Sabine Maisel

Practical Guide to IDoc
Development for SAP’

IDoc Development
for SAP

Galileo Press)

WWW.Sap-press.com

..$

Galileo Press

Bonn -

Boston

®

Contents at a Glance

1 Introduction ... 15
2 Generating IDoOCScccoeiiiiiiiiii 29
3 TestTOoOlS ...oooooviiiiiiiiiiiiiii 51
4 Changes toIDOCSoccooiiiiiiiiiiiiiii 67
5 Confirmationsccccoevvviiiiiiiiiiiiiiii 187
6 Serializing IDOCs ... 193
7 Administration ... 211

8 IDocs in Conjunction with SAP NetWeaver
Process Integration ..., 243

www.sap-press.com

Contents

PrETACE .o, 11

1 Introduction

11 What IS ALE? e 15
1.2 BAPIs and IDocs — An Introductioncccccceeeiieieeennnn. 18
1.2 BAPIS o 18
1.2.2 IDOCS oo 19
1.3 Differentiation of ALE and EDIccccooovvviiiciieiiiiinnn. 25
1.4 SUMMANY oo 27

Generating IDocs

21 Standard Methods for the IDoc Generation 29
211 Shared Master Data Toolccceiviiiiiienn 29
212 Message Control ... 43
213 Special Functions ..o 46
2.2 Use of Logical Systems in the Message Control 49
2.3 SUMMAIY i 50
Test Tools
31 Individual IDOCS ..ooviiiiiiiieiiiiie e 52
3.2 Testing Processing of Multiple IDocsccccccoiiriinennn. 57
3.21 Message Controlccccooiiiiiiiiiiiiiii 57
3.2.2 Sending Ready-for-Dispatch IDocs 58
3.2.3 FileS oo 59
3.3 Processing Status Files ... 61
3.4 SUMMAIY i 66

Changes to IDocs

40 CUSEOMIZING .ooviiiiiiiiiiii e 67
411 Filtering Using Filter Objectscccooviiieinninn 67

wWww.sap-press.com 7

41.2 Custom Filter Objectsccccccovviiiiiiiiiiiiennnn, 73

41.3 Filtering Segmentscccociiiiiiiiiiiiic 76
41.4 Reducing IDocs Through Views 77
415 RUIES oo 80
4.6 Version CONVErSIONccccoiiiiiiinieiiiiieee e, 84
41.7 Special Conversions in SAP ERP Financials 85
4.2 Adapting Existing IDOC TYpescccceiriiiiiiiiiiiiieieene 89
4.21 Different Exit Types on the Basis of the
Material Master Exampleccccoooiiiiiiiiinens 920
4.2.2 General EXitscccccoiiiiiiiii 119
4.2.3 Custom Segments ..o 122
4.2.4 Special Requirements for Master Data 134
4.3 Custom Function Modules for File Generation
in File POrtscccoiiiiiiiiiiicc 138
4.4 Custom IDOCS ..ot 141
4.41 Creating Custom IDoc Types and
Message TYpPescocccooiiiiiiiiiii 143
4.4.2 Generating an IDOCcccccoiiiiiiiiiiiiiis 153
4.4.3 Updating an IDOCccoveviiiiiiiiiiiiceeeiec e 161
4.4.4 Generating IDoc Function Modules 172
4.45 Error Workflow for Custom IDocs 175
4.4.6 Useful Function Modulescccccooiiniiiennn. 184
45 SUMMATY oiiiiiiiiiiic e 186
Confirmations
51 "ALEAUD" IDOCSooooiiiiiiiiiiiiie i 187
5.2 “STATUS" IDOCS ueiiiiiiiciiee e 190
5.3 SUMMArNY ... 192

Serializing IDocs

6.1

6.2
6.3
6.4
6.5

Serialization Using Groupscccceevvviiiniicniieeniieeen 193
Serialization Using Timestampscccocovveiiniiineenninn. 198
Serialization Using Business Objectsccccccviienninn. 200
Serialization Using qRFC ... 205
SUMMATY oo 209

www.sap-press.com

7 Administration

70 IDOC LINKS oo 211
7.2 RegularJobs ... 216
7.3 Transaction Code OVEIVIEWcccoeeiivvviiieeieeieiiiiieeeeeen, 217
7.4 Archiving ... 224
7.5 Status Conversioncccooiiiiiiiiiiiiii e 230
7.6 SUMMANY oo 242

IDocs in Conjunction with SAP NetWeaver

Process Integration

8.1 Conversion of Logical Systems to Business Systems 243
8.2 Conversion of IDoc Partner Rolescccceevciiinnnennn 244
8.3 Header Mappingcoccooviimiiiiiieiiiiieeee e 245
8.4 Handling the Control Record in SAP NetWeaver Pl 246
8.5 Updating IDocs Directly in SAP NetWeaver Pl 248
8.6 SUMMAIY ..o 248
The Author 249
L aTe 1= PP SRPOUPRR 251

wWww.sap-press.com 9

Sabine Maisel

Practical Guide to IDoc
Development for SAP”

LI ®
Galileo Press

Bonn « Boston

Preface

IDocs represent a standard interface to SAP systems. They are always
asynchronous, so the system should be designed for changing and creat-
ing data in the database. The error handling, which can be carried out
with a time delay in asynchronous communication, is always handled
where the error occurs — in contrast to the normal RFC communication
where the error is always notified to the sender.

Although more recent SAP releases also have other non-SAP-proprietary
communication options (such as SOAP, HTTP, and proxies), the impor-
tance of IDocs is undiminished: This is because of the high number in
which they are available, as well as the multitude of software solutions
that work with SAP and already support this format. 1Docs as standard
interfaces to SAP systems are used both for EDI scenarios between dif-
ferent enterprises and for ALE scenarios within enterprises.

Like all standard interfaces, the IDocs refer to the part of the SAP system
that is delivered by SAF. In most businesses, however, it's necessary to
break adaptations that were made in the business part of the SAP system
down to the interfaces. This task is carried out by ABAP developers. This
book is particularly intended for them, and the tasks relating to these
adaptations are discussed in detail. The system administrators usually
handle the communication settings so these settings are only mentioned
if they are directly related to the development work.

Content of This Book

This book describes things in the sequence in which they appear. It starts
with the creation of IDocs and concludes with the regular tasks. The
adaptation of [Docs to customer requirements starts with the lowest
effort, that is, the options of Customizing, and proceeds step by step to

1

Preface

the task that requires the highest effort: the complete custom program-
ming of IDocs.

Chapter 1, Introduction, differentiates ALE and EDI and describes the
basic principles of IDocs. Chapter 2, Generating IDocs, outlines the dif-
ferent options for generating IDocs. Chapter 3, Test Tools, discusses how
you can test IDocs for the data exchange even without the communica-
tion partner.

After the generation of standard IDocs has been fully outlined, this
chapter details the customer adaptations. Here, IDocs are connected to
the different enhancement technologies of SAP. Some options of [Doc
manipulation already arise in Customizing, while others require custom
developments or the enhancement of the standard IDoc function mod-
ules. There are also special development objects that are only used in
combination with IDocs. So Chapter 4, Changes to IDocs, describes par-
ticularly with regard to IDocs how you must handle enhancements and
what you need to consider. The focus is on the enhancement technolo-
gies relevant for IDocs. Those enhancements that are used for all IDoc
types are discussed in detail. This chapter also describes the specific fea-
tures in the context of enhancements or custom-developed IDocs, such
as the workflow connection.

Chapter 5, Confirmations, then discusses the live operation and shows
how you can learn from your communication partners what happened
to the IDoc despite the asynchronous procedure. Chapter 6, Serializing
IDocs, outlines the different options to keep a specific sequence for pro-
cessing IDocs, as well as the availability of these options. Chapter 7,
Administration, describes necessary regular tasks in detail. Finally, in
Chapter 8, IDocs in Conjunction with SAP NetWeaver Process Integration,
those who work with SAP NetWeaver Pl {fc-rmerl}r SAP NetWeaver XI)
learn how they can implement tasks that are only required in the context
of IDocs, specifically in the communication with SAP NetWeaver PI.

12

Preface

Acknowledgments

Above all, I would like to thank my husband Manfred. This book con-
sumed a lot of our time, and without his support and all the work he did,
I wouldn't have been able to write it.

I would also like to thank Maike Liibbers, Stefan Proksch, and Meg
Dunkerley of Galileo Press — without their encouragement and sup-
port, I might have been able to finish this book, but it would definitely
have contained many errors.

Sabine Maisel

13

This chapter introduces the interface types used by SAP in ALE
scenarios. You'll learn about the characteristics of the different
technigues and why different areas need different interface types.
You'll also review terminology used throughout the book.

1 Introduction

You're certainly familiar with the topic of electronic data exchange
between different enterprises. But even within enterprises, individual
process steps can't be carried out on the same machine (or in the same
database) using the same software. SAP meets this requirement by pro-
viding standard interfaces for locations where this kind of separation is
common. Standard interfaces apply specific norms to actual data transfer
to provide you with a certain release security.

11 What Is ALE?

An example of how you can structure the communication according
to process steps is the separation of human resource management and
accounting, which you can find in many companies. All data generated in
HR — on business trips, for example — that also needs to be transferred
to accounting can be posted in the SAP system both locally or remotely.
Because of this, it is at the sole discretion of a company whether to use
one or several systems. SAP refers to this separation of processes within
an enterprise as Application Link Enabling (ALE); processes that contain
the relevant interfaces are called ALE business processes or ALE scenarios.

An interface generally allows you to send data from a certain point
within the process (outbound interface) or to receive data at a specific
point (inbound interface). A prerequisite for the useful employment of

15

Structuring
communication

Interfaces

1

Intraduction

Technical
description

Semantic
description

Remote Function
Call

Protocol

Synchronous
communication

an interface is that both a technical and semantic description of that
interface are available.

The technical description specifies which data is supplied or expected in
which format and in which sequence. This description is required to
unpack the data.

The semantic description contains all of the required business informa-
tion concerning the use of the interface, for instance, whether the data
is read-only or can be edited. This description is required to interpret
the incoming data.

Technical and Semantic Descriptions of an Interface

Consider an interface that we all use very often in our daily life: transferring
sentences by telephone. Here, the semantic description corresponds to the
knowledge that the last sentence is usually a farewell; the technical descrip-
tion, on the other hand, corresponds to the knowledge of how to structure a
farewell note in English.

Of course, in addition to the descriptions, the physical transfer of data
is necessary as well via a protocol. SAP supports its own RFC protocol
(Remote Function Call) in all releases, whereas newer releases also support
HTTP (Hypertext Transfer Protocol) and SOAP (which originally stood for
Simple Object Access Protocol). Because ALE business processes represent
a slightly older technology, they use only standard interfaces based on
RFC and don't support the new proxy interfaces yet, which are based
on SOAP.

Protocol of an Interface

Let's get back to our telephone analogy: The phone line basically allows you
to transfer data via fax or language. However, before you do that, you must
agree with your partner on which of the two options you want to use. This
corresponds to selecting the protocol, that is, the transfer type.

When designing an interface, you have the following options:

» Synchronous interfaces
Synchronous interfaces consist of a request and a response. During this
process, the connection between the systems is kept alive. Conse-

16

What Is ALE 1.1

quently, synchronous interfaces immediately provide a result. This
means that you — the user of this type of interface — can wait for the
response. The advantage of a synchronous interface is that you receive
a direct confirmation as to whether your order was processed or not.
It's your responsibility to trigger the execution of the task. The disad-
vantage of this type of interface is that you can't continue to work
until the other system processes the request or when the other system
isn't available. In addition to that, long runtimes can require you to
repeat the same operation if you think an error has occurred.

Example: Synchronous Interface

You want to buy a book about ALE and |1Docs and call your local bookshop to
obtain information on available books and the respective prices. It depends
on the response you get whether you'll actually make the purchase or not. If
a technical failure terminates the phone call prematurely, you'll call back only
if you haven't received any response yet.

» Asynchronous interfaces Asynchronous
Asynchronous interfaces send the required data to the other system communication
involved and don't receive an immediate response. This means that
only a request is sent. As a prerequisite, no response is needed for this
process. Consequently, you can continue working irrespective of the
other system. However, because you won't receive an immediate
result, in an asynchronous communication process, it must be ensured
without your interference that the request arrives in the other system —
and only once. The fact that an action is carried out only once is
referred to as transaction security.

Example: Transaction Security

You want to buy my book and send a fax containing the purchase order data
to the bookshop. The bookseller doesn't respond to your fax. However, the
transmission report of your fax machine tells you that the bookshop has re-
ceived the purchase order exactly once.

ALE scenarios can consist of any number of synchronous and asynchro- Interfaces in ALE
nous interfaces. SAP uses synchronous interfaces every time data from scenarios

the database is supposed to be displayed; asynchronous interfaces, in

turn, are used every time you want to create or change data in the data-

17

1 Introduction

BAPIs

IDocs

BAPI requirements

base. In the latter case, the transaction security is particularly important
to maintain database consistency.

1.2 BAPIs and IDocs — An Introduction

The medium for synchronous interfaces in ALE scenarios is the Busi-
ness Application Programming Interface (BAPI). The term Application Pro-
gramming Interface (API) is generally used in the IT environment. SAP
extended it by the addition "Business” to indicate that the process not
only involves a purely technical data transfer, but a step within a busi-
ness process. In this context, the individual steps that make up the pro-
cess can occur in different systems.

Asynchronous interfaces in ALE scenarios are implemented using Inter-
mediate Documents (IDocs). In addition to the business documents that
are created in the different systems involved, asynchronous processes
also generate a data document that ensures transaction security. Because
this document isn't part of the actual business process but is rather an
intermediate document, it has been assigned the corresponding name.

The following sections provide a brief introduction to the topic of BAPIs
and IDocs. You'll learn how these different methods work and why two
different types of interface exist within ALE scenarios.

1.21 BAPIs

A BAPI is a remote-enabled function module, that is, a module that
can be executed by another program. In this context, it isn't important
whether that program calls the function module locally or from within a
different system. BAPIs differ from regular RFC-enabled function modules
(REM) in the following aspects:

» Asamethod, a BAPI is part of a business object type from the Business
Object Repository (BOR). For all relevant objects in the SAP system,
SAP provides a corresponding element in the BOR. In the BOR, you
can find information regarding which tables pertain to an object and
what you can do with them. It's also the basis for the business work-
flow. So, it makes much sense to also store in the BOR information

18

BAPIs and IDacs — An Introduction

about which process steps in ALE scenarios you can carry out with the
respective objects.

» BAPIs are released, have a frozen signature, and thus provide release
security.

» They typically use an update technique for postings instead of posting
directly. Moreover, they don't contain any Commit or Rollback state-
ments. (The few, mostly very old exceptions are specifically docu-
mented by SAF.)

» The actual posting process is triggered by the special BAPI_TRANSAC-
TION_COMMIT BAPI or is undone via BAPI_TRANSACTION_ROLLBACK.

» BAPIs usually don't display the results because it's unlikely that the
caller has a GUI (graphical user interface) available. BAPIs that were
specifically developed for an SAP/SAP communication are an excep-
tion to that. However, these BAPIs aren't relevant for interfaces to
external systems,

Like all remote-enabled function modules, BAPIs can generally be called
using a synchronous RFC (sRFC) or a transactional RFC (tRFC). The trans-
actional call is asynchronous and makes sure that the call is executed
exactly once. However, note that both the synchronous and the transac-
tional call notify only the calling system in case of potential errors, even
if that system can't remove the error. That's why BAPIs are generally
used only for synchronous calls in ALE scenarios. In asynchronous cases,
errors should preferably be reported directly to the receiver, provided
these errors are business-related. BAPIs aren't intended for this purpose.
The following section describes how the separation by error types is
implemented by means of IDocs.

1.2.2 |Docs

SAP developed IDocs specifically to enable the asynchronous message
exchange between multiple SAP and/or non-SAP systems. The advan-
tages over a normal, asynchronously (transactionally) called RFM include
an improved error-handling process as well as a specific monitoring
layer made available to IDocs. Because error processing via IDocs affects
the structure of [Doc interfaces, we'll look at it first in the following
sections.

19

Calling BAPIs
via RFC

1.2

1

Introduction

Error types

Errors in sending
and receiving
systems

Error Handling with IDocs

You can generally distinguish between two different types of error:

» Technical errors
Technical errors obviate the communication with the partner system.
They occur, for example, if the partner system isn't available, the
database in that system can't accept any additional requests, or the
specified password is incorrect.

» Business-related errors
Business-related errors occur if the partner system generally responds
to requests but can't process your specific request. Missing authoriza-
tions, missing Customizing, or the like can cause this type of error.

In the context of RFCs, this distinction isn't made. In a RFC, the user
directly receives an error message and must make sure that the request
will be repeated at a later point in time. Because calls containing errors
can't be repeated automatically and don't have to be logged, the distinc-
tion between error types wouldn't make sense here.

In tRFCs, each call that contains an error is written to a table in the send-
ing system and can be restarted using a specific transaction. In this case,
it does make sense to distinguish between the types of error. In that
case, technical errors would be logged in the sending system, and the call
would be repeated, if necessary, while business-related errors would be
logged and processed in the receiving system. This option to distinguish
between different types of errors is a specific feature of IDocs and isn't
provided by RFCs their self. In addition, you can also change the con-
tents of IDocs retroactively in case of errors, which isn't possible either
with standard RFCs.

To distinguish between technical errors and business-related errors, the
processing of the respective processes must be divided into two steps as
well. The first step is responsible for purely transferring the request to
the database of the receiving system. This step doesn’t depend on the
type of data that is transferred. For example, it doesn't make any differ-
ence whether you want to create materials or cancel a sales order. To
carry out the transfer in the same manner for all kinds of data, you use
a neutral format: the IDoc format.

20

BAPIs and IDocs — An Introduction 1.2

The second step is carried out locally in the receiving system and involves
posting the relevant document. This step can vary depending on the
business object to be processed.

Technical Description of the IDoc Format

An IDoc consists of a header record, any number of lines of application
data (application records), and any number of status records per IDoc.

» Header
The header contains general information about which data is sup-
posed to be transferred, who is the sender, and who is the receiver.
This means that the receiver can learn from the header record which
data has been received and — based on this information — decide
how to process this data.

» Data records
The data records contain business-related information. To make sure
the technical format is independent of the business object and can
also be understood by non-SAP systems, the content of each data
record is stored as a string of 1000 characters. This character string is
preceded by a control area containing information about how to inter-
pret the 1000 characters.

» Status records
Status records contain information about the previous statuses of the
IDoc, such as “successfully created” or "successfully posted.” Status
records aren't transferred; that is, both the sender and receiver keep
their own status records.

From a technical point of view, these three types of record have the same
structure. Consequently, the structure doesn't provide any clue as to
which kind of business-related information you're dealing with.

Figure 1.1 contains a theoretical illustration of how the different types
of records can be used. Note that you can use an unlimited number of
data records and status records. This is described in greater detail in the
following section.

21

IDoc as a neutral
format

Header record/
control record

Data records

Status records

1 Introduction

Control Record IDoc Mumber
Sender and Receiver
Message Type and |Doc Type
External Structure

Data Records

Control Section with

ID0c Nomber Application Data

Material Number, Date etc. as Character String

Segment Type etc.
8 ¥p {Length: 1000}

Status Records IDoc Number
Status Information (e.g., 53: Posted Successfully)

Figure 14 Structure of an IDoc

To process the IDoc, the receiver needs meta information, that is, informa-
tion concerning the manner in which the data is supposed to be processed.
The meta information that describes an IDoc consists of three parts:

Message type » Message type

The message type provides a semantic description of the data to be
processed. For example, message type MATMAS indicates that material
master data is supposed to be exchanged. The message type is also
responsible for the way a message will be processed. When you cre-
ate or change a sales order, for example, the actual information is
identical, but the processing is different, which is why the creation of
the order is assigned the ORDERS message type, while message type
ORDCHG is assigned to the change activity. The names of message types
are based on the names of the UN/EDIFACT standard (United Nations
Electronic Data Interchange for Administration, Commerce and Transport),
but apart from the names, there are no other similarities between the
IDoc and EDIFACT formats.

IDoc type » IDoc type
The IDoc type represents the technical description of the data. It tells
you which fields of which business objects are supposed to be filled

22

BAPIs and IDacs — An Introduction

with which values. This means that the IDoc type describes how to
interpret the 1000 characters in the data record.

> Segment type
For each possible variant of these 1000 characters, there is one seg-
ment type. For example, segment type E1MARAM indicates that material
master data from Table MARA is going to follow. In each SAP system,
information is stored as to which IDoc type can have which segments,
how often, and in which sequence.

You can export this data to external systems to avoid having to main-
tain all structures manually. SAP supports the transfer of data via trans-
port IDocs, C files, DTD (Document Type Description), or HTML (Hypertext
Markup Language). If you want to use transport IDocs, you must ensure
that your partner can generally receive IDocs from you, which means
that your SAP system must know the partner as a logical system.

The IDoc, which exists as a set of data records, is then transterred from
the sender to the receiver. The most commonly used type of transfer is
the tRFC. The transfer is carried out in such a way that the sending sys-
tem calls the function module 100C_INBOUND_ASYNCHRONOUS in the receiv-
ing system. This function module receives the data and posts the header
and data records to the associated database tables E010C and £E01D4, and
the status of the IDoc to £01DS. After that has been done, the technical
part is finished. If problems occur during this process, the sender will be
notified and must resend the data at a later point in time.

Other types of transfer, such as file (flat file), XML (file in XML format),
or HTTP can also be used because of the separation of data transfer and
data processing. Figure 1.2 shows the first part of a small material master
IDoc as a file, opened in Notepad.

SMATSELSA - Motepad

oI_DC40_UE0000000000007 60764 700 3012 MATMASOS
BO00000G00000T G074 GO0001 00000002 005 5H-100 19651005/
BOOQO00R000007 0T 64 000002 00000103 £

BO0G000G00000T S0 &4 GO0003 00000103 005tMatanol
BOOGO00G000007H0T 64 G00004 00000103 005EMet hana

BO0G000G000007 S07 &4 GO000S5 00000103 005FMathano1
BOOQOO0RO00007G0T 64 000006000001 03005 Ixs 2 -4
E2MaKTHOOL BOOO00R000R0TS0T 64 GO000TOMR00103005Metano]

Figure 1.2 IDoc in Notepad Editor

23

Segment type

IDoc as file

1.2

1

Introduction

IDoc tracking

You can specify the type of transfer to be used for transferring IDocs to
the partner system via the outbound partner profile (Transaction WE20).
After the IDoc has arrived in the receiving system, the business-related
posting process begins. Typically, this is also carried out by means of a
function module.

The inbound partner profile (also Transaction WE20) specifies the process
code to be used. For each possible combination of sender and message
type, you can define which function module will be used. SAP provides
all necessary function modules for all ALE scenarios available. Note that
you can customize these function modules or even replace them with
your own. Chapter 4, Changes to 1Docs, provides more detailed infor-
mation on this.

If an error occurs during the business-related posting, the error will be
documented in the subsequent status record of the IDoc, and you can
restart the posting process later. SAP provides a separate transaction for
posing an IDoc after a processing error: Transaction BD87. This transaction
can resend IDocs that contained errors in the sending system during the
first attempt and can re-process erroneous IDocs in the receiving system,
if necessary. After the reprocess, everything is finished. The posting of the
IDoc creates the business Document, or changes it. This is only done once.
Once it is successfully created or changed, the Business Document is not
touched again. If both systems are SAP systems, you can even use the IDoc
tracking function from within the sending system to obtain information on
the current status of the respective IDoc in the receiving system. You can
start IDoc tracking from within the IDoc monitor (Transaction BD87). This
function uses the function module 100C_DATE_TIME_GET via sRFC to read
the IDoc number and its status in the receiving system.

BAPIs and IDocs in ALE Scenarios

Due to the transaction security enabled by the updating of erroneous con-
nections and because of target-oriented error-handling procedures, the ALE
integration scenarios provided by SAP always use BAPIs for synchronous, re-
questing access, and IDocs for asynchronous, changing access. If it's possible
to transfer data in both ways, that is, synchronously and asynchronously (e.g.,
in a first, synchronous test run, and then the actual posting asynchronously),
both a BAPI and a matching IDoc are needed. The |IDoc therefore can be cre-
ated via Transaction BDBG, which is also available to customers.

24

Differentiation of ALE and EDI | 1.3

1.3 Differentiation of ALE and EDI

The concept of ALE comprises communication within an enterprise.
However, within an enterprise, different processes are carried out in
physically different IT systems, which means that individual process
steps can involve different systems. As you've already learned, these
steps can be carried out in a synchronous process via BAPIs as well as in
an asynchronous process involving IDocs.

In this context, the communication itself is carried out between the logi- Logical system
cal systems (LSs). Each LS represents a combination of hardware and

software installed on that system. In an SAP system, a client corresponds

to a LS. The LS is assigned to the client and provides information as to

whether a document was created on that SAP client or whether it was

adopted by means of consolidation processes (the majority of documents

contain the original system in a specific field in the database). The assign-

ment of the LS is part of the post-installation procedures. A system must

know its own system name as well as the names of all LSs it communi-

cates with.

The LSs must be unique across the entire enterprise (actually across the Unigueness of
entire range of communication). Moreover, the LSs for non-SAP systems logical systems
with which a communication is established must also be known. You

can assign the LS for your own client as well as make systems known

with which messages will be exchanged via ALE-Customizing, which can

be reached using Transaction SALE. Figure 1.3 shows the Customizing

functions, Define Logical System and Assign Logical System to Client.

Transaction BD54 enables you to assign names to LSs. In addition to the

name for the LS, you should also enter a brief description.

Structure
= [Dot Interface f Application Link Enabling (ALE).
= Basic Settings

[@& 1Doc Administration
@ f& Inbound S0AP for IDoc: Register Service
[@ Perform Automatic Workflow Customizing
[2 @& Activate event receiver linkage for IDoc inbound
= [Logical Systems
[@& Define Logical System
[@ Assign Logical System to Client

Figure 1.3 Setting Up Logical Systems

25

1 Introduction

Customer
distribution model

EDI

EDI standards

The customer distribution model (Transaction BD64) allows you to define
which BAPIs and IDocs will be exchanged between which systems. In
this context, each system can function as the sender or receiver. In our
example (see Figure 1.4), the LS T90CLNT090 sends the IDoc MATMAS to
the LS SALES, while the IDoc MATFET is sent in the opposite direction.
In addition, two BAPIs are exchanged. The Material.GetDetail BAPI is
sent from T90CLNT090 to SALES, while the Material.Availibility BAPI
is sent in the opposite direction.

Distribution Model | Descriptions technical name
= Model views
=~ B8 Z73W1 Zam
= [®] %00 client 800 TAOCLNTOS0
= [® Sales system (client 810) SALES
by MATMAS Material master
@ sStandardmaterial GetDetall Determine detalls on material
= [®] Sales system (client 810) SALES
< [®]%D0 client 800 TS0CLNTOSD
iy MATFET Request material
2 StandardMaterial Availability ATP information

Figure 1.4 Distribution Model with Example for IDoc and BAPI

In contrast to ALE as a means of enterprise-internal communication, EDI
(Electronic Data Interchange) comprises the transfer of data between dif-
ferent enterprises, for example, between customers and suppliers. Each
company has its own process flows. However, at certain points within a
process, the partner must be informed. To prevent the partner from hav-
ing to enter specific information manually into the system, the relevant
information must be transmitted to the partner electronically.

EDI is always an asynchronous process. With regard to SAP systems, this
means that IDocs are also used for EDI communication. However, note
that EDI communication is always carried out without the distribution
model and LSs. Within the system, the relevant senders and receivers
of messages are also referred to as partners; customers and suppliers are
one example here. Note that they must be maintained as customers and
suppliers in the SAP system. No new, IDoc-specific master data is needed
in this context.

Because different companies use different IT systems, specific EDI stan-
dards exist to facilitate data transfers. In European countries, the EDI-

26

FACT standard is primarily used, whereas in the United States, ANSI ASC
¥12 (American National Standards Institute Accredited Standards Committee
X12) is the predominant standard. EDIFACT assigns names to messages,
while ANSI uses numbers. For example, according to the EDIFACT stan-
dard, the message ORDERS represents a purchase order; according to the
ANSI standard, the same message is called 850. With regard to message
types, SAP has based its naming conventions on the EDIFACT standard;
however, the structure of the messages differs substantially from that
standard. (Chapter 2, Generating IDocs, describes the structure of IDocs
in greater detail.) In SAP systems, IDocs are used for asynchronous data
transfers both in EDI and ALE processes, which is why the procedures
described in the course of this book can always be applied to both ways
of communication.

The following chapters will focus entirely on using IDocs. As far as the
use of BAPIs is concerned, it's similar to using function modules. Con-
sequently, developers who are familiar with function modules can carry
out all development tasks related to BAPIs without a problem. IDocs,
on the other hand, contain some specific features that aren't usually
described in developer manuals. These specific features are described in

this book.

1.4 Summary

In this chapter, we discussed the reasons for using interfaces in general,
as well as the types of interfaces provided from SAP. You learned that
Customizing and programming with IDocs is very important.

In the next chapter, we'll take a deeper look at IDocs, by starting at the
very beginning - the different possibilities to create IDocs for sending
them to our LSs or partners.

27

Summary | 1.4

In the sending system, it's necessary to generate IDocs so that
they can be sent to the receiving system. How this is done depends
on the type of data and the application. This chapter describes
the different generation options and their use.

2 Generating IDocs

SAP has provided tools for the generation of IDocs in all locations where
they are used in ALE scenarios or classic EDI, and they can usually be
activated using the Customizing settings. However, there are different
methods of [Doc generation depending on the type of data and the loca-
tion where the IDoc will be generated. This chapter presents the most
common methods of IDoc generation. Usually the IDoc administrator —
not the developer — implements the settings required for creating the
partner profiles, for instance, so they are outlined only briefly, and more
importance is attached to the functional process flow.

24 Standard Methods for the IDoc Generation

Initially, you must distinguish between the generation of master data and
the generation of transaction data because there are different require-
ments on the generation process or the generation frequency depending
on the type of data. A special tool is available to generate master data,
called the Shared Master Data Tool (SMD). Transaction data IDocs are
generated via the already-existing message control. There are also some
special functions for IDocs that are directly generated in a process.

244 Shared Master Data Tool

The SMD is a special tool for sending master data via IDoc. Master data
is characterized by a relatively long retention period in the system during

29

Master data
in the 1Dac

Automation and
control via views

Change pointer

Writing the history
in the application

Generating |Docs

which the data is changed rarely. Master data usually consists of multiple
views that are not used all the time. You can omit views, including those
that contain mandatory fields, because the check of whether all manda-
tory fields are populated is only carried out if the view is actually used.
This enables you to select from the wealth of information that is offered
for a specific object and use exactly the data that is actually required
within your enterprise.

To distribute data using IDocs, an automated process is desirable that
responds to the creation and modification of master data without requir-
ing further user interventions. Also, empty views are not supposed to
be transferred.

The SMD takes these requirements into account. The technical imple-
mentation of automation and control via views entails that already-exist-
ing procedures can be used for both functions. For automation, you
revert to recording changes, which is implemented by default; for con-
trol via views, you use the option (which originated from batch input
processing) to control irrelevant fields using a NO_DATA character. Then,
the IDocs are regularly generated via background jobs.

Additionally, for almost all objects, you also have the option to explicitly
generate IDocs or to request IDocs. You can use this option if waiting for
periodically scheduled jobs is impossible.

Recording Changes

For consistency reasons, changes to the master data are updated inde-
pendently of the use of ALE in SAP systems. For each individual data
element of the tables concerned, SAP has stipulated whether a change
should be logged or not. Figure 2.1 shows the CHANGE DOCUMENT FLAG,
which is activated in this case as an example of BISMT (Old Material Num-
ber) from the MARA TABLE.

For updating the changes, you always call the CHANGEDDCUMENT_OPEN func-
tion module, which prepares the writing of the change history. Then,
all changes to be written are collected, and the process is concluded
using the CHANGEDOCUMENT_CLOSE function module. Because IDocs are

30

Standard Methods for the |Doc Generation 2.1

supposed to be generated wherever changes are updated by default, the
CHANGEDOCUMENT_CLOSE function module has an ALE share in addition
to its standard function. This enables you to generate change pointers
for ALE for the desired message types. In all Unicode-enabled releases,
this is done using the CHANGE_POINTERS_CREATE_LONG function module;
in old releases, this is done using the CHANGE_POINTERS_CREATE function
module.

Dtﬂiﬂnary: Displa'f Data Element
[l a8 | &l B e | 8 | B] e Ll |
Data element |BISHT Active

Short Descriplion Old matarial number

Affributes Data Typa Field Label

Search Help
Mame
Parametars

Parameter ID

Default Component Mame OLD_HAT_HO

[Ghange document

Figure 21 Characteristics of Data Elements

You also have the CHANGE_POINTERS_CREATE_DIRECT function module as
a second option to generate change pointers. This function module is
called by applications that are not connected to the previously described
change management for documents.

In both cases, change pointers are only written if you use the SMD for
performance reasons. In the ALE Customizing, you can specify whether
this is the case and for which master data you require change pointers.
There is a separate Transaction code SALE for the ALE Customizing that
takes you directly to the correct position in the menu tree. Figure 2.2
shows the menu path in Customizing in which you make the necessary
settings.

31

Generating change
pointers directly

2 Generating |Docs

Activating change
pointers

Activating change
pointers for object

Structure

7 [% IDoc Interface / Application Link Enabling (ALE)
I Basic Settings
| Communication

= [Modelling and Implementing Business Processes
b [Global Organizational Units
[& Maintain Distribution Model and Distribute Views
[Configure Predefined ALE Business Processes
= [Master Data Distribution
= Er Replication of Modified Data
[2 @& activate Change Pointers - Generally
M Activate Change Pointers for Message Types

Figure 2.2 Activating Change Pointers for the SMD

Initially, you activate the generation of change pointers generally. As
a result, the share of the CHANGEDOCUMENT_CLOSE function module that
has not been used up to now and that is responsible for the SMD is run
through. This must be set once only for all master data. Figure 2.3 shows
the appropriate functionality.

Activate Change Pointers Generally

Activation status
[¥]Change pointers activated - generally

Figure 2.3 Activate Change Pointers Generally

If the change pointers are activated generally, you can specify in a second
step for which message type you require the generation of change point-
ers. This is done in the second menu subitem (Activate Change Pointers
for Message Types) and has been implemented for the message types,
MATMAS and MATMAS_WMS (see Figure 2.4). No change pointers are written
for MATCOR and MATMAS_GDS, which have not been activated.

In this context, it's important that a change pointer isn't written for
each changed field because there are fields whose values are not signifi-
cant for the downstream system. By means of Transaction BD52, SAP
provides fields for each message type connected to the SMD, which are
relevant for changes from SAP's point of view. For the material master,
the DMAKT-SPRAS field is important, for example. In the transaction,
you enter the fields that are used within your enterprise. If you've made

32

Standard Methods for the |IDac Generation

changes to the corresponding master data tables via the SAP enhance-
ment concept and use customer-specific fields, you can also set the cus-
tomer-specific fields here. Refer to Chapter 4, Changes to IDocs, to learn
how to provide these fields.

Change View "Activate Change pointers for Message Type":
P nevewe: W B B E

Activate Change pointers for Message Type

Messg Type aclive
kunns = [+

ATHAS_60S O [
naThas_wns]
fnaton 0o

Figure 2.4 Activate Change Pointers for Message Type

Change View “Change document items for message type": Overview

i [rowerves | & BB

Message Type! [MATHAS
Change document items for message tpe H
Jcmject Table Name [Figld Mame
ATERIAL |DGESY KEY [4]
[MATERTAL DBESV KOVEW =)
[MATERIAL DBESY WEWRT
ATERIAL |DMAKT KEY
’I.'.'I'ER TAL [DMAKT HMAKTX
[MATERIAL [DMAKT SPRAS
ATERIAL |[DMARM BREIT
[MATERTAL DMARM BRGEW
[HATERIAL [DMARN [EAN11
ATERIAL |[DMARM GEWEI
[MATERTAL DMARM GTIN_VARIANT
[HATERIAL [DMARN HOEHE
[MATERIAL DMARM KEY

Figure 2.5 Change-Relevant Fields in Transaction BD52

Figure 2.5 shows a section of the fields for the MATMAS message type,
which are provided by SAP as change-relevant. The message type is
directly referenced to fields and tables of the material master except for
the KEY field. This field isn't part of the respective table but assumes a
very important, additional control role: It ensures that the creation of a

33

Change-relevant
fields

2.1

2

Generating |Docs

Assigning change-
relevant fields

Evaluating change
pointers

table entry can be sent via IDoc. If the KEY field is specified in Transac-
tion BD52, a change pointer is written during the creation of the corre-
sponding object, for example, during the initial creation of the material
for the MARA-KEY dummy field or during the creation of a text in a new
language for the MAKT-KEY dummy field. Imagine that the key value
of the table concerned is changed from "empty” to the new value. As a
result, all fields of this table are transferred.

Additionally, for each of the change-relevant fields, you must specify to
which field in which segment of the IDoc type it belongs. This is done
in Transaction BD66, which is shown in Figure 2.6. The DMAKT-SPRAS
sample field from Transaction BD52 belongs to the E1MAKTM IDoc seg-
ment and to the field that is also called "SPRAS.” For your own fields,
you must specify this using the New Entries button.

Change View "Segment Field - Change Document Field": Overview
=
Message Type! [HATHAS
Segment Field - Change Document Field ﬁ
|segment trpe Field Mame Object Table Hame Field Mame
JE1makTH MATERIAL [DMAKT KEY [+]
E1MAETM FIHI{I‘.{ HATERIAL DMAKT FISI{I‘.(E
E1MAKTM SPRAS MATERIAL [DMAKT SPRAS
E1HARAM HATERIAL MARA EEY
E1HARAM |l.EIIA.H HATERIAL MARA |.I.EHM
E1MARAM AESZN HATERTAL MARA AESZN
E1MARAM BEGRY HATERTAL HARA [BEGRY
 [E1maRAn BEHYD MATERTAL MARA BEHYD
[E1ARAN BISHT MATERIAL MARA BISHT
|E1HARAN BLANZ HATERIAL HARA BLANZ
[E1raRAN BLATT HATERIAL HARA BLATT
|E1HARAM BNATH MATERIAL MARA BNATH

Figure 2.6 Assignment of |Doc Fields to Change-Relevant Fields

The change pointers are then evaluated. It just depends on the object
concerned which function module is used here. When you call Transac-
tion BD60, you can view these function modules and replace them with
your own function modules if you want to make so many changes to the

34

Standard Methods for the |Doc Generation

standard functionality that you don’t want to enhance or modify the SAP
original. Figure 2.7 shows another example of the material master data.
There, the function module that uses change pointers to generate IDocs
is called MASTERIDOC_CREATE_SMD_MATMAS.

Change View "Additional Data for MESS&QE TYIJ'E': Overview

Additional Data for Message Type

|MessaType Refmsa. Funct Mod. Table ﬁ
IHATHAS HATHAS MASTERIDOC_CREATE_SHD_MATHAS IHARA EI
IMATHAS_GDS HATHAS_GDS HARA El
INATHAS_WHS HATHAS MASTERIDOC_CREATE_SHD_MATHAS IHARA l

Figure 2.7 Function Modules to Evaluate Change Pointers

The REOMIDOC report, which must be scheduled at regular intervals, must
then use these function modules to generate IDocs from the change
pointers and update which change pointers have been processed. As
a transfer value, you can specify for which message type you want to
implement the evaluation. For this purpose, you specify the appropriate
type (here: MATMAS) in the Message Type field in the initial screen of the
RBOMIDOC report. This is illustrated in Figure 2.8.

Creating IDoc Type from Change Pointers

Message type [HATHAS| @

Figure 2.8 |Initial Screen of the "REDMIDOC" Report

For sending IDocs using the SMD and for change pointers, the applica-
tion and the ALE communication layer interact closely. Figure 2.9 sche-
matically shows the process flow of IDoc generation. The entire process
of writing change pointers takes place in the application; the evaluation
of the change pointer and the generation of IDocs are carried out by the
ALE communication layer.

35

"RBDMIDOC"
background job

Changes in the
SMD

2.1

2

Generating 1Docs

Distribution lock

Application

1. Write normal history

2. Check if change pointers are generally supposed to be written

3. Check if change pointers are supposed to be written for the
object in question

4. ‘Write change pointers

/'_#_,_______—_._____‘_‘_‘_k\ REDMIDOC
_____________________’_/ 1. Read change pointers

.. 2. Write |1Doc
Application
Document Change 3. Mark change pointers as
Pointers processed

Ch
Document
\-hh‘________—______,,._/

Figure 2.9 1Doc Generation Using the SAMD

Note that when you send IDocs via change pointers, you only send those
views in which changes have actually been made. If a new view has been
created, all its fields are transferred; if a view has been changed, only
the changed fields are transferred to increase performance. Chapter 4,
Changes to IDocs, uses the example of the material master to describe
how you can change this default behavior using a minor modification.

You can find the change pointers in the BDCP table and the correspond-
ing status records in the BOCPS table. As of SAP NetWeaver Application
Server 6.20 (SAP NetWeaver AS), processing with higher performance
is possible via a shared table called E0CP2. However, this new procedure
isn't supported for all message types. Whether it's applicable for your
message type is indicated in the detail view of Transaction BD60. As of
Release 7.1, only the new processing using Table B0CP? is available for
all message types.

For the distribution via the SMD, you must consider some specifics for
some master data. You can set a distribution lock for the material mas-
ter to generally prevent the sending of a material. For this purpose, you

36

Standard Methods for the |1Doc Generation 2.1

must make a short detour. In the design data of the material in the MARA
table, there is a cross-plant material status (MARA-MSTAE field). This
status refers to an existing entry in the 7141 table. Here, you can assign
additional properties for each status value. If the DLOCK field provided
here is selected, the distribution lock is set.

For contracts (BLAORD message type), only released contracts are trans-
ferred using the SMD.

Reducing Messages

The second requirement on the distribution of master data arises from
the distribution of all master data to individual views and the option to
define, in Customizing, which fields of a view are actually supposed to
be used. This is scalable for the IDoc transfer by using the reduced mes-

sage t}FPES.

A reduced message type always relates to an existing message type but
transfers less data. The reduction isn't possible for all message types;
so the developer of the message type must explicitly define it as reduc-
ible. All views and fields that must be transferred as a minimum are
predefined here; all other views and fields can be selected additionally if
required. Transaction BD60 in the detail view for a message type is the
transaction for defining a message type as reducible. By calling Transac-
tion BD65, you define the mandatory fields.

For each delivered message type, SAP speciﬁes whether it's reducible.
Because this involves functions in the generation and update module for
the corresponding IDoc, customers can't simply set the message type
to reducible retroactively. The mandatory fields that SAP provides with
Transaction BD65 correspond to the Customizing that SAP provides for
transactions that are used to maintain master data, for instance, Trans-
action MAT1 for maintaining the material master. If you make changes
to the mandatory fields in the application’s Customizing, you also adapt
them in Transaction BD65 so that custom-developed mandatory fields
are also mandatory for reducing in the IDoc. Figure 2.10 shows a section
of the data for the MATMAS message type.

37

Reduced message
type

2

Generating 1Docs

Change View “Additional Data for Message Type": Details

BD&0 - Detail
SAFP defines message type
as reducible
s =
LI LA |
BD&S jFieid Mame
T
Define mandatory fields | =3 :: % 5
{(both SAP and you) HARAR GRIES
NARAR L¥ORn
HARAR KL
HARAR %
HARAR IneRsH
HARAN METNE
HARAR SEFN
HARAM ART
NARAR AT
| SLECTL] SPART

Figure 210 Basic Maintenance for Reducible Message Types

Reductionin You then create your own reduced message types in Customizing of

Customizing Transaction SALE. Under the Create Reduced Message Type menu item
or via Transaction BD53 you can find the initial screen as shown in Fig-
ure 2.11.

Replicaton of Modified Data
Serialization for Sending and Racenving Data
e of Data for Distribution
Message Reduction
[& Create Reduced Message Type
B © Generats Transport Request for Message Type

Figure 241 Create Reduced Message Type

38

Standard Methods for the |IDoc Generation 2.1

When you specify the name of the new reduced message type (see Figure Reduction steps
2.12), you must consider the naming rules for your own objects (the
name must start with Y or Z or your own namespace).

IDoc Reduction Maintenance: Initial Screen
[03](#] | (] | [Actvane cnange peinters | Descvvate ehang poisters |
Eeduced massage hes [zsm StE‘p 1:
[E Sedecton of Mesiage Typa a5 Refirents ke e Raducton [5] ‘b -A55i§n name
Feduced mossage hpe TEM1 and dﬂscripﬁﬂn
MELEIgE bpa releence |maTRAE
vi[x]
IDoc Reduction Maintenance: Initial Screen
|00][2] 2| | (] | [teate change possers || Deactiesse craespe pointers |
Raduced message pe Z5H1]
[Enter Descrption of Reduced reestags hpe 5]
Reduced massags hpe ZEM1
Descrighion ‘akings Reduced Material
Message hoe refarance MATHAS
Dascrigbon Material master
HATHASD] Customer Field Digoribution
E1HARAG (*) Raster saterial general data [AARA)
HARAT [~} Additional Fields for E1MARAR StEp 2:
HARADT (-} Digcrete Industries Fields
ETHAETH [*) Master material short texts (ARET) (— Select relevant
ETHARCH [-) Rester sateria) C segeent [HARC)
ETHARRH [+) Raster material units of measurs [AARM) Segmentﬁ
THBEWH [-) Raster saberia)l saterial valuation [RBEW)
E1HLGHA (=) Master waterial material data per warghouse nusber [(HLGN
1HYEEN [~} Master saterial sales data (MVEE)
HLAKH () Hester materis] tax Claggification [HLAN)
E1NTIHA [+) Raster material long text header
| BT LT
Figld Tost
HEEFH {*} Function
__HATHR {*) Material Musber
| {-) Created On .
:Im {+) Mame of Person who Created the Object gtTp 3' | t f' |d
LREDA (-) Date of Last Changs E elect relevant neldas
3% (=) Mame of Person Who Changed Object
PETAT {*) Naintenance status per segment
L¥ORH (") Flag Haterial for Deletion st Client Lavel
HTART {*) Material Typs
HBRGH (*) Industry sector
HATEL {*) Material Group
[BISHT (-) 01d material nusber
HEINS (*) Base Unit of Heasure
{-} Purchase Order Unit of Hessure

Figure 2142 Creating a Reduced Message Type

Segments and fields that are green in the SAP system and displayed with
an * behind the name are mandatory and can't be reduced. Fields and
segments that are red or marked with - are optional and not selected;
segments or fields that are white or marked with + are optional and
selected in the respective reduced message type. You now specify which

39

Generating |Docs

Change pointers
for reduced
message types

Sending
master data

segments you want to have in addition to the mandatory segments by
selecting the segment and clicking Select. As soon as you've activated a
segment, you can select the fields within the segment you want to have
in addition to the mandatory fields, and then click Select again.

If you want to generate change pointers for custom reduced message
types, you can activate the generation in Transaction BD53 using the
Activate Change Pointers button. Of course, you can also activate the
change pointers for the reduced message type in Customizing of Transac-
tion SALE. Here, you must make sure that you not only set the flags for
generating change pointers but also copy all standard field assignments
and mandatory field assignments, which is automatically done in Trans-
action BD53. In Transaction BD53, you can also disable the writing of
change pointers using the Deactivate Change Pointers button (see Figure
2.13).

