
dition record. NAST stores details of output status for each output identified for
every business document instance, such as the sales order we just saved, that uses
message control. The record prepared for NAST includes such values as:

EE KAPPL (Application): V1

EE OBJKY: Sales order document number with leading zeroes

EE KSCHL (Output type): ZBA0

EE PARNR: Message partner

EE PARVW: Partner type AG (sold-to)

EE NACHA: Output medium 6 for EDI

EE VSZTP: Dispatch time (immediately on save or batched)

Writing the IDoc to the Database

The sales order is saved and table NAST is updated. The next major task is to iden-
tify and call the processing program and form routine associated with output type
ZBA0. For EDI, these were defined as form EDI_PROCESSING in program RSNASTED.

This is done in function RV_MESSAGES_UPDATE by reading table TNAPR with the
output type (ZBA0) and transmission medium (6 for EDI).

304

Configuring IDocs in SAP for EDI Exchange7

The NAST record is used to build a key to read the outbound partner profile for
Gordy using function EDI_PARTNER_READ_OUTGOING. The read key, in our example,
includes the following:

EE RCVPRN: GRDY01 (receive partner number)

EE RCVPRT: KU (receive partner type)

EE RCVPFC: SP (receive partner function)

EE KAPPL: V1 (message control application)

EE KSCHL: ZBA0 (message or output type)

EE AENDE: Change message flag not populated

If the partner profile is found, the system reads table TEDE1 with the process code
from the message control table of the partner profile (EDP12).

Table TEDE1 links the process code to the IDoc processing function. In this case,
process code SD10, entered into the message control screen of Gordy’s outbound
partner profile for ORDRSP, links to IDoc function IDOC_OUTPUT_ORDRSP.

The control record of the IDoc is then built from the partner profile and some
system values and function IDOC_OUTPUT_ORDRSP is called with the control record
and the output record from NAST. IDOC_OUTPUT_ORDRSP takes over processing and
begins to build the IDoc data records.

First it reads the sales order tables into internal work tables with the NAST-OBJKY,
which stores the sales order number. These tables include the following:

EE VBAK: Sales order header

EE VBKD: Business data header

EE VBPA: Sales order partners

EE VBAP: Line item data

EE VBEP: Delivery schedule lines

It then pulls the terms of payment and offers a user exit to allow custom reads of
additional sales order data into the internal tables already populated.

After some more house-keeping and data reads, including another user exit to update
the control segment, it builds the IDoc data records one at a time, beginning with
E1EDK01, in the order that the segments appear in the IDoc.

305

Outbound Configuration Generates IDocs 7.2

The code steps through each segment in the ORDERS05 basic type through a form
routine with the naming convention fill_<segnam> (for example, FILL_E1EDKA1).

Each routine hard-codes the segment name to the data record SEGNAM field in
the control area and then passes the data values to SDATA field through a string
that has the structure of the segment. E1EDKA1, for example, is built using a string
with a structure defined by Data Dictionary object E1EDKA1.

The data for each segment are pulled from the internal tables populated when the
sales order was read and/or pulled from other sources.

At the end of each segment’s form processing, several things happen:

1. The populated string is passed to the SDATA field in an internal table with the
data record structure EDIDD: INT_EDIDD-SDATA.

2. The new segment record is appended to INT_EDIDD-SDATA.

3. A customer function is called to allow custom processing of the internal data
record table.

After all segments have been populated and appended in their proper order into
INT_EDIDD, the business object is identified for message type ORDRSP with func-
tion SD_OBJECT_TYPE_DETERMINE based on SD document type—C for a sales order.
The business object for ORDRSP is BUS2032.

After a final user exit is hit, IDOC_OUTPUT_ORDRSP is done and processing returns to
RSNASTED, where the first task is to update NAST.

Function COMMUNICATION_IDOC_CREATE is then called to create the control segment,
apply some ALE house-keeping services, and call function IDOC_CREATE_ON_DATA-
BASE, which in turn calls function EDI_DOCUMENT_OPEN_FOR_CREATE.

This last function prepares the IDoc to be written to the database and updates the
status record. But first it calls the exit in enhancement SIDOC001. This is where we
will read our custom EDI lookup table ZEDIXREF to update the control segment
with Gordy’s EDI send and receive trading partner numbers.

When the IDoc is written to the database, status records are built with an initial
status of 01—IDoc generated.

Processing mode is checked for the partner profile. In our example, the IDoc is
not going to be kicked out immediately. Status in the control and status records is
changed to 30—IDoc ready for dispatch. IDoc processing ends.

306

Configuring IDocs in SAP for EDI Exchange7

Logical versus Basic Type

This process of building an outbound IDoc is a good illustration of the difference between
a message type and a basic type.

The structure that is being populated is basic type ORDERS05. But the logic that is
pulling the data and selecting the segments and fields to populate is the message type
ORDRSP, which represents the business object.

The basic type ORDERS05 is the neutral container while the message type ORDRSP
is the logic and the data that make the IDoc instance a purchase order confirmation.

Sending the IDoc to the EDI RIM

Program RSEOUT00 (Transaction WE14) will be scheduled to kick batched IDocs out
the door. All of Acme’s customers are important, but Gordy is more important than
all the others because of the volume of business they do every day. That means
lots of orders and order confirmations, so it was decided to schedule separate jobs
for Gordy’s IDocs.

The RSEOUT00 selection screen options that we’ll use for Gordy are displayed in
Figure 7.35. Most of these fields used to read the control record of the IDoc from
table EDIDC IDocs.

Figure 7.35 RSEOUT00 Selection Screen Options for Gordy’s Invoice

307

Outbound Configuration Generates IDocs 7.2

1. RSEOUT00 first reads table EDIDC to identify all IDocs at status 30 that match
all parameters entered on the selection screen.

2. Found records are inserted into internal table INT_EDIDC with the structure
EDIDC and used to read table EDIQO to determine whether any are assigned
to a queue. Any IDocs found in the queue table that have not already been
processed are processed together. All other IDocs in INT_EDIDC that do not
have a corresponding EDIQO record are deleted.

3. If nothing is found in EDIQO, the control records are passed to function
IDOC_OUTPUT_NEW for outbound processing.

4. Function EDI_PORT_READ is called to confirm the XML file port in the control
segment from table EDIPOX, and then form CF_OUTPUT_XML (called from form
GENERAL_OUTPUT) triggers final outbound processing with function IDOCS_OUT-
PUT_IN_XML_FORMAT.

5. The XML file port is confirmed again and the IDocs are read one more time
from the database. The IDoc records are converted to XML format, beginning
with the control segment, and appended to internal table I_XMLOUT. This
internal table is then written through a single 1,270 character string to the
outgoing XML IDoc file.

6. The path and file names are read from the XML port, and the IDoc file is writ-
ten to the file path on the SAP application server.

7. The locks on the IDoc database are released, and the status record updated to
03—Data passed to port OK.

8. After some additional house-keeping and error checking, form START_TRIG-
GER_AND_WRITE_STATUS is called to trigger C function RFC_REMOTE_EXEC using
the RFC destination read from the XML file port.

9. The RFC passes to the EDI RIM the full path and file name and the values in
the command line that we set up in the XML file port.

10. If the hit to the EDI RIM RFC destination is successful, the C function SY-SUBRC
returns a value of 0, and the control and status records of the IDoc are updated
with status 18—Triggering EDI subsystem OK—and the RFC connection is closed.

11. If it fails, the control and status records of the IDoc are updated to status 20—
Error triggering EDI subsystem.

Processing is complete, and control is returned to RSEOUT00.

308

Configuring IDocs in SAP for EDI Exchange7

7.3 Summary

The team at Acme Pictures covered a lot of ground here. We’ve configured inbound
and outbound interfaces for a purchase order from Gordy with message type
ORDERS and a purchase order confirmation back from Acme with message type
ORDRSP.

We went over the inbound and outbound partner profiles we’ll need to support
these interfaces, and covered EDI configuration tables useful to SD IDocs, including
EDPAR, which enables conversion of internal SAP to external partner numbers, and
ZEDIXREF, a custom table that we’ll build to convert Acme’s SAP partner numbers
to our customer and supplier’s EDI trading partner IDs.

We also went over message control configuration and processing, which generates
outbound IDocs from business documents in SD and MM. Both are both heavy
consumers of EDI. Our basic philosophy is that the easiest way to understand mes-
sage control is to do it—and, if you can, debug it.

Once the configuration pieces were place, we followed the processing flow for
our inbound PO and outbound PO confirmation, hitting on the key functions and
routines that make it all happen.

Of course, we chose the happy path that followed standard IDoc processing. But
few people knew better than Acme’s legendary founder the great Darryl Q that the
path is rarely happy or straight in the real world. We always have our own way
of doing things and businesses are no different, especially in Hollywood. And that
means we have to consider customization.

309

“I couldn’t build my way out of a paper bag,” Darryl Q would tell the
carpenters who built his cheesy sets. Acme’s legendary founder knew that
the success of his films depended on his workers’ ability to build. Just as the
success of the new SAP EDI system, and the business that relies on it, rests
on the ability of the team to build and extend IDocs. So let’s delve into this
fascinating topic and go over the tools and techniques we use to craft our
own custom IDocs.

8 Custom IDocs and IDoc Extensions

Now we’re getting to the interesting part: creating, coding, and configuring custom
IDocs and extending standard IDocs.

Our custom IDoc will post an X12 846 inventory report to a custom table. Acme
will use the data to write custom reports to support inventory balancing.

We’ll build our extended IDoc from basic type ORDERS05 for an outbound sup-
plier purchase order using message type ORDERS. We’ll add a BOM segment just
beneath the E1EDP01 item parent to send the bill of materials associated with a
purchase order to Acme’s third-party manufacturer, Disc Services International,
in the outbound 850 supplier purchase order.

Let’s begin by taking a quick tour of the tools that we’ll use to develop and con-
figure our IDoc interfaces.

8.1 IDoc Development and Configuration Tools

Our starting point for the development of custom IDocs and extensions is the EDI
area menu. You can access it with Transaction WEDI from the SAP Easy Access
main menu. WEDI is an area menu and cannot be accessed from other transaction
screens.

The key IDoc development tools that we’ll be using for our customization are
clustered in the Development folder, illustrated in Figure 8.1.

310

Custom IDocs and IDoc Extensions8

Figure 8.1 IDoc Development Tools in the EDI Area Menu

There are other development tools that we’ll be using in addition to those in the EDI
area menu. We’ll look each tool in the order of use in our development workflow.

8.1.1 Transaction SE11—Data Dictionary

Get to the Data Dictionary with Transaction SE11 through the Repository Informa-
tion System (Transaction SE90) in the ABAP Dictionary folder, or through SAP
menu Tools • ABAP Workbench • Development • ABAP Dictionary.

We’ve touched on the role of the Data Dictionary in defining IDoc syntax and
architecture (see Chapter 6, Section 6.2, IDoc Architecture and the Data Diction-
ary). We’ll use the Data Dictionary to create the following objects:

EE Domains: Tables DD01L and DD01T.

EE Data elements: Tables DD04L and DD04T. Domains and data elements will be
used for custom fields in custom segments.

EE Structures and transparent tables to store master and transactional data for use
in custom programs: Tables DD02L and DD02T.

We’ll also use the Data Browser to look at data stored in transparent tables and to
do informal extracts for analysis. The Data Browser can be reached with Transac-
tion SE16.

311

IDoc Development and Configuration Tools 8.1

8.1.2 Transaction WE31—Segment Editor

We’ll use the segment editor to build and edit segments for custom and extended
IDoc basic types. The segments are saved as structures in the Data Dictionary in
tables DD02L and DD02T.

As shown in Figure 8.2, the segment editor keeps track of all external names and
versions of the segment, along with its string lengths, the number of fields it con-
tains, and the SAP release number current when it was last changed.

Figure 8.2 Segment Versions in the Initial Screen of the Segment Editor

Double-click any segment definition row to get to its fields, as illustrated in Figure
8.3 for segment type E1EDK01.

Figure 8.3 Field List in Segment Editor

312

Custom IDocs and IDoc Extensions8

Fields are added to this screen during the creation of segments, and data elements
are assigned to the fields. The data element is linked to a domain. Double-clicking
on the data element name opens the Display Data Element screen. Double-clicking
on the domain name opens the Display Domain screen. If there are qualifiers
associated with the domain in a value range, you can click on the Value Range
tab to see them.

The segment is activated after it has been released in the initial screen by selecting
menu option Edit • Set Release. The segment must be released before it can be
used in a basic type.

To get to the segment editor, open the Development folder in the WEDI area
menu, and double-click IDoc segments, or use Transaction WE31, SAP menu
Tools • ALE • ALE Development • IDoc • IDoc Type Development • Segments.

8.1.3 Transaction WE30—IDoc Type Editor

We use the type editor to assemble segments into custom or extended IDoc basic
types. It’s also a great way to display the structure and segment attributes of stan-
dard IDoc basic types such as ORDERS05.

Double-click on any segment name to open the Attribute Display dialog. It records
key parameter values for the segment that controls its place within the IDoc basic
type, including the following:

EE Segment type name

EE Mandatory segment flag

EE Minimum and maximum number of occurrences

EE Parent segment number

EE Hierarchy level

Click the Segment editor button to open the Field Display screen of the segment
editor.

The custom or extended IDoc is released after it’s been assembled in the initial
screen of the type editor with menu option Edit • Set Release. It must be activated
before it can be used in an interface or transported to other SAP clients.

You can get to the type editor by opening the Development folder in the WEDI
area menu, and double-clicking IDoc types, or by using either Transaction WE30

313

IDoc Development and Configuration Tools 8.1

or SAP menu Tools • ALE • ALE Development • IDoc • IDoc Type Development •
IDoc Types.

IDoc basic and extended types are stored in table IDOCSYN.

8.1.4 Transaction WE81—Logical Messages

Create logical message types when building custom IDoc in the message type edi-
tor. To get there, double-click Logical Messages in the Development folder in
the WEDI area menu, use Transaction WE81, or follow menu path Tools • ALE •
ALE Development • IDoc • IDoc Type Development • Logical Messages.

Logical message types are stored in tables EDMSG and EDIMSGT.

8.1.5 Transaction WE82—Message to Basic Type Link

This links the message type to the IDoc basic type, providing structure to the logi-
cal message. Multiple message types can be linked to one basic type. Transaction
WE82 is also used to link IDoc extensions to messages and basic types. Message,
basic, and extended types are linked in table EDIMSG.

The relevant menu paths are IDoc Type/Message in the Development folder of
the WEDI area menu or Tools • ALE • ALE Development • IDoc • IDoc Type
Development • IDoc Type for Message.

8.1.6 Transaction SE37—Function Editor: Function Groups

All function modules are created within a function group. Create function groups
in the Program Library folder in the Repository Information System (Transaction
SE80). Click the Edit object button and navigate to the Function group tab, as
illustrated in Figure 8.4.

You can also use Transaction SE37, SAP menu path Tools • ABAP Workbench •
Development • Function Builder, or menu path GoTo • Function Groups •
Create Group.

Function groups are programs that logically group related function modules into
a common package with global data types, declarations, constants, and so on. The
naming convention for the function pool program generated for the function group
is always SAPL<FUNCGRP>, where FUNCGRP is the name of the function group.

314

Custom IDocs and IDoc Extensions8

Figure 8.4 Creating a Function Group in the Repository Info System

For example, function group EINM (Figure 8.5), which includes function IDOC_OUT-
PUT_ORDERS, has the program name SAPLEINM.

Figure 8.5 Attributes for Function Group EINM

The main function group program always contains the following includes:

EE L<FUNCGRP>TOP
Global data declarations for the function group.

315

IDoc Development and Configuration Tools 8.1

EE L<FUNCGRP>UXX
Stores includes with the function modules.

EE L<FUNCGRP>F0X
Form subroutines called by the functions. The X character can be a number from
0 to N or a letter to distinguish multiple include programs.

There could also be other includes that do not follow this naming convention with
form routines that perform special functions.

We’ll create one function group per function module for Acme’s custom IDoc
development.

8.1.7 Transaction SE37—Function Editor: Function Modules

This is where the code hits the road. Most of our programming in the IDoc interface
will be in the Function Builder.

Function modules are created using the same transactions and menu paths as
function groups.

Functions are encapsulated programs that perform one function. They have a
standard interface with import and export parameters and can transfer internal
tables for processing at runtime. They also return error codes that can be trapped
for error message processing.

The great bulk of the work of the IDoc interface is done with functions, even with
the trend toward object-oriented programming in SAP. Functions are so perva-
sive throughout the interface that it’s highly unlikely they’ll be replaced any time
soon, although method calls are increasingly being used and exits, in particular,
are mirrored by BAdIs.

For example, functions are used to build partner profiles within WE20. This is a
three-step process implemented by four function calls that populate the partner
profile tables:

1. Build the general view:

EE EDI_AGREE_PARTNER_INSERT: Table EDPP1

2. Build outbound parameters and message control:

EE EDI_AGREE_OUT_MESSTYPE_INSERT: Table EDP13

316

Custom IDocs and IDoc Extensions8

EE EDI_AGREE_OUT_IDOC_INSERT: Table EDP12

3. Build inbound parameters:

EE EDI_AGREE_IN_MESSTYPE_INSERT: Table EDP21

Functions are also used as customer exits for IDocs and other standard SAP applica-
tions. Customer exits allow the user to extend the functionality of standard IDoc
functions to accommodate unique business requirements.

IDocs are mostly processed through function modules. Workflow tasks can be used
to process some IDocs but we won’t be doing this in our Acme implementation
except for the standard task that processes the STATUS message type. Our main
concern here is with the IDOC_INPUT and OUTPUT functions, which follow the nam-
ing conventions:

EE IDOC_INPUT_<MESSAGE>
The application programming interface (API) for inbound functions is described
in the upcoming subsection “API for Inbound IDoc Processing Functions.” An
example is function IDOC_INPUT_ORDERS.

EE IDOC_OUTPUT_<MESSAGE>
The API for outbound functions with message control is described in the upcom-
ing subsection “API for Outbound IDoc Processing Functions.” An example is
function IDOC_OUTPUT_INVOIC.

EE MASTER_IDOC_CREATE_<MESSAGE>
These are standalone IDocs that are not generated by message control. An
example is the BOMMAT message that sends bills of material master data with
function MASTER_IDOC_CREATE_BOMMAT.

The Function Builder is divided into the seven tabs seen in Figure 8.6:

1. Attributes: Administrative data for the function:

EE Function group, program names, descriptions, and package

EE Processing type flag, including remote-enabled (RFC) function

2. Import: Structured strings based on Data Dictionary types used to bring data
into the function for processing at runtime.

3. Export: Structured strings based on Data Dictionary types used to return data
from the function after processing at runtime.

317

IDoc Development and Configuration Tools 8.1

4. Changing: Tables or structured strings to carry data that will be changed by the
function by runtime processing. Rarely used.

5. Tables: Internal tables based on Data Dictionary tables or structures that will
carry table data for processing at runtime.

6. Exceptions: String descriptions of error conditions that can be raised at runtime.
Exceptions end processing at the point they are raised and return control to the
calling program, which can then use them to trigger error message or other
processing.

7. Source Code: Default view where the function’s ABAP code is written. The
function name at the top of the window is followed by a commented block
documenting import and export parameters, tables, and exceptions, as illustrated
in Figure 8.6.

Figure 8.6 Function Builder Source Code Screen

API for Outbound IDoc Processing Functions

The API for outbound IDoc processing functions is standard for all outbound
processing actions that use message control. The outbound function is identified
and called by form EDI_PROCESSING in program RSNASTED, but can also be used in
custom code. Check the Function Builder for the structures of each parameter.

EE Importing: Parameters passed from RSNASTED.

EE OBJECT: The NAST table record containing the document key and output type
for the business document that will be read to build the IDoc.

318

Custom IDocs and IDoc Extensions8

EE CONTROL_RECORD_IN: The control record built by RSNASTED from the partner
profile read before the IDoc function is called.

EE Exporting: Parameters passed back to RSNASTED.

EE OBJECT_TYPE: Business object name for the business document. Links the IDoc
to the business document.

EE CONTROL_RECORD_OUT: Fully populated control record built by the IDoc pro-
cessing function returned to RSNASTED.

EE Tables: Internal tables that pass data arrays from the calling function or back to
it from the IDoc processing function.

EE INT_EDIDD: Output. Returns the data records for the IDoc from the processing
function.

EE Exceptions: Parameters that raise errors in the IDoc processing function. Stop
execution of the function at the point the error is trapped and return control to
the calling program.

EE ERROR_MESSAGE_RECEIVED: Identifies errors called during IDoc processing.

EE DATA_NOT_RELEVANT_FOR_SENDING: Added to customer functions and method
calls in outbound IDoc processing.

API for Inbound IDoc Processing Functions

The API for inbound IDoc processing functions is standard for all inbound process-
ing actions. Inbound functions are called by the standard IDoc interface function
IDOC_INPUT, but you can also call them from custom code. Check the Function
Builder for the structure of each parameter.

EE Importing: Parameters passed from the calling function.

EE INPUT_METHOD: Used only for call transaction posting. Default is blank for
background mode. Other modes are A for All screens in foreground, and E
for Display Error screen only.

EE MASS_PROCESSING: For workflow processing. Default is blank.

EE Exporting: Parameters passed back to the calling function.

EE WORKFLOW_RESULT: Workflow error handling. Triggers tasks that pass success
or error messages to the SAP workplace inbox or other workflow targets.

319

IDoc Development and Configuration Tools 8.1

EE APPLICATION_VARIABLE: Advanced workflow programming. Default value is
space.

EE IN_UPDATE_TASK: Triggers a follow-up task to handle database commit. Default
value is space for no update task. “X” delays posting until an explicit commit
is called.

EE CALL_TRANSACTION_DONE: Set to “X” if the status record isn’t updated in the
code of the IDoc processing function. In this case, it is updated within the
calling function’s processing flow.

EE DOCUMENT_NUMBER: This is an example of how the standard can vary. IDOC_
INPUT_ORDERS uses this parameter to return the sales order number after
posting, but not all IDoc functions do this.

EE Tables: Internal tables that pass data arrays from the calling function or back to
it from the IDoc processing function.

EE IDOC_CONTRL: Input. Passes control record data to the processing function.

EE IDOC_DATA: Input. Passes data records to the IDoc processing function for
posting to the document.

EE IDOC_STATUS: Output. Returns status records indicating success or failure in
posting for each IDoc passed to the function. Linked to IDOC_CNTRL and
IDOC_DATA through the IDoc number.

EE RETURN_VARIABLES: Output. Returns additional posting results for each IDoc
that are used in workflow processing.

EE SERIALIZATION_INFO: Output. Used by the IDoc interface to sort a batch of
IDocs in a particular order.

8.1.8 Transaction SMOD—SAP Enhancements

Enhancements collect one or more customer exits that are called from strategic
points in the code of the IDoc processing function. The customer exits are grouped
together in components within each enhancement.

Click on the Components button to access the exits. All customer exits that are
associated with the component are listed in the Change Project screen.

For example, enhancement SIDOC001 contains one component: customer exit
function EXIT_SAPLEDI1_001, used to process the control record of the IDoc before

320

Custom IDocs and IDoc Extensions8

it’s created on the IDoc database during inbound and outbound processing (see
Figure 8.7). It gives the customer the opportunity to add data to the control record
that aren’t provided by standard processing.

Figure 8.7 Components for Enhancement SIDOC001

This list of functions is our entry point to code the customer exit. Double-click the
exit name to open the Function Builder Source code window. Note the include
statement and program name. We write the code in the include program. But we
don’t do this through the enhancement object. We first assign the enhancement
to a modification project.

Choose Enhancements • Customer Exits • Enhancements in the Repository
Information System, use Transaction SMOD, or follow menu path Tools • ABAP
Workbench • Utilities • Enhancements • Definition.

Enhancements are stored in tables MODSAP and MODSAPT.

8.1.9 Transaction CMOD—Project Management for SAP
Enhancements

We’ll use CMOD to create and manage modification to code customer exits for
IDoc functions. One or more enhancements can be assigned to each project. For
the sake of simplicity, we’ll assign only one enhancement per project.

To get to modification projects, use Transaction CMOD, go to Enhancements • Cus-
tomer Exits • Projects in the Repository Information System, or follow menu path
Tools • ABAP Workbench • Utilities • Enhancements • Project Management.

Modification projects are stored in tables MODACT and MODTEXT.

321

IDoc Development and Configuration Tools 8.1

8.1.10 Transaction WE57—Link Function to Message and Basic Type

This is a key piece of configuration for setting up partner profiles and processing
inbound IDocs. It links a processing function, workflow, or task to basic types,
extended types, and logical messages.

Different function modules can be assigned to different messages linked to the
same basic type. We can add a message code and/or message function and associ-
ate different processing functions to the same message and basic type. The mes-
sage code and function are optional but, if used, become a mandatory part of the
partner profile read key.

This gives us tremendous control over how IDocs can be processed under different
scenarios and use cases.

The standard link between logical message ORDERS, basic type ORDERS05, and
function IDOC_ORDERS_INPUT posts a sales order.

We can add a new link for the same message and basic type to a custom function
by creating a message code that will be used, for example, to route IDoc data to
a custom table for follow-up reporting. The possibilities are limited only by our
imagination and our development budget.

These links drive our partner profile. If we were to link ORDERS and ORDERS05 to
custom function module ZSD_INPUT_ORDREPORT and message code SD0, we would
create a partner profile with the following parameters:

EE Customer number

EE Partner type KU

EE Partner function SP

EE Message type ORDERS

EE Message code SD0

EE Custom process code linked to the custom function

Although an optional data element, the message code becomes part of the mandatory
key for the partner profile if it is used. It must be present in the control segment
field MESCOD to trigger this custom processing.

To get to the link editor, use Transaction WE57, select Development • Inbound
Processing Settings • Message/Application object from the WEDI area menu,

322

Custom IDocs and IDoc Extensions8

or follow SAP menu path Tools • ALE • ALE Development • IDOC • Inbound
Processing • Function Module • Assign IDoc Type and Message Type.

Table EDIFCT stores these links. Table TOJTB adds a link to the corresponding
object in the Business Object Repository (BOR).

8.1.11 Transaction BD51—Define IDoc Attributes

Attributes determine how inbound IDoc functions are processed from the follow-
ing options:

EE 0
Mass processing for functions that use direct input to the database to post to a
document or other data object.

EE 1
Individual input for functions that use call transaction to post.

EE 2
Individual input with a call transaction that locks the IDoc.

EE Dialog allowed
Allows screen display during call transactions when IDocs are processed in
foreground mode.

To define IDoc attributes, choose Development • Inbound Processing Settings •
ALE Attributes in the WEDI area menu, use Transaction BD51, or follow menu
path Tools • ALE • ALE Development • IDoc • Inbound Processing • Function
Module • Maintain Attributes.

Attributes for functions are stored in table TBD51.

8.1.12 Transaction WE42—Inbound Process Code

The inbound process code links one IDoc processing function to one or more mes-
sage types. The process code is required for the inbound partner profile.

Standard process code REMA, for example, is linked to function module IDOC_
INPUT_REMADV and to logical messages CREADV, DEBADV, and REMADV.

If a message code and/or message function has been added to the link between the
logical message, basic type, and processing function in WE57, then the inbound
process code must also contain a record with the link between the message type
and the message code and/or message function. This is illustrated in Figure 8.8.

323

IDoc Development and Configuration Tools 8.1

Figure 8.8 Multiple Use Cases Driven by the Process Code

This allows the same function and message to be used in different use cases. You
would need to write custom code in a user exit to take advantage of this flexibility.

Use Transaction WE42 to configure the inbound process code or follow menu
paths Development • Inbound Processing Settings • Inbound process code
in the WEDI area menu or Tools • ALE • ALE Development • IDOC • Inbound
Processing • Define process code in the SAP menu.

The inbound process code is stored in table EDE2T. Its link to the message type
key is stored in TMSG2 and to the function module in TEDE2.

8.1.13 Transaction WE41—Outbound Process Code

The outbound process code links one IDoc processing function to one or more
message types. Like the inbound, the outbound process code supports multiple
use cases through the addition of message codes and/or message functions to the
logical message. The configuration screens for the outbound process code are
identical to WE41.

The outbound process code is used in the message control screen of the partner
profile. It triggers the linked function that reads data from an SAP business docu-
ment to build and write an IDoc to the database.

Use Transaction WE41 to configure the outbound process code or go to Develop-
ment • Outbound Processing Settings/MC • Outbound process code in the WEDI
area menu or Tools • ALE • ALE Development • IDOC • Outbound Processing •
Define process code in the SAP menu.

324

Custom IDocs and IDoc Extensions8

The outbound process code is stored in table EDE1T. Its link to the message type
key is in TMSG1 and to the message and function module in TEDE1.

8.2 Building a Custom IDoc: Inbound Inventory Report

Now it’s time to have a little fun. We’re going to build a custom IDoc that maps
to an inbound X12 846 inventory report from Acme’s vendor Disk Services Inter-
national (DSI). Before we begin, we’ll outline the workflow for creating a custom
IDoc from scratch.

8.2.1 Custom IDoc Development Workflow

Figure 8.9 outlines the three steps for building a custom IDoc: develop the IDoc,
code the IDoc function, and configure the interface.

Txn SE80/SE37:
Create custom
function group

Txn SE80/SE37:
Code custom
IDoc function

Txn WE81:
Create custom
logical message

Develop IDoc

Txn WE31:
Develop/release
custom segments

Txn WE30:
Build basic type w/
custom segments

Direction

 Code IDoc function

 Configure interfaces

IB

Txn WE20:
Create IB and OB
partner profiles

Txn BD51:
Define attributes
for IDoc function

Txn WE57: Link
function to logical

msg/basic type

OB

Txn WE82:
Link message to

custom basic type

Txn NACE:
Set up output type

access sequence

Txn WE41:
Link process code
to func/message

Txn WE42:
Link process code
to func/message

Txn NACE:
Add condition recs
for output/access

Figure 8.9 Custom IDoc Development Workflow

325

Building a Custom IDoc: Inbound Inventory Report 8.2

We’ll get into the gritty details as we build our 846 interface. For now, we’ll provide
a high-level checklist of development tasks:

1. If required, first create domains and data elements in the data dictionary with
Transaction SE11.

2. Create segments in the segment editor with Transaction WE31 using standard
or custom data elements to create fields.

3. Assemble custom and standard segments into a basic type in the IDoc type edi-
tor using Transaction WE30.

4. Create a custom logical message with Transaction WE81.

5. Link the message to the custom basic type with Transaction WE82.

6. Create a new function group for the IDoc processing function with Transaction
SE37.

7. Create and code a function module to process the custom IDoc within the new
function group with Transaction SE37.

EE Inbound functions post the IDoc to a document or record.

EE Outbound functions extract data to build and distribute an IDoc.

8. For an inbound IDoc, do the following configuration:

EE Link the custom IDoc function to the logical message and basic type with
Transaction WE57.

EE Define attributes for the function with Transaction BD51.

EE Create a process code linking the logical message to the custom IDoc function
with Transaction WE42.

EE Create an inbound partner profile for the customer, message, and process
code with Transaction WE20.

9. For an outbound IDoc, do the following configuration:

EE Create a process code linking the logical message to the custom IDoc function
with Transaction WE41.

EE Set up message control: output type, access sequence, and condition record
for the output and access with Transaction NACE.

EE Create an outbound partner profile for the customer, message, XML file port,
basic type, and message control, including the process code with Transaction
WE20.

326

Custom IDocs and IDoc Extensions8

8.2.2 Building the IDoc Interface

The inbound X12 846 inventory report from DSI carries end-of-day inventory sum-
maries by material for finished movies on DVD and components such as packaging,
blank disks, labeling, inserts, stickers, and so on.

Our IDoc will in3sert 846 data into a custom table (ZEDINVRPT) that will be used
for daily inventory balancing reports. Table 8.1 list its fields; these are labeled as
M for mandatory and O for optional.

Field Data Element Description Req.

MANDT MANDT SAP client M

INVRPTNO CHAR10 Unique ID for inventory report rec M

MATNR CHAR18 Material number M

WERKS CHAR4 Plant/warehouse M

LGORT CHAR4 Storage location O

MENGE QUAN13 Inventory quantity M

MEINS UNIT3 Unit of measure M

CREDAT DATS8 Create date O

CRETIM TIMS6 Create time O

UPDAT DATS8 Date record last changed O

UPTIM TIMS6 Time record last changed O

Table 8.1 Structure of Custom Table ZEDINVRPT

We’ll name our message ZINVRPT, which follows the SAP convention of using
EDIFACT message names for similar objects. We’ll name our basic type ZINVRPT01
and it will have the two segments described in Table 8.2.

Segment Description Usage Repeat

ZIVRPH Header-level data M 1

ZIVRPD Item-level detail M N

Table 8.2 Structure of IDoc Basic Type ZINVRPT01

327

Building a Custom IDoc: Inbound Inventory Report 8.2

Creating Custom Table ZEDINVRPT

First we create the custom table ZEDINVRPT. The IDoc will post its data to this
table and it is a mandatory part of the development cycle.

1. Run Transaction SE11 and enter table name ZEDINVRPT into the Database
table field.

2. Click Create to open the Dictionary: Change Table screen in the Delivery
and Maintenance tab. Enter a table description in the Short Description field
and select Delivery Class A for application data (master and transaction data).

3. In the Fields tab, enter the values shown in Figure 8.10.

Figure 8.10 Field Structure of Inventory Report Table ZEDINVRPT

4. In the Currency/Quantity Fields tab a link must be made between the quantity
field MENGE and a corresponding unit of measure field in an existing table.
Since this is an inventory report, we’ll use MSEG-MEINS.

5. Save the table and assign it to a transport. Click Technical Settings and set
Data Class to APPLI (Transaction Data, Transparent Tables) and Size Category
to 0 (Data records expected: 0 to 4,300).

6. Save and click Revised <-> Activate.

7. Return to the Fields tab and click Activate ((Ctrl)+(F3)) in the toolbar above
the table name field.

328

Custom IDocs and IDoc Extensions8

Our custom is ready to accept data.

Creating the Segments

We’ll begin by creating the segments. Table 8.3 lists the structure of the header
segment ZIVRPH.

Pos Field Data Element Description

01 CREDAT EDI_CCRDAT Date IDoc created

02 CRETIM EDI_CCRTIM Time IDoc created

Table 8.3 Field Structure of Segment ZIVRPH

Table 8.4 lists the field structure of details segment ZIVRPD.

Pos Field Data Element Description

01 MATNR MATNR SAP material number

02 WERKS WERKS_D Plant/warehouse

03 LGORT LGORT_D Storage location

04 MENGE MENGE_D Inventory quantity

05 MEINS MEINS Unit of measure

Table 8.4 Field Structure of Segment ZIVRPD

We’ll first create ZIVRPH in the segment editor (see Figure 7.13). Go to Transaction
WE31, enter “ZIVRPH” into the Segment type field, and click Create.

1. The Create segment definition screen opens. Enter a description in the Short
Description field:

2. Create the following fields:

EE Enter “CREDAT” in Field Name and “EDI_CCRDAT” in Data element.

EE Enter “CRETIM” in Field Name and “EDI_CCRTIM” in Data element.

3. Click Save. Assign the segment to a package and a change request. It should like
Figure 8.11.

329

Building a Custom IDoc: Inbound Inventory Report 8.2

Figure 8.11 Fields Added to the Custom Segment

4. Press (F3) to back out to the segment editor’s opening screen. Release the seg-
ment by selecting menu option Edit • Set Release. Once released, the initial
screen will look like Figure 8.12.

Figure 8.12 Segment ZIVRPH After It’s Been Released

5. Follow the same steps to create and release details segment ZIVRPD using the
field and data element names in Table 8.4.

Building an IDoc Basic Type

We’ll create our custom IDoc basic type with Transaction WE30.

1. Enter “ZINVRPT01” into the Obj. name field, select Basic type, and click Create.
The Create Basic Type dialog opens after the system informs you that the name
is longer than eight characters. The following are radio buttons under New basic
IDoc type:

EE Create new builds a new custom IDoc type.

EE Create as copy copies an existing IDoc type that we can change.

330

Custom IDocs and IDoc Extensions8

EE Create successor creates a new release version of an existing custom IDoc
type.

2. Select Create new, and click OK to open the IDoc type editor. We’ll assemble
our basic type from segments in this screen. To add segments, put the cursor
on the IDoc type root name and click Create segment, press (Shift)+(F6), or
follow the menu path Edit • Create Segment.

3. The Maintain Attributes dialog opens, as in Figure 8.13. To add header seg-
ment ZIVPRH, do the following:

EE Enter “ZIVRPH” in the Segm.type field.

EE Select the Mandatory seg. checkbox.

EE Enter “1” in Minimum number and “1” in Maximum number.

Figure 8.13 Adding a New Segment to the IDoc Type

4. Click OK. ZIVRPH is inserted as a child of the basic type root. Select ZIVRPH
and click Create segment to add the details segment.

5. The Segment Hierarchy dialog opens. Select Add segment type as child.

6. Click OK to open the Maintain Attributes dialog. Do the following for the
next segment:

EE Enter “ZIVRPD” in the Segm.type field.

EE Select the Mandatory seg. checkbox.

EE Enter “1” in Minimum number and “999999” in Maximum number.

7. ZIVRPD is added as a child segment to ZIVRPH, as shown in the basic type edi-
tor in Figure 8.14.

331

Building a Custom IDoc: Inbound Inventory Report 8.2

Figure 8.14 Our New IDoc Basic Type ZINVRPT01

8. Double-click ZIVRPD to view the Maintain Attributes dialog. The parent seg-
ment is ZIVRPH, and the hierarchy level is 2.

9. Save the basic type, and assign it to a package and a change request. Back out
of the edit window. Release the IDoc basic type by selecting menu option Edit •
Set Release.

Create a Custom Message Type

Next we create the logical message. Use Transaction WE81, and click Display
Change (menu option Table View • Display -> Change). Click New Entries (menu
option Edit • New Entries) to open the Overview of Added Entries screen.

Enter “ZINVRPT” in Message type and a description of the message in the Short
text field, as shown in Figure 8.15. Save the message type and assign it to a cus-
tomizing request.

Figure 8.15 Create a Custom Message Type for the IDoc

Link Message to Basic Type

Now we link the logical message to the basic type with Transaction WE82. Click
Display Change (menu option Table View • Display -> Change) and then click
New Entries (menu option Edit • New Entries) to open the Overview of Added
Entries screen.

Enter the following values into the table control, as illustrated in Figure 8.16:

332

Custom IDocs and IDoc Extensions8

EE Enter “ZINVRPT” in the Message type field.

EE Enter “ZINVRPT01” in the Basic type field.

EE Enter version “702” (your current SAP system release) in the Release field.

Figure 8.16 Linking the Message Type to the IDoc Basic Type

Save the entry and assign it to a customizing request.

Create the Function Group

We’ll create the function group in the object navigator.

1. Run Transaction SE80 and click Edit Object at the top of the Object Navigator
window.

2. Select the Function group tab, enter “ZEDINVRP” in the Group name field,
and click Create.

3. The Create Function Group dialog opens. Enter a short description in the
Short text field, and click Save.

4. Assign the function group to a package and a change request.

Function group ZEDINVRP is now ready for coding. It should look like Figure 8.17
in the object navigator.

Figure 8.17 Function Group ZEDINVRP is Primed for Coding

333

Building a Custom IDoc: Inbound Inventory Report 8.2

Coding the Inbound IDoc Processing Function

We’re still in the object navigator:

1. Click Edit Object, select Function module in the Function Group tab, and
enter the function name “ZIDOC_INPUT_ZINVRPT”.

2. Click Create. The Create Function Module dialog opens.

3. The Import parameters screen of the Function Builder opens. We’ll use standard
import parameters that will be passed to the function by the IDoc interface at
runtime.

4. Enter the following values illustrated in Figure 8.18.

Hint

Copy and paste standard values for all parameter tabs from any standard inbound pro-
cessing IDoc function.

Figure 8.18 Standard Import Parameters for Inbound IDoc Functions

5. Export parameters return workflow and other information to the IDoc interface
at runtime. You can also return document numbers and other application data
for reporting.

Click the Export tab and enter the values illustrated in Figure 8.19.

Figure 8.19 Standard Export Parameters for Inbound IDoc Functions

334

Custom IDocs and IDoc Extensions8

6. Click the Tables tab and enter the values for the internal tables listed in Figure
8.20.

The tables will pass data in and out of the function. We’re most interested in
the IDoc control, data, and status records. We won’t add any exceptions for this
example.

Figure 8.20 Standard Table Parameters for Inbound IDoc Functions

7. Click the Source code tab and enter the function’s code as it appears in Listing
8.1.

*"---
FUNCTION ZIDOC_INPUT_ZINVRPT.
*"---
""Local Interface:
*" IMPORTING
*" VALUE(INPUT_METHOD) TYPE BDWFAP_PAR-INPUTMETHD
*" VALUE(MASS_PROCESSING) TYPE BDWFAP_PAR-MASS_PROC
*" EXPORTING
*" VALUE(WORKFLOW_RESULT) TYPE BDWFAP_PAR-RESULT
*" VALUE(APPLICATION_VARIABLE) TYPE BDWFAP_PAR-APPL_VAR
*" VALUE(IN_UPDATE_TASK) TYPE BDWFAP_PAR-UPDATETASK
*" VALUE(CALL_TRANSACTION_DONE) TYPE BDWFAP_PAR-CALLTRANS
*" TABLES
*" IDOC_CONTRL STRUCTURE EDIDC
*" IDOC_DATA STRUCTURE EDIDD
*" IDOC_STATUS STRUCTURE BDIDOCSTAT
*" RETURN_VARIABLES STRUCTURE BDWFRETVAR
*" SERIALIZATION_INFO STRUCTURE BDI_SER
*"---
*Data declarations
data: izedinvrpt type standard table of
 zedinvrpt with header line.

335

Building a Custom IDoc: Inbound Inventory Report 8.2

data: gs_zivrph type zivrph,
 gs_zivrpd type zivrpd.
data: gs_last_no like zedinvrpt-invrptno.
*Get last used ID number
clear gs_last_no.
select max(invrptno) into gs_last_no
 from zedinvrpt.
gs_last_no = gs_last_no + 1.
*process IDoc records and format insert for izedinvrpt
loop at idoc_contrl.
 refresh izedinvrpt. clear izedinvrpt.
 loop at idoc_data where docnum = idoc_contrl-docnum.
 case idoc_data-segnam.
*process header record
 when 'zivrph'.
 gs_zivrph = idoc_data-sdata.
*process detail record
 when 'zivrpd'.
 gs_zivrpd = idoc_data-sdata.
 izedinvrpt-mandt = sy-mandt.
 izedinvrpt-invrptno = gs_last_no.
 izedinvrpt-matnr = gs_zivrpd-matnr.
 izedinvrpt-werks = gs_zivrpd-werks.
 izedinvrpt-lgort = gs_zivrpd-lgort.
 izedinvrpt-menge = gs_zivrpd-menge.
 izedinvrpt-meins = gs_zivrpd-meins.
 izedinvrpt-credat = gs_zivrph-credat.
 izedinvrpt-cretim = gs_zivrph-cretim.
 izedinvrpt-upddat = sy-datum.
 izedinvrpt-updtim = sy-uzeit.
 append izedinvrpt.
 gs_last_no = gs_last_no + 1.
 endcase.
 endloop.
*insert IDoc records to table zedinvrpt
 modify zedinvrpt from table izedinvrpt.
 if sy-subrc = 0.
*success message to status record
 clear idoc_status.
 idoc_status-docnum = idoc_contrl-docnum.
 idoc_status-msgty = 's'.
 idoc_status-msgid = 'ZEDI01'.
 idoc_status-msgno = '001'.

336

Custom IDocs and IDoc Extensions8

 idoc_status-status = '53'.
 append idoc_status.
 else.
*verify record count and total before updating.
 clear idoc_status.
 idoc_status-docnum = idoc_contrl-docnum.
 idoc_status-msgty = 'e'.
 idoc_status-msgid = 'ZEDI01'.
 idoc_status-msgno = '002'.
 idoc_status-status = '51'.
 append idoc_status.
 endif.
endloop.

ENDFUNCTION.

Listing 8.1 Source Code for Inventory Report IDoc Function

This code is stripped down to its essentials. The control and data records are
imported into the function at runtime through the IDOC_CNTRL and IDOC_DATA
internal tables. The program logic follows:

1. Gets the last used invoice report ID from ZEDINVRPT-INVRPTNO and increments
it for use by the incoming records.

2. Loops through IDOC_CNTRL.

3. Loops through IDOC_DATA at the current IDoc number.

4. Evaluates the SEGNAM field for the current segment name.

5. Moves the SDATA field in the data record to a string structured by the segment
type.

6. Moves data from the structured string to an internal table structured by our
target database table ZEDINVRPT.

7. When the loops on IDOC_DATA and IDOC_CNTRL are done and internal table IZED-
INVRPT is fully populated with all IDoc data, then database table ZEDINVRPT is
updated from the internal table.

8. If the update succeeds, the status record is updated with status 53, and a success
message pulled from custom message class ZEDI01.

9. If the update fails, the status record is updated with status 51, and an error mes-
sage pulled from custom message class ZEDI01.

337

Building a Custom IDoc: Inbound Inventory Report 8.2

10. Status and message values are passed to internal table IDOC_STATUS and returned
to the calling IDoc interface function IDOC_INPUT, which passes them to routines
that update the status records in the database.

All inbound IDoc processing functions work in essentially the same way, with vary-
ing levels of complexity for data processing and checks depending on transactional
requirements. If you understand this processing approach, you’ll understand a lot
about the IDoc interface.

Now that the code is written, we’ll step through the configuration we need to plug
all of our custom objects into the standard IDoc interface.

Link the Function to Message and Basic Type

First up is to link the custom function to our logical message and basic type.

1. Go to Transaction WE57, and click Display -> Change (menu path Table View •
Display -> Change)

2. Click New Entries (or press (F5)) to open the Details of Added Entries screen
and enter the following values into it:

EE Enter “ZIDOC_INPUT_ZINVRPT” into the Function Module field.

EE Select Function module from the Function Type dropdown.

EE Enter “ZINVRPT01” in the Basic type field.

EE Enter “ZINVRPT” in the Message Type field.

EE Select Inbound from Direction dropdown.

Click Save and assign the changes to a customizing request. The screen should look
like Figure 8.21 after you’re done.

Set Attributes for the Function

To set attributes for the function, follow these steps:

1. Go to Transaction BD51 and click New Entries.

2. Enter “ZIDOC_INPUT_ZINVRPT” in the Function module (inbound) field and
“0” in Input t. column for direct input. The function directly inserts IDoc data
into the custom table.

338

Custom IDocs and IDoc Extensions8

Figure 8.21 Linking the Function to the IDoc Basic and Message Types

3. Save and assign the attributes to a transport. The screen should look like Figure
8.22.

Figure 8.22 Function Attributes for Direct Input

Create a Custom Process Code

The process code ties all the processing pieces together.

1. Go to Transaction WE42, and switch to change mode.

2. Click New Entries to open the Details of Added Entries screen, and do the
following:

EE Enter “ZINRP” in the Process code field.

EE Enter a text description in the Description field. Begin the description with
the message name.

EE Set Processing type as the function module.

3. Save the entry and assign it to a transport.

339

Building a Custom IDoc: Inbound Inventory Report 8.2

4. A more detailed view of the Added Entries screen opens. Select the function
“ZIDOC_INPUT_ZINVRPT” from the Function Module dropdown list.

5. Save and add to a transport. After the function has been assigned, back out via
(F3) to the added entries screen. The function name will be linked to the process
code. The screen should look like Figure 8.23.

Figure 8.23 The Process Code and Function Module Linked

6. Double-click the Logical message folder in the Dialog Structure navigation
display to open the Logical message overview screen. Click New Entries and
enter “ZINVRPT” into the Message type field, as shown in Figure 8.24.

Figure 8.24 Link the Logical Message to the Process Code

Don’t forget to save. This completes the link between the process code, the logical
message, and the custom function module. All these objects are now ready to be
used in a partner profile.

340

Custom IDocs and IDoc Extensions8

Define the Partner Profile

All that’s left is the inbound partner profile. The inventory report is coming from
the supplier Disc Services International, entered in Acme’s SAP vendor master as
DISK01.

So we’ll create a partner profile with partner type LI for vendor.

1. Run Transaction WE20, select the Partner Type LI folder, and create a vendor
partner profile header for DSI with partner number DISK01.

2. Save the general view and create inbound parameters to add message type ZIN-
VRPT. Enter the following values into the Inbound parameters screen:

EE Enter “VN” in the Partner Role field.

EE Enter “ZINVRPT” in the Message type field.

EE Enter “ZINRP” in the Process code field.

EE Set Trigger Immediately as the processing mode. This is a simple table insert
that comes in once a day and doesn’t involve a lot of processing, so we won’t
schedule a background job.

3. Save the partner profile. The finished product should look like the inbound
partner profile in Figure 8.25.

Figure 8.25 Inbound Parameters for DSI Message Type ZINVRP

341

Extending an IDoc: Outbound PO with BOMs 8.3

This interface is now ready to roll—after it goes through the full testing cycle, of
course.

8.3 Extending an IDoc: Outbound PO with BOMs

Next we’ll try our hand at adding a custom segment to a standard IDoc. Our sce-
nario is pretty simple. DSI needs to receive the bill of materials when Acme sends
them a purchase order. They need to know what components Acme expects them
to use in manufacturing.

DSI may have the components in inventory or they may need to order from a third-
party supplier. The purchase order BOM is key to their manufacturing process.

A custom segment, Z1EDP01, will be created to hold the components just below
E1EDP01, the parent for all line item segments, in an extension of IDoc basic type
ORDERS05 that we will name ZORDRS01.

The code will be written in a CMOD modification project using enhancement
SDEDI001 in component EXIT_SAPLVEDC_002.

8.3.1 IDoc Outbound Development Workflow

Extended IDocs are built on existing standard basic types. They are created to send
or receive data that are not accommodated in a standard IDoc. Figure 8.26 outlines
the workflow for extending an IDoc, which is broken into three main steps: extend
the IDoc, code the IDoc enhancement, and configure the interfaces.

To create an extended IDoc type, you insert one or more segments into a standard
basic type. The insertion point should make sense in terms of the data the extended
segment contains and its semantic context within the IDoc.

We also need custom code to populate and process the extended segments. The
code is usually written in a user exit, but sometimes you need a custom IDoc func-
tion. For example, message type MBGMCR doesn’t have any customer exits, so it
would need a custom version of its processing function if it were extended or if
you needed to do any non-standard processing.

342

Custom IDocs and IDoc Extensions8

Txn SMOD:
Find enhancement
for IDoc basic type

Txn CMOD:
Create project for

enhancement

Txn WE82: Link
extended type to
msg/basic type

Extend IDoc

Txn WE31:
Develop/release
custom segments

Txn WE30: Add
custom segment to
existing basic type

Direction

 Code IDoc enhancement

 Configure interfaces

OB

Txn CMOD: Code
enhancement exit/

activate project

Txn WE20:
Create IB/OB

partner profiles

Txn NACE:
Add condition recs
for output/access

Txn NACE:
Set up output type

access sequence

IB

Figure 8.26 Basic Workflow for Extending IDocs

The process for creating and configuring a custom function for an extended IDoc
type is the same as for a custom IDoc with the exception that we don’t need to
create a new message type.

To extend an IDoc by coding a customer exit, follow these steps:

1. Create custom segments in the segment editor with Transaction WE31.

2. Copy an existing standard basic type into an extended type in the IDoc type
editor with Transaction WE30.

3. Insert custom segments into the extended type with Transaction WE30.

4. Link the extended type to the logical message and basic type with Transaction
WE82.

5. Identify an enhancement with user exits for the extended type with Transaction
SMOD.

6. Create a modification project to write and manage the custom code for the exit
with Transaction CMOD.

343

Extending an IDoc: Outbound PO with BOMs 8.3

7. Code the customer exit enhancement component in the CMOD project.

8. For an inbound extended IDoc, create inbound partner profile for the customer,
message, and process code with Transaction WE20.

9. For an outbound extended IDoc, there are two additional steps:

EE Set up message control (output type, access sequence, and condition record
for the output and access with Transaction NACE).

EE Create outbound partner profile for the customer, message, XML file port,
basic and extended types, and message control with Transaction WE20.

Identifying Customer Exits

Let’s root around the Data Dictionary and consider a simple backend way to iden-
tify user exits that we can use in modification projects. First we need to look at
the standard frontend approach.

Modification projects organize our user exit work. We can add more than one
enhancement to a project allowing it to encompass an entire business process. But
at Acme, we’ll only create one project per enhancement.

The following process is the typical frontend approach to finding exits:

1. Identify the function for the IDoc that will be extended.

2. Go to the Function Builder in Transaction SE37, enter the function name in the
Function module field, and click Display.

3. Click Attributes to get the package name: VED for all SD EDI development
objects and ME for purchasing documents, including EDI and ALE exits.

4. Go to Transaction SMOD, select the input help dropdown (or press (F4)) and
click Information System to open the Repository Info System: Find Exits
dialog.

5. Enter the package name in the Package field of the search help dialog and click
Execute.

6. The Repository Info System: Find Exits dialog opens, listing all enhancements
in the package.

For SD package VED, nine hits are returned; for purchasing package ME, 36 hits
are returned in ERP 6.0, as shown in Figure 8.27.

344

Custom IDocs and IDoc Extensions8

Figure 8.27 SMOD Search Help Results for Package ME

Descriptions of enhancements don’t always reveal their purpose or identify their
message types. For example, if you search package ME for user exits in PO mes-
sage ORDERS, you’d have to carefully scan the list of 36 enhancements to learn
that MM06E001 is the one you need.

We can use the Data Dictionary backend to refine our search. It takes a couple of
steps however. First replicate the SMOD search help results by following these steps:

1. Go to the Data Browser with Transaction SE16.

2. Enter “TADIR” into the Table name field and press (Enter). TADIR contains all
development repository objects in the system.

3. Enter the following values into the selection screen for TADIR.

EE Enter “R3TR” in the PGMID field.

EE Enter “SMOD” in the OBJECT field.

EE Enter “ME” in the DEVCLASS field.

4. Click Execute or press (F8).

345

Extending an IDoc: Outbound PO with BOMs 8.3

A list of every enhancement stored in package VED is returned in the field OBJ-
NAME. So what do we need to know to make our job of identifying exits easier?

Focusing on Enhancements

Each enhancement contains all the user exits available to any IDoc function in compo-
nents that hold a function module with the naming convention EXIT_<PROGRAM>_00X
where:

EE PROGRAM is the name of the function pool program that contains the IDoc pro-
cessing function module.

EE 00X is the number of the function within the exit function group.

For example, enhancement SIDOC001, which is used to change the control segment
just before an IDoc is written to the database, has only one component: function
EXIT_SAPLEDI1_001.

Enhancement MM06E001, with purchasing document exits, has 20 components;
they are all called during various processing stages of more than one message
type, including outbound purchase orders, inbound purchase order change and
acknowledgments, and inbound ship notifications.

For processing data in the outbound PO, the key components include the following:

1. EXIT_SAPLEINM_001: Control record changes

2. EXIT_SAPLEINM_002: Data record changes while IDoc is being built

3. EXIT_SAPLEINM_011: Final data changes after the IDoc has been built

Note that EXIT_SAPLEINM_011 is also called for outbound message types ORDCHG
(PO change), REQOTE (request for quotation), BLAORD (purchasing contracts),
and BLAOCH (purchasing contract change).

The exit names are in function IDOC_OUTPUT_ORDERS. You can find them by going
into the code of the function in Transaction SE37 and searching the string CUSTOMER-
FUNCTION using the binocular Find icon at the top of the Function Builder screen.
Select In main program.

Every call to a customer function in every message type processed by the main
program is listed. The call syntax is CALL CUSTOMER-FUNCTION '00X' where 00X is

346

Custom IDocs and IDoc Extensions8

the number of the exit being called. We’re interested in CUSTOMER-FUNCTION '002'
for EXIT_SAPLEINM_011.

Click the instance of the customer function call in the Global Search in Programs
window, and the system will go to the call point in the code. The customer function
is called after each segment has been appended to INT_EDIDD, the internal table
used to build the IDoc.

The ‘002’ in single quotes following CALL CUSTOMER-FUNCTION is the function name.
Double-click ‘002’ within the single quotes and the system navigates to the exit
function. The source code for the function is listed in Listing 8.2.

*"--
FUNCTION EXIT_SAPLEINM_002.
*"--
""Global Interface:
*" IMPORTING
*" VALUE(XEKKO) LIKE EKKO STRUCTURE EKKO
*" VALUE(XLFA1) LIKE LFA1 STRUCTURE LFA1
*" VALUE(XLFB1) LIKE LFB1 STRUCTURE LFB1
*" VALUE(DOBJECT) LIKE NAST STRUCTURE NAST OPTIONAL
*" TABLES
*" INT_EDIDD STRUCTURE EDIDD
*" XEKPO STRUCTURE UEKPO OPTIONAL
*" XEKET STRUCTURE UEKET OPTIONAL
*" DEKEK_X STRUCTURE EKEK_X OPTIONAL
*" DEKEH STRUCTURE IEKEH OPTIONAL
*" DSADR STRUCTURE SADR OPTIONAL
*" DVBAK STRUCTURE MMVBAK OPTIONAL
*" DVBAP STRUCTURE MMVBAP OPTIONAL
*" DVBKD STRUCTURE MMVBKD OPTIONAL
*" CHANGING
*" VALUE(ISC_ENHANCEMENT) TYPE ISC_EXIT_SAPLEINM_002 OPTIONAL
*" EXCEPTIONS
*" ERROR_MESSAGE_RECEIVED
*" DATA_NOT_RELEVANT_FOR_SENDING
*"--

 INCLUDE ZXM06U02.

ENDFUNCTION.

Listing 8.2 Call to Enhancement Component for Outbound PO

347

Extending an IDoc: Outbound PO with BOMs 8.3

The IMPORTING parameters of the exit are identical to the EXPORTING parameters of
the customer function, which is a shell that calls the exit.

Note include program ZXM06U02, which is where the exit code goes. The program
doesn’t exist until the system creates it when we double-click its name. We can
write our code here through the IDoc function, but it is a best practice to code and
manage exits in a modification project.

Shortcut to Identifying Enhancements

Let’s go back to the Attributes screen of IDOC_OUTPUT_ORDERS in Transaction
SE37. There are values here that can help us identify our enhancement in the Data
Dictionary. Copy the program name SAPLEINM. We can use it to identify which
enhancement we need through a table read.

1. Go back to the Data Browser with Transaction SE16.

2. Enter “MODSAP” in the Table Name field, and press (Enter). MODSAP stores
SAP enhancements and their components.

3. Enter the program name bracketed by asterisks (*SAPLEINM*) in the Member
field. Or, better yet, get the exit name from the IDoc processing function (EXIT_
SAPLEINM_002). Click Execute.

The enhancement MM06E001 is in the Name field.

Between the IDoc processing function and table MODSAP, you can quickly identify
the enhancement you need to add to your modification project.

Exit Function Groups

The names of exit function groups begin with an X, which can narrow a search for exit
functions in Transaction SE37. An open-ended search for function groups that begin
with X in ECC 6.0 returns 5,899 exits for all applications.

Function group XM06 contains all 61 user exits for package ME, which contains all devel-
opment objects for purchasing.

One of the joys of working with SAP is that a little educated poking around goes a long
way. And it’s fun, too!

It’s time to build our extended IDoc. We’ll begin with the custom segment.

348

Custom IDocs and IDoc Extensions8

8.3.2 Create Segment Z1EDP01

The structure of custom segment Z1EDP01 is described in Table 8.5.

Pos Field Data Element Description

01 MATNR MATNR SAP component material number

02 MAKTX MAKTX Component description

Table 8.5 Structure of BOM Segment Z1EDP01

Build the custom segment in the segment editor with Transaction WE31. Enter
“Z1EDP01” in the Name field and click Create to open the Create segment defi-
nition screen.

Enter a description in the Short Description field. Add the field and data elements
from Table 8.5 into the Field Name and Data element fields in the table control.

Click Save and assign the segment to a change request. Press (F3) to back out to
the segment editor’s initial screen. Release the segment by selecting menu option
Edit • Set Release.

8.3.3 Build Extension ZORDRS01

Next we extend the standard basic type:

1. Go to the IDoc type editor with Transaction WE30. Enter the name of the IDoc
Extension (“ZORDRS01”) in the Obj. name field, select Extension, and click
Create. The Create extension dialog opens, as shown in Figure 8.28.

2. Select Create new and enter “ORDERS05” in the Linked basic type field. Click
OK to open the IDoc type editor.

The structure of basic type ORDERS05 is displayed in the editor with the root
name ZORDRS01.

3. Expand the E1EDP01 item group by clicking on the folder icon next to the seg-
ment name.

4. To add the custom segment, put the cursor on the E1EDP01 segment name and
click Create segment, or press (Shift)+(F6), or choose menu option Edit •
Create segment. A pop-up informs you that the custom segment will be added
as a child to E1EDP01. Click OK.

349

Extending an IDoc: Outbound PO with BOMs 8.3

Figure 8.28 Select a Linked IDoc Basic Type to Create an Extension

5. The Maintain Attributes dialog opens. Enter the following values to add the
Z1EDP01 segment:

EE Enter “Z1EDP01” in the Segm.type field.

EE Enter “1” in the Minimum number field.

EE Enter “999” in the Maximum number field.

6. Click OK. Z1EDP01 appears as a child of E1EDP01 (Figure 8.29). Extended type
ZORDRS01 now has its custom segment.

Figure 8.29 Z1EDP01 Is a Child of E1EDP01

350

Custom IDocs and IDoc Extensions8

7. Save the extension, assign it to a change request, and back out of the edit win-
dow.

8. Release the extended type in the initial screen by selecting menu option Edit •
Set Release.

8.3.4 Link Message to Basic and Extended Types

To link the message and basic type to the extended type, follow these steps:

1. Go to Transaction WE82, and click Change • Display, press (Ctrl)+(F4), or
follow menu path Table View • Display -> Change.

2. Click New Entries (or press (F5)) to open the Overview of Added Entries
screen. Enter the following values in the table control (see Figure 8.30):

EE Enter “ORDERS” into the Message type field.

EE Enter “ORDERS05” into the Basic type field.

EE Enter “ZORDRS01” into the Extension field.

EE Enter version “702” in the Release field.

Figure 8.30 Link between the Extension and the Message and Basic Types

3. Save the entry and assign it to a transport request.

8.3.5 Create the Modification Project

Next we’ll create the modification project with Transaction CMOD, as shown in
Figure 7.35.

1. Enter the project name “ZEDIMPO1” in the Project field and click Create. The
project attributes screen opens. Enter a description in the Short text field (see
Figure 8.31).

351

Extending an IDoc: Outbound PO with BOMs 8.3

Figure 8.31 Modification Project ZEDIMP01 Attributes

2. Save the project and assign it to a change request.

3. Click the Enhancement assignments button. Enter “MM06E001” into the
Enhancement field (see Figure 8.32). Save.

Figure 8.32 Our User Exit Is in Enhancement MM06E001

4. Click Components to load a list of all exit functions assigned to the enhance-
ments. A partial list is displayed in Figure 8.33.

The checkmark next to the enhancement means that there is already active code
in the exit.

Figure 8.33 Exit Functions Are Components of Enhancements

352

Custom IDocs and IDoc Extensions8

5. We’ll write the code in component EXIT_SAPLEINM_002. Double-click the exit to
open the source code window of the Function Builder.

Note the import and table parameters of the exit function in Figure 8.34. We’ll
read our inputs from the application tables and append our new segment to
INT_EDIDD when we write our code.

INT_EDIDD is used to assemble the IDoc segments in the order that they will
appear in the finished IDoc.

Figure 8.34 Exit Parameters in the Source Code of the Customer Exit

We first need to create the include program ZXM06U02, if it doesn’t already exist.
When you double-click the include name, SAP returns the following information
message:

Program names ZX… are reserved for includes of exit function groups.

Press (Enter) to get past the message and open the Create Object dialog informing
you of the following:

353

Extending an IDoc: Outbound PO with BOMs 8.3

Include ZSM06U02 does not exist. Create object?

Click Yes and assign the include program to a change request. When the ABAP
editor loads, we’re ready to code.

8.3.6 Coding the Exit

The code for our exit will be called after each instance of segment E1EDP01 is
processed and added to the IDoc.

The exit will read the BOM for the purchase order line item material from table
MDSB, which stores the material number for the item components against the PO
and line item numbers. We can then get the description for each component from
table MAKT.

The material number and description for each component will be passed to a
separate instance of our custom segment Z1EDP01 and appended to internal table
INT_EDIDD, which is used to build the IDoc.

The data that we need to identify the BOMs for the finished DVDs in the PO are
in the table parameters of EXIT_SAPLEINM_002.

The IDoc is built from data in a number of structures and internal tables, includ-
ing XEKKO (purchase order header) and XEKPO (line item details), which will
give us the PO number and line item number to read MDSB. The IDoc build
for each segment—and the customer function call for each segment—is in form
FUELLEN_IDOC_INTTAB.

All line item segments are built within a loop on XEKPO. E1EDP01, the parent seg-
ment at the item level, is the first appended to the IDoc within the XEKPO loop. Our
code will be called by the exit after E1EDP01 is written to internal table INT_EDIDD.

The same exit is called for every segment after it has been written to the IDoc,
regardless of level. So we need to check that the current segment name is E1EDP01.
This is in field SEGNAM in internal table INT_EDIDD.

In addition, we’re only doing this for DSI. So we also need to check that the PO is
for vendor DISK01. This value will be available to the exit in the import parameter
LFA1-LIFNR.

This, and the custom segment name, is all we need to get the BOM and append it
to the IDoc as a child of E1EDP01. The code is shown in Listing 8.3. Once again,

354

Custom IDocs and IDoc Extensions8

remember that the code is stripped down to its essentials and is really only a start-
ing point for this solution.

&--
*& Include ZXM06U02 *
&--
** Type declarations *
** Component material numbers from MDSB
TYPES: BEGIN OF t_bomrec,
 matnr type matnr,
 END OF t_bomrec.
** Internal table declaration *
** BOM data for custom segment data:
it_pobom type table of t_bomrec.
** Data Declarations *
** Work areas
data: wa_pobom like line of it_pobom,
 ls_z1edp01 type Z1EDP01,
 ls_maktx type maktx.
** Begin processing *
** Restrict processing to segment E1EDP01 and vendor DSI
if xlfa1-lifnr = 'DISK01' and int_edidd-segnam = 'E1EDP01'.
** Get all BOM components and descriptions for finished good
** in current purchase order item.
 select matnr into corresponding fields
 of table it_pobom from mdsb
 where ebeln = xekpo-ebeln
 and ebelp = xekpo-ebelp.
** Get material description by looping on it_pobom and
** reading MAKT by material number
 loop at it_pobom into wa_pobom.
 clear ls_maktx.
 select single maktx into ls_maktx
 from makt where matnr = wa_pobom-matnr.
 if sy-subrc = 0.
** Populate custom segment string
 ls_z1edp01-matnr = wa_pobom-matnr.
 ls_z1edp01-maktx = ls_maktx.
 endif.
** Pass and append data to INT_EDIDD
 int_edidd-segnam = 'Z1EDP01'.
 int_edidd-sdata = ls_z1edp01.

355

Extending an IDoc: Outbound PO with BOMs 8.3

 append int_edidd.
 endloop.
endif.

Listing 8.3 Exit Code Passes BOM Components to Segment Z1EDP01

8.3.7 Customize Message Control

Now we move on to outbound configuration: message control and a partner pro-
file. We’ll need a custom output type so that we can enter unique values into the
message control screen of our outbound partner profile.

Message type ORDERS will be used in more than one outbound interface for DSI and
will require more than one outbound partner profile. We need a unique output type
for our BOM ORDERS interface that we will not use in any other partner profile.

Each partner profile must be unique, as we have seen from our discussions of
partner profile and message control keys in tables EDP13 and EDP12 in Chapter
7, Section 7.2, Outbound Configuration Generates IDocs.

To create our custom output type ZNEU, we’ll copy standard type NEU in applica-
tion EF (purchase order). We’ll only use this custom type to generate an outbound
ORDERS IDoc from a PO with the BOM extension.

1. Call Transaction NACE.

2. Select application EF (purchase order) and click Output types to open the Out-
put Types: Overview in display mode.

3. Select the menu path Table View • Display • Change (or press (Ctrl)+(F1)) and
then select standard output NEU. Click Copy as or press (F6).

4. Change the name of the output type to “ZNEU” and enter a description for the
extended PO with BOM. Make sure the Access to conditions and Multiple
issuing checkboxes are both set, as in Figure 8.35.

5. Access sequence 0001 (document type, purchasing organization, and vendor)
gives us enough granularity to restrict who gets a PO with BOMs from which
purchase order.

356

Custom IDocs and IDoc Extensions8

Figure 8.35 CustomOutput Type ZNEU with Access Sequence 0001

6. We’ll use a custom PO document type (ZNB) copied for standard PO document
type NB to make sure that only some POs are sent to DSI with an extended BOM
segment. We’ll use ZNB to create purchase orders that will be sent to DSI with
the BOM in the extended IDoc type.

Creating a Custom Purchasing Document Type

Not all purchase order IDocs will be sent with a custom BOM segment. We need to
distinguish between orders that will generate a BOM segment and those that won’t.
To do this, we’ll create a custom purchase order document type and use this in our
condition record.

Functional consultants and business users define custom document types after thorough
analysis of how these documents will be used by the business and what data they need
to contain in their different use cases.

It’s not really the job of the EDI team, but it doesn’t hurt to know.

Purchasing document types are configured in the IMG (Transaction SPRO). We’ll take
the easy road and copy the existing standard PO document type to a custom code.

1. In the IMG, follow menu path SAP Customizing Implementation Guide • Materials
Management • Purchasing • Purchase Order • Define Document Types.

2. In the table control of the Document Types Purchase Order Change screen, find
and select document type NB (standard PO).

3. Click the Copy As button (or press (F6)).

4. Change the document type code to ZNB and add a short description.

5. Press (Enter). The Specify object to be copied dialog opens with the message that
the document type has dependent entries.

6. Click Copy all to get an exact copy of the standard document type.

7. Save and assign the custom document type to a transport request.

357

Extending an IDoc: Outbound PO with BOMs 8.3

Our custom purchasing document type can now be used to create purchase orders for
whoever needs an EDI PO with the BOM attached.

7. We will select access number 10 in access sequence 0001, which points to
condition table 25 (B025) and communications structure KOMKBEA with key
fields:

EE BSART: Purchasing document type

EE EKORG: Purchasing organization

EE LIFNR: Vendor

8. Press (Enter). The Specify object to be copied dialog opens with the observa-
tion that the output type has dependent entries. Click Copy all. Another
dialog opens with the number of dependent entries.

9. The system returns us to the Output types: Overview screen in change view.
Select output ZNEU, and double-click the Processing routines folder to open
the Processing routines: Overview screen.

10. If there is no program name for medium EDI, add one. Click New entries to
open the Details of Added Entries screen.

11. Enter the following values into the added entries details screen:

EE Enter “EDI” in the Transm.Medium field.

EE Enter “RSNASTED” in the Program (Processing 1) field; this is the standard
SAP output program. You can also use a custom ABAP output program. Use
RSNASTED as a model.

EE Enter “EDI_PROCESSING” in the Form Routine field. This form identifies
and calls the function that will build the IDoc, writes it to the database,
sends it to the outbound IDoc processing function, and updates its status
record.

12. Press (Enter) and double-click the Partner functions folder to open the
Partner Functions: Overview screen.

13. Make sure that there’s an entry for medium EDI and partner type VN for
vendor. If not, click New entries and select EDI in the Medium field and VN
in the Funct field.

14. Save and assign the new output to a change request. You may need to cycle
through several objects to complete the assignment to the request.

358

Custom IDocs and IDoc Extensions8

Assign ZNEU to a Procedure

1. Back out to the initial output control screen in Transaction NACE. Select appli-
cation EF and click the Procedures button.

2. There’s only one procedure in application EF, and that is RMBEF1. We’ll need
to assign our custom output type to it.

3. Select the procedure and double-click the Control folder in the navigation pane.

4. Select output type NEU and click the Copy as button (or press (F6)). The entry
is copied into the Change View Control: Overview screen.

5. Change the step number to “15” and the output type name to “ZNEU”, but leave
everything else the same.

6. Press (Enter) to return to the overview screen. Save the entry and assign it to a
change request. The entry should look like Figure 8.36.

Figure 8.36 Assigning ZNEU to the Purchasing Procedure

Create Condition Records

Condition records drive generation of the IDoc for Acme’s vendor, DSI. In this
case, the IDoc will only be generated for PO document type. Follow these steps:

1. In Transaction NACE, select application EF and click Condition records.

2. Select Output type “ZNEU”. Click the Conditions records button. The Key
Combination dialog opens. Select the second key combination, as shown in
Figure 8.37.

Figure 8.37 Select the Access Sequence in the Key Combination Dialog

359

Extending an IDoc: Outbound PO with BOMs 8.3

3. Press (Enter) or click the green checkmark. The selection screen for the condi-
tion record opens. Enter the following values and click Execute to open the
condition record table control (see Figure 8.38):

EE Enter “ZNB” for EDI PO with BOM enhancement in the Purchase Doc. Type
field.

EE Enter “3000” (sample) in the Purch. Organization field.

4. In the condition records table control, enter the following:

EE “DISK01” for Acme’s vendor Disc Services International

EE “VN” for vendor as the function

EE “6” for EDI as the medium

EE “4” for immediate when the document is saved as the dispatch time

EE “EN” as the language

Figure 8.38 Condition Record for Output Type ZNEU in Application EF

Note that the full access key for the condition record is present in the header and
table control area of the entry.

8.3.8 Build Outbound Partner Profile

All that’s left is to set up a unique outbound partner profile for DSI using our logi-
cal message, extended type, and custom message control.

Message code BOM will create the unique key in table EDP12 for our partner
profile. The message code links to the logical message and process code. The stan-
dard process code for the PO is ME10, which links message type ORDERS to IDoc
function IDOC_OUTPUT_ORDERS. And this is where we coded our customer exit to
populate the BOM extension.

360

Custom IDocs and IDoc Extensions8

We have two choices: either create a custom process code or extend the standard
to include message code BOM. We’ll extend the standard ME10.

Extending the Process Code

We can extend process code ME10 with Transaction WE41 or by following WEDI
area menu Development • Outbound Processing Settings/MC • Outbound
process code.

1. Select process code ME10 and double-click the Logical message folder in the
navigation pane to open the Logical Message Details screen.

2. Click New Entries (or press (F5)) and add the following values to the added
entries screen:

EE Message type: ORDERS

EE Message code: BOM

We could select the All codes radio button under Message code and the sys-
tem would pass any value found in the message code field, but being specific
gives us better control over our partner profile keys.

3. Save and assign the entry to a change request. The screen should look like Fig-
ure 8.39.

Figure 8.39 Linking Logical Message ORDERS to Message Code BOM

4. There should now be two entries for message ORDERS in the Logical Message
table control in the Logical Message Overview screen, as in Figure 8.40.

361

Extending an IDoc: Outbound PO with BOMs 8.3

Figure 8.40 Process Code Extended with Multiple Instances of ORDERS

Creating the Partner Profile

Go to Transaction WE20 and create the header level partner profile for DSI in the
Partner Type LI folder in the navigation pane, if one doesn’t already exist.

1. Click Create outbound parameter beneath the outbound parameters table
control and enter the following values that are shown in Figure 8.41:

EE Partner Role: “VN”

EE Message Type: “ORDERS”

EE Message code: “BOM”

Figure 8.41 Outbound Parameters for the BOM PO IDoc

362

Custom IDocs and IDoc Extensions8

EE Receiver port: “XML_IDOC”

EE Output mode: The radio buttons for Collect IDocs and Start subsystem

EE Basic type: “ORDERS05”

EE Extension: “ZORDRS01”

2. Click on Message Control and add two entries with the following values that
are shown in Figure 8.42:

EE Application: “EF”

EE Message type: “ZNEU”

EE Process code: “ME10”

EE Change message: One checkbox entry null and one checked

Figure 8.42 Message Control Values for the BOM ORDERS

3. We’ll also need EDI information for the IDoc control record. All of Acme’s IDocs
will include this data. Select the EDI Standard tab, and enter the following
 values:

EE EDI Standard: “X” for X12

EE Message type: “850” for outbound X12 850

EE Version: “005010”

4. Save the partner profile.

This extended IDoc is now ready to test. Feel free to play with it, tweak it, extend
it, and so on. This is only the starting point.

363

Summary 8.4

8.4 Summary

Now we’ve had a brief introduction to building custom and extended IDocs. We’ve
toured the key IDoc development and configuration tools and have seen how they
can be used to build a simple custom inbound and an extended outbound IDoc.
We’ve also touched on enhancements and modification projects and have seen
how simple it can be to find a specific user exit and enhancement using the Data
Dictionary.

But there’s so much more to know, so little time, and so few pages to learn it all,
which is a major problem in any implementation project. We need to learn enough
quickly enough to do the work that needs to be done. So our next step is to put our
brief introduction to this material to work. Our legs may still be wobbly, but we’ll
take the plunge and begin building Acme’s new SAP EDI system, at least the order-
to-cash cycle of interfaces, beginning with the inbound customer purchase order.

Besides, the great Darryl Q. Fernhausen often began a new picture knowing even
less about the plot, the actors, or the writers. So let’s open the curtain on Act III
and prepare to take the stage.

ACT III
Realizing the Dream – Building

Acme’s SAP EDI System

367

“You can’t sell what you ain’t got,” the great Darryl Q would point out
to his long-suffering and poorly paid writers when they had no new ideas.
Mr. Q knew better than anybody that you can’t make a buck if you have no
goods to sell. That’s why Acme Pictures needs the outbound purchase order
interface.

9 Generating the PO for Replication Services

Gordy’s Galaxy ordered a batch of movies on DVD from Acme Pictures to stock
its over 2,000 stores in North America.

Remember that Acme doesn’t actually hold any physical inventory. It’s all stored
at the warehouse of its supplier and distributor, Disk Services International (DSI),
which provides Acme’s SAP system with a number of daily inventory interfaces.

This latest order is for a few hot-sellers that just can’t seem to stay on the shelves;
in fact, when Gordy’s purchase order posts and the system checks inventory, SAP
finds that there’s not enough product to ship everything that Gordy wants.

So since Acme needs the product to sell to Gordy’s Galaxy, who is its most impor-
tant customer, it has to order it from DSI, who will stamp the movies onto DVD,
package them, apply all stickers, and ship them out to Gordy’s stores and distribu-
tion centers.

This is what the outbound purchase order interface is all about. Acme creates a
PO in SAP for replication services and generates an ORDERS.ORDERS05 IDoc
that instructs DSI how many finished DVDs to produce. The process is completed
when DSI sends back a PO acknowledgment that confirms ordered quantities and
scheduled delivery dates.

This round trip begins an ordering cycle that ends when DSI moves the finished
goods from manufacturing into inventory, invoices Acme for work completed, and
Acme pays the invoice. We won’t step through the full purchasing cycle, but we
will look at a number of its key interfaces.

368

Generating the PO for Replication Services9

The bottom line is that you can’t make money without spending money, which is
something that the great Darryl Q understood. All this activity would bring a huge
grin to his face and give him an excuse, if he ever needed one, to pour himself a
martini and light up a fat Cuban Cohiba to celebrate the success of his unlikely studio.

9.1 Technical Overview of the Interface

Table 9.1 summarizes the technical information for the outbound purchase order.

Item Description

Title Purchase Order for Replication Services

Description A purchase order is created in Acme’s SAP system to order
replication services for DVD movies when finished product
inventory needs to be replenished. Usually this means that a
customer PO has come in and there is not enough on-hand
inventory to fulfill the order. Replication and distribution
services are purchased from Disk Services International (DSI),
who also holds Acme’s inventory in their warehouse.

The interface is completed when DSI returns an order
acknowledgment that updates the purchase order with
confirmed quantities and scheduled delivery dates.

Type of interface Purchasing: IDoc to X12 EDI

Direction Outbound PO to DSI (vendor)

Inbound PO confirmation from DSI

Trading partner Disk Services International (DSI)

IDoc Outbound ORDERS.ORDERS05

Inbound ORDRSP.ORDERS05

IDoc extended type

IDoc function IDOC_OUTPUT_ORDERS (PO)

IDOC_INPUT_ORDRSP (PO confirmation)

Custom ABAP

Description

Table 9.1 Overview of Outbound Replication Services PO Interface

369

Technical Overview of the Interface 9.1

Item Description

Target file(s) Outbound X12 850

Inbound X12 855

Source document(s) Outbound Acme SAP supplier purchase order

Inbound DSI sales order

Transaction code Outbound ME21N

Inbound ME22N

Map(s) ORDERS.ORDERS05 to X12 850 vers. 5010

X12 855 vers. 5010 to ORDRSP.ORDERS05

Custom map logic

Source system Acme SAP

Target system DSI EDI hub via AS2 from Acme EDI RIM

997 acknowledgment Inbound for OB PO 850 within 24 hours of transmission at
the transaction detail level. Function group acknowledgment
code: PO.

Outbound for IB PO confirmation 855 within 24 hours
of transmission from DSI at the transaction detail level.
Function group acknowledgment code: PR.

Frequency Daily, on-demand

Job schedule Outbound RSEOUT00 for message type ORDERS to DSI

Inbound RBDAPP01 for message type ORDRSP from DSI

Table 9.1 Overview of Outbound Replication Services PO Interface (Cont.)

Act III Specification Chapters

All the chapters in Act III have been written as specifications—functional, mapping,
and technical. The aim is to present development and configuration requirements for
each of Acme’s interfaces. All chapters will follow the same rough structure, beginning
a summary of the interface requirements in the technical overview.

So let’s move on to the functional requirements for the outbound replication
purchase order interface.

370

Generating the PO for Replication Services9

9.2 Functional Specifications

The purpose of this outbound interface is to order replication services from DSI,
Acme’s supplier and distributor. Replication services include copying movies to
DVD, packaging the disk, and applying cover artwork, shrink wrap, and any label-
ing and/or stamps that may be required.

Typically, this interface is run after a customer order has been received and an
inventory check finds that there is not enough product in stock at DSI to completely
fill the order. Acme manually creates a purchase order in SAP with Transaction
ME21N for replication services. Existing POs can also be released with Transactions
ME28 (collectively) or ME29N (individually). When the PO is saved, an ORDERS.
ORDERS05 IDoc is created and sent to DSI.

This interface can also run in an automated workflow process after the system cal-
culates requirements based on the forecast, on-hand inventory, open sales orders,
and other calculations. Purchase requisitions are created (Transaction ME51N),
released (Transaction ME54N), and purchase orders generated from the requisition
with Transactions ME58 (collectively) or ME59N (individually).

The POs are then released by an authorized user with Transactions ME28 or ME29N,
and the IDocs generated and sent.

The outbound purchase order for replication services to DSI will not include BOMs
for the ordered product. It will be a standard interface with no enhancements or
custom programming.

DSI will return an order acknowledgment in an 855 when they receive Acme’s
PO. DSI’s confirmation will update the Delivery Schedule and Confirmations
screens at the line-item level of Acme’s purchase order using Transaction ME22N.

9.2.1 Process Overview

The process begins when a supplier purchase order is created or released in Acme’s
SAP system to order DVD replication services. An ORDERS.ORDERS05 IDoc is
parked in the IDoc database until a scheduled program is run to pick it up and
send it to the EDI RIM.

The EDI RIM transforms it to an X12 850 purchase order transaction and routes it
to DSI’s EDI system by AS2 transmission.

371

Functional Specifications 9.2

When DSI receives the replication PO from Acme, it creates a sales order in their
business system. The sales order then generates and sends an X12 855 PO confir-
mation back to Acme’s EDI RIM. The RIM converts this to an ORDRSP.ORDERS05
IDoc and sends it into SAP to update the purchase order.

9.2.2 Requirements

The interface will meet the following functional requirements:

EE A standard purchase order type NB will be used to generate ORDERS PO mes-
sages to DSI and other suppliers.

EE Each PO can have one or more line items and each can be sent to only one
 vendor.

EE The ORDERS.ORDERS05 IDoc is only generated after the PO has been released
by an authorized user.

EE The PO IDoc will contain all purchase order data.

EE ORDERS IDocs will be generated immediately after the purchase order is released.
The IDoc will not be sent immediately but will be parked at status 30—IDoc
ready for dispatch—until processed by a scheduled job.

EE Each vendor PO will be acknowledged with an 855-ORDRSP IDoc at the line-
item level. The Acknowledgment Required flag will be set in the Confirma-
tions screen for each line item in each PO.

9.2.3 Dependencies

The interface is dependent on the existence of the following objects:

EE Master data to support creation of purchase orders for replication services to
suppliers

EE Order acknowledgment flag set in the Confirmations screen at the item level
of the purchase order

EE DSI receipt of the latest material and BOM master data from Acme’s SAP system
whenever new records are created or existing records change

EE Regularly updated inventory levels for Acme-owned stock in DSI storage ware-
houses

372

Generating the PO for Replication Services9

9.2.4 Assumptions

Basic assumptions underlying the replication PO interface include the following:

EE DSI and other vendors will be able to exchange a purchase order and PO con-
firmation by EDI transmission with Acme Pictures.

EE An ORDERS IDoc is triggered when the purchase order is completed and released
by an authorized business user.

EE Only finished goods are sent in the PO transmission.

EE The PO confirmation returns only the minimal data required to confirm the
purchase order in Acme’s SAP system.

EE DSI gets Acme’s SAP number for all items sent in the PO.

EE DSI gets the Global Location Number (GLN) for Acme’s sold-to and ship-to
 partners.

EE The IDoc can be regenerated from the purchase order if required.

9.2.5 Data That Will be Passed to an Outbound Purchase Order

The ORDERS PO IDoc is generated when the purchase order is released and saved
by Transaction ME29N. Table 9.2 lists fields that may be included in the outbound
PO ORDERS IDoc.

Table Field Description Sample
Value

Order Header

EKKO BSART Purchasing document type NB

EKKO BELNR Purchase order number 4500016169

EKKO BEDAT Purchase order date 20131215

EKKO EKORG Purchasing organization; also used to populate
sold-to partner

3000

EKKO EKGRP Purchasing group 003

EKKO BUKRS Company code 3000

EKKO CURCY Purchase order currency USD

Table 9.2 Purchase Order Data That Will Be Sent in the ORDERS IDoc

373

Functional Specifications 9.2

Table Field Description Sample
Value

EKKO LIFNR Vendor partner number 5595

Order Items

EKPO EBELP Line item number 00010

EKPO MATNR SAP Material number 500210

EKPO MENGE Order quantity 26.000

EKPO MEINS Unit of measure EA

EKPO NETWR Net order value in PO currency 2600

EKPO MATKL Material group 004

EKPO WERKS Plant at item level and also used to populate
ship-to partner at IDoc header, one per PO;
address in E1EDKA1 pulled from address database.

3100

EKPO LGORT Storage location 0001

EKET EINDT Scheduled delivery date 20140115

EKET MENGE Scheduled delivery quantity 26.000

Table 9.2 Purchase Order Data That Will Be Sent in the ORDERS IDoc (Cont.)

Data That Will Post to a Purchase Order Confirmation

Table 9.3 outlines the data that is required to confirm the purchase order.

Table Field Description Sample Value

Order Header

EKKO BELNR Acme purchase order number 4500016169

Order Items

EKPO MATNR SAP material number 500210

EKPO MENGE Confirmed order quantity 26.000

EKPO MEINS Unit of measure EA

Table 9.3 Data from DSI to Confirm Acme’s PO

374

Generating the PO for Replication Services9

Table Field Description Sample Value

EKPO BELNR Acme purchase order number 4500016169

EKPO EBELP Acme PO line item number 000010

EKPO LABNR Order acknowledgment ID: DSI sales order
number

008872158

EKET EINDT Confirmed delivery date 20140115

Table 9.3 Data from DSI to Confirm Acme’s PO (Cont.)

9.2.6 Custom Enhancements

There are no custom enhancements in this interface.

9.2.7 Reconciliation Procedure

Data in the ORDERS IDoc will be monitored and checked against the purchase
order. IDoc data will also be validated against the translated 850 by the EDI team.

For the inbound ORDRSP, confirmation data in the PO will be checked against the
inbound 855 and ORDRSP IDoc.

9.2.8 Errors and Error Handling

Failures in outbound or inbound IDoc processing are tracked by the EDI support
team using standard IDoc monitoring tools such as BD87 and WE05. Application
errors are reported to the business users immediately.

Confirmations must be returned to Acme from the vendor within 12 hours. The EDI
team will monitor inbound traffic through the RIM and identify late confirmations
based on aging reports of outbound POs. Late confirmations and other errors will
be addressed by the interface owner immediately.

9.3 Generating the ORDERS PO with Message Control

The outbound vendor purchase order is generated by message control when the
PO is released and saved.

375

Generating the ORDERS PO with Message Control 9.3

Let’s look at message control configuration for the ORDERS message type and then
outline the path of the IDoc from the purchase order outbound to the EDI RIM.

9.3.1 Message Control Configuration for the ORDERS Message

We’ll use standard message control configuration to output the ORDERS message
type that includes the following objects:

EE Application EF for purchase order

EE Output type NEU with access sequence 0001: Document type, purchasing orga-
nization, and vendor number

EE Access number 11 for condition table B025

EE Communications structure KOMKBEA with fields:

EE BSART: Purchasing document type

EE EKORG: Purchasing organization

EE LIFNR: Vendor

EE Condition records

EE Process code ME10 linked to function IDOC_OUTPUT_ORDERS

EE Partner profiles for message type ORDERS

Output Control Setup

We will make some adjustments to output type NEU. Standard output type NEU
is configured only for print output. We’ll add EDI.

1. Run Transaction NACE.

2. Select Application EF (purchasing) and click Output types. Click the pencil icon
(or press (Ctrl)+(F4)) to switch to change mode.

3. Select output type NEU and double-click it to open the Output Type Details
screen for editing.

4. We’ll keep Access sequence 0001 with access number 11 and condition table
B025. Set the Multiple issuing checkbox. The completed screen should look
like Figure 9.1.

376

Generating the PO for Replication Services9

Figure 9.1 Adjustments to Standard Output Type NEU

5. Save output type NEU and assign it to a change request.

6. Double-click the Processing routines folder in the Output Types navigation
panel. Add the EDI program and form to the Processing routines table con-
trol.

7. Click the New Entries button and enter the following values:

EE Transm. Medium: “EDI”

EE Program in Processing 1: “RSNASTED”

EE Form Routine: “EDI_PROCESSING”

8. Save any changes. Double-click the Partner functions folder and click New
Entries to add the following values to the partner functions table control:

EE Medium: “EDI”

EE Funct.: “VN” for vendor

9. Save the changes and back out to the Conditions for Output Control screen
of Transaction NACE. Select Application EF and click Procedures. Output
type NEU is assigned to procedure RMBEF1 Purchase Order.

10. Select procedure RMBEF1 and double-click the Control folder in the naviga-
tion panel. We’ll keep the standard settings.

Condition Record

Now we’ll add condition records for Disk Services International using Transaction
MN04 or NACE by following these steps:

377

Generating the ORDERS PO with Message Control 9.3

1. Select application EF and click Condition records. Select output type NEU
from the dialog that pops up and click Condition records.

2. Select access sequence DocType/PurchOrg/Vendor, which is the second key
combination, and click OK (Figure 9.2).

Figure 9.2 Access Sequence 0001 in the Key Combination Dialog

3. Enter the following values into the selection screen of the condition record and
click Execute (or press (F8)):

EE Purchasing Doc. Type: “NB” (standard purchase order)

EE Purch. Org: “3000”

4. Enter the following values into the condition records table control in the Create
Condition Records screen:

EE Vendor: “DISK01” (Disk Services International vendor number)

EE Funct: “VN”

EE Medium: “6”

EE Date: “4”

EE Language: “EN”

5. Save the record. Confirm the condition record entries in table B025 in the data
browser, Transaction SE16. It should look something like the table in Figure
9.3.

Figure 9.3 Condition Record for Output Type NEU in Table B025

378

Generating the PO for Replication Services9

9.3.2 Overview of the End-to-End Process Flow

Figure 9.4 outlines the end-to-end process flow for generating and sending a stan-
dard purchase order for replication services to Disk Services International.

Output record
built for NAST—
no PO number

EDI RIM

Access sequence:
DocType, Purch

Org, Vendor

ME29N/ME21N:
Replication PO for
DSI doc type NB

Output conditions
read: NEU/NB/
3000/DISK01

Translation map
for DSI called for

ORDERS-850

END: To
867-MBGMCR

ORDERS IDocs
picked up by RIM

X12 997 func ack
from DSI EDI

DSI EDI

Partner profile
DISK01/VN/

EF/NEU/ME10

ORDERS IDocs
written to DB

RSEOUT00 reads
IDocs file to app

server RFC

PO created, IDoc
and build functions

identified/called

X12 850 5010
PO to DSI

X12 855 PO ack
from DSI EDI

Figure 9.4 The Outbound Purchase Order Process Flow

The process begins when a standard purchase order for replication services from
DSI is created with Transaction ME21N or released with Transaction ME29N for
document type NB and purchasing organization 3000.

The three values that make up the access sequence—document type, purchasing
organization, and vendor—are passed from the purchase order to communications
structure KOMKBEA with function COMMUNICATION_AREA_KOMKBEA.

379

Generating the ORDERS PO with Message Control 9.3

Structure KOMKBEA is used to help identify the application, procedure, output
type, and access sequence. These in turn help identify the condition records table,
which is read with function SD_COND_ACCESS in function group V61Z with the help of
a number of tables that link together all the message control configuration objects
that we’ve looked at.

One of the key links is table T681Z. Table T681Z ties together the header structure
of the business document—EKKO for the purchase order—to the application (EF)
and the communications structure (KOMKBEA).

Another table—T681—links the application to the conditions table; for our PO,
that is linking EF to table B025.

The system link between the PO and application EF is through the purchase docu-
ment header field EKKO-BSTYP. If EKKO-BSTYP equals F, then the document is a
purchase order and application is always EF.

With the condition record from B025 safely in hand, the system begins to build
an output record for table NAST. This record drives output processing for the IDoc
when the PO has been verified, assigned a PO number, and written to the database
but before it has been committed.

The key data elements that drive output in NAST include the following:

EE KAPPL: Application

EE OBJKY: Document number (in this case, the PO, which is not available when
the NAST entry is initially assembled)

EE KSCHL: Output type

EE SPRAS: Language for the output message

EE PARNR: Message partner

EE PARVW: Message partner type

EE NACHA: Message medium (i.e., an IDoc)

EE VSZTP: Dispatch time for message (in this case, immediately upon save)

You’ll note that these values include the access sequence, which defines the type
of document and partner that will generate the output, and the condition record,
which links the access sequence values to the type of output that will be generated:
an IDoc in English to be output as soon as the PO is saved.

380

Generating the PO for Replication Services9

The missing link at this stage is the PO number. It is assigned just before the PO
is completed and posted in form routine BUCHEN called from function group MEPO
for Transaction ME21N. The NAST record, still without a PO number, is carried
into form BUCHEN.

Following the Call Stack of ME21N

To trace the call stack for Transaction ME21N, go to the Repository Browser (Transaction
SE80) and look at function group MEGUI (user interface for purchasing documents). It
begins in the PAI modules of screen 0014 and runs through a series of modules, methods,
functions, and subroutines to form BUCHEN in function group MEPO.

MEGUI begins the process flow at runtime. The real work is mostly done by functions,
forms, and classes in function group MEPO.

The easiest way to follow the call stack is to create a new PO with Transaction ME21N,
set the debug switch (/h) in the command field, and save. And then step through each
of the PAI modules. Have fun!

Once all the data have been collected to build, verify, and post the purchase order,
and before it is committed to the database, function ME_MESSAGES_UPDATE in func-
tion group EINV is called to process the IDoc.

ME_MESSAGES_UPDATE updates the NAST record with the new purchase order number
and then calls another function (RV_MESSAGES_UPDATE, through form UPDATE_NACH-
RICHTEN_EF with an ON COMMIT statement) to identify and call the IDoc build func-
tion and insert the output record into table NAST.

The ON COMMIT means that the form doesn’t actually run until after the purchase
order has been posted (also with an ON COMMIT) and an explicit COMMIT WORK state-
ment has been called.

Yet another function is called to process the IDoc: WFMC_MESSAGE_SINGLE in func-
tion group V70A with the NAST record, updated with the PO number, as input.

It doesn’t waste any time and immediately calls form EINZELNACHRICHT in program
RSNAST00, which identifies the program and form we selected to process EDI output
in our message control configuration: RSNASTED with form EDI_PROCESSING. This
is stored in table TNAPR and is read with the output type, output medium, and
application.

381

Generating the ORDERS PO with Message Control 9.3

This is then called through a function that is dynamically named at runtime with
the form name and program. The first order of business is to establish the partner
type and look up the partner profile.

This lookup returns the process code. Table TEDE1 is then read with the process
code to get the name of the IDoc processing function—IDOC_OUTPUT_ORDERS, which
is confirmed in table TFDIR.

Once we have all this, the system builds the control record and preps the IDoc for
editing by calling function IDOC_CCMS_OPEN.

Next, it calls the IDoc processing function IDOC_OUTPUT_ORDERS through the dynamic
function call in Listing 9.1.

CALL FUNCTION TEDE1-ROUTID
 EXPORTING
 CONTROL_RECORD_IN = EDIDC
 OBJECT = NAST
 IMPORTING
 CONTROL_RECORD_OUT = EDIDC
 OBJECT_TYPE = HELP_OBJECT_TYPE
 TABLES
 INT_EDIDD = INT_EDIDD
 EXCEPTIONS
 DATA_NOT_RELEVANT_FOR_SENDING = 01
 OTHERS = 04.

Listing 9.1 Dynamic Function Call to Build the ORDERS IDoc

TEDE1-ROUTID has the name of the function module to call. Function IDOC_OUT-
PUT_ORDERS takes over and builds the IDoc from the new purchase order. It is can
be used to process any outbound IDoc generated through message control.

Once this function finishes its work, the IDoc is closed, table NAST is updated with
an Output Complete flag and a date and time stamp, and a communications IDoc
is created and written to the database at status 01 IDoc generated.

Then function EDI_OUTPUT_NEW in function group EDI7 is called to convert the IDoc
into XML format and trigger distribution to the EDI RIM through the partner profile,
XML file port, and RFC destination. The status is first updated to 30—IDoc ready

382

Generating the PO for Replication Services9

for dispatch—and then to 03—Data passed to port OK—when the IDoc successfully
triggers the EDI RIM to pick it up.

This is assuming, of course, that the output mode in the partner profile is set to
transfer IDocs immediately and trigger subsystem. If the partner profile is set to
collect IDocs, then processing halts at status 30 and the IDocs wait in the database
until program RSEOUT00 runs to pick them up and send them out to the EDI RIM
by calling function EDI_OUTPUT_NEW.

When the IDoc is successfully translated by the map in the EDI RIM, a STATUS IDoc
is created and sent back into SAP to update the status of the outbound ORDERS.
ORDERS05 IDoc to 06—Translation OK for ISA [interchange control number] for TP
[receiving partner EDI ID].

The process comes full circle when DSI sends back two transmissions:

1. An X12 997 functional acknowledgment within six hours reporting that the 850
transaction has been accepted by DSI’s EDI system, updating the outbound
IDoc’s status to 16—997 OK.

2. An X12 855 purchase order confirmation mapped to an inbound ORDRSP.
ORDERS05 IDoc that updates the Confirmations tab at the line-item level of
the purchase order with confirmed quantities and delivery dates and DSI’s sales
order number.

9.4 Technical Specifications

This technical specification describes the SAP configuration and EDI development
required to support the ORDERS.ORDERS05 to X12 850 purchase order for repli-
cations services interface to DSI.

There are no custom enhancements to this interface.

9.4.1 Technical Requirements

The generated IDoc will be populated with standard data from the purchase order.
DSI will flag their acceptance of the order by returning a confirmation that will
update the Confirmations tab at the item level of the PO with confirmed delivery
dates and quantities.

383

Technical Specifications 9.4

9.4.2 Dependencies

Message control configuration is complete and conditions records have been
entered. Other dependencies include the following:

EE Outbound partner profile created for DSI with message type ORDERS, basic type
ORDERS05, and message control

EE Inbound partner profile created for DSI with message type ORDRSP

EE Acme custom cross-reference table ZEDIXREF populated in SAP for DSI to read
EDI send and receiving trading partner IDs for the outbound 850 PO and SAP
send and receive partners for the inbound 855 PO confirmation

EE Program variant created for SAP job scheduler (SM36) to run RSEOUT00 for DSI
ORDERS.ORDERS05 PO IDocs

EE Program variant created for SAP job scheduler (SM36) to run RBDAPP01 for DSI
inbound ORDRSP.ORDERS05 PO confirmation

EE Outbound envelopes created in the EDI RIM for DSI X12 850 version 5010 EDI
purchase order

EE Inbound envelopes set up for 997 functional acknowledgments from DSI for
outbound 850

EE Inbound envelopes set up for X12 855 purchase order confirmation from DSI

EE Outbound envelopes set up for 997 functional acknowledgments to DSI for
inbound 855 EDI purchase order confirmation from DSI

EE EDI maps for the outbound ORDERS IDoc to X12 850 purchase order and the
inbound X12 855 to ORDRSP IDoc PO confirmation

EE Business process workflow in the EDI RIM to pick up ORDERS IDocs, convert
them to X12 850 POs, and send them to DSI

9.4.3 Assumptions

The EDI RIM gets EDI sending and receiving trading partner IDs from the IDoc
control record fields SNDLAD and RCVLAD. The following are other important
assumptions:

EE DSI will return an X12 997 functional acknowledgment within 24 hours of
receiving the 850 PO transmission.

384

Generating the PO for Replication Services9

EE If there are any errors posting the 850 PO to DSI’s system, Acme will be noti-
fied immediately through an X12 864 text message describing the error.

EE DSI will return an X12 855 confirmation within 48 hours of receiving and suc-
cessfully posting Acme’s 850 PO.

EE EDI errors will be tracked and addressed in the EDI system by Acme’s EDI
monitoring team.

EE Technical errors in the IDoc interface, such as syntax or partner profile errors,
will be tracked and corrected in SAP by the EDI team.

9.5 Mapping Specifications

A map will be developed in the EDI RIM to map the ORDERS.ORDERS05 XML
IDoc to the X12 850 purchase order to DSI.

Table 9.4 details the mapping requirements for our outbound purchase order
scenario.

Mapping Specification Basics

Mapping specifications in Act III of our exploration of Acme Picture’s SAP EDI implemen-
tation will focus on the key pieces of application data that will post to or be generated
from our business documents and will not include the control record.

Common usage for EDI mapping specifications is to map the X12 data from the left,
whether it’s the source or target structure. We will focus instead on the IDoc. In Table
9.4, the IDoc segment name will occupy a full line in the table and be set in italics while
the fields will be in the left-most column.

The target EDI data elements fields will follow, identified by their segment name and
position number. The Value column contains sample data that will map to or from the
IDoc. These data, especially configuration data, will vary from system to system and are
presented here only for illustration purposes.

Also, specific mappings to or from IDocs or X12 transactions will also vary from system
to system and partner to partner. Many mapping choices made in the specifications that
follow in Act III are arbitrary and are meant only as suggestions, not recommendations.
Remember that EDI usage in the real world is governed by relationships developed or
agreed to by trading partners.

When mapping to an XML IDoc, the SEGMENT attribute must be set to 1 each time a
new instance of any segment is mapped to the target IDoc otherwise the IDoc will fail.
We will follow this requirement and set the segment attribute in mapping specifications
for inbound interfaces only: IDocs going into Acme’s SAP system.

385

Mapping Specifications 9.5

The good news with XML IDocs is that you don’t have to map any of the key fields
of the data record that are normally mapped for an ASCII IDoc, not even the segment
name or IDoc number. Everything the IDoc needs is defined in the schema. All the map
needs to provide is the data.

ORDERS 850 Value Comments

E1EDK01—Header—Min 1, Max 1

CURCY CUR01 USD PO currency

BSART BEG01 NB If BSART = NB, return 00

BELNR BEG03 4500017707 Purchase order number

E1EDK03—Header dates—Min 0, Max 10

IDDAT DTM01 002 Identifies requested delivery

DATUM DTM02 20140115 Delivery requested date

E1EDKA1—Partners—Min 1, Max 99—Loop 1 Sold-to

PARVW N101 AG Sold-to party: convert to BY

NAME1 N102 Acme Pictures Name of buyer party

N103 UL Hard code. ID type qualifier: GLN

LIFNR N104 0999999999999 Acme’s sold-to GLN from EDPAR

STRAS N301 2100 Melrose Ave Sold-to partner street address

ORT01 N401 Los Angeles Sold-to partner city

PSTLZ N403 CA Sold-to partner postal code

LAND1 N404 91936 Sold-to partner country

REGIO N402 US Sold-to partner region

E1EDKA1—Partners—Loop 2 Supplier

PARVW N101 LF Supplier: convert to SU

N103 UL Hard code. ID type qualifier: GLN

LIFNR N104 0999999998888 DSI GLN

Table 9.4 Mapping the Order Confirmation IDoc to the X12 855

386

Generating the PO for Replication Services9

ORDERS 850 Value Comments

NAME1 N102 Disk Services
International

DSI the supplier

E1EDKA1—Partners—Loop 3 Ship-to

PARVW N101 WE Ship-to partner: convert to ST

NAME1 N102 Acme Pictures Name of Acme Pictures ship-to

N103 UL Identifies Acme ship-to location
as GLN code

LIFNR N104 01254863254898 Acme ship-to location GLN

STRAS N301 2100 Melrose Ave Acme street address

ORT01 N401 Los Angeles City name

REGIO N402 CA State, province, or region code

PSTLZ N403 91936 Postal code

LAND N404 US Country code

E1EDK02— Header documents—Min 0, Max 10

QUALF 001 Identifies PO number and date

BELNR BEG03 4500017707 Map if E1EDK01-BELNR null

DATUM BEG05 20131215 Purchase order date

E1EDP01—Item level details group—Min 1, Max N 1 instance of E1EDP01 per group loop

POSEX PO101 000010 Line item number

MENGE PO102 100 Quantity ordered

MENEE PO103 EA Unit of measure for ordered item

VPREI PO104 12.50 Unit price

E1EDP19—Materials—Min 1, Max 10

QUALF PO106 002 Identifies Acme‘s item number:
convert to IN for buyer’s number

IDTNR PO107 985674 Customer material number

Table 9.4 Mapping the Order Confirmation IDoc to the X12 855 (Cont.)

387

Mapping Specifications 9.5

Map Specifications for the X12 855 to ORDRSP PO Confirmation

Table 9.5 details mapping requirements for the inbound purchase order confirma-
tion from DSI in response to the outbound PO.

ORDRSP 855 Value Comments

E1EDK01— Header—Min 1, Max 1

@SEGMENT 1 Hard code segment attribute to 1

ACTION 000 Hard code 000

BELNR BAK03 4500017707 Purchase order number

E1EDK02—Header documents—Min 1, Max 10—Loop 1 PO number

@SEGMENT 1 Hard code segment attribute to 1

QUALF 001 Identifies Acme PO number

BELNR BAK03 4500017707 Purchase order number

E1EDK02—Header documents—Loop 2 Supplier sales order

@SEGMENT 1 Hard code segment attribute to 1

QUALF 002 Identifies DSI sales order number

BELNR BAK03 00014031 DSI sales order number

E1EDPO1— Line item level details group—Min 1, Max N 1 instance of E1EDP01 per group
loop

@SEGMENT 1 Hard code segment attribute to 1

POSEX PO101 000010 Line item number of PO confirmation

MENGE PO102 100 Line item order quantity

MENEE PO103 EA Base unit of measure

POSEX PO101 000010 Line item number of PO confirmation

E1EDP02—Item document—Min 1, Max 10

@SEGMENT 1 Hard code segment attribute to 1

QUALF 001 Identifies Acme PO number

BELNR BAK03 4500017707 Purchase order number

Table 9.5 Mapping the X12 855 to the Order Confirmation IDoc

388

Generating the PO for Replication Services9

ORDRSP 855 Value Comments

ZEILE PO101 000010 PO line item number

E1EDP20—Delivery schedule—Min 1, Max 10

@SEGMENT 1 Hard code segment attribute to 1

WMENG PO102 100 Confirmed delivery quantity

EDATU DTM02 20140115 Confirmed delivery date

E1EDP19—Material numbers—Min 1, Max 10

@SEGMENT 1 Hard code segment attribute to 1

QUALF PO106 002 Customer material number (convert to IN
for buyer’s number)

IDTNR PO107 2567898 Acme SAP item number

Table 9.5 Mapping the X12 855 to the Order Confirmation IDoc (Cont.)

9.6 EDI Configuration in SAP

We’ll add an entry to our custom EDI mapping table ZEDIXREF to support EDI
partner number conversion and two partner profiles for DSI: one for the outbound
PO and the other for the inbound order confirmation.

9.6.1 EDPAR Entries: Transaction VOE4

There are no EDPAR entries for the outbound ORDERS.ORDERS05 to X12 850
purchase order for replication services interface.

