
~ PRESS
SAP PRESS is issued by

Bernhard Hochlehnert, SAP AG
Brian McKellar, Thomas Jung

SAP PRESS is a joint initiative of SAP and Galilee Press. The know-how offe­

red by SAP specialists combined with the expertise of the publishing house Advanced
Galileo Press offers the reader expert books in the field. SAP PRESS features BSP Programmingfirst-hand information and expert advice, and provides useful skills for pro­

fessional decision-making.

SAP PRESS offers a variety of books on technical and business related topics

for the SAP user. For further information, please visit our website:

www.sap-press.com.

Horst Keller

The Official ABAP Reference

2-volume set with 3 CDs

2nd Ed. 2005,1216 pp., ISBN 1-59229-039-6

Horst Keller

The ABAP Quick Reference

Instant access to keywords, additions,

syntax diagrams and more

2005,231 pp., ISBN 1-59229-057-4

Ulli Hoffmann

Web Dynpro for ABAP

2006, approx. 450 pp., ISBN 1-59229-078-7

Harald Roser

Workshop SAP Controls

SAP PRESS Essentials 10

2006, approx. 160 pp., ISBN 1-59229-073-6

•

~ PRESS

r
;f
~~

Contents

Introduction

Target Audience.

On What Releases Can You Use BSP? .

BSPvs. Web Dynpro ABAP

Acknowledgements .. .

1 . What is BSP?

1.1 Internet Communication Manager ..

1.2 Internet Communication Framework .

1.3 BSP Development Environment . ..

1.4 HTMLB Rendering Family ..

1.5 BSP Compiler

1.6 BSP Runtime

1.7 BSP Debugger .. .

1.8 MIME Repository ..

1.9 Summary

2 HTTP and HTML

2.1 Viewing the HTIP Traffic. .. .

2.2 Structure of HTIP

2.2.1 The HTTP Request Status Line .. .
2.2.2 HTTP Request Headers .. .
2.2.3 HTTP Header/Body Separator .. .
2.2.4 HTTP Request Body. . .
2.2.5 The HTIP Response Status Line . ..
2.2.6 HTTP Response Headers .. .
2.2.7 HTTP Response Body. .. .

2.3 Server Objects for HTIP Request and Response ..

2.4 HTML Forms and Data Handling. . .

2.5 Mapping of HTML onto HTIP Requests .

2.5.1 Input Fields .
2.5.2 Checkboxes, Radio Buttons and Dropdown List Boxes
2.5.3 File Upload and Download

15

15

16

16

17

21

21

24

25

26

27

28

29

30

30

31

32

32

35

35

37

37

37

38

39

39

41

46

46

48

49

Contents 5

110

113

157

159

161

165

115

133

151

Implementing a Simple Logon Application .

De-Authentication ..

Session Management

Using asp Applications in SAP GUI

Session Identification 115

Session Timeout 118

6.2.1 Catching and Handling a Session Timeout 119
6.2.2 Session Timeout in Browser 120

Confusion with Processing Timeout .. 121

Catching and Handling a Restart after Timeout 123

Session Management from the Browser 125

Warning the User of a Pending Timeout . 128

Summary .. 131

Performance Measurements

Using a BSP Application in a Dynpro 133

Pitfalls when Using BSPApplications with SAP GUI 136

7.2.1 Communication Path 136
7.2.2 The Second Authentication 137
7.2.3 The Second Session 138
7.2.4 Window Open Behavior 139
7.2.5 Effects of SAP's New Visual Design 141
7.2.6 Loading HTML Pages Directly 142

Interaction between SAP GUI and BSPApplications 144

7.3.1 BSP Application Event to SAPGUI 144
7.3.2 SAP GUI Event to BSP Application 147

Starting a New Browser Outside the SAP GUI 149

Test Applications 152

Quick Sizing with HTIP Trace Tool.................. 153

Network Latency............ .. 154

Server Processing Time 155

Browser Rendering Time.