IDoc Reduction Maintenance: Initial Screen

D[22 & | A | | Activate change pointers || Deactivate change pointers |

Reduced message type ESH1 @

Figure 243 Activate the Change Pointer for Reduced Message Types

Directly Generating or Requesting Master Data

If you want to publish the creation or change of material master data
without waiting for IDocs that are generated from change pointers, you
can use Transaction BD10. In Table 7.5 of Chapter 7, Section 7.3, Trans-
action Code Overview, you can also find the transactions that belong to
other master data.

Because master data usually offers the option of reduction, these transac-
tions “expect” you to enter the message type you want to use for sending
and the logical target systems you want to send to. Additionally, you can
select the objects you want to generate IDocs for. However, this is only
possible via the material numbers or the class membership of the object
(see Figure 2.14).

40

Standard Methods for the |Doc Generation 2.1

Send Material

Material I & | =
Class o |

Message Type (Standard) HATHAS
Logical system
[5end material in full

Parallel processing
Servergroup S
Mumber of materials per proces 2|ZI_

Figure 244 Targeted Sending of Material Master I1Docs

If you activated the Send Material in Full flag and also set the distribu- Sending the
tion of classification IDocs to the same partner, the system generates Material
the classification IDoc that belongs to the material additionally to the

material IDoc itself. The specifications for the parallel processing help

you increase the performance if you send a high quantity of data, for

instance, for initial data load. If you leave the Logical System field empty,

the data is sent to all partners that are available in Transaction BDé4. If a

selection is made, Transaction BD64 checks whether the selected logical

system is permitted as a receiver of the material master IDocs. If there is

a positive result, the system sends the IDoc.

If you are the receiver of master data IDocs and know that the sending
system has changed or has newly created data, you can request a corre-
sponding master data IDoc. The name of the appropriate message type
starts like the master data IDoc but uses another abbreviation at the end,
that is, FET (for “fetch”) instead of MAS. For example, the name is MATMAS
for the message type of the material master IDocs and MATFET for the
fetch IDoc.

These fetch IDocs must be maintained as usual in the distribution model Fetch IDoc
(see Figure 1.4 in Chapter 1, Section 1.3, Differentiation of ALE and
EDI) — just in the other direction; here, the partner that receives the
master data IDoc sends the fetch IDoc. Fetch IDocs always transfer the

41

2

Generating 1Docs

object key for which master data IDocs are requested and the message
type that is supposed to be used to send the data. You can use Transac-
tion BD11 to “get” material masters (see Figure 2.15).

Get Material

Ty

&

Material
Class
Message type

to
to

zsm1]| ' €)

sl

Figure 215 Requesting the Material Master 1Doc

"ALEREQO1" IDoc The same ALEREQOL IDoc type is assigned to all fetch message types. It
tyPe contains the segments shown in Figure 2.16.

— Segeent fields

——HESTYP

———HESTYP40

— E1ALEQT

Segeent Tields

[——08J¥ALUE

——5SIEN

——0PTION

—HIEH

ALEREDG1 = General request - Basis Iboc type
| Basic type Released O Released from Release 30A Display for Release 46C
Yersion 3 of 1Doc record tm‘ I10oc record t!pll Tor SAF Releaze 4.0
EVALER1 | m @ ALE request [Doc header segaent

Segaent definition EZALER1DO1 Released from Release 40A
sandatory min. feax. 0000000001 rOB0OOCD990

® o ¢ Logical message type

Internal Tength 000006 External length 000006 Offset 000063

Data type CHAR Data element EDI_MESTPI
® o 0 Message type

Internal Tength 000030 External length 000030 OTTset 0000GS

Data type CHAR Data eleasnt EDI_MESTYP
= » ALE Request IDoc - Ites Segeant

Segeent definition EZALEQT Released from Release J0A
mandatory min./feax. GG00000861 70000009990

® o o Dbject value (with old Tength of 40)

Internal lTength 000040 External length 000040 O7fset 000063

Data type CHAR Data @lement FOBJVOLD
=0 o ABAP: 1D IVE (includelexclude values)

Internal length 000081 External Tength 000001 Offset 000103

Data type CHAR Data element TVARY_SIGN
=0 ¢ ABAP: Selection option (EQ/BTICPI...)

Internal lTength 000862 External length 000082 Offset 000104

Data type CHAR Data element TWARY_OPTI
= o 4 Character Tield of length 40

Internal length 000940 External Tength 000040 OTTset 000108

Data type CHAR Data element CHARAD
= o § Character Tield of Tength 40

Internal Tength 000240 External Tength 000040 OTTset 000146

Data type CHAR Data element CHAR4D

Figure 246 “ALEREQD1" IDoc Type

Standard Methods for the |Doc Generation 2.1

The actually sent fetch message contains information on the message
type that is expected as the response, the short and the long name
(before or after Release 4.0), and the keys of elements that are supposed
to be sent as a response. Figure 2.17 shows a MATFET IDoc that request
the 75M1 material. For the MATMAS IDoc, both the long and the short name
is "MATMAS" because this is a very old message type.

MESTYP [Logical message te MATMAS
MESTYP40 Meszage Type MATHAS
SEGMIUIM Segment Mumber 000002
SEGMAM Segment Mame E1ALEQ1
OBMALLE Object value fwith old lenath MATMR
SIGH ABAP: ID: WE (includefexclude |
OFTION |ABAF: Selection option (EQUBTS EQ

LOW |Character field of length 40 ZSM1

Figure 247 MATFET IDoc

Because master data is usually exchanged between different systems of
the same enterprise, logical systems are used as partners like they are
used in ALE.

21.2 Message Control

The message control is a standard function of SAP, which triggers a data
transfer for all transaction data that is supposed to be received by other
enterprises, too. This can be done using a printer, fax, or an IDoc. For
processing using IDocs, you can use transmission medium 6 for processing
using partner functions, and you can use transmission medium A for pro-
cessing using logical systems. All the required settings for the message
control are in Transaction NACE.

You use the condition technique to specify when you generate which
messages in which way. The key for the conditions is composed of the
application you're in (e.g., "EF" for purchasing), the output type you
want to generate (e.g., "NEU" for a purchase order), and the partner role
everything will be sent to (e.g., partner “vendor" in its role as goods
vendor).

43

Example of
“MATFET" IDoc

Message control

2

Generating 1Docs

“EDI_
PROCESSING"
function

Outbound partner
profile

Process code

Message codes
and message
functions

In message determination, the actual message is generated using the
RSNASTOO report. The EDI_PROCESSING function that is used here transfers
the message as an EDI message using the IDoc; it belongs to transmission
medium 6. Depending on the system setting, you can call the RSNASTO0
report directly upon saving the document or at regular intervals as a
batch job.

In message control, an EDI communication is usually assumed so that you
work with partners and not with logical systems.

The information on how an IDoc is sent to the receiver (e.g., via RFC or
file) and whether an EDI subsystem is supposed to be used if necessary,
is set in the outhound partner profile in Transaction WE20 both for the
communication with partners and for the communication with logical
systems.

Here, you also specify which IDoc type is supposed to be used. If you
work with the message control, in the outbound partner profile under
the Message Control tab, you specify which process code (and which
underlying function module) will be used to populate the IDoc data. You
can find the valid process codes for the respective output type in Transac-
tion WE41 (Figure 2.18).

Dialog Strscture I| Process oo HE18 ORDERS: Purchase order

=] Outbound process code
Sl Logical message

[Azsignment to Iogical message
* Message pe ORDERS Purchase ordar f ordar
Al bypes

= Message code
Al codes

* Message funclion
AR Byrichons

Figure 248 Assignment of the Process Code to the Message Type

You can also specify the optional message codes and message functions,
which you know from the partner profiles, to be able to use different
process codes for updating the IDocs. Message codes and functions are

Standard Methods for the |Doc Generation

freely selectable, and you don't need to adhere to naming rules. How-
ever, this also means that no input help is provided in Transaction WE20,
so you must ensure the correct spelling of the names yourself. In the
details of the sample process code for the ORDERS generation, which is
shown in Figure 2.19, you can view the link to the associated function
module.

Dialog Structure |
= {80 Qutbound process code;
CJLogital message

Process code ME1B
Description ORDERS: Purchase onder

Function module |IDOC DUTPUT ORDERS

Option ALE-Senicedink, procg
* Processing with ALE senice
Procassing wio ALE sarvice
Processing w. trigger (nbownd)

Version of funclion module
@ Processing with function module version 3.0
Processing with function module version 2.2

Figure 219 Assignment of the Process Code to the Function Module

Under Option ALE-Service/Inb. Procg, you can select whether the ALE
services are supposed to be used or not. The ALE services represent
options of IDoc manipulation using filters and rules. Chapter 4, Section
4.1, Customizing, discusses the ALE services topic in more detail.

Because you often require a lot of partner profiles — especially if you
work with partners — you have the option to create templates to save
some time. The partner profile from Transaction WE20 can be created
from this template, so you don't need to create it manually. Transaction
WE24 is the transaction for the template in the outbound processing (see
Figure 2.20). Transaction WE27 is the corresponding transaction for the
inbound processing.

45

ALE services

Default values

2.1

2

Generating |Docs

Warehouse
management
example

Change View "Proposal for outbound partner profiles”: Details

Parin.Type [LT| vendor
Direction 1

Message Tyne |ORDCHE
Pariner Role (T1€)
Message code

Message function

[#] Collect IDocs

[[] start subsystem

Receiver port :SUESH'ST EM | Portfir ein EDI-Subsystemn via Dateischnitistalle
Basic fype DELFORD1 Delivery schedulefIT schedule
Extension '
Wi
Recipient type :I:I Organizational unit
Reciplent 58018120 EDI Department
Message conlrol parameter
Application EF: [¢] Change massage
Output type (NEU
Process code (out) ETT ORDCHG: Purchase order change

Figure 2.20 Default Values for Qutbound Partner Profiles

2a.3 Special Functions

In some cases, a speciﬁc business process can be implemented com-
pletely locally on an SAP system or distributed across multiple SAP or
non-SAP systems. IDocs are only generated when processes are distrib-
uted across multiple systems, and the generation can be activated via the
Customizing functions of the respective application. Warehouse manage-
ment is an example of this direct IDoc generation. The default setting
of warehouse management assumes that your warehouse is managed by
your SAP system. If this isn't the case, you can activate the connection of
your warehouse system via ALE in Customizing. This connection causes
a WMTORD IDoc to be generated directly when you create a warehouse
transport request to notify the external warehouse of what is supposed

46

Standard Methods for the 1Doc Generation

to be transported. However, these special cases can't be described in
general but instead must be named and set up in cooperation with the
individual end-user. Because all transactions that are required for such a
special case are module-specific, they are not discussed further here, but
just be aware that such special cases exist.

Within the scope of ALE scenarios, there can also be cases in which
sample postings are implemented synchronously via BAPI, and the actual
postings are implemented asynchronously via IDoc. Then, the BAPI is
created on the development side, and the appropriate IDoc is generated
using Transaction BDBG. You can also use this transaction if SAP doesn't
provide an IDoc for a BAPI and you still require it for a distribution sce-
nario that isn't provided for by SAP. Again in this case, you must observe
the naming rules for customer objects.

Figure 2.21 shows an IDoc generated by SAFP in the SAP namespace. In
the IDoc Interface tab, you can view the names for the message type
and the IDoc type; in the ALE Qutbound Processing tab, you can view
the function group in which the IDoc modules are located as well as the
name of the module that generates the IDoc; and in the ALE Inbound
Processing tab, you can view the name of the module that extracts the
IDoc in the receiving system and triggers the update.

The process of generating an IDoc from a BAFI is as follows:

1. The sending system wants to call the BAPI and checks whether this is
supposed to be carried out locally or remotely.

2. If the call is remote and is supposed to be carried out transactionally,
the function module that is generated in Transaction BDBG is called
in the sending system. This function module transfers the transfer
parameters of the BAPI to the IDoc format.

3. After you've made the settings in the customer distribution model
and in Transaction WE20, this generated IDoc is transferred to the
receiving system.

4. In the receiving system, the BAPI_IDOC_INPUT] function module is
called using the BAPI process code or BAPI_IDOC_INPUTP using the
BAPP process code; this depends on whether one or more data records
are received simultaneously. These function modules call the inbound
function module that is generated in Transaction BDBG, which extracts

47

IDoc - BAPI
interface

BAPI processing

2.1

Asynchronous
BAPIs

Determining the
target system for
synchronous BAPIs

Generating |Docs

the IDoc and uses the transferred data to call the original BAPI that
carries out the actual update.

Generate ALE Interface for BAPI
m Check inferface | |di Display interface || s Display available inferfaces |

Oujectintarface Type |BUEEROE

Mathod |POST

Category

= CRRETRE W Enter Interface Paramatns &
Interace

IDoc Interface
Message Type |ACC_EWPLOYEE_PAY
IDoc type |ACC_EMPLOYEE_PAYDZ
Patkage |ACID_IF
ALE Quthound Processing
Function Module |ALE_ACC_EMPLOYEE_PAY_POST
Function group ACAE |

[¥] Data Filtering Allowed

ALE Inbound Processing

Function Maodule | 1DOC_INPUT_ACC_EMPLOYEE_PAY
Function group |ACC4 |
[#] Call in Update Task
[¥] Packet Processing Allowed
v|[x]

Figure 2.21 |Doc Interface to a BAPI

Because both cases represent an ALE scenario, you maintain the cus-
tomer distribution model for BAPIs and IDocs. For the BAPIs, you enter
the methods that must be processed both synchronously and asynchro-
nously via IDocs. Additionally, you require partner profiles for the trans-
actional case as usual. If you have these partner profiles generated from
the distribution model, the system automatically knows for which BAPIs
there are message types and thus for which it requires a partner profile.

Use Transaction BD97 to maintain the destination for the synchronous
BAPI call in a remote system. This can be done both generally for all
method calls and only for special BAPIs and for dialog calls. You need
the dialog calls if you want to work with the IDoc tracing in Transac-
tion BD87. The distinction with regard to dialogs is made for security
reasons.

48

Use of Logical Systems in the Message Control 2.2

Because a dialog user must be used in the RFC destination, this user
should have only a few authorizations.

Figure 2.22 shows an example for each of the three cases.

Assign RFC Destinations for Synchronous Method Calls
2| [8[%][2] D standard BaP1 destinaton | [Standard dialog destination | [Special methad destination | 57|

TOOCLNTAZE $00 client 900

e AHRCLNTO0A AHR (HR system) client DGO
——AHRCLNTOO3 AHR (HR system) client BB3
———AHRCLNTOO6 AHR CATTS client BO6
——AHRCLNTOZE AHR CATTS cliert 626
——ALI_B0_808 AIl System client @00
—AINI Auto ID Node 1

—AINZ Ruto 1D Node 2
——AIN_EDD Auto ID Node 2.1 client BOD
——AIN_BOANEN Auto 1D Node client 888 NB 1
——ALRCLNTEE8 ALR client 088 ()
———ALRCLNTOAE alr Mandt 006
———ALRCLNTOG2 ALR Mandant 062
———AFOCLNT108 APODCLNTIOR

— APOCLNTEED APOCLNTEOO

= Standard RFC destination for BAFI calls
APOCLMTAGA EARE)
G Standard RFC destination for dialog calls

ALEMRNY Test ALE communication with Manugistics

—13 RFC destinations Tor special method calls
RcctngEmplyeaPaybles Check Accounting: Check Yendor Acct Assignaent for HR Posting (DAG:LOAD PAYABLE)

BRCEEND

Figure 2.22 Customizing for Synchronous BAPI Calls in ALE Scenarios

The standard destination for BAPI calls for the APOCLNT800 logical sys-
tem is APOCLNT800, the destination for the dialog calls is called ALEMANU,
and the BACKEND destination is used for the AcctngEmplyeePaybles. Check
method only.

2.2 Use of Logical Systems in the Message Control

Transaction data may be exchanged within ALE scenarios. For example, “ALE_

this could be the scenario of central sales/decentralized shipping. Here, ~PROCESSING”
purchase orders, deliveries, and invoices are exchanged between plants subroutine

of the same enterprise. For this case, in message control, you simply use

the customer or vendor as the partner. Instead of “6" for the EDI pro-

49

2

Generating 1Docs

Message control
and ALE

Uniqueness of the
assignment

cessing, however, you enter "A" for the ALE processing as the transmis-
sion medium for the found message. As a result, the system no longer
uses the E0I_PROCESSING subroutine and instead uses the ALE_PROCESS-
ING subroutine.

You then maintain a customer distribution model as usual and use a
logical system as the sender and a logical system as the receiver of the
message. After the message control within the application, the transmis-
sion medium A reads the customer distribution model and replaces the
partner found in the message control with the logical system found in
the model. For this purpose, you need the assignment of output types to
message types. They are available in the process codes in the outbound
processing in Transaction WE41 and in the settings that you made for the
message control in the outbound partner profile in Transaction WE20.

The data from Transaction WE20 is evaluated in the ALE_PROCESSING
subroutine. Because the subsequent receiver isn't yet determined in this
first step, the system searches using the “Logical System" partner type
and the output type only. If more than one entry is found in Transaction
WE20, for example, NEU - ORDERS, which would be the standard, and
NEU - ZSMORD for a self-programmed message type, ALE_PROCESSING can-
cels with an error. You establish the required uniqueness by using your
own DLIIPLIT. I}FPES for your owr message t_}"pES.

The search via the “Logical System” partner type and the partner type
results in the benefit of a reduced number of partner profiles. Then you
can just have a partner profile for the logical system instead of a partner
profile for each vendor or customer.

2.3 Summary

In this chapter, we've taken a closer look at the creation of IDocs. You've
learned which methods for creation exist and how they are related to
the different needs of different processes or data types. The decision as
to which one should be used is made by SAP.

Now let's take it a step further regarding our work with IDocs. The
next chapter will teach you how to test the creation and the posting of
[Docs.

50

“Anything that can go wrong will go wrong." (Murphy's Law)

To ensure that as little as possible goes wrong in your production
system, SAP provides a variety of test tools, each of which are
described in this chapter.

3 Test Tools

A business process that spans several systems can't be fully tested and
accepted unless all of the partners test the process. However, basic set-
tings usually undergo a preliminary test, without any involvement by
your partner. During the definition phase, it may also be necessary for
you to determine exactly which fields are contained in an IDoc, and of
these fields, which are needed for a particular scenario. For this basic
test, SAP has delivered a test environment in which systems can generate
and post IDocs without having a suitable SAP system group. These IDocs
can then be used as sample 1Docs or templates for the partner.

You can manually create IDocs and post them to your own SAP system,
as well as make IDocs available for outbound processing. All of the test
tools are stored under the area menu in Transaction WEDI. Figure 3.1
shows the seven test transactions provided there,

SAP Easy Access |IDoc and EDI Basis
3108 | &5 | 8 0mermens || @[]]| [=] (=] | [Croctoote |

Ol Favorites
A WEDZ - Display IDoC
P [l Administration
= 3 Test
1) WE14 - Tost ool
1) WE15 - Dushound Trom MG
2 WE14 - Dufhiound Processing from IDag
) WE14 - Generate Status File
) WE1T - Process Status File
£} WE12 - Inbound procg of modied outh file
) WE16 - Inbound procg of orig.ing file
I [l Documentation
P [Dévalopment
b [conral

Figure 31 Test Transactions in the Area Menu of Transaction WEDI

51

Testing without a
partner

Inbound and
outbound
processing

3 | Test Tools

Transaction WE19

IDoc template

Manual test IDoc

Part of these transactions is also available in the menus of those applica-
tions that frequently work with IDocs. However, this chapter will pri-
marily focus on using individual transactions, rather than showing them
in a specific module. Note that most values entered for test purposes are
case-sensitive.

34 Individual IDocs

Transaction WE19 is the test tool for individual IDocs. You can choose
whether you want to use a finished IDoc as a template or whether you
want to create a completely new IDoc based on a message type or IDoc
type. You can also use an existing file. In this case, however, you must
use a flat file because XML files aren't supported.

Transaction WE19 is particularly helpful if it's not yet clear which IDoc
fields must be filled and which values must be specified. You can run
through several variants until you've determined the field information
relevant for your set of tasks. Figure 3.2 provides an overview of the ini-
tial screen as well as the selection options available in this transaction.

Test tool for IDoc processing

T
o

Template for test
@ Exlsting IDoc | [=
() BasicTyp
withEnhancement
DVia message type
CIFile as template
O wifo terplate

[JuUnicode

Figure 3.2 Test Tool for Individual 1Docs

After you've called an IDoc, you can structure it so that it fulfills your test
requirements. Each segment can be edited separately. While you're in
edit mode, you also can clearly see which field you're working in with-
out having to count the fields. You can also add more segments. If you're

52

Individual IDocs | 3.1

using the template option, the system checks some (unfortunately, not
all) of the required properties of the IDoc type or message type that
you've selected. All of the variants are checked to determine whether
mandatory segments are missing or whether the segment in use exists in
the segment definition in the SAP system. Figure 3.3 shows the segments
of an example IDoc in Transaction WE19.

OC 8ADMORADADADOTEETASTOD D3 1SALES LESALES
!tl ENMARKHI a0szEmt 200G0B1TARISELSA 03002040 1] FERTH OLD WUHEER FLE
BOSESabines Demo Hateria) EN

(———E1HARCH A0S0V g 0 moop B, 02 2.0 o .00 B.0a0
f——E1HARMN QOSCT B 1 a.6a8 0008 0.00a 0.00a a.6an
———E1HARAN BOSPCET 1 8. e LI 0. 0049 0,808 [0
p——E1N¥KEN B0536a681 b T O 6880 8.6a8 0808 MORN
——E1HLANN BOsUE UTxN

Figure 3.3 View of an |Doc in Transaction WE19

You can now edit both the control record and the data records and, for Editing the

example, send an IDoc to a receiver other than the original receiver. As
you can see in Figure 3.4, only the most important fields in the control
record are displayed initially. However, if you also want to view or edit
the other fields, simply choose All Fields.

Edit coniral record fields

24

[JTestFlag

Figure 3.4 Editing the Control Record

53

control record

3 | Test Tools

Test flag

Processing the
test IDoc

The test flag plays a special role if you actually send test IDocs to other
systems. For every single partner profile within inbound processing in
SAP systems, you can determine whether the Test Flag will apply to real
or test IDocs. If you set the Test Flag, you can receive the IDoc, save it to
the database, and view its contents in Transaction BD87, but you can't
post it. Other systems that exchange IDocs or EDI messages usually have
similar built-in security mechanisms for test purposes.

Each time you double-click a data record, you get a list of all possible
fields for this segment. You also can scroll down through the entire data
record (see Figure 3.5). If you're not working with a template, you enter
the field contents that you require here. If you're working with a tem-
plate, the values of the template IDoc are prefilled, and you can change
them as required.

[E- Change Data Record

MEGFN 005
MATMNR ZEm1
ERSDA 20081006
ERNMM MAISELSA
LAEDA 20081006
AEMNAM MAISELSA
PSTAT kKNVE
LVORM

MTART FERT
MBRSH]

MATEL oo107
x|

Figure 3.5 Editing a Data Record

Now that you've created your complete IDoc, it can be processed. In
other words, it can be tested with the relevant standard settings for
inbound and outbound processing. For inbound processing, additional
test options are available, either directly by entering a function module
or indirectly by using a file (we'll describe this in greater detail later).
Figure 3.6 shows standard inbound processing. All of the data is obtained
from a partner profile, and it can't be changed. If no partner profile is
found, you can create an IDoc, but you can't post it.

54

Individual IDocs | 3.1

(= Test inbound ID0C using partner profile

Figure 3.6 Testing Standard Inbound Processing

When you use the Test Using a Function Module option, it's possible to Test using a
directly specify a function module for IDoc processing (see Figure 3.7). function module
The test IDoc is then processed with this function module, irrespective of

whether or not a suitable partner profile exists. This enables testing to be

completed prior to the final settings, which are sometimes implemented

by others. You can also test your own developments here and navigate

directly to debugging, if necessary. If there are several process codes and

several function modules for the same message type, you can also run

through all of them here. You can then use the results to determine the

most relevant process code for your purposes.

[= Test inbound IDoc using a function module [= ‘
Function Module | TDOC_TKPUT_MATHASE1 [=
[[] Gall in debugging mode

Call ransaction processing

Figure 3.7 Extended Test in Inbound Processing

55

3 | Test Tools

Test IDoc as afile The two scenarios described previously — a test using the standard set-
tings or a test using a function module — work directly in the SAP sys-
tem. Frequently, however, you also have to import partner files into your
business processes. To prevent errors from occurring, your partner will
most likely appreciate a sample file whose structure can be used during
live implementation. By using a file to test inbound processing, you can
write such a file with several IDocs and then process it directly.

Testing inbound ~ Writing a file with a repeat factor in append mode can also be used as the
processing hasis for mass tests for performance analysis purposes. Consequently,
IDocs are generated from your data as often as permitted by the repeat
factor and then placed in a large shared file. To use this function, you
must enter a valid file port for which you can activate or deactivate Uni-
code (see Figure 3.8). However, you must specify the file path yourself

because it can't be obtained from the port information.

|[Z='Test inbound IDoc using file E

File name \Mocalhostidemofalderdemafile
Start IDo¢ inbound processing of file immediately
Mo. of IDocs to write in file (repetition factar) 1

File mode <

® Crerrite file
O Append IDoc 1o file

Inbound processing

Port SNFILE Sabines Testpor for Files
[¥] Unicode

%

Figure 3.8 Testing Inbound Processing Using a File

Status values of No matter which of these three test methods you use to create an
the test IDoc jnhound IDoc, the IDoc is stored with an additional status record that
always indicates that this IDoc was not really created but rather created

using test Transaction WE19. However, the real changes are written to

56

Testing Processing of Multiple IDocs | 3.2

the database, so you must carefully consider whether you want to per-
mit the use of this test transaction in a production system. Figure 3.14
in Section 3.3, Processing Status Files, shows the status values of an [Doc
created using test Transaction WE19. In outbound processing, the test
status value is 42: IDoc was created by test transaction.

When testing outbound processing, you can also send several IDocs at
once. However, you don't have the previously mentioned additional
options of debugging or working without suitable partner profiles here.
You can only use standard outbound processing. As you can see in Figure
3.9, all of the information you require (apart from the repeat factor) is
obtained from the partner profiles. These settings are then used to send
an IDoc to a partner.

II:E'OLIthuund processing of (Do IE]/
[¥] Start IDoc outbound procg of file immed.
Mo. of IDocs to be generated (repeat factor) 1
Recemer port SAPSM
PorType IRFC Port
Log.destination: DEST_Sm1
%]

Figure 3.9 Testing Standard Outbound Processing

3.2 Testing Processing of Multiple IDocs

Only one IDoc was created when we used the test methods described
in the previous section. However, you also have the option of creating
multiple IDocs at once. We'll now describe this option in detail.

3.21 Message Control

If message control is used to generate IDocs, the application frequently
configures the parameter settings there. The actual IDocs are first gen-
erated using a scheduled report (and not as soon as the document is

57

Testing outbound
processing

Test transaction
WE15 and report
“RSMNASTOO"

3 | Test Tools

Advanced dispatch
of finished IDocs

posted). Frequently, this process can't be adapted for test purposes, and,
as a result, you must rnam_lal]_}»r start the relevant report each time you
want to test an IDoc. To make life a little easier for you, Transaction
WE15 is available for generating IDocs from message control records.
This transaction directly references the report RSNAST00, and it’s listed in
your EDI overview menu WEDI. Figure 3.10 shows a purchasing exam-
ple that uses the standard message type delivered by SAP.

Selection Program for Issuing Output

Selection parameter
| Output application EF (=) o E
Object key 4500017125 to =
Output type MEU to =
Trangmission medium [to E
[]2end again
Sort

Parameter for calling up the processing programs
Printer default
Spool: Suffix 2

Figure 310 Test Transaction for Message Control

The main difference between this test transaction and all other test trans-
actions is that an IDoc that was actually generated by an application is
sent earlier than planned, instead of waiting for the system to execute
the report RSNASTO0 by default. A new IDoc isn't generated (the original
job scheduled later doesn’t generate this IDoc again). In status monitor-
ing, you can't see how this IDoc was generated because it simply starts
as normal with status 01: IDoc generated.

3.2.2 Sending Ready-for-Dispatch IDocs

Transaction WE14 is the only transaction that can be used to anticipate
a job that is otherwise scheduled on a regular basis. Here, ready-for-
dispatch IDocs (status 30) are dispatched before the regular “date," if

58

Testing Processing of Multiple 1Dacs | 3.2

you don’t want to wait until then. However, you can also set the test flag
here, so that your partner knows that he should not process the IDoc.
Figure 3.11 shows how you can use Transaction WE14 to specify which
[Docs you want to create.

Similarly, this transaction doesn’t generate a new IDoc. Consequently, Standard report
in Transaction BD87 (IDoc Monitor), you can't identify a difference to "RSEOUT00”
the IDocs that are dispatched regularly via a background job because

Transaction WE14 also provides special access to the standard report

RSEOUTOO.

Process All Selected IDocs (EDI)
|00 Mumber | | to ' . |

Basic Type

Queue Name [
Send completely? ‘I’
Port of Receiver '
Partner Type of Receiver

Partner Function of Receiver

Partner Humber of Receier { o
Logical Message _ to =
Last Changed On : o
Last Changed At 00:00:00 o 00:00:00 e
Output Mode

[Test Option

Maximurm Mumber of IDocs _ 5. 008

Figure 3141 Selection of IDocs to Be Sent

3.2.3 Files

In addition to testing individual IDocs, you can also process complete
files with IDoc data. You can create these files or they can be transferred
from a partner. Here, we'll assume that all of the data in the partner file is

59

3 | Test Tools

Editing the
control record

Changing the
sender

correct and simply needs to be imported. This is done using Transaction
WE16. Once again, you only have to enter the file name, file path, and
port, as well as set the Unicode flag on the input screen.

In the case of files that you create yourself, you can either create a file
in an editor, which is a very laborious task, or you can use a test tool
in outbound processing to create a file that will contain the data you
require. In the latter scenario, however, your logical system is specified
as the sender (and not the receiver) in the control record. Therefore, the
control record can't be used for your purposes. SAP provides Transaction
WE12 here, which you can use to obtain the business data from the file
specified as well as manually enter the control record data. The resulting
file is then temporarily stored again.

You can, for example, make this file available to a partner as a template.
Figure 3.12 shows part one of the required information on the Sender

tab page.

Maodification of Outbound File Triggering Inbound Procg
&

e ———

WEAsapLsM 115 YS\globaRSMFILE_OUTBOUMND

 Target <

WsnsaptsM1EYSglobahSMFILE_INBOUND

Figure 312 Transfer Data in Sending System

60

Processing Status Files | 3.3

On the Recipient tab page, you enter part two of the information required
to override the control record (see Figure 3.13). IDocs generated using
Transaction WE12 also obtain the value 74: Inbound IDoc from test trans-
action as their first status, so that it's always clear that they are for test
purposes only.

Modification of Outbound File Triggering Inbound Procg

lusnsaplSM1SYSiglobalSMFILE_OUTBOUND

lusnsaplSMIEYSiglobalSMFILE_INBOUND

Figure 343 Transfer Data in Receiving System

You now know all of the options available for generating 1Docs from test
transactions. In the next section, we'll turn our attention to status files,
which also have some good test options.

3.3 Processing Status Files

IDoc processing is always an asynchronous process, which means
that, if no further action is taken, you don't receive any information

Changing the
receiver

3 | Test Tools

“STATUS" and
"SYSTATO1"

about whether or not the partner has successfully processed your IDoc.
However, because this information is f’l'.ﬂ.'u:{m?ntl_}»r required, there are vari-
ous ways in which your partner can make this information available to
you.

One of these options, which is frequently used by EDI subsystems,
involves resending an IDoc with message type STATUS and IDoc type
SYSTATO1 along with an IDoc status file. Normally, the sender doesn’t
know if the receiver was able to successfully process its IDoc. However,
the receiver can use a status file or status IDoc to make this information
available to the sender. The status IDoc will be described in greater detail
in Chapter 5, Section 5.2, STATUS IDocs. Testing concerns the status file
only.

Figure 3.14 shows the status values of an IDoc that has already been dis-
patched. This IDoc will be our starting point for testing status files. The
status values 01: IDoc generated, 30: IDoc ready for dispatch (ALE service),
and 03: Data passed to port OK are the status values that an IDoc must
receive at least once so that it can be dispatched successfully. In addi-
tion, status 42 specifies that the test transaction has successfully created
the IDoc. Because IDocs can also be viewed by auditing authorities, if
required, it must be clear that an IDoc is either “real” or has been cre-
ated for test purposes. SAP uses status value 42 to take this situation into
account.

IDoc display

| || Technical shortinfo 7

(&) Conirol Rec.
b [Data records
= 4 Status records
b [= 03
= 30
=i
[=

= {JiDoc 000000G000768750

Total number. 000008

Data passed to port OK

IDoc ready for dispatch (ALE semvice)
IDoc generated

IDoc was created by test transaction

Direction
Current status

_ﬂ Dutbox

03 oco

Basic type

MATHASES

Exension
Message type

HATHAS

Fartner Mo,

Z5M1 i

Fartn. Type

L&

Fart

SAPSM1 |

Figure 314 Status Values of an IDoc Created Using Transaction WE19

62

Processing Status Files | 3.3

When testing a status file, the first step is to create a status file in Trans- Creating a
action WE18. The system proposes certain default values that are used ~status file
when creating a status file, for example, 05: Error During Translation (see

Figure 3.15). You can edit these status values and add new values, if

required.

Generate test status file for outbound IDocs
cUEBEE
IDoe number 768745 |
Pariner Number |SF-LES ' Sales system (client 810)
Parin Type LS| Logical system
Parner Role]_|
Message type MATMAS] | Material master
Message Variant |
Mess. function [] [Test indicator
|status [Date Time IDoc number Status text
IUE 08/17/2008 [20:27 .50 |DOO00RANOOTEET4S |Error During Translation
IBE B8/17/2008 |20:27 .50 0O000000D0OTEET45 Translation QK
08/17/2008 [20:27 .50 000000Q0OO7YGET4S Eror during interchange handling
10 08/17/2008 [20:27 .50 |DODO0AOOEOTEET4S Interchange handling Ok
11 BE/17/2008 202750 DO0DO0ABEOTEET45 Eror during dispatch
12 B8/17/2008 [20:27 50 00000000OO7GAT4S Dispatch Ok

Figure 345 Creating a Status File

The status values themselves are made available via the input help, Possible status
which contains all of the status values that are possible here from SAP's values
perspective, namely all values that belong to processing layer S = exter-

nal system/EDI subsystem. A list of possible status values is provided in

Transaction WE47, Status Maintenance (see Figure 3.16). Unfortunately,

the descriptive short text can't be transferred at present. There is also no

separate help, which means that you must manually enter the short text

in test Transaction WE18.

63

3 | Test Tools

EO0REBESE

Description
04 Error within contral infarmation of EDI subsystemn
05 Error During Translation

06 Tranglation Ok

a7 Error during syntax check

1]:] Syntax check OK

09 Error during interchange handling

10 Interchange handling Ok

11 Error during dispatch

12 Dispatch Ok

13 Retransmission OK

14 Interchange Acknowledgement positive
15 Interchange Acknowledgement negative
16 Funclional Acknowledgement positive

17 Funclional Acknowledgement negative
22 Dispatch O, acknowledgement still due
23 Error during retransmission

24 Control information of EDI subsystem Ok
36 Electronic signature not performed (timeouf)

Figure 3146 Possible Status Values for the Status File

Status file In the next step (see Figure 3.17), you use the Directory + file field to
according to your specify where you want to save the new file, and you use the Start Status
specifications Processing Immediately flag to specify whether you want the file to be
processed immediately. The system then creates a status file according
to your specifications. Your partner can now use this file as a template

for creating such files.

[Wirite and process status records in a file
Generate test status file for outbound IDocs
Pon
|SMFILE |

[Unicode
Directory + file

wensapsMsYswlobahsStatus_sabine_demo

Start statuz processing immediataly

(T
‘@

Figure 347 Input Values for Saving the Status File

64

Processing Status Files | 3.3

You can now use Transaction WE17 to import a status file (that you've Importing the
created yourself or transferred from a partner) into your system. The status file
path and port specifications correspond to those specified in the trans-

action shown previously (WE19). For test purposes, it doesn't matter if

you've created the file yourself or if the file has been transferred from a

partner. In addition to your previous status values, the IDoc also gets the

new status values from the status file. Figure 3.18 shows the outcome

when you use the data entered in Transaction WE18.

Dot display |
< [IDoc D000000000768759
& control Rec.
P [Data records Total number: 000008
= {3 Status records
12 Dispatch Ok
D 11 Error during dispatch
=10 Interchange handling Ok
B Error during interchange handling
= o8 Translation Ok
@ 05 Error During Translation
P [E03 Data passed to port OK
& 30 IDoe ready for dispateh (ALE service)
B mn IDoe generated
b |:| 42 IDoc was created by test fransaction

Figure 348 Status Values of IDoc After Importing the Status File

As you can see, the status values in Figure 3.18 are success and failure Response to
status values. Note that, in the case of error messages, you can trig- status values
ger error workflows (error Transaction EDIS) again, and the IDoc may

get a status that makes it ready-for-dispatch again. The last original sta-

tus (03: Data passed to port OK) is a status value that doesn’t allow

the IDoc to be dispatched again. The option of using the new status

value to reschedule an IDoc is often the reason why such status val-

ues are exchanged with an EDI subsystem or another partner. As far

as the SAP system is concerned, there are no problems once an IDoc is

dispatched successfu]l}r. Consequently, there is no need to dispatch the

IDoc again. If the receiving system experiences serious errors and needs

the IDoc again, it must inform the sending system. Without the use of

status 1Docs or status files, it would not be possible to subsequently

assign a new status to IDocs that have been successfully processed in the

SAP system.

65

3 | Test Tools

3.4 Summary

In this chapter, you learned about test tools. Now, you should be able to
test the IDoc connections that you would like to use with your partners
without having to involve the partners. Depending on the direction of
the IDoc (inbound or outbound), you can figure out the test tool that fits
your needs best. You also learned how status handling can be tested as
needed. By knowing that the standard process works as necessary, we
can move onto the adoption of special needs to the SAF Standard IDocs,
in Chapter 4.

66

So far, this book has described the use of SAP-provided IDocs. In
this fhaprer, _yuu‘ﬁ learn how you can customize these IDocs with
options ranging from slight Customizing adjustments to complex
custom developments integrated into exits.

4 Changes to IDocs

The SAP-provided standard IDoc types (which are also called basic types)
consider fields that are included in the SAP standard and relevant for the
corresponding scenario. This may not be sufficient for the process you
want to provide, particularly if customer-specific enhancements have
been implemented in the application transactions, which are corre-
sponding to the IDoc types. Consequently, there are various options for
changing IDocs that apply to both the data volume and the data content.
You can even completely suppress the generation of IDocs under certain
circumstances. The changes can be made via Customizing as well as by
using the entire range of enhancement technologies provided by SAP,
which are introduced in this chapter. Let's start with the Customizing,
which requires the least interference.

41 Customizing

Customizing provides several options for suppressing parts of IDocs or
entire IDocs and processing content of IDocs using rules. Customizing
through filtering and conversion is used most often and can be imple-
mented relatively easily, which is why it's introduced first.

411 Filtering Using Filter Objects

You can configure filtering with filter objects in Transaction BD6é4 in the
customer distribution model. If SAP provides these, you can select filter
objects and assign values to them for any object that is available in a cus-
tomer distribution model view. Each filter object corresponds to a field.

67

Changes to the
standard version

Filter objects

4 Changes to |1Docs

Filter groups

Positive filtering

Suppressing |Docs
using filters

You can also combine filter objects. In this case, AND as well as OR links
of multiple fields are feasible. The distribution model directly indicates
if a message type contains filter objects (see Figure 4.1).

Change Distribution Model

Vsl 4] system view |[SE Filter model display | [} Create model view

Distribution Model | Description! technical name
= Model views
= E_zéu_wew ZEM_VIEW
= [Sabines Demo System 1 Z5m1
=~ [®] Sabines Dema System 2 Z5Mm2
= iy MATMAS Material master
Mo filter set

Figure 41 Distribution Model Without Filtering

If filter objects are available, you can create filter groups for the respective
message type. Your settings always refer to a combination of sender and
receiver, so you can decide for each sending or receiving system if filter-
ing will be implemented or not. Figure 4.2 shows an example with two
filter groups, where each filter group includes two filter objects (Material
Group and Plant as well as Material Group and Division) that contain
two value instances each. The link is designed so that the conditions of
one or the other filter group must be met. If conditions for multiple filter
objects are specified within the filter group, all conditions must be met.
Within a filter object, one condition must be met.

If a filter object belongs to an optional segment of an IDoc, the system
generates this segment if the filter value is met; the system doesn't gener-
ate the segment if the filter value isn't met. In the example from Figure
4.2 with plants 1000, 2000, 3000, and 4000 assigned to a material, the
system would generate two EIMARCM segments for the first filter group,
that is, the segments with plants 1000 and 2000, and would suppress
the other two segments.

If a filter object belongs to a field in a mandatory segment, the system
suppresses the entire IDoc if it can't generate the segment. In our exam-
ple, the system would generate IDocs for materials with the FERT and
Hawa material types; for the HALB material type, it would suppress the
IDoc completely. For a material (independent of the material type and

68

Customizing | 4.1

plant) that belongs to the 002 or 001 material group and 01 or 10 divi-
sion, the system would generate a complete IDoc according to the rules
of the second filter group.

Display Distribution Model
va 1[40 System view |[E Fitter model dispiay |[) Create model vew
| Distribution Model | Descriptions technical name
= Model views
= gn ZSM_IEW ZEM_VIEW
& Sabines Demo Systemn 1 ZEM1
= [®] 5abines Demo System 2 ZEM2
= {my MATMAS Material master
<= F Data filter active
= JEI Filter group
= Ih Material Group Material Group
E¥FERT Mo short text maintained
EF Hawa Mo short text malntained
= G Plant Plant
1000 Werk Hamburg
E¥ 2000 Heathrow | Hayes
= () Filter group
= [Material Group Material Group
001 Metal processing
E¥ 002 Elecironics
= G Division Division
En Mo short text maintained
E¥ o Mo short text maintained

Figure 4.2 Distribution Model with Filtering Using Standard Filter Objects

For message types that belong to an object type that allows for classifica- Filter object "class"
tion, you can also filter by class memberShip. Whether this is possible is

described in Transaction BD&0, which you already know from Chapter

2, Section 2.1.1, Shared Master Data Tool. Figure 4.3 displays a part of

Transaction BD60 showing the settings for the MATMAS material master

message type. These settings are implemented by the developer of the

message type because this is the only person who knows if an appropri-

ate classification object is available.

Classification Data
Classifiable Object (MARA |
ALE Object Type (HATNR |

Figure 4.3 Transaction BD&0O

69

4 Changes to |1Docs

If filtering by classification is possible, this is indicated in the filter group
as a specific filter object, namely, Dependent on Class Membership (see
Figure 4.4). However, the corresponding filter mechanism is only acti-
vated here. For actually using the filtering, further steps need to be

performed.

Display Distribution Model

(2] 128 ¥ =1 [0 Svstem view | [T Filler model display | [Create model view | [Ao BaFI][0 Add message toe |

Dilstribution Model |escriptions technical name [Business object
= Model views
= B8 7aw_VIEW ZSM_VIEW
= =] Sabines Demo System 1 ZEW1
= [abinez Demo System 2 I5M2
= hw Material rriaster
= TF Data filter active

= lgh Filter group

[Dependent on class membarship Requires classes io be defned in the sending systerm [+ Dependant on class membarship

Figure 4.4 Filtering by Class Membership

In general, you can maintain the customer distribution model in both
the sending and the receiving system. All settings that are necessary for
filtering, however, must be made in the sending system because this

system is not supposed to send unwanted IDocs at all.

Distribution First of all, you must create an appropriate class type. You can do this
class type yging Transaction O1CL. You have to assign the class type to the cor-
responding table in Transaction BD60. In our material master example,

this would be Table MARA. Furthermore, you must identify the class type

as a distribution class type using the Distribution Class Type checkbox

in the Functions tab. There must be only one distribution class type for

each classifiable object, which shouldn't be the standard class type. The

system always proposes the standard class type if a class is used for this

object. However, this distribution class type is less often used than the

class types for finding objects by classification, so, you shouldn’t define it

as the standard class type. You can maintain the remaining fields accord-

ing to your common enterprise regulations; these fields aren't relevant

for the distribution, and some of them can't be selected anyway. Figure

4.5 shows an example of the input.

70

Customizing | 4.1

Change View "Class Types": Details

Dialog Structure Class Type |ZEN] Lists for material distribution (ALE)
= [JObject Table

= S Class Types

I Objects

I“_'Iﬁlar':s Status | Objoct ;

L3 organizational Areas Table HARA

I Ted Types

I Classification Status

I FunctionsFitters for Finding Objects Screens Funclions
[#] Keywords [standard Class Type
[Characteristics [+] Multiple classification
[l Documents [Jclass. in master rec.
[Texts [(Ivariant class type
[standards data [T Multiple objs allowed

[]class node

Classifications [+] Distr. class type
[CJECH (ime) [CIHierarchy allowed
[]ECH (parametar) [Generated tables
[change Docs

Figure 4.5 Properties of the Distribution Class Type

For each class type, you can specify different status values, which the Status values
classes of this class type can adopt (see Figure 4.6). For the mere distribu- of classes
tion, the 1: Released status is required. Whether you need to assign fur-

ther status depends on your enterprise regulations. The 1: Released status

is necessary to use a class as a criterion for distribution. Figure 4.6 dis-

plays two additional status values that are frequently used: O: In creation

and 2: Blocked. Because both don't allow for assignments of objects, you

don't use them for distribution classes. SAP provides them for the mate-

rial master distribution class type, so they are displayed here as well.

Change View "Class Status": Overview

[[vewEntres |] B2 B (@) @

Dialog Structure M Ty, 5 [rea
= [10hbject Table i |
= [JClass Types

CJObjects

SY Class Satus

(I 0rganizational Areas

3 Ted Types

CIclassification Status

I FunctionsiFittars for Finding Objects

1B in creation
Z51 1 |Halaasau
ZEN 2 |Blocked

Figure 4.6 5Status Values of the Distribution Class Type

71

4 | Changes to IDocs

Same classification

Assigning to
the partner

Due to the previous work, you can now create a class in a released sta-
tus that belongs to the distribution class type using Transaction CLO2.
You must select the Do NoT CHECK option for SAME CLASSIFICATION (see
Figure 4.7). The check actually ensures that two objects with the same
values assigned to their characteristics can't be assigned to the same
class. However, because distribution classes don't involve characteristic
value assignments, the second assigned object already entails multiple
classification (two objects with exactly the same properties), so a check
isn't wanted here.

“® 1| Create Class:
Gl
Class [ZEMLISTING_ALE | = B =
Class type |Z5M| Lists for material distribution (ALE)
C:hange Mumber I @
Valid from (8811772089 Validity
AT oo
Basic dala
Description | Sabines Class for ALE Listings
Status | 1Relzased o
Class group i1
Organizational area { [Local class
Walid From 0841712000 Walid to 12131/9999
Same classification Authorizations
® Do not check Class malntenance |
I Warming message Classification
© Check with ermor Findobject

Figure 4.7 Creating a Distribution Class

You can now assign such a distribution class to a partner using Transac-
tion BD68 (see Figure 4.8). Define the receiving system as the Logical
System. In the PoP field, always enter “2" for push because you want to
send objects. Now, it's no longer possible to send objects to the part-
ners that haven't been assigned to the corresponding class in Transaction
CL20N. The IDoc for an object that hasn't been assigned to a class (e.g.,
material) is suppressed completely and will never be displayed in Trans-
action BD87, IDoc monitoring.