9.6.2 ZEDIXREF Entries

Table ZEDIXREF maps the IDoc sender and receiving partners—the SAP logical
system ID and DSI’s vendor number—to the receiving party’s sending and receiv-
ing EDI trading partner IDs.

We’ll use the values in Table 9.6 for the outbound ORDERS.ORDERS05 PO to DSI.

389

EDI Configuration in SAP 9.6

Field Value Description

DIRECT 1 Direction outbound

STDMES 850 EDI PO transaction

MESTYP ORDERS IDoc message type outbound PO

IDOCTP ORDERS05 IDoc basic type

CIMTYP IDoc extension, none for this interface

SNDPRN DEVCLNT100 SAP send partner: Acme SAP logical system

RCVPRN DISK01 SAP receive partner: DSI’s vendor number in Acme’s
system

SNDLAD 99999998889 EDI sender partner: DSI trading partner ID for Acme

RCVLAD 99934567999 EDI receiver partner: DSI trading partner ID for DSI

Table 9.6 ZEDIXREF Entries for the Outbound 850 to DSI

We also need an entry for the inbound 855 order confirmation from DSI using the
ORDRSP.ORDERS05 IDoc, detailed in Table 9.7.

Field Value SDQ Description

DIRECT 2 Direction inbound

STDMES 855 EDI PO confirmation transaction

MESTYP ORDRSP IDoc message type

IDOCTP ORDERS05 IDoc basic type

CIMTYP IDoc extension, none for this interface

SNDPRN DISK01 SAP send partner: DSI’s vendor number in Acme’s
system

RCVPRN DEVCLNT100 SAP receive partner: Acme SAP logical system

SNDLAD 99934567999 EDI sending partner: DSI trading partner ID for DSI

RCVLAD 99999998889 EDI receiving partner: DSI trading partner ID for
Acme

Table 9.7 ZEDIXREF Entries for the Inbound 855 from DSI

390

Generating the PO for Replication Services9

9.6.3 Partner Profiles: Transaction WE20

We’ll need to define one outbound and one inbound partner profile for DSI partner
number DISK01, partner type LI (vendor), and partner role VN (vendor).

Outbound Partner Profile: Message Type ORDERS

In the outbound parameters table control of the partner profile for DSI, click the
Create outbound parameters button and enter the following values in the Out-
bound parameters screen (Figure 9.5):

EE Partner Role: “VN”

EE Message Type: “ORDERS”

EE Receiver Port: “XML_IDOC”

EE Output Mode area: Collect IDocs and Start subsystem options

EE Basic type: “ORDERS05”

Figure 9.5 Outbound Parameters, ORDERS PO to DSI

391

EDI Configuration in SAP 9.6

Click Message Control and enter the following values (Figure 9.6):

EE Application: “EF”

EE Message type: “NEU”

EE Process code: “ME10”

EE Change message checkbox: One entry null and one entry checked

Figure 9.6 Message Control Configuration for the ORDERS PO

The last step is to select the EDI Standard tab from the flyout menu at the upper
far right of the screen tabs and enter the following values:

EE EDI Standard: “X” for X12

EE Message type: “850”

EE Version: “00510”

Don’t forget to save. The EDI screen should look like Figure 9.7.

Figure 9.7 EDI Standard Values for all ORDER PO IDocs

392

Generating the PO for Replication Services9

Inbound Partner Profile: Message Type ORDRSP

In the inbound parameters table control of the partner profile for DSI, click the
Create inbound parameters button and enter the following values in the Inbound
parameters screen:

EE Partner Role: “VN”

EE Message Type: “ORDRSP”

EE Process Code: “ORDR” (links to function IDOC_INPUT_ORDRSP)

EE Processing by Function Module: Trigger by background program option

The completed screen should look like Figure 9.8.

Figure 9.8 Inbound Parameters ORDRSP PO Confirmation

9.7 Summary

We can now order replication services from Disk Services International. This is a
crucial piece of the overall order-to-cash process. After all, we can’t sell what we
don’t have in stock and this process fills Acme’s shelves with saleable product. The
great Darryl Q would be pleased with how straightforward this all is.

393

Summary 9.7

The supplier purchase order process is about contract manufacturing. Acme doesn’t
have the facilities to produce its movies on DVD or to store them in inventory. It is
a movie studio after all, and its business is to make movies and sell them. To take
advantage of the home entertainment market for its movies, it must buy manu-
facturing, packaging, and even distribution services from DSI and other suppliers.

The supplier purchase order process begins with the purchase order for replication
services, created when inventory levels of saleable finished goods fall below the
actual and planned order levels from customers.

Message control is a critical part of generating the IDoc from the purchase order.
We’ve stepped through the configuration required to enable message control and
have followed the run-time process flow of generating an IDoc from a purchase
order through to transmission of the IDoc to DSI and receipt of the purchase order
acknowledgment.

The next step is to receive the ordered goods into Acme’s inventory so that they
can be sold to their customers. It’s time once again to advance our processes and
move on to the next interface.

395

“Just gimme the goods,” the great Darryl Q would tell his directors when
they started a new project. “I want what I paid for!” This is Buying and
Selling 101: When the goods are ready, they need to be received. In Acme’s
SAP system, this means a goods receipt against the PO that ordered them.
Since manufacturing and inventory are outsourced to DSI, this introduces
some minor wrinkles.

10 The Inbound Goods Receipt

In the last chapter, Acme Pictures sent a purchase order to Disk Services Interna-
tional (DSI) for production of movies on DVD for sale to such retail outlets as the
more than 2,000 stores run by its most important customer, Gordy’s Galaxy of
Games & B Flix.

Acme outsources production of all its DVD movie products, mostly to DSI. DSI also
takes care of packaging, distribution, and inventory. Acme-owned saleable products
and raw materials for manufacturing are stored in DSI warehouses.

As we have already noted, the business of Acme Pictures is to make movies, not
manufacture and distribute DVD product for sale in stores. But the home entertain-
ment business is too good to pass up, and nobody would have understood that
better than Acme’s legendary founder, Darryl Q. Fernhausen.

When DSI receives a manufacturing PO from Acme, the raw materials are already
in inventory to issue to production. If they’re short, they have authorization from
Acme to order whatever they need.

These items are all stored in DSI-owned warehouses that are tracked through plants
and storage locations set up in Acme’s SAP system.

Whenever DSI changes inventory by issuing raw materials to production or receiv-
ing finished goods from manufacturing, they generate a feed that updates inventory
in Acme’s SAP system.

396

The Inbound Goods Receipt10

The EDI transaction and IDocs used are the same for both inventory movement
types. What’s different is the nature of the inventory change, which is defined in
the data sent by the transmission.

We’re most interested in the goods received from production against an Acme
purchase order here, since they are saleable goods and since this ends the manu-
facturing process. But Acme also needs to know how much it costs to produce a
saleable batch of movies on DVD from raw materials that it owns. So let’s look at
the contents of both interfaces here.

10.1 Technical Overview of Interface

Table 10.1 summarizes the inbound goods issue/goods receipt interface.

Item Description

Title Inbound Goods Issue and Goods Receipt from Contract
Supplier

Description DSI keeps Acme-owned raw materials and finished goods in
inventory at its locations, which are mirrored by plants and
storage locations in Acme’s SAP system.

Inventory management in Acme’s SAP system must be kept
informed of all changes to Acme-owned inventory held by
DSI. This is especially true when DSI produces saleable DVD
product against an Acme purchase order.

The solution is for DSI to generate an EDI feed to Acme
when it issues raw materials to production and when it
receives saleable product from any of its manufacturing lines
against an Acme purchase order.

These feeds will update inventory in Acme’s SAP system
with the goods issue and the goods receipt.

In addition, purchase order history is updated with the
details of the goods receipt.

Type of interface Inventory Management: X12 EDI to IDoc

Direction Inbound

Trading partner Disk Services International (vendor)

Table 10.1 Overview of Inbound EDI Goods Receipt and Issue Interfaces

397

Technical Overview of Interface 10.1

Item Description

IDoc MBGMCR.MBGMCR03

IDoc extended type

IDoc function IDOC_INPUT_MBGMCR

Custom ABAP

Description

Source file(s) 867 product transfer and resale report

Target document(s) Material document in SAP inventory management recording
a goods issue or goods receipt against an Acme purchase
order.

Transaction codes MB01 (goods receipt), MB1A (goods issue), and MB03 to
view the material document

Map(s) X12 867 vers. 5010 to MBGMCR.MBGMCR03

Custom map logic

Source system DSI EDI via AS2

Target system Acme SAP via EDI RIM

997 acknowledgment Outbound at transaction detail level. Function group
acknowledgment code: PT

Frequency Batched once a day at night

Job schedule RBDAPP01: Nightly post of all MBGMCR message types to
inventory for all trading partners

Table 10.1 Overview of Inbound EDI Goods Receipt and Issue Interfaces (Cont.)

We have a choice of two IDocs for this interface: MBGMCR.MBGMCR03 and
WMMBXY.WMMBID02. Both have more or less the same fields and both will post
a goods movement to inventory with the same function module used by Transac-
tions MB01 and MB1A.

But MBGMCR includes the date of manufacture, which we need to post the goods
receipt at Acme. WMMBXY has everything else except the date of manufacture.

Another difference is that MBGMCR is generated from a BAPI and has no user
exits. WMMBXY does offer user exits.

398

The Inbound Goods Receipt10

10.2 Functional Specifications

The purpose of this interface is to update inventory management with goods issue
and goods receipt movement types for product that Acme owns but that is held in
DSI warehouses and storage locations.

The goods receipt is for finished saleable goods produced by DSI against purchase
orders sent by Acme.

The goods issued are raw materials consumed in production of the finished goods
ordered by Acme.

10.2.1 Process Overview

Acme sends DSI a purchase order for replication services of saleable movies on DVD.
DSI creates a sales order from the PO, which is used to generate a production order.

Raw materials, owned by Acme but held in DSI warehouses, are issued to the
production order, creating a link between production, the sales order, and the
purchase order number.

When the raw materials are issued to production an X12 867 EDI feed that includes
the PO number is generated and sent to Acme’s EDI RIM. This 867 is translated
to an MBGMCR.MBGMCR03 IDoc, which posts to Transaction MB1A in Acme’s
SAP system.

When production is completed and the finished goods are ready to sell to a customer,
DSI receives them into inventory from the production order and generates another
X12 867 feed to Acme’s EDI RIM. This feed also includes the Acme PO number.

The 867 is converted to another MBGMCR.MBGMCR03 IDoc that posts the goods
receipt against the purchase order in Acme’s SAP system.

10.2.2 Requirements

Purchase orders for replication services have been created and sent to DSI, manu-
facturing of the ordered goods has been completed, and DSI inventory has been
updated. Other requirements include the following:

EE The goods issue is sent as soon as raw materials are issued to a production order
by DSI.

399

Functional Specifications 10.2

EE The goods receipt is sent as soon as the finished goods have been received into
DSI inventory.

EE The warehouse and storage locations used by DSI to store raw materials and
finished goods must match plants and storage locations in Acme’s SAP system.

EE Acme’s purchase order number must be present in both feeds from DSI.

EE The goods receipt must include the date of manufacture.

10.2.3 Dependencies

The 867-MBGMCR inventory update interface is dependent on master data, con-
figuration, and development objects in SAP and the EDI RIM. These include the
following:

EE Master data objects required to support inventory management, including (but
not restricted to) the following:

EE GL chart of accounts, profit centers, costing, controlling, special purpose
ledgers, and all supporting master data and configuration in the accounting
system set up to support inventory

EE Material master consumable raw materials and finished goods

EE Bills of materials: Identifying components in finished goods

EE Plants and storage locations that mirror DSI warehouse and storage locations

EE Inventory management configured for usage of movement types and sup-
porting indicators

EE Acme sends daily feeds of its material master, BOM, and other relevant master
data to DSI whenever a new material is added or an existing one is changed.

EE IDoc configuration completed in SAP to support inbound MBGMCR goods issue/
goods receipt for DSI, including the following:

EE Custom EDI trading partner mapping table ZEDIXREF

EE Inbound partner profile for DSI with message type MBGMCR

EE EDI map for X12 867 to MBGMCR translations.

EE Business process workflows built in the EDI RIM to process and route incoming
X12 867 goods issue and goods receipt transactions and MBGMCR.MBGMCR03
IDocs.

400

The Inbound Goods Receipt10

10.2.4 Assumptions

Goods issue and goods receipt material movements are posted to Acme inventory
by MBGMCR.MBGMCR03 IDocs against an Acme purchase order. The IDocs are
processed nightly by a scheduled job in SAP.

Each goods issue or goods receipt that posts to Acme’s system will create one mate-
rial document that can be viewed with Transaction MB03.

The following are other key assumptions:

EE Acme’s plants and storage locations have the same identifiers as the warehouses
and storage locations set up in DSI system for Acme-owned materials.

EE DSI sends Acme’s internal SAP material numbers for all goods issued or received.

EE The following transactions and material movement types are used to post to
Acme’s SAP system:

EE Goods receipt: Transaction MB01 and movement types 101 and 102 (rever-
sal of 101)

EE Goods issue: Transaction MB1A and movement types 261 and 262 (reversal
of the 261)

EE DSI will only send data required to post the goods issue or goods receipt.

EE DSI will accumulate and sum goods issue and goods receipt transactions by
production lot number and send one feed per day per batch.

EE Each production batch is assigned to only one purchase order.

EE Business users will address any application errors in the IDocs.

EE All EDI system errors are handled by the EDI team.

EE EDI and VMI orders are sent into SAP immediately, and the IDocs are posted
to sales orders within no more than an hour.

EE EDI errors or issues that may affect the timeliness of order creation are com-
municated to the business users immediately.

10.2.5 Data That Will Post to a Material Document

Table 10.2 lists the data required to post a goods issue with Transaction MB1A or
a goods receipt with Transaction MB01. Inventory movement data are posted to

401

Functional Specifications 10.2

material documents, which are stored in tables MKPF (header level) and MSEG
(item details).

Table Field Description Sample value

MKPF BLDAT Document date: (can be date of
document created at vendor site)

20131215

MKPF BUDAT Document posting date 20131215

MSEG BWART Material movement type:

EE Goods receipt = 101, 102

EE Goods issue = 261, 262

101

MSEG MATNR Acme’s SAP material number 500210

MSEG WERKS Acme plant, equals DSI warehouse of
plant where inventory recorded

3000

MSEG LGORT Acme storage location equals DSI
storage location

0003

MSEG CHARG Production batch number Q10578

MSEG ERFMG Quantity in unit of entry of material
issued or received

10.000

MSEG ERFME Entry unit of measure EA

MSEG EBELN Acme purchase number 4500016169

MSEG EBELP Acme PO line item number 00010

Table 10.2 Fields Populated When a Material Document is Created

10.2.6 Reconciliation Procedure

Successful import of the MBGMCR IDoc is confirmed through any of the standard
IDoc monitoring tools, such as BD87 or WE05.

IDoc status should be 64—IDoc ready to be transferred to application—before the
scheduled processing job is kicked off and 53—Application document posted—after.

The EDI team confirms the data in the IDoc against the data in the X12 867 transac-
tion sent from the supplier. The users validate that the goods issue or goods receipt
posted successfully by confirming that the material documents were created and

402

The Inbound Goods Receipt10

that they posted against the correct PO, material, and quantities, and to the cor-
rect GL account.

10.2.7 Enhancements to the Process

No custom programming is required for this interface.

10.2.8 Errors and Error Handling

Errors that may occur during processing of the inbound 867-MBGMCR goods issue
or goods receipt interface include the following:

EE The IDoc will fail if the purchase order number is incorrect or missing. If this
error occurs, the PO number can be entered and the IDoc rerun.

EE The IDoc will fail if the material number is incorrect or missing. If this error
occurs, the material number can be entered and the IDoc rerun.

EE A goods receipt will fail if the full quantity against a purchase order has already
been received. Either the quantity needs to be backed out with a 102 reversal
or the transaction was sent in error.

Goods issue or goods receipt errors will be communicated to the responsible
business user immediately. If there is a data issue with DSI, they will be contacted
immediately and the issue will be addressed. If necessary, postings will be backed
out with a 102 or 262 reversal and resent by DSI.

10.3 End-to-End Process Flow

Figure 10.1 outlines the end-to-end process flow for posting goods issue or goods
receipt in Acme’s SAP system from EDI transmissions.

It all begins when DSI receives a purchase order from Acme Pictures and posts
it to a sales order in their business system. One or more production orders are
generated from the sales order (one for each batch of finished goods) and raw
materials are issued.

When production is completed, the finished goods are received from the produc-
tion orders.

403

End-to-End Process Flow 10.3

DSI Business
System

Sales order posts
from Acme PO

Production order
created from SO

Goods issued to
to production order
for manufacturing

Goods receipt on
completion of
production run

Extract file GI
against Acme PO

Extract file GR
against Acme PO

DSI EDI

EDI RIM

X12 867 GI/GR txn
to Acme by AS2

MBGMCR IDoc
triggers IB process

Acme SAP

IDoc interface:
Create/save to DB

at status 64

RBDAPP01:
Process IB IDocs

Movement
type

101 goods receipt
txn code = MB01
against Acme PO

END: To IB
X12 810-INVOIC

Material document
created MKPF/
MSEG updated

261 goods issue
txn code = MB1A
against Acme PO

Accounting docs
created in FI/CO

Purchase order
history updated
in table EKBE

Figure 10.1 The Inbound Goods Issue/Goods Receipt Process Flow

Meanwhile, once a day, an extract program is run to pull all goods issued and
received from production against the production order, batch, and Acme purchase
order and line item numbers. The PO number and line item are read through the
link between the production orders and DSI’s sales orders.

The extract produces a file that is sent to DSI’s EDI system, where it is converted to
an X12 867 transmission file, with one transaction set per PO, line item, material,
and production batch number.

The 867 is sent to Acme’s EDI RIM, where it is mapped to an MBGMCR.MBGMCR03
XML IDoc file. The map handles two important conversions based on codes in the

404

The Inbound Goods Receipt10

PTD segment of the 867, which identify the type of inventory movement recorded
in the EDI transaction, as shown in Listing 10.1.

If PTD01 = BH and PTD06 = AI (adjustment in),
 then transaction = MB01 and movement type = 101

If PTD01 = BH and PTD06 = AO (adjustment out),
 then transaction = MB01 and movement type = 101

If PTD01 = BC and PTD06 = AI,
 then transaction = MB1A and movement type = 261

If PTD01 = BC and PTD06 = AO,
 then transaction = MB1A and movement type = 262

Listing 10.1 Logic for Identifying Material Movement Type and Transaction

The transaction is stored in the IDoc as a two-character code in field GM_CODE in
segment E1BP2017_GM_CODE. This code is mapped to the transaction in SAP in
table T158G, which supports the following transaction code:

EE 01: MB01 goods receipt (101, 102)

EE 02: MB31 goods receipts

EE 03: MB1A goods issue (261, 262)

EE 04: MB1B transfer posting

EE 05: MB1C other goods receipt

EE 06: MB11 goods movement

EE 07: MB04 subsequent adjustment

Each of these transactions supports a range of movement types specific to its
functionality.

Together the transaction code from GM_CODE and the movement type determine
whether a goods issue or goods receipt posts to Acme’s inventory management
system in SAP.

Once the 867 has been converted, the XML IDoc file is sent to the SAP application
server and the IDoc adapter makes an RFC through the JCo connector into SAP to
trigger function EDI_DATA_INCOMING.

405

End-to-End Process Flow 10.3

The IDoc file is picked up by EDI_DATA_INCOMING, validated, deleted from the
application server, and converted from XML to ASCII before each IDoc is written
to the database at status 50—IDoc added—and then at status 64—IDoc ready to be
transferred to application.

The IDocs sit in the database until a scheduled job for program RBDAPP01 runs to pick
up all MBGMCR message types at status 64. RBDAPP01 reads the IDocs and partner pro-
files, and identifies and calls the inbound processing function—IDOC_INPUT_MBGMCR.

IDoc MBGMCR and function IDOC_INPUT_MBGMCR were generated from a BAPI:
BAPI_GOODSMVT_CREATE. IDOC_INPUT_MBGMCR is a wrapper for a call to the BAPI that
populates its import and table parameters. It also reads table T158G to check that
a valid transaction code is coming in.

The actual inventory posting is handed by function MB_CREATE_GOODS_MOVEMENT,
which is also used by Transactions MB01, MB1A, MIGO, and most other inven-
tory transactions in SAP. It’s also called by the processing function for message
type WMMBXY.

The other thing to note about the goods receipt posting is that the purchase order
history is updated in table EKBE with complete details of the goods receipt. It shows
up in the purchase order at the line-item level in the Purchase Order History tab.

Figure 10.2 illustrates the following details that post to purchase order history:

EE Movement type

EE Material document number and posting date

EE Quantity and unit of measure

EE Dollar amount

Figure 10.2 Posted Goods Receipts Are Listed in Purchase Order History

406

The Inbound Goods Receipt10

This provides a record of all postings against the purchase order, regardless of
movement type. In addition, the material document number is a link that that will
take you directly to the document so you can view the details of the goods receipt.

You should also note that IDOC_INPUT_MBGMCR has no user exits, BAdIs, or even
enhancement points. If you need to write custom code, create a z-version of the
function. You would then create a custom process code linked to MBGMCR and
the z-function. Use the custom process code in your inbound partner profile to
post the MBGMCR message.

10.4 Technical Specifications

This technical specification section describes the SAP interface configuration and
EDI development required to support the X12 867 to MBGMCR.MBGMCR03 goods
issue and goods receipt interface from DSI into Acme’s SAP system.

There are no custom enhancements to this interface.

10.4.1 Technical Requirements

DSI will send one cumulated X12 867 transaction for each Acme purchase order,
line item, and batch number every night for goods issued to, or goods received
from, production.

The EDI map will identify goods issued or goods received from the contents of the
X12 transaction and map accordingly to the MBGMCR message.

The EDI RIM and SAP will be configured to support inbound MBGMCR messages
and outbound 997 functional acknowledgments at the transaction level.

10.4.2 Dependencies

The 867-MBGMCR interface is dependent on a number of development and con-
figuration objects in SAP and the EDI RIM:

EE Inbound envelopes set up in the RIM for DSI’s X12 867 version 5010 transac-
tions

EE Outbound envelopes for 997 acknowledgments to be created in the RIM for DSI
during de-enveloping of inbound 867 transactions

407

Mapping Specifications 10.5

EE Custom cross-reference table ZEDIXREF populated in SAP to convert EDI trad-
ing partner IDs to the SAP send and receive partner numbers for the inbound
867 from DSI

EE Inbound partner profile set up for DSI message type MBGMCR

EE Job to be set up in the SAP Job Scheduler (Transaction SM36) to run once a
night to post MBGMCR.MBGMCR03 IDocs with program RBDAPP01 with a vari-
ant to select for all message types MBGMCR at status 64

10.4.3 Assumptions

The EDI RIM will identify the correct transaction type (either goods issue or goods
receipt) from data in the body of the X12 867 transaction. The following are other
key assumptions:

EE DSI accumulates goods issue and goods receipt transactions and sends only one
each day per purchase order, PO line item, material, and batch.

EE Identified by movement type, reversals and postings are handled. Goods receipt
reversal is a 101 and goods issue is a 262.

EE The RIM maps the EDI send and receive trading partner IDs to the IDoc control
record fields SNDLAD and RCVLAD. These fields are read by an exit in the IDoc
interface to identify the SAP sold-to partner for field EDIDC-SNDPRN and the
SAP receiving logical system for field EDID-RCVPRN.

EE The RIM will return an X12 997 functional acknowledgment within 24 hours
of receiving the X12 867 transmission.

EE EDI errors are tracked and addressed in the EDI system. Technical errors in the
IDoc interface, such as syntax or partner profile errors, are tracked and corrected
by the EDI team.

10.5 Mapping Specifications

A map will be developed in the EDI RIM to map the X12 867 goods issue or goods
receipt from DSI to the MBGMCR.MBGMCR03 XML IDoc to send to Acme’s SAP
system.

408

The Inbound Goods Receipt10

Mapping requirements for the inbound goods issue/goods receipt scenario are
outlined in Table 10.3. Please note that plant and storage location EDI source fields
are only suggested mappings.

MBGMCR 867 Value Comments

E1BP2017_GM_HEAD_01—Header—Min 1 Max 1

@SEGMENT 1 Hard-code segment attribute to 1

PSTNG_DATE DTM02 20131215 Posting date where DTM01 = 007

DOC_DATE BPT03 20131215 Document date

REF_DOC_NO PTD05 4500016169 Reference document number where
PTD04 = PO. Acme PO. Posts to header
of material document.

E1BP2017_GM_CODE—Transaction Code—Min 1 Max 1

@SEGMENT 1 Hard-code segment attribute to 1

GM_CODE PTD01 01 Transaction code from T158G. Derived
value. Logic:

If PTD01 = BH, GM_CODE = 01
(Transaction MB01)

If PTD01 = BC, GM_CODE = 03
(Transaction MB1A)

E1BP2017_GM_ITEM_CREATE— Item Details—Min 1 Max N

@SEGMENT 1 Hard-code segment attribute to 1

MATERIAL LIN03 500210 Acme SAP material number where
LIN02 = BP (customer item).

PLANT N104 3000 Plant where N101 = 16

STGE_LOC N104 0003 Instance 2 of N1: storage location where
N101 = RL.

BATCH LIN05 20140115 Acme SAP material number where
LIN04 = LT (lot number).

Table 10.3 Mapping Specifications for X12 867 to MBGMCR.MBGMCR03 IDoc

409

EDI Configuration in SAP 10.6

MBGMCR 867 Value Comments

MOVE_TYPE PTD01
PTD06

101 Movement type. Derived value. Logic:

If PTD01 = BH and PTD06 = AI,
MOVE_TYPE = 101

If PTD01 = BH and PTD06 = AO,
MOVE_TYPE = 102 (reversal)

If PTD01 = BC and PTD06 = AI,
MOVE_TYPE = 261

If PTD01 = BC and PTD06 = AO,
MOVE_TYPE = 262 (reversal)

ENTRY_QNT QTY02 10.000 Quantity in entry unit

ENTRY_UOM QTY03 EA Unit of measure

PO_NUMBER REF02 4500016169 Acme purchase order number where
REF01 = PO. Inventory movement posts
against this PO number.

PO_ITEM LIN01 00010 Acme PO line item number

PROD_DATE DTM02 20131130 Date of production where DTM01 = 094.
Goods receipt only.

Table 10.3 Mapping Specifications for X12 867 to MBGMCR.MBGMCR03 IDoc (Cont.)

10.6 EDI Configuration in SAP

Let’s take a look at IDoc configuration settings in SAP for the inbound MBGMCR
message for Disk Services International.

10.6.1 EDPAR Entries: Transaction VOE4

There are no EDPAR entries for the X12 867 to MBGMCR interface.

10.6.2 ZEDIXREF Entries

Table ZEDIXREF maps the sender’s send and receive EDI trading partner IDs to the
SAP partner numbers—DSI’s vendor number in Acme’s system and the receiving
SAP logical system ID.

410

The Inbound Goods Receipt10

Table 10.4 lists the values that we’ll enter into custom table ZEDIXREF for the
inbound 867 interface from DSI.

Field Value Description

DIRECT 2 Direction inbound

STDMES 867 EDI PO transaction

MESTYP MBGMCR IDoc message type

IDOCTP MBGMCR03 IDoc basic type

CIMTYP IDoc extension, none for this interface

SNDPRN DISK01 SAP send partner: DSI’s customer number in Acme’s
system

RCVPRN DEVCLNT100 SAP receive partner: Acme SAP logical system

SNDLAD 99934567999 EDI send partner: DSI trading partner ID for DSI

RCVLAD 99999998889 EDI receive partner: DSI trading partner ID for Acme

Table 10.4 ZEDIXREF Entry for the Inbound 867 from DSI

10.6.3 Partner Profile: Transaction WE20

The inbound partner profile links DSI to the incoming message type and the pro-
cess code that will trigger the processing function that will post the goods issue
or goods receipt.

We’ll need one inbound partner profile for DSI partner type LI (vendor) with mes-
sage type MBGMCR.

In the inbound parameters table control, click Create and add the following values
to the inbound parameters screen:

EE Partner Role: “VN” (vendor)

EE Message type: “MBGMCR”

EE Process code: “BAPI”

EE Processing by Function Module: Trigger by background program option

The finished inbound parameters should look like Figure 10.3. Don’t forget to save.

411

Summary 10.7

Figure 10.3 Inbound Partner Profile for DSI Message MBGMCR

Process code BAPI links the partner profile to function module BAPI_IDOC_INPUT1.

This function is a little different from the ones we’ve been looking at so far. It’s
not linked to a specific message type but can process over 800 different messages,
mostly IDocs generated from BAPIs.

The first thing BAPI_IDOC_INPUT1 does when it’s called is read the message type
from the incoming IDoc field EDIDC-MESTYP and then check table TBDBE (BAPI-
ALE Interface for Inbound Processing) for its processing function.

If it gets a hit, the BAPI calls the function and IDoc processing proceeds normally.
If it doesn’t get a hit, the BAPI returns an error.

10.7 Summary

The goods issue/goods receipt feed is really two interfaces for the price of one,
driven by the data contents of the incoming EDI transaction. It illustrates an impor-
tant fact about EDI and B2B in general: decisions often have to be made at runtime
based on the contents of the data.

That means writing rules that can evaluate the data and trigger different process-
ing paths based on the results—in this case, identifying the transaction code and
movement type that will post either a goods issue or goods receipt.

412

The Inbound Goods Receipt10

This is handled by the map in the EDI RIM and by the IDoc processing function
in SAP that calls the transactions fed to it by the IDoc.

We’ll need to do this extensively across the EDI architecture, as we have seen in
our discussion of the STATUS IDoc interface in Chapter 5, Section 5.5, Reporting
EDI Status to SAP, where we run a number of evaluations in custom code, includ-
ing reads from the database, the IDoc, and runtime system data.

The other point this illustrates is that while we may convert incoming data in our
EDI system to ensure that they are processed correctly, we never change their
nature. The EDI team is the post office that identifies the mail and ensures that
it’s delivered to the correct address. We never change the contents of the business
data through calculations or any other means.

Technically, this is a fairly simple interface once inventory management in SAP
is set up by the business and functional teams to update inventory by IDoc. The
most critical problem you’re likely to encounter in production is bad data. One or
two incorrect feeds (or correct feeds coming in the wrong order) can throw your
inventory completely out of whack.

Generating the feeds, running them through the EDI system, and posting them to
SAP is the easy part. Making sure the inventory is correct and remains in balance
is out of the hands of the EDI team.

Now that Acme has received its newly manufactured goods into inventory, DSI
can send its invoice. While the great Darryl Q hated to part with his money, he
knew that to sell his product, he needed to pay his suppliers’ invoices. We’ll end
our brief tour of the purchasing process by looking at how supplier invoices are
received in Acme’s SAP system.

413

As much as the great Darryl Q hated to part with his money, he knew a
simple truth: “You can’t make without spending money.” But he always
insisted on seeing every bill and examining it carefully before shelling out a
penny. And that will be our approach in Acme’s new SAP system: pay but
verify. So let’s see how that’s done.

11 Processing the Incoming Supplier Invoice

It can be said that the inbound invoice interface from the supplier is truly the child
of the interfaces that preceded it. This is true on two levels.

First, before we can receive the invoice from DSI for services rendered, specific
processes must have been successfully completed, including the following:

1. An outbound purchase order from Acme to DSI to order replication services for
movies on DVD

2. An inbound order acknowledgment from DSI confirming the PO, the materials,
quantities, and delivery dates for the order

3. An inbound goods receipt from DSI detailing the quantities of finished product
received from production

As we saw in the last chapter, the goods receipt posts against the purchase order
used to order the goods and services from DSI. The goods receipt also moves the
finished goods into inventory and updates accounting in Acme’s SAP system, prep-
ping it for receipt of the invoice.

On the second level, once we get the invoice from our supplier, we must verify it
against the purchase order and the goods receipt.

This is handled by Logistics Invoice Verification, a wordy moniker for checking
the bill to make sure that it is correct.

After all, the MM invoice closes the purchasing cycle and posts to accounts payables
in the finance system. The numbers must match up with what we promised—and
what we expected—to pay.

414

Processing the Incoming Supplier Invoice11

This is all standard stuff supported by an IDoc, a process code, and a little configu-
ration under the hood in the IMG. Let’s look at how this is done as we explore the
inbound invoice from DSI for goods produced against an Acme purchase order.

11.1 Technical Overview of Interface

Table 11.1 summarizes the inbound invoice interface from the supplier.

Item Description

Title Inbound MM Invoice from Supplier Invoice with Invoice
Verification.

Description Acme orders saleable movie titles on DVD from its contract
manufacturer and distributor, DSI. DSI completes production
and sends Acme a goods receipt that updates inventory and
accounting with the items and quantities produced against
the purchase order.

The supplier’s invoice follows when the purchasing cycle
has been successfully completed. The MM invoice will post
to accounting, but first it must verify the following values
against the purchase order, PO history, and goods receipt:

EE Purchase order number

EE Line item number

EE Material number

EE Quantity ordered and received

EE Dollar amount invoiced

Once verified, the invoice posts and updates the finance
system and accounts payables.

Type of interface Purchasing: X12 EDI to IDoc

Direction Inbound

Trading partner Disk Services International (vendor)

IDoc INVOIC.INVOIC02

IDoc extended type

IDoc function IDOC_INPUT_INVOIC_MRM

Table 11.1 Overview of Inbound EDI Invoice from Supplier

415

Functional Specifications 11.2

Item Description

Custom ABAP

Description

Source file(s) 810 supplier invoice

Target document(s) MM invoice in in SAP referencing purchase order number
and GL accounts

Transaction code MIRO enter incoming invoice by company code

Map(s) X12 810 vers. 5010 to INVOIC.INVOIC02

Custom map logic

Source system DSI EDI via AS2

Target system Acme SAP via EDI RIM

997 acknowledgment Outbound at transaction detail level; function group
acknowledgment code: IN

Frequency Batched once a day at night

Job schedule RBDAPP01: Nightly post of all INVOIC message types for all
suppliers

Table 11.1 Overview of Inbound EDI Invoice from Supplier (Cont.)

There are two ways to post the inbound invoice from the supplier. One is directly
to accounting and the other is through invoice verification. Both are driven by
process codes that trigger different function modules.

One process code posts directly to accounting and does not pass the purchase order
number nor verify purchase order data.

The other, which we’ll be configuring for Acme, passes the PO number and verifies
the purchase order and goods receipt data. We’ll touch on the differences between
the two in this chapter, but our focus is on logistic invoice verification.

11.2 Functional Specifications

The purpose of this interface is to verify and post an incoming invoice from DSI for
sales DVD titles that Acme ordered against a purchase order for replication services.

416

Processing the Incoming Supplier Invoice11

The goods receipt must be successfully posted and purchase history updated before
the invoice can be posted.

11.2.1 Process Overview

After DSI completes production of finished movie product on DVD against an
Acme purchase order, the goods are received into inventory and a goods receipt
transmission sent to Acme.

The goods receipt posts a 101 movement type (or 102 reversal) against the pur-
chase order that Acme issued to order production of the goods by DSI, creating a
material document for each posting.

Accounting documents are also created that post the financial details of the 101
goods receipt to GL accounts that are directly linked to the purchase order and line
item number for each material document.

When these documents are in place, Acme can process invoices from DSI. After
the goods receipt posts, DSI generates and sends its invoice to Acme by EDI. The
invoice must reference the purchase order and line item number. The PO and line
item numbers—with the material, order quantity, and dollar amount—are verified
against the PO and PO history when the invoice is processed in Acme’s system.

If verification succeeds, the incoming invoice posts with Transaction MIRO against
Acme’s company code and the purchase order items. An accounting document is
created and accounts payable prepped for payment.

11.2.2 Requirements

Saleable movies on DVD have been produced by DSI against an Acme purchase
order. Goods receipts have posted in Acme’s system against the purchase order
and inventory updated. The following other requirements must be met:

EE EDI supplier invoices post through logistics invoice verification against a pur-
chase order and goods receipt.

EE Supplier, material, and accounting data are pulled from the purchase order in
Acme’s SAP system.

EE All charges for goods and services ordered through the purchase order are on
the invoice. The invoice only references charges on the PO.

417

Functional Specifications 11.2

EE Invoice quantities and amounts must match the quantities and amounts posted
to purchase order history through the goods receipt, within a tolerance limit of
five percent.

EE If the invoice amount is less than or equal to the amount on the purchase order,
the invoice will post and be paid within the payment terms.

EE If the invoice amount is higher than the purchase order amount but within the
tolerance limit, the invoice will post.

EE The invoice will be blocked if the amount exceeds the tolerance limit. The dis-
crepancies will be worked out by the purchasing department.

EE If Acme accepts the discrepancies, the PO amount is updated to match the invoice
amount and the invoice is posted. If Acme does not accept the discrepancies,
the issue is resolved between the parties and an invoice entered manually.

EE The payment due date will be calculated by the system based on the invoice
date in the IDoc and the payment terms in the purchase order.

11.2.3 Dependencies

The 810-INVOIC supplier invoice interface is dependent on master data, configura-
tion, and development objects in SAP and the EDI RIM:

EE Master data objects required to support purchasing, inventory, and supplier
invoices including (but not restricted to) the following:

EE GL chart of accounts, profit centers, costing, controlling, special purpose
ledgers and all supporting master data and configuration in the accounting
system

EE Material master and bills of materials master data for items ordered from
Acme’s suppliers

EE Vendor master data for Acme’s suppliers

EE Plants and storage locations, movement types, and other configuration to
support goods receipt and update of accounting

EE Configuration completed for logistics invoice verification for EDI for MM invoices
including:

EE US and Canadian tax codes set for vendor

EE Vendor linked to Acme company code

418

Processing the Incoming Supplier Invoice11

EE Program parameters identifying the invoice document type to be verified and
checks to be made when it is processed

EE Confirmed purchase orders to Acme’s suppliers for production of saleable mov-
ies on DVD

EE Goods receipts posted to material documents in Acme’s SAP system for the
quantity of goods produced by DSI from the replication PO

EE Accounting documents created when the goods receipt posts detailing the GL
account, posting key, and dollar amount for the goods received

EE IDoc configuration completed in SAP to support inbound INVOIC supplier
invoices for DSI, including the following:

EE Custom EDI trading partner mapping table ZEDIXREF

EE Inbound partner profile for DSI configured for logistics invoice verification
with message type INVOIC and process code INVF

11.2.4 Assumptions

Incoming invoices from the supplier post from the INVOIC.INVOIC02 IDoc against
an Acme purchase order that has been updated with goods receipts from DSI for
the full quantity of materials ordered in all items, within the tolerance limit of five
percent. The following are other key assumptions:

EE Invoices will post to the correct period.

EE Invoices will not be accepted for partial completion of a purchase order.

EE Units of measure must agree with the purchase order.

EE Invoices cannot post for blocked purchase order items.

EE Price variances and tolerance levels have been configured.

EE All charges, including sales taxes, will be pulled from the purchase order, not
the IDoc.

EE Pricing for the invoice will be pulled from the pricing conditions in the purchase
order not from the IDoc.

EE The invoice will post as an open item against the vendor’s account. At the same
time, the invoice posting will clear the accrual account that was updated by the
goods receipt.

419

Functional Specifications 11.2

11.2.5 Data That Will Post to an Inbound Supplier Invoice

When the inbound supplier invoice posts with Transaction MIRO, the data are
written first to MM tables RBKP (header level) and RSEG (item details) and then
copied to the financial accounting tables BKPF (header level) and BSEG (item level).

Table 11.2 details a typical data set that will post to an inbound supplier invoice
as it is stored in tables RBKP and RSEG.

Table Field Description Sample value

RBKP GJAHR Fiscal year 2013

RBKP BLDAT Document date 20131215

RBKP BUDAT Posting date of document 20131215

RBKP XBLNR Reference document number: supplier billing
document

0005000020

RBKP BUKRS Company code 3000

RBKP LIFNR Invoicing party: supplier DISK01

RBKP WAERS Currency key USD

RBKP RMWWR Total amount of invoice $1,194.88

RBKP WMWST1 Dollar amount of tax in document currency at
header level

94.88

RBKP MWSKZ1 Tax code at header level I1

RBKP ZBD1T Cash discount days 1 14

RBKP ZBD1P Cash discount percentage 1 3.0

RBKP ZBD2T Cash discount days 2 30

RBKP ZBD2P Cash discount percentage 2 2.0

RBKP ZBD3T Terms of payment in days 45

RBKP XRECH Message indicator: post invoice INVO

RBKP ZFBDT Baseline data for payment 20131214

RSEG EBELN Acme purchase number 4500016169

Table 11.2 Data That Posts to an Inbound Supplier Invoice

420

Processing the Incoming Supplier Invoice11

Table Field Description Sample value

RSEG EBELP Acme PO line item number 00010

RSEG MATNR Acme’s SAP material number 500210

RSEG WRBTR Line item amount in document currency $1,100.0

RSEG MWSKZ Tax code at item level I1

RSEG MENGE Quantity 10.000

RSEG BSTME Unit of measure EA

RSEG XBLNR Delivery document if present is used to
identify goods receipt

4000023

Table 11.2 Data That Posts to an Inbound Supplier Invoice (Cont.)

The following are mandatory data elements:

EE Purchase order and line item numbers

EE Vendor number

EE Company code

EE Tax code

EE Quantities and dollar amounts

If these values are not in the IDoc, it will fail.

In addition, if the goods receipt posted against a delivery document, the system
will identify the material documents by the delivery number. The delivery number
is the first check for the goods receipt.

If no delivery number is sent in the IDoc, the system looks at purchase order his-
tory at the PO order line item level to identify the goods receipt. This is how our
incoming invoice will be processed, since DSI is producing our saleable movies on
DVD and receiving them into their finished good storage location for fulfillment
of future customer orders.

The goods receipt is key to processing the invoice. It provides both the quantity
and dollar amounts to be invoiced; these must match the quantity and amounts
in the incoming EDI invoice within the five percent variance or the IDoc will fail.

421

Functional Specifications 11.2

11.2.6 Reconciliation Procedure

Successful import of the INVOIC IDoc is confirmed through any of the standard
IDoc monitoring tools, such as BD87 or WE05.

IDoc status should be 64—IDoc ready to be transferred to application—before the
scheduled processing job is kicked off and 53—Application document posted—after.

After the IDoc posts, the MM invoice can be displayed with Transaction MIR4
or by following SAP menu path Logistics • Materials Management • Logistics
Invoice Verification • Further Processing • Display Invoice Document.

The invoice number will be recorded in the status segment for status 53 with the
message: Document no. [Invoice Number] created.

The EDI team confirms the data in the IDoc against the data in the X12 810 invoice
from the supplier. The business users validate that the invoice posted successfully
and that the accounting tables BKPF and BSEG were updated.

11.2.7 Configuring Logistics Invoice Verification

Before we can begin receiving invoices from our suppliers, the system needs some
additional information:

EE A link between your supplier’s tax codes and yours if they are different

EE The company code that the supplier’s invoice will post to

EE Program parameters for your partner’s invoice, by partner type, partner number,
and company code:

EE Invoice and credit memo document types

EE Variance processing parameters, if relevant

EE Additional checks

This is provided through IMG configuration with Transaction SPRO or menu path
Materials Management • Logistics Invoice Verification • EDI, as shown in
Figure 11.1.

First, let’s look at the tax code. Acme and DSI are in different states and have dif-
ferent tax codes, so we must map them to properly process their invoices.

422

Processing the Incoming Supplier Invoice11

Figure 11.1 IMG Menu Path to Logistics Invoice Verification

Click Assign Tax Codes to open the tax codes mapping screen. Click New Entries
(or press (F5)) and enter the following values for DSI into the table control (see
Figure 11.2):

EE Partn.Type: “LI” for vendor

EE PartnerNo: “DISK01”

EE Tax type: “ST” for external X12 EDI code for state sales tax

EE Tx: “I1” for Acme’s internal tax code identifying sales tax payable (rates are
defined by jurisdiction in SAP)

Figure 11.2 Tax Code Mapping Between DSI and Acme

Save the entry. The tax code mappings are stored in table T076M, which is read
during inbound processing of the IDoc to get the mapping between the incoming
external tax code and the internal code used by Acme.

The tax codes are standard SAP codes stored in table T700A against a country-
specific procedure. The external code under Tax type could be anything, as long
as it matches the tax code sent in the IDoc segments E1EDK04 and E1EDP04.

423

Functional Specifications 11.2

You can also enter the external tax rate in the Tax rate column. When the IDoc
is processed, the system compares the rate entered here with the tax rate in the
IDoc. If there is a discrepancy the IDoc will fail.

Next we assign the vendor to the Acme company code that will process the incom-
ing supplier invoice.

You need to go back to the IMG and click Assign Company Code. The company
code overview screen opens. Click New Entries (or press (F5)). Enter the following
values into the table control (Figure 11.3):

EE Partn.Type: “LI” for vendor

EE PartnerNo: “DISK01”

EE CoCd: “3000” for Acme’s company code

Figure 11.3 Assigning the Company Code

Save the entry. The company code name in the invoice can be entered into the
table control. But any name entered in this column must match exactly the name
of the invoice recipient in the INVOIC IDoc in E1EDKA1-PARTN or NAME1 (if
PARTN is null) where PARVW = RE.

Last but not least, enter program parameters. Go back to the IMG and click Enter
Program Parameters to open the overview screen. Click New Entries (or press
(F5)) to open the Details of Added Entries screen. Enter the following values:

EE Partn.Type: “LI” for vendor

EE PartnerNo: “DISK01”

EE CoCd: “3000” for Acme’s company code

EE Invoice doc.type: “RE” for gross receipt invoice

EE Cred.memo doc.type: “RE”

EE Processing: “3” to enforce vendor-specific tolerances

Leave the rest blank. We won’t be using conventional invoice verification, and the
rest are checks that we don’t need. Save the entry and assign it to a change request.

424

Processing the Incoming Supplier Invoice11

Figure 11.4 Program Parameters Assigned to the Supplier

It would be more accurate to label Processing as the correction indicator for vari-
ances. It tells the system what to do if it encounters a variance in the quantity or
amount between the invoice data in the IDoc and the data the system expects from
the purchase order and purchase order history.

There are five options for variance processing:

EE Null = No error reported if there’s a variance. The EDI invoice is posted without
any changes.

EE 1 = Unclarified error: park invoice. An invoice is created and parked using sys-
tem data, not IDoc data. Business users can then make changes after consulting
the supplier or accept the invoice that was created.

EE 2 = Vendor error: reduce invoice. System data are accepted and the supplier
invoice is reduced by the amount of the variance.

EE 3 = Vendor-specific tolerances. The system checks tolerance levels set for specific
vendors and posts the invoice in one of two ways:

EE The EDI invoice posts if the total variance with the purchase order is less than
the allowed variance levels set for the vendor. If the variance is five percent

425

Functional Specifications 11.2

and the EDI invoice is within that five percent, the supplier’s invoice will
post.

EE The EDI invoice will not post if the total variance with the purchase order is
greater than the allowed variance set for the vendor. The purchase order data
are used to create an invoice, which is then parked. The business can then
resolve the issue with the supplier and either edit the IDoc and reprocess or
the parked invoice and post.

EE 4 = Tolerances correspond to those for online processing. Tolerances are the
same as those used in manual invoice creation, which are maintained by com-
pany code.

Vendor-specific tolerances are configured in the IMG using menu path Materials
Management • Logistics Invoice Verification • Incoming Invoice • Configure
Vendor-Specific Tolerances.

The details of this configuration will be worked out by the business users and the
functional team. We’ve discussed the topic here because this verification is critical
to successfully posting the inbound supplier invoice and it is useful for the EDI
team to know what’s happening under the hood.

A Word about Process Codes

The other key piece of configuration is the partner profile, which we look at later
in this chapter. The key point here is that there are two processing choices for
message INVOIC that are driven by different process codes:

EE INVF: Posts invoice directly to FI as an accounting document. Does not refer-
ence the purchase order number. Linked to IDoc function IDOC_INPUT_INVOIC_
FI that posts the invoice with function PROCESS_IDOC_INVOIC_FI.

EE INVL: Logistics invoice verification. Verifies data against purchase order, PO
history, and goods receipt. Calls IDoc function IDOC_INPUT_INVOIC_MRM that
posts the invoice with function MRM_INVOICE_CREATE.

There is a third process code but it is obsolete: INVM. It posts the invoice by call-
ing Transaction MR01, which has been replace by MIRO.

Because we have more than one process code for the same message type, it is
conceivable that we will need to use both in future.

426

Processing the Incoming Supplier Invoice11

To distinguish the supplier invoice from the accounting invoice, we will extend
process code INVL with message code MM, which we will use in the inbound
parameters of the partner profile.

11.2.8 Enhancements to the Process

No custom programming is required for this interface.

11.2.9 Errors and Error Handling

The following are errors that may occur during processing of the inbound 810-INVOIC
supplier invoice interface that will cause the IDoc to fail:

EE The purchase order and/or line item numbers are incorrect or missing.

EE The supplier’s SAP vendor number is incorrect or missing.

EE The material number in the invoice does not match the purchase order material.

EE The dollar amount or quantities are outside the configured five percent variance.

In most cases, the IDoc can be edited and reposted. If the amounts or quantities
exceed the variance, the issue will be resolved by the business and if necessary DSI.
Once resolved, the IDoc can be edited and reposted or the parked invoice can be
edited or recreated manually and posted. This is dependent on how we configure
variance processing.

11.3 End-to-End Process Flow

Figure 11.5 outlines the end-to-end process flow for posting an inbound MM sup-
plier invoice to SAP from an X12 810 transmission from DSI.

It all begins with the purchasing process. Acme orders replication of saleable movies
on DVD from DSI using an ORDERS.ORDERS05 IDoc and an X12 850 customer
PO. DSI confirms the order with an X12 855, which updates the PO in Acme’s
SAP system with confirmed quantities and delivery dates, and begins producing
the finished goods by issuing Acme-owned raw materials from inventory to pro-
duction orders. Remember that DSI holds both raw material and finished goods
inventory for Acme.

427

End-to-End Process Flow 11.3

855 PO conf to IB
ORDRSP to Acme

DSI business
systemAcme SAP

PO updated with
confirm details

101 to inventory
accounting/PO
history updated

IDoc interface:
Create/save to DB

at status 64

867 goods receipt
to IB MBGMCR

Finish production
saleable goods

received to stock

810 invoice to IB
INVOIC to Acme

Replication PO
ORDERS to 850

IB invoice verified
against PO history
posts with MIRO

RBDAPP01:
process IB IDocs

DSI accounting
creates invoice
for Acme PO

Figure 11.5 The Inbound Goods Issue/Goods Receipt Process Flow

When production is completed, DSI receives the DVD movies from the production
order into finished goods inventory. DSI then generates an X12 867 transaction
with details of the goods receipt, including the PO and line item numbers, Acme
material number, production batch number, quantity produced, and the date of
production.

The 867 is converted by the EDI RIM into an MBGMCR.MBGMCR03 IDoc, which
posts a 101 goods receipt movement type with Transaction MB01 against the pur-
chase order and line item number into inventory management in Acme’s SAP system.

The goods receipt creates a material document with full details of the item received.
Accounting is also updated with debit and credit postings to the G/L accounts

428

Processing the Incoming Supplier Invoice11

recording raw materials consumed and finished goods received linked to the pur-
chase order line item and material document.

The G/L entries also pull in unit pricing for the raw materials and finished goods
and the total dollar value for both, which must match.

Accounting is now prepped to receive an invoice for the goods produced. DSI
issues an invoice and sends it to their EDI system, which converts it to an X12 810
invoice transaction and sends it to Acme’s EDI RIM by AS2.

The RIM converts it to an INVOIC.INVOIC02 IDoc in XML format and saves it in
a file on the SAP application server. The RIM then makes an RFC through its IDoc
adapter and the JCo Connector into SAP to trigger RFC function EDI_DATA_INCOMING.

The IDoc file is picked up by EDI_DATA_INCOMING, validated, deleted from the
application server, and converted from XML to ASCII before each IDoc is writ-
ten to the database at status 50—IDoc added—and then status 64—IDoc ready to be
transferred to application.

A scheduled job for program RBDAPP01 kicks off to pick up all INVOIC message types
at status 64. RBDAPP01 reads the IDocs and partner profiles, and uses process code
INVL to identify and call inbound processing function IDOC_INPUT_INVOIC_MRM.

The function makes a number of checks, including the following:

EE E1EDKA1 where PARVW = LF: the supplier in table LFB1

EE E1EDKA1 where PARVW = RE: the company code in table T076B

EE EDI_DC40: the external tax code in table T076M based on the send partner type
and send partner number, and the program parameters in table T076S based on
the send partner type, send partner number, and company code

If any of these values from the IDoc do not match their corresponding values in
SAP, an error is returned and the IDoc fails.

If all these checks pass, purchase order and purchase order history data is pulled
from SAP based on the PO and line item number in the E1EDP02 segment of the
INVOIC IDoc. If there is no matching purchase order and line item number, an
error is returned and the IDoc fails.

429

End-to-End Process Flow 11.3

If all these checks pass, data are passed from the IDoc segments to internal tables
with the structure of tables RBKP (invoice header), RSEG (line item details), and
RBTX (tax data).

These internal tables are then passed to function MRM_INVOICE_CREATE, which veri-
fies the supplier invoice data from the IDoc and either parks or posts the invoice,
depending on our supplier invoice configuration.

This work is done through function modules on the data collected from the IDoc,
the purchase order, and the goods receipt.

The goods receipt is key to verifying the quantities and dollar amounts in the
incoming invoice against the PO. It’s critical for the system to identify it from IDoc
data. If the system cannot identify a goods receipt, an error will be returned and
the IDoc will fail.

If the goods receipt posted against a delivery, the delivery document number is
sent in the IDoc and used to identify the goods receipt. The delivery document is
the system’s first choice for identifying the goods receipt.

In fact, the system can identify the goods receipt with a delivery document num-
ber, even if the purchase order number is not included in the IDoc, if the delivery
number exits only once for the sending supplier.

If there is no delivery document number in the IDoc, the system checks the PO
and PO line item numbers and reads the open goods receipts through purchase
order history at the line-item level.

Function MRM_INVOICE_CREATE runs the critical verification checks through function
MRM_INVOICE_CHECK. Function MRM_INVOICE_PARK is called if the invoice is config-
ured to be parked and approved before posting and function MRM_INVOICE_POST if
the invoice is to be posted directly.

When the supplier invoice posts, its data are stored in tables RBKP (header), RSEG
(line item details), and RBTX (tax data). Accounting documents are created almost
immediately and the invoice stored tables BKPF (header) and BSEG (item details).

Accounting is now ready to pay the invoice.

430

Processing the Incoming Supplier Invoice11

11.4 Technical Specifications

This technical specification section describes the SAP IDoc configuration and EDI
development to support the X12 810 to INVOIC.INVOIC02 supplier invoice inter-
face from DSI into Acme’s SAP system.

11.4.1 Enhancements to the Process

There are no custom enhancements to this interface.

11.4.2 Technical Requirements

DSI will send one X12 810 invoice transaction for each purchase order from Acme
for replication services that has been fully manufactured and the finished goods
received into inventory.

The 810 will include all data required to post an inbound supplier invoice in Acme’s
SAP system after goods receipts have successfully posted against the full quantity
of a purchase order and accounting has been updated, including all relevant G/L
accounts.

The EDI RIM and SAP will be configured to support inbound supplier invoice
INVOIC messages and outbound 997 functional acknowledgments at the transac-
tion level.

11.4.3 Dependencies

The 810-INVOIC interface is dependent on a number of development and configu-
ration objects in SAP and the EDI RIM:

EE Logistical invoice verification configuration completed in SAP

EE Process code INVL extended with message code MM for logical message INVOIC

EE Inbound envelopes set up in the RIM for DSI’s X12 810 version 5010 transac-
tions

EE Outbound envelopes for 997 acknowledgments to be created in the RIM for DSI
during de-enveloping of inbound 810 transactions

431

Mapping Specifications 11.5

EE Custom cross-reference table ZEDIXREF populated in SAP to convert EDI trad-
ing partner IDs to the SAP send and receive partner numbers for the inbound
810 from DSI

EE EDI map for X12 810 to INVOIC translations

EE Business process workflows built in the EDI RIM to process and route the incom-
ing X12 810 and INVOIC.INVOIC02 IDocs

EE Message code MM defined for process code INVL

EE Inbound partner profile set up for DSI message type INVOIC with message code
MM and process code INVL

EE Job set up in the SAP Job Scheduler (Transaction SM36) to run twice a day to
post INVOIC.INVOIC02 IDocs with program RBDAPP01 with a variant to select
for all suppliers and all messages at status 64

11.4.4 Assumptions

The EDI RIM will not validate any of the mandatory data elements in the incoming
810 supplier invoice. It will simply map the transaction to the IDoc and SAP will
handle validation. The following are additional technical assumptions:

EE The RIM will map the EDI send and receive trading partner IDs to the IDoc
control record fields SNDLAD and RCVLAD. These fields will be read by an exit
in the IDoc interface to identify the SAP sold-to partner for EDIDC-SNDPRN
and the SAP logical system for EDID-RCVPRN.

EE The RIM will return an X12 997 functional acknowledgment during de-envel-
oping of the inbound X12 810 transaction.

EE EDI errors are tracked and addressed in the EDI system. Technical errors in the
IDoc interface, such as syntax or partner profile errors, are tracked and corrected
by the EDI team.

11.5 Mapping Specifications

A map will be developed in the EDI RIM to map the X12 810 supplier invoice from
DSI to the INVOIC.INVOIC02 XML IDoc to send to Acme’s SAP system.

Table 11.3 outlines mapping requirements for the inbound supplier invoice for
our DSI to Acme Pictures scenario.

432

Processing the Incoming Supplier Invoice11

INVOIC 810 Value Comments

E1EDK01—Header—Min 1, Max 1

@SEGMENT 1 Hard-code segment attribute to 1

CURCY CUR02 USD Document currency

BSART BIG06 INVO Document type. Tells system to post
invoice. If BIG06 = FD, BSART = INVO. If
BIG06 = CR, BSART = CRME, Credit Memo.

E1EDKA1—Partners—Min 1, Max 99—Loop 1 company code

@SEGMENT 1 Hard-code segment attribute to 1

PARVW REF01 RE Acme company code handling purchasing
and payments for DSI where REF01 = DP.
Checked during verification.

PARTN REF02 3000 Acme company code.

E1EDKA1—Partners—Loop 2 supplier

@SEGMENT 1 Hard-code segment attribute to 1

PARVW N101 LF Customer vendor number, where N101 = SU

PARTN N104 23568 Acme SAP partner number for DSI. First
priority in check.

LIFNR N104 0008888888899 GLN for Acme supplier number. Checked if
PARTN not populated.

E1EDK02—Documents—Min 0, Max 10—Loop 1 supplier invoice

@SEGMENT 1 Hard-code segment attribute to 1

QUALF 009 Identifies supplier invoice. Hard code to
IDoc where BIG02 is not null.

BELNR BIG02 0005000020 Supplier invoice number

E1EDK03—Dates—Min 0, Max 10—Loop 1 invoice date

@SEGMENT 1 Hard-code segment attribute to 1

IDDAT 012 Invoice document date

DATUM BIG01 20140115 Supplier invoice date

Table 11.3 Mapping Specification for X12 810 to INVOIC.INVOIC02 IDoc

433

Mapping Specifications 11.5

INVOIC 810 Value Comments

E1EDK03—Dates—Min 0, Max 10 — Loop 2 posting date

@SEGMENT 1 Hard-code segment attribute to 1

IDDAT 024 Identifies baseline date for valuation

DATUM BIG01 20140115 Supplier invoice posting date

E1EDK04—Taxes—Min 0, Max N

@SEGMENT 1 Hard-code segment attribute to 1

MWSKZ TXI01 ST EDI tax code identifying sales tax to be
converted to internal SAP tax code. From
summary level of TX1.

MWSBT TXI02 94.88 Total amount of tax at header pulled from
summary level of TX1

E1EDK18—Terms of payment—Min 0, Max 10—Cash discount

@SEGMENT 1 Hard-code segment attribute to 1

QUALF ITD01 001 Payment terms 1: cash discounts, if
applicable. Cash discount terms where
ITD01 = 22.

TAGE ITD05 10 Cash discount if invoice paid within number
of days

PRZNT TX103 3.0 Percentage of cash discount. Additional
cash discounts or other terms may be
applied dependent on business agreements
with supplier.

E1EDPO1—Item-level details group—Min 1, Max N 1 instance of E1EDP01 per group loop

@SEGMENT 1 Hard-code segment attribute to 1

POSEX IT101 000010 Invoice line item. Same as PO line item
number.

MENGE IT102 100.000 Quantity invoiced

MENEE IT103 EA Unit of measure

Table 11.3 Mapping Specification for X12 810 to INVOIC.INVOIC02 IDoc (Cont.)

434

Processing the Incoming Supplier Invoice11

INVOIC 810 Value Comments

E1EDPO2—Item level documents—Min 1, Max N—Loop 1 Acme PO

@SEGMENT 1 Hard-code segment attribute to 1

QUALF 001 Identifies PO number

BELNR BIG04 4500016169 Purchase order number pulled from BIG04
at header level of 810.

ZEILE IT101 000010 PO line item number pulled from invoice
line item which is from the PO.

E1EDPO2—Item-level documents—Min 1, Max N—Loop 2 delivery

@SEGMENT 1 Hard-code segment attribute to 1

QUALF REF01 016 Identifies delivery number if available from
line item level where REF01 = DO (delivery
order), if available.

BELNR REF02 4000023 Delivery order number.

E1EDP19—Material numbers—Min 1, Max 10—Loop 2 delivery

@SEGMENT 1 Hard-code segment attribute to 1

QUALF IT106 001 Identifies customer material number where
IT106 = IN (buyer’s item number).

IDTNR IT107 9999888 Acme material number

BELNR REF02 4000023 Delivery order number

E1EDP26—Amount—Min 1, Max 20

QUALF 003 Identifies line item amount in document
currency.

BETRG IT102

IT104

1000.00 Multiply quantity (IT102) by unit price
(IT104)

E1EDS01—IDoc summary totals—Min 1, Max 30

SUMID 011 Identifies total billed value of invoice

SUMME TDS01 1094.88 Total gross invoice dollar amount, including
tax

Table 11.3 Mapping Specification for X12 810 to INVOIC.INVOIC02 IDoc (Cont.)

435

EDI Configuration in SAP 11.6

11.6 EDI Configuration in SAP

Let’s walk through IDoc configuration settings in SAP for the inbound INVOIC
supplier invoice message from Disk Services International.

11.6.1 Extending Process Code INVL

Process code INVL will be extended with message code MM to provide a unique
key for the inbound partner profile for logical message INVOIC when used as an
inbound supplier invoice.

1. Go to Transaction WE42 or the WEDI area menu Development • Outbound
Processing Settings M/C • Outbound process code.

2. Click the Display • Change pencil icon (or press (Ctrl)+(F1)), select process
code INVL, and double-click folder Logical message folder in the navigation
pane.

3. Click New Entries (or press (F5)) to open the Details of Added Entries screen.
Add the following values:

EE Message type: “INVOIC”

EE Message code: “MM”

4. Save and assign the entries to a change request. The finished screen should look
like Figure 11.6.

Figure 11.6 Process Code INVL Extended for the Supplier Invoice

436

Processing the Incoming Supplier Invoice11

11.6.2 EDPAR Entries: Transaction VOE4

There are no EDPAR entries for the 810 to INVOIC interface.

11.6.3 ZEDIXREF Entries

Table ZEDIXREF maps the sender’s send and receive EDI trading partner IDs to
the SAP partner numbers; these are DSI’s vendor number in Acme’s system and
the receiving SAP logical system ID.

Table 11.4 lists the values that we’ll enter into custom table ZEDIXREF for the
inbound 810 supplier invoice interface from DSI.

Field Value Description

DIRECT 2 Direction inbound

STDMES 810 X12 supplier invoice transaction

MESTYP INVOIC IDoc invoice message type

IDOCTP INVOIC02 IDoc basic type

CIMTYP IDoc extension, none for this interface

SNDPRN DISK01 SAP send partner: DSI’s customer number in Acme’s
system

RCVPRN DEVCLNT100 SAP receive partner: Acme SAP logical system

SNDLAD 99934567999 EDI send partner: DSI trading partner ID for DSI

RCVLAD 99999998889 EDI receive partner: DSI trading partner ID for Acme

Table 11.4 ZEDIXREF Entry for the Inbound 810 from DSI

11.6.4 Partner Profile: Transaction WE20

The inbound partner profile links DSI to the incoming message type and the pro-
cess code that will trigger the processing function that will post the goods issue
or goods receipt.

We’ll need one inbound partner profile for DSI partner type LI (vendor) with
message type INVOIC. We’ll also add a message code to distinguish the inbound
supplier invoice with logistics invoice verification from any other inbound invoice
we may need in future.

437

EDI Configuration in SAP 11.6

Remember that second process code for logical message INVOIC? INVF posts an
invoice directly to accounting without a purchase order number. We may need
to use it in future, so it’s important to ensure that our partner profile is unique.

In the inbound parameters table control, click Create and add the following values
to the inbound parameters screen (see Figure 11.7):

EE Partner Role: “VN” for vendor

EE Message type: “INVOIC”

EE Message code: “MM”

EE Process code: “INVL” for logistics invoice verification

EE Processing by Function Module: Choose either Trigger by background
program or Trigger immediately.

Figure 11.7 Inbound Partner Profile for Gordy’s Sales Orders

Don’t forget to save. As we have seen, process code INVL links the partner profile
to function module IDOC_INPUT_INVOIC_MRM.

438

Processing the Incoming Supplier Invoice11

11.7 Summary

This closes our little tour of Acme’s purchasing cycle. We’ve touched on three of
its key interfaces: the outbound purchase order (and inbound order confirmation),
inbound goods receipt, and the inbound supplier invoice.

We’ve seen that the invoice is dependent on the purchase order and the goods
receipts that have posted against that PO. The purchase order tells DSI what to
produce and the goods receipts describe what was actually produced for each line
item in the PO.

The quantities and dollar amounts in both must either match the quantities and
dollar amounts billed in the invoice, or at least fall within a set tolerance limit,
which is plus or minus five percent between Acme and DSI.

The purchase order and line item numbers are critical keys that must be returned
in the invoice. Purchase order history, created when goods are received against a
PO line item with either a 101 or 102 movement type, links to both the material
and accounting documents created by the goods receipts.

At its most basic, logistics invoice verification for an inbound supplier invoice
involves the following steps:

EE Determine the invoicing party

EE Convert the incoming company code, tax code, and program parameters through
mapping tables set up in configuration

EE Verify the invoice against the purchase order and goods receipt

EE Post the invoice and the follow-up accounting documents

The other requirement is a unique partner profile for the INVOIC message that trig-
gers logistics invoice verification for the supplier invoice with process code INVL
to distinguish it from an accounting invoice that does not reference a PO number
and uses process code INVF.

In the real world, purchasing is a lot more complicated than what we’ve outlined
in these interfaces. We haven’t even touched on processes such as requirements
and resource planning, raw materials acquisition, inventory management, the pro-
duction life cycle, delivery, payments, and many more, that stretch across Acme,
DSI, and third party suppliers.

439

Summary 11.7

But we needed to get a feel for how Acme gets the goods that it sells to its customers.
Nobody understood the complexity of the business better than Acme’s legendary
founder, Darryl Q. Fernhausen, who knew that you have to buy before you can sell.

The interfaces flowing back and forth may have confused him, but the great Darryl
Q would have been the first to break out into a big smile as he realized how much
money these automated processes could save him in processing costs, time, and
reduced employee error.

And that means greater profit margins from what he sells to his customers, which
was his real passion. So now we will follow the trail of that passion as we address
the order-to-cash cycle: sales, distribution, invoicing, and—our legendary founder’s
greatest joy—payment from the customer.

441

Moving product is the heart of the business, and the great Darryl Q knew
that it’s all about selling stuff. But there’s a long way to go before the
customer gets what he wants. And the first step is the inbound 850 PO. So
let’s look at the specs and go over the business process and consider what else
we need to do to make it work.

12 The Inbound Customer Purchase Order

We’ve already been through the blueprint phase and looked at Acme’s business and
legacy systems. We have a design for our new SAP EDI system and have learned
a little about EDI and the IDoc interface.

Now we’re going to build some interfaces.

The chapters in Act III are written as functional and technical specifications for the
key interfaces in the order-to-cash cycle between Acme Pictures, its most important
customer, Gordy’s Galaxy of Games & B Flix, and its third-party contract manufac-
turer, Disc Services International (DSI).

In this chapter we look at the requirements for building the interfaces, map the
IDocs to the EDI transaction, and go over any custom code or configuration we
may need to be develop.

Because Acme and Gordy are VMI (vendor-managed inventory) partners, they
exchange two types of purchase orders:

1. Direct EDI for new release: X12 850 to ORDERS.ORDERS05

2. VMI PO’s for replenishment and catalog sales

VMI is a two-step process:

EE X12 852 daily sales and weekly inventory feeds to Acme’s VMI system that sup-
ports calculation of suggested customer orders

EE VMI flat file with suggested PO to ORDERS.ORDERS05

442

The Inbound Customer Purchase Order12

The end result is the same for both: Sales orders are created in SAP by an ORDERS.
ORDERS05 IDoc and the order-to-cash processing cycle begins. So let’s look at
both types of order.

12.1 Technical Overview of Interface

The inbound purchase order interface is summarized in Table 12.1.

Item Description

Title Sales order from customer PO–VMI and EDI

Description VMI orders are suggested customer POs created in the VMI
system based on store level daily sales, weekly on-hand
inventory, and other calculations.

EDI sales orders are converted from inbound X12 850 POs
sent by the customer to order new release DVDs. Both types
of order create a sales order in SAP.

Type of interface Sales: X12 EDI or VMI flat file to IDoc

Direction Inbound

Trading partner Gordy’s Galaxy (customer)

IDoc ORDERS.ORDERS05

IDoc extended type

IDoc function IDOC_INPUT_ORDERS

Custom ABAP User exit in enhancement VEDA0001 in modification project
ZEDISOO1

Description Duplicate PO number check on customer PO number,
ship-to partner, and material number

Source file(s) 850 (PO), 852 (VMI), VMI suggested orders flat file

Target document(s) SAP sales order

Transaction code VA01

Map(s) X12 850 vers. 5010 to ORDERS.ORDERS05

VMI orders FF to ORDERS.ORDERS05

Table 12.1 Overview of Inbound EDI and VMI PO Interfaces

443

Functional Specifications 12.2

Item Description

Custom map logic One-to-many mapping; unbundle store order quantity per
material in SDQ segments into one IDoc per store

Source system Gordy’s Galaxy EDI via AS2

Target system Acme SAP via EDI RIM

997 acknowledgment Outbound at transaction detail level. Function group
acknowledgment code: PO

Frequency Daily, on demand

Job schedule RBDAPP01: Every hour, posts all ORDERS message types to
sales orders

Table 12.1 Overview of Inbound EDI and VMI PO Interfaces (Cont.)

12.2 Functional Specifications

The purpose of this interface is to create sales orders in SAP for Gordy’s Galaxy to
order a defined quantity of DVD product by a particular date. This is the first step
in the order-to-cash cycle; all subsequent steps are dependent on the sales order
posting successfully.

When the sales order is saved, it generates an acknowledgment to Gordy. It is
also used to feed requirement calculations for the outbound replication PO to the
contract manufacturer DSI and to generate outbound deliveries.

12.2.1 Process Overview

It begins with an EDI transmission—either an 852 POS to VMI or an 850 customer
purchase order that is translated to an ORDERS.ORDERS05 IDoc.

The 852 sends VMI daily sales and weekly inventory data at the store level. Other
feeds provide such detailed store level information as shelf layout and dimensions.
This all feeds into calculations that generate suggested purchase orders for Gordy’s
Galaxy, which are output in a custom flat file format.

Like the 850 PO, the VMI orders are mapped to an ORDERS.ORDERS05 IDoc and
sent to SAP to create sales orders.

444

The Inbound Customer Purchase Order12

12.2.2 Requirements

SAP sales orders are created for one sold-to and one ship-to partner and will be
identified by order type:

EE ZEDI for EDI orders with no SDQ

EE ZEDS for EDI orders with SDQ

EE ZVMI for VMI orders

The following are additional requirements:

EE There can be no duplicate posting of customer PO numbers except where an
850 with SDQ segments at the item level uses one PO number to order product
for multiple ship-to partners.

EE The order type will post to the sales order from the IDoc rather than from table
EDSDC.

EE Delivery dates and plants for VMI orders are sent from the VMI system. They
can be changed after the sales order is created but before the delivery generated.

EE An order acknowledgment is created when the sales order is saved and is sent
to the EDI RIM as an ORDRSP IDoc, unless there is a credit or other hold on the
customer.

EE Only completed sales orders generate delivery documents. Incomplete orders
can still be saved, but they’ll require follow-up processing and release before
delivery can be generated. Two conditions can lead to an incomplete order:

EE The customer credit check fails.

EE The ATP (item availability) check fails to find sufficient inventory to fill the
order. The sales order can still generate an acknowledgment, but the delivery
document is not generated. The order instead feeds into requirements plan-
ning for a replication PO.

12.2.3 Dependencies

The 850-ORDERS interface is dependent on master data, configuration, and devel-
opment objects in SAP and the EDI RIM:

445

Functional Specifications 12.2

EE Master data objects required to create sales orders, including the following:

EE GL chart of accounts: Assigned to the company code to record dollar values
for costs and revenues for the accounting system

EE Customers: For sold-to and ship-to partners, payment terms, shipping condi-
tions, and credit checks, assigned to Acme sales organization, distribution
channel, and division

EE Delivery plants: For assignment of vendor plants for shipping

EE Materials: For finished DVD movies and component materials

EE Bills of materials: Identifying components in finished goods

EE Customer material info records (table KNMT): for conversion of external
customer to internal Acme SAP material number

EE Pricing conditions: For header-level and item-level standard prices, taxes,
discounts, credits, promotions, freight charges, and so on

EE EDPAR: Partner mapping from external to internal customer numbers ensur-
ing identification of SAP sold-to and ship-to partners

EE EDSDC: Sales organization data for the SAP sold-to partner and the customer’s
vendor number

EE Partner profiles: To identify the sold-to partner for the incoming IDoc order.
Partner profiles will be at the sold-to partner level; there will be only one
partner profile per EDI customer

EE IDoc configuration completed in SAP to support inbound ORDERS for Gordy’s
Galaxy, including custom EDI trading partner mapping table ZEDIXREF

EE EDI maps for 852 VMI and 850 order translations

EE Business process workflows built in the EDI RIM to process incoming 850 POs
and route ORDERS.ORDERS05 IDocs to SAP

12.2.4 Assumptions

Sales orders are created from ORDERS.ORDERS05 IDocs that have been processed
by a scheduled job in SAP. There is only one sold-to and ship-to partner for each
sales order, although one customer PO can be linked to multiple sales orders. The
following are additional key assumptions:

446

The Inbound Customer Purchase Order12

EE Gordy’s Galaxy sends GLNs for its sold-to and ship-to partners.

EE Gordy sends UPC numbers and Acme’s internal SAP material numbers for all
goods ordered.

EE VMI order pricing is determined by pricing conditions for the customer and
material called when the order is created.

EE Pricing for EDI orders is determined when the sales order is created in SAP by
comparing the prices sent in Gordy’s PO to the price proposed by the pricing
conditions configured for the material ordered.

EE If the two match or are within a tolerance limit, Gordy’s price posts to the
sales order.

EE If the difference between the two prices exceeds tolerance, the reason for the
difference is identified, and the correct price is used.

EE The base unit of measure for items ordered is EA (eaches).

EE All data that must be returned to the customer in the invoice must post to the
sales order from the IDoc. Data that can’t be accommodated in a standard field
in the order go into a text element.

EE Business users are responsible for addressing application errors in the IDocs.

EE All EDI system errors are handled by the EDI team.

EE EDI and VMI orders are sent into SAP immediately, and the IDocs are posted
to sales orders within no more than an hour.

EE EDI errors or issues that may affect the timeliness of order creation are com-
municated to the business users immediately.

12.2.5 Data That Will Post to an Inbound Sales Order

SAP sales orders are created with Transaction VA01. At a minimum, the fields listed
in Table 12.2 must be populated to create a sales order.

Table Field Description Sample Value

VBAK AUART Order type ZEDI

VBAK VKORG Sales organization 0010

VBAK VTWEG Distribution channel 10

Table 12.2 Fields That Are Populated When a Sales Order Is Created

447

Functional Specifications 12.2

Table Field Description Sample Value

VBPA PARVW Partner qualifier—sold-to AG

VBAK KUNNR Sold-to partner GRDY01

VBPA PARVW Partner qualifier—ship-to WE

VBPA KUNNR Ship-to partner GRDY01001

VBKD BSTKD Customer PO number 9997895

VBKD BSTDK Customer PO date 20081202

VBAK VDATU Requested delivery date 20081204

VBAP MATNR SAP material number 999284

VBAP KWMENG Order quantity 230

VBAP VRKME Sales unit of measure EA

Table 12.2 Fields That Are Populated When a Sales Order Is Created (Cont.)

12.2.6 Reconciliation Procedure

Successful import of the ORDERS IDoc is confirmed through any of the IDoc moni-
toring tools, such as BD87 or WE05.

IDoc status should be 64—IDoc ready to be transferred to application—before the
scheduled processing job is kicked off and 53—Application document posted—after.

The EDI team confirms the data in the IDoc against the data in the X12 850 trans-
action set sent from the customer, and the users validate that the sales order was
created against the data sent in the IDoc.

12.2.7 Enhancements to the Process

An enhancement is required during sales order creation to ensure that a customer
PO posts only once. This may be a little like squaring the circle. Each PO can contain
product ordering information for multiple store locations at the line-item level,
whereas each SAP sales order only carries ordering information for one store.

This means that we must be able to create multiple sales orders for each PO while
ensuring that the same customer PO number for the same ship-to partner doesn’t
post again.

448

The Inbound Customer Purchase Order12

Double-posting can result in double-ordering and duplicate shipments to the cus-
tomer, leading to unnecessary costs, returns, and customer dissatisfaction with
Acme’s service.

The duplicate PO check occurs in code during IDoc processing and is transparent
to the user. It checks PO number and date, sold-to, and ship-to partner numbers.

If an existing sales orders is found against PO number, the enhancement checks
whether it uses the same material number as the incoming. If it does, it’s most
likely a duplicate posting and an error is returned. IDoc processing is terminated
and the responsible user investigates.

12.2.8 Errors and Error Handling

The following errors may occur during processing of the inbound 850-VMI-ORDERS
interface:

EE The IDoc will fail if the sold-to or ship-to partners don’t exist in SAP, or if the
sales organization can’t be determined. If these errors occur, the customer or
sales organization data are entered, and the IDoc is rerun.

EE The IDoc will fail if SAP can’t identify the material number from the item num-
ber sent in the EDI transaction. The customer is asked to resend the PO, or the
IDoc is edited and reprocessed.

EE A customer PO that has already posted will trigger an error in the IDoc if tries
to post it again. If the PO needs to be reposted, the sales orders that posted in
the initial run are deleted.

EE If there isn’t enough inventory to fulfill an order when the sales order is created,
it will be put on hold and deliveries won’t be generated until inventory is entered
and the sales order completed. The product will be ordered from DSI through
a replication PO.

EE If a customer credit check fails during sales order creation, the order will be put
on hold until the credit department releases it.

Sales order or IDoc errors will be communicated to the responsible business user
immediately. There is a service-level agreement with the partner mandating how
quickly shipments need to be sent after orders are received.

Standard IDoc monitoring programs such as WE05 or B87 will be used to track
and monitor IDocs.

449

End-to-End Process Flow 12.3

12.3 End-to-End Process Flow

Figure 12.1 gives an overview of the end-to-end process flow for creating SAP sales
orders from EDI transmissions.

Mapping: Flat file
structure

RBDAPP01:
Process IB IDocs

Fail

Throw error

END: To
ORDRSP-855

Acme SAP

EDI X12 850—
1 purchase order

EDI X12 852:
POS/Inv/RPO

Acme VMI

VMI flat file
852 structure

ORDERS: 1 IDoc/
order per ship-to

VMI order multiple
ship-to per order

Mapping: SDQ
unravelling

Mapping: SDQ
unravelling

Post sales orders
against IB PO

Item
check

IDoc interface:
Store in DB at

status 64

Duplicate
check

Partner
check

Fail

Fail

OK

OK

OK

Figure 12.1 The Inbound EDI/VMI Order Creation Process

450

The Inbound Customer Purchase Order12

Two processes are at work here for Gordy’s Galaxy: new release orders with EDI
and replenishment and catalog orders with VMI. The two merge with the creation
of one ORDERS message instance for each sales order that will post to SAP.

This is easier said than done because the 850 PO and the VMI order file include all
ordering data for each of Gordy’s 2,000 store locations at the item level. Ordering
quantity for each store in the 850 is in one or many SDQ segments that occur as
children of item-level parent segment PO1, which contains the item numbers and
total item quantity for the product being ordered.

The SDQ segment can hold order quantities for up to 10 stores. The VMI order file
is structured in a similar manner. But an SAP sales order can only be created for
one sold-to and one ship-to store location. We need to build one ORDERS IDoc for
each store that includes each DVD product ordered by that store, with its quantity,
in a separate line item.

This can be handled in an ABAP program if we build an ORDERS05 basic type with
an SDQ segment to bring the PO data into SAP.

We’ll look at the logic for doing this, whether in a map through a Java exit, a script,
or ABAP. The logical problem is the same, but the specifics of doing it vary from
tool to tool. Many mapping tools have robust programming or rules languages
that allow conditional processing, looping, indexing, and also support arrays and
even Java objects.

Some mapping tools natively support splitting out multiple sales by ship-to partner
from SDQ segments in one 850 PO.

But Acme’s doesn’t, so we have to code it. As long as our mapping tool has access
to all of the source structures and data, we should be able to unravel the SDQ into
multiple orders with the help of a little creative code.

12.3.1 VMI Processing

The VMI process flow begins with an 852 transmission from Gordy’s Galaxy by
AS2 into the EDI RIM. The 852 carries three types of data:

EE Nightly point of sale (POS) data from each store that consolidates check-out
scans of items sold in each store throughout the day

EE Weekly on-hand inventory levels in every store

451

End-to-End Process Flow 12.3

EE Intermittent open reserved PO numbers (RPOs), before Acme runs out of valid
PO numbers for VMI orders.

The 852 is mapped to an internal flat file with a structure similar to the 852 and
is sent into the VMI system. This file is also sent to the legacy StoreData system
for use in store-level replenishment calculations that include such esoteric values
as floor size, shelf location, shelf dimensions, title order history, minimum and
maximum order levels, and so on, for each store.

The results of these calculations are sent to VMI in a flat file. The final order calcu-
lations include the StoreData feed, additional algorithms on the POS and weekly
inventory data, and a number of daily feeds from SAP, including the following:

EE Customer store locations

EE Finished goods master data

EE BOMs and BOM changes since the last feed

EE Inventory levels at the vendor’s warehouse

EE Open and changed sales orders

EE Open deliveries

EE Returns

EE Open vendor POs for manufacture of finished goods

The result of all this activity is a suggested PO that aggregates item orders for each
of Gordy’s stores. The PO number is pulled from a table populated by the RPO feed.
The selected number is then marked consumed and is no longer available for use.

The VMI order is extracted to an ASCII file by VMI. The file has a flatter structure
than an 850 PO, but it includes an SDQ-like record with order item quantity for
up to six stores in each segment that is a child to an item header that identifies the
product being ordered.

The following key values are mapped to the IDoc:

EE The SAP sold-to partner number for Gordy to the send partner field in the con-
trol record EDIDC-SNDPRN

EE Order type ZVMI for VMI order to field E1EDK14-ORGID with qualifier 012 in
field QUALF

EE The RPO number to field E1EDK02-BELNR with qualifier 001 in field QUALF

452

The Inbound Customer Purchase Order12

EE Gordy’s store location GLN to E1EDKA1-LIFNR with qualifier WE in field PARVW

EE The quantity to be ordered for each item in field E1EDP01-MENGE

EE The SAP material number for each movie ordered in field E1EDP19-IDTNR with
qualifier 002 in field QUALF

EE The item’s UPC code in field E1EDP19-IDTNR with qualifier 003 in field QUALF

EE Gordy’s item number in field E1EDP19-IDTNR with qualifier 001 in field QUALF

The VMI order file is exported to the EDI RIM, where it is identified as a VMI order
for Gordy’s Galaxy. RIM calls a map that unravels the store-level data and builds
one ORDERS IDoc for each store and each product being ordered by that store.

The IDocs are batched together into a file and, at this point, the VMI process ends
and the IDoc is sent into SAP through the IDoc adapter.

12.3.2 EDI 850 Processing

The EDI processing flow begins with the receipt of an 850 PO transmission from
Gordy’s Galaxy by AS2 into the EDI RIM. The RIM identifies the 850 from Gordy,
strips away envelope, and calls the map to translate it.

Gordy uses the SDQ segment at the item level to identify each store and the quan-
tity of product being ordered. As with the VMI file, the map unravels order data
from the item level and builds one XML ORDERS IDoc for each store ship-to party.

The same key values are mapped to the IDoc as for the VMI order.

The IDocs are batched into a file and sent by the RIM into SAP through the IDoc
adapter by calling function EDI_DATA_INCOMING.

12.3.3 VMI and EDI Processes Merge

At this point, the VMI and EDI processes merge. The SAP IDoc interface kicks in,
confirms that the file contains IDocs, converts the XML to ASCII, checks that there
are matching partner profiles, and writes the IDocs to the database at status 64.

The IDocs are processed by program RBDAPP01, which is scheduled to pick up Gordy’s
orders every hour. RBDAPP01 reads the IDoc database and identifies all ORDERS
IDocs at status 64 where EDIDC-SNDPRN equals Gordy’s SAP sold-to partner.

453

End-to-End Process Flow 12.3

It then identifies the IDoc function—IDOC_INPUT_ORDERS—from the process code
ORDE in the inbound partner profile for Gordy’s Galaxy message type ORDERS
and calls it to post the IDocs to sales orders. IDOC_INPUT_ORDERS takes over and
loops through the IDoc.

When it hits segment E1EDKA1, it reads EDPAR to convert Gordy’s GLN to the SAP
ship-to partner number. If the EDPAR read fails, an error is thrown, IDoc process-
ing stops, and a status 51 application error is added to the IDoc status record. The
conversion can’t be made because it’s not there.

If the read succeeds and the conversion is made, the system checks that the ship-to
partner is valid for the sales organization against which the order is being posted.

If this check fails, an error is returned. The ship-to partner may need to be extended
to the sales organization reported or the sales organization may be wrong. The
sold-to partner is checked during creation of the sales order.

After the ship-to partner is validated, a duplicate order check is run to ensure that
the customer PO hasn’t already posted a sales order for the current sold-to and
ship-to partners.

Table VBAK is read for the sales organization, order type, SAP sold-to partner,
customer PO number, and date, and material number. If there’s no hit, there’s no
duplicate, and IDoc processing continues to the next check.

If there is a hit, table VBPA is read with the sales order number and sold-to partner
to identify the ship-to. VBPA stores complete partner data for all sales documents. If
there’s no hit, the ship-to party is different, and PO duplicate check processing exits.

If there is a hit, we have a possible duplicate. The final check is on the material number.
If they are the same in the sales order as in the posting IDoc, then we have a dupli-
cate. We do this by reading table VBAP with the sales order and material numbers.

Fun with Sales Document Data

In a typical system, VBAK and VBAP can grow to be extremely large tables. There may be
times that you need to identify one or more sales orders for a sold-to partner or material
but have no sales order number to go by.

SAP’s sales document index tables speed searches across sales, delivery, and billing
document tables, even if you do not have a document number. The index tables have
a consistent format and offer a variety of selection options, including creation dates,
document types, sales organizations, and so on.

454

The Inbound Customer Purchase Order12

Index table names always begin with a V and include two characters from the main
header or item table name of the sales document:

EE VAK (header) or VAP (item level) for sales orders

EE VLK (header) or VLP (items) for delivery docs

EE VRK (header) or VRP (items) for billing documents

The last two characters identify the key selection option used in the index:

EE VAKPA: sales orders by sold-to partner

EE VAPMA: sales orders items by material number

EE VLKPA: delivery documents by ship-to partner

EE VLPMA: delivery items by material number

EE VRKPA: billing documents by payer partner

EE VRPMA: billing document items by material number

Perhaps your code needs to identify all IDocs generated from a sales order. Function
NREL_GET_NEIGHBOURHOOD links the sales order number (the object key) and its business
object type (BUS2032) to all IDocs that were created or generated from it.

You only need to populate the IS_OBJECT import parameter with the sales order number
with all leading zeroes into the OBJKEY field and the business object into the OBJTYPE field.

The function returns a list of all IDoc numbers in the OBJKEY_B field for IDocs generated
from the sales order. Of course, this not restricted to sales orders: you can do the same
for any document that has a business object.

If the material number is the same, an error is returned and IDoc processing ends.
The responsible user checks the sales order and confirms. If it’s a duplicate, either
the IDoc or the posted sales order is marked for deletion. If the sales order is
deleted, the IDoc is reprocessed.

If the PO number is incorrect, it’s corrected in the IDoc and reprocessed.

The next check is on the item with the SAP material number checked first. If
there’s no SAP material number in the IDoc, the customer info record (CMIR) is
read from table KNMT with the customer number, sales organization, and Gordy’s
UPC number.

If there’s a hit, the SAP material number is pulled into the IDoc and material check
processing ends. If it fails, an error is returned. Either the customer material number
is incorrect or the CMIR record hasn’t been maintained in KNMT.

455

Technical Specifications 12.4

If all checks are passed, or errors are corrected and the IDoc reprocessed, the func-
tion passes data from the IDoc to an internal table referencing Data Dictionary
structure BDCDATA. These data are used to create the sales order through a call
to Transaction VA01. As the order is saved, the system does its ATP, credit check,
and other checks.

The process ends when output control kicks in and generates an ORDRSP IDoc
to send to Gordy to acknowledge posting of its PO or VMI order. The acknowl-
edgment is especially important for VMI orders, because the PO was created by
Acme’s systems. Gordy uses the acknowledgment to create the purchase order in
their own business system.

12.4 Technical Specifications

This technical specification describes interface configuration and custom program
support in the EDI RIM and SAP for the delivery, translation, and creation of EDI
and VMI sales orders in SAP.

12.4.1 Technical Requirements

One ORDERS.ORDERS05 IDoc is generated by the translation map for each store
location ship-to party and all items ordered by that location for order types ZVMI
(VMI), ZEDI (EDI no SDQ), or ZEDS (EDI with SDQ).

Custom coding in user exits blocks posting of duplicate customer POs to SAP sales
orders.

Configuration in the EDI RIM and SAP supports inbound orders and outbound
997 acknowledgments.

12.4.2 Dependencies

The 850-VMI-ORDERS interface is dependent on a number of development objects
in SAP and the EDI RIM:

EE Inbound envelopes set up in the RIM for Gordy’s 850 and 852 version 5010
EDI transactions

EE Outbound envelopes for 997 acknowledgments to be created in the RIM for
Gordy’s Galaxy during de-enveloping of inbound 850 and 852 transactions

456

The Inbound Customer Purchase Order12

EE Custom cross-reference table ZEDIXREF populated in SAP to convert EDI trad-
ing partner IDs to the SAP send and receive partner numbers for the inbound
850 from Gordy

EE Job to be set up in the SAP Job Scheduler (SM36) to run once an hour to post
ORDERS.ORDERS05 IDocs with program RBDAPP01 with variants to select for
Gordy’s Galaxy and status 64

12.4.3 Assumptions

Purchase orders from Gordy’s Galaxy post from to Acme sales orders from 850
EDI transactions and VMI suggested orders. Gordy sends both SDQ and non-SDQ
POs. The following are additional technical assumptions:

EE The map, a script, or a custom external or ABAP program will extract store-level
item ordering data in the SDQ segment into an indexed array and build one
ORDERS.ORDERS05 IDoc for each store location.

EE The RIM maps the EDI send and receive trading partner IDs to the IDoc control
record fields SNDLAD and RCVLAD. These fields are read by an exit in the IDoc
interface to identify the SAP sold-to partner for field EDIDC-SNDPRN and the
SAP receiving logical system for field EDID-RCVPRN.

EE The RIM will return an X12 997 functional acknowledgment during de-envel-
oping of the inbound X12 850 transaction.

EE During the EDPAR check on partner segment E1EDKA1, the SAP sold-to partner
is read from EDIDC-SNDPRN and used to convert Gordy’s GLN for the ship-to
partner.

EE EDI errors are tracked and addressed in the EDI system. Technical errors in the
IDoc interface, such as syntax or partner profile errors, are tracked and corrected
by the EDI team.

12.5 Mapping Specifications

SDQ segments at the item level of the VMI order and the EDI 850 PO contain order
quantities for each store. The product and total order quantity for the line item are
identified in the parent line-item segment.

457

Mapping Specifications 12.5

The map, with a little custom coding, extracts the line-item material and SDQ
quantity data for each location, identified by GLN in the SDQ record, and builds
one ORDERS.ORDERS05 IDOC for each store.

GLN for the store is inserted into field E1EDKA1-LIFNR with qualifier WE at the
header level of the ORDERS IDoc. The basic principle is that each SAP sales order
includes all DVD movies ordered by one sold-to partner (Gordy’s Galaxy) for one
ship-to partner (Gordy’s store location).

The map has a one-to-many relationship between the input and the output. In
addition, it moves the store’s GLN from the item level of the input to the header
level of the output.

This is a common issue in EDI implementations. SDQ is widely used in the 850
PO, 852 POS, and 855 confirmation. Most mapping tools that handle this do so
with custom code. We’ll look at a logical process that uses an indexed array and
some looping that can be used to build one IDoc for each store in an SDQ segment.

To better understand where we’re coming from and where we want to go, we need
to look at our mapping specifications for the 850 SDQ PO to the ORDERS IDoc,
which are outlined in Table 12.3.

ORDERS 850 Value Comments

E1EDK01 — General header—Min 1, Max 1

@
SEGMENT

1 Hard-code segment attribute
to 1.

CURCY CUR02 USD Document currency

BELNR BEG03 990012 Customer PO number.

E1EDK14— Org data—Min 0, Max 12

@
SEGMENT

1 Hard-code segment attribute
to 1.

QUALF 012 Order type. Hard code.

ORGID ZEDS EDI with SDQ with QUALF
012. Hard code.

Table 12.3 Mapping Specification for EDI 850 PO to ORDERS.ORDERS05 IDoc

458

The Inbound Customer Purchase Order12

ORDERS 850 Value Comments

E1EDK03—Header Dates—Min 0, Max 10

@
SEGMENT

1 Hard-code segment attribute
to 1.

IDDAT DTM01 002 Identifies requested delivery
date where DTM01 = 010

DATUM DTM01 20140115 Customer requested delivery
date

E1EDKA1—Partners—Min 1, Max 99—Loop 1 Sold-to

@
SEGMENT

1 Hard-code segment attribute
to 1.

PARVW REF01 AG Sold-to partner where REF01
= DP. Department code.
Gordy purchasing department
responsible for Acme.

LIFNR REF02 0001 Gordy’s internal purchasing
department number to be
converted by EDPAR to Acme
SAP number

E1EDKA1—Partners—Loop 2 Supplier

@
SEGMENT

1 Hard-code segment attribute
to 1.

PARVW N101 LF Customer vendor number,
where N101 = SU

PARTN N104 23568 Acme SAP partner number for
DSI

E1EDKA1—Loop 3 Ship-to—Non-SDQ

@
SEGMENT

1 Hard-code segment attribute
to 1.

PARVW N101 WE Customer ship-to number
where N101 = ST

LIFNR N104 0008888888888 GLN for Gordy’s store number

Table 12.3 Mapping Spec for EDI 850 PO to ORDERS.ORDERS05 IDoc (Cont.)

459

Mapping Specifications 12.5

ORDERS 850 Value Comments

E1EDKA1—Partners—Loop 3 Ship-to—SDQ

@
SEGMENT

1 Hard-code segment attribute
to 1.

PARVW WE Hard-code WE

LIFNR SDQ03 –
SDQ21

GLN for Gordy’s store number
from SDQ segment at line-item
level. Odd number SDQ fields
have store numbers that will be
split out to multiple IDocs, one
per ship-to partner.

E1EDK02—Documents—Min 0, Max 10

@
SEGMENT

1 Hard-code segment attribute
to 1.

QUALF BEG01 001 Customer PO qualifier

BELNR BEG03 999999 Customer PO number
(repeated)

DATUM BEG05 20131215 PO date in format YYYYMMDD

E1EDPO1—Item level details group—Min 1, Max N 1 instance of E1EDP01 per group loop

@
SEGMENT

1 Hard-code segment attribute
to 1.

POSEX PO101 000010 Line item number

MENGE PO102 500 Total quantity ordered for item.
For SDQ, quantity will come
from the even numbers SDQ04
to SDQ22 paired with the store
number, split into one ORDERS
IDoc per ship-to partner and
quantity pair.

MENEE PO103 EA Unit of measure for total
quantity

VPREI PO104 9.485 Unit price

Table 12.3 Mapping Spec for EDI 850 PO to ORDERS.ORDERS05 IDoc (Cont.)

460

The Inbound Customer Purchase Order12

ORDERS 850 Value Comments

E1EDP19—Materials—Group Min 1, Max 5 per E1EDP01 loop

@
SEGMENT

1 Hard-code segment attribute
to 1.

QUALF PO106 003 Customer material number
where P0106 = IN. Gordy uses
GTIN code.

IDTNR PO107 9999999 Customer’s product number

Table 12.3 Mapping Spec for EDI 850 PO to ORDERS.ORDERS05 IDoc (Cont.)

12.5.1 Structure of the 850 to IDoc Build Array

We’ll take a two-step approach. First we’ll loop through the 850 input data and
map it to a build array with two segments that flatten the IDoc header and item
records, as illustrated in Table 12.4. The build array segment and field names are
in the Build Elements column.

Build
Elements

Value Comments

IDOC_HDR Record Line—Header Level Data—Mandatory—Max 1

STOREIDX 5 Store index for GLN

DC4_MANDT 100 SAP target client

DC4_DOCREL 702 SAP version

DC4_DIRECT 2 Inbound

DC4_IDOCTYP ORDERS05 Basic type

DC4_MESTYP ORDERS Message type

DC4_STD X EDI standard

DC4_STDVRS 005010 EDI version

DC4_STDMES 850 EDI transaction

DC4_SNDPOR XML_IDOC Sender file port

Table 12.4 IDoc Build Array With 2 Flattened Header and Item Segments

461

Mapping Specifications 12.5

Build
Elements

Value Comments

DC4_SNDPRT KU Customer

DC4_SNDPFC AG Sold-to partner

DC4_SNDPRN 0001 Gordy’s sold-to (department no.)

DC4_SNDLAD Gordy’s EDI sender partner ID

DC4_RCVPOR SAPDEV Receiver port

DC4_RCVPRT LS Logical system

DC4_RCVPRN SAPDEV100 Logical client

DC4_RCVLAD Gordy’s EDI receiver partner ID for Acme

DC4_REFINT ISA Ctrl number

DC4_REFGRP GS Grp Ctrl number

DC4_REFMES 850 ST Txn ID

K01_BELNR 990012 Customer PO no.

K14_QUALF 12 Order type

K14_ORGID ZEDS EDI SDQ order

K03_IDDAT 002 Req. delivery date

K03_DATUM Date

KA1AG AG Sold-to customer

KA1AG_LIFNR 0001 Gordy’s sold-to (department no.)

KA1LF LF Cust. vendor number

KA1LF_LIFNR Acme GLN

KA1WE WE Cust. ship-to number

KA1WE_LIFNR Gordy ship-to from SDQ segment

K02_QUALF 001 Customer PO

K02_BELNR 990012 PO number

Table 12.4 IDoc Build Array With 2 Flattened Header and Item Segments (Cont.)

462

The Inbound Customer Purchase Order12

Build
Elements

Value Comments

K02_DATUM 20131215 PO date

IDOC_ITEM Record Line—Item details 1 to N looping group

P01_POSEX 0001 Item number

P01_MENGE 50.000 SDQ qty

P01_MENEE EA UOM

P01_VPREI Unit price

P19_
QUALF_001

001 Customer item

P19_IDTNR 9999999 Material number

Table 12.4 IDoc Build Array With 2 Flattened Header and Item Segments (Cont.)

These two segments mimic and simplify the ORDERS05 IDoc structure. We also have
an index at the header level that will be used to identify the IDoc being assembled
in the build array for a particular store location.

This IDoc build array is where our custom code will collect and assemble the data that
we need to built one IDoc for each SDQ store location. Each IDoc will be identified
by an index that links the common header data from the 850 to the store location
number from the SDQ and all materials it may be ordering in all P01 segments.

The code will unravel the SDQ segments by store and quantity pair into an array
that will be used to pass the store’s GLN number to the header level E1EDKA1-
LIFRN field with PARVW WE. A store level index will be set that will map material
and quantity data to an item details segment for every instance of that store GLN
ID that occurs throughout the 850 loop.

Each time a new store is encountered in the SDQ, a new header will be created,
and a new store index linked to the transaction index.

In addition, a third index will keep track of the total number of records recorded
for each store location, including the header record. This will allow us to get the
index for the last record stored in the IDoc build array.

463

Mapping Specifications 12.5

12.5.2 Mapping the Build Array to the Target IDoc

Once the 850 has been completely looped through, the IDoc build array will be
mapped to the IDoc target structure. There should be one flattened header and
one-to-many item detail records for each store location in the build array. Each
of these will create one IDoc in the target ORDERS05 structure as the code loops
through each build array record.

Whether you can do this in your mapping tool depends on how it processes source
and target files, its rules language, and/or ability to call external exits from the map.
You can follow the same logic in an ABAP program (or a script) but would need to
build an extended IDoc with an SDQ segment.

Table 12.5 details the mapping specifications for the IDoc build to IDoc target array.

Input IDoc Target Value Comments

IDOC_HDR Record Line—Header Level Data—Mandatory—Max 1

DC4_MANDT EDI_DC40-MANDT 100 SAP target client

DC4_DOCREL EDI_DC40-DOCREL 702 SAP version

DC4_DIRECT EDI_DC40-DIRECT 2 Inbound

DC4_IDOCTYP EDI_DC40-IDOCTYP ORDERS05 Basic type

DC4_MESTYP EDI_DC40-MESTYP ORDERS Message type

DC4_STD EDI_DC40-STD X EDI standard

DC4_STDVRS EDI_DC40-STDVRS 005010 EDI version

DC4_STDMES EDI_DC40-STDMES 850 EDI transaction

DC4_SNDPOR EDI_DC40-SNDPOR XML_IDOC Sender file port

DC4_SNDPRT EDI_DC40-SNDPRT KU Customer

DC4_SNDPFC EDI_DC40-SNDPFC AG Sold-to partner

DC4_SNDPRN EDI_DC40-SNDPRN 0001 Gordy’s sold-to
(department no.)

DC4_SNDLAD EDI_DC40-SNDLAD Gordy’s EDI sender
partner ID

Table 12.5 Arrays to Build and Bundle IDocs in SDQ Process

464

The Inbound Customer Purchase Order12

Input IDoc Target Value Comments

DC4_RCVPOR EDI_DC40-RCVPOR SAPDEV Receiver port

DC4_RCVPRT EDI_DC40-SNDPRT LS Logical system

DC4_RCVPRN EDI_DC40-SNDPRN SAPDEV100 Logical client

DC4_RCVLAD EDI_DC40-RCVLAD Gordy’s EDI receiver
partner ID for Acme

DC4_REFINT EDI_DC40-REFINT ISA Ctrl number

DC4_REFGRP EDI_DC40-REFGRP GS Grp Ctrl number

DC4_REFMES EDI_DC40-REFMES 850 ST Txn ID

K01_BELNR E1EDK01-BELNR 990012 Customer PO no.

K14_QUALF E1EDK14-QUALF 12 Order type

K14_ORGID E1EDK14-ORGID ZEDS EDI SDQ order

K03_IDDAT E1EDK03-IDDAT 002 Req. delivery date

K03_DATUM E1EDK03-DATUM Date

KA1AG E1EDKA1-PARVW AG Sold-to customer

KA1AG_LIFNR E1EDKA1-LIFNR 0001 Gordy’s sold-to
(department no.)

KA1LF E1EDKA1-PARVW LF Cust. vendor number

KA1LF_LIFNR E1EDKA1-LIFNR Acme GLN

KA1WE E1EDKA1-PARVW WE Cust. ship-to number

KA1WE_LIFNR E1EDKA1-LIFNR Gordy ship-to from SDQ
segment

K02_QUALF E1EDK02-QUALF 001 Customer PO

K02_BELNR E1EDK02-BELNR 990012 PO no.

K02_DATUM E1EDK02-DATUM 20131215 PO date

IDOC_ITEM Record Line—Item Details 1 to N Looping Group

P01_POSEX E1EDPO1-POSEX 0001 Item number

Table 12.5 Arrays to Build and Bundle IDocs in SDQ Process (Cont.)

465

SDQ Processing Program Logic 12.6

Input IDoc Target Value Comments

P01_MENGE E1EDPO1-MENGE 50.000 SDQ qty

P01_MENEE E1EDPO1-MENEE EA UOM

P01_VPREI E1EDPO1-VPREI Unit price

P19_
QUALF_001

E1EDP19-QUALF 001 Customer item

P19_IDTNR E1EDP19-IDTNR 9999999 Material number

Table 12.5 Arrays to Build and Bundle IDocs in SDQ Process (Cont.)

So let’s give it a try.

12.6 SDQ Processing Program Logic

Our basic working assumption is that the entire 850 input file is available for
processing before we map to the ORDERS.ORDERS05 IDoc target file. We also
assume that we can declare and loop through indexed arrays in our mapping tool
rules or at least that we can call an external program, class file, or script from a
user exit in the map.

We’ll process the 850 file in three loops with the help of a number of key indexes:
one on the transaction, another on each P01 item, and the third on an array cre-
ated from the SDQ segment within each P01 loop.

The IDocs are built in the flattened build array during the deepest loop, at the
SDQ level within each item, after the store location and quantity pairs in the SDQ
segments have been moved into an indexed array.

The logical processing flow for creating one ORDERS IDoc for each store in an
SDQ 850 PO is outlined in Figure 12.2. Though it seems that there’s a lot of stuff
happening here, it’s not as complex as it might seem.

The code loops through the input one 850 transaction at a time, setting the trans-
action-level index (TXNIDX) to 1. All other indexes are reset to 0 with each 850
transaction loop. TXNIDX identifies common header data pulled from the current
850 that will be written to the IDOC_HDR record for each IDoc that we build for
each store in our SDQ segments.

466

The Inbound Customer Purchase Order12

Set txnIdx = 1
Build header

record 1

IDoc header: PO
no/date/ordertyp/

delivery date

N1 Loop 1-2:
AG sold-to
LF vendor

N1 Loop 3:
Check for store

Store ship-to in
E1EDKA1-WE

LIFNR

1 850 = 1 IDoc
ORDERS05

ORDERS05
IDocsORDERS05

IDocsORDERS05

1 IDoc written to
target IDoc file for

each store GLN

Begin loop
on 850 Txn

N103 = STYes

No

SDQ processing:
Begin looping
on PO1 item

Line item no/
cust mat/tot qty/

unit price

Loop on array,
read store_map
w/ store GLN

GLN exists Yes
IDoc exists get
lastPosIdx/mat

qty to idoc_item

Insert idoc_item
to existing IDoc
index lastPosIdx

No

IDoc does not
exist—create

new store IDoc

 Set lastPosIdx =
lastPosIdx + 1
in store_map

Set storeIdx =
storeIdx + 1
in store_map

Append to build
array: idoc_hdr
w/ index txnIdx

 Set lastPosIdx =
lastPosIdx + 1
in store_map

 Set lastPosIdx =
cur. build array
table index + 1

Update idoc_hdr
storeIdx. GLN to
E1EDKA1-WE

Collect mat/price
from PO1, qty

from SDQ array

Append idoc_item
to build array w/
index lastPosIdx

SDQ: Build store/
qty array with
common index

Insert GLN to
store_map

Figure 12.2 Processing Flow for Unbundling SDQ Orders

The BEG segment is read first. Base PO data are moved into the K01 and K02 fields
of the IDOC_HDR record using index TXNIDX:

467

SDQ Processing Program Logic 12.6

EE BELNR: Customer PO number from BEG03

EE DATUM: PO date from BEG05

EE QUALF: PO qualifier 001

Constant IDoc header values are also passed to the header records:

EE EDI_DC40: All known IDoc control record fields

EE K14: QUALF 012 and ORGID ZEDS

The DTM segment is read next. DTM01 is checked for qualifier 010. If it’s found,
the following values are written to the K03_002 fields with index TXNIDX:

EE IDDAT: Qualifier 002 identifying the requested delivery date

EE DATUM: Date from DTM02

A translation error is thrown if qualifier 010 isn’t found in DTM01. The delivery
date is a mandatory field in Acme’s SAP system.

The N1 looping group is read next. N103 is checked for qualifiers AG and SU. If
found, the sold-to number is passed to KA1AG_LIFNR and the vendor to KA1LF_
LIFNR. AG is passed to KA1AG_PARVW and LF to KA1LF-PARVW.

During loop read 3 of the N1 group, N103 is checked for qualifier ST store loca-
tion. If qualifier ST is found in N103, there are no SDQ segments and standard
processing proceeds. One IDoc is generated for each 850 transaction.

If the ST qualifier is not found, loop processing exits and SDQ processing proceeds.

Another loop is kicked off when PO1 is hit. PO1 is the first segment read in the
group. The following values are passed from the PO1 segment to the P01 fields of
the IDOC_ITEM record:

EE POSEX: Item number from PO101

EE VPREI: Unit price from PO104

The ordered items are passed next to the P19 fields of the IDOC_ITEM record from
the PO1 segment of the 850:

EE QUALF_001: Qualifier 001 where PO106 = IN

EE IDTNR: Gordy’s material number from PO107

468

The Inbound Customer Purchase Order12

The values that we’ve collected into our temporary IDoc so far serve as the template
that we’ll use to build each IDoc for each store and quantity pair in the SDQ seg-
ment within the current item loop. These values will be common to all IDocs that
we create from this 850 for each store regardless of items and quantity ordered.

Reading the SDQ Segments

Now we come to the fun part. The SDQ segments are read, one at a time. They
hold the store locations as GLNs paired with an order quantity for the material in
the parent PO1 segment.

Each store location and quantity pair is moved into an indexed array (or an internal
table if you’re doing this in ABAP) that we’ll loop through to create one IDoc for
each store. The array could look something like Table 12.6.

Index GLN Qty

1 9997495958768 23

2 9997495959876 12

3 9997495960786 6

4 9997495961986 45

5 9997495962686 20

Table 12.6 Indexed Array with Store Order Quantity Pairs

This unravels the SDQ into a tabular structure with one record per store and
quantity pair.

We can now loop through this array within our current loop on the 850 PO1 item
and match the store and quantity to the material being ordered for it.

All SDQ segments within the PO1 group are processed one at a time during execu-
tion in the order they appear in the group. The logic to build the SDQ array would
look something like this in pseudo code:

IF SDQ0N IS NOT NULL THEN
 MOVE SDQ0N TO SDQ_ARRAY COL2
 MOVE SDQ0NN TO SDQ_ARRAY COL3
 SDQIDX = SDQIDX + 1
 MOVE SDQIDX TO SDQ_ARRAY COL1

469

SDQ Processing Program Logic 12.6

 STORECNT = SDQIDX.
ENDIF.

Each store location and quantity pair in each SDQ segment is treated in the same
way. SDQ0N is the number of the location-quantity data pairs, beginning with SDQ03
for the store and SDQ04 for the quantity, and ending with SDQ21 for the store and
SDQ22 for the quantity.

After all SDQ segments have been read, and the SDQ array built with all store-
quantity pairs for the current item, the PO1 loop ends. Before we begin to loop on
the next PO1 group, another loop is kicked off on the SDQ array.

This is where we build our IDocs, one for each store, regardless of the number of
items ordered by each store.

At the top of each loop of the SDQ array, a Java hash map object or other array
or internal table (STORE_MAP) is searched for the store GLN being processed by the
current loop pass. STORE_MAP has the GLN number for the store, its STOREIDX, and
a LASTPOSIDX that identifies the last row in the IDoc build array that a store record
was appended to.

If the store GLN is not found in STORE_MAP, no IDoc exists yet for that store and a
new IDoc will be appended to the IDoc build array for the store. But first the GLN
is appended to STORE_MAP and a unique STOREIDX assigned to it.

We build the new IDoc by appending every field of IDOC_HDR at index TXNIDX to
the IDoc build array. We then move the store’s GLN into the KA1WE_LIFNR field
and its STORE_MAP index to the STOREIDX field in the new IDOC_HDR. This links the
new IDoc to the store location.

Next the item data that were collected from the current 850 PO1 group are writ-
ten to a new IDOC_ITEM record and the row number of the insert is moved into
STORE_MAP-LASTPOSIDX.

The order quantity for that store is then moved from the SDQ array to the P01_MENGE
field and the material number to P19_IDTNR and 001 to P19_QUALF_001.

Each GLN in the current SDQ array is processed in the same way until the last record
is reached. If no matching record is found in STORE_MAP, a new IDoc is appended
for each GLN. At the end of the PO1 loop, the SDQ array is cleared.

470

The Inbound Customer Purchase Order12

The next PO1 is then read in a loop, if it exists, and a new SDQ array built. If a
store GLN is found in STORE_MAP, then an IDoc already exists for that store. We’ll
append our new IDOC_ITEM data—material number, quantity and unit price—to
the existing IDoc in the IDoc build array, identifying the insertion point with the
LASTPOSIDX index from STORE_MAP.

The order quantity for the store is then read from the SDQ array and written to
the P01_MENGE field in the IDOC_ITEM record being appended to the existing IDoc
with write index LASTPOSIDX.

Listing 12.1 shows pseudo code for this loop. This code is called after the PO1
segment has been processed.

loop at sdq_array.
 read store_map for key store_GLN
 if exists get storeIdx lastPostIdx from store_map
 append current idoc_item_p01 fields to existing IDoc
 using index lastPostIdx
 move quantity from SDQ array to
 idoc_item-p01_menge using index lastPostIdx
 lastPostIdx = lastPostIdx + 1
 move lastPostIdx to store_map-lastPostIdx
 else does not exist create new IDoc
 move store GLN to store_map-GLN
 move storeIdx to store_map-storeIdx
 store_map-storeIdx = store_map-storeIdx + 1
 append idoc_hdr fields to build IDoc array

 using index txnIdx
 move store_map-storeIdx to idoc_hdr-storeIdx
 move WE to IDOC_HDR-KA1_WE in new IDoc
 using index current table index
 move store GLN from current SDQ array to
 idoc_hdr-kai_we_lifnr in new IDoc
 using index current IDoc build array index
 append current idoc_item_p01 fields to new IDoc
 move quantity from current SDQ array to
 idoc_item-p01_menge using index
 current IDoc build array index
 copy current idoc_item_p19_002 fields to new IDoc
 using index current IDoc build array index
 copy current idoc_item_p19_001 fields to new IDoc

471

Duplicate Checking Enhancement 12.7

 using index current IDoc build array index
 copy current idoc_item_p19_003 fields to new IDoc
 using index current IDoc build array index
 move current IDoc build array index
 to store_map-lastPosIdx
 end if.
endloop

Listing 12.1 SDQ Array Loop to Build One IDoc per Store Location

One IDoc for each store location is being assembled in the IDoc build array in
memory. All that’s left to do is map it to the target ORDER.ORDERS05 structure.

12.7 Duplicate Checking Enhancement

The enhancement for checking duplicates is a straightforward user exit that prevents
duplicate custom POs from posting to sales orders in SAP.

The issue here is that if the same PO posts twice for the same store location, double
the number of goods that were ordered would be shipped, resulting in higher
shipment costs, increased returns, and poor customer service.

There are times when we need to post a customer PO a second time because of
errors in an initial transmission that have been fixed. But this scenario will be
known in advance, and all sales orders that posted against the initial transmission
will be deleted.

The basic rule is that no customer PO should be allowed to post twice to an SAP
sales order for the same ship-to partner.

The code will be written in CUSTOMER-FUNCTION '011' in the IDoc processing func-
tion IDOC_INPUT_ORDERS.

We’ll need to create two objects to enable this enhancement:

EE Error message flagging the duplicate PO, ship-to partner, and sales order num-
ber

EE CMOD modification project to code the exit

Let’s look at each of these.

472

The Inbound Customer Purchase Order12

12.7.1 Create Error Message

We previously created our custom messages in the 900 and above range in stan-
dard message class IDOC_ADAPTER. To create our new message, follow these steps:

1. Go to the SAP Repository with Transaction SE80 and click Repository Informa-
tion System.

2. Open the folder Other Objects.

3. Double-click Message Classes, and enter “IDOC_ADAPTER” in the Message
class field of the Standard Selections screen. Execute.

4. The Repository Info System: Message Classes Find screen loads listing the
message class.

5. Double-click IDOC_ADAPTER to load the Message Maintenance screen and click
the Messages tab.

6. Click Display <-> Change (or press (Ctrl)+(F1)) and scroll down to message
904, which should be blank.

7. Enter the following message into 902:

Duplicate PO & for ship-to & in sales order &.

8. Save the message and assign it to a change request.

12.7.2 Create Modification Project

To create the modification project, follow these steps:

1. Go to CMOD and enter project name “ZEDISOO1”. Click Create.

2. Enter a description in the Short text field of the Attributes screen. Save the
project and assign it to a change request.

3. Click Enhancement assignments to open the enhancements screen. Enter
VEDA0001 in the Enhancement column.

4. Click Components and select function set EXIT_SAPLVEDA_011 with function
CUSTOMER-FUNCTION '011'.

5. Double-click the exit name to open the exit in the source code editor of the
function builder (see Figure 12.3).

473

Duplicate Checking Enhancement 12.7

Figure 12.3 EXIT_SAPLVEDA_011 in the Source Code Editor

Notice the import parameters and tables. CUSTOMER-FUNCTION '011' is called
near the end of IDOC_INPUT_ORDERS processing, after all the data required to post
the sales order have been extracted from the IDoc and the system, just before
the call transaction is executed.

Everything that is going into the sales order is available to the code in the exit.

6. Double-click ZXVEDU13 to create the include program we’ll use to write the code.
The system will throw up the message:

Program names ZX… are reserved for includes of exit function groups

7. Press (Enter) to bypass the message and create the program. You’ll be prompted
to assign it to a change request.

The ABAP Editor opens to a blank screen.

12.7.3 Program Flow

CUSTOMER-FUNCTION '011' has two import and eleven table parameters. For the
purposes of this example we are only interested in the following:

474

The Inbound Customer Purchase Order12

EE Import parameter DXVBAK
Imports sales order header data into the exit with the structure VBAK, the sales
order header table, with a number of additional fields

EE Table parameter DXVBAP
Brings sales order item data into the exit with the structure VBAP, including the
material number

EE Table parameter XVBPA
SAP partner type and ID for all partners in the sales order

EE Table parameter DERRTAB
Collects error messages to pass to the IDoc status record

The sold-to partner and customer PO number are pulled from fields KUNNR and
BSTKD in XVBAK. The ship-to partner is pulled from field KUNNR in XVBPA where
the qualifier PARVW = WE. The material number is pulled from XBAP-MATNR.

The exit reads sales index table VAKPA with the sold-to partner, sales organization,
and PO number as the key. The SQL will look like Listing 12.2, where S_VBELN is
a variable to hold the sales order number.

select single vbeln into s_vbeln from vakpa
 where kunde = xvbak-kunnr
 and parvw = AG
 and vkorg = xvbak-vkorg
 and vtweg = xvbak-vtweg
 and spart = xvbak-spart
 and bstnk = xvbak-bstdk.
if sy-subrc <> 0.
 exit. * No dupe end processing.
else.
 check for ship-to partner.
endif.

Listing 12.2 Selecting Sales Order from VBAK for Duplicate PO Exit Check

If there is no hit, the PO has not posted for the sold-partner and sales organization,
exit processing ends, control returns to the IDoc function, and the call transaction
proceeds.

If there is a hit, table VBPA is read with the sales order number pulled from VAKPA
and the ship-to number from XVBPA. The code will look something like Listing 12.3.

475

Duplicate Checking Enhancement 12.7

read table xvbpa with key parvw = 'WE'.
if sy-subrc = 0.
 s_kunnr = xvbpa-kunnr
 select single kunnr into s_kunnr from vbpa
 where vbeln = s_vbeln
 and parvw = 'WE'
 and kunnr = s_kunnr.
 if sy-subrc <> 0.
 exit. * No dupe end processing.
 else.
 write error message to derrtab.
 endif.
else.
 exit. * No dupe end processing.
endif.

Listing 12.3 Reading the Ship-To Partner for the Sales Order

If there is no hit, the incoming PO has not yet posted for that ship-to partner. There
is no duplicate and exit processing ends.

If there is a hit, the customer PO has already posted for that ship-to partner. Next
we check whether it posted with the same material number by reading table VBAP
with the sales order number, item number, and material number from XVBAP.
The SQL will look like Listing 12.4, where S_MATNR is a variable to hold the mate-
rial number.

select single matnr into s_matnr from vbap
 where vbeln = xvbap-vbeln
 and posnr = xvbap-posnr
 and matnr = xvbap-matnr.
if sy-subrc <> 0.
 exit. * No dupe end processing.
else.
 Error. Dupe PO posting.
endif.

Listing 12.4 If the Material Is the Same, It’s a Duplicate

If there’s no hit, we have no duplicate, and exit processing ends. If we have a hit,
however, the PO is treated as a duplicate, and an error is raised. Error message
variables are written to internal table DERRTAB, and exit processing ends. The values
in Listing 12.5 are passed.

476

The Inbound Customer Purchase Order12

DERRTAB-ARBGB = 'IDOC_ADAPTER'.
DERRTAB-CLASS = 'E'.
DERRTAB-MSGNR = '904'.
DERRTAB-MSGV1 = xvbak-bstdk.
DERRTAB-MSGV2 = s_kunnr.
DERRTAB-MSGV3 = s_vbeln.
append DERRTAB.

Listing 12.5 Writing the Error Message to DERRTAB

The following happens in Listing 12.5:

EE ARBGB identifies our message class.

EE CLASS identifies the error type.

EE MSGNR is our custom message number.

EE MSGV1 passes the customer PO number to our message.

EE MSGV2 passes the customer SAP ship-to partner from VBPA.

EE MSGV3 passes the sales order number.

12.8 EDI Configuration in SAP

Let’s look at configuration settings for the inbound ORDERS message for Gordy’s
Galaxy.

12.8.1 EDPAR Entries: Transaction VOE4

We’ll enter one record for each of Gordy’s stores and distribution centers that will
send Acme EDI orders into EDPAR, as illustrated in Table 12.7.

Field Value Description

KUNNR GRDY01 Gordy sold-to partner from IDoc

PARVW WE Partner function ship-to

EXPNR 0999999999999 External partner for ship-to—Gordy’s GLN

INPNR GRDY010098 Internal SAP ship-to partner number

Table 12.7 One EDPAR Entry for Each of Gordy’s Stores

477

EDI Configuration in SAP 12.8

This maps Gordy’s sold-to partner, from the control segment of the IDoc to Gordy’s
store GLN from the N1 or SDQ segments of the 850, to the SAP ship-to partner
number in Acme’s system.

Because EDPAR isn’t linked to any other tables or programs, it can be safely loaded
with a custom ABAP that inserts data directly into it. It can also be loaded through
an LSMW project or CATT script on Transaction VOE4.

12.8.2 EDSDC Entry: Transaction VOE2

Enter the following record into table EDSDC for Gordy, as in Table 12.8.

Field Value Description

KUNNR GRDY01 Gordy sold-to partner from IDoc

LIFNR 564567 Acme vendor number in Gordy’s system

VKORG 3000 Acme sales organization

VTWEG 10 Distribution channel

SPART 00 Division

AUART Sales order type; ZEDI or ZEDS or ZVMI passed in
E1EDK14 (IDoc feeds the document type)

Table 12.8 EDSDC Entry for Gordy’s Galaxy

LIFNR is Gordy’s number for Acme Studios, although it doesn’t have to be. It
does need to be a number that always comes in the ORDERS IDoc translated from
Gordy’s 850 PO.

This table entry maps Gordy’s sold-to partner to the SAP sales organization that
will be used to create the sales order.

12.8.3 ZEDIXREF Entries

We don’t need to populate ZEDIXREF for the 852 because it doesn’t post to SAP,
but we do need to add the information from Table 12.9 to custom table ZEDIXREF
for the inbound 850 interface from Gordy.

478

The Inbound Customer Purchase Order12

Field Value Description

DIRECT 2 Direction inbound

STDMES 850 EDI PO transaction

MESTYP ORDERS IDoc message type

IDOCTP ORDERS05 IDoc basic type

CIMTYP IDoc extension, none for this interface

SNDPRN GRDY01 SAP send partner: Gordy’s customer number in
Acme’s system

RCVPRN DEVCLNT100 SAP receive partner: Acme SAP logical system

SNDLAD 99934567999 EDI send partner: Gordy’s trading partner ID for
Gordy

RCVLAD 99999998889 EDI receive partner: Gordy’s trading partner ID for
Acme

Table 12.9 ZEDIXREF Entry for the Inbound 850 from Gordy

12.8.4 Partner Profile: Transaction WE20

We’ll need one inbound partner profile for message type ORDERS for Gordy’s
Galaxy partner type KU (customer).

In the inbound parameters table, control click Create and add the following values
to the inbound parameters screen:

EE Partner Role: “SP” for sold-to partner

EE Message type: “ORDERS”

EE Process code: “ORDE”

EE Processing by Function Module: Trigger by background program option

Process code ORDE links to processing function IDOC_INPUT_ORDERS and message
type ORDERS.

Don’t forget to save. The finished inbound parameters should look like Figure 12.4.

479

Summary 12.9

Figure 12.4 Inbound Partner Profile for Gordy’s Sales Orders

12.9 Summary

So we’ve been through the first interface in the order-to-cash sales cycle. We still
have miles to go before we can bank the cash for the saleable goods that Gordy’s
Galaxy of Games & B Flix ordered from us.

The key wrinkle that we had to iron out is common to EDI ordering, at least in the
X12 world, which is that a large customer such as Gordy’s Galaxy—with its more
than 2,000 North American stores—orders for every store that needs product with
one purchase order.

The quantity ordered is paired up the store number in an SDQ segment at the
line-item level. But to post the sales order in SAP, our basic rule is one sold-to and
one ship-to partner.

So we had to look at code that would unravel the single purchase order sent by
Gordy into one sales order for each store location. One important lesson from
our approach to unbundling Gordy’s purchase order is that EDI is an integrated
ecosystem with multiple parts, and each one plays its role. We could have just as
easily mapped the SDQ purchase order to an extended IDoc and then unraveled
the SDQ with an ABAP program. But we chose to do it by writing code in the map

480

The Inbound Customer Purchase Order12

in the EDI system. The complexity and effort involved is about the same. It’s just
different.

Of course, there are many ways to do everything. Please consider the approach
we take for any of our interfaces only a starting point for your own explorations.
There are no answers, only suggestions. And questions, of course, just like real life.

So with that thought, let’s tackle our next challenge and move this cycle one step
further: the outbound order confirmation.

481

“You don’t know what you don’t know,” the great Mr. Q used to say. And
that’s true for Gordy’s Galaxy when Acme posts a VMI order. Whether
VMI or not, the customer needs to know that his order will be delivered by
a particular date. And that’s the job of the ORDRSP order confirmation
interface. But this one has an interesting twist.

13 Building the Outbound
Order Confirmation

In the previous chapter, we saw that two types of customer purchase orders (VMI
and non-VMI) post to Acme’s SAP system and that both types of PO post to sales
orders in SAP, one for each store receiving product.

The customer needs confirmation when his purchase order posts to a sales order in
the supplier’s system. The confirmation tells him whether the supplier can provide
the ordered product (or offers an alternative) by a target delivery date. This is done
by transmitting an X12 855 EDI transaction.

Although the technical process for the acknowledgment is the same for both types
of orders, the 855 is particularly critical for a VMI customer such as Gordy’s Galaxy
of Games & B Flix. It’s the only way that Gordy knows what has been ordered for
his stores.

The 855 confirmation for a VMI order creates the purchase order in Gordy’s system.
As far as VMI is concerned, there is no order in the customer system until the 855
is received. So it’s critical that Gordy, Acme’s most important customer, get his 855.

This is generally a straightforward process, but here we have an interesting issue
with SDQ orders that provides us an opportunity to think creatively and gives us
further insight into how EDI and the IDoc interface works.

So let’s proceed with development of Acme’s 855 order confirmation interface
with Gordy.

482

Building the Outbound Order Confirmation13

13.1 Technical Overview

Table 13.1 summarizes the outbound purchase order acknowledgment.

Item Description

Title Purchase Order Confirmation

Description A purchase order confirmation is generated after a customer
PO has been received and posted to a sales order. It includes
all the data in the sales order, including any changes that may
have been made to the order materials, quantities, or delivery
dates. SDQ orders that create multiple sales orders will be
bundled into a single PO confirmation.

Type of interface Sales: IDoc to X12 EDI

Direction Outbound

Trading partner Gordy’s Galaxy (customer)

IDoc ORDRSP.ORDERS05

IDoc extended type ORDRSP.ZORSDQ01

IDoc function IDOC_OUTPUT_ORDERS

Custom ABAP ZEDI_ORDRSPSDQ

Description Bundles all IDocs with message code SDQ into one extended
IDoc with an SDQ segment and sends them to the EDI RIM

Target file(s) X12 855 no SDQ, 855 with SDQ

Source document(s) SAP sales order

Transaction code VA01

Map(s) ORDRSP.ORDERS05 to X12 855 vers. 5010

ORDRSP.ZORSDQ01 to X12 855 vers. 5010

Custom map logic

Source system Acme SAP

Target system Gordy’s Galaxy EDI via AS2 from Acme EDI RIM

Table 13.1 Overview of Outbound PO Confirmation Interface

483

Functional Specifications 13.2

Item Description

997
acknowledgment

Inbound within 24 hours of transmission at the transaction
detail level. Function group acknowledgment code: PR.

Frequency Daily, on demand

Job schedule RSEOUT00: Every hour, sends all non-SDQ ORDRSP message
types to Gordy

ZEDI_ORDRSPSDQ: Every hour, bundles and sends all SDQ
ORDRSP

Table 13.1 Overview of Outbound PO Confirmation Interface (Cont.)

13.2 Functional Specifications

Sales orders are created manually or through EDI transmission from VMI and non-
VMI partners. EDI and VMI orders must be acknowledged through X12 855 EDI
transmissions back to the customer’s system.

When a sales order is created and saved in SAP, an ORDRSP.ORDERS05 IDoc is
generated with all the data in the sales order. The IDoc is then mapped to an X12
855 transaction in the EDI RIM.

Customers that send POs in 850 transactions with their store location and quan-
tity data in SDQ segments receive only one 855 with SDQ segments that bundle
all sales orders for all ship-to partners, not one confirmation for each sales order.

A custom ABAP will bundle all sales orders created from an SDQ order into one
IDoc with a custom SDQ segment. Gordy’s Galaxy sends both SDQ and non-SDQ
orders, so it gets both types of acknowledgment.

13.2.1 Process Overview

The process begins when a sales order is created in SAP. An order response mes-
sage type ORDRSP with basic type ORDERS05 is generated and parked in the IDoc
database.

Two types of IDocs are generated:

EE ORDRSP message type with no message code. One 855 is created for one sales
order and ORDRSP IDoc.

484

Building the Outbound Order Confirmation13

EE ORDRSP message type with message code SDQ. A custom ABAP report collects
SDQ IDocs and bundles them into one ORDRSP IDoc against one customer PO
number with SDQ segments. The program then sends the bundled extended
IDoc to the EDI RIM.

13.2.2 Requirements

The interface will meet the following functional requirements:

EE Several order types are created in the IMG for EDI sales orders that will be
acknowledged with an ORDRSP message:

EE ZEDI: EDI orders with no SDQ in the inbound 850

EE ZEDS: EDI orders with SDQ store locations in the inbound 850

EE ZVMI: VMI suggested orders from the VMI system

EE Sales orders for Gordy’s Galaxy are created in SAP from POs sent in 850 EDI
transactions or suggested orders from the VMI system using one of the custom
EDI order types.

EE Order acknowledgments are generated as ORDRSP IDocs by message control
when the sales order has been created.

EE The sales order must pass a credit check on the customer before the confirma-
tion is output.

EE The order confirmation IDoc will contain all the data in the sales order. One
ORDRSP will be created for each sales order.

EE ORDRSP IDocs will be parked and processed by scheduled jobs.

EE The message code field in the control segment determines what happens next.
ORDRSP IDocs with no message code were created by inbound orders without
SDQ segments. They are sent directly to the EDI system by running program
RSEOUT00 by a scheduled job.

EE ORDRSP IDocs with message code SDQ in the control record are picked up by
a custom ABAP that does the following:

EE Selects IDocs by SAP sold-to partner, PO number, and message code

EE Creates one new ORDRSP IDoc of extended type ZORSDQ01 with SDQ seg-
ments per sold-to partner and PO number

EE Moves all ordered quantities for each store into multiple line items by mate-
rial in the SDQ segments

485

Functional Specifications 13.2

EE Sends the consolidated ORDRSP SDQ IDoc to the EDI RIM for mapping to
an 855 X12 transaction and transmission to Gordy

EE Marks the original ORDRSP IDocs with the SDQ message code in the control
segment for deletion by changing their status to 31

EE Deliveries are generated by the delivery due list after sales orders are created
and acknowledgments are sent to the customer.

13.2.3 Dependencies

The interface is dependent on the existence of the following objects:

EE Master data to support creation of sales orders plus EDPAR mapping from SAP
ship-to to Gordy’s GLN store numbers

EE IDoc extension ZORSDQ01 with an SDQ segment at the item level is created

EE IDoc configuration in SAP to support generating and sending outbound acknowl-
edgments for Gordy’s Galaxy, including the following:

EE Linking extended type ZORSDQ01 to ORDRSP.ORDERS05

EE Copy process code SD10 to ZD10 and add an entry for message type ORDRSP
with message code SDQ

EE Message control configured to generate IDoc output for SDQ and non-SDQ
ORDRSP from sales orders

EE Outbound partner profiles for message type ORDRSP

EE EDI map for the 855 and ORDRSP message type that can handle SDQ and non-
SDQ IDocs

EE Business process workflow in the EDI RIM that will pick up ORDRSP IDocs,
convert them to 855s, and send them to Gordy’s Galaxy

13.2.4 Assumptions

The following basic assumptions apply:

EE All customers who send EDI or VMI purchase orders receive an 855 order
acknowledgment.

EE Only finished goods are sent in the ORDRSP.

486

Building the Outbound Order Confirmation13

EE Gordy’s gets GLNs for all sold-to and ship-to locations in the 855.

EE The IDoc can be regenerated from the sales order if required.

13.2.5 Data That Will Pass to an Outbound Order Confirmation

The ORDRSP IDoc is generated when the sales order is created and saved by Trans-
action VA01. Table 13.2 displays some of the many fields in the sales order that
are passed to the ORDRSP IDoc.

Table Field Description Sample Value

Order Header

VBAK VBELN Sales order number 0000012780

VBAK AUART Order type ZEDI

VBAK WAERK Document currency USD

VBAK VKORG Sales organization 0010

VBAK VTWEG Distribution channel 10

VBAK SPART Division 00

VBKD ZTERM Terms of payment key Z123

VBPA PARVW Sold-to partner function AG

VBPA KUNNR Sold-to partner GRDY01

VBPA PARVW Ship-to partner function WE

VBPA KUNNR Ship-to partner GRDY01001

VBPA PARVW Bill-to partner RE

VBPA KUNNR Bill-to partner GRDY01

VBPA PARVW Payer partner function RG

VBPA KUNNR Payer partner GRDY01001

VBKD BSTNK Customer PO number 989898

VBKD BSTDK PO date 20131215

VBAK AUDAT Sales order document date 20131215

Table 13.2 Sales Order Data That Will Pass to the ORDRSP IDoc

487

Functional Specifications 13.2

Table Field Description Sample Value

VBKD PRSDT Pricing date 20131215

VBAK VDATU Requested delivery date 20140115

VBAK VSBED Shipping conditions 03

VBKD INCO1 Inco terms 1 PPD

VBKD INCO2 Inco terms 2 Destination

Order Items

VBAP KWMENG Order quantity 1

VBAP MEINS Unit of measure EA

KOMP NETWR Item net price 12.50

KOMV KBETR Unit price 12.50

VBAP MATKL Material group 001

VBAP ANTLF Maximum no. partial deliveries 9

VBKD FKDAT Billing date 20131215

VBEP EDATU Scheduled delivery date 20140115

VBEP WMENG Scheduled delivery quantity 6

VBAP MATNR SAP material number 2356784

VBAP EAN11 UPC item number 799142939512

Table 13.2 Sales Order Data That Will Pass to the ORDRSP IDoc (Cont.)

Almost everything in the sales order ends up in the IDoc, but not all values are
mapped to the 855 sent to Gordy.

13.2.6 Custom Enhancements

Two key enhancements are required to complete the interface:

EE Extended basic type ZORSDQ01 to IDoc basic type ORDERS05 with an SDQ
segment at the line-item level below E1EDP01.

The custom SDQ segment will follow the same structure for the store number
quantity pairs as the standard EDI 855 SDQ segment.

488

Building the Outbound Order Confirmation13

EE A custom ABAP report will read parked ORDRSP IDocs with message code SDQ,
group them by SAP sold-to partner and customer PO number, and bundle them
into one outbound ORDRSP IDoc for translation to one 855 order confirmation.

Custom Report to Build and Output ORDRSP with SDQ

The custom IDoc bundling report is called ZEDI_ORDRSPSDQ and will be accessed by
Transaction ZSDQ. The following are selection options for the program:

EE IDoc number

EE IDoc receive partner (SAP sold-to)

EE IDoc create date and time

EE IDoc change date and time

The program collects IDocs at status 30—IDoc ready for dispatch—with message code
SDQ in EDIDC-MESCOD.

When all selected IDocs have been collected and bundled into the new SDQ ORDRSP
by sold-to partner and purchase order number, the program returns an ABAP List
Viewer list (ALV) report with all bundled SDQ IDocs. The report has a header and
records linked by the SDQ IDoc number.

The report header fields include the following:

EE IDoc number of bundled SDQ ORDRSP

EE SAP receive partner

EE IDoc output date (change date at time of output)

EE Customer PO number

The report detail record fields include the following:

EE IDoc number of individual IDocs generated from each sales order

EE SAP ship-to partner

EE SAP sales order number

EE IDoc status code and message

ZEDI_ORDRSPSDQ will be run by the SAP Job Scheduler every half hour throughout
the day. Users will also be able to run it on-demand through Transaction ZSDQ.

489

Generating the ORDRSP with Message Control 13.3

13.2.7 Reconciliation Procedure

Data in the ORDRSP IDoc will be validated against the sales order. Store item order
quantities will be validated in the bundled SDQ IDoc against the item data in the
single IDocs that were generated from each sales order.

IDoc data will also be validated against the translated 855. Data in the outbound
855 will be validated against the original inbound PO, whether it is an 850 or a
VMI order.

The EDI team will confirm that the 855 was sent to the correct customer.

13.2.8 Errors and Error Handling

Failures in outbound IDoc processing are tracked by the EDI support team using
standard IDoc monitoring tools such as BD87 and WE05. Application errors are
reported to the business users immediately.

Custom code will trap all relevant errors by checking SY-SUBRC after each operation
that can change the return value. Critical errors will return meaningful messages
identifying the condition that terminated processing.

Sales orders that do not successfully pass all checks can be manually posted to
generate an order acknowledgment.

Confirmations must be sent within a very tight time frame. Errors will be addressed
by the interface owner immediately.

13.3 Generating the ORDRSP with Message Control

The outbound PO confirmation is generated by message control when the sales
order is created. Before we can outline the path of the IDoc from the sales order
outbound, we’ll look at the message control configuration that we need for both
standard and SDQ order confirmations.

13.3.1 Message Control Configuration for the ORDRSP

The good news is that we use essentially the same output configuration for the SDQ
and non-SDQ IDocs, although we do need a custom output type. We’ll also make

490

Building the Outbound Order Confirmation13

some adjustments to the standard output type and extend the process to include
message codes SDQ and 855.

The non-SDQ ORDRSP order confirmation is a standard IDoc generated with stan-
dard message control configuration and no customization.

The SDQ order confirmation process, on the other hand, uses two IDocs:

EE A standard ORDRSP IDoc identified by message code SDQ

EE An extended IDoc that will be processed and distributed by a custom ABAP
program, not by message control

We’ll need the following message control objects:

EE Output type BA00 with a new access sequence and all supporting configuration
and condition records to output confirmations from one sales order to one pur-
chase order

EE Custom output type ZBA0 copied from BA00 and all supporting configuration
and condition records to support output of confirmations from multiple sales
orders to one purchase order with SDQ segments

EE Process code SD10 extended for ORDRSP with MESCOD SDQ

EE Three partner profiles for Gordy’s Galaxy and message type ORDRSP:

EE One with standard message control for the confirmation from one sales order
to one PO

EE One with MESCOD SDQ and with a custom output type to identify multiple
confirmations from multiple sales orders for one PO

EE One with MESCOD 855 and no message control to identify the bundled sales
orders IDoc extended with an SDQ segment that will be distributed by a
custom program

Setting up Output Control: BA00

1. Run Transaction NACE.

2. Select Application V1 Sales, and click Output types. Click the pencil icon (or
press (Ctrl)+(F4)) to switch to change mode.

3. Select output type BA00 and double-click to open the Output Type Details
screen for editing.

491

Generating the ORDRSP with Message Control 13.3

4. Change the Access sequence to 0009: Sales organization, customer, and order
type.

5. Access number is 1 for condition table B150 and communications structure
KOMKBV1 with key fields:

EE AUART: Sales document type

EE VKORG: Sales organization

EE KUNNR: Sold-to customer party

6. Set the Multiple issuing flag, which allows you to resend the same output. The
completed screen should look like Figure 13.1.

Figure 13.1 Changes to Standard Output Type BA00

7. Click the Default values tab and enter the following values. Default values
entered in this tab can be overridden. You can still generate print or any other
type of output with BA00 (Figure 13.2).

Figure 13.2 Changes to the Default Values Subscreen

EE Dispatch time field: Send immediately (when saving the application)
option

492

Building the Outbound Order Confirmation13

EE Transmission medium field: EDI option

EE Partner function field: “SP”

8. Save output type BA00 and assign it to a change request.

9. Double-click the Processing routines folder in the Output Types navigation
panel. Confirm that EDI with program RSNASTED is entered in the Processing
routines table control.

10. If it is not, click the New Entries button and enter the following values:

EE Transm. Medium: “EDI”

EE Program in Processing 1: “RSNASTED”

EE Form Routine: “EDI_PROCESSING”

11. Save any changes. Double-click the Partner functions folder and confirm
that the Partner functions table control has an entry for EDI with partner
function SP.

12. If it does not, click New Entries and add the following values to the table
control:

EE Medium: “EDI”

EE Funct.: “SP” for sold-to partner

13. Save any changes. Back out to the Conditions for Output Control screen
of Transaction NACE. Select Application V1 and click Procedures. Output
type BA00 is assigned to procedure V10000 Order Output.

14. Select procedure V10000 and double-click the Control folder in the Proce-
dures navigation panel. We’ll use the standard settings.

Copy BA00 to ZBA0

Once we’ve configured output type BA00, we’ll copy to our custom output ZBA0.
This will ensure a unique message control entry in the partner profile for ORDRSP
with MESCOD SDQ.

1. In the initial screen for output control, select application V1 and click Output
types.

2. Select menu path Table View • Display • Change (or press (Ctrl)+(F1)) and
then select output BA00. Click Copy as or press (F6).

493

Generating the ORDRSP with Message Control 13.3

3. Change the name of the output type to ZBA0 and enter a description for the
SDQ order confirmation.

4. Press (Enter). The Specify object to be copied dialog opens with the observa-
tion that the output type has dependent entries. Click Copy all. Another dialog
opens with the number of dependent entries.

5. The system returns to the Output types: Overview screen. You’ve copied all
dependent entries from BA00 so you don’t have to do anything further here.
Check to confirm that EDI processing routines and partner functions are set up.

6. Back out to the initial screen for output control. Next, assign the custom output
type to the procedure. Select application V1 and click Procedures.

7. Select procedure V10000 and double-click the control folder in the navigation
pane.

8. Select BA00 and click the Copy as button (or press (F6)). Change the step num-
ber to 15 and the output type name to ZBA0, but leave everything else the same.

9. Press (Enter) to return to the overview screen. Save the entry and assign it to a
change request.

We now have our two output types and will need to create condition records
against each one.

Condition Records: BA00

We can add the condition records for Gordy with Transaction VV11 or directly
within NACE. In VV11:

1. Enter “BA00” into Output type and click Key combination.

2. Select the radio button for the DocType./SalesOrg/Customer access sequence
and click OK (see Figure 13.3).

Figure 13.3 Access Sequence 0001 in the Key Combination Dialog

494

Building the Outbound Order Confirmation13

3. Enter three records for Gordy into the Create Condition Records screen, one
for each EDI order type. Enter the following values for the first (these will differ
from organization to organization):

EE Sales Document Type: “ZEDI”

EE Sales organization: “3000”

EE Sold-to pt: “GRDY01”

EE Funct: “SP”

EE Medium: “6”

EE Date: “4”

EE Language: “EN”

4. Save the record. The last two records are the same except for the document
types ZEDS and ZVMI.

5. Confirm the condition record entries in table B150 in the data browser, Trans-
action SE16. It should look something like Figure 13.4.

Figure 13.4 Condition Records in Table B150 for BA00 by Order Type

Repeat this process for output type ZBA0. The condition records are the same
except for the output type.

Extending Process Code SD10

We’ll extend process code SD10 to handle ORDRSP messages with SDQ and 855
in the MESCOD field to give us unique partner profile keys for both of our special
case order confirmations.

1. Go to Transaction WE41 or through the WEDI area menu Development • Out-
bound Processing Settings M/C • Outbound process code.

495

Generating the ORDRSP with Message Control 13.3

2. Click the Display • Change pencil icon (or press (Ctrl)+(F1)), select process
code SD10, and double-click the Logical message folder in the navigation pane.

3. Click the New Entries button (or press (F5)) to open the Details of Added
Entries screen. Add the following values:

EE Message type: “ORDRSP”

EE Message code: “SDQ”

4. Save and assign the entries to a change request.

5. Back in the initial change view screen, select ZD10 and double-click the Logical
message icon. Click New Entries (or press (F5)) to open the Details of Added
Entries screen.

6. Enter the following values and save process code ZD10. Assign it to a change
request.

EE Message type: “ORDRSP”

EE Message code: “SDQ”

7. Back out of the added entries screen and repeat the process to add MESCOD
855 to logical message ORDRSP. The finished screen should look like Figure
13.5.

Figure 13.5 Process Code ME10 Extended for All Three IDocs

13.3.2 Overview of the End-to-End Process Flow

Figure 13.6 outlines the end-to-end process flow for generating and sending a
purchase order confirmation to Gordy’s Galaxy.

The process begins when an ORDERS IDoc creates a sales order in SAP against
sales organization 3000 (USA Los Angeles) and order type ZEDI (non-SDQ), ZEDS,
or ZVMI (both SDQ). The SAP sold-to partner is the third critical key; in this case,
that is Gordy’s Galaxy, or customer GRDY01.

496

Building the Outbound Order Confirmation13

Partner profile
GRDY01/SP/

V1/BA00/SD10

Translation map
called against

ORDRSP

END: To
SHPORD-830

EDI RIM

Create sales order
from ORDERS IDoc SDQ IDoc?

Access sequence:
DocType, Sales
Org, Sold-to

Output: BA00/
ZEDI/3000/

GRDY01

Output: ZBA0/
ZEDS or ZVMI/
3000/GRDY01

No

Yes

Output proposed
ORDRSP SDQ

created/batched

RSEOUT00 sends
IDocs directly to

EDI RIM

X12 997 ack. ret.
from Gordy EDI

Gordy EDI

Partner profile
GRDY01/SP/SDQ
V1/ZBA0/SD10

ZEDI_ORDRSPSDQ
bundles SDQ IDocs

sends 1 to RIM

Output proposed
ORDRSP

created/batched

1 X12 855 5010
per PO to Gordy

Figure 13.6 The Outbound Order Confirmation Process Flow

All output control keys, including application, procedure, output type, and access
sequence, are determined before the sales order is created by the IDoc’s call to
Transaction VA01 (program SAPMV45A).

Output control keys are identified and an output record prepared for table NAST
by the functions COMMUNICATION_AREA_KOMKBV1 and MESSAGING that are called before
the sales order is posted by function RV_SALES_DOCUMENT_ADD.

The following are the output control keys for the order confirmation:

EE Application V1: Sales document

EE Output type BA00 or ZBA0: Order confirmation for standard or SDQ purchase
orders

497

Generating the ORDRSP with Message Control 13.3

EE Access Sequence 0009: Sales organization, order type, and sold-to partner number

EE Access number 1: SD document type, sales organization, and customer number
in condition table B150

EE Procedure V10000: Order output linked to output type BA00 and ZBA0

EE Requirement 2: Order confirmation

The access key—that is, the sales document type, sales organization, and sold-to
partner—is passed to communications structure KOMKBV1 from the sales order.

The condition table is read with the output type, BA00 or ZBA0, and the access
keys. Since we’ve entered one condition record for each output and order type,
we’ll get a hit if the sales order was created against one of our document types.

Gordy’s outbound partner profile is then checked by a call to function EDI_PART-
NER_READ_OUTGOING through the key fields in structure EDK12:

EE RCVPRN: Receiver partner sold-to number: GRDY01

EE RCVPRT: Receiver partner type: KU (customer)

EE RCVPFC: Receiver partner function: SP (AG—sold-to partner)

EE KAPPL: Message control application: V1

EE KSCHL: Message type: BA00 or ZBA0

Two partner profiles are set up with message type ORDRSP for the IDocs coming
out of the sales order. The difference is the MESCOD key in table EDP13. MESCOD
values are null for orders with no SDQ processing and SDQ for orders with SDQ
processing (Figure 13.7).

Figure 13.7 Message Code SDQ Triggers SDQ Processing

Both message types are linked to the same function module through the same
process code—IDOC_OUTPUT_ORDRSP. Both will be recognized and generated from

498

Building the Outbound Order Confirmation13

the sales order in the same way, although using different output types, via the
following process:

1. IDoc output is proposed and saved in an output record in table NAST.

2. An ORDRSP.ORDERS05 IDoc is created immediately and batched in the IDoc
database at status 30—IDoc ready for dispatch.

3. If the IDoc is generated from a sales order of order type ZEDS or ZVMI, then
EDIDC-MESCOD is set to SDQ.

4. Likewise, if the IDoc is generated from a sales order of order type ZEDI, then
EDIDC-MESCOD remains null.

The control segments must match the key values in the partner profile.

If EDIDC-MESCOD is null, then the IDoc is processed by standard output program
RSEOUT00, which runs every half hour, collects all of Gordy’s outbound ORDRSP
IDocs at status 30, and sends them to the EDI RIM.

If EDIDC-MESCOD equals SDQ, then the following actions are triggered by a
scheduled job that runs every half hour:

1. Custom program ZEDI_ORDRSPSDQ picks up all of Gordy’s outbound ORDRSP
IDocs at status 30 where EDIDC-MESCOD equals SDQ and EDIDC-SNDPRN
equals GRDY01.

2. Gordy’s PO number is read from each IDoc. Regardless of whether the PO
number exists in only one or more IDocs, all are bundled into one ORDRSP
IDoc with extension ZORSDQ01 for each sold-to-PO number combination.

3. Store order quantity information for each material is bundled into one or more
SDQ segments at the E1EDP01 item group level, and the new IDoc is written
to the IDoc database at status 30.

4. The old IDocs are marked for deletion by changing their status to 31—Error, no
further processing.

5. The MESCOD of the control record in the new IDoc is set to 855.

6. Function MASTER_IDOC_DISTRIBUTE is called to send the new bundled SDQ IDoc
to the EDI RIM.

7. The IDoc is saved as an XML file on the SAP application server. The system then
makes an RFC through the JCo connector to the receiving business process in
the EDI RIM.

499

Technical Specifications 13.4

8. The IDoc file is picked up and moved to the translation process, which identi-
fies the envelopes from the EDI send and receive trading partner IDs and the
EDI transaction and version in the IDoc control segment.

9. The ST envelope identifies and calls the translation map, which converts the
SDQ IDoc is then converted to an X12 855 version 5010 transaction set with
an ST envelope.

10. The ST transaction set is bundled into a group with a GS envelope. The group
is then bundled into an interchange with an ISA envelope.

11. The X12 interchange is passed to the communications process, which sends it
to Gordy’s EDI system through an AS2 call, and waits for the MDN acknowl-
edgment, which comes immediately.

12. The process ends when Gordy sends back a 997 FA, which generally happens
within an hour.

13. If there’s an application error in the 855, Gordy immediately sends back X12
824 application advice with information about the issue. Fixing the issue in
the order usually involves some communication between the two partners and
regenerating the confirmation.

No shipping orders are sent to Disc Services International until all issues are
resolved.

13.4 Technical Specifications

This technical specification describes an IDoc extended type with custom process-
ing program, function, and configuration to support generation of non-SDQ and
SDQ ORDRSP message types for transmission to customers as confirmation of
purchase orders posted.

13.4.1 Technical Requirements

The following objects must be developed to support this interface:

EE IDoc Extension ZORSDQ01 for message type ORDRSP and basic type ORDERS05
with a custom X12 SDQ segment

500

Building the Outbound Order Confirmation13

EE ABAP program ZEDI_ORDRSPSDQ to select and bundle all ORDERSP IDocs at sta-
tus 30 where EDIDC-MESCOD equals SDQ into one ZORSDQ01 extended IDoc
type by sold-to partner and customer PO for transmission to the EDI RIM

13.4.2 Dependencies

This interface is dependent on the following:

EE Message control configuration is complete and condition records have been
created.

EE An outbound partner profile is created for each of Gordy’s ORDRSP message
types with MESCOD values null, SDQ, and 855.

EE Outbound envelopes set up in the EDI RIM for Gordy’s 855 version 5010 EDI
order confirmation.

EE Inbound envelopes set up for 997 functional acknowledgments from Gordy

EE Custom cross-reference table ZEDIXREF populated in SAP to get the EDI send
and receiving trading partner IDs for the outbound 855 to Gordy

EE Variants created for jobs in the SAP Job Scheduler (Transaction SM36) to run:

EE RSEOUT00 to export non-SDQ ORDRSP IDocs to the EDI RIM

EE ZEDI_ORDRSPSDQ to bundle SDQ IDocs into a single extended IDoc by sold-to
partner and PO number with store location and order quantity data in an
SDQ segment, and to send them to the EDI RIM

13.4.3 Assumptions

The following assumptions are behind this interface:

EE All SDQ processing will done in SAP by a custom ABAP program. The map in
the EDI RIM will not do SDQ processing except to map the SDQ values from
the IDoc to the 855.

EE EDI errors will be tracked and addressed in the EDI system.

EE Technical errors in the IDoc interface, such as syntax or partner profile errors,
will be tracked and corrected by the EDI team.

501

Technical Specifications 13.4

13.4.4 Extended IDoc Type ZORSDQ01

The IDoc extended type ZORSDQ01 will be created and linked to message type
ORDRSP and basic type ORDERS05.

ZORSDQ01 will be copied from basic type ORDERS05 and extended with a custom
SDQ segment immediately below, and as a child to, line-item level parent segment
E1EDP01.

13.4.5 Creating the Extended IDoc Type

Creating our extended IDoc type ZORSDQ01 is a three-step process:

1. Create and release the custom segment.

2. Create and release the extended type with the custom segment as a child of
E1EDP01.

3. Link the new extended type to message type ORDRSP and basic type ORDERS05.

In addition, we’ll take a fourth optional step and create a view that restricts the
segments used in the extended type.

Let’s walk through all of these steps.

Creating Custom Segment Z1PSDQ

The first step is create our custom SDQ segment in the Segment Editor.

1. Use Transaction WE31 to get to the Segment Editor or follow WEDI area menu
path Development • IDoc segments.

2. Enter the name of the custom segment Z1PSDQ in the Segment type field and
click Create (or press (F5)).

3. When the Create segment definition screen opens, enter a description of the
new segment in the Short Description field.

4. The structure of the IDoc SDQ segment will mirror the structure of the standard
X12 SDQ segment, with ten pairs of store location order quantity data. Enter
the fields from Table 13.3 into the Segment Editor table control.

502

Building the Outbound Order Confirmation13

Pos Field Data Element Description

01 MENEE EDI_MENEE Order unit of measure

02 QUALF EDI_QUALFI Location type qualifier (UL for GLN)

03 EXPNR1 EDI_EXPNR Customer store number (GLN)

04 MENGE1 EDI_MENGE Order quantity

05 EXPNR2 EDI_EXPNR Customer store number (GLN)

06 MENGE2 EDI_MENGE Order quantity

07 EXPNR3 EDI_EXPNR Customer store number (GLN)

08 MENGE3 EDI_MENGE Order quantity

09 EXPNR4 EDI_EXPNR Customer store number (GLN)

10 MENGE4 EDI_MENGE Order quantity

11 EXPNR5 EDI_EXPNR Customer store number (GLN)

12 MENGE5 EDI_MENGE Order quantity

13 EXPNR6 EDI_EXPNR Customer store number (GLN)

14 MENGE6 EDI_MENGE Order quantity

15 EXPNR7 EDI_EXPNR Customer store number (GLN)

16 MENGE7 EDI_MENGE Order quantity

17 EXPNR8 EDI_EXPNR Customer store number (GLN)

18 MENGE8 EDI_MENGE Order quantity

19 EXPNR9 EDI_EXPNR Customer store number (GLN)

20 MENGE9 EDI_MENGE Order quantity

21 EXPNR10 EDI_EXPNR Customer store number (GLN)

22 MENGE10 EDI_MENGE Order quantity

Table 13.3 Custom Segment Z1PSDQ Exactly Mirrors the X12 SDQ

The unit of measure will always be EA (eaches) and the location type qualifier
for Gordy’s stores is always UL for GLN.

5. Save the custom SDQ segment, and assign it to a change request. The completed
table control should look like Figure 13.8.

503

Technical Specifications 13.4

Figure 13.8 Custom SDQ Segment Z1PSDQ in the Segment Editor

6. Back out of the Segment Editor to the initial screen and release the new SDQ
segment by selecting menu option Edit • Set release.

Extending a Basic Type with a Custom Segment

We’re ready to build our extended type in the IDoc type editor.

1. To get to the IDoc type editor, use Transaction WE30 or follow WEDI area menu
path Development • IDoc types.

2. Enter the name of extended type ZORSDQ01 in the Obj. name field and select
Extension in the Development object group. Click Create (or press (F5)).

3. Select Create new in the New extension area and enter “ORDERS05” in the
Linked basic type field.

4. Enter a short description in the Description field. When the screen looks like
Figure 13.9, click OK.

504

Building the Outbound Order Confirmation13

Figure 13.9 Create Extension Screen for Extended Type ZORSDQ01

5. The main screen of the IDoc type editor opens. Select segment E1EDP01. Move
the cursor to the folder and it will turn into a hand pointer. Click on the folder
to expand the group.

6. Click Create segment. The system informs you that the new segment will be
inserted as a child of E1EDP01.

7. Click OK to open the Maintain Attributes screen. Enter the following values,
as shown in Figure 13.10.

Figure 13.10 Add SDQ Segment Z1PSDQ to Extended Type ZORSDQ01

505

Technical Specifications 13.4

EE Enter “Z1PSDQ” in the Segm.type field. Do not check Mandatory seg.
checkbox.

EE Enter “1” in the Minimum number field.

EE Enter “999999” in the Maximum number field.

8. Click the OK green checkmark in the Maintain Attributes screen above to
add the segment. The new segment is shown as a child of E1EDP01, as shown
in Figure 13.11.

Figure 13.11 Extended Type ZORSDQ01 in the IDoc Type Editor

9. Save the extension and assign it to a change request.

10. Back out of the IDoc type editor to the initial screen and release the extended
type with menu option Edit • Set release.

11. The system throws up an information dialog with the message:

Extension types cannot be changed after being released. Release extension?

Click Yes to release the extension.

Linking ZORSDQ01 to the Message and Basic Types

We can’t do anything with our new IDoc extension until it has been linked to
the message and basic types. Without this step, our extension is no more than a
structure without a home or purpose.

To link the extended type to the message and basic types:

506

Building the Outbound Order Confirmation13

1. Use Transaction WE82 or follow WEDI area menu path Development • IDoc
Type/Message.

2. Click the pencil icon to switch to change mode (or press (Ctrl)+(F1)).

3. Click the Position button and enter “ORDRSP” in the Message Type field and
“ORDERS05” in the Basic type field.

4. Click the OK green checkmark to navigate to the existing entry.

5. Select the entry and click Copy as at the top of the screen, or press (F6).

6. Enter “ZORSDQ01” in the Extension column and change the Release number
to 702 (or your current SAP release). Press (Enter). Two entries now exist for
ORDRSP-ORDERS05, as shown in Figure 13.12.

Figure 13.12 Linking the Extension to the Message and Basic Types

7. Click Save and assign the change to a workbench request.

Creating a View for the Extended IDoc Type

We won’t use every segment in the standard ORDERS05 basic type. Acme doesn’t
send its customers all of the data in the sales order. We only map a few segments
to the outbound 855:

EE E1EDK01: Header general data

EE E1EDK03: Document dates

EE E1EDKA1: Partner information

EE E1EDK02: Document numbers

EE E1EDP01: Item-level base data

EE Z1PSDQ: SDQ segment with store order quantities

EE E1EDP19: Material identification

We can’t delete standard ORDERS05 segments from the extended IDoc, but we
can select only the segments that we want to include by creating a view in the
IDoc view editor.

507

Technical Specifications 13.4

1. To get to the view editor, use Transaction WE32 or follow the WEDI area menu
Control • IDoc views.

2. In the View name field, enter “ZORSDQ01_BAS” 01 and click Create.

3. Enter the following values in the Create view dialog (Figure 13.13):

EE BasicTyp: “ORDERS05”

EE Extension: “ZORSDQ01”

EE Logical message: “ORDRSP”

EE Description: A brief description of the view

Figure 13.13 Creating a View for the SDQ Extended Type

4. Click OK to open the Create View editor.

Note the list of segments in the opening screen. E1EDK01 is the only segment
included in the view by default. Every other segment that will be part of the
view must be specifically included (Figure 13.14).

Figure 13.14 E1EDK01 is Included By Default in the View

508

Building the Outbound Order Confirmation13

5. To include a segment in the view, click on the segment name and then click the
Include in view black arrow icon next to the pencil icon at the top of the view
editor or press (F8).

6. Include the following segments in the view:

EE E1EDK03

EE E1EDKA1

EE E1EDK02

EE E1EDP01

EE Z1PSDQ

EE E1EDP19

The completed view is displayed in Figure 13.15.

Figure 13.15 The Completed View with All Included Segments

7. Save the view and assign it to a change request.

The view will be included as an outbound parameter in the partner profile for the
extended type, just below the basic type and extension fields.

509

Technical Specifications 13.4

13.4.6 SDQ Bundling and IDoc Output Program

ZEDI_ORDRSPSDQ addresses a common issue in EDI implementations: the need to
send one 855 order confirmation in response to a customer PO that recorded order
quantity data for multiple store locations at the line-item level, and that may have
generated hundreds or even thousands of SAP sales orders.

Custom program ZEDI_ORDRSPSDQ is supported by a number of custom development
objects and configuration, including the following:

EE IDoc extension ZORSDQ01 for message type ORDRSP and basic type ORDERS05
with custom segment Z1PSDQ beneath item-level parent E1EDP01

EE View ZORSDQ01_BAS for IDoc extension ZORSDQ01

EE Output type BA00 linked to Gordy’s order through condition records in table
B150

EE Process codes SD10 and ZD10 for message type ORDRSP linking to function
IDOC_OUTPUT_ORDRSP

EE An outbound partner profile to identify the SDQ order confirmations before
they are bundled into one IDoc:

EE Message type ORDRSP

EE Basic type ORDERS05

EE Message function (MESCOD) SDQ

EE No extended type

EE Standard BA00 message control

EE Another outbound partner profile to send the SDQ IDoc after it has been bundled
by the customer program:

EE Message type ORDRSP

EE Basic type ORDERS05

EE Extended type ZORSDQ01

EE View ZORSDQ01_BAS

EE No value in message function (MESCOD)

EE No message control

510

Building the Outbound Order Confirmation13

ZEDI_ORDRSPSDQ collects all ORDRSP IDocs by sold-partner where the MESCOD
field in the control segment EDIDC equals SDQ. It groups them by customer PO
number, which it reads from the E1EDK02 segment in the IDoc, loops through
them, and builds a single ORDRSP IDoc using extended type ZORSDQ01 and the
other segments in view ZORSDQ01_BAS.

The program builds a common control and header data records by sold-to partner
and PO number before assembling line items by material number. It collects up
to 10 pairs of store order quantity fields by material into each SDQ segment and
inserts the completed SDQ just below the E1EDP01 item detail header segment.

The SDQ ORDRSP IDoc built with this program contains only data that needs to be
sent to the customer in the 855 confirmation. There’s no need to map every field
that comes out of the sales order.

After the consolidated ORDRSP SDQ IDoc is written to the IDoc database, it is sent
to the EDI system through a standard function call. The original ORDRSP IDocs
generated from the sales orders with SDQ in the MESCOD field are then marked
for deletion and an ALV list report is output.

The ALV report header identifies the IDoc extension and its PO number. The
report detail lists all IDocs and their corresponding sales order numbers used to
build the extension.

Sales Order to SDQ IDoc Mapping

We need to map the one-to-many confirmation IDocs that will be generated from our
sales orders for our SDQ PO from Gordy to one IDoc of extended type ZORSDQ01.
So let’s begin by outlining the mapping between the two IDocs in Table 13.4.

IDoc Element Mapping Instructions to Target

IDoc Header Data Records—Mandatory—Max 1

EDIDC EE Map entire control segment except MESCOD SDQ. Target
MESCOD is null.

EE Only one instance of segment mapped.

EE Move ZORSDQ01 to CIMTYP.

Table 13.4 Mapping the Extended IDoc Type ZORSDQ01

511

Technical Specifications 13.4

IDoc Element Mapping Instructions to Target

E1EDK01 EE Map entire segment.

EE Only one instance of segment mapped.

EE An instance of the PO number should be stored here.

E1EDK03 EE Map entire segment.

EE Up to 10 instances of segment may be mapped.

E1EDKA1 EE Map each instance of E1EDKA1 where PARVW not equal to WE.
This should include AG (Customer), RE (Bill-to), RG (Payer).

EE Up to 99 instances of segment may be mapped.

EE The sold-to number is one of the two header keys that will be
used to consolidate the many sales order confirmation IDocs into
one SDQ extended IDoc.

EE Ship-to, where PARVW = WE, is mapped to custom segment
Z1PSDQ at item level.

E1EDK02 EE Map entire segment.

EE Up to 10 instances of segment may be mapped.

EE The PO number is stored here. This is the second header key used
to consolidate the many sales order IDocs into one.

E1EDP01—Line Item Level Data Group—Mandatory—Min 1/Max N

E1EDPO1 EE Loop through all source E1EDP01 group segments linked to
sold-to and PO number.

EE Map one instance of entire segment to target E1EDP01 except
MENGE (quantity) and MENEE (unit of measure).

EE Sum source MENGE for each instance of E1EDP01 in all IDocs for
sold-to, ship-to, PO number, and current material, and map to
target E1EDP01-MENGE.

EE Only one instance of segment mapped to target.

Z1PSDQ EE 0 to N instances can be populated.

EE Move E1EDP01-MENEE to Z1PSDQ-MENEE.

EE Hard code UL (GLN) to ZIPSDQ-QUALF.

EE Pass each value once each time a new instance of ZIPSDQ is
created.

Table 13.4 Mapping the Extended IDoc Type ZORSDQ01 (Cont.)

512

Building the Outbound Order Confirmation13

IDoc Element Mapping Instructions to Target

Z1PSDQ EE Ship-to number/quantity pair comes from sales order
confirmation IDoc for sold-to, ship-to, PO number, and current
material.

EE Up to 10 pairs from 10 sales order IDocs can be passed to one
ZIPSDQ segment.

EE Move store GLN from E1EDKA1-LIFNR where PARVW = WE to
Z1PSDQ-EXPNR1

EE Move E1EDPO1-MENGE to Z1PSDQ-MENGE1 from the same
IDoc

EE The next pair is mapped to Z1PSDQ-EXPNR2 and Z1PSDQ-
MENGE2, and the next to Z1PSDQ-EXPNR3 and Z1PSDQ-
MENGE3 and so on, until either there are no more pairs or all ten
pairs are populated.

EE If all ten pairs are populated, another instance of Z1PSDQ is
created, and so on, until all the store location/quantity pairs for
each ship-to sales order for the PO, sold-to, and current material
have been processed.

E1EDP19 EE Map entire segment once for current material, regardless of how
many ship-to/quantity pairs mapped to Z1PSDQ.

EE 1 to 5 instances are possible.

Table 13.4 Mapping the Extended IDoc Type ZORSDQ01 (Cont.)

Program Structure

Our custom ABAP program ZEDI_ORDRSPSDQ includes the following elements:

EE Table declarations

EE Selection screen definition

EE Type, internal table, string, and field variable declarations

EE ALV list report data declarations, including the following:

EE Type pools

EE Work area definitions for structured strings and internal tables for the ALV
list report function

EE ALV list report work fields or variables

513

Technical Specifications 13.4

EE An include program for the report header form routine called by the ALV list
report function

EE An ABAP INITIALIZATION event

EE A START-OF-SELECTION event that groups all data selection and processing in
discrete form routines, including the following:

EE FORM_000_READ_IDOC_DATA: Select all IDocs at status code 30 with MESCOD
SDQ using select options entered into selection screen.

EE FORM_010_BUILD_SDQ_IDOC: SDQ IDoc processing. Group selected IDocs by
sold-to partner and PO number, build extended IDoc with SDQ segment,
write to IDoc database, and send to EDI system.

EE FORM_020_BUILD_ALV_REPORT: Build internal tables for report header and detail
data.

EE FORM_030_ALV_SETUP: Handle ALV data house-keeping, including defining
keys and sort order.

EE FORM_040_BUILD_SEL_FIELDCAT: Build the ALV field catalog, identifying the
internal table, its fields, and field lengths that contain the report data.

EE FORM_050_WRITE_REPORT: Call ALV list report function to output report.

Create Program ZEDI_ORDRSPSDQ

To create the custom program ZEDI_ORDRSPSDQ, follow these steps:

1. Go to the ABAP Editor with Transaction SE38 or the Object Navigator with
Transaction SE80. Click Edit object and navigate to the Program tab. Enter
the program name ZEDI_ORDRSPSDQ and click Create (or press (F5)).

2. Fill out the Attributes dialog area as indicated in Figure 13.16 by entering the
following values:

EE Select Executable program in the Type field.

EE Select Customer Production Program in the Status field.

EE Select Cross-Application in the Application field.

EE Select the Fixed point arithmetic and Unicode checks active checkboxes.

3. Click Save and assign the program to a change request.

514

Building the Outbound Order Confirmation13

Figure 13.16 Attributes for Program ZEDI_ORDRSPSDQ

Program Code

Before we step through the logic and its supporting variables, remember that this
is just a starting point, not a complete solution.

We begin by declaring our tables:

EE EDIDC, EDID4, and EDIDS: IDoc database

EE VBAK and VBAP: Sales order data

The main IDoc processing internal tables and work areas will reference our declared
database objects, defined in Listing 13.1 and listed after.

data: gt_control_in type table of edidc, ,"Control rec in
 gt_control_out type table of edidc, "Control rec out
 gs_control_in type edidc, "Control rec in work area
 gs_control_out type edidc, "Control rec out work area
 gt_comm_idocs type edidc, "Communications idoc
 "returned by ALE services
 gt_data_in type table of edidd, "Data records in
 gt_data_out type table of edidd, "New records out
 gs_data type edidd, "Data work area

515

Technical Specifications 13.4

 gt_status type table of edids, "Status record
 gs_status type edids, "Status work area.

Listing 13.1 Internal Tables and Work Areas for IDoc Processing

EE GT_CONTROL_IN will read the control records for all IDocs generated from sales
orders for one PO and one sold-to where MESCOD = SDQ.

EE GT_CONTROL_OUT will store the control record for the consolidated IDoc with the
custom SDQ segments for store location and ordering quantity that will be sent
to the EDI system for mapping to the 855.

EE GT_DATA_IN will load the data records for all sales order SDQ IDoc.

EE GT_DATA_OUT will carry the data records, including all SDQ segments, for the
consolidated IDoc to the EDI system.

We’ll need types for internal tables and work areas to group IDocs by PO, sold-to,
material, and ship-to partner numbers. We’ll also need types for an ALV list report
that will identify all sales order IDocs bundled into our extended SDQ IDoc. All of
our internal tables and work areas will reference a type.

The types, internal tables, and work areas that we’ll use to group and sort our sales
order IDocs are defined in Listing 13.2.

**** Types for PO grouping ***
types: begin of t_po,
 bstnk type bstnk, "PO number
 end of t_po.

types: begin of t_po_idoc,
 docnum type edi_docnum, "Idoc no.
 rcvprn type edi_rcvprn, "Sold-to partner
 vbeln type vbeln, "Sales order number
 bstnk type bstnk, "PO number
 end of t_po_idoc.

**** Type for PO material groupings ***
types: begin of t_matnr,
 bstnk type bstnk, "PO number
 matnr type matnr, "Material number
 kunnr_we type lifnr_edi, "Ship-to partner
 menge type edi_menge, "Item quantity
 menee type edi_menee, "Unit of measure

516

Building the Outbound Order Confirmation13

 end of t_matnr.

types: begin of t_item,
 matnr type matnr,
 end of t_item.

types: begin of t_store, "Store no/qty pairs
 matnr type matnr, "Material number
 kunnr_we type lifnr_edi, "Ship-to partner
 menge type edi_menge, "Item quantity
 end of t_store.

**** PO grouping tables and work areas ***
data: gt_po_idoc type table of t_po_idoc,
 gt_po type table of t_po,
 gs_po_idoc type t_po, gs_po type t_po.
 gs_po type t_po, gs_po type t_po.

**** Material grouping tables and work areas ***
data: gt_matnr type table of t_matnr,
 gt_item type table of t_item,
 gs_matnr type t_matnr,
 gs_item type t_item.

**** Store quantity pair table and work areas ***
data: gt_store type table of t_store,
 gs_store type t_store.

Listing 13.2 PO and Material Grouping Internal Tables

For the ALV list processor, we need to reference a standard type pool and define
types and internal tables to structure and output a report (Listing 13.3).

*Reference to ALV type pool

type-pools: slis.

**** Type for Report Header ***
types: begin of t_header,
 docnum type edi_docnum, "Idoc no.
 rcvprn type edi_rcvprn, "Sold-to partner
 upddat type edi_upddat, "IDoc Output date
 bstnk type bstnk, "Customer PO no.
 msg(30) type c, "Status and msg

517

Technical Specifications 13.4

 end of t_header.

**** Type for Report Details ***
types: begin of t_out,
 docnum type edi_docnum, "t_header Idoc no.
 bstnk type bstnk, "t_header PO no.
 so_docnum type edi_docnum, "sales order Idoc no.
 vbeln type vbeln, "sales order no.
 end of t_out.

**** Report output tables and work areas ***
data: ihead type table of t_header, "Report header
 shead type t_header, "Header work area
 iout type table of t_out, "Report detail
 sout type t_out. "Detail work area

Listing 13.3 Report Header and Detail Type Declarations

Report fields DOCNUM (the final bundled extended SDQ IDoc number) and BSTNK
(the PO number) in IHEAD link to the same fields in IOUT. The ALV list processor
uses this key to create a relationship between the single bundled IDoc with the
custom SDQ segment in the IHEAD header table and the IDocs generated from the
sales orders with MESCOD SDQ in the IOUT details level of the report.

We also need the following internal tables and strings that reference type pool SLIS.
Each of these will pass key data about the report to function REUSE_ALV_HIERSEQ_
LIST_DISPLAY to generate the hierarchical ALV list report.

EE IFIELDCAT TYPE SLIS_T_FIELDCAT_ALV and SFIELDCAT LIKE LINE OF IFIELDCAT:
Passes the catalog of fields in IHEAD and IOUT to the ALV list report.

EE ISORTCAT TYPE SLIS_T_SORTINFO_ALV and SSORTCAT LIKE LINE OF ISORTCAT:
Defines report data sort order.

EE SLAYOUT TYPE SLIS_LAYOUT_ALV: Defines layout parameters for the report such
as minimum line size.

EE IEVENTCAT TYPE SLIS_T_EVENT and SEVENTCAT LIKE LINE OF IEVENTCAT: Identifies
ALV report events defined in type pool SLIS, such as SLIS_EV_TOP_OF_PAGE,
which points to a form used to process the top of the report event. Our top of
form is embedded in an include program that provides a standard format for
the report header.

518

Building the Outbound Order Confirmation13

EE SKEYINFO TYPE SLIS_KEYINFO_ALV: Defines the key fields that link the ALV list
report header and detail output tables.

Next we declare variables to parse and process each segment in the source ORDRSP
and target ZORSDQ01 extended IDoc. The variables are strings with the data struc-
ture of each segment type. We’ll also define constants to name unchanging values
such as message, type, and segment names, status codes, and so on Listing 13.4.

*Structures to parse and process IDoc data segments
data: gs_e1edk01 type e1edk01,
 gs_e1edk02 type e1edk02,
 gs_e1edka1 type e1edka1,
 gs_e1edl03 type e1edk03,
 gs_e1edp01 type e1edp01,
 gs_z1psdq type z1psdq,
 gs_e1edp19 type z1psdq.

constants: c_ordrsp type c value 'ORDRSP',
 c_orders05 type c value 'ORDERS05',
 c_zorsdq01 type c value 'ZORSDQ01',
 c_e1edk01 type c value 'E1EDK01',
 c_30 type c value '30',
 c_sdq type c value 'SDQ'.
 c_855 type c value '855'
 c_dir_out type c value '1'

Listing 13.4 Segment Type Structures and Constants

Of course, we need selection options to identify SDQ IDocs generated by the sales
orders. We’ll keep it simple for this example:

EE s_docnum: Returns a range of IDoc numbers

EE p_kunnr: Identifies one SAP sold-to partner

EE s_upddat: Date range for the last update to the IDocs

EE p_bstnk: Identifies one customer PO number

Control segment selection parameters passed to the SQL read of the IDoc database
include status, message and basic type, and MESCOD SDQ.

519

Technical Specifications 13.4

Processing Flow

When the start of selection event kicks off, the first step is to identify all IDoc con-
trol records at status 30 with message code SDQ from table EDIDC that meet the
criteria entered in our selection screen. This is done in FORM 000_READ_IDOC_DATA.
RCVPRN is the sold-to partner for Gordy's Galaxy.

select * into table gt_control_in from edidc
 where docnum in s_docnum
 and status = c_30
 and direct = c_dir_out
 and rcvprn = p_kunnr
 and mescod = c_sdq
 and mestyp = c_ordrsp
 and upddat in s_upddat.

Listing 13.5 gives the SQL code to pull these records.

select * into table gt_control_in from edidc
 where docnum in s_docnum
 and status = c_30
 and direct = c_dir_out
 and rcvprn = p_kunnr
 and mescod = c_sdq
 and mestyp = c_ordrsp
 and upddat in s_upddat.

Listing 13.5 Get All SDQ IDocs Generated from Sales Orders

An unsuccessful read returns an error and IDoc processing terminates.

A successful read populates an internal table with all the control records for each
confirmation ORDRSP IDoc generated from every sales order created by one VMI
or one 850 SDQ PO for Gordy’s Galaxy.

We will group these IDocs by PO number and build our SDQ extension in FORM
010_BUILD_SDQ_IDOC.

Loop through GT_CONTROL_IN and pull all instances of segment E1EDK02, which
stores the customer PO number against qualifier 001. To do this, we call three
functions:

EE EDI_DOCUMENT_OPEN_FOR_READ passing the IDoc number in the current loop pass.
This confirms that the IDoc exists and has no foreign locks against it.

520

Building the Outbound Order Confirmation13

EE EDI_SEGMENT_GET for the current IDoc number and segment E1EDK02. This
returns all E1EDK02 segments in the IDoc, including control and SDATA fields.
We’ll pass this to internal table GT_DATA_IN.

EE EDI_DOCUMENT_CLOSE_READ for the current IDoc number. We need to make more
than one segment call for each IDoc, so we won’t close the read until all of our
segments have been retrieved.

There will likely be more than one E1EDK02 segments per IDoc. The PO confirma-
tion includes the customer PO number (if it posted to the sales order) and the sales
order number. We need both.

Loop on GT_DATA and move SDATA into string variable GS_E1EDK02. If the qualifier
equals 001, move GS_E1EDK02 to our GT_PO_IDOC internal table:

EE GT_CONTROL_IN-DOCNUM to GT_PO_IDOC-DOCNUM

EE GT_CONTROL_INC-RCVPRN to GT_PO_IDOC-RCVPRN

EE GS_E1EDK02-BELNR to GT_PO_IDOC-BSTNK

If the qualifier equals 002, move the sales order number from GS_E1EDK02-BELNR
into GT_PO_IDOC-VBELN. Then append GS_E1EDK02 to GT_PO_IDOC-BSTNK.

As we build GT_PO_IDOC, we’ll also collect BSTNK into internal table GT_PO, which
only stores the purchase order number. This will give us a list of unique PO num-
bers across all the IDocs we read, which tells us how many consolidated IDocs we
need to build.

Next we group our order materials by PO and ship-to partner. These data are in
three segments:

EE E1EDKA1 with qualifier WE for the ship-to store location. This will go into the
custom SDQ segment of the consolidated IDoc.

EE E1EDP01 for the order quantity for the store location, unit of measure, and unit
price ordered. The quantity will go into the custom SDQ segment. It will also
be summed with all other quantities for all ship-to partners using the same PO
number.

EE E1EDP19 with qualifier 003 for the material number in the customer’s system.

Refresh and clear table GT_DATA_IN. The current IDoc is still open for reading until
the end of the GT_CONTROL_IN loop. Call EDI_SEGMENT_GET once for each of the three
segments that we will process.

521

Technical Specifications 13.4

Refresh and clear GT_DATA_IN and GS_DATA_IN before each call to function EDI_SEG-
MENT_GET. Then loop at GT_DATA_IN to read our segment data and build our internal
tables, just as we did for E1EDK02.

For E1EDKA1, move GS_DATA_IN-SDATA to GS_E1EDKA1 where the partner type quali-
fier in PARVW equals WE. Move:

EE GS_E1EDK02-BELNR to GT_MATNR-BSTNK

EE GS_E1EDKA1-LIFNR to GT_MATNR-KUNNR_WE

For E1EDP01 move GS_DATA_IN-SDATA to GS_E1EDP01. Then move:

EE GS_E1EDP01-MENGE to GT_MATNR-MENGE

EE GS_E1EDP01-MENEE to GT_MATNR-MENEE

EE GS_E1EDP01-VPREI to GT_MATNR-VPREI

For E1EDP19, move GS_DATA_IN-SDATA to GS_E1EDP19. The function pulls all instances
of the segment in the current IDoc but we only care about the customer’s external
material number, which is stored against qualifier 003. The logic would be similar
to Listing 13.6:

if gs_e1edp19-qualf = '003'.
 gs_matnr-matnr = gs_e1edp19-idtnr.
endif.
append gs_matnr to gt_matnr.

Listing 13.6 Collecting the Customer Material Number

After we’re finished processing all our segments, we call function EDI_DOCUMENT_
CLOSE_READ at the bottom of the GT_CONTROL_IN loop.

When the GT_CONTROL_IN loop completes, we are left with the following:

EE Internal table GT_PO with a list of all unique PO numbers. Each consolidated
IDoc we build will be associated with one PO number.

EE Internal table GT_PO_IDOC linking the POs to IDocs, sales orders, and sold-to
partner numbers. This identifies the ORDRSP IDocs and sales orders created
from one customer PO that we’ll use to build our consolidated SDQ IDoc.

EE Internal table GT_MATNR linking PO numbers to the store location, material,
quantity ordered, and unit price. This identifies the product order data that will
be used to build our E1EDPO1 item-level detail group in our consolidated IDoc.

522

Building the Outbound Order Confirmation13

More Than One Way to Read an IDoc

The logic for reading each segment of an IDoc is fundamentally the same. The call to
EDI_SEGMENT_GET should be encapsulated in a form routine that passes the segment
name, segment structure, and internal tables for processing each time that it’s called.

And, of course, there’s more than one way to get your IDoc data. We can do a direct
SQL read of table EDIDD by IDoc number and move all segments into an internal table.
We can also call function IDOC_READ_COMPLETELY in function group EDI1 that will do
the direct read for you.

Function groups EDI1 and EDI5 contain a number of very useful functions for reading,
editing, and processing IDocs.

Building the SDQ

We are now ready to build our ORDRSP SDQ IDoc based on the structure of the
view that we created for our extension.

The segments in our target IDoc will be identical to the same segments in the source
IDocs generated from the same PO number. The changes to the segments in the
consolidated IDoc include the following:

EE E1EDK02 where QUALF equals 002: The sales order number is not copied across.
There is one sales order for each ship-to, which could amount to thousands of
them for a customer as large as Gordy’s Galaxy.

EE E1EDKA1 where PARVW equals WE: This is not mapped to the SDQ IDoc.

EE E1EDP01: Data changes. Item quantity in E1EDP01-MENGE is the sum of the
quantity ordered by each store in the SDQ segment.

EE Z1PSDQ: Up to 10 store quantity pairs per custom SDQ segment for the item
ordered in the E1EDP01 looping group.

EE E1EDP19: The customer material number is mapped once for each PO item
grouped by product ordered, not for each sales order item.

We begin with a sort and a loop on internal table GT_PO. The SDQ IDoc build takes
place entirely within this loop and its list of unique PO numbers. GT_PO has the PO
number for each bundled SDQ IDoc that we will build.

Our first step is to collect all our order materials into an internal table. We’ll use
this table later within the current loop on GT_PO to collect order item details into
E1EDP01 item level groups.

523

Technical Specifications 13.4

refresh: gt_item.
clear : gt_item, gs_item.
loop at gt_matnr into gs_matnr where
 bstnk = gs_po-bstnk.
 gs_item-matnr = gs_matnr-matnr.
 collect gs_item into gt_item.
endloop.

Next we build the control and header data records for our ZORSDQ01 extension
from one of the IDocs associated with the current PO number. It doesn’t matter
which one because the control and header data records for each IDoc generated
for the same PO will be identical, except for the IDoc number and ship-to partner.
We’ll use the IDoc number from the model IDoc as a key to link the control seg-
ment to the header and details data segments of our new consolidated IDoc.

We will pull all data records from the IDoc with function IDOC_READ_COMPLETELY,
as in Listing 13.7.

*** Clear IDoc control structures ***
clear: gt_control_in, gs_control_in,
 gt_data in, gs_data_in,
 gt_control_out, gs_control_out,
 gt_data out, gs_data_out.

*** Get an IDoc number for current PO ***
read gt_po_idoc into gs_po_idoc with key
 bstnk = gs_po-bstnk.
 if sy-subrc <> 0. exit.
 else.

*** Get control and data records for first IDoc ***
*** in gt_po_idoc loop ***
 call function 'idoc_read_completely'
 exporting
 document_number = gs_po_idoc-docnum
 importing
 idoc_control = gt_control_in
 tables
 int_edidd = gt_data_in.
 endif.

Listing 13.7 Get an IDoc to Use as a Model for the Bundled SDQ IDoc

524

Building the Outbound Order Confirmation13

The complete IDoc is returned. GT_CONTROL_IN has the control segment and GT_
DATA_IN all the data records for the model IDoc. We’ll copy GT_CONTROL_IN to
GT_CONTROL_OUT with some modifications to the control record of the new con-
solidated ZORSDQ01 IDoc, as detailed in Listing 13.8.

*** Copy control segment into ZORSDQ01 ***
loop at gt_control_in into gs_control_out.
 clear gs_control_out-status.
 clear gs_control_out-mescod.
 gs_control_out-cimtyp = 'ZORSDQ01'.
 append gs_control_out to gt_control_out.
endloop.

*** Copy header segments into ZORSDQ01 ***
loop at gt_data_in into gs_data_out.
 case gs_data_out-segnam.
 when c_e1edk01 or c_e1edk03.
 append gs_data_out to gt_data_out.
 clear gs_data_out.
 when c_e1edk02.
 clear gs_e1edk02.
 gs_e1edk02 = gs_data_out-sdata.
 if gs_e1edk02 = '002'. "PO number only
 append gs_data_out to gt_data_out.
 clear gs_data_out.
 endif.
 when c_e1edka1.
 clear gs_e1edka1.
 gs_e1edka1 = gs_data_out-sdata.
 if gs_e1edka1-parvw <> 'WE'. "All except store number
 append gs_data_out to gt_data_out.
 clear gs_data_out.
 endif.
 endcase.
 endloop.

Listing 13.8 Building Control and Header Data Records for the New IDoc

The control and header data records are now appended to the new IDoc being
built in GT_DATA_OUT.

525

Technical Specifications 13.4

Next we build the item group by looping on GT_ITEM with its unique list of all
materials ordered in the current PO. Each line in GT_ITEM represents one E1EDP01
group within the new consolidated SDQ IDoc.

The data we need to build segments E1EDP01, Z1PSDQ, and E1EDP19 (in that
order) will be read from internal table GT_MATNR. The order quantity will be accu-
mulated during the build of all SDQ segments within the item group and inserted
into field E1EDP01-MENGE.

The SDQ segments are assembled through the dynamic assignment of store and
quantity field names to field symbols at runtime. The base names—EXPNR and
MENGE—are incremented with an index that resets to 1 when it hits 10. This allows
us to populate up to 10 pairs of store location and quantity fields for each SDQ
segment and to begin building a new SDQ segment when we hit 10.

We declare the following field symbols and variables in the declarations header
area of our program to build store location and quantity field pairs for assembling
each SDQ segment (Listing 13.9):

EE Field symbol <EXPNR> passes store location values to the SDQ segment work
area.

EE Field symbol <MENGE> passes order quantity values to the SDQ segment work
area.

EE String variable GS_EXPNRVAR builds SDQ segment field names for store location
dynamically at runtime.

EE String variable GS_MENGEVAR builds SDQ segment field names for store quantity
dynamically at runtime.

EE Integer SDQ_INDX counts the number of instances of store location and quantity
pairs per SDQ segment. Begins at 0, increments by 1 until it hits 10 then resets
to 0.

EE String variable STR_SDQ_INDX appends SDQ_INDX to GS_EXPNRVAR and GS_MENGE-
VAR to dynamically build field names at runtime.

**** Field symbols for store location and qty ***
field-symbols: <expnr>, "Store location number
 <menge>. "Store order qty

**** Variables to build SDQ field names ***
data: gs_expnrvar type edi_expnr, "Store field name

526

Building the Outbound Order Confirmation13

 gs_mengevar type edi_menge, "Qty field name
 sdq_indx type p value 0, "Store count per segment
 gs_sdq_indx type c. "Passes count to field names

Listing 13.9 SDQ Field Names Built by Field Symbols and Index

Listing 13.10 shows the code for the item-level detail segment builds.

*** Initialize segment work areas ***
sort: gt_item, gt_matnr by matnr ascending.
clear: gs_e1edp01, gs_z1psdq, gs_e1edp19,
 str_expnrvar, _mengevar.
*** Index keeps track of SDQ fields ***
sdq_indx = 0, posex_cnt = 0.

*** Begin loop on gt_item ***
loop at gt_item into gs_item.

*** Read item data from GS_MATNR ***
 loop at gt_matnr into gs_matnr
 where matnr = gs_item-matnr
 and bstnk = gs_po-bstnk.

 if gs_e1edp01 is initial.
*** Build segment string E1EDP01 one time***
 gs_e1edp01-posex = posex_cnt + 10.
 gs_e1edp01-menee = gs_matnr-menee.
 gs_e1edp01-vprei = gs_matnr-vprei.
 endif.

*** Build segment strings E1EDP19 only one time ***
 if gs_e1edp19 is initial.
 gs_e1edp19-qualf = '003'.
 gs_e1edp19_01-idtnr = gs_item.
 endif.

*** Build SDQ segment Z1PSDQ ***
*** Set SDQ index ***
 sdq_indx = sdq_indx + 1.
 if sdq_indx < 11.
 clear: str_sdq_indx, str_expnrvar, str_mengevar.
 sdq_indx_str = sdq_indx.
 condense sdq_indx_str.

527

Technical Specifications 13.4

*** Concatenate strings to create variable field names ***
 concatenate 'gs_z1psdq-expnr' sdq_indx_str
 into str_expnrvar.
 concatenate 'gs_z1psdq-menge' sdq_indx_str
 into str_mengevar.

*** Assign variable field names to field symbols ***
*** Identifies fields for update ***
 assign (str_expnrvar) to <expnr>.
 assign (str_mengevar) to <expnr>.
*** Update gs_z1psdq store and quantity fields ***
*** with dynamically assigned field symbols ***
 <expnr> = gs_matnr-kunnr_we.
 <menge> = gs_matnr-menge.
*** Cumulate order quantity for item ***
 gs_e1edp01-menge = gs_e1edp01-menge +
 gs_matnr-menge.
 endif

*** reset sdq index & write SDQ segment to SDQ itab ***
 if sdq_indx = 10.
 gs_z1psdq-menee = gs_matnr-menee.
 gs_z1psdq-qualf = 'UL'.
 append gs_z1psdq to gt_z1psdq.
 clear gs_z1psdq.
 sdq_indx = 0.
 endif.
 endloop.

*** Append all item segments to SDQ IDoc ***
*** Append E1EDP01 to SDQ IDoc ***
 clear gs_data.
 gs_data-mandt = sy-mandt.
 gs_data-docnum = gs_po_idoc-docnum.
 gs_data-segnam = 'E1EDP01'.
 gs_data-hlevel = '2'.
 gs_data-sdata = gs_e1edp01.
 append gs_data to gt_data.

*** Append z1psdq to SDQ IDoc ***
 clear gs_z1psdq.
 loop at gt_z1psdq into gs_z1psdq.

528

Building the Outbound Order Confirmation13

 gs_data-mandt = sy-mandt.
 gs_data-docnum = gs_po_idoc-docnum.
 gs_data-segnam = 'Z1PSDQ'.
 gs_data-hlevel = '3'.
 gs_data-sdata = gs_z1psdq.
 append gs_data to gt_data.
 Clear: gs_data , gs_z1psdq.
 endloop.

*** Append E1EDP19 to SDQ IDoc ***
 clear gs_data.
 gs_data-mandt = sy-mandt.
 gs_data-docnum = gs_po_idoc-docnum.
 gs_data-segnam = 'E1EDP19'.
 gs_data-hlevel = '3'.
 gs_data-sdata = gs_e1edp19.
 append gs_data to gt_data.
endloop.

Listing 13.10 Assembling the Consolidated SDQ IDoc

After the consolidated SDQ IDoc has been assembled, it needs to be written to
the IDoc database and sent to the EDI RIM. One function module takes care of
both jobs: MASTER_IDOC_DISTRIBUTE. We’ll distribute one IDoc at a time. The call
parameters are displayed in Listing 13.11.

 call function 'master_idoc_distribute'
 exporting
 master_idoc_control = gs_control_out
 tables
 communication_idoc_control = gt_comm_idocs
 master_idoc_data = gt_data_out
 exceptions
 error_in_idoc_control = 1
 error_writing_idoc_status = 2
 error_in_idoc_data = 3
 others = 4.
 if sy-subrc <> 0.
 message id sy-msgid type sy-msgty number sy-msgno
 with sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 endif.

Listing 13.11 Triggering IDoc Interface Services and Distribution

529

Technical Specifications 13.4

We pass the control segment in GS_CONTROL_OUT and all data segments in GT_DATA_
OUT. A new IDoc number will be assigned when the IDoc is written to the database.
The new number will be returned in GT_COMM_IDOCS.

The status of the new SDQ IDoc is set to 18—Triggering EDI subsystem OK—when it
triggers the EDI RIM through the file port in the outbound partner profile. After
successful translation, the EDI RIM updates the status through the STATUS IDoc
interface to 06—Translation OK.

Next we change the status of the original ORDRSP IDocs generated when the sales
orders for our PO were saved.

To do this, we need the IDoc numbers of the IDocs used to build the consolidated
SDQ segments. The control segments of the original IDocs are in internal table
GT_CONTROL_IN and the data segments in GT_DATA_IN.

We’ve declared internal table GT_STATUS and a work area GS_STATUS with the struc-
ture BDIDOCSTAT, which has the key fields for the IDoc status record in table EDIDS.

Change the status of all ORDRSP IDocs with MESCOD SDQ that created the bundled
confirmation with the SDQ segment to 31—Error, no further processing. Then
return a custom message from message class IDOC_ADAPTER for the status 31 IDocs—
Confirmation IDoc & has been written to outbound IDoc &. The first "&" will be replaced
with the original IDoc number, the second with the bundled IDoc number. The
standard function in

Listing 13.12 writes the new status to the IDoc database.

*** Build status record with message for each IDoc ***
*** gt_control_in has original IDoc number ***
*** gt_comm_idocs has new IDoc number ***
clear gs_control_out.
loop at gt_comm_idocs into gs_control_out.
 loop at gt_control_in into gs_control_in.
 gs_status-docnum = gs_control_in-docnum.
 gs_status-status = '31'.
 gs_status-msgty = 'S'.
 gs_status-msgid = 'IDOC_ADAPTER'.
 gs_status-msgno = '001'.
 gs_status-msgv1 = gs_control_in-docnum.
 gs_status-msgv2 = gs_control_out-docnum.
 gs_status-repid = sy-cprog.
 append gs_status into gt_status.

530

Building the Outbound Order Confirmation13

*** Standard function to change IDoc status ***
 call function 'idoc_status_write_to_database'
 exporting
 idoc_number = gs_status-docnum
 tables
 idoc_status = gt_status
 exceptions
 idoc_foreign_lock = 1
 idoc_not_found = 2
 idoc_status_records_empty = 3
 idoc_status_invalid = 4
 db_error = 5
 others = 6.
 endloop.
endloop.

Listing 13.12 Changing the Status of Each Original IDoc

Our IDoc processing is now complete. The last job is to build the report header
and detail output tables for the ALV list report.

The report header data for internal table IHEAD comes from here:

EE GT_COMM_IDOCS-DOCNUM: Consolidated IDoc number

EE GT_COMM_IDOCS-RCVPRN: Receiving sold-to partner

EE GT_COMM_IDOCS-UPDDAT: IDoc change date

EE GT_PO_IDOC-BSTNK: Customer PO number

EE GT_COMM_IDOCS-STATUS: Bundled IDoc status

The report detail data for internal table IOUT comes from here:

EE GT_COMM_IDOCS-DOCNUM: Consolidated IDoc number links to IHEAD (will not
display at details level of report)

EE GT_PO_IDOC-BSTNK: Customer PO number links to IHEAD (will not display at
details level of report)

EE GT_CONTROL_IN-DOCNUM: Sales order ORDRSP IDoc

EE GT_PO_IDOC-VBELN: Sales order number

531

Technical Specifications 13.4

After we’ve populated our report header and item details internal tables, we build
an ALV list field catalog for IHEAD and IOUT with the bundled IDoc number and PO
number fields linking the two. The keys are the final bundled SDQ IDoc number
and customer PO number and are identified by their field names in IHEAD and
IOUT. The keys are passed in a structure string defined by a type from the SLIS
type pool: SLIS_KEYINFO_ALV, which is shown in Listing 13.13.

clear skeyinfo.
skeyinfo-header01 = 'DOCNUM'.
skeyinfo-item01 = 'DOCNUM'.
skeyinfo-header02 = 'BSTNK'.
skeyinfo-item02 = 'BSTNK'.

Listing 13.13 Defining the Key between Report Header and Details

The field catalog is defined in an internal table that references SLIS type pool type
SLIS_T_FIELDCAT_ALV. It identifies internal tables and fields that will be displayed
in the ALV list report and it defines how they will be displayed: field labels, output
lengths, data dictionary type, check boxes, and so on. It is typically populated in
blocks of code that can be modularized into a form and called each time a new
field is declared. Listing 13.14 gives an example.

*** Pass bundled SDQ IDoc IDoc number ***
clear sfieldcat.
sfieldcat-fieldname = 'DOCNUM'.
sfieldcat-tabname = 'IHEAD'.
sfieldcat-reptext_ddic = 'OB IDoc no'.
sfieldcat-outputlen = '0016'.
append sfieldcat to ifieldcat.

*** Pass Sales order number ***
clear sfieldcat.
sfieldcat-fieldname = 'VBELN'.
sfieldcat-tabname = 'IOUT'.
sfieldcat-reptext_ddic = 'Sales order no'.
sfieldcat-outputlen = '0010'.
append sfieldcat to ifieldcat.

Listing 13.14 Building the ALV Field Catalog One Field at a Time

532

Building the Outbound Order Confirmation13

Once these house-keeping chores are done, we display the report by calling function
REUSE_ALV_HIERSEQ_LIST_DISPLAY in function group SALV, which is filled with ALV
functions. The function call passes everything the ALV processor needs to output
a nicely formatted standard ALV list report.

call function 'REUSE_ALV_HIERSEQ_LIST_DISPLAY'
 EXPORTING
 i_callback_program = sy-cprog
 is_layout = slayout
 it_fieldcat = ifieldcat
 it_sort = isortcat
 i_save = 'A'
 it_events = ieventcat
 i_tabname_header = 'IHEAD'
 i_tabname_item = 'IOUT'
 is_keyinfo = skeyinfo
 TABLES
 t_outtab_header = ihead
 t_outtab_item = iout
 EXCEPTIONS
 program_error = 1
 others = 2.

Listing 13.15 Calling a Hierarchical ALV List Report

Assign Transaction Code ZSDQO

Finally, we need a transaction code to run our custom SDQ bundling program.

1. Go to Maintain Transaction with Transaction SE93 or through Transaction
SE80 and the Repository Browser.

2. Click the Edit Object button and select the More screen tab.

3. Enter the transaction code “ZSDQ0” and click Create.

4. In the Create Transaction dialog, enter a description of the transaction in the
Short text field.

5. Select the Program and selection screen (report transaction) radio button
in the Start object area (Figure 13.17).

6. Click OK to open the Create Report transaction screen.

7. Enter “ZEDI_ORDRSPSDQ” in the Program field. The Selection screen value
should be “1000”.

533

Technical Specifications 13.4

Figure 13.17 Creating a Transaction for our Custom Program

8. Select whatever SAPGUI you need in the GUI support area.

9. Save the transaction code and assign it to a change request. The transaction
screen should look like Figure 13.18.

Figure 13.18 Transaction Code for the SDQ Bundling Program

534

Building the Outbound Order Confirmation13

13.5 Mapping Specifications

We’ll create one map in the EDI RIM to translate both the ORDERS05 basic type and
the ZORSDQ01 extended type to Gordy’s 855 X12 version 5010 order confirmation.

Table 13.5 details the mapping requirements for the outbound ORDRSP-855 transac-
tion for Gordy’s Galaxy. This is not a complete mapping for the order confirmation,
and the details will vary from site to site.

ORDRSP 855 Value Comments

E1EDK01— Header—Min 1, Max 1

ACTION BAK01 000 Original document. Convert to 00.

BAK02 AP Identifies type of PO confirmation.
Set to AP if EDIDC-MESTYP =
ORDRSP.

CURCY CUR02 USD Document currency

BELNR 999999 Gordy purchase order number.
Mapped from E1EDK02.

E1EDK03—Header dates—Min 0, Max 10

IDDAT DTM01 002 Delivery requested date qualifier.
Convert to 002 in EDI.

DATUM DTM02 20140115 Confirmed delivery date

E1EDKA1—Partners—Min 1, Max 99—Loop 1 Sold-to

PARVW N101 AG Sold-to qualifier. Convert to BY.

N103 UL Hard-code. Identifies GLN.

LIFNR N104 0999999999999 Gordy sold-to GLN from EDPAR

NAME1 N102 Gordy’s Galaxy Sold-to partner name

STRAS N301 2356 Halsted St Sold-to partner street address

ORT01 N401 Chicago Sold-to partner city

PSTLZ N403 60601 Sold-to partner postal code

LAND1 N404 US Sold-to partner country

Table 13.5 Mapping the Order Confirmation IDoc to the X12 855

535

Mapping Specifications 13.5

ORDRSP 855 Value Comments

REGIO N402 IL Sold-to partner region

E1EDKA1—Partners—Loop 2 Bill-to

PARVW N101 RG Invoice recipient. Convert to BT.

LIFNR N104 0999999999999 Acme location GLN from EDPAR

NAME1 N102 Gordy’s Galaxy Gordy’s Galaxy payer party

N103 UL Hard-code. Identifies GLN.

LIFNR N104 0999999999999 Gordy sold-to GLN from EDPAR

NAME1 N102 Gordy’s Galaxy Bill-to partner name

STRAS N301 2356 Halsted St Sold-to partner street address

ORT01 N401 Chicago Bill-to partner city

PSTLZ N403 60601 Bill-to partner postal code

LAND1 N404 US Bill-to partner country

REGIO N402 IL Bill-to partner region

E1EDKA1—Partners—Loop 3 Ship-to location

PARVW N101 WE Invoice recipient. Convert to ST.

N103 UL Hard code. Identifies GLN.

LIFNR N104 0999999999888 Acme location GLN from EDPAR

NAME1 N102 Gordy Store 001 Store location name

STRAS N301 265 Orange Ave Sold-to partner street address

ORT01 N401 West Lafayette Store location city

PSTLZ N403 47906 Store location postal code

LAND1 N404 US Store location country

REGIO N402 LA Store location region

E1EDKA—Partners—Loop 4 Supplier name

N102 Acme Pictures Supplier partner name. Hard code.

Table 13.5 Mapping the Order Confirmation IDoc to the X12 855 (Cont.)

536

Building the Outbound Order Confirmation13

ORDRSP 855 Value Comments

E1EDK02—Documents—Min 1, Max 10

QUALF 001 PO number where E1EDK02-QUALF
= 001

BELNR BAK03 999999 Gordy’s PO number

DATUM BAK04 20131215 Purchase order date

E1EDPO1—Item level details group—Min 1, Max N 1 instance of E1EDP01 per group loop

POSEX PO101 000010 Item number

MENGE PO102 100 Total sum of quantity ordered for all
stores in item

MENEE PO103 EA Base unit of measure

VPREI PO104 12.50 Unit price

MENEE SDQ01 EA Base unit of measure for all stores

SDQ02 UL ID type qualifier: Store GLN

E1EDKA1-PARVW = WE

Z1PSDQ—Custom IDoc SDQ Segment—Min 1, Max N

EXPNR1 SDQ03 0999999999999 Store location GLN 1 from IDoc 1
used to build SDQ IDoc.

MENGE1 SDQ04 10 Confirmed quantity ordered store 1

EXPNR2 SDQ05 0999999999990 Store location GLN 2 from IDoc 2
used to build SDQ IDoc.

MENGE2 SDQ06 10 Confirmed quantity ordered store 2

EXPNR3 SDQ07 0999999999991 Store location GLN 3 from IDoc 3
used to build SDQ IDoc.

MENGE3 SDQ08 10 Confirmed quantity ordered store 3

EXPNR4 SDQ09 0999999999992 Store location GLN 4 from IDoc 4
used to build SDQ IDoc.

MENGE4 SDQ10 10 Confirmed quantity ordered store 4

Table 13.5 Mapping the Order Confirmation IDoc to the X12 855 (Cont.)

537

Mapping Specifications 13.5

ORDRSP 855 Value Comments

EXPNR5 SDQ11 0999999999993 Store location GLN 5 from IDoc 5
used to build SDQ IDoc.

MENGE5 SDQ12 10 Confirmed quantity ordered store 5

EXPNR6 SDQ13 0999999999994 Store location GLN 6 from IDoc 6
used to build SDQ IDoc.

MENGE6 SDQ14 10 Confirmed quantity ordered store 6

EXPNR7 SDQ15 0999999999995 Store location GLN 7 from IDoc 7
used to build SDQ IDoc.

MENGE7 SDQ16 10 Confirmed quantity ordered store 7

EXPNR8 SDQ17 0999999999996 Store location GLN 8 from IDoc 8
used to build SDQ IDoc.

MENGE8 SDQ18 10 Confirmed quantity ordered store 8

EXPNR9 SDQ19 0999999999997 Store location GLN 9 from IDoc 9
used to build SDQ IDoc.

MENGE9 SDQ20 10 Confirmed quantity ordered 9

EXPNR10 SDQ21 0999999999998 Store location GLN 10 from IDoc 10
used to build SDQ IDoc.

MENGE10 SDQ22 10 Confirmed quantity ordered store 10

E1EDP19—Materials—Min 1, Max 10

QUALF PO106 002 Customer material number. Convert
to IN for buyer’s number.

PO108 EN Product type qualifier: GTIN code

IDTNR PO109 799142939512 Gordy material number

E1EDS01—Materials—Min 1, Max 10

SUMID 001 Qualifier identifies number of line
items in PO confirmation

SUMME CTT01 1 Total number of line items

Table 13.5 Mapping the Order Confirmation IDoc to the X12 855 (Cont.)

538

Building the Outbound Order Confirmation13

13.6 EDI Configuration in SAP

We need entries in the EDPAR partner-mapping table that will be used by both
standard and custom SDQ ORDRSP output processing. We also need separate part-
ner profiles to support the output of standard and custom SDQ ORDRSP message
types for Gordy’s Galaxy.

13.6.1 EDPAR Entries: Transaction VOE4

During outbound interface processing, the EDPAR read uses the SAP ship-to part-
ner from the sales order to check KUNNR and pull the external partner GLN from
EXPNR. The sold-to partner isn’t used in the outbound read.

Go to Transaction VOE4 and enter one record for each of Gordy’s stores and dis-
tribution centers that will be receiving product from Acme Studios.

Make sure the sold-to partner number is in field KUNNR, the SAP ship-to in INPNR,
and the partner type WE in PARVW. Gordy’s GLN will be in EXPNR. The data
should look like Table 13.6.

Field Value Description

KUNNR GRDY01 Gordy sold-to partner from sales order

PARVW WE Partner function ship-to

EXPNR 0999999999999 External partner for ship-to (Gordy’s GLN)

INPNR GRDY01001 Internal SAP ship-to partner number

Table 13.6 Outbound EDPAR Ship-To Mapping

GLN is then mapped to the N1 or SDQ segments of the outbound 855, with qualifier
UL (N103 or SDQ02). If it’s a non-SDQ IDoc, the N1 segment is further identified
with an ST—ship-to—qualifier in N101.

13.6.2 ZEDIXREF Entries

Our custom table ZEDIXREF maps the IDoc sender and receiving partners—the SAP
logical system ID and Gordy’s sold-to—to the receiving party’s send and receive EDI
ID numbers. We’ll use the values in Table 13.7 for the outbound ORDRSP confirma-
tion to Gordy’s Galaxy, for both bundled SDQ and standard non-bundled IDocs.

539

EDI Configuration in SAP 13.6

Field Value SDQ Value
Non-SDQ

Description

DIRECT 1 1 Direction outbound

STDMES 855 855 EDI PO confirmation transaction

MESTYP ORDRSP ORDRSP IDoc message type

IDOCTP ORDERS05 ORDERS05 IDoc basic type

CIMTYP ZORSDQ01 IDoc extension

SNDPRN DEVCLNT100 DEVCLNT100 SAP send partner: Acme SAP
logical system

RCVPRN GRDY01 GRDY01 SAP receive partner: Gordy’s
customer number in Acme’s
system

SNDLAD 99999998889 99999998889 EDI send partner: Gordy’s trading
partner ID for Acme

RCVLAD 99934567999 99934567999 EDI receiver partner: Gordy’s
trading partner ID for Gordy

Table 13.7 ZEDIXREF Entries for the Outbound 855 to DSI

13.6.3 Partner Profiles: Transaction WE20

We’ll need to define three outbound partner profiles for message ORDRSP for
Gordy’s Galaxy partner number GRDY01 partner type KU (customer) and partner
role SP (sold-to):

1. With null MESCOD and message control to support output of a standard ORDRSP
IDoc generated from one sales order referencing one purchase order that is not
referenced by any other sales orders

2. With MESCOD SDQ and message control to output standard ORDRSP IDocs
from multiple sales orders that reference one purchase order and sold-to partner

3. With MESCOD 855, extended basic type with SDQ segment and view but no
message control to support output of one bundled order confirmation that ref-
erences one purchase order at the header and multiple ship-to partners at the
item details level.

All partner profiles are configured with Transaction WE20.

540

Building the Outbound Order Confirmation13

Partner Profile: No SDQ

To create the standard partner profile with message control, enter the following
values into the Outbound parameters screen:

EE Message type field: “ORDRSP”

EE Receiver port field: “XML_IDOC”

EE Output mode area: Collect IDocs and Start subsystem checkboxes (3)

EE Basic type field: “ORDERS05”

The finished outbound parameters should look like Figure 13.19.

Figure 13.19 Outbound Parameters, Standard ORDRSP with no MESCOD

Click Message Control and create two entries with the following values into the
table control (Figure 13.20):

EE Application: “V1”

EE Message type: “BA00”

EE Process code: “SD10” (links to function IDOC_OUTPUT_ORDRSP)

EE Change message checkboxes: One entry null and one entry checked

541

EDI Configuration in SAP 13.6

Figure 13.20 Message Control ORDRSP Without SDQ MESCOD

Finally, go to the EDI Standard tab by selecting it from the far right of the screen
tabs and enter the following values:

EE EDI Standard: “X” for X12

EE Message type: “855”

EE Version: “00510”

Don’t forget to save. The EDI screen should look like Figure 13.21.

Figure 13.21 EDI Standard Values for all ORDRSP IDocs

Partner Profile: With SDQ MESCOD

These IDocs will be read by custom program ZEDI_ORDRSPSDQ for bundling into
extended type ZORSDQ01 against one purchase order and sold-to partner.

To create a partner profile with MESCOD SDQ and message control, enter the fol-
lowing values into the Outbound parameters screen:

EE Message type: “ORDRSP”

EE Message code: “SDQ”

EE Receiver port: “XML_IDOC”

542

Building the Outbound Order Confirmation13

EE Output Mode area: Collect IDocs and Do not start subsystem checkboxes
(4)

EE Basic type in IDoc type area: “ORDERS05”

The finished outbound parameters should look like Figure 13.22.

Figure 13.22 Outbound Parameters, ORDRSP With SDQ MESCOD

The only difference in message control configuration is the process code. We can’t
use the same application, message type, and process code twice for the same part-
ner and message type. Process code ZD10 is a copy of SD10 extended to include
message code SDQ.

Click Message Control and create two entries with the following values into the
table control (Figure 13.23):

EE Application: “V1”

EE Message Type: “ZBA0”

EE Process Code: “SD10”

EE Change message checkbox: One entry null and one entry checked

543

EDI Configuration in SAP 13.6

Figure 13.23 Message Control ORDRSP With SDQ MESCOD

We’ll also populate the EDI Standard tab with the same X12 855 version 005010
values, as for the standard IDoc with no SDQ MESCOD.

Partner Profile: Extended Type ZORSDQ01

This partner profile will support export to the EDI RIM of the extended IDoc basic
type ZORSDQ01 by custom program ZEDI_ORDRSPSDQ.

We’ll enter the following values into the Outbound parameters screen:

EE Message type: “ORDRSP”

EE Message code: “855”

EE Receiver port: “XML_IDOC”

EE Output mode: Collect IDocs and Start subsystem checkboxes (3)

EE Basic type: “ORDERS05”

EE Extension: “ZORSDQ01”

EE View: “ZORSDQ01_BAS”

The finished outbound parameters should look like Figure 13.24.

Because the extended type will be processed and sent by a custom ABAP and not
generated from a document, we do not configure message control. We will, how-
ever, add the X12 855 values to the EDI Standard tab.

544

Building the Outbound Order Confirmation13

Figure 13.24 Outbound Parameters, ORDRSP with SDQ Extension

13.7 Summary

We’re well on our way now. The order confirmation is a key piece of our order-to-
cash cycle. It confirms to our customer that we have received their purchase order
and that we can deliver their product by a scheduled date.

In the case of VMI orders, the confirmation gives our customer the data they need
to post a purchase order in their own system so they can approve and begin track-
ing the goods that we will ship to them.

We’ve also seen that this can be a complex interface, particularly if one PO is used
to order goods for multiple store locations, creating one sales order in SAP for each
ship-to partner. VMI ordering works the same way for Acme’s biggest customers,
like Gordy’s Galaxy of Games & B Flix with its more than 2,000 store locations
across North America.

The problem, of course, is that the customer sent one PO and expects one PO con-
firmation back. So we need to customize our outbound confirmation to support
bundling of multiple sales orders against one PO into a single IDoc with an SDQ
segment with order quantities for each store location.

545

Summary 13.7

We looked at all the pieces of the puzzle that we need to support this: an extended
IDoc, custom and standard configuration, message control, and ABAP logic that
could serve as a starting point to bundle our multiple ship-to partners into a single
PO confirmation.

The great Darryl Q, who was all about the customer, would have been pleased.
Assuming that Acme’s third-party contract manufacturer, DSI, who also provides
warehousing and delivery services, has the ordered saleable items in inventory,
we’re ready to ship the order to the customer’s distribution centers and stores.
That process begins with the shipping order.

547

“Just deliver the goods,” Darryl Q often fumed at his writers and directors
when a bump was encountered in their creative process. That’s exactly what
the ship order interface does: It tells the distributor what goods to deliver to
whom, against what purchase order, and when. In this chapter we check out
the ship order interface and see how it delivers the goods.

14 Sending a Shipping Order to the Supplier

After the order confirmation has been sent, and the customer knows that his order
is being processed, Acme’s supplier Disc Services International (DSI) steps up to
the plate.