72

You can also assign multiple classes to the same receiving system. No
settings have to be made on the receiver side in this case. The pull func-
tionality (“1") isn't used for ALE communication.

Change View "Classes in Loglcal system“: Overview
5 roweoes | 0] B B

Logical Systemn 25M2

Classes in Logical System
Imeszage Tme [ciazs FoP
[HaTHAs |ZSMLISTING_ALE 7] [=]
[+]

[E Funtt [=] [

BB 0B &R BE

= Short Descript.
1 Function “Pull
2 Function "Push®

Figure 4.8 Assigning the Distribution Class to the Partner System

This filtering enables you to send the data to the partner system. Depend-
ing on the system's function, this data is relevant there. For example, if
you have a special distribution center, you probably only want to send
trading goods (HAWA material type) to the corresponding warehouse man-
agement system; if you work with a central master data system, and
every plant uses its own SAP system, each system should be provided
with the material data for its plant only.

41.2 Custom Filter Objects

The filtering options described so far are delivered by SAP. If you have
additional requirements, you can also create custom filter objects. This
can be done not only for standard SAP fields and segments but also for
fields in custom tables, for table appends, or for custom segments. Filter-
ing by filter objects is an ALE service.

You implement the necessary settings in Transaction BD95. First, assign
a name to the filter object. This name must meet the common cus-
tomer namespace rules, that is, begin with Z or Y or your own customer
namespace. In our example, the name is 7BISMAT (see Figure 4.9), Assign
the table (MARA) and the field in the database (815SMT) to this name.

73

Customizing | 4.1

Assigning multiple
classes

Creating filter
objects

<1 | Changes to IDocs

ALE Object Type
ALE Object Type Table Name IFiatd name
ZBISHAT HARA ISHT

Figure 4.9 Creating a Custom Filter Object

To implement that your filter object is actually used in the ALE services,
you must define in which segments of which message types it can be
used. For this purpose, first select a message type as the work area in
Transaction BD59. Figure 4.10 shows this for the material master exam-
ple, that is, for the MATMAS message type as the work area.

Maintain Table Views: Initial Screen
m Find Maintenance Dialog |

Il:*j Determine Work Area. Entry &

Work Area
Message Type MATMAS €]

o] | Further select cond. || Append | 5] [3¢]

Figure 410 Assigning the Custom Filter Object to the Message Type — Step 1

Then, select the segment of the message type in which you want to carry
out the filtering (see Figure 4.11). In our example, this is the EIMARAM
segment. You can now address all fields of this segment to generate your
personal filter object.

New Entries: Overview of Added Entries

P

Message Type [MATHAS

Assignment of Object Type to Message

ALE Object Type Segm type |Ma. [Field Offset [IntLength
ZBISHAT 1HARAM i BIsHT a1 8

Figure 411 Assigning the Custom Filter Object to the Message Type — Step 2

74

When assigning the filter object, the system automatically determines
where in the data record within the segment the respective field is
located. This leads to the Offset; in our example, the value is “91." If
you've created the segment that contains the filter object yourself, and if
you modify it so that the position of the corresponding field changes, the
system doesn't copy the new offset to your filter object automatically. In
this case, you have to update the new information yourself.

To do this, first determine the new offset value, for example, using Trans-
action WE60, the IDoc documentation. Then, select your filter object,
and choose EDIT * CHANGE FIELD CONTENT in the menu. Three setting
options are available:

» Field Name
» Internal Length

» Table Position

First, select Table Position, and select the previously determined offset
value. If the length of the filter fields has changed, too, you can adapt
the corresponding values in the same way via Internal Length. If the field
name has changed, the system finds the new value automatically.

After you've implemented these settings, the system provides your cre-
ated filter object in the customer distribution model which can be seen
in Figure 4.12. You can use it like a standard SAP filter object. Of course,
you can also use the same filter object for multiple message types.

Display Distribution Model
%] (1] {8l =] 1[40 system view | [Fiter model display | [Create modelview |[[1 Add BapI
Distribution Mode | Descriptions technical name
= Model views
= B 7aM_VIEW ZEM_VIEW
o Sabines Demo System 1 Z8Mi1
= |*] Sabines Demao System 2 Zomz
= fm MATMAS Material mastar
= SF Data filter active
S
= [0ld material number Old material number
EZ SABINES OLD MATERIALMUMBER Mo short ted maintained

Figure 442 Customer Distribution Model with Filtering Using Custom Filter Objects

75

Customizing | 4.1

Assigning the filter
object to the IDoc
field

Customizing
the offset

Filtering in the
customer
distribution model

4 Changes to |1Docs

Customer segment
for suppressing
IDocs

It makes sense to provide an input help for the field (the SAP system
outputs a warning if you refer to a field without a check table for a filter

object).

Suppressing an |IDoc

If a filter condition for a field isn't met in a mandatory segment, the sys-
tem doesn't generate the entire IDoc. You can implement this behavior
also for fields in optional segments by creating a customer segment as
a mandatory segment, using the same field in this customer segment,
and generating a specific filter object for it. For example, if you want the
system to send a material master IDoc to a particular receiver only if a
specific plant is available, you can implement this by specifying the plant
and then filtering by plant in a customer segment that is defined as a
mandatory segment and directly belongs to the E1MARAM segment type.

The SAP standard for the “plant” filter object, in turn, involves sup-
pressing inappropriate plant segments but still sending the E1MARAM seg-
ment type and E1MAKTM segments. However, this doesn't always meet the
customer requirements. Section 4.2.3, Custom Segments, describes how
you can define custom segments.

Overview of Various |Doc Filters

When filtering an IDoc using filter objects, you can — depending on
the content of the IDocs — send only specific segments or even entire
IDocs. The filtering is positive here: You define which elements can pass.
When reducing IDocs, you can also completely omit entire segments and
suppress individual fields in the remaining segments. However, you can
usually reduce IDocs for master data only. If you don't want to send seg-
ments for non-master data for performance reasons, you can suppress
them using segment filtering or views. Both approaches are explained in
the following section.

44.3 Filtering Segments

When segments are used for filtering, the system completely suppresses
the generation of a specific segment for a particular combination of
sender, receiver, and message type. The content of the segment isn't

76

relevant here. For example, if you don't want to send any plant data of
a material to the downstream system, you must cnnﬁgure this via seg-
ment filtering.

The ﬁltering takes place in Customizing. In Transaction BD56, you define
the combination that you want to suppress (see Figure 4.13). For this
purpose, enter “LS" for logical system in the two Type fields, specify
the logical system name of your sending system in the Sender field, and
specify the logical system name of the receiving system in the Receiver
field. In the case of EDI communication, the specification in the Type
field is “KU" for customer or “LI" for vendor. In this case, you must also
maintain the partner role whose value can be "AG" for sold-to party, for
example. The Segment Type field indicates the name of the segment you
want to suppress. In contrast to reducing 1Docs and using filter objects
in the customer distribution model, which always takes place in the
sending system, the filtering can also be implemented in the receiving
system. That means the IDoc is transferred completely but not updated
completely. For perfnrmance reasons, you should only cnnﬁgure ﬁ]tering
by segments in the receiving system if the sending system is an external
system that can't suppress segments itself. The filtering of segments is
also an ALE service.

Change View "Segment Filters": Overview

Message Type! [HATHAS

Segment Filters

Ty. |Sender Fune. |Ty. |Receiver |Role |Segmenttype
LS |[Z5HM1 LS [FSH2 E1HARCH

Figure 443 Filtering a Segment

414 Reducing IDocs Through Views

Creating and using views is possible for all IDoc types, but doesn't pro-
vide as many functions as reduced IDocs. Here, you can select at seg-
ment level which objects you want to send; however, you can no longer

77

Customizing | 4.1

Filtering segments
in the Customizing

IDoc views

4 Changes to |1Docs

suppress specific fields within a segment as provided for the reduction.
The transaction that enables you to define the views is Transaction WE32.
The example deliberately combines a non-reducible message type, that
is, ORDERS, with the ORDERS0DS IDoc type. For IDocs that allow for reduc-
tion, this is usually the more powerful method for customizing IDocs.
Figure 4.14 shows the initial screen of this transaction.

Create view: ZSM1
REEES
Z5m Sabines ORDERS View
——E1EDKAT Iboc: Document header general data
E1EDK14 IDoc: Document Header Organizational Data
——E1EDKD3 Iboc: Document header date segment
—E1EDKD4 IDoc: Document header taxes
——E1EDKAS IDoc: Document header conditions
—E E1EDKA1 IDoc: Document Header Partner Information
——E1EDKB2 Iboc: Document header reference data
—E1EDK17 IDoc: Document Header Terms of Delivery
——E1EDK18 IDoc: Document Header Terms of Payment
——E1EDK35 IDoc: Document Header Additional Data
——E1EDK36 IDOG: Doc. header payment cards
—Ga E1EDKT1 Iboc: Document Header Text Identification
—Ga E1EDPOT Iboc: Document Item General Data
0G0 E1CUCFG CU: Configuration data
—Ga E1EDL3T Handling unit header
E1EDSE IDoc: Summary segment general

Figure 414 |Initial Screen for Views

Mandatory This method also involves segments that are necessary from the SAP
segments in views perspective and need to be part of the view. The top-level or root seg-
ment (here: E1EDK01) is indispensable. You already know the reason for
this from the filtering and reduction processes: If you skip the top-level
item, the entire IDoc disappears. You can now define which segments
you want to add to the segment that is required as a minimum. Figure

4.15 displays a complete view.

This figure also shows the attributes of the view, its name, for example.
When you've defined a segment as relevant for your view using the
menu that opens when you right-click on the segment, you can expand
it and select the segments listed underneath that you want to include in
your view.

78

Customizing | 4.1

Display view: ZSM1
FEEl s
Z5Mm Sabines ORDERS Yiew
E1EDKE 1Doc: Document header general data
E1EDK14 IDoc: Document Header Organizational Data
——E1EDED3 Iboc: Document header date segment
E1EDKO4 Iboc: Document header taxes
——E1EDEBS Iboc: Document header conditions
—C E1EDEAT Iboc: Document Header Partner Informsation
E1EDKAZ IDoc: Document Header Partner Information Additional Data
—FE1EDKDB2 IDoc: Document header reference data
E1EDK17 IDoc: Document Header Terms of Delivery
E1EDK18 1boc: Document Header Terms of Payment
E1EDK3S IDoc: Document Header Additional Data
E1EDK36 1DOC: Doc.header payment cards
—8 E1EDETY Iboc: Document Header Text Identification
—&= E1EDPET Iboc: Document Item General Data
= affributes for viesw ZSMA1 =
———E1EDPO2 l
——E1CUREF Attributes
—E1ADDI1
 FiEDPO3 BasicTyp |ORDERSAS |
——E1EDPO4 Extension | |
—&E E1EDPOS ROER
cicbpoe Logical Message [lll 5 @
_m EiEnP“1 r— — ——— - — — — — —
— E1EDP19 Description Sabines ORDERS View
—00 E1EDPAD]
———E1EDP1T
—E1EDP18
——E1EDP35 - -
& E1EDPT] Technical Attributes
@ E1EDCOT Fe Pokg $THP |
T S m— | B
E1EDSEN v|[%¢]
i

Figure 4145 Example of a Custom-Defined View

Views in the
partner profile

In contrast to reduced IDocs where you generate a specific message type,
you continue to use standard messages here. Consequently, you must
also specify in the partner profiles in Transaction WE20 if you want to
work with a view and which view you want to use (see Figure 4.16).

As usual, our example uses the ORDERS message type for the partner pro-
file. In the details (OuTBOUND OPTIONS * IDOC TYPE) in the IDoc Type
area, you then specify 7SM1 in the View FIELD in addition to ORDERS05 in
the Basic Type field.

79

4 | Changes to 1Docs

Changing the
content

Partner profiles: Outbound parameters

Parner Mo, Sabines Demo System 1
Partn.Type s Logical system

Partner Role []
& Message Type ORDERS | Purchase orderf order
Message code

Message function

Figure 446 Using the View in the Partner Profile

Filtering by views isn't an ALE service, so it can also be used for IDoc
modules for which ALE services are deactivated.

445 Rules

All previous changes to the IDocs aim at reducing the scope of the data
that is supposed to be transferred. This is usually done for performance
reasons and to reduce the data volume on the database if the partner
doesn't need the data.

Often, however, you also need to change the actual content of an IDoc
to enable the respective communication partner to process it. Typical
examples are different field lengths or abbreviations, such as adding/
deleting leading zeros or using different company codes or warehouse
numbers. You can handle this without development work using a rule if

8o

Customizing | 4.1

simple conversion logic is used. Figure 4.17 shows how you create the
rule in Transaction BD62 by assigning a name to it first.

Maintain conversion rules
|conversion rule Description IDOC segment name
DSTHET Positet E1FIHDR
Z5H1 0ld Materialnumber ETHARAM

Figure 447 MNaming the Rule

When assigning a name to the rule, you also define to which segment the Creating a rule
rule applies, so the system lists all fields of this segment if you maintain

the actual rule in Transaction BD79. The Create Proposal for Rule func-

tion enables you to predefine the MOVE rule for all fields, which describes

the process of simply copying the field content. MOVE is the default setting

anyway. Figure 4.18 shows the initial screen of the rule maintenance.

ALE IDoc SEQI‘HEI‘“E: Maintain Conversion Rules for ZSM1
& & 8|/ create proposal for rute |
|Rec fiald [Deseript Type [Length [Ch [Senderfld [Senderfid val |constant
Msoen Function c A [] jns&FN
[maTrr eaterial c ha C] MATHR
[ERSDA Created On c 8 O] ERsDA
ERMAM (Created by E [J ERNEH
LAEDA Last Change c B [LaED&
AEHAM Changed by c h2 [] AENAN
[PSTAT Maint status c_[1s O [PsTat
LVORM DF client level c h [] LYORM
|mTarT Material Type c M [0 nmrarT
[MBRSH Industry sector c h [] MERSH
ATl Material Group 9 [MATEL
[p1swT [0Md math nurnber c hs O ALE_MATERIAL
EINS [Base Unit c b C] mEIns
EE gum c b] BSTHE

Figure 448 Rule Maintenance — Overview

For each field, you can define how it's determined from the source field.
Figure 4.19 displays the maintenance menu using the MATKL field as
an example.

81

4 | Changes to 1Docs

Rule types

ALE IDoc Segments: Maintain Conversion Rules for ZSM1
|_-|I ” p 1 | | _= W !-'-'.:"l_-_l'-" varal |':!::-_

Recefver field MATKL Material Group

Select a rule tpe Fule details

@ Copy sender field Rule type opry sender

O Set constant

O Setvariable

O Convert sender flizlds Sender flele HATEL
O Converticopy ffse

O Use general rule

Vihat happens wilh the nonassignedinon-comvertad figld values?

Special conversion routine

Use rule defined here as ﬂWI‘ﬂl e
General rule [|

Figure 419 Rule Maintenance — Data for a Field

The following rule types can be selected:

» Copy Sender Field
The Copy Sender Field rule type is the MOVE copy rule and thus cor-
responds to the default setting. In the details menu in the lower trans-
action area, however, you can deploy only a part of the sender field

using the offset and length.

» Set Constant
If you set a constant, the system always overwrites an existing value
with the same new value.

82

> Set Variable
Here, you can use a predefined variable as the target value. If the IDoc
is copied from a file in the initial screen, you can specify this variable
separately for every transfer of IDocs. If you don't work with files,
you can use the KKCD0001 SAP enhancement to set the variables.

» Convert Sender Fields
To convert fields, specify a new value with regard to the initial value
of the field. Here, individual field values or intervals can be copied to
a target value. You can define, for example, that the value “10"
becomes value "100" or that every value from “20" to 40" becomes
value “200".

» Convert/Copy
This is a combination of the two rule types, Copy Sender Field and
Convert Sender Field, which were already described. You can define
conditions for the copy and for the conversion. Previous releases
didn’t include this rule type. You had to use a conversion rule in
which the new value was identical to the old value in some fields.

» Use General Rule
The general rule allows for specifying recurring rules only once and
referring to this specification for other fields. You can define every
rule in the menu as a general rule by assigning a unique name to it.
For other fields, the Use General Rule rule type is applied to use the
previously defined general rule.

In addition to the actual rule, there is recurring information, which is
displayed in the bottom area of the dynpro in Figure 4.19. This includes
the Special Conversion Routine, which refers to the conversion exit. Con-
version exits format data for the screen. They usually suppress leading
zeros. A conversion exit always contains the name of the conversion
routine, for example, ALPHA. For fields that can consist of both numbers
and text, the ALPHA exit maps numbers as right aligned and text as left
aligned. Each exit also has two function modules whose names always
follow the CONVERSTION_EXIT_<NAME>_<FUNCTION> pattern, for example,
CONVERSTON_EXIT_ALPHA_OUTPUT for the mapping on a dynpro in our
ALPHA sample exit.

83

Customizing 4.1

Conversion exits

4 | Changes to IDocs

Assigning the rule

Conversion to
older segment
Versions

In addition, for all rules, you can define the behavior if fields can't be
assigned. You can either copy a constant or a sender field or alternatively
trigger an error.

You decide whether a rule is actually used via Transaction BD55, which
enables you to assign the rule to a partner. Figure 4.20 shows how you
define for each combination of sender and receiver if a rule is used and
which rule is used. The use of conversion rules is also an ALE service.

Message Type [MATMAS

Conversion Rule
IT'gr. Sender Func. [Ty. |Receier Role |Segment ype Comaersion nile
JLS Z5M LS [Z5M2 ETHARAM Z5M

Figure 4.20 Assigning the Rule to the Message Type and Partner

Restrictions for SAP ERP HCM

You can't use conversion rules in SAP ERP HCM. This depends on the com-
mon processing method for infotypes here. Because the actual values can't be
addressed directly but only via infotypes for security reasons, the mechanisms
used in the conversion rules don't take effect because the proper infotypes
aren't known at execution.

41.6 Version Conversion

IDocs are also supposed to exchange information between two systems
with different release versions. To adapt the IDocs accordingly, you can
use the version conversion option (see also Section 4.2.2, General Exits).
For this purpose, you can enter an IDoc type of an older release in the
partner outbound processing, which removes all segments that didn't
exist in the respective release. You can also specify an older release ver-
sion within a segment version and consequently ensure that the system
generates the individual segments based on this release. By default, no
specification is made in the segment version; so the system generates the
most recent release version of the individual segments for older IDoc
types. The version conversion is also an ALE service.

84

Customizing | 4.1

Changes and ALE Services

In the context of the IDoc function module Customizing, you learned that
you can define for every function module whether ALE services are available
or not. From the previously described change options, the following are ALE
services:

» Filtering by filter objects (outbound only)
» Segment filtering

» Field conversion using rules

» Version conversion

You configure the version conversion in the partner profile, and all other
options are set via Customizing. Filtering by filter objects is possible in the
sending system (outbound) only; all other options are also available on the
receiver side (inbound). Your settings are only used, however, if the corre-
sponding function module supports ALE services (which fortunately holds
true for most of them).

417 Special Conversions in SAP ERP Financials

Financial Accounting includes company codes and business areas, which Global

cover specific controlling functions. It's particularly critical that data is ~©rganizational
delivered to the appropriate area when being transferred. Often, the units
various systems use the same organizational units (e.g., the SAP-pro-

vided company code, 0001) with a different meaning. For the resulting

conversions that are frequently required, SAP has developed a specific

approach: cross-system company codes or cross-system business areas. You can

access these settings via the ALE Customizing only but not via any trans-

action code. Figure 4.21 shows this using Transaction SALE in SAP ERP.

Display IMG
| [Extsting BC Sats |[BC Sets for Acthvity | [Activated BC Sets for Activity

| Structure
= [& IDocInterface § Application Link Enabling (ALE)
i Basic Settings
& Communication
= @_B Modelling and Implementing Business Processes
o Global Organizational Units
[@ Cross-System Company Codes
[& Cross-System Business Areas

Figure 4.21 Menu Path for Global Organizational Units

85

4 | Changes to IDocs

Cross-system
company code

Chart of account
assignment

The IDOC INTERFACE/APPLICATION LINK ENABLING (ALE) * MODELING AND
IMPLEMENTING BUSINESS PROCESSES * GLOBAL ORGANIZATIONAL UNITS path
enables you to configure cross-system company codes and cross-system
business areas. Figure 4.22 displays the steps that you need to perform
for creating a cross-system company code: creating cross-system unique
company codes, assigning a cross-system company code to the chart of
accounts, and assigning the local company code to the cross-system com-

pany code.

Actiities

FPerm [Mame of Activity

Cross-System Company Codes

Assign Cross-System Company Code to Chart of Accounts

Assign Company Code to Cross-System Company Code

Figure 4.22 Settings for Cross-System Company Codes

Each cross-system company code is assigned with a unique name. It
can contain six characters and can be longer than the normal company
code (four characters) so that adding the prefix “GL" for “global” makes
sense here. There are no rules for names of global company codes, how-
ever. Figure 4.23 shows an example for the structure of the name of a
global company code. It consists of the preﬁx “GL," the letter “Z," the
code “SM," and the digit “1." The financial department of your enter-
prise is responsible for publishing the required information on charts of
accounts, company codes, and global company codes that may have to
be used. You should not make this decision yourself because it can affect
operations that are relevant to the financial statement.

New Entries: Overview of Added Entries

YeEEE

Global CoCde
GLZEM O]

Figure 4.23 Creating a Global Company Code

You must assign a chart of account to every global company code. This
chart of account is then used when the IDocs are updated. The charts

86

of accounts in the sending and receiving systems must correspond with
regard to their accounts. In the example, the target chart of account,
INT, has been assigned to the global company code, GLZSM1 (see Figure
4.24).

Customizing | 4.1

Change View "Assign cross-system co.cde -> chrt of accts™: Overview

POEEE

|ciobal Cocde [Tarchtiaccts

lsLzsm INT [=]
[=]
=

Figure 4.24 Assigning the Chart of Accounts to the Cross-System Company Code

Now, you assign this global company code to one of the local company
codes in your client. The sending system then generates the global com-
pany code everywhere in the IDoc where the assigned local company
code would be specified; the receiving system, in turn, replaces each
global company code in the IDoc with the assigned local company code.
Because this replacement must work on both sides, each global object
must be assigned to exactly one local object only. In the example in
Figure 4.25, the global company code, GLZSM1, would consequently be
assigned to the CPFO company code of Company Good Food.

Change View "Assign company code -> Cross-system company code":
a2

lco [company Hame City [clobal Cocde q
|cPFa jGood Food Chicago GLISH [=]

Figure 4.25 Assigning the Cross-5ystem Company Code to the Company Code

In a similar way, you can follow the IDoC INTERFACE/APPLICATION LINK
ENABLING (ALE) * MODELING AND IMPLEMENTING BUSINESS PROCESSES *
GLOBAL ORGANIZATIONAL UNITS menu path in Transaction SALE to con-
figure cross-system business areas. Figure 4.26 shows the two steps that
you need to perform for this purpose. As with the company code, the
first step is to specify the name of the cross-system business area. Then
you must assign it to the business area in the client.

87

Assigning the
global company
code

Cross-system
business areas

4 | Changes to IDocs

Creating the
cross-system
business area

Display IMG
[Z] 8] [#] | [Exsting BC Sets][BC Sets for Activity | [Activated BE Sets for Actity

Actrvities
Perl_[Mame of Activity
Cross-system business areas
Assign Business Area to Cross-System Business Area

Figure 4.26 Configuring Cross-System Business Areas

In contrast to the cross-system company code, the name of the cross-
system business area consists only of four characters (here: GLZS, see
Figure 4.27). In this case, too, only the cross-communication uniqueness
is critical, and no naming rules apply.

New Entries: Overview of Added Entries
YEEEE

Iﬂ-s'ﬁt business area Description

lsLzs Sabines Global Bus. Area [<]

Figure 4.27 Creating a Cross-5ystem Business Area

Afterward, you must assign the cross-system business area to a local
business area. In our example, the cross-system business area, GLZS, is
assigned to the local business area, 0001 (see Figure 4.28). Here, too,
every global object must be assigned to exactly one local object.

Change View "Assign Business Area to Cross-System Business Area™:
FriEERE

[Bus. Area [Cescription H-SysBusAr |Description
FEN Business area 0001 BLZS Business area 1 [+]

Figure 4.28 Assigning the Cross-System Business Area to the Local Business Area

The settings described previously form the prerequisite for converting
global organizational units. The actual execution, however, depends on
the communication partners and on the message types used. For exam-
ple, you can only use the local company code if you send data to your
own warehouse, and you can only use the global company code if you
send data to a FI (Financial Accounting) consolidation system.

88

Adapting Existing |Doc Types | 4.2

Figure 4.29 shows how Transaction BD58 converts the company code Activating for each
and the business area in all involved segments for the F1DCMT message ~Segment and field
type. For this process, it's critical that you specify the field in Field Name

that you want to convert because an IDoc can contain several appropri-

ate fields. The FI10CMT IDoc transfers line items for the general ledger in

SAP ERP Financials.

Change View "Conversion of Organizational Units into IDocs™: Overview
5 [s

Message Type :FIWHT

Cormvarsion morqahlzaunnal LUnits into IDocs

|Sagmam tipe |Field Mame |[Domain |ofzet [intLength
1FIHDR BUKRS BUKRS a 6 [+]

E1FIFDS GSBER GSBER I n [

[e1F1POs PARGE GSBER 11 4 H

[E1F1TAX GSBER GEBER 0 4

Figure 4.29 Activating the Global Conversion for Each Message Type

4.2 Adapting Existing IDoc Types

Customers who have implemented their own developments within the
SAP system often also want to use these modifications for the IDocs
that belong to the modified objects. As within the modules, SAP meets
this requirement by providing an enhancement concept. In addition to
adapting IDocs to the common enhancement technologies, you must
also adapt them to your own developments by specifying which addi-
tional fields and segments are required.

The following section first introduces the different types of exits pro- Adapting through
vided by SAP and then uses the material master as an example because it ~Programming
contains a lot of exits. You'll also learn more about the specific exits that

apply to all IDocs. The section concludes by describing IDoc-indepen-

dent enhancements of [Doc types, which is interesting because imple-

menting changes to the send or update process for 1Docs usually also

involves a requirement for specific fields.

89

4 Changes to |1Docs

Exits

Properties of exits

Exit types

4.21 Different Exit Types on the Basis of the Material
Master Example

SAP distinguishes between different types of system adaptation. Custom-
izing and personalization are customer-specific or user-specific adjust-
ments. For example, you define in Customizing how many and which
plants you use in your SAP system as well as their properties. The person-
alization adjustment comprises specifications on the default printer and
the like. Such system adjustments don't involve programming work.

However, you can also change the SAP code, which enables you to
change settings directly in the original SAP program. These modifications
can lead to major problems in the case of release changes, so they are
frowned upon and must be made known to SAP via the Online Service
System. Many enterprises don't allow for modifications at all for these
redasons.

To avoid the modification problem, SAP provides exits in places that are
supposed to be used with changes compared to the standard. For such
an exit, SAP is responsible for actually providing an exit in a standard
SAP program by defining whether an enhancement in the program exists
and where it's called. SAP also determines which data is provided for the
customer within the exit and whether the customer is allowed to change
and write back certain data.

The second step is implemented on the customer side. Here, the exits
that were delivered empty can be filled with your own code. SAP pro-
vides different types of exits:

» Customer exits
Customer exits have been provided since Release 3.0. They can be
used only once, are used cross-client, and are delivered by SAP in an
enhancement and implemented and activated by customers in an
enhancement project. After a change of release, they have to be reac-
tivated.

» Business transaction events
Business transaction events (BTE) have been delivered since Release
4.0. Originally, they were just used in FI; now, many other applica-
tions also contain BTEs in the standard SAP programs. You can use

90

Adapting Existing IDoc Types 4.2

BTEs client-specifically. A distinction is made between two types of
BTEs:

» Publish&Subscribe interfaces
Publish&Subscribe or P/S interfaces are supposed to inform
components other than those in which your process is currently
executed that a particular process has been carried out in the SAP
system and transfer data to these components. A return transport
of data isn't provided for. P/S interfaces can therefore have several
active implementations at the same time.

» Process interfaces
Process interfaces replace standard processes. Data is transferred to
and returned from the process module that is executed instead of
the standard. Process interfaces can only have one active imple-
mentation.

» BAdIs (Business Add-Ins)

BAdIs have been provided since Release 4.6 in the common variant;
they have also been delivered in a new version bound to enhancements
since SAP NetWeaver 7.0. BAdIs are object-oriented enhancements.
SAP provides a BAdI interface, and the customer generates the corre-
sponding implementation. The SAP developer who delivers the BAdI
can decide if it can be used multiple times and if it will be filter-
dependent.

» Enhancements
Enhancements are the new concept that has been recently added to
SAP NetWeaver 7.0. You can work with explicit enhancements, which
are provided by SAP through enhancement spots; however, implicit
enhancements are also available, which can be implemented at spe-
cific locations of every program that doesn’t directly belong to the
SAP Basis without any interference of the SAP developer.

Transaction SE84 (see Figure 4.30) provides an overview of existing exits Development
and potentially existing information. environment

When implementing any of these exit technologies, you must consider
specific aspects because the general program flow mustn't be changed
by the exit.

a1

4 | Changes to I1Docs

Consistency

Object Navigator

(][] 8 [ot |

pogilony Infarrnabion Syslem
Z[a archive ||| |

Objects
=] Repository Information System
| b £l Development Coordination
I [Business Engmesring
b [ABAP Diclionan
I EJ Program Libeary
b [Class Library
b £l Wb Dynpro
I [l BSP Livrary
F El Enterprise Senices
= [Enhancements
= E Bugingss Add-ing
[E) Detnttions
B enplementations
= &3 Customer Exils
[Enhancements
B Projects
[® Enhancement mplementations
[® compasite Enh. Implemartation
B Enhancemeant Spots

[Composite Enhancenmsent Spots

Figure 4.30 Exits in the Repository Information System

Programming Guidelines for Exits

Anything that affects the flow of the original program isn't allowed in
exits. In other words, you mustn't create events, subroutines (FORM),
or modules (MODULE) here. Instead, you must create them in separate
includes. Data declarations that have been agreed upon with the DATA
statement apply locally.

For consistency reasons, you must also ensure that the customer data is
only updated or reset if the same is done with the SAP data. Statements,
such as COMMIT or ROLLBACK, are therefore not permitted. Postings can
only be implemented with update technologies and are then processed
by the COMMIT or ROLLBACK operation of the SAP program.

Considering the details, the different enhancement technologies this
chapter introduces require different approaches for generating your
own code, so these technologies are described in greater detail using the
material master as an example. The descriptions only refer to the exit
types that you can actually use in IDocs. Where screen and menu exits
are possible, no description is provided because IDocs never work with
menus or l:l:{ﬂPI'DS‘

92

Adapting Existing |IDoc Types 4.2

This section also doesn't include code. Code rather depends on whether
you want to send or receive IDocs and not on the type of the exit. The
code is discussed separately from the described properties of the various
exits in Sections 4.2.2, General Exits, and 4.2.3, Custom Segments.

Customer Exits

SAP creates customer exits in Transaction SMOD: that is, you can use
this transaction to obtain information on which customer exits are avail-
able. Here, several exits can be combined in one enhancement. In the
IDoc area, the exits for generating IDocs in outbound processing and for
updating the same message types in inbound processing often belong to
the same enhancement.

The SAP program calls a customer exit using the CALL CUSTOMER-FUNC-
TION “nnn’ command. The “nnn" addition is any three-digit number that
is unique within the enhancement. So if you want to know whether a
program provides a customer exit, you can search for CUSTOMER-FUNC
TION. This indicates which exits are called, which signature the used exit
function modules have, and where in the program they are called.

If you browse the already-known function module, MASTERIDOC_CRE -
ATE_MATMAS (Figure 4.31), you see that an exit with number “002" is
available and that it has been called several times, namely, each time a
new segment has been generated. You can also see which data has been
transferred. Information is provided on the message type, the name of
the currently generated segment, and all previously generated IDoc data.
You can change the user data and return the reference for your enhance-
ment of the IDoc, CIMTYP. Section 4.2.3, Custom Segments, describes
this in more detail.

When you know the calling program and the exit ID, you also know the
name of the exit module, which follows the EXIT_<PROGRAMNAME> _nnn
pattern. In our example, the exit module is called EX1T_SAPLMVO1_D02.
Double-clicking on the three-digit number (002) of the name in the
search result directly navigates you to the function module (see Figure
4,37 later in this chapter).

93

“CALL
CUSTOMER-
FUNCTION"
command

Material master
example

3 | Changes to IDocs

Customer
enhancement
project

" Global Search in Programs

EEZMIEE R EERE

CILHvB1UeE 281 CALL CUSTOMER-FUMCTION ‘@2

EXFORTING
NESSAGE_TYPE = HMESSAGE_TYPE
SEGHMENT_NAME = C_SEGNAM_E1MARAN

F_MARA = HARA
IHPORTING
IDOC_CIMTYPE = IDOC_CIMTYPE
TABLES
1DOC_DATA = T_IDOC_DATA.
334 CALL CUSTOMER-FUMCTION '0@2°
EXPORTING

MESSAGE_TYFE
SEGMENT_NAME

HESSAGE_TYPE
C_SEGNAM_E1MAKTH

F_MAKT MAKT
IAFORTING

1DOC_CINTYPE = 1DOC_CIMTYPE
TABLES

100G DATA = T IDOC DATA

Figure 4.31 Function Module Exits When Generating MATMAS IDocs

When you know which exit you want to implement, you can create your
own project using Transaction CMOD (see Figure 4.32). Use the match
icon at the left of the toolbar to activate the project at the end of your
development work. Only then will your exit be actually executed. First,
assign a name to your project. Because SAP doesn't deliver projects, you
can theoretically use the entire namespace.

Project Management of SAP Enhancements

[(o] | [o

Project |Z5N | (O Create

Subobjects

@ Attributes

O Enhancement Assignment
O Components

O Documentation

|& Display | |&# Change |

Figure 4.32 Creating a Customer Project

94

Adapting Existing |Doc Types | 4.2

After clicking the Create button, you can define the attributes of your
project. The following sample customer project (see Figure 4.33) is a
very common development object. As such, it includes all general data
of development objects, for example, specifications on the person who
created the object and when it was created, as well as a package. You
manage the object via a transport request, which you can use to transport
it to the live system.

Attributes of Enhancement Project ZSM
| | Enhancement assignments || Cnmpnnnris|
Prioject ZSM
Short text Sabines IDoc Enhancements|
Adminisiration data

Package |

Criginal language :EH'

Created by MAISELSA |©8/17/2009
Last changed onfy '

Activation

Project Status

Changed

Figure 4.33 Attributes of the Customer Project

Now you can assign one or several enhancements to your customer proj- Assigning the
ect using the Enhancement Assignments button. Every enhancement can ~ enhancement
only belong to one project. Finding the enhancement that you want to

implement to change the material master IDoc is easier here because you

can enter the name of the previously identified exit module to determine

the enhancement it belongs to. As shown in Figure 4.34, this isn't pro-

vided by SAP by default so you need to select the corresponding options

in the Additional Selections tab first.

The enhancement found in the example is called MGv00001, and you can Enhancement for
now assign it to your customer enhancement project by specifying it in material master

- IDoc
Enhancement (Figure 4.35).

95

4 | Changes to 1Dacs

[Erinput Help Personal Walue List E Al
Last Object Selected

[Er Repository Info System: Find Exits
Exit nam —

KKCOBOM [SAP-EIS: User exits for data transter E e

[#] Menu En

EX17_sAPLIVO1_002 | %

Figure 4.34 Finding the Enhancement

SAP Enhancements in Enhancement Project 2SM

% | & | [G][@) [B ennhancement |[Components |

Enhancernent Text

M6¥eeen1| [Material Master (ndustry): ALE Distribution

Figure 4.35 Assigning the Enhancement

MGY000D1 is an enhancement that already contains two function exits.
You can also implement only one of them if you don't need the other.
The crossed-out circles in Figure 4.36 indicate that the enhancement
hasn't been activated yet. The empty column in front of the two exits
shows that they also haven't been implemented yet.

The EXIT_SAPLMV01_002 exit now comprises the complete signature, as
you can see in Figure 4.37. Nearly all import parameters are optional,
which is why only very few were displayed during the call.

96

Adapting Existing IDoc Types | 4.2

Display ZSM
[| /@ /@) [Ennancement assignments | [l Enhancement |

28N Sabines IDoc Enhancememts |
1s1| @ |Exp |MGVDOOO1 Material Master (Industry): ALE Distribution |

Function exit EXIT_SAPLMYR1_DB2
EXIT_SAPLMYO2_002

Figure 436 Components of the Enhancement

[Function Builder: Display EXIT_SAPLMV01_002
EE | R R | &)]) B)| (@@ [Faten | | [nsen]

Funetion moduls [EXTT_SAPLKYB1_poz2 Active

Atributes | Impot | Export | Changing | Tables | Exceptions SSCTITERTICEN |
il |)

FUNCTION EXIT_SAPLHVE1_BB2.

="Lokale Schnittstelle:

Lt IMPORT ING

s YALUE (RESSAGE_TYPE) LIKE EDMSE-MSETYP

L YALUE (SEGMENT_MAME) LIKE EDIDD-SEGNAM

2 WALUE (F_MARA) LIKE MARA STRUCTURE HARA OFTIDNAL

LL YALUE (F_MAKT) LIKE MAKT STRUCTURE MAKT OFTIONAL

- WALUE (F_MARC) LIKE MARC STRUCTURE MARC OFTIDMAL

L YALUE (F_MARD) LIKE MARD STRUCTURE MARD OPTIONAL

LL YALUE (F_MFHHM) LIKE MFHM STRUCTURE MFHM OPTIONAL

L2 WALUE (F_MFGD) LIKE MNPGD STRUCTURE HMFPGD OFTIODNAL

L YALUE(F_MPOP) LIKE MPOP STRUCTURE MWPOP OPTIONAL

= WALUE(F_MPRW) LIKE MPRW STRUCTURE HMPRW OFTIDNAL

= YALUE (F_MYEG) LIKE MV¥EE STRUCTURE MVEG OPTIONAL

L YALUE (F_MWEU) LIKE MYEL STRUCTURE MVEU OPTIONAL

i WALUE (F_MEAL) LIKE MEAL STRUCTURE HEAL OFTIDNAL

U YALUE(F_MARM) LIKE MARM STRUCTURE MARM OPTIONAL

L= WALUE(F_MEAN) LIKE MEAN STRUCTURE MEAN OFTIDNAL

Lo YALUE (F_MBEW) LIKE MBEW STRUCTURE MBEW OPTIONAL

Ll YALUE (F_MLGM) LIKE MLGN STRUCTURE MLGN OPTIONAL

LM WALLUE (F_MWKEE) LIKE MVKE STRUCTURE MWVKE OFPTIDNAL

0= YALUE(F_MLAN) LIKE MLAN STRUCTURE MLAN OPTIONAL

L YALUE(F_MLGT) LIKE MLGT STRUCTURE MLGT OPTIONAL

L EXPORTING

LL YALUE (IDOC_CINTYPE) LIKE EDIDC-CINTYP

LA TAELES

e IDOC_DATA STRUCTURE EDIDD

e e = i P e B o i e e e S e e T o b = (o P o e = = e =
INCLUDE ZXMGYUBZ .

— CUMZIIKCT 1L

Figure 4.37 Content of the SAP Exits

The exit belongs to the SAP system and is located in the SAP namespace. Customer includes
In addition, the content of the exit module consists of only one include ~n the exit
(2xMGVU03). This include, in turn, is located in the customer namespace and

doesn't exist in the SAP system until the exit has been implemented.

97

4 | Changes to IDocs

Creating the
include

If you double-click on the include name, you can create the include
via forward navigation, as shown in the Create Object dialog in Figure
4 .38.

Function Builder: Display EXIT_SAPLMV01_002
| Bl el |]] e] (2] 0 I | @ Pt] | [T e]

Functionmodule [EXIT_SAPLNV1_062 Active

Atributes | Import | Export | Changing | Tables | Exceptions ETIRTINTITE
P =1 (0 0 O T (Y

FUNCTION EXIT_SAPLMVO1_DB2,

*"e"lokale Schnittstelle:
e IHPORT ING
ot WALUE (MESSABE_TYPE) LIKE EDNSG-MSGTYP

au & Create Object
: : Include ZMGYLI03 does not exist

o Create Object?

e

: : | fes]| Mo | X Cancel |

OD . [OD
“VRLUE[F_PARA] LIKE WRRN STRUCTORE PARN OPTIONAL

VALUE (F_MEAN)
VALUE (F_MBEW)
VALUE (F_MLEN)
YALUE (F_MYKE)
VALUE (F_HLAN)

LIEE
LIKE
LIKE
LIKE
LIKE

HEAN STRUCTURE
HEBEW STRUCTURE
HLGN STRUCTURE
HYKE STRUCTURE
HLAN STRUCTURE

MEAN OFTIONAL
MEEW OFTIONAL
MLGN OPTIONAL
HYKE OFTIONAL
MLAN OPTIONAL

e VALUE(F_WLGT) LIKE MLGET STRUCTURE MLGT OPTIONAL
o EXPORTING

i VALUE(IDOC_CIMTYPE) LIKE EDIDC-CINTYP

5 TABLES

e IDOC_DATA STRUCTURE EDIDD

INCLUDE ZXMGYUO3.

ENDFUNCTION.

Figure 4.38 Creating an Include in the Customer Namespace

The system then provides the empty include (see Figure 4.39) in which
you can insert your own code. Make sure you save your entries already
when editing the include. If you activate the include without having
saved your entries and an error occurs, you may have to enter the code
all over again.

98

Adapting Existing IDoc Types | 4.2

ABAP Editor: Change Include ZXMGVU03
<[] | e (e | el | |]|] () | @ @[patern | Prety Priner |
Include FETTE! | Inactive (Revised)

& Include ZIMGYUaz
i N 1 SO -

Figure 4.39 Include to Be Filled

You may want to group your code for greater clarity. This can be done Grouping code
by creating additional includes. The includes then begin with “Z"; that is,

they are located in the customer namespace but still belong to the SAP

exit function group that always begins with "X." SAP proposes 7XMGVF01

for its name (see Figure 4.40).

ABAP Edifor: Change Include ZXMGVU03
(<[] | el] @ | [e | 6] (][] I | G Pt [Pretty Printer |

Include EEE | Inactive (Revised)
g 1T 4] &5
B Create Subroutine
Subroutine (FILL_Z1MARA
INCLUDE Selection
ZXMBYFBE1
=]
(=]
(][] I (<[]
v][x]

Figure 4.40 Customer Include

Business Transaction Events

Business transaction events (BTEs) are also handled via function modules
but in a different way than customer exits. For BTEs, SAP calls in the
delivered coding a function module using the CALL FUNCTION *OPEN_FI_
PERFORM_XXXXXXXX_E* command; here, xxXxxxxx is the event ID.

99

4 | Changes to IDocs

Determining BTEs

Sample function
module

Creating your own
module for BTEs

You can search for 0PEN_F1* in the desired code to find the existing BTEs
(see Figure 4.41). The specifications in the right field indicate if a BTE
exists, where it's called, and which signature it provides. The BTE found
here has ID MGV00100, is called only once, and provides all IDoc data
together with the control record.

Global Search in Programs

E= P ED |l EERE

CLmveives 2899 call tunction 'OPEN_FI_PERFORM_MGVEE81868_E"
tables
idoc_data = t_idoc_data
changing
idoc_header = f_idoc_header
exceptions
others =1.

Figure 4.41 Finding BTEs

In Transaction BFO1, you can find the sample function modules that
belong to P/S interfaces. Transaction BFO5 specifies the sample function
modules that belong to process interfaces. The sample function mod-
ule that belongs to the MGv00100 BTE is the SAMPLE_INTERFACE_MGVD0100
function module (see Figure 4.42). Always check both BTE types if you
don't know which type the developer used.

Change View "Lihrar',r of the Publish&Subscribe Business Transaction

Event [Text |Sample Function Module
HEYAE1 80 ham,ﬁ : Outbound processing for ALE Distribn Unit SANPLE_INTERFACE_MGYOD108 [<]

INGYaB200 PMTM.-I.E s Inbound Processing for ALE Distribn Unit SARPLE_INTERFACE_MGYDO208 [=]
1 4

i[a]o)= |

Figure 4.42 Event with Sample Function Module in Transaction BFO

The sample function module contains the signature exactly in a format
expected by the OPEN_FI1_PERFORM ABAP statement of the calling program
so that you can use it as a template. Copy this function module to your
own namespace, and insert the desired code (indicated by * My own code
starts here in Figure 4.43).

100

Adapting Existing IDoc Types | 4.2

Function Builder: Change Z_EVENT_NMGV00100
B R ke |] S]] | @ @[Patem [prety Frnter

ALl \2_EVENT_NGV00100 - Active

Atbutes | Import | Export | Changing | Tables | Eur.apﬂnmm
[L)@l

FUNCTION Z_EVENT_MGVDO1080.

***"Local Interface.

*" TABLES

o IDOC_DATA STRUCTURE EDIDD

** CHANGING

. REFERENCE (IDOC_HEADER) LIKE EDIDC STRUCTURE EDIDC
*" EXCEPTIONS

" ERRDR

Event rissen by the SLE outbound process for MATHAS,

It allows to modify the idoc's control header the idoc data as well
as serialization information created by the standard SAP outbound
process.

Raising the EXCEPTION ERROR will prevent the IDOC from being
submitted to the ALE layer,

BE CAREFUL WITH AMY CHANGES TO IDOC_CONTROL. IT MAY EFFECT YOUR WHOLE
ALE-SCENARIO

Hy own code starts here

ENDFUNCTION.

Figure 4.43 Copy of the Sample Module

To actually execute the corresponding function module, you have to Customer product
activate it. However, this is done in a completely different way than for
customer exits. The transaction for managing BTEs is Transaction FIBF.
First of all, you have to create a customer management object by follow-
ing the SETTINGS * PRODUCTS * ... OF A CUSTOMER menu path (see Figure

4.44),
RE&E
Events Edit Golo Sefings Environment System Help
& | Identification 4 | [EE | e

-.. 0f & partner v

SAP Business (%, uypes - [="

l Process Modules 2]

Figure 4.44 Menu Path for the Customer Product

1o

3 | Changes to |1Docs

Activating the
customer product
for each client

Assigning an event
to the product

The entries for the product mainly consist of the name (see Figure 4.45).
Because SAP delivers products for particular tasks, and SAP partners use
these BTEs in some products, you should be careful when assigning the
names.

The last field, with "A" as the heading, plays a particularly critical role
because it's the activation column. The corresponding checkbox indicates
whether the product in the current client is active (BTEs can be activated
client-independently) so that the respective BTEs can be executed.

Change View "Customer Products™: Overview
Frewerwes |0 E EE

[Product [Test RFC destination n
2511 IDocs

Figure 4.45 Creating a Customer Product

The RFC Destination field remains empty if you remain in the same sys-
tem that executes the calling program. If you enter a valid destination
from Transaction SM59 in this field, the events that are assigned to this
product are executed on the system that belongs to this destination.

You assign your events to the product (combined according to whether
all or none of these events are active) via the SETTINGS * P/S MODULES
or PROCEsSs MoDULES menu path. Figure 4.46 displays all required
specifications.

Change View "Publish&Subscribe BTE: Customer Enhancements":
Fevenies BB L E EE

Event Product [Cir Appl. |Function Module
MGYEE180 2511 Z_EVENT_MGVoO10@

l(«]0]

Figure 4.46 Assigning Events to Products
Depending on the environment, you can use the entries made for coun-

try (Ctr) and application (Appl.) as the filter criteria; for IDocs, however,
these restrictions don't have any effect, so the fields remain empty.