The first thing DSI does is check the finished goods inventory it keeps for Acme.
Does it have enough of the ordered product in stock to put together a delivery
and ship it?

In this chapter we take the happy path and assume that they do. We look at what
happens if they don’t have enough stock in the next chapter.

As we’ve seen, DSI provides Acme Pictures the full range of manufacturing and
distribution services for its movies on DVD: replication, cover art, packaging, ware-
housing and inventory management, delivery, and even ordering raw materials
for manufacturing finished product.

When it comes to shipping an Acme order, DSI needs to know the five Ws:

1. Who ordered the goods?

2. What did they order?

3. Where does the order ship from?

4. Where is the order being shipped to?

5. When does the order have to ship?

This is what the outbound message type SHPORD to X12 830 ship order interface
does: It is triggered by creation of an outbound delivery in Acme’s SAP system

548

Sending a Shipping Order to the Supplier14

and sent to a third-party warehouse to kick off the shipping process of an order
to a customer.

The 830 posts to DSI’s business system and creates a pick list. DSI then retrieves
the ordered DVDs from inventory, packs them into boxes, moves the boxes to a
loading area, and then loads them into trucks for delivery to Gordy’s Galaxy of
Games & B Flix.

This is a critical piece of the order-to-cash cycle. Without the 830 to DSI, nothing
gets shipped, and the customer doesn’t get his goods.

14.1 Technical Overview of Interface

Table 14.1 summarizes the outbound purchase order acknowledgment.

Item Description

Title Ship Order to Third Party Warehouse

Description The ship order interface is sent to a third-party warehouse
that has been contracted to ship and deliver ordered product
for Acme.

It is triggered after the sales order has been completed and
the order confirmation sent. It is generated either by creating
an individual outbound delivery document from a sales order
or by running the delivery due list in Acme’s SAP system.

When the delivery is completed and saved, a SHPORD
message is generated and sent to the EDI RIM where it will
be converted to an outbound X12 830 ship order.

The 830 is then routed to DSI’s EDI system by AS2. It posts
to their business system and begins the shipping process to
the customer. Ordered goods are picked, packed, organized
into shipments, and loaded onto trucks for delivery.

Type of interface Distribution: IDoc to X12 EDI

Direction Outbound

Trading partner Disk Services International (vendor)

IDoc SHPORD.DELVRY03

Table 14.1 Overview of Outbound PO Confirmation Interface

549

Functional Specifications 14.2

Item Description

IDoc extended type

IDoc function IDOC_OUTPUT_DELVRY

Custom ABAP

Description

Target file(s) X12 830 ship order to third-party warehouse

Source document(s) SAP outbound delivery document

Transaction code VL01N, VL10

Map(s) SHPORD.DELVRY03 to X12 830 vers. 5010

Custom map logic

Source system Acme SAP

Target system DSI EDI via AS2 from Acme EDI RIM

997
acknowledgment

Inbound within 24 hours of transmission at the transaction
detail level. Function group acknowledgment code: PS.

Frequency Every 30 minutes throughout the day, on demand

Job schedule 1 RVV50R10C (VL10). Six times daily to run the delivery due list.

Job schedule 2 RSEOUT00: Every hour, sends all SHPORD message types to
DSI.

Table 14.1 Overview of Outbound PO Confirmation Interface (Cont.)

14.2 Functional Specifications

The purpose of this interface is to order shipping and delivery of product in inven-
tory in DSI’s warehouse against Acme sales orders.

DSI is Acme’s one-stop shop for manufacturing, packaging, warehousing, and ship-
ping to customers of its movies on DVD. Through an ongoing process of planning
and ordering by Acme, DSI maintains enough finished product in its inventory that
it can deliver on almost any shipping order that comes its way.

The shipping order interface typically runs after the order confirmation has been
generated from the completed sales order and acknowledged with a 997 by the

550

Sending a Shipping Order to the Supplier14

customer. Any issues that may exist with the customer over the sales order must
first be resolved.

The outbound delivery is created from one or more completed sales orders against
one of DSI’s warehouses set up as a shipping point and plant in Acme’s SAP system.
It can be generated either from the delivery due list or directly from a sales order.

The sales order is linked to the delivery document at the line-item level. The
delivery document can accommodate one or more sales orders, which means that
it can also be linked to multiple customer purchase orders. But at Acme Pictures,
we’re keeping it simple. One of the early design decisions was to create only one
delivery document per sales order.

The outbound delivery is also a key element of the order-to-cash document flow
in SAP. It follows the sales order and must be confirmed before Acme can issue
an invoice to the customer.

Sales document flow is stored table VBFA.

14.2.1 Process Overview

The delivery documents is created from one sales order using transaction VL01N
(create single) or from multiple sales orders with Transaction VL10 from the delivery
due list. Either way, one delivery document is created per sales order.

Creation of the outbound delivery reserves the ordered goods for shipment in
Acme inventory and triggers generation of an IDoc using message type SHPORD
and basic type DELVRY03.

The IDoc is parked in the IDoc database at status 30—IDoc ready for dispatch—until
it’s picked up and exported to the EDI RIM by a scheduled job that runs every 15
minutes.

The RIM converts the SHPORD message to an X12 830 transaction and sends it to
DSI by AS2, where it posts to their shipping system and generates a picking list.
DSI then picks the ordered goods from their warehouse storage location, transfers
them to a loading area, packs them into cartons and pallets, and loads them onto
trucks for shipment to Gordy’s distribution center, which in turn sends them on
to the ordering stores.

551

Functional Specifications 14.2

14.2.2 Requirements

Customers order goods for delivery on a particular date, so shipping orders must
be dropped to the third-party distributor’s warehouse (DSI) as quickly as possible.
There are a few other business requirements:

EE All deliveries for catalog and new release titles are created by running the deliv-
ery due list with Transaction VL10 after the sales order has been successfully
confirmed and completed.

EE When required, one-off deliveries can be created with Transaction VL01N or
directly within a sales order that is ready for delivery with Transaction VA02.

EE The delivery due list is run for a number of key options:

EE Shipping plant

EE Delivery date

EE Sold-to and ship-to partners

EE Sales order numbers

EE One outbound delivery is issued per shipping plant and sales order.

EE EDI ship order delivery documents are created for sales orders of sales docu-
ment type:

EE ZEDI for EDI orders with no SDQ

EE ZEDS for EDI orders with SDQ

EE ZVMI for VMI orders

EE The delivery document inherits all data from the sales order, including item-
level sales BOMs for multi-packs.

EE No partial deliveries are allowed for Gordy’s Galaxy.

EE The outbound delivery is created, and the IDoc generated, only if there is enough
available stock in inventory to cover the order. That stock is reserved and put
on hold for the delivery.

EE Sticker information is included in text elements at the item level of the sales
order and delivery document and is sent to DSI in the IDoc.

EE The sales BOM for multi-pack items is included in the delivery at the standard
line-item level. The sales BOM will be sent by EDI for the supplier’s informa-
tion. It must also be listed on the shipping and billing documents sent to Gordy.

552

Sending a Shipping Order to the Supplier14

Multi-Pack Items at Acme Pictures

A multi-pack is a freestanding corrugate display with multiple DVD titles packaged for
the retailer as a single product. The consumer buys discs individually from the display.

Material master records are created in SAP for the corrugate display item and for each
component DVD title included within it.

The multi-pack has a sales and a production BOM associated with the material number
for the corrugate display. The sales BOM consists of each DVD title and a separate entry
for the corrugate display, which is the last item listed. The production BOM includes
text descriptions for each component DVD title and a separate entry for the corrugate
material number.

Each component title in the multi-pack has its own production BOM, which includes
the raw materials required to assemble the finished DVD title.

Gordy’s Galaxy orders multi-packs through the high-level corrugate item in its 850 EDI
PO. When the ORDERS IDoc posts to an SAP sales order, each sales BOM component
DVD title is pulled in immediately after the multi-pack item—which posts as item 10—in
the order that each appears in the BOM. Each component title has a line item number,
beginning with 20, and refers back to the corrugate as its parent.

This is standard SAP practice and is driven by data in the material master, including the
material group and item category. The item category for the corrugate material at Acme
is ZTAP, and the category for each component item is ZAQ.

Pricing is accumulated at the multi-pack level, but each component DVD title has its
own pricing. The sum of the price of the components must equal the total price of the
multi-pack.

The sales BOM explosion is triggered from the posting of the sales order by the ORDERS
IDoc. It is then passed to each subsequent document in the sales document flow and
to each outbound IDoc generated.

DSI only cares about the multi-pack shipping item, but Gordy wants to see each com-
ponent DVD title in the sales BOM in its delivery and billing documents.

The sales BOM is passed to IDocs generated from both of these documents, and it’s
included in the 830 transmission to DSI.

14.2.3 Dependencies

The SHPORD-830 interface is dependent on master data, configuration, and devel-
opment in SAP and the EDI RIM, including everything required to support sales
orders and confirmations. The following are additional dependencies:

553

Functional Specifications 14.2

EE A vendor master record for DSI exists flagged for goods receipt-based invoicing.

EE Material master data for standalone and multi-pack shipping finished goods is
assigned to DSI warehouses as ship plants and storage locations and to Acme
sales organization and distribution channels.

EE Production and sales BOMs exist in SAP for multi-pack materials and component
DVD titles.

EE The full sales BOM is pulled in orders for multi-pack items when the sales order
is created by a customer PO in an ORDERS IDoc.

EE IDoc configuration in SAP supports outbound deliveries to DSI for Gordy’s Gal-
axy, including output control to generate SHPORD IDocs from deliveries and
partner profiles with message control that link the vendor to the outbound
SHPORD message type.

14.2.4 Assumptions

SHPORD IDocs are automatically generated when delivery documents are created.
One delivery document and one SHPORD IDoc are output for each sales order and
shipping point—which is defined at Acme as a shipping plant at the vendor location.

There are a few other key assumptions about the SHPORD-830 interface:

EE The sales order has been completed in Acme’s SAP system, and the 855 confir-
mation has been sent and confirmed by a return 997 to Acme before the deliv-
ery document is generated.

EE The sales order contains all customer- and material-related data.

EE All relevant sales order data are passed to the delivery document during output
processing, including the following:

EE Customer PO and SAP sales order numbers

EE Relevant partner numbers and addresses for sold-to, ship-to, payer, and
invoice recipient

EE All ordered finished goods that will be shipped

EE Sales BOMs for multi-pack items ordered by Gordy’s Galaxy

EE Sales order pricing, however, is not included. Pricing is not maintained in the
delivery document and is not sent to DSI in the IDoc.

EE Inventory contains sufficient stock to cover order requirements for the delivery.

554

Sending a Shipping Order to the Supplier14

EE The SHPORD IDoc contains all data in the delivery document.

EE The IDoc is sent as an X12 830 shipping order to DSI, the contract distributor,
who is set up as a vendor in Acme’s SAP system.

EE The SHPORD IDoc can be regenerated from the delivery if required.

EE DSI receives Acme’s SAP partner and material numbers. All of DSI’s interfaces
are supported by daily extracts, both full and delta, of master and transactional
data from Acme’s SAP system that include the following:

EE Customer master sold-to and ship-to partners

EE Material master finished goods and components

EE Production BOMs

EE Customer material info records

EE Inventory levels for finished goods

EE Open sales orders and deliveries

EE DSI also receives the GTIN number for ordered goods, which is printed on the
packing labels and other paperwork sent to Gordy with the delivery.

The GTIN number is stored in the EAN/UPC field of the Sales A subscreen at
the item level of the delivery document. It passes to the IDoc in the EAN11 field
of line item segment E1EDL24.

EE Packaging data for the ordered items can pass to the IDoc, but we won’t look
at that in this specification.

14.2.5 Data That Will Pass to an Outbound Ship Order

Table 14.2 displays the source for key data passed to the SHPORD IDoc from the
delivery document.

Table Field Description Sample Value

Delivery Header

LIKP VBELN Delivery number 0816160750

LIKP VSTEL Shipping point (DSI ship plant) 0015

LIKP VKORG Sales organization 0010

Table 14.2 Key Delivery Document Data That Pass to the SHPORD IDoc

555

Functional Specifications 14.2

Table Field Description Sample Value

LIKP WADAT Planned goods issue date 20081220

LIKP LFDAT Delivery date 20081220

LIKP INCO1 Inco terms 1 PPD

LIKP INCO2 Inco terms 2 Destination

VBPA KUNNR PARVW = AG: Sold-to partner GRDY01

VBPA KUNNR PARVW = WE: Ship-to partner GRDY01001

VBPA KUNNR PARVW = RE: Bill-to party GRDY01

VBPA KUNNR PARVW = RG: Payer GRDY01

LIKP BTGEW Total gross weight of all items 128.750

LIKP NTGEW Net weight of all items 128.750

STXH TDID Text ID for delivery texts sent to DSI Z005

STXL CLUSTR Header text from delivery Delivery text

Delivery Items

LIPS POSNR Item number 000010

LIPS PSTYV Delivery item category. Identifies top-
level and component items in a multi-
pack sales BOM.

ZTAP

LIPS MATNR Order item (SAP) 2356784

LIPS WERKS Shipping plant 0015

LIPS LGORT Storage location in plant 0010

LIPS KDMAT Customer material number 799142939512

LIPS LFIMG Delivery quantity for item 4

LIPS MEINS Unit of measure for quantity EA

LIPS NTGEW Net weight for item 1

LIPS BRGEW Gross weight for item 1

LIPS VGBEL Delivery item sales order number 0021611916

VBKD BSTKD Customer PO number 292259

LIPS EAN11 GTIN global item number 799142939512

Table 14.2 Key Delivery Document Data That Pass to the SHPORD IDoc (Cont.)

556

Sending a Shipping Order to the Supplier14

Delivery item category field LIPS-PSTYV identifies whether the material is a standard
shipping item, the top-level shipping item from a multi-pack item sales BOM, or
a component title within the sales BOM.

The item category for the top-level shipping unit of a sales BOM is ZTAP, always
in line item 10. DVD title components of the multi-pack sales BOM have item cat-
egory ZAQ and are numbered sequentially from line item 20, in the same order
that they appear in the sales BOM.

The customer PO number is pulled from sales document table VBKD using the
sales order number from LIPS-VGBEL.

A lot of data passes to the SHPORD IDoc from the delivery and related documents
and records. Only the values that will be sent to DSI are mapped to the 830.

14.2.6 Enhancements to the Process

There are no custom enhancements in this interface.

14.2.7 Reconciliation

Data in the SHPORD IDoc will be validated against the delivery document. IDoc
data will also be validated against the translated 830.

The EDI team will confirm that the 830 was sent to the correct customer.

Output of the SHPORD IDoc can be confirmed by checking the output screen of the
delivery document in Transaction VL03N menu option Extras • Delivery output
Header, which should display an output record with a green traffic light for output
type ZSH1, partner type SH (ship-to), and partner DISK01. The Processing log
button will return the IDoc number.

14.2.8 Errors and Error Handling

If the SHPORD IDoc fails to generate, confirm that message control is correctly
configured for the message type and that there is no credit or delivery block against
the customer.

557

Generating a SHPORD IDoc with Message Control 14.3

Failures in outbound IDoc processing are tracked by the EDI support team using
standard IDoc monitoring tools such as BD87 and WE05. Application errors are
reported to the business users immediately.

14.3 Generating a SHPORD IDoc with Message Control

The outbound ship order to DSI is generated by message control when the delivery
document is created. We’ll cover the message control settings to automatically
output the IDoc in this section.

The outbound delivery is a funny kind of document. It can be used to generate
more than one type of outbound IDoc. Here we’re creating a ship order that goes
to a third-party distributor. But later, in Chapter 16, we generate an advanced ship
notification which goes to a customer.

Both can be generated from the same outbound delivery and use the same applica-
tion and output type in message control, the same process code, and more or less
the same IDoc basic type. But they generate different logical messages, support
different points in the delivery process, and have different business meaning, so
we need a unique custom output type for each process.

We will create the following configuration objects to support generation of the
SHPORD IDoc to DSI:

EE Custom output type ZSH1 copied from standard output LAVA with access
sequence 0010 (for delivery type and shipping point) and supporting configura-
tion

EE Condition record mapping vendor DSI to the Acme shipping point set up for
the DSI warehouse

EE One partner profile with message control for DSI with the ship order message
type SHPORD

14.3.1 Configuring Message Control

To create our custom output type ZSH1, we’ll copy standard type LAVA in applica-
tion V2 (shipping) using Transaction NACE. Follow these steps:

558

Sending a Shipping Order to the Supplier14

1. Select application V2 and click Output types to open the Output Types: Over-
view in display mode.

2. Select menu path Table View • Display • Change (or press (Ctrl)+(F1)) and
select standard output LAVA. Click Copy as or press (F6).

3. Change the output type name to ZSH1 and enter a description for the ship order
to the supplier. Make sure Access to conditions and Multiple issuing are
both set (as shown in Figure 14.1).

Figure 14.1 Custom Output Type ZSH1 with Access Sequence 0010

4. Keep access sequence 0010 for delivery type and shipping point.

The shipping point will be unique to DSI. We can further control who gets this
IDoc by mapping the vendor number to the shipping point in the condition
record.

5. The access number is 10 and the condition table is 21 (B021) with communica-
tions structure KOMKBV2 with two key fields:

EE LFART: Delivery type

EE VSTEL: Shipping point

6. Press (Enter). The Specify object to be copied dialog opens, noting that the
output type has dependent entries. Click Copy all. Another dialog opens with
the number of dependent entries.

7. The system returns us to the Output types: Overview screen in change view.
Save the new output type and assign to a change request.

8. Select output ZSH1 and double-click the Processing routines folder to open
the Processing routines: Overview screen.

559

Generating a SHPORD IDoc with Message Control 14.3

9. If there is no program and form routine for medium EDI, add one. Click New
entries to open the Details of Added Entries screen. Enter the following
values:

EE Transm.Medium: “EDI”

EE Program (Processing 1): “RSNASTED” for the standard SAP output program

EE FORM routine: “EDI_PROCESSING”, which identifies and calls the func-
tion that generates and sends the IDoc

10. Press (Enter) and double-click the Partner functions folder to open the
Partner Functions: Overview screen.

11. Make sure that there’s an entry for medium EDI and partner type VN for
vendor. If not, click New entries and select EDI in the Medium field and VN
in the Funct field.

12. Save any changes since your last save.

Assign ZSHI1 to a Procedure

Follow these steps:

1. Back out to the output control initial screen in Transaction NACE. Select appli-
cation V2 and click Procedures.

2. Select procedure V10000 (header output) and double-click Control in the
navigation pane.

3. Select output type LAVA and click the Copy as button (or press (F6)). The entry
is copied into the Change View Control: Overview screen.

4. Change the step number to 35, the counter to 1, and the output type name to
ZSH1. Change the requirement from 1 to 3.

Requirement 1 issues output only after goods issue has posted against the out-
bound delivery. The goods issue will be posted by the ship confirmation after
DSI has loaded the ordered goods onto a truck and shipped them to Gordy’s
Galaxy. It’s still too soon in the process for this. The ship order interface tells
DSI what to ship.

Requirement 3 checks that there’s no credit block on the delivery. This is a rea-
sonable output check for our ship order.

5. Press (Enter) to return to the overview screen. Save the entry and assign it to a
change request. The entry should look like Figure 14.2.

560

Sending a Shipping Order to the Supplier14

Figure 14.2 ZSH1 Assigned to Outbound Delivery Header Output Procedure

Create Condition Records

As we have seen, condition records drive generation of the IDoc for Acme’s vendor
DSI. For the ship order, the IDoc will be generated by delivery document type and
shipping point, which mirrors DSI’s shipping point.

We can create the condition records directly in Transaction NACE by selecting
application V2, clicking Condition records, and selecting output type ZSH1, or
directly with Transaction VV21.

1. Using Transaction VV21, enter output type ZSH1 and click the Key combination
button. Then select DlvType/Shipping Point and press (Enter).

2. Enter “LF” for standard delivery in the Delivery Type field and the following
values in the condition records table control (see Figure 14.3):

EE Ship Point: “3100”

EE Function: “VN” for vendor

EE Partner: “DISK01”

EE Medium: “6” for EDI

EE Dispatch time: “4” for immediately when the document is saved

EE Language: “EN”

Figure 14.3 Condition Record for Output Type ZSH1 Application V2

561

Generating a SHPORD IDoc with Message Control 14.3

14.3.2 Overview of the End-to-End Process Flow

Figure 14.4 gives an overview of the end-to-end process flow for generating and
sending EDI ship orders to DSI for a Gordy’s Galaxy order.

Confirmed sales
orders for Gordy

VL10 delivery due
run against ship

point/sales orders

Access sequence:
Delivery doc type/
DSI shipping point

RSEOUT00 reads
IDocs file to app

server RFC

EDI RIM

SHPORD IDocs
picked up by RIM

Translation map
for DSI called for

SHPORD-830

DSI EDI

X12 830 5010
ship order to DSI

X12 997 func ack.
from DSI EDI

END: To
856-DESADV

Output record built
for NAST—no

delivery number

Partner profile
DISK01/VN/

V2/ZSH1/DELV

SHPORD IDocs
written to DB

Output conditions
read: ZSH1/LF/

3100

Figure 14.4 Outline of the SHPORD-830 Interface Processing Flow

Outbound SHPORD Processing

The SHPORD-830 interface kicks off after the 997 functional acknowledgment
has been received from Gordy’s Galaxy for the outbound 855 order confirmation.
Delivery documents are generated from completed but not yet shipped sales orders
by running the delivery due list using Transaction VL10.

Two critical keys are read from the sales order after the delivery is built and just
before it is saved:

562

Sending a Shipping Order to the Supplier14

EE Shipping point
The DSI plant set up in Acme’s SAP system used to deliver product to Gordy’s
Galaxy

EE Delivery document type
LF for standard deliveries generated from sales order types ZEDI and ZEDS for
all EDI and ZVMI for all VMI orders

Function SHP_EXTENDED_DUE_LIST_VIEW in function group V50R_VIEW is called by the
VL10 delivery due list program RVV50R10C to collect data from eligible sales orders
and to create delivery documents by calling Transaction VL01 (program SAPMV50A).

All output control keys (including application, procedure, output type, and access
sequence) are identified. An output record is prepared for table NAST by functions
COMMUNICATION_AREA_KOMKBV2 and MESSAGING in function group V61B. This is done
before the delivery document is posted by BAPI SHP_BAPI_DELIVERY_REPLICA in
function group V50K.

SHP_BAPI_DELIVERY_REPLICA also updates the document flow for sales documents
in table VBFA to include the outbound delivery as a follow-up document for the
sales order that generated it.

These are output control keys for the delivery document:

EE Application V2: Shipping

EE Output type ZSH1: Shipping request

EE Access sequence 0010: Delivery document type, shipping point

EE Access 10: DlvType/shipping point in condition table B021

EE Procedure V10000: Header output linked to output type ZSH1

The fields that make up the access are from communications structure KOMKBV2:
VSTEL (shipping point) and LFART (delivery type).

The condition record is entered through Transaction VV21. It links the delivery
document type to the shipping plant and vendor number for DSI in Acme’s SAP
system.

The condition tables are read with the access keys, the DSI shipping plant is hit,
and the vendor number returned.

563

Generating a SHPORD IDoc with Message Control 14.3

DSI’s outbound partner profile is then checked by calling function EDI_PARTNER_
READ_OUTGOING through the key fields in structure EDK12:

EE RCVPRN: Receive partner sold-to number: DISK01

EE RCVPRT: Receive partner type: LI (vendor)

EE RCVPFC: Receipt partner function: VN (vendor)

EE KAPPL: Message control application: V2

EE KSCHL: Message type: ZSH1

EE AENDE: Change message flag

One partner profile is set up for DSI with outbound message type SHPORD. It
links to output control through the Message Control subscreen, which includes
three values:

EE Application V2 for shipping messages

EE Output (or message) type ZSH1

EE Process code DELV that links message type SHPORD to standard IDoc process-
ing function module IDOC_OUTPUT_DELVRY

As the delivery document is saved, the IDoc output is proposed and generated.

The output proposal is saved in an output record in table NAST. IDoc processing
program RSNASTED and form routine EDI_PROCESSING are identified from a read of
table TNAPR.

The partner profile is read, the control record assembled, and the IDoc build func-
tion identified from table TFDIR.

The function IDOC_OUTPUT_ORDERS is called, and the IDocs are built and written to
the database at status 30—IDoc ready for dispatch.

The partner profile was set to batch the SHPORD IDocs and send them by running
program RSEOUT00 every 30 minutes to pick up all outbound SHPORD IDocs at
status 30 for DSI, convert them to XML format, and send them to the EDI RIM.

The XML IDocs are saved in a file on the SAP application server and an RFC is made
through JCo to the receiving business process workflow in the EDI RIM.

564

Sending a Shipping Order to the Supplier14

The IDoc file is picked up and moved to the translation process, which identifies
the envelopes from the EDI send and receive trading partner IDs and the EDI
transaction and version in the IDoc control segment.

The ST envelope identifies and calls the translation map.

The IDoc is translated to an X12 830 version 5010 transaction set with an ST-SE
envelope. It is bundled into a group defined by a GS-GE envelope with any other
IDocs in the file.

When all IDocs have been translated and the group completed, it is bundled into
an interchange with an ISA-IEA envelope.

The X12 interchange is passed to a communications workflow, which sends it to
DSI’s EDI system through an AS2 call. The process waits for the MDN acknowledg-
ment, which comes immediately.

The cycle ends when DSI returns a 997 acknowledgment for the 830 transactions.
This generally happens within minutes or an hour at most.

If it takes longer than 24 hours to receive the 997, Acme’s EDI team contacts the
DSI EDI team to find out whether there are any issues.

At the Warehouse

Upon receipt of the shipping orders, DSI posts them to their business system. This
drives follow-up processes:

1. Picking goods for shipment from storage locations in DSI’s warehouse

2. Applying customer-specific stickers to the product for Gordy’s Galaxy

3. Packing the delivery goods into cartons and onto pallets and moving them all
into a loading area

4. Attaching labels to the containers and pallets in human-readable and barcode
format that identify:

EE The delivery store, address, and postal code

EE Sold-to GLN identification code and name

EE Purchase order number and GTIN codes for the delivery items with packing,
dimension, and weight information

EE Tracking number for the shipment

565

Technical Specifications 14.4

5. Printing and attaching packing lists to the shipment (for Gordy’s Galaxy, this
includes the sales BOM explosion for multi-pack shipping goods, with each title
in the display pack identified)

6. Loading the pallets of packaged delivery items onto trucks for shipment to
Gordy’s distribution center

7. Generating a ship confirmation for return to Acme by EDI as the truck pulls
away from the dock

14.4 Technical Specifications

This technical specification describes the SAP configuration and EDI development
required to support the SHPORD to X12 830 EDI interface to DSI to trigger ship-
ment processing of ordered items to Gordy’s Galaxy.

14.4.1 Technical Requirements

The generated IDoc will store all standard data from the outbound delivery.

For multi-pack orders, the EDI map passes the shipping unit and all of the compo-
nents of the sales BOM to the 830 EDI transaction at the standard line-item level.

14.4.2 Dependencies

Message control configuration is complete, and condition records have been entered.
There are a few other dependencies:

EE Outbound partner profile created for DSI with message type SHPORD

EE Acme custom cross-reference table ZEDIXREF populated in SAP for DSI to read
EDI send and receive trading partner IDs for the outbound 830 ship order

EE Program variants created for jobs in the SAP Job Scheduler (Transaction SM36)
to run:

EE RVV50R10C for generating delivery documents from sales orders for all cus-
tomers using the delivery due list

EE RSEOUT00 for exporting SHPORD IDocs to DSI (receiver partner type LI and
partner DISK01)

566

Sending a Shipping Order to the Supplier14

EE Outbound envelopes created in the EDI RIM for DSI’s 830 version 5010 EDI
transmissions, including the following:

EE ISA: IEA interchange control

EE GS: GE group control

EE ST: SE transaction set

EE Inbound envelopes set in the RIM to receive 997 version 5010 FAs from DSI
for the outbound 830

EE Translation maps created in the EDI RIM for SHPORD IDoc to 830 X12 version
5010 ship order

EE Business process workflows existing in the EDI RIM to pick up IDoc files from
the SAP application server, convert them to X12 830 ship orders, and send them
to DSI

14.4.3 Assumptions

The EDI RIM gets EDI sending and receiving trading partner IDs from the IDoc
control record fields SNDLAD and RCVLAD. The following are additional key
assumptions:

EE DSI will return an X12 997 functional acknowledgment within 24 hours of
receiving the 830 ship order transmission.

EE If there are any errors posting the 830 ship order to DSI’s system, the EDI team
at Acme will be notified immediately by phone or email.

EE All IDoc errors are monitored by the EDI team in SAP.

EE Technical errors in the IDoc interface, such as syntax or partner profile errors,
are documented and corrected by the EDI team.

EE All IDoc application errors are handled by the business users and backed up by
the EDI team where appropriate.

EE The EDI team communicates IDoc application errors to the business users imme-
diately.

EE EDI errors are tracked and addressed in the EDI system.

567

Mapping Specifications 14.5

14.5 Mapping Specifications

A map will be developed in the EDI RIM to translate the SHPORD IDoc to an 830
X12 5010 transaction to DSI. All deliveries for all customers who are handled by
DSI will flow through the same map.

Table 14.3 details the mapping requirements for the outbound SHPORD-830
transaction for DSI.

SHPORD 830 Value Comments

E1EDL20—Header—Min 1, Max 1

BFR01 00 Hard-code. Original message.

VBELN BFR02 0080016843 Delivery number

VSBED TD505 02 Routing code

E1EDL21—Additional header data—Min 0, Max 1

LPRIO REF02 02 Priority code. Maps to REF
segment where REF01 = PH
priority rating.

E1ADRM1— Delivery partner—Min 1, Max 99, Loop 1 Ship-from

PARTNER_Q N101 OSP Convert to SF for shipping plant
ID qualifier.

PARTNER_ID N104 3100 DSI shipping point ID

NAME1 N102 New York
Shipping Point

Shipping point name

STREET1 N301 2100 Grant Shipping point street address

POSTL_COD1 N403 17789 Shipping point postal code

CITY1 N401 New York City Shipping point city name

COUNTRY1 N404 US Shipping point country code

REGION N402 NY Shipping point region country
code

Table 14.3 Map Specification for the Ship Order IDoc to the X12 830

568

Sending a Shipping Order to the Supplier14

SHPORD 830 Value Comments

E1ADRM1—Partners—Loop 2 Ship-to

PARTNER_Q N101 WE Convert to ST for ship-to qualifier.

PARTNER_ID N104 GRDY01001 Customer ship-to location

NAME1 N102 Gordy store 1213 Ship-to location name

STREET1 N301 2300 Colonel Rd Ship-to location street address

POSTL_COD1 N403 07960 Ship-to location postal code

CITY1 N401 Morristown Ship-to location city name

COUNTRY1 N404 US Ship-to location country code

REGION N402 NJ Ship-to location region code

E1ADRM1— Partners—Loop 3 Sold-to

PARTNER_Q N101 AG Convert to BT for bill-to qualifier.

PARTNER_ID N104 GRDY01 Customer sold-to location

NAME1 N102 Gordy’s Galaxy Sold-to partner name

STREET1 N301 2356 Halsted St Sold-to partner address

POSTL_COD1 N403 60642 Sold-to partner postal code

CITY1 N401 Chicago Sold-to partner city name

COUNTRY1 N404 US Sold-to partner country code

REGION N402 IL Sold-to partner region code

E1EDT13—Delivery dates—Min 0, Max 99—Loop 1 Requested delivery

QUALF DTM01 007 Convert to 002 requested
delivery.

NTANF DTM02 20140115 Requested delivery date

E1EDT13— Delivery dates—Loop 2 Requested ship date

QUALF DTM01 006 Convert to 010 requested ship
date.

NTANF DTM02 20140115 Requested delivery date

Table 14.3 Map Specification for the Ship Order IDoc to the X12 830 (Cont.)

569

Mapping Specifications 14.5

SHPORD 830 Value Comments

E1EDL24—Line-item level details group—Min 1, Max N 1 instance of E1EDL24 per group
loop

POSNR LIN01 000010 Line item number

LIN02 MG Hard-code MG to identify supplier
(Acme) material number.

MATNR LIN03 2567898 Acme SAP item number

PID01 F Hard-code F for free form
description.

ARKTX PID05 Material description

LIN06 IN Hard-code IN identifying customer
material number.

KDMAT LIN07 799142939512 Customer material number

LFIMG QTY02 100.000 Delivery item quantity

VRKME QTY03 EA Unit of measure

LIN04 UP Hard-code UP to identify GTIN
code in EAN11 following.

EAN11 LIN05 02563587889125 GTIN code

Hard code SLN09 MG Vendor (Acme) part number

E1EDL43—Reference documents—Min 1, Max 99—Loop 1 sales order

QUALF REF01 C Convert to VN for vendor order.
Acme sales order.

BELNR REF02 00014031 Acme sales order number

E1EDL43—Reference documents—Loop 2 customer purchase order

QUALF REF01 V Convert to PO for customer
purchase number.

BELNR REF02 4500017707 Gordy purchase order number

Table 14.3 Map Specification for the Ship Order IDoc to the X12 830 (Cont.)

This is a simplified specification that doesn’t take either the sales BOM for multi-
pack items or the packaging hierarchy (handling units) into account.

570

Sending a Shipping Order to the Supplier14

Sales BOM components for multi-pack orders would be mapped to the SLN group
within one LIN item group that stores the highest level shipping item.

In the IDoc, the shipping item and the sales BOM components are stored as sequen-
tial items. The sales BOM components are identified by fields:

EE E1EDL24-HIPOS: Points to the parent item number for the component of a sales
BOM.

EE E1EDL24-HIEVW: Code identifying usage of a component item: 2 = BOM item.

The packaging hierarchy, if defined in the delivery document, would be stored in
a separate group of segments under parent E1EDL37 following the E1EDL24 line
item group.

14.6 EDI Configuration in SAP

Let’s add an entry to our custom EDI mapping table ZEDIXREF to support outbound
EDI trading partner number conversion and an outbound partner profile for DSI.

14.6.1 EDPAR Entries: Transaction VOE4

There are no EDPAR entries for the outbound SHPORD.DELVRY03 to X12 830
shipping order interface.

14.6.2 ZEDIXREF Entries

We’ll map the IDoc sender and receiver partner numbers—the SAP logical system
ID and DSI’s vendor number—to the receiving party’s send and receive EDI trad-
ing partner IDs.

Table 14.4 lists the ZEDIXREF values for the outbound SHPORD.DELVRY03 inter-
face to DSI are listed in.

Field Value Description

DIRECT 1 Direction outbound

STDMES 830 EDI transaction

MESTYP SHPORD IDoc message type

Table 14.4 ZEDIXREF Entry for the Outbound 830 to DSI

571

EDI Configuration in SAP 14.6

Field Value Description

IDOCTP DELVRY03 IDoc basic type

CIMTYP IDoc extension, none for this interface

SNDPRN DEVCLNT100 SAP send partner: Acme SAP logical system

RCVPRN DISK01 SAP receive partner: DSI’s vendor number in Acme’s
system

SNDLAD 99999998889 EDI send partner: DSI trading partner ID for Acme

RCVLAD 99934567999 EDI receiver partner: DSI trading partner ID for DSI

Table 14.4 ZEDIXREF Entry for the Outbound 830 to DSI (Cont.)

14.6.3 Partner Profiles: Transaction WE20

We’ll define one outbound partner profile for DSI partner number DISK01, partner
type LI (vendor), and partner role VN (vendor).

In the outbound parameters table control of the partner profile for DSI, click the
Create outbound parameters button and enter the following values in the Out-
bound parameters screen, as shown in Figure 14.5.

Figure 14.5 Outbound Parameters, SHPORD Ship Order to DSI

572

Sending a Shipping Order to the Supplier14

EE Partner Role: “VN”

EE Message Type: “SHPORD”

EE Receiver port: “XML_IDOC”

EE Output mode area: Collect IDocs and Start subsystem checkboxes

EE Basic type: “DELVRY03”

Click Message Control and enter the following values, which are shown in Figure
14.6:

EE Application: “V2”

EE Message type: “ZSH1”

EE Process code: “DELV”

EE Change message checkbox: One entry null and one checked

Figure 14.6 Message Control Set Up for the SHPORD Ship Order

Process code DELV links to function module IDOC_OUTPUT_DELVRY, which builds
the IDoc from the delivery document and sales order.

The last step is to select the EDI Standard tab from the upper far right of the screen
tabs and enter the following values, as shown in Figure 14.7:

EE EDI Standard: “X” for X12

EE Message type: “830”

EE Version: “005010”

573

Summary 14.7

Figure 14.7 EDI Standard Values for the SHPORD Ship Order

Don’t forget to save the partner profile.

14.7 Summary

Acme Pictures is now ready to send shipping orders by EDI transmission to their
contract distributor, Disk Services International.

For its part, DSI will receive these messages and kick off the shipping process so
that goods ordered by Gordy’s Galaxy of Games & B Flix are delivered and shelves
continue to be stocked with Acme product.

This makes everybody happy because they all make money.

As we’ve seen, this is a standard and not overly complex process. The sales order
is completed, outbound delivery documents are issued, and IDocs are generated
using standard message control configuration.

We did need to create custom output type because the delivery document will
generate another IDoc to the customer as an advanced shipping notification later
in the process. But we’ll get to that later.

The only wrinkle—and it’s a minor one—is with multi-pack items that will sit on
Gordy’s floor as displays featuring multiple DVD movie titles. These will appear in
the IDoc as regular line items beneath the multi-pack container, linked to it through
a reference to the parent item.

So now the ball is in DSI’s court. Once they ship the ordered product, they’ll let
Acme know that those DVDs are winging their way to the customer by sending a
ship confirmation as soon as the truck leaves their loading dock. We look at the
ship confirmation, which is the next logical interface in the order-to-cash cycle.

575

While the great Mr. Q trusted his writers and directors to deliver the movies,
he wanted confirmation at every key stage of a project. It’s the same thing
with the shipping confirmation interface: It confirms to Acme that DSI did
its job and shipped the customer order to Gordy. So let’s see how this works.
It all begins with a truck.

15 The Inbound Shipping Confirmation

We’ve seen that the ship order provides Disc Services International (DSI) with the
five Ws of DVD distribution: who, what, where from, where to, and when to ship
the ordered goods.

DSI, in turn, needs to tell Acme when the order has been fulfilled and the goods
picked, packed, and shipped to Gordy’s Galaxy of Games & B Flix.

This is a key piece of the puzzle for Acme Pictures. Until Acme knows that the
goods are out the door and on their way to Gordy, the delivery document won’t
be closed, and inventory won’t be relieved of the saleable finished goods received
when DSI produced them.

The shipping confirmation completes the delivery by updating the quantity of goods
picked for shipment and by posting the goods issue, which creates material and
accounting documents recording the quantity and dollar value for the inventory
released against the appropriate G/L accounts.

This provides accounts receivable with the information it needs to invoice Gordy’s
Galaxy for the order. But Acme must first send Gordy an advanced shipping
notification before the shipment arrives from DSI. Then Gordy must receive and
accept the goods against the ASN, which preps their accounts payable to receive
an invoice from Acme.

We’ll go over these processes in the next two chapters. Before we can get there,
Acme must receive the shipping confirmation and that’s we’re going to look at in
this chapter.

576

The Inbound Shipping Confirmation15

15.1 Technical Overview of the Interface

Table 15.1 summarizes the inbound invoice interface from the supplier.

Item Description

Title Inbound Ship Confirmation from Supplier

Description Acme has sent a shipping order to DSI with details of finished
movies on DVD that have been ordered by Gordy’s Galaxy
through a purchase order. The shipping order was generated
from as sales created by an EDI purchase order sent by Gordy.

The shipping order tells DSI what to pick, pack, and deliver.
DSI checks their inventory for the finished product in the
ship order. The full order quantity is picked and moved to a
packing location where they are put into cases and the cases
onto pallets for shipping.

Stickers may also be put on the packages if required by the
customer or local regulations in the state or province where
the goods are being shipped.

When the goods are fully packed, and the paperwork is
settled—bills of lading, packing lists and so on—the truck
pulls away from the loading dock, and an X12 856 transaction
is generated confirming that the order has been shipped
and detailing the pick quantity and inventory transfers just
completed. Acme’s outbound delivery document number
must be included in this transmission.

The 856 shipping confirmation is sent to Acme’s EDI RIM
where it is converted to a SHPCON.DELVRY03 IDoc and sent
into SAP to update the picking quantity in the outbound
delivery and trigger the post goods issue relieving inventory
and updating accounting.

Type of interface Delivery: X12 EDI to IDoc

Direction Inbound

Trading partner Disk Services International (vendor)

IDoc SHPCON.DELVRY03

IDoc extended type

Table 15.1 Overview of Inbound EDI Ship Confirmation

577

Functional Specifications 15.2

Item Description

IDoc function IDOC_INPUT_DELVRY

Custom ABAP

Description

Source file(s) X12 856 ship confirmation

Target document(s) SAP outbound delivery document

Transaction code VL02N: update outbound delivery with pick quantities and
post goods issue

Map(s) X12 856 vers. 5010 to SHPCON.DELVRY03

Custom map logic

Source system DSI EDI via AS2

Target system Acme SAP via EDI RIM

997
acknowledgment

Outbound at transaction detail level; function group
acknowledgment code: SH

Frequency Batched once a day at night, on demand

Job schedule RBDAPP01: Seven times a day at 5 a.m., 8 a.m., 11 a.m., 2
p.m., 6 p.m., 9 p.m., and 1 a.m. to post all SHPCON message
types for all suppliers

Table 15.1 Overview of Inbound EDI Ship Confirmation (Cont.)

15.2 Functional Specifications

The 856-SHPCON interface is the second of three steps in the delivery processing
cycle. It follows successful completion of the outbound ship order to the supplier.
All three steps must be successfully completed before invoicing can run.

Delivery documents are generated in Acme’s SAP system from completed sales
orders and are sent to DSI. The sales orders were created from customer purchase
orders sent by EDI.

DSI’s business system outputs shipping paperwork and its warehouse picks and
packs the DVD titles in the shipping order.

578

The Inbound Shipping Confirmation15

The shipping confirmation is created by DSI’s business system after the order ships
to Gordy. The shipping confirmation updates the delivery document in Acme’s
SAP system with the picked quantity and closes it with a post goods issue (PGI).

15.2.1 Process Overview

The process begins when DSI receives a ship order from Acme and picks, stickers,
and packs the order into cartons for shipment. Once the cartons are loaded onto
trucks, the trucks pull away from the dock. DSI generates a shipping confirmation
referencing the delivery document number in the shipping order. It sends the
confirmation to Acme as an 856 EDI transmission.

The 856 is converted to an IDoc with message type SHPCON and basic type
DELVRY03 in Acme’s EDI RIM.

The IDoc is parked in the IDoc database until it’s picked up and posted against the
outbound delivery by a scheduled job that runs four times a day.

When the delivery is completed with the picking quantity update and the PGI,
a DESADV IDoc is generated and sent to Gordy as an ASN, ending the delivery
processing cycle.

15.2.2 Requirements

The delivery document has been generated in Acme’s SAP system from the com-
pleted sales order, and the shipping order was successfully sent to DSI, who shipped
the order to Gordy.

One delivery document exists in SAP per shipping plant and sales order. The
shipping confirmation updates the outbound delivery in Acme’s SAP system with
the total quantity picked and shipped, the number of packages used, and the PGI.
There are a few other business requirements:

EE The 856 shipping confirmation from DSI uses the outbound delivery document
and line item numbers from the shipping order to update the delivery in Acme’s
SAP system.

EE No tolerance levels are set for picking quantities. The item must be picked and
delivered in full with no overages or partial deliveries.

579

Functional Specifications 15.2

EE Goods issue is only posted when all items have been fully picked, packed, and
shipped from DSI’s warehouse.

EE Inventory is decremented by the goods issue. It generates the following docu-
ments that become part of the sales order and delivery document flow recorded
in table VBFA:

EE A picking request recording the quantities of each item picked

EE A material document with movement type 601 (goods issue) that records the
reduction in inventory

EE Accounting documents that record the inventory movements for each item
against the bill-to customer and posts them to a G/L account and profit center

EE Updating the delivery document with the PGI triggers output of an ASN in a
DESADV IDoc that will be sent to Gordy’s Galaxy to describe the shipment sent
from DSI.

EE Pricing data is not included in the delivery or the ship confirm.

Picking

In SAP, picking is a process where a quantity of goods is moved from one storage loca-
tion to another staging location to be prepared for shipping.

At Acme Pictures, the storage location is in a DSI warehouse. The DSI warehouse is set
up as a plant and a shipping point in Acme’s SAP system, and the storage location is
defined against that plant.

The finished goods are DVD movie titles or multi-pack corrugate displays composed
of DVD movie titles. Preparing them for shipping involves (but isn’t restricted to) the
following steps:

EE Applying customer or regional-specific stickers to the packaging (such as the infamous
Régie classification sticker for the Canadian province of Quebec) that generates a lot of
custom development work at every studio that sells DVD movies into that small market

EE Putting the goods into cartons

EE Printing and applying shipping labels to the cartons

EE Stacking the cartons onto palettes for loading onto specific trucks traveling a particular
route

EE Printing and attaching paperwork, such as bills of lading, to the cartons or palettes

The current picking status is recorded in the delivery document against each item in
the Picking subscreen. The pick quantity must equal the actual delivery quantity for all
items in the delivery document before the goods issue can be posted.

580

The Inbound Shipping Confirmation15

Post Goods Issue

Post goods issue is an inventory movement that, in the business relationship between
Acme and DSI, reflects the real-world movement of ordered saleable product from DSI’s
warehouse to the customer.

The PGI is triggered in the delivery by the incoming ship confirmation, which updates
the quantity of goods picked and shipped and identifies the date they were shipped as
the actual goods issue date.

The goods issue is applied against the delivery document as a whole so all items must be
fully picked and shipped. The goods issue creates one material document—linked to the
delivery through the delivery document number—that records an inventory movement
for each shipped item with movement type 601 (goods issue: delivery). This movement
subtracts the shipped quantity of the saleable item from inventory.

The customer invoice generated after the delivery closes must correspond to these
inventory movements.

15.2.3 Dependencies

The 856-SHPCON interface is dependent on master data, configuration, and devel-
opment in SAP and the EDI RIM, including everything required to support sales
orders and outbound deliveries. There are a few other dependencies:

EE DSI warehouses, storage locations, and shipping docks are set up as plants, stor-
age locations, and shipping points in Acme’s SAP system.

EE The carrier—the trucking firm, railroad, courier, or other shipper—that will ship
the order is set up in Acme’s SAP system with a vendor master record.

EE Item categories identifying the components of sales BOMs for multi-pack items
aren’t flagged as relevant to picking.

EE If packing hierarchies (handling units, in SAP) are to be tracked in deliveries,
packaging materials must be set up in the material master.

EE Inbound IDoc configuration, including partner profile, is completed to link DSI
to message type SHPCON.

15.2.4 Assumptions

The incoming SHPCON IDoc includes all fields required to identify the SAP delivery
document and item, update the picked quantity, and post the goods issue. Consider
these additional key assumptions:

581

Functional Specifications 15.2

EE The shipping order to DSI has been sent, and the order gets picked and put on
the truck en route to the customer before the 856-SHPCON interface updates
the delivery document in Acme’s SAP system.

EE Data sent by DSI in the 856 ship confirm shall match data in Acme’s outbound
delivery document.

EE The quantity picked shall not exceed the item quantity in the delivery document.

EE Partial deliveries will not allowed.

EE DSI sends Acme’s SAP material numbers in the 856 for all materials in the deliv-
ery.

EE The bill of lading (BOL) number is included in the 856 if available. It will update
the delivery document.

EE If the delivery is for a multi-pack order, picking quantity isn’t updated for the
components, only for the top-level corrugate item.

EE When the delivery is completed by the post goods issue, an outbound DESADV
IDoc is triggered and sent as an advanced ship notification to Gordy’s Galaxy.

EE Post goods issue is with movement type 601 or 602 for reversal.

EE The ship confirmation process is the same for EDI and VMI purchase orders,
regardless of delivery document type, customer, or item.

15.2.5 Delivery Document Data after Ship Confirm Update

The delivery document in SAP is updated with Transaction VL02N. Table 15.2
lists some key fields and tables in a standard delivery document after update by
an inbound shipping confirmation.

Table Field Description Sample Value

Delivery Header

LIKP VBELN Delivery order number 0816160750

LIKP VSTEL Shipping point (DSI ship plant) 0015

LIKP VKORG Sales organization 0010

LIKP LFART Delivery type LF

Table 15.2 Updated Delivery Document by Shipping Confirmation

582

The Inbound Shipping Confirmation15

Table Field Description Sample Value

LIKP LFDAT Delivery date 20081220

LIKP KODAT Picking date 20081220

LIKP INCO1 Inco terms 1 PPD

LIKP INCO2 Inco terms 2 Destination

LIKP BTGEW Total gross weight of all items 128.750

LIKP ANZPK Total number of packages shipped 20

LIKP LGNUM Warehouse number 012

LIKP WADAT_IST Actual goods issue date 20081219

VBPA KUNNR PARVW = AG: Sold-to partner GRDY01

VBPA KUNNR PARVW = WE: Ship-to partner GRDY01001

VBUK WBSTK Goods issue status C

VBUK KOQUK Status of pick confirmation C

VBPA KOSTK Overall pick status C

Delivery Items

LIPS POSNR Item number 000010

LIPS PSTYV Delivery item category TAP

LIPS MATNR Material ordered (SAP number) 2356784

LIPS WERKS Shipping plant 0015

LIPS LGORT Storage location in plant 0010

VBUP KOSTA Picking status C (complete)

VBUP WBSTA Goods issue status C (complete)

LIPS KDMAT Customer material number 0999429395121

LIPS EAN11 UPC item number 0999429395121

LIPS LFIMG Delivery quantity for item 4

VBFA RFMNG Referenced qty = pick qty 4

Table 15.2 Updated Delivery Document by Shipping Confirmation (Cont.)

583

Functional Specifications 15.2

Table Field Description Sample Value

LIPS MEINS Unit of measure for quantity EA

LIPS NTGEW Net weight for item 1

LIPS BRGEW Gross weight for item 1

LIPS VGBEL Delivery item sales order number. 0021611916

VBKD BSTKD Customer PO number 292259

Table 15.2 Updated Delivery Document by Shipping Confirmation (Cont.)

The pick quantity that displays in the delivery document item-level picking screen
(field LIPSD-PIKMG) is a dynamic value that references the actual quantity shipped.
This comes in through the IDoc field E1EDL24-LFIMG and updates inventory
through the goods issue 601 movement type.

The shipped quantity appears in the picking request document in table VBFA (docu-
ment flow), with the sales order number referencing the material document number
created by the PGI, the delivery item material number, and the 601 movement type.

Like the purchase order acknowledgment, the shipping confirmation confirms an
existing document and updates only a handful of its fields, although these updates
are critical to completing delivery processing.

15.2.6 Enhancements to the Process

No custom programming is required for this interface.

15.2.7 Reconciliation

Successful import of the SHPCON IDoc is confirmed through any of the standard
IDoc monitoring tools such as BD87 or WE05.

IDoc status should be 64—IDoc ready to be transferred to application—before the
scheduled processing job is kicked off, and 53—Application document posted—after.

Other validations can be performed:

EE The pick quantity for each item in the delivery was the same as the shipping
quantity in the IDoc field E1EDL24-LFIMG.

584

The Inbound Shipping Confirmation15

EE The delivery document was updated with a post goods issue.

EE Material and accounting documents were created for the post goods issue with
movement type 601.

EE Picking and goods issue dates are updated in the delivery.

EE Picking and goods issue status at header and item levels are marked “C” for
complete.

EE The document flow (delivery document menu option Environment • Docu-
ment Flow or table VBFA) includes relevant warehouse transfer, or picking,
and material documents for the 601 movement type.

EE The EDI team confirms the data in the SHPCON IDoc against the 856 ship con-
firm transaction set.

15.2.8 Errors and Error Handling

If the IDoc fails to update the delivery, the EDI team and the business users work
together to identify and correct the error. Application errors must be corrected
immediately. It is critical that the confirmation posts successfully and the ASN is
sent to Gordy’s Galaxy before the shipment arrives at their receiving dock.

The following application errors can occur during inbound SHPCON IDoc processing:

EE A delivery number is missing or incorrect. Contact DSI and request a resend
with the correct delivery number.

EE An item number is missing or doesn’t match the item in the delivery. If the
number of IDocs is small, the IDoc can be edited and reprocessed; otherwise,
DSI will resend.

EE A material number is missing or doesn’t match the material in the delivery item.
If there is only a small number of IDocs, assuming everything else (including
the pick quantity) is correct, edit and reprocess the IDoc; otherwise, DSI will
resend.

EE The picking quantity is less than the delivery quantity. Confirm with DSI whether
a partial shipment was sent. If so, the remainder of the product must be shipped
and another shipping confirmation sent with the pick quantity equal to the
delivery quantity. If it is an error, edit the IDoc and reprocess.

EE The delivery is already picked and the goods issue posted. Mark the IDoc for
deletion.

585

End-to-End Process Flow 15.3

EE The delivery is locked and can’t be updated. Reprocess the IDoc when the lock
is released. This can occur when a lot of shipping confirmations are being pro-
cessed, particularly if RBDAPP01 is running in parallel mode.

15.3 End-to-End Process Flow

Figure 15.1 gives an overview of the end-to-end process flow for updating the
delivery document with the 856-SHPCON ship confirmation interface.

Identification,
de-enveloping,

translation

IDoc interface:
Create/save to DB

at status 64

END: To ASN
DESADV-856

DSI warehouse

BEGIN:
856-SHPCON

RBDAPP01:
process IB IDocs

Call RBDAPP01:
Process IDocs

Read delivery:
Key data checks

error on fail

Update pick qty
per delivery item

picking date

RIM RFC to
SAP IDocs picked
up and processed

To Gordy’s DC And stores

EDI RIM

EDI X12 830
5010 to DSI

SAP

Creates X12 856
to Acme EDI RIM

997 Funct. ackn.
Sent to DSI

SHPCON XML
IDocs saved to file

Material document,
accounting docs

Post goods
issue generate
material Doc

DSI picks, packs,
and ships to Gordy

Figure 15.1 Acme’s Inbound Ship Confirmation Process Flow

586

The Inbound Shipping Confirmation15

The 856 to SHPCON ship confirmation kicks off after the SHPORD to 830 interface
posts a shipping order to DSI’s business system.

It all happens in the DSI warehouse. Picking lists are printed and the ordered goods
are pulled from inventory and scanned into DSI’s system, recording the storage
locations and the quantities picked.

The ordered items are moved into staging locations for shipping. Stickers are
applied to the packaging, and the DVDs are loaded into cartons with packing lists.
Shipping labels are applied to the cartons and the cartons are stacked onto palettes
that are wrapped up for shipping.

Bills of lading and other shipping documents are printed, and the palettes are
labeled and loaded onto trucks bound for Gordy’s distribution centers.

Every step is recorded and scanned into DSI’s business system. As the truck leaves
the loading dock, a ship confirmation is generated as an ASCII file and sent to
DSI’s EDI system. There the file is translated to an 856 EDI ship confirmation and
transmitted by AS2 to Acme’s EDI RIM.

Acme’s AS2 server picks it up and passes it to a de-enveloping process that identi-
fies the sender and transaction, checks the syntax of the interchange, and gener-
ates a 997 functional acknowledgment that is immediately sent back to DSI. The
map is also identified and called and each 856 transaction set in the interchange
is converted to one SHPCON.DELVRY03 XML IDoc.

The IDocs are batched into one file that is sent to an inbound directory on the
SAP application server. The RIM’s SAP adapter then triggers an RFC to function
EDI_DATA_INCOMING, which kicks off IDoc interface processing in SAP.

The IDoc interface confirms that the file contains IDocs, checks that the XML is
well-formed, and confirms that the IDoc structure is correct. The XML IDoc is
then converted to ASCII and the partner profile read and confirmed using values
from the control record. If everything checks out, each IDoc is written to the IDoc
database at status 64.

A job to run program RBDAPP01 is set up in the SAP job scheduler (Transaction SM36)
to run seven times a day to pick up and process all SHPCON messages at status 64.

RBDAPP01 identifies the application function (IDOC_INPUT_DELVRY) from the process
code DELV in the inbound partner profile for DSI message type SHPCON.

587

End-to-End Process Flow 15.3

The IDoc is parsed and posted in IDOC_INPUT_DELVRY by two performs:

EE DELVRY_IDOC_PARSE

EE DELIVERY_UPDATE

The first, DELVRY_IDOC_PARSE, loops through the IDoc data in an internal table. It
first checks field VBELN in segment E1EDL20 to confirm that a delivery document
number is present. It also checks POSNR and MATNR in each instance of E1EDL24
to confirm that an item and material number exist.

If any of these values are missing, an error is returned, IDoc processing ends, and
the status is updated to 51—Application document not posted.

If the checks pass, the loop builds internal tables, strings, and flags that pass to
function WS_DELIVERY_UPDATE_2 in form DELIVERY_UPDATE, which, as its name
implies, updates the delivery document with the pick quantities and PGI. At the
header level, that means passing the following values:

EE Delivery number

EE Picking date

EE Warehouse number

EE Post goods issue indicator

EE Post goods issue and other key dates

EE Global weights and volumes

EE Processing flags

EE Bill of lading number

EE Number of packages in delivery

At the item level, the following values are passed:

EE Delivery and line item numbers

EE SAP material number

EE Plant

EE Pick quantity and unit of measure

EE Packaging hierarchies (handling units) if present

WS_DELIVERY_UPDATE_2 uses the delivery number to confirm the delivery document,
update the picking quantity, and post the goods issue.

588

The Inbound Shipping Confirmation15

When the delivery document is saved, another DESADV IDoc is generated and
batched at status 30—IDoc ready for dispatch—for outbound processing to Gordy’s
Galaxy as an ASN.

15.4 Technical Specifications

This technical specification section describes the SAP configuration and EDI devel-
opment required to support the X12 856 to SHPCON.DELVRY03 interface from the
DSI third-party warehouse, confirming that orders have been shipped to Gordy’s
Galaxy.

15.4.1 Technical Requirements

DSI will send one X12 856 transaction for one outbound delivery from Acme. The
transaction will be sent only when the truck pulls away from the loading dock, and
it will have the outbound delivery document number.

The 856 will have all the data it needs to update pick quantities and post the goods
issue in Acme’s SAP system.

Component titles in multi-pack orders, however, will not update the pick quantity
in Acme’s delivery document. The EDI map will not pass pick quantities for multi-
pack component titles to the IDoc if they are present in the 856 interchange.

Development and configuration in the EDI RIM must support routing and con-
version of inbound 856 to SHPCON.DELVRY03 shipping confirmation IDocs and
generation of outbound 997 functional acknowledgments.

SAP configuration must support update of the outbound delivery document through
posting of SHPCON messages.

15.4.2 Dependencies

The 856 to SHPCON shipping confirmation interface is dependent on inbound IDoc
configuration in SAP and several development objects in the EDI RIM:

EE Outbound delivery document exists in SAP and an outbound SHPORD IDoc sent
to DSI

589

Technical Specifications 14.4

EE Outbound delivery number present in the inbound X12 856 and passed to the
IDoc

EE Inbound envelopes set up in the RIM for DSI’s X12 856 version 5010 transac-
tion

EE Outbound envelopes for 997 acknowledgments set up in the RIM for generation
during de-enveloping of inbound 856 transactions from DSI

EE Translation map built in the EDI RIM for the 856 X12 version 5010 to SHPCON.
DELVRY03 IDoc conversion

EE Custom cross-reference table ZEDIXREF populated in SAP to read the SAP send
and receive partners for the inbound 856 from DSI

EE Business process workflows built in the EDI RIM to process and route the incom-
ing X12 856 and SHPCON.DELVRY03 IDocs

EE Inbound partner profiles set up in SAP for DSI message type SHPCON

EE Job created in the SAP Job Scheduler (Transaction SM36) to run seven times a
day to post SHPCON.DELVRY03 IDocs with program RBDAPP01 with a variant
to select for all suppliers and all messages at status 64

15.4.3 Assumptions

The RIM sends EDI send and receive trading partner IDs in the IDoc control segment
fields SNDLAD and RCVLAD which used to read the SAP partner numbers in a cus-
tomer exit during IDoc processing in SAP. There are a few other key assumptions:

EE The EDI RIM will return an X12 997 during de-enveloping of the inbound 867
transaction.

EE All IDoc errors are monitored by the EDI team in SAP. EDI errors are tracked
and addressed in the EDI system.

EE Technical errors in the IDoc interface, such as syntax or partner profile errors,
are documented and corrected by the EDI team.

EE All IDoc application errors are handled by the business users, backed up by the
EDI team where appropriate.

EE The EDI team communicates IDoc application errors to the business users imme-
diately.

590

The Inbound Shipping Confirmation15

15.5 Mapping Specifications

A map will be developed in the EDI RIM to translate the X12 856 version 5010
from DSI to a SHPCON.DELVRY03 shipping confirmation IDoc. All deliveries for
all customers who are handled by DSI flow through the same map.

Table 15.3 outlines mapping requirements for the inbound 856-SHPCON transac-
tion for DSI. This mapping assumes shipment by truck.

SHPCON 856 Sample Value Comments

E1EDL20—Delivery header—Min 1 Max 1

@SEGMENT 1 Hard-code segment attribute to 1.

VBELN BSN02 0080016843 Acme outbound delivery number.
Delivery document to be confirmed.
Mandatory value.

BTGEW TD107 280.000 Gross weight where TD106 = G (weight
qualifier) and HL01 = 1 and HL03 = S
for shipment level. Instance 1 of TD01.
Segment repeated for each shipment-
level total weight, quantity, or volume.

NTGEW TD107 250.000 Net weight where TD106 = N (weight
qualifier) and HL01 = 1 and HL03 = S for
shipment level. Instance 2 of TD01.

GEWEI TD108 KGM Weight unit for header weights

BOLNR REF02 9874785900 Bill of lading number where REF01 =
BM

TRAID TD303 999999 Trailer ID number where TD01 = TL for
standard truck trailer

LIFEX PRF01 060598-1400 Customer purchase order number at
header level

E1EDL18—Control codes—Min 1, Max 99—Loop 1 change flag

@SEGMENT 1 Hard-code segment attribute to 1.

QUALF CHG Hard-code change flag. Tells system to
update delivery document.

Table 15.3 Mapping the 856 Shipping Confirmation to the SHPCON IDoc

591

Mapping Specifications 15.5

SHPCON 856 Sample Value Comments

E1EDL18—Control codes—Loop 2 pick flag

@SEGMENT 1 Hard-code segment attribute to 1.

QUALF PIC Hard-code picking flag. Tells system to
update picking quantity.

E1EDL18—Control codes—Loop 3 PGI flag

@SEGMENT 1 Hard-code segment attribute to 1.

QUALF PGI Hard-code post goods issue flag. Tells
system to post goods issue against
delivery when all updates complete.

E1EDL18 can also flag change to
gross or net weight, volume, or delete
delivery.

E1EDT13—Dates—Min 1, Max 99—Loop 1 goods issue date

@SEGMENT 1 Hard-code segment attribute to 1.

QUALF DTM01 006 Identifies goods issue where DTM01
= 011 date shipped and HL03 = S for
shipment

IEDD DTM02 20140115 Actual date of goods issue

E1EDT13—Dates—Loop 2 Delivery date

@SEGMENT 1 Hard-code segment attribute to 1.

QUALF DTM01 007 Identifies delivery date where DTM01
= 010 delivery date and HL03 = S for
shipment

NTANF DTM02 20140114 Delivery date

E1EDT13—Date—Loop 3 Picking date

@SEGMENT 1 Hard-code segment attribute to 1.

QUALF DTM01 010 Identifies picking date where DTM01
= 011 date shipped and HL03 = S for
shipment

IEDD DTM02 20140115 Picking date

Table 15.3 Mapping the 856 Shipping Confirmation to the SHPCON IDoc (Cont.)

592

The Inbound Shipping Confirmation15

SHPCON 856 Sample Value Comments

E1EDL24—Item level details group—Min 1, Max N—1 instance of E1EDL21 per group loop

@SEGMENT 1 Hard-code segment attribute to 1.

POSNR LIN03 000010 Delivery line item number. Pull from
LIN03 where HL03 = I for looping
packing hierarchy item level of 856
shipment. Segment LIN will appear
once for every instance where looping
segment HL03 = I. Mandatory value.

MATNR LIN05 0005000020 Acme material number fully expanded
to 18 characters, including all leading
zeroes. Take from LIN05 where LIN04
= IN (buyer’s item number) and HL103
= I (item level of packing hierarchy) and
HLI01 = HLI01 (hierarchy level number)
for LIN03 (current) line item number.
Mandatory value.

CHARG LIN07 458248 Batch number if present. Take from
LIN07 where LIN06 = LT (lot number)
and HL103 = I (item level of packing
hierarchy) for current line item.

LFIMG SN102 100.000 Number of units shipped. Updates
picking quantity. Pull from SN102
where HL103 = I (item level of packing
hierarchy) for current line item.

VRKME SN103 EA Unit of measure for LFIMG quantity

LGMNG SN105 100.000 Delivery quantity. Pull from SN105
where HL103 = I (item level of packing
hierarchy) for current line item.

MEINS SN106 EA Unit of measure for LGMNG quantity

NTGEW TD107 250.000 Net weight of item where TD106 = N
and HL103 = I (item level of packing
hierarchy) for current line item. TD1 is a
looping group: one instance per type of
weight.

Table 15.3 Mapping the 856 Shipping Confirmation to the SHPCON IDoc (Cont.)

593

Mapping Specifications 15.5

SHPCON 856 Sample Value Comments

BRGEW TD107 280.000 Gross weight of item where TD106 =
G and HL103 = I (item level of packing
hierarchy) for current line item.

GEWEI TD108 KGM Unit of measure for weight

E1EDL43—Item-level sales documents—Min 1, Max 99—Loop 1 Acme Sales Order

@SEGMENT 1 Hard-code segment attribute to 1.

QUALF REF01 C Identifies Acme sales order. Map to C
where REF01 = CO (customer order).
Acme is the customer for DSI.

VGBEL REF02 00014031 Purchase order number pulled from
BIG04 at header level of 810

VGPOS REF05 000010 Sales order line item number where
REF04 = LI (line item)

Table 15.3 Mapping the 856 Shipping Confirmation to the SHPCON IDoc (Cont.)

In addition, serialized deliveries can be confirmed at the line-item level using seg-
ment E1EDL11. Packaging hierarchies (in SAP, handling units) can be communicated
back to update the outbound delivery using segment E1EDL37 and its children.

These are the basic segments and data elements processed by function IDOC_INPUT_
DELVRY. If you need to include other values in your ship confirm, two exits are
available after all segments have been parsed:

EE CUSTOMER-FUNCTION ‘001’: Enhancement V55K0001, component EXIT_SAP-
LV55K_001.

EE CUSTOMER-FUNCTION ‘002’: Enhancement V55K0002, component EXIT_SAP-
LV55K_002.

Everything you need to update the header or line-item level of the outbound
delivery is available to both exits.

We wrote rules to identify the shipment or item level of data elements through
the HL segment. This is critical to the organization of the 856 (and to mapping),
so it’s useful to look at how this works.

594

The Inbound Shipping Confirmation15

15.5.1 Hierarchical Structure of the 856

Hell hath nine circles of suffering, according to Dante Alighieri’s sublime poem The
Inferno. But the 856 has many more potential hierarchical levels that have wrought
their own special brand of grief to countless EDI mappers, even if these torments
haven’t been described by Dante.

The 856 is a beast with multiple personalities and a flexible hierarchical structure.
We’re using it here as an inbound shipping confirmation, a relatively simple usage—
assuming the packaging hierarchy isn’t included and that we’re not dealing with
a serialized shipment where every individual item, including packing cartons and
pallets, is assigned a serial number.

Regardless of how complex or simple the data set, the basic structural rules for its
use are the same. So we’ll keep it simple here and try to understand its organization.
We use it again in the next chapter as an outbound advanced shipping notification
(in the EDIFACT world, a dispatch advice), which is the last critical step before
Acme can invoice Gordy for its order.

As ordered by the HL looping group, its hierarchy is the key to understanding the
856, regardless of its usage or the data it carries. The HL loop defines the hierarchi-
cal levels of the shipment and its parent-child relationships.

Figure 15.2 shows the segment structure of the 856 that we will map for the ship-
ping confirmation or the ASN in the next chapter.

Figure 15.2 Simplified Structure of an X12 856 Transaction

595

Mapping Specifications 15.5

Like most EDI transactions, the 856 has header and details sections. The header
only has two segments, only one of which (BSN) is mandatory. BSN provides a
document number that identifies the whole shipment.

In Acme’s SAP system, this could be a delivery or shipment document number
from transport planning. If it’s a shipment document, it may include one or more
deliveries in the HL looping group.

As defined by the 856, a shipment can include multiple deliveries, each identified
by its own delivery number within the HL looping group. The 856 is closer to SAP’s
SHPMNT message, which is generated from the shipment document in transport
planning and can include multiple delivery documents representing multiple sales
and customer purchase orders.

But the 856 can also map to logical message DESADV with its one delivery docu-
ment. So if we’re mapping the 856 to DESADV, the shipment identifier in BSN02
is Acme’s delivery document number.

If, however, we’re mapping to a SHPMNT IDoc, BSN02 stores the shipping document
number from transport planning while the delivery document number is in one
or more HL looping groups, depending on the number of deliveries per shipment.

The key to all this is the HL looping segment, which can repeat up to 200,000
times. All detail section segments are children of HL.

For such an important segment, HL has a modest structure: only four data elements,
but we only care about the first three, described in Table 15.4.

Pos Field Description Data

HL01 0628 Hierarchical ID number. Identifies sequential
occurrence of HL group with child segments.

1

HL02 0734 Hierarchical parent ID number. Used by a child
HL group to identify the sequential occurrence ID
number (HL01) of its parent HL group.

EE If the HL01 parent = 1, then HL02 = 0

EE If the HL01 parent = 2, then HL02 = 1

0

Table 15.4 Defining 856 Hierarchy with the HL Segment

596

The Inbound Shipping Confirmation15

Pos Field Description Data

HL03 0735 Hierarchical level object code. Qualifier that
identifies type of object reported in child
segments. Includes values such as the following:

EE S: Shipment

EE O: Order or other shipping document

EE T: Shipping tare or pallet

EE P: Pack

EE I: Item

S

Table 15.4 Defining 856 Hierarchy with the HL Segment (Cont.)

There are hundreds of potential qualifiers for HL03, although not all are relevant
to a shipment. These qualifiers determine what segments follow HL within each
HL loop, including additional HL looping groups.

For example, qualifier “P” refers to a pack filled with saleable items or to a pack
filled with smaller packs. Each of these contains items or smaller packs with items,
like a Russian doll.

These hierarchical relationships are enforced by the combination of HL01 and
HL02. HL01 always begins with 1 and is incremented sequentially each time an
HL segment is encountered throughout the transaction. HL02 always refers to
its immediate HL01 parent, regardless of how many HL segments precede it and
regardless of what they reference as their parent HL01.

The top level of the hierarchy is the shipment, which stores data that affects all
documents and objects to be delivered in the same shipment, identified by qualifier
“S” in HL03 of sequence 1 in HL01 and a parent of 0 in HL02.

For a shipping confirmation or other 856 instance referencing an SAP delivery
document, the key identifiers in this HL loop are the carrier’s reference or the bill
of lading (BOL) number, or another document identifier for the load carried by
the shipment, stored in data element REF02 qualified by REF01.

The shipment level includes the following segments that provide data for the ship-
ment as a whole, although they won’t all necessarily be present, particularly for
our simple shipping confirmation:

597

Mapping Specifications 15.5

EE TD1: Carrier details—quantity and weight

EE TD5: Carrier details—routing sequence and transit time

EE TD3: Carrier details—transport equipment

EE REF: Reference document numbers (i.e., BOL)

EE DTM: Scheduled delivery, ship, and other relevant dates

EE N1: Ship-to and ship-from partners (addresses can also be included in N3 and
N4)

Child segments follow, with the order level next. HL01 will be incremented to 2
and HL02 will equal 1, pointing to its parent HL01 segment.

This can be a customer purchase order or a delivery document if we were mapping
a SHPMNT IDoc. In the case of our ship confirmation from DSI to Acme (or our
outbound ASN to Gordy), this will be the customer purchase order. The following
segments will be present:

EE PRF: Purchase order reference

EE TD1: Carrier details (quantity and weight for the recorded order)

In our example of one shipping confirmation per delivery, which was generated
for one sales order and one purchase order, this would be a repeat of TD1 above.
In other words, this quantity and weight reflects the purchase order, not the
shipment as a whole, which could include multiple purchase orders.

Because this is a simple example focused on the ship confirmation without packaging
hierarchy, the next child HL group is for the delivery item. HL01 is incremented
to 3 and HL02 equals 2, because the item is being delivered against the purchase
order. The following segments can be present:

EE LIN: Material item identification number

EE SN1: Quantities and units of measure for ordered item

EE P04: Physical details of item (i.e., weight, volume, length, width, units of mea-
sure, and other characteristics)

The easiest way to see how this works is by looking at a sample transaction. An
example of a simple shipping confirmation without packaging hierarchies or serial
numbers is displayed in Listing 15.1.

598

The Inbound Shipping Confirmation15

BSN*00*0080016843*20140115*09404267*0001~
HL*1*0*S~
TD1*CTN25*14****G*9774*LB~
TD5****ZZ*GROUND 5 DAYS~
TD3*TL**999999~
REF*BM*9878~
REF*CN*9787~
DTM*011*20140115~
DTM*002*20140115~
N1*ST**92*5293E~
N1*SF**91*0015~
HL*2*1*O~
PRF*99334330~
TD1*CTN25*14****G*9774*LB~
HL*3*2*I~
LIN*001*IN*0005000020~
SN1**2520*EA**16290*EA~
PO4*2520~

Listing 15.1 Sample 856 with No Packing Hierarchy

This example only goes directly to the saleable item level for one item in the
delivery document and does not display any packing hierarchies. It includes the
data that we need to update the picking quantity and post the goods issue against
Acme’s delivery document.

The key is the HL segment, which defines the shipment, identifies the object in
the shipment that it is describing, determines the data it needs to return for that
object, and defines that object’s relationship to its immediate parent and, through
the parent, to the shipment as a whole.

That’s a whole lot of stuff in anybody’s book. If you need to define mapping speci-
fications, remember to keep your eye on the ball: that HL segment. And trace it
back to the HL segment(s) that it references.

In the real world, the 856 will get a lot more complicated, whether for a shipping
confirmation or an ASN, particularly if we throw packaging and/or serial numbers
into the mix. But the HL looping group is flexible enough to transmit a vast array
of data about a shipment and each of its objects.

599

Mapping Specifications 15.5

For mapping, the trick is to understand how to move data from a deeper looping
hierarchical level in the 856 to either the header, line item, or packaging hierarchy
levels of the IDoc.

So let’s briefly go over the structure of the DELVRY03 basic type to give us an idea
of the mapping challenges we may face with the 856.

15.5.2 The DELVRY03 IDoc

The DELVRY03 basic type is just as flexible as the 856 and it stores potentially even
more data, including packaging hierarchies and serial numbers, if these are present
in the EDI transaction. The IDoc is organized differently, as is readily apparent from
the simplified structure of basic type DELVRY03 in Figure 15.3.

Figure 15.3 Simplified Structure of Basic Type DELVRY03

A number of segments that won’t be used in Acme’s implementation have been
deleted from the IDoc in Figure 15.3. But as it stands, the IDoc retains the segments
that we’ll need for both the shipping confirmation and the ASN that we look at it
in the next chapter.

The IDoc and the 856 take different approaches to the same problem. The basic
approach of the 856 is to begin with the shipment and work its way down through
the document and the highest level packaging item, whether that’s a container or

600

The Inbound Shipping Confirmation15

a pallet or a pack, down through subsequent packaging layers into the saleable
item being delivered.

The IDoc begins with the delivery document and works its way first through the
saleable items, in segment E1EDL24 and its children, and then to the packaging
hierarchy beginning with E1EDL37 and its children, particularly E1EDL44, which
stores the line-item level of the packaging hierarchy.

E1EDL44 is where the full packaging hierarchy (again, handling units in SAP) is
stored. In order to be used in the delivery, each packaging item, whether a pallet
or a carton or a pack of any type, must exist in SAP with a material master record.

The DELVRY03 basic type is designed to fit into a shipment message in a SHPMNT
IDoc at the line-item level. DELVRY03 segment E1EDL20 becomes the line item
details parent of the shipment and can be repeated multiple times to accommodate
multiple complete deliveries in one shipment.

The SHPMNT IDoc is generated from the transport planning system and includes
more data about transportation, routing, and equipment than is typically found
in a delivery document.

The IDoc approach to structuring the delivery and its packaging hierarchy is almost
identical to the approaches taken by EDIFACT, OAGIS, xCBL, and other XML B2B
message formats that support shipping and delivery.

15.6 EDI Configuration in SAP

Let’s walk through configuration settings for the inbound SHPCON message type
from DSI.

15.6.1 EDPAR Entries: Transaction VOE4

There are no EDPAR entries for the 856-SHPCON interface.

15.6.2 ZEDIXREF Entries

Custom table ZEDIXREF maps the sender’s sending and receiving EDI trading
partner IDs to the SAP partner numbers—DSI’s vendor number in Acme’s system
and the receiving SAP logical system ID.

601

EDI Configuration in SAP 15.6

Table 15.5 lists the values that we’ll enter into custom table ZEDIXREF for the
inbound 856 ship confirmation from DSI.

Field Value Description

DIRECT 2 Direction inbound

STDMES 856 EDI transaction

MESTYP SHPCON IDoc message type

IDOCTP DELVRY03 IDoc basic type

CIMTYP IDoc extension

SNDPRN DISK01 SAP send partner

RCVPRN DEVCLNT100 SAP receive partner

SNDLAD 99934567999 EDI send trading partner ID

RCVLAD 99999998889 EDI receive trading partner ID

Table 15.5 ZEDIXREF Entries for the Inbound 856 from DSI

15.6.3 Partner Profiles: Transaction WE20

The inbound partner profile links DSI to the incoming message type and the pro-
cess code that will trigger the processing function that will post the incoming ship
confirmation.

We’ll need one inbound partner profile for DSI partner type LI (vendor) with mes-
sage type SHPCON.

In the inbound parameters table control, click Create and add the following values
to the inbound parameters screen (Figure 15.4):

EE Partner Role: “VN” for vendor

EE Message type: “SHPCON”

EE Process code: “DELV”

EE Processing by Function Module: Trigger by background program option

602

The Inbound Shipping Confirmation15

Figure 15.4 Inbound Partner Profile for Ship Confirmation from DSI

Process code DELV links to function IDOC_INPUT_DELVRY, which posts the IDoc
against Acme’s outbound delivery document and updates pick quantity and posts
the goods issue.

Don’t forget to save.

15.7 Summary

The shipping confirmation is an important step along Acme’s road to invoicing. It
confirms that DSI shipped an order of saleable movies on DVD to Gordy’s Galaxy
of Games & B Flix, Acme’s most important customer.

DSI generates an 856 ship confirmation and sends it to Acme when the truck leaves
the shipping dock with a load bound for Gordy’s distribution center.

The shipment was picked, packed, and shipped after Acme sent DSI a shipping
order through an X12 830 transaction with details of what saleable items to deliver
to Gordy against what purchase order.

603

Summary 15.7

The shipping order to DSI was generated from an outbound delivery document
in Acme’s SAP system. The 856 shipping confirmation sent by DSI to Acme refer-
ences the outbound delivery, as well as the saleable material shipped, its quantity,
and ship dates. It can also include details of packaging hierarchies, if DSI provides
them and Acme needs them to update the delivery.

The shipping confirmation updates the pick quantity for the saleable item and
triggers the post goods issue in the outbound delivery, which relieves inventory
of the finished goods and the raw materials used to produce them.

We looked at the structure of the 856 and the DELVRY03 IDoc and noted the differ-
ences between the looping, hierarchical, top-down organization of the 856 versus
the more traditional, flatter header-detail levels structure of the IDoc.

Mapping the 856 can be difficult, but the key is understanding how the HL segment
is used to organize the different hierarchical levels of each object in the delivery,
from the shipment through the order and the packaging levels from the top down
to the saleable item.

So now the DVDs that Gordy ordered are loaded onto a truck and safely on their
way. Acme’s legendary founder Darryl Q. Fernhausen would be smiling in antici-
pation of what follows: the customer receives delivery and Acme issues an invoice
and gets paid for its efforts.

Before that happy moment can arrive, however, there are still steps that must be
completed, beginning with telling Gordy’s that the stuff they ordered is on its way.
And that’s what we’ll look at next.

605

“Let ’em know what they’re getting,” Darryl Q would tell his writers when
they got stumped by a script. It’s no different for Gordy, who needs to know
what he’s getting when his order has been shipped. And that’s what the
outbound ASN does: It tells the customer what he is going to receive in his
order. It’s also the last step before Acme can invoice. So let’s see how it’s
done.

16 The Advanced Shipping
Notice to the Customer

This is where the rubber begins to meet the road. The delivery has been issued and
the shipping order dropped to the third-party warehouse Disc Services International
(DSI). The order has been picked and shipped, and DSI has confirmed the shipment,
completing Acme’s delivery document with the pick quantity and post goods issue.

Each step has been documented and enabled by an EDI transmission: the outbound
SHPORD to X12 830 interface for the shipping order and the inbound X12 856 to
SHPCON for the ship confirmation.

All that’s left is to provide Gordy’s Galaxy of Games & B Flix, Acme’s most impor-
tant customer, with over 2,000 store locations, with its own version of the five
Ws of DVD distribution:

EE What order is on its way? “Order” refers to Gordy’s customer purchase order
not Acme’s sales or delivery order.

EE Which of Gordy’s distribution centers is it being sent to?

EE When will the order get there?

EE Which of Gordy’s stores are receiving product in the order?

EE What products are being shipped to what stores?

Gordy needs to receive this information in an outbound X12 856 advanced ship
notification (ASN) and post it to their business system before the delivery arrives
at their receiving dock.

606

The Advanced Shipping Notice to the Customer16

When the order arrives, Gordy must then confirm that all the goods in the delivery
are recorded on the ASN before they can receive them into their business system
against their purchase order.

If the ASN arrives after the delivery, or if there are discrepancies between the ASN
and the items received in the delivery, Gordy will not authorize Acme to issue an
invoice. It simply has to be right.

So let’s consider this critical interface, the last obstacle to overcome before we
can invoice.

16.1 Technical Overview of Interface

Table 16.1 summarizes the outbound ASN interface.

Item Description

Title Advanced Shipping Notification to the Customer

Description The ASN is the third interface in the shipping cycle
triggered when an outbound delivery document is created
in SAP from a completed sales order against a purchase
from Gordy’s Galaxy of Games & B Flix.

The first is the outbound ship order to the third-party
warehouse (DSI) with details of the order to be delivered
to the customer.

The second is the ship confirmation returned from
DSI with details of the order that was picked, packed,
loaded onto a truck, and shipped to Gordy. The shipping
confirmation updates the outbound delivery with the pick
quantity and post goods issue.

The ASN is generated from the outbound delivery after the
post goods issue closes the delivery. A DESADV IDoc is
populated with the details of the delivery as confirmed by
DSI and sent to Gordy so that they can receive the delivery
against it when it arrives at their distribution center.

The goods received on the dock must match the goods
described in the ASN or Gordy will reject the delivery.

Table 16.1 Overview of Outbound DESADV ASN Interface

607

Technical Overview of Interface 16.1

Item Description

If Gordy rejects the delivery, they immediately send an
X12 824 text report describing the error. The EDI RIM
converts the 824 to an email and routes it to the business
users for correction.

If Gordy receives the goods successfully against the ASN,
Acme can issue its invoice for the order.

Type of interface Distribution: IDoc to X12 EDI

Direction Outbound

Trading partner Gordy’s Galaxy (customer)

IDoc DESADV.DELVRY03

IDoc extended type

IDoc function IDOC_OUTPUT_DELVRY

Custom ABAP

Description

Target file(s) X12 856 advance ship notification to the customer

Source document(s) Completed SAP outbound delivery document

Transaction code VL02N

Map(s) DESADV.DELVRY03 to X12 856 vers. 5010

Custom map logic

Source system Acme SAP

Target system Gordy’s Galaxy EDI via AS2 from Acme EDI RIM

997 acknowledgment Inbound within 24 hours of transmission at the transaction
detail level; function group acknowledgment code: SH

Frequency Every 15 minutes throughout the day, on demand

Job schedule 1 RSEOUT00: Every hour, sends all DESADV message types
to DSI

Table 16.1 Overview of Outbound DESADV ASN Interface (Cont.)

608

The Advanced Shipping Notice to the Customer16

16.2 Functional Specifications

The DESADV-856 ASN to the customer is the last of three steps in the delivery
processing cycle.

The first is the ship order from an outbound delivery that tells DSI what to pick,
pack, and ship to Gordy’s Galaxy against a particular purchase order.

The second is the ship confirmation from DSI after the shipment has left their
loading dock that updates the outbound delivery with the pick quantity and post
goods issue.

The ASN is generated when the post goods issue completes the outbound delivery
document. After the ASN has been successfully received into Gordy’s business
system and the goods delivered and confirmed against the ASN, Acme can issue
an invoice against the customer PO.

16.2.1 Process Overview

The process begins after the order ships from DSI and an 856 ship confirm is sent
back to Acme to update the delivery document with the pick quantity and the post
goods issue.

When the delivery is saved and completed, output control generates a DESADV.
DELVRY03 IDoc, which is parked in the IDoc database until it is picked up and
exported to the EDI RIM by a scheduled job that runs every 15 minutes.

The IDoc pulls all the data in the outbound delivery, including all transport and
saleable item data and the full packing hierarchy if packaging has been set up for
the delivery.

The RIM converts the DESADV.DELVRY03 IDoc to an 856 advanced ship notifica-
tion and sends it to Gordy’s EDI system. This ASN posts to Gordy’s business system
against the purchase order number and is used on the receiving dock to confirm
receipt of all items in the delivery against the PO when the shipment arrives.

Gordy’s purchase order is closed with a goods receipt (GR) after all of the items
in the order have been confirmed and scanned into its system. The saleable items
are received into Gordy’s inventory and eventually distributed to all stores that
ordered product for sale.

609

Functional Specifications 16.2

16.2.2 Requirements

Gordy has only two requirements for the DESADV-856 ASN interface:

EE It must be 100 percent accurate 100 percent of the time and must do the fol-
lowing:

EE Report exactly how many units of what products were shipped against what
Gordy purchase order number

EE Match the physical contents of the shipment, including component items of
multi-pack displays

EE Include codes to track items down to the carton level that match barcoded
labels on cartons and palettes in the physical shipment

EE It must be on time. The ASN shall always post to Gordy’s business system before
the shipment arrives at the receiving dock.

EE Gordy must validate the ASN data against its purchase order in its business
system before the delivery arrives.

EE Gordy must confirm every physical item in the delivery at the receiving point
against the ASN and its purchase order, including saleable items and packag-
ing materials if sent.

EE The goods must post successfully to Gordy’s inventory before signing off on
the ASN.

If these requirements are not fulfilled, Gordy will not accept receipt of an invoice,
let alone pay for it. This makes the ASN an interface of “musts.”

There are a few other requirements:

EE Picking quantities in the delivery have been updated from the DSI warehouse
through the 856-SHPCON interface.

EE Post goods issue has completed the delivery, which means that two things have
happened:

EE Material documents have been created for the inventory posting with move-
ment type 601 or 602 for reversals.

EE Finance has been updated through account postings reflected in the material
and accounting documents.

610

The Advanced Shipping Notice to the Customer16

EE The IDoc is generated as soon as the delivery is closed and the ASN is sent to
the customer immediately. Jobs to export DESADV IDocs are to be scheduled
every 15 minutes.

EE ASN references key document numbers:

EE Gordy’s purchase order number

EE DSI’s bill of lading (BOL)

EE Acme’s delivery document

EE All ASNs associated with a customer purchase order are bundled together into
a single interchange for transmission by the EDI system.

16.2.3 Dependencies

The DESADV to 856 ASN interface is dependent on master data, configuration,
and development in SAP and the EDI RIM, including all data required to support
sales orders, acknowledgments, shipping orders, and inbound ship confirmations.

Other dependencies include (but are not restricted to) the following:

EE Material master records for all packaging materials that may be sent in the ASN.

EE Shipping conditions, routes, and schedules are set up.

EE Message control is configured to support output of DESADV ASN IDocs from
outbound deliveries once post goods issue is saved.

EE Outbound partner profile set up for DSI for message type DESADV with the
configured message control settings.

EE External partner conversion table PUMA populated with Gordy’s internal and
external ship-to partner.

16.2.4 Assumptions

The ASN is output from the outbound delivery so all base assumptions for the
SHPORD to 830 interface are also true for the DESADV to 856.

IDocs are automatically generated when the delivery document is updated with the
pick quantity and post goods issue. One DESADV IDoc is output for each delivery
document and sales order.

611

Functional Specifications 16.2

The following are additional key assumptions:

EE All previous documents and updates in the sales and delivery cycle are com-
pleted, and inventory has been updated and posted to FI.

EE Pick quantities in the delivery document represent the quantity that was actu-
ally shipped.

EE Billing has not yet been run.

EE Relevant customer purchase order and delivery data are passed to the ASN dur-
ing output processing, including the following:

EE Purchase order, delivery, and BOL numbers

EE The vendor number that Gordy uses for Acme Pictures

EE Gordy’s store location ship-to number and address

EE Relevant dates, particularly ship date

EE All ordered items and shipped quantities

EE Sales BOMs for multi-pack items ordered by Gordy’s Galaxy

EE Pricing isn’t included in the ASN.

EE Gordy uses GLNs for its store location ship-to numbers and GTINs for the items
it orders.

EE The IDoc is sent as an 856 ASN to Gordy’s Galaxy, where it is used in the busi-
ness system and the warehouse to manage transportation, distribution, and
receiving of goods ordered from Acme.

EE If there are errors posting the 856 ASN to Gordy’s business system, an error
report is returned to Acme in a separate X12 824 transmission. The error report
is distributed by email to the responsible business users.

EE The DESADV IDoc can be regenerated from the outbound delivery if required.

16.2.5 Data That Pass to the IDoc from the Delivery

Table 16.2 lists source tables and fields for some of the delivery document data
that may be passed to the DESADV IDoc ASN to Gordy’s Galaxy.

612

The Advanced Shipping Notice to the Customer16

Table Field Description Sample Value

Delivery Header

VBPA KUNNR PARVW = WE: ship-to partner GRDY010987

VBPA LIFNR PARVW = SP: forwarding agent FEDEX01

LIKP VBELN Delivery number 0816160750

VBKD BSTNR Customer PO number 292259

LIKP BOLNR BOL number 1Z492Y660133495

LIKP VSTEL Shipping point (DSI ship plant) 0015

LIKP VSART Shipment type — truck 01

LIKP VSBED Shipping conditions 04

LIKP ROUTE Route 21

LIKP LFDAT Delivery date 20081220

LIKP LDDAT Load date 20081220

LIKP BTGEW Gross weight 10128.750

LIKP ANZPK Number of packages 20

LFA1 SCACD SCAC code—vendor master FDEG

STXH TDID Header text ID; custom text ID for
SCAC code

ZSCA

STXL TDLINE Text—SCAC code FDEG

VEPK VHILM Packing material number.
Corresponds to a material master
item number in SAP.

PK-096

VEKP EXIDV SSCC-18 barcode on pallet or other
top level packaging item label
where EXIDA = C or D

000353003016674769

Delivery Items

LIPS POSNR Item number 000010

LIPS PSTYV Delivery item category TAP

Table 16.2 Delivery Data That May Pass to the DESADV ASN IDoc

613

Functional Specifications 16.2

Table Field Description Sample Value

LIPS MATNR Order item (SAP) 2356784

LIPS ARKTX Material description I Married an Alien

LIPS LFIMG Delivery quantity for item 4

LIPS MEINS Unit of measure for quantity EA

LIPS BRGEW Gross weight 1

LIPS GEWEI Weight unit of measure LB

LIPS KDMAT Customer material number 799142939512

LIPS EAN11 UPC item number 799142939512

VEPO MATNR SAP material master number for
packaging item at item details level
of packaging hierarchy (handling
units)

P-102

Table 16.2 Delivery Data That May Pass to the DESADV ASN IDoc (Cont.)

The Standard Carrier Alpha Code (SCAC) is a two- to four-digit code used by the
transportation industry to identify freight carriers. The standard delivery doesn’t
have a field for the SCAC, so Acme stores it in a header text element with text ID
ZSCA. Gordy requires the code in its ASN because it tells Gordy who’s shipping
the order.

FDEG is the SCAC code for FedEx Ground. FedEx is set also up in Acme’s SAP
system as a vendor.

The SCAC code can be stored in the vendor master for the forwarding party, in
field LFA1-SCACD. It’s read during outbound partner processing by function IDOC_
OUTPUT_DELIVRY, which builds the DESADV IDoc. For this to work, the forwarding
agent must be in the Partner tab at the header level of the delivery document.

The route at Acme is used to define both the delivery carrier and conditions of
shipment, in this case, FedEx Ground collect overnight. The BOL number came
into the delivery from the ship confirmation from DSI.

16.2.6 Enhancements to the Process

There are no custom enhancements in this interface.

614

The Advanced Shipping Notice to the Customer16

16.2.7 Reconciliation

Output of the DESADV IDoc is confirmed by checking the output screen of the
delivery document in Transaction VL03N with menu option Extras • Delivery
output • Header.

Confirm that an output record with a green traffic light exists for output type LAVA,
partner type SH (ship-to), and partner number GRDY01001. Click the Processing
log button to get the IDoc number.

There are a few other validations that we can perform:

EE Data in the IDoc match the delivery document:

EE Delivery number

EE Ship-to partner and address

EE Customer PO number

EE BOL number

EE Picking and packing quantities

EE The DESADV IDoc sent to the EDI RIM and successfully translated to an out-
bound X12 856

EE The data in the 856 match the IDoc and conform to Acme’s EDI mapping spec-
ifications and Gordy’s 856 EDI guidelines

EE DSI successfully receives and acknowledges the 856 and does not send an 824
text report with application errors within 24 hours

16.2.8 Errors and Error Handling

If the outbound delivery fails to generate a DESADV IDoc when the post goods
issue is saved, the EDI team and business users will work together to identify and
correct the error.

If the delivery document is properly updated and completed, then any errors involve
output control or the partner profile. If the IDoc doesn’t generate, the following
checks are required:

EE Transaction VV23 to confirm that the condition table is populated for output
type LAVA for the sales organization and ship-to partner mapped to the sold-to
partner

615

Generating an ASN IDoc with Message Control 16.3

EE Transaction WE20 to confirm that the outbound partner profile for Gordy’s
Galaxy sold-to partner with message type DESADV is correctly set up

16.3 Generating an ASN IDoc with Message Control

The outbound ASN to Gordy’s Galaxy is generated by message control when the
shipping confirmation successfully completes the outbound delivery with the
post goods issue. We’ll cover message control settings to automatically output the
DESADV IDoc in this section.

In the shipping order interface in Chapter 14, we generated the outbound SHPORD
IDoc by creating a custom version of standard output type LAVA. Output type LAVA
can generate both the SHPORD and DESADV messages. Both use the same process
codes and come out of the same outbound delivery document.

But the processes are very different and come at different points in the shipping
cycle. The shipping order goes to the supplier and tells him what to ship to the cus-
tomer, while the ASN goes to the customer and tells him what to expect to receive
from the supplier. This goes back to the flexible nature of the delivery document
and its critical role in the document flow in the overall order-to-cash process.

We need to set up the following message control configuration to output the ASN
to the customer:

EE Standard output type LAVA with access sequence 0005 (sales organization and
customer, which will be the ship-to partner) and supporting configuration

EE Condition record mapping the sales organization and ship-to partner to Gordy’s
sold-to customer

EE One partner profile with message control for Gordy’s Galaxy sold-to partner
with the ASN message type DESADV

16.3.1 Configuring Message Control

We shouldn’t need to change anything in the output type, but we will confirm that
all the pieces are in place.

Output of the DESADV ASN is restricted to an outbound delivery that has been
completed by a post goods issue through a requirement linked to the output type
procedure mapping.

616

The Advanced Shipping Notice to the Customer16

To confirm message control configuration, use Transaction NACE and follow these
steps:

1. Select application V2 Shipping, and click Output types. Select Output Type
LAVA, and double-click to open the Output Type Details screen.

2. Confirm that the Access sequence field contains 005 and that the Access to
conditions and Multiple issuing checkboxes are both checked. The screen
should look like Figure 16.1.

Figure 16.1 Output Type LAVA Configuration for the ASN

3. Access number is 1 for condition table 1 (B001) and communications structure
KOMKBV2 with key fields:

EE VKORG: Sales organization

EE KNDNR: Ship-to party

4. Double-click the Processing routines folder in the navigation panel to open
the Processing routines: Overview screen and confirm that there is an EDI
entry in the table control.

5. If there is no program and form routine for medium EDI entered in the table
control, click New entries to open the Details of Added Entries screen. Enter
the following values:

EE Transm.Medium: “EDI”

EE Program (Processing 1): “RSNASTED” for the standard SAP output program

EE FORM routine: “EDI_PROCESSING”, which identifies and calls the function
that generates and sends the IDoc

617

Generating an ASN IDoc with Message Control 16.3

6. Press (Enter) and double-click the Partner functions folder to open the Part-
ner Functions: Overview screen.

7. Confirm that there’s an entry for medium EDI and partner types SH (ship-to)
and SP (sold-to partner).

8. The screen should look like Figure 16.2. If it doesn’t, click New entries and
select EDI in the Medium field and KU in the Funct field.

Figure 16.2 Partner Functions for Output Type LAVA

9. Save any changes since your last save.

Confirm the Procedure and Requirement

Next we’ll confirm that output type LAVA is linked to procedure V10000 and that
there is a requirement to generate output only if a post goods issue against the
delivery document has been completed.

1. Return to the main screen of Transaction NACE.

2. Select Application V2. Click Procedures. The Procedures Overview screen
opens.

3. Select procedure V10000 header output, and double-click the Control folder
in the navigation panel.

4. Confirm that output type LAVA is assigned to the procedure and that require-
ment 1 is assigned to LAVA.

The ABAP code in requirement 1 ensures that an IDoc is generated only if post
goods issue has been completed against the delivery document.

This is determined by reading the PGI completed flag in field WBSTK in com-
munication structure KOMKBV2. If WBSTK equals C, then the post goods issue
is done, the delivery is complete, and the IDoc can be generated. If not, output
is blocked.

618

The Advanced Shipping Notice to the Customer16

Condition Record

The condition record drives generation of the IDoc by sales organization and ship-to
partner. But because the partner profile for Gordy is defined by sold-to partner, we
must also map the ship-to partner from the delivery document to the sold-to partner.

We can create the condition record with Transaction NACE by selecting applica-
tion V2, clicking Condition records, and selecting output type LAVA, or with
Transaction VV21.

1. Call Transaction VV21, enter output type LAVA, and click the Key combination
button. The pop-up has only option: Sales Organization/Customer Number.
Press (Enter) or click the green arrow icon.

2. Enter “3000” in the Sales Organization field and the following values in the
condition records table control, as shown in Figure 16.3:

EE Customer: “GRDY01001” for Gordy ship-to partner

EE Function: “SH” for ship-to partner

EE Partner: “GRDY01” for Gordy sold-to partner

EE Medium: “6” for EDI

EE Dispatch time: “4” for immediately when the document is saved

EE Language: “EN”

Figure 16.3 Condition Record for ASN Output Type LAVA

This maps the sold-to partner to the RCVPRN field of the IDoc control segment,
rather than the ship-to partner. We need to do this because the outbound part-
ner profile is set up for the sold-to, not the ship-to partner.

If we did not enter the sold-to partner in the Partner field, the ship-to would
be mapped to the RCVPRN filed of the IDoc control segment.

Output type LAVA is now ready for use in the message control screen of the out-
bound partner profile.

619

Generating an ASN IDoc with Message Control 16.3

16.3.2 Overview of the End-to-End Process Flow

Figure 16.4 outlines the end-to-end process flow for generating and sending an
ASN with a DESADV IDoc and an 856 to Gordy’s Galaxy.

OB partner profile
GRDY01/KU/

V2/LAVA/DELV

BEGIN: OB
DESADV-856

Access sequence:
sales organization/

ship-to partner

PGI relieves
inventory/updates
accounting/costing

END: To
INVOIC-810

VL02N—Delivery
updated: pick qty/

pick date/PGI

ASN sent to
receiving dock

before shipment

Gordy receives
delivery confirms

against ASN
From DSI

856-SHPCON
from DSI to Acme

Output conditions
read: LAVA/3000

GRDY01001

Ship-to partner
mapped to

sold-to GRDY01

DESADV IDocs
written to DB

RSEOUT00 sends
XML IDoc files
to app server

X12 856 ASN sent
to Gordy by AS2

Translation map
called DELVRY03

to X12 856

ASN posts against
Gordy purch order

EDI RIMGordy’s Galaxy
X12 997 func. ack.
returned to Acme

ASN correct?
824 error report

sent back to AcmeNoYes

RFC Call to RIM
IDocs picked up

sent to enveloping

Figure 16.4 Outline of the DESADV-856 Interface Processing Flow

620

The Advanced Shipping Notice to the Customer16

The outbound DESADV to 856 ASN interface kicks off after the delivery has been
completed by the post goods issue triggered by a SHPCON IDoc translated from an
inbound 856 ship confirmation sent from DSI after the shipment left for Gordy’s
Galaxy.

The ASN must be in Gordy’s system before the shipment arrives at its receiving
point. Gordy uses it to confirm the contents of the shipment and to close its pur-
chase order with a goods receipt.

The post goods issue to Acme’s delivery creates follow-up material documents that
record the inventory change against movement type 601 (602 for reversals) and
update the relevant G/L account. Follow-up accounting and costing documents are
also created that prepare the system for generation of an invoice against the sales
(and purchase) order and receipt of its payment.

The SD document flow table VBFA is updated to include a link between the new
inventory and accounting documents and the delivery, which is already linked to
the sales order and through it to the customer’s purchase order.

The accounting document is not part of the SD document flow. It is recorded in
the accounting database in table BKPF (document header) and table BSEG (item
details) with a link to both the delivery and material document for the 601 PGI.

Message Control Processing

The system is now primed to issue an invoice, but we can’t do that until the ASN
process runs its course. And that begins with generating the IDoc.

Just before the delivery is saved, output control keys are identified, and an output
record is created for table NAST by functions COMMUNICATION_AREA_KOMKBV2 and
MESSAGING.

The following are output control keys for the outbound delivery ASN:

EE Application V2: Shipping

EE Output type LAVA: Outgoing ship notification

EE Access sequence 0005: Sales organization/ship-to partner

EE Access 1: Sales organization/ship-to partner number in condition table B001

EE Procedure V10000: Header output linked to output type LAVA

EE Requirement 1: Post goods issue completed in delivery document

621

Generating an ASN IDoc with Message Control 16.3

The following access fields are from communication structure KOMKBV2:

EE VKORG: Sales organization

EE KNDNR: Ship-to party

The condition record is created through Transaction VV21. It links the SAP sales
organization and ship-to number to Gordy’s sold-to partner, which becomes the
receiver partner in the IDoc control segment and identifies the outbound partner
profile (always created against the sold-to partner).

Condition table B001 and output table NACH are read with the access keys from
table LIKP, the delivery document header. The Acme sales organization and Gordy
ship-to store location are hit and the condition record is pulled, along with Gordy’s
sold-to partner number.

Function EDI_PARTNER_READ_OUTGOING is called to get the partner profile using the
key fields in structure EDK12:

EE RCVPRN: Receive partner sold-to number: GRDY01

EE RCVPRT: Receive partner type: KU (Customer)

EE RCVPFC: Receipt partner function: SP (Sold-to Partner)

EE KAPPL: Message control application: V2

EE KSCHL: Message type: LAVA

The outbound partner profile is set up for Gordy with message type DESADV. It links
to output control through the Message Control tab, which includes three values:

EE Application V2: Shipping

EE Output (or message) type: LAVA

EE Process Code: DELV

Process code DELV links message type DESADV to the standard IDoc processing
function IDOC_OUTPUT_DELVRY, which is kicked off to build the IDoc.

Building the IDoc

IDOC_OUTPUT_DELVRY first confirms that it is processing the right IDoc, initializes
all work areas, and takes care of some housekeeping tasks.

622

The Advanced Shipping Notice to the Customer16

The delivery number is passed from the NAST output record key and is used to
read all delivery and sales order document data into internal tables and strings
from the relevant database tables:

EE LIKP: Delivery header

EE LIPS: Delivery item details

EE VBUK: Delivery status

EE VBFA: SD document flow

EE VBPA: Delivery partners

EE VBAK: Dales order header

EE VBAP: Sales order item details

EE VBKD: Sales order business data

EE VEKP: Handling units (packing hierarchy) header level, if present in the delivery
document

EE VEPO: Handling units (packing hierarchy) details level, if present in the delivery
document

These data build the IDoc, one segment at a time, beginning with E1EDL20, in the
sequence in which each segment appears in the finished IDoc.

Each segment is built within its own process perform that does the following:

EE Checks that the segment is active and has not been excluded through IDoc reduc-
tion

EE Fills a string that has the structure of the IDoc segment with data from the deliv-
ery and sales order data work areas

EE Performs relevant checks

EE Populates a string (IDOC_DATA with structure EDIDD) with the segment name
(to field SEGNAM) and application data (to field SDATA) for the segment

EE Appends IDOC_DATA to the internal table INT_EDIDD, which also has the structure
EDIDD

EE Calls CUSTOMER-FUNCTION '002' for custom processing of the current segment
or to add additional segments immediately after it

623

Generating an ASN IDoc with Message Control 16.3

Partner data are treated a little differently. They use two segments: E1ADRM1 and
its child segment E1ADRE1, which is populated with a variety of extended data,
including SCAC for the carrier and the external partner number conversion.

The two segments are processed in a loop on table VBPA delivery partner data.
The partner type and SAP partner numbers are passed to E1ADRM1, followed by
full contact and address information from the address database.

E1ADRE1 is processed after E1ADRM1 and appended to INT_EDIDD within the
same loop through VBPA.

There is also an external partner number mapping table similar to EDPAR handled
by function PARTNER_CONVERSION_INT_TO_EXT. Acme would use the following param-
eters to convert the ship-to partner:

EE NAST-PARVW: Partner type AG, sold-to, pulled from the output record table
NAST. This is the receive partner in the IDoc control record that identifies the
partner profile.

EE NAST-PARNR: Sold-to partner number that was mapped from our condition
record.

EE VBPA-PARVW: Ship-to partner type WE, pulled from the delivery document.

EE VBPA-KUNNR: Ship-to partner number.

These keys are used to read table PUMA, which maps an internal SAP partner
number to an external ID such as a GLN or whatever the external partner needs.
PUMA is only used to convert partner numbers for outbound deliveries.

PARTNER_CONVERSION_INT_TO_EXT will return the GLN for Gordy’s ship-to partner.
This will be stored in field E1ARDE1-EXTEND_D. Multiple instances of E1ARDE1
can be appended as children of E1ADRM1 so we can send multiple external part-
ner numbers.

Segment processing for E1ADRE1 also identifies the SCAC code if it is maintained
in field SCACD in the carrier or forwarding agent’s vendor master record. The SCAC
code is read from vendor master table LFA1.

When all segments have been built and assembled in the correct sequence in INT_
EDIDD, function IDOC_OUTPUT_DELVRY exits and returns processing to the standard
IDoc interface. The standard interface writes the IDoc to the database at status
01—IDoc generated—and then status 30—IDoc ready for dispatch.

624

The Advanced Shipping Notice to the Customer16

Sending the IDoc

Program RSEOUT00 runs every 15 minutes to pick up all outbound DESADV IDocs
at status 30 for Gordy’s Galaxy and send them to the EDI RIM.

RSEOUT00 reads the DESADV IDocs from the database and calls function EDI_OUTPUT
_NEW, which converts the ASCII IDocs to XML format and saves them to a file on
the SAP application server.

It then makes an RFC through the JCo connector to a listening workflow process
in the EDI RIM that picks up the IDoc file with an FTP service and passes it to an
enveloping process.

The envelopes are identified from the send and receive trading partner IDs in the
IDoc control segment: SNDLAD and RCVLAD. Control segments fields are also
used to identify the EDI standard (STD), the transaction (STDMES), and the ver-
sion (STDVRS). The IDocs are grouped and a translation loop runs based on EDI
partner, transaction, and X12 version.

The ST envelope identifies and calls the translation map for each IDoc in the file.
The XML IDoc is converted to an X12 856 transaction set and wrapped in an ST
envelope. The translation loop continues until each IDoc in the file is converted
and wrapped in an ST envelope.

The converted transactions are then bundled into a group with a GS-GE envelope
by function—SH for the 856—and trading partner and assigned a group control
number. The group is bundled into an ISA interchange envelope by send and receive
trading partner ID and assigned an interchange control number.

If any translation errors occur, the failed IDoc is moved to a workflow that maps
it to a STATUS IDoc and sends it back into SAP to update the failed IDoc with an
error status and message.