102

Adapting Existing |Doc Types | 4.2

Classic BAdls

Classic BAdIs are handled via a handler class. The name of this class is
CL_EXITHANDLER, and its class method, GET_INSTANCE, is called once for
each BAdI. If you want to know in a program if you can use a BAdI,
search for “CL_EXITHANDLER." You can find the requested BAdI in the
EXIT_NAME export variable. A corresponding instance variable called L+ _
EXIT is specified here (see Figure 4.47).

Global Search in Programs

CallrEl-El- okl e

| Progras ennancensnt | Found Tacs/short description

[ILHwa106 2074 CLAGS CL_EXITHANDLER DEFIMITION LOAD
2080 CALL METHOD cl_gxithandler=»get_instance
EXFORT ING
EXIT_MAHE
IMPORT 16
ACT_IRP_EXISTING
CHAMGING
ingtance

= 'BADI_MATHAS_ALE_CR'

= LF_EXIT_AKT

= LF_EXIT.

Figure 4.47 |dentifying a Classic BAdI

The name of the instance variable now enables you to determine which
methods of the BAdI are called and where they are called. Here as well,
SAP defines which data is transferred, which means the CHANGE_MATMAS
method is called once, transfers all IDoc data and the control record, and
both can be changed. Figure 4.48 shows the code provided by SAP for
calling the classic BAdI.

BAdIs have to be delivered by SAP, so SAP creates the BAdI and the
methods with your signature and calls them in the SAP program. Conse-
quently, you only have to define what is supposed to be done in the BAdI.
The BAAI is created in Transaction SE18. You can use Transaction SE19 to
create an implementation for the BAdI where you define what you want
to do with the provided data within the method. Figure 4.49 displays the
initial screen of the transaction in SAP NetWeaver 7.0. In older releases,
the New BAdI option was missing; everything else stays the same.

103

Calling the BAd|

Creating a BAdI
implementation

4 | Changes to 1Dacs

*szzass===BAD] MATHAS-IDOCS senden:
* 1. Instanzvariable zuweisen
CLASS ITHANDLER DEFIMITION LOAD.
STATICS: LF_EXIT TYPE REF TO IF_EX_BADI_MATMAS_ALE_CR.
STATICS: LF_EXIT_AKT(1) TYPE C WALUE ° °.

* 2. Instanz er0ffnen
IF 17_exit I5 INITIAL.

CALL METHOD cl_exithandler==get_instance 1
o p——
INPORTING B |
ACT_IMP_EXISTING = LF_EXIT_AKT
CHANGING
instance = LF_EXIT.
andif.
* 3. Starten

IF NOT LF_EXIT_AKT IS5 INITIAL.
CALL METHOD LF_EXIT->CHANGE_MATHMAS
“‘%‘".'E_mm T_IDOC_DATA
=
"IDOC_HEADER = F_100C _nmg.
ENDIF.
f=========BAD] MATMAS-IDOCS senden

Figure 4.48 Calling the Classic BAdI

BAdI Builder: Initial Screen for Implementations

I

BAD1_MATIAS ALE Gk [3

Figure 4.49 Initial Screen for Creating an Implementation

104

Adapting Existing |Doc Types | 4.2

Specify your classic BAdI in the Create Implementation tab, and click on
the Create Implementation button to navigate to the next input screen.
First, you need a name for your implementation (see Figure 4.50). The
usual naming rules (Z, Y, or customer namespace as a prefix) apply. In
addition, you should name the implementation like a class, for example,
ZCL_SM_1IMP1, because it's also displayed in the class library in Transac-
tion SE24. Technically, it's just the implementing class of an interface
with SAP creating the interface and you creating the implementation.

Here, it's also indicated whether the BAdI is or isn't Filter-Dependent Attributes of the
or intended for Multiple use (see Figure 4.50, ATTRIBUTES * TyPE). The implementation
classic BAdI shown here (BADI_MATMAS_ALE_CR) has been migrated into a

new BAdI in the meantime so that it would no longer be used in a new

release. As an example, it's as good as any other, so we'll stick to the

material master for the sake of clarity. Use the match icon (which is lit

this time) to activate the BAdI at the end of your development work.

Business Add-In Builder: Change Implementation ZCL_SM_IMP1
E | @ | E.]| Definition Documenta]| Documentation |
Implementation Marne |ZCL_sH_THP1 Inactve
Implementation Short Tesxd |8abines Badi Implementation|
Definition Mame _BF.D!JMTM.E_AI.E_ER
Genaral Data
Package
Language \EN English
Last changed by ' |
Lastchange 1B9:080: 80|
Type <
\BAdl migrates to enhancement spol BADI_MATMAS_ALE CR
] Multiple use
I Fitter-Depand

Figure 4.50 Creating the Implementation — Details

105

4 | Changes to IDocs

Methods of The Interfaces tab (see Figure 4.51) provides information on the meth-
the BAdl 545 of the BAdI. Double-clicking on a method takes you to the location
where you can create your own code (see Figure 4.52).

Business Add-In Builder: Change Implementation ZCL_SM_IMP1

El @m | | Definition Documenta || Documentation |

Implamentation Name [ZEL_SH_TnP1 | Inactive
Implementation Shor Ted _'$ablnas MATMAS BAS! Implementation
Definition Name [BADI_MATMAS_ALE_CR
Aftribades
Interface name IF_EX_BADI_WATHAS_ALE_CR
Mame of implementing class: ZCL_IM_CL_SM_IHP1
[Method [iImplementation tpe [Description

CHANGE_MATHAS ABAP ABAP Code IBase Method

[-]
a
a

[«]0] E—

[
=]
=]
OO = |gn

Figure 4.51 Method View of the Implementation

Class Builder: Class ZCL_IM_CL_SM_IMP1 Change
l[=] | P el] | el |] |l (1) R | @ G Pt | Prety Prnter | | [sipnature |

Method :IF_ELBHDI_MTHULE_ERMJHHAE | Inactive

method F_EX_BADI_MATHAS_ALE_CR~CHANGE_MATMAS
endethod

Figure 4.52 Developing a Custom Method

Note that you must enable your code here. To actually execute the exit,
you have to activate the implementation in the main screen of Transac-
tion SE19.

The BAdI is cross-client; that is, your changes take effect in the entire
SAP system.

106

Adapting Existing |Doc Types | 4.2

Explicit Enhancements as of SAP ERP 6.0 with Basis 7.0

Since SAP NetWeaver Release 7.0, you can use a new enhancement
technology. Let's have a look at the explicit enhancements first (implicit
enhancements are described later in the section titled Implicit Enhance-
ments as of SAP ERP Central Component 6.0 with Basis 7.0). SAP pro-
vides these enhancements at specific locations in the code so that you
can use them.

Explicit enhancements are combined in enhancement spots. Enhancement Enhancement spot
points and enhancement sections are also available. There is no default code

for enhancement points. You simply insert your desired additions where

the enhancement point is located. For enhancement sections, SAP deliv-

ers a code that is executed as long as you don't create an implementa-

tion; however, you can replace it with your own implementation.

You can easily find explicit enhancements by searching for the term Searching for
“enhancement-." The hyphen is important; otherwise, the search results ~enhancements
would also contain implementations because SAP often already deliv-

ers implementations, for example, for industry solutions. Figure 4.53

displays the search result for the enhancements of the MASTERIDOC_CRE

ATE_MATMAS function module.

Global Search in Programs

=P B || EEEE

| prograssenhancessnt | Found Tocsishort deseription

[l Lnvotues 122 ENHANCEMENT-PDINT MASTERIDOC_CREATE_MATHAS_81 SPOTS ES_SAPLAYO1.
279 ENHANCEMENT-PDINT MAGTERIDOC_CREATE_MATHAS_83 SPOTS ES_SAPLAYOT.
291 ENHANCEMENT-POINT MASTERIDOC_CREATE_MATHAS_82 SPOTS ES_SAPLAYOT.
293 ENHANCERENT-POINT EHP_RASTERIDOC_CREATE_MATHA_D1 SPOTS ES_SAPLMVE1.
297 ENHANCEMENT-PDINT MASTERIDOC_CREATE_WATHASO1 SPOTS ES_SAPLMYOT.
473 ENHANCEMENT-POINT MAGTERIDOC_CREATE_MATHAS_B32 SPOTS ES_SAPLAYOT.
475 ENHANCEMENT-PDINT MASTERIDOC_CREATE_WATHASGZ SPOTS ES_SAPLWYET.
477 ENHANCEMENT-PDINT MASTERIDOC_CREATE_MATHAS_BE SPOTS ES_SAPLAYOT.
632 ENHANCEMENT-POINT MASTERIDOC_CREATE_MATHAS_10 SPOTS ES_SAPLAYOT.
1111 ENHAHCERENT-POINT MASTERIDOC_CREATE_MATHAS_11 SPOTS ES_SAPLHYD1.
1156 ENHANCERENT-POINT EHP_RASTERIDOC_CREATE_MATHA_B2 SPOTS ES_SAPLMVE1.
1445 ENHANCERENT-POINT MASTERIDOC_CREATE_MATHAS_B4 SPOTS ES_SAPLHYO1.
1675 ENHANCERENT-POINT MASTERIDOC_CREATE_MATHAS_12 SPOTS ES_SAPLHYO1.
1687 ENHAHCERENT-POINT MASTERIDOC_CREATE_MATHAS_BT SPOTS ES_SAPLHYO1.
2044 ENHANCERENT-POINT MASTERIDOC_CREATE_MATHAS_B5 SPOTS ES_SAPLHYD1.
2046 ENHANCERENT-FOINT MASTERIDOC_CREATE_MATHAS_BE SPOTS ES_SAPLHYD1.
2056 ENHANCERENT-POINT MASTERIDOC_CREATE_WATHAS_13 SPOTS ES_SAPLHYO1.
2108 ENHAHCERENT-POINT MASTERIDOC_CREATE_MATHAS_G2 SPOTS ES_SAPLHYD1.

Figure 4.53 Finding Explicit Enhancements

107

4

Changes to IDocs

Calling the BAdI

Enhancements:
activating the
editing function

Enhancement
functions

The code itself indicates the calling point and the name of the corre-
spcnding enhancement point (see Figure 4.54). Enhancement points and
enhancement sections don't have a signature for the transfer of data.
That means you can access all variables within the enhancement that are
available at this location in the code of the calling program. However,
this also means that it can be complicated to determine the names of the
respective variables and which data is available.

Function Builder: Display MASTERIDOC_CREATE_MATMAS

[el[=] | 7 [2]] |] o) o] ()) [Pt | | [T e
Function module MASTERIDOC_CREATE_MATHAS Active

Aftributes Import | Export Changing Tables Em:anuunsm
-“I IZf“"I i I I |H|1—;-| |_,;||a|

| ENHAMCEMENT-POINT MASTERIDOC_CREATE_MATHAS_G2 SPOTS ES_SAPLMVAI,

Figure 4.54 Enhancement in the Source Code

If you now want to implement an explicit enhancement, you can't use the
standard editing function. You have to inform the system that you don't
want to edit the original but instead want to edit your own implementa-
tion. Figure 4.55 shows the icon that you can use for this purpose.

Function Builder: Display MASTERIDOC_CREATE_MATMAS

(el (=] | Bl i el |) o] (]) | I Pt | | B[s]
Function module |MASTERIDOC_CREATE_NATHAS Activa

Affibutes | Import | Export | Changing | Tables | Bcapﬁnnsm

Figure 4.55 Activating the Enhancement Editing Function

After enabling the editing of enhancements, you can set the mouse pointer
to “enhancement” in the code and open the context menu by right-click-
ing on it. Now, you can create, change, or undo implementations using
the Enhancement Implementation menu item (see Figure 4.56).

Follow the ENHANCEMENT IMPLEMENTATION ¢ CREATE menu path. Because
SAP also implements enhancement spots, it's possible that the SAP
namespace already displays implementations (Figure 4.57). For the

108

Adapting Existing IDoc Types | 4.2

names of the implementations, the rule that they must begin with "Z,"
“Y," or the customer namespace app]ies again.

e]
Function Module Edit Goto Utilitles(M) Ervironment System Help

@ 1B CEO0HR Do BE @8

Function Builder: Change Enhancements MASTERIDOC_CREATE_MATMAS

EE PR Eha e @R

Function module |HASTERIDOC_CREATE_MATHAS Active
Mftributes | Import | Expot | Changing | Tables | Exceplions

* DMistribute [DOC
ENHAMCEMENT -POINT MASTER]DOCH=mmsmm—san S |
*§"5-5tart: MASTERIDDC_CREAT Goto line R AR L LR LE o
ENHANCEMENT 25 MGV_BENERATE Moyt jdentical structure level
[ALE Begin} generation http =
*bo not change coding betwee Previous identical structure level 13
CALL FUNCTION ‘MGYW_ALE_ADD_E
TABLES BlockButfar *
CHAMBING - :
idoc_header = F_Ipog Cut (Control+x) Undo
*{ALE End} generation Fope r o hanoe Ootio
ENDENHANCEMENT Tt bl bt i noe
*$'$-End: MASTERIDOC_CREAT| [Insert (Control+V] Replace - ----4y
CALL FUNCTIOM 'MASTER_IDOC S e antrale T
EXPORTING il SEL L ik
Figure 4.56 Enhancement Implementation (Context Menu)
'@ Salect or Creale Enhancement Implemeantation
|Enhancement Implementation Pack Short Teod
{SAPHT/ DRM_LOTHMGMT _SAPLMYE1 FSAPHT/DRM_LOTHGMT
{NFM/CA_SAPLHYE1 /NFH/CA
/SAPHP/HATHASTER_DRUM_SAPLAVE1 |/SAPMP/MATHASTER_DRUM
[O1HP_GEMERAL_SAPLHVO1 DINP_GENERAL
JISII_B.I.PLH'H'M |JHDEEHJI]DIF
LD S ——
[Use this enhancement implementation without query in future
v][D][x]
Eﬂ"-r*&'.'-' Enhancement Implementation E
Enhancement Implementation |Z5M1
Short Tex Z5M1
Composite Enhancement Implementation |
vl

Figure 4.57 Creating an Implementation

109

4

Changes to I1Docs

BAdl Enter the name (here: “ZSM1") in the Enhancement Implementation

implementation fie]d as well as a description in the Short Text field, and confirm your

input. After the implementation has been created, you can enter code
within a defined area (Figure 4.58).

Function Builder: Enhancement Z25M2 Change MASTERIDOC_CREATE_MATMAS

= | 7]] | o) |)) | G st vy e oo o ocamenion

Function moduli _H.ISTERI[JU[‘._[‘.REF.TE_IIITHAS At
Affribules Imnport Export | Changing | Tables | Elcapllunsm

ENHARCEMENT 37 Z5#
.

21 0R

break maiselza

ENDENHANCEHERT

Figure 4.58 Editing an Enhancement Implementation

Implementation Bear in mind that the activation icon shown here only activates your part

code of the code. The breakpoint, which was entered as the only command in
the example, helps you determine which variables are available, but it
should always be removed or replaced by the desired program behavior
as soon as possible.

New BAdlIs as of SAP ERP 6.0 with Basis 7.0

The benefit of new BAdIs, which have been provided since SAP ERP 6.0,
is that they have a higher performance than classic BAdIs and that they
are connected to enhancement spots. Their structure, however, is some-
what different from the structure of classic BAdIs. There are two options
for using new BAdIs. The first option was illustrated in the material mas-
ter example: A new BAdI was made from migrating a classic BAdL. In this
case, the classic BAdI calls the new BAdI dynamically. You can no lon-
ger find the BAdI name by browsing the source code. The classic BAdI,
however, indicates the name of the new BAdI next to BAdI Migrates to
Enhancement Spot (see Figure 4.50). Considering this new name, navi-
gate to Transaction SE19 to initiate the actual implementation.

Implementing The second option is that the new BAdI has actually been created. You
new BAdls can find it by searching for the GET*BADI command. The new BAdI is also

implemented in Transaction SE19, but the next screens are considerably
different from the screens of the implementation of classic BAdls. Con-

Mo

Adapting Existing IDoc Types | 4.2

sequently, an example of this is also provided next. It's critical that you
specify the name of the enhancement spot, and not the BAdI name for
new BAdIs (Figure 4.59).

dl Builder: Initial Screen for Implementations

B0l AECR [a

S

Figure 4.59 |Initial Screen of the BAdI Builder (Transaction SE19)

Next, enter the name of the enhancement implementation in Transac- Name of the
tion SE19. This name enables you to always easily find the enhancement ~implementation
in Transaction SE80, that is, the development environment. Figure 4.60

shows that composite enhancement implementations are also possible if

you want to combine individual objects. You can then transport or enable

these composite enhancements together in SAP's switch framework. You

would combine items that are located in different SAP enhancements but

belong to one customer development. They are solely classification items.

(£ Create Enhancement Implementation =
Enhancement Implementation Z5H_ENH1 |
Shor Texd Sabines IDoc Enhancement |
Composite Enhancement Implementation |

Figure 4.60 Assigning a Name to the Implementation

1M1

4 | Changes to IDocs

Implementing class For new BAdIs, too, you must first assign a name to the enhancement
implementation in Transaction SE19. Using this name, you can also mod-
ify your enhancements in this transaction at a later stage (here: 75M_
1D0C_IMP_MATMAS). You also need the specification for the implementa-
tion class (zCL_sM_1MP1), which should correspond to the class name
rules if possible (see Figure 4.61).

E-: nhar
Create BAdl Implamentations for Existing BAd| Definitions
E&d| Implamentation [implementation Class |BAd Definifion Shor Teot
IZSH_I[llJE_JHF_H-'-TH-'-E- ILIBL_SI'I_JI'IN :ERDI_H-'-TH-'-S_HLE_ER Bl Daten Matmas-idoc beim Emeugen eines IDOCE varandem

Figure 4.61 Name of the Implementing Class

Activating the The next screen now displays the properties of your new implementa-
implementation {jon (see Figure 4.62). If everything is done, you can enable it using
the Implementation Is Active checkbox. New BAdIs also allow you to
first complete the development work and then ensure that the code is

executed.

Enhancement Implementation Z5M_ENH1 Change

==l | Al | |] | e E T | [E]]

Enhancement Implementation :ISH_EIl“ Inactive

Properties | History | Technical Details

%IQIIlDIﬂI Badl Implémentation |Z5M_IDOC_IHP_HATHAS | |[E]_Documentation |
@m”mmmm,ﬁmg | escription | Description Implementation: Daten Matmas-idot beim Erzsugen eines ID0Cs verande|

I A ZSM_IDOC_IMP_MATK Implementatic] Default implementation
[] Example Implementation
[[]"Actve” not swilthable through Custom. (MG)

Runtime Behavior

Implermentation is actve

Effact in Current Client Implementation i3 called

Properies of BAd Definition

BAdl Definition Name BADI MATHAS ALE CR |
Descriplion _D@‘I:Gh Matmas-ldoc baim EE&WBI‘I gines IDOCS varandam
| — 0 e DR IF EX BAD] HATHAS ALE CR |

Figure 4.62 Properties of the Implementation

12

Adapting Existing |Doc Types | 4.2

To view the implementing class, double-click on Implementing Class Maintaining the
(on the left in Figure 4.63). On the right, the system then displays the implementing class
implementing method that is copied by the BAdI interface (here: 1F_
EX_BADI_MATMAS_ALE_CR~CHANGE_MATMAS). Clicking the change icon (pen)

takes you to the view of your class.

Enhancement Implementation ZSM_ENH1 Change

[l | o fea]] | o]] =] o |) B 2 D | ())])

En%l Innplementation Z5M_ENH1 | Inactive

Properties History | Technical Detalls Enh. Implemeantation Elemeanis

Elﬁ lioja| Implementing Class
IEB‘W Implementations |ug5,¢“punn | Interface |1F EX BAD] WATHAS ALE CR |
= & Z5W_IDOC_IMP_WATH Implementatic | Implementing Class ZCL SM INP1 20
(E) Implementing Clas Method Short description
O |IF_EX_BADI_MATMAS_ALE_CR-CHANGE_MATMAS Base Method

Figure 4.63 Mavigation to the Implementing Class

New BAdIs enable the developer of the BAdI to provide a sample class. Sample class for
This way, he can easily indicate the intended usage options for his BAdl. new BAdIs
This function is optional; that is, it isn't provided by all BAdls. To illus-

trate this function, the example in Figure 4.64 displays the correspond-

ing screenshot of a different BAdI. The figure shows the respective query

as well as the available options. You can basically decide if you want to

use an empty class, use the sample class as a template, or have a class

inherit from the sample class. The benefit of having your BAdI inherit

from the sample class is that you're automatically provided with poten-

tial changes in recent releases.

Whether you query the sample method or not — the next step always Sample method for
takes you to the class maintenance (see Figure 4.65) from where youcan MW BAdIs
navigate to the source code of your method by double-clicking on the

method in the Methods tab.

13

<1 | Changes to IDocs

[Br Create Implementation Class

Implementation example classes already exdst

You have the fallowing oplions:

= Create a new empty class

- Copy one of the example classes

- Inherit from an example class not declared as "inal®

Implementation Example Classes

|ciass |Origin Final |Mame

CL_DNW7AW_BADI_IMPL_EXAMPLE |BAdI Def.| [] BAdl Example Implementation Class

anl [[o)

EOO——

&4

| D) Empty Class ||) Copy Sample Class || () Inherit from Sample Class ||i]

Figure 4.64 Optional Sample Method

Class Builder: Change Class ZCL_SM_IMP1

Class Interface

(e[| s |]t]] | e 0 [8)ERY | [e ocan Tyves][implementation][wacros |03 Constructor

|.|_1'C_IT_?_I!__I_I'I_F'I R] Implamentad f Inactive
Properties | Interfaces | Friends | A:Iﬁhutasm Events | Types | Allases |

| o Parameters| B Exceptions | i & CIFitter

Method

Level sibility [M_ [Description

IF_EX_BADI_MATHAS_ALE_CR-CHAMGE_MATMAS Instance MettPublic [Base Method

Class and method
maintenance

Figure 4.65 MNavigation to the Implementing Class

Figure 4.66 displays a field in which you can enter your source code, that
is, the complete functions, for example, to populate the custom segment
(in our example, only a comment, * Your Implementation, was inserted
for the sake of clarity).

114

Adapting Existing IDoc Types | 4.2

Class Builder: Class ZCL_SM_IMP1 Change

]|]G] fe) | e F]] |)|
Metho [IF_EX_BADI_MATHAS_ALE_CR~CHANGE_MATHAS _

ARERErEEE)

method IF_EX_BADI_MATHAS_ALE_CR~CHANGE_MATHAS.
* Your Implementation .
endnethod

Figure 4.66 Implementing the BAdI Method

Implicit Enhancements as of SAP ERP 6.0 with Basis 7.0

In addition to the enhancements described so far, the new enhancement
options also include implicit enhancements. These are enhancements that
aren't predefined by the SAP developer. Instead, they are available at
specific locations in all programs that aren't part of the actual SAP Basis.
For function modules and includes as they are provided in IDoc process-
ing, these are the following locations:

v

At the end of an include (reports are considered includes as well)

v

In the signature of function modules

v

At the end of structure type definitions (before end of)

v

At the beginning and end of forms

There are some more locations, particularly in the context of classes, but
they aren't relevant for IDoc processing.

Implicit enhancements are available in every program and are hidden Displaying implicit
at first. Only if you inform the system that you want to use implicit enhancements
enhancements does the system display the enhancements so that you

can edit them. First, click the enhancement icon [@. In the screen that

now opens (see Figure 4.67), follow the EDIT * ENHANCEMENT OPERA-

TIONS * SHOW IMPLICIT ENHANCEMENT OPTIONS menu path to display the

implicit enhancements.

115

4 | Changes to IDocs

-
Program Edit Goto Uhilities(M) Emvironment Systemn Help

ABAPE(o , ments for REBDMIDOC

El E FindReplace. . CIrl+F ?ntnncumints IE | | | Paftern || Pratty F'liniar|
epot F"li'_"m_ _ UG) e
; R i |

....... rn N Lo

......... “Edlﬁtﬂllﬂnupermlﬂﬂﬁ '-.-....-.....-...-.-........._._.._.'

data- b8 cancal Fiz | Wndo

data: end of t_help_value | Replace

data: begin of values occurs O, stl'in_chaﬂna

t_help_value-tabname = "EDIASG'
t_help_value-fieldname = "MESTYP'
P s b o3 3 CPryL

@ QMR D00 DR @@

Patiern CHrl+F6

Hide Imprltit Enhancement Options

Implicit
enhancements
in the
“REDMIDOC"
repaort

Implementing
an implicit
enhancement

Figure 4.67 Displaying Implicit Enhancements

The program text then displays additional lines that consist of quotation
marks and names. These are the implicit enhancements. Because they are
available in all programs, you need to generate their names. Their names
always consist of a sequential number and a description that indicates
the location to which they belong (e.g., at the end of a form). Figure
4,68 displays implicit enhancement both at the beginning and end of
a form and in a data statement as well as at the end of the include (the
REDMIDOC report here). This is indicated by quotation marks, which run
across the entire line.

An implicit enhancement is implemented in the same way as an explicit
enhancement. An implementation that has already been carried out
remains visible (see Figure 4.69) even if the display of implicit enhance-
ments is disabled again, for example, after Transaction SE38 has been
recalled.

16

Adapting Existing IDoc Types | 4.2

ABAP Editor: Change Enhancements for REDMIDOGC

AR

fors Tahelp Thnaee_chéck Tables ©_tbdee ftructuréd Lhdee

@ata: begin of t_Felp_value occurs O
nclude straciura halp_valug

data: end of t_help_walue

gata: begin of valess cccurs A, string

end of values

1_halp_value-tabasss = "EDIHSG' ® field 118 EDINSE-RISTYP
1_halp_value-Tigldnms = 'HESTYR"
save 'I' o T_nelp_valus-selectiflag
append T_help_valus
t_halp_valug-tabonaes = "EDTHEGET' " Tigld title EDIREGT-DESCRF
t_halp_values Tigldmame = 'DESCRP"
mave ' ' to t_help_valus-salectflag
append £_help_value
Togp 4t t_tbdeé

sove L_thdee-eestyp 1o values.

appand values

claar adinggl

salect gingle * from adinsgl

shers mestye = 1_thdeg-mestyp and langua = gy-langu
wove pdinsgt-oescrp to values
append values

and] oop
call function “HMELP _WALUES_GET_WITH_TRELE"
1aporting
eRlBct_valid = mastlyp
tables
Tields s T_help_value

valustal = values

Figure 4.68 |Implicit Enhancements in the "REDMIDOC" Report

fl:Irl fahelp_fbname_check tables t_tbdee structure thdme.

data! begin of t_help_walue occurs B
include structure help_value
| tvilaotebolsipinlokdodebadeshsfaldokef s ek dadilale kit cabab bk obolebdiiclalelsishsivipinlelebialoclelaleotelolv e e delodal sl |
"§°5.5LArt. (2 Jreovrecessssscastausaaussansasitaasasaassanssuataasssa s s nsa i a s a s naa s
ENHAMCEMENT 1 Z5H1_IMPL_ERW. “active version
" 1 can add Fields to Structure t_help_values from here
* But I have to use an additional DATA command
Data: zsavalue type mara-satnr .
ENDEMHANCEMEMT .
*$"%-End: [R)==mesmemme s n e m s s e e s m e s s e s s s e s e s S e S
data: end of t_help_valug,

data: begin of walues occurs O, string(S),
end of walues.

Figure 4.69 Implemented Implicit Enhancement

The sample implementation of an implicit enhancement was deliberately Special aspects of
selected for a structure definition here. For implicit enhancements, the structures

17

<1 | Changes to IDocs

Enhancement in
the runtime
environment

original SAP code and your enhancement code are available as specific
programming objects and must also be valid and can be activated as spe-
cific programming objects. The runtime environment doesn't insert them
at the appropriate location until the main program has been executed.
Because of this, the implementation requires a second Data statement.

You can view all enhancements that belong to the new enhancement tech-
nology in Transaction SE80. Figure 4.70 displays our implicit enhance-
ment, 7SM1_IMPL_ERW, with reference to the report name or the include
name in the Program column and the location of the enhancements in
the code (in the Enhancement Point/Section column).

Static enhancements refer to code for the data declaration; all other
enhancements are dynamic.

Enhancement Implementation Z5M1 Display

[| A | B E R | M E E | EEEE

[Feplrnliin ZEMY_INFL_ERW Aevee
Brosvges
Bposter eiomton S prsatns ot T v SRR
[E]}Tag Browser
D T—— DeekpmentOniect REDMDOC
B Tas Regasion
|| &% b EENN

Fackigs |) LY of Erie il sl imgnl st Elingnty
e Ik telEnh i Tipe|Exhancement PoinyEecton

=n[=o][=]a] [&]=a]@])
[oviocttiame |

e

Etadc Enhancsmand Foing

= [Z5M
I [l Class Library
I |Ell Funchion Groups
= | Entancement
¥ 1 Classic BAds gmpl)
= {24 Erkbancement implemanitatio
b [25N _mPL_ERv

|

Special aspects of
ALE services

Figure 4.70 Enhancement in Transaction SE80

Enhancements and ALE Services

Irrespective of the technology you implement your enhancements with, note
that this is always done during the generation of the |Doc in the outbound
processing. In general, all ALE services aren't executed until the IDoc has
been entirely generated, including your enhancements, so potential filter-
ing processes or changes aren't implemented until your enhancements have
been created. The IDoc may still contain various plant segments during the
runtime of your exit even if the system — due to the object filtering — gener-
ates only one plant segment on the database at the end of the IDoc creation.
Consider this when implementing your exits.

18

Adapting Existing |IDoc Types 4.2

4.2.2 General Exits

Some operations are handled in the same way for most of the IDocs.
This also applies to the version conversion, which can be configured in
Transaction WE20. For master data 1Docs, these operations also include
the writing of change pointers. The next section introduces the enhance-
ment objects that SAP provides for this purpose.

Version Conversion

Depending on the release of the SAP system, there can be a specific ver-
sion for each segment. For the communication with previous releases,
it may be necessary to generate the segments with a release version that
you can freely define in Transaction WE20 (see also Section 4.1.6, Ver-
sion Conversion). This can be done without any development work. In
addition, however, SAP provides an SAP enhancement in Transaction
SMOD to enable customers to implement their own functionality.

The EXIT_SAPLBD11_001 exit in the ALE00D001 enhancement is continu-
ously executed even if no version conversion is specified in Transaction
WEZ20. It's one of the few exits that also deliver header and status data of
the IDoc and can be changed if required. The customer include in which
you insert your code is called 7X580U01 and is an exit in an SAF enhance-
ment. The sample code shows how you can determine the customer ID
in the SAP system from the ILN (International Location Number) in the
IDoc (see Listing 4.1).

In general, this exit can be executed in the inbound and outbound process-
ing, which means you have to define the direction of the communication
first. In the next step, you can make the required changes (to the control
record or the IDoc data). Finally, you must change the following fields:

» idoc_control_out-idoctp
» idoc_control_out-upddat
* idoc_control_out-updtim
The program that calls the exit checks whether these field have been
changed. Only then does the system copy the other, potentially changed
values from the idoc_control_out structure. It's sufficient here to address

the fields; that is, 100CTP enables you to copy the initial value, which is
usually desired.

119

“ALEQOOOT" SAP
enhancement

Return changes

4 | Changes to IDocs

Sample code *f------------ - *
*& Include ZXSBDUO1
*& ___ *

* Check whether IDoc is received, otherwise do nothing!
check idoc_control_in-direct eq *2°.
* If yes, check which IDoc and change

FEIEAEEEEEREEFZFZ XA X AT AL AL X R EEZFZ A A XA AL AL E TR EFF T A d 4%

* Local variables
FEEAIEEAEAEEEZET XA A A AT A A XX AT XL T A A A A A AT AT EE T T A Ak %
data: wa_kunnr type knal-kunnr .
DATA: wa_idoc_data type edidd .
DATA: wa_eledkal type eledkal
DATA: wa_eledkld type eledkld .
data: wa_vkorg type tvko-vkorg .
DATA: XBBENR LIKE KNAl-BBEBNR .
DATA: XBBSHNR LIKE KNALl-BBSHR .
DATA: XBUBKZ LIKE KNAL-BUBKZ .
Check message type
case idoc_control_in-stdmes .
when ‘ORDERS®

ek kR EEEEEAA AR A A A A A A RERAAAA A A A A A A kbbb R Rk A ARk

* Fi1l wvendor number and customer number
FhEEAEEEEEEREE A A A A A A AL EETEE R E A A AT E AT Edddddhdk
Fill values
loop at idoc_data into wa_idoc_data
where segnam eq ‘E1EDKAL®
wa_E1EDKAL = wa_idoc_data-SDATA .
if wa_eledkal-partn is initial . * Only if it is missing

XBBENR = wa_E1EDKAL-TLNNR+0(V)
XBBSNR = wa_E1EDKAL-ILNNR+7(5)
XBUBKZ = wa_E1EDKAL-TLNNR+12(1)

CHECK: NOT XBBENR IS INITIAL .
CHECK: XBBBWR MNE SPACE .
SELECT kunnr FROM KNALl into wa_kunnr
WHERE BBBNR EQ XBBBNR
AND BBSNR EQ XBBSNR
AND UBKZ EO XBUBKZ
EXIT .
ENDSELECT .
IF SY-SUBRC = 0
wa_eledkal-partn = wa_kunnr

120

Adapting Existing |Doc Types | 4.2

e e e e e e e o o e e o e e e e e e e ol e o o o ok ok ol ok ol ol ol ke e ol ol e e e o ok ol o o o o e e e e e

* Return data to IDoc
AR EEEEEE R A A A A A A E AR R AR R A A A A A A A A EEERER A AR AR AR R X
Return to [Doc
wa_idoc_data-sdata = wa_eledkal
modify idoc_data from wa_idoc_data .
endif .
endif .
endloop .
when “ANYOTHERTYPE®
* Whatever you want to do with this message type.
when others .
endcase .

FE A A EEEEEEETEF A A I A A AT ERZ R A A A A A A AT T TR TR A A A A A A A A AR

* Change control record so that the changes

are implemented after the exit:

this applies to all changed segments

A A EAEEETE AT X AT XA XA AT T E AT A A A A A AT TR E T T A A A A oo dd
move idoc_control_in to idoc_control_out .
idoc_control_out-IDOCTP idoc_control_in-1DOCTR .
idoc_control_out-upddat sy-datum .
idoc_control_out-updtim = sy-uzeit

Listing 44 Sample Code for the “ALEO0001" Enhancement

BAdI for the Generation of Change Pointers

As described in Chapter 2, Section 2.1.1, Shared Master Data Tool,
change pointers are generated in the CHANGE_POINTERS_CREATE_LONG or
CHANGE_POINTERS_CREATE_DIRECT function module. SAP also provides an
exit — a classic BAdI — for the generation of change pointers. The exit
has only been available as of SAP NetWeaver 6.20.

The BOCP_BEFORE_WRITE BAdI is a filter-dependent BAdI with the message “BDCP_BEFORE_
type as the filter. The prerequisites for using this exit are that change point- WRITE" BAdI

ers are generally enabled, that they are enabled for the corresponding mes-

sage type, and that the fields that are supposed to be relevant to the changes

are maintained for the message type. In the standard version, these settings

enable the SAP system to create all required change pointers. The BAdI is

then called before it creates the change pointers on the database and allows

for more restrictions on the generation of change pointers than the Cus-

tomizing settings. The BAdI contains sample code for two cases:

121

4

Changes to IDocs

"QOBJECTID" field

"CPIDENT" field

Inserting data

Customer
segments

» The system will write change pointers for particular materials only.

» The system will write change pointers for particular users only.

If you want to use this BAdI, you can copy the sample code and adapt
it to your requirements. Here, you must take into account some specific
aspects.

First of all, the sample code provided by SAP assumes that the 08JEC-
T1D field contains the client at the beginning 3 digits. This isn't the case.
So please don't remove the three additional fields for the client in your
implementation if you want to filter by object IDs.

In addition, the CPIDENT field doesn't contain the number that it will
have in the 80CP and BDCPS tables at a later stage. Instead, it only contains
a temporary number until the system assigns the actual number during
the update.

In the exit help, SAP states that you can also insert change pointers; the
sample code, in turn, says that you can't use the exit for this purpose.
Technically, however, you can insert them, but you must ensure that the
temporary CPIDENT field of your internal table contains sequential num-
bers without duplicate values; otherwise, the update is canceled. You
should be careful when inserting change pointers. If you want to debug
your exit, update debugging usually needs to be enabled. Most master
data posts its changes using the update technology on the database, so
writing change pointers also takes place during update processes.

4.2.3 Custom Segments

Both when enhancing existing IDoc types and when creating custom
IDoc types, a prerequisite is the generation of segments that contain the
application data. Such a segment can include up to 1,000 alphanumeric
characters. All information on the generation of custom segments is dis-
cussed again in Section 4.4.1, Creating Custom IDocs.

Creating Segments

Before you can use custom segments, you usually have to modify the
business data. Normally, you can expect that this has already been devel-
oped by your colleagues from the application department. The follow-

122

Adapting Existing IDoc Types | 4.2

ing example, however, also includes the data in the material master
that will be used in the enhancement. Figure 4.71 shows how you can
append additional customer-specific fields to tables (here: MARA) using
the Append Structure button (on the top right in the figure) in Transac-
tion SE11. For this purpose, assign an append name first, which must be
within the customer namespace (here: ZSMMARA).

Dictionary: Display Table
[=1=]) B =] b ||EE| E] B8 Ml | Technical Settings | [Indexes_ || Aapend Stucture. |
Transp. Table |nama Active
[Appends for MARA B
&) a[Fm[Fe][EEErEl@@a] @] [O]s[a]a) -
r | Object Hame Stabus Short text
SH_MARA_APF Nigrw 15-H MM: Hospitak-Specific Figlds
IST_MAT_FIELDS Mew [IS-T.User-Specific Material Master Fields
JFAMARA New |ISH Append to MARA Media-Specifc Fields
DILMARA, B New [ts-0il Append
IED- reate Append Stuchure for MARA =
Agpend Narmi _ISHHF-H‘!.
[raatad the Object
IE naal
Changed Object
(e oD Eomplma material

Figure 4.71 Creating an Append to the "MARA" Table

In the next step, you can — as shown in Figure 4.72 — specify in the Segment fields
Components tab which new fields you want to use. The names of these

fields should also correspond to the customer naming rules because pro-

grams treat them as fields that are directly included in the MaRA table and

because you can never be sure which fields SAP will add.

Dictionary: Maintain Append Structure

(e]| o] |]] o |] 5 5 O | oy Dispiay | [oo Stvcure]

Append Structure |Z5HmMARA | Active
‘Short Description _'sanlnas Append 1o MARA
Aflributes Entry halpicheck | Cumancyiguantity nelds

™) 2| Predefined Type | Show Appending Obj | 142

5 nent Data Type [Length [Decim [Shor Description

CHARZS CHER 28] @char 20

[CHARIG CHAR 18] B/Character Fleld Length = 10
1]

DEEEEE

Figure 4.72 Custom Fields

123

4

Changes to |1Docs

Custom segment
types

Segment type in
Transaction SE11

Now you carry out the first IDoc-relevant step for enhancing IDoc types,
which is creating a custom segment type. You create segment types in
Transaction WE31. They can have names with up to 27 characters begin-
ning with “Z" or *Y" or /<NAMESPACE>/ if they are customer segments.
This is followed by 1; the remaining part of the name can be freely
defined by you (in our example, the name is Z1MARA).

SAP segments often have a name that directly refers to the database table
from which the fields are used. But this isn't mandatory. Figure 4.73
displays our sample segment, which belongs to the append discussed
earlier for the MARA table.

Development segments: Display segment definition 22MARAQ000
/o

Segment type atiributes

Segment ype |Z1HARA | [Gualified segment

‘Short Dascription ~ |Z1mara

Segm. definition Z2MARADAG [Released

Last Changed By HEISELSA

Pos |Field Mame Data element IS0 co |Exp

1 ZZSHFELD1 CHAR2O 0 ke [«

2 [ZZSNFELDZ CHARTD O he [

Figure 4.73 Creating a Custom Segment Type

When creating the segment, the system determines the lengths of the
fields from the database. If you modify the field lengths at a later stage,
you must manually change them in the segment.

You can view the segment type in Transaction SE11, the Data Dictionary
(DDIC), where it's defined as a structure. The segment type contains the
information in a SAP-specific format in which the database also stores

the fields.

The system also creates a segment definition for every segment type with
the same name parts as in the original name except for the 1, which is
replaced by a 2 here (e.g., Z2MARA). This segment definition can be avail-
able in various versions, which is indicated by a three-digit number at

124

Adapting Existing |Doc Types | 4.2

the end of the name. The segment definition of our example is the first
version, so it's assigned the "000" addition: 72MARA000. The segment
definition indicates the external format, that is, the format that is actually
exchanged with the partner and that differs from the internal format of
the SAP database for some fields.

To deliver a neutral format, you must provide all information as a text. Neutral format
The SAP database stores numbers without decimal separators; the dec-

imal separator, however, is always transferred as a point. A possible

minus sign is transferred in the last field. Compared to the internal pre-

sentation, these numbers always contain two additional places. Dates are

usually transferred as follows: four digits for the year, two digits for the

month, and two digits for the day.

You must release the segment before you can use it. For this purpose, Release
follow the EpiT » SET RELEASE menu path (see Figure 4.74).

= BEE
Segrnent Edit Goto Ubities(M) Ervironment System Halp
@ [estiesse D@ @ CHE DDOD BE
Cancel release t
DE\FEIDP = ial screen
———————— Objecl direclory entry
D2 cancer F12
Segmeni lype | Z1HARS @
Zimara
| Definitions
hl'arsinn Seam. definition Relea |Relea lappl. |No. of |Lgth]tlahoﬂa
608 [Z2MARAGOD O 2 30 rE”EIEBEI

Figure 4.74 Releasing a Segment

After the release, every change results in a new version of the segment.
In the Version Conversion ALE service (see Section 4.2.2, General Exits),
you can ensure that the system uses the appropriate older version of the
segment definition if your partner uses an older release.

Creating an Enhancement Type

After you create all required segments, you can create the actual enhance- Creating an
ment type. It also follows the common customer naming rules and can ~enhancement type

125

4 | Changes to 1Docs

contain up to 30 characters. Transaction WE30 is the corresponding trans-
action. It's critical that you select the Extension checkbox (Figure 4.75) in
the initial screen because the default setting is Basic Type, which is only
required for completely new IDoc types.

|ZSHMARA

Figure 4.75 Creating the Enhancement Type

Properties of the In the next step (see Figure 4.76), define which basic type you want
enhancement type your enhancement type to refer to; in our example, it's the MATMAS0S
basic type. You can also copy and further process existing enhance-
ments or create an enhancement as the follow-up object of an existing

enhancement.

[Create extension; ZGWMARA]

Figure 4.76 Mecessary Specifications

126

Adapting Existing |Doc Types | 4.2

The next screen displays the basic type that is defined as a template (see Enhancement of
Figure 4.77). You can choose the segment for which you want to create the "MATMAS"
your child segments by selecting the segment and clicking on the Create basic type
icon. The system then outputs a message that indicates that custom seg-

ments are only permitted as child segment types for enhancements.

Create extension: ZSMMARA

mll = =1 =1 @
(n)] -|Ed|)
ZEHHARK Sabines Enhanced Material
&3 ETHARAN Master material general data (MARA)
F——E1HARAT Additional Fields for E1HARAN
——ETHAKTH Haster material short texts (MAKT)
=00 E1MARCH Master material C sepment (HARC)
&8 E1MARNN Master material wnits of measure (MARM)
——ETHBENA Hagter material material valuation (MBEW)
o E1HLENN Master material material cata per warehouse number (MLEN)
——E1HYKER Master material sales data (MVEE)
——ETHLANR Magter material tax classitication (MLAN)
G0 E1MTXHN Master material long text header
—8 E1CUCFG CU: Configuration data
———E1UPSLINK Reference from Object to Superior UPS
[= Information E
O sivision sogmentia) vai be inserted a3
child segment typals) of E1MARAM

Figure 4.77 Inserting a Custom Segment

Next, you must specif}r which segment type you want to use (see Figure Occurrence of the
4.78). Furthermore, you need to define the occurrence of the segment ~segments
within the IDoc; the minimum number must always be “1." *0" would

be considered "blank” here, which justifies this uncommon entry. The

segment type only becomes a Mandatory segment if you select the cor-

responding flag. In our example, the segment is optional and can occur

only once. (The append entry in the 75MMARA table can be provided only

once for each material; accordingly, the Z1MARA segment can occur only

once for each material as well.)

127

4 | Changes to IDocs

Enhancement for
"LTMARA"

Releasing an
enhancement

Create extension: ZSMMARA
O 3¢ B=1 =
ZEMMARR 0 Sabines Enhanced Material
= E1MARAN Master material general data (MARA)
——E1HARA [Maintain Aftributes]
———E1HAETH
& E1HARCH
G0 E1HARMN
——E1HBENH X
8 ETHLENN Segm.type | Z1HARA | Lmber (MLGN)
——E1HVEEN
ana I Mandatory seg.
l—m E1MTIHM Minimum number |1
—o E1CUCFE Maximurm nurmber |1
L E1ursLINE Paren segment |
Hit el [6]
[Ssgmert st |]

Figure 4.78 Specifications for a Custom Segment

The system indicates the custom enhancement segments in white and
the initial segments in blue. This enables you to directly identify which
segments have been added. Figure 4.79 displays the enhancement result,
that is, the added (white) segment, 71MARA.

Create extension: ZSMMARA
DR EES
ESHRRRAT sabines Enhanced Material
&= E1HARAN § Haster material general data (MARA)
——21HARA Zimara
——E1HRRAT Rdditional Fields for E1HARAN
——E1HAKTH Haster material short texts (MAKT)
=3 E1MARCH Haster material C segment (MARC)
8 E1HARHM Haster saterial units of measure (HARN)
——E1HEEWH Haster material saterial valuation (MBEW)
G0 E1MLGHH Haster material material data per warehouse nusber (HLGM)
——E1HVKEN Haster material sales data (WVKE)
——E1HLANN HKaster saterial tax classiTication (HLAN)
8 E1NTXHH Haster material long text header
—8 E1CUCFE CU: Contiguration data
——E1UPSLINE Reterence Trom Oblect to Superior UPS

Figure 4.79 Complete Enhancement
You must also release the enhancement. For this purpose, follow the

EDIT » SET RELEASE menu path (see Figure 4.80). You can no longer mod-
ify your enhancement after the release.

128

Adapting Existing IDoc Types | 4.2

Develop IDoc Types: Initial Screen

D[4| B 3] 53] | change Requests (organizer) |

Obj. Narne ZSMMARA
Sabines Enhanced Material

Development object -

Basic type
1 Extansion

[Releasefcancel release =

Extension types canno be changed after being
relgaged.

Release exiension?

| Yes [NnE! Cancel |

Figure 4.80 Releasing the Enhancement

Now, you have to assign the released enhancement to the message type Assignment to
and the IDoc type because you can only use it with this combination. ~message type and
Figure 4.81 shows how this is done for the sample enhancement, Z5M- 'Doc type

MARA, in Transaction WE82.

New Entries: Overview of Added Entries
Output Types and Assignrment o ID0¢ Types
Meszage Type |Basic ype Extengion Release
MATHAS 'Lm.Tnnsns HMARA T

Figure 4.81 Assigning the Enhancement to the Message Type

If you're not sure whether you've considered all necessary aspects, you Checking the
can check your enhancement. Such check functions are also provided for enhancement
segment types, but it makes more sense to carry out the check after every-

thing has been implemented so that the child elements are also checked.

To check the enhancement, use the ENHANCEMENT * CHECK menu or the

scales icon, which you can see in Figure 4.80, shown earlier.

Figure 4.82 shows what is checked and how this is displayed in the case
of success. If an error occurred, you can correct it using this log.

After having completed the enhancement, you need to fill the segments
and the name of the enhancement in the control record if you send the
[Doc and read the respective segments if you update the IDoc.

129

3 | Changes to IDocs

Filling the
segments with an
appropriate exit

Checking for
message or |[Doc

types

Generating and
appending the
segment

Log display
ElEER| | @]

Check extension ZSMMARA

Extension ZSHMARA exists

Extension ZSMRARA 15 released

Extension ZSMMARA it linked with logical message MATHAS
No predecessors exist

Extension ISMRARA 15 assigned to basic type MATHASES

a4

Check segment Z1MARA
Sagment Z1HARA consistent
. -

Figure 4.82 Checking the Enhancement

Filling Segments

You now select an appropriate exit in the outbound function module of
the IDoc and implement your changes (Listing 4.2). The function mod-
ule from the enhancements serves as an example here. The procedure is
identical for all enhancement technologies, but the names of the trans-
fer variables in the sample code correspond to those of the £X17_SAP-
LMY01_002 exit.

Kemmssessseesssseseesssssssees e es s e e s e e s s e s e eeeeeneess *
* INCLUDE ZXMGVUO3
L e L *

* Fill enterprise-internal segments for MATMAS,
case message_type
* Change if this s really the required
* message.
when ‘MATMAS®
* only then implement the inserts.
idoc_cimtype = "ZSMMARA’
case segment_name .
* Check which segment it is. If it
* is one of those to be enhanced, a corresponding
* customer segment s generated and appended.
when ‘EIMARAM’
perform fill_zlmara
tables jdoc_data
when others .
exit .

130

Adapting Existing |Doc Types] 4.2

endcase .
when others .
exit .
endcase .

Listing 4.2 Enhancing the "EXIT_SAPLMV01_002"

In Listing 4.3, you can see the i11_z1lmara form, which is called in the
exit mentioned previously. Of course a division into subroutines in the
code isn't necessary but makes it easier to read programs.

2 3
*kEINCLUDE ZXMGVFO1

e s s s s s sEEEEEsssE S ES S SEEEEEEES S S SS S S S S S eSS e EEE S S S eSS S *
*§ Form fill_zlmara

*& ___ *

FORM fill_zlmara tables idoc_data structure edidd .
tables: elmaram, zlmara
data: matnr type mara-matnr
read table idoc_data with key segnam = *EIMARAM’
* read possible, because the segment cccurs only once.
elmaram = idoc_data-sdata
matnr = elmaram-matnr .
select single ZZISMFELD]1 ZZSMFELDZ from Mara
into corresponding fields of zlmara
where matnr eq elmaram-matnr .
if sy-subrc eq 0
idoc_data-segnam = *Z1IMARA’
idoc_data-sdata = zlmara .
append idoc_data
endif .
ENDFORM " fill_zlmara

Listing 4.3 Code for the "fill_z1mara” Form

You have to let the system know if you work with a customer-specific
enhancement; otherwise, the system identifies custom segments as
incorrect. For this purpose, navigate to the Outbound Options tab and
the IDoc Type subtab in the partner profile of the sending system (see
Figure 4.83). Here, the IDoc is designed with the corresponding control
record, and the sending system checks for all segments whether they are
allowed in this combination of IDoc type and enhancement.

131

Example of the
called form

Partner profile with
enhancement

4 | Changes to 1Dacs

Control record for
the enhancement

Partner profiles: Outbound parameters

Figure 4.83 Fartner Profile with Enhancement

The IDoc additionally contains the name of the enhancement in the con-
trol record; in our example, the enhancement is 7SMMARA in the Extension
field. Finally, you can generate the enhanced IDoc that will be sent (see

Figure 4.84).
ID0e
= [B E1maRaM Segment 000001
() Zimara Segment 000003
2 E1maral Segment 000003
3 E1maTH Sepment 000004
B E1maxTH Sepment 000005
B E1marmN Segment 000006
Ll ETE Diata passed o port Ok
[2) 1Dt wwritten ta file
= [@= e vy far h {ALE sary
[2) Receiver found , No filers
Bn IDoE generabed

Figure 4.84 Enhanced IDoc to Be Sent

You've now completed all necessary tasks on the sender side. The next
section deals with updating an enhanced IDoc.

132

Adapting Existing |Doc Types | 4.2

Posting Segments

To use an enhancement in inbound processing, you must first assign the
corresponding inbound function module that consists of message type,
IDoc type, and enhancement. You do this in Transaction WE57 (see Fig-
ure 4.85). Don't get confused by the name of the 100C_INPUT_MATMASO]
function module; it can process all material master IDocs (the name was
assigned for historical reason because it was developed when only the
MATMASO1 IDoc type was available).

Change View "IDoc: Assignment of FM to Log. Message and IDoc Type™:

Function module IDOC_INPUT_MATHASHN

Function type F Function rmodule 7]
Basic type MATMASOS

Extension ZGHMARA

Message Type HATHAS

Message Variant
Mess, function
Object Type EUS1001006

IDoc: Assignment of FM to Log. Message and IDoc Type

Direction | 2 Inbound]
Descriplion Matenal master
Hamg | Standard material

Figure 4.85 Assigning the Inbound Function Module for the Enhancement

The programming work consists of two parts. First, you must ensure in
the application that the corresponding update modules also transfer the
customer-specific fields to the database. Usually, you're not responsible
for this part of the development work, and it's too module-specific to be
explained in detail here. The second part of the programming work is to
ensure that the data that has been additionally transferred in the IDoc
is read and transferred to the transfer parameters of the update module,
which must be done by you.

Again, the material master is used as an example here. Listing 4.4 shows
the sample code for the fields from the customer-specific segment,
Z1MARA,

133

Assigning an
inbound function
module

Using data from
the IDoc

4

Changes to IDocs

When do ALE
services run?

data: wa_zlmara type zlmara
if message_type eq "MATMAS'
if f_cust_segment-segnam eq *7ZIMARA®
wa_zIlmara = f_cust_segment-sdata .
move-corresponding wa_zlmara to f_mara_ueb .
endif .
endif .

Listing 4.4 Transferring the Data from the "Z1TMARA" Customer Segment

The transfer structure is delivered by SAP so that it already includes
potential appends to the MARA table automatically. This is usually the
case. If not, you can also add an append to the transfer structure that
contains the same fields as your append to the data table.

Combination of ALE Services and Exits

SAP generally provides the option to implement changes to IDocs via the
settings in Customizing. The manipulations, however, are implemented after
your IDoc has been generated. Your exits, in contrast, are executed while the
IDoc is generated. This means that possible filtering processes or rules may
not be deployed when your exit is executed. You should consider this for the
implementation. For example, if you only want to process a plant segment for
a specific partner, you must assume that your exit works while all plant seg-
ments are still included. Consequently, you must make sure that your changes
are made to the correct plant segment.

4.2.4 Special Requirements for Master Data

You already know that the SMD provides special functions for master
data. Sometimes, however, the available special functions aren't wanted.
The following sections describe how you can modify them.

Sending All Data After Changes

When using Shared Master Data Tools and the corresponding change
pointers, SAP assumes that IDocs should be kept as small as possible
for performance reasons. This also usually corresponds to reality. But
sometimes you collaborate with partners who can only process complete
data records. To still be able to use change pointers, you can implement
minor modifications for material masters.

134

Adapting Existing |Doc Types | 4.2

The setting that only the complete material is supposed to be sent is “Send complete”
already available for the material master, for example, if the cross-plant modification
status of a value “with distribution lock” has been changed to a value

“without distribution lock.” For this purpose, the MASTERIDOC_CRE-

ATE_SMD_MATMAS function module manages an internal table, a_t_com-

plex_matnr, with the MANDT, MATNR, and MSGFN fields. If you now

append your materials that are to be sent completely as well and set the

MSGEFN field to “005" for “message replaces previous messages,” the sys-

tem sends the complete material. The corresponding sample code could

be structured as shown in Listing 4.5.

* This change has the effect that specific messages
* are always sent completely,
* The self-developed reduced message type
* i5 the key for the decision here.
data: MESTYPE type BDCPS-MESTYPE . Getting the change
LOOP AT A_T_CHGPTRS . pointer
select single MESTYPE from BDCPS
into MESTYPE where CPIDENT eq A_T_CHGPTRS-CPIDENT .
if MESTYPE eq “ZSMMAT®

T_MARAKEY -MANDT = SY-MANDT .

T_MARAKEY -MATNR = A_T_CHGPTRS-CDOBJID .

COLLECT T_MARAKEY

A_T_COMPLEX_MATNR-MANDT = SY-MANDT
A_T_COMPLEX_MATHNR-MATNR = A_T_CHGPTRS-CDOBJID .
A_T_COMPLEX_MATNR-MSGFN = C_MSGFN_R .
COLLECT A_T_COMPLEX_MATNR . Appending to SAP
clear MESTYPE . table
ENDIF .
ENDLOOP .

Listing 4.5 Sending the Complete Material After Modifications

This code must be added before the system further processes the data.
Because the module may change, you should search for the following
comment:

DESCRIBE TABLE t_marakey LINES hlines
CHECK hlines GT 0

Then, insert the code directly before this in your function module. Next, Location of the
instead of the function module provided by SAP, assign your own func- medification
tion module in Transaction BD60. Be sure to identify the changes in the

135

4

Changes to |1Docs

Enhancing and
reducing

Appropriate
partner profile

original module for each release change and reproduce them in your
function module if required. Alternatively, you can copy the SAP module
after the release change and integrate your modifications. Unfortunately,
an appropriate exit isn't yet available at the location where the modifica-
tion needs to be implemented.

Reduced IDocs in Combination with Custom Segments

If you've added custom segments to the master data IDocs, you may want
to work with reductions — for reasons of performance or because your
partner doesn't want to receive particular data. Because your enhancement
is an IDoc type but your reduction a message type, you can't simply use
one of them as the basis for the other one. Instead, you have to generate
a reduced IDoc that doesn't know your customer-specific segments and in
which you can delete everything from the standard version that you don't
want to send. In addition, you must also generate an enhancement type
that contains your additional segments without knowing the reduction.

When creating the reduced message type, Transaction WE82 automati-
cally generates an entry in which the basic type is assigned to the newly
created reduced message type. This is done automatically when you save
the reduced message type so that you can use it immediately. To now use
the combination from your reduction and your enhancement, copy the
basic type, and insert the enhancement in the copied entry. Figure 4.86
shows this for the 7511 reduction (see Chapter 2, Section 2.1.1, Shared
Master Data Tool) and the 75MMARA enhancement from this section.

Change View "Output Types and Assignment to IDoc Types":

[Quiput Types and Assignment 10 100¢ Types

|Message Tipe [Basic trpa |Extension Relpase [
= MATRASDS ZSMNARA] [=]
[[=]

Figure 4.86 Assigning the Enhancement to the Reduced Message Type

In the partner profile, the enhancement is combined with the basic type,
and the standard module carries out the reduction while your exit fills
the customer-specific fields. Figure 4.87 displays the appropriate partner
profile in the outbound processing for the reduced message type, 75M1,
with “MATMASO05" specified in the Basic Type field and "ZSMMARA"

136

Adapting Existing IDoc Types | 4.2

in the Extension field. The inbound processing must take what it gets;
however, enhancements and reductions must also be known there.

| Partner profiles: Outbound parameters |

Pariner Mo, [SALES | Sales system (client 810)

Parin Type LS Logical system

Parner Role _|

B Message Type |Z5H1 | Sabings Reduced Material
Message code []

Message function [] CTest

Figure 4.87 Partner Profile with Reduction and Enhancement

To test these settings, generate your IDoc (see Figure 4.88).

= [2) E1MARAM Segmen! 000001
Segrent 100002
BEG Segmerd 000003
[E1marTH Segment 000004
[E1makTH Segmerd 000005
GlCTE Data passad to port OK
[2) 100¢ sendto SAF system or extemal program
@» IDo reagy for dispatch (ALE serdce) | Content ofselected sepment

[2) Recanver found , Mo fllers , Mo corversion , Version

Em IDoc generated
% DERDZ

Figure 4.88 Sample IDoc

/o)

137

4 Changes to |Docs

Custom Function Modules for File
Generation in File Ports

4.3

For file ports, you need to specify to which file the corresponding IDoc
is supposed to be written if this port is used. You do this in Transaction
WE21, the port management (see Figure 4.89). Here, you can always write
the IDoc to a definite file by specifying the name of the corresponding
file in the Outbound File field in the tab with the same name.

Creating a file port
|03 o7 i 0 =
Fmté | Deseription Poit T5M1_DATE]
= [Pors
Descriglion Sabines File Forl
b [Transactional RFC
= 5 File
CRFRI-VMI Copy of POSSIM (for CPFRZ-VMI EDQ Virtion | Systarn Satiing <
DE0_PORT D=0 File-Por for Moverment data O I00c rec hipes SAP Release 20021 [+] Uniicode format
EUPEXPORT HC: Portfor I00cs of messape ipe EUPEXR 2 10w0c rec hipes BAF Release 3.0/3.1 [Continue despite comversion emror
FOSEIM Fort Kassensimulation ®
EMFILE Sabines Testpost for Files Mo record types S4° Release 4x Feplacement char.
SUBSYETEM Port fiie ein EDI-Subsystam via Dateizchnitiatelle I
TICKETS Port e Varkaulshilismitial
g :::Epl _m Outbound; Trigger | Inbound file | Stahss file
b] HML File -
1 ¥ML HTTR O Lopical dirgctany |68 Access Test
(® phiysical direciory
Dirachary wisnsapu ISy Ealoban
Functien module E_5M PATH CREATE DATE TIRE [3)
Diescripion Sabénes own Function Module
Duibaund file
4][»][q

Maodule for file
names in file ports

Maintenance
transaction for file
function modules

Figure 4.89 File Port with Custom Function Module

More frequently, however, file names are supposed to be assigned dynam-
ically. In these cases, use a function module that comprises the name of
the file from the IDoc data, for example, from the IDoc number, the cur-
rent time, or similar information. This way, you avoid that the system
overwrites an existing file, and you can also find the data more easily.
Figure 4.89 shows the use of an additional function module that is cre-
ated within the customer namespace (7_SM_PATH_CREATE_DATE_TIME).

It isn't sufficient to simply implement the required function module. To
have the system display it in the selection list in the file port, you must
additionally register it for the file ports and let the system know whether

138

Custom Function Modules for File Generation in File Ports | 4.3

it uses logical or physical paths. In Transaction WE55, you implement this
assignment by adding a new entry (see Figure 4.90). Function modules
marked with “L" use logical paths; all other modules use physical paths.

Change View "IDoc: Function Modules for File Names™: Overview
{%| Bxpand <> Collapse || New Entries | (23| [A] | Denimit | k2] [[ER[ER [2 variavie ust | £/ Form ||

IDoc: Function Modules for File Names

|name of function module Path |Description

File name determination for the DX Workbench [=]

; Logical directory, file narme in EnrrnatT_cllan:_dncnu:rE
L Logical directory, file name in SY-LINAME format

FNMIE_EL].EHLMM Directory + file name in format T_Client_Docnum
[EDI PATH CREATE DATE TIME Directory = file nama in format T_CCYYMMOD_HHMM:

[EDI PATH CREATE LENGTH LE & Directory + file name in format NTHHMMSS. T

EN_EEMEE&IE_HEEIILMEHHH Directory + =message tpe=_<lasl 3 characiars of DO

[EDI PATH CREATE POS UNIX [0S Directary = file name (name last 8 characters of DOCH
 |EDI PATH CREATE RETAIL STORE Directary + file name in format T_Stare_=DOCNUM 16

01] (SR |

[EDL PATH CREATE USERNAME Directary + file name in format S'-UNAME
[EDI PATH CREATE USERWAME DT TH Directory « file name in format T_S'-UNAME_CC M
LIBD EXP GET QUTPUT FLENANE SEM-PA Export File Names
|£ SM PATH CREATE DATE TIME Sahines own Function Module
D (0D

Figure 4.90 Function Modules for File Names

The signature of a function module that works with logical paths looks Signature for
like the one shown in Listing 4.6. logical paths

*"+«"| ocal interface:

% IMPORTING

L VALUE(DATATYPE) LIKE EDIPO-ACTRIG

" VALUE(DIRECTORY) LIKE EDIPO-OUTPUTDIR

%" VALUECFILENAME) LIKE EDIPO-OUTPUTFILE

o VALUECCONTROL) LIKE EDIDC STRUCTURE EDRIDC
%" EXPORTING

L VALUE(PATHNAME) LIKE EDI_PATH-PTHNAM

% EXCEPTIONS

" LOGICAL_PATH_ERROR

Listing 4.6 Signature of a Function Module Using Logical Paths

139

4 | Changes to |1Docs

Transaction FILE

Signature for
physical paths

Furthermore, you must also determine the physical path, which has been
assigned in Customizing in Transaction FILE. For this purpose, SAP pro-
vides a specific function module. The following sample code (Listing 4.7)
indicates its use.

DATA: LOGICAL_PATH LIKE FILEPATH-PATHINTERN,
LOGICAL_PATH = DIRECTORY.
CALL FURCTION *FILE_GET_NAME_USING_PATH’
EXPORTING
* CLIENT -
LOGICAL_PATH =
* OPERATING_SYSTEM -
* PARAMETER_1 =
* PARAMETER_2 -
* USE_BUFFER ="
FILE_NAME = S5Y-UNAME
* USE_PRESENTATION_SERVER -t
IMPORTING
FILE_NAME_WITH_PATH
EXCEPTIONS
PATH_NOT_FOUND -
MISSING_PARAMETER =
OPERATING_SYSTEM_NOT_FOUND
FILE_SYSTEM_NOT_FOUND
OTHERS =5 .

SY-MANDT
LOGICAL_PATH
SY-0P3Y5

PATHNAME

1
L) Pa e

Listing 4.7 SAP Function Module That Determines the Physical File Name for a
Logical File Name

If you generate a function module that works with physical paths right from
the beginning, you must use the following signature (see Listing 4.8).

*"+"Local interface:

et IMPORTING

*r VALUECDATATYPE) LIKE EDIPO-ACTRIG

LA VALUECDIRECTORY) LIKE EDIPO-OUTPUTDIR

e VALUECFILENAME) LIKE EDIPO-OUTPUTFILE

e VALUECCONTROL) LIKE EDIDC STRUCTURE EDIDC
e EXPORTING

" VALUECPATHNAME) LIKE EDI_PATH-PTHNAM

Listing 4.8 Signature of a Function Module Using Physical File Paths

140

Custom IDocs | 4.4

4.4 Custom IDocs

The prerequisite for using custom IDocs are custom tables from which
data is retrieved for sending the IDocs and stored in inbound processing.
As an example, the descriptions in the following sections use a simple
case with only a few fields, which nevertheless covers all aspects that are
relevant to IDocs.

This example uses a header table and an item table. The item table con- Data for the
tains several identical fields that the IDoc processes using a qualifying custom IDoc
segment. Due to the difficult reusability, SAP doesn't recommend the use

of qualifiers. In the standard version, however, quite a lot of qualifiers

still exist so that you may not be able to avoid using them.

Figure 4.91 displays the structure of a header table. An interface project Header table
usually already includes these tables so that you can use them in your

IDoc. To illustrate the relationship between IDoc and data record, the

application tables were created as well and not considered as existing.

Dictionary: Maintain Table
E | | m@ | El E:| Technical Settings || Indexes_.. || Append Structure_..

Transp, Table | ZSHH Active
Short Description [EM Header

Atributes | namar;anduaintanmam Enfry helpicheck | CumancytQuantity Fields

Y === 4l | F| srchHelp | | Predefined Type |
| key|Initi_|Data elerment Data Ty [Length [Decim |Short Description
MANDT HANDT CLNT 3 acient
KET1 [KEY FELD CHAR kTS OPartial key of SAF object
| JEELDI ‘O] O gesn CHRR 48 BCharacter fisdd of length 40
FELDZ O OO kHreia CHAR 18 BiCharacter Field Length=10
m]is] J

Figure 4.91 Sample Header Table

The item table that belongs to the header table contains an item number Item table
as an additional key field, three similar fields for the qualification, and a

quantity field with a unit of measurement for a special implementation

for some units of measurement. Figure 4.92 displays the definition of

the item table in Transaction SE11.

141

4 | Changes to IDocs

Quantity fields
in the Data
Dictionary

Dictionary: Maintain Table

HE| EkEE | EhE| | B8 [Technicai Setings | Inderes. | [Append Stucture.. |

Transp. Table |250P | Active
Short Descripion SM Position

Altributes | Duheqandﬁnhnannam Entry helpicheck | CumencyfGuantty Flelds

o | 1 P e EEEE Srch Predefined
:Fﬂm ETWMWM
= = ELNT 3 BClient
JeErs [¥] BEY FELD CHAR 30| 8P artial key of SAP object
[POISHE [¥] IPOskR NUNEC 6| Bitern number of the SO document
FELDA Ol O ciass CHAR 6| B/Character field of length &
FELDE Ol O cuass CHAR & B/Character field of langth 6
- JFeLoc 0] O knane CHAR 6 OCharacter field of length 6
MENGE 0| O jhewsts QUAN 15 Jcuantey feld, 15 characters
IME[NA O] O MEINs LNIT 3 BUnit of measure
] Nl I]

Figure 4.92 Sample Item Table

For the Menge field, you need to specify which reference unit of mea-
sure is supposed to be used. Figure 4.93 displays it in the Reference Table
and Reference Field columns.

Dictionary: Maintain Table

[l f) e | gl] | 6] TR | B8 [Techicai Setings | indeses.. || Aopens sucture.. |

Transp. Table |Z64P | Acthve
Short Description B Posftion

Delivery and Maintenance Fields | Entiy heipicheck ST TIREIITEE

Input help

m Search Help | 1/8

|Data glement Data Ty_|Reference table |Ref figld [Short Description

JRANDT CLNT lient

KEY_FELD CHAR Partial key of SAF object

FOSNR HuREC [em number of the S0 docurnent
CHARE CHAR Character field of length &
CHARG CHAR Character field aflangth &
CHARE CHAR Character fighd of length &
IMENG15 usn ZsP HEINA Quantity field, 15 charatiers
IHEINA | IH | Linit of maasure

1] 1

Figure 4.93 Reference Unit of Measure in the Item Table

You should provide an input help or check table wherever possible (see
Figure 4.94). In the 75MP sample table, the input helps are enabled for
the KEY1 field, which should refer to the header table, and for the unit
of measure field (MEINA), which is copied from Customizing. In addi-

142

Custom IDocs | 4.4

tion, SAP delivers a check table for the client (MANDT field). This table
is used here.

Dictionary: Maintain Table

| A] | [] | Rl (31 [| B8 [[Technical setings || indexes._ || Append Structure._ |

Transp. Table [25mP | Active

Shost Description EM Fosition
Altributes Delrvery and Malnenance Flelﬁsm CumencyQuantity Fialds

=[] a ,ﬁl Search Help | 118
Fisdd Dt alamiend Crata lein Chisck table Ciriggin of the input bl Srch Hal [0 |Darmain
AHDT ANDT CLNT [+ To00 HAND
[k KEY_FELD CHAR [ZshM lnput help isplesented with che | [NEDNAH
FOSHR POSHR HuRLC O i
FELDA CHARE: CHAR O @ GHA
FELDE CHARG CHAR O CHE
FELDC CHARE CHRR O CHA
MENGE FIEHIHS F]UP.H O Li| i
ME THA ME KA UNIT [+ (1006 Leput help isplenented with chil 1006 i

| | C |

Figure 4.94 Entries for the Input Check

4.44 Creating Custom IDoc Types and Message Types

To use the 7SMH and 7SMP sample tables in an IDoc, you must create
the corresponding custom segments. Section 4.2.3, Custom Segments,
already introduced the creation of segments in the context of enhance-
ments for SAP IDocs. At this point, however, some general remarks con-
cerning segments need to be made, which refer more to design guide-
lines than handling.

In general, a segment can contain up to 1,000 characters. For perfor- Segment size
mance reasons, you should transfer as few segments as possible because

each segment entails additional control information. So it's useful to

generate segments that are as long as possible. But you have to perform

a balancing act here: The external length may be greater than the length

on the database; consequently, you can't fully use the 1,000 characters

for the internal length. If the table to which the segment belongs is

larger, you may want to add fields to the same segment definition at a

later stage. This should also be considered when defining the length of

the initial segment.

143

4

Changes to |1Docs

Reusability

Segment for
the header

Segment for the
item table

You should also try to generate reusable segments for your own interest
(to reduce your work). For example, if you want to have different tables
with address data, you only generate one segment for them. In this seg-
ment, you can fill whatever fields are needed in a specific case. The fields
should be long enough so that you can also use them for the longest
entries from the tables. Of course, you can also reuse SAP segments. So
if you know a suitable SAP segment, first check if it meets your require-
ments before creating a custom segment.

If you already know that you want to implement communication via
EDI, also have a look at the corresponding EDI message. If this message
for the EDI field that corresponds to the SAP field allows for a greater
field length, use the EDI field length in your segment and not the shorter
SAP field length. This also facilitates later conversions. It can also be
useful to check which fields are used together in the EDI standard when
combining fields in a segment definition. If you then actually combine
these fields in a segment, this also facilitates the conversion to the EDI
standard. To meet the European standard, EDIFACT, refer to the informa-
tion provided on http.//www.edifactory.de.

For the 75MH and 75MP tables, three segments were created as examples:
one for the header, one for the three similar fields, and one for the
remaining fields of the item table. All segments are very short because
they refer to sample data and not to real data.

Figure 4.95 displays the header segment. The Segment for the Position
elements only contains the item number. Because IDocs have a hierarchi-
cal structure, you don't have to repeat the KEY1 key field of the header
table. This would only place an unnecessary load on the system.

As you can see in Figure 4.96, the checkbox for the ISO code is selected
for the unit of measure (MEINA). You still have to program this implemen-
tation, as the checkbox serves for information only. A character data ele-
ment with a characteristic that has two characters more (CHARL7) has been
selected for the MENGE field, which has 15 characters in the 75MP table.
As you recall, this addition is necessary to transfer the decimal point and
a possibly existing minus sign to the partner in the external format.

144

http://www.edifactory.de

Custom IDocs | 4.4

Development segments: Display segment definition 22Z5MH000 |
=1

Segment ype attributes

‘Segment type: Z1Z5MH | [Qualified segrent

Short Description Babines Segment for ZSMH

Segm, definition :ZEZSIIHEE FReleased

Last Changed By InAISELSA |

[Pos_[Field Name |Data element IS0 co_[Exp

1 KEM KEY_FELD 0 Be [a]
2 FELDT CHAR4D O e &
3 FELDZ CHAR1D O pe []

Figure 4.95 Segment for the Header Table

T:Ievelopment segments: Display segment definition 22ZSMP000
1
=l
Segment ype atribules
Segment tpe. T1Z5HP | [Qualified segrnent
‘Shon Description ~ Sabines Segment for ZSMP
Seqgm. definition [z225WPa00 | Freleased
Last Changed By HAISELSA |
Pos_|Field Name Diata element 150 co_[Exp
1 POSNR POSKR O§ [
2 MEMGE CHAR1T O 7 [
3 MEINA METHA 3 |_|

Figure 4.96 Segment for the ltem Table

Finally there is the third segment, which will be called 71251M0. A qualify- Qualifier in the
ing segment is supposed to be used here. You can transfer various fields DPDIC
to a qualifying segment. A controlling field, called the qualifier, then
indicates which field is meant. You use these fields if you don't know

how many of the fields that are identical with regard to the properties

will be transferred. In our example, the field can occur zero to three

times, and you decide depending on the qualifier into which of the three

fields, FELDA, FELDB, or FELDC, the respective value is supposed to be
entered. You already know this procedure from partner roles in Sales

and Distribution (SD) or Materials Management (MM) in SAP. The pre-
requisite here, however, is a specific domain for the qualifier, which has
already been created as you can see in Figure 4.97.

145

4 | Changes to 1Dacs

Domain for the
qualifier

Data element for
the qualifier

Dictionary: Maintain Domain

Bl =1

Darmain |ZsmOuAL | Active
Short Descripion | ZSMGUAL

Figure 4.97 Domain for the Qualifier

You then define the possible input values in the Value Range tab of the
domain. In our example, this is "A" or "B" or “C" (see Figure 4.98). If
you use only one value range in the domain, the IDoc documentation
displays which selection options are available for this field.

Dictionary: Maintain Domain

Belongs o FELDA
Belongs o FELDB
Balongs o FELDC

Figure 4.98 List of the Input Values

You then use this domain to create the appropriate data element in the
next step in Transaction SE11. For this purpose, assign a meaningful name
within the customer namespace, and refer to the newly created domain.
Figure 4.99 illustrates this using the 75M0UAL data element as an example.

146

Custom 1Docs | 4.4

Dictionary: Maintain Data Element _

Diata element
Short Description

Figure 4.95 Data Element for the Qualifier

The (admittedly rather small) segment in our example now merely con- Qualifying
tains a field for the qualifier and an additional field. This field has the segment
properties of the field that the table contains three times in an identical

format, FELDA, FELDB, or FELDC. Figure 4.100 displays the third, quali-

fying segment of our example as 71ZSM0.

Development segments: Display segment definition Z2ZSMQ000

| [FEReleased

Figure 4100 Qualifying Segment

Don't forget to release all segments as described in Section 4.2.3, Custom Custom IDoc
Segments. After that, the system builds the IDoc type from the segments. basic type

147

4 Changes to |1Docs

Specifications for
the root segment

Inserting segments

Additional
segment

This is again implemented in Transaction WE30; this time, however, you
create a specific basic type. The already known naming rules (“Z,” "Y,"
or /<NAMESPACE>/ at the beginning of the name) apply here as well.
Figure 4.101 displays the screen with the general specifications for the
1Doc type.

crCreate basic tvpe: ZSM 1 [=]

Mew basic IDoc type
® Create new

O Create as copy Copyfrom

) Create successor Successor of

Administration
Pearson responsible MAISELSA
Processing person MAISELSA

Description Sabines Dot Typ

| <]
Vx|

Figure 4101 Creating a Custom IDoc Type

First, enter the main or root segment in the Segment Type field (in our
example, this is the segment for the header table, 7175MH). It can occur
only once but has to occur, which is why the Mandatory Seg. checkbox
is selected (see Figure 4.102).

Afterward, create the item segment (here: 7175MP), which can occur any
number of times (see Figure 4.103). Even though it's optional, you must
set the minimum number of occurrence for this segment to “1." Because
the Mandatory Seg. checkbox isn't selected, the segment can also be
missing. Before you navigate to the attribute maintenance, the system
asks you at which level you want to add the segment.

In our example, the qualifying segment, 717510, was also added at the child
level because it will be generated from the same table record at a later stage
(see Figure 4.104). You can now build your entire IDoc this way.

148

ZENTYPEI T sabines IDoc Typ
I Maintain Attrioutes

Seqm.ype |Z125MH
[#] Mandatory seg.
Minimum number |1
Maximum number |1
Parant segment |
Hier Jevel IEH

Figure 4102 Defining the Root Segment

Create basic type: ZSMTYP01

r Sabines IDoc Typ
Z1Z25MH Sabines Segment Tor Z5MH

£ Segment Hierarchy =

® Add segrment type as child
0 Add segment type at same leval

ILE' Maintain Atfributes = z

Segm. tipe |21Z5HP
[mandatory seg.
Minimum number |1
Maximum number |99
Parent segment |
Hier leval 0

Figure 4103 Specifications for the Item Segment

149

Custom I1Docs | 4.4

<1 | Changes to IDocs

Documentation in
Transaction WEGD

Create basic type: Z8MTYP01

P Sabines 1Doc Typ
Z1Z5MH Sabines Segment for ZSMH

Z1Z5HP Sabines Segment fTor ZSHP

[Er Sagment Hisrarey B3]

® Add segment type as child
() Add segment type at sama level

]

|@v Maintain Afributas [E]

Sagm by |Z1Z5m0
[CImandatory seg.

Minimum number |‘|
Maximum number |99
Parent segrment |

Hier el @]

St]

u
Figure 4104 Specifications for the Qualifying Segment

Transaction WE60 enables you to have the system display the documen-
tation for your IDoc type. The system automatically generates the docu-
mentation from the data that you specified. The structure description
(see Figure 4.104) then might look as shown in Table 4.1.

Basic Type | ZSMTYPO1

ZSMTYPO1 SaBINES |DoC TyPe

Z1Z5MH SABINES SEGMENT FOR ZSMH
Status: mandatory, minimum number: 1, maximum number:
1

Z1ZSMP SABINES SEGMENT FOR ZSMP
Status: optional, minimum number: 1, maximum number: 99

Z1Z5MQ SEGMENT FOR QUALIFYING FIELDS
Status: mandatory, minimum number: 1, maximum number:
3

Table 44 ZSMTYPO1 Basic Type

150

The remaining part of the documentation isn't described here because you
can obtain the corresponding information from the preceding figures.

When the 1Doc type is complete, you have to create the message type.
This is done in Transaction WE81 (the message type is called “logical
message” here). Figure 4.105 shows the 7SMNACH sample message type.

New Entries: Overview of Added Entries
YREEERE
EDI: Logical Message Types
Message Type [Snurtlaxl
TSHMACH Sabines Messane Typel
- [

Figure 4105 Creating the Message Type

In Transaction WE82, the message type and the IDoc type that has been
created as the basic type are assigned to each other. Figure 4.106 dis-
plays this assignment for the previously created objects, ZSMNACH and
ZSMTYPOL.

New Entries: Overview of Added Enfries
YREEE
Cutput Types and Assignment 1o I1Doc Types
Message Type Basic ype Exension |Rala ase
ZSHHMACH ZSHTYPEY o0 | [=]
& (=]

Figure 4106 Assigning the |Doc Type to the Message Type

After you've completed everything, you can again check your results. As
you can see in Figure 4.107, everything is okay for our sample IDoc.

If you need additional functions, such as reductions or links to business
object types, you can configure them in Transaction BD60. This trans-
action is optional because a “normal” IDoc doesn't need these settings.
However, you already know them from other SMD functionalities.

151

Custom IDocs | 4.4

Custom message
type

Message

type —
IDoc type

Check log

4 | Changes to 1Docs

Log display

Check basic type ZEMTYPO1
Bagic type ISHTYPR1 exists

Bagic type ZSHTYPE1 15 released

Basic type ISHTYPB1 is linked to logical message ZSMNACH
No predecessors exist

a4

Check segrent Z1Z5HH
Segment Z1Z5MH consistent

Check segment Z1Z5HP
Segment Z1Z5MP consistent

Check segment Z1Z5H0
Seqment Z1Z5M0 consistent

Figure 4107 Check Log for Success

Properties of the ~ Figure 4,108 shows possible Reference Message Type, Format Function
message type Module, and Reducable Message Type properties for our sample message
type. Object types and classification data haven't been created because
this has to be done by the developers of the application. The object types
serve to create links, and the classification data is required if you want to

send master data via distribution class types.

New Entries: Details of Added Entries

Message Type | ZSMNACH

Figure 4108 SMD Settings for the “ZSMMNACH" Message Type

152

Custom IDocs 4.4

You can now begin generating and processing the appropriate IDocs for
this message and IDoc type.

4.4.2 Generating an IDoc
When creating an IDoc, you should observe some rules in advance:

» The program should only generate segments that contain fields that
aren't initial.

» The segments may only contain alphanumeric characters because the
format is supposed to be generally comprehensible.

» For all languages, currencies, and units of measurement, use the cor-
responding ISO values as the standard version does. SAP provides
function modules for conversions, which you can also use.

» As common for alphanumeric content, all fields should be filled left-
aligned. You can use the CONDENSE command for this purpose.

» For decimal numbers, the system always uses a point as the decimal
separator; the possibly existing minus sign is indicated at the end.
Thousands separators are never used.

» A floating point number is displayed with a point as the decimal sep-
arator and without a thousands separator. A possible existing minus
sign is indicated at the beginning this time; the exponent is always at
the end.

» Date fields are displayed in the same way as on the database, that is,
in the yyyyMMdd format.

» Times are also displayed in the same way as on the database, that is,
in the HHmmss format.

There are three options for generating an IDoc: You can generate a direct
transaction or a direct send report, use message control, or work with
change pointers. The respectively required Customizing for the necessary
transaction codes and assignments of the function modules is described
in Chapter 2, Section 2.1, Standard Methods for the IDoc Generation.
This example therefore works with a function module. In general, you
can use this function module, which we'll call 7_MASTERIDOC_CREATE_
ZSMNACH, for all options mentioned earlier for the generation of IDocs.
It's called in a report (see Listing 4.9).

153

Programming
guidelines

IDoc generation

4 | Changes to IDocs

Function module

Generating an
IDoc: signature

Data definitions

This function module covers the main program aspects. It transfers a
variable that you can use to determine the data that is supposed to be
sent. In this case, it's the DBJKEY variable. To keep it simple, the variable
refers to the 75MH table; if you use larger tables, you should create a struc-
ture that only consists of the key fields. This is followed by the variables
for the sender (sender partner ID SNDPRN, sender partner type SNDPRT,
and sender partner function SNDPFC) and the receiver (receiver partner
ID RCVPRN and receiver partner type RCVPRT). The system returns the
number of the generated IDocs so that you're provided with an internal
table for the control records.

Basically, a function module like this one can generate multiple IDocs,
but our example is limited to one. The signature of the function mod-
ule is followed by data declarations and the initialization process of all
structures.

FUNCTION z_masteridoc_create_zsmnach.

*

""Local interface:

*” IMPORTING
*" VALUE(OBJKEY) TYPE ZSMH
" VALUE(RCVPFC) TYPE BDALEDC-RCWPFC
DEFAULT SPACE
* VALUE(RCVPRN) TYPE BDALEDC-RCVPRN
*" VALUE(RCVPRT) TYPE BDALEDC-RCVPRT
* VALUE({SNDPFC) TYPE BDALEDC-SNDPFC
DEFAULT SPACE
*" VALUE(SNDPRN) TYPE BDALEDC-SHDPRM
st VALUE{SNDPRT) TYPE BDALEDC-SHODPRT
**" EXPORTING
*" VALUEC(CREATED_COMM_IDOCS) LIKE SY-TABIX
*" CHANGING
* REFERENCE(TE_IDOC_CONTROL) TYPE EDIDC_TT

DATA: BEGIN OF f_idoc_header .
INCLUDE STRUCTURE edidc

DATA: END OF f_idoc_header .

DATA: BEGIN OF t_idoc_data OCCURS 10
IHCLUDE STRUCTURE edidd

DATA: END OF t_idoc_data

DATA: BEGIN OF t_idoc_comm_contral QCCURS 10 .
INCLUDE STRUCTURE edidc

154

Custom IDocs | 4.4

DATA: END OF t_idoc_comm_control
DATA: comm_control_lines LIKE sy-tabix .
DATA: idoc_must_be_sent .
DATA: wa_zlzsmh TYPE zlzsmh
DATA: wa_zsmh TYPE zsmh .
DATA: wa_zlzsmp TYPE zlzsmp .
DATA: wa_zsmp TYPE zsmp .
DATA: it_zsmp TYPE TABLE OF zsmp .
DATA: wa_zlzsmg TYPE zlzsmg

* Initialize
CLEAR t_idoc_comm_control
REFRESH t_idoc_comm_control
CLEAR t_idoc_data
REFRESH t_idoc_data

* Check ALE distribution model

Listing 4.9 Data Declarations

If you work with ALE distribution, check — before you generate the Reading the
IDoc — whether the predefined combination of sender, receiver, and ~ distribution model
message type is allowed, that is, whether it's maintained in the customer

distribution model. You can use the standard module ALE_MODEL_DETER-

MINE_IF_TO_SEND provided by SAP for this purpose (see Listing 4.10).

CALL FUNCTION “ALE_MODEL_DETERMINE_IF_TO_SEND’

EXPORTING
message_type = "ZSMNACH"
* sending_system = '
% receiving_system ="
receiving_system = rcyprn
VALTDDATE = SY-DATUM
IMPORTING
idoc_must_be_sent = idoc_must_be_sent
EXCEPTIONS
own_system_not_defined = 1
OTHERS =2 .
IF idoc_must_be_sent IS INITIAL .
EXIT .
ENDIF .

Listing 410 Determining the Data of the Distribution Model

155

4 | Changes to IDocs

Generating If you get a positive result, the root segment is generated next (see List-
segments ing 4.11). Using the Move-Corresponding or Corresponding Fields
statements always has the benefit that potential new fields don't lead to

changes in the program.

* ISMH ==> Generate E1Z5MH HEADER segment
SELECT SIHGLE * FROM zsmh
INTO CORRESPONDING FIELDS OF wa_zsmh
WHERE keyl = objkey-keyl
MOVE-CORRESPONDING wa_zsmh TO wa_zlzsmh .

Listing 441 Filling the Header Segment — Application Data

The segment generated so far is now transferred to the data record table
(see Listing 4.12). Only the segment name from the control area needs to
be transferred, everything else will be generated at a later stage.

CLEAR t_idoc_data
t_idoc_data-segnam = *Z1Z5MH’
t_idoc_data-sdata = wa_zlzsmh .

Listing 442 Filling the Header Segment — Control Data

Reduction If reduction is enabled for your message type, the following function

activated? module checks which fields are active for the segment that is supposed to
be processed in the reduced type (see Listing 4.13). The ZSMNACH type in
our example is no reduction, so it will bring back all fields and segments
as relevant; nevertheless, the call has been executed here for illustration
purposes.

* Reducing segments

CALL FUNCTION *IDOC_REDUCTION_FIELD_REDUCE"

EXPORTING
message_type
segment_type
segment_data

IMPORTING
segment_data

*ISMNACH®
*Z175MRH°
t_idoc_data-sdata

t_idoc_data-sdata

Listing 413 Checking if the Function Module Is Supposed to Be Reduced

The append to the IDoc data table is implemented in the next step:

APPEND t_idoc_data

156

Custom IDocs | 4.4

Afterward, the system immediately creates the next segment (see List- Item segment
ing 4.14).

* JSMP ==> E17SMP
SELECT * FROM zsmp
INTO CORRESPONDING FIELDS OF TABLE it_zsmp
WHERE keyl = objkey-keyl
LOOP AT it_zsmp INTO wa_zsmp .
MOVE-CORRESPONDING wa_zsmp TO wa_zlzsmp .

Listing 444 Generating the Item Segment — Application Data

This is the first field with digits that are supposed to be transferred as
alphanumeric characters. A Condense is executed:

CONDENSE wa_zlzsmp-menge |,

Also a field exists that is supposed to be sent in the ISO code and not in Converting units of
the SAP unit (see Listing 4.15). It's the unit of measure. The SAP func- measurement

tion module for the conversion direction from SAP unit to ISO code is
UNIT_OF_MEASURE_SAP_TO_ISO.

CALL FUNCTION “UNIT_OF_MEASURE_SAP_TO_ISO®
EXPORTING
sap_code
[MPORTING
iso_code
EXCEPTIONS
not_found
no_Jiso_code
CLEAR t_idoc_data
t_idoc_data-segnam
t_idoc_data-sdata

wa_zlzsmp-meina

wa_zlzsmp-meina

01
0z .

*L1ZSMPT
wa_zlzsmp .

Listing 445 Determining the 1SO Units of Measure

Here, the reduction is missing, which is already contained in the code for
the header segment in Listing 4.13. The append immediately follows:

APPEND t_idoc_data.

In addition, an optional qualifying segment is provided that is derived Qualifying
from the same data record (see Listing 4.16). The system checks the three =~ segment
possible cases, FELDA, FELDB, or FELDC, and generates the segments if

the corresponding data is available.

157

4 | Changes to IDocs

Control record —
required fields

I[F NOT wa_zsmp-felda
wa_zlzsmg-qual
wa_zlzsmg-feld

CLEAR t_idoc_data.
t_idoc_data-segnam
t_idoc_data-sdata

APPEND t_idoc_data

ENDIF

IF NOT wa_zsmp-feldc
wa_zlzsmg-qual
wa_zlzsmg-feld

CLEAR t_idoc_data
t_idoc_data-segnam
t_idoc_data-sdata

APPEND t_idoc_data

ENDIF .

IF NOT wa_zsmp-feldb
wa_zlzsmg-qual
wa_zlzsmg-feld

CLEAR t_idoc_data
t_idoc_data-segnam
t_idoc_data-sdata

APPEND t_idoc_data

ENDIF

ENDLOOP .

IS INITIAL
- ‘A",
wa_zsmp-felda

*Z1I5MO°
wa_zlzsmg

IS INITIAL .
=0
wa_zsmp-felde .

[

= *F17ZS5MO°

= wa_zlzsmg
IS INITIAL .
= ‘B°

= wa_zsmp-feldb .

= "Z1Z5M0°"
wa_zlzsmg

Listing 416 Generating the Optional Qualifying Segments

Next, you need your control record; however, there are only a few fields
that you need to fill in yourself. In our example (see Listing 4.17), these
mandatory fields are filled for sender information, receiver informa-
tion, and possibly required serialization information. The system auto-
matically specifies the timestamp, the creating or modifying person, and
the like.

* Design control record.
CLEAR f_idoc_header .

f_idoc_header-mestyp
f_idoc_header-idoctp

f_idoc_header-sndpfc =
f_idoc_header-sndprn =

f_idoc_header-sndprt

158

*ISMNACH®
*ISMTYPOL®
sndpfc .
sndprn .
sndprt .

Custom IDocs | 4.4

f_idoc_header-rcvpfc = rcvpfc
f_idoc_header-rcvprn = rcvprn
f_idoc_header-rcvprt = rocvprt
f_idoc_header-serial = space .

1

Listing 447 Filling the Mandatory Fields in the Control Record

The system transfers the finally complete master IDoc to the communi- Transfer to the
cation layer (see Listing 4.18). During this process, the hierarchy for the rﬂmm““"at'“”
individual segments is set up according to the IDoc type definition. ayer

* Transfer [Doc to communication layer
CALL FUNCTION *MASTER_IDOC_DISTRIBUTE®

EXPORTING

master_idoc_control = f_idoc_header
TABLES

communication_idoc_control = {_idoc_comm_control
master_idoc_data = t_idoc_data
EXCEPTIONS

error_in_idoc_contraol =01
error_writing_idoc_status = (2
error_in_idoc_data = 03

sending_logical_system_unknown = 04 |
DESCRIBE TABLE t_idoc_comm_control
LINES comm_control_lines.

created_comm_idocs = comm_control_lines .
te_idoc_control[] = t_idoc_comm_control[]
ENDFUNCTION .

Listing 448 Sending the Generated |IDocs

Note that, for better readability, this code doesn't include some recurring
aspects with which developers are usually familiar. For example, you
may want to use more variables where hard code was used in this exam-
ple. This example also doesn't check if the segments are filled before
they are appended, which you should always do.

You've now created the data records for your tables. The quick view in Complete custom
Figure 4.109 displays the data object that is supposed to be sent as an 'Doc
example here.

159

4 | Changes to 1Docs

[] 1]
ial key Char | ZEMH-FELD2| Partial tem|Reserve| Reserve | Reserve = Quantity
4711 |FELD1|FELDZ 4711 |000010|FELDA |FELDB |FELDC 10 |PC |PC

MT11 FELD1 [FELD2 4711 000020 | FELDAT |FELDBE1 |[FELDC1 100 |PC |PC

Figure 4109 Data Object to Be Sent

Individual display Transaction BD87 lists the IDoc that has been generated from the data
object (see Figure 4.110).