Assuming a best case scenario with no errors, the interchange is passed to a com-
munications process and sent to DSI’s EDI system through an AS2 call. The process
waits for an MDN acknowledgment, which comes immediately, and a STATUS
IDoc is sent back to SAP updating all the outbound IDocs in the interchange with
a transmission OK status.

Gordy sends back a 997 acknowledgment for the 856 ASN group, ending the EDI
transmission. The 997 is generated as soon as the interchange passes the techni-
cal checks in Gordy’s EDI system, generally within seconds of importing the file.

625

Generating an ASN IDoc with Message Control 16.3

If it takes longer than 24 hours to receive the 997, Acme’s EDI team contacts Gordy’s
EDI team to find out whether there are any issues.

At Gordy’s Receiving Point

A number of checks are made before the ASN posts to Gordy’s business system:

EE To verify the structure of the 856 ASN, particularly the sequencing, parentage,
and relationships of the HL looping groups

EE That Acme is a valid vendor authorized to send ASNs

EE That the purchase order number matches an existing PO to Acme and the PO
date is correct

EE That the GLN for the ship-to location is a valid store number

EE That the GTIN numbers for the ordered items are valid and the quantities ordered
for each ship-to match the purchase order

If there are issues with any of these validations, an 824 text report is immediately
sent to Acme, identifying errors against the purchase order and delivery numbers.
Acme must correct 824 issues within 24 hours.

If the validations pass, or all errors are corrected, the ASN posts to Gordy’s business
system and is available at the receiving point. The receiving point must be able to
access the ASN before the truck pulls into the receiving dock with the shipment
from DSI.

When the shipment arrives at the receiving point, the ordered goods, their store
locations, and quantities are scanned into Gordy’s system and compared to the
ASN. If everything checks out and there are no errors, the items are received into
inventory with a goods receipt, updating and completing the purchase order.

If there are any issues with the postings, an 824 error report is immediately gener-
ated and sent to Acme and the issues addressed by the business. Errors must be
addressed within 24 hours.

If no 824 is sent, the ASN process is complete. Gordy’s accounts payable is updated
and ready to accept and pay Acme’s invoice.

626

The Advanced Shipping Notice to the Customer16

16.4 Technical Specifications

This technical specification section describes the SAP configuration and EDI devel-
opment required to support the DESADV to 856 advanced ship notification EDI
interface to Gordy’s Galaxy.

16.4.1 Technical Requirements

The outbound ASN is sent to Gordy’s Galaxy within 15 minutes of the ship con-
firm and post goods issue in Acme’s system. It must hit Gordy’s system before the
shipment arrives at their receiving point.

The ASN passes Gordy’s purchase order number, DSI’s bill of lading, pick quanti-
ties, and date the order was shipped.

For multi-pack orders, the EDI map passes to the 856 EDI transaction the shipping
unit and all component items of the sales BOM.

16.4.2 Dependencies

The DESADV to 856 ASN interface to Gordy’s Galaxy is dependent on outbound
IDoc configuration in SAP and on several development objects in the EDI RIM:

EE External partner mapping table PUMA populated with sold-to, ship-to, and sup-
plier conversions from SAP to GLN ID numbers

EE Custom table ZEDIXREF populated with mappings between SAP sending and
receiving partners and EDI sending and receiving trading partner IDs for Acme
and Gordy

EE Outbound partner profile for Gordy with message type DESADV

EE Batch job set up in the SAP Job Scheduler for program RSEOUT00 with variant
to output DESADV IDocs at status 30 for all customers once every hour through-
out the day

EE A full set of outbound envelopes created in the EDI RIM for Gordy’s Galaxy 856
X12 version 5010 transmissions

EE A full set of inbound envelopes created in the EDI RIM to process X12 997 ver-
sion 5010 functional acknowledgments from Gordy’s Galaxy for the outbound
856 ASN

627

Mapping Specifications 16.5

EE Translation map created in the EDI RIM for DESADV IDoc to X12 856 ASN ver-
sion 5010

EE Business processes in the EDI RIM to do the following:

EE Pick up IDoc files from the SAP application server

EE Run map to convert the IDoc file to an EDI with one group and one or more
outbound 856 transaction sets

EE Transmit the 856 interchange to Gordy by AS2

EE Receive an X12 824 ASN error report, translate it to a human readable PDF
format, and attach the report to an email routed to the responsible business
users

16.4.3 Assumptions

IDoc errors are monitored by the EDI team in SAP using standard IDoc monitoring
tools, such as BD87 and WE09. This includes technical errors, such as incorrect
syntax or missing partner profile, and application errors.

Technical errors are corrected by the EDI team. With the support of the EDI team,
business users tackle application errors.

All errors in the EDI system are corrected by the EDI team. Any issue that might
impact the application is communicated to the appropriate business user immediately.

Application errors from Gordy are sent to Acme in an X12 824 text message and
routed to the responsible business users from the EDI RIM in an error report
attached to an email.

The IDoc control record fields SNDLAD and RCVLAD pick up the EDI sending
and receiving trading partner IDs through a customer exit called before the IDoc
is written to the database during outbound processing. The EDI RIM identifies the
EDI trading partner IDs from the control segment fields.

16.5 Mapping Specifications

One map is developed in the EDI RIM to translate the DESADV IDoc to an 856
X12 5010 ASN transaction to Gordy’s Galaxy.

628

The Advanced Shipping Notice to the Customer16

Table 16.3 outlines the mapping requirements for the outbound DESADV to 856
ASN for Gordy’s Galaxy. This is by no means a complete mapping. We are not, for
example, including the packaging hierarchy in handling unit segment E1EDL37
and its children.

DESADV 856 Value Comments

BSN03 20131215 IDoc Date from EDIDC-CREDAT

BSN04 133908 IDoc time from EDIDC-CRETIM

E1EDL20—Delivery header—Min 1 Max 1

VBELN BSN02 0080016843 Acme outbound delivery number.
Delivery document to be
confirmed. Mandatory value.

REF01 DO Hard-code delivery order where
HL03 = O (order level).

VBELN REF02 0080016843 Delivery number also mapped
here where HL03 = O and REF01
= DO

VSBED TD504 02 Transportation method code
where HL03 = S (shipment level).
Convert to J (Motor).

TD106 G Hard-code gross weight qualifier
where HL03 = S. Instance 1 of
TD1.

BTGEW TD107 280.000 Gross weight where HL03 = S
and TD106 = G. Instance 1 of
TD01. Segment repeated for
each shipment-level total weight,
quantity, or volume. Instance 1 of
TD1.

TD106 N Hard-code net weight qualifier
where HL03 = S. Instance 2 of
TD1.

NTGEW TD107 250.000 Net weight where HL03 = S and
TD106 = N. Instance 2 of TD01.

Table 16.3 Mapping Specifications for the DESADV IDoc to ASN X12 856

629

Mapping Specifications 16.5

DESADV 856 Value Comments

GEWEI TD108 KGM Weight unit for header weights

REF01 BM Hard-code BOL qualifier where
HL03 = S

BOLNR REF02 9874785900 Bill of lading number where HL03
= S and REF01 = BM

TD303 TL Hard-code standard truck trailer
ID qualifier where HL03 = S

TRAID TD303 999999 Trailer ID number where HL03 = S
TD01 = TL

E1EDL18—Control codes—Min 1, Max 99

QUALF BSN01 ORI Convert to 00 original document.

E1ADRM1—Delivery partner—Min 1, Max 99, Loop 1 Ship-from

PARTNER_Q N101 OSP Convert to SF for shipping point
ID qualifier where HL03 = S.

N103 91 Hard-code to 91 seller’s ID where
HL03 = S and N101 = SF.

PARTNER_ID N104 3100 DSI shipping point ID where HL03
= S and N101 = SF and N103 =
91.

E1ADRM1—Delivery partner—Loop 2 Ship-to

PARTNER_Q N101 WE Convert to ST for ship-to receiving
point ID qualifier where HL03 = S.

N103 92 Hard-code to 92 seller’s ID where
HL03 = S and N101 = ST.

NAME1 N102 Gordy’s Galaxy Gordy’s ship-to location name.
See E1ARDE1 for the ship-to ID.

E1ARDE1—Delivery partner extension—Ship-to GLN

EXTEND_Q 100 Identifies ILN or GLN number.
Convert to 92 for buyer’s number
where HL03 = S and N101 = ST
and N103 = 92.

Table 16.3 Mapping Specifications for the DESADV IDoc to ASN X12 856 (Cont.)

630

The Advanced Shipping Notice to the Customer16

DESADV 856 Value Comments

EXTEND_D N104 01254863254898 Identifies ILN or GLN number.
Converted from Table PUMA.

E1ADRM1—Delivery partner—Loop 3 Sold-to partner

PARTNER_Q REF01 AG Convert to DP for sold-to
department number qualifier
where HL03 = O.

E1ARDE1—Delivery partner extension—Sold-to department number

EXTEND_Q 300 Identifies partner’s ID number in
extension

EXTEND_D REF02 1005 Gordy’s purchasing department
number where HL03 = O and
REF01 = DP. Converted from
PUMA.

E1EDT13—Dates—Min 1, Max 99—Loop 1 Shipping date

QUALF DTM01 011 Map to DTM01 (shipped date)
where HL03 = S

ISDD DTM02 20140115 Actual shipping date where HL03
= S and DTM01 = 011

E1EDT13—Dates—Loop 2 Delivery date

QUALF DTM01 007 Convert to 010 for requested
ship date where HL03 = S for
shipment.

ISDD DTM02 20140114 Actual delivery date where HL03 =
S and DTM01 = 010

E1EDL24—Item-level details group—Min 1, Max N—1 instance of E1EDL21 per group loop

POSNR LIN01 000010 Delivery line item number where
HL03 = I. Segment LIN will appear
once for every instance where
looping segment HL03 = I.

LIN02 BC Hard-code supplier’s brand code
for Acme’s material number where
HL03 = I.

Table 16.3 Mapping Specifications for the DESADV IDoc to ASN X12 856 (Cont.)

631

Mapping Specifications 16.5

DESADV 856 Value Comments

MATNR LIN03 0005000020 Acme material number where
HL03 = I and LIN03 = BC.

LIN04 LT Hard-code lot number for batch
where HL03 = I if batch number
present.

CHARG LIN05 458248 Batch number where HL103 = I
and LIN04 = LT

LIN06 IN Hard-code buyer’s catalog number
where HL03 = I for Gordy’s
material number.

KDMAT LIN07 9999999 Customer’s material number
(Gordy) where HL03 = I and
LIN06 = IN

LFIMG SN102 100.000 Number of units shipped. Updates
picking quantity. Pull from SN102
where HL103 = I (item level of
packing hierarchy) for current line
item.

VRKME SN103 EA Unit of measure for LFIMG
quantity.

LGMNG SN105 100.000 Delivery quantity. Pull from
SN105 where HL103 = I (item
level of packing hierarchy) for
current line item.

MEINS SN106 EA Unit of measure for LGMNG
quantity

NTGEW TD107 250.000 Net weight of item where TD106
= N and HL103 = I (item level of
packing hierarchy) for current line
item. TD1 is a looping group: one
instance per type of weight.

BRGEW TD107 280.000 Gross weight of item where
TD106 = G and HL103 = I (item
level of packing hierarchy) for
current line item.

Table 16.3 Mapping Specfications for the DESADV IDoc to ASN X12 856 (Cont.)

632

The Advanced Shipping Notice to the Customer16

DESADV 856 Value Comments

GEWEI TD108 KGM Unit of measure for weight

E1EDL41—Customer purchase order

QUALI 001 Identifies Gordy’s purchase order
where HL03 = O

BSTNR PRF01 32112 Customer purchase order number
where HL03 = O

BSTDT PRF04 20131215 Customer purchase order date

Table 16.3 Mapping Specifications for the DESADV IDoc to ASN X12 856 (Cont.)

This specification is for a simple ASN that includes only shipment, order, and item
hierarchies. In the real world, the ASN will likely be much more complex and could
include sales BOMs and multiple levels of packing and repacking hierarchies, not
to mention different mappings for different trading partner relationships.

After all, every business relationship is different and EDI at its heart is the expres-
sion of a business relationship in data.

16.6 EDI Configuration in SAP

We need the following configuration settings to support our outbound DESADV
to X12 856 ASN interface to Gordy’s Galaxy:

EE Entries in SAP standard external partner conversion table PUMA for the sold-to
and ship-to partners

EE An entry in custom EDI mapping table ZEDIXREF to support outbound trading
partner number conversion

EE An outbound partner profile for customer Gordy with message type DESADV
and output control

16.6.1 EDPAR Entries

There are no EDPAR entries for the outbound DESADV.DELVRY03 to X12 856
ASN interface.

633

EDI Configuration in SAP 16.6

16.6.2 PUMA Entries: Transaction VNPU

Outbound external partner conversion tale PUMA is read during population of
segment E1ARDE1 by function IDOC_OUTPUT_DELVRY. It maps the SAP partner to
the external partner number in a variety of formats for the EDI receiver of the
outbound DESADV ASN IDoc.

In our case, it will link sold-to and ship-to partner numbers for Gordy in SAP to
its internal system numbers. Use Transaction VNPU to enter the data in Table 16.4
into PUMA.

Field Value Description

Sold-to partner mapping

Rec.func. AG Recipient sold-to partner

RecPartNo GRDY01 Recipient sold-to partner number

Conv.func AG Partner function to be converted

PartNoConv GRDY01 Partner number to be converted

External partner no. 1005 Gordy’s external purchasing
organization

Ship-to partner mapping

Rec.func. WE Recipient ship-to partner function

RecPartNo GRDY01001 Recipient ship-to partner number

Conv.func WE Partner function to be converted

PartNoConv GRDY01001 Partner number to be converted

External partner no. 0999857055556 External partner number (GLN) for
Gordy’s ship-to store location

Table 16.4 PUMA Entries for Gordy’s Sold-to and Ship-to Partners

Don’t forget to save your entries and assign them to a change request. The finished
result in Transaction VNPU should look like Figure 16.5.

634

The Advanced Shipping Notice to the Customer16

Figure 16.5 PUMA Partner Mapping Entries for Gordy’s Galaxy

16.6.3 ZEDIXREF Entries

IDoc sender and receiver partners (the SAP logical system ID and Gordy’s customer
number) will be mapped to Gordy’s EDI sender and receiver trading partner IDs.

The ZEDIXREF values for the outbound DESADV.DELVRY03 interface to Gordy’s
Galaxy are listed in Table 16.5.

Field Value Description

DIRECT 1 Direction outbound

STDMES 856 856 EDI ASN transaction

MESTYP DESADV IDoc message type

IDOCTP DELVRY03 IDoc basic type

CIMTYP IDoc extension, none for this interface

SNDPRN DEVCLNT100 SAP send partner: Acme SAP logical system

RCVPRN GRDY01 SAP receive partner: DSI’s vendor number in Acme’s
system

SNDLAD 9999999USD EDI send partner: Gordy’s EDI trading partner ID for
Acme

RCVLAD 01234567US0 EDI receiver partner: Gordy’s EDI trading partner ID
for Gordy

Table 16.5 ZEDIXREF Entries for Gordy’s Outbound 856 ASN

16.6.4 Partner Profiles: Transaction WE20

We’ll need one outbound partner profile for Gordy’s Galaxy partner number
GRDY01, partner type KU (customer), and partner role SP (sold-to) with message
type DESADV.

635

EDI Configuration in SAP 16.6

In the outbound parameters table control of the partner profile for Gordy’s Galaxy,
click the Create outbound parameters button and enter the following values in
the Outbound parameters screen, as shown in Figure 16.6.

EE Partner Role: “SP”

EE Message Type: “DESADV”

EE Receiver port: “XML_IDOC”

EE Output mode area: Collect IDocs and Start subsystem radio buttons

EE Basic type: “DELVRY03”

Figure 16.6 Outbound Parameters DESADV ASN to Gordy’s Galaxy

Click the Message Control tab and enter the following values, as in Figure 16.7.

EE Application: “V2”

EE Message type: “LAVA”

EE Process code: “DELV”

EE Change message checkboxes: One entry null and one checked

636

The Advanced Shipping Notice to the Customer16

Figure 16.7 Message Control Setup for the DESADV ASN

Process code DELV links to function module IDOC_OUTPUT_DELVRY, which builds
the IDoc from the delivery document and sales order.

The last step is to select the EDI Standard tab at the upper far right and enter the
following values, as in Figure 16.8:

EE EDI Standard: “X” for X12

EE Message type: “856”

EE Version: 005010

Figure 16.8 EDI Standard Values for the DESADV ASN

Don’t forget to save the partner profile.

16.7 Summary

We have seen that Acme generates the advanced shipping notification (ASN) in a
SHPCON.DELVRY03 IDoc after its outbound delivery has been updated with the
pick quantity, shipping date, and post goods issue from its third-party distributor,
Disc Services International.

637

Summary 16.7

The update comes from a shipping confirmation in an X12 856 sent by DSI as soon
as the truck carrying Gordy’s goods leaves the shipping point.

Gordy’s Galaxy expects the ASN to hit their business system through a DESADV.
DELVRY03 IDoc converted to an X12 856 transmission before the shipment arrives
at the receiving dock in their distribution center.

This is a critical transaction for Gordy’s Galaxy. The ASN must match the purchase
order (or purchase orders) in their system for Acme Pictures. They check the pur-
chase order numbers, the materials and quantities ordered, and the ship-to location,
among other data to confirm that the ASN is correct.

If there are any discrepancies, an error report is generated and fired off to Acme in
an X12 824 transmission. The issue must be resolved immediately or Gordy won’t
be able to receive the goods.

Assuming no errors, when the shipment arrives the workers at the receiving dock
scan each carton as it comes off the truck and the system compares it to the accepted
ASN. As long as everything matches up, the goods are received into inventory.

When all items in a purchase order have been confirmed against the ASN and
received into inventory, the PO is closed and accounting updated. Any errors are
reported back to Acme with an 824 and dealt with immediately.

Until the ASN is clear, Gordy’s system will not accept an invoice.

We’ve gone over the data and the process flows and have configured the key pieces
of this interface. And if we tried to explain all this mumbo-jumbo to the great Dar-
ryl Q, the legendary founder of Acme Pictures, his eyes would glaze over and his
mind wander to a refreshing, pool-side martini.

But what comes next would bring a happy spring to his step because it’s why he
got into this crazy business in the first: the invoice. So without further ado, let’s
turn our attention to generating the invoice for the DVD movies ordered by our
favorite customer, Gordy’s Galaxy of Games & B Flix.

639

“Put it on my tab” was one of Darryl Q’s signature lines. But before he paid,
he went over that tab carefully. It’s the same with the customer invoice,
one of Acme’s signature documents. The customer needs to receive it before
he can pay it. And that’s what we’ll do now as we go over the INVOIC
interface—make sure Acme’s customer gets the tab for the goods they
ordered.

17 Generating the Outbound
Customer Invoice

We’re near the end of the road for our order-to-cash cycle of interfaces between
Acme Pictures, its contract manufacturer and distributor, Disc Services International,
and its most important customer, Gordy’s Galaxy of Games & B Flix.

To use the vernacular so loved by Darryl Q. Fernhausen, the unlikely Hollywood
mogul who founded Acme Pictures, the time has come to bring home the dough.

Acme’s 856 advanced shipping notification posted to Gordy’s business system
before the delivery arrived, and every item was received successfully into inven-
tory against the purchase order without any errors.

Gordy got its goods and is now ready to send them to the stores, line them up on
shelves, and make a ton of money selling Acme’s artistic creations.

Meanwhile, back at Acme Pictures, the 997 acknowledgment for the ASN was suc-
cessfully received, and there was no follow-up 824 error report.

The post goods issue, triggered by the earlier 856 shipping confirmation, updated
FI with a material document that records what was sold and shipped to Gordy
against a GL account and profit center for the sold-to partner and item.

Conditions are ripe in Acme’s SAP system for issuing a customer invoice, and
Gordy is ready to authorize payment. All Gordy needs is an invoice that accurately
describes what was received and how much it cost, against the purchase order and
line item numbers.

640

Generating the Outbound Customer Invoice17

As soon as Gordy gets its invoice, the clock starts ticking: Gordy must send the
money within 60 days, the time frame agreed to in the terms of payment. We’re
now entering the mysterious realm of the accountants and book-keepers: payables
at Gordy and receivables at Acme.

It’s time, then, to consider the functional and technical requirements for our out-
bound INVOIC.INVOIC02 to X12 810 interface to Gordy’s Galaxy.

17.1 Technical Overview of Interface

Table 17.1 summarizes the outbound customer invoice interface.

Item Description

Title The Customer Invoice

Description The customer invoice interface is generated from the SAP
billing document. It can be created manually or through a
batch job by the billing due list or individually directly by
creating or changing a billing document.

The immediate trigger for creation of the billing document
is the post goods issue against the outbound delivery from
DSI in the ship confirm interface.

After this is done, a scheduled job to run the billing due
list generates billing documents from deliveries that have
been completed.

INVOIC IDocs are issued from the billing document if
there are no errors or blocks, and the IDocs sit at status 30
until RSEOUT00 is run to send them to Gordy as 810 X12
customer invoices.

Timing here is critical. Gordy will accept the invoices only
if the ASN generated from the Acme’s outbound delivery
has posted against their PO to their business system and
successfully verified all items received into inventory from
the delivery when the shipment arrives.

If all the pieces are in place correctly, Gordy will post the
invoice to its accounts payable and pay within the agreed
terms of payment.

Table 17.1 Overview of Outbound INVOIC Customer Invoice Interface

641

Technical Overview of Interface 17.1

Item Description

Errors in the invoice in Gordy’s system will generate an
X12 864 error report back to Acme. Until the errors are
corrected, the invoice won’t be processed.

A custom ABAP will allow users to change the purchase
order number in the INVOIC IDoc if it is incorrect because
of faulty data entry in a manually created sales order or
some other error in processing.

Type of interface Distribution: IDoc to X12 EDI

Direction Outbound

Trading partner Gordy’s Galaxy (customer)

IDoc INVOIC.INVOIC02

IDoc extended type

IDoc function IDOC_OUTPUT_INVOIC

Custom ABAP ZSDCHINVOIC

Custom transaction ZEDINV

Description ALV grid report with data entry functionality for mass
change of customer PO in INVOIC IDocs

Target file(s) X12 810 customer invoice

Source document(s) SAP billing document

Transaction code VF01 (single), VF04 (billing due list), and VF06 (billing due
list in background mode)

Map(s) INVOIC.INVOIC02 to X12 810 vers. 5010

Custom map logic

Source system Acme SAP

Target system Gordy’s Galaxy EDI via AS2 from Acme EDI RIM

997 acknowledgment Inbound within 24 hours of transmission at the transaction
detail level; function group acknowledgment code: IN

Frequency Twice daily, on demand

Table 17.1 Overview of Outbound INVOIC Customer Invoice Interface (Cont.)

642

Generating the Outbound Customer Invoice17

Item Description

Job schedule 1 RV60SBAT: once daily (at 9 p.m.) runs the billing due list
in background mode for all completed deliveries that have
been shipped to the customer

Job schedule 2 RSEOUT00: twice daily (at 8 a.m. and 8 p.m.) sends all
INVOIC message types to all customers at status 30

Table 17.1 Overview of Outbound INVOIC Customer Invoice Interface (Cont.)

17.2 Functional Specifications

The INVOIC to X12 810 interface is the second to last step in the order-to-cash
processing cycle. And it one of the most critical. Without an accurate invoice, Gordy
won’t pay Acme for their order.

The invoice tells the bill-to partner (Gordy’s purchasing department and accounts
receivable) how much money the company owes against the delivered purchase
order.

After the invoice has been successfully received and validated in Gordy’s business
system, accounts payable steps in to process the payment and cut a check—or bet-
ter yet, trigger an electronic payment—within the time frame defined in Gordy’s
terms of payment with Acme.

There will also be a custom ALV grid report that allows us to correct some errors
in the IDoc and to either reprocess it or mark it for deletion.

17.2.1 Process Overview

The process begins after Gordy receives the shipment from DSI and confirms its
contents against the 856 ASN received from Acme. The shipment must match
exactly the items and quantities listed in the ASN.

Errors in ASN processing result in generation of an X12 824 error report back to
Acme.

When the ASN is validated against the shipment, Gordy moves the goods received
into inventory and updates accounts payable. Acme then runs the delivery due list

643

Functional Specifications 17.2

in a batch job once a night to generate billing documents in SAP against completed
deliveries.

INVOIC IDocs are generated and parked in the IDoc database at status 30 when the
billing documents are saved, assuming there are no errors, blocks, or other issues.

RSEOUT00 runs twice a day to pick up all INVOIC IDocs at status 30 and sends them
to the EDI RIM, where they are converted to an X12 810 EDI customer invoices
and transmitted to Gordy’s EDI system.

The invoice posts to Gordy’s business system. Assuming there are no unresolved
issues with the ASN, or the goods received, or errors in the invoice, accounts pay-
able is updated and the clock starts ticking on the 60-day payment period agreed
to in the terms of payment.

If there are any issues, an X12 864 text message is generated by Gordy and sent
to Acme with an error report detailing the issues. These must be fixed before the
invoice can post to Gordy’s system and the clock can start ticking on the payment.

17.2.2 Requirements

Billing documents are generated from completed deliveries, which means the
delivery has been updated with a post goods issue from an inbound 856 shipping
confirmation, has posted inventory and accounting documents, and has generated
an outbound ASN that was sent to Gordy in the DESADV to x12 856 interface.

Although the system may be ready to generate billing documents after the delivery
is complete, Gordy won’t accept an invoice until the ASN posts to its system and
until it receives the shipment and validates the delivery items against the ASN and
receives the goods against the purchase order.

So there is potential lag time between sending the ASN and generating the invoice
in SAP. This is usually taken care of by running the billing due list in batch once a
day—at 9:00 p.m., giving Gordy and Acme the whole day to validate and receive
the goods against the ASN and correct any issues that may arise.

One billing document is generated for each completed delivery. The billing docu-
ment is defined by the following data:

EE Billing type, which is ZEDI for EDI customer invoices

EE Customer purchase order number and date

644

Generating the Outbound Customer Invoice17

EE Billing data, including bill-to partner, material, profit center, quantity, currency,
and terms of payment

EE Pricing conditions, recording prices, costs, discounts, promotions, taxes, and so
on

INVOIC IDocs are generated when the billing document is saved only if it is com-
plete—that is, when the following has happened:

EE A material document recording the goods movements triggered by the post
goods issue on the outbound delivery is posted to inventory against the GL
account and profit center.

EE The post goods issue against the delivery triggered creation of an accounting
document. The accounting document is linked to the delivery and material
documents, and records debit and credit account postings for the materials.

EE The billing document header and item details data are complete.

EE Pricing is complete.

EE Two acccounting documents have posted for the billing document:

EE An FI invoice that posts to accounts receivable each pricing and cost element
in the billing document against its relevant GL account (accounts receivable
clears this document when the payment posts)

EE A controlling document recording primary costs against the billing

The billing document is issued for the bill-to partner. For Gordy, and most of
Acme’s big customers, this is the same as the sold-to partner, although it has its
own partner function.

The INVOIC IDoc references key document numbers:

EE Gordy’s purchase order

EE Acme’s SAP sales order

EE Acme’s SAP outbound ASN delivery

EE Acme’s billing document

17.2.3 Dependencies

The INVOIC to X12 810 invoice interface is dependent on master data, configu-
ration, and development in SAP and the EDI RIM, including everything that is

645

Functional Specifications 17.2

required to support sales orders, confirmations, shipping orders, and inbound
ship confirmations.

Other dependencies include (but aren’t restricted to) the following:

EE General ledger accounts, profit centers, and billing document types

EE Blocking reasons are defined and assigned to billing document types

EE Bill-to partner exists for Gordy’s Galaxy and is associated with the sold-to part-
ner in the customer master record

EE Billing data in the customer master are complete, including incoterms, terms of
payment, account assignment group, and tax classifications

EE The internal SAP sold-to, bill-to, and ship-to partner numbers for Gordy are
mapped to their GLN in EDPAR

EE Message control is configured to support output of INVOIC IDocs from billing
documents (custom output type ZD00 will be copied from standard billing
document output type ED00)

EE Outbound partner profile set up for Gordy’s Galaxy for message type INVOIC
with the configured message control settings

17.2.4 Assumptions

INVOIC IDocs are automatically generated when the billing document is saved. One
INVOIC IDoc is output for each billing document containing all billing document
data, including pricing conditions at the item level only.

Any pricing conditions that won’t be sent to the customer aren’t mapped to the
810 invoice in the EDI RIM. This is true for all data that the customer doesn’t need
to receive.

Other key assumptions about the INVOIC-810 interface include the following:

EE An EDI invoice is sent to all EDI customers.

EE We could theoretically bundle multiple sales orders and deliveries into one
invoice, but Acme will generate only one billing document for one delivery and
one sales order.

EE The INVOIC IDoc can be regenerated from the billing document using Transac-
tion VF31 if necessary.

646

Generating the Outbound Customer Invoice17

EE The INVOIC IDoc is sent to the customer as an X12 810 EDI invoice.

EE Gordy expects to receive the GLN for its sold-to, bill-to, and ship-to partner
numbers in its invoice.

EE Gordy expects all items invoiced to be identified by their own material number.

EE Relevant customer purchase order, sales order, and delivery data are passed to
the EDI invoice, including the following:

EE Customer purchase order and billing document numbers

EE Gordy’s sold-to, bill-to, and store ship-to GLNs

EE All ordered items, quantities, prices, and costs

EE Sales BOMs for multi-pack items ordered by Gordy’s Galaxy, with pricing
and costs reflected only for the top-level corrugate item, not for the compo-
nent titles

EE If Gordy records any errors against the 810 invoice in its business system, it
returns an error report within 24 hours in a separate X12 864 error report EDI
transmission. The 864 will be mapped to a report in PDF format and immedi-
ately emailed to the relevant business users.

17.2.5 Data That Pass to the IDoc from the Billing Document

Table 17.2 displays the source for some of the key data that are passed to the
INVOIC IDoc from the billing, delivery, and sales order documents for the out-
bound invoice to Gordy’s Galaxy.

Table Field Description Sample Value

Billing Header

VBRK VBELN Invoice number 0906524859

VBRK FKART Billing type invoice F1

VBAK BSTKD Customer purchase order number 292259

VBRK BUKRS Company code 3000

VBRK VKORG Sales organization 0010

VBRK VTWEG Distribution channel 0010

Table 17.2 Billing Data That Pass to the Outbound Invoice IDoc

647

Functional Specifications 17.2

Table Field Description Sample Value

LIKP VBELN Delivery number 816160750

VBRK WAERK Document currency USD

VBRK FKDAT Billing date (invoice date) 20081222

VBRK FKDAT Due date: Calculated 20081223

LIKP LFDAT Delivery date 20081220

VBAK BSTDK Customer PO date 20081219

VBRK ZTERM Terms of payment ZT60

LIKP BTGEW Gross weight 10128.750

LIKP NTGEW Net weight 10128.750

LIKP GEWEI Weight unit of measure LB

VBPA KUNNR PARVW = AG: Sold-to GRDY01

VBPA KUNNR PARVW = RE: Bill-to GRDY01

VBPA KUNNR PARVW = WE: Ship-to partner GRDY01001

Billing Items

VBRP POSNR Item number 000010

VBRP FKIMG Invoiced quantity 4

VBRP VRKME Unit of measure for quantity EA

VBRP PRSDT Pricing date 20131215

VBRP NETWR Net value of billing item 47968.00

VBRP MWSBP Tax amount for billing item 7195.20

KONP KSCHL Pricing condition type PR00

KONP KBETR Unit price, taxes, allowances, subtotals,
and other pricing conditions

11.23

VBRP MATNR Order item (SAP) 2356784

VBRP ARKTX Material description I Married an Alien

VBRP KDMAT Customer material number 799142939512

Table 17.2 Billing Data That Pass to the Outbound Invoice IDoc (Cont.)

648

Generating the Outbound Customer Invoice17

Table Field Description Sample Value

VBKD BSTKD Customer purchase order number at line
item level

799142939512

VBAP POSEX Purchase order line item number 000010

VBAP VBELN Supplier sales order number 00014031

VBAP POSNR Supplier sales order line item number 000010

Table 17.2 Billing Data That Pass to the Outbound Invoice IDoc (Cont.)

The billing document and IDoc are populated with a great deal of data that won’t
be sent to Gordy’s Galaxy in the X12 810 invoice. Banking information, such as
Acme’s bank key, name, account number, and address may show up in the IDoc
but won’t be sent to Gordy.

Many of the data in the billing document are already in Gordy’s system in the
purchase order, ASN, and their own master data. The IDoc, for example, pulls the
bill-to, payer, invoiced party, sold-to, and ship-to parties. But we only need to send
the sold-to and ship-to numbers. Gordy already knows who’s paying the bill and
they have all the addresses they need.

17.2.6 Enhancements to the Process

Business users need an enhancement that allows them to change the customer pur-
chase order number field in INVOIC IDocs when it has been entered incorrectly.
This can happen when a sales order is created or updated manually.

The business was able to do this in the X12 810 transaction in legacy and wants to
continue doing it in SAP, particularly for Gordy’s Galaxy.

17.2.7 Enhancement Details

The INVOIC editing program is run after IDocs have been generated for the bill-
ing documents using custom transaction ZEDINV. The following are options for
the program:

EE IDoc number

EE IDoc send partner (SAP sold-to)

649

Functional Specifications 17.2

EE IDoc status

EE EDI ISA interchange control number

EE IDoc change date and time

EE Invoice number

IDocs are listed in one or more single-line record displays in an ALV grid report
in the lower portion of the screen with the following fields:

EE IDoc number

EE IDoc change date

EE SAP sold-to and ship-to partners

EE Invoice number

EE Customer purchase order number and date

EE Error message

Each IDoc line has a checkbox to allow individual or batch selection of IDocs for
editing or other processing. Only the line selected is changed and written to the
IDoc for reprocessing.

A data entry field in the upper portion of the report screen allows changing of the
customer purchase order number. The report display is updated after the edit but
before the IDoc is updated. Changes made to the displayed data can be reversed
or changed again before posting to the IDoc.

Buttons are provided to update and reprocess one or more changed IDocs with the
new customer purchase order number in the data entry screen and to mark the
IDoc for deletion by changing its status to 31—Error, no further processing.

Users can also branch to a tree display view of the IDoc by double-clicking an IDoc
or by clicking a button.

17.2.8 Reconciliation

Generation of the IDoc can be confirmed within the billing document in Transac-
tion VF03 by selecting menu option GoTo • Header • output. Look for output
type ZD00 for medium EDI, partner function BP (bill-to), and partner number
GRDY01 for Gordy’s Galaxy.

650

Generating the Outbound Customer Invoice17

The IDoc can be called up and analyzed using any of the standard IDoc monitoring
tools, including Transactions WE05 and BD87.

Data in the INVOIC IDoc will be validated against the billing document, particularly
the following items:

EE Invoice number

EE Billing date

EE Sold-to, bill-to, and ship-to partners with the correct GLNs

EE Payment terms

EE Customer PO, delivery, and sales order numbers

EE Invoiced material number and text description

EE SAP and UPC item numbers

EE Quantity and dollar amount

EE Pricing conditions

There are a few other things to validate here:

EE The INVOIC IDoc was sent to the EDI system and was successfully translated to
an outbound 810.

EE The data in the 810 matches the IDoc and conforms to Acme’s EDI mapping
specifications and to Gordy’s 810 EDI guidelines.

EE Gordy receives and acknowledges the 810 with a 997 within 24 hours.

EE Gordy does not return an X12 864 error report detailing invoice issues within
24 hours.

17.2.9 Errors and Error Handling

If an INVOIC IDoc fails to generate when the billing document is created, the EDI
team and business users work together to identify and correct the errors. The fol-
lowing checks can be made:

EE The billing document is released to accounting. Click the Accounting button
in the billing document screen. A list of accounting documents should appear.

EE Transaction NACE to confirm that message control for custom output type ZD00
has been completed correctly.

651

Generating an INVOIC IDoc with Message Control 17.3

EE Transaction VV33 to confirm that condition records have been entered for out-
put type ZD00.

EE Transaction WE20 to confirm that the outbound partner profile for Gordy’s
Galaxy message type INVOIC is set up with the correct output type and process
code.

In addition, IDoc data issues could cause the map to fail in the EDI RIM without
triggering an error in SAP. These are identified by the EDI team and communicated
to the business users:

EE Missing customer material number

EE Missing customer purchase order number

Another set of data issues could trigger a failure in Gordy’s business system. These
errors will generate an X12 864 error report that will be sent back to Acme by
EDI transmission:

EE The invoice posting to Gordy’s system before the ASN is validated against the
purchase order

EE The invoice posting before all delivery items have been confirmed against the
ASN and received into inventory

EE Incorrect purchase order number

EE Incorrect customer material number

EE Incorrect GLN for Gordy’s sold-to or ship-to

EE Mismatch between the shipment received and the invoice

Until the errors are addressed by the business, the clock won’t start ticking on
payment of the invoice.

17.3 Generating an INVOIC IDoc with Message Control

Before we get into the details of the outbound process flow and the custom code
we’ll write for this interface, we’ll configure our message control.

The outbound invoice to Gordy’s Galaxy is generated by message control when
the billing document is created after the outbound delivery has been saved with
the post goods issue.

652

Generating the Outbound Customer Invoice17

We will create the following configuration objects to support generation of the
INVOIC IDoc to Gordy’s Galaxy:

EE Custom output type ZD00, with supporting configuration, copied from standard
output RD00 with access sequence 0003: sales organization, distribution chan-
nel, division, and bill-to customer number

EE Condition record mapping the sales organization keys to the bill-to and sold-to
partner for customer Gordy’s Galaxy

EE One outbound partner profile with message control for Gordy with invoice
message type INVOIC

17.3.1 Configuring Message Control

We’ll copy standard output type RD00 in application V3 (billing) to create custom
output type ZD00 using Transaction NACE. Follow these steps:

1. Select application V3 and click Output types to open the Output Types: Over-
view in display mode.

2. Select menu path Table View • Display • Change (or press (Ctrl)+(F1)) and
select standard output RD00. Click Copy as or press (F6).

3. Change the output type name to ZD00 and enter a description for the EDI invoice.
Make sure Access to conditions and Multiple issuing are both set.

4. Change the sequence to “0003” for sales organization, distribution channel,
division, and customer, as shown in Figure 17.1.

Figure 17.1 Custom Invoice Output Type ZD00 with Access Sequence 0003

653

Generating an INVOIC IDoc with Message Control 17.3

5. Access number is 10, condition table 6 (B006), communications structure
KOMKBV3 with key fields:

EE VKORG: Sales organization

EE VTWEG: Distribution channel

EE SPART: Division

EE KNDNR: Bill-to partner

6. Press (Enter). The Specify object to be copied dialog opens, noting that the
output type has dependent entries. Click Copy all. Another dialog opens with
the number of dependent entries.

7. The system returns us to the Output types: Overview screen in change view.
Save the custom output type and assign all copied objects to a change request.

8. Select output ZD00 and double-click the Processing routines folder to open
the Processing routines: Overview screen.

9. If there is no program and form routine for medium EDI, add one. Click New
entries to open the Details of Added Entries screen and enter the following
values:

EE Transm.Medium: “EDI”

EE Program (Processing 1): “RSNASTED” for the standard SAP output program

EE FORM routine: “EDI_PROCESSING”, which identifies and calls the func-
tion that generates and sends the IDoc

10. Press (Enter) and double-click the Partner functions folder to open the
Partner Functions: Overview screen.

11. Make sure that there’s an entry for medium EDI and partner type BP for bill-
to partner. If not, click New entries and select EDI in the Medium field and
BP in the Funct field.

12. Save any changes since your last save.

Assign ZD00 to a Procedure

Back out to the output control initial screen in Transaction NACE. Select application
V2 and click Procedures. Then follow these steps:

1. Select procedure V10000 (billing output) and double-click Control in the
navigation pane.

654

Generating the Outbound Customer Invoice17

2. Select output type RD00 and click the Copy as button ((F6)). The entry is copied
into the Change View Control: Overview screen.

3. Keep the step number at 10, change the counter to 2 (or whatever else works
for you), and change the output type name to “ZD00”.

4. Select requirement 62. This checks flags in communications structure KOMKBV3
to confirm that the billing document is complete and accounting documents
have posted before generating an output.

5. Press (Enter) to return to the overview screen. Save the entry and assign it to a
change request. The entry should look like Figure 17.2.

Figure 17.2 ZD00 Assigned to the Billing Output Procedure

Create Condition Records

We need a condition record to drive generation of the IDoc for the invoice to Gordy.
An IDoc will be generated from the billing document when the sales organization
keys and bill-to partner match the condition record.

We can create the condition records directly in Transaction NACE by selecting
application V3, clicking Condition records, and selecting output type ZD00—or
directly with Transaction VV31.

1. Using Transaction VV31, enter output type ZD00 and click the Key combination
button. Select Sorg./Distrib.Ch/Division/Customer and press (Enter).

2. Enter the following values into the header fields and the condition records table
control (see Figure 17.3):

EE Sales Organization: “3030” (Acme sales organization for Gordy)

EE Distribution Channel: “10”

EE Division: “00”

EE Customer: “GRDY01”

EE Funct: “BP” for bill-to party

655

Generating an INVOIC IDoc with Message Control 17.3

EE Medium: “6” for EDI

EE Dispatch time: “4” for immediately when the document is saved

EE Language: “EN”

Figure 17.3 Condition Record for Output Type ZSH1 Application V2

We don’t need to map the bill-to to the sold-to partner for generation of the IDocs.
The output type is set to partner function BP (bill-to) and the partner profile will
key to partner role BP.

The sold-to and bill-to numbers are the same at any rate. The link is maintained
in the sold-to partner customer master record, in the Partner Functions screen
of Sales Area Data.

17.3.2 Overview of the End-to-End Process Flow

Figure 17.4 gives an overview of the end-to-end process flow for generating and
sending EDI invoices to Gordy’s Galaxy.

The outbound INVOIC to X12 810 interface kicks off when the billing due list is
run for completed deliveries. The shipment has already been delivered, and the
856 ASN sent to Gordy after the post goods issue is saved.

An X12 997 acknowledgment has been received for the ASN, the shipment has
been successfully received into Gordy’s inventory, and no 824 error reports have
been returned. This should all happen before the next scheduled run of the bill-
ing due list.

We’ll be looking at running the billing due list online, rather than through the
scheduled background job for Transaction VF06 program RV60SBAT, which uses
much of the same processing but doesn’t produce a billing due list report to use
to select and generate billing documents. Rather, it will generate them directly.

656

Generating the Outbound Customer Invoice17

Access sequence:
Sales org/dist chan/

division/bill-to

VF04: Billing due
list gets completed

deliveries (PGI)

Billing doc created
posts to acctng

OB partner profile
GRDY01/KU/BP
V3/ZD00/SD09

RSEOUT00 sends
XML IDoc files
to app server

INVOIC IDocs
written to DB

Translation map
called INVOIC02

to X12 810

Acme EDI RIM

Gordy’s Galaxy

X12 997 func. ack.
returned to Acme

X12 810 invoice
sent to Gordy AS2

Invoice posts accts
payables updatedInvoice OK?No

Yes

Vendor’s payment
clock starts ticking

60 day term

END: To
820-REMADV

Posts FI invoice and
accounting docs

Cust receivables
revenue/costs
of sales posted

Output conditions
read: ZD00/3000/
010/00/GRDY01

864 error report
sent back to Acme

Figure 17.4 Outbound Customer Invoice Process Flow

The online billing due list program SDBILLDL is run with Transaction VF04 and
kicked off with the following parameters:

EE Billing date from is blank, and To is the current date to cover every possible
completed delivery document to date

EE Billing Type includes all EDI and non-EDI billing document types

EE Sales Organization

EE Sold-to Partner

657

Generating an INVOIC IDoc with Message Control 17.3

EDI customer invoices are generated from delivery documents for both EDI and
non-EDI output. Output control determines whether an invoice outputs hard copy
to a printer, generates an IDoc, or does both.

Generating the Invoices

After a little house-keeping, SDBILLDL reads invoice index table VKDFS by calling
function RV_READ_INVOICE_INDEX. VKDFS keeps track of delivery documents that
are ready for invoicing, making it a very useful table to know.

The full read key for table VKDFS is detailed in Table 17.3. All of these keys are
available from the selection screen of the billing due list as either a select option
or selection parameter.

Field Value Description

FKTYP L Billing category: Delivery related

VKORG 3000 Acme sales organization

FKDAT 20131215 Billing date

KUNNR GRDY01 Sold-to customer

FKART LF Billing type: EDI customer invoice

LLAND Country

VBELN Delivery document number

VBTYP J SD document category for delivery

SORTKRI Sort criteria (for user exit custom sort criteria)

VTWEG 0010 Distribution channel

SPART 00 Division

VSTEL 0015 Shipping point

Table 17.3 Read Key for Invoice Index Table VKDFS

Using this read key, VKDFS returns a list of deliveries that are ready to be invoiced—
the billing due list—and passes it to the screen in an ALV grid list report. Three
processing choices are offered in the report:

658

Generating the Outbound Customer Invoice17

EE Individual billing document: Runs for one delivery. Returns the billing
document for online review before saving. Calls Transaction VF01 to create the
billing document.

EE Collective billing document: Runs for more than one delivery document in
batch. Saves the billing document in the background. Calls function SD_COLLEC-
TIVE_RUN_EXECUTE to create batch billings.

EE Collective billing doc/online: Returns multiple deliveries for online review
before saving. Calls Transaction VF01 to create the billing documents.

All three options collect data from the sales order and delivery document, includ-
ing dates, partners, items, quantities, pricing, shipping, and more. They then call
function RV_INVOICE_CREATE (function group V60A) to post the billing document.

RV_INVOICE_CREATE calls RV_INVOICE_DOCUMENT_ADD to get the next available billing
number, post accounting documents, update the delivery and billing document
status in table VBUK, call output control, and save the billing document to the
database.

At the same time, the posting of the FI invoice and accounting documents updates
accounts receivable and posts both the revenues and costs of the sale represented
by the shipped order.

Message Control Processing

Just before the billing document is saved, an output record is created for table
NAST with the following output keys:

EE Application V3: Billing

EE Output type ZD00: Invoice

EE Access sequence 0003: SalesOrg/DistrCh/Div/Customer (bill-to)

EE Access 10: SOrg./Distrib.Ch/Division/Customer, condition table B006

EE Procedure V10000: Billing (EDI) output

The access fields from communications structure KOMKBV3 include the following:

EE VKORG: Sales organization

EE VTWEG: Distribution channel

659

Generating an INVOIC IDoc with Message Control 17.3

EE SPART: Division

EE KNDNR: Bill-to partner

The access keys are populated from the billing document header table VBRK. They
are used to read condition tables B006 and NACH for Gordy’s bill-to partner. The
output type links to, and calls, the output processing form routine EDI_PROCESS-
ING in program RSNASTED, which first calls function EDI_PARTNER_READ_OUTGOING
to get the partner profile using the key fields in structure EDK12:

EE RCVPRN: Receive partner number: GRDY01

EE RCVPRT: Receive partner type: KU (customer)

EE RCVPFC: Receive partner function: BP (bill-to partner)

EE KAPPL: Message control application: V3

EE KSCHL: Message type: ZD00

Gordy’s outbound partner profile for message type INVOIC is linked to the output
record for NAST through the message control subscreen, which includes three
values:

EE Application V3: Billing

EE Output (or message) type ZD00: Invoice

EE Process code SD09: Invoice

Process code SD09 links message type INVOIC to the function module IDOC_OUT-
PUT_INVOIC, which is kicked off to build the IDoc.

Building the IDoc

The IDoc function collects the data it needs in form LESEN_FAKTURA, which initializes
all internal tables and work areas, calls a data extraction routine, and ends with a
customer function that allows custom processing of billing document data in the
internal tables and strings that are used to assemble the IDoc.

The data are extracted mostly by function calls from the billing, delivery, and sales
order documents and supporting tables. The billing document number is passed
from the NAST output record.

The IDoc is built in form FUELLEN_IDOC_INTTAB one segment at a time, in an internal
table (INT_EDIDD) with the structure EDIDD, using the document data just collected
as the starting point.

660

Generating the Outbound Customer Invoice17

Beginning with E1EDK01, each segment is laid down in the order that it appears
in the IDoc. It’s a straightforward process. A string that has the structure of the
current segment is cleared and populated with the document data that will be
stored in that segment.

Any additional data that need to be retrieved are pulled while the segment is being
built. For example, pricing conditions for the invoice header are extracted by func-
tion RV_PRICE_PRINT_HEAD during the build of segments E1EDK05 and E1EDK04.

Item-level pricing conditions are read by a routine that calls function RV_PRICE_
PRINT_ITEM just before the item segments are built within a loop on internal table
TVBDPR (structure VBDPR). TVBDR holds item-level data from the billing, delivery,
and sales order documents.

When the segment string is fully populated, it is moved into the SDATA field of
INT_EDIDD, the segment name is moved into INT_EDIDD-SEGNAM, and the internal
table is appended.

Segment processing ends with a call to CUSTOMER-FUNCTION '002' for custom pro-
cessing of the current loop segment or to add additional segments immediately
following it.

A partner conversion is called during the build of the E1EDKA1 segments. This is
done within a loop on internal table XVBPA (structure VBPA), which stores all of the
SAP partners used in the billing document.

Gordy needs to see the GLNs for its sold-to and ship-to partners. These are stored
in EDPAR as external partners linked to the SAP partner. Function SD_INT_TO_
EXT_PARTNER_NUMBER is called to read EDPAR and get the external partner number.

The current partner number in VBPA-KUNNR is passed to a variable—KUNRE—and
then the partner type is determined. For customer partner type KU, VBPA-KUNNR
is moved into another variable. The function is then called as shown in Listing 17.1.

CALL FUNCTION 'SD_INT_TO_EXT_PARTNER_NUMBER'
 EXPORTING
 customer_number = kunre
 internal_partner_number = int
 partner_role = xvbpa-parvw
 IMPORTING

661

Generating an INVOIC IDoc with Message Control 17.3

 external_partner_number = ext_partner_number
 EXCEPTIONS
 partner_not_found = 1.

Listing 17.1 Function Call Returns External Partner Number

It has three exporting parameters:

EE CUSTOMER_NUMBER = KUNRE: This is the SAP partner number from VBPA-KUNNR.

EE INTERNAL_PARTNER_NUMBER = INT: For partner type customer, this a second
instance of the SAP partner number from VBPA-KUNNR.

EE PARTNER_ROLE = XVBPA-PARVW: Partner type for the current partner.

This is being read in a loop on VBPA so all partners in the billing document can
be processed if they have corresponding entries in EDPAR. The external part-
ner number, in our example, Gordy’s GLN, is returned in the import parameter
EXTERNAL_PARTNER_NUMBER.

The function does a simple select on EDPAR, as shown in Listing 17.2.

SELECT * FROM EDPAR
 WHERE KUNNR = CUSTOMER_NUMBER
 AND PARVW = PARTNER_ROLE
 AND INPNR = INTERNAL_PARTNER_NUMBER
ENDSELECT.
IF SY-SUBRC <> 0.
 RAISE PARTNER_NOT_FOUND.
ENDIF.
EXTERNAL_PARTNER_NUMBER = EDPAR-EXPNR.

Listing 17.2 EDPAR Read in External Conversion Function

To pull GLN for Gordy’s ship-to, we would use the following variables:

EE CUSTOMER_NUMBER = GRDY01001

EE PARTNER_ROLE = SH

EE INPNR = GRDY01001

GLN for the ship-to would be read from EDPAR-EXPNR and passed to the EXTERNAL
_PARTNER_NUMBER variable.

The expectation is that these values have been entered into EDPAR along with
the external partner number. If not, the external partner won’t be found. But

662

Generating the Outbound Customer Invoice17

the function will still be called, regardless of whether or not we want to pull the
external partner number.

The SAP customer number will be moved to E1EDKA1-PARTN whether or not
an external partner is found. The external customer number will be moved to
E1EDKA1-LIFNR.

Partner processing for all E1EDKA1 segment builds also includes getting full address
data for each partner, including ISO country codes and properly formatted postal
codes. But we won’t be mapping the addresses.

After all segments have been built and assembled in their proper sequence in inter-
nal table INT_EDIDD, function IDOC_OUTPUT_INVOIC hands off to the standard IDoc
interface, and the IDoc is written to the database at status 30—IDoc ready for dispatch.

Sending the IDoc

Program RSEOUT00 runs twice a day to pick up all outbound INVOIC IDocs at status
30 for all customers and send them to the EDI RIM.

RSEOUT00 reads the INVOIC IDocs from the database and calls function EDI_OUT-
PUT_NEW, which converts the ASCII IDocs to XML format and saves them to a file
on the SAP application server.

The system then makes an RFC through the JCo connector to a listening workflow
process in the EDI RIM that picks up the IDoc file with an FTP service and passes
it to an enveloping process.

The IDoc file is picked up and moved to the translation process, which identifies
the envelopes from the EDI sending and receiving trading partner IDs and the EDI
transaction and version in the IDoc control segment.

The translation map is identified and called, and the IDoc is converted to an X12
810 version 5010 invoice transaction set defined by an ST-SE envelope.

The transaction set is appended to a functional group delimited by a GS-GE enve-
lope with the other translated transactions sets from the IDoc file.

When all IDocs have been translated and appended to the group, the group is
bundled into an interchange with an ISA-IEA envelope. The interchange is passed
to a communications workflow, which sends it to Gordy’s EDI system through an
AS2 call.

663

Technical Specifications 17.4

An MDN acknowledgment is returned by Gordy immediately. MDN is followed by
a 997 acknowledging the 810 functional group, ending the EDI transmission cycle.

The 997 is received within minutes, or an hour at the most. If it takes longer than
24 hours, Acme’s EDI team contacts Gordy’s EDI team to find out whether there
are any issues.

Translation, transmission, and acknowledgment status, whether success or failure,
is reported back to SAP in STATUS IDocs that update the original outbound IDocs
with the milestone results.

When the invoice posts to Gordy’s system, it is validated against the ASN and the
purchase order. If there are any errors Gordy sends back to Acme’s EDI RIM an
error report in an X12 864 text message.

The EDI RIM converts the 864 to a human readable report in PDF format listing the
errors. The PDF report is attached to an email and sent to the responsible business
users who must fix the errors and regenerate and resend the INVOIC IDoc before
Gordy will accept it.

Once the invoice posts successfully to Gordy’s system, the clock begins ticking on
payment.

17.4 Technical Specifications

This technical specification describes development and configuration in SAP and
the EDI RIM to support the INVOIC to X12 810 customer invoice interface to
Gordy’s Galaxy.

17.4.1 Technical Requirements

The outbound customer invoice is sent twice a day after Gordy receives its order
and validates Acme’s ASN against DSI’s shipment.

For multi-pack orders, the shipping unit and component items of the sales BOM
are sent. Pricing is at the shipping unit level, not the component item.

A custom ABAP ALV grid report is provided to allow editing of customer purchase
order numbers in INVOIC IDocs before sending them to Gordy.

664

Generating the Outbound Customer Invoice17

17.4.2 Dependencies

The INVOIC to X12 810 customer invoice interface to Gordy’s Galaxy is dependent
on outbound IDoc configuration in SAP and on several development objects in
the EDI RIM:

EE Message control configuration for output type ZD00 and a condition record
populated for Gordy’s bill-to partner

EE Outbound partner profile for Gordy with message type INVOIC and partner
function bill-to

EE Cross-reference table ZEDIXREF entry mapping SAP send and receive partner
numbers to Gordy’s EDI trading send and receive trading partner IDs for them-
selves and for Acme

EE Batch job set up in the SAP Job Scheduler for program RSEOUT00 with a variant
to output INVOIC IDocs at status 30 INVOIC for all customers twice daily at
8:00 a.m. and 8:00 p.m.

EE A full set of outbound envelopes created in the EDI RIM for Gordy’s Galaxy 810
X12 version 5010 transmissions

EE A full set of inbound envelopes created in the EDI RIM to process X12 997 ver-
sion 5010 functional acknowledgments from Gordy’s Galaxy for the outbound
810 customer invoice

EE Translation map built in the EDI RIM for the IDoc to X12 810 customer invoice
conversion for Gordy’s Galaxy

EE Business processes in the EDI RIM to do the following:

EE Pick up IDoc files from the SAP application server

EE Run map to convert IDoc files to an EDI with one group and one or more
outbound 810 transaction sets

EE Transmit the X12 810 interchange to Gordy by AS2

EE Receive an X12 864 invoice error report, translate it to a human readable PDF
format, and attach the report to an email routed to the responsible business
users

17.4.3 Assumptions

All EDI customers receive an EDI invoice. IDoc errors are monitored by the EDI
team in SAP using standard IDoc monitoring tools such as Transactions WE05,

665

Technical Specifications 17.4

BD87, and WE09. This includes technical errors, such as incorrect syntax or miss-
ing partner profile, and application errors.

Technical errors are corrected by the EDI team. Business users, with the support
of the EDI team, tackle application errors.

All errors in the EDI system are handled by the EDI team. Any issue that might impact
on the application is communicated to the appropriate business user immediately.

The IDoc control segment fields SNDLAD and RCVLAD pick up the EDI send and
receive trading partner IDs through a customer exit called before the IDoc is writ-
ten to the database during outbound processing. The EDI RIM identifies the EDI
trading partner IDs from the control segment fields.

17.4.4 Purchase Order Number IDoc Edit Report

ZSDCHINVOIC is an ABAP ALV grid report with a custom screen, one data entry field,
and a table object to hold a list of selected INVOIC IDocs in a single-line display
with one entry for each one. Each entry sports a checkbox to select the IDoc for
editing, reprocessing, or deletion.

A data entry field at the top of the screen enables editing of the customer pur-
chase order number in a selected IDoc. The field has a checkbox next to it to tell
the program that it has been selected for editing. Changes are written to the IDoc
database and users can post the edited IDocs.

SAP keeps the original IDoc at status 33—Original of an IDoc which was edited. It creates
a copy of this IDoc with the edited data and stores it at status 32—IDoc was edited.
A copy of the original IDoc is always available, regardless of how it was edited.

ZSDCHINVOIC also allows selected IDocs to be marked for deletion so that they can
no longer be processed. This changes the status of the IDoc to 31—Error, no further
processing.

Additional fields for editing and the code that processes them can be added in the
future. We’re only doing one to illustrate the development flow.

This report, with its IDoc display, editing, and reprocessing functionality, introduces
key functions used in the IDoc interface. Understanding these functions will give
you a better understanding of how SAP processes IDocs.

666

Generating the Outbound Customer Invoice17

ALV Grid Characteristics and Template Coding

As an ALV grid report, ZSDCHINVOIC takes advantage of standard ABAP objects,
events, and methods in class CL_GUI_ALV_GRID and its predecessor ALV and GUI
classes:

EE CL_GUI_ALV_GRID_BASE

EE CL_GUI_CONTROL

EE CL_GUI_OBJECT

ZSDCHINVOIC is a hybrid of object-oriented and more traditional ABAP program-
ming. It has a simple, consistent, and repeatable structure that is well suited to
cookie-cutter programming and can serve as a template for any other ALV grid
report program you may need to write.

ZSDCHINVOIC is presented here as a starting point for your own explorations, not
as a complete solution. Key elements of the program are presented to illustrate the
process flow but you’ll have to work out the gaps on your own.

Program Structure

The structure of the program is composed of the following elements:

EE Table declarations

EE Selection screen definition

EE Type, internal table, string, and field variable declarations

EE ALV grid-specific data declarations, including type pools, work areas for struc-
tured strings and internal tables to feed the ALV grid display object, and ALV
grid variables

EE Declaration, definition, and implementation of a local custom class with two
methods for ALV grid report event handling

EE Include programs for the report header form routine called by the ALV engine
and for PBO and PAI modules to process ALV grid output to custom screen 100

EE An ABAP INITIALIZATION event that creates the report title for the header form
and builds a table of ALV grid menu objects to exclude from the report display
using standard line type UI_FUNC

EE An ABAP START-OF-SELECTION event that groups all data selection and process-
ing in discrete form routines, including the following:

667

Technical Specifications 17.4

EE Form 000: Get all relevant IDocs

EE Form 010: Build an internal table to hold report data

EE Form 020: ALV data housekeeping, including defining sort order

EE Form 030: Build the ALV field catalog identifying the internal table, its fields,
and field lengths that contain the report data

EE Call custom screen 100, where all display and processing functions are han-
dled through the screen’s flow logic and GUI status

Custom Objects

We’ll need to create the following custom objects:

EE ABAP Data Dictionary structure ZEDI_UPD to define fields that will be selected
for editing in screen 100

EE ALV grid report ZSDCHINVOIC

EE Custom screen 100 with data entry fields at top of screen and a table control
below to hold the report list

EE Custom GUI status MAIN100 with title bar MAIN100

EE Include program ZSDCHINVOIC_PBO to set up GUI status MAIN100 and the ALV
grid, and to populate the table control for custom screen 100

EE Include program ZSDCHINVOIC_PAI to read input events from custom screen 100
and to determine appropriate response

EE Transaction code ZEDINV to run custom ALV grid report ZSDCHINVOIC

Create Data Dictionary Structure ZEDI_UPD

Structure ZEDI_UPD is used to provide fields to custom screen 100.

Go directly to the Data Dictionary with Transaction SE11 and follow these steps.

1. Select Data Type, enter “ZEDI_UPD”, and click Create.

2. Select Structure from the Create Type dialog.

3. Enter a description of the screen structure in the Short Text field.

4. Enter the following values into the Components screen table control:

EE Component: “BSTKD”

EE Component Type: “BSTKD”

EE Description: 35-character customer PO number

668

Generating the Outbound Customer Invoice17

The description is returned by the system. If additional fields need to be added
to our screen in future, they will first be added to ZEDI_UPD.

5. Save structure ZEDI_UPD. Assign it to a package and change request.

6. Activate structure ZEDI_UPD by clicking the activate icon, or selecting menu
option Structure • Activate.

Create Program ZSDCHINVOIC

To create the program, go to Transaction SE80, and follow these steps:

1. Click Edit object. Select the Program tab. Enter “ZSDCHINVOIC” in the Pro-
gram name field and click Create.

2. Uncheck the TOP INCL option in the Create Program dialog, and either press
(Enter) or click the green checkmark.

3. The Program Attributes screen opens as shown in Figure 17.5.

Figure 17.5 Program Attributes Screen for ALV Grid Report ZSDCHINVOIC

669

Technical Specifications 17.4

Enter a text description in the Title field, and select the following:

EE Executable program from the Type dropdown

EE Customer Production Program from the Status dropdown

EE Cross-Application from the Application dropdown

4. Save the program and assign it to a change request. The ABAP editor opens ready
for coding.

Program Flow and Pseudo Code

The table declaration points to the following tables and structures:

EE EDIDC, EDID4, and EDIDS: The IDoc database

EE VBRK and VBRP: Sales order data

EE ZEDI_UPD: Screen 100 field structure

EE E1EDK01: IDoc header general data for INVOIC02

EE E1EDKA1: Header partner identification data

EE E1EDK02: Customer PO data

Selection options include the following:

EE IDoc number

EE SAP receive partner (customer bill-to partner)

EE EDI ISA interchange control number

EE IDoc last change date

EE Customer purchase order number

We’ll structure our internal tables by declaring types and referencing them in data
declarations.

Type T_IDOCS provides the structure for an internal table and string to select and
process IDoc messages from the IDoc database, as declared in Listing 17.3.

types: begin of t_idocs,
 docnum type edi_docnum, "Idoc no.
 refint type idoccrfint, "ISA cnt no
 stamid type edi_stamid, "Msg class
 stamno type edi_stamno, "Msg no.
 stapa1 type edi_stapa1, "Msg variable 1

670

Generating the Outbound Customer Invoice17

 stapa2 type edi_stapa2, "Msg variable 2
 stapa3 type edi_stapa3, "Msg variable 3
 stapa4 type edi_stapa4, "Msg variable 4
 upddat type edi_upddat, "IDoc Change date
 end of t_idocs.

Listing 17.3 Type Declaration for t_idocs

An internal table and string are then declared using T_IDOCS with the syntax:

data: iidocs type standard table of t_idocs,
 sidocs type t_idocs.

The same goes for the internal table used to output the report list. Type T_OUT is
first declared and then followed by the internal table and string declaration, as
shown in Listing 17.4.

types: begin of t_out,
 docnum type edi_docnum, "Idoc no.
 rcvprn type edi_rcvprn, "Receive partner
 refint type idoccrfint, "ISA cnt no
 upddat type edi_upddat, "IDoc Change date
 segnum type edi_segnum, "Segment no.
 psgnum type edi_psgnum, "Parent seg. no.
 segnam type edilsegtyp, "Segment name
 bstkd type bstkd, "Cust. PO no.
 datum type edidat8, "PO date
 kunnr_bp type kunnr, "Bill-to partner
 kunnr_we type kunnr, "Ship-to partner
 errmsg(130) type c, "Error msg
 end of t_out.

**** Report output table: ***
data: iout type table of t_out,
 sout type t_out.

Listing 17.4 Report Output Type and Internal Table

We’ll declare another internal table and string referencing type T_OUT to process
IDocs selected for change or delete from the ALV grid report listing:

**** Select IDocs for change/delete ***
data: isel type standard table of t_out,
 ssel type t_out.

671

Technical Specifications 17.4

Additional internal tables for IDoc processing include:

EE GT_EDIDC referencing the full structure of table EDIDC

EE GT_EDIDD referencing the full structure of table EDIDD

EE IDOC_PROCESS referencing type BDIDOCS, which contains only one field (IDoc
number)

For ALV grid setup and data processing, we’ll require the following internal tables
and strings:

EE Internal table IFIELDCAT referencing table type LVC_T_FCAT and string sfieldcat
reference structure LVC_S_FCAT. It is used to build the field catalog passed to the
ALV processor when the table control is populated with the report during PBO
processing of screen 100.

EE Internal table ISORTCAT referencing table type LVC_T_SORT and string SSORTCAT
referencing structure LVC_S_SORT. These objects are used to define the sort order
for the report data passed to the ALV processor during PBO processing of screen
100.

EE String SLAYOUT referencing structure LVC_S_LAYO. It is used to define the layout
of the ALV grid report and is passed to the ALV processor during PBO process-
ing of screen 100.

EE Internal table IROWS referencing table type LVC_T_ROW and string SROW referenc-
ing structure LVC_S_ROW for grid row selection by the index number of the
selected rows.

EE IFUNCTION referencing type UI_FUNCTIONS to build a table of standard ALV func-
tions to exclude from the report display.

Declare the local class LCL_EVENT_RECEIVER for event handling like this:

class lcl_event_receiver definition deferred.

Definition of the local event handler class is deferred because we need to declare
a work field that references it. The code in the two methods that implement the
class references this work field.

Next we add variables that we’ll use to create the grid display and to enable event
handling when the screen is called or refreshed. These variables reference ABAP
objects classes that will create our custom ALV screen grid display and are invoked
using the CREATE keyword:

672

Generating the Outbound Customer Invoice17

EE G_CONTAINER: References data element SCRFNAME with a default value of SELECT-
GRID. This object is used to name the parent container the first time the screen
is called. This variable must be set to the name of the custom control that we’ll
create when we design the report screen. In our example, the control name will
be GRID1.

EE G_PARENT: References class CL_GUI_CUSTOM_CONTAINER. This is created with the
screen name in G_CONTAINER the first time screen 100 is called. This object builds
the container for the custom controls in GUI status MAIN100 and screen 100.

EE GRID1: References class CL_GUI_ALV_GRID. This object builds the ALV grid control
that nests within the custom container created by G_PARENT. It must have the
same name as the custom control that will be added to the screen to hold the
ALV grid list report.

EE EVENT_RECEIVER: References local class LCL_EVENT_RECEIVER. Used to create and
register (keyword SET) event handling during PBO processing of screen 100.

Listing 17.5 shows the local class definition for LCL_EVENT_RECEIVER with two
event handlers declared.

class lcl_event_receiver definition.
public section.

 methods:

*** Handle Call Back
 handle_call_back
 for event delayed_changed_sel_callback
 of cl_gui_alv_grid,

*** Handle double click
 handle_double_click
 for event double_click of cl_gui_alv_grid
 importing e_row.

endclass. "lcl_event_receiver DEFINITION

Listing 17.5 Local Event Handler Classes

The next step is to implement the local class with the following line:

class lcl_event_receiver implementation.

673

Technical Specifications 17.4

Method HANDLE_CALL_BACK is triggered when the user selects one or more rows.
It counts the number of rows selected and then passes that count back to the title,
as shown in Listing 17.6.

method handle_call_back.
 data prev_count(3) type n.
 prev_count = title_count.

*** Get the index of all selected rows
 refresh irows.
 call method grid1->get_selected_rows
 IMPORTING
 et_index_rows = irows.

*** Update the title with the new number of selected rows
 describe table irows lines rows_sel.
 describe table iout lines title_count.
 if prev_count ne title_count.
 concatenate 'Number of returned IDocs -'title_count
 into layout-grid_title separated by space.

*** Refresh the table layout for the new title.
 call method grid1->set_frontend_layout
 EXPORTING
 is_layout = layout.
 endif.
endmethod. "handle_call_back

Listing 17.6 Counting the Number of Rows Selected by the User

The HANDLE_CALL_BACK method works in a straightforward manner:

1. A call to method GET_SELECTED_ROWS returns all selected rows to internal table
IROWS.

2. The title text is updated with the row count and passed to the field GRID_TITLE
in structure LAYOUT if the row count is different from the previous count.

3. Method SET_FRONTEND_LAYOUT refreshes the layout of the grid with the new title.

Method HANDLE_DOUBLE_CLICK is triggered when the user double-clicks any part
of a report line.

674

Generating the Outbound Customer Invoice17

The current line is read and passed to form CALL_LINE_TCODE, which then calls the
IDoc tree display mentioned in Listing 17.7. This form is also called during PAI
input processing for GUI functions in screen 100.

method handle_double_click.
*** Read current line
 g_row = e_row.
 read table iout into sout index e_row-index.
*Call IDoc tree display.
 perform: call_line_tcode using sout-docnum.
endmethod. "handle_double_click

Listing 17.7 Double-Click Event Calls an External Transaction

The local class implementation for the two event handlers ends with an ENDCLASS
statement after the methods have been defined.

The next part is some house-keeping with an INITIALIZATION event. The key piece
is to build a table of standard menu functions that will be excluded from the ALV
grid display during PBO processing of screen 100. The excluded functions are
appended to internal table IFUNCTION, which has only one field. Take a look at the
syntax for this:

append cl_gui_alv_grid=>mc_fc_sum to ifunction.

This excludes from the ALV grid menu a button that would return a total for a
selected column. Explore the available standard functions by double-clicking struc-
ture cl_gui_alv_grid in the ABAP Editor. Every function that is not excluded will
appear in the ALV grid when the report is run. All this free standard functionality
that you don’t have to code is one of the beauties of the ALV grid.

Start of Selection

The first step in the start of selection event is to read IDoc tables EDIDC and EDIDS
for all INVOIC IDocs that meet the criteria entered in the selection screen. The
SQL code to access these tables uses an inner join to link the two, as shown in
Listing 17.8.

select distinct a~docnum a~rcvprn a~refint
 b~stamid b~stamno b~stapa1 b~stapa2
 b~stapa3 b~stapa4 a~upddat
 into table iidocs
 from edidc as a join edids as b on

675

Technical Specifications 17.4

 (a~docnum = b~docnum and
 a~status = b~status and
 a~upddat = b~credat)
 where a~docnum in so_doc
 and a~status in so_status
 and a~sndprn in so_prn
 and a~refint in so_isa
 and a~upddat in so_updat
 and a~mestyp = 'INVOIC'.

Listing 17.8 Reading INVOIC IDoc Messages by Status

If there’s a hit, our internal table IIDOCS is populated with a few things:

EE The IDoc number, ISA interchange control ID, and the last change date from
the IDoc control record table EDIDC.

EE Message class, message number, and variables from the IDoc status record table
EDIDS.

Next we assemble data for the report table IOUT. This is done within a loop on
IDOCS into the structured string SDOCS. IDoc control record data are passed from
SDOCS into structured string SOUT, including the following:

EE DOCNUM: IDoc number to SOUT-DOCNUM

EE SNDPRN: SAP sold-to partner to SOUT-KUNNR_BP (bill-to and sold-to are the same
for Gordy)

EE REFINT: ISA interchange control ID to SOUT-REFINT

EE UPDDAT: IDoc change date to SOUT-UPDDAT

Data records are read in the IDOC loop with a three-step process. First, open the
current IDoc. Next, get the segments and pass them to an internal table with the
structure EDIDD (GT_EDIDD). Finally, after all segments have been read, close the
IDoc. The three function calls are illustrated in Listing 17.9.

*** Open the IDoc for the read
call function 'EDI_DOCUMENT_OPEN_FOR_READ'
 EXPORTING
 document_number = p_docnum
 IMPORTING
 idoc_control = gs_edidc
 EXCEPTIONS
 document_foreign_lock = 1

676

Generating the Outbound Customer Invoice17

 document_not_exist = 2
 document_number_invalid = 3
 others = 4.
if sy-subrc <> 0.
 message id sy-msgid type sy-msgty number sy-msgno
 with sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
endif.

*** Read all segments
call function 'EDI_SEGMENTS_GET_ALL'
 EXPORTING
 document_number = p_docnm
 TABLES
 idoc_containers = p_data
 EXCEPTIONS
 document_number_invalid = 1
 end_of_document = 2
 others = 3.
if sy-subrc <> 0.
 message id sy-msgid type sy-msgty number sy-msgno
 with sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
endif.

*** Close the IDoc
 call function 'EDI_DOCUMENT_CLOSE_READ'
 EXPORTING
 document_number = p_docnum
 EXCEPTIONS
 document_not_open = 1
 parameter_error = 2
 others = 3.
if sy-subrc <> 0.
 message id sy-msgid type sy-msgty number sy-msgno
 with sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
endif.

Listing 17.9 Reading IDoc Data Records

The pattern is the same for reading, editing, or creating IDocs. The only change is
the second function called to match the process.

1. Call EDI_DOCUMENT_OPEN_FOR_READ for the current IDoc number within the loop
on internal table IIDOCS.

677

Technical Specifications 17.4

EE This function first appends the IDoc number to internal table DOCUMENT_IN_
READ.

EE It confirms that the IDoc control and data records exist and passes the control
record to internal table LIST_CONTROL_READ and the data records to internal
table LIST_CONTAINER_READ.

EE It can return the IDoc control segment in a structured string.

2. Call function EDI_SEGMENTS_GET_ALL for the current IDoc number. The internal
table GT_DATA is populated with all IDoc data records.

EE The function loops through internal table DOCUMENT_IN_READ to confirm that
the IDoc has been opened. An error is returned if the internal table is empty.

EE Then it loops on LIST_CONTAINER_READ and moves all of the IDoc’s data records
into internal table IDOC_CONTAINERS.

EE This internal table exports the IDoc data, including the segment control fields,
to the calling program as an internal table with the structure EDIDD through
the table parameter P_DATA.

3. Call EDI_DOCUMENT_CLOSE_READ for the current IDoc number, which is deleted
from internal table DOCUMENT_IN_READ. This closes the IDoc and returns control
to the calling program.

Now we need to filter our IDocs by the purchase order numbers entered into the
selection screen, if any. If a PO number was entered, we only return IDocs with
that purchase order number.

We begin by reading internal table GT_EDIDD for segment E1EDK02 with qualifier
001, which holds the purchase order number. There will be only one entry for
this segment value in GT_EDIDD. The code for this internal table read is illustrated
in Listing 17.10.

*** read the internal table with a search key
read table gt_edidd into gs_edidd
 with key segnam = 'E1EDK02'.
*** Segment found, check qualifier
if sy-subrc = 0.
 gs_e1edk02 = sdata-sdata.
 if qualf = '001'.
*** Confirm PO number matches PO select option

 check gs_e1edk02-belnr in so_bstkd.
 endif.

678

Generating the Outbound Customer Invoice17

else.
 exit.
endif.

Listing 17.10 Reading the PO Number Select Option from the IDoc

If there is a hit, the SDATA field is moved into a structured string and BELNR is checked
to see if it matches SO_BSTKD.

If there is no matching value in GS_E1EDK02-BELNR, the current loop on IDOCS is
exited, SDOCS is cleared, and the next IDoc read.

If there is a hit, the following report header values are moved:

EE SDOCS-SEGNAM: Segment name to SOUT-SEGNAM

EE SDOCS-SEGNUM: Segment number to SOUT-SEGNUM

EE GS_E1EDK02-BELNR: PO number to SOUT-BSTKD

EE GS_E1EDK02-DATUM: PO date to SOUT-DATUM

Next we assemble the IDoc status record error message into field SOUT-ERRMSG. This
is done in a form routine that calls a standard function. The form call is shown in
Listing 17.11.

perform build_msg using sdocs-stamid sdocs-stamno
 sdocs-stapa1 sdocs-stapa2
 sdocs-stapa3 sdocs-stapa4
 sout-errmsg.

Listing 17.11 IDoc Status Message Build Form

Let’s walk through it:

EE SDOCS-STAMID is the message class from the IDoc status record.

EE SDOCS-STAMNO is the message number.

EE SDOCS-STAPA1 through SDOCS-STAPA4 holds the variables that are fed to the mes-
sage.

EE SOUT-ERRMSG is the field that will be populated with the message built by the
routine.

Form BUILD_MSG passes these variables to standard function RPY_MESSAGE_COMPOSE
that assembles the full text message and passes it to field SOUT-ERRMSG.

679

Technical Specifications 17.4

We now need to get the rest of our report data from GT_EDIDD. Loop on GT_EDIDD
into GS_EDIDD, restricting the segment reads to the partner data segment E1EDKA1,
for the SAP ship-to number:

EE Move GS_EDIDD-SDATA to string GS_E1EDKA1 with the structure E1EDKA1.

EE If GS_E1EDKA1-PARVW doesn’t equal WE, exit the current loop, and read the next
E1EDKA1 segment.

EE If GS_E1EDKA1-PARVW equals WE, the Gordy’s store is in field PARTN. Move it to
SOUT-KUNNR_WE.

Now that we’ve collected all of our report data, append SOUT to IOUT.

Next we need to set up parameters and internal tables for the ALV grid report. For
this report, that means defining the sort order and populating the field catalog. These
values are then passed to the ALV processor during PBO processing of screen 100.

The sort order is defined by populating internal table ISORTCAT. We’ll hard-code this:

ssortcat-spos = '1'.
ssortcat-fieldname = 'DOCNUM'.
ssortcat-up = 'X'.
append ssortcat to isortcat.

This append block defines the IDoc number in field DOCNUM as the sort field for
our report. We won’t be using any other field.

The field catalog identifies fields from internal table IOUT that will be used in the
ALV list report. It also defines the order in which the fields appear in the report,
their column headings, and their widths. We’ll use the following very simple syntax:

clear sfieldcat.
sfieldcat-fieldname = 'DOCNUM'.
sfieldcat-tabname = 'IOUT'.
sfieldcat-reptext_ddic = 'IDocNo'.
sfieldcat-outputlen = '0010'.
append sfieldcat to ifieldcat.

This block of code adds the IDoc number field DOCNUM to the field catalog for inclu-
sion in the list report. It identifies the report column label as IDocNo and the width
of the column as 10 characters.

This is a simple approach that can be easily repeated for each field that needs to be
added to the report. Conditions can also be set and evaluated to add or suppress
fields from appearing in the report.

680

Generating the Outbound Customer Invoice17

Everything has now been done to collect the data and set up ALV data and param-
eters to run the report. Now we need to pass all of these data to our custom screen
to trigger output of the report. We do this using the statement:

call screen 100.

Now we build the objects that will host the report: custom screen 0100, GUI status
MAIN100, and title bar MAIN100.

Create Custom Screen 100

SAP provides a graphical screen painter that we’ll use to create screen 0100. There
are a number of ways to create the screen.

EE If you created ZSDCHINVOIC in the repository browser (Transaction SE80). Select
the program name in the navigation pane and right-click to open a context menu.
Select Create • Screen. The system will prompt for a screen number. Enter
“0100”.

EE Use Transaction SE51 or follow menu path Tools • ABAP Workbench • Devel-
opment • User Interface • Screen Painter. Enter the program name and screen
number “0100” and click Create.

EE Enter the call to screen 100 in program code in the ABAP Editor and double-
click the 100. If the screen doesn’t exist, a dialog will open, asking if you want
to create it.

Any one of these steps opens the Attributes screen of the Screen Painter. Follow
these steps:

1. Enter a description in the Short description field and save the screen.

2. Click the Element list tab, and enter “OK_CODE” under Name in the General
attr tab. This holds the function code returned when a GUI object (a menu
option or button) is selected.

3. Click the Layout button to load the graphical Screen Painter. We’ll begin by
adding two screen elements to organize the layout.

4. From the element palette to the left of the screen, click on the box element. The
arrow turns into an upside-down L. Drag this icon from the upper-left corner
across the blank screen down to less than a third of the screen. We’ll lay out
our data entry fields to edit the IDoc in this box.

681

Technical Specifications 17.4

5. Double-click the box to open the Element Attributes dialog. Enter “BOX_
CNTRL” in the Name field and “Select_Fields_for_Editing” in the Text field. The
text appears in the top-left corner of the box to identify the function of the group
of fields it contains.

6. Click Custom Control on the element palette, and draw the control to fill the
rest of the blank screen. The custom control contains the ALV grid list objects
and data at runtime. We’ll write code to pass this stuff to the control in the flow
logic of the screen.

7. Enter “GRID1” in the Name field at the top of the Screen Painter editor. This
name must match the value in the g_container variable we set up in our data
declarations. At this point, the screen should look like Figure 17.6.

Figure 17.6 Screen 100 with the Editing Box and Custom Control

682

Generating the Outbound Customer Invoice17

We’ll add our edit field to the box element next. The attributes for the data entry
field come from Data Dictionary structure ZEDI_UPD. We’ll also add a checkbox
next to the field to tell the code which IDoc field is being edited.

1. Select the Text field tool from the element palette. Position the cursor within
the box control and click to place the text field. This holds the description of
the data entry field.

2. Enter “LBL_PO” in the Name field at the top of the work area. Enter “Cus-
tomer_PO_no:” in the Text field.

3. Click the Checkbox tool in the element palette. Position the cursor in the box
control and click to place the checkbox.

4. Enter the checkbox name “CHECK_PO” in the Name field.

5. Click the Input/output field tool in the element palette. Position the cursor
next to the checkbox, and click to place the field.

6. Enter “ZEDI_UPD-BSTKD” in the Name field at the top of the work area. The
system opens a dialog to ask if you want the element to refer to a Data Diction-
ary object. Click Yes.

This pulls attributes for the data entry field from the custom structure ZEDI_UPD
that we just created.

7. Save and activate the completed screen. It should like Figure 17.7.

Figure 17.7 The Completed Data Entry Screen

683

Technical Specifications 17.4

8. Click the Element List button to go to the general attributes tab of the elements
list. This screen details properties for all objects and data elements used on the
screen. Figure 17.8 shows where we stand so far.

Figure 17.8 Objects and Data Elements on the Data Entry Screen

Create GUI Status and Title Bar

Menus, icons, buttons, and function key assignments will be added to the screen
through a GUI status. This is more than just eye candy! These objects link to func-
tion codes that trigger program responses in the screen’s flow logic. They tell our
program what the user wants it to do next.

The function codes we add to our GUI status will offer the user a number of report
and IDoc processing options when a menu option is selected, an icon or button
clicked, or a function key pressed, including the following:

EE UPDT: Update all selected IDocs with values entered in a data entry field.

EE REST: Restore the original values to one or more selected IDocs.

EE POST: Save edits to the selected IDocs and reprocess them.

EE DEL: Mark selected IDocs for deletion by changing their status to 31.

EE TREE: Trigger the IDoc tree display for one selected IDoc or by double-clicking
its report line.

The title bar sets up the title that runs across the top of the report window. We’ll
name the GUI status and title bar MAIN100. To create a GUI status, you can do
any of the following:

684

Generating the Outbound Customer Invoice17

EE If you’re in the repository browser (Transaction SE80), select the program name
in the navigation pane and right-click to open a context menu. Select Create •
GUI Status. The system will prompt you for a status name and description.

EE Run Transaction SE41 or follow menu path Tools • ABAP Workbench • Devel-
opment • User Interface • Menu Painter. Enter the program and status name
and click Create.

EE Enter the call to GUI status “MAIN100” in the program code anywhere in the
ABAP Editor, and double-click the name. If the screen doesn’t yet exist, a dialog
opens that asks if you want to create it.

The Create Status pop-up opens with the program name filled out. Now follow
these steps:

1. Enter “MAIN100” into the Status field, add a description into the Short Text
field, and select the Normal screen radio button as the status type (see Figure
17.9).

Figure 17.9 The Create Status Pop-Up

2. Click the green checkmark to open the Maintain Status editor.

3. Open the menu bar by clicking the expand tree sign and then click the Display
Standards button.

4. Change the name of the Extras menu to IDoc Processing and press (Enter).
Click OK in the Change Menu Text dialog.

5. We’re only using the IDoc Processing menu in our current example, so delete
all the others.

685

Technical Specifications 17.4

6. Double-click the IDoc Processing menu to open it. Enter the function codes
and text descriptions in the Code and Text columns that are shown in Figure
17.10.

7. Don’t forget to save.

Figure 17.10 Function Codes in the IDoc Processing Menu

Next we add the function codes to the Application toolbar. Follow these steps:

1. Collapse the menu bar and expand the Application toolbar.

2. Type the function codes into the design grid, and press (Enter) to open the
Assign Function to Function Key dialog. The function codes won’t be saved
to the Application toolbar until they have been assigned to a function key.

3. Assign the following function keys to each function code:

EE UPDT: Press (F2).

EE REST: Press (F5).

EE POST: Press (F6).

EE DEL: Press (F7).

EE TREE: Press (F8).

The application toolbar should look like Figure 17.11. Text descriptions from
the IDoc Processing menu will appear as buttons on the report screen when
the GUI status is called. Save and activate the GUI status.

Figure 17.11 Custom Application Toolbar Assignments

686

Generating the Outbound Customer Invoice17

Next we’ll create a title bar. We have two options:

EE In the navigation pane of the repository browser, select the program name and
right-click to open the context menu. Select Create • GUI Titles.

EE Use Transaction SE41, select Title list, enter the program name, and click Cre-
ate.

EE Set the title bar in the program code with the statement SET TITLEBAR 'MAIN100',
and double-click its name.

However you do it, the Create Title dialog will pop-up. The title code is the GUI
status name. Enter a text description for the title as in Figure 17.12 and click the
green checkmark. We now have our GUI status and title bar.

Figure 17.12 Creating the GUI Status Title Bar

Testing the Screen and GUI

We can do a test run of our screen, GUI status, and title bar in the status edit win-
dow by clicking the wrench-like Test Status button (or press (F8)) in the toolbar
above the navigation pane.

The Status Simulation dialog opens with the status name. Enter the screen num-
ber, select the new title, and click Execute (see Figure 17.13).

Figure 17.13 Testing the GUI and Screen

687

Technical Specifications 17.4

If you click through the test screen dialog that pops up, a simulation of our data
entry screen with the application tool bar and IDoc processing menu opens with the
custom menu, the application tool bar, and the data entry fields (see Figure 17.14).

Figure 17.14 Editing Screen Simulation for ALV Grid IDoc Edit Report

Flow Logic

The flow logic has two ABAP events to set up the report screen and GUI with all of
its objects and data and to respond to onscreen events like double-clicking a line,
selecting a menu option, or clicking a button or icon:

EE PROCESS BEFORE OUTPUT (PBO): Initial setup and refresh of the screen display
with its GUI menus, icons, and functions. It also returns and formats the report
data in the ALV grid list report custom control.

EE PROCESS AFTER INPUT (PAI): Responds to onscreen events triggered by selecting
menu options, buttons, function keys, or double-clicking a line.

From within the screen editor, click the Flow logic button to open the flow logic
editor. You’ll see the following code template:

PROCESS BEFORE OUTPUT.
* MODULE STATUS_0100.
*
PROCESS AFTER INPUT.
* MODULE USER_COMMAND_0100.

Before we begin looking at each, we’ll change the module template to this:

PROCESS BEFORE OUTPUT.
MODULE PBO_100.
*
PROCESS AFTER INPUT.
MODULE PAI_100.

688

Generating the Outbound Customer Invoice17

Follow these steps:

1. Double-click MODULE PBO_100. A dialog opens offering to create the module.
Click Yes to open the Create PBO Module dialog. The code for the PBO and
PAI modules is written in two include programs inserted into ZSDCHINVOIC, as
shown in Figure 17.15.

Figure 17.15 Inserting the Include Program for the PAI Module

2. Click the OK button to open the ABAP Editor. Our first job is to set the GUI
status and title bar that we just created with two statements:

set pf-status 'MAIN100'.
set titlebar 'MAIN100'.

Next we check whether the ALV grid custom container that holds the report data
has been created.

EE If they have not been created, the program is running for the first time and we
need to create them.

EE If they already exist, then the program is already running and the objects have
been created, and we need to refresh the table display with the results of any
processing that may have been completed.

To create the ALV Grid custom container, we use the following code:

create object g_parent
 exporting container_name = g_container.
create object grid1
 exporting i_parent = g_parent.

689

Technical Specifications 17.4

This code creates the parent container to hold the custom GUI control using the
name of the custom control that we defined in the screen editor and the grid object
with reference to the parent container.

We’ll also get a count of the number of rows in the report and append this with
some text to the titles table.

After the container and grid objects are ready, we can populate them with the
report data and GUI controls. We do this with the following method call from
class CL_GUI_ALV_GRID:

call method grid1->set_table_for_first_display
 EXPORTING
 i_save = 'X'
 is_layout = layout
 it_toolbar_excluding = ifunction
 CHANGING
 it_outtab = iout
 it_fieldcatalog = ifieldcat
 it_sort = isortcat
 EXCEPTIONS
 invalid_parameter_combination = 1
 program_error = 2
 too_many_lines = 3
 others = 4.

Let's walk through this:

EE LAYOUT allows us to control the look of the report.

EE IFUNCTION excludes ALV grid functions from the report’s GUI.

EE IOUT contains the report data.

EE IFELDCAT holds the field catalog that the ALV processor will use to return and
format the report.

EE ISORTCAT holds the sort key for display of the report.

Next we need to set our event handlers for the grid. These are the two methods
that we defined and implemented in the declarations block of our program. We first
create the event receiver object that we declared and then link it to our methods,
using the following statements:

690

Generating the Outbound Customer Invoice17

create object event_receiver.
set handler event_receiver->handle_call_back for grid1.
set handler event_receiver->
 handle_double_click for grid1.

If this isn’t the first time the program runs, this work has already been done. We
refresh the grid control with the following statement:

call method grid1->refresh_table_display.

If everything is working as it should, and all the IDoc selection and report build
bugs have been ironed out, the ALV grid list report screen should look Figure 17.16
when the program is run.

Figure 17.16 ALV Grid List Report with Data Entry Field

The buttons above the report title in the custom control don’t need to be coded.
This is one of the beauties of ALV Grid report programming. With a little of effort,
you get a lot of functionality, most of it baked in by SAP.

GUI functions, on the other hand, do need to be coded. This is done in the PAI
module, which responds to the function codes generated by the buttons when we
clicked that we created in the GUI status.

691

Technical Specifications 17.4

PAI processing is straightforward. It evaluates the function code in the screen vari-
able OK_CODE within a CASE ... ENDCASE statement and triggers one or more form
routines to handle processing for each case (Listing 17.12).

case ok_code.
 when 'UPDT'.
 perform update_rows.
 when 'REST'.
 iout[] = iorg[].
 when 'POST'.
 perform update_idocs.
 if not iidocs[] is initial.
 perform process_idocs.
 endif.
 when 'DEL'.
 perform change_idoc_status.
 when 'TREE'.
 perform call_line_tcode using ''.
 when 'EXIT'.
 leave to screen 0.
endcase.
clear ok_code.

Listing 17.12 Evaluating Function Codes from the GUI in the PAI

Each OK_CODE triggers a different processing block, including the following:

EE UPDT
Updates selected rows with values entered into one or more selected data entry
fields:

EE Call method GRID1->GET_SELECTED_ROWS to get the index for all report lines
selected and pass them to an internal table.

EE Loop through the index table and read report table IOUT to find the indexed
entry.

EE Determine which checkbox next to the data entry fields is selected.

EE Whenever a checkbox equals X, pass the new value in the data entry field to
report table IOUT.

Technically, we don’t need to test for the checkbox because we have only one
edit field. But if we were to add fields in the future, we would at least have the
code in place.

692

Generating the Outbound Customer Invoice17

EE REST
Restores the original report values to IOUT from backup report table IORG, which
is never changed.

EE POST
Writes updated values from edited report lines to the selected IDocs and then
posts them:

EE Call method GRID1->GET_SELECTED_ROWS to get the index for all report lines
selected and pass them to an internal table.

EE Loop through the index table and read report table IOUT to find the indexed
entry and append it to internal selections table ISEL.

EE Loop through ISEL.

EE Call function EDI_DOCUMENT_OPEN_FOR_EDIT for each new IDoc number in
ISEL. This returns all IDoc data records to internal table GT_EDIDD.

EE Identify changed IDoc segments from the report in table ISEL.

EE Read table GT_EDIDD for the changed segment record.

EE Copy changed values from ISEL to the IDoc segment through the GT_EDIDD
entry.

EE Call function EDI_CHANGE_DATA_SEGMENT with the updated records in GT_EDIDD
after all of the edits have been recorded.

This writes changes to the database and saves a copy of the original IDoc at sta-
tus 32—IDoc was edited, which can then be reprocessed. The original IDoc is
stored at status 33—Original of an IDoc which was edited.

Next we call function EDI_DOCUMENT_CLOSE_EDIT after all edited segments in all
selected IDocs have been written to the database. This appends the IDoc number
of the edited IDoc to internal table IPROCESS.

We then call function MASTER_IDOC_DISTRIBUTE and pass the edited IDocs from
GT_EDIDC and GT_EDIDD to export them to the EDI RIM.

EE DEL
Changes the status of the selected IDocs to 31—Error, no further processing, mark-
ing it for deletion:

EE Call method GRID1->GET_SELECTED_ROWS to get the index for all report lines
selected and pass them to an internal table.

693

Technical Specifications 17.4

EE Loop through the index table and read report table IOUT to find the indexed
entry and append it to internal selections table ISEL.

EE Loop through ISEL.

EE The message from the new status is passed to IOUT and the report.

EE TREE
Calls the tree display of a selected IDoc from the report. The functionality is also
triggered by the double-click event handler.

EE Check that the IDoc number for the current row has not been passed by the
form call. The event handler for the double-click has the IDoc number that
was passed to it from the form call.

EE Call method GRID1->GET_SELECTED_ROWS to get the index for the selected
report line and pass it to the internal index table if the IDoc number has not
been passed in the form call.

EE Read table IOUT with the index number of the selected report line and append
it to internal selections table ISEL.

EE Loop through ISEL and confirm that only one line has been selected.

EE Call function EDI_DOCUMENT_TREE_DISPLAY and pass the current IDoc number.

EE The IDoc is displayed in a tree view with the control, data, and all status
records, similar to the IDoc views in Transactions BD87 or WE05. One inter-
esting difference is that it includes a button that will toggle between display-
ing all segments or only those with errors, if the errors have been flagged in
the segments.

EE Get back to the report window by pressing (F3) or clicking the green return
arrow icon.

Create Transaction Code

The final step is to create a transaction code for our new program. We’ll do this in
the repository information system since we’re already there.

1. Right-click the program name in the navigation pane of the repository browser
to open the context menu. Select Create • Transaction.

2. Enter “ZEDINV” in the Transaction code field and a description in the Short
text field.

694

Generating the Outbound Customer Invoice17

3. In the Start object area, select Program and selection screen (report trans-
action) to set the transaction code for an ABAP.

4. Click OK to open the Create Report transaction screen. Enter “ZSDCHINVOIC”
in the Program field. The Selection screen value is 1000.

5. In the GUI support area, select SAPGUI for Windows (and/or HTML and Java,
depending on your environment).

6. Save the transaction code and assign it to a package and change request.

17.5 Mapping Specifications

One map will be developed in the EDI RIM to translate the INVOIC IDoc to an 810
X12 5010 transaction to Gordy’s Galaxy.

Table 17.4 outlines the mapping requirements for the outbound INVOIC-810 for
Gordy’s Galaxy.

INVOIC 810 Value Comments

E1EDK01—Header—Min 1, Max 1

CURCY CUR01 USD PO currency

BSART BIG06 INVO Invoice document type. Convert to FD
in target.

BIG08 00 Hard-code original

E1EDKA1—Partners—Min 1, Max 99—Loop 1 Sold-to

PARVW N101 AG Sold-to party: convert to BY

N103 UL Hard-code. ID type qualifier: GLN

LIFNR N104 0999999999999 Gordy sold-to GLN from EDPAR

NAME1 N102 Gordy’s Galaxy Name of buyer party

STRAS N301 2356 Halsted St Sold-to partner street address

ORT01 N401 Chicago Sold-to partner city

PSTLZ N403 60601 Sold-to partner postal code

LAND1 N404 US Sold-to partner country

Table 17.4 Map Specifications for the INVOIC to X12 810 Invoice Interface

695

Mapping Specifications 17.5

INVOIC 810 Value Comments

REGIO N402 IL Sold-to partner region

E1EDKA1—Partners—Loop 2 Invoicing party (supplier)

PARVW N101 BK Supplier: convert to SU

NAME1 N102 Acme Pictures Invoicing party (supplier) name: Acme
Pictures

E1EDKA1—Partners—Loop 3 Ship-to

PARVW N101 WE Ship-to partner: convert to ST

N103 UL Identifies Gordy’s ship-to partner

LIFNR N104 01254863254898 Gordy ship-to partner GLN

NAME1 N102 Gordy Store
00118

Name of Gordy’s ship-to party

E1EDK02—Header docs—Min 0, Max 10—Loop 1 Purchase order

QUALF 001 Identifies PO number and date

BELNR BIG04 4500017679 Purchase order number

DATUM BEG03 20131215 Purchase order date

E1EDK02—Header docs—Loop 2 Invoice

QUALF 009 Identifies invoice number and date

BELNR BIG02 0090038759 Invoice number

DATUM BEG01 20131215 Invoice date

E1EDK03—Header dates—Min 0, Max 10

IDDAT DTM01 011 Identifies delivery date

DATUM DTM02 20140115 Shipping date for order

E1EDK18—Terms of payment—Min 0, Max 10

QUALF ITD01 001 Payment term 1. Convert to 05 in target
for discount not applicable.

ITD02 3 Hard-code 3 for invoice date.

Table 17.4 Map Specifications for the INVOIC to X12 810 Invoice Interface (Cont.)

696

Generating the Outbound Customer Invoice17

INVOIC 810 Value Comments

DATUM ITD06 20140115 Invoice date from E1EDK02 where
QUALF = 009

TAGE ITD07 30 Number of days for payment

E1EDP01—Item level details group— Min 1, Max N 1 instance of E1EDP01 per group loop

POSEX IT101 000010 Line item number

MENGE IT102 100.000 Quantity ordered

MENEE IT103 EA Unit of measure for ordered item

MENGE ISS01 100.000 Sum E1EDP01-MENGE to get total
quantity ordered in invoice and move
into X12 shipment summary segment
ISS

MENEE ISS02 EA Unit of measure for sum quantity

E1EDP19—Materials—Min 1, Max 10

QUALF IT106 001 Identifier’s Gordy’s material number.
Convert to IN for buyer’s material
number.

IDTNR IT1107 985674 Customer material number

KTEXT PID05 I Married an Alien Material description

E1EDP05—Pricing conditions—Min 1, Max 99

KRATE IT104 25.890 Unit price where WHERE condition type
in KSCHL identifies price

IDTNR PO107 985674 Customer material number

E1EDS01—IDoc Summary—Min 1, Max 30—Loop 1 Total amount

SUMID 011 Identifies total billed value for invoice

SUMME TDS01 2589.000 Total billed value in invoice

E1EDS01—IDoc Summary Loop 2 Number of line items

SUMID 001 Identifies total number of lines in
invoice

SUMME ISS01 1 Number of lines in invoice

Table 17.4 Map Specifications for the INVOIC to X12 810 Invoice Interface (Cont.)

697

EDI Configuration in SAP 17.6

17.6 EDI Configuration in SAP

We’ll add mapping entries to EDPAR and our custom EDI trading partner mapping
table ZEDIXREF. And, of course, we need an outbound partner profile for Gordy’s
Galaxy with message type INVOIC and message control.

17.6.1 EDPAR Entries: Transaction VOE4

The GLNs for the sold-to and ship-to partners for Gordy’s Galaxy are read from
EDPAR during outbound processing of the INVOIC IDoc. EDPAR support these
reads. We need the values in Table 17.5.

Field Value Description

Sold-to partner mapping

KUNNR GRDY01 Gordy sold-to partner from sales order

PARVW WE Partner function ship-to

EXPNR 0999999999999 External partner for ship-to (Gordy’s GLN)

INPNR GRDY01 Internal SAP sold-to partner number

Ship-to partner mapping

KUNNR GRDY01 Gordy sold-to partner from sales order

PARVW WE Partner function ship-to

EXPNR 0999999999999 External partner for ship-to (Gordy’s GLN)

INPNR GRDY01001 Internal SAP ship-to partner number

Table 17.5 EDPAR Mapping for Invoice Sold-to and Ship-to

17.6.2 ZEDIXREF Entries

We map the SAP sender and receiver partner numbers to Gordy’s Galaxy EDI
send and receive trading partner IDs for Acme and Gordy. Enter the values in
Table 17.6.

698

Generating the Outbound Customer Invoice17

Field Value Description

DIRECT 1 Direction outbound

STDMES 810 EDI customer invoice transaction

MESTYP INVOIC IDoc message type

IDOCTP INVOIC02 IDoc basic type

CIMTYP IDoc extension

SNDPRN DEVCLNT100 SAP send partner: Acme SAP logical system

RCVPRN GRDY01 SAP receive partner: Gordy’s customer number in
Acme’s system

SNDLAD 9999999USD EDI send partner: Gordy’s trading partner ID for
Acme

RCVLAD 01234567US0 EDI receiver partner: Gordy’s trading partner ID
for Gordy

Table 17.6 Trading Partner Mapping for the 810 Customer Invoice

17.6.3 Outbound Partner Profile: Transaction WE20

We need an outbound partner profile for Gordy’s Galaxy partner number GRDY01,
partner type KU (customer), and partner role BP (bill-to) with message type INVOIC.

We use bill-to because our output type and condition record are both set to partner
type BP.

In the outbound parameters table control of the partner profile for Gordy’s Galaxy,
click Create outbound parameters and enter the following values in the Out-
bound parameters screen, as shown in Figure 17.17.

EE Partner Role: “BP”

EE Message Type: “INVOIC”

EE Receiver port: “XML_IDOC”

EE Output mode area: Collect IDocs and Start subsystem radio buttons

EE Basic type: “INVOIC02”

699

EDI Configuration in SAP 17.6

Figure 17.17 Outbound Parameters INVOIC Invoice to Gordy

Click on the Message Control tab and enter the following values shown in Figure
17.18.

EE Application: “V3”

EE Message type: “ZD00”

EE Process code: “SD09”

EE Change message checkbox: One entry null and one checked

Figure 17.18 Message Control Set Up for the INVOIC IDoc

700

Generating the Outbound Customer Invoice17

Process code SD09 links to function module IDOC_OUTPUT_INVOIC, which builds the
IDoc from the billing document and the delivery and sales order.

The last step is to select the EDI Standard tab from the upper far right of the
screen and enter the following values, as shown in Figure 17.19:

EE EDI Standard: “X” for X12

EE Message type: “810”

EE Version: “005010”

Figure 17.19 EDI Standard Values for the 810 Invoice

Don’t forget to save the partner profile.

17.7 Summary

And that wraps up the invoice interface. We’ve run the billing due list and gener-
ated our billing documents from completed outbound deliveries.

Assuming the order has been delivered and the customer has received the finished
goods into his inventory without issuing any error messages, we will generate an
IDoc from the billing document when it is saved.

The INVOIC is generated from the billing document but also pulls its data from
both the outbound delivery and sales order.

We chose to set up a custom output type to generate the invoice and have followed
its progress from the billing document through the IDoc interface out to the EDI
RIM and Gordy’s business system.

We also created a custom ALV grid report program to allow the users to edit the
customer purchase order number in the INVOIC IDoc if for some reason it was
entered into the sales order incorrectly.

701

Summary 17.7

This was an opportunity to explore some of the features of standard ALV grid pro-
gramming, especially functionality that can be used over and over again in different
programs. The standard elements provided by SAP are so consistent that we can
reuse any ALV grid program we create as a template for just about any ALV grid
report we may need in future.

The other thing the custom program stepped us through was reading, editing, and
displaying IDocs using a number of standard function modules.

The great Darryl Q. Fernhausen would no doubt appreciate the economy of all this
standard reusability. He was no programmer, and didn’t know an IDoc from a hole
in the head, but he did appreciate both efficiency and the money it could save him.

And this whole invoicing process would just whet his appetite for the main course:
the payment, which we will look at next. The end point for our order-to-cash cycle
beckons.

703

“Show me the money!” was one of Darryl Q’s favorite expressions. Mr. Q
never lost sight of the fact that his business was to make money. So he would
have loved the 820 payment interface, which tells Acme that the customer
paid his bill. It can be complex and data-rich, but it records every penny of
the final bill, and the bottom line is that it’s money in the bank for goods
sold.

18 Processing the Inbound Payment Advice

Gordy has its invoice. Everything has been validated. Goods were ordered, delivered,
and billed. Creation of the billing document in SAP updated accounts receivable at
Acme Pictures, while receipt of the invoice updated accounts payable at Gordy’s
Galaxy of Games & B Flix.

The 997 acknowledgment for the outbound 810 customer invoice was received by
Acme and no follow-up error reports were sent in an 864 text message.

All that’s left for the entire order-to-cash cycle to come to a close is for Gordy to
pay up. Gordy has committed to pay within 60 days of receipt of the invoice.

That payment will be made electronically directly into Acme’s bank account and
then reported to Acme’s SAP system in an 820 remittance advice and an REMADV
IDoc. Accounts receivable will use the data brought in by the IDoc to clear all of
the invoices, and any credit and debit memos or other adjustments covered by
Gordy’s payment.

The X12 820 to REMADV payment interface must reference every detail of every
one of these items for all invoices paid by the customer in one payment. For a
customer as large as Gordy, this adds up to a whole lot of data, particularly during
the busy Christmas shopping season. Data volumes from Gordy alone can exceed
100,000 line items per month for sales made during the holidays.

Payment processing is the one EDI interface that senior management really cares
about. The failure to properly process a payment jeopardizes period-end closing,
leads to inaccurate customer statements resulting in damaged customer relations,
and can trigger audit issues.

704

Processing the Inbound Payment Advice18

In our final exploration of the order-to-cash cycle, we’ll work through the functional
and technical details of Acme’s X12 820 to REMADV interface and consider an
approach to handling the massive files that Gordy sends during the holidays. So
let’s show the great Darryl Q the money!

18.1 Technical Overview of the Interface

Table 18.1 summarizes the inbound REMADV to X12 820 payment interface from
the customer.

Item Description

Title Inbound Payment or Remittance Advice

Description The payment advice is sent by the customer to Acme
Pictures when an electronic payment has been made on
one or more invoices.

The 820 payment advice is generated from the customer’s
business system when the electronic payment hits Acme’s
bank account. It identifies the bank and account number
and every invoice paid.

It also provides details of all taxes, discounts, surcharges,
penalties, and any other credit or debit that impacted the
final amount paid.

All of these debits or credits are recorded in accounting
documents. Some are in the invoice itself, and others in
credit and debit memos sent by Gordy to Acme in separate
X12 812 debit/credit memo transmissions before the
payment. These documents all post to Acme’s accounting
system and must be included in the X12 820 sent with the
payment for clearing.

Very large payments result in extremely large datasets
transferred in the 820. These datasets can be so large that
if they were directly mapped to the REMADV IDoc, they
could trigger an application dump in SAP.

There is a need for a process in the EDI RIM to split very
large 820s into smaller transactions. The trick is to ensure
that the sum total of each of these transaction equals the
sum total of the original 820.

Table 18.1 Overview of the Inbound EDI Payment Interface

705

Technical Overview of the Interface 18.1

Item Description

The 820 will map to a REMADV IDoc that will be used
to provide the data needed for clearing the payment in
accounts receivable in SAP.

The REMADV IDoc posts its data to holding tables in
accounting with a payment advice number that are then
used to clear the payments.

The clearing process can only handle up to 999 line items
at a time. Payments that exceed the 999 line item limit
will be split by a standard SAP program into multiple
payment advices.

Type of interface Delivery: X12 EDI to IDoc

Direction Inbound

Trading partner Gordy’s Galaxy (customer)

IDoc REMADV.PEXR2003

IDoc extended type

IDoc function IDOC_INPUT_REMADV

Custom ABAP

Description

Source file(s) X12 820 payment advice

Target document(s) SAP payment advice note

Transaction code FBE1: Create payment advice

Map(s) X12 820 vers. 5010 to REMADV.PEXR2003

Custom map logic

Source system Gordy’s Galaxy EDI via AS2

Target system Acme SAP via EDI RIM

997 acknowledgment Outbound at transaction detail level; function group
acknowledgment code: RA

Frequency Once a day on demand

Job schedule RBDAPP01: Daily, at noon, to post all REMADV message
types for all customers

Table 18.1 Overview of the Inbound EDI Payment Interface (Cont.)