Technical shor info

Segment 00000|

Segment 00000

@ z1z8ma C Segment 00000

B z1zsma e Segment 00000

= [@ z1z5mMP Segment 00000

2 Z1z8Wa A

B z1zsma C
I1ISMQ B Content of selected segment

POSNR 00010
[MENSE 10,008
MEINA PCE

Figure 4110 Sample |Doc in Transaction BD87

Control record The control record (see Figure 4.111) indicates that your IDoc type
(here: Sabines IDoc Type) and your message type (here: ZSMNACH) were
actually used.

[Conirol Fecard |
|Eﬂmnljnn 1 : Outhound

|Release 700

Output Mode 2

Status 30 :|Do¢ ready for dispatch (ALE service)

|Basic Type 30 :Sabines IDo: Typ

|Enhancement 30:

|Message Type ZSMMACH

Figure 4211 Section Taken from the Control Record

160

Custom IDocs | 4.4

The data of the individual segments now also clearly shows the conver-
sion of the data from “PC," as the internal unit of measure piece, to “PCE"
as the corresponding ISO unit of measure in the MEINA field (see Figure
4.112). The list additionally includes the qualifying segment, 7175MQ,
which has been created as an example.

Technical Mame Dascription Valua

SEGNLIM Segment Mumber 000001

SEGHNAM Segment Name Z1 ZEMWH

KEY1 Fartial key of SAP object 4711

FELDM Character field of length 40 FELD1

FELD2 Character Field Length =10 FELD2

SEGHUM Segment Mumber 000002

SEGMAM Segment Marme Z1ZEMP

POSNR Item number of the SO document Qoo o

MEMGE 17-Char. Fleld 10,000

MEIMA Unit of measure PCE

SEGNLUM Segment Number 000003

SEGNAM Segment Mame ZIZSWG

QUAL ISMQUAL A Belongs to FELDA
FELD: Character field of length 6 FELDA

SEGHNUM Segment Number 00ooo4

SEGMAM Segment Mame Z1ZEMGQ

QLAL ZSMQILIAL C : Belongs to FELDC
FELD Character field of length & FELDC

SEGHUM Segment Number 000005

SEGMAM Segment Name Z1Z5MGQ

QUAL ZEMQLIAL B :Belongs to FELDE
FELD Character fiald of length & FELDBE

SEGNUM Segment Mumber 000006

SEGNAM Segment Name ZIZEWP

POSNR lterm number of the SO document 000020

MEMGE 17-Char. Figld 100.000

MEIMA Unit of measure PCE

SEGHUM Segment Number ooooo?

SEGMAM Segment Name Z1Z5Ma

QAL ZSMQILIAL A Belongs to FELDA
[FELD Characler field of length & FELDAT

SEGHNUM Segmeant Mumber ooooog

SEGMAM Segment Name Z1ZEMQ

GLUAL ZSMQUAL C : Belongs to FELDC
IIFELD Character field of length & FELDCA

Figure 4112 Data Records

4.4.3 Updating an IDoc

The inbound processing is now supposed to process the message and IDoc
types. For this purpose, you need the appropriate function module again.

161

4 | Changes to |1Docs

Function Module Restrictions

The sample module only contains the data that is necessary for IDoc pro-
cessing. Usually, the system is supposed to evaluate all return codes, check
the user authorizations, and set lock entries. Furthermore, the example uses
only one IDoc per call (theoretically, multiple |Docs are feasible) and none
of the ALE services is deployed. Comprehensive checks for the completeness
and correctness of the data are missing as well. Because these checks are
application-specific, you must consult the person responsible for the module
and integrate them yourself.

You can obtain the variables that recur in this sample module by making the
following entry in the TOP include of your function group:

include mbdconwf. “Report containing the ALE constants.

Among other things, the mbdconwf include contains the constants that are

listed in Table 4.2 and used later. This is merely a subset of the variables from
mbdconwf.

SAP include

C_WF_RESULT_ERROR 99999
C_WF_RESULT_DELETE_IDOC 99998
C_WF_RESULT_WI_COMPLETE 99997
C_WF_RESULT_OK 0
C_WF_RESULT_RETRY_IDOC 1
C_WF_RESULT_CONTINUE_IDOC 2
C_IDOC_STATUS_OK 53
C_IDOC_STATUS_ERROR 51

Table 4.2 Fixed Values from the “mbdconwf" Include

Inbound function ~ While the function modules aren't subject to further restrictions in the
module: Signature oyythound processing, inbound function modules must have a uniform
signature because they are automatically called by the ALE communica-
tion layer. Figure 4.113 shows the necessary parameters and their typ-
iﬂg. Parameters of the Tables [}FPE dre no]ﬂnger common in more recent

162

releases; however, here they have to be used to meet the requirements
of the ALE communication layer. If required, you can copy one of the
existing IDoc inbound function modules.

FUNCTION Z_IDOC_INPUT_ZSHNACH.

"e**Local Interface:

" IMPORTING

b VALUE (INPUT_METHOD) LIKE BDWFAP_PAR- INPUTHETHD

= VALUE (MASS_PROCESSING) LIKE BDWFAP_PAR-MASS_PROC
& VALUE (HO_APPLICATION_LOG) LIKE S5Y-DATAR OPTIOMAL
5 VALUE (MASSSAVEINFOS) LIKE MASSSAWINF STRUCTURE MASSSAVINF
b OFTIONAL

® EXPDRTING

5 VALUE (WORKFLOW_RESULT) LIKE BDWF_PARAM-RESULT

- WALUE [lPF‘L[CET]DH_h‘.’.R[.’.HLE) LIKE BOWF_PARAM- AFPL_WAR

- VALUE (IN_UPDATE_TASK) LIKE BODWFAP_PAR-UPDATETASK

WALUE (CALL_TRAMEACTION_DONE) LIKE BOMFAP_PAR-CALLTRANS
TABLES
I00C_COMTRL STRUCTURE EDIDC
IDOC_DATA STRUCTURE EDIDD

I0OC_STATUS STRUCTURE BOIDOCSTAT
RETURM_VARIABLES STRUCTURE BOMFRETYAR
SERIALTZATION_INFO STRUCTURE BOI_SER

EXCEPTIONS
WRONG_FUNGTION_CALLED

Figure 4113 Signature of an Inbound Function Module

To not use resources unnecessarily, you must first check if the function
module corresponds to the IDoc that is supposed to be processed. For
this purpose, you can check the message type if the message types are
non-reducible (see Listing 4.19).

IF idoc_contrl-mestyp <> *ZSMNACH'
RAISE wrong_function_called
ENDIF

Listing 419 Checking the Message Type

For reducible IDocs, a different message type can be used so that you
have to check the IDoc type(s) that are permitted for the reducible mes-
sage type in this case (see Listing 4.20).

IF ddoc_contrl-idoctp <> *ZISMTYPO1°®
RAISE wrong_function_called
ENDIF.

Listing 4.20 Checking the |Doc Type

163

Custom IDocs | 4.4

Checking the
validity of the
function modules

4

Changes to |1Docs

Starting the
subroutine

Transferring the
IDoc data

Variables for the
application data

This is followed by the variable definitions (see Listing 4.21).

DATA: subrc LIKE sy-subrc .

* Structure for the header data
DATA: wa_zsmh TYPE zsmh .

* Yariables for the items
DATA: it_zsmp TYPE TABLE OF zsmp .

Listing 4.21 Declaration of the Required Variables

Then, the system reads the IDoc and copies the data to transfer the struc-
tures (see Listing 4.22). In this example, the function module can process
one IDoc only, so the transferred table, which contains merely one data
record, is always read using Index 1. If you want to use a mass-compat-
ible module, the processing takes place in a loop.

READ TABLE idoc_contrl INDEX 1

PERFORM idoc_process_zsmnach TABLES idoc_data
idoc_status it_zsmp
USING idoc_contr]
CHAMGING subrc wa_zsmh .

Listing 4.22 Reading the Control Record

The content of the form is structured as illustrated in Listing 4.23. To
provide an example that considers the new technologies for the table dec-
laration, which are available as of Release 4.0, the table type is included
here.

FORM idoc_process_zsmnach
TABLES t_idoc_data STRUCTURE edidd
t_idoc_status STRUCTURE bdidocstat
it_zsmp structure zsmp
USING f_idoc_contrl STRUCTURE edidc
CHANGING subrc LIKE sy-subrc
wa_zsmh like zsmh.
* Structure for the header data
DATA: keyl TYPE zsmh-keyl
* VYariables for the items
DATA: wa_zsmp TYPE zsmp .
DATA: posi TYPE zsmp-posnr .
DATA: tabix TYPE sy-tabix .

164

* Data for the IDoc segments:
DATA: wa_zlzsmh TYPE zlzsmh
DATA: wa_zlzsmp TYPE zlzsmp
DATA: wa_zlzsmg TYPE zlzsmg
* Transfer IDoc data
LOOP AT t_idoc_data WHERE docnum = f_idoc_contrl-docnum .
CASE t_idoc_data-segnam .
WHEN *7175MH’
CLEAR keyl
wa_zlzsmh = t_idoc_data-sdata
MOVE -CORRESPONDING wa_zlzsmh TO wa_zsmh
keyl = wa_zsmh-keyl
WHEN *Z1Z5MP’
CLEAR posi
wa_zlzsmp = t_idoc_data-sdata
MOVE-CORRESPONDING wa_zlzsmp TO wa_zsmp .
wa_zsmp-keyl = keyl

Listing 4.23 Transferring the User Data from the IDoc Segments

In this case, the unit of measure is also converted, this time from the ISO
code to the SAP unit. Importing parameter unique, which isn't evaluated
here, is returned to X if exactly one appropriate value has been found
(see Listing 4.24).

CALL FUNCTION *UNIT_OF_MEASURE_ISO_TO_SAP’

EXPORTING
iso_code = wa_zsmp-meina
IMPORTING
SAP_CODE = wa_zsmp-meina
* UNTQUE =
EXCEPTIONS
NOT_FOUND =]
OTHERS =2 .
APPEND wa_zsmp TO it_zsmp .
posi = Wa_zsmp-posnr .

Listing 4.24 Converting from 150 Units of Measure to Internal Units of Measure

This is followed by the evaluation of the next segment, the qualified seg-
ment (see Listing 4.25).

165

Custom IDocs | 4.4

Variables for the
segments

Retrieving data
from the |Doc

Converting the
unit of measure
from 1SO to SAP

Qualified segment
in inbound
processing

4 | Changes to |1Docs

Posting using the
application module

WHEN “Z1Z5MQ°"
wa_zlzsmg = t_idoc_data-sdata

READ TABLE it_zsmp WITH KEY keyl = keyl
posnr = posi INTO wa_zsmp .
tabix = sy-tabix .

CASE wa_zlzsmg-qual

WHEN "A°
wa_zsmp-felda

WHEN °B°
wa_zsmp-feldb

WHEN °C’
wa_zsmp-feldc

ENDCASE .

MODIFY it_zsmp FROM wa_zsmp INDEX tabix .

CLEAR wa_zsmp .

ENDCASE .
ENDLOOP .
ENDFORM . “IDOC_PROCESS_ZSMNACH

wa_zlzsmg-feld .

wa_zlzsmg-feld .

wa_zlzsmg-feld .

Listing 4.25 Processing of the Qualifying Segment, *Z1Z5MQ"

If the data contains errors, for example, if mandatory segments are miss-
ing or data needs to be checked against Customizing and doesn't match,
modify subrc to trigger an error in the calling module.

Afterward, if the return value is correct, the system transfers the data
to the actual update module, which is always called in the update mode
(see Listing 4.26). The ALE communication layer then triggers the Com-
mit Work and ensures that the IDoc status and the application object are
updated or discarded simultaneously.

* Everthing ok so far? Then post
IF subrc =0 .
CALL FUNCTION "Z_Z25M_CREATE"
EXPORTING
header = wa_zsmh
posis = it_zsmp
EXCEPTIONS
OTHERS = 1

Listing 4.26 Calling the Update Module of the Application

166

Custom IDocs | 4.4

Now, the system evaluates the return code of the update module and sets
the status value of the IDoc accordingly (see Listing 4.27). The error and
success messages of this example are rather basic, of course. You should
use a nice message class and also transfer the t_idoc_status-msgid and
t_idoc_status-msgno values, which are indicated by asterisks, as created
in your message class.

IF sy-subrc <> 0 .

subre = 1
* Error? Then copy to status ftext Setting the
PERFORM status_fill_sy_error error status

TABLES idoc_status
USING idoc_data
sy “Error’ My module’
ELSE .
* 0k? Then success status Setting the
idoc_status-docnum = idoc_contrl-docnum . success status
idoc_status-status = c_idoc_status_ok .

idoc_status-msgty = *5° .
* t_idoc_status-msgid = your_msgid. “Global variable.
* t_idoc_status-msgno = msgno_success,"Global variable,

fdoc_status-msgvl = ‘ok’
APPEND idoc_status .
ENDIF . "if sy-subrc <> 0
ENDIF .
* Fill the ALE export parameters

Listing 4.27 Checking the Status of the IDoc Update and Message Assignment

If successful, you must now ensure — if a connection to the workflow Workflow handling
is given — that an eventually existing error workflow is canceled; if an

error occurs, the corresponding workflow needs to be triggered. This is

done by the ALE communication layer, which uses the values that are

transferred here (see Listing 4.28) and the Customizing settings that are

described in Section 4.4.5, Error Workflow for Custom IDocs.

CLEAR in_update_task .

CLEAR call_transaction_done . “Call Transaction not used .

IF subrc <» 0 . “Error occurred
workflow_result
return_variables-wf_param
return_variables-doc_number
APPEND return_variables .

c_wf_result_error .
c_wi_par_error_idocs
idoc_contrl-docnum .

|

167

3 | Changes to I1Docs

Assignment to the
process code

ELSE . “IDoc processed successfully
workflow_result = c_wf_result_ok
return_variables-wf_param = c_wf_par_processed_idocs .

return_variables-doc_number = idoc_contrl-docnum .

APPEND return_variables

return_variables-wf_param

APPEND return_variables
ENDIF .

c_wf_par_appl_objects

Listing 4.28 Transferring the Data to the Error Workflow

You usually don't have to program the actual update module yourself
because the application must already have developed something that cre-
ates the same data via dialog transaction. To ensure that the data resulting
from updating an IDoc and the data that a user has manually created is
identical, you should always have both procedures access the same func-
tion module. Here, the checks, locks, and authorization queries defined
by the application are also coded.

In outbound processing, you only have to assign function modules to
process code if you use output determination. In inbound processing, this
assignment is always required. Further activities therefore involve specify-
ing the characteristics of the function module in Transaction BD51. Figure
4.114 displays the selection of the characteristics. Option 2 (Individual
Input with IDoc Lock in Call Transaction) is rarely selected due to perfor-
mance reasons. Our sample function module uses option 1, Individual
Input. The code examples already indicated the requirements for using
Mass Processing (option 0). Basically, it's all about integrating everything
that has been implemented only once into a loop via a complete table.

New Entries: Overview of Added Entries

vYeEEE
Characteristics of mbound Funclion Modules
Function module (nbound) |inputt |Dislog sllowed
_1D0C_INPUT_ZSHNACH 1 O [=]

[Er Code: How are ID0C packages processed? (X)) 3 Enlries fo [[=

HEOCNGEEEIE

Inpast ty | Short Descript. |

s

R [Ll | R [Ll [s L)

] 0 Mass processing
. 1 Indiidual input
] 2 Individual input with IDoc lock in CALL TRAMSACTION

Figure 4114 Processing Type of the Module

168

Afterward, you assign the function module to its message type and all
pﬂssihle IDoc types using Transaction WE5S7 (see Figure 4.115). In the
Object Type field, enter an object type from the Business Object Reposi-
tory (BOR), for example, 8US1001006 for the material. It's this assign-
ment that enables the system to write links between the IDoc and the
business object that has been created and display them in Transaction
BD87. Describing the development of business object types for applica-
tion objects is beyond the scope of this book, however.

New Entries: Details of Added Entries
o =)
Funclon maodula Z_1Dd0C_IMPUT_2SHHACH
Funclion tpe F Funchon module o
Basit tpe ISHTTPO
Esfervsion
Message Type ZENNALH
Megsage Variand
Mess. lunction
Object Tyne:
| WD0e: Assigament of FM fo Log. Message and IDo: Type
Dinection 2 Inibous]
Diascriphon
arne . |

Figure 4115 Additional Characteristics of the Inbound Function Module

After assigning the function module, you create the process code in
Transaction WE42. In the Option ALE tab, you can choose if you want to
work with or without ALE services, and the Processing Type tab enables
you to select the procedure for the process code (see Figure 4.116).

New Entries; Details of Added Entries

Dialog Stnachurs || Process code 2581
= SSirbound process code | Descrighon Post IDac ZEMHNACH
CLogical message
Iedentif atior: #
Oplon ALE

® Processing with ALE senvice
Processing wio ALE Senice

Frocessing hpe
Processing by task
* Processing by funchion moduls
Processing by process
[ini]
o Foor eniry, stcess Function module for ALE-ED
inbound processing'

i

Figure 4116 Process Code in Inbound Processing

169

Custom IDocs | 4.4

Assignment to the
application

Creating process
code

4

Changes to IDocs

Characteristics of
the module

Assigning the
message type to a
logical message

When creating a new process code, the system automatically navigates
you to the input screen for additional characteristics if you select the Pro-
cessing by Function Module option. Later, you can go there by clicking
on the & icon. Figure 4.117 shows these additional characteristics. Here,
you also specify the objects and events for handling errors via workflow.
In our example, nothing is defined here, so errors can currently only be
processed via Transaction BD87. Maximum Number of Repeats specifies
the maximum number of attempts for successfully posting an IDoc to
an application. If this isn't successful within this number of attempts,
manual error handling is required.

New Entries: Details of Added Entries

Process code :ZSI'H

Miodule (inbound)

Function Module Z_|IDOC_INPUT_ZSMNACH :]
Maximum Number of Repeats |

IDoc packet
Object Type
End Evant

IDoc
Object Type
Start Evant
End event

‘Success Evant

Application Object
Object Type
Start event

Figure 4117 Assigning the Inbound Function Module
Finally, you can assign your message type to a logical message in Trans-

action WE41 (see Figure 4.118), which concludes your development
work.

170

Custom I1Docs | 4.4

New Entries: Details of Added Entries

-1 Process code
= [Jinbound process code |
=1 Logical massage

Assignment o logical mess

Figure 418 Assigning the Message Type

All you need now is the appropriate partner profile in Transaction WE20 Partner profile with
that uses your process code to enable you to receive and update IDocs ~custom process
(see Figure 4.119). code

Partner profiles: Inbound parameters

Figure 4119 Partner Profile — Inbound Parameters

171

4 | Changes to |1Docs

Sample IDocs Figure 4.120 shows some successfully posted IDocs with a proper suc-
CESS Messdge.
Doc Selection
IDoe nurmber | Stat | Message Type StabusText Partner No. |BasicType Segrme
TEBBOD| 53 |ZSMMWACH 5000 ok PRODUCTIO ZSWMTYPD o
TERA0T | 53 |ZSMNACH 5000 ok PRODUCTIO ZSWMTYP g
768802 | 53 |ZSMNACH 5000 ok PRODUCTIO ZSWMTYPD]
768803| 53 |ZSMNACH §:000 ok PRODUCTIO |[ZSMTYPO1]
JGEE04| 53 |ZSMNACH 2000 ok PRODUCTIONZEMTYPO 9
Figure 4120 Successfully Updated |Docs
Faulty IDocs Figure 4.121, in turn, shows faulty IDocs. The status text, however, is
somewhat basic. You should specify errors as detailed as possible to facil-
itate the work for persons who monitor the IDocs if errors occur.
IDoc Selection
IDo¢ number|Stat_|Massage Type | StatusTe |Partner No. BasicType [Segme

768805 | 51 |ZSMMNACH = Messages for inpul and outhound processing == PRODUCTION | ZSMTYPO1]

TEBO06 | 51 |ZSMMACH == Messages for inpul and outbound processing = [PRODUCTION |ZSMTYPO1 9
Figure 4121 |Docs with Application Errors
4.4.4 Generating IDoc Function Modules

Generating There are two options to have the system automatically generate mod-
5““3[";“5 ules for creating and updating an IDoc. The first option is to generate

int . . .

INTEriaces suitable IDoc interfaces to BAPIs. In this process, the message type and
the IDoc type are generated. The second option is based on a function
module. Both methods are described in the following sections.

Having the System Generate IDoc Modules from BAPI
Segment The segments are built from import and change parameters of the signa-

generation in
Transaction BDBG

ture. (The export parameters aren't required here because IDocs never
result in a response.) For this purpose, as many individual variables as
possible become a segment, structures are provided with a separate seg-
ment that only occurs once, and table types obtain a separate segment

172

Custom IDocs | 4.4

that occurs multiple times. Then, a module is generated respectively for
generating as well as for updating the corresponding IDoc.

Transaction BDBG generates the corresponding 1Doc interface to a BAPI,
and in Figure 4.122, you can view an ALE interface that has already been
delivered by SAP in the Function display.

Generate ALE Intertace Tor BAPI

Wessage type
AGL_EMPLOYEE_EXP
ACC_EMPLOYEE_EXP already exists

Iboc type
ALC_EMPLOYEE_EXPO2
ACC_EWPLOYEE_EXPOZ already exists

Segeent

E1BPACHED4

E1BPACHERS already exists
E1BPACGLA4

E1BPACELBM already oxists
E1BPACTYXE1

E1BPACTIRT already exists
E1BPACCRA4

E1BPACCRO4 already exists
E1EFACTRAOA

E1BPACTROD already exists
E1BFACCRPO

E1BPACCEFD already exists
E1BPEXTC

E1BPEXTC already exists

Funiction Module for Dutbound ALE With Data Filtering
ALE_ACC_EMPLOYEE_EXP_POST
ALE_ACC_EWPLOYEE_EXP_POST already exists

Function Module for Inbound ALE With Packet Processing
IDOC_INPUT_ACC_EMPLOYEE_EXP
I00C_INPUT_ACC_EMPLOYEE_EXF already exists

Figure 4122 Display of an Already Existing Interface

The update via a generated module is always carried out with the same
process code: BAPI for individual processing and BAPP for multiprocess-
ing. So, you don't need a custom process code.

Having the System Generate IDoc Modules from Function Modules

The second option to automatically generate IDoc modules is based on a
function module that hasn't been implemented as a BAPI. More restric-
tions apply here. The function module must contain only one import
and one export parameter. However, the import parameter may be a
complex variable. The export parameter must be of the BAPIRETM type if

173

ALE interface for
function modules

<} | Changes to I1Docs

you have a simple import variable, and it must be of the BAPIRETS type
if you have a complex transfer variable. Transaction BDFG is required
for this purpose, and although it isn't a BAPI, the reference to a busi-
ness object type from the BOR is mandatory. Then you can specify the
names, packages, and properties of your objects using Transaction BDFG

(see Figure 4.123).

ALE Interfaces for Function Module
Dll#)fs (8]
Function Module that Processes Business Object
[z_sm1
Business Object Type |BUS1001 806/
I@: i Inbed
IDoc Interface -
Message Type Z_sm
IDoc Type Z_5H1
Patket |2EM1
ALE Outhownd Prncasslng
FunctionModule ZALE__SH1
Function Group 25M1
ALE Inbound Processing
Function Module Z1DOC_INPUT__SH1
Function Group U
[l In Update Task
[[1Mass Processing Allowed

Figure 4123 Entries in Transaction BDFG

The system then uses these specifications to generate everything that
is required as illustrated in Figure 4.124. So it can pay off to develop a
function module with the required properties around the application’s
module and to spare the rest of the work.

174

Results

==

= [ALE Inferface
= [Messaga Type
& 7_sm1
) 2_5M1 has been generated
= [l Do Type
& z_smim
D) Z_sM101 has been generated
D check basic type Z_SM101
(D) Basic ype Z_SM101 Is not released
B Basic ype Z_SM101 Is linked to loglcal message Z_SM1
B Mo predecessors exist
P [Segments
= [Function Module far Outhound ALE
& ZALE_ SM1
) ZALE__SM1 has been generated
= 3 Function Module for Inbound ALE
& AD0C_INPUT__SM1
) H0OC_INPUT__SM1 has been generated

Figure 4124 Generated Objects in Transaction BDFG

4.4.5 Error Workflow for Custom IDocs

The error processing is basically implemented via workflow tasks, and
some of the programming examples already ensure that workflow tasks
are started or completed or that the necessary events are triggered.

In error handling, a distinction is made among errors of the IDoc inter-
face, errors of the external system/EDI subsystem, and errors of the SAP
application. SAP provides error tasks for the IDoc interface and the exter-
nal system, which you can find in Transaction WE40. Figure 4.125 shows
them for both the inbound and the outbound processing. Here, £D15 is
the default error code for the external system, but you can also create
your own error tasks. This involves error handling that is independent
of the application and is therefore generally valid.

For the errors in the application, a separate error workflow exists for
each message type. If you program IDocs yourself, you must create this
error workflow completely. This is described here for the 7SMNACH mes-
sage type that was created previously.

175

Custom IDocs | 4.4

General error;
worlkflow tasks

<} | Changes to IDocs

Context with BOR

Settings: Error and Status Processing

Process Codes for Error Processing

Code| Typel Identificalion |Description of process Express Inac
2 |TETA508411 |Quibound, intomplebe cormersion
EDAl |2 TSDOO020EE |Inbound, @rror messans wilh IDoc
EDIL|2 | TETOO08373 |Eror messape #io IDac (status repor)
EDMM|2 TS30000020 |Error Message Without IDoc
EDAN|2 |TST0008037 |Display MC document (outbound wio IDoc)
EDAD|2 TEOD00TIES |Quibound, emor handling with IDoc
EDIP|2 | TSBO001307 |Oulbound, emar message with IDoc packel
EDNS|3 | EDI_STAFRC
EDMK |2 | TES00008070 |Culbownd, synlax error in iDoc
EDIY |2 |TSO000S074 |Inbound, syndax eror in ID0¢
| BTl EZn] =]l ol&m|
Process Codes for Status Inbound
Code| Type|Identificaion | Description of process Expre

DIR|2 | TST0009125 |IDoc stalus repor with posiprocessing
EDIB]E TSF0000078 [Motification for IDoc Status Report

Figure 4425 Technical Error Process Codes

First of all, you must create a custom business object type for the IDoc in
Transaction SWO1. This business object type must inherit from the 100-
CAPPL type so that all methods required are available. Again, the name of
the business object type must be within your namespace. Figure 4.126
shows the business object type of this example.

Business Object Types for IDocs

Note that there can be two business object types in the context of IDocs.
One of them is mandatory and is used for the error workflow. This is the
one that must inherit from IDOCAPPL and provides a few, always identical
methods.

The second business object type refers to the actual object in the
application whose data is part of the IDoc data. This business object type is
optional. It's assigned to the message type using Transaction BDA4, and if
it's maintained appropriately in the inbound process code, this assignment
results in an update of the object links.

176

Custom IDocs | 4.4

Object Type ZDOCSMNACH: Edit Basic Data

¥ 685 (@ I Program |

ObjeciType |ZDOCSMNACH| 100G ZSMNACH

Object Name |ZEmhAcH |

Program | ZSMZDOCSHNACH |

Objtype stalus |revised Saved modeled

_m TransportData | ChangeData | Defaults | Customizing |

Mame IDOC ZSMMACH

Destription Do for Sabing

Relationships

‘Supertype IDOCAFFL | Application IDoc
Data model ID{ [=
Classification

[T Business Object

[organizational tpe

Application 5| Basis

Figure 4426 Business Object Type for Error Workflow

The IDoc number is always the key for such IDoc error objects, and addi- Attributes
tional attributes are the most important attributes from the header table,

which is illustrated in Figure 4.127. The red highlighting indicates that

the 2DOCSMNACH IDoc has inherited from the 100CAPPL supertype.

Object type ZDOCSHMACH O IDoc for Sabine
—& Interfaces

IFSAP SAP standard interface
& Key Tields

ZSHNACH. IDocHNuRber o

—= Attributes

ZSHNACH . Dbject Type Object type
————TSHNACH . SenderAddress v Address of sender
———ZSHNACH . 5tatus v Status of IDoc
—— ZSMNACH . ShortIntfo Display short info (IDoc number and logical message)
—ZSMNACH. Createbate 10oc Created On

Hessage Type

ﬁ Application objects created or changed in inbound processing
Trangaction 1D (LRFC)
Short text of IDoc status record, possibly truncated
Application object ID

——Z5HNACH . HessagaType

—— ZSHNACH . AppT10bj ectsInbound
——ZSHNACH. Transid
———ZSHNACH. ShortMessage
—ZSHNACH ApplicationObjectiD

LRk

Figure 4127 Attributes

77

4

Changes to IDocs

Methods ZDOCSMNACH also inherits the necessary methods and events from the
and events gypertype, whereas the inputFinished event must be overwritten. If you
don't have any special requests, you can simply leave the code as it is.
Figure 4.128 displays our sample business object type.
& Hethods

ZSMNACH.ExistenceCheck
ZSHNACH. DocumentProcess
ZSMNACH . DocumentProcessitL Display in XML Format with XSL and Set Status
ZEMNACH . Digplay v Dizplay

ZEMNACH. InputAnalyze
ZEMNACH . Forward

ZEMNACH. StatusProcess Subsequent processing for a status
ZEMNACH.ErrorMessage @ Error message
ZEMNACH. InputForeground w Input in dialog
ZEMNACH.ErrorProcess v Error handling
ZEMHACH.Displaylbjects v Display Generated Dbjects
ZSMNACH. InputBackground v Input without dialog
—& Events
ZEMNACH . processStateReached v IDoc can be processed by application
ZEMNACH . errorProcessCompletd » Error handling completed
ZEMNACH . inputErrorfccurred v Error in application input; Turther processing reguired
ZEMHACH . inputSuccess v Iboc posted successfully
ZSMNACH . 1 nputFini shed [Doc ZSMNACH Inbound completed via workflow

b

Check existence of object
Display and set status

b

=

Forwarding to inbound processing by the application
Forward IDoc to logical system

b

Assigning the
fields from the
application

Workflow task

Figure 4128 Methods and Events

However, you must make a minor change to the App1_0Object parameter
(see Figure 4.129), that is, refer to the application. This reference must
be specified separately for each object; it can't be inherited. In the Data
Type Reference tab, you specify the custom Reference Table (here: 75MH)
and the Reference Field (here: KEY1).

Next, you create the actual workflow task. Transaction PFTC_INS is
required here (see Figure 4.130). In the input screen, select the task
type, and enter a name fﬂr}fﬂur workflow task. The task in this example
is of the TS type (standard task) and the Abbreviation for the workflow
task — in whatever abbreviated form — usually consists of your mes-
sage type and the term “Error” (here 7SMNAC_Error). In Object Method
in the Object Type field, you refer to your business object type (here:
Z00CSMNACHY and in the Method field to the inherited method (here:
INPUTFOREGROUND). This is the task that is executed in the foreground in
IDoc single processing of an IDoc has run on an error status. Listing 4.28
in Section 4.4.3, Updating an IDoc, shows how this error is triggered and
transferred to the workflow runtime.

178

Custom I1Docs | 4.4

|£run'1u
I_Im First Releass|
Appl_Dbject ZDOCSHMACH| 700
Result ZDOCSHHACH | 700
Exception ZDOCSHHACH | 700
No_of_retries ZDOCSHHACH | 700
IE'ParamemrMpl=Dh|ec1 3]
Farameter |Mpl_0hjm |
Object bpe ZDOCSHNACH
Release |'.I'H

ATI00ATE ISMNAC_Ermor
ZSMMACH input emar
Z5M1

ZSMNAC_Ermor

ZESMMACH input emror

-]
8_WW1_Objec!_ld ShorMessages 8_Wi_Object_Id AgplicationObjectiDs

IDOCSHHACH . ZEMMNACH
NPUTFOREGROUKD

Figure 4130 Workflow Task for Error Handling

179

4 | Changes to IDocs

Assigning the
start event

rstandard Task: Change

Pl e

Standard task BTI00178 ZSMMAC_Emor

Mame ZEMMACH input arrar

Patkage ZEM1 Apglicatn Component

B pasicdats | |2 Description | 3 Contamer JNIETPPIILPTICEEll ©) Terninasng events | %, Dotsuttrules | & SAPphone

The event that triggers the workflow task is the INPUTERROROCCURRED
event that is inherited by 100CAPPL in the business object type (see Fig-
ure 4.131).

gt Category [Objact Trpa

BOR Object Type D ZDDCSHRACH
7]

Hame
R S R TR

[Event
[HFUTERRORDCCURRED

Binding

Figure 4431 Start Event

A workflow task requires a binding that you can use to transfer the data
of the object to the data of the task. The system can create this binding
automatically. For this purpose, you must click on the binding view.
The binding of this example ensures that the workflow is provided with
information from the IDoc. Everything is okay if your binding appears
as shown in Figure 4.132.

Jadl»

= 3 Container

b @ _EVT_ORIECT ZSMNACH
o _EWT_OBUTYFE Objexttype
a _EWT_MAME Ewant of an Object
o _EVT_OBUKEY _EVT_OBJKEY
a _EWT_CREATOR Ageml

a _EWT_RECENER_IC_ENVT_RECENVER_ID
o _EVT_CREATION_D Current Date of Applicalion Server,

2 _EVT_CREATION_TICurrent Time of Applicaton Sa
2 Resul Final Value of Mathad 1

o Exception Workfiow Exceplion

o M geType Mezsage ipe [E, LW, .)

o Messagebumber Wassage number E

o Messagevanablel Message varable 1 [=]
ooooes O0

Binding Evari Agplication Emor-» Task

P (G0] 3] (=3 (= o T 1 - %

v [0l _rtacn_objects

b @ _wi_Group_ID

P & _Workilern

b & _Rule_Resut
O EmtepBon

P &8 _wWi_object_D

Change Binding For Task =1
Evert ‘Application Enor | Descriptian F |Cescription |
¥ L System Fialds 3 ._Mnnc_ﬂbnm o A Hox Objects of Waorkdow Instar

o Atachments of Workilow Ingtance
e Grouping Characteristic for Work
»an Sap Instance

o R sull of Agent Detarmination

¥ Workiinw Exceplion

o ID0c for Sabing

(4]0)T+][+]

Ewvent ‘Applic ation Error E

Task

k

BEXCEPTIONE

&_EVT_OBJECTE 4

=
wp|&_W_CBIECT_IDG
=

Figure 4132 Binding for Start Event

180

Custom IDocs | 4.4

The successful update of the IDoc is always the end event, irrespective Terminating event
of whether it comes from the error handling of Transaction DB87 or is

carried out via a program that is scheduled in the background. INPUTFIN-

ISHED is the name of the end event, which is triggered in the previously

created programs for processing the 7SMNACH message type (see Listing

4.28 in Section 4.4.3, Updating an IDoc). As you can see in Figure 4.133,

a binding is not available for the Terminating event.

Standard Task: Change

ealolcal:

Standan sk BT0017TE ZSMMNAC_Emor

Mg ZEWMACH inpus eanar

Package ZEW Applicatn Cofmpanend

@ Pask dats | |2 Description | S contamer | 0) Triggering evres NIETTEIEITEERTrag L, Defaultades | TF SAPphone

JINFUTF INISHED

Figure 4233 Terminating Event

Finally, you must specify who may carry out this task from the error Agent assignment
workflow. This depends on how your enterprise handles workflows in

general; in the standard version, this involves a General Task that may be

performed by any employee (see Figure 4.134). The settings in Transac-

tion WE20 in the inbound partner profile for the agent with postprocess-

ing authorizations determine to whom the workflow is actually sent.

Standard task: Maintain Agent Assignment

8 s 1] 8 . et | 5 08

Mama [[eneral or Backgraund Task
: ZEMMHACH Inpud emor TS 97100178
= Task =
® Ganeral Task

2 Beneral forwarding allowed
O General forwarding not allowed
O Farwarding nod aliowed

Classication MO_CLASS Nold B

[Locked for instartiation
[Locked against execution

v Transter | (3]

Figure 4134 Agent Assignment

181

4 | Changes to 1Docs

Extending the Call Transaction WE42 again. Up to now, you used this transaction only
process code by for linking the process code and the function module. Now you assign
error handling your business object type (see Figure 4.135) and specify the events to
be processed. The ALE communication layer in combination with your
program then ensures that the corresponding events are used (see Listing

4,28 in Section 4.4.3, Updating an 1Doc).

Change View "Function modules for inbound ALE-EDI": Details
'::_. S [15 |.| E

Z_IDOC_INPUT_ZSMNACH
|

INPUTERRDROCCURRED
INFUTFINISHED
NPUTSULCESS

Figure 4135 Assigning the Error Handling to the Process Code

Transaction SBWP, the central workplace, lists the faulty IDocs in the
Workflow Tasks in the inbox. In Figure 4.136 under WORKPLACE * INBOX *
WoRrkFLOW, you can find three faulty IDocs for which I was specified as
the agent in the partner profile.

Assuming the Double-click on the text of the task, and the system navigates to the
workflow task 5ctyal processing menu where you can set, edit, and view deletion flags
(see Figure 4.137).

182

Custom IDocs | 4.4

Ll

Susiness Workplace of MAISELSA

= o worpiace wAELEA @[O][3][T&]8] [Go[&: &= B[a]==]F[¥=[H

"'IE_ | Status |Creation Da |Creation [Pat [Co [W_|

2 08MBR00A 1123130 §

b [Grouped according o conlenttpe e -
b [Grouped acconding by sor key :
b [Grouped according to bk

P —
2| 4= Inbound

51 Application document not posted
== Messages for input and outbound processing =

Time of database change
Date BEM 9/ 2088

Figure 4137 View After Assuming the Workflow Task

Agent Assignment of Error Tasks

You assign agents to error tasks in the partner profiles. Initially, you Agent assignment
search for the actual message in the individual display; if you can't
find anything there, the settings for the entire partner are scanned,
and if you can't find anything there either, the error is sent to the IDoc

4 Changes to IDocs

IDoc administrator

administrator. The system checks whether a specific user is defined or
belongs to the organizational unit that is specified there and whether the
user is allowed to execute the task. Every user may carry out a task of
the general task type or a task that was assigned to the user via the orga-
nizational management in SAP ERP HCM. The tasks are either specified
in the job description or assigned directly. Coordinate the settings in
the organizational management with the employees responsible because
these settings can also influence other elements in the SAP system.

Use Transaction OYEA to maintain the IDoc administrator and some
other general settings. Here, you can also enter default settings for fre-
quently requested aspects, such as the maximum number of syntax
errors per IDoc (see Figure 4.138).

Global Parameters for IDoc Interface

tid
MR s

1Doc Adminlstrator

“Object Type: o O Organizational unit
Identification 50010120 | EDM Diepartment

Ganaral Do Intarface
Max Number of Syntax Errors [1

I0oc Inbound Processing using IRFC
Senver Groug for I00c Inbound

Outbound IDocs Using IRFC
[JuUse Last Code Page Found

100 Inbound from File

[[] Synchronous Processing

[#] Wamnings for Stalus Processing

Commimit Afar L] | Data Records

Figure 4138 Global Settings

4.4.6 Useful Function Modules

Some of the necessary function modules for processing custom-pro-
grammed IDocs have already been illustrated in the programming exam-

184

Custom 1Docs | 4.4

ples. Table 4.3 lists the most important function modules again for your
reference. This list also includes those conversion modules that aren't
contained in the examples.

Function Module Function

ALE_MODEL_DETERMINE_IF_TO_ Check whether a specific message may be generated
SEND according to the distribution model.
ALE_SERIAL_KEY2CHANNEL Determine/set object channel for serialization.
CLOI_CONVERSION_PERFORM Conversion from internal to external formats.
CLOI_PUT_SIGN_IN_FRONT Put minus sign in front.

CURRENCY_AMOUNT_IDOC_TO_SAP Convert currency amounts to SAP format.
CURRENCY_AMOUNT_SAP_TO_IDOC Convert currency amounts to external format.

CURRENCY_CODE_ISO_TO_SAP Convert currencies from ISO code to SAP format.
CURRENCY_CODE_SAP_TO_ISO Convert currencies from SAP format to I1SO code.
IDOC_DATE_TIME_GET Get status information from the receiver.
IDOC_REDUCTION_FIELD_REDUCE Determine active fields in the reduced message type.
|DOC_SERIALIZATION_CHECK Check timestamp in the serialization field of the IDoc
header.
|DOC_SERIAL_POST Update the serialization table.
IDOC_STATUS_WRITE_TO_DATABASE Change IDoc status.
LANGUAGE_CODE_ISO_TO_SAP Convert language code from 1SO code to SAP format.
LANGUAGE_CODE_SAP_TO_ISO Convert language code from SAP format to 150 code.
MASTER_IDOC_DISTRIBUTE Transfer IDoc to the communication layer.
MMODEL_INT_VALID_GET Determine in the distribution model who sends which
message to whom.
OWN_LOGICAL_SYSTEM_GET Find the custom logical system name.
RFC_DATA_DETERMINE_FOR_CHECKS Determine an RFC destination of a partner.
UNIT_OF_MEASURE_ISO_TO_SAP Convert unit of measure from ISO code to SAP format.
UNIT_OF_MEASURE_SAP_TO_ISO Convert unit of measure from SAP format to 1SO code.

Table 4.3 Function Modules for IDoc Processing

185

4 Changes to |1Docs

4.5 Summary

Now you've seen all the development tasks for managing company spe-
cialties in IDocs. We started with the adaption of standard IDocs with
Customizing tasks, because this is the easiest way. The next step is the
development of changes to standard IDocs with the help of enhancement
techniques. To do so, we reviewed the techniques available for the non-
interactive IDoc processing.

At the end we went through the complete process of developing cus-
tomer IDocs starting with the application tables and ending with the
complex process of IDoc error handling.

186

IDoc communication is essentially asynchronous — the sending
system doesn't receive information about how the IDoc is pro-
cessed in the receiving system. But, this information can be trans-
ferred from the receiver to the sender. This chapter will outline
the various options available here.

5 Confirmations

IDoc communication is fundamentally asynchronous. In other words,
the sender doesn't receive any information about how the receiver pro-
cesses the IDoc. However, if required, the receiver can actively send this
information back to the sender.

54 “"ALEAUD" IDocs

ALEAUD IDocs are generally deployed when two SAP systems are in use.
This scenario (a sender sends an application 1Doc and a receiver sends
back an ALEAUD IDoc) is known as ALF audit. In SAP NetWeaver Process
Integration (SAP NetWeaver PI), the IDoc adapter also processes the ALE -
AUD IDoc as an application acknowledgment.

To use an ALEAUD IDoc, you need a suitable distribution model (see Fig-
ure 5.1) that instructs the receiver of the original IDoc to send an ALEAUD
IDoc to the sender of the original IDoc.

R i e s T e T O

E #D0 client 800 TIOCLNTOS0

= [= Productive system (client 811} PRODUCTION

fy ZEMNACH Sabines Message Type

= [Productive system (cliznt 811) PRODUCTION

= [%D0 client 800 TIOCLNTOE0

= [ALEAUD ALE: Confirmations for Inbound [Docs
Mo filter set

Figure 51 Partner Model for the "ALEAUD" IDoc

187

Distribution model
for ALE audit

5 | Confirmations

Initial status values

“"ALEAUD" IDoc

The ALEAUD IDoc confirms the status of the IDoc in the target system.
Figure 5.2 shows some possible status values. For example, an IDoc is
assigned status 53 if it's posted successfully. In addition, a deletion flag
can be set to permanently exclude an IDoc from processing (status 68)
or an IDoc can have an intermediate processing status {e.g., status 64
Waiting and 51: Incorrect processing).

= =1 Productive system (client 811} 1]
I IDocs in outbound processing 13

= [IDoc in inbound processing 11

P @ Application docurment not nusl‘eﬂj 51 3

b O Application document posted 53 2

I @ Emor - no further processing 1] 2

B & IDoc ready to be fransfemed fo application G4 4

Figure 5.2 |Doc Status Values in Receiving System

We'll now use the report ROESTATE to send our confirmations. This report
must be scheduled on a regular basis. Figure 5.3 shows the required
entries, that is, for which you want ALEAUD IDocs to be generated, for
which message type, and for which period.

Send Audit Confirmations

Confirmations 1o system [T9BCLNTOGD o | =
Message type |ZSMNACH to =
Message coda | 1o | E
Message function 1] E’]
Date IDoe changed |98/01/2008 o |98/01/2009

Figure 5.3 “RBDSTATE" Report

The ALEAUD IDoc contains a header segment, which provides information
about the selection made by the user. In our example, it states that we'll
send confirmations for the message type ZSMNACH (see Figure 5.4). This
is followed by one segment for each IDoc in the selection period, which
provides information about the status of the IDoc in the receiving system
as well as the IDoc number in both systems.

188

SEGNLIM Segment Murmber | 000001

SEGNAM |Gegment Name |E1ADHDR
MESTYP_LMNG ~ |MessageType |ZSWMACH
SEGNUM |Segment Number “oooonz

BEGMAM Sagment Mame E15TATE

DG IDac number 00000000DOTES0T
STATUS Status of IDoc 53

STACOD Status code SAPDDD

STAPA] Parameter 1 ok

STATYP Typd OF SySlam ermor message £ : Suctess message
STAMOL) Stalus message qualifer SAP

STAMMNO Stalus Fessane number 000

STAPAI_LMNG Parameter 1 ok

SEGNLIM Segment Number 000003

SEGNAM Segment Name E1PRTOB
DOCHUM (Do number 00000000001 3519
SEGNLIM |Zagment Murnber 000004

BEGMAM Sagment Mame E1STATE

DOCHLUWM IDoc number]HDDDDUHMD?EEHM
STATUS Status of IDoc [i1:]

STACOD Status code SAPDDD

STAMOLY Status message qualifier SAP

STAMMO Status message number L1 TH]

SEGMUM Sagment Murmbar !l][II:IDIZIS

SEGNAM Sagment Marme |[ETPRTOB
DOCHLUM IDoc numbern |0[IDEIEIEIIJW[I‘|351B2

"ALEAUD" IDocs | 5.1

Figure 5.4 Sample "ALEAUD" |Doc

Status values in
sending system

The result shown in the sending system comprises three new status val-
ues (39, 40, and 41), as shown in Figure 5.5. Status value 40: Application
document not created in target system is red because even if the sender no
longer needs to take action here, it should be clear that the partner didn't
post these IDocs but assigned them status 68: Error - no_further process-
ing instead. The following two status values are green: 41, which, in the
sending system, means that the receiving system successfully processed
the IDoc (and therefore obtained status 53), and status 39, which means
that this IDoc is still in an intermediate stage. All IDocs that have a value
other than 53 or 68 in a partner system are assigned status 39 because
it's assumed that the partner will continue to process all IDocs that don't
have status 53 or 68 until they obtain status 53 or 68.

= [=] %00 client 800 10
= [IDocs in outbound processing 10

= @ Application docurment nol created in targel system 40 1

b imy ZSMNACH 1

= @ IDoc s in the target systam (ALE service) kT 7

b fm ZSMNACH 7

= 0 Application docurnent created in target system 41 2

b im ZSMMACH 2

Figure 5.5 5tatus Values in Sending System After ALE Audit

189

5 | Confirmations

|Dacs with audit
messages

Processing by
workflow task

If the status of an IDoc changes in a partner system, and if the report
REDSTATE is executed again, a new entry is sent within an ALEAUD IDoc.

5.2 "“STATUS" IDocs

When ALEAUD IDocs are used to send confirmations, all three status val-
ues result in the sender no longer being able to process or resend the
IDoc. Here, it's generally assumed that the receiver will resolve any
errors that occur. However, in the case of EDI subsystems, in particular,
you may see additional status values in the EDI subsystem, or you may
want to resend an [Doc because an error occurred in the EDI subsystem.
You're already familiar with status processing from Chapter 3, Section
3.3, Processing Status Files. Here, an IDoc is used to create a new status
value for the original IDoc.

Figure 5.6 shows process code STAl, which is used to post the STATUS
[Doc. As you can see, processing by (workflow) task is specified under
Processing Type if your system has not changed since it was delivered by
SAP. For this reason, you should only use STATUS IDocs if you really need
the other status value. Workflow processing is more performance-inten-
sive than processing by function module. Where possible, you should
work with the ALEAUD scenario. You should also only work with 5TATUS
IDocs if you want to process IDocs again.

—

Description | Status record from Doc

Identification 1530000206

Option ALE
Processing with ALE service
* Processing wio ALE senvice

Processing type
® Processing bytask
Processing by function module
Processing by process

Figure 5.6 Processing "STATUS" IDocs

190

“STATUS" IDocs | 5.2

The sTATUS IDoc doesn't transfer the status of the IDoc in the receiv- “STATUS" message
ing system. Instead, you specify the new status that you want the IDoc type

to obtain in the sending system, along with a suitable piece of text. In

our example, this text is always hard-coded in the IDoc. You can also

reference a message in a message class, but this must exist in the origi-

nal sending system. The latter option facilitates the use of more user-

friendly, language-specific messages. Figure 5.7 shows the main fields in

the sTATUS IDoc, the reference to the IDoc that is to receive a new status

value, the new status value itself, and the comment text.

S T ' | [resticarshonine 2
= E‘uc 0000000000768832 e 2
Contral Rec.
= @ Data records Tetal Aumber: 000001 Current status 53 ool
[EtsTATS Segment 000001 Basic type SYSTATO1 |
b [Status records Extension []
Message type |STATUS |
Partner Mo, \PRODUCTION
Parin Type LS|
For |SUBSYSTEM |

Corntent of salacted segrment

Fld name |Fid cont [H]

MANDT [308 [=]

DOCNUN 1D0B0DB00BO768796 (=]

LOGDAT 20080801

LOGTIN l1e1818

STATUS W]

LINAME HAISELSA

STATXT STATUS CHANGE WITH STATI
(2]
(]

ODE—— 0D

Figure 5.7 Sample "STATUS" 1Doc
Figure 5.8 shows the result of posting the SYSTAT IDoc. In our case, Implemented

status value 18, EDI subsystem initialization OK is assigned. Similarly, this ~status
status doesn't permit further processing.

191

5 | Confirmations

'Status Monitor for ALE Messages
| Display IDocs |[€H Display relationships ||&R Display status long text || @ Obiect key |

EIRE N E R R E R R]

IDoc Selection
IDoc number|Stal |Message Type StatusText Partner Mo. BasicType Segments
TEBTAE | 18 |ZSMMACH STATUS CHANGE WITH STATUS IDOC PRODUCTION | ZSMTYPO1 9

Figure 5.8 Maodified |Doc in the Sending System

5.3 Summary

You've seen now the different possibilities for bringing information
about the IDoc back to the original sender. This helps you to overcome
one of the disadvantages of asynchronous communication: not knowing
what happened at your partner’s site. Also, with the help of the STATUS
IDoc or the Status File, you are able to resend an IDoc that was already
sent successfully before.

In the next chapter, we'll review the more complicated processes, where
the sequence of 1Docs becomes an important factor, the serialization
methods for IDocs.

192

Even though normal IDoc communication makes provision for
the use of timestamps to sort system IDocs in the correct sequence
before they are dispatched or posted, IDocs may “queue-jump”
during parallel processing and when terminations occur. If you
don't want this to happen, you must ensure that I1Docs are
always processed in exactly the correct sequence.

6 Serializing IDocs

In some situations, it's necessary to adhere to the exact posting sequence
for IDocs. One such situation involves goods movements. If queue-jump-
ing occurs among IDocs that have goods movements for the same material
in the same storage bin, this will result in numerous different postings,
which are not desirable from a financial audit or system load perspective.
So, SAP software supports several types of IDoc serialization:

» Serialization using serialization groups Serialization
. 1 e . . options

» Serialization using timestamps

» Serialization using business objects

» Serialization using qRFC

Not all serialization types are always possible. Also, they can have vari-
ous different effects. In the next section, we'll describe how to use each
serialization type, how to find the message types supported, and how to
configure the entire process.

64 Serialization Using Groups

When using groups for serialization purposes, you assume that more than
one IDoc is being dispatched for a particular process, so numerous dif-
ferent message types are used. In the case of a material master, for exam-
ple, you also have the option of making a classification when you create

193

6

Serializing 1Docs

Processing
sequence

Evaluation report
“REDSERO1"

Serialization
groups

a material. Classifications are then sent with the message type CLFMAS,
while materials are sent with the already familiar message type MATMAS,

A material master is required to successfully process the CLFMAS [Doc. If a
material is created, posting problems may occur if the CLFMAS IDoc queue-
Jjumps and overtakes the MATMAS IDoc. Even though the CLFMAS IDoc can be
successfully posted if the IDoc is restarted after the MATMAS IDoc arrived
and was posted successfully, it's better, in terms of system performance, if
such queue-jumping is prevented. For this reason, you have the option of
grouping the message types into a serialization group in the sending and
receiving systems as well as specifying the required processing sequence.
A prerequisite for this procedure is the use of a change pointer to evaluate
the relevant IDocs, so this procedure concerns master data.

Instead of using the report REDMIDOC to evaluate the change pointers or
Transaction BD21, which evaluates all of the change pointers for a mes-
sage type, you use the report REDSER0O1, which selects all of the change
pointers for a group of message types and ensures that all IDocs with
the first message type are created first, followed by all IDocs with the
second message type, and so on. If individual IDocs contain errors, they
are ignored and added later, in the usual way, via error handling.

To work with serialization groups, it's important that processing in both
the sending and receiving systems is set to Wait for Background Program
in the partner profiles in Transaction WE20.

The first step when working with serialization groups is to use Transac-
tion BD44 to create the serialization group in the sending and receiving
systems. Figure 6.1 shows the settings for our classification example. The
material masters (MATMAS) will be processed first, followed by the clas-
sification assignments (CLFMAS).

Change View "Assignment of logical messages to serial. group™:
Dialog Structure || seriatizat group Z5M1
= [Serialization groups
Sl Assignment of lagical messages Assignment of logical messages o senal. group
|mezsage Type Seq. number
CLFHAS 2 [=]
HATHAS i [+]

Figure 614 Creating a Serialization Group

194

Serialization Using Groups 6.1

These settings must be configured in both the sending and receiving sys- Parallel processing
tems. In the receiving system, you can also specify additional informa-

tion about parallel processing in Column P. In our example (see Figure

6.2), however, the flag for parallel processing was not set because you

would then need to specify a server group. It's best to leave such speci-

fications to your system administrator.

Inbound processing of serialization group

|zroup Message Type [Sending syst |obiProc [P |RFC server group |
ZEM1 HATHMAS TOBCLNTRGD 100 O

ZEM CLFMAS TOACLNTO98 50]

Figure 6.2 Processing in the Receiving System

In the sending system, you then use the report RBDSER01 or Transaction — Creating IDocs for
BD40 to create IDocs for a particular group. Here, you only need to 28rup

specify the serialization group (see Figure 6.3). This is also the case for

the reports described next.

Generate IDocs for Serialization Group From Change Pointers

Serialization Group zsm| €]

Figure 6.3 Creating |Docs for a Group

First, the system generates all of the MATMAS IDocs (see Figure 6.4).

[Infarmation =

@ issierionis setin ormassags ipe WATHAS

Figure 6.4 First Message Type Created

Then, it generates the classification IDocs (see Figure 6.5). In both cases, the
customer distribution model is relevant for determining which partner will
receive the IDocs. For each change, you can also create several IDocs for
various different partners, if the use of multiple receivers is permitted.

195

6 Serializing IDocs

= Information

O s sein or message b CLEWAS

Figure 6.5 Second Message Type Created

Serialization group In the sending system, all of these new IDocs obtain status 30: Ready for
inoutbound gispatch, as shown in Figure 6.6. To retain the sequence, it's important
ProcessiNg that these IDocs are not included in conventional dispatch jobs (report
RSEOUT00). The variants here must be selected so that these messages are

excluded.

D0 client 800
= L& I00cs in gutbound processing

= IDoc ready for dispatch (ALE senvice) 30
= [y CLFMAS
b (A B1(006) : &, & & &
T fy MATMAS
b (W B1006) ;- & & & &

L0 Ly Rk B3 ONCR L

Figure 6.6 Creating |IDocs But Not Dispatching Them Yet

Dispatching You can now start the report REDSER0DZ or Transaction BD41 to dispatch
the group the IDocs. You can use the flag Always Send Control Message to determine
whether or not to send the control message directly (see Figure 6.7).

Dispatch of IDocs of Serialization Group

Serialization Graup |z5m

Logical receiver system | to | |F_P|
Date of last change B2/1272609| to 02112:23391

Time of last change (00 00: 00 to |23:59:59

[¥] Check IDoc dispatch status
Waiting ime until check [00:05:00]
Abways send control message d

Figure 6.7 Dispatching IDocs

196

Serialization Using Groups 6.1

When these IDocs arrive in the target system, their status is 64: [Doc Inbound
ready to be transferred to application. Our example shows a large number ~ processing in
of unprocessed IDocs because we selected a long period of time in which partner system
the system would collect change pointers (see Figure 6.8).

roductive systern (client 811)
= IDoc in inbound processing
= A IDoc ready to be transfermed to application 64
b [y CLFMAS
by MATMAS

G RO Oh O

Figure 6.8 Unprocessed |Docs in Target System

To post the IDocs in a useful manner, you can start processing when the
last IDoc in this group and change pointer evaluation has arrived. You, as
the sender, can use the report REDSERD3 or Transaction BD42 to instruct
the receiver that posting can now commence. This information, which
has its own message type SERDAT, is then transferred to the sender if you
haven't already used the report REDSER0? to generate a control message.

The serialization information is transferred within the SERDAT IDoc. You
get a line item segment for each message type in the serialization group
(see Figure 6.9).

EDMDD Data Records |
SEGMUM Segment Number DOooOoo
SEGMAM Sagrmeant Name E1TBD40
SERGROUP Serialization group for seral Z3M1
SEQMUMBER Application ID sequence number Doo
MESTYP Message Type MATMAS
SEGMUIM Segment Number ooDoo2
SEGMAM Sagrmeant Name E1TBD40
SERGROUP Serialization group for seral |Z5m1
SEQMUMBER Application ID sequence number 00Dz
MESTYF Message Type CLFMAS

Figure 6.9 SERDAT IDoc, Which Starts Posting

You can also start posting without sending a SERDAT IDoc. To do this, use
the report REDSER0D4 or Transaction BD43 in the receiving system.

197

6

Serializing 1Docs

Serialization with
table “BDSER"

Customizing for
timestamp
serialization

Timestamp in
table “BDSER"

6.2 Serialization Using Timestamps

Serialization using timestamps, also known as “serialization at IDoc
level,” ensures that if two IDocs queue-jump and contain different data
for the same object, the older IDoc that queue-jumped can no longer be
posted.

For this purpose, the last timestamp posted is entered for each object
in the table BDSER. An IDoc for the same object checks its timestamp
from the SERIAL control record field against the timestamp in the above
mentioned table BDSER, and it's only posted if its timestamp is later.
Otherwise, the IDoc obtains status 51, and it can be ﬂagged for deletion.
This only concerns serialization in the receiving system. IDocs created
using the generated BAPI interface don't support this function because
the generation program doesn't implement the corresponding function
modules.

In Transaction BD95, you assign IDoc fields to certain fields in the data-
base (see Figure 4.9 in Chapter 4, Section 4.1.3, Filtering Segments).
These fields are also the basis for determining object assignment for
timestamp serialization.

Transaction BD57, shown in Figure 6.10, contains the message types
delivered by SAP, which support serialization using timestamps. This
transaction also shows which field is important for the sequence. One
example of such a field is the document number EBELN in the message
type ORDCHG.

Table BDSER (see Figure 6.11) contains the associated entries with the
IDocs that were posted for an object as well as the timestamp indicat-
ing when posting took place. The SERIAL field here contains the time-
stamp from the SERIAL field in the control record for the last successfully
posted IDoc. IDocs that are based on the same object but have an earlier
timestamp must not be posted.

198

Serialization Using Timestamps 6.2

Change View "Link Type and Serialization Type of Message Type":
P Nowertes | [B /B

Link Typa and Serialization Type of Message Type d

Message Type Serialization object type Object type link

HTHAS MATNR []

[naThAs_wns HATNR (=]

[k _mysTo HATNR

Jy_MATHAS MATNR

JoiLoeE JUNNR

|o1LORD VBELN

Jo1Lars VBELN

|orDCHE EBELN EBELN

|oRDERS EBELN

|oRORSP VBELN

|PFs_maThASD1 NATNR

Jp1cKsD VBELN

|PRCMAS PRCTR

Figure 610 IDocs That Support Timestamp Serialization

SNDPRN | SNOFFC RCYPRN
860 |kU |000D0300S9(A6 |LI |0000O100S9|LF |EBELN 4500000235
860 KU |0000030089(A6 |LI |000DO100S9|LF |EBELN 4500000236
880 kU |0060030659(A6 |LI |000001069|LF |EBELN 4500000238

Figure 611 Table "BDSER"

You can use the report REDSRCLR to remove obsolete timestamps from
the Table BDSER.

Function Modules for Serialization

SAP delivers two function modules for timestamp serialization: 100C_
SERIALIZATION_CHECK for checking timestamps and 1DOC_SERIAL_POST
for updating the serialization table after a new IDoc has been successfully
posted. If you want to use this method to serialize IDocs, go to Transac-
tion BD57, maintain the field to be used, and then use the enhancement
technology to implement the two function modules in the inbound func-
tion module.

199

6

Serializing 1Docs

Object channel
serialization

Assignment to
message type

6.3 Serialization Using Business Objects

For serialization using business objects, one common channel number
is assigned to all IDocs for the same object type. A channel number is a
message attribute generated using the function module ALE_SERTAL_KEY -
2CHANNEL or assigned in the application program.

This type of serialization is sometimes also known as object channel serial-
ization. Here, serialization occurs at the object type level (e.g., based on
all BOM IDocs). The business object type for this purpose is 1D0CBOMMAT,
Because SAP doesn't deliver any object channel serialization for mate-
rial masters, we'll use BOMs in our example here. Figure 6.12 shows
Transaction BD105, which contains all objects for which SAP delivers
serialization using business objects. You can maintain this table yourself,
but you must use exits to build the associated implementation into the
processing routines.

Change View "ALE:Object Channel Serializ: Supported Business Object

(][vew Enes | 3] B3 2} B (B 2

ALE:Object Channel Serfaliz Supported Business Object Types H
ObjeciType |[Descript

w FPurchase Ordar IE‘
|BUs2813 Purch.scheduling agresment (=]

|eus2615 Inbound delivary
[eus2022 Clearing Case
US2632 Sales Order
[EUS2835 Custorner scheduling agreement
[BUs2654 Wwork breakdown structure
[BUs2102 Retums
{USWEE Delivery Processing
CH Engineering Change Management Change master
IDOCBONDOC
IDOCEOMMAT IDOC for material BOMs

Figure 612 Objects Connected to Object Channel Serialization
A message type that can be serialized is then assigned to each of these

objects. You use Transaction BD104 to access this assignment. For our
sample BOM, the message type is BOMMAT, as shown in Figure 6.13.

200

Serialization Using Business Objects | 6.3

Ehange View "ALE: Dbject Channel Serialization:
e

ALE: Dbject Channel Serialization: Message Type afaus%
[obj Type [Message Type

|pus2182 CUSTOMERRETURN_CONF IRMDELIVERY | [4]
[eUseE50 DELIVERYPROCESSING_EXECUTE (=]
ECch ECHNAS
[DOCBONDOC BOMDOC
[DOCBONNAT BOMNAT
[DOCBOMORD BONORD
IDOCDSPHAS DSPNAS
IDOCPALMAT PALNAT
IDOCSTTHAT STTHAT

LIKP SDPACK

LIKP S0PICK

LIKP ISHP_0BOLY_CONF IRM_DECENTRAL
LIKP SHP_OBDLY_SPLIT_DECENTRAL

Figure 643 Objects and Their IDocs

The functions for activating object channel serialization are only avail- Activating
able in ALE Customizing. Surprisingly, they are located under the Mas- ~ serialization
ter Data Distribution menu option even though serialization is wholly
independent of the type of data used and has nothing to do with the

Shared Master Data tool (SMD). Figure 6.14 shows an extract from ALE
Customizing.

|Btructure
= [IDoc Interface / Application Link Enabling (ALE):
I Basic Setings
P Communication
= [Modelling and Implementing Business Processes
I [2% Global Omganizational Units
[E» maintain Distribution Model and Distribute Views
b [% Configure Predefined ALE Business Processes
= [& Master Data Distribution
b [&% Replication of Modified Data
= [B& Serialization for Sending and Receiving Data
na B' Serialization Using Message Types
[@ @b Define Serialization Groups
[(B Maintain Distribution Model
[@ Define Inbound Processing
] E; Seralized Distribution Using Message Types
= Seralization Using Business Objects
by (Ep Activate Outhound Business Objects
[@ Activate Inbound Busingss Objects
[8 @ Check Consistency System-Wide

Figure 614 Path to Serialization Settings in ALE Customizing

201

6

Serializing 1Docs

Checking the
settings

To activate serialization, the serialization flag SFLAG is set in the sending
system for the receiver (here: SALES) and the business object 100CBOM
MAT, as shown in Figure 6.15.

Change View "ALE: Object type serialization : Qutbound control™:

ALE: Object type serialization : Outbound control

[Receivpartn [Rec |Part JObj Type |Ser. fiag |

[sALES LS IDDCBOMMAT M [=]

| [<]

Figure 645 Settings in Sending System

The settings must be configured in the same way in the receiving system.
In our example, the sender is T90CLNT090 (see Figure 6.16).

Change View "ALE: Object type serialization : Inbound control™:

ALE: Object ype serialization . Inbound control

gend part. no. [Part ty [Part. [obj Type [ser.nag

T9OCLNTE98 L5 | IDOCEOMNAT [=]

I

Figure 616 Settings in Receiving System

After you've finished configuring the settings in both systems, you
can perform a consistency check in Transaction BD101. Here, you see
whether serialization using object types is activated. The status traffic
lights in the Local Status and Partner Status fields also indicate whether
Customizing is okay and consistent. The traffic light in the Difference
field then shows whether some IDocs queue-jumped. This is the case in
our example in Figure 6.17. If all of the IDocs in both systems have been
posted in the correct sequence, the values in the Counter field should
also correspond here.

You can use Transaction BD100 to specifically view only those 1Docs
that will be processed using object channel serialization. Figure 6.18
shows the three IDocs that have already been dispatched in our particu-
lar example.

202

Serialization Using Business Objects | 6.3

Serialization Using Object Types: Consistency Check

&9 ¥ BT o]

| Outbound and Inbound Serialization in This System

Dirzction il‘-‘altnar P |P |oBject Type Local Status | Parner Status | Channel| Difference |LocC_ |Parn_ |Messages
Inbaund BALES IDOCEOMMAT oo | oo oo
IDOCEOMMAT ooo i ooo | s8] coo] 1

Figure 617 Check Function for Object Channel Serialization

Serialization Using Object Types: Display Serialized IDocs
box Q¥ 8% BE TR
IDocs Serialized Using Object Types:

IDa0¢ nurnber| Objec Type |ch_|counter|P |Patnro. |F_|P_|Parnno. R 0|5 |Message Type
TEE785 |IDOCEOMMAT 6278 1/LS|SALES LS |TOOCLNTOSD | |1 |03 [BOMMAT
TEETAE IDOCEOMMAT |6278 2|LS [SALES LS | TIOCLWNTOS0 1 (03 |BOMMAT
766787 |IDOCEOMMAT 6278 3LE|gALES LS|TO0CLNTOSD | [1 03 |[BOMMAT

Figure 648 |Docs with Object Channel Serialization

In the receiving system, individual processing of specific IDocs ensures ~ Wait status

that our second IDoc is posted first. The system “notices” that it's not yet ~for IDocs that
. eue-jum
its own number's turn in the relevant channel, so it changes its status to ~ “€“¢74™P
waiting status 66 (see Figure 6.19). If the first IDoc arrives and is success-
fully processed, it can be rescheduled and processed again.
= [® Sales system (client 810) a
= [1Docs in suthound pracessing 1
b O Data passed to por Ok 03 1
= [IDo¢ in inbound processing 8
I+ @ Application document not postad 51 1
P @ IDoc with emors added 56 1
= 4 IDoc is waiting for predecessor IDac (serialization) BB 1
= iy BOMMAT 1
= (1] B1(15%) : IDoc must be processed laler, &, IDoc no. & required. 1
(@] Dot must be processed later, 000002, IDac no. 000003 required. 1

Figure 619 Wait Status for IDoc That Queue-Jumped
Once again, the SERIAL field in the IDoc control record determines the “Serial" field in

sequence here. However, this field doesn’t contain a timestamp, which ~ ¢ontrol record
is usually the case, but rather a combination of the object name, object

203

6 | Serializing IDocs

channel number (of the channel used for the transfer), and the transfer
number. This is the value in the Counter field, which you can also see
in the IDoc display screen in Transaction BD100. Figure 6.20 shows the
control record of the sample IDoc that queue-jumped and has the coun-
ter “3." The IDocs with the counter “1" and “2" haven't arrived yet, so
our IDoc has been assigned status 66, which you can also see here.

Display Control Record

ToE14]
[z 4= inbound
[68] ©AO IDo: is walling for predecessor (Do (serialization)

Figure 6.20 Control Record for a Serialized 1Doc

Data channel To get an overview of the statuses of the serialized IDocs, you can view
registry the data channel registry (in outbound processing, you do this in Trans-
action BD102). The result is displayed in Figure 6.21. Three IDocs have

already been sent.

Change View "ALE: Outbound Channel Registry™: Overview

Figure 6.21 View of Registry in Sending System

204

Serialization Using qRFC | 6.4

You can use Transaction BD103 to view the same process in the receiving
system and see that, so far, just one IDoc has arrived (see Figure 6.22).
It's exactly this situation that produces this standby position in IDoc
processing, in other words, different values in the Counter field in the
receiving and sending systems.

Change View "ALE: Inbound Channel Registry”: Overview
ALE: Inbound Channel Regisiry
| |objectmype [chann [Partty [Send part.no. [SendPa [Date [Tme [Counted
IDOCBOMMAT 6278 LS TIOCLNTAIE 18.08.2008 14:50:46 |1
| | 1

Figure 6.22 View of Registry in Receiving System

6.4 Serialization Using qRFC

Serialization using qRFC (Queued RFC), in which the sequence of the
[Docs is also retained, has only been available since SAP NetWeaver
6.40. Instead of the function module IDOC_INBOUND_ASYNCHRONOUS, the
function module 1D0C_INBOUND_IN_QUEUE is called in the target system.
This type of serialization is possible for all IDocs. In SAP NetWeaver PI,
it can also be used to implement the Quality of Service EOIO (Equally Once
In Order) in the IDoc adapter.

You configure serialization using qRFC in the outbound partner profile Serialization using
by setting the Queue Processing flag on the Outbound Options tab page aRFC

(see Figure 6.23). This opens a new field in which you specify how you

want the queue name to be created using rules that reference a function

module. Figure 6.23 shows three of the rules delivered by SAP (bottom

right). The rule 100C_QUEUE_SUS_MM requires the use of an IDoc of the

type ORDERS or ORDRSP.

The function modules for creating queue names can be assigned a rule Rules for queue
name in Transaction WES85. Figure 6.24 shows this assignment for the names

three rules shown in Figure 6.23: CONSTANT : EDIQUEUE, FIRST_16_OF_MES-

rYp, and IDOC_QUEUE_SUS_MM.

205

6 | Serializing IDocs

Partner profiles: Outbound parameters

Parner Mo, [SALES | gales system (cliem 810)

Partn Type sl Logical systam

Partner Role |_|

& Message Trpe [MATHAS | Material master
Hllﬁql cide

Message function [

[E- Rule Wame (4) 3 Enfries found

P ———————
v B (00088 | 5[0 &

Rule Name
CONSTANT ECIQUEUE

|IIJIJI: QOUELE IIH.HE_I'IEST'IP
|ID0C_OUELE_SUS_HH

Figure 6.24 Generating Queue Names

If you're working with your own function modules, these require a suit-
able module signature (see Figure 6.25).

Queue monitor Figure 6.26 shows our example (at the very bottom): The queue has been
given a fixed name (SAP_ALE_EDIQUEUE), the RFC destination addressed
by this queue is called SALES, and the transaction that you can use to
monitor the outbound queue is called WEOUTQUEUE.

206

Serialization Using qRFC | 6.4

"FUNCTION 1DOC_QUEUE_WAME_MESTYP.
*=r=Lokale Schnittstelle:
*= IMPORTING
LF REFEREMCE (CONTROL) LIKE EDIDC STRUCTURE EDIDC
= EXPORTING
AR WALUE (NAME) TYPE CHAR1G
TABLES

S DATA STRUCTURE EDIDS

Figure 6.25 Signature of a Function Module for Creating Queues

gRFC Monitor (Outbound Queue)
(7D e [0 2 2 [) (81 [b ofLuwy s |

Oueue Informationen
Humber of Entries Displayed: 441
Humber of OQueues Displayed: 10

Figure 6.26 Outbound SALES Queue

So, if you have created the queue, and, for example, an IDoc in the Stopped queue in
receiving system now encounters an error, subsequent IDocs can no status monitor
longer be posted and each obtain status 75: IDoc is in inbound queue (see

Figure 6.27).

‘Aaplicalion documentnol pasted
0o with errors added

it

(3] EA75) : Dot received via gRFC

Figure 6.27 |Docs in Target System

207

6 | Serializing IDocs

The error scenario is also shown in the inbound queue, which is moni-
tored using Transaction WEINBQUEUE (see Figure 6.28).

IDoc Inbound Queue

Sroyva

= {y 0000000000070018 | MATMAS IDoc Mo. [Message Type
&8 Status 51 Messages have been issusd: Gurrent Status with Cumment Message

iy 000000000007 0019 | MATMAS IDoc Mo. [Message Type

i 0000000007000 | MATMAS IDoc Mo, [Message Type

iy 0000000007002 | MATMAS 1Doc Mo. IMessage Type

Figure 6.28 Displaying |Docs in a Queue

Error handlingin ~ You can postprocess the IDoc here, ideally in such a way that it can be
aninbound queue posied successfully. However, you can also use the “trashcan” icon to flag
the IDoc blocking the queue for deletion (status 68) (see Figure 6.29).

IDoc Inbound Queue

_:"|I e iEL'| Eel

= 'Hll OCLNTO9C Sende
= L] sap Glugue
j& Doc o Massage e
Status 51 Messages have been issued. Curréni Slatus with Currenl Message
% 0000000000070019 | MATMAS IDoc No. [Message Type
& 0000000000070020 | MATMAS IDoc No. [Message Type

iy 0000000000070021 | MATMAS IDoc No. [Message Type

[Flag IDoc for Deletion

Do youwant to give IDoc T000000000070018" an
ermor status 7

| % cancel |

Figure 6.29 Deleting IDocs from a Queue

208

After you've processed or removed the IDoc that contains errors (see
Figure 6.30), you can restart the queue. All other IDocs are now posted
(Figure 6.31).

IDoc Inbound Queue

LIRS =1E

Inbound IDoc Gueue Display |Description
& L IDoc Inbound Quaua
= [T0CLNTO90 Sender
< [] SAP_ALE_MATMAS Qugue
st 33 000000000007 0019 | MATMAS IDoc Mo. [Message Type
&P Status:T5100¢ receved via gRFC Curment Stalus with Current Message
fm 00000000000TO0Z0 | MATMAS IDo¢ No. [Message Type
g 000000000007 0021 | MATMAS IDoc Mo, [Message Type
J = INFORMATION E 4

DELETED FROM INBOUND QUIEUE SAP_ALS_MATMAS

Continue I

Figure 6.30 Result of Delete Operation

= E!IDG: in inbound processing 1
P @ Application document not posted 51 1
b @ IDoc with errors added 56 1
P A IDoc is walting for predecessor IDoc (sernialization) 66 1
P O Application document posted 53 B
O Emor- no further processing 68 2

Figure 6.31 Result After Restarting a Queue

6.5 Summary

In this chapter, you've seen all possibilities for serialization of IDocs, and
learned about the places to find which serialization type is implemented
for your IDoc. The different types of serialization may lead to additional
work if they are out of sync, so make sure you only use serialization
where it is really needed for your process.

209

Summary | 6.5

Restarting a queue

This chapter deals with administrative issues, specifically, IDoc-
related information that is written to the database and regular
background jobs.

7 Administration

This chapter gives you an overview of the administration options for
[Docs. One option discussed in this chapter is how to link IDocs to dis-
play or search for information. Another is to increase the performance
of your system by scheduling regular reports that you would otherwise
have to run manually. This chapter also summarizes IDoc functional-
ities and the associated transaction codes, and explains how IDocs are
archived and their status converted.

74 IDoc Links

There are two types of links: links between IDocs and the actual business
objects when a business object type is assigned; and links between the
sender's IDoc and the recipient's IDoc. The latter type of link is known
only to the recipient.

IDoc links have their own database table called 100CREL (see Table 7.1).
The table contains both data items that are related to each other; they are
identified by their internal number.

The SRRELROLES table contains the objects that are associated with these
internal numbers. There are several different link types in this table.
Table 7.2 shows the entry types that are relevant to IDocs.

21

"SRRELROLES"
table

7 | Administration

Cmcype lroleA lroes

IDCO OUTBELEG OuTIDOC
1DC1 INIDOC INBELEG
1DC4 INIDOC OuTIDOC
1IDC8 INIDOC INTID
IDCo ouTIDOC INBELEG
IDCA OuTIDOC OuTID
IDCB INIDOC OUTBELEG

Table 71 |1Doc-Related Entries in the "IDOCREL" Database Table

Abbreviation in the Description
ROLETYPE Field

INBELEG Recipient document

INIDOC Recipient |Doc

INTID Transaction 1D that came with the I1Doc
OUTBELEG Sender document

OUTID Sender transaction 1D

OuTIDOC Sender IDoc

Table 7.2 Entries in the "SRRELROLES" Table

For an example, let's look at an IDoc and a material master in this table
(see Figure 7.1). The 0BJKEY in each case is the unique object key, for
example, the material number or the IDoc number. For documents,
the 0BJTYPE is always the associated business object type; for IDocs,
on the other hand, it's always "IDOC"; and for transaction IDs, it's
“TRANSID".

If an IDoc is created for this material, there will also be an entry for this
in the SRRELROLES table (see Figure 7.2). In both objects, the unique
number that is referred to in the Table 100CREL is included at the field
ROLEID.

212

IDoc Links | 7.1

Table SRRELROLES Display

Check Table...
CLIENT T
OBJKEY |5H-100
OBJTYPE |BUS1001006
LOGEYS

ROLETYPE |OUTBELEG

ROLEID [fWoll YSNvBimm0Qlgsced |
UTCTIME |26.896.309.100.659 |

Figure 74 Example of a Material

Table SRRELROLES Display

CLIENT 808
OBJKEY |0000000000763755
OBJTYPE [IDOC |

ROLETYFE |OUTIDOC

ROLEID | WRIKRYHF BimmOQIgsced
UTCTIME [20.090.316.104 026

Figure 72 Example of the IDoc to Be Included in a Link

Our example objects, IDoc 763755 and material SH-100, have the link Outbound material
type 10C0 because we're on the outbound side of the link. Figure 7.3
shows the relevant table entry in Transaction SE11.

Table IDOCREL Display

Check Table,.
CLIENT L
ROLE A il IYSNVEjmmOigseed |
ROLE B WKRYHFBlmmOQigsce0 |

RELATIONID WAKRvHVBimmOQigsccD |
BRELTYP 1008
UTCTIME 20.090.310.104.026 |

Figure 7.3 Entry in Database Table “IDOCREL"

213

7

Administration

Object key

All other links are managed in a similar way. They can be viewed from
within IDoc monitoring in Transaction BD87 or in the individual IDoc
display by means of the object services.

The link to the object type can also be used to display the key values of
the IDoc contents. To do this, use the Object Key function in Transaction
BD87 (see Figure 7.4).

Status Monitor for ALE Messages

| Display iDocs | €8 Display relatonships | [Display status long text || @ Object key |

I8 B 1

IDoc Selection
IDoc number| Stat | Message Type |0Nm Type Object Key StatusText Partner No.
TEBE33| 03 |MATMAS SlandardMaterial ZEMMAT qRFC used to send IDoc 1o SAP systam SALES

Deactivate link

Figure 7.4 Object Key in Transaction BD87

The other links can be displayed from within the individual display. You
can also view a related object in the individual display by simply double-
clicking it. If you've edited an IDoc, you'll also see the link to the original
IDoc here. This original object is retained for the sake of completeness.
Figure 7.5 shows the recipient system (because this system contains a
higher number of links).

Also Business objects that are part of links can be displayed directly
from here. You can access this function via the object services, as before
(top arrow in Figure 7.5). To get to the actual links for the IDoc, use the
IDoc links icon (lower arrow in Figure 7.5). If you don't want to have all
links written to the database Transaction WENOLINKS is used to specify
which links are written for which message type. The lower part of Figure
7.6 shows a deactivated link for MATMAS,

214

1Dac Links | 71

3] A

W Technical shor info -
- IDoc 000000000007 0027 -
Control Rec.
b [Data records Total nurnber: 000003

b Status records

[IDoc IDoc: 0000000000070027 message hpe_ (2] B (=

D[08[C [2[Tn]< B[[m,

II]'ﬁamna: Rula'lil;nsrrlps

ﬂrlmnnmﬂmﬂmm

Q0000000000 e L2
_ m Description
i Standard maternial |test
Dicaﬂm DHMTDI'MMHHIDGE Standard material | ZSM11
Outbound IDoc IDoe 00000000007 68639

Figure 7.5 Links in Recipient System

Deactivate Writing of IDoc Links (Selectively)

 Inbound IDoe Outbound Do, in Source System
Material master

Figure 7.6 Deactivating Links

Report RSRLOREL is used to delete written links from the system.

215

7 Administration

Important reports

7.2 Regular Jobs

During the process of setting up and testing IDoc links, many things
are done manually that are processed by means of regular jobs in the
production system. Likewise, in test systems, the processing mode for
sending and processing IDocs is often set to Process Immediately in the
partner profiles. For performance reasons, this isn't recommended in
production systems and is listed by SAP as incorrect in go-live checks.

Table 7.3 lists some important reports and their functions. Most of these
reports can be regularly scheduled.

Report Name Report Function

IDX_DELETE_IDOCTYP_ Delete IDoc type from SAP NetWeaver Pl
WITHOUT_IS exceptions table

(only available in SAP NetWeaver Pl)
IDX_SELECT _IDOCTYP_ Copy IDoc type to SAP NetWeaver PI

WITHOUT_IS exceptions table
{(only available in SAP NetWeaver PI)
REDAGAIZ Post IDocs after ALE error
RBDAGAIN Send IDocs after an ALE error
RBDAPPO1 IDoc passed to application
RBDAUDO ALE audit: statistical analyses
RBDAUDO2 Reorganizing the audit database
RBDCPCLR Delete change pointers
RBDMANIN Reposting of IDocs (ALE)
RBDMIDOC Create IDocs from change pointers
RBEDMOIND Convert IDoc status
RBDSERO1 Create |Docs of a serialization group from
change pointers
REDSERO2 Dispatch IDocs of a serialization group
RBDSERO3 Check the send status of the IDocs of a

serialization group

Table 7.3 Programs for Regular Scheduling

216

Transaction Code Overview [7.3

RBDSERO4 Inbound processing of 1Docs of a serialization
group

RBDSRCLR Delete serialization data

RBDSTATE ALE audit: sending the confirmations

RSARFCEX Restart “frozen" tRFCs

RSEOUO0O Send IDocs in status 30

RSRLDREL Delete IDoc links

SAPLBDRC ALE: determine recovery objects

Table 73 Programs for Regular Scheduling (Cont.)

7.3 Transaction Code Overview

Table 7.4 contains the transaction codes for all of the functionalities
used in this book. Menu information has been deliberately omitted from
this list, where possible, as the SAP menus sometimes change from one
release to the next. The text also makes direct reference to the transac-
tion, where possible.

Table 7.4 contains the general transaction codes, while Table 7.5 contains General transaction
the transaction codes that, while related to IDocs, refer directly to the codes
objects of a specific module and aren't for general use.

BD20 IDoc passed to application
BD21 Select change pointer

BD22 Delete change pointer

BD23 Delete serialization data

BD40 Read change pointer for group
BD41 Dispatch IDocs for group
BD42 Check 1Docs for group

BD43 Post IDocs for group

Table 7.4 Main General Transaction Codes

217

7 Administration

Transaction Code | Function

BD44 Assign message type to serialization group
BD47 Dependencies between methods

BED48 Dependency method — message

BD50 Activate change parameters for message type
BD51 Maintain function modules (inbound)

BD52 Activate change pointer per change document item
BD53 Reduce message types

BED54 Maintain logical systems

BD55 Assign rule to message type

BD56& Filter IDoc segments

BD57 Maintain link and serialization type

BD58 Convert organizational units

BD59 Maintain filter objects

BD&0 Maintain function module for analysis

BD61 Activate change pointers generally

BD62 Create rule

BDé3 Transport ALE table of message type

BD64 Maintain distribution model

BD&5 Define mandatory fields

BD66 Assign IDoc field to change document

BD&7 Maintain methods (inbound)

BD68 Assign classes to recipient logical system
BD&9S Assignment of message type to |1Doc

BD79 ALE IDoc segments: conversion rules

BD81 Filter objects: parameter filtering

BED82 Generate partner profiles

BD83 Send |Docs after an ALE error

BD84 Post IDocs after ALE error

BD85 Rules for creating queue names for qRFC IDocs

Table 7.4 Main General Transaction Codes (Cont.)

218

Transaction Code Overview | 73

Transaction Code [Function

BD87 Status monitor

BD95 Change ALE object type, assign filter objects segment
{(IDoc) and serialization objects

BD%96 Filter objects: recipient determination (BAPI)

BDS7 Determine RFC destinations for method calls

BDS9 Message type dependencies

BD100 IDoc display object channel view

BD101 Consistency check

BD102 Outbound registry

BD103 Inbound registry

BD104 Assign |Docs to business object

BD105 Maintain supported business objects

BDA4 Assign message type to object type

BDBG Generate ALE interface

BDCCC ALE Basis Customizing data: check center

BDCCV Maintain items to be checked

BDLSM Convert ALE Basis Customizing data: conversion
matrix

BDLSS Convert logical system names after client is copied
(not in production systems)

BDLST Convert ALE Basis Customizing data: execution (note:
starts immediately without warning)

BDM2 Monitoring: recipient IDocs (IDoc tracking)

BDM5 Technical consistency check

BDM7 ALE audit: statistical analyses

BDME ALE audit: sending the confirmations

BDMS Reorganize the audit database

BDMO ALE CCMS group administration

BDMONIC Maintain ALE CCMS monitoring objects (definition)

BDMONICZ Maintain ALE CCMS monitoring objects (group
definition)

Table 7.4 Ahain General Transaction Codes (Cont.)

219

7

Administration

Table 7.4

BOMONIC3
BDR1

BDR2
BDRC

BDRL

BDTP

BFO1

BFO5
CMOD
FIBF

OB72
OYEA
PFTC_CHG
PFTC_COP
PFTC_DEL
PFTC_DIS
PFTC_INS
SALE
SARA

SARI

SARJ

SE11

SE18

SE19

SE38
SE8S0
SE84
SMOD

220

Transaction Code | Function

ALE CCMS monitor branch

Display application log for recovery
Reorganize recovery data

ALE: determine recovery objects

ALE: process recovery objects
Business process — maintain templates

Library of “publish and subscribe” business
transaction events

Library of process business transaction events

Project management of SAP extensions

SAP Business Framework: business transaction events

Create global company code

Global parameters for IDoc interface

Modify workflow task

Copy workflow task

Delete workflow task

Display workflow task

Create workflow task

ALE Customizing

Archive administration

Archive information system: central administration
Archive retrieval configurator

ABAP Dictionary: initial screen

BAdI Builder: definition maintenance initial screen

BAdI Builder: implementation maintenance initial
screen

ABAP Editor: initial screen
Object Navigator

Repository info system

SAP Enhancement Management

Main General Transaction Codes (Cont.)

Transaction Code Overview | 7.3

Transaction Code

WED2 Display IDocs

WEO5 IDoc lists

WEOQB Active |Doc monitoring

WEO7 IDoc statistics

WE08 Status of file interface

WEQS Search for IDoc based on business content

WE10 Search for IDoc in database release 4.6C and earlier
releases

WE11 Delete IDocs (note: use only after obtaining
agreement)

WE12 Receipt of modified outbound file

WE14 Outbound processing from IDoc

WE15 Outbound processing from MC

WE16 Original inbound file

WE17 Process status file

WE18 Create status file

WE19 Test tool

WE20 Partner profiles

WE21 Ports for IDoc processing

WE23 Verification of IDoc processing

WE24 Default values for outbound parameters

WE27 Default values for inbound parameters

WE30 IDoc types

WE31 IDoc segments

WE32 IDoc views

WE34 Objects for display of XML IDocs

WE40 Settings for errors and status processing

WE#1 Process codes, outbound

WE42 Process codes, inbound

WE46 Error and status processing (like WE40)

Table 7.4 Main General Transaction Codes (Cont.)

221

7 Administration

Application-
specific transaction
codes

Transaction Code | Function

WE47

WES4

WES5

WE57

WE58

WE5S9

WEG0D

WE&1

WE62

WEB3

WEG4

WE7O

WE71

WE72

WE73

WES1

WEB2

WEB4

WEDI
WEINBQUEUE
WEOUTQUEUE
WENOLINKS
WELI

Maintain status values

Function modules for changing file names
Create file names

Assign message for application object

Status of process codes: texts

Status of process codes: modify
Documentation for IDoc types
Documentation for IDoc record types
Documentation for segments

Documentation for IDoc types (like WE60)
Documentation for message types
Conversion: basic types

Conversion: extensions

Conversion: |Doc types

Conversion: logical messages

Logical message types

Assignment of message type to |Doc type
Assignment of IDoc fields and application fields
IDoc basis and EDI basis

Monitoring program for IDoc inbound queue
Monitoring program for IDoc outbound queue
Switch off links

Maintain status groups

Table 7.4 Main General Transaction Codes (Cont.)

Application-Specific Transaction Codes

Most of these transaction codes are from SMD and aren't mentioned
explicitly in this book, but you'll likely find this table useful.

222

Transaction Code Overview | 73

Transaction Code

BD10 Send material

BD11 Get material

BD12 Send customer

BD13 Get customer

BD14 Send vendor

BD15 Get vendor

BD16 Send cost center

BD17 Get cost center

BD18 Send general ledger account
BD19 Get general ledger account
BD24 Send cost elements

BD25 Send activity type

BD26 Get activity type

BD27 Send cost center activity prices
BD28 Send object/cost center type control data
BD30 Distribute material object list
BD31 Distribute document object list
BD32 Distribute plant allocations {material BOMs)
BD33 Distribute material variants (ALE)
BD34 Distribute order BOM

BD35 Send business process groups
BD36 Send business processes

BD37 Send business process prices
BD85 Consistency check for transfer
BDE6 Consistency check for sales

BD91 Send characteristic

BDS92 Send class

BD93 Send classification

BDAS Distribute documents

Table 75 Main Module-Specific Transaction Codes

223

7

Administration

GDPdU

Archivable
status values

Transaction Code | Function

BDD5 Application consistency check (SD)
BDFDF Request fund

BDFDS Send fund

BDMC Upload info structures

Table 75 Main Module-Specific Transaction Codes (Cont.)

7.4 Archiving

[Docs are documents that, under German law at least, may have to be
archived in accordance with the GDPdU (German Principles on Data
Access and the Examination of Digital Documents). This legal instrument
always applies in communication with partners when the IDoc is the
first electronic document that you receive in a process. If you're reading
the IDocs from a file that was sent by a partner, this file, too, must be
archived. Likewise, in companies to which Good Manufacturing Practice
(GMP) applies, all changes to the status of warehouse stock have to be
archived. Thus, you can see that in most cases, IDocs cannot be simply
deleted from the system; they have to be archived using SAP's propri-
etary archiving system.

One IDoc-specific rule is that you have to specify for every possible
IDoc status value whether IDocs with this status are archivable or not.
Of course, SAP provides in archivable form those values that normally
indicate that an [Doc has a “success” status and the associated document
already exists (in inbound processing), or that the associated document
was successfully transferred to the recipient (in outbound processing).
The transaction for maintaining status values is WE47. Figure 7.7 shows
the status maintenance screen for status value 72, which indicates that
an IDoc was sent successfully via RFC in outbound processing.

224

Display View "Status maintenance”: Details

HDoc status: 12
|Di|scrintian Dispatch Ok

Processing

Direction
Procg level

= Outhound
External systerm/EDI subsystemn

1]
g

Effect
Protess code |
Qualification 4 CO0 Outbound: IDoc dispatched

Archiving

® Pogs.
e ludad

Figure 7.7 Setting Archiving Options per Status

The actual process of archiving is completed in Transaction SARA, as
with all objects to be archived. The archiving object for IDocs is also
called 100C and contains the usual Write, Read, Management, and Delete
functions (see Figure 7.8).

Archive Administration: Initial Screen
[Logs || Customizing || Database Tables || Information System

Archiving Object _'||BDE IDnc - Intarmediate Document

Actions

Write
Delete
Read

2 management

Figure 7.8 Archiving Object for IDocs

When it comes to the archiving report itself, which is started using
the Write button, you can specify in great detail which IDocs are to be
archived (see Figure 7.9). When test mode is active (shown as a flag on
the FLow CoNTROL tab page), you're presented with an archive file, but
the deletion report doesn't delete the archived IDocs from the database.

225

Archiving | 7.4

Transaction SARA

Archiving Criteria
for IDocs

7 | Administration

As a general rule, you shouldn't wait too long to archive IDocs. The
fewer IDocs you have in the database, the faster your search processes
will run, and viewing IDocs or searching field content will be just as easy
after archiving.

Maintain Variant: Report RSEXARCA, Variant ZSM_ARCH

|C'!

B i i
gl |2
Iﬁli

ol olele

o

E
E
E

I.I I.I I . IFIi
!ﬂ

ET! uEL'

Detail Log Mo Detail Log
Log Owtput List
Archiving Sassion Note

Figure 7.9 Criteria for IDoc Archiving

Our example contains both 1Docs with a successful status and IDocs
with an unsuccessful status (see Figure 7.10). The SAP standard settings
for archiving status values specify that IDocs with errors remain active
because they cannot be archived.

226

= @I R0 clien 800 0
= Ih IDocs in outbound processing 20

P @ Error passing data to port 0z 1

b O Data passed o porl 0K 03 19

= [Dot in inbound processing 10

b @ IDoc with errors added 56 3

I O Application document posted 53 T

Figure 710 IDocs Before Archiving

Now, the archiving process is started with the All IDocs That Have an
Archivable Status Will Be Archived setting (this happens if you haven't
made any specific selection). Figure 7.11 shows the result.