706

Processing the Inbound Payment Advice18

18.2 Functional Specifications

The X12 820 to REMADV IDoc remittance advice interface is the last step in the
order-to-cash cycle. It reports details of Gordy’s payments to Acme’s bank account.

Gordy makes one or more payments a month on every payment document received
from Acme or sent to Acme in a separate X12 812 debit/credit memo adjustment EDI
transmission. On a very large payment, these adjustments could include a range of
debits or credits, such as allowances, returns, discounts, penalty charges, and so on.

All these adjustment documents plus the invoices represent open items in Acme’s
accounts receivable system in SAP. All of these open items will be cleared by the
payment advice document posted to Acme’s SAP system by the REMADV IDoc.

18.2.1 Process Overview

The process begins when Gordy makes a payment to Acme by electronic funds
transfer. The payment covers all items in Gordy’s accounts payable that have hit
their 60-day terms of payment limit.

Gordy typically makes five payments to Acme each month, four of which are rela-
tively small. The exception can get very large, particularly during and immediately
after the Christmas holiday shopping season. In a good year, Acme can receive
monthly payments as large as $25 million or more.

After the funds are sent, a remittance advice is generated in Gordy’s system with
details of every invoice and adjustment included in the payment. This document
is exported to Gordy’s EDI system where it is converted to an X12 820 remittance
advice and transmitted to Acme’s EDI system.

Large payments create extremely large and complex X12 820 interchanges that
can reference thousands of invoices and credit and debit memos. This must be
successfully translated to a REMADV IDoc in Acme’s EDI RIM and sent into SAP
to post a payment advice with transaction FBE1.

Accounts receivable takes over and the process ends. The payment advice is used
to automatically identify and clear customer open items in accounts receivable
using Transaction F-28.

707

Functional Specifications 18.2

18.2.2 Requirements

Gordy issued a payment on aged open invoices and adjustments. An X12 820
transmission is sent to Acme and converted to an IDoc with message type REMADV
and basic type PEXR2003.

The data in the 820 have details of all of Gordy’s open items and invoices covered
by the current payment. Adjustments are sent by Gordy to Acme in a separate X12
812 debit/credit memo advice and these are also included, with their document
numbers, as line items in the 820.

Gordy sends up to five X12 820 transmissions a month, including one very large
transaction on the 15th. Gordy’s 820s normally arrive in the mid-morning and
must be available for clearing by accounts receivable users early the next morning
at the latest. A job is set up in the SAP Job Scheduler to process Gordy’s REMADV
IDocs every day at noon.

The REMADV IDoc posts to a payment advice with Transaction FBE1 in accounts
receivable in Acme’s SAP Financial Accounting (FI) module. The SAP payment
advice is created against the following:

EE Company code: 3000 for Acme Pictures

EE Account type: Customer account (D)

EE Account number: Gordy SAP customer number = GRDY01

The payment advice is used by the business users to select open items on Gordy’s
account and clear them when the amounts match exactly, using SAP incoming
payments Transaction F-28.

Where the payment amount doesn’t match the open item, a partial payment posts
with the reason code sent by Gordy in the 820. The reason code posts to the pay-
ment advice from the IDoc, which contains the external EDI reason code sent by
Gordy. The external reason code is converted to Acme’s internal SAP reason code
for posting to the payment advice.

There is no limit on the number of line items that can post to the payment advice
in SAP. Very large payments from Gordy might result in an 820 transaction with
more than 100,000 line items.

708

Processing the Inbound Payment Advice18

Data volume is an issue both in the EDI RIM and SAP. Two issues need to be
addressed:

EE The EDI RIM must be able to process very large 820 transactions from Gordy
that could range in size from 4MB to as much as 30MB.

EE IDocs sent into SAP from the EDI RIM must not be so large that they overload
background processes, which have a practical limit of 2GB, depending on how
your system is set up. Very large 820 payments are split before they are con-
verted to an IDoc, a common issue and approach on sites that process 820s.

The SAP clearing programs can only process payment advices of 999 line items
or less. A payment advice that exceeds this must be split into multiple documents
before accounts receivable can run the clearing programs.

When clearing is run, and the open items in the payment advice cleared, its data
are deleted. The payment advice acts as a holding document for clearing and has
no other purpose in Acme’s SAP system.

18.2.3 Dependencies

The X12 820 to REMADV payment interface is dependent on master data, configura-
tion, and development in SAP and the EDI RIM, including all data and configuration
required to support all documents and interfaces covered so far:

EE Customer master data:

EE Bank data maintained in the Payment transactions screen under General
Data

EE Rsn code convn. field in the Payment transactions screen in Company
Code Data populated with a reason code conversion version value

EE Business documents generated or manually created in SAP:

EE Customer SD invoice

EE FI invoice and other accounting documents posted by the SD invoice

EE Credit and debit memos from Gordy’s Galaxy for adjustments sent in earlier
X12 812 credit/debit memo interfaces

EE Inbound IDoc configuration, including a partner profile to link Gordy’s Galaxy
to message type REMADV

709

Functional Specifications 18.2

EE EDI related configuration in accounts receivable in the IMG:

EE Link the sold-to partner who will send payment advices to the Acme company
code

EE Maintain SAP reason codes for payment adjustments and the external to
internal reason code conversion table

18.2.4 Assumptions

The sum of all line items must be equal to the total amount submitted as the payment
at the header level of the incoming 820 interchange. The same is true for the IDoc.

Each line item in the X12 820 presents an amount added to or subtracted from
the payment, either through an invoice paid or an adjustment made to what was
owed through a claim or deduction. These amounts must add up to the total pay-
ment recorded by the 820.

There are a few other key assumptions about the 820-REMADV interface:

EE The customer’s reason codes for adjustments in the 820 are converted to Acme’s
internal SAP reason codes before posting the payment advice. The SAP reason
code conversion table is kept up to date.

EE The 820 transaction identifies both the paying customer and the Acme company
code that will post the payment.

EE The IDoc won’t automatically run clearing when it posts a payment advice. AR
business users will run clearing separately after payment advices have been
posted by the IDoc.

EE When a payment advice posts in SAP with more than 999 line items, it is split
into multiple documents with fewer than 999 lines each using standard SAP
program SPLIT_PAYMENT_ADVICE.

18.2.5 Payment Advice Note Data

The payment advice note is created in SAP with Transaction FBE1 with data from
the REMADV IDoc. It is used to clear open items in accounts receivable, including
any number of credits and debits, that have been accommodated by a payment.
The data detailed in Table 18.2 are relevant for clearing the payment by accounts
receivable.

710

Processing the Inbound Payment Advice18

Table Field Description Sample Value

Payment Advice Header

AVIK BUKRS Company code 0010

AVIK KOART Account type – D = Customer D

AVIK KONTO Customer account number GRDY01

AVIK AVSID Payment advice number 040034038180

AVIK RWBTR Total payment amount 15,492,341.23

AVIK RWSKT Cash discount 0.00

AVIK VBLNR Payment document number 1245879

AVIK ZALDT Payment date 20090108

AVIK AVTXT Payment advice header text Notes on
payment

AVIK XBENR Object key 34038180

AVIK XBTYP Reference procedure IDOC

Payment Advice Line Items

AVIP AVSID Payment advice item number 00001

AVIP NBETR Net payment for item 100,289.90

AVIP WRBTR Gross payment for item 100,525.26

AVIP ABBTR Total amount of all deductions for item 235.36

AVIP WSKTO Discount amount + or - 235.36

AVIP RSTGN Reason code for adjustment 017

AVIP BELNR Accounting document number 906524859

AVIP GJAHR Fiscal year 2009

AVIP BUZEI Line item within accounting doc 1

AVIP ABWKO Alternate account number GRDY01

AVIP VBELN Billing document number 906524859

VBUP XBLNR Reference document 0906524859

Table 18.2 Payment Advice Note Fields Used in Clearing

711

Functional Specifications 18.2

Table Field Description Sample Value

VBUP XREF1 Reference key 1 816160750

AVIP ZUONR Assignment number 816160750

AVIP SWERT Document number—selection field 906524859

Table 18.2 Payment Advice Note Fields Used in Clearing (Cont.)

You can display a payment advice note with Transaction FBE3, which is made up
of three tables:

EE AVIK: Payment advice header

EE AVIP: Payment advice line item

EE AVIR: Subitems referencing AVIP items (not used at Acme Pictures)

These are temporary holding tables for payment data until clearing runs. After
the payment has been applied against the corresponding open items in accounts
receivable payment data in all three tables are deleted by SAP.

You can write pre-clearing reports against these tables. For example, an IDoc cash
receipts report could identify and summarize all payments that posted through a
REMADV message rather through a spreadsheet update or manual entry. Another
report could identify payments that exceed 999 lines for splitting by program
SPLIT_PAYMENT_ADVICE.

It’s easy to identify payments that posted with an IDoc. Reference procedure field
AVIK-XBTYP is populated with “IDOC” and object key field XBENR has the IDoc
number for the REMADV message that posted the payment.

Another interesting factoid is that the IDoc number is embedded in the last eight
digits of the payment advice number.

18.2.6 Enhancements to the Process

There won’t be any custom ABAP programming, but we will create a user transac-
tion code (ZSPLIT) to run the standard program SPLIT_PAYMENT_ADVICE that splits
a payment advice with more than 999 lines into multiple payments for clearing.

We’ll also need a process in the EDI RIM that will split very large X12 820 transac-
tions into smaller transaction sets to ensure that there are no memory overruns
when the IDocs come into SAP.

712

Processing the Inbound Payment Advice18

18.2.7 Reconciliation

Successful import of the REMADV IDoc is confirmed through any of the IDoc
monitoring tools such as Transactions BD87 or WE05.

IDoc status should be 64—IDoc ready to be transferred to application, before the
scheduled processing job is kicked off, and 53—Application document posted, after.
The following other validations can also be performed:

EE Check that the payment advice includes all line items in the IDoc.

EE Spot-check line item amounts in the payment advice to confirm that they are
the same as in the IDoc.

EE Confirm that the sum of all items in an IDoc equals the total payment reported
at the header level.

EE Confirm that the sum of all of the items in an 820 equal the total payment
reported at the header level of the transaction. This must be confirmed for both
whole and split 820s.

EE For split 820s, confirm that the header total for all transactions split off equal
the header total for the original undivided 820.

EE While not strictly the responsibility of EDI, the total amount of the payment
advice that comes into SAP through the IDoc must equal the total amount of the
electronic payment sent to the bank.

The business will confirm this; if there are issues, the payment advice in SAP
may be deleted and the 820 resent by Gordy.

18.2.8 Errors and Error Handling

Aside from missing data in the transaction, the key error that can occur in posting
the payments from the REMADV IDoc is that the line item amounts don’t equal
the header totals. This is validated in two places:

EE When large 820 transactions are split into smaller ones

EE In the EDI map when the 820 is converted to an IDoc

If the error occurs, the EDI team sums the line item amounts of the 820, pre-split
and post-split where relevant. If the line item amounts equal the header total, the
problem is in the map.

713

End-to-End Process Flow 18.3

18.3 End-to-End Process Flow

Figure 18.1 gives an overview of the end-to-end process flow for the inbound X12
820 to REMADV IDoc interface.

Monthly payment by
electronic funds transfer

RBDAPP01:
process IB IDocs

Receive X12 820
count segments

Txn F-28: Accts
receivable: Run

clearing program

Run split program:
Split to multiple
payment advices

End order-to-cash
cycle

Acme EDI RIM

Acme SAP

Gordy‘s Galaxy

$

Acme’s Bank

X12 820 Payment
Advice to Acme

X12 897 FA sent
back to Gordy

=> 50K?

Yes

De-envelope call
translation map
convert to IDoc

Split into multiple
820 txns: sum of
all = original 820

No

REMADV payment
RFC call to SAP

XML IDoc checked
converted to ASCII

written to DB

Note >
999 lines?

Txn FBE1: Build/
validate payment

advice: AVIK/AVIP

No

Yes

End payment
process

Figure 18.1 An Overview of the Inbound Shipping Confirmation Process Flow

714

Processing the Inbound Payment Advice18

18.3.1 Following the 820 Flow

The X12 820 to REMADV payment advice interface kicks off when Gordy makes a
monthly payment by electronic transfer directly into Acme’s bank account.

As soon as the payment is made Gordy’s accounts payable system kicks out a remit-
tance advice document that contains details of the payment, including all invoices
and debit or credit adjustments paid.

One remittance document is created for each electronic payment, referencing the
check or electronic funds transfer number. The document is exported to a file and
transferred to Gordy’s EDI system where it is translated to an X12 820 transaction
set and bundled into an interchange.

Each payment advice is converted to one X12 820 transaction set. With only four
or five payments a month, the number of 820 transactions received by Acme is
small. But if business is good, they can be extremely large and complex, perhaps
exceeding 100,000 line items.

The interchange is encrypted and sent by AS2 to Acme’s EDI RIM. Acme’s AS2 server
picks it up and passes it to a de-enveloping workflow that identifies the sender,
receiver, and the transaction; checks the syntax of the message; and generates an
X12 997 that is immediately sent back to Gordy’s EDI system.

18.3.2 An Intelligent Split

The map is identified, but before it is called, a separate process counts the number
of segments in the 820 transaction. If there are 50,000 or more segments, a custom
program is triggered that loops through the interchange and splits it into multiple
X12 820 transactions that are bundled into a new interchange with the same ISA
and GS control numbers as the original.

The transaction set control IDs of the split 820s are incremented from the number
of the original. If the original transaction set ID is 1, the newly split transaction
sets are incremented beginning with 2.

The 820 must be split intelligently. The line item amounts in each split 820 are
summed and the total moved into the transaction header. In addition, the totals from
all of the split transactions must equal the total payment in the original unsplit 820.

715

End-to-End Process Flow 18.3

The splitting is necessary because a REMADV IDoc could be more than 10 times
larger than the 820 that it was translated from. A 20MB 820 transaction for a
$20 million payment with more than 800,000 segments could be translated to a
REMADV IDoc with more than double the number of segments exceeding 200MB.

An IDoc this large overwhelms the memory limits for background processes in
SAP, triggering a short dump before the IDoc is written to the database. This is a
common problem on all sites that receive large 820s with many adjustments and is
almost always addressed by splitting the 820 into multiple transaction sets before
translating it and sending it into SAP.

After the split runs, or if the transaction set is smaller than 50,000 segments, the
map is called, and the 820 translated to a REMADV XML IDoc. Split 820s are con-
verted to multiple IDocs that are batched into one IDoc file.

The XML IDocs are saved to an inbound folder on the SAP application server. The
SAP adapter in the EDI RIM triggers an RFC to function EDI_DATA_INCOMING, which
kicks off IDoc interface processing in SAP.

The IDoc interface confirms that the file contains valid XML IDocs and checks that
their structure is correct. The IDoc file is deleted from the application server and
the XML IDocs converted to ASCII. The partner profile is read and confirmed using
values from the control segment and, if everything checks, each IDoc is written to
the database at status 64.

18.3.3 Posting the Payment

Program RBDAPP01 is set up in the SAP Job Scheduler (Transaction SM36) to run
once a day to pick up and process all REMADV IDocs at status 64. It identifies the
application function (IDOC_INPUT_REMADV) from process code REMA in the inbound
partner profile for Gordy with message type REMADV.

IDOC_INPUT_REMADV loops through internal tables IDOC_CONTROL and IDOC_DATA and
builds the payment advice by inserting the data into tables AVIK (header level)
and AVIP (line-item level).

Qualifiers, date formatting, and amounts are all validated before it is moved into
table AVIK or table AVIP. If any of these values are missing, an error is returned,
IDoc processing ends, and the status is updated to 51—Application document not posted.

716

Processing the Inbound Payment Advice18

The system does not confirm the validity of document numbers in the IDoc, nor
does it confirm the validity of reason codes; it only checks that they are present.

Two customer functions are available after the internal tables used to build AVIK
and AVIP have been fully populated. Both allow additional custom processing on
AVIK and AVIP and provide complete IDoc control and data records. The second
is called after a function that determines whether a partial payment is allowed on
the current account.

When all checks and validations pass, the function reads AVIK to determine if the
current payment exists. If it does, a change payment function is called.

Because we’re dealing with a new payment, function REMADV_INSERT is called to
create the payment advice. This is done by calling Transaction FBE1, passing AVIK
and AVIP data directly into the screen fields, calculating header totals, and saving
the document.

After the payment advice is created, a success message is sent back to the IDoc
interface. The status record is updated with 51 and the new payment advice number.

Next, accounts receivable users evaluate the size of the payment advice. If it exceeds
999 lines, program SPLIT_PAYMENT_ADVICE is run with custom Transaction ZSPLIT to
create multiple documents of 900 lines or less. The selection screen for SPLIT_PAY-
MENT_ADVICE would look something like Figure 18.2.

Figure 18.2 Selecting a Payment Advice to Split

The payment process ends when accounts receivable clears all items in the payment
advices using Transaction F-28. Items cleared included credit and debit memos
created during earlier transmissions of X12 812 from Gordy with credit and debit
adjustments to outstanding invoices.

717

Technical Specifications 18.4

18.4 Technical Specifications

This technical specification section describes SAP configuration and EDI develop-
ment required to support the X12 820 to REMADV IDoc payment advice interface
from Gordy’s Galaxy that reports details of a monthly electronic payment to Acme’s
bank account.

18.4.1 Technical Requirements

Very large payments from Gordy’s Galaxy are split into multiple 820 transaction
sets before being converted to IDocs in the EDI RIM to improve mapping perfor-
mance and avoid memory overruns and program dumps in SAP.

The split process in the EDI RIM must ensure that the sum of all line items in these
multiple transactions must equal the total payment recorded in the header of the
original 820 transaction. This will ensure that the sum of all line items in the con-
verted REMADV IDoc will equal the header total, assuming the map works correctly.

A user transaction will be created for program SPLIT_PAYMENT_ADVICE that splits
payment advices with 999 lines or more into multiple documents for clearing.

18.4.2 Dependencies

The X12 820 to REMADV IDoc interface is dependent on standard and custom
development and configuration in the EDI RIM and SAP:

EE A program, script, or process to count the number of segments in an incoming
X12 820 transaction

EE If the count exceeds 50,000 lines, split the 820 into multiple smaller transac-
tion sets.

EE During the split, validate that the sum total of all line item amounts equals
the header total of the original single 820.

EE Business process workflows built in the EDI RIM to process and route the incom-
ing X12 810 and REMADV.PEXR2003 IDocs

EE Inbound envelopes set up in the RIM for Gordy’s X12 820 version 5010 trans-
action

EE Outbound envelopes for 997 acknowledgments set up in the EDI RIM for gen-
eration during de-enveloping of inbound 820 transactions from Gordy’s Galaxy

718

Processing the Inbound Payment Advice18

EE Translation map in the EDI RIM for the inbound 820 X12 version 5010 to
REMADV IDoc conversion, including validation that the sum of items in the
converted IDoc equals the header total in the transaction

EE FI configuration in SAP linking Acme’s company code to Gordy for the EDI pay-
ment advice

EE Custom cross-reference table ZEDIXREF populated in SAP to convert the EDI
trading partner numbers to the SAP send and receive partners for the inbound
820 from Gordy

EE Inbound partner profile for Gordy with message type REMADV

EE Variant created for a job in the SAP Job Scheduler (Transaction SM36) for pro-
gram RBDAPP01 to post status 64 REMADV IDocs for all partners

EE Workflows in the EDI RIM and configuration in SAP to support posting of credit
and debit memos from Gordy using X12 transaction 812 and messages CREADV
(credit memo) and DEBADV (debit memo) with IDoc basic type PEXR2003.

These interfaces will run before the payment advice posts and will create credit
and debit memo documents in accounts receivable that will be cleared by the
payment advice.

18.4.3 Assumptions

Only 820 transactions with fewer than 50,000 segments are mapped to REMADV
IDocs for Gordy’s Galaxy.

The split is run by a script, program, or process that validates that the amounts
recorded at the item level of the split 820 transactions equal the sum total recorded
at the header of the original unsplit 820.

The REMADV IDoc posts to a payment advice in SAP. Posting of the IDoc to a
payment won’t trigger automatic clearing. AR clears the payment after the remit-
tance advice posts and after ensuring that the document does not exceed 999 lines.

There are a few other key assumptions:

EE An X12 812 credit and debit interface has been configured and that credit and
debit memos are being sent by Gordy’s Galaxy recording adjustments to their
final payment.

719

Technical Specifications 18.4

EE The EDI RIM sends EDI send and receive trading partner IDs in the IDoc control
segment fields SNDLAD and RCVLAD to identify SAP partner numbers through
a customer exit in the IDoc interface before the partner profile is read.

EE All IDoc errors are monitored by the EDI team in SAP.

EE Technical errors in the IDoc interface are documented and corrected by the EDI
team.

EE All IDoc application errors are handled by business users, backed up by the EDI
team where appropriate.

EE EDI errors are tracked and addressed in the EDI system.

18.4.4 EDI Process to Split Very Large 820s

A custom program, script, or process runs on all incoming 820s before they are
translated in the EDI RIM. This is a common EDI issue where very large payments
with numerous adjustments can be received. Scripts, java exits, or classes called
from a map or executed at the operating system level can all be used to run the
split logic. Your environment and available skill set will dictate your own approach.

Acme’s custom process counts the number of segments in the transaction, and if
the total exceeds 50,000, it splits the 820 into multiple transaction sets of around
50,000 segments each.

The multiple transaction sets are bundled into a single interchange and group with
the same ISA and GS envelopes that bundled the original unsplit 820 transaction set.

The control IDs for the split interchange and group are the same as the original.
The ST control IDs for the split transaction sets are incremented by 1, beginning
with the control ID of the original 820, for each split 820 in the group. If the
original 820 control ID is 1, then the first split 820 is 2 and so on for all the split
transaction sets in the group.

After the split run is complete the 820 is passed back to the EDI RIM for transla-
tion and routing to SAP.

The splitting is necessary because the translated REMADV IDocs are more than 10
times the size of the X12 820. IDocs that can exceed 200MB trigger short dumps
when they hit SAP. These are caused by overruns in roll, heap, and extended
memory in background work processes before the IDoc is written to the database.

720

Processing the Inbound Payment Advice18

If you want to learn more about this, butter up your friendly local Basis team. It’s
always a good idea for a developer to be on good terms with Basis.

Structural Issues that Affect the 820 Split

Before we can split the 820, Acme’s SAP EDI team must understand the structure
of the transaction. You can’t just split it any which way. The basic rule is that line
items must be kept intact, which means that the split can only occur after the last
line of either the RMR or ADX looping group.

The RMR looping group (the remittance advice accounts receivable open item
reference) reports details of invoices paid in the current remittance.

The ADX looping group (the adjustment) provides details of the customer’s adjust-
ments to the current payment, including any debit or credit memos generated by
the customer.

These adjustments should have been reported to Acme by the separate transmission
of an X12 812 credit/debit adjustment advice. But in the real world, this doesn’t
always happen, so standard EDI reason codes are used to provide some explana-
tion for any adjustments. Reason codes are included even when there is no debit
or credit memo to report.

From the point of view of the split, understanding the structure of each group
and how each occurs within a typical transaction is critical. The good news is that
there is consistency to these looping groups. The bad news is that this consistency
can fluctuate. And because each customer is different, it can implement the rules,
or not, differently.

The structure of each group is consistent…to a degree. Gordy is very good about
group occurrence. A typical 820 from Gordy always includes a block of data that
has nothing but RMR invoice groups followed by a block that is all ADX adjust-
ments, if there are any adjustments to report.

The two line item detail groups have three different structures:

EE Standalone ADX only: Adjustment amount and details

EE Standalone RMR only: Invoice amount and details

EE RMR with ADX subgroup: Invoice amount and details with adjustments to the
invoice payment

721

Technical Specifications 18.4

Let’s look at a few data samples to help clarify what this means.

Adjustments Block

The standalone ADX looping group always begins with an ADX and ends with an
REF segment, as in the line item sample in Listing 18.1.

ADX*-124.24*RL*CM*999401~
REF*ST*0999653098076~
REF*6O*694~
REF*BP*999510922~

Listing 18.1 Standalone ADX Payment Adjustment Looping Group

The data elements of the ADX segment identifies the following values:

EE ADX01: The amount of the adjustment.

EE ADX02: EDI reason code (RL for Freight on Returned Merchandise) identifying the
purpose for the payment adjustment.

EE ADX03: Adjustment document type: CM for credit memo or DM for debit memo

EE ADX04: Adjustment document number (sent to Acme in an earlier 812 transmis-
sion)

Gordy’s ADX group includes three REF segments that are always in the same order
and provide supporting information for the adjustment, including:

EE REF01 = ST: Ordering store location GLN

EE REF01 = 60: Qualifier identifying Gordy’s internal reason code for the adjust-
ment

EE REF01 = BP: Qualifier identifying Gordy’s internal adjustment control number

Invoice Payment Block

Gordy’s standalone RMR looping group always begins with an RMR and ends with
a DTM segment, as in the sample in Listing 18.2.

RMR*IV*0090000763*PO*1924.52*1924.52~
REF*PO*0000000805~
REF*MR*0077~
REF*TN*001230453~
REF*19*13~

722

Processing the Inbound Payment Advice18

REF*ST*0999653098076~
DTM*097*20090120~

Listing 18.2 Standalone RMR Invoice Payment Looping Group

The data element of the RMR segment identifies the following values:

EE RMR01: Payment document qualifier: IV for customer invoice

EE RMR02: Payment document number (Acme’s invoice number)

EE RMR03: Payment action code: PO = Payment on account

EE RMR04: Actual payment amount, including all adjustments taken

EE RMR05: Invoiced amount

Gordy’s standalone RMR group includes four or five REF segments that are always in
the same order and provide supporting data for the payment document, including:

EE REF01 = PO: Qualifier identifying customer PO number

EE REF01 = MR: Qualifier identifying merchandise type code for the ordered prod-
uct (can be omitted from the RMR group)

EE REF01 = TN: Qualifier identifying Gordy’s internal payment transaction refer-
ence number

EE REF01 = 19: Qualifier identifying Gordy’s division or department

EE REF01 = ST: Qualifier identifying Gordy’s store location GLN

The DTM date segment holds the payment transaction date identified by qualifier
097. This is the date that the payment was sent to Acme’s bank.

Adjusted Invoice Payments—Defining the Split

The RMR looping group with an ADX subgroup is a little more complicated. It always
begins with an RMR and ends with an REF segment as in the data sample in Listing
18.3.

RMR*IV*0090000764*PO*655.4*671.3~
REF*PO*0000000806~
REF*MR*0077~
REF*19*13~
REF*ST*0999653098076~
DTM*097*20090120~
ADX*-15.9*01*CM*09991131~

723

Technical Specifications 18.4

REF*6O*611~
REF*BP*999510922~

Listing 18.3 RMR Payment Looping Group with Reported Adjustment

The qualifiers for the RMR main and ADX subgroup are the same as for the stand-
alone RMR and ADX groups.

The issue is how we split. We know that we can always split a standalone RMR or
ADX group where the next segment equals RMR or ADX except where there is an ADX
group within an RMR group.

The structure of the ADX group is the key: Gordy only sends two REF segments
qualifying the ADX adjustment to the invoice payment when the ADX occurs within
an RMR group. They identify Gordy’s internal reason code and adjustment control
number and are always present in that order. So the split logic should follow the
code in Listing 18.4.

If next segment = RMR then
 Split before the next RMR segment
Elseif the next segment = ADX
 Count the following ref segments
 If ref segment count > 2 then
 Split before next ADX segment
 Else
 Split after ADX segment but
 before next ADX or RMR segment
 endif
endif

Listing 18.4 Logic for Split of Large 820s at ADX or RMR Item Level

Of course, the logic would change if your customer did not follow the same struc-
tural approach in their 820s as Gordy’s Galaxy. The key to the logic is to identify
the structural pattern in your customer’s usage.

The split process leaves us with two or more 820 transactions that are around
50,000 segments in size.

We’ll also keep running totals for all line item amounts. This amount comes from
data elements ADX01 in the standalone ADX group and RMR04 for the standalone RMR
and combined RMR-ADX line item groups.

724

Processing the Inbound Payment Advice18

The total for each split 820 will be saved in the BPR02 amount data element in
the header of the new transaction. Another running total will be kept for all split
820s and this will be compared to the total of the original unsplit 820. If there
is a discrepancy, an error will be raised, the split and unsplit transactions will be
analyzed manually, and the error will be identified.

If the totals match, the header segments of the original 820 are copied into each
new 820 transaction and the BP02 amount updated with the running total for the
split. The item groups are transferred as is from the original and the ST-SE envelopes
are applied. SE01 is updated with the number of segments in the new transaction
set. So a count is also kept of the number of segments, including ST-SE envelopes,
moved into the split transaction.

When all split transactions have been built, transaction sets are bundled into one
file, and the GS-GE and ISA-IEA group and interchange envelopes are applied. The
820s are then handed off to the de-enveloping and translation workflows and the
IDocs sent into SAP.

18.4.5 User Transaction Code for the SAP Split Program

Even though SPLIT_PAYMENT_ADVICE is a standard SAP program, it does not provided
a transaction code. The only way that we can allow business users to run it is by
creating a custom transaction code for them. Follow these steps:

1. Go to Maintain Transaction using Transaction SE93.

2. Enter transaction code “ZSPLIT” and click Create.

3. In the Create Transaction dialog, do the following:

EE Enter a description of the transaction in the Short text field.

EE Select Program and selection screen (report transaction) in the Start
object area.

4. Click OK to open the Create Report transaction screen. Enter “SPLIT_PAY-
MENT_ADVICE” in the Program field. The selection screen should be 1000.

5. Save the transaction code and assign it to a change request.

725

Mapping Specifications 18.5

18.5 Mapping Specifications

One map will be developed in the EDI RIM to translate the X12 820 remittance
advice from Gordy’s Galaxy to the REMADV.PEXR2003 IDoc. Mapping specifica-
tions for our example are detailed in Table 18.3.

REMADV 820 Sample Value Comments

E1IDKU1—Payment header—Min 1, Max 1

@SEGMENT 1 Hard-code segment attribute
to 1.

BGMTYP BPR01 REM Qualifier identifies remittance
advice where BPR01 = I

BGMNAME REMITTANCE
ADVICE

Hard-coded. Document name.

BGMREF TRN02 89587458952 Document reference. Gordy’s
electronic payment or check
number as reference.

BGMLEV ORG Hard-code. Document type
reference.

E1IDK03—Payment header dates—Min 0, Max 3

@SEGMENT 1 Hard-code segment attribute
to 1.

IDDAT 017 Qualifier identifies payment
date

DATUM BPR16 20140315 Date of payment

E1IDK02—Payment header documents—Min 0, Max 1

@SEGMENT 1 Hard-code segment attribute
to 1.

QUALF 022 Qualifier identifies payment
document number

BELNR TRN02 89587458952 Payment document number
such as EFT ID or check
number

Table 18.3 Mapping the X12 820 to the REMADV.PEXR2003 IDoc

726

Processing the Inbound Payment Advice18

REMADV 820 Sample Value Comments

E1IDKU3—Payment instructions—Min 0, Max 1

@SEGMENT 1 Hard-code segment attribute
to 1.

PAIMED BPR04 003 Identifies payment method:
SWIFT electronic transfer if
BPR04 = ACH

E1IDKU5—Header level amounts—Min 1, Max 1

@SEGMENT 1 Hard-code segment attribute
to 1.

MOAQUAL 001 Identifies header level payment
applied to remittance advice

MOABETR BPR02 5007089.34 Total amount of payment

CUR01 PR Qualifier identifies payer’s
currency for payment currency

CUXWAERZ CUR02 USD Payment currency

E1IDB02—Bank details—Min 0, Max 4—Loop 1 Payer’s bank

@SEGMENT 1 Hard-code segment attribute
to 1.

MOAQUAL BPR06 BA Identifies the sending bank of
the sold-to party where BPR06
= 01 for ABA transit routing
number of paying bank

FIIBKENN BPR07 895474124255 Bank ID of paying bank

CUR01 PR Qualifier identifies payer’s
currency for payment currency

CUXWAERZ CUR02 USD Payment currency

E1IDB02—Bank details—Loop 2 Acme’s bank

@SEGMENT 1 Hard-code segment attribute
to 1.

Table 18.3 Mapping the X12 820 to the REMADV.PEXR2003 IDoc (Cont.)

727

Mapping Specifications 18.5

REMADV 820 Sample Value Comments

MOAQUAL BPR10 BB Identifies Acme’s bank that
received the payment where
BPR10 = 01 for transit routing
number of receiving bank

FIIBKENN BPR11 912141111588 Bank ID of receiving bank

E1IDKA1—Partner info—Min 0, Max 4—Loop 1 Payer party

@SEGMENT 1 Hard-code segment attribute
to 1.

PARVW N101 RG Identifies payer party where
N101 = PR

PARTN N104 0999999999999 Gordy’s GLN number where
N103 = UL

E1IDKA1—Partner info—Loop 2 Beneficiary (payee)

@SEGMENT 1 Hard-code segment attribute
to 1.

PARVW BE Identifies payer party where
N101 = PE

NAME1 N102 Acme Pictures Payee’s name in payer’s system

E1IDPU1—Line item details—Min 1, Max N—1 instance for each line item detail group—
RMR payments

@SEGMENT 1 Hard-code segment attribute
to 1.

DOCNAME RMR01 REM Identifies remittance advice
(payment) where RMR01 = INV
(invoice paid)

DOCNUMMR RMR02 0090038759 Acme invoice number

E1IDPU5—Line item level amounts—Min 1, Max 10—Loop 1 Actual amount of payment

@SEGMENT 1 Hard-code segment attribute
to 1.

Table 18.3 Mapping the X12 820 to the REMADV.PEXR2003 IDoc (Cont.)

728

Processing the Inbound Payment Advice18

REMADV 820 Sample Value Comments

MOAQUAL 006 Hard-code. Identifies net
actual amount paid on invoice,
including all credit and debit
adjustments.

MOABETR RMR04 2400.00 Net amount of payment
(position of net from trading
partner guidelines)

CUXWAERZ CUR02 USD Pull from header level payment
currency for payer

E1IDPU5—Line item level amounts—Min 1, Max 10

MOAQUAL 004 Identifies amount on invoice

MOABETR RMR05 3400.00 Invoiced amount

CUXWAERZ CUR02 USD Header level payment currency

E1EDP03—Line item level dates—Min 0, Max 4

@SEGMENT 1 Hard-code segment attribute
to 1.

IDDAT 017 Hard-code. Qualifier identifies
payment date.

DATUM DTM02 20140315 Date invoice paid

E1EDP02—Line item level documents—Min 0, Max 4—Loop 1

@SEGMENT 1 Hard-code segment attribute
to 1.

QUALF 009 Hard-code. Qualifier identifies
Acme invoice number.

BELNR RMR02 0090038759 Acme invoice number

E1EDP02—Line item level documents—Loop 2

@SEGMENT 1 Hard-code segment attribute
to 1.

QUALF REF01 001 Hard-code. Qualifier identifies
Gordy’s PO number where
REF01 = PO.

Table 18.3 Mapping the X12 820 to the REMADV.PEXR2003 IDoc (Cont.)

729

Mapping Specifications 18.5

REMADV 820 Sample Value Comments

BELNR REF02 4500017679 Gordy’s purchase order number

E1EDPU2—Line item level deductions—Min 0, Max 100 (only populated if RMR group has
ADX adjustments)

@SEGMENT 1 Hard-code segment attribute
to 1.

AJTGRUND ADX02 06 EDI reason code. Will map
to SAP code during IDoc
processing in table T053E: by
company code, external reason
code, and internal SAP reason
code.

MOABETRG ADX01 -18.09 Deduction amount

MOAWAERS CUR02 USD Header level payment currency

E1IDPU1—Line item details—ADX adjustments payment only

@SEGMENT 1 Hard-code segment attribute
to 1.

DOCNAME ADX03 CRM Qualifier identifying credit
memo where ADX03 = CM.
IDoc debit memo would be
DBM and ADX03 would = E2.

DOCNUMMR ADX04 1865151339 Gordy’s credit memo number

E1IDPU5—Line item level amounts—Min 1, Max 10

@SEGMENT 1 Hard-code segment attribute
to 1.

MOAQUAL 007 Qualifier identifies deduction
amount

MOABETR ADX01 -180.09 Amount of deduction from
payment

CUXWAERZ CUR02 USD Header level payment currency

E1EDP02—Line item level documents—Min 0, Max 4—Loop 1

@SEGMENT 1 Hard-code segment attribute
to 1.

Table 18.3 Mapping the X12 820 to the REMADV.PEXR2003 IDoc (Cont.)

730

Processing the Inbound Payment Advice18

REMADV 820 Sample Value Comments

QUALF 014 Qualifier identifies accounting
document in customer’s system

BELNR RMR02 1865151339 Credit memo number

E1EDPU2—Line item level deductions—Min 0, Max 100

@SEGMENT 1 Hard-code segment attribute
to 1.

AJTGRUND ADX02 RL EDI reason code. Will map to
SAP reason code during IDoc
processing.

MOABETRG ADX01 -18.09 Deduction amount

MOAWAERS USD Hard-code

E1EDLU5—Total Amounts—Min 0, Max 10

@SEGMENT 1 Hard-code segment attribute
to 1.

MOAQUAL 002 Qualifier identifying sum
total payment amount for
remittance

MOABETR BPR02 Total amount of payment from
X12 header level

CUXWAERZ CUR02 Payment currency of payer

Table 18.3 Mapping the X12 820 to the REMADV.PEXR2003 IDoc (Cont.)

Running totals of the item-level amounts within the interchange, whether split or
unsplit, are kept during mapping. This is the syntax for this accumulation:

PU1_TOTAL = PU1_TOTAL + RMR04 OR ADX01

At the end of the mapping loop for each transaction set, the running total for the
items is compared to the header total for the transaction in BPR02. If there’s a
discrepancy, a transaction-level error is returned, and the map fails.

The running total in PU1_TOTAL is then cleared for the next transaction in the
interchange.

731

EDI Configuration in SAP 18.6

For split interchanges, additional running totals are kept for all header-level and
item level totals across the entire interchange. This is the correct syntax:

KU1_TOTAL = KU1_TOTAL + BPR02
SPLIT_PU1_TOTAL = SPLIT_PU1_TOTAL + RMR04 OR ADX01

At the end of the mapping loop on the interchange, SPLIT_PU1_TOTAL is compared
to KU1_TOTAL. If there is a discrepancy, a split interchange error is thrown, and
the map fails.

We can also, if needed at the summary level of the IDoc, keep running totals for
discounts, deductions, taxes, credit memos, debit memos, and so on.

The sold-to partner posts to the account field of the payment advice in SAP. It is
identified from the SNDPRN field of the IDoc control segment. There are no partner
mappings from the 820 N1 segment, and there is no external partner conversion
read of EDPAR for the REMADV IDoc in SAP.

The external payment adjustment reason code is mapped to the IDoc and passed
to function REMADV_INSERT, which posts the payment advice. The external reason
code is converted to the internal SAP reason code during IDoc processing by read-
ing table T053E (the reason code conversion table) before the payment advice is
posted. Both the external and internal SAP reason codes are posted to the payment
advice. Table T053E is maintained in the IMG.

18.6 EDI Configuration in SAP

We have some additional configuration in the IMG for the REMADV IDoc that
we did not have for other IDocs, including linking the sold-to partner to Acme’s
company code and maintaining the external to internal reason code mapping table.

18.6.1 EDPAR Entries

There are no EDPAR entries for the 820-REMADV interface.

18.6.2 Company Code to Sold-to Party Transaction OCBA

Each sold-to party who will send an EDI payment must be linked to Acme’s com-
pany code in table T076B.

732

Processing the Inbound Payment Advice18

Table T076B is read for the company code mapping during processing of the
E1EDKA1 partner segment using the SNDPRN value from the IDoc control seg-
ment. If there is no hit, the control segment field RCVPRN, which stores the logical
system for the receiving SAP system, will be used to read the company code in table
T001. If there is no hit in T001, an error is returned and IDoc processing stops.

Call Transaction OBCA, click New Entries, and enter the following values:

EE Partn.Type: “KU” for customer

EE PartnerNo: “GRDY01” for Gordy’s sold-to

EE CoCd: “3000” for Acme’s company code

We won’t enter a value into the company code name field. If we do, it must exactly
match the name sent by Gordy in E1EDKA1-NAME1 where PARVW = RE.

Save the entry. The completed entry should look like Figure 18.3.

Figure 18.3 Linking the Sold-to Partner to Acme’s Company Code

18.6.3 Reason Code Conversion

Reason codes tell us why a payment was adjusted. They describe over- or underpay-
ments and can be used in clearing when no adjustment document is referenced,
such as a credit memo.

There are 481 standard reason codes in X12 version 005010 in ADX02 (data ele-
ment 0426). Whatever reason codes Gordy is using in their own system will map
to the X12 codes.

We can define as many reason codes as we need in SAP and then map them to
any external codes. The contents and configuration of the reason codes is for the
business users and functional consultants. Our job is to map reason codes we’ll
be receiving from Gordy to reason codes set up for payment processing in SAP.

Reason codes are created against a company code in the IMG (Transaction SPRO)
using menu path Financial Accounting • Accounts Receivable and Accounts

733

EDI Configuration in SAP 18.6

Payable • Business Transactions • Incoming Payments • Incoming Payments
Global Settings • Overpayment/Underpayment • Define Reason Codes. They
are stored in tables T053R (Classification of Payment Differences) and T053S, which
stores the text descriptions.

We’ll assume that the reason codes have already been created. Users must also
define a version for the reason code conversion. The version allows for multiple
reason code mappings within the same company code. The menu path is the same
except the activity at the end, which is Define Reason Code Conversion Version.

We’ll assume that this has also been done. The reason code mapping is done by
activity Define Conversion of Payment Difference Reason Codes and stored in
table T053E.

Click the activity and the Determine Work Area: Entry dialog pops up. Enter
company code “3000” and click the green check mark to open the overview screen.

Click the New Entries button and enter the following values:

EE Version: “CUS”

EE Ext.reasn code: 06 = X12 quantities contested

EE Reason code: “CT”, which was configured by our finance team earlier for con-
tested quantities.

Save the entry. The completed screen should look like Figure 18.4.

Figure 18.4 Reason Code Mapping in SAP

18.6.4 ZEDIXREF Entries

Custom EDI trading partner cross-reference table ZEDIXREF is populated with the
entries shown in Table 18.4 for the inbound 820 interface from Gordy’s Galaxy.

734

Processing the Inbound Payment Advice18

Field Value Description

DIRECT 2 Direction inbound

STDMES 820 EDI transaction

MESTYP REMADV IDoc message type

IDOCTP PEXR2003 IDoc basic type

CIMTYP IDoc extension

SNDPRN GRDY01 SAP send partner

RCVPRN DEVCLNT100 SAP receive partner

SNDLAD 99934567999 EDI send trading partner ID

RCVLAD 99999998889 EDI receive trading partner ID

Table 18.4 Trading Partner Mapping for Gordy’s 820 Payment Advice

18.6.5 Inbound Partner Profile Transaction WE20

We’ll need an inbound partner profile for Gordy’s Galaxy partner number GRDY01,
partner type KU (customer), and partner role BP (bill-to) with message type REMADV.

In the inbound parameters table control of the partner profile for Gordy’s Galaxy,
click Create outbound parameters and enter the following values in the Out-
bound parameters screen, as shown in Figure 18.5.

Figure 18.5 Inbound Parameters for Gordy’s REMADV Payment IDoc

735

Summary 18.7

EE Partner Role: “BP”

EE Message Type: “INVOIC”

EE Process Code: “REMA”

EE Processing by Function Module area: Trigger by background program radio
button

Don’t forget to save the partner profile.

Process code REMA posts to a payment advice without triggering clearing. It links
to function module IDOC_INPUT_REMADV. Clearing is done later by accounts receiv-
able using Transaction F-28.

Process code REMC creates the payment advice and automatically triggers follow-
up clearing. It links to function IDOC_INPUT_REMADV_CTR.

18.7 Summary

Right about now the great Darryl Q. Fernhausen would be smiling happily and
ordering a second martini at the perennially film noir Formosa Café, his favorite
Hollywood watering hole.

The money is in the bank, accounts receivable have been cleared, and the profits
on his sales have been posted to his books. You wouldn’t blame him for thinking
that the world is his oyster.

Let’s review. The overall process is fairly straightforward. An X12 820 interchange
is sent when an electronic payment is made to Acme’s bank. It is translated to a
REMADV.PEXR2003 IDoc that posts to a payment advice in SAP. The payment
advice is then used to clear accounts receivable.

Of course, there were some knotty issues to unravel before the remittance could
post and receivables clear, mostly having to do with size.

Though Acme’s most important customer Gordy’s Galaxy of Games & B Flix only
sends about four or five payments a month, one of these 820s can be very large,
especially around the holiday shopping season—so large that it could trigger a
program dump in SAP if it were converted directly to an IDoc.

We handled this issue by describing the logic for a script that would count the
number of segments in each incoming 820. If this number equaled 50,000 or

736

Processing the Inbound Payment Advice18

more, the script would split the interchange into multiple 820 transaction sets of
less than 50,000 segments each.

We also saw that payment advice notes with more than 999 line items had to be
split by a standard SAP program into multiple smaller documents before they
could be cleared.

We noted the extra configuration steps for the inbound REMADV message. These
include linking the sold-partner for the customer sending an 820 to the Acme
company code and mapping external to internal SAP reason codes for payment
adjustments.

All in all this is a very interesting interface that poses stimulating challenges for
the EDI developer both in and out of SAP. And it’s one that has a very high profile
so it’s important to get it right.

The inbound remittance advice closes the order-to-cash cycle and ends our explora-
tion of Acme’s key EDI interfaces. It’s time now to move on and look at extending
the IDoc interface with some custom utilities in Act IV.

ACT IV
Finishing Touches

739

“Work with me, baby!” Darryl Q would plead with his actors when they
couldn’t feel his vision for a role. We all need a helping hand sometimes—
and it’s no different for Acme’s SAP system. Luckily the IDoc interface
provides plenty of opportunity to help us help ourselves. So let’s look at some
useful utilities that will shed light on how to extend the IDoc interface with a
little bit of creative ABAP.

19 Extending the Interface:
Custom IDoc Tools

Developers love their tools. We build them in response to needs that crop up during
the course of a project. Our toolkits are more than just a collection of program-
ming tools, utilities, and processes: They are memories of people, projects, and
challenges that were met with persistence and creativity.

SAP provides particularly rich opportunities to build custom solutions to our
own unique problems. ABAP is a simple and elegant programming language with
powerful data-processing capabilities. The SAP Data Dictionary is a cornucopia of
business, application, and programming data and metadata.

The IDoc interface is a sublime and consistent development platform largely
implemented through standard function and method calls that are easy to use in
our own programs. All it takes is a little time and effort to understand how it all
works together.

Darryl Q. Fernhausen, the legendary founder of Acme Pictures, may not have been
a programmer, but he knew that we are only limited by our imagination. And the
requirements of the project.

So let’s roll up our sleeves and step through four solutions that we may find useful
during implementation and production support:

EE EDI to IDoc trading partner conversion with custom table ZEDIXREF

EE Partner profile mass upload

740

Extending the Interface: Custom IDoc Tools19

EE Mass transfer of IDocs from one SAP client to another

EE Sending IDoc status from SAP to an external system

We’ll end our exploration by briefly stepping into the realm of XML schema devel-
opment to add qualifiers to an IDoc XSD exported from SAP.

And once again, please remember that nothing is presented here as a final solu-
tion—only as a starting point for your own explorations.

19.1 EDI to IDoc Trading Partner Conversion

Tinkering with the code deep inside the IDoc interface has led to countless hours
spent figuring out how to use the IDoc control segment to meet different needs
in different places.

That’s how we ran into enhancement SIDOC001. It has only one exit—EXIT_

SAPLEDI1_001—called from a strategic location during inbound and outbound
processing: just before the IDoc is written to the database.

SIDOC001 provides a last-chance opportunity to add custom values to the control
record before the IDoc is written to the database and prepped either for export
(outbound) or for inbound application processing.

19.1.1 The Issue

The issue is about different systems and different needs. SAP can only process an
IDoc if the SAP partner number is in the SNDPRN (inbound) or RCVPRN (outbound)
fields of the control segment.

The EDI RIM can’t identify, translate, or route IDocs and EDI messages unless it
has the EDI sending and receiving trading partner IDs.

On the inbound, the EDI RIM can’t pass the SAP partner number to the SNDPRN
field unless it’s hard-coded in the map or stored in a custom cross-reference table
and accessed by a process before the IDoc is sent into SAP. The RIM stores partner
information by EDI trading partner ID, not SAP customer or vendor numbers.

On the outbound, SAP can’t pass the EDI trading partner IDs unless they are stored
in a custom cross-reference table, accessed by a user exit and inserted into the
control segment before the IDoc is sent to the EDI RIM.

741

EDI to IDoc Trading Partner Conversion 19.1

So we need a cross-reference table and custom code to read it, either in the RIM
or in SAP. Acme Pictures decided to keep these data and development in SAP.

19.1.2 The Solution

Build and populate table ZEDIXREF to link the SAP EDI partner number to the EDI
trading partner ID and transaction for both inbound and outbound interfaces. We
will enter one record for each interface.

ZEDIXREF will have a maintenance dialog for data entry with Transaction SM30.

The table will be read in a custom modification project—ZEDITPXR—in EXIT_
SAPLEDI1_001 from enhancement SIDOC001. The user exit code runs during both
outbound and inbound processing, so we need to determine the direction of the
IDoc at runtime.

During outbound processing, the SAP send and receive partners and the message
type are used to get the EDI trading partner IDs from ZEDIXREF and insert them
into the RCVLAD and SNDLAD fields of the control record before the IDoc is writ-
ten to the database and exported to the EDI RIM.

The RIM then uses the EDI trading partner IDs and message type in the control
segment to identify the envelopes, translation map, and the target destination for
the converted X12 transaction.

During inbound processing, the EDI partner IDs in RCVLAD and SNDLAD and the
message type are used to get the SAP send and receive partners from ZEDIXREF
and insert them into SNDPRN and RCVPRN of the control record before the partner
profile is checked and the IDoc written to the database.

The structure of table ZEDIXREF and the read keys for outbound and inbound
processing are detailed in Chapter 7, Section 7.4.4, subsection ZEDIXREF: Custom
EDI SAP Trading Partner ID Conversion.

19.1.3 Development Work Flow

We will need to create the following objects to implement this exit:

EE Custom EDI to SAP partner conversion table ZEDIXREF

EE Custom function group ZVEDI for the maintenance screen that we will also use
for other custom EDI functions

742

Extending the Interface: Custom IDoc Tools19

EE Maintenance screen for table ZEDIXREF

EE Modification project ZEDITPXR using enhancement SIDOC001

EE User exit code in include program ZXEDIU01 for EXIT_SAPLEDI1_001.

We will create table ZEDIXREF in the Data Dictionary either with Transaction
SE11 or the Object Navigator, with Transaction SE80, or by clicking Edit object •
Dictionary • Database table.

1. Enter “ZEDIXREF” into the Database table field, and click Create to open the
Maintain Table screen.

2. Enter a text description in the Short Description field.

3. In the Delivery and Maintenance tab, enter the following:

EE Delivery Class: “A” for Application table

EE Data Browser/Table View Maint.: Display/Maintenance Allowed to
generate a maintenance screen for data entry with Transaction SM30 for the
custom table

4. Type the field and data element names in the Fields tab displayed in Figure
19.1.

5. Save the table and assign it to a package and a change request.

Figure 19.1 Field and Data Elements for Table ZEDIXREF

743

EDI to IDoc Trading Partner Conversion 19.1

6. Click the Technical Settings button. In the Maintain Technical Setting screen,
enter the following values:

EE Data class: “APPL1” for transaction data

EE Size category: “0” for 0 to 2,300 records

EE Default for all other options

7. Activate the technical settings by clicking the activate icon.

8. Return to the Maintain Table screen and activate table ZEDIXREF.

Create Function Group ZVEDI

Our custom table is ready to be populated. Next we’ll create a custom function
group that we will use for the maintenance screen and for other EDI utilities that
we will put into function modules.

Function groups can be created with Transaction SE37, menu option GoTo • Func-
tion Groups • Create Group or in the repository information system with Transac-
tion SE80 by clicking button Edit Object and selecting the Function Group tab.

We’ll use a slightly different, more direct, technique.

1. Go to the repository information system with Transaction SE80.

2. Select Function Group from the dropdown list in the navigation panel and
enter the name of a custom function group: “ZVEDI”.

3. Press (Enter). A pop-up will point out that function group ZVEDI does not exist
and will ask to create the object. Click Yes.

4. The Create Function Group dialog will pop up. Enter a text description and
click Save (as shown in Figure 19.2).

Figure 19.2 Custom Function Group for EDI Utilities

744

Extending the Interface: Custom IDoc Tools19

5. Assign the object to a change request when prompted and the function group
will be created.

6. Note that the function group has two include programs: LZVEDITOP and LZVE-
DIUXX. Never change the names of either of these includes.

EE If we create a function module in our custom function group, all data decla-
rations and global variables will go into LZVEDITOP.

EE LZVEDIUXX will hold the parameters and main code for all function modules
created in generated include programs.

We will leave the function group for now. We are ready to generate a maintenance
screen.

Create Maintenance Screen

Meanwhile, back at the Data Dictionary, the maintenance screen for table ZEDIXREF
is waiting to be created.

1. Select menu option Utilities • Table Maintenance Generator in the Maintain
Table screen.

2. The Generate Maintenance Dialog screen opens. Enter the following values:

EE In the Authorization group field, enter either a custom or standard group
name, depending on your security requirements and policies.

EE In the Function group field, enter the custom function group ZVEDI that we
just created.

EE In the Maintenance type field, choose the Two step radio button, which
provides an overview and details data entry screen.

EE Maint. screen no.: Enter “100” and “200”.

The default selections are fine for the rest. The screen should look like Figure
19.3.

3. Select menu path Generated Objects • Create. The system prompts you to
assign the maintenance screen to a change request. After this is done, the screen
is created and a generation log is returned.

4. Confirm that the maintenance screen exists with Transaction SM30. Enter the
table name and click Maintain. The Overview screen appears first.

745

EDI to IDoc Trading Partner Conversion 19.1

Figure 19.3 Generating the Data Entry Screens for ZEDIXREF

5. Click New Entries, and the data entry detail screen will open, as displayed in
Figure 19.4.

Figure 19.4 The Generated Data Entry Details Screen for ZEDIXREF

6. Begin entering SAP-EDI trading partner cross-reference data. Save each record
entered.

746

Extending the Interface: Custom IDoc Tools19

Now that we have the table and a maintenance screen, we can move on to the
exit code.

19.1.4 Writing the Code

Figure 19.5 outlines the logical processing flow for the EDI and SAP partner updates
to the IDoc control segment in the exit code in modification project ZEDITPXR.

Read control
segment direction/
partner/message

IB
Get SAP send and

receive partner
numbers

Get EDI send and
receive trading

partner IDs

Read key = Direct/
EDI trade partners/

IDoc message

Read key = Dir/
SAP partners/
IDoc message

Read tab ZEDIXREF

END: Return
to IDoc proc.

Direction

IDoc hits exit just
before DB write

Insert EDIDC in:
SAP SNDPRN/

RCVPRN

Insert EDIDC out:
EDI SNDLAD/

RCVLAD

OB

Figure 19.5 Logical Processing Flow for Modification Project ZEDITPXR

It is a pretty straightforward piece of code, regardless of direction. The exit is
called just before the IDoc is written to the database. During inbound processing,
the partner profile has not been read yet. An SQL statement reads the table and,
if there’s a hit, the IDoc control segment is updated.

There are a couple of gotchas that we need to be aware of. This exit is called for
every inbound or outbound IDoc. Processing should be restricted to the messages
and partners that we want to call it. We should not return a fatal error if the SQL
read of ZEDIXREF fails.

747

EDI to IDoc Trading Partner Conversion 19.1

We begin by creating modification project ZEDITPXR in CMOD. Don’t forget to
save the project and assign it to a package and a change request. We use enhance-
ment SIDOC001 with component EXIT_SAPLEDI1_001. Double-click the component,
and then double-click INCLUDE ZXEDIU01 in the function builder to create the exit
program and assign it to a package and a change request.

Before we begin coding, let’s look at how our exit is used. It’s called by function
EDI_DOCUMENT_OPEN_FOR_CREATE, which itself is one of the first tasks invoked by
function IDOC_CREATE_ON_DATABASE before the IDoc has been checked, assigned a
number, and written to the database.

EDI_DOCUMENT_OPEN_FOR_CREATE calls the exit immediately, before it does anything
else. The function call is in Listing 19.1.

CALL CUSTOMER-FUNCTION '001'
 EXPORTING CONTROL_IN = IDOC_CONTROL
 IMPORTING CONTROL_OUT = IDOC_CONTROL.

Listing 19.1 Call Syntax for EXIT_SAPLEDI1_001

It has only two parameters: control segment in and control segment out. The cur-
rent control segment is passed in and out, allowing us to add or change any value
in the control record.

After the exit completes its work, EDI_DOCUMENT_OPEN_FOR_CREATE checks the control
segment to ensure that all mandatory fields, including MESTYP, IDOCTP, SNDPRT,
SNDPRN, RCVPRT, RCVPRN, and others, are populated with valid values. Errors
are returned, and the IDoc fails if any are empty or invalid.

The initial IDoc status record is also created, and the status set to 01—IDoc gener-
ated—for outbound or 50—IDoc added—for inbound.

When processing is returned to IDOC_CREATE_ON_DATABASE, the IDoc data segments
are built, status records are assembled, an IDoc number is assigned, additional
syntax checks are run, and the control, data, and status records are written to the
IDoc database.

During inbound processing, the partner profile is checked after the IDoc has been
written to the database by IDOC_CREATE_ON_DATABASE. We can add the SAP partner
numbers to SNDPRN and RCVPRN through our exit and they will pass all checks
in the IDoc interface, including the partner profile.

748

Extending the Interface: Custom IDoc Tools19

Our first logical requirement is to restrict the control records updated to our EDI
IDocs. We can use the EDI transaction field in STDMES, since we’ll be populating
it only for EDI IDocs:

*Only change control segment for EDI IDocs
IF NOT CONTROL_IN-STDMES IS INITIAL.
ENDIF.

Processing will immediately end for any IDoc that does not pass this check and
control returned to the calling function.

We also need to distinguish between inbound and outbound interfaces, as shown
in Listing 19.2.

*IDENTIFY IDOC DIRECTION -- 1 = OUTBOUND PROCESSING
 IF CONTROL_IN-DIRECT = '1'.
*INBOUND PROCESSING
 ELSE.
 ENDIF.

Listing 19.2 Distinguishing between Inbound and Outbound Interfaces

For inbound processing, we pull the SAP partner numbers from ZEDIXREF and put
them into the SNDPRN and RCVPRN fields of the CONTROL_OUT export parameter.
We do this with the SQL statement in Listing 19.3.

*GET SAP PARTNER NUMBERS FOR INBOUND IDOCS

SELECT SINGLE RCVPRN SNDPRN INTO (CONTROL_OUT-RCVPRN,
 CONTROL_OUT-SNDPRN)
 FROM ZEDIXREF WHERE DIRECT = CONTROL_IN-DIRECT
 AND STDMES = CONTROL_IN-STDMES
 AND MESTYP = CONTROL_IN-MESTYP
 AND IDOCTP = CONTROL_IN-IDOCTP
 AND CIMTYP = CONTROL_IN-CIMTYP
 AND SNDLAD = CONTROL_IN-SNDLAD
 AND RCVLAD = CONTROL_IN-RCVLAD.

Listing 19.3 Reading SAP Partner Numbers during Inbound Processing

During outbound processing we read the EDI trading partner IDs into the RCVLAD
and SNDLAD fields of the CONTROL_OUT export parameter using the SQL statement
in Listing 19.4.

749

Mass Upload of Partner Profiles to SAP 19.2

*GET EDI TRADING PARTNER ID'S FOR OUTBOUND IDOCS

SELECT SINGLE RCVLAD SNDLAD INTO (CONTROL_OUT-RCVLAD,
 CONTROL_OUT-SNDLAD)
 FROM ZEDIXREF WHERE DIRECT = CONTROL_IN-DIRECT
 AND STDMES = CONTROL_IN-STDMES
 AND MESTYP = CONTROL_IN-MESTYP
 AND IDOCTP = CONTROL_IN-IDOCTP
 AND CIMTYP = CONTROL_IN-CIMTYP
 AND SNDPRN = CONTROL_IN-SNDPRN
 AND RCVPRN = CONTROL_IN-RCVPRN.

Listing 19.4 Getting EDI Trading Partner IDs during Outbound Processing

There’s another very important gotcha. Even if nothing is changed in this code—
even if the exit function in INCLUDE ZXEDIU01 is activated but no code is written—
control_in must be copied to control_out; otherwise the control segment will be
initialized and the IDoc will fail at status 56—IDoc with errors added.

The calling program uses control_out to complete the control segment that is written
to the IDoc database if the exit is active. If control_in is not copied to it, control_out
will be blank and the IDoc will fail with no control segment.

Save and activate the code. Navigate back to the selection screen of the modifica-
tion project and activate it by selecting menu option Project • Activate project.

19.2 Mass Upload of Partner Profiles to SAP

Like many ABAP programmers, we started out writing batch data communications
(BDC) programs to load master data into SAP from ASCII flat files.

Our next ABAP utility (ZEDI_UPLDPP) isn’t all that different from these old-fashioned
BDCs. You load a file, fill internal tables with data, and then pass the populated
tables to an application.

Instead of calling a transaction or creating and running a batch input session, we
will pass our internal tables to the same standard function modules that SAP uses
to create or change partner profiles with Transaction WE20.

750

Extending the Interface: Custom IDoc Tools19

The program behind Transaction WE20, SAPMSEDIPARTNER, is old-school ABAP,
with some object-oriented event handling, that builds its internal tables and calls
the following functions in function group EDI6 to create or change partner profiles:

EE EDI_AGREE_PARTNER_INSERT: Inserts new partner profile header in table EDPP1

EE EDI_AGREE_OUT_MESSTYPE_INSERT: Creates outbound partner profile in table
EDP13.

EE EDI_AGREE_OUT_IDOC_INSERT: Inserts message control record for outbound part-
ner profile in table EDP12

EE EDI_AGREE_IN_MESSTYPE_INSERT: Inserts new inbound partner profile in table
EDP21

EE EDI_AGREE_OUT_MESSTYPE_UPDATE: Changes an existing outbound partner profile

EE EDI_AGREE_OUT_IDOC_UPDATE: Updates existing message control record for out-
bound partner profile

EE EDI_AGREE_IN_MESSTYPE_UPDATE: Changes existing inbound partner profile

Our custom ABAP utility only adds the ability to create or change more than one
partner profile at a time.

This utility takes advantage of standard IDoc interface functionality and is a great
way to learn more about how SAP processes partner profiles.

19.2.1 The Issue

Partner profiles can’t be transported from one client to another. On a typical project
they are created or changed manually every time there is a move to a new client
or environment. This happens frequently during a project lifecycle, particularly
as we gear up for multiple rounds of integration and performance testing and for
cutover to the production system.

So this task can be tedious and time-consuming, particularly if a large number of
partners are set up each time. Life would be simpler if we could just run a program
that would upload our partner profiles from stable text files each time we needed
to rebuild them.

751

Mass Upload of Partner Profiles to SAP 19.2

19.2.2 The Solution

We will write an ABAP program (ZEDI_UPLDPP) to load partner profiles from three
text files that will be maintained in a Microsoft Access database, along with other
EDI trading partner data collected from spreadsheets and other sources.

The text files provide the data feed needed to populate the following partner profile
master tables in SAP:

EE EDP13: Outbound

EE EDP12: Outbound message control

EE EDP21: Inbound

The structure of the outbound partner profile text load file for EDP13 is detailed
in Table 19.1.

Field Name Length Value Description

RCVPRN 10 GRDY01 SAP receive partner

RCVPRT 2 KU Receive partner type: customer

RCVPFC 2 BP Receive partner function: bill-to

MESTYP 30 INVOIC IDoc message type: Invoice

MESCOD 3 Message code

MESFCT 3 Message function

OUTMODE 1 3 Output mode: Collect IDocs, transfer,
and start external subsystem

RCVPOR 10 XML_IDOC Receive port: EDI file port

IDOCTYP 30 INVOIC02 IDoc basic type

CIMTYP 30 IDoc extension

STD 1 X EDI standard: X12

STDVRS 6 005010 Version of EDI standard

STDMES 6 810 EDI transaction/message type

EDIVIEW 30 IDoc view

Table 19.1 Outbound Partner Profile File Structure with Sample Value

752

Extending the Interface: Custom IDoc Tools19

Table 19.2 details the structure of the outbound partner profile message control
configuration text load file for EDP12.

Field Name Length Value Description

RCVPRN 10 GRDY01 SAP receive partner

RCVPRT 2 KU Receive partner type: Customer

RCVPFC 2 BP Receive partner function: Bill-to

KAPPL 2 V3 Application: Billing

KSCHL 4 ZD00 Message (output) type

EVCODA 30 SD09 Process code

MESTYP 30 INVOIC IDoc message type: Invoice

MESCOD 3 Message code

MESFCT 3 Message function

Table 19.2 Outbound Partner Profile Message Control File Structure

Table 19.3 details the structure of the inbound partner profile text load file for
EDP21.

Field Name Length Value Description

SNDPRN 10 GRDY01 SAP send partner

SNDPRT 2 KU Send partner type: Customer

SNDPFC 2 SP Receive partner function: Sold-to

MESTYP 30 ORDERS IDoc message type: Invoice

MESCOD 3 Message code

MESFCT 3 Message function

EVCODE 30 ORDE Process code

INMODE 1 3 Processing mode: Trigger by background
program

Table 19.3 Inbound Partner Profile Text File Structure

753

Mass Upload of Partner Profiles to SAP 19.2

The program can load partner profiles for all partner types but we’ll only use it
for customers and vendors.

19.2.3 Dependencies

Customer and vendor master records for all EDI partners must be loaded into SAP
before we can build partner profiles.

Output control must be configured and condition tables populated for all output
types and EDI partners.

A table is built in the external database to hold partner profile data for each of the
load files. The structure of each table mirrors the structure of its corresponding
load file as detailed in the tables above.

An extract of all EDI vendors and sold-to partner numbers is pulled into an ASCII
file from table KNA1 (customer master) and table LFA1 (vendor master).

The partner number extract is imported into the access database and stored in a
table that is updated with partner types KU for customers and LI for vendor. An
extract is also pulled from each output type condition table with the following values:

EE Application

EE Output type

EE Partner number

The two SAP extracts provide the feed data to begin building the partner profile
extract tables for EDP13, EDP12, and EDP21. The three tables can be populated
through a mix of update queries on the SAP extracts and manual data entry to
capture all the gaps.

After the partner profile tables have been populated, a query is created for each
to sort and export the partner profile table data to three ASCII flat files for use by
our load utility.

Changes to partner profiles can be maintained in the local database and loaded to
SAP by ZEDI_UPLDPP, at least through the development and test phases of the project.

754

Extending the Interface: Custom IDoc Tools19

19.2.4 Coding ZEDI_UPLDPP

At its most basic, ZEDI_UPLDPP loads three text files from a local PC directory (or
the application server) and moves them into internal tables that have the structure
of the partner profile tables in SAP. These internal tables drive creation or change
of the partner profiles by the program.

It loops on the partner number at the header level and first checks if the partner
profile already exists. If it does not, it creates a new partner profile by calling
the relevant create functions for the inbound (EDP21) or outbound (EDP13 and
EDP12) tables.

If the partner profile exists, it calls change functions for the partner profiles and
updates them with the internal table values.

Once the partner profiles are created or any errors are identified, it builds an inter-
nal table for a report and outputs it as an ALV list report.

Figure 19.6 outlines the processing flow for the partner profile upload program
ZEDI_UPLDPP.

ZEDI_UPLDPP has a simple structure composed of the following elements:

EE Table declarations

EE Selection screen definition

EE Type, internal table, string, and field variable declarations

EE ALV list report data declarations, including type pools, internal table, string,
and variable definitions

EE A report header include program for the ALV list report

EE An ABAP INITIALIZATION event

EE A START-OF-SELECTION event that modularizes program functions in discrete
form routines:

EE Form 000: Initialize internal tables and strings

EE Form 010: Upload input files and pass to internal tables

EE Form 020: Build internal tables used to load the partner profiles

EE Form 030: Create partner profiles and build a status report table

755

Mass Upload of Partner Profiles to SAP 19.2

EE Form 040: ALV report housekeeping, including defining sort order and
appending report titles

EE Form 050: Build ALV list report field catalog

EE Form 060: Call the ALV list report function to output report

Call function:
Change msg cntrl
with itab EDP12

Call function:
Create PP header
with itab EDPP1

Call function:
Create OB PP

with itab EDP13

Call function:
Create msg cntrl
with itab EDP12

Call function:
Create IB PP

with itab EDP21

Call function:
Change OB PP

with itab EDP13

Call function:
Change IB PP

with itab EDP21

Build ALV report
itab, format output

ALV list report

YesNo

END

EDP21
EDP12

EDP12: upload
input files from PC

iTable EDP21:
IB parameters

iTable EDP12:
Message control

iTable EDP13:
OB parameters

iTable EDPP1:
Header data

Build internal
tables for partner

profile data

Already
Exists

Loop on partner numbers

Figure 19.6 Program Flow for Partner Profile Upload

756

Extending the Interface: Custom IDoc Tools19

The selection screen for ZEDI_UPLDPP in Figure 19.7 points to the input files that
will be used to load the partner profiles.

Figure 19.7 Selection Screen for ZEDI_UPLDPP

First we create ZEDI_UPLDPP using Transaction SE38 or, from the Object Navigator
SE80, the path Edit object • Program • Create. We’ll use the following attributes:

EE Title: Partner profile upload utility

EE Type: Executable program

EE Status: Customer production program

EE Application: Cross-application

The table declaration points to the key partner profile tables:

EE EDPP1: Partner profile header

EE EDKP1: Key structure for EDPP1

EE EDP12: Message control

EE EDP13: Outbound profile

EE EDP21: Inbound profile

Types are declared for each of the three input files matching the structures in Table
19.1, Table 19.2, and Table 19.3. Listing 19.5 declares the structure of the status
report.

*** Type for output of report detail
types: begin of t_out,
 parnum type edipparnum,
 partyp type edippartyp,
 direct(03) type c,
 parfunc type ediprcvpfc,
 mescod type edipmescod,
 mesfct type edipmesfct,
 mestyp type edipmestyp,
 stdmes type edi_pvstdm,
 msg(70) type c,

757

Mass Upload of Partner Profiles to SAP 19.2

 ok_flg(01) type c,
 end of t_out.

Listing 19.5 Status Report Type Structure

Internal tables are declared to load the partner profiles, read the data from the three
input files, and output the status report, as described in Listing 19.6.

*** Partner profile load tables
data: gt_edpp1 type standard table of edpp1
 with header line,
 gt_edp12 type standard table of edp12
 with header line,
 gt_edp13 type standard table of edp13
 with header line,
 gt_edp21 type standard table of edp21
 with header line,
 gt_parnum type standard table of t_parnum
 with header line.
*** Partner profile retrieval tables
data: gt_ifile type standard table of t_ifile
 with header line,
 gt_ofile type standard table of t_ofile
 with header line,
 gt_mcfile type standard table of t_mcfile
 with header line.
*** ALV report output table
data: iout type standard table of t_out with header line.

Listing 19.6 Partner Profile and Report Internal Tables

Next we declare tables and strings for our ALV list report referencing type pool
SLIS to pass report data to function REUSE_ALV_LIST_DISPLAY, which outputs the
ALV list report:

EE IFIELDCAT TYPE SLIS_T_FIELDCAT_ALV and SFIELDCAT LIKE LINE OF IFIELDCAT:
Passes the field catalog for the header and details tables used in the ALV list
report

EE ISORTCAT TYPE SLIS_T_SORTINFO_ALV and SSORTCAT LIKE LINE OF ISORTCAT:
Defines ALV list report data sort order

EE SLAYOUT TYPE SLIS_LAYOUT_ALV: Defines layout parameters for the report such
as minimum line size

758

Extending the Interface: Custom IDoc Tools19

EE IEVENTCAT TYPE SLIS_T_EVENT and SEVENTCAT LIKE LINE OF IEVENTCAT: Iden-
tifies ALV report events defined in type pool SLIS

START-OF-SELECTION processing begins. After all internal tables are initialized, form
010_GET_INPUT_FILES is called three times (once for each input file) to load the file
with function GUI_UPLOAD.

The internal table name and the path and file name for each input file is passed to
the routine. This is the call syntax:

perform: 000_get_input_files tables gt_ifile
 using gs_filename rc.

RC returns the status of the upload from return code SY-SUBRC.

If GUI_UPLOAD successfully loads all input files into their internal tables, form
005_BUILD_DATA_TABS is called to build the tables that will be used to load the
partner profiles.

First, all partners are identified from the input files and passed to internal table
GT_PARNUM, which holds only the partner number and partner type. The build of
each partner profile table then proceeds through a loop on GT_PARNUM, beginning
with the build of EDPP1, which creates the partner profile header. The code to
build EDPP1 is in Listing 19.7.

*** Collect partner profile header data in gt_edpp1
loop at gt_parnum.
 gt_edpp1-mandt = sy-mandt.
 gt_edpp1-parnum = gt_parnum-parnum.
 gt_edpp1-partyp = gt_parnum-partyp.
 gt_edpp1-matlvl = 'A'.
 gt_edpp1-usrtyp = 'US'.
 gt_edpp1-usrkey = sy-uname.
 gt_edpp1-usrlng = sy-langu.
 append gt_edpp1.
endloop.

Listing 19.7 Building the Partner Profile Header

Each subsequent partner profile table is built by looping on the internal table that
holds the input file data, as in the code in Listing 19.8.

*** Collect inbound partner profile data in gt_edp21
Loop at gt_ifile.

759

Mass Upload of Partner Profiles to SAP 19.2

 move-corresponding gt_ifile to gt_edp21.
 gt_edp21-mandt = sy-mandt.
 gt_edp21-synchk = 'X'.
 collect gt_edp21.
endloop.
sort gt_edp21 ascending.

Listing 19.8 Template for Building Partner Profile Internal Tables

Now comes the pièce de résistance, as they say: inserting or updating the partner
profiles in form 010_CREATE_PARTNERS through another loop on GT_PARNUM. Each
pass also builds the status report internal table IOUT.

This is a two-step process, as displayed in the code in Listing 19.9.

*** Loop thru partners, build report output tab
refresh: iout.
loop at gt_parnum.
 clear: iout.
 iout-parnum = gt_parnum-parnum.
 iout-partyp = gt_parnum-partyp.

*** create partner profile at header level
 perform create_header using iout-parnum
 iout-partyp
 pp_rc.
 if pp_rc = 0 or pp_rc = 2.

*** create partner profile detail
 perform create_parameters using pp_rc.
 endif.
endloop.

Listing 19.9 Two-Step Partner Profile Build Process

First form CREATE_HEADER is called to insert the partner profile header by calling
function EDI_AGREE_PARTNER_INSERT using a string populated by internal table
GT_EDPP1, as illustrated in Listing 19.10.

*** Move current record in itab gt_eddp1 to string
clear gs_edpp1.
move-corresponding gt_edpp1 to gs_edpp1.
call function 'EDI_AGREE_PARTNER_INSERT'

760

Extending the Interface: Custom IDoc Tools19

 EXPORTING
 rec_edpp1 = gs_edpp1
 EXCEPTIONS
 db_error = 1
 entry_already_exist = 2
 parameter_error = 3
 others = 4.

Listing 19.10 Calling the Partner Profile Header Function

If the partner profile doesn’t exist, the record is inserted, and SY-SUBRC returns 0.
This is passed to a variable (PP_RC) which drives the call to the insert functions to
create the subsequent partner profile records for the current partner in GT_EDP21,
GT_EDP13, and GT_EDP12.

If the partner profile exists, SY-SUBRC updates variable PP_RC with 2, which then
drives the call to the update functions for the subsequent partner profile records
for our current partner.

If SY-SUBRC returns an error code, an error message is appended to the status report
table IOUT, and loop processing on the current partner in GT_PARNUM ends and the
next partner, if present, is processed.

If PP_RC equals 0 or 2, the program creates or updates partner profiles by calling
the appropriate function module.

Outbound records are processed first with a loop on GT_EDP13 into string GS_EDP13
for the current partner and partner type in GT_PARNUM. PP_RC is evaluated if 0 (the
create function) is called or if 2 (the change function) is called with import param-
eter string GS_EDP13:

EDI_AGREE_OUT_MESSTYPE_INSERT where PP_RC = 0

EDI_AGREE_OUT_MESSTYPE_UPDATE where PP_RC = 2

If the insert or the update is successful, message control is processed by looping
on GT_EDP12 into GS_EDP12 if the table is not null where:

RCVPRN = GS_EDP13-RCVPRN AND
RCVPRT = GS_EDP13-RCVPRT AND
RCVPFC = GS_EDP13-RCVPFC AND
MESTYP = GS_EDP13-MESTYP

761

Mass Upload of Partner Profiles to SAP 19.2

String GS_EDP12 is passed as the import parameter to the relevant function:

EDI_AGREE_OUT_IDOC_INSERT where PP_RC = 0

EDI_AGREE_OUT_IDOC_UPDATE where PP_RC = 2

If the insert or update is successful, a success message is passed to IOUT in variable
GS_MSG by calling form UPDATE_STATUS_REPORT along with the following values:

OUT
GS_EDP13-RCVPRN
GS_EDP13-MESCOD
GS_EDP13-MESFCT
GS_EDP13-MESTYP
GS_EDP13-STDMES
Y for success

If it fails, an error is passed to IOUT using the same form and variables except suc-
cess, which is set to N.

The inbound partner profiles are processed in the same way: with a loop on
GT_EDP21 into GS_EDP21 for the current partner and partner type in GT_PARNUM and
a call to either:

EDI_AGREE_IN_MESSTYPE_INSERT where PP_RC = 0

EDI_AGREE_IN_MESSTYPE_UPDATE where PP_RC = 2

GS_EDP21 is passed to the function as the import parameter.

Success or failure is reported in the same way—by writing the message and calling
form UPDATE_STATUS_REPORT with all relevant report values.

So now our partner profile is done, and the output report table is populated. It is
a simple status report with a flat rather than hierarchical structure, so we don’t
need to set up a header and details table.

We do our ALV setup, build the field catalog, and write the report with a call to
function REUSE_ALV_LIST_DISPLAY:

*** Call report display function
call function 'REUSE_ALV_LIST_DISPLAY'
 EXPORTING
 i_callback_program = repid
 is_layout = layout
 it_fieldcat = ifieldcat

762

Extending the Interface: Custom IDoc Tools19

 it_sort = isortcat
 i_save = 'A'
 it_events = ieventcat
 TABLES
 t_outtab = iout
 EXCEPTIONS
 program_error = 1
 others = 2.

Assign Transaction Code ZEDIPP

Last but not least, we will create a transaction code (ZEDIPP) for our new program.

1. Go to Maintain Transaction with Transaction SE93.

2. Enter transaction code “ZEDIPP” and click Create. Do the following in the Cre-
ate Transaction dialog:

EE Add a description of the transaction in the Short text field.

EE Select Program and selection screen (report transaction) under Start
object.

3. Click OK to open the Create Report transaction screen. In the Program field,
enter “ZEDI_UPLDPP”.

4. Save the transaction code and assign it to a change request.

19.2.5 Further Automating Partner Profile Processing

It’s not exactly accurate to say that partner profiles can’t be transported from cli-
ent to client. There is a feature in Transaction WE20 that allows export of a single
partner profile to an IDoc under menu option Utilities • IDoc output.

This option exports one partner profile from a sending system in message type
SYPART with basic type SYPART01, which was designed specifically to send part-
ner profiles.

It calls function EDI_PARTNER_CREATE_SYPART01, which collects key data for the
selected partner profile into structure EDK13 and then calls another function, EDI_
PARTNER_SEND_IDOC, to get partner profile data for the key, populate the IDoc, and
then send it to an external system by calling function MASTER_IDOC_DISTRIBUTE.

763

Mass Upload of Partner Profiles to SAP 19.2

There are two problems: function EDI_PARTNER_CREATE_SYPART01 will not send a
partner profile to another SAP client, and there is no function to process and post
an inbound SYPART IDoc.

In other words, you can send a partner profile in an IDoc in SAP but you cannot
receive one.

For mass transfer of partner profiles between SAP clients, you could write send and
receive code. It is not that difficult, but we would need to set up partner profiles
in each system for message type SYPART.

The send program would run from the sending system. It would call function
EDI_PARTNER_SEND_IDOC to identify and collect all selected partner profiles, build
the SYPART.SYPART01 IDoc, and then send it to a file on the application server
destined for the external system.

You would need an outbound partner profile in the sending system for the target
system and message type SYPART. The partner type would be LS and the partner
number would be the receiving logical system name. Point to a file or XML file
port on the application server that can be reached by the receiving system and do
not trigger the EDI sub-system.

The receiving process would be a little more complex, but not much. You could
write a program that sweeps the application server directory for the SYPART file
and calls function EDI_DATA_INCOMING if one were found. This imports the IDoc
into the receiving system and writes it to the database.

We would then call a custom function to create the partner profiles from the IDoc.
It would move partner profile data out of the IDoc into internal tables for EDPP1,
EDP13, EDP12, and EDP21. The internal tables would then be used to call the
partner profile functions we described for ZEDI_UPLDPP.

We would create an inbound partner profile for partner type LS and message type
SYPART. The partner number would be the logical system name for the sending
SAP system. We would also need a custom process code linked to our custom IDoc
function and message type SYPART.

There would be some effort up front, but the pay-off is that we would only cre-
ate partner profiles once in the development system and then cleanly transport
them every time we needed to move to another system or client. Furthermore we
would be able to track movement of our partner profiles through standard IDoc
monitoring tools.

764

Extending the Interface: Custom IDoc Tools19

We could do this in a single step if we use a transactional RFC (tRFC) port and
included a selection option for a target system’s logical system name in our pro-
gram code. Let’s look at how this might work for a different IDoc transfer in the
next section.

19.3 Mass Transfer of IDocs between Systems

Once upon a time there was a problem. The problem began with a question: How
do you debug an unexpected error in custom IDoc code after it has been moved
to production?

Security folks are notorious for frowning on developers rooting around in the guts
of the production system. Luckily, most SAP sites maintain a QAS test client that
is fairly regularly refreshed from PRD, providing a production-like environment
for testing and debugging.

But we still don’t have the IDoc that failed. This utility will move it for us.

19.3.1 The Issue

During test phases of project implementation and in production support, you may
need to transfer one or more failed IDocs from a production client to QAS or DEV
for debugging, break-fix development, and testing.

This is especially useful where unexpected errors occur in production in one or
more IDocs and you have to recreate the error for debugging in a production-like
QAS environment.

19.3.2 The Solution

Build an IDoc mass transfer utility—ZEDI_TRNSFIDOCS with Transaction ZEDIXFR—
that allows development and support teams to select IDocs by IDoc number in one
client for transfer to another client.

The program rebuilds the control segments of the selected IDocs in the source sys-
tem, converts them into outbound IDocs, and sends them to a target client using
standard Application Link Enabling (ALE) functionality.

765

Mass Transfer of IDocs between Systems 19.3

19.3.3 Dependencies

The ALE transfer is done through an asynchronous call through a tRFC port that
points to an RFC destination with the IP address and login settings for the target
client. It is dependent on the following configuration:

EE Logical systems defined for all clients that will exchange IDocs

EE One RFC destination for each client that will exchange IDocs with its IP address
and login settings configured; RFC destinations will have the logical system
names for the participating clients

EE One transactional RFC port created for each transfer client pointing to its RFC
destination

EE One outbound partner profile in the source system for all target systems:

EE Partner number: Logical system name of the target client

EE Partner type: LS (logical system)

EE Message: All messages that may be transferred to target client

EE Receiver port: tRFC port of the target client with its RFC destination

EE Inbound partner profiles set up for customers and vendors in the target clients
will support receiving IDocs from the source systems

The target client will treat the IDocs as if they had been sent by the partner. We
do a little editing of the control record in code to make this happen.

19.3.4 Program ZEDI_TRNSFIDOCS

Figure 19.8 outlines the logical processing flow for the IDoc mass transfer utility.

Select IDocs/target
logical system for

ALE transfer

Get control record
from table EDIDC

Copy to control rec
out, change keys

to match target PP

Loop on itab
control records

Build, output,
ALV Report

Call function
MASTER_IDOC_

DISTRIBUTE

OB IDocs: control
and data records

Build OB IDoc:
Pull all segments

into IDoc data itab

Figure 19.8 Logical Processing Flow for Program ZEDI_TRNSFIDOCS

766

Extending the Interface: Custom IDoc Tools19

The key select options for the program is one or more IDoc numbers and the target
SAP system selected from table TBDLS, which stores logical system master data.

The control records for the selected IDocs are retrieved into an internal table,
which is copied to a control record out. The control record out is then changed, as
illustrated in the pseudo code in Listing 19.11.

SNDPRN = customer or vendor number for the selected IDoc.
If IDoc inbound
 move RCVPRN to SNDPRN
 RCVPRT to SNDPRT
 and RCVPFC to SNDPFC.
If outbound
 no change to these fields.

SNDPOR = concatenate SAP + send EDI system "ie, SAPE82.
RCVPRN = logical system name for target client
 from selection screen.
RCVPRT = LS
RCVPFC = null.
RCVPOR = tRFC port for target SAP system
 from the outbound partner profile.

Listing 19.11 Pseudo Code with Control Record Population Logic

The goal is to match control record out values to the inbound partner profile in
the target client.

The next step is to pull the IDoc data records from the database using standard
functions, build the outbound IDoc, and call function MASTER_IDOC_DISTRIBUTE
(also used for EDI output) to send it to the target client by ALE transfer through
the tRFC port.

Program Structure

ZEDI_TRNSFIDOCS uses the same template as all of our other standalone ABAP pro-
grams that output an ALV list report.

The key selection screen values for ZEDI_TRNSFIDOCS are the IDoc number and
target SAP system, as shown in Figure 19.9; these are mandatory fields.

767

Mass Transfer of IDocs between Systems 19.3

Figure 19.9 Selection Screen for ZEDI_TRNSFIDOCS

First we create the program in the ABAP editor using Transaction SE38 or the
Object Navigator (SE80) with the following attributes:

EE Program name: ZEDI_TRNSFIDOCS

EE Title: Utility to Transfer IDocs between SAP clients

EE Type: Executable program

EE Status: Customer production program

EE Application: Cross-application

Save and assign the program to a package and a change request.

We begin by declaring our tables, selection screen, types, internal tables, strings,
variables, and constants. Our only table declarations are EDIDC and EDIDD, which
are the IDoc control and data records, respectively.

Our key type declaration is T_OUT, which provides the structure for an ALV list report
that will output the results of IDoc transfer processing, detailed in Listing 19.12.

*** Type for output of report detail
types: begin of t_out,
 from_logsys type logsys, "Source system
 to_logsys type logsys, "Target system
 from_mandt type sy-mandt, "Source client
 docnum type edi_docnum, "Source IDoc no.
 com_docnum type edi_docnum, "Target IDoc no.
 mestyp type edi_mestyp, "Message type
 stdmes type edi_stdmes, "EDI txn
 partn type edi_partn, "Source partner no.
 end of t_out.

Listing 19.12 ALV Output Report Structure for ZEDI_TRNSFIDOCS

768

Extending the Interface: Custom IDoc Tools19

Internal tables and structured strings are declared to read the selected IDocs, rebuild
the control segment, get the partner profile for the outbound IDoc, transfer the
IDoc, and output the status report. These tables are described in Listing 19.13.

*** IDoc transfer processing itabs
data: gt_control_in type standard table of edidc,
 gs_control_in type edidc
 "Source IDoc control record
 gt_control_out type standard table of edidc,
 gs_control_out type edidc,
 "Target IDoc control record
 gt_control_com type standard table of edidc,
 gs_control_com type edidc,
 "Communications IDoc created by ALE services
 gt_data_out type standard table of edidd
 gs_data_out type edidd,
 "Target IDoc data record
 gt_edk13 type standard table of edk13,
 gs_edk13 type edk13,
 "Partner Profile read key

*** ALV list output report itab
data: iout type standard table of t_out with header line.

Listing 19.13 Internal Tables for the IDoc Transfer Utility

Variables and constants are added for source and target logical systems while tables
and strings are declared for ALV list reporting—the same ones we declared for
earlier programs including ZEDI_UPLDPP in this chapter.

Our first job in START-OF-SELECTION processing is to get the control record for all
selected IDocs, read in a form routine using the logic in Listing 19.14.

form 000_get_idocs.

data: ls_mess_txt(70) type c.

select * into table gt_control_in from edidc
 where docnum in so_docnm
 and status in so_stat
 and mestyp in so_mstyp
 and credat in so_crdat.
if sy-subrc <> 0.

769

Mass Transfer of IDocs between Systems 19.3

 message i005 with so_docnm-low. "Error message
 exit_flg = 'X'.
endif.

endform. " a000_read_data

Listing 19.14 Reading IDoc Control Records for Transfer

If the selected IDocs aren’t found, a message is returned, and an exit flag is set to
end program processing.

Assuming the IDocs are found, an outbound control record is built for each one,
data records are pulled and IDocs are assembled and distributed, and the status
report is written to table IOUT.

This is all very straightforward. It is done one step at a time within a loop on
GT_CONTROL_IN into string GS_CONTROL_IN.

We build the outbound control record with a series of statements that copies the
current control segment and adds—or deletes—values for the target logical system,
as shown in Listing 19.15. This includes reading the outbound partner profile to
get the receiver port.

*** Build OB control record for transfer IDoc
gs_control_out = gs_control_in. "Copy current control
gs_control_out-rcvprn = gs_logsys_out. "Target LS
gs_control_out-rcvprt = 'LS'. "Partner Type LS
gs_control_out-rcvpfc = space. "Delete any values
*** SNDPRN changed only for OB IDocs in sending system
if gs_control_out-direct = '1'. "Outbound IDoc
 gs_control_out-sndprn = gs_control_in-rcvprn.
 "OB receive partner becomes IB send partner
 "Else no change to SNDPRN
endif.
*** Build sender port SAP + system ID
concatenate 'SAP' sy-sysid into gs_control_out-sndpor.
gs_control_out-arckey = space. "Delete any values
gs_control_out-refint = space. "Delete any values
gs_control_out-refmes = space. "Delete any values

*** Build OB partner profile read key
gs_edk13-mandt = sy-mandt.
gs_edk13-rcvprn = gs_control_out-rcvprn.

770

Extending the Interface: Custom IDoc Tools19

gs_edk13-rcvprt = 'LS'.
gs_edk13-mestyp = gs_control_out-mestyp.
append gs_edk13 to gt_edk13

*** Read OB partner profile get tRFC port
call function 'edi_partner_appl_read_out'
 exporting
 rec_edk13 = gs_edk13
 importing
 rec_edp13 = gs_edp13
 exceptions
 partner_is_inactive = 1
 partner_is_template = 2
 partner_not_found = 3
 others = 4.
if sy-subrc = 0.
 gs_control_out-rcvpor = gs_edp13-rcvpor.
 "tRFC receiver port
endif.

Listing 19.15 Building the Outbound Control Record

The important thing to remember here is that we are transferring an IDoc that may
be inbound or outbound in the sending system to a target client, where it becomes
an inbound IDoc—as if we were the sending trading partner transmitting an IDoc
to a receiving SAP system.

After we build the outbound control record, form GET_IDOC_DETAILS is called to
pull data records for the current IDoc. This is done by calling three functions:

EE EDI_DOCUMENT_OPEN_FOR_READ: Reads IDoc data

EE EDI_SEGMENTS_GET_ALL: Returns IDoc data records

EE EDI_DOCUMENT_CLOSE_READ: Clears internal read tables used by the previous func-
tions

All IDoc data records are passed to internal table GT_DATA_OUT.

We’re now ready to distribute our IDocs by ALE. All it takes is a function call like
the one shown in Listing 19.16.

*** pass control to ALE services layer for export
*** to target logical system (client)
call function 'master_idoc_distribute'

771

Mass Transfer of IDocs between Systems 19.3

 exporting
 master_idoc_control = gs_control_out
 tables
 communication_idoc_control = gt_control_com
 master_idoc_data = gt_data_out
 exceptions
 error_in_idoc_control = 1
 error_writing_idoc_status = 2
 error_in_idoc_data = 3
 others = 4.
if sy-subrc <> 0.
 message id sy-msgid type sy-msgty number sy-msgno
 with sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
endif.
commit work.

Listing 19.16 Exporting the Transfer IDoc by ALE

The outbound control record is read in string GS_CONTROL_OUT with the data records
in GT_DATA_OUT. A communication IDoc is created and written to the database, so
a COMMIT WORK is also required. This is a new outbound IDoc that will be sent to
the target client, after passing through all of the standard ALE services, checks,
and validations.

The key is the outbound partner profile and the tRFC port with the RFC destina-
tion for the target client. The system will use it to send the IDoc by an ALE call to
function IDOC_INBOUND_ASYNCHRONOUS in the target client.

IDOC_INBOUND_ASYNCHRONOUS is the ALE equivalent of function EDI_DATA_INCOMING.
It kicks off inbound IDoc processing in the target client.

If the transfer succeeds, MASTER_IDOC_DISTRIBUTE returns 0 in SY-SUBRC and the
control record for the communications IDoc. We can now build our status report
in table IOUT with the communications IDoc control record and format and prep
it in the normal manner for the ALV report.

Assign Transaction Code ZEDIXFR

The final step is to create transaction code ZEDIXFR in Transaction SE93 for pro-
gram and selection screen for report ZEDI_TRNSFIDOCS. Don’t forget to save the
transaction code and assign it to a change request.

772

Extending the Interface: Custom IDoc Tools19

19.4 Sending IDoc Status to an External System

You may need to send the status of inbound IDocs to an external EDI or SAP system
for reporting in a dashboard or some other reason. It could be to the system that
sent them originally, or it could be to a system that’s keeping track of data flows
and other activity.

We used the STATUS IDoc to report back to SAP processing milestones in the
EDI system. But STATUS is only an inbound IDoc, and without writing a custom
program we can’t send it to any external system.

SAP provides another IDoc to report the status of inbound IDocs sent from external
systems: ALEAUD with basic type ALEAUD01 run by Transaction BDM8 (ABAP
program RBDSTATE).

ALEAUD is very similar to STATUS in structure and functionality except that it is
designed to be sent by ALE transmission to an external logical system.

We won’t do any custom programming here but we do need to configure the
interface. This introduces us to some basic ALE concepts.

19.4.1 The Issue

The external EDI system needs to receive a message reporting status of IDocs it sent
into our SAP system. It uses these data in a dashboard report that tracks errors in
its data traffic with SAP and other systems.

19.4.2 The Solution

SAP provides a standard program and IDoc to send these data. RBDSTATE—Trans-
action BDM8—identifies IDocs by sending system, message type, and date of
change. It then extracts the status record from these IDocs and uses it to build an
ALEAUD.ALEAUD01 IDoc, which is then sent to the selected external system by
ALE transmission.

19.4.3 Dependencies

The ALE transfer of message ALEAUD is dependent on the following configuration:

773

Sending IDoc Status to an External System 19.4

EE Logical systems defined for all external systems that will receive an IDocs. At
Acme, the EDI RIM has been set up with the following logical system names:

EE EDIRIMD100: Dev client 100

EE EDIRIMQ100: QA client 100

EE EDIRIMP100: Prod client 100.

EE A distribution model in the ALE IMG that documents the transfer of message
ALEAUD between sending logical system DEVCLNT100 and target logical system
EDIRIMD100

EE An outbound partner profile for partner type LS (logical system) and partner
number EDIRIMD100 with the following parameters:

EE Message: “ALEAUD”

EE Receiver port: “XML_IDOC”

EE Output mode: Collect IDocs and Start subsystem options

EE Basic type: “ALEAUD01”

EE No message control

We’ll assume that the logical systems are already defined.

19.4.4 Defining the Distribution Model

The distribution model is defined in the ALE IMG. Call Transaction SALE and fol-
low menu path IDoc Interface/Application Link Enabling (ALE) • Modelling
and Implementing Business Processes • Maintain Distribution Model and
Distribute Views.

1. Switch from display to change mode in the distribution model edit screen by
clicking the pencil icon at the top or pressing (F9).

2. Click Create model view to set up the ALEAUD transmission from the Acme
logical system. Enter the following values, which are shown in Figure 19.10:

EE In the Short text field, enter a description of the distribution model.

EE In the Technical name field, enter “STATUSOUT” to identify the distribution
model.

774

Extending the Interface: Custom IDoc Tools19

Figure 19.10 Creating the Distribution Model

3. Click OK. The new model will appear at the bottom of the list of distribution
models.

4. Select the model we just created and click Add message type. The technical
name of the model will appear in the Model view field. Enter the following
values, which are shown in Figure 19.11:

EE Sender: “DEVCLNT100”, the logical system for the IDoc sender

EE Receiver: “EDIRIMD800”

EE Message type: “ALEAUD”

Figure 19.11 Adding the Message Type to the Model

5. Click OK. Don’t forget to save the distribution model. The finished model will
look like Figure 19.12.

Figure 19.12 Distribution Model STATUSOUT

This view illustrates the basic nature of the distribution model. It first defines a
sending system—Acme’s DEV client logical system—and then assigns one or more
receiving systems to it. In this case, the receiving system is the EDI RIM.

775

Sending IDoc Status to an External System 19.4

At the lowest level is the message (or BAPI) transmitted by the sending to the
receiving system.

Any number of receiving systems and messages can be added to the sending sys-
tem. Each receiving system is identified separately with its own messages below
the sender.

For interfaces back to Acme’s DEV client, you would add messages for the external
sender. Acme’s DEV client would be entered as the receiver.

RBDSTATE checks for the distribution model after it has pulled IDocs that it will
report status for. It uses the distribution model to confirm the selected receiving
logical system is set up for message type ALEAUD. It also identifies and applies any
filters that may be defined for the ALEAUD message for the sender and receiver
in the distribution model.

Outbound Partner Profile

We need to set an outbound partner profile to support sending the ALEAUD IDoc
to the EDI RIM.

1. Run Transaction WE20 and open the Partner Type LS folder.

2. Click the Create button or press (F5) to create a new partner profile.

3. Enter the following values into the general level of the partner profile:

EE Partner no. field: “EDIRIMD100” for the RIM’s logical system

EE Partn.Type field: “LS”

EE Ty. field: “O” for organizational unit (or as required by your team)

EE Agent field: An organization number, such as 50010120 for EDI department

EE Lang. field: “EN” or your preferred language

4. Save the partner profile.

5. Enter the following outbound parameters (see Figure 19.13) and save the part-
ner profile:

EE Message type field: “ALEAUD”

EE Receiver port field: “XML_IDOC”

EE Output Mode area: Collect IDocs and Start subsystem options

EE Basic type field: “ALEAUD01”

776

Extending the Interface: Custom IDoc Tools19

Figure 19.13 Outbound Parameters for ALEAUD to the EDI RIM

Running Program RBDSTATE

Get to the selection screen of program RBDSTATE with Transaction BDM8. The
selection screen is shown in Figure 19.14.

Figure 19.14 Selection Screen for RBDSTATE

Confirmations to system and Date IDoc changed are mandatory parameters.
The system is the receiving logical system; in this case, this is the EDI RIM. Message
type identifies the IDocs to check for changes of status; in this case, this is ORDERS.
If this is left blank, the system will return all IDocs changed on the selected date.

777

Sending IDoc Status to an External System 19.4

RBDSTATE selects inbound IDocs based on the message and change date entered in
the selection screen. It also looks for send partner type LS for logical systems, so
it will not select customer or vendor partner types.

If you were to copy RBDSTATE into a custom Z-program, you could change these
parameters to retrieve status data for whatever partners you need to report on.
It will still read the distribution model, read the IDoc status records, build the
ALEAUD IDoc, and send it out through the outbound partner profile to your EDI
or other external system.

If the program is successful, it will return a simple list of IDoc numbers for the
ALEAUD IDocs returned, as in Figure 19.15.

Figure 19.15 RBDSTATE Report Output

If you double-click the IDoc number, the system takes you to the IDoc tree display
for the ALEAUD IDoc with all the status records it’s identified based on your selec-
tion options (see Figure 19.16). This is the IDoc that will be sent to the EDI RIM
through the partner profile and XML file port.

Figure 19.16 IDoc Tree Display of the ALEAUD Status IDoc

778

Extending the Interface: Custom IDoc Tools19

It’s just another IDoc. Each E1STATE segment group identifies an IDoc read based
on the selection screen and provides its status record for use by the external system.

19.5 Adding Qualifiers to IDoc XML Schema

And now for something completely different. We’ve been looking at IDocs and ABAP
and ALE configuration. But we’re using XML IDocs and there is one missing link
that we haven’t touched yet: the XSD schema. We’ll feed it to our mapping tool so
we can build maps between our IDocs and our trading partners’ EDI transactions.

The good news is that SAP makes it easy to get the XSD schema for all its IDocs.
The bad news is that the schema are incomplete in one small but important respect
for EDI and B2B: qualifiers are not included.

In this section we will get an XSD schema for an ORDERS.ORDERS05 IDoc from
SAP and build an add-on schema that will provide qualifiers—enumerators, in the
XML world—for a key segment.

19.5.1 The Issue

IDoc XSD schema are readily available from SAP. But SAP does not provide the
qualifiers for qualified segments or data elements. Our EDI mapping team needs
the qualifiers to build and enforce data element level rules in the translation maps.

19.5.2 The Solution

We use standard XML functionality to build an add-on schema with an enumerator
data element that will be able to provide qualifiers for our IDocs.

The schema file name will be IDocQualifiers.xsd and it will be imported into the
IDoc schema. The enumerator will be applied as a type to E1EDKA1 qualifier field
PARVW, making the qualifiers available to the field.

19.5.3 Dependencies

IDocs are active in our SAP system, including any extended or custom IDocs we
may have built.

779

Adding Qualifiers to IDoc XML Schema 19.5

19.5.4 Extracting an XML Schema from SAP

XSD schema for IDocs can be extracted with Transaction WE60 or through the
WEDI EDI area menu path Documentation • IDoc types.

Make sure to explore the options under the Documentation menu. Transaction
WE60 supports output of IDoc documentation and metadata in a variety of formats
including HTML, IDoc message type SYIDOC, ASCII, C-Header, and XML DTDs
and schema.

To download the XSD schema, follow these steps:

1. Enter the name of an IDoc type into the Basic type field. We will use ORDERS05.

2. Select the menu option Documentation • XML Schema, as shown in Figure
19.17.

Figure 19.17 Selecting an IDoc Schema for Export

3. When the Documentation pop-up asks “Generate documentation for Uni-
code File?”, click Yes.

4. Select the menu option XML • Download to open a download dialog. Enter a
name for the schema in the Filename field and navigate to a save directory on
your local PC.

A good naming convention to follow is MessageType.BasicType (for example,
ORDERS.ORDERS05).

5. By default SAP offers an .xml file extension for the schema. Make sure you save
it with an .xsd extension, which is the standard for XML schema.

780

Extending the Interface: Custom IDoc Tools19

Next find and open the schema to do a little house-cleaning before using it in any
of our maps.

First change the root data element name from the IDoc basic type to the message
and basic type, as detailed in Listing 19.17.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" version="1.0">
 <xs:element name="ORDERS.ORDERS05">
 <xs:annotation>
 <xs:documentation>Purchasing/Sales</xs:documentation>
 </xs:annotation>

Listing 19.17 Changing the Root Data Element to Include the Message

Many basic types are used by different messages, such as the ORDERS customer
PO and the ORDRSP PO acknowledgment. The EDI team wants to distinguish the
schema that we use in our maps by message and basic type.

Next we will hard-code the name of the logical message to the MESTYP data element.
The IDOCTYP data element is already hard-coded to ORDERS05. This is not neces-
sary, but once again, we are creating a specific usage for this schema in our maps.

In your favorite XML schema editor, search for:

element name="MESTYP"

Add the following attribute before the closing bracket:

fixed="ORDERS"

The data element should look like this:

<xs:element name="MESTYP" minOccurs="0" fixed="ORDERS">

The last change is to search for all instances of the maxOccurs attributes that equal
999 and greater. If you find any, change the number to “unbounded”. Many XML
processors don’t like large numbers in the maxOccurs attribute. Warning messages
are returned during schema validation so it’s best to change them to unbounded.

781

Adding Qualifiers to IDoc XML Schema 19.5

19.5.5 Creating the IDoc Enumerators

Without getting too heavily into XML terminology, an enumerator is a value in a
list of possible values attached to the restrictions base of an XML simple type. In
other words, it is the same thing as a qualifier.

SAP does not include the qualifiers when it exports the XML schema for its IDocs,
such as the partner types in E1EDKA1-PARVW. These qualifiers are useful in map-
ping because they restrict the allowed values for a field and let the system throw
an error if an incoming value is not on that list.

Without the qualifiers, we have to write our own rules or build code lists or do
something else in the map to throw an error if the incoming value is not on the
allowed list of qualifiers.

We can add qualifiers directly into the schema as enumeration lists attached to the
qualified data elements, but that adds bulk to the schema and we would have to
do it to every schema that has qualifier fields.

Because many of SAP’s qualifiers are common to a large number of IDocs, the better
way is to create a separate enumeration schema that includes all the SAP qualifiers
you want to use across multiple schema.

You then use the XML import statement to include the enumeration schema and
assign the enumerator types to the qualifier fields.

So let’s create our enumeration schema. Fire up your favorite XML schema editor
or load a good text editor. Enter the enumeration schema for the IDoc qualifier
E1EDKA1-PARVW, illustrated in Listing 19.18.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema xmlns:enum="urn:idocman:mapping:Qualifier"
 xmlns:xs=http://www.w3.org/2001/XMLSchema
 targetNamespace="urn:idocman:mapping:Qualifier"
 elementFormDefault="qualified" version="1.0">
 <xs:simpleType name="PARVWPartnerQualifierEnum">
 <xs:restriction base="xs:string">
 <xs:maxLength value="3"/>
 <xs:minLength value="1"/>
 <xs:enumeration value="AG">
 <xs:annotation>
 <xs:documentation>Sold-to party<xs:documentation>
 </xs:annotation>

782

Extending the Interface: Custom IDoc Tools19

 </xs:enumeration>
 <xs:enumeration value="WE">
 <xs:annotation>
 <xs:documentation>Ship-to party<xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="LF">
 <xs:annotation>
 <xs:documentation>Vendor party</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="RE">
 <xs:annotation>
 <xs:documentation>Bill-to party</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Listing 19.18 E1EDKA1-PARVW Enumeration List

The design view of this schema shows how simple it actually is. In the XML world,
qualifiers are created in a field with a restriction base defined by a string type with
a list of enumerators. The pattern is always the same. In graphical view of our XSD
editor, it looks like Figure 19.18.

Figure 19.18 Graphical view of the IDoc Partner Enumeration List

An XSD schema is an XML file that is interpreted as a metadata dictionary. It
describes the structure of an XML data file while at the same time describing its
own structure. It is declared as a schema in line 2. Line 3 identifies the URL for
the W3 schema standard and defines the prefix (xs:) that will be assigned to each
element of the schema.

783

Adding Qualifiers to IDoc XML Schema 19.5

After the schema statement in line 2, it identifies the prefix (enum:) that will be
used to identify its types by any other schema that uses them to define any of their
data elements. The elementFormDefault attribute in line 5 is set to qualified, which
means that the prefix is explicitly declared in any reference to the schema’s type
otherwise it won’t be recognized.

We will see how this works when we import and apply this schema to our ORDERS.
ORDERS05 schema.

The target namespace and prefix together define the namespace for the schema.
The namespace defines a unique XML vocabulary in this schema. The beauty of
this is that we can have multiple schema with the same data element names that
are treated as unique because each has a different namespace.

In XML terminology, a namespace name is a Uniform Resource Identifier (URI)
generally assigned an http: or urn: formatted name, as in our sample in Listing
19.18. It doesn’t have to point to a URL address—although it could—but it does
have to be unique for your development.

The other point to note is that the qualifiers are listed in a simple type that we have
named for the IDoc qualifier field. The beauty of XML is that it is self-documenting,
which means you can use meaningful element names to easily identify what each
field means. Standard usage is to define the name in camel case—that is, upper
case for each new word.

Each qualifier that we would add to this file would be defined in the same way as
PARVWPartnerQualifierEnum. First declare and name the simple type, then add
the restriction block. You can also add length attributes if you want to restrict the
length of the data element.

The qualifiers are added as a value attribute of the data element xs:enumeration as
demonstrated in Listing 19.19.

<xs:enumeration value="WE">
 <xs:annotation>
 <xs:documentation>Ship-to Party</xs:documentation>
 </xs:annotation>
</xs:enumeration>

Listing 19.19 Qualifiers Are Defined in an Enumeration Block

The structure of this block is consistent: always an enumeration element with
a value attribute populated with the qualifier. You can add a description of the

784

Extending the Interface: Custom IDoc Tools19

qualifier in a documentation element within an annotation tag. The description
is optional but useful. Repeat this pattern for every qualifier you want to add to
PARVWPartnerQualifierEnum.

To add qualifiers for other fields, create another simple type with a new name and
a new list of enumeration blocks. It is very straightforward.

19.5.6 Using the Enumerator in an IDoc

Next we will use the qualifiers in our ORDERS.ORDERS05 schema. The first step
is to import into the IDoc schema.

Open the ORDERS.ORDERS05 schema in an XML editor or text file. First we declare
the enumerator prefix in the schema declaration of the IDoc schema:

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:enum="urn:idocman:mapping:Qualifier" version="1.0">

We do this because the enumerator schema makes the prefix mandatory, and the
IDoc schema can only recognize it if it is explicitly declared in the root schema
element.

Next we add an import statement immediately after the schema element:

<xsd:import schemaLocation="IDocQualifiersEnum.xsd"
 namespace="urn:idocman:mapping:Qualifier"/>

This assumes that the two schema are in the same subdirectory. If not, the path to
the imported schema must be included in schemaLocation.

The enumeration list is now ready for use in the IDoc schema. It will be assigned
as a type to data element PARVW, in segment E1EDKA1. The standard listing for
the data element without the enumerator type will look like Listing 19.20.

<xsd:element name="PARVW" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>Partner function</xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="3"/>
 </xs:restriction>

785

Adding Qualifiers to IDoc XML Schema 19.5

 </xs:simpleType>
</xs:element>

Listing 19.20 Data Element PARVW without the Enumerator Type

The type declaration with the data type and field length restrictions follows the
annotation documenting the field. We will delete the simple type with its restric-
tion base and replace it with the enumerator type PARVWPartnerQualifierEnum
following the minOccurs attribute in the element tag. PARVW should now look
like Listing 19.21.

<xs:element name="PARVW" minOccurs="0"
 type="enum:PARVWPartnerQualifierEnum">
 <xs:annotation>
 <xs:documentation>Partner function</xs:documentation>
 </xs:annotation>
</xs:element>

Listing 19.21 Referencing the Enumerator Type

Note the enum: prefix on the type. This is mandatory in our example. The full enu-
meration list in simple type PARVWPartnerQualifierEnum will now be available
with all its qualifiers when we import the schema to our mapping tool to be used
as a source or target structure. We can see this in the design view of our schema
for E1EDKA1-PARVW shown in Figure 19.19.

Figure 19.19 Enumerator Values Linked to E1EDKA1-PARVW

786

Extending the Interface: Custom IDoc Tools19

19.6 Summary

“There’s more than one way to skin a cat,” the legendary founder of Acme Pictures,
Darryl Q. Fernhausen, would say when he had trouble signing the latest wannabe
starlet.

We have seen in this chapter that we have choices when it comes to custom—or
even standard—solutions to issues that may crop up in the IDoc interface. We
carefully went over user exit code that changes the IDoc control segment so that
we could convert our partners’ EDI trading partner IDs to and from our internal
SAP partner numbers.

Rather than manually enter every partner profile into each SAP client that we have
to work with, we wrote a simple upload program to automate it. We also looked
at a program to transfer IDocs between SAP clients using ALE, and at a standard
process for sending IDoc status to an external system.

Last, but not least, we got into the weeds of XML development and built an enu-
merator XSD schema to add the qualifiers that SAP doesn’t include when it exports
its IDoc schema.

We’re near the end of our road now. But before we can go live, the new SAP EDI
system must be tested. And so the project team turns its attention to a testing
strategy for Acme Pictures.

787

Things don’t always work out as designed. Nobody knew that better than
the Great Mr. Q, who justified his many marriages by saying, “I was just
testing the whole ‘marriage’ concept! You can’t get anything right until you
test it again and again.” It’s the same with SAP and EDI—until the system
has been thoroughly tested, your design is only a paper moon. So let’s look at
Acme’s testing strategy and see how they plan to bring their system home.

20 Testing the EDI System in SAP

The work has gone well for our Plan Q from Outer Space EDI subproject at Acme
Pictures. We designed and built our interfaces in SAP and the EDI system. We’ve
also developed some IDoc utilities and add-ons to make our lives a little bit easier.

But the proof of the pudding is in the tasting, as they say. And that means testing,
and more testing, and plenty of both.

Testing is an inexact science. We try to predict the behavior of a production system
that we designed based on months of research during blueprint and refined through
the long and challenging development effort of realization.

We began with a vision of the completed system that was grounded in our under-
standing of Acme’s business. Our knowledge of that business deepened as we
worked with our partners to build and configure the new system.

But this was theoretical knowledge focused on the technical implementation of our
piece of the puzzle. We lived and breathed EDI and IDoc interfaces throughout the
development effort but were not always attuned to the big picture emerging from
the efforts of every other team’s contribution.

It is time to test the whole concept, as the legendary Darryl Q would say, and to
prove that we got it right. And to fix it where we didn’t. But before we can test we
need a testing strategy, which is a substantial job in its own right.

Luckily, we have a testing specialist who’s worked hard with each team to develop
a test plan and a schedule. Acme is a relatively small project, so the strategy is
simple and without any bells or whistles.

788

Testing the EDI System in SAP20

We will take a high-level tour of the specialist’s strategy for testing our EDI inter-
faces in Acme’s SAP system. But first we look at some of the tools SAP provides
to test IDoc development.

20.1 IDoc Test Tools

EDI is a prime example of the old saying, “The more things change, the more they
stay the same.” These test tools largely reflect an earlier era in SAP when it was still
assumed that business documents would be exchanged through file-based interfaces.

However, the vast majority of businesses continue to do EDI through file-based
batch processing exchanges of standard messages. It is highly unlikely that this
will change anytime soon.

SAP’s IDoc test tools can be used in a number of ways:

EE Proof of concept
Confirm use of a message type to post against an SAP document or data record

EE Posting requirements
Confirm data required to post an IDoc to an SAP document or record

EE Configuration
Confirm IDoc configuration settings such as message control, partner profiles,
and ports

EE Development
Debug IDoc functions and user exits

All IDoc test tools are in the Test folder of the WEDI area menu.

20.1.1 The Main IDoc Test Tool: Transaction WE19

Transaction WE19 supports all types of unit testing. It is especially useful for
inbound testing because it supports stepping through the code of an IDoc function
in the ABAP debugger, invaluable for working with custom IDocs and functions
and a wonderful way to learn how IDoc functions work.

Inbound IDocs can create a business document through Transaction WE19, making
it the place to go to identify the message type and data requirements for posting
to a particular SAP document or transaction.

789

IDoc Test Tools 20.1

The Transaction WE19 selection screen offers several options for processing IDocs;
these are shown in Figure 20.1. It’s generally best to begin with an existing IDoc
and edit it. The other options leave you with an empty IDoc that must be populated
from scratch before you can begin testing.

Figure 20.1 The WE19 IDoc Test Tool Selection Screen

When the IDoc loads, it appears in the edit window in Figure 20.2. From here,
any existing segment can be edited by clicking on the white data line next to the
segment name. This includes the control record.

Figure 20.2 The IDoc Test Tool Edit Window

790

Testing the EDI System in SAP20

Clicking a record opens a data entry screen similar to the Edit control record
fields dialog box in Figure 20.3. You can change or add any values to the existing
control or data segment here.

Figure 20.3 Editing Control Record Values in the IDoc Test Tool

The heavy lifting in the test tool is done through the toolbox that runs across the
top of the editing window in Figure 20.2. Stepping through the features of each tool
from left to the right illustrates the range of activities available in the IDoc test tool.

1. Creating segments icon ((F5)): Creates a new segment as a sibling or child of
the selected segment.

2. Cut icon ((Shift)+(F4)): Cuts the selected segment to the clipboard.

3. Copy icon ((Shift)+(F5)): Copies the selected segment to the clipboard.

4. Insert icon ((Shift)+(F6)): Pastes a segment from the clipboard after the selected
segment.

5. Delete icon ((Shift)+(F2)): Deletes the currently selected segment.

6. Expand subtree icon ((Ctrl)+(Shift)+(F11)): Expands selected parent segment.
If EDIDC is selected every segment below it expands.

7. Collapse subtree icon ((Ctrl)+(Shift)+(F12)): Collapses a selected parent seg-
ment. EDIDC collapses every segment below.

8. IDoc syntax check icon ((F6)): Checks IDoc syntax and returns a message report-
ing the results.

791

IDoc Test Tools 20.1

9. Standard inbound button ((F8)): Calls inbound processing for an IDoc through
standard interface services. Confirms configuration, writes IDoc to the database,
and kicks off the application function if the partner profile is set to immediate
processing.

10. Inbound function module button ((Ctrl)+(F2)): Processes the IDoc directly
through its application function without calling interface services. Can be used
to step through code in the ABAP debugger.

11. Inbound file button ((Ctrl)+(F3)): Imports and processes an IDoc file from
the app server through the file port. It first creates the file from the current
IDoc, saves it to the application server, and then imports it.

The file can be overwritten or appended with the current IDoc, creating a test
file with multiple IDocs. The file can be imported into any other SAP client
configured to receive the IDoc.

12. Standard outbound processing button ((F7)): Exports the test IDoc through
the file port to an output file on the SAP application server. It can trigger out-
bound processing immediately even if the partner profile is set to collect IDocs
for batch processing.

Output mode is always set to 2—Transfer IDoc immediately, or 4—Collect IDocs
and transfer, even if the partner profile is configured to trigger the EDI system.
The EDI system can’t be triggered by sending an IDoc from the test tool.

If you do a lot of IDoc interface development, Transaction WE19 is indispensable.
It will help you nail down the data you need to post your IDoc against a docu-
ment and confirm that your code works. It is a wonderful IDoc unit test tool but
represents only the first step in the overall testing effort.

20.1.2 Outbound from Message Control: Transaction WE15

Strictly speaking, Transaction WE15 is not a test tool, although it can be used to
confirm that message control is working for documents such as supplier purchase
orders, deliveries, and invoices.

Transaction WE15 calls program RSNAST00, which is run after a document such as
an invoice is created and IDoc output is proposed by message control but is not
sent immediately after the document is saved.

792

Testing the EDI System in SAP20

RSNAST00 is run if the date/time field in the condition record is set to 1—Send with
periodically scheduled job.

RSNAST00 can be used to manage the flow of IDocs and to regenerate IDoc output if
there was a problem with the initial send. Figure 20.4 shows the selection screen
for Transaction WE15.

Figure 20.4 Resending an IDoc from Message Control

Transaction WE15 looks up output records for a document recorded in table NAST
using the read keys entered into the selection screen. The object key is the document
number with its leading zeroes. The rest you will recognize from message control.

If a NAST output record is found, RSNAST00 identifies the processing program and
form defined in message control configuration. For generation of IDocs RSNAST00
calls form EDI_PROCESSING in program RSNASTED.

20.1.3 Outbound from IDoc: Transaction WE14

Program RSEOUT00 is in the WEDI test folder even though it is not really a test
program.

We discussed RSEOUT00 in Chapter 7, Section 7.2.7, in the subsection Sending the
IDoc to the EDI RIM.

RSEOUT00 is used to identify and send to an external system through the outbound
partner IDocs batched in the IDoc database at status 30.

793

IDoc Test Tools 20.1

20.1.4 Status File Testing: Transactions WE18 and WE17

These two transactions test an old-school status file interface. The interface updates
status records in table EDIDS for an outbound IDoc with processing milestones
from an external EDI system.

Transaction WE18—program MSEIDOC1—generates a status test file with six suc-
cess and error statuses. Enter an outbound IDoc number, a directory path on the
application server, and a file port, and it will create the test file and update the
status table by default, if you leave the Start status processing immediately flag
checked. The structure of the status file is displayed in Figure 20.5.

Figure 20.5 The Status File Generated by the Status Test Tool

Assuming a status file has been saved to the application server, run Transaction
WE17—program MSEIDOC0—and enter the full directory path and file name and
the file port.

The file is pulled into SAP by function EDI_STATUS_INCOMING. If the file is correctly
populated, it will update the status record in table EDIDS for the IDoc with one
record for each status reported in the file.

EDI_STATUS_INCOMING can be triggered by an external system through an RFC into
SAP or by running an RFC script on the application server.

794

Testing the EDI System in SAP20

20.1.5 Turnaround Utility: Transaction WE12

The turnaround utility—program MSEIDOC0—changes any IDoc in a file on the SAP
application server into an inbound IDoc and imports it for inbound testing.

The easiest way to understand the turnaround utility by breaking it down into the
tasks it accomplishes:

EE Reads the source IDoc file

EE Copies partner number, type, and port in the Sender tab of the selection screen
into the SNDPRN, SNDPRT, and SNDPOR fields of the control segment

EE Copies partner number, type, and port in the Receiver tab of the selection screen
into the RCVPRN, RCVDPRT, and RCVPOR fields of the control segment

EE Saves the edited IDoc to the target file and triggers import of the file as an
inbound IDoc

There must be supporting inbound and outbound partner profiles for the values
entered in the Sender and Receiver tables of the selection screen, and the port must
be a file port. It will not work with an XML port. The turnaround utility selection
screen is shown in Figure 20.6.

Figure 20.6 The Turnaround Utility Sender Selection Screen

795

IDoc Test Tools 20.1

An easy way to edit and export the IDoc as a file is with the Transaction WE19 test
tool Inbound file button. It saves the IDoc to a directory and file on the applica-
tion server specified by the user. By default, the file is processed as an inbound
IDoc and deleted from the application server.

To save it to the application server, uncheck the checkbox Start IDoc inbound
processing of file immediately (see Figure 20.7). You now have a file that you
can test with Transaction WE12.

Figure 20.7 Saving an IDoc to a File from Transaction WE19

20.1.6 Inbound IDoc File Processing: Transaction WE16

Transaction WE16 is a useful way to bring IDocs into a development client for
testing and debugging.

Transaction WE16 will import an IDoc even if there is no supporting partner profile
and the control segments are all wrong. When we load an IDoc into a DEV client
from a file for testing, we do not always care whether it passes the checks and is
saved at status 64. After it’s in, we can do whatever we want to it using Transaction
WE19, even if it has been saved at status 56.

For quick and dirty transfer of IDocs from one client or system to another, Transac-
tion WE16 is useful and easy to work with. Save your IDoc file in a folder on the
SAP application server and enter the full path and file name in the selection screen,
as in Figure 20.8. Enter a port name and execute.

796

Testing the EDI System in SAP20

Figure 20.8 Bringing an IDoc File in with Transaction WE16

The IDoc can then be viewed and edited in any of the IDoc monitoring or test tools
such as Transactions BD87, WE05, or WE19.

Transaction WE16 will support import of an IDoc through an XML file port if the
IDoc file is in XML format.

20.1.7 Inbound IDocs and startRFC

startRFC is a trusty old SAP utility that triggers IDoc processing in SAP directly
from the application server. In many companies, startRFC is still the only way to
send IDoc files into SAP.

You may need Basis guidance to find it on your system, but startRFC can gener-
ally be found in a subdirectory of \usr\sap\<SYSID>\SYS, where SYSID is your local
SAP system ID.

It can be called directly from the command line or from a script. Typically, it is
by another FTP script that moves an IDoc file into the application server and the
passes call parameters to a startRFC script, including the file name. In many older
EDI environments, data are moved from system to system by FTP scripts.

Listing 20.1 is an example of a command line call to startRFC.

\\usr\sap\DEV\sys\exe\run\startrfc -3 -d DEV -u edi_user -p freddy
-c 120 -l E -h sapacdev -s 00 -g sapacdev -x sapgw00 -t -F EDI_DATA_
INCOMING -E PORT=XML_IDOC -E PATHNAME=\\datastuff\client100\EDI\INBOX\
idoc000029

Listing 20.1 Calling startRFC from the Command Line

797

IDoc Test Tools 20.1

The parameter switches for startRFC are listed in Table 20.1.

Switch Description Value

Path to startRFC executable D:\usr\sap\DEV\sys\exe\run\
startrfc

-3 System control flag: log on to SAP

-d SAP system dev (Acme development)

-u User name for RFC edi_user

-p EDI user password freddy

-c SAP client for RFC 120

-l Language E (English)

-h SAP application server for RFC sapacdev (Acme dev)

-s SAP system number 00

-g SAP Gateway host sapacdev

-x SAP Gateway service sapgw00

-t Turns on RFC trace and saves trace
file to current or specified directory;
useful during testing and for
troubleshooting

-F Message processing function to
trigger by RFC

EDI_DATA_INCOMING

-E SAP Port: XML or file port PORT=XML_IDOC

-E Path and file name for inbound IDOC
file

PATHNAME=\\datastuff\
client100\EDI\INBOX\
idoc000029

Table 20.1 startRFC Call Parameters or Switches

startRFC uses the switches to identify a target SAP system, log in with a user name
and password, and call a function module to import and process the incoming
IDoc file.

798

Testing the EDI System in SAP20

Use startRFC to test inbound processing to SAP from the command line. If your
EDI system does not have an IDoc adapter, startRFC may be the only way you
can send IDocs into SAP. Whether for testing or production, startRFC is a useful
tool to understand.

20.2 Interface Testing Strategy

Reduced to its simplest definition, testing is about reducing the risks of error before
we move our system into production. The hope is that the new SAP EDI system will
work as designed to support Acme’s business, which is to sell its movies on DVD.

But the expectation is that stuff can go wrong. We need to eliminate this possibility
as far as it is in our power to do so. The basic problem is that even if we manage
to throw a lot of data at it, we will never be able to throw enough data over a long
enough period of time to recreate the conditions of daily production.

But we can probably catch 95 percent of the potential system issues. Or at least
the real gotchas.

We need to approach the issue in a structured and disciplined manner, which means
defining and executing a testing strategy that identifies the following:

EE Our objectives and definition of success

EE The type of testing we need to do

EE The number of test cycles we complete before we can declare victory and move
on to cutover

EE The components and environments of the SAP EDI system tested

EE The level of detail we need to test

EE Dependencies, including data requirements, for each cycle

EE Break-fix procedures

EE How we document our testing efforts

EE Test team setup

EE Roles and responsibilities for each team and each team member

799

Interface Testing Strategy 20.2

After weeks of meetings with each project team during development, our testing
consultant drew up a multiphase strategy that takes all of these questions into
account.

For the order-to-cash interface cycle, it was determined that we will complete the
following test cycles:

EE Unit testing
Development objects in SAP and the EDI RIM (programs, functions, exits, maps,
workflows, and so on) and interface configuration are unit tested by the devel-
oper as they are built.

EE String testing
End-to-end processing flow of all interface programs in the EDI RIM and SAP,
including connectivity through the IDoc adapter, are tested as development
objects are built and refined in both systems. Trading partners are not included
in testing.

EE Interface testing
This cycle involves a more structured form of string testing that includes AS2
connectivity with the vendors and at least one customer.

EE Integration testing
This cycle involves end-to-end interface runs, including connectivity with the
vendors, within the context of integration testing of business processes in SAP.

EE Stress testing
Here very large volumes of EDI and IDoc data run into and out of SAP and the
EDI RIM, while users execute large reports and do normal daily transactional
processing.

We’ll address all of our testing issues as we look at each phase. But first, we need to
cover some general requirements that are applicable to all of Acme’s testing phases.

20.2.1 Testing Environments

We have not looked at the SAP and EDI RIM system landscapes at Acme Pictures.
For our purposes, it is enough to say there are three SAP environments. Each has
its own database, application, and presentation servers: DEV, QAS, and PRD.

Each system is distinguished by the client structure described in Table 20.2.

800

Testing the EDI System in SAP20

Environment Client Description

DEV 100 Go-forward golden client used to build QAS and PRD,
with no data. Development objects are created in 100
and transported to all other clients and environments.

120 Unit testing of development objects. Master and
transactional data. Connected to EDI DEV.

140 Data conversion test client. Client-specific configuration
transported from DEV 100.

QAS 200 QAS golden go-forward client. No data. Configuration
and development objects transported from DEV 100.

240 Date conversion, interface, integration, and stress test
client. Refreshed from QAS 200 before data conversion.
Connected to EDI QAS.

PRD 300 Go-live production client. All configuration and
development objects transported from QAS 200 during
cutover. Connected to EDI PRD.

SND 120 Development sandbox for prototyping and play.
Created and refreshed from DEV 120.

Table 20.2 SAP Environments and Clients at Acme Pictures

This is a simplified version of the SAP system landscape, and it’s all fairly standard
stuff. Development objects are created in DEV client 100 and unit tested in 120.
Development objects include all IMG configuration settings, custom and extended
IDocs, segments, ABAP programs, function groups, function modules, transaction
codes, tables, structures, and so on.

Client-dependent objects are transported from 100 to 120 and 140. Client-indepen-
dent objects are created in 100 and are immediately visible to all other DEV clients.

There’s also a sandbox client for prototyping configuration and custom code before
creating the objects in 100 and unit testing them in 120.

Partner profiles and file ports are special cases. They are client-dependent, only
available in the client in which they were created, and cannot be transported.
They must be recreated in each client where they will be used. RFC destinations
are client-independent and cannot be transported to other environments such as

801

Interface Testing Strategy 20.2

QAS and PRD. They are recreated each time a new system is built, although they
are available to each client in that system.

Data conversion programs are developed in the Legacy System Migration Work-
bench (LSMW) in client 100 and tested in 120 and 140. Both ABAP programs and
LSMW projects are client-independent and show up in all DEV clients after they
are created and saved.

We’ll test our custom partner profile load program in DEV 120 and 140, but we
won’t load partner profiles into client 100 because they are technically master data.

Looking at our interface test cycles, unit and string testing is done in DEV 120.
Our QAS environment is reserved for the more formal and structured interface,
integration, and stress test cycles.

The issue is promotion of development objects from DEV 100 to our QAS testing
environment. Promotion is key to prepping QAS for testing and must be repeated
each time a new testing cycle or phase begins.

All development objects are transported from DEV 100 to QAS 200. No data are
loaded into 200. QAS 240 is built or refreshed from 200 after all transports have
been run from DEV 100. Data conversion then proceeds into 240. All master and
transactional data required for the test phase is loaded, including the partner profiles.

This is the first step in each testing cycle. It tests the data conversion projects and
populates the QAS environment with the data we’ll need for testing.

There will be cycles of intensive data conversion testing, but for the tests that
impact our EDI interfaces, we’ll load only master and transactional data that have
been identified and cleansed for use in our testing.

As 240 is populated, we will add the file ports and other objects that need to be
recreated each time a client is built or refreshed.

We will use a similar promotion approach for the EDI objects in the RIM, although
it does not have the structured client and transport system of SAP, so it is not as
tightly locked down.

EDI DEV connects to SAP DEV 120, and EDI QAS connects to SAP QAS 240. Maps,
workflows, and other objects will be developed and unit tested in EDI DEV and
promoted to QAS at the same time as the SAP objects.

802

Testing the EDI System in SAP20

The only other issue is EDI test data. Acme exchanges EDI transactions with Gordy’s
Galaxy through direct AS2 transmissions. We will copy some of those transactions
to our DEV and QAS clients for testing, which is known as carbon copying.

For the tests where we need to mimic the flow of production data into SAP, we will
create a process in the legacy system that copies EDI production data as it comes
in for transfer to our new RIM EDI QAS system.

20.2.2 Break-Fix Procedures

Related to the issue of testing environments, break-fix procedures are about how
we fix development objects when they fail during testing. Break-fix is relevant for
the more formal testing phases in QAS.

What happens when a program fails during a test? Who fixes it? How does it get
back into QAS? What happens to the test that was aborted by the failure?

Acme’s break-fix procedures attempt to address these questions. They include a
few guiding principles meant to minimize disruptions to testing:

EE When a program fails during a test, testing of that program stops until the issue
is fixed.

EE The point of failure is identified, and the issue is documented in a test log with
notes about the data that were being tested and relevant screenshots.

EE The developer who coded the program fixes it. It becomes his top priority. If
he is not available, the developer assigned to the test team takes care of it.

EE The test team is available to help the developer recreate the error in DEV if
necessary.

EE The fix is coded in DEV and unit-tested by the developer, who also updates the
technical specifications for the program with the change.

EE After the developer is satisfied that the fix works, the test team does a dry run
of the failed test in DEV. If it passes, the test team approves the fix, and the code
is transported to QAS.

EE When the code has been moved into QAS, the test team reruns the test from
the beginning and logs the results.

803

Interface Testing Strategy 20.2

Fixes that require major program changes need a round of regression testing.
Everything that has been tested to the moment of failure is tested again from the
beginning.

20.2.3 Test Teams and Responsibilities

Making the test team a priority is a real no-brainer. We need the right people in
the right place at the right time. The same technical team will be responsible for
all formal EDI interface testing in QAS.

The interface test team for the 856 includes the following roles and responsibilities:

1. SD and FI consultants:

EE Confirm document postings

EE Validate all follow-on processing and documents

EE Verify that enhancements to standard programs work according to functional
and technical specifications

EE Support the business user and expert

2. Sales support or operations and accounts receivable business experts and users:

EE Run SAP portions of the test

EE Document results of each test step

EE Train in use of the transaction or business process

EE Document and log test errors with the support of the SD consultant

EE Confirm results in delivery, material, and accounting documents

EE Identify gaps in the business process

3. SAP EDI technical architect/designer:

EE Supports test and development teams in resolving system-wide issues

4. SAP development lead:

EE Monitors IDoc processing and validate syntax and configuration

EE Triggers IDoc processing

EE Verifies enhancements executed according to specifications

EE Documents and log technical issues

804

Testing the EDI System in SAP20

EE Manages the SAP break-fix process and ensures that developers are assigned
to fixes

EE Approves program fixes and ensures they are tested in DEV

5. EDI system development lead:

EE Triggers and monitors data flows from the EDI RIM into SAP

EE Ensures that maps and processes execute correctly and that bugs are fixed as
they are identified

EE Manages the EDI break-fix process

EE Assigns mapping or program fixes to the right developer

EE Approves fixes before transporting them to EDI QAS

EE Ensures that AS2 communications are working where connectivity with the
customer is also being tested

EE Documents and logs EDI technical issues

The test teams are supported by technical, infrastructure, and development special-
ists, including ABAP and EDI developers, the Basis team, and database, network,
and communications support. If they are called on to fix a problem during testing,
the fix becomes their first priority.

Finally, a test coordinator oversees the testing effort. At Acme, this job falls to the
testing consultant. The consultant works with all teams to ensure that every test
scenario and business process in every test phase is completed successfully on
schedule and is signed off by project management and business owners.

The specialist defines the test strategy and schedule and works with the Basis and
development teams in SAP and the EDI RIM to ensure that the test environments
are ready before each test phase begins.

She helps the functional and data conversion teams identify, collect, and load
clean data for each test phase into the QAS 240 test client. She also ensures that all
relevant authorizations are in QAS for each tester, maintains the master list of test
scenarios, keeps all teams on schedule, and helps users and support folks assess
the results of each test. It’s a big job indeed.

805

Unit Testing 20.3

20.2.4 Documenting Tests

A number of documents will be used to support execution of test scenarios across
all phases:

EE Business process procedures (BPPs)
Detailed step-by-step procedures for running a transaction or business process,
including screenshots and data inputs, that string together one or more transac-
tions. BPPs are also developed as training manuals.

EE Test scripts
Details of each step that will be run in a test, including data inputs, and expected
and actual outputs returned, for each screen in a transaction or series of transac-
tions. These are designed for test execution rather than training.

EE Issues log
Point of failure documentation during testing. It tracks issues, fixes, data used,
target and actual dates for the fix, and parties responsible.

The team will use a browser-based tool to define and record the details of testing.
The BPPs and test scripts will be attached where relevant to the test step recorded
in the tool.

Now we have the basic outline of Acme’s test strategy and can begin working
through each phase. Our main interest remains the EDI relationship with Acme’s
biggest customer, Gordy’s Galaxy.

We begin with unit testing.

20.3 Unit Testing

Developers continue to do unit testing until the final version of their code is deliv-
ered. Believe it or not, it is one of our favorite pastimes because it lets us see the
immediate results of our thinking and coding.

Unit testing is done in the DEV system. Because it involves debugging and chang-
ing data values during program runtime, it should never be done in QAS. The base
process flow for unit testing is shown in Figure 20.9.

806

Testing the EDI System in SAP20

Write code/
correct code

Execute code

END

Validate data/
confirm code
against specs

Debug/identify
program error

Developer’s test
data: IDoc/EDI

OK

OK

Yes

No

No

Yes

Figure 20.9 Unit Test Base Processing Flow

20.3.1 Scope

The purpose of unit testing is to confirm that the custom development object—
whether a program, function, map, business process workflow, or any other object in
SAP or the EDI RIM—works according to its functional and technical specifications.

It needs to work technically to fulfill the functional requirement described in the
specification.

20.3.2 Criteria for Success

When do we know that unit testing is successful and we can pass our code to the
next test phase? This is an informed decision that comes from several cycles of
testing with different data samples that match our understanding of the require-
ments laid out in the specifications.

807

Unit Testing 20.3

The assumption here is that we have detailed specifications and easy access to the
functional consultants and business owners so that we can ask questions about the
requirements when we need clarification.

20.3.3 Dependencies

Successful unit testing is dependent, first of all, on completion of functional and
technical specifications.

Functional specifications are written by the functional consultant or business pro-
cess owner to describe the business functionality of the program and provide data
and transactional references for the programmer. They also provide test data and
potential points of failure in the business functionality.

The developer works with the author of the functional specifications to understand
the requirement and to provide technical background on the feasibility of the
functionality.

Technical specifications are written by the developer. They provide program pro-
cess flow and details of selection screen or custom transactions, tables, structures,
segments, IDoc types, and so on.

Technical specifications identify tables that will be read, define formulas for calcula-
tions, and step through the program logic that will be written to meet the business
requirement of the functional spec. They can get to the level of detailed pseudo
code, although most old-timey programmers feel that if they are writing pseudo
code, they may as well write real code. However, writing pseudo code can be a
useful exercise in nailing down the basic structure and logical flow of a program
before beginning to code.

The development must be created at least in an initial version. It also needs test
data but these can be dummied up in the earliest phases. By the time the program
is fully coded, good test data must be available.

20.3.4 Execution

Unit testing generally works on two levels:

EE Internal
Frequent testing of the snippet of functionality currently being coded. The aim
is to ensure that syntax is correct, that the program executes, and that the tested
code fragment works as expected.

808

Testing the EDI System in SAP20

EE Holistic
Testing and debugging of a complete cut of the development object. The aim is
to confirm syntax and execution and to step through the processing flow with
test data to validate table reads, calculations, and data transformations.

This approach to developing focuses on building, testing, and debugging snippets
of functionality that complete a particular task before moving on to the next. Once
the logic is working, the output is validated. Ensure that all of the data expected is
retrieved by spot checking documents and tables.

20.4 String Testing

String testing involves unit testing a related string of objects that comprise a pro-
gram or EDI interface. Its purpose is to confirm that the end-to-end process flow
of the interface works with all of its objects, whether they were developed in SAP
or the EDI RIM, including connectivity between the two systems.

String testing is done in DEV by the developer with the support of the SAP EDI
technical architect, members of the SAP and EDI development teams, and other
resources, such as Basis, as needed.

Like unit testing, it can involve debugging and ad hoc rerunning of various pieces
of an interface and should never be conducted in QAS.

Interface objects should not be transported into QAS until they have passed a string
test in DEV. This is also true when an error occurs during formal testing and a fix
is made to any object in the interface.

20.4.1 Scope

String testing is our first opportunity to run each interface with all its objects as an
integrated process between SAP and the EDI RIM.

String testing is run for each discrete interface in the order-to-cash cycle of our SAP
EDI architecture. And each interface is run as a standalone process, independently
of all other interfaces.

Although the general testing process and confirmation points are essentially the
same for both inbound and outbound interfaces, the objects validated and the
expected results for each differ slightly.

809

String Testing 20.4

Objects and processing points validated in string testing include the following:

EE Inbound

EE Translation map

EE Connection to SAP

EE IDoc created and stored at status 64

EE Customer exit logic working, where relevant

EE Outbound

EE Output control and partner profiles configuration

EE IDoc created and stored at status 30

EE IDoc successfully sent to EDI RIM

EE Translation map

We’ll look at examples of both the inbound 850-ORDERS customer PO and the
outbound INVOIC-810 customer invoice.

20.4.2 Criteria for Success

Success has a well-defined endpoint in string testing.

For inbound processing, the 850 purchase order must successfully translate to an
IDoc and be validated against the EDI transaction set and the mapping specifica-
tions. The IDoc must also be sent into SAP and stored at status 64.

Customer exits in the IDoc function should be verified. This can also be done by
processing the IDoc through the Transaction WE19 test tool debugger and ensur-
ing that the logic works.

It is not necessary to post a sales order, although it can be a useful exercise. We
have not yet set up test data in DEV to support posting a sales order.

In outbound processing, the IDoc must be generated through output control,
transmitted to the EDI RIM, and translated to an X12 810 transaction set for the
correct trading partner. The data in the 810 must also be validated against the IDoc
and the mapping specification.

810

Testing the EDI System in SAP20

When the string test has been declared a success by the SAP EDI technical architect
and the SAP and EDI development team leads, it can be submitted for approval
and transport to QAS.

The test coordinator, with the support of the relevant functional team leads and
project management, gives the final approval to move the interface objects into QAS.

20.4.3 Dependencies

String testing is dependent on successful completion of unit testing for each object
in the tested interface: EDI RIM maps, workflows, programs, scripts, adapters;
configuration in both systems; custom ABAP functions, programs, or customer
exits; and so on.

The objects have been validated in unit testing against completed functional and
technical specifications, including mapping specifications.

A carbon copy process is set up in legacy to copy and move EDI production trans-
actions into a directory on the EDI RIM DEV application server for all interfaces
that will be tested.

Outbound EDI transactions are also copied to compare with the mapping specifica-
tions and transactions translated in testing.

In addition, outbound string testing is dependent on the existence of business
documents that generate IDocs, such as deliveries and invoices.

Master data and IDoc configuration to support outbound string testing is also
required, including output control, condition records, partner profiles, file ports,
and an RFC destination to call the receiving process in the EDI RIM.

20.4.4 Execution

The string test is triggered in the EDI RIM for inbound to SAP testing and in SAP
for outbound to EDI interfaces. Validation along identified checkpoints in the
interface flows is handled by both the SAP and EDI technical teams, depending
on the system, the checkpoint object, and the expertise required for evaluation.

We begin with the inbound 850 string test.

811

String Testing 20.4

Inbound 850 Purchase Order

The inbound X12 850 customer purchase order string test is triggered manually in
EDI RIM DEV. It is not sent from the customer.

Figure 20.10 outlines the processing flow for the string test.

Break fix: Debug
dev object identify

and fix error
No

END

Yes

Trigger interface in
RIM with carbon
copy EDI prd data

Output 1 ORDERS
IDoc per store

X12 850 input
translation/SDQ
split for IDocs

Connect OK

Verify/debug
customer exit in
IDoc function

RFC to SAP
with ORDERS

IDoc file
OK Yes

No

IDoc created in
SAP status = 64

YesOKNo

Figure 20.10 String Testing an Inbound Purchase Order

The test begins by getting an 850 interchange from Gordy’s Galaxy from the carbon
copy in the legacy EDI system into a directory on the EDI RIM DEV application
server.

812

Testing the EDI System in SAP20

The first validation point is the translation from the X12 850 to the ORDERS IDoc.
In the case of an SDQ transaction, the X12 is unwrapped at the item level and
converted into one IDoc for each store level ship-to party.

The key validation is that the number of IDocs matches the number of stores
ordering in the 850. We also validate that the number of materials match in both
documents and we spot check quantities for store-item combinations.

Any problems in the translation are corrected and the interface is rerun from the
beginning.

The next key checkpoint is the connection between SAP and the EDI RIM. If an
IDoc fails to show up in SAP, we will identify and fix the problem. The error can
be in any of the following:

EE Installation and setup of JCo on the EDI RIM app server

EE Configuration of the IDoc adapter in the EDI RIM

EE An interruption in RFC into SAP from a network or other technical issue (may
need Basis or infrastructure support to resolve)

After the error is identified, the interface is restarted from the beginning.

If the systems connect, the next validation is that the IDocs were created in SAP
and are ready for application processing at status 64.

If the IDocs aren’t at status 64, it is most likely due to one of two issues:

EE IDoc syntax: Translation or data error. Fix the map or the data.

EE Configuration: Generally related to the partner profile. Either the partner profile
is missing or the control record is incorrect. The solution is to correct the part-
ner profile or the map logic that populated the control segment and then resend
the IDoc.

If any customer exits are coded in the IDoc processing function, we will run through
them as well to confirm that the logic is working. The aim is not to post a sales
order but to confirm that we don’t hit an error when we run the IDoc processing
function. If the sales order fails to post because of data issues, our test is still a
success because the code ran without failing.

If there are errors and they have been fixed by the responsible developers, the
interface is run again from the beginning in the EDI RIM. After the IDoc is created

813

String Testing 20.4

and stored at status 64 and any custom code in the processing function runs without
failing, we can declare the test a success.

Outbound Customer Invoice

The outbound X12 810 customer invoice string test is triggered in SAP when an
IDoc is generated by calling Transaction VF02 and saving the billing document.

Figure 20.11 outlines the processing flow for an outbound string test.

END

Yes

VF01/VF04:
Create billing doc

OK
Break fix: Debug

dev object identify
and fix error

Yes

OKNo

Output X12 810
invoice to cust.

IDoc generated
saved to database

at status = 30

Output INVOIC
IDoc for billing doc

RFC from SAP
to EDI RIM with
INVOIC IDoc file

Verify/debug
customer exit in
IDoc function

OKNo

No

Yes

Translation map
converts IDoc to
X12 810 invoice

Figure 20.11 String Testing an Outbound Customer Invoice

If output control and the partner profile are configured correctly, an INVOIC IDoc
is generated and stored at status 30 when a billing doc is created and saved with
Transaction VF01 or with the billing due list Transaction VF31.

814

Testing the EDI System in SAP20

If there is a problem, it is most likely because the condition record has not been
added for the output type and partner, or the partner profile is missing or incor-
rectly configured. The error needs to be identified and fixed and the IDoc generated.

If there are any customer exits in the IDoc processing function, it will be hit during
IDoc generation. If it fails, we need to identify the point of failure and unit test
the function until we are satisfied that it works. Then we restart the string test by
generating a new IDoc out of a billing document.

If the IDoc is successfully generated, it is written to the database at status 30. The
IDoc is kicked out of SAP using Transactions BD87 or WE14. We will need to
confirm that SAP sends the IDoc to a file on its application server, completes the
RFC to the EDI RIM, and triggers a receiving process that picks up the IDoc and
sends it to the translation step.

If the transfer to the EDI RIM fails, there’s a connection error, which could be
prompted by one of the following circumstances:

EE The output mode in the partner profile isn’t set to start subsystem.

EE The XML file port is not configured to automatically start the external system,
is not pointing to an RFC destination, or is pointing to the wrong RFC destina-
tion.

EE There is a problem with the RFC destination or the receiving workflow process
in the EDI Rim is not correctly registered.

EE The IDoc adapter in the EDI RIM is not configured or is incorrectly configured
for receipt of RFCs from SAP.

EE The JCo java connector on the EDI RIM application server is incorrectly installed.

In the real world, these objects are all interconnected. For example, if the IDoc
adapter in the EDI RIM is incorrectly configured, the RFC destination will not
register the server program and the connection will fail.

Some configuration errors may be at the Basis system level. The Basis team would
then need to get involved.

Assuming no errors, or that all errors have been corrected and a new IDoc gener-
ated, the next validation point is translation.

815

Interface Testing 20.5

If the map fails, the EDI team tracks down the source of the problem. It fails either
because of an error in the map or because mandatory data are missing from the IDoc.

If the problem is in the IDoc, it will be fixed in SAP and resent. If it is a mapping
error, the EDI team fixes the map and the SAP team regenerates the IDoc from the
billing document.

If translation succeeds, we validate the data in the 810 invoice against the map-
ping specifications and the IDoc. We also confirm that the expected number of
items translated from the IDoc to the 810 and that the ship-to partners, materials,
quantities, and amounts are all correct. If there are many items, we can spot-check.

When all checks are done, we can declare the outbound string test a success.

20.5 Interface Testing

Interface testing treats each EDI interface as an integrated business process that
spans development and configuration objects in SAP and the EDI RIM.

Interface testing is a more formal and structured approach run in QAS by a full test
team, which includes functional and business experts in addition to the technical
teams.

Connectivity with the trading partner is tested and business documents post to SAP.

The test teams are supported by the test coordinator, the SAP EDI technical archi-
tect, the development and functional teams, and other resources, such as basis and
infrastructure support groups, as needed

20.5.1 Scope

Interface testing is our first opportunity to confirm results for each interface. It
validates that each interface works end-to-end in a controlled QAS test environ-
ment with selected data. The aim is to identify and fix any development issues in
SAP, the translation maps, or EDI processes and programs, including connectivity.

Each interface is run between SAP, the EDI RIM, and the trading partner, in the
order in which it will run in production. This gives the team its first sense of where
each interface fits within the overall processing cycle.

816

Testing the EDI System in SAP20

Interfaces for purchasing are run in the following order:

1. Outbound purchase order for replication: ORDERS to X12 850

2. Inbound PO acknowledgment: X12 855 to ORDRSP

3. Inbound goods receipt: X12 867 to MBGMCR

4. Inbound supplier invoice: X12 810 to INVOIC

Interfaces for the order-to-cash cycle are run in the following order:

1. Inbound customer purchase order: X12 850 to ORDERS

2. Outbound PO acknowledgment: ORDRSP to X12 855

3. Outbound ship order: SHPORD to X12 830

4. Inbound ship confirmation: X12 856 to SHPCON

5. Outbound advanced ship notification: DESADV to X12 856

6. Outbound customer invoice: INVOIC to X12 810

7. Inbound remittance advice: X12 820 to REMADV

AS2 connectivity will also be tested for the inbound 850 and outbound 810 with
Gordy’s Galaxy and for the outbound 830 and inbound 856 with the vendor Disc
Services International (DSI).

In addition, interface testing confirms that inbound IDocs create or update rel-
evant business documents in SAP, although posting of follow-up documents is
not validated.

Acme’s Project Q interface testing is scheduled to last for two weeks.

20.5.2 Criteria for Success

Interface testing builds on the success of string testing. Everything that was needed
to succeed in the DEV environment for string testing must also succeed in QAS for
interface testing, including:

EE Successful translation of IDocs to X12, X12 to IDocs, and validation of all maps
against mapping specifications

EE Successful execution of all standard and custom code and configuration in SAP
and the EDI RIM

EE Inbound IDocs stored at status 64 before posting to a business document

817

Interface Testing 20.5

EE Outbound IDocs generated from SAP business documents and stored at status
03 after being exported to the EDI RIM

EE Connectivity between SAP and the EDI RIM

In addition to these validations, connectivity with the trading partner must succeed
for at least one inbound and one outbound interface.

Inbound connectivity succeeds when an X12 interchange is received into the EDI
RIM by AS2 transmission and an MDN acknowledgment is returned to the partner.
The RIM then sends a 997 acknowledgment to the sending partner for the inbound
transaction when the functional group has been extracted from the interchange.

Outbound connectivity succeeds when an X12 interchange is sent to the trading
partner and an MDN acknowledgment is immediately received. The partner fol-
lows with a 997, which is processed by the EDI RIM.

Interface testing, for the first time, validates that the inbound IDoc creates or
updates an SAP document using defined test data:

EE Inbound INVOIC creates an MM invoice

EE Inbound ORDERS creates a sales order

EE Inbound SHPCON updates pick quantity and triggers PGI

EE Inbound REMADV creates a payment advice

Posting of follow-on documents is not confirmed at this point, however.

When all interfaces have been validated on the test scripts in the sequence in
which they will run in the order-to-cash cycle, and all scripts are signed off, the
test coordinator can declare interface testing a success.

20.5.3 Dependencies

Interface testing is dependent on the successful conclusion of unit and string test-
ing. All development objects and configuration must be transported into the QAS
environment for both systems. In SAP, QAS client 200 is built from DEV 100, and
the 240 test client from 200.

Program and mapping specifications, BPPs, test scripts, issue logs, and other test-
ing and supporting documentation are completed by the relevant teams. One test
script is defined for each interface in the purchasing and order-to-cash cycles. Each

818

Testing the EDI System in SAP20

testing step is described in the script. A testing schedule is defined and resources
assigned to the test teams.

A complete set of master and transactional data to support all interfaces has been
collected and prepped for loading. Data conversion programs were tested QAS 240.
All test data are loaded, including EDPAR, EDSDC, partner profiles, and ZEDIXREF.

X12 interchanges are collected from the carbon copy in the legacy PRD EDI system
to test inbound interfaces and to compare to translations generated by outbound
IDocs. X12 data were selected to match the test data that we will use in SAP, par-
ticularly the ship-to locations mapped in EDPAR and the material masters.

Communications configuration is completed in the EDI RIM and on the network.
AS2 profiles are set up for Gordy’s Galaxy, DSI, and the firewall is open to incom-
ing IP addresses from both partners.

Last but not least, the EDI teams at Gordy’s and DSI have scheduled time for
connectivity testing with Acme. They completed all their setup and configuration
work in their middleware and are ready to exchange data with Acme’s EDI RIM.

20.5.4 Execution

The scenarios in the scripts are the roadmaps for executing each interface test.
They provide setup data for the scenario as a whole, a description of the business
process, and the expected and actual results for each test step.

Many steps are common to all inbound and outbound interfaces, particularly tech-
nical processing through the EDI RIM and SAP. Differences are mainly related to
the functionality of an interface.

The interface test scenario for an inbound 850 customer purchase order, for example,
records the business process steps outlined in Table 20.3.

Number Step Description Txn Expected Result Result

0 Receive 850 by AS2 850 X12 decrypted ISA number 1234

1 Send MDN to
partner

850 Partner confirms
MDN

OK

Table 20.3 Interface Test Scenario for the Inbound 850 PO

819

Interface Testing 20.5

Number Step Description Txn Expected Result Result

2 997 generated 997 997 sent to
customer

ISA number 2122.

Gordy confirms

3 Translated to IDoc 850 ORDERS IDoc file OK: File name

4 Send IDoc to SAP BD87 IDoc at status 64 IDoc number
43456701

5 IDoc posts sales
order

VA01 SO doc type ZEDI

EE Sold-to:
GRDY01.

EE Ship-to
GRDY000987.

EE Qty: 20/Price:
$11.95

SO number
20345670

Table 20.3 Interface Test Scenario for the Inbound 850 PO (Cont.)

Setup data for the scenario include Gordy’s sold-to and ship-to numbers, the mate-
rial being ordered by EDI, and the sales organization, distribution channel, and
division used to create the sales order.

The test scenario begins with receipt of the encrypted X12 850 interchange by AS2
transmission and ends when a sales order posts to SAP. Each step touches on a key
milestone in the processing cycle of the interface.

The steps are exactly the same for all inbound interfaces. The differences are in the
map called and the business document posted or updated, which define the logic
confirmed by the scenario.

Outbound processing is not that much different. This is illustrated by the test sce-
nario for an outbound 810 customer invoice in Table 20.4.

Number Step Description Txn Expected Results Result

0 Create billing
document

VF04 Delivery number
809899 generates
billing document

Billing 907865

1 Check output VF03 IDoc in processing
log

IDoc number
245674

Table 20.4 Interface Test Scenario for the Outbound 810 Invoice

820

Testing the EDI System in SAP20

Number Step Description Txn Expected Results Result

2 Process OB IDoc WE14 IDoc sent to EDI
RIM; status = 18

OK

3 RIM picks up IDoc IDoc number
245674 in EDI
RIM

OK

4 Translated to X12
810

810 810 interchange
created; IDoc
status = 06

ISA number
3241

5 X12 sent to
customer

810 Interchange
encrypted
transmitted by
AS2

OK

6 MDN received MDN Customer sends
MDN

OK; customer
called

7 997 received 997 Customer returns
997 on 810

OK; ISA
number 4312

Table 20.4 Interface Test Scenario for the Outbound 810 Invoice (Cont.)

The only difference between outbound scenarios involves the X12 855 PO acknowl-
edgment interface. It adds a step to run a custom program that bundles all sales
orders from one SDQ PO into a single confirmation.

Setup data to test the outbound customer invoice include Gordy’s payer, bill-to,
sold-to, and ship-to partners; the sales order and delivery numbers; material num-
bers; and output type and condition record.

The test scenario begins with generation of the billing document through the bill-
ing due list. It is dependent on the existence of a completed delivery that can be
billed. It runs through all of the steps of outbound processing and ends when the
translated X12 810 interchange is encrypted, sent by AS2 to Gordy’s EDI team,
and successfully acknowledged with an MDN.

AS2 connectivity with Gordy’s is tested only once for one inbound and one out-
bound interface. If it succeeds once, it will always connect, unless the AS2 setup
is changed by either partner. Then it needs to be retested.

821

Interface Testing 20.5

The test scenario describes each processing milestone as a discrete step but the
interface runs straight through once it is triggered. But the results of each step are
carefully documented when the interface completes its run, including screenshots
proving the expected results.

An inbound interfaces runs until it creates an IDoc at status 64, when it is processed
manually by program RBDAPP01 to post the sales order.

An outbound interface runs to its end point, which is receipt of the 997 by the EDI
RIM acknowledging receipt and acceptance of the X12 transaction.

Figure 20.12 outlines the process for running an interface test. This process is the
same for both inbound and outbound interfaces.

Run test step from
script: Rec. results
actual vs. expected

Go to next testing
step in script

Log issue: Step/
date/TP/txn/
error/fix req’d

NoYes

Assign fix to
developer(s) with
target fix by date

Complete fix dev
unit/string test in

EDI/SAP DEV

Move to QAS
resume testing
from failed step

No

Success!
END OF TEST

Yes

No

Yes

Output data OR
actual result

OK

Input data OR
expected result

Last step

OK

Figure 20.12 Process Flow for Running an Interface Test Step

822

Testing the EDI System in SAP20

After the interface completes its processing run, the testers go back to the beginning
of the test scenario and check and document each step. If the step results match
expectations, then the results are entered into the script against the step and the
step is signed off.

If results don’t match expectations, the issue is documented in the issues log and
investigated by the technical team. If a programming or configuration error is
identified, a developer is assigned to fix the issue.

The nature of the problem determines which developer is assigned to the fix. A
translation error goes to the EDI mapper who built the map. An ABAP error goes
to the SAP developer who wrote the code.

In each case, the relevant technical team lead manages the effort and ensures that
the fix is tested and approved in DEV before it is transported to QAS. When the
fix has been moved back to QAS, the test is run again from the beginning. Each
step is validated in the order in which it appears in the scenario and success is
documented. If the fix succeeds, the corrected step is signed off by the tester.

After each step has been successfully completed, the scenario is approved by the
technical and functional team leads and the test coordinator. The next test scenario
is then triggered and the process repeated until all interfaces have been success-
fully tested and signed off.

20.6 Integration Testing

Integration testing validates the design of our integrated business processes. Rather
than concentrate on one end-to-end interface, we will test complete business pro-
cesses that can encompass multiple interfaces and transactions.

Integration testing is about the system as a whole, particularly the points of integra-
tion between interfaces, transactions, and processes. Think of it as a dress rehearsal
for production.

It is not enough to post a sales order and successfully complete all of the EDI and
SAP processing behind it. That sales order must also pass all its checks and gener-
ate a confirmation to send the customer through the ORDRSP to X12 855 interface
and a ship order to send to the distributor.

823

Integration Testing 20.6

It must successfully post follow-up documents in inventory and accounting for
each business document created or updated that requires it.

Although connectivity with trading partners is not tested, EDI documents are
exchanged with the distributor DSI. The aim is to validate processing results in
DSI’s EDI and backend business systems.

Everybody who needs to be is either on the integration test team or called in to help
if their expertise is required. Business users drive the test cycles with the support of
the functional and business experts and the SAP EDI technical architect. Test teams
are further supported by the test coordinator, the technical team leads, functional
and development teams, and other resources and support groups as needed.

20.6.1 Scope

Integration testing emulates running Acme’s business in the new system. This is
done by testing real-world scenarios based on the system design and input from
business process experts and users.

All systems with a stake in the new SAP environment participate in integration
testing. Though our focus is Acme’s new SAP EDI architecture, there are also legacy
systems that support VMI processing, for example. These must also be ready for
testing.

Our goal for the EDI team is to prove that the purchasing and order-to-cash cycles
work end-to-end.

We look at the order-to-cash cycle here. Three business processes have been defined
in integration test scenarios:

1. Drop order to distributor

EE Inbound EDI and VMI customer purchase order to SAP sales order

EE Outbound purchase order acknowledgment to the customer from the sales
order to an X12 855

EE Outbound shipping order to the contract distributor from the delivery docu-
ment to an X12 830

2. Shipping

EE Inbound shipping confirmation with pick quantity and post goods issue from
the distributor to the delivery document

824

Testing the EDI System in SAP20

EE Outbound advance shipping notification to the customer from the delivery
to an X12 856

3. Billing and payment

EE Outbound invoice to the customer from a billing document to an X12 810

EE Inbound remittance advice from the customer to a payment advice note in
SAP for clearing

Acme’s Project Q integration testing is scheduled to last six weeks. It will run in
three cycles of two weeks each. EDI-related scenarios for order-to-cash processing
will be tested in the third cycle.

20.6.2 Criteria for Success

Integration testing succeeds on a micro level and a macro level. Each step of each
integration test scenario, each scenario, and all three scenarios together must suc-
ceed as a whole before we can verify that we can receive orders, ship product,
invoice customers, and process payments using our new SAP EDI architecture.

Everything that succeeded in previous tests must also succeed in integration test-
ing. We will not test connectivity, but we will confirm that the vendor’s EDI and
business systems are updating correctly with our EDI transmissions.

All incoming IDocs post to an SAP business document. An ORDERS IDoc creates
a sales order; SHPCON updates the delivery document with picking quantity and
post goods issue, and REMADV creates a payment advice for clearing by accounts
receivable.

In addition, all follow-up processing must succeed. Before the sales order is com-
pleted, for example, pricing must be pulled in and discrepancies between the EDI
and SAP prices for an item resolved. The sold-to partner passes a credit check,
and an availability check ensures that there is open inventory to fulfill the order.

All of this must be confirmed by the functional members of the test team. Only
then can the test step be signed off by the tester and the ORDRSP confirmation
generated by the system as the next step in test process.

This is only the beginning, of course. To confirm success for each step of the inte-
gration test scenario, all background and follow-up processing must be validated
for each document or IDoc by the responsible test team members.

825

Integration Testing 20.6

When all EDI test scenarios have been validated on the test scripts, all issues have
been identified and resolved, and all scripts have been signed off by the integration
scenario test team lead, then the test coordinator declares success and works with
project management to get their final sign-off.

This is a critical step in the lifecycle of the project. Approval of integration testing
means that the system is ready for prime time.

20.6.3 Dependencies

Integration testing is dependent on the successful conclusion of unit, string, and
interface testing.

Development has been frozen in all systems, including SAP, the EDI RIM, and
remaining legacy systems. All development objects and configuration have been
completed and tested in the previous test cycles and transported into the QAS
environment.

In SAP, QAS client 200 has been rebuilt from DEV 100, and the 240 test client has
been refreshed and rebuilt from 200.

Integration test scenarios have been defined. One test script has been written for
each EDI scenario in the order-to-cash cycle. Program and mapping specifications,
BPPs, issue logs, and other supporting documentation have been updated to reflect
changes from earlier test cycles. The integration test schedule has been set and the
test teams have assembled.

Data conversion testing is a dry run for production cutover data loads. All master
and transactional data that will be loaded into production are uploaded into QAS
240 during integration test cycle 1.

IDoc configuration and master data are set up in QAS 240, including RFC destina-
tions, file ports, partner profiles, output types, condition records, and EDI-SAP
cross-reference tables. We also pulled a large sample of X12 production data from
carbon copy in the legacy EDI system.

Communications are configured between all systems, on the network, and Acme’s
trading partners. However, except for some EDI exchanges with DSI, AS2 com-
munications with the partners are disabled.

826

Testing the EDI System in SAP20

20.6.4 Execution

Integration test scenarios describe end-to-end business processes that include mul-
tiple interfaces and transactions. Although the testing approach is the same for all,
and the evaluation of the technical steps similar, the specifics are different for each.

We’ll look at each business scenario in turn.

Drop Order to Distributor

The integration test scenario for drop order to distributor is outlined in Table 20.5.
The customer order is pulled from EDI legacy carbon copy.

Number BP Step Description Txn Expected Result Result

0 Customer PO; not
sent by AS2

850 PO interface
triggered
manually in EDI
RIM; 850 is
archived

ISA number
850034

1 997 generated 997 997 stops before
AS2 send and is
archived

ISA number
997022, archive
file name

2 850 translated to
IDoc

850 ORDERS XML
IDoc file; IDoc is
archived

OK: File name

3 IDoc sent to SAP BD87 ORDERS = status
64

IDoc number
43456701

4 IDoc posts sales
order.

VA01 SO doc type
ZEDI

EE Sold-to:
GORD01

EE Ship-to
GORD000987

EE Material:
39856

EE Qty: 20/Price:
$11.95

SO number
20345670

5 Check pricing VA01 PR00 = 11.95 OK

Table 20.5 Drop Order to Distributor Integration Test Scenario

827

Integration Testing 20.6

Number BP Step Description Txn Expected Result Result

6 Credit limit VA01 OK OK

7 Availability check VA01 OK OK

8 Generate
confirmation

BD87 ORDRSP = status
30

IDoc number
43456722

9 Process OB IDoc WE14 XML IDoc sent
to EDI RIM
status = 18; IDoc
file archived in
RIM

OK

10 Translated to X12
855

855 855 interchange
created IDoc
status = 06

ISA number
855041

11 855 calls AS2 send 855 AS2 send fails;
855 is archived

Archive file name

12 Delivery created
from sales order

VL10 EE Shipping
point: 0015

EE Sales order:
20345670

Del: 80345880

13 Generate ship order BD87 SHPORD = status
30

IDoc number
43456724

14 Process OB IDoc WE14 XML IDoc sent
to EDI RIM
status = 18; IDoc
file is archived

OK

15 Translated to X12
830

830 830 interchange
created IDoc
status = 06

ISA number
830032

16 830 calls AS2 send 830 DSI receives 830;
830 file archived
in RIM

MDN, DSI EDI
confirms receipt

17 DSI sends back a
997

997 EDI RIM receives
and archives 997

ISA number
997042

18 DSI system updated 830 DSI posts ship
order

DSI EDI confirms

Table 20.5 Drop Order to Distributor Integration Test Scenario (Cont.)

828

Testing the EDI System in SAP20

The test begins when processing of an inbound 850 from the carbon copy is
triggered in the EDI RIM. It ends when a shipping order posts to DSI’s backend
business system.

Each step represents a milestone in the processing cycle of the scenario and is
described in detail by a test script.

Figure 20.13 outlines the process flow for the drop order to distribution integra-
tion test scenario.

DSI Acme EDIGordy

850 PO frm Gordy
triggered in RIM

Identifies envelope
translates X12 to

XML IDoc

997 FA generated/
archived not sent

Sales order posted
from IDoc txn VA01

IDoc written to DB
status = 64

Run RBDAPP01

Acme SAP

ORDRSP maps to
X12 both archived

SHPORD to X12
both archived

Delivery created
from sales orders

855 PO ack/AS2
to Gordy halted

X12 830 ship order
sent to DSI by AS2

MDN returned
from DSI

997 FA for OB 830
returned from DSI

Doc check: Pricing
credit limit/item

availability

ORDERS IDoc file
RFC call to SAP

Figure 20.13 Drop Order to Distributor Happy Path Integration Scenario

829

Integration Testing 20.6

Steps 0 through 3 are confirmed by the EDI team. The sales order is posted by
manually running RBDAPP01 with the IDoc number. Each step is signed off by
the tester as it is documented and confirmed. Errors are entered into the issues log
and a developer immediately assigned to the fix.

By this point in the project lifecycle, all major development issues should have been
fixed. However, integration testing introduces larger volumes of new production
data and a more complete system environment that could uncover unexpected
errors.

The standard break-fix process is followed for all errors. Fixes are coded and
retested in DEV, transported back to QAS 240, and the integration test restarted
from the beginning.

After the sales order posts, the business user validates pricing, customer credit
limit, and the availability of stock. He then confirms that an ORDRSP IDoc was
generated and is at status 30, ready to be sent to Gordy’s Galaxy.

The IDoc is sent to the EDI system and the status updated to 18—EDI system trig-
gered. The IDoc is translated to an 855 order confirmation and the IDoc status in
SAP updated to 06—Translation successful. A failed AS2 call to Gordy is triggered
and the 855 is archived.

The delivery due list is then run to create a delivery document from the sales order,
and a SHPORD IDoc is generated and sent to the EDI RIM. The IDoc is translated
to an 830 and sent by AS2 to DSI.

DSI responds with an MDN and a 997 functional acknowledgment. DSI’s EDI team
reports back to Acme that the 830 posted to a shipping order in DSI’s business sys-
tem. Data are compared between the two teams and, if DSI’s order has everything
that Acme sent in the 830, the scenario is complete.

The test coordinator confirms every step. If the results are correct, he signs off on
the scenario. The team then moves on to the next test scenario.

Shipping

Table 20.6 outlines the integration test scenario for shipping.

830

Testing the EDI System in SAP20

Number BP Step Description Txn Expected Result Result

0 DSI sends ShipConf 856 Decrypted ship
confirmation
received; 856
archived

ISA number
856036

1 997 generated 997 997 sent to DSI
MDN returned;
997 archived

ISA number
997025, DSI
confirms

2 Translated to IDoc 856 SHPCON XML
IDoc file; IDoc
file archived

OK: File name

3 IDoc sent to SAP BD87 SHPCON = status
64

IDoc number
43456791

4 IDoc updates
delivery

VL02 Del: 80345880.
Pick qty. = 20
for 39856; post
goods issue

OK

5 Check picking
request

VL03 Check document
flow

OK; picking
req:
20878752

6 Check material
document

VL03

MB03

Material
document for
goods issue.
Move type
601 relieves
inventory by qty.
20 for material
39856; GL
account

OK; material
document
number:
800365785

7 Generate customer
ASN from updated
delivery

BD87 DESADV = status
30

IDoc number
43456756

8 Process OB IDoc WE14 XML IDoc sent
to EDI RIM
Status = 18; IDoc
file is archived

OK

Table 20.6 Shipping Integration Test Scenario

831

Integration Testing 20.6

Number BP Step Description Txn Expected Result Result

9 Translated to X12
856

856 856 interchange
created; IDoc
status = 06

ISA number
856055

10 856 calls AS2 send 856 Send fails; 856 is
archived

Archive file
name

Table 20.6 Shipping Integration Test Scenario (Cont.)

Setup data for the shipping scenario include DSI vendor number, Gordy’s sold-to
and ship-to numbers, the item shipped, sales order number, output types, and
condition records.

Figure 20.14 outlines the process flow for the shipping integration test scenario.

DSI Acme EDIGordy

Delivery updated
pick qty/PGI VL02

IDoc written to DB
Status = 64

Run RBDAPP01

Acme SAP

DESADV maps to
X12 both archived

Delivery generates
ASN DESADV

856 ASN/AS2 call
to Gordy halted

MDN genereated
and sent to DSI

997 FA for IB 856
returned to DSI

Doc check: Picking
request/material

doc move type 601

856 ship conf sent
by AS2 from DSI

Identifies envelope
translates X12 to

XML IDoc

SHPCON IDoc file
RFC to SAP

Figure 20.14 Shipping Process Happy Path Integration Test Scenario

832

Testing the EDI System in SAP20

DSI sends an 856 shipping confirmation by AS2 into the EDI RIM. An MDN and
997 are returned to Gordy, and the 856 is converted to a SHPCON IDoc. The IDoc
is sent into SAP and stored at status 64. The EDI team confirms all of the previous
steps before processing the inbound IDoc.

The SHPCON IDoc updates the delivery document with the pick quantity and post
goods issue. The business users confirm through the document flow that a picking
request and material document have been created.

The material document can also be checked with Transaction MB03. It records a
601 movement type relieving inventory for the finished goods shipped by DSI.
The quantity relieved must match the quantity sent in the 856 and the GL account
must be updated.

Standard break-fix processing is followed for any development or business issue
that crops up at any step within the scenario.

If all follow-up processing is validated, a DESADV IDoc is generated from the
delivery to be sent to Gordy as an advanced ship notification. The IDoc is stored
at status 30 and outbound processing kicked off with Transaction WE14.

The IDoc is picked up by the EDI RIM, and the translation map is called. It is con-
verted to an outbound 856 ASN, encrypted, and an AS2 call is begun but fails. The
856 is archived and the scenario is completed.

The test coordinator confirms every step and, if satisfied, signs off on the scenario.
The team then moves on to the billing and payments scenario.

Billing and Payment

Table 20.7 outlines the billing and payment integration test scenario.

Number BP Step Description Txn Expected Result Result

0 Generate billing
document from
billing due list

VF04 Billing document
created for del
80345880

Billing
document:
905627712

1 Check accounting
document

VF03
FB03

Accounting
invoice in
document flow

Accounting
document:
905627712

Table 20.7 Billing and Payments Integration Test Scenario

833

Integration Testing 20.6

Number BP Step Description Txn Expected Result Result

2 Confirm INVOIC
IDOC generated

BD87 INVOIC = status
30

IDoc number
43456898

3 Process OB IDoc. WE14 XML IDoc sent
to EDI RIM.
Status = 18; IDoc
archived

OK

4 Translated to X12
810

810 810 interchange
created; IDoc
status = 06

ISA Number
810062

5 810 calls AS2 send 810 Send halted; 810
archived

Archive file name

6 Customer payment
advice sent from EDI

820 Carbon copy
820 pulled from
legacy EDI

ISA number
820055

7 997 generated 997 997 archived;
AS2 to customer
halted

ISA number
997045, archive
file

8 Translated to IDoc 820 REMADV XML
IDoc file; IDoc
archived

OK: File name

9 IDoc sent to SAP BD87 REMADV =
status 64.

IDoc number
43456900

10 IDoc creates
payment note

FBE1 Payment advice
for invoice:
905627712

OK

11 Check payment FBE3 Invoice,
documents, and
amounts match
X12

OK

12 Accounts receivables
runs clearing

F-28 Open items
cleared, accounts
updated; AR
testing

OK

Table 20.7 Billing and Payments Integration Test Scenario (Cont.)

834

Testing the EDI System in SAP20

Setup data for the billing and payment scenario include Gordy’s sold-to, bill-to,
and ship-to numbers; item billed; delivery document number; output types; and
condition records.

Figure 20.15 outlines the process flow for the billing and payment integration
scenario. The test is stopped, and the standard break-fix process is used whenever
any step fails to meet its expected results.

Acme SAP Acme EDI

Billing document
created

810 invoice/AS2
to Gordy halted

Gordy

Txn VF04: Billing
due list run against
completed delivery

Accounting docs/
GL accounts

checked by AR

Billing generates
INVOIC IDoc

INVOIC to X12
both archived

997 FA generated/
archived not sent

Payment advice
posted Txn FBE1

Identifies envelope
translates X12 to

XML IDoc

820 remit from
EDI carbon copy

REMADV IDoc file
RFC to SAP

IDoc written to DB
status = 64

Run RBDAPP01

AR clears open
items Txn F-28

Accounting docs/
amounts checked

Figure 20.15 Billing and Payment Happy Path Integration Scenario

The billing due list is run with Transaction VF04 to generate a billing document
against the delivery that was completed. The billing generates an accounting invoice
that is validated by accounts receivable business users. We need to confirm that
the correct GL accounts and profit centers were hit for the orders being billed.

835

Stress Testing 20.7

If the billing document has been transferred to accounting, an INVOIC IDoc is
generated from output and stored in the database at status 30.

The EDI team triggers outbound processing, the EDI RIM picks up the IDoc file,
and the IDoc status in SAP is updated to 18. The translation map is called, and the
IDoc is converted to an 810 customer invoice.

An AS2 call is made with the encrypted 810 invoice to Gordy’s Galaxy EDI system,
but it fails as expected. The 810 file is archived. Its file name and path are recorded
on the test script.

An 820 interchange is then pulled from the carbon copy and used to trigger the
inbound interface. It includes a line item for the invoice just translated to the 810.

The 820 generates an outbound 997, is translated to a REMADV IDoc file, is sent
into SAP, and is stored at status 64. The EDI team confirms all previous steps and
processes the IDoc. The IDoc creates a payment advice that the FI team validates
against the invoice just sent in the 810. They also confirm that the total of all line-
item payment amounts equals the total payment amount at the header level of the
document.

Meanwhile, the EDI team spot-checks the payment advice and confirms that the
document numbers recorded at the line-item level match those in the 820. They
also validate that the line item amounts for the documents checked match those
in the 820.

After all steps in the scenario have been completed, documented, and signed off,
EDI testing on the order-to-cash cycle is done. The payment advice belongs to AR,
which clears the payment during its own integration testing.

The test coordinator goes over every step and confirms the results. He then signs
off on the scenario and presents the results for all three scenarios to the business
owners and project management. If everybody is satisfied that the results meet
expectations, then EDI integration testing for the new SAP system is declared a
success.

20.7 Stress Testing

The goal of stress testing is to stress the system by imagining an exaggerated work-
day in a production-like environment.

836

Testing the EDI System in SAP20

Both the EDI RIM and SAP are tested with massive quantities of data pulled from
legacy production, inbound and outbound, while users run daily transactions and
reports at an elevated pace.

Acme chose to stress test PRD after an initial build before final cutover. PRD has
more resources than QAS, and Acme wants to give them a good workout in prepa-
ration for cutover.

The stress test team includes everyone who served on the integration test teams
with additional technical resources from the development and Basis teams. It is
managed by the test coordinator and supported by the SAP EDI technical architect.

20.7.1 Scope

Our goal is to mimic a workday on steroids. Everything that we can muster will
be thrown at the EDI RIM and SAP concurrently. We will run the following jobs
more or less at the same time:

EE Regularly scheduled Basis jobs

EE Interfaces between SAP and internal systems, particularly those that can be
scheduled to send large volumes of master and transactional data through the
RIM

EE Large volumes of inbound EDI transmissions representing at least two weeks’
worth of transactions

EE Background processing of all configured inbound IDocs

EE Background processing of delivery and billing due lists to generate large num-
bers of business documents and outbound IDocs

EE Reports on large data sets run regularly by the SAP job scheduler

EE Normal daily transactions in all functional areas by users running computer-
aided testing tool (CATT, using Transaction SCAT) scripts with large data files
at scheduled intervals, including end-to-end business processes such as ordering,
delivery, and billing

Stress testing only lasts for one day.

837

Stress Testing 20.7

20.7.2 Criteria for Success

Success is declared when the system survives the stress of the day.

Everything that was tested in previous cycles must succeed, but the goal of stress
testing is not to prove functionality. It is to push the new PRD system hard and
to uncover and fix performance and functionality issues in SAP and the EDI RIM.

20.7.3 Dependencies

All previous test cycles were successful and PRD is built. This includes all EDI-related
configuration and master data such as file ports, partner profiles, EDPAR, and so on.

The EDI RIM PRD system has been built from QAS, JCo is installed, and the IDoc
adapter is configured. Connections between the EDI RIM and SAP production
systems must be working.

PRD client 300 is built by transporting all configuration and development objects
from QAS 200. Data conversion programs are then run to load all master and
transactional data to the client. This is not the final data load. It is a dry run for
cutover conversion into PRD.

A processing schedule has been defined by the EDI coordinator. It lists all transac-
tions, interfaces, and jobs that will run each hour throughout the day.

Batch schedules have been created in SAP and the legacy systems to trigger inter-
nal interfaces throughout the day. Jobs will be set up in the SAP job scheduler
to continuously run a mix of basis programs, business reports, and IDoc batch
processing for EDI.

CATT test cases have been recorded to run transactions that business users in all
functional areas will normally use each day.

CATTs mimic manual data entry by recording input into the fields and screens of
a transaction. The transaction can then be played back and data entered manually
or from a text file.

More than one transaction can be recorded in the sequence in which each appears
in a business process. This allows creation of a test case that runs an end-to-end
business process manually, as a user would do in production.

838

Testing the EDI System in SAP20

For example, manual order to billing is covered by a CATT that runs Transaction
VA01 to create a sales order, VL10 to generate a delivery from the order, VL02N
to update pick quantities and PGI, and VF04 to generate a billing document from
the completed delivery.

Each transaction in the CATT sequence is run in foreground mode. Data for each
transaction are fed from a file, although data can be added or changed manually
because the transaction is running in the foreground.

Input files also need to be created for each CATT. The field structure of each file cor-
responds to the sequence in which the fields are populated by the CATT at runtime.

A large number of inbound EDI transactions will be collected from legacy and
moved to the new EDI RIM PRD system, including every transaction that will be
sent to the new system.

20.7.4 Execution

The stress test follows a schedule that repeats a complete processing cycle every hour.

At the top of each hour, the EDI team releases inbound EDI transactions through
the RIM. At the same time, jobs kick off in SAP to run interfaces with internal
systems and output a number of resource-intensive business reports, such as cur-
rently open sales and deliveries.

The inbound IDocs hit SAP from the EDI RIM and are batched at status 64. The
IDocs are processed by scheduled jobs every 15 minutes.

Meanwhile, groups of one to five users run a variety of transactions and business
processes in purchasing, sales, and finance through CATT scripts. The CATTs are
run in foreground processing mode and load data samples from input files that are
supplemented with manual data entry.

Each group monitors and documents the results of its piece of the test. If errors
occur, testing stops, and standard break-fix procedures are followed to fix the
problem. After the fix has been coded and tested in DEV and QAS, it is transported
back into PRD and stress testing resumes from the beginning of the current cycle.

Logging also tracks how long it takes to complete certain batch processes such as
translating large EDI transactions or processing very large batches of inbound IDocs.

839

Summary 20.8

This documentation is used to help identify objects that can be further tuned for
performance after stress testing is complete.

Any changes need to be retested and the schedule has time built in for this regres-
sion testing before cutover.

At the end of the day, the EDI test coordinator and the SAP EDI technical architect
go over the results of the stress test. If everybody is still breathing and the system
has not blown up like the aircraft carrier destroyed by an alien death ray in one of
Acme’s most famous films, the stress test is declared a success.

20.8 Summary

If Darryl Q. Fernhausen, the legendary founder of Acme Pictures, were looking
down from that great studio in the sky, he would be smiling now. He would appre-
ciate the hard work of his employees and would recognize that testing is both a
significant milestone and a reward for the hard work of the whole team.

But we can’t pat ourselves on the back yet. We still have to work through all test
phases before we have a production system.

So we began our brief introduction to testing with a tour of some standard SAP test
tools. We moved on to a discussion of Acme’s strategy and looked at the differences
between unit, string, interface, integration, and stress testing. Each represents an
important and distinct phase in the testing cycle with its own data, resource, per-
sonnel, and acceptance requirements, and each relies on the successful completion
of the previous phase before it can begin.

As important as each phases is, integration testing is the true dress rehearsal for
production and must convince users that the system is ready for production. We
focused on the order-to-cash cycle and outlined integration test procedures for its
three key business processes: dropping an order to the distributor, shipping, and
billing and payment.

Except for a little more fine-tuning of our procedures, we are almost ready for
prime time. Next we consider troubleshooting and recovery options in the pro-
duction system.

841

“Failure is opportunity in disguise,” Darryl Q would tell actors who
hesitated to sign with him because they believed it meant their careers were
finished. “It exposes the weak points so you can fix them!” Our SAP EDI
system isn’t all that different, but trial and error isn’t an option. We need
to know in advance potential points of failure—and we need to know how to
recover from them.

21 Troubleshooting and Recovery

The Great Darryl Q, legendary founder of Acme Pictures, was no programmer,
but he knew more than a little about failure and recovery. The SAP EDI team can
learn a lot from Mr. Q’s upbeat business philosophy, even if it is sometimes a little
offbeat and off-color.

We need to identify and document points of failure and recovery across the SAP
EDI architecture before go-live. Months of development and testing have given
us an idea of where the potential points of failure lie; now it’s time to codify that
knowledge for the business users and the EDI support team that will use the system
every day in production.

We have two primary purposes here aimed at the business and support teams that
will monitoring the EDI and IDoc data flows through the RIM and SAP:

EE Produce a preliminary roadmap that identifies critical processing points through-
out the architecture where errors can occur

EE Document recovery processes and tools

This is about minimizing potential problems in production and keeping the busi-
ness running. Acme’s relationship with Gordy’s Galaxy of Games & B Flix, its
most important customer with more than 2,000 stores across North American,
depends on it.

So in the spirit of the Great Mr. Q, let us begin by discussing the knowledge gained
from failure.

842

Troubleshooting and Recovery21

21.1 Identifying Issues

This is a no-brainer. To fix a problem you have to know what the problem is.
Though there may be surprises because we cannot test every possible business
scenario with every possible combination of data, we do have a pretty good idea
of what can go wrong where.

The good news is that technical and programming errors decrease with time. When
a map or an ABAP bug is fixed, it is fixed for good, unless it is hit with unexpected
data. But data and business errors are likely to continue because many of these are
caused by human error.

A critical question therefore is how we define success.

21.1.1 Defining Success

Success defines a technical and business endpoint: results that are unique to the
business function of a particular interface and its role within a larger process.
When an interface succeeds, we do not have to do anything more (except take the
next step if the interface is part of a business process that includes more than one
transaction).

Technical Success

Endpoint success for an inbound interface is when an IDoc posts to a business
document in SAP. For an 850 purchase order, this means creating an SAP sales
order; for shipping confirmation, this means updating a delivery document with
pick quantity and post goods issue.

An outbound interface succeeds when an EDI transmission translated from an IDoc
is received and acknowledged by the external trading partner. The acknowledg-
ment includes an MDN (for AS2 transmissions) and an inbound X12 997 with no
error codes.

Technical success is tracked in SAP through IDoc status codes. There are two suc-
cessful status codes for inbound IDocs:

EE 64—IDoc ready to be transferred to application

EE 53—Application document posted

843

Identifying Issues 21.1

Status 53 is the endpoint for inbound processing. Most inbound IDocs also include
the document number created or updated with the success message, although not
always.

Let’s look at the successful status codes for outbound IDocs in the system we built
for Acme Pictures:

EE 03—Data passed to port OK

EE 18—Triggering EDI system OK

EE 06—Translation OK

Status 06 is the endpoint for outbound IDoc processing. The endpoint in the EDI
system is the successful 997 functional acknowledgment, which tells us that the
trading partner received the EDI transaction and found no syntax errors.

These milestones are tracked in the EDI system until we change the design and
begin reporting them back to the IDoc in SAP.

Functional or Business Success

Functional success, however, is a horse of a different color. The technical interface
can succeed while the business process fails.

An inbound 850 customer purchase order can translate to an ORDERS IDoc, for
example, and create a sales order that is delivered, shipped, and even invoiced.

But the invoice could fail translation to an X12 810 invoice or be rejected by the
customer because a key piece of data for the customer was missing or incorrect
when the sales order was created. The missing data did not flag an error because it
was not in a mandatory data element and could not be checked by a business rule.

This could include an incorrect customer PO number sent by mistake or a missing
customer material number. These data elements are not mandatory in SAP and
cannot be checked in the map. Once the sales order is created and all subsequent
documents generated, these values won’t appear in the outbound invoice.

From a functional and business point of view, therefore, success can only be declared
when the following happens:

EE The business document is created or updated.

EE All data required by the document and its business process is in place, even if
it’s stored in a field that is not mandatory in SAP.

844

Troubleshooting and Recovery21

EE All follow-up processing has been successfully triggered in SAP.

EE The document flow is complete and follow-on documents are created, including
all inventory and accounting documents, with all accounts correctly updated.

EE The final outbound IDoc in the business process was successfully generated by
message control.

EE The partner successfully posts and processes the EDI transmission in his busi-
ness system.

21.1.2 Defining Failure

Failure is more of a certainty than success, although it has its idiosyncrasies, too.
Like success, failure is defined by results. But unlike success, failure leads to more
work: we take action to correct the error.

Success in the technical system can mask failure in the business document or pro-
cess. The opposite is never true; failure in the technical system is always failure
across the architecture. It has to be fixed.

Technical failures tend to disappear over time as configuration and development
issues are corrected. Once fixed, they stay fixed, unless something changes in the
environment or unexpected data is received that exposes a real world requirement
that was not foreseen.

This is true for both inbound and outbound processing.

Technical Points of Failure: Inbound

Figure 21.1 outlines potential points of failure for inbound processing.

These key processing milestones in the EDI architecture are also the potential points
of failure, which isn’t surprising because this is where stuff happens. Consider the
following points of failure for inbound processing:

EE EDI connections from the trading partner or network issues

EE De-enveloping, or partner and transactional recognition

EE Generation and sending of X12 997 acknowledgment

EE Translation or mapping failure from logical or data error

845

Identifying Issues 21.1

EE Workflow or adapter failures in EDI RIM (the programs that link and run the
adapters and services that are the EDI system in the RIM)

EE RFC through the IDoc adapter that moves the IDoc into SAP

EE IDoc validation

EE Incorrect or missing partner profiles or no match between control record keys
and a partner profile

EE Custom code in IDoc processing application fails

AS2 connection
from trading

partner

De-enveloping
and generation of
OB X12 997 FA

Translation of X12
to XML IDoc

Workflow/adapter
operations in RIM

middleware

RFC connection
sends IDoc to SAP

Partner profile
control record

validation

X12 997 created
sent by AS2

IDoc validation
structure, syntax

Custom code in
system exits/
IDoc function

Figure 21.1 Technical Points of Failure for Inbound Processing

Status codes mark the failure of an IDoc in SAP. But if the IDoc made it into SAP
and failed, every preceding step through the EDI RIM succeeded. There is always
a silver lining to failure in Acme’s SAP EDI architecture.

An inbound IDOC fails when the status code is one of the following:

EE 56—IDoc with errors added
This is usually means that no partner profile matches the partner profile keys in
the IDoc control record.

EE 60—Error during syntax check of IDoc (inbound)
This indicates a structural problem with the IDoc, which could be caused by an
IDoc build issue in the mapping or in custom code that does not raise an error.

846

Troubleshooting and Recovery21

EE 51—Document is locked
The IDoc function tried to access a document or table that was locked by another
user or program. This can be fixed by reprocessing the IDoc when the locking
process is complete. Unless an application error is raised, the IDoc will post to
the business document.

In a status 60 IDoc, the segments are in the wrong order or have incorrect hier-
archical relationships. The IDoc structure will be flat in the tree display, generally
beginning at the segment that caused the error.

Technical Points of Failure: Outbound

Figure 21.2 outlines potential points of failure for outbound processing.

IDoc generation
from document
output control

Partner profile
matches output
control config

Custom code in
IDoc function

RFC connection
sends IDoc to

EDI RIM

AS2 connection
to trading partner

Workflow/adapter
operations in RIM

middleware

Translation of XML
IDoc to X12 txn
and enveloping

X12 997 returned
by AS2 frm partner

Figure 21.2 Technical Points of Failure for Outbound Processing

As with inbound interfaces, key milestones in the EDI architecture are also potential
points of failure for outbound processing:

EE IDoc generation from output control

EE Outbound partner profile does not match message control

EE Custom code in IDoc processing function failure

EE RFC connection to the EDI RIM

EE Translation errors in the map or enveloping failures

EE Workflow or adapter failures in the EDI RIM

EE EDI connections to the trading partner or network issues

EE 997 with error status sent returned by the trading partner

847

Identifying Issues 21.1

There are more status code errors for outbound IDocs. This is driven by the design
of Acme’s system, particularly the status interface that we have described. It reports
to SAP the status of IDoc processing in the EDI RIM.

An outbound IDoc fails when the status code is one of the following:

EE 02—Error passing data to port
SAP failed to write the IDoc file through the file port to the application server.
Failure to write the file to the target directory could point to an authorization
or other directory access issue.

EE 03—Data passed to port OK
The status 03 must be replaced by 18 almost immediately after outbound pro-
cessing is triggered. If not this indicates a configuration error that prevents trig-
gering the EDI system. The IDoc file has been exported to the application server
but the RFC to the EDI RIM has not been begun.

EE 05—Error during translation
Translation failure in map reported by the status interface, most likely because
of bad data. The IDoc can be corrected or a new IDoc generated from the busi-
ness document and resent.

EE 18—Triggering EDI system OK
The status 18 must be replaced by 06 almost immediately. If it stays at 18, that
indicates a failure in the status interface that could point to a translation or busi-
ness process failure in the EDI RIM.

EE 20—Error triggering EDI subsystem
The RFC to the EDI RIM failed and the error was trapped. The IDoc was not
sent to the RIM. This is most likely a communications failure. The RFC destina-
tion or XML file port are not correctly set up or there has been a system or
network failure cutting the connection.

EE 26—Error during syntax check
The IDoc segments were not assembled in the correct order. This is most likely
caused by an error in custom code building or adding segments to the IDoc.

For both inbound and outbound interfaces, the issue with technical errors in a
production system is identification, break-fix, and reprocess point.

848

Troubleshooting and Recovery21

21.1.3 Functional or Business Failure

Functional or business failures are always caused by data issues, whether or not
they show up as errors in the document they post to. It could be missing or incor-
rect data, data that does not match business rules coded in a program, or an EDI
transaction sent or received out of sequence.

We have noted that it is possible for the IDoc to report success status 53 while the
larger business process ultimately fails. The IDoc can create a sales order but the
order could be missing business-critical data that will trigger a failure in a down-
stream process (for example, an invoice fails to translate or the trading partner
rejects it because of missing data).

Business failures can be identified if you know the rules and the end-to-end process,
and if you spot-check all documents where errors can occur.

You know, for example, that the invoice must include a customer item number or
it will be rejected by the customer. You understand that in SAP data flows from the
sales order through the delivery to the billing document and INVOIC IDoc. You
also know that after the sales order is complete and the delivery created, data will
no longer flow from the sales order to any subsequent document. So the customer
item number must be in the sales order before the delivery is created or it will not
make into the invoice.

The sales order is created by an ORDERS IDoc converted from an 850 customer
PO. If the IDoc does not have the customer item number, the customer did not
send it or it was not maintained in the customer info record. It will not get into
the sales order or any subsequent document.

So we need to spot-check sales orders created by customer PO IDocs to confirm
that the customer item number is there. Otherwise the downstream invoice will
be rejected by the customer, unless we edit the IDoc and add the customer item
number to the invoice.

Status 51 Application Errors

The easiest failures to identify are status 51 application errors that prevent the IDoc
from creating or changing a business document.

Error messages always accompany IDocs at status 51. They are usually helpful in
identifying the cause of the problem and are always linked to a mandatory field
or business rule.

849

Identifying Issues 21.1

For example, if the delivery document is not configured to accept a partial delivery,
or if a tolerance level has not been set, the SHPCON IDoc will fail and return status
51 if an item quantity does not exactly equal the quantity of the item in the delivery.

The errors are triggered because data in the IDoc violate business rules that are
coded into the IDoc processing function or in the transaction itself.

Business Errors Reported by EDI

Errors that get past the business rules in Acme’s SAP and EDI RIM systems and are
rejected by the customer are reported back to Acme through two X12 transactions:

EE 824, which reports on errors in the 856 advanced ship notification

EE 864, which reports on errors in the 810 customer invoice.

Both transactions are text reports that reference the purchase order and document
number for the transaction error—the ASN or invoice number—and include detailed
text messages describing the error.

There are a few common errors for both transactions:

EE Missing or incorrect GLN for the store or distribution center

EE Missing or incorrect customer item number

EE Missing or incorrect document numbers, particularly purchase orders

The 864 also reports an error if Gordy receives the invoice before the ASN. The
invoice can only be processed by the customer after the ordered goods have been
received and verified against the ASN.

Errors reported in the 864 and 824 must be resolved by Acme’s EDI team and
business users and then the ASN or invoice resent. Gordy will not process either
document until all reported issues are fixed.

Unless there is a mapping error, in most cases data errors will be in the SAP docu-
ments. However, the SAP documents are complete, inventory has been relieved,
and material movements tied to the delivery.

If the problem is with master data, the business owners fix the data. Though this
will eliminate the same error in the future, this will not flow into the existing
document. A good example of this is the customer material number, which can
be mapped to Acme’s material number in the customer material info record with

850

Troubleshooting and Recovery21

Transaction VD51. Entering the mapping will not update any existing document
with the customer item number. But it will always be available for use in future
documents.

The only solution is for the EDI team to edit the IDoc. This can be done in Transac-
tion BD87 or in the archived IDoc file on the EDI RIM. But it is a trick change: the
complete E1EDP19 segment to the existing IDoc would need to be added.

If we knew that this was going to happen on a regular basis, we would be safer
writing an ABAP utility to update the IDoc with the missing segment or data.

Changes must be turned around quickly and the EDI transaction resent. Gordy
will not process the transaction until it has received a corrected copy of the failed
EDI transaction. That means no invoicing and a delay to the beginning of the pay-
ment period.

The 824 and 864 are mapped to a text report and emailed to the EDI support
team as soon as they are received. Fixing the errors and resending the failed EDI
transactions are top priority for the team. Business users are notified about needs
to be fixed as soon as the issues are identified.

21.2 Monitoring and Recovery Tools

So where does all this magic happen? Where do we go to see whether the universe
is unfolding as it should and fix it when it’s not?

SAP provides powerful tools to monitor, edit, and reprocess IDocs. These monitor-
ing and recovery tools are the starting point for our troubleshooting efforts in SAP
and the EDI RIM. The tools tell us about an IDoc’s current state and processing his-
tory and help us determine what went wrong and what we need to do to recover.

The SAP monitoring tools also help us identify issues in the EDI RIM thanks to
the EDI data we put in the IDoc control segment during inbound and through the
status interface during outbound processing. The key is understanding and cultivat-
ing your knowledge of the architecture and process, which includes the following:

EE The end-to-end processing flow for IDocs and EDI transactions and how they
get updated with status information

EE Finding IDocs with the monitoring and recovery tools

851

Monitoring and Recovery Tools 21.2

EE Understanding the meaning of IDoc status codes

EE Knowing how to edit and reprocess IDocs when required

We can build custom tools to refine IDoc monitoring and troubleshooting to deal
with the specific needs of our business, thanks to the standard functions that
make up the IDoc interface. But the standard tools by themselves already provide
a powerful platform for success.

If you are serious about the IDoc interface, know these tools well. You will spend
a lot of time using them.

21.2.1 Transaction BD87: The Status Monitor

In the wrong hands, the status monitor, or Transaction BD87, is dangerous because
it allows you to edit and reprocess IDocs. It is not a transaction that should be open
to your business users, though it is invaluable for the EDI support team—if they
know what they are doing.

No other monitoring tool has the range of functionality of Transaction BD87,
although it could offer more options on its selection screen (see Figure 21.3). It
would be useful, for example, to add EDI selection values included in Transaction
WE05 (see Section 21.2.2, WE05: The IDoc List).

Figure 21.3 Status Monitor Selection Screen

852

Troubleshooting and Recovery21

But Transaction BD87 is just another ABAP program—RBDMON00—that can always
be copied into a custom Z program if you need to add a little more functionality.
It is an ALV grid report with a lot of object-oriented programming.

It would be great fun—and you would learn a lot about the IDoc interface—to play
with a custom version of Transaction BD87.

Selecting IDocs

Like all IDoc reports, Transaction BD87 pulls and formats data from IDoc tables
EDIDC, EDID4, and EDIDS.

It selects IDocs with standard control record keys, including IDoc number, cre-
ate and change dates and times, status, partner number, and message type. More
interesting is the business object, which returns IDocs that are linked to business
documents (objects) such as sales orders, deliveries, billing documents, and so on.

This can be restricted to a particular business document by entering the document
number in the Object Key parameter with all leading zeroes. Multiple document
numbers can be entered, but only for one business object at a time.

The business object OutboundDelivery (LIKP) in Figure 21.4 would return all IDocs
linked to delivery 0080016955 (both the outbound ship order and the inbound
ship confirmation that updated it).

Figure 21.4 Selecting IDocs by Business Object and Object Key

The following objects are used in the interfaces that we have built for Acme Pictures:

EE PurchaseOrder (BUS2012)
Links all supplier purchase orders to their outbound ORDERS and to the inbound
ORDRSP PO confirmation IDocs sent back by the supplier

EE GoodsMovement (BUS2017)
Links all material movements, including goods receipts, to MBGMCR IDocs

EE SalesOrder (BUS2032)
Links sales orders to the inbound ORDERS IDocs that created them and to out-
bound ORDRSP they generated

853

Monitoring and Recovery Tools 21.2

EE OutboundDelivery (LIKP)
Links delivery documents to the outbound SHPCON they generated and the
inbound SHPCON that updated them

EE ItCustBillingDoc (VBRK)
Links billing docs to the outbound INVOIC IDocs they generated

EE PaymentAdvice (AVIK)
Links advice notes for payments and credits to the REMADV IDocs that created
them

The IDoc Report

Transaction BD87 returns a hierarchical tree display organized by client, organized
at the highest level by client and direction (see Figure 21.5).

Figure 21.5 Hierarchical List of IDocs Returned by Transaction BD87

Status and message type is the default grouping for each direction. There is also a
count of the number of IDocs for each level.

854

Troubleshooting and Recovery21

All IDoc list processing options in Transaction BD87 are on the toolbar at the top
of the screen. Functions are identified in Figure 21.6. Some of these functions are
extended through menu options.

Figure 21.6 IDoc List Processing Toolbar in BD87

We will describe each tool briefly and then discuss in more detail the key IDoc
display and processing functions that handle the main work of the status monitor.
The toolbar functions include:

1	 Refresh IDoc display icon ((Ctrl)+(Shift)+(F3)): Refreshes IDoc list to reflect
changes to IDoc status caused by current processing

2	 Expand subtree icon ((Ctrl)+(Shift)+(F11)): Expands the selected node of the
tree display to the next level down

3	 Collapse subtree icon ((Ctrl)+(Shift)+(F12)): Collapses all lower levels of a
selected node

4	 Display partner systems icon ((F6)): Changes grouping of IDocs in the tree
display to partner, status, and message type

5	 Highlight message type icon ((F5)): Changes grouping of IDocs in the tree
display to message type and status

6	 Select IDocs button ((Ctrl)+(F4)): Opens a pop-up selection screen for filtering
of IDocs in the list report, with the current select options and parameters defaulted

7	 Display IDocs button ((Shift)+(F6)): Returns an ALV grid list with all IDocs in
the selected node; double-clicking gets the same results and is quicker and more
intuitive

8	 Trace IDocs button ((Shift)+(F7)): Traces the status of IDocs sent from the
current client to an external logical system for ALE interfaces

9	 Process button ((F8)): Triggers the processing program for all IDocs in a selected
node

Display and process are the troubleshooting and recovery tools in the status moni-
tor. Since we need to know what we are looking at and to understand our process-
ing options, let’s linger a little on these functions to see what they have to offer.

855

Monitoring and Recovery Tools 21.2

Display and Edit IDocs

Display is not just about looking at IDoc control, data, and status records, although
this is important because it tells us what happened to the IDoc and where errors
may be. Display is also about opening an IDoc for editing so that we can change
and reprocess it.

We start with the list. Double-click any node to open the IDoc selection screen, an
ALV grid report that lists each IDoc within that node

IDocs are listed by default by IDoc number, status, message type, status text, part-
ner, create date and time, basic type, and number of segments.

If you click the Object key button, however, you get a report that links the IDoc
to its business document by adding the Object type and Object key columns, as
illustrated in Figure 21.7.

Figure 21.7 IDoc Selection Report in BD87 with Object Key Activated

The Object type is OutboundDelivery, and the key is the SAP delivery document
number sent by the IDoc.

It is useful to know what document is linked to IDoc. A failed inbound IDoc will
not create a document, for example. But we can create a document if we have
incorrect or missing data that is not in a mandatory field.

It gets even better. We can go directly to the business document. Select an IDoc
number and click Display relationships. A dialog opens that lists the directly
linked objects, demonstrating the role of the business document, the object type,
and the document number, which, in the case of Figure 21.8, is outbound delivery
0080016951.

856

Troubleshooting and Recovery21

Figure 21.8 Display Directly Linked Objects from the IDoc Selection List

When you double-click the delivery number, the system calls Transaction VL03N
to open the delivery document display. We can research our problem in the docu-
ment itself. When done, press (F3) or click the green arrow to return to the linked
objects dialog and, from there, back to the IDoc selection list.

Next open the tree display of a selected IDoc by double-clicking the IDoc number
in the selection list.

The code behind the status monitor uses a method call to build the tree dis-
play. But you can call the same tree display in a custom program with function
EDI_DOCUMENT_TREE_DISPLAY.

The tree display in Figure 21.9 illustrates the hierarchical structure of the IDoc.

We know a lot about the IDoc just from looking at it. We know that it is an outbound
supplier purchase order in status 03 that has probably not been processed yet by
program RSEOUT00. If it has and is still at status 03, we know there is a problem
because we don’t have an EDI RIM processing status yet.

We can drill deeper into the control, data, or status records, and get more informa-
tion about the contents of the IDoc. We can also edit the contents of fields in the
control and data records and reprocess the IDoc.

But before we look at any of this, note the Services for object icon at the top of
the screen. Click it to open a toolbar that you can also find in many business docu-
ments, including the purchase order, sales order, delivery, and billing documents.

857

Monitoring and Recovery Tools 21.2

Figure 21.9 IDoc Tree Display in Transaction BD87

Click the icon to open the object services toolbar displayed in Figure 21.10. A
number of features on this toolbar are well worth exploring. We’ll look at each
one in turn.

Figure 21.10 The Very Cool Services for Object Toolbar

1	 Create
This creates an attachment (uploaded from the desktop), note (typed into a text
editor), or external document (referenced by a URL). These documents are then
available for viewing by anyone who looks at the IDoc in SAP.

2	 Attachment list
This icon is only active if documents were attached with option 1; with it, you
can access any attachments, notes, and external documents.

3	 Private note
Doesn’t appear in List Attachments. Only one note can be created per IDoc.

858

Troubleshooting and Recovery21

4	 Send object with note
You can sends a link to the IDoc to a wide range of individuals or groups by
email, fax, X400, and more, and can also add a note or attachments from your
desktop.

5	 Display relationships
This icon lists all documents and IDocs linked to the current IDoc; it supports
double-click navigation to all linked objects.

6	 Workflow
Use this icon to list workflows associated with the IDoc.

7	 My Objects
This icon adds the IDoc to your objects list in the System menu. To access the
IDoc, go to the System menu and select My Objects • Edit Objects. Double-click
the IDoc number to open it in tree display.

8	 Help for the object services
Clicking this icon returns an SAP help page with detailed information about each
tool on the object services toolbar, if documentation is installed.

These are all useful tools particularly if you want to pass information or observa-
tions to someone else who may need to look at the IDoc. For our troubleshooting,
the most useful is Display relationships. We will look at it a little more closely.

Display Relationships

Click the Relationships icon to open a dialog that lists all objects linked to the
IDoc. This would usually include the business document and any other IDocs linked
to that document and the IDoc. In our example in Figure 21.11, this is a supplier
purchase order.

Figure 21.11 Detail View of the Objects Linked to the IDoc

859

Monitoring and Recovery Tools 21.2

When you double-click the object, SAP calls Transaction ME23N to display the
purchase order. When you are done with the order, press (F3) or click the green
arrow to go back to the IDoc.

Click the Overview button shown at the top left of Figure 21.12 to get a tree dis-
play view of the related objects.

Figure 21.12 Tree Display of the IDoc’s Object Relationships

This tree display begins with the IDoc as the parent and its linked document as
the child. Any other IDocs associated with the document—for example, an order
confirmation ORDRSP—would display as a child object of the order.

Like every other listing of linked objects and relationships, double-click to open
the purchase order and return to the IDoc when you are done.

As the old saying goes, there’s more than one way to skin a cat. The whole point is
to give the user multiple points of view and access to a linked object or document
so that we could more easily research issues we may have with either. All we need
to bring to the table is an understanding of the business process, the objects, and
the processing that links them.

Display and Edit the Control Record

The control and data records can be viewed and edited from the tree display in
Transaction BD87 and in most other IDoc list reports that call the tree display.

There are some limits. Inbound IDocs that have been successfully processed (status
53) or copies of edited IDocs can’t be edited. Most other statuses can be edited,
but unless you have a really good reason, you generally only edit failed IDocs—and
even then you should have a good reason.

Only fields in existing data segments can be edited through the tree display. If you
need to add a segment to an IDoc (for example, an E1EDP19 segment because the

860

Troubleshooting and Recovery21

customer material number is missing from an item), use the Transaction WE19 test
tool. But you almost certainly will not be able to use the test tool in production.

Finally, only one IDoc at a time can be edited this way. If you know that you may
have hundreds of IDocs that need to be edited at a time, you will need a custom
report that supports mass update of IDocs, similar to the program we looked at in
earlier in the book.

Normally, we don’t edit the control record in a production environment because it
defines the IDoc, although we will look at it. It is more likely that we edit a control
record during development and testing. Data records are edited in the same way
as the control record.

One scenario where it might be useful is if an IDoc is created in error and we want
to prevent it from being processed by the next scheduled job. We can change the
partner, message type, or basic type so that the control record no longer matches
an existing partner profile, forcing the IDoc to fail.

To display and edit the control record, double-click the control record icon. The
Display Control Record screen opens, as in Figure 21.13. Note the Services for
object icon in the upper-left corner of screen.

Figure 21.13 The Control Record Display Screen in the Status Monitor

861

Monitoring and Recovery Tools 21.2

The Display Control Record screen is a formatted view of the control record in
table EDIDC. All of the key fields are there.

The header area of the screen identifies the IDoc number, direction, and current
status. Other control record data is displayed in five tabs organized by the type of
data each holds:

EE Typinfo: IDoc message, basic type, and extended type names with message code
and function

EE Partner: Sender and receiver partners, partner types, and ports

EE Techn.info: SAP version, processing mode, serialization (processing sequence
for a batch of IDocs), dates, and times

EE Adressinfo: EDI sending and receiving trading partner IDs

EE Details: EDI control numbers, standards, and versions data

All control record data can be edited except for the header information and the
Techn.info tab.

To open fields for editing, select menu option Control record • Change • Display.
Make your changes and save.

Display and Edit Data Records

The data record in the tree display provides a structured view of the SDATA field
in table EDID4. It also includes key control fields from the data record.

In production there may be times when we need to fix an error by changing a data
record. For example, if a customer purchase order number in an invoice is incor-
rect, we can change it in the E1DEP02 segment.

To edit the purchase order number in the data record of an INVOIC IDoc, open
the Data Records folder and double-click segment E1EDP02. The Display Data
Record for IDoc screen opens.

The header area displays control fields that cannot be edited, including IDoc num-
ber, segment name and number, parent segment number, and hierarchy level.
Each populated field in the record is presented with its field name, data, and a
text description.

862

Troubleshooting and Recovery21

Select menu option Data record • Change • Display to open the Edit Data Record
screen, as shown in Figure 21.14.

Figure 21.14 Changing the UPC Number in Segment E1EDP19

Every segment field is listed and open for editing, whether populated or not. Change
the purchase order number in the Field contents column and save.

A copy of the unedited IDoc is saved at status 33—Original of an IDoc which was
edited, with a new IDoc number. The edited IDoc is saved at status 32—IDoc was
edited, and can be reprocessed.

The history of both can be traced in the status record. The unedited IDoc has only
one status record: 33. The edited IDoc carries forward the full status history of the
original IDoc, including its most recent status 32. The edited status 32 IDoc can
now be reprocessed, regardless of its previous status.

Display the Status Record

The status record in the IDoc tree display presents a formatted view of table EDIDS.
Every status record stored for the IDoc is on display.

Status records are ordered from the most recent to the oldest. One look at the
status folder and you know immediately if the IDoc succeeded or failed from the
current status code and its accompanying message.

You also get its complete processing history from the moment it was written to
the database up to its current state.

863

Monitoring and Recovery Tools 21.2

Status records can be displayed but not edited. They are the IDoc’s audit trail,
recording everything that happened to it throughout its lifecycle.

You can drill down in two ways to get additional information from the status record.

If there is an arrow beside the status record icon, it opens another page icon below
it. Double-click the child node and a help page opens in a window. Sometimes it
provides detailed information, as in Figure 21.15, but even when it is a lot thinner,
this is a good starting point for research.

Figure 21.15 Detailed Help Screen Expands on Status Record Message

The other way to drill down is to double-click on the parent page icon itself. This
opens the Display Status Record screen in Figure 21.16, which shows the Sts
(status) details tab.

864

Troubleshooting and Recovery21

Figure 21.16 The Status Details Subscreen with its Message Data

The Display Status Record screen organizes its data in three tabs:

EE Techn.info tab: Dates and time of the log entry and database update to the cur-
rent record’s status code

EE Sts Details tab: Data required by SAP to build the status message

EE Logging tab: User, program, and subroutine that wrote the status record

You can also access the detailed message in Figure 21.15 with menu option Status
record • Error long text, which is a misnomer because success messages are
accessible through this menu option as well.

Processing IDocs

The status monitor in Transaction BD87 is also a frontend to all of the IDoc process-
ing programs. It knows what program to call from the status code and direction.

Table 21.1 lists inbound IDoc processing programs called by status code.

Status Description Program Txn Code

51 Application error RBDMANI2

56 IDoc with errors added RBDAGAI2 BD84

Table 21.1 Inbound IDoc Processing Programs by Status Code

865

Monitoring and Recovery Tools 21.2

Status Description Program Txn Code

61 Processing despite syntax error RBDAGAI2 BD84

63 Error passing IDoc to application RBDAGAI2 BD84

65 Error in ALE service RBDAGAI2 BD84

60 Error during syntax check of IDoc RBDSYNEI

64 IDoc ready to be transferred to application RBDAPP01 BD20

66 IDoc waiting for predecessor IDoc
(serialization)

RBDAPP01 BD20

69 IDoc edited RBDAGAIE WPIE

Table 21.1 Inbound IDoc Processing Programs by Status Code (Cont.)

Table 21.2 lists outbound IDoc processing programs called.

Status Description Program Txn Code

02 Error passing data to port RBDAGAIN BD83

04 Error with control information of EDI
subsystem

RBDAGAIN BD83

05 Error during translation RBDAGAIN BD83

25 Processing despite syntax error RBDAGAIN BD83

29 Error in ALE service RBDAGAIN BD83

26 Error during syntax check of IDoc RBDSYNEI

30 IDoc ready for dispatch RSEOUT00 WE14

32 IDoc edited RBDAGAIE WPIE

Table 21.2 Outbound IDoc Processing Programs by Status Code

Yet Another Processing Frontend

SAP provides two other frontend programs to process IDocs. Neither has a transaction
code, so if you want to use them in your system, assign a custom transaction to them.
Both act as a frontend to all inbound and outbound IDoc processing programs.

866

Troubleshooting and Recovery21

EE RBDINPUT calls all inbound IDoc processing programs. It also calls RBDCHSTA for
status 62—IDoc passed to application—to reset the IDoc status to 64 for reprocessing.

EE RBDOUTPU calls all outbound processing programs.

It is too easy to process and reprocess IDocs in Transaction BD87. Select a node
and click Process. All IDocs in that node are processed immediately, regardless of
the number of IDocs in the node.

This can be very dangerous, and it is a good reason to restrict access to Transac-
tion BD87 in production. A thoughtless click could trigger direct processing of
large numbers of IDocs that could throw balances out of whack (think inventory),
process IDocs out of sequence, or cause some other business problem that forces
a lot of people into unexpected recovery work.

You can also gum up performance by tying up dialog processes forced to churn
through large numbers of IDocs.

At Acme Pictures, the vast majority of IDocs are processed by scheduled jobs so
they use background processes. There are times, however, when we need to process
IDocs in Transaction BD87.

A customer may need to resend a purchase order because of a data error in the
original, and there is a rush to drop the shipping orders to the distributor. We
may then process the IDocs as soon as they come in, regardless of when the next
scheduled job kicks off.

At Acme we have three hard and fast rules about processing IDocs with the status
monitor:

1. Never select a node and click Process.

2. Only ever process the IDocs that need to be processed.

3. If we need to process more than one IDoc, always execute with a background
job.

Background Processing with the Status Monitor

The good news is that Transaction BD87 supports background processing of IDoc.
Select a node for processing, then go to menu option Edit • Restrict and process
or press (Ctrl)+(F8). It may be in the context-sensitive menu that pops up when
you select a node and right-click for some statuses.

867

Monitoring and Recovery Tools 21.2

The restrict and process function calls the processing program for the IDoc based
on current status and provides its selection screen with all of the IDoc numbers
for the selected node.

To ensure that you only process the IDocs you need to do a few things:

1. Copy a list of all of the IDoc numbers that you want to process.

You can get these by copying the IDoc number column in the IDoc selection
report in Transaction BD87 or by downloading them into a text file from table
EDIDC using the Data Browser (Transaction SE16).

2. Delete the numbers from the IDoc number field in the selection screen of the
processing program.

3. Right-click the IDoc numbers and select Delete selection, or click the Multiple
selection arrow and click the trash can icon when the Multiple Selection for
IDoc dialog opens.