IDocE |IDoe Status | Number|
"? Changed on |5 in the range 01/01/2000 o 12312008
= HD0 chient 800 4563
= [& IDocs in outbound processing 698
P @ Error passing data to port 02 m
P @ Error during syntax check of IDoc (outbound) 26 1
P @ Errorin ALE service 28 332
B4 IDoc ready for dispatch (ALE service) 30 5
P O IDoc is in the target system (ALE semvce) 39 130
= [IDoc in inbound processing 3865
I @ Application document not posted 5 3508
I @ 1Doc with errors added 56 120
P @ Error during syntax check of IDoc (inbound) &0 [
B @ Errorin ALE service 63 2
B & IDoc ready to be transferad to application B4 24

Figure 7141 [Docs After Archiving

As mentioned previously, it's also possible to search archived IDocs. A
prerequisite for this is that you have activated the info structure provided
by SAP, SAP_IDOC_001, or your own info structure, in Transaction SARJ.
These info structures are used to establish the context for the data in the
archive. For this purpose, part of the data, which should be kept as small
as possible, is retained in the database while the remaining data is in the
archive. For IDocs, it's sufficient to retain a small amount of data from
the control record in the database; the vast majority is then deleted after
archiving. Figure 7.12 shows the SAP-specific structure SAP_100C_001.
For active structures, the corresponding data records are created auto-
matically after archiving.

227

Archiving | 7.4

Activating info
structure

7 | Administration

Search for
archived IDocs

Display IDocs
from archive

Archive Retrieval Cunﬂguratur
47
Infostructura [SAP_IDOC_B81 | [|nfo Structure for IDOC
Archiving object |1p0C | 1D - Intermediate Docurnent
Figld catalog |saP_IDOC_BB1 | Field Catalog for 1DOC
Info structure fields d Optional fields
[Marme & |Field nam [mame Fid name
Cregted st OLRETIH [4]
Created on OCREDAT [
{Time changed O UPDTIN
Changed on O UPDOAT
| |88 IDoc number O DOCKHUK
|1boc Status O SIATUS
|pasic type [=)iTITAT
[Extension O CIATYE
O MESTYP
|sender port O SHDPOR
|sender type O SNDPRT
|sender. O SHDPEN
|Beceiver port O BCYPOR
|Bec_Partn Tvpe O BCYPRT
|Receiver O BCYPRN
[+]
[+

Figure 712 Archive Info Structure “5AP_IDOC_001"

You can use this info structure in Transaction SARI to search for archived
IDocs. This can be done for all archived objects, although the result is
simply a tabular view of the individual fields. For IDocs, the normal IDoc
search in Transaction WE09 is structured so that you can choose whether
to search in the archive, in the database, or in both. The advantage of
this is that you can search for archived IDocs in the usual manner, and
the data is displayed in the same way for database IDocs and archived
[Docs. In other words, it doesn't make any difference where the data
comes from. Click the Select Data Source button to select the data source
(bottom right in Figure 7.13). The alternative of selecting files manually
isn't recommended because you have to know which IDocs are located
in which archive file.

Figure 7.14 shows an IDoc that was found in WE09 (517747). It has sta-
tus 53, which shows that it comes from the archive.

228

Archiving | 7.4

IDoc Search for Business Content

T [

Crileria for Search i Conlrol Records

#lals [2/a|s]s

Figure 743 |1Doc Search for Field Content

Figure 714 Individual IDoc Display in Transaction WEQ2

229

7 Administration

Transaction WE10
in older releases

Delete IDocs

Manual delete flag

Procedure in Older Releases

Up to Release 4.6C, Transaction WEQ9 read data from the database only.
There was an additional transaction, WE10, for reading data from the archive.
The two functions have been combined in one easy-to-use transaction in
more recent releases.

Deleting IDocs

You'll sometimes have to delete IDocs. You can do so in Transaction WE11.
However, whether or not you should be permitted to delete IDocs in a pro-
duction system is a matter to be clarified with the person who is responsible
for GDPdU (or equivalent legislation) in your organization because deleted
data cannot be recovered.

7.5 Status Conversion

There are two automatic options for status conversion in the SAP stan-
dard. Both options use SAP-specific IDocs, ALEAUD and SYSTAT. The ALE-
AUD IDoc assigns the status values 39, 40, or 41, in accordance with the
recipient’s status, while the SYSTAT IDoc can assign any new status with
its own failure or success text. Chapter 5, Confirmations, describes the
functionality of both of these IDocs in detail. It's also possible to set
IDocs that still contain errors to a status that prevents them from any fur-
ther processing, in both inbound and outbound processing. This status
also allows the affected IDocs to be archived. The corresponding status
is 31 in outbound processing and 68 in inbound processing. Note that
consistency is guaranteed on a system-wide basis only if the actions that
should have been executed by the IDoc are executed in some other way
(either by another IDoc that doesn't contain the error, or manually).

Setting the status values to mean Error, no further processing is done in
the error workflow using the Delete Flag button (see Figure 7.15).

The status change itself is made after a security prompt and for only one
IDoc at a time. There is no facility in the SAP standard for making mass
changes to status values, nor is there likely to be such a facility. The next
section contains a sample program for making mass changes.

230

Status Conversion | 7.5

@ | Display Status Record
][Process | Detste ag | [14] [«][] [W] [1Dc Dispiay |

iDot number] 6000008008768840]

Direction 1 = Outbound

Status 02| Emor passing data to port

Message A :Cwld not find code page for receiving system

. BT

Figure 715 Setting the Delete Flag in the Workflow

Sample Program for Mass Changes

If you have the problem, particularly in test systems, that a large number ~ Mass changes
of IDocs cannot be posted, you can set all of these IDocs to an archiv-

able status at one time. Note, however, you must ensure that this is done

using the original SAP tools and that the associated error workflow has

been closed.

Because the program can also be used to set another status, it may be
necessary to trigger an error workflow. This program represents a major
intervention into the SAP system, so you should add a lot of high-qual-
ity comments to the code and secure it with a high level of authoriza-
tion checks. Our sample program (see Listing 7.1) uses a status text that
shows which user made the status change.

Notes on the Code

This code is intended as an example only and doesn't contain authorization
checks. Also carefully consider whether you really want to make every status
change shown in this example. One alternative would be to change to sta-
tuses 37 and 68 only. In particular, note that resetting a successful IDoc to
a status that permits further processing can lead to duplicate postings and
inconsistencies.

The program itself was programmed using the new ABAP List Viewer Selection fields
(ALV). This has the advantage that the display dynpro and the GUI status

don't have to be created, which makes it much easier for you to work

with this example. Figure 7.16 shows which selection fields you can use.

Here, as before, it's of course up to you whether you incorporate addi-

tional requirements.

231

7 | Administration

ZSMIDOCSTATUS

oo D|

alole]e

E
E
E
E

oalo

£l

Figure 746 Initial Dynpro of the Sample Program

Selection list The input from Figure 7.16 is used to list all of the possible IDocs (see
Figure 7.17). You can limit the IDocs by placing checkmarks in the appro-
priate selection column. Then, without a button, when every action is
executed, the list of selected IDocs is converted. You can also apply spe-
cial controls to this conversion — using a button, for example. In gen-
eral, this can be done with both the old and the new ALV.

Status Conversion | 7.5

Selected IDocs
1Doc number|S |Panno. [P |R |MessageType |Ms |Ms [T|Status messageiD | |status ten
768745 |03 memadl_s MATMAS
TEOTAE |56 | ISMI LS| [MATMAS
768747 |68 |Z5M2 5] [maTmas
768748 |53 |Z5M2 LE| [MATMAS
768749 |68 [Z5M2 LS| [maTmas
TE8750 |66 |Z5M2 5| [MATMAS
768751 |68 [Z5M2 LS| |MATMAS
768752 |68 |Z5M2 LS| [maTmas
THETSI |53 | T8M2 LS| |MATMAS
768754 |37 |ZoM2 LS| [maTmas
766755 |37 |Z6M2 L8| [MATMAS
TEATSE |37 |Z5M LS| [MATMAS
768757 |03 |Z8M2 5] [maTMas
768756 |53 |Z6M2 LS| [MATMAS
768759 |12 |Z5M2 5[[maTmaS
TE4T6D |53 |Z5M2 L5| [MATMAS
TGETE1 |51 |BALES LS| [MATMAS
768762 (51 [SALES |LS| |MATMAS
768763 (64 [SALES |LS| |MATMAS
768764 [53[SALES |LS[|[MATMAS
768765 |03 [TSOCLNTOSOLS | |MATMAS

Figure 747 Results of the |Doc Search

The list shown in Figure 7.18 shows the results. In our example, all of Results list
the IDocs were converted successfully.

—
MATMAS lIDOC 000DD0DONDTEETE] Mew S3atus faf ID0C was 52l

THETEZ |51

|IDGC D0GO000GD0T BETH Nt E20uS B D0 Wik S81

THETES |64

IDGC D0CDDD0ON0TESETET Nevw S3atus S ID0C was 58

THETEA |53

IDOC D00DD00M00TBATES Mevw S2atus S ID0C wird S8

768764 03

THHTER |53

IDGC D0CI000000TESTES New S3atus fr 1D0C was 591
IDGC 0000D00M00TEETEE Mevw Saatus S ID0C was S8l

THATET |03
TEBTER (03

TEETT |12

100G 0000000007 BETET Hiew Exaus for ID0C was el
IDGC D0COD00ODDTEETER New Siatus Sar D0 was 58
IDOC 0000D00M0DTEETT1 Méw S2atus Sor IDAC wid 581

|

TRETT2 |03 | maThAS IDGC D0CO000000TBETT 1 New Siatus & ID0c was 52
TEATT4 |03 [MATWAS IIDOC DOGDOND00TBETT4 Hew Stahus for ID0c was el
TERTTE 03 MATMAS IDGC DOCI000000TEST T New Exatus fr 1D0C was 591
TEETTA 12 MATMAS DO DIDODN0M007BETT3 New Stahus for ID0c was sel
THGTTS 12 WATMAS IGGE DOGOOODG00T BT TS Hew Status for ID0c was Sl
TEBTE |03 MATMAS DG D0GOD00G007BETE1 New Sians for IDac was ¢l
THETEZ |03 [ATMAS IDOG DOODOOD00TBETHZ Hew Stahus for Do was 56l
TEETEI |03 |maThnE IDGC D0CH000000TBSTEI New S5atus fn 1D0C was 591
TEETES |13 [ATWAS DO DODO0ND00T BETE4 New S1ahus for ID0c was 56l
ToaTEs |03 MATMAS |IDGC 00GO000C00T BETHE Hew Etatus for ID0c was 361
TERTEN |03 MATMAS IDGC D00AD00000TESTAD New Exahs B D0 was 581
THETED |03 [ATMAS (GG DOGD00DG00T BETH0 ew S2anus far ID0e was S61
TEETH |03 |maThAS ID0C 00CO000000TGSTE1 New S1a0us for 100 was 56
THETEZ |03 [MATMAS (DG DOGDONDM00TBETEE Hew Stahus for IDoc was el

LR

Figure 748 Results List After Status Value Conversion

233

7 | Administration

Converted |Doc

Message class

In Transaction BD87, if the basic view is open, you can see the generic
error text with placeholders (see Figure 7.19).

[A] ZSmi000) - IDo: Status was changed from & to &
IDoe Status was changed fiom MAISELSA to 68

Figure 719 Message Text in the Basic List

In the individual view of an IDoc, you can see exactly who made the
conversion (see Figure 7.20).

Stal mgl !E' StatusTeaxt Parner Mo, Bllkﬂuﬂ Extension
63 |MATMAS |I:mc Slatus was changed from MASELSA 1o 68 Z5M2 AT MASDZ
8 |MATMAS [\Dac Status was changed from MAIBELBA T 68 |ZSMZ MATMASDZ
B0 |MATMAS |IDoc Status was changed fom MAIGELSA0 68 |SALES | MATMASDS ZEMMARA
8 |MATMAS (D0 Status was changed from MAISELSA D68 | SALES MATMASDS MMARA,
68 |MATMAS IDoc Status was changed from MAISELSAID 68 |SALES MATMASDS ZSMMARA

Figure 7.20 Maessage Text in the IDoc Individual View

For the example program used here, a message class with the most
important messages has to be set up. Figure 7.21 shows the text used
for this purpose.

Message Maintenance: Change Messages

| [0 Jiboc Status was changed froa & to &

Figure 7.21 Message Class of the Sample Program

Listing 7.1 contains the basic code required for the examples described
in this chapter. Again, note that only the code that is relevant to IDocs is

234

Status Conversion | 7-5

given here, and the code shouldn't be used in unmodified form; authoriza-
tion checks, for example, should be added. Also, the program contains text
elements that you'll have to add, such as text-b01 for one of the blocks
on the selection screen. Where these don't appear on the selection screen,
they are indicated in the code in each case — for example, “1Doc could
not be locked' (001) — and so no further screenshots are used here.

w& ___ *
*& Report ZSMIDOCSTATUS
*& ___ *

REPORT ZSMIDOCSTATUS .
INCLUDE <icon> .
TABLES: edidc .

TABLES:
edids, tbd05
DATA: wa_tbdb2 TYPE thd52
DATA: wa_edp?l TYPE edp?2l
DATA: partner TYPE edidc-sndprn,
nrlines TYPE sy-tabix .
Data: alv TYPE REF TO cl_salv_table .

DATA: Tr_selections TYPE REF TO cl_salv_selections
DATA: i_Selected_rows type salv_t_row .

DATA: wa_row type line of salv_t_row .

Data: exc TYPE REF TO cx_root .

DATA: msg TYPE string

Types: BEGIN OF r_edidc, Type definitions

docnum LIKE edidec-docnum,
status LIKE edidc-status,
sndprn LIKE edidc-sndprn,
sndprt LIKE edidc-sndprt,
sndpfc LIKE edidc-sndpfc,
mestyp LIKE edidc-mestyp,
mescod LIKE edidc-mescod,
mesfct LIKE edidc-mesfct,
test LIKE edidc-test,
stamid LIKE edids-stamid,
stamno LIKE edids-stamno,
statxt LIKE edids-statxt,
msg(807),

icon(4),

box(1),

END OF r_edidc .

235

7 | Administration

Selection screen
structure

DATA: i_edidc type table of r_edidc
data: wa_edidc type r_edidc .
DATA: idoc_status LIKE bdidocstat OCCURS 0 WITH HEADER LINE .
DATA: c_event_object_type_idocappl LIKE
swetypecou-objtype VALUE *IDOCAPPL®
DATA: c_event_err_process_completed
LIKE swetypecou-event VALUE "ERRORPROCESSCOMPLETD’
CONSTANTS: c_wf_result_delete_idoc LIKE bdwf_param-result
VALUE *99998",
c_wf_result_wi_complete LIKE bdwf_param-result
VALUE *9949497"
Data: g_repid LIKE sy-repid,
g_save(l) TYPE ¢ VALUE *A",
g_variant LIKE disvariant .

DATA:
$idoc_ges{6) TYPE n,
$idoc_oki{g) TYPE n,

$idoc_fehler{&) TYPE n .
* Select IDocs to be modified with pre-selection
SELECTION-SCREEN BEGIN OF BLOCK 01 WITH FRAME TITLE text-b01
SELECT-OPTIONS: docnum FOR edidc-docnum .
SELECTION-SCREEN SKIP 1
SELECT-OPTIONS: credat FOR edidc-credat DEFAULT sy-datum TO sy-
datum .
SELECT-OPTIONS: cretim FOR edidc-cretim DEFAULT *000000° TO
*235959°
SELECT-OPTIONS: mestyp FOR edidc-mestyp .
SELECT-OPTIONS: mescod FOR edidc-mescod .
SELECT-0OPTIONS: mesfct FOR edidc-mesfct .
SELECT-OPTIONS: direct FOR edidc-direct .
SELECT-OPTIONS: sndpor FOR tbd05-sndsystem .
SELECT-OPTIONS: sndprt FOR edidc-sndprt .
SELECT-OPTIONS: sndprn FOR edidc-sndprn .
SELECT-OPTIONS: sndpfc FOR edidc-sndpfc .
SELECT-OPTIONS: rcvprt FOR edidc-rovprt .
SELECT-0OPTIONS: rcvprn FOR edidc-rcvprn .
SELECT-OPTIONS: rcvpfc FOR edidc-rocvpfc .
SELECT-OPTIONS: status FOR edidc-status DEFAULT *68°
SELECTION-SCREEN END OF BLOCK 01 .
SELECTION-SCREEN BEGIN OF BLOCK 02 WITH FRAME TITLE text-b02 .
SELECT-OPTIONS:
s_stamid FOR edids-stamid,
s_stamno FOR edids-stamno .

236

Status Conversion | 7.5

SELECTION-SCREEN END OF BLOCK 02 .
SELECTION-SCREEN SKIP 1
PARAMETERS: newstat LIKE edidc-status DEFAULT "68°
START-0OF-SELECTION .
SELECT: docnum status sndprn sndprt sndpfc mestyp mescod Data selection
mesfct test
INTO corresponding fields of table i_edidc
FROM edidc WHERE docnum IN docnum AMND
upddat IN credat AND
updtim IN cretim AND
mestyp IN mestyp AND
mescod IN mescod AND
mesfect IN mesfct AND
sndpor IN sndpor AND
sndprt IN sndprt AND
sndprn IN sndprn AND
sndpfc IN sndpfc AND
direct IN direct AND
recvprt [N direct AND
rcvpfe IN direct AND
rcvprn IN direct AND
status IN status

PERFORM get_edids
END-OF-SELECTION .
PERFORM aly .

FORM status_change .
i_selected_rows = LR_Selections->GET_SELECTED_ROWS() . Change status
loop at i_selected_rows into wa_row .
read table i_edidc into wa_edidc index wa_row .

* 1DOC processing

CALL FUNCTION “ENQUEUE_ES_EDIDOCE® Set lock
EXPORTING
mode_edide = 'E’
mandt = sy-mandt
docnum = wa_edidc-docnum
EXCEPTIONS
foreign_lock =1
system_failure = 2
OTHERS =3 .

237

7 | Administration

IF sy-subrc <> 0

CONCATENATE *IDOCT(003) wa_edidc-docnum
"I0oc could not be Tocked®
INTO wa_edidc-msg SEPARATED BY space .
wa_edidc-icon = icon_failure .

ELSE .
CLEAR: idoc_status

REFRESH: idoc_status .

MOVE wa_edidc-docnum
MOVE newstat

MOVE *5°

MOVE “Z5M°

MOVE “000°

MOVE sy-uname

MOVE newstat

MOVE sy-uname

MOVE sy-repid

APPEND idoc_status

TO
T0
TO
TO
TO
TO
TO
TO
TO

idoc_status-
idoc_status-
idoc_status-
idoc_status-
idoc_status-
idoc_status-
idoc_status-
idoc_status-
idoc_status-

(001)

docnum .
status
msgty
msgid .
msgno .
msgyl
msgw?
uname .
repid

CALL FUNCTION *IDOC_STATUS_WRITE_TO_DATABASE®

EXPORTING
idoc_number

TABLES
idoc_status

EXCEPTIONS

idoc_foreign_lock =
idoc_not_found

idoc_status_records_empty
idoc_status_invalid

db_error

IF sy-subrc EQ O

o L ha e

wa_edidc-docnum

idoc_status

CONCATENATE *IDOC'(003) wa_edidc-docnum
*New status set for IDoc'(002)
INTO wa_edidc-msg SEPARATED BY space .

wa_edidc-icon = icon_checked

ELSE .

CONCATENATE “IDOC*(003) wa_edidc-docnum
*Status conversion error”(004)
INTO wa_edidc-msg SEPARATED BY space .
wa_edidc-icon = icon_failure .
MODIFY i_edidc from wa_edidc index wa_row .

CONTINUE .
ENDIF .

238

Status Conversion | 7.5

CASE newstat
WHEN *68°
* JDoc was set to a status that does not permit further
* processing; therefore, trigger event that ends the
* error workflow.
SELECT SINGLE * FROM edp2l INTO wa_edp2l
WHERE sndprn = wa_edidc-sndprn
AND sndprt = wa_edidc-sndprt
AND sndpfc = wa_edidc-sndpfc
AND mestyp = wa_edidc-mestyp
AND mescod = wa_edidc-mescod
AND mesfct = wa_edidc-mesfct
AND test = wa_edidc-test .
[F sy-subrc <> 0
CONCATENATE *I1DOCT(003) wa_edidc-docnum
‘for'(005) *message’(008) edidc-sndprn
edidc-sndprt edidc-sndpfc edidc-mestyp
‘no entry found in EDPZ21.°(00&)
INTO wa_edidc-msg SEPARATED BY space .

ELSE .
SELECT SINGLE * FROM tbd52 INTO wa_thd52
WHERE evcode = wa_edp2l-evcode .
I[F sy-subrc <> 0
CONCATENATE *IDOC'(003) wa_edidc-docnum “for"(005)
‘process code’(009) wa_edp2l-evcode
‘no entry found in TBDSZ. (007)
INTO wa_edidc-msg SEPARATED BY space .
ELSE
PERFORM start_event(saplbd20) USING wa_edidc-docnum Start workflows,
wa_tbd52-event_end wa_tbd52-idocobjtyp if required
c_wi_result_delete_idoc
COMMIT WORK .
PERFORM start_event{saplbd20) USING wa_edidc-docnum
wa_thbd52-event_end wa_tbd52-idocobjtyp
c_wf_result_wi_complete .
COMMIT WORK .
ENDIF .
ENDIF .
WHEN *31° . End workflow
PERFORM event_for_task_end_create(saplbdlé)
USING wa_edidc-docnum .
COMMIT WORK .
WHEN OTHERS .

239

7 | Administration

ENDCASE .
CALL FUNCTION ‘*DEQUEVE_ES_EDIDOCE®
EXPORTING
mode_edide = *E”
mandt sy-mandt
docnum wa_edidc-docnum .

ENDIF .
MODIFY i_edidc from wa_edidc index wa_row .
ENDLOOP .
IF sy-subrc = 0 .
* Entries were selected and processed
CLEAR: $idoc_ok, $idoc_error .
LOOP AT i_edidc TRANSPORTING MO FIELDS
WHERE icon = icon_checked .
ADD 1 TO $idoc_ok .
ENDLOOP .
LOOP AT i_edidc TRANSPORTING NO FIELDS
WHERE icon = icon_failure .
ADD 1 TO $idoc_error .
ENDLOOP .
ENDIF .
ENDFORM .

FORM get_edids .
DATA: h_str(150),
it_edids TYPE TABLE OF edids,
wa_edids LIKE edids .
CHECK MNOT s_stamno IS INITIAL .
LOOP AT i_edidc into wa_edidc .
REFRESH it_edids .
Get status values SELECT * FROM edids APPENDING TABLE it_edids
WHERE docnum = wa_edidc-docnum
AND status = wa_edidc-status
AND stamid IN s_stamid
AND stamno IN s_stamno .
IF sy-subrc NE O
DELETE i_edidc
CONTINUE .
ENDIF .
SORT it_edids BY docnum
logdat DESCENDING

240

Status Conversion | 7.5

Togtim DESCENDING
countr DESCENDING .
DELETE ADJACENT DUPLICATES FROM it_edids
COMPARING docnum .

READ TABLE it_edids INDEX 1 INTO wa_edids . Set texts
wa_edidc-stamid = wa_edids-stamid .
wa_edidc-stamno = wa_edids-stamno .
h_str wa_edids-statxt .

REPLACE "&" WITH wa_edids-stapal INTO h_str .
CONDENSE h_str .

REPLACE *&" WITH wa_edids-stapaZ INTO h_str
CONDENSE h_str .

REPLACE "&" WITH wa_edids-stapald INTO h_str .
CONDENSE h_str .

REPLACE “&" WITH wa_edids-stapad INTD h_str .
CONMDENSE h_str .

wa_edidc-statxt = h_str .

MODIFY i_edidec from wa_edidc

ENDLOOP .
ENDFORM .
K o oo * Title ALV
* Title ALV
K o e e e e e e e e m e e m e e e e e = = = = m = e e m o m m m m m = = m m m m m e m m m m mm *

FORM title USING title TYPE Tvc_title .
DATA settings TYPE REF TO cl_salv_display_settings
settings = alv->get_display_settings()
settings->set_list_header{ titel)

ENDFORM .

e o oseeseese s s s s .S .. .-= E e EEEEEEEESSSSSS®®&& * AL‘V sel E.,ction
* ALV selection options options

Wa oo s s m ;e s . e m R e R e E O E E O E O m mommw W

FORM set_selections USING p_alv TYPE REF TO cl_salv_table .
* get the SELECTIONS object
Ir_selections = p_alv->get_selections()
* set the selection mode
Tr_selections-»set_selection_mode(
value = if_salv_c_selection_mode=>cell)

ENDFORM “ set_selections

o e e e e e e e e e e e = *

* ALV output

H o e e e e e e e e e e e e e e e e m m m e m m m m e m e . m m m m m = = = = m m m = o = *

FORM alv . Get ALY reference
TRY

241

7

Administration

cl_salv_table=>factoryl

IMPORTING

r_salv_table = alv
CHANGING

t_table = i_edidc)

CATCH cx_salv_msg INTO exc .

msg = exc-rget_text()

MESSAGE msg TYPE A"
ENDTRY
PERFORM title USING *Selected IDocs’
perform set_selections USING alv
alv->display()
perform status_change .
alv->display()

ENDFORM .

Listing 71 Status Conversion of Selected |Docs

7.6 Summary

This chapter gave you an overview of administrative tasks that are
related to IDocs. Depending on the structure of your company, some of
this work might be done by a special department, but you should know
which work has to be done. We've also included some hints for daily
work and error handling.

242

This chapter provides some tips on using SAP NetWeaver Process
Integration to send or receive IDocs.

8 IDocs in Conjunction with SAP
NetWeaver Process Integration

Communication in SAP NetWeaver Process Integration (SAP NetWeaver
PI) using IDocs is implemented via the IDoc adapter. The requirement
in the creation of the IDoc adapter in SAP NetWeaver PI was that no
difference may arise for the backend systems if they communicate with
SAP NetWeaver PI instead of with another backend system. For IDoc
developers, this means that actually nothing needs to be done — nice,
right? But it's important to know what happens in SAP NetWeaver PI so
this rule can be followed.

As you've learned in the course of this book, IDocs work with logical
systems or with partner roles. In SAP NetWeaver PI, you work with
business systems that approximately have the same meaning. One dif-
ference, however, is that while partners and logical systems are limited
to 10 characters, business systems can have a length of 256 characters.
In SAP NetWeaver PI, a conversion from the logical system to the busi-
ness system and vice versa occurs. The following sections describe the
conversion options.

81 Conversion of Logical Systems
to Business Systems

In the SNDPOR field of the control record of an IDoc, SAP systems always
send the combination of SAP<S10>, for example, SAPJ00 for an SAP sys-
tem that is called JOO. In the MANDT field, you then have the client from
which the IDoc was generated.

243

Business systems
in SAP NetWeaver
Pl

"SMDPOR" field in
SAP systems

8 IDocs in Conjunction with SAP NetWeaver Process Integration

5LD

Reference to the
logical system

Parties in SAP
NetWeaver P|

Partner conversion

In the SLD (System Landscape Directory) of SAP NetWeaver PI, you initially
register the SAP systems as a technical system with their system ID, or
they are created manually. All available clients are known then, and the
logical system name from the client management is adopted or main-
tained for all clients.

When you create a business system, you then reference exactly one
client so that the logical system name is automatically determined for
each business system. If an IDoc is received, you use the system ID
from SNDPOR to determine the SAP system and the client to determine
the business system. This client is then used as the sender for further
processing.

The SNDPRN field for the name of the logical system, which also exists
in the sending system, isn't considered. If the sending system isn't an
SAP system, the value is read from the SNDPOR field, too. In this case, a
name that matches SNDPOR is searched among the logical system names
that are assigned to the business systems, and then the associated busi-
ness system is used.

This means that non-SAP partners must possibly prepare your IDocs
differently if they are processed via SAP NetWeaver PL. If the sending is
directly to an SAP system, the SNDPRN field would be relevant. Ideally,
your partner sends the same name in both fields. For IDocs that leave
SAP NetWeaver PI, the SNDPRN field is populated according to the part-
ner's requirements.

8.2 Conversion of IDoc Partner Roles

If you don't communicate with a logical system but with a party outside
your enterprise, for example, with a customer or a vendor, the sender
and receiver data in the IDoc is also converted into the parties of SAP
NetWeaver PI. This is done using the Party object that is available there
(see Figure 8.1).

The agency is specified as http://sap.com/xi/XI for the actual name in
SAP NetWeaver PI. For EDI conversions it's specified with the values
“016" and "009" and can be selected as such. For other values, you can

244

http://sap.com/xi/XI

Header Mapping | 8.3

assign the agency itself. If an IDoc is received, the value for the scheme
is ALE#<partner type>ffpartner rolel.

& Edit Party Status In Process
Party [Satine

Cescription |

|Agency |Scheme * | Mame *

[http Hisap.comxina HIParty Sabine

oog [GLN 012345678901

|018 DUNS 123456789

|ALE ALEFLS LOGSYS

|EDI HLEELIZLF WENDORNUM

Figure 814 Parties in SAP NetWeaver P

So for a logical system as the sender, "ALE#LS" is specified in the Scheme
field because no partner roles are known there, and the Name field
includes the logical system name. If you have a vendor in the role of the
vendor, "ALE#LI#LF" is entered in the Scheme field, and the SAP vendor
number from Transaction WE20 is in the Name field. SAP NetWeaver PI
then converts it into the SAP NetWeaver Pl-specific partner number, in
this case, “SABINE."

8.3 Header Mapping

In the outbound processing, the IDoc adapter requires a communication ~ Communication
channel, which is called a receiver communication channel. The naming is channel

from the business system perspective and not from the SAP NetWeaver

PI perspective with regard to the directions. The communication chan-

nel knows how it can reach the receiver of the IDoc. A receiver agree-

ment specifies which communication channel is supposed to be used for

which message type.

In the receiver agreement, you now have the option to have the system Receiver
perfﬂrm a header mapping. For this purpose, a value from SAP NetWeaver agreement
PI is specified for the sender or receiver components or for partner or
communication components. In this examplﬁ (see Figure 8.2), this was

converted for the two communication components. SAP NetWeaver PI

245

8 IDocs in Conjunction with SAP NetWeaver Process Integration

xPath

Control record in
mapping

then searches the appropriate logical system instead of the actual sender
or receiver and writes it to the control record of the IDoc.

Header Mapping

[sender Comrmunication Party [:FT|
Sender Communication Component |Infegration_Server) IﬂT]
[] Receiver Communication Party Ij|‘|
[#] Receiver Communication Component | Training -

Figure B.2 Header Mapping in the Receiver Agreement

When you click on Advanced during editing, instead of a predefined
sender from the SLD, you can specify an xPath that points to a specific
field in the payload. Then, you must also specify in the associated com-
munication channel how this field is supposed to be sent. The syntax
corresponds to the party definition. Figure 8.3 shows an example.

E Edit Commumication Channel Status In Process
Communication Channel ||HD¢_HB¢BWBF
Party |

Communication Component i'l'raining

Description |

|dentiflers

Sender _)

Agency ALE 1 Schema ALE#LS |
Recemer

Agency ALE | Scthema IALE#LS |

Figure 8.3 Suitable |dentifiers in the xPath Variant

8.4 Handling the Control Record
in SAP NetWeaver PI

In SAP NetWeaver PI, you can process the control record in the map-
ping yourself or have it created by SAP NetWeaver PI. In mapping, you
can label the corresponding node as irrelevant for mapping (see Figure
8.4).

246

Handling the Control Record in SAP NetWeaver Pl | 8.4

Even if the corresponding node is a mandatory segment or contains Deactivating nodes
mandatory fields, the mapping can now be activated without having in the mapping
implemented an assignment. The crossed-through node is displayed in

green so that it's apparent that everything is okay here.

fy IDoc: ORDERS.ORDERS0S
raf i [2] 3] MaliwH 2] 6]
Structure Qccumences |T‘rpa
= [@]ORDERS0S 1.1
= [@lDoC 1.1 ORDERS.ORDERS0S
B BEGIN required xsdistring
[WJEDI_DC40 1.1 EDI_DC40.0RDERS ORDERENS
£ [@]E1EDKDT 1.1 ORDERSOS E1EDKDM
b [&]E1EDK14 0.12 /ORDERS05 E1EDK1 4
b [&lE1EDKD3 /ORDERE05.E1EDKDI
» [&lE1EDKDA 0.10 ORDERE05 E1EDKD4
¥ [£]E1EDKDS 0.16 /ORDERES05 E1EDKDS
b [&lE1EDKA1 0.99 JORDERS05.E1EDKAL
v [&lE1EDKOZ 0.10 |ORDERS05.E1EDKNZ
v [&lE1EDKIT 0.4 ORDERSDS.E1EDK T
b [€lE1EDKIS 0.3 /ORDERS05E1EDKI8
¢ [€lE1EDKIS 0..99994 |ORDERS05 E1EDK3S
v [LE1EDKIE 0.949 ORDERE0S E1EDK3E
¢ [£lE1EDKTY 0,99 /ORDERS05 E1EDKT1
v [@lE1EDPD 0..999999 /ORDERE05.E1EDPD
b [@lE1CUCFG 0.99999 |[ORDERSOSEICUCFG
» [&lE1EDLIT 0999993 /ORDERS05E1EDL3T R
b [lE1EDSD 0.5 JORDERS05.E1EDSM

Figure 8.4 |gnoring the Control Record in the Mapping

You can also make some settings in the receiver communication channel Settings in
(see Figure 8.5). For example, if you want to use the IDoc serialization ~ the IDoc
via qRFC, which has not been available until SAP NetWeaver 6.40, you :::L";:r cation
can set the Queue Processing flag. The target system then calls the 100C_
INBOUND_IN_QUEUE function module instead of the 1DOC_INBOUND_ASYN-

CHRONOUS function module.

[] Queue Processing

[] Apply Control Record Values from Payload

[] Take Sender fram Payload

[] Take Receiver from Pavioad

[[] Restore Original Parties for Acknowladgrments

Figure 8.5 |Doc Receiver Communication Channel

247

8 IDocs in Conjunction with SAP NetWeaver Process Integration

Control record
from payload

SAP NetWeaver P|
as the actual
I1Doc receiver

You set the Apply Control Record Values from Payload flag if you popu-
late the control record in mapping yourself. If you don't populate the
control record in mapping at all (as in the previous example with the
crossed-through control record), this flag must never be set. However, if
you want to use parts of the payload to determine the party, you must
set this flag, and the control record must be populated accordingly in
mapping.

Instead of a conversion of the senders and receivers, you can take them
directly from payload if the corresponding flags are set. Of course, this
saves time because the conversion of an IDoc into XML is time-consum-
ing. Finally, you can also restore the original parties for sending acknowl-
edgments instead of converting them in SAP NetWeaver PI.

8.5 Updating IDocs Directly in SAP NetWeaver PI

If you want to send an IDoc directly to SAP NetWeaver PI and if it's sup-
posed to be updated in the local database, that is, if SAP NetWeaver PI is
the actual data receiver and doesn't just assume the typical mediator role,
you can use the 10x100CINE table. All IDocs that are entered in this table
are updated by SAP NetWeaver PI itself instead of forwarding them.

You can insert IDocs using the 10X_SELECT_IDOCTYP_WITHOUT_IS report.
You can remove already-entered IDocs using 1DX_DELETE_IDOCTYP_
WITHOUT_IS,

8.6 Summary

This chapter has described what you have to consider when you use
IDocs in SAP NetWeaver PI, and which settings facilitate your work.
Having IDoc interfaces already in all SAP Releases as well as the structure
of IDocs where control information is part of the message itself lead to
some special IDoc functionality inside of SAP NetWeaver PI.

248

The Author

Sabine Maisel has worked as an SAP consultant
since 1996, having gained her initial SAP R/3 expe-
rience as an employee of a beta customer of SAP.
She also holds training courses for SAP in Switzer-
land and Germany on all aspects of SAP NetWeaver
interface technologies and the SAP Basis. In addi-
tion, Sabine has undertaken development work for
the AFS (Apparel and Footwear Solution) industry
solution and support work for customer projects.
Her specializations are interface technologies, SAP NetWeaver PI/XI,
ABAP development, and warehouse management.

249

Index

A BAPFI, 18, 47
release, 19
ABAF List Viewer — ALV, 134 BAPI_IDOC_INPUT1, 47
Acknowledgment, 187 BAPI_IDOC_INPUTF, 47
Agency, 244 BAPIRETM, 174
Agent assignment, 184 BAPIRETS, 174
ALE, 15 BAPI_TRANSACTION_COMMIT, 19
business process, 15, 18 BAPI_TRANSACTION_ROLLBACK, 19
communication layer, 35 BAPP, 47
Customizing — SALE, 31 Basic type, 126
scenario, 15, 18 BD10, 40
service, 45, 73, 84, 134 BD40, 195
ALEOOOO1T, 119 BD41, 196
ALEAUD, 187, 230 BD42, 197
ALE interface BD43, 197
for BAFI, 173 BD44, 194
for function modules, 174 BD51, 168
ALE_MODEL_DETERMINE_IF_TO_ BD52, 32
SEND, 155 BD53, 38, 40
ALE PROCESSING, 50 BD54, 25
ALEREQO1, 42 BD55, 84
ALE_SERIAL_KEY2CHANNEL, 200 BD5e, 77
ALV, 231 BDS57, 198, 199
ANSI ASC X12, 27 BDS5S, 89
API (Application Programming BD59, 74
Interface), 18 BD6&0O, 34, 36, 69, 70, 135, 151
Application, 43 BD&4, 26, 41, 67
Application acknowledgment, 187 BD&5, 37
Application Link Enabling — ALE, 15 BDé66, 34
Application record, 21 BD&S, 72
Archiving object, 225 BD79, 81
Asynchronous interface, 17 BD87 — IDoc-Monitor, 24
a_t_complex_matnr, 135 BD95, 73, 198
BD97, 48
BD100;BD97a, 202, 204
B BD101;BD97b, 202
BD102;BD97¢, 204
BAdI, 91 BD103;BD97d, 205
classic, 103 BD104;BD97e, 200
implementing class, 113 BD105;BDI71{, 200
interface, 91, 113 BDA4, 176
new, 110 BDBG, 24, 47,173, 174

251

Index

BDCF, 36

BDCP2, 36
BDCP_BEFORE_WRITE, 121
BDCPS, 36

BDFG, 174

BDSER, 198

BFO1, 100

BFOS, 100

Binding, 181

BOMMAT, 200

BOR, 18, 168

Breakpoint, 110

BTE, 90

BUS1001006, 168

Business Add-In — BAdI, 91
Business Application Programming
Interface — BAPI, 18

Business Object Repository — BOR, 18
Business object type, 18
Business-related error, 20

Business system, 243

Business transaction event — BTE, 90
Business workflow, 18

C

CALL CUSTOMER-FUNCTION, 93
C file, 23
Change document, 30
CHANGEDOCUMENT_CLOSE, 30
CHANGEDOCUMENT_OFPEN, 30
Change pointer, 31

activate generally, 32

for message type, 32

Sfor reduced message types, 40
CHANGE_POINTERS_CREATE, 31
CHANGE_POINTERS_CREATE_LONG,
31
Channel number, 200
CIMTYP, 93
CLoz2, 72
Class, 71
Classic BAdI, 103
Classification, 69, 72
CL_EXITHANDLER, 103

252

CMOD, 94
COMMIT, 92
Communication channel, 245
Company code, cross-system, 85
CONDENSE, 153, 157
Condition technique, 43
Conversion exirt, 83
CONVERSION_EXIT_ALPHA_ OUTPUT,
83
Conversion routine, 83
Cross-system business area, 85
Cross-system company code, 85
Customer
distribution model, 26, 67
management object, 101
project, 95
segment, 122
Customer exit, 20, 93

D

Data channel registry, 204
Data Dictionary — DDIC, 124
Data record, 21
Data Source, 228
Date field, 153
DDIC, 124
Debugging, 55
Decimal number, 153
Description

semantic, 16

technical, 16
Dialog call, 48
Distribution class type, 70
Document number, 198
DTD (Document Type Description), 23

EDI, 26

EDIFACT, 22, 27, 144
EDI_PROCESSING, 44, 50

EDIS, 65, 175

Electronic Data Interchange — EDI, 26

Enhancement, 91, 95, 107

check, 129
dynamic, 118
explicit, 107
implement, 108
implementation, 111
implicit, 115
partner profile, 131
point, 107

project, 90

release, 128
section, 107, 108

spot, 91, 107, 108, 110

static, T18
technology, 67
type, 125

EQIO (Equally Once In Order), 205

Error
business-related, 20
status, 167
technical, 20

Error workflow, 175, 176
connection, 167

Exit, 90

EXIT_SAPLBD11_001, 119
Extensible Markup Language — XML,

23
Extension, 126

F

Index

G

GDPdU, 224

General method call, 48

General rule, 83

General task, 181, 184

Generate control record, 158

German Principles on Data Access and
the Examination of Digital Documents,
224

GET*BADI, 110

GMP (Good Manufacturing Practice),
224

Header mapping, 245

Header record, 21

Header table, 141

HTML (Hypertext Markup Language),
23

HTTP (Hypertext Transfer Protocol), 23

Fetch IDoc, 41

FIBF, 101

FIDCMT, 89

File, 23

FILE, 140

File port, 56, 138
Filter group, 68

Filter object, 67, 68, 73

Floating point number, 153

Function module

evaluation of change pointers, 34
file name generation, 138

for queue names, 206
test, 55

IDoc, 18

adapter, 243

administrator, 184

monitor, 24, 160, 168

request, 41

status file, 62

suppress, 68, 76

tracking, 24

type, 22
IDOCAFPL, 176
IDOCBOMMAT, 200
IDOC_DATE_TIME_GET, 24
IDOC_INBOUND_ASYNCHRONOUS, 23
IDOC_INBOUND_IN_QUEUE, 205
IDOC_INPUT_MATMASOT, 133
IDOC_REDUCTION_FIELD_REDUCE,
156
IDOCREL, 211, 212
IDOC_SERIALIZATION_CHECK, 199

253

Index

IDOC_SERIAL_POST, 199
IDX_DELETE_IDOCTYP_WITHOUT_IS,
248
IDXIDOCING, 248
IDX_SELECT_IDOCTYP_WITHOUT_IS,
248
Importing parameter unique, 165
Inbound interface, 15
Info structure, 227
Initial, 153
INPUTERROROCCURRED, 179
inputFinished, 178, 181
INPUTFOREGROUND, 179
Interface

asynchronous, 17

synchronous, 16
Intermediate Document = [Doc, 18
1SO code, 144, 153
Item table, 141

K

KEY, 33

L

Link, 211
Logical message, 151
Logical system (LS), 25

M

Mandatory field, 37

Mandatory segment, 127, 148

Master data, 29
MASTERIDOC_CREATE_MATMAS, 93,
107

MASTERIDOC_CREATE_SMD_
MATMAS, 135
MASTER_IDOC_DISTRIBUTE, 159
MATFET, 26, 41

MATMAS, 22, 26

254

mbdconwf, 162
Message
code, 44
control, 29, 43
determination, 44
Sfunction, 44
Message type, 22, 151
reduced, 37
Meta information, 22
Method call, 48
MGV00001, 95
MGVO0100, 100
Modification, 90
MOVE, 81

N

NACE, 43

Naming rule, 148
customer object, 47
own object, 39

New BAdI, 110

NO_DATA character, 30

o)

O1CL, 70
Object channel serialization, 200, 201
Object Key, 214
Object services, 214
OBJTYPE, 212
OPEN_FI_PERFORM _
KXXXXNXN_E;OPEN_FI_PERFORM_
XOOOOOE, 99
ORDCHG, 22, 198
ORDERS, 22
Organizational management, 184
Outbound interface, 15
Outbound partner profile, 44
Output

type, 43
OYEA, 184

P

Partner, 26
inbound profile, 24
outbound profile, 24
profile, 45, 79
role, 43, 145
Party, 244
PFTC_INS, 178
Pl — SAP NetWeaver PI, 187
Port management, 138
Process code, 168
BAPI, 174
BAPF, 174
Processing layer, 63
Process Integration — SAF NetWeaver
PL, 187
Process interface, 91
Proposal for rule, 81
Proxy interface, 16
F/S interface, 91
Publish&Subscribe — P/S interface, 91

Q

qRFC, 205
Qualifier, 144, 145
Quality of Service, 205
Queue, 209

Queued RFC — gqRFC, 205

R

REDMIDOC, 35
RBDSERD1, 194, 195
RBDSERDZ, 196
RBDSERDZ, 197
REDSERO4, 197
REDSRCLE, 199
RDBSTATE, 188
Receiver, 26

Receiver communication channel, 245,

247
Reduced message type, 37
Release security, 15, 19

Remote Function Call — REFC, 16
Request, 16
Request IDocs, 41
Response, 16
RFC, 16
quened — gRFC, 205
synchronous — sRFC, 19
transactional — tRFC, 19
RFM (RFC-e¢nabled function module),
18
ROLEID, 212
ROLLBACK, 92
Root segment, 78, 79
RSEOQOUTOO, 59, 196
RSNASTOO, 44, 58
RSRLDREL, 215
Rule, 67, 80
general, 83

S

SALE, 25, 31
Sample file, 56
SAP_ALE_EDIQUEUE, 206
SAP_IDOC_001, 227
SAP NetWeaver PI, 205, 243
agency, 244
header mapping, 245
partner, 26
party, 244
SARA, 225
SARI, 228
SBWF, 183
SE11, 124
SE18, 103
SE19, 103, 110
SEB0, 111
SE84, 91
Segment
definition, 124
filter, 76
qualifying, 145
release, 125
type, 23, 124
version, 84
Sender, 26

255

Index

Index

Sender field
convert, 83
copy, 82
SERDAT, 197
SERIAL, 198, 203
Serialization, 193
husiness objects, 200
flag, 202
group, 193, 194
timestamp, 198

Shared Master Data Tool — SMD, 29

Signature, 154
inbound function module, 162
5LD, 244
5M59, 102
SMD, 29
SNDFOR, 243
SNDFRN, 244
SOAF, 16
Special method call, 48
sRFC, 19
SRRELROLES, 211
Standard inbound processing, 54
standard interface, 15
Standard outbound processing, 57
Standard task, 178
Status 42<normal>, 57
Status 53<normal>, 188
Status 66, 204
Status 68<normal>, 188
Status 74<normal>, 61
STATUS IDoc, 62, 120
Status record, 21
Success status, 167
SWoO1, 176
Synchronous interface, 16
Synchronous RFC — sRFC, 19
SYSTAT, 62, 230

System Landscape Directory — SLD, 244

System name, logical, 25
System, technical, 244

T

Task, general, 181, 184
Technical error, 20

256

Technical system, 244
Templates, 45
Test
flag, 54
Sfunction module, 55
transaction, 51
Time, 153
Transactional RFC — tRFC, 19
Transaction data, 29
Transaction security, 17
TRANSID, 212
Transmission medium &, 43, 44
Transmission medium A, 43, 50
Transport [Doc, 23
tRFC, 19

U

UN/EDIFACT — EDIFACT, 22
Unicode, 56

UNIT_OF_MEASURE_ISO_TO_SAF, 165
UNIT_OF_MEASURE_SAP_TO_I50, 157

Update technique, 12

\

Version conversion, 84, 119
View, 77

w

WEOD2, 228
WE14, 58
WE16, 60
WE17, 65
WE1E, 63
WE19, 52, 65
WEZ20, 24, 50, 119, 194
WE21, 138
WE24, 45
WE27, 45
WE30, 126, 148
WE31, 124
WE32, 78

WE41, 44
WE42, 169
WE47, 63, 224
WESS, 139
WES7, 133, 168
WEeD, 150
WEe2, 81
WES&1, 151
WESB2, 136, 151
WEBSS, 205
WEDI, 51

WEINBQUEUE, 208
WENOLINKS, 214
WEOUTQUEUE, 206
WMTORD, 46

X

XML, 23
xPath, 246

257

Index

	1
	2

	www:
	sap-press:
	com: www.sap-press.com