4. Paste the IDoc numbers into the Select Single value tab of the Multiple Selec-
tion for IDoc dialog by clicking the Upload from clipboard icon or by press-
ing (Shift)+(F12).

5. Click Copy to close the dialog and return to the selection screen.

6. In the selection screen, select menu option Program • Execute in background
or press (F9) to open the Background print parameters dialog.

7. Select an output device. LOCL is usually a good choice. Click OK and click through
the formatting information dialog.

8. When the Start Time dialog opens, click Immediate and save. A background
job is created and triggered to process the IDocs.

Monitor the progress of the job in the BD87 status monitor, where the IDocs
change status as they post or are exported and follow the background job in the
job monitor in Transaction SM37. Select all jobs under your name and the job
appears is at the top of the list.

21.2.2 Transaction WE05: The IDoc List

Transaction WE05 returns an ALV grid list report of IDocs similar to the IDoc
selection report in Transaction BD87. But there are key differences between the
two programs.

868

Troubleshooting and Recovery21

The WE05 IDoc List, which runs ABAP program RSEIDOC2, has a more complete
set of report selection criteria than BD87, including a tab with EDI-specific values
that is illustrated in Figure 21.17.

Figure 21.17 EDI Selection Values for Transaction WE05

If the EDI fields in the IDoc control record are maintained in the partner profiles,
in the maps, and by the STATUS interface, IDocs can be search by the ISA, GS,
or ST control numbers, the EDI standard, version, and transaction, in addition to
standard search criteria as IDoc numbers, message and basic types, dates, status,
partner numbers, and so on.

The report list is organized and displayed by direction, message type, and status,
as shown in Figure 21.18. The full status message for a selected IDoc is displayed
in two text controls at the bottom of the report list.

Figure 21.18 Outbound Messages Displayed in the IDoc List.

IDocs cannot be processed with Transaction WE05. They can be edited. Double-click
any IDoc in the list to open the IDoc tree display. The tree display in Transaction

869

Monitoring and Recovery Tools 21.2

WE05 has all the same features as BD87, including services for objects and editing
of control and data segments.

Transaction WE05 is a safer way of monitoring IDocs. In a production environ-
ment, its advantage over Transaction BD87 is its additional search options and the
fact that IDocs can’t be processed and reprocessed.

21.2.3 Processing Log for Output Control

You can identify outbound IDocs from within their documents by looking at the
output processing log. This log does not enable follow-up processing or navigation,
but it does allow quick confirmation from within a document that an outbound
IDoc has been generated with message control.

The processing log for a billing document is illustrated in Figure 21.19.

Figure 21.19 Processing Log for a Billing Document

The processing log is accessed by selecting the output type record in the output
display screen in the document and clicking the Processing log button. The fol-
lowing menu options in Acme’s key interface documents lead to the output display
window:

EE Purchase order: Click the Messages button.

EE Sales order: Click Extras • Output • Header • Edit.

EE Delivery: Click Extras • Delivery Output • Header.

EE Billing document: Click GoTo • Header • Output.

870

Troubleshooting and Recovery21

21.2.4 Transaction WE07: Errors History

Despite the name on its selection screen (IDoc statistics), Transaction WE07 is
a summary of IDoc error history. Default selection parameters are the date range
(see Figure 21.20), although you can also enter minimal control segment details
such as message type and basic type in the Detail Sel. tab.

Figure 21.20 Default Selection Options for IDoc Error History

The report returns an overview of IDoc error processing during the selected date
range with the total number of error IDocs (Figure 21.21).

Figure 21.21 Overview of IDoc Error Processing History

The display is organized by direction and error disposition:

EE Current in Error Status: Errors have not been addressed

EE Error was Overcome: Errors have been fixed and the IDocs updated to a suc-
cess status

871

Monitoring and Recovery Tools 21.2

EE With Del. Indicator: IDocs have been marked for deletion using status 68 for
inbound or 31 for outbound

Double-click any of these folders to open an ALV grid list report with all IDocs in
the group. The IDoc list is identical to the report in Transaction WE05. Double-
click any of the IDocs to open the tree display with the same viewing and editing
functionality as Transactions BD87 and WE05.

IDocs cannot be processed using Transaction WE07.

21.2.5 Transaction WE09: IDoc Search by Business Content

Transaction WE09 is one of Acme’s favorite IDoc reports. We use it to find IDocs
from the contents of a field in a segment.

If you have a customer PO number, for example, call up Transaction WE09 and
enter in the selection screen all the keys you know into the control record section
of the selection screen. At a minimum, you should know the message type, partner
number, and a date range.

Then enter the segment and field names, and the purchase order number into the
Criteria for Search in Data Records selection block. If we wanted to find the
ORDERS IDoc with customer PO number 8888000011 from Gordy’s Galaxy, we
would populate the segment and field values as illustrated in Figure 21.22.

Figure 21.22 Searching for IDocs by Business Contents

You cannot use wild card characters to search, but partial entries are OK as long as
the values are contiguous. In our PO number example, you can search for 88880000,
but you can’t search for 8888*1.

Execute the report and all ORDERS IDocs containing our purchase order number
are returned in an ALV grid list that displays the expandable control record for
each IDoc. If you click the IDoc number, the tree display opens with all the same
functionality as Transactions BD87, WE05, and WE07.

872

Troubleshooting and Recovery21

Expand the control segment by clicking the folder icon and all segments in the
IDoc open. A portion of the report is illustrated in Figure 21.23.

Figure 21.23 Portion of the IDoc Display Report in Transaction WE09

Click any segment number to open the Display Data Record for IDoc screen for
that segment. The segment can be edited from here, unless the IDoc is at status 53.

It is interesting to look at the code behind this report. It is not that difficult to
incorporate it into your own programs, particularly if you need to search for values
in IDoc fields. Transaction WE09 runs report RSEIDOC9.

IDoc data are read by function IDOC_READ_COMPLETELY with the IDoc number in
a loop on an internal table that includes control record data for all IDocs that fall
within the selection parameters entered into the control record block of the selec-
tion screen. It is important to be as specific as possible to avoid pulling in large
numbers of IDocs.

When the IDoc data records are retrieved for the current IDoc number, form
SEARCH_DATARECORD is called. It does some funky string processing to figure out
where the field that contains your value lies in the selected segment. It then calls
the ABAP SEARCH command to find the value entered in the For value field of the
selection screen using the start and end position calculated for the field entered
in Search in field.

If the entered field value is found, the IDocs are assembled, and the report returned.

Transaction WE09 has another interesting feature. Click the Data Source button at
the top of the selection screen. The report offers the option of searching for IDocs
either in the database, in the archive, or both in the Select data source dialog,
as illustrated in Figure 21.24.

873

Recovering from Key Failure Points 21.3

Figure 21.24 Selecting IDocs from the Database and Archive in WE09

21.2.6 Transaction WE08: IDoc Interuptus

There are a range of system logs that can also be consulted, but most of these are
the purview of the Basis team. There is one that is useful for the EDI support team
to know about, although the error it records rarely happens.

Transaction WE08 provides a view of table EDFI2, which logs problems in reading
or deleting IDoc files by RFC function EDI_DATA_INCOMING.

SAP uses it to avoid processing the same IDoc record twice. The system records
the name and path of the input file, records the last IDoc number generated from
it, and marks the position of the last record successfully read.

Table EDFI2 also records the date and time and the ABAP program that was run-
ning when the RFC interruption occurred. Display EDFI2 using the Data Browser,
Transaction SE16.

If an IDoc is partially read when an interruption occurs in the import of an IDoc file,
a record will be written to EDFI2. If you attempt to reimport the IDoc file, a failure
will be returned unless the EDFI2 record is deleted. This is usually handled by the
Basis team, but you need to be able to recognize it so you can tell them to delete it.

This error occurs mostly during the earliest stages of development.

21.3 Recovering from Key Failure Points

Troubleshooting and recovery is about how we respond to issues as they occur in
the technical or business architecture. Once we identify the issues that we are most

874

Troubleshooting and Recovery21

likely to face, we can map out process flows for troubleshooting and recovery. This
becomes our initial roadmap for support in the production system.

As new issues crop up in production, we identify fixes and add them to our road-
map. Continually documenting what we know as learn it is the best way to protect
ourselves from what we don’t know.

We will begin with the technical system.

21.3.1 Technical Troubleshooting

Technical problems are most likely to occur during development and testing.

Technical issues in production are most likely related to connectivity, changes in
the network environment, or incorrectly setting up a new trading partner. How
we respond depends on the direction of the interface.

Inbound

Figure 21.25 outlines an overview of our responses to potential technical issues
during inbound processing.

We have already noted that errors are most likely to occur at key processing mile-
stones in the architecture because that’s where stuff happens.

Transmission failures are the most likely technical errors to occur in Acme’s pro-
duction system. Errors may be identified when Gordy does not receive an MDN
or the business realizes that a purchase order they were expecting is overdue.

Acme’s EDI team swings into action. The first step is to identify the error. A number
of issues can cause transmission failures:

EE Changes in the EDI partner’s system that have not been communicated, such as
a new IP address that is not on the safe list for Acme’s firewall

EE Changes in the EDI RIM that have not been communicated to the partner or
that the partner has not set up, such as a target URL for AS2

EE Failures in EDI or business systems, networks, communications, or other tech-
nical infrastructure at either end

EE Too much traffic hitting either system at the same time

875

Recovering from Key Failure Points 21.3

Transmission from
TP by AS 2/FTP

OK

Connectivity/call
TP EDI team

check own firewall

No

Fix connectivity
TP EDI /network
resend EDI file

De-enveloping

OK No Missing/incorr.
envelopes /TP

Fix/create
envelopes /TP

rerun

Yes

Translation from
EDI to IDoc

No
Mapping
logic/data

type/structure/

RFC connection
IDoc written to

DB in SAP

Code/test map
in EDI DEV/QAS

rerun in PRD

OK

OK

SAP adapter
RFC destination
WE08/exit code

Fix config/code
data and restart

from SAP adapter

No Yes

Yes

OK endStatus 64

Yes

No

Partner profile
missing/wrong
syntax error

Create/fix PP
change EDI map
test in DEV/QAS

Rerun from map in
EDI RIM confirm

control record

Yes

Figure 21.25 Troubleshooting Potential Inbound Technical Issues

These issues can’t be fixed by Acme’s EDI team alone—they need help from Gordy’s
EDI team or Acme’s network support folk. Gordy will retransmit the interchange
when the issues are addressed.

Next up is de-enveloping. These are usually one-time failures, although trading
partners sometimes change their envelopes without telling us. Errors generally
happen when a new partner is being set up, and envelopes have not been created
or were created incorrectly.

876

Troubleshooting and Recovery21

If the envelopes exist, the issue may be that the partner and transaction are not
recognized by the system and cannot be matched to their envelopes.

The EDI team fixes the issue and restarts the interchange from the point of failure.
The next potential failure is translation, which could be an error in mapping logic
or source file structure or a conflict between data types.

This could happen in production, particularly for a major partner who sends large
volumes of EDI transmissions.

The map fix is coded and unit-tested in EDI DEV against the production data that
caused the failure. When the developer is satisfied that the fix works, the map is
promoted to QAS for more testing against the data that caused the failure and other
production data to ensure that nothing else has gone wrong.

When the EDI lead signs off on the fix, it is promoted to production, and the
transaction is rerun from the point of failure.

There may also be failures in the workflow processes that move data through the
EDI RIM. These issues are technical and unique to the EDI system being used, and
can be caused by a variety of factors:

EE Configuration of adapters and services

EE Network and technical system setup and access to file directories

EE Database access or maintenance

EE Memory usage, Java Virtual Machines, and so on

The EDI team monitors these processes on an ongoing basis. They are fixed imme-
diately and tested in DEV and QAS before being brought into PRD.

Next the translated IDoc is sent into SAP through the RFC connection. The follow-
ing can cause RFC failures:

EE Improper installation of JCo

EE Configuration errors in the SAP adapter in the EDI RIM (the adapter needs cor-
rect SAP server and login information to make the connection)

EE Network or file system access issues

EE RFC failure in SAP during file processing

877

Recovering from Key Failure Points 21.3

JCo and SAP adapter configuration errors should happen only once if they occur.
The EDI team fixes them, sometimes with Basis help. Network and file system
access issues occur occasionally in the real world.

RFC failures in SAP occur in function EDI_DATA_INCOMING and can be triggered by
some other problem in the system or the network.

In either case, the EDI team may need to check Transaction WE08 to ensure that
no file was being processed when the failure occurred. Otherwise the team restarts
the RFC connection from the EDI RIM and lets the IDocs flow into SAP.

Finally, the IDoc should be stored in the database as status 64. If not, it is most
likely to be at status 56 or 60. IDocs are checked in Transaction BD87 or WE05.

Status 56 is an issue with the partner profile, which is either missing or does not
match the key values in the IDoc control segment. The values that should match
are the keys to inbound partner profile table EDP21:

EE SNDPRN: Send partner number

EE SNPRT: Send partner type

EE SNDPFC: Send partner function

EE MESTYP: Message type

EE MESCOD: Message code

EE MESFCT: Message function

EE TEST: Test flag

Another potential failure in Acme’s system occurs if table ZEDIXREF has not been
updated with records for the partner and inbound transaction. This is how the SAP
partner number is passed to the control segment of the IDoc.

The partner profile is created or fixed or the map is fixed to pass correct partner
profile data to the control segment of the IDoc.

If the IDoc status is 60, there is a structural issue that points to an error in the
map’s build of the IDoc. The map is fixed and retested in DEV and QAS and pro-
moted to PRD.

When the errors are fixed, the IDoc is resent into SAP from the IDoc adapter in
the EDI RIM.

878

Troubleshooting and Recovery21

Outbound

Figure 21.26 gives an overview of our responses to technical issues that may crop
up during outbound processing.

Yes

Output control
condition recs
partner profile

Fix config
resave business
Doc/regen IDoc

RFC connection
to EDI RIM

IDoc output from
business doc OK

RFC connect
config

Fix RFC config
restart IDoc frm

BD87/pgm

Yes

OK

Translation from
IDoc to EDI

Mapping logic/data
type/structure/

Code/test map
In DEV/QAS
rerun in PRD

OKYes
Enveloping txn/

group/interchnge

OK YesNo
Missing/incorrect
envelopes/trading

partner info

Create/fix
envelopes/trading

partner/rerun

Transmission to
trading partner
by AS2/FTP/etc.

OKYes
Connectivity/call

TP EDI team
check own firewall

Fix connectivity
TP EDI/network
resend EDI file

MDN/997 FA
returned from TP

YesOK end OK

Trading partner
fixes connection
issues/resends

Yes

RIM: translation or
envelope: find,

fix and test
TP error

No

No

No

No

NoNo

Figure 21.26 Troubleshooting Potential Outbound Technical Issues

879

Recovering from Key Failure Points 21.3

It begins when a business document such as a sales order, outbound delivery, or
invoice is created in SAP and saved. An IDoc is generated by output control. If it
isn’t, the error is caused by one of the following circumstances:

EE Output control is incorrectly configured.

EE Condition record is missing for the partner and output type.

EE Partner profile is missing or incorrectly set up.

EE An error in custom IDoc code in a customer exit or a custom function triggered
a failure.

The output error will be identified in the output display window of the document
itself. It will tell us why an IDoc was not generated if message control is set up,
almost always a mismatch between output type, condition records, and outbound
partner profile.

First we check the partner profile. Confirm that the message control screen has
been configured. If not, add the application, output type, and process code.

If it has been entered into the partner profile, check the output type and condition
records. Confirm that a condition record has been entered for the partner and out-
put type. If a record has been entered, confirm that it is correct and that it matches
the message control screen values in the partner profile.

Check also the output type and confirm that it configured for the partner type you
are trying to process. If any of these values are missing or incorrect, the SAP EDI
team will fix them.

If the message control and output type configuration is correct, check custom code
that may be written in user exits in the IDoc processing function. We may need to
debug the code to track down the error, or have our ABAP developer take care of it.

Whatever we need to fix is done in DEV, tested in DEV and QAS, and then moved
back into PRD once the team leads sign off on it. We then regenerate the IDoc by
going back to the document in change mode and saving it.

We should now be able to find the IDoc at status 30 with any of the IDoc list
tools. The IDoc is sent out of SAP by running program RSEOUT00. If it fails to be
picked up by the EDI RIM, the issue is in the RFC connection. This can be caused
by several things:

880

Troubleshooting and Recovery21

EE JCo is improperly installed.

EE The RFC destination in SAP is not set up or is set up incorrectly.

EE The EDI RIM SAP adapter is not registered as an RFC server or is incorrectly
configured.

EE The SAP XML file port is not configured to trigger the RFC destination for the
EDI RIM.

EE The partner profile is pointing to the wrong port or is not configured to start
the EDI subsystem.

These issues are mostly all related. If JCo is properly installed for the inbound con-
nection, it will work for outbound. The RFC destination can be checked in Trans-
action SM59. If it exists, and the connection test does not work, the SAP adapter
in the EDI RIM is probably not correctly configured and the RFC destination does
not recognize it as a registered server program.

If the adapter configuration is correct but the IDoc still does not trigger the EDI
RIM, check the file port with Transaction WE21. Make sure that the Autom.start
possible flag is set in the Outbound: Trigger tab. Confirm that the correct RFC
destination for the EDI RIM is entered in the RFC destination field.

We also need to ensure that the outbound partner profile is pointing to the correct
file port and that the output mode is set to Start subsystem. If it is not, the IDoc
will not trigger the listening workflow in the EDI RIM.

If a network issue is preventing connection, we will need technical support from
the Basis or network teams, or both.

Once RFC is working, the IDoc is picked up by the EDI RIM. The next step is transla-
tion to an EDI transaction. Mapping issues are the same as for inbound processing
and are also related to enveloping.

As with inbound processing, envelopes may not have been set up or the system
may not recognize the partner and transaction.

The EDI team will quickly recognize these problems because processing in the
RIM will halt. The STATUS interface will report a translation failure back to SAP,
but not an envelope issue. The translation failure will show as status 05 in the
outbound IDoc and can be recognized in any of the standard IDoc reporting and
monitoring tools.

881

Recovering from Key Failure Points 21.3

After mapping and enveloping issues are fixed, we send the EDI transaction to
Gordy’s Galaxy. If the AS2—or other—transmission fails, we will work with Gordy’s
EDI team to identify and address the issue.

The firewall is open to all for outbound processing so new IP addresses are not an
issue. However, a new IP address at Acme may indeed be an issue for the trading
partner if we do not communicate with them.

Finally, Acme expects an MDN and an X12 997 acknowledgment from Gordy for
all outbound interchanges.

If the MDN is not returned, Acme may not have received the transmission or they
may have an issue in their system. We will need to communicate with them to
make sure that they are aware of the problem.

If the 997 is not returned, or if it is returned with a syntax error, Acme’s EDI team
works with Gordy to resolve the issue.

There may be a glitch in Gordy’s system that prevented the 997 from being sent, or
the syntax error in Acme’s outbound transaction may not have been critical, such
as an optional text element that exceeds the length expected by Gordy’s system.
The acknowledgment can be handled manually.

21.3.2 Functional Troubleshooting

This is all about the data we need to create our business documents, trigger back-
ground processing in inventory management and accounting, and send an invoice
to our customer so that we can get paid.

If the data are wrong, we will not get paid. It is as simple as that.

As far as direction goes, what comes in affects what goes out. Data problems in
the outbound are almost always related to missing or incorrect data coming in. So
it is critical to check and check again.

Inbound

We will look at an inbound 850 customer PO to illustrate the general process
flow. Each interface has its own requirements but the fundamental issues—that
is, identifying and fixing errors—do not differ that much. Figure 21.27 gives an
overview of our responses to potential business issues during inbound processing.

882

Troubleshooting and Recovery21

Pgm RBDAPP01
triggered to post
ORDERS IDocs

Check IDoc/X12
for bad data

Data error from
partner. Ask TP

to fix and. resend.

Mapping issue
fix map rerun
transmission

No

No

Delete SO post
new IDoc with
corrected data

Get error info
from status msg

take action

No

Check/fix ship-to
partner data

XD03, EDPAR

Incorrect PO no.
edit IDoc/mark

for deletion

SAP/Cust/
CMIR/edit IDoc
have TP resend

ORDERS IDocs in
DB at status 64

OK

Sales order posts
from IDocs

Yes No
ORDERS IDocs

at status 53
ORDERS IDocs

at status 51

Check data in
sales order

Same data Yes

Partner Yes

Duplicate PO

Wrong Item

Yes

Yes

No

OK endOK Yes

Pricing, other bus
issue. Work with
customer to fix

Other Yes

No

Figure 21.27 Troubleshooting Potential Inbound Business Issues

It begins with an ORDERS IDoc at status 64. Program RBDAPP01 kicks off through
a scheduled job to process it and post the sales order. The IDoc status is updated
to 51 if it fails to create a sales order and to 53 if it succeeds.

883

Recovering from Key Failure Points 21.3

Status 51, as we have seen, is cleaner to deal with because we know that there is
an error. First we check the status message in Transactions BD87 or WE05. That
will identify any system-generated error messages.

In Acme’s system, there are three key-coded checks that will return an error mes-
sage to the IDoc status record if they fail:

EE Partner does not exist at sales organization.

EE Duplicate PO failed.

EE Material is not defined for sales organization.

Partner Does Not Exist

The GLN is returned for the ship-to partner and does not map to the SAP partner
number. Either the ship-to was not created in the customer master or a record
was not entered into EDPAR mapping the SAP to the customer ship-to number.

This is fixed by creating the ship-to partner if it does not exist and then creating
the EDPAR entry.

If the ship-to partner exists, make sure it is extended to the sales organization,
distribution channel, and division. Then enter the record into EDPAR.

Related to this issue is a configuration error that can occur if EDSDC has not been
updated with the vendor number and customer sales organization. This is a one-
time setup chore with Transaction VOE2.

The IDoc can then be reprocessed with Transaction BD87.

Duplicate PO Failed

This error is returned by Acme’s custom code that prevents a purchase order that
has already posted and been processed from posting again.

The customer purchase order number is not mandatory in the SAP sales order. You
can create a sales order without a purchase order or with an incorrect PO number.

But the customer must know what purchase order he is being invoiced against. We
need to provide him with the correct PO number and ensure that we don’t post
the same PO twice. The problem is that the customer’s order could be shipped
twice if the PO posts twice, and Acme is left on the hook for the price of shipping
the duplicate order.

884

Troubleshooting and Recovery21

There are, of course, other tangible and intangible costs to the relationship with
the customer that should be avoided.

The only time that we do post the same PO number twice to sales orders is if we
are processing customer orders with multiple ship-to partners in the SDQ segment
at the line item level.

We need to determine if this is truly a second copy of the same purchase order
that has already been processed, if it was an error in the EDI system, or if Gordy
just sent it by mistake.

If it is a dupe, we mark the IDoc for deletion and forget about it. Chances are
Gordy sent it by accident. But first we let them know about it and confirm that it
was not intentional.

There could be a valid business reason for resending. Another error may have been
spotted by business users at Gordy or Acme after the original IDoc posted. If that
is the case, we delete the sales orders created by the original and repost the IDoc
in Transaction BD87.

If it is a different order but was given the posted PO by mistake, we can edit the
IDoc with Transaction BD87 in E1EDK02-BELNR where QUAL equals 001. Then
we reprocess the IDoc.

Material Is Not Defined

This is a master data issue. Either the SAP item has not been created in the material
master or it has not been extended to the Acme sales organization and distribution
channel responsible for selling Gordy the item.

Check it. If the material exists in the right sales organization, then the issue is in
the customer material info record (CMIR) in table KNMT. If CMIR does not have
a record mapping the customer’s item number to Acme’s SAP number, this error
will be returned.

The fix is to enter the missing data, wherever it may be, and reprocess the IDoc.
If the IDoc got this far it will post a sales order once the material number issue is
corrected.

885

Recovering from Key Failure Points 21.3

The IDoc Posted Successfully

The IDoc successfully created a sales order and its status was updated to 53. We’re
done, right? Not so fast. We have already seen that a sales order can be successfully
created but still be missing critical data or have wrong data.

The business owners need to spot-check the sales orders as thoroughly as possible,
checking particularly for those fields that the customer needs in the invoice but
that are not mandatory in SAP.

These include the purchase order number, customer item number, and whatever
else the customer considers critical. We should also spot-check the item quantities
against the IDoc and the X12.

These data errors can be fixed manually by the business users in the sales order. If
there are a large number of errors and the fix is consistent, a mass change program
can be used.

Fixing data issues in the sales order nips downstream problems in the bud. But
when there are thousands of orders being created, stuff happens, and bad data get
past the best guardians of the post. Some of these problems may be caught during
outbound processing.

Outbound

We will illustrate the process flow by looking at an outbound 810 customer invoice.
Figure 21.28 gives an overview of our responses to potential business issues dur-
ing outbound processing.

We begin our outbound process with an INVOIC IDoc at status 30. Program RSE-
OUT00 is triggered by a scheduled job to export our IDoc to the EDI RIM. The IDoc
is updated to status 03 when it passes through the file port and to status 18 when
it triggers the EDI RIM.

The RIM picks it up and hands it off to the map. Translation either succeeds or
fails. Regardless, the status interface is triggered and the INVOIC IDoc in SAP is
updated to 05 if translation failed or 06 if it succeeded.

If the translation fails, we analyze the data and identify where the error occurred.
Unless something new has been introduced to the IDoc without telling the EDI
team, it will probably be a data issue.

886

Troubleshooting and Recovery21

Maps to STATUS
updates INVOIC in
SAP to status 05

Maps to STATUS
updates INVOIC in
SAP to status 06

OK end
Fix/retest map
reprocess IDoc

from BD87

Identify and correct
data issues in

bus documents

Translation from
IDoc to EDI

Analyze data and
status reports

INVOIC IDocs in
DB at status 30

OK

Pgm RSEOUT00
triggered to export

INVOIC IDocs

864 returned

No

Yes

Post STATUS to
INVOIC in SAP

Map issue

Yes

Post STATUS to
INVOIC in SAP

X12 810 sent to
trading partner

Yes

Regenerate IDoc
from business

docs and resend

No

No

Figure 21.28 Troubleshooting Potential Outbound Business Issues

If there is a mapping issue, we will use standard break-fix procedures to correct
and unit-test the map in DEV with the data that caused the failure. We will then
test the corrected map with a more complete set of production data in QAS. When
the fix is approved, the map is moved back to PRD and the process is rerun from
the point of failure.

887

Recovering from Key Failure Points 21.3

The vast majority of outbound translation errors in PRD are data issues. Some key
value such as purchase order or customer item number is missing because it did
not make it into the sales order from the original X12 850 PO.

If we set the fields that carry these values in the map to mandatory and they are
not sent in the IDoc, the map will fail.

When we identify the failure, we go back to the business document in SAP and
add the values and regenerate the IDoc.

If we are sending an invoice, values such as purchase order number or customer
item number cannot be entered directly into the invoice. These values are pulled
from other documents in the document flow that feed data into the INVOIC IDoc.

For these values, you would go to the document that holds them. To add the
purchase order number or customer item number, go to the sales order overview
using change Transaction VA02.

The purchase order is added to the PO Number field and the customer item to the
Customer Material Numb field for the line item in the All items table control.
Save the sales order.

You then regenerate the IDoc from the billing document with Transaction VF31
(output from billing) or Transaction WE15 (output from message control). In both,
you enter the billing document number, output type, transmission medium, and
a send again (WE15) or repeat processing flag (VF31).

The new values that you entered into the sales order will be pulled into the IDoc
when it is regenerated. Then send the IDoc to the EDI RIM with RSEOUT00 or
Transaction BD87.

If the translation succeeded, the invoice still has to get past the customer’s business
system. Data issues may still be caught in the customer’s system, or the invoice
may have arrived before the ASN.

Either way, the customer will send back an X12 864 text message with a detailed
error report. If the invoice arrived before the ASN, we need to make sure that the
customer receives and processes the ASN before resending the INVOIC IDoc. If
we don’t have to make any changes, we can resend the X12 810 invoice directly
from the EDI RIM.

888

Troubleshooting and Recovery21

If there are data errors, we correct them in the business document where they occur
and regenerate the INVOIC IDoc from the billing document. We then resend the
IDoc to the EDI RIM and the customer.

Data errors are impossible to eliminate completely because of all the hands involved
in the end-to-end process, so we have to do the best we can and continue checking.

And that’s what keeps the work interesting. We build the cleanest, most efficient
architecture that we can and, in the end, most of our efforts are on the data because
the business depends on it. If we are successful in our build, we barely notice the
system anymore—only the results.

21.4 Summary

We have come to the end of the road. Acme’s new SAP EDI system is built and tested.

In this final chapter, we looked at troubleshooting and recovery. We began by con-
sidering the processing points in the technical architecture and business processes
where problems are most likely to occur.

We looked at standard transactions in SAP that are useful for monitoring, trouble-
shooting, and recovering from IDoc issues and reviewed programs used to process
or reprocess IDocs.

We then made our first stab at developing process flows for recovery in the end-
to-end technical and business architecture. The idea was to develop a flexible
roadmap that the support team could use in production to identify and fix issues
as they come up. Unforeseen issues would be added to the process flow and other
support documentation as they are recognized and addressed.

So once again, this is only the starting point. We may be ready to go live, but that
doesn’t mean the work ends now. It will continue for the life of the system. The
bottom line is the bottom line, and nobody would appreciate this more than Darryl
Q. Fernhausen, the legendary founder of Acme Picture. It’s not about the shiny
new SAP EDI system that we worked so hard to build, test, and implement. It’s
about the business it supports.

889

Epilogue

Twilight descends on Hollywood. The project team from Acme Pictures is gathered
in the grainy duskiness of the Formosa Café. They toast each other with cocktails,
laughter, and silly speeches to celebrate their successful implementation of the
new SAP EDI system.

They can sense the smiling presence of the great Darryl Q. Fernhausen, the studio’s
legendary founder. The Formosa Café was his favorite watering spot and twilight
his favorite time of day, with a Hollywood hopeful hanging on his arm, a mojito
cooling his hand, and a fine Cuban Cohiba jutting from his mouth at a rakish angle.

The Formosa oozes Hollywood history, so it is the perfect spot for a post-project
blowout for a movie company. The café started life in 1925 in a red trolley car
on the corner of Santa Monica Boulevard and Formosa Avenue, across the street
from the old United Artists Studio, now Warner Hollywood. The Formosa has lent
its atmosphere to more than one movie including the gritty film noir crime drama
LA Confidential.

Acme has its own history with the Formosa, which it used surreptitiously as
background for a scene from its most famous crime flick, Zombie Detectives from the
Planet Ahlgor. The scene was shot almost entirely under the table with a hand-held
camera and features stunning, if somewhat jerky, close-ups of a zombie detective’s
shoe inching toward a pair of high heels partially veiled by the mysterious dark-
ness. The crew also managed to catch one or two shots of the café’s dark interior
and red walls before being caught and unceremoniously pitched out onto Santa
Monica Boulevard.

At the time, Acme Pictures was the pariah of Hollywood and couldn’t get permis-
sion to film in the Formosa—or anywhere else, for that matter. The café’s owner
didn’t want to be associated with Acme and he canceled the great Darryl Q’s
drinking privileges.

But Zombie Detectives was a huge box office hit. So there were smiles, handshakes,
and cocktails all around, and the great Mr. Q was allowed to return, in light of all
the publicity the movie generated. Hollywood loves a winner.

890

Epilogue

Zombie Detectives became a lucrative franchise and the Formosa never tossed out
another Acme crew into the street again. The great Darryl Q was a very happy man.

Everybody on the project team was conscious of this history as they sipped their
cocktails and considered the work just completed. The project had gone live with-
out a hitch. All interfaces in the purchasing and order-to-cash cycles with Gordy’s
Galaxy of Games & B Flix and the supplier Disc Services International were work-
ing as expected.

The project team felt a sense of well-earned satisfaction as they toasted each other
profusely in the gathering darkness of the café.

The implementation successfully replaced a hodge-podge of legacy systems and
interfaces with one integrated SAP system connected to Acme’s trading partners
through the EDI RIM.

It is a clean environment that provides end-to-end visibility for all interfaces. The
EDI portion of the RIM is modularized into processes that manage AS2 communica-
tions at one end, translation and data processing in between, and communications
into or out of SAP at the other end.

The beauty of it all is that each process is linked directly to the one before it and
the one after. If you jump in at any point in the chain, an interface can be easily
followed in any direction to its source or destination. This gives Acme unparalleled
visibility into EDI processing in SAP because key EDI system IDs are mapped to
each IDoc’s control segment. This makes it easy to trace the path of an IDoc through
the RIM regardless of direction.

Keeping track of interfaces in legacy was one of the most time-consuming chores
the EDI support team faced. Multiple systems sent and received EDI transmissions,
and data were moved around by FTP scripts at the operating system level. There
was no easy way to trace each step of the process from beginning to end if anything
went wrong with a transmission.

And because multiple business systems exchanged documents with external trading
partners, it was difficult to aggregate and analyze interfaces as a unified business
process. It took all of the energy of the support team to ensure that each step of
each individual interface worked as it should.

891

Epilogue

So the new SAP EDI system is a huge time saver that provides tremendous visibility
into all interface processing. In fact, Acme management is still trying to figure out
how much money this will save the company.

The new SAP system had already proven its worth in a major new release of a digi-
tally remastered Blu-ray version of the famous Zombie Detectives series shortly after
go-live, providing another good reason for the team to celebrate at the Formosa.

Gordy placed an initial order of 80,000 units for 2,000 of its stores as soon as the
new release was available for ordering. The PO came in without a hitch, and the
new SDQ process quickly generated 2,000 ORDERS IDocs that posted to the cor-
rect number of sales orders in SAP.

All follow-up transactions ran without any issues: the order confirmation, shipping
orders, and shipping confirmations. But there was a glitch when the invoice went to
Gordy: Gordy got the invoice before it had confirmed the shipment against the ASN.

Gordy sent Acme an 864 text report identifying the error. Before Acme’s team
could review the 864, Gordy got the ASN and confirmed the shipment. Acme’s
EDI team reissued the rejected invoices.

It took only one phone call to Gordy’s EDI team and everybody was happy. The
invoices were accepted and Gordy paid up within the 60-day payment window.
Gordy sent Acme an 820 that successfully posted to a payment advice in SAP.
Accounts receivable cleared it and the cycle was complete. Acme’s management
was pleased.

In the end, the new Zombie Detectives release was a great success, selling more than
two million copies. Acme’s new SAP EDI system handled the increased traffic to
support this business without even breaking a sweat.

The EDI support team got down to the business of identifying, fixing, and record-
ing the issues that inevitably arise in the early days of a new system. This effort
led to a database of issues and solutions that proved invaluable for years to come.

As time went on and issues were fixed, there were far fewer errors, and the team was
able to concentrate on defining and building audit reports in SAP and the EDI RIM.

But we’re running ahead of ourselves. The new system paid for itself in a number
of ways, including better visibility into EDI traffic; faster turnaround on orders and
shipping with fewer errors; less paperwork, printing, and postage; better data for
reporting; and more effective use of employee time. The list goes on.

892

Epilogue

The great Darryl Q. Fernhausen, lounging by that film moguls’ bar in Hollywood
Heaven, looked down on the scene at the Formosa Café with a satisfied smile. He
could see where all this was going and felt confident that Acme would continue
to grow its unique market.

He smiled, raised a toast with another heavenly mojito, took a puff of his Cohiba,
and blew out a wispy halo of blue smoke.

At that moment, the group gathered in the perennial darkness of the Formosa Café
toasted the great Darryl Q’s memory, and recounted one of his most memorable
quips.

“No matter how good it gets,” he once told a tipsy director at a poolside party,
“don’t feel too satisfied. You can always do better. But never forget to enjoy the
moment. Now…where did I put my drink?”

893

The Author

Emmanuel Hadzipetros has 20 years of SAP experience
as a data conversion specialist and ABAP, IDoc and EDI
developer in such diverse industries as pharmaceuticals,
entertainment, video games, steel, utilities, and others, in
four countries and three continents.

His ongoing fascination for data flows through SAP led him
to B2B integration. An IDoc and XML evangelist with a
practical approach to designing systems, he has built end-
to-end B2B architectures from SAP through the middleware
to the trading partner using such tools and standards as XI/

PI, ALE, Sterling Integrator, Contivo, X12, EDIFACT, OAGIS, AS2, FTP, and others.

In his latest adventure, Emmanuel is responsible for designing the integration
points in a cloud-based supply chain B2B platform for the pharmaceutical industry
at a Boston area company, where he also serves as in-house SAP guru. This work
includes building transactions with XSD schema and implementing GS1 standards
in serialization and product tracking.

Emmanuel is a huge fan of Acme Pictures’ visionary founder, Darryl Q. Fernhau-
sen, and of his idiosyncratic approach to film-making. When he’s not obsessing
about XML, IDocs, and SAP data flows, Emmanuel loves to drink up the old Hol-
lywood atmosphere of the Formosa Café while perusing the scripts of Acme’s more
memorable films.

895

A

ABAP Data Dictionary, Data objects
Data elements, 85, 231, 232
Domains, 85, 231, 232
Fields, 85, 231, 232, 233
Segments, 85, 233

ABAP Data Dictionary, IDoc architecture,
230

ABAP Programs, Business application
RV60SBAT Batch billing jobs, 642, 655
RVV50R10C Delivery due list, 549, 562,

565
SAPMV45A Create sales order, 496
SAPMV50A Delivery module pool, 562
SDBILLDL Billing due list, 656
SPLIT_PAYMENT_ADVICE, 709, 711, 716,

717, 724
ABAP Programs, Custom IDoc

ZEDI_ORDRSPSDQ Create SDQ ORDRSP,
482, 483, 488, 498, 500, 509–533,
541, 543

ZEDI_TRNSFIDOCS ALE IDoc transfer,
764, 765, 766, 771

ZEDI_UPLDPP Load partner profiles, 749–
756, 762, 763, 768

ZSDCHINVOIC ALV grid update report,
641, 665, 667, 668, 688

ABAP Programs, IDoc functions
SAPLEINM Purchasing messages, 314,

347
ABAP Programs, IDoc processing

RBDAPP01 Post inbound IDocs, 251, 268,
270, 369, 383, 397, 405, 407, 431,
443, 452, 456, 577, 585–589, 705,
715, 718, 882

RSEOUT00 Output batched IDocs, 306,
369, 382, 383, 431, 484, 498, 500,
549, 563, 565, 607, 624, 626, 642,
643, 662, 664, 792, 856, 879, 885, 887

RSNAST00 Selection program for issuing
output, 380, 792

ABAP Programs, IDoc processing (Cont.)
RSNASTED Output IDocs from table NAST,

282, 303, 305, 317, 318, 357, 380,
492, 563, 616, 653, 659

ABAP Programs, IDoc utilities
MSEIDOC0 Turnaround utility, 794
MSEIDOC1 Status test file, 793
RBDINPUT Inbound processing all, 866
RBDMON00 IDoc status monitor, 852
RBDOUTPU Outbound processing all, 866
RBDSTATE Send ALEAUD confirmations,

772–777
RSEIDOC2 IDoc list, 868
RSEIDOC9 Search IDoc by field content,

872
RSEIDOC9 Search IDocs by field contents,

204
RSEXARCA Archive IDocs, 201
RSEXARCD Delete IDocs from Archive, 203
RSEXARCL Search archive for IDoc, 204
RSEXARCR Archive read, 204
RSWWHIDE Delete work item history, 204
RSWWWIDE Mass delete work items, 204
SAPMSEDIPARTNER Maintain partner

profiles, 750
ABAP Programs, Load master data

RCSBI010 Bill of Materials, 93
RFBIDE00 Customers, 89
RFBIKR00 Vendors, 90
RMDATIND Materials, 91
RV14BTCI Pricing conditions, 94

Acme legacy systems, 63–69
ALE custom IDoc transfer program logic,

765–771
ALV Grid List Report Logic, 666–693
ALV List Report Logic, 513, 516, 517, 531,

532
American National Standards Institute (ANSI),

119
ANSI ASC X12, 37

Application errors inbound, 848, 849
Application errors outbound, 849, 850

Index

896

Index

Application Link Enabling (ALE), 156
Archiving

Deleting workflow tasks in SAP, 204, 205,
206, 207

EDI system strategy, 169, 171
IDoc archive configuration, 198, 199, 201
IDocs in SAP, 196, 198, 199, 201, 202,

203, 204
IDoc status codes that can be archived, 197
Workflow tasks in SAP, 196

AS2 (Applicability Statement 2), 37
AS2 server services, 162
AS2 text header, 163

B

Billing due list, 106, 111, 640, 643, 655, 656,
700

Blueprint questions, 51
BPML, 83, 160, 162
BPML code sample

SAPAdapter, 44
Business document

ASN (Advanced Ship Notification), 59
Billing, 107, 277, 640, 643, 644, 645,

649, 650, 651, 658, 700
Customer invoice, 40, 59
Customer purchase Order, 38
Delivery, 277, 549–598, 606–615, 620,

636, 656, 658
Material document, 397–406
Sales order, 274, 277, 302, 442, 443, 446,

450, 457, 471, 479, 550, 561–577,
597, 606, 610, 620, 636–646, 648,
658, 659, 700

Ship confirmation, 59
Supplier invoice, 38, 413–420
Supplier purchase order, 103, 150, 277,

367–378
Supplier purchase Order, 37

Business Object Repository (BOR), 322
Business process

Billing, 95, 106–108
Catalog planning, 95, 100, 101
Delivery, 95, 104–106
Payment, 95, 108–110

Business process (Cont.)
Purchasing, 37, 52, 95, 102–104
Purchasing, catalog release, 55, 56
Purchasing, new release, 53
Replication, 70
Sales, 38
Sales and distribution, 57

Business Process Execution Language (BPEL),
43

Business Process Modeling Language (BPML),
43

Business process workflow
Inbound IDoc processing steps, 43, 44,

45

C

Communications IDoc, 225
Communications protocols

AS2, 69, 72, 73, 77, 83, 124, 150, 154,
162, 195

FTP, 71, 74, 77, 83
FTP/S, 83
HTTP, 83
HTTP/S, 72, 73, 83, 163
VAN, 69, 86

Configuring ALE send of status confirmation
IDoc, 773, 774, 775, 776, 777

Creating a custom IDoc segment, 348
Creating a modification project, 350, 351,

353
Custom 846 Inventory Report, 324–341
Custom ABAP program ZSDCHINVOIC logic

flow, 665–694
Customer exits, 98
Customer order lifecycle, 94–110
Custom table ZEDIXREF, structure, 262

D

Data conversion strategy, 87, 88, 89, 90, 92,
93, 94

Delivery due list, 105
Development workflow

Create custom IDoc, 324, 325

897

Index

Development workflow (Cont.)
Create table ZEDIXREF, 741–749
Extend IDoc basic type, 341, 343

Domain values, qualifiers, 231

E

EAN (European Article Number), 91
EDI

Architecture, 47
Batch processing, 46
Codes and qualifiers, 136
Implementation guidelines, 130
Metadata formats, 160

EDI correlation data, 160, 161, 168
EDI correlation data inserts/reads, 179, 180,

181
EDI envelope

GS group, 71
ISA interchange, 71
ST transaction set, 71

EDIFACT compared to IDocs, 126, 127
EDIFACT compared to X12, 129, 130
EDIFACT messages

CONTRL Syntax and service report, 186
DESADV Despatch advice, 126
INVOIC Invoice, 121, 126
ORDERS Purchase order, 126
REMADV Payment advice, 126

EDIFACT messages anatomy, 125, 126, 127
EDI history

Accredited Standards Committee (ASC)
X12, 119

Berlin Airlift, 117, 118
DISA (Data Interchange Standards

Association), 118, 119
Electronic Data Interchange For

Administration, Commerce and
Transport, 43

FTD (Florists‘ Telegraph Delivery), 117
Overview, 116, 117, 118, 119, 120,

121
Transportation Data Coordinating

Committee (TDCC), 118
Uniform Communication Standard (UCS),

119

EDI interface
De-enveloping, 73, 146, 147, 165
Enveloping, 71, 147, 148, 160, 161
Legacy inbound process flow, 72–75
Legacy outbound process flow, 70–72
Process flow, 150
SDQ segment, 41, 62, 97, 99, 111, 143–

145, 443–479
Status code, 72, 167, 168
Trading partner, receiver, 72, 73, 146,

159, 161, 165
Trading partner, sender, 72, 73, 146, 159,

161, 165
Transaction set identifier code, 72

EDI mapping strategy, 48
EDI reference data, SAP

Inbound, 252–263
Outbound, 296–299

EDI standards
ASC X12, 86, 118–120
EDIFACT, 86, 120, 121
ODETTE, 122
TRADACOMS, 86, 122
UN/GTDI guidelines, 121, 122
VDA, 123

EDI system
Adapters, 43
Business process modeling tool, 43
SAP IDoc adapter, 44
Services, 43

EDI trading partner management, 86, 87
Electronic Data Interchange (EDI), 33
Enhancements described, 319, 320
Extending an IDoc basic type, 348, 350, 501–

506
Extensible Markup Language (XML), 40

F

Field symbols, 525
File Transfer Protocol (FTP), 71
Functional acknowledgment data, 161, 166,

168
Functional specs

ASN, 608–615
Customer invoice, 642–651

898

Index

Functional specs (Cont.)
Customer PO, 443–448
Goods receipt/goods issue, 398–402
Payment advice, 706–712
PO confirmation, 483–489
Ship confirm, 577–585
Ship order, 549–557
Supplier invoice, 416–426
Supplier PO, 370–374

Function groups, ALV processing
SALV ALV list viewer, 532

Function groups, Application processing
FRAD Payment advice, 109
MEGUI PO user interface, 380
MEPO Purchase order business logic, 380
V50K Delivery BAPIs, 562
V50R_VIEW Delivery due list, 562
V60A Billing, 658

Function groups, Custom
ZEDINVRP Inventory report, 332
ZVEDI ZEDIXREF maintenance screen, 741,

743, 744
Function groups, IDoc output

EDI7 EDI communications, 381
EINM Output purchasing messaging, 314
EINV On commit calls, 380
V61B Output control conditions, 286, 562
V61Z Conditions general determination,

379
V70A Processing output list, 380

Function groups, IDoc processing
EDFI2 Maintain table EDFI2, 266
EDI1, 522
EDI5, 522
EDI6 Maintain partner profiles, 750
EDIN Inbound processing, 266

Function groups, IDoc utilities
EDIMEXT IDoc type API, 84

Function modules, ALV processing
REUSE_ALV_HIERSEQ_LIST_DISPLAY,

517, 532
REUSE_ALV_LIST_DISPLAY, 757, 761

Function modules, Application processing
BAPI_GOODSMVT_CREATE, 104, 405
BAPI_REQUIREMENTS_CHANGE, 101
BAPI_REQUIREMENTS_CREATE, 101

Function modules, Application processing
(Cont.)
GUI_UPLOAD, 758
IDOC_INPUT_DELVRY, 577, 586, 593, 602
IDOC_INPUT_INVOIC_FI, 425
IDOC_INPUT_INVOIC_MRM, 414, 425,

428, 437
IDOC_INPUT_MBGMCR, 397, 405, 406
IDOC_INPUT_ORDERS, 250–273, 316,

319, 321, 442, 453, 471–478
IDOC_INPUT_REMADV, 322, 705, 715,

735
IDOC_INPUT_REMADV_CTR, 735
MB_CREATE_GOODS_MOVEMENT, 405
MRM_INVOICE_CHECK, 429
MRM_INVOICE_CREATE, 425, 429
MRM_INVOICE_PARK, 429
MRM_INVOICE_POST, 429
NREL_GET_NEIGHBOURHOOD, 454
PARTNER_CONVERSION_INT_TO_EXT, 623
REMADV_INSERT, 716, 731
RV_CUSTOMER_MATERIAL_READ, 260
RV_INVOICE_ADD, 658
RV_INVOICE_CREATE, 658
RV_PRICE_PRINT_ITEM, 660
RV_READ_INVOICE_INDEX, 657
RV_SALES_DOCUMENT_ADD, 302, 496
SD_COLLECTIVE_RUN_EXECUTE, 658
SD_OBJECT_TYPE_DETERMINE, 305
SHP_BAPI_DELIVERY_REPLICA, 562
SHP_EXTENDED_DUE_LIST_VIEW, 562
SPLIT_PAYMENT_ADVICE, 109
VIEW_KNVV, 298
WS_DELIVERY_UPDATE_2, 587

Function modules, Custom development
RV_CUSTOMER_MATERIAL_UPDATE, 92

Function modules, IDoc development
EDI_AGREE_IN_MESSTYPE_INSERT, 316,

750, 761
EDI_AGREE_IN_MESSTYPE_UPDATE, 750
EDI_AGREE_OUT_IDOC_INSERT, 316,

750, 761
EDI_AGREE_OUT_IDOC_UPDATE, 750,

761
EDI_AGREE_OUT_MESSTYPE_INSERT,

315, 750, 760

899

Index

Function modules, IDoc development (Cont.)
EDI_AGREE_OUT_MESSTYPE_UPDATE,

750, 760
EDI_AGREE_PARTNER_INSERT, 315, 750,

759
EDI_PARTNER_CREATE_SYPART01, 762
EDI_PARTNER_SEND_IDOC, 762
ZIDOC_INPUT_ZINVRPT Post inventory

report, 333–339
Function modules, IDoc output

COMMUNICATION_AREA_KOMKBEA, 378
COMMUNICATION_AREA_KOMKBV1,

302, 496
COMMUNICATION_AREA_KOMKBV2,

562, 620
COMMUNICATION_IDOC_CREATE, 305
EDI_PARTNER_READ_OUTGOING, 304,

497, 563, 621, 659
IDOC_OUTPUT_DELVRY, 549, 563, 572,

607, 613, 621, 623, 633, 636
IDOC_OUTPUT_INVOIC, 316, 641, 659,

662, 700
IDOC_OUTPUT_ORDERS, 300, 314, 345,

347, 359, 368, 375, 381, 482, 563
IDOC_OUTPUT_ORDRSP, 294, 304, 368,

392, 497
KOMKBV1_FILL, 286, 302
MASTER_IDOC_CREATE_BOMMAT, 316
MESSAGING, 302, 496, 562, 620
RV_MESSAGES_UPDATE, 303
SD_COND_ACCESS, 302, 379

Function modules, IDoc processing
ALE_FTCH_DATA_SEGMENTS_OF_IDOC,

270
APPLICATION_IDOC_POST_IMMEDIAT,

270
BAPI_IDOC_INPUT1, 411
EDI_CHANGE_DATA_SEGMENT, 692
EDI_CONTROL_RECORD_MODIFY, 267
EDI_DATA_INCOMING, 45, 159, 169,

186, 193, 229, 266, 268, 404, 452,
586, 715, 771, 873, 877

EDI_DOCUMENT_CLOSE_CREATE, 268
EDI_DOCUMENT_CLOSE_EDIT, 692
EDI_DOCUMENT_CLOSE_READ, 520, 677,

770

Function modules, IDoc processing (Cont.)
EDI_DOCUMENT_OPEN_FOR_CREATE,

268, 305, 747
EDI_DOCUMENT_OPEN_FOR_EDIT, 692
EDI_DOCUMENT_OPEN_FOR_READ, 519,

676, 770
EDI_DOCUMENT_STATUS_SET, 268
EDI_DOCUMENT_TREE_DISPLAY, 693, 856
EDI_EDFI2_DELETE, 266, 268
EDI_EDFI2_READ, 266
EDI_OUTPUT_NEW, 156, 230, 307, 381,

624, 662
EDI_PATH_CREATE_MESTYP_DOCNUM,

239
EDI_PORT_READ, 230, 266, 307
EDI_SEGMENT_GET, 520, 522
EDI_SEGMENTS_ADD_BLOCK, 268
EDI_SEGMENTS_GET_ALL, 677, 770
EDI_STATUS_INCOMING, 793
IDOC_CCMS_OPEN, 381
IDOC_CONTROL_OUTBOUND_CONVERT,

226
IDOC_CREATE_ON_DATABASE, 305, 747
IDOC_CTRL_INBOUND_CONVERT, 226,

267
IDOC_DATA_INBOUND_CONVERT, 226
IDOC_DATA_OUTBOUND_CONVERT,

226
IDOC_INBOUND_ASYNCHRONOUS, 771
IDOC_INBOUND_PROCESS_DATA_GET,

267, 268, 271
IDOC_INBOUND_WRITE_TO_DB, 267
IDOC_INPUT, 271, 318
IDOC_READ_COMPLETELY, 522, 523
IDOCS_OUTPUT_IN_XML_FORMAT, 230,

238, 307
IDOCS_OUTPUT_TO_FILE, 238
IDOC_START_INBOUND, 270
IDOC_WORKITEM_INBOUND_CREATE,

271
IDOC_XML_FROM_FILE, 230, 266
MASTER_IDOC_DISTRIBUTE, 156, 230,

498, 528, 692, 762, 766, 771
ME_MESSAGES_UPDATE, 380
NUMBER_GET_NEXT, 268
RFC_REMOTE_EXEC, 238, 307

900

Index

Function modules, IDoc processing (Cont.)
RV_MESSAGES_UPDATE, 380
SD_INT_TO_EXT_PARTNER_NUMBER,

297, 298, 660
WFMC_MESSAGE_SINGLE, 380

Function modules, IDoc utilities
EDI_IDOC_SYNTAX_GET Get IDoc syntax,

224
IDOC_RECORD_READ Get IDoc record

types, 84
IDOCTYPE_READ_COMPLETE Get IDoc

segments, 84, 224, 235, 872
Functions

Inbound IDoc API, 318
Outbound IDoc API, 317, 318
Use in IDoc interface, 315, 316

G

Generating IDocs with message control
ASN, 615–625
Invoice, 651–663
PO confirmation, 489–498
Ship order, 557–565
Supplier purchase order, 378–382

GLN (Global Location Number), 147, 446,
452–476, 485, 502, 538

Goods receipt, 37
GTIN (Global Trade Item Number), 91

H

Hypertext Transfer Protocol (HTPP), 72

I

IDoc anatomy, 210–230
IDoc basic type, 83

ALEAUD01 ALE confirmations, 772,
775

COND_A02 Pricing conditions, 94
DELVRY03 Delivery document, 548, 550,

570, 576, 578, 586, 589, 590, 599,
600, 607, 608, 632, 634, 636

IDoc basic type (Cont.)
INVOIC02 Invoice, 194, 414, 415, 418,

428–436, 641, 669
MBGMCR03 Inventory movements, 397–410

IDoc basic type
ORDERS05 PO confirmation, 275, 294,

299–306, 368, 369, 371, 382–389,
482–487, 498, 501, 503, 506, 534

ORDERS05 Purchase order, 166, 223, 224,
231, 263, 264, 266, 309, 312, 321,
341, 348, 350, 362, 367–390, 441–443,
445, 450, 455–471, 778, 779, 780,
783, 784

PEXR2003 Payment advice, 705, 707, 717,
718, 725, 735

SYPART01 Transport partner profiles, 248,
762

SYSTAT01 IDoc status, 171
ZINVRPT01 Custom inventory report, 326,

329, 331, 332, 337
IDoc basic type DELVRY03, Structure, 599,

600
IDoc benefits, 45, 46
IDoc configuration

Condition records, 286
EDI user name, 235
Logical system, 236, 237
Partner profile, 48, 88, 97
Partner profile, header level, 246, 249
Partner profile, inbound, 246–252
Partner profile, outbound, 292–296, 359,

361, 362
Partner type, 245, 246
Process code, 277, 435
RFC destination, 157, 237, 238, 239, 274
XML file port, 47, 158, 239, 240, 241

IDoc control record key fields, inbound, 244,
263

IDoc control record key fields, outbound, 274
IDoc definitions

Basic type, 223, 224
Extended type, 225
IDoc file, 226
IDoc instance, 225

IDoc development
Identifying exits, 343, 344, 345, 347
Work Flow, 341

901

Index

IDoc development tools
ABAP Data Dictionary, 310
Enhancement projects, 320, 341, 342,

350
Enhancements, 319, 320, 342, 344
Function editor, 313–319, 325, 345, 347
IDoc attributes, 322, 325
Inbound process code, 322–325, 338
Link functions to IDocs, 321–325, 337
Link message to basic type, 313, 325, 331,

342, 350
Logical message type, 313, 325, 331
Outbound process code, 323, 324
Segment editor, 101, 311, 312
Type editor, 312, 313, 325, 329, 342,

348
IDoc EDI envelope key fields, 159, 194
IDoc enhancements, 98, 297

Bundling sales orders, 99, 100
IDoc extended type, 225

Outbound PO with BOM segment, 341–362
ZORDRS01 PO with BOM segment, 341,

348, 350
ZORSDQ01 PO confirm with SDQ segment,

482–487, 498, 499, 501–510, 518, 523,
534, 541, 543

IDoc, Generate from business object, 101,
102

IDoc interface
Process flow inbound, 264

IDoc interface development
ABAP ALV grid classes, 666

IDoc message type, 94
List for Acme Pictures, 211

IDoc metadata
EDIFECS gXML, 84
Parser format, 83
XML format, 83

IDoc monitoring and recovery tools, 850
BD87, 850–887
WE05, 867–871, 877, 883
WE07, 870, 871
WE08, 873, 877
WE09, 871, 872, 873

IDoc processing programs by status code
Inbound, 864
Outbound, 865

IDoc record types
ASCII external control, 212
ASCII external data, 215
ASCII external representation, 212–216
ASCII external status, 216
Control, 84, 97, 159, 177, 212, 218, 219,

226, 244
Data, 84, 212, 219, 220
Status, 84, 212, 220–222

IDocs as intelligent messages, 127, 210, 211
IDocs inbound process flow, 264–273
IDocs outbound process flow, 300–307
IDoc status codes, 171, 172, 173
IDoc structures

Data element, 84
Segment, 84

IDoc test tools
startRFC, 796–798
WE12 Turnaround utility, 794, 795
WE14 Output batched IDocs, 792, 814
WE15 Output from message control, 791,

792
WE16 Inbound file processing, 795, 796
WE17 Built test status file, 793
WE18 Receive status file, 793
WE19 Main test tool, 788–796, 809

IDoc view
ZORSDQ01_BAS PO confirm with SDQ

segment, 507, 509, 510, 543
Inbound processing requirements

ORDERS PO, 264, 265
Intermediate Documents (IDocs), 34
Inventory of EDI interfaces, 79

J

Java, 42, 83
JDBC (Java Database Connectivity), 83

L

Legacy systems
DVD Repository, 65, 82
EDI, 69, 77
Finance, 67, 81

902

Index

Legacy systems (Cont.)
Manufacturing, 67, 74
Release planning and promotions, 66
Release Planning and Promotions, 80
Sales and Distribution, 66, 67, 76, 82
StoreData, 68, 75, 80, 97, 101, 153
Title Master, 65, 66, 80
VMI, 68, 75, 80, 110, 153

Links between SAP IDocs and EDI, 34
Link standard IDoc to custom function, 321
Logical message as abstraction of business

document, 210
Logical message type

ADRMAS Partner addresses, 104
BLAOCH Purchasing contract change, 345
BLAORD Purchasing contracts, 345
BOMMAT BOM master, 97, 103, 316
COND_A Pricing conditions, 94
CREADV Credit advice, 322
DEBADV Debit advice, 322
DEBMAS Customer master, 97, 104
DESADV Outbound delivery/ASN, 97, 106,

111, 277, 578, 595, 607–637, 643,
832

INVOIC Customer invoice, 107, 111, 147,
181, 182, 194, 277, 641–652, 659,
662–665, 674, 694, 700, 853, 861,
885, 887

INVOIC Supplier invoice, 110, 414–436
MATMAS Material master, 97, 103
MBGMCR Inventory posting, 97, 103, 110,

397–410
ORDCHG Change purchase order, 345
ORDERS Customer purchase order, 97, 98,

110, 146, 164–168, 225, 226, 244–277,
302, 308, 441–478, 778–784, 809, 812,
817, 824, 843, 848, 852, 871, 882

ORDERS Supplier purchase order, 103,
110, 150, 309, 321, 344, 350, 355–
375, 382, 383, 384, 388, 390

ORDRSP PO confirmation, 99, 103, 111,
155, 159, 274–277, 281, 287, 292–299,
300, 304–308, 368–392, 482–489, 498,
500, 506, 510, 521, 522, 529, 534, 538

REMADV Payment advice, 109, 111, 322,
703–736, 817, 824, 835

Logical message type (Cont.)
REQOTE Request quotation, 345
SHPCON Ship confirm, 106, 111, 576,

578–590, 605, 609, 620, 636, 817,
824, 832, 849, 853

SHPMNT Outbound shipment, 595, 600
SHPORD Ship order, 105, 111, 549–570,

605, 610, 615
STATUS IDoc status in EDI system, 171,

177, 180, 184, 271, 382, 412, 772
SYPART Partner profiles, 248, 762, 763
WMMBXY Stock movements from external

systems, 397, 405
ZINVRPT Custom invoice report, 326, 331,

332, 339, 340
ZREQTS Custom requirements feed, 101

Logistics invoice verification, 413, 416, 417,
421–426, 437, 438

Logistics invoice verification configuration,
421–426, 437

M

Mapping specs
ASN, 627–632
Customer invoice, 694–696
Customer PO, 457–465
Goods receipt/goods issue, 408–409
Payment advice, 725–731
PO confirmation, 534–537
Ship confirm, 590–593
Ship order, 568–570
Supplier invoice, 431–434
Supplier PO, 385–388

Mapping structures, overview, 83–86
Master data

Bill of materials, 82, 87, 93
Customer material info record, 87, 92
Customers, 82, 87
Finished goods, 82
Finished goods attributes, 82
GL accounts, 88
Materials, 87, 90, 92
Pricing conditions, 87, 93, 94
Raw materials, 82

903

Index

Master data (Cont.)
Ship-to customer, 89, 90
Sold-to customer, 88
Suppliers, 82, 87, 90

MDN (message disposition notification), 72,
73, 124, 163–171, 192, 195, 624, 842, 874,
881

Message control
Access sequence, 280–302
Application, 276, 279, 288, 302
Condition records, 280, 286
Key fields, 278, 288, 289, 659
Output types, 277–284, 302
Procedures, 283, 284, 302
Requirements, 284, 286

Message control configuration
Supplier purchase order, 374–377

Message control configuration, condition
records
Shipping, 654

Message control, create custom, 278–292,
355, 356, 357, 358

Message control, overview, 276, 277
Message type ORDERS as customer and

supplier order, 211
Modifications and enhancements

MM06E001 EDI exits for purchasing, 344–
353

SDEDI001 EDI exits for SD, 341
SIDOC001 Control record edits, 262, 267,

299, 305, 319, 345, 740, 741, 747
VEDA0001 Incoming SD orders, 442, 472

Modifications projects
ZEDITPXR Control record edits, 741, 742,

746, 747
Multi-pack, Sales BOM explosion, 552
Multiple message types to one basic type, 224

O

Order-to-cash cycle, 75, 76, 78, 153
Interfaces, 110, 111

Outbound processing requirements
ORDRSP PO confirm, 274, 300

Output determination structure
KOMKBEA Purchase header, 375, 378

Output determination structure (Cont.)
KOMKBV1 Header application V1, 286,

287, 288, 290, 302
KOMKBV2 Header application shipping, 621
KOMKBV3 Header application billing, 653,

654, 658
Output types, 277
Outsourced production, 70

P

Partner number conversion
External to SAP, 253–257

Partner profile, 86
Partner profile configuration

Inbound customer payment, 734, 735
Inbound customer purchase order, 478, 479
Inbound goods receipt/goods issue, 410,

411
Inbound PO confirmation, 392
Inbound ship confirmation, 601, 602
Inbound supplier invoice, 436, 437
Outbound ASN, 634–636
Outbound customer invoice, 698–700
Outbound PO confirmation, 539–543
Outbound ship order, 571–573
Outbound supplier PO, 390, 391

Partner profile custom load program logic,
754–762

Partner profiles, Inbound
Key values, 247
Parameters, 249–252, 340, 341

Partner profiles, Message control
Parameters, 294, 295, 300

Partner profiles, Outbound
Parameters, 294, 300

Partner profiles, Transporting, 248
Partner types, Standard, 245
Picking, 579
Plan Q from Outer Space, 40–42, 80, 111
Point of sales (POS), 37
Points of failure

Inbound technical, 844, 846
Outbound technical, 846, 847

POS (point of sales), 60, 95
Post Goods Issue (PGI), 576–584, 591, 838

904

Index

Posting inbound goods receipt/goods issue,
402–406

Posting inbound payment advice, 713–716
Posting inbound sales orders, 449–455
Posting inbound ship confirmation, 585–588
Posting inbound supplier invoice, 426, 427,

428, 429
Procedures, 283
Process code, Link to processing function,

250

R

Reconciliation process, X12 820 payment
advice, 712, 730, 731

Recovery, Data issues
Inbound, 881, 882, 883, 884, 885
Outbound, 885, 886, 887, 888

Recovery, Technical
Inbound, 874, 875, 877
Outbound, 878, 879, 880, 881

Resource Integration Manager, 80
RFC (remote function call), 47, 83, 156, 194,

300, 498
RFC registered program, 157, 158

RIM
Business process workflow, 83
EDI process flow inbound, 191–193
EDI process flow outbound, 193–195
Inbound services, 164–169
Message routing, 162–165
Outbound services, 155–164
Overview, 80–87
Reporting status to SAP, 171–189
Role in Acme architecture, 155–171
SAP IDoc adapter, 83, 156, 158, 168
System design philosophy, 190, 191
Trading partner management, 151–154
Trading partner managment, 151

S

Sales documents
Document flow, 562
Index tables, 453

SAP data feeds, 82
SAP EDI system testing

Integration, 822–835
Interface, 815–822
Strategy, 798–805
Stress, 835–839
String, 808–814
Unit, 805–808

SAP JCo classes, 169
SAP JCo functionality, 158
SAP JCo (Java Connector), 45, 83, 156, 169,

812, 814, 876, 877, 880
SAP JCo system files, 157, 158
SAP job scheduler, 47
SAP NetWeaver PI, 43
SDQ array, 468–471
SDQ mapping, 457–471
startRFC call parameters, 797
STATUS IDoc interface, 182–186, 220
STATUS IDoc interface, estimated data

volumes, 196
STATUS IDoc structure, 175, 177
STATUS IDoc translation map, 175–180
STATUS IDoc updates, 178

T

Tables, ABAP utilities
TADIR Directory of repository objects, 344
TFDIR Function modules, 381, 563
TOJTB Business object repository, 322

Tables, Business application
AVIK Payment advice header, 109, 710–

716
AVIP Payment line item details, 109, 710–

716
AVIR Payment subitem details, 109, 711
BKPF Accounting document header, 419,

620
BSEG Accounting document item details,

419, 421, 620
EKBE Purchase order history, 405
EKET PO delivery schedule lines, 373
EKKO Purchase order header, 372, 373,

379
EKPO Purchase order item, 373

905

Index

Tables, Business application (Cont.)
LIKP Delivery header, 554, 582, 583, 611,

621, 622, 647
LIPS Delivery item details, 555, 556, 582,

583, 612, 613, 622
MKPF Material documents header, 401
MSEG Material documents item details,

401
RBKP Invoice receipt header, 419, 420, 429
RSEG Invoice receipt item details, 419, 420,

429
T053E Reason code conversion, 729–733
T053R Reason codes, 733
T053S Reason code texts, 733
T076B Invoice company code, 731
T158G BAPI goods movement codes, 104
VAKPA Sales doc index, 474
VAKPA Sales orders by sold-to partner,

454
VAPMA Sales orders by material number,

454
VBAK Sales order header, 272, 304, 446–

453, 474, 486, 487, 514, 622, 647
VBAP Sales order item, 260, 261, 272,

304, 446, 447, 453, 474, 475, 486,
487, 514, 622, 648

VBEP Delivery schedule lines, 304
VBFA Sales document flow, 550, 579, 581,

582, 583, 584, 620, 622
VBKD Sales doc business data, 304, 486,

556, 583, 612, 622
VBPA Sales doc partner data, 304, 446,

447, 453, 474, 476, 486, 555, 582,
612, 622, 623, 647

VBRK Billing header, 646, 659, 669
VBRP Billing item details, 647, 669
VBUK Sales doc status header, 582, 583,

622, 658
VBUP Sales doc status item, 582
VEKP Handling units header, 612, 622
VEPO Handling units items, 613, 622
VKDFS Billing index, 657
VLKPA Deliveries by ship-to partner, 454
VLPMA Deliveries by material number, 454
VRKPA Billing docs by payer partner, 454
VRPMA Billing docs by material number,

454

Tables, Custom development
ZEDINVRPT EDI inventory report, 326,

327, 328, 336
ZEDIXREF EDI partner mapping, 253,

255, 262–265, 267, 274, 296–308, 383,
388, 389, 399, 407–410, 418, 431,
436, 445, 456, 477, 478, 500, 538,
539, 565, 570, 589, 600, 626, 632,
634, 664, 697, 718, 733, 734, 741,
743, 744, 746, 748

Tables, Data dictionary objects
DD01L Domains, 232, 310
DD01T Domain descriptions, 232, 310
DD02L Tables, 233, 310
DD02T Table descriptions, 233, 310
DD03L Table fields, 85, 233
DD03T Table field descriptions, 85, 233
DD04L Data elements, 85, 232, 310
DD04T Data element descriptions, 85, 232,

310
DD07L Domain values, 85, 232
DD07T Domain value descriptions, 85, 232

Tables, EDI reference data
EDPAR SAP-external partner mapping,

253–265, 272, 274, 296, 297, 298,
308, 445, 476, 538, 645, 660, 661,
697

EDSDC Sales organization by vendor, 253–
258, 265, 273, 445

PUMA SAP-external partner mapping, 610,
623, 626, 630, 632, 634

Tables, Enhancements
EDIFCT Link function to IDoc, 322
MODACT Modification projects, 320
MODSAP Enhancements, 320, 347
MODSAPT Enhancement descriptions, 320
MODTEXT Modification project

descriptions, 320
Tables, IDoc configuration

EDE1T Outbound process code description,
324

EDE2T Inbound process codes, 323
EDIPOD File port definitions, 238, 241
EDIPORT Port types for IDoc processing,

266
EDIPOX XML file port definitions, 238,

241, 307

906

Index

Tables, IDoc configuration (Cont.)
EDP12 Partner profile outbound message

control, 278, 304, 316, 355, 359, 750,
751, 752, 753, 754, 756, 763

EDP13 Partner profile outbound, 278, 293,
315, 355, 750, 751, 753, 754, 756, 763

EDP21 Partner profile inbound, 247, 250,
270, 316, 750–756, 763

EDPAR SAP-external partner mapping, 48
EDPP1 Partner profile header, 247, 315,

750, 756, 758
RFCDES RFC destinations, 238
T000 SAP Clients, 237
TBDLS Logical system, 237
TBDLST Logical system texts, 237
TEDE1 Function link to outbound process

code, 324
TEDE2 Function link to inbound process

code, 323
TMSG1 Message link to outbound process

code, 324
TMSG2 Message link to inbound process

code, 323
TPAR Business partners, 253, 255

Tables, IDoc database
EDID4 Data record, 217, 219, 225, 514,

529, 669, 852, 861
EDIDC Control record, 217, 218, 225, 306,

514, 519, 669, 671, 674, 675, 852,
861, 867

EDIDD Data record structure, 270, 659,
671, 675, 677

EDIDS Status record, 217, 220, 225, 514,
669, 674, 675, 852, 862

Tables, IDoc processing
EDFI2 Last IDoc read from file, 266, 268,

873
EDIQO IDoc outbound RFC queue, 307
EDK21 Control record key structure, 267
T158G Goods movement codes, 404, 405,

408
TBD51 IDoc function attributes, 271
TBD52 Inbound IDoc function modules,

271
Tables, IDoc structure

CIMSYN IDoc extensions syntax description,
85

Tables, IDoc structure (Cont.)
EDBAS IDoc basic types, 234
EDCIM IDoc extended types, 234
EDIMSG IDoc message basic type link, 85
EDIMSGT IDoc message basic type link text,

234
EDISDEF Segment definitions, 233
EDISEGMENT IDoc segments, 85, 233
EDMSG Logical message type, 234
EDSAPPL Segment application structure,

233
IDOCSYN IDoc syntax, 234
IDOCSYN IDoc syntax description, 84, 224,

313
Tables, Master data

KNA1 Customer main, 89, 753
KNB1 Customer company code, 89
KNKA Customer credit management, 89
KNMT CMIR mapping table, 92, 253, 259,

260, 261, 274, 445, 454
KNMTK CMIR header, 92, 259
KNVP Customer partner functions, 48, 89
KNVV Customer sales area, 89, 298
KONKH Pricing conditions header, 94
KONKP Pricing conditions details, 94
LFA1 Vendor main, 90, 612, 623, 753
LFB1 Vendor company code, 90
LFM1 Vendor purchasing organization,

90
MARA Materials main, 91, 97
MARC Materials plant data, 91
MARD Materials storage location, 92
MARM Materials units of measure, 91
MAST BOM to material link, 93
MBEW Materials valuation area, 91
MVKE Materials sales data, 91
STAS BOM header to item link, 93
STKO BOM header, 93
STPO BOM item level raw material details,

93
T001 Company codes, 732

Tables, Message control
B000 Output control template, 288
B001 Output by sales org/customer, 288,

290, 302, 303, 616, 620, 621
B006 Output for billing, 653, 658, 659
B021 Delivery type/shipping pt, 558, 562

907

Index

Tables, Message control (Cont.)
B025 Purchasing output, 375, 377, 379
B150 Output by doc type/sales org/

customer, 491, 494, 497, 509
NACH Detailed output data, 289, 292,

621, 659
NAST IDoc output status, 303, 304, 379,

380, 381, 496, 498, 562, 563, 620,
622, 623, 658, 659, 792

T681 Conditions structures, 379
T681Z Conditions dependent data, 379
T682I Conditions access sequence, 302
TEDE1 EDI process types outbound, 304, 381
TNAPR Output processing programs, 303,

380, 563
Technical specs

ASN, 626, 627
Customer invoice, 663–694
Customer PO, 455, 456
Goods receipt/goods issue, 406, 407
Payment advice, 717, 718, 719, 720, 721,

722, 723, 724
PO confirmation, 499–533
Ship confirm, 588, 589
Ship order, 565, 566
Supplier PO, 382, 383, 384

Title, definition, 53, 65
Transaction codes, ABAP Data Dictionary

SE11 ABAP Dictionary, 215, 219, 222,
232, 233, 310, 325, 327, 667, 742

SE16 Data browser, 310, 344, 347, 377,
494

Transaction codes, ABAP utilities
CMOD Enhancement projects, 320, 341,

342, 350, 472, 747
SARA Archive and delete, 199, 203
SBWP SAP Business Workplace, 205
SCAT CATT test tool, 836
SE37 Function builder, 84
SE37 Function editor, 266, 313, 315, 316,

317, 318, 319, 325, 343, 345, 347, 743
SE38 ABAP Editor, 513, 756, 767
SE41 Menu painter, 684, 686
SE51 Screen painter, 680
SE80 Repository Info Center, 266, 380,

472, 513, 532, 668, 680, 684, 742,
743, 756, 767

Transaction codes, ABAP utilities (Cont.)
SE93 Maintain transaction code, 532, 724,

762, 771
SM30 Maintain tables, 741–744
SM36 SAP Job scheduler, 47, 383, 431,

500, 565, 586, 715, 718
SM37 View scheduled jobs, 202, 270, 589
SMOD Enhancements, 267
SU01 User maintenance, 236
WE60 IDoc documentation, 83

Transaction codes, Business application
F-28 Clearing, 109, 706, 707, 716, 735
FBE1 Create payment advice, 109, 705,

706, 707, 709, 716
FBE3 Display payment advice, 711
MB1A Goods issue, 397, 398, 400, 404,

405, 408
MB1B Transfer posting, 404
MB1C Goods receipt other, 404
MB01 Goods receipt for PO, 103, 397, 400,

404, 405, 408, 427
MB03 Display material document, 397,

400, 832
MB04 Subsequent adjustment, 404
MB11 Goods movement, 404
MB31 Goods receipt for order, 404
ME21N Create purchase order, 103, 110,

370, 378, 380
ME28 Release purchase orders, 370
ME29N Release individual PO, 370, 372,

378
ME51N Create purchase requisition, 370
ME54N Release purchase requisition, 370
ME58 Release purchase orders, 370
ME59N Release individual PO, 370
MIGO Goods movements, 405
MIR4 Display invoice, 421
MIRO Post incoming invoice, 415, 416,

419, 425
VA01 Create sales order, 257, 273, 302,

442, 446, 455, 482, 486, 496, 838
VA02 Change sales order, 551
VF01 Create billing, 641, 658, 813
VF02 Change billing, 813
VF04 Billing due list, 106, 641, 656, 834,

838
VF31 Output from billing, 645, 813, 887

908

Index

Transaction codes, Business application
(Cont.)
VL01 Create outbound delivery legacy,

562
VL01N Create outbound delivery, 549, 550,

551
VL02N Change outbound delivery, 106,

577, 581, 607, 838
VL03N Display outbound delivery, 556,

614
VL10 Delivery due list, 105, 549, 550,

551, 561, 562, 838
Transaction codes, Custom

ZEDIPP Load partner profiles, 762
ZEDIXFR IDoc ALE transfer program, 764,

771
ZSPLIT Payment split program, 711, 716,

724
Transaction codes, Custom programs

ZEDINV INVOIC IDoc edit program, 641,
648, 667, 693

ZSDQ Build SDQ ORDRSP, 488, 532,
533

Transaction codes, IDoc configuration
BD54 Logical system, 236
OBCA Company code mapping, 731, 732
SALE ALE IMG, 235, 773
SM59 RFC destination, 194, 238, 880
VNPU PUMA entries, 633, 634
VOE2 EDSDC entries, 259, 477, 883
VOE4 EDPAR entries, 48, 256, 476, 477,

538, 697
WE20 Partner profile, 88, 90, 248, 249,

294, 315, 325, 340, 343, 361, 390,
410, 436, 478, 539, 571, 601, 615,
634, 651, 698, 734, 749, 762, 775

WE21 Maintain ports, 239
WE44 Partner types, 245
WE47 Maintain status codes, 197, 222
WEDI EDI area menu, 309, 312, 313, 321,

322, 323, 360, 435, 494, 501, 503,
506, 507

Transaction codes, IDoc development
BD51 IDoc attributes, 322, 325, 337
SMOD Enhancements, 319, 320, 342, 343,

344

Transaction codes, IDoc development
(Cont.)
WE30 IDoc basic type editor, 234, 312,

313, 325, 329, 342, 348, 503
WE31 IDoc segment editor, 101, 233, 311,

312, 325, 328, 342, 348, 501
WE32 Maintain view, 507
WE41 Outbound process codes, 323–325,

360, 494
WE42 Inbound process codes, 322, 323,

325, 338, 435
WE57 Link function to IDoc, 321, 322,

325
WE81 Maintain logical message types, 234,

313, 325, 331
WE82 Link message to basic type, 313,

325, 331, 342, 350, 506
Transaction codes, IDoc test tools

WE12 Turnaround utility, 795
WE15 Output from message control, 887
WE19 Main IDoc test tool, 223

Transaction codes, IDoc utilities
BD87 Status monitor for messages, 374,

401, 447, 448, 489, 557, 583, 627,
650, 693, 712, 796, 814

BDBG Generate IDoc for BAPI, 101
BDM8 Send ALEAUD IDoc confirmation,

772–777
SWWH Delete work item history, 204, 206
SWWL Mass delete work items, 204, 205,

206, 207
WE05 IDoc list, 374, 401, 447, 448, 489,

557, 583, 650, 664, 665, 693, 712, 796
WE09 IDoc search by field contents, 204,

627, 665
WE10 IDoc search by field contents, 204
WE14 Output batched IDocs, 306, 832
WE60 IDoc basic type documentation, 212,

229, 779
Transaction codes, Master data

CS01 Create BOM, 93
MM01 Create material, 91
VD51 Create customer material info record,

92, 261, 850
VD52 Change customer material info

record, 92, 261

909

Index

Transaction codes, Master data (Cont.)
VD53 Display customer material info

record, 261
XD01 Create customer, 89
XD02 Change customer, 90
XK01 Create vendor, 90

Transaction codes, Message control
MN04 Condition records for PO output,

376
NACE Conditions for output control, 279–

290, 375, 376, 490, 492, 493, 558,
559, 560, 616, 617, 618, 650, 652, 653

V/27 Maintain requirements, 286
VV11 Condition records for sales, 290, 493
VV21 Condition records for shipping, 560,

562, 618, 621
VV23 Condition records shipping, 614
VV31 Condition records for billing, 654
VV33 Display billing condition records, 651

Transaction codes, System
SPRO IMG configuration, 286, 421, 732

Trouble shooting and recovery
Defining failure, 844, 845, 846, 848, 849,

850
Defining success, 842, 843, 844
Functional and business issues, 881–888
Technical issues, 874–881

U

UN/CEFACT, 121
United States Census Bureau EDI statistics,

116
UPC (Universal product code), 61, 65, 91, 259
User exits, 98

V

VMI, 42, 55–63
Data feeds, 58, 68

VMI as relationship of trust, 154, 155
VMI data

Inventory, 58, 153
POS (point of sale), 101, 153

VMI data (Cont.)
POS (point of sale) data, 58
Reserved PO numbers, 58, 61, 153

VMI orders, 58, 95, 96, 98, 99, 444, 446,
450, 451, 452

W

Workflow, 43

X

X12
Anatomy, 128–145

X12 820 split large payment, 714–724
X12 820 structure issues in split, 720–724
X12 850 PO, deconstructed, 134–145
X12 856, HL hierarchy, 594, 595, 596, 597,

599
X12 997-STATUS interface, 173, 186, 187,

188, 189, 195
X12 envelopes

GS functional group, 129, 133, 146, 147
ISA interchange, 132, 146, 148
ST transaction set, 129, 133, 134, 146, 147

X12 grammar, 130, 131, 132
X12 industry subcommittees, 119
X12 ST envelope, Link to translation map,

159, 194
X12 transaction sets

810 Customer invoice, 78, 107, 111, 147,
181–194, 640–650, 703, 717, 809, 813,
815, 816, 819, 824, 835, 843, 849,
885, 887

810 Supplier invoice, 75, 104, 110, 415–436
812 Debit/credit memo, 78, 704–708,

716–721
816 Organizational relationships, 104
820 Payment advice, 47, 78, 108, 111,

703–717, 725, 731, 735, 835
824 Error report, 106, 607, 611, 614,

625, 627, 637, 639, 642, 655, 849, 850
830 Ship order, 105, 111, 548–567, 586,

602, 605, 610, 816, 823, 829

910

Index

X12 transaction sets (Cont.)
832 Price/sales catalog, 103
846 Inventory report, 309, 324, 325, 326
850 Customer purchase order, 71, 98, 128,

146, 164, 166, 168, 192, 254–264,
426, 441, 445, 448–469, 483, 484,
489, 519, 552, 809, 811, 818, 828,
842, 843, 848, 881

850 Supplier purchase order, 73, 103, 110,
150, 309, 362, 369–374, 382, 383,
388, 389, 391, 887

852 Point of sales/on-hand inventory, 61,
63, 75, 96, 101, 110, 153, 155, 441–
457, 477

855 PO confirmation, 73, 77, 103, 111,
155, 159, 161, 296, 369, 370, 371,
374, 382–389, 426, 457, 481, 483,
485, 489, 499, 500, 509, 510, 534–
538, 553, 561

856 Advanced ship notification, 77, 78,
106, 111, 607–627, 637, 642, 643,
655, 816, 824, 832, 849

856 Shipping confirmation, 106, 111,
576–599, 832

864 Error report, 106, 108, 641, 643,
646, 663, 664, 849, 850, 887

864 Text report, 650, 703
864 Text report as error report, 78

X12 transaction sets (Cont.)
867 Goods receipt/inventory adjustment,

74, 397–410, 427
888 Item maintenance, 103
940 Warehouse ship order, 77
944 Warehouse stock transfer, 74, 103,

110
997 Functional acknowledgment, 72, 73,

78, 87, 107, 153, 161–195, 369, 382,
383, 415, 430, 431, 443, 455, 456,
483, 499, 500, 549, 553, 561, 564,
566, 577, 586, 588, 589, 607, 624–
626, 639, 641, 650, 655, 663, 664,
703, 705, 714, 717, 817, 821, 829,
832, 842, 843, 844

XML IDocs, 226, 227, 228, 229, 230
Advantages, 212

XML runtime processing data, 83
XML schema, 160
XML Schema Definition (XSD), 228
XPath, 42, 43, 160, 170
XSD schema

Adding enumerators, 781, 782, 783, 784
As XML metadata dictionary, 782
Enumerators, 778
Getting from SAP, 779, 780
IDoc, 83, 228, 229, 778
Using enumerators in IDoc, 784, 785

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do
recommend it, for example, by writing a review on http://www.sap-press.com. If you
think there is room for improvement, please get in touch with the editor of the book:
emily.nicholls@galileo-press.com. We welcome every suggestion for improvement
but, of course, also any praise!

You can also navigate to our web catalog page for this book to submit feedback or
share your reading experience via Facebook, Google+, Twitter, email, or by writing
a book review. Simply follow this link: http://www.sap-press.com/H3308.

Supplements

Supplements (sample code, exercise materials, lists, and so on) are provided in your
online library and on the web catalog page for this book. You can directly navigate
to this page using the following link: http://www.sap-press.com/H3308. Should we
learn about typos that alter the meaning or content errors, we will provide a list
with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP PRESS,
please feel free to contact our reader service: customer@sap-press.com.

i

ii

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand information
on our current publishing program. Here, you can also easily order all of our books
and e-books. For information on Galileo Press Inc. and for additional contact options
please refer to our company website: http://www.galileo-press.com.

iii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation
rights are reserved by the author and Galileo Press; in particular the right of repro-
duction and the right of distribution, be it in printed or electronic form.

© 2014 by Galileo Press Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you
may print the e-book for personal use or copy it as long as you store this copy on
a device that is solely and personally used by yourself. You are not entitled to any
other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third
parties. Furthermore, it is not permitted to distribute the e-book on the Internet,
in intranets, or in any other way or make it available to third parties. Any public
exhibition, other publication, or any reproduction of the e-book beyond personal
use are expressly prohibited. The aforementioned does not only apply to the e-book
in its entirety but also to parts thereof (e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark
may not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy. If you, dear reader, are not this person, you are violating
the copyright. So please refrain from using this e-book and inform us about this
violation. A brief email to customer@sap-press.com is sufficient. Thank you!

iv

Trademarks

The common names, trade names, descriptions of goods, and so on used in this
publication may be trademarks without special identification and subject to legal
regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo,
mySAP, mySAP.com, SAP Business Suite, SAP NetWeaver, SAP R/3, SAP R/2, SAP
B2B, SAPtronic, SAPscript, SAP BW, SAP CRM, SAP EarlyWatch, SAP ArchiveLink,
SAP HANA, SAP GUI, SAP Business Workflow, SAP Business Engineer, SAP Business
Navigator, SAP Business Framework, SAP Business Information Warehouse, SAP
interenterprise solutions, SAP APO, AcceleratedSAP, InterSAP, SAPoffice, SAPfind,
SAPfile, SAPtime, SAPmail, SAP-access, SAP-EDI, R/3 Retail, Accelerated HR, Acceler-
ated HiTech, Accelerated Consumer Products, ABAP, ABAP/4, ALE/WEB, Alloy, BAPI,
Business Framework, BW Explorer, Duet, Enjoy-SAP, mySAP.com e-business platform,
mySAP Enterprise Portals, RIVA, SAPPHIRE, TeamSAP, Webflow, and SAP PRESS are
registered or unregistered trademarks of SAP AG, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs,
neither the publisher nor the author, editor, or translator assume any legal respon-
sibility or any liability for possible errors and their consequences.

	Prologue
	ACT I Hollywood, DVDs, and the After-Life of Movies
	1 Hollywood’s B-Movie Queen Does SAP and EDI
	1.1 SAP and EDI: Getting to Know Each Other
	1.2 A Brief History of Fame: Our Imaginary Dream Factory
	1.2.1 A Bird’s-Eye View of the Business
	1.2.2 Enter Plan Q: A New Project Is Born
	1.2.3 We Define Our Scope

	1.3 Defining Some Basic Ground Rules
	1.3.1 The Technical Environment
	1.3.2 The EDI System
	1.3.3 Nothing but IDocs
	1.3.4 Batch Processing of Large Files
	1.3.5 XML File Ports
	1.3.6 Partner Profiles
	1.3.7 EDI Mapping Strategy

	1.4 Summary

	2 The Blueprint: Discovery and Documentation
	2.1 A Business Process Overview
	2.1.1 The As-Is Purchasing Process Flow
	2.1.2 The As-Is Sales and Distribution Processing Flow
	2.1.3 Selling the Dream with Vendor Management Inventory

	2.2 Legacy Systems, Data Flows, and Interfaces
	2.2.1 Title Master and DVD Repository
	2.2.2 Release Planning and Promotions Systems
	2.2.3 Legacy SD
	2.2.4 Manufacturing
	2.2.5 Finance
	2.2.6 VMI and StoreData
	2.2.7 EDI

	2.3 Legacy EDI Data Flows
	2.3.1 Replicating Success: Outsourcing Production
	2.3.2 Order-to-Cash and Legacy EDI

	2.4 Summary

	3 Designing the New SAP EDI Architecture
	3.1 The To-Be Systems and Interfaces Emerge
	3.1.1 The Resource Integration Manager
	3.1.2 Let’s Get Technical: A More Intimate Look at the RIM

	3.2 Laying the Foundations for EDI: Master Data
	3.2.1 A Brief Word on Conversion Strategy
	3.2.2 General Ledger Chart of Accounts and Cost Centers
	3.2.3 Customer Master Sold-To
	3.2.4 Customer Master Ship-To
	3.2.5 Vendor Master
	3.2.6 Material Master
	3.2.7 Customer Material Info Records
	3.2.8 Bill of Materials
	3.2.9 Pricing Conditions

	3.3 The Typical Lifecycle of an Order from Gordy
	3.3.1 VMI Sales Orders
	3.3.2 Catalog Planning
	3.3.3 Purchasing/Manufacturing
	3.3.4 Delivery
	3.3.5 Billing
	3.3.6 Payment

	3.4 Interfaces in the Order-to-Cash Cycle
	3.5 Considering the Project Plan
	3.6 Summary

	ACT II Taming Chaos with Standards—EDI in an SAP Environment
	4 EDI: The Ugly Stepsister of E-Commerce
	4.1 A Brief History of e-Commerce
	4.1.1 A Flowery Beginning for e-Commerce
	4.1.2 The Berlin Airlift, the Supply Chain, and Transportation
	4.1.3 The Birth of ASC X12
	4.1.4 Global Trade and E-Commerce: UN/EDIFACT
	4.1.5 Other EDI Standards
	4.1.6 Communications, VANs, and the Internet

	4.2 The Anatomy of an EDIFACT Interchange
	4.3 The Anatomy of an X12 Interchange
	4.3.1 Syntax and Semantics: X12 as Language
	4.3.2 The Envelope Segments
	4.3.3 Dissecting Gordy’s 850 to Acme

	4.4 Enveloping and De-enveloping: The X12 in Action
	4.4.1 Unwrapping an Inbound EDI Interchange
	4.4.2 Building an Outbound EDI Interchange

	4.5 Summary

	5 Real-World Business Process Integration with EDI
	5.1 The Basic EDI Interface
	5.2 Trading Partner Management
	5.3 The Impact of VMI Collaboration through EDI
	5.4 The Role of Acme’s EDI RIM
	5.4.1 Outbound Services
	5.4.2 Inbound Services
	5.4.3 Archiving EDI Data

	5.5 Reporting EDI Status to SAP
	5.5.1 SAP Status Codes
	5.5.2 Creating Custom Messages
	5.5.3 Mapping the STATUS IDoc
	5.5.4 So How Do We Get the Enveloping Data?
	5.5.5 The Status Interface Business Process Workflow
	5.5.6 The 997 Functional Acknowledgment Interface

	5.6 Putting All the Pieces Together
	5.6.1 Inbound
	5.6.2 Outbound

	5.7 Archiving and Deleting IDocs in SAP
	5.7.1 Archive and Delete
	5.7.2 Deleting IDoc Generated Work Items

	5.8 Summary

	6 EDI Architecture in SAP: IDoc Basics
	6.1 Intelligent Messages: The Anatomy of an IDoc
	6.1.1 Logical Message Type
	6.1.2 IDoc Record Types: External Representation
	6.1.3 IDoc Record Types: Internal Representation
	6.1.4 IDoc Basic Type
	6.1.5 IDoc Extended Type
	6.1.6 IDoc Instance
	6.1.7 IDoc File
	6.1.8 XML IDocs

	6.2 IDoc Architecture and the Data Dictionary
	6.2.1 Domains
	6.2.2 Data Elements
	6.2.3 Fields
	6.2.4 Segments
	6.2.5 IDoc Basic and Extended Types

	6.3 One-Time EDI Configuration for IDocs in SAP
	6.3.1 EDI User Name
	6.3.2 Logical System
	6.3.3 Connecting Systems to SAP
	6.3.4 XML File Port

	6.4 Summary

	7 Configuring IDocs in SAP for EDI Exchange
	7.1 Inbound Configuration is About Posting IDocs
	7.1.1 Key Values for Inbound IDoc Posting
	7.1.2 Partner Type
	7.1.3 Inbound Partner Profile for an ORDERS PO
	7.1.4 Inbound EDI Reference Data
	7.1.5 Tying It All Together: The SAP EDI Inbound Processing Flow

	7.2 Outbound Configuration Generates IDocs
	7.2.1 Message Control
	7.2.2 Create an Output Type
	7.2.3 Assign Output Type to a Procedure
	7.2.4 Condition Records
	7.2.5 The Outbound Partner Profile with Message Control
	7.2.6 EDI Outbound Reference Data
	7.2.7 The SAP EDI Outbound Process Flow

	7.3 Summary

	8 Custom IDocs and IDoc Extensions
	8.1 IDoc Development and Configuration Tools
	8.1.1 Transaction SE11—Data Dictionary
	8.1.2 Transaction WE31—Segment Editor
	8.1.3 Transaction WE30—IDoc Type Editor
	8.1.4 Transaction WE81—Logical Messages
	8.1.5 Transaction WE82—Message to Basic Type Link
	8.1.6 Transaction SE37—Function Editor: Function Groups
	8.1.7 Transaction SE37—Function Editor: Function Modules
	8.1.8 Transaction SMOD—SAP Enhancements
	8.1.9 Transaction CMOD—Project Management for SAP Enhancements
	8.1.10 Transaction WE57—Link Function to Message and Basic Type
	8.1.11 Transaction BD51—Define IDoc Attributes
	8.1.12 Transaction WE42—Inbound Process Code
	8.1.13 Transaction WE41—Outbound Process Code

	8.2 Building a Custom IDoc: Inbound Inventory Report
	8.2.1 Custom IDoc Development Workflow
	8.2.2 Building the IDoc Interface

	8.3 Extending an IDoc: Outbound PO with BOMs
	8.3.1 IDoc Outbound Development Workflow
	8.3.2 Create Segment Z1EDP01
	8.3.3 Build Extension ZORDRS01
	8.3.4 Link Message to Basic and Extended Types
	8.3.5 Create the Modification Project
	8.3.6 Coding the Exit
	8.3.7 Customize Message Control
	8.3.8 Build Outbound Partner Profile

	8.4 Summary

	ACT III Realizing the Dream—Building Acme’s SAP EDI System
	9 Generating the PO for Replication Services
	9.1 Technical Overview of the Interface
	9.2 Functional Specifications
	9.2.1 Process Overview
	9.2.2 Requirements
	9.2.3 Dependencies
	9.2.4 Assumptions
	9.2.5 Data That Will be Passed to an Outbound Purchase Order
	9.2.6 Custom Enhancements
	9.2.7 Reconciliation Procedure
	9.2.8 Errors and Error Handling

	9.3 Generating the ORDERS PO with Message Control
	9.3.1 Message Control Configuration for the ORDERS Message
	9.3.2 Overview of the End-to-End Process Flow

	9.4 Technical Specifications
	9.4.1 Technical Requirements
	9.4.2 Dependencies
	9.4.3 Assumptions

	9.5 Mapping Specifications
	9.6 EDI Configuration in SAP
	9.6.1 EDPAR Entries: Transaction VOE4
	9.6.2 ZEDIXREF Entries
	9.6.3 Partner Profiles: Transaction WE20

	9.7 Summary

	10 The Inbound Goods Receipt
	10.1 Technical Overview of Interface
	10.2 Functional Specifications
	10.2.1 Process Overview
	10.2.2 Requirements
	10.2.3 Dependencies
	10.2.4 Assumptions
	10.2.5 Data That Will Post to a Material Document
	10.2.6 Reconciliation Procedure
	10.2.7 Enhancements to the Process
	10.2.8 Errors and Error Handling

	10.3 End-to-End Process Flow
	10.4 Technical Specifications
	10.4.1 Technical Requirements
	10.4.2 Dependencies
	10.4.3 Assumptions

	10.5 Mapping Specifications
	10.6 EDI Configuration in SAP
	10.6.1 EDPAR Entries: Transaction VOE4
	10.6.2 ZEDIXREF Entries
	10.6.3 Partner Profile: Transaction WE20

	10.7 Summary

	11 Processing the Incoming Supplier Invoice
	11.1 Technical Overview of Interface
	11.2 Functional Specifications
	11.2.1 Process Overview
	11.2.2 Requirements
	11.2.3 Dependencies
	11.2.4 Assumptions
	11.2.5 Data That Will Post to an Inbound Supplier Invoice
	11.2.6 Reconciliation Procedure
	11.2.7 Configuring Logistics Invoice Verification
	11.2.8 Enhancements to the Process
	11.2.9 Errors and Error Handling

	11.3 End-to-End Process Flow
	11.4 Technical Specifications
	11.4.1 Enhancements to the Process
	11.4.2 Technical Requirements
	11.4.3 Dependencies
	11.4.4 Assumptions

	11.5 Mapping Specifications
	11.6 EDI Configuration in SAP
	11.6.1 Extending Process Code INVL
	11.6.2 EDPAR Entries: Transaction VOE4
	11.6.3 ZEDIXREF Entries
	11.6.4 Partner Profile: Transaction WE20

	11.7 Summary

	12 The Inbound Customer Purchase Order
	12.1 Technical Overview of Interface
	12.2 Functional Specifications
	12.2.1 Process Overview
	12.2.2 Requirements
	12.2.3 Dependencies
	12.2.4 Assumptions
	12.2.5 Data That Will Post to an Inbound Sales Order
	12.2.6 Reconciliation Procedure
	12.2.7 Enhancements to the Process
	12.2.8 Errors and Error Handling

	12.3 End-to-End Process Flow
	12.3.1 VMI Processing
	12.3.2 EDI 850 Processing
	12.3.3 VMI and EDI Processes Merge

	12.4 Technical Specifications
	12.4.1 Technical Requirements
	12.4.2 Dependencies
	12.4.3 Assumptions

	12.5 Mapping Specifications
	12.5.1 Structure of the 850 to IDoc Build Array
	12.5.2 Mapping the Build Array to the Target IDoc

	12.6 SDQ Processing Program Logic
	12.7 Duplicate Checking Enhancement
	12.7.1 Create Error Message
	12.7.2 Create Modification Project
	12.7.3 Program Flow

	12.8 EDI Configuration in SAP
	12.8.1 EDPAR Entries: Transaction VOE4
	12.8.2 EDSDC Entry: Transaction VOE2
	12.8.3 ZEDIXREF Entries
	12.8.4 Partner Profile: Transaction WE20

	12.9 Summary

	13 Building the Outbound Order Confirmation
	13.1 Technical Overview
	13.2 Functional Specifications
	13.2.1 Process Overview
	13.2.2 Requirements
	13.2.3 Dependencies
	13.2.4 Assumptions
	13.2.5 Data That Will Pass to an Outbound Order Confirmation
	13.2.6 Custom Enhancements
	13.2.7 Reconciliation Procedure
	13.2.8 Errors and Error Handling

	13.3 Generating the ORDRSP with Message Control
	13.3.1 Message Control Configuration for the ORDRSP
	13.3.2 Overview of the End-to-End Process Flow

	13.4 Technical Specifications
	13.4.1 Technical Requirements
	13.4.2 Dependencies
	13.4.3 Assumptions
	13.4.4 Extended IDoc Type ZORSDQ01
	13.4.5 Creating the Extended IDoc Type
	13.4.6 SDQ Bundling and IDoc Output Program

	13.5 Mapping Specifications
	13.6 EDI Configuration in SAP
	13.6.1 EDPAR Entries: Transaction VOE4
	13.6.2 ZEDIXREF Entries
	13.6.3 Partner Profiles: Transaction WE20

	13.7 Summary

	14 Sending a Shipping Order to the Supplier
	14.1 Technical Overview of Interface
	14.2 Functional Specifications
	14.2.1 Process Overview
	14.2.2 Requirements
	14.2.3 Dependencies
	14.2.4 Assumptions
	14.2.5 Data That Will Pass to an Outbound Ship Order
	14.2.6 Enhancements to the Process
	14.2.7 Reconciliation
	14.2.8 Errors and Error Handling

	14.3 Generating a SHPORD IDoc with Message Control
	14.3.1 Configuring Message Control
	14.3.2 Overview of the End-to-End Process Flow

	14.4 Technical Specifications
	14.4.1 Technical Requirements
	14.4.2 Dependencies
	14.4.3 Assumptions

	14.5 Mapping Specifications
	14.6 EDI Configuration in SAP
	14.6.1 EDPAR Entries: Transaction VOE4
	14.6.2 ZEDIXREF Entries
	14.6.3 Partner Profiles: Transaction WE20

	14.7 Summary

	15 The Inbound Shipping Confirmation
	15.1 Technical Overview of the Interface
	15.2 Functional Specifications
	15.2.1 Process Overview
	15.2.2 Requirements
	15.2.3 Dependencies
	15.2.4 Assumptions
	15.2.5 Delivery Document Data after Ship Confirm Update
	15.2.6 Enhancements to the Process
	15.2.7 Reconciliation
	15.2.8 Errors and Error Handling

	15.3 End-to-End Process Flow
	15.4 Technical Specifications
	15.4.1 Technical Requirements
	15.4.2 Dependencies
	15.4.3 Assumptions

	15.5 Mapping Specifications
	15.5.1 Hierarchical Structure of the 856
	15.5.2 The DELVRY03 IDoc

	15.6 EDI Configuration in SAP
	15.6.1 EDPAR Entries: Transaction VOE4
	15.6.2 ZEDIXREF Entries
	15.6.3 Partner Profiles: Transaction WE20

	15.7 Summary

	16 The Advanced Shipping Notice to the Customer
	16.1 Technical Overview of Interface
	16.2 Functional Specifications
	16.2.1 Process Overview
	16.2.2 Requirements
	16.2.3 Dependencies
	16.2.4 Assumptions
	16.2.5 Data That Pass to the IDoc from the Delivery
	16.2.6 Enhancements to the Process
	16.2.7 Reconciliation
	16.2.8 Errors and Error Handling

	16.3 Generating an ASN IDoc with Message Control
	16.3.1 Configuring Message Control
	16.3.2 Overview of the End-to-End Process Flow

	16.4 Technical Specifications
	16.4.1 Technical Requirements
	16.4.2 Dependencies
	16.4.3 Assumptions

	16.5 Mapping Specifications
	16.6 EDI Configuration in SAP
	16.6.1 EDPAR Entries
	16.6.2 PUMA Entries: Transaction VNPU
	16.6.3 ZEDIXREF Entries
	16.6.4 Partner Profiles: Transaction WE20

	16.7 Summary

	17 Generating the Outbound Customer Invoice
	17.1 Technical Overview of Interface
	17.2 Functional Specifications
	17.2.1 Process Overview
	17.2.2 Requirements
	17.2.3 Dependencies
	17.2.4 Assumptions
	17.2.5 Data That Pass to the IDoc from the Billing Document
	17.2.6 Enhancements to the Process
	17.2.7 Enhancement Details
	17.2.8 Reconciliation
	17.2.9 Errors and Error Handling

	17.3 Generating an INVOIC IDoc with Message Control
	17.3.1 Configuring Message Control
	17.3.2 Overview of the End-to-End Process Flow

	17.4 Technical Specifications
	17.4.1 Technical Requirements
	17.4.2 Dependencies
	17.4.3 Assumptions
	17.4.4 Purchase Order Number IDoc Edit Report

	17.5 Mapping Specifications
	17.6 EDI Configuration in SAP
	17.6.1 EDPAR Entries: Transaction VOE4
	17.6.2 ZEDIXREF Entries
	17.6.3 Outbound Partner Profile: Transaction WE20

	17.7 Summary

	18 Processing the Inbound Payment Advice
	18.1 Technical Overview of the Interface
	18.2 Functional Specifications
	18.2.1 Process Overview
	18.2.2 Requirements
	18.2.3 Dependencies
	18.2.4 Assumptions
	18.2.5 Payment Advice Note Data
	18.2.6 Enhancements to the Process
	18.2.7 Reconciliation
	18.2.8 Errors and Error Handling

	18.3 End-to-End Process Flow
	18.3.1 Following the 820 Flow
	18.3.2 An Intelligent Split
	18.3.3 Posting the Payment

	18.4 Technical Specifications
	18.4.1 Technical Requirements
	18.4.2 Dependencies
	18.4.3 Assumptions
	18.4.4 EDI Process to Split Very Large 820s
	18.4.5 User Transaction Code for the SAP Split Program

	18.5 Mapping Specifications
	18.6 EDI Configuration in SAP
	18.6.1 EDPAR Entries
	18.6.2 Company Code to Sold-to Party Transaction OCBA
	18.6.3 Reason Code Conversion
	18.6.4 ZEDIXREF Entries
	18.6.5 Inbound Partner Profile Transaction WE20

	18.7 Summary

	ACT IV Finishing Touches
	19 Extending the Interface: Custom IDoc Tools
	19.1 EDI to IDoc Trading Partner Conversion
	19.1.1 The Issue
	19.1.2 The Solution
	19.1.3 Development Work Flow
	19.1.4 Writing the Code

	19.2 Mass Upload of Partner Profiles to SAP
	19.2.1 The Issue
	19.2.2 The Solution
	19.2.3 Dependencies
	19.2.4 Coding ZEDI_UPLDPP
	19.2.5 Further Automating Partner Profile Processing

	19.3 Mass Transfer of IDocs between Systems
	19.3.1 The Issue
	19.3.2 The Solution
	19.3.3 Dependencies
	19.3.4 Program ZEDI_TRNSFIDOCS

	19.4 Sending IDoc Status to an External System
	19.4.1 The Issue
	19.4.2 The Solution
	19.4.3 Dependencies
	19.4.4 Defining the Distribution Model

	19.5 Adding Qualifiers to IDoc XML Schema
	19.5.1 The Issue
	19.5.2 The Solution
	19.5.3 Dependencies
	19.5.4 Extracting an XML Schema from SAP
	19.5.5 Creating the IDoc Enumerators
	19.5.6 Using the Enumerator in an IDoc

	19.6 Summary

	20 Testing the EDI System in SAP
	20.1 IDoc Test Tools
	20.1.1 The Main IDoc Test Tool: Transaction WE19
	20.1.2 Outbound from Message Control: Transaction WE15
	20.1.3 Outbound from IDoc: Transaction WE14
	20.1.4 Status File Testing: Transactions WE18 and WE17
	20.1.5 Turnaround Utility: Transaction WE12
	20.1.6 Inbound IDoc File Processing: Transaction WE16
	20.1.7 Inbound IDocs and startRFC

	20.2 Interface Testing Strategy
	20.2.1 Testing Environments
	20.2.2 Break-Fix Procedures
	20.2.3 Test Teams and Responsibilities
	20.2.4 Documenting Tests

	20.3 Unit Testing
	20.3.1 Scope
	20.3.2 Criteria for Success
	20.3.3 Dependencies
	20.3.4 Execution

	20.4 String Testing
	20.4.1 Scope
	20.4.2 Criteria for Success
	20.4.3 Dependencies
	20.4.4 Execution

	20.5 Interface Testing
	20.5.1 Scope
	20.5.2 Criteria for Success
	20.5.3 Dependencies
	20.5.4 Execution

	20.6 Integration Testing
	20.6.1 Scope
	20.6.2 Criteria for Success
	20.6.3 Dependencies
	20.6.4 Execution

	20.7 Stress Testing
	20.7.1 Scope
	20.7.2 Criteria for Success
	20.7.3 Dependencies
	20.7.4 Execution

	20.8 Summary

	21 Troubleshooting and Recovery
	21.1 Identifying Issues
	21.1.1 Defining Success
	21.1.2 Defining Failure
	21.1.3 Functional or Business Failure

	21.2 Monitoring and Recovery Tools
	21.2.1 Transaction BD87: The Status Monitor
	21.2.2 Transaction WE05: The IDoc List
	21.2.3 Processing Log for Output Control
	21.2.4 Transaction WE07: Errors History
	21.2.5 Transaction WE09: IDoc Search by Business Content
	21.2.6 Transaction WE08: IDoc Interuptus

	21.3 Recovering from Key Failure Points
	21.3.1 Technical Troubleshooting
	21.3.2 Functional Troubleshooting

	21.4 Summary

	Epilogue
	The Author
	Index