Determining Hotspots

Load Testing

SQL Traces ..

7.1

7.2

5.6

5.7

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6

7

7.3

8

7.4

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

67

68

69

71
72

74

77

78

54

58

59

62

62
63
63
65

83

83
84
85

89

90
91
91

92

93

95

67

83

98

102

105

108

109

97

URL Escaping .

URL Mangling .

4.1.1 WhatisURLMangling? .
4.1.2 How is URL Mangling Done? .
4.1.3 Attempting to Hide the URLMangling .

Fully Qualified Domain Names . .

4.2.1 Motivation for FQDN .
4.2.2 ICM Configuration .
4.2.3 Browser Requirements .

Namespace Mapping . .

URL Parameters ..

URL Handling in the ICF Tree . .

URL Mapping.......................... . .

Sample Handler for Reading Images .

3.3.1 URL Syntax . .
3.3.2 Handler Coding . ,. .

Alias Handling. . .

Handler Example-Table Query .

3.5.1 Table Query Handler Implementation .

HTTP Handler

Cookies , .

URLs in asp

HTIP Redirects .

Handling of HTML Resources in HTIP

Troubleshooting Examples .

2.9.1 Missing Resource .
2.9.2 Non-Secure Warnings : .
2.9.3 Relative URLsThat Become Invalid .
2.9.4 Estimating Performance . .

Basic Authentication .

Single Sign-On.

Digital Certificates .

Anonymous Services .

Form-Based Authentication

Authentication

3

2.6

2.7

2.8

2.9

4

3.1

3.2

3.3

3.4

3.5

5

4.2

4.3

4.4

4.5

4.1

5.1

5.2

5.3

5.4

5.5

I
6 Contents Contents 7

11 Creating your own BSP Extension Element 227

BSP Element Expressions and Iterators 205

BSP Element Expressions 205

10.1.1 WhatisaBEE? 205
10.1.2 N=1, Using Any BSP Element as BEE 206
10.1.3 HTMLBEE.. .. 209
10.1.4 Table BEE .. 211
10.1.5 XML BEE .. 212
10.1.6 Errors and Error Handling 215

Table View Iterators. .. 215

10.2.1 What is a Table View iterator? .. 217
10.2.2 Method GET_COLUMN_DEFINITIONS 218
10.2.3 Method RENDER ROW_START 220
10.2.4 Method RENDER_CELL_START 222
10.2.5 Finished Output 225

167
237
238

239

239
240
243
243

244

245
245
246
247
249
250

253Additional BSP Extensions

Business Text Framework ..

BSP Library......................... . ..

12.3.1 findAndReplace Element
12.3.2 htmlbEvent Element
12.3.3 Portal Integration ..

.. 253

12.1.1 SAP Example .. 253
12.1.2 BTF Functionality.......... . 254
12.1.3 Database Storage 255
12.1.4 BSP Extension Element 256
12.1.5 BTF Editor in the Page Layout .. 257
12.1.6 Preparing the BTF Document 258
12.1.7 Retrieving BTF Content on Input. .. 258

Internet Graphics Service 260

12.2.1 IGS Setup and Administration 260
12.2.2 SAP Examples. .. 261
12.2.3 iGS BSP Extension . 261
12.2.4 Chart Data. 262
12.2.5 Chart Model Classes 264
12.2.6 IGS Customizing 266
12.2.7 image Click Event Handling 267
12.2.8 image Conversion 268

... 2~
.............. 2~

........................ 269
270

11.2.3 Writing the Composite BSP Element .
11.2.4 Handling of Inner Data BSP Elements .

A Deeper Look at BSP Extensions Events ..

11.3.1 Introduction to BSP Extension Events .
11.3.2 Rendering Events .. .
11.3.3 Handling Incoming Events .
11.3.4 Rendering an Event via the <bsp:htmibEvent> Element ..,

Event Handling in Composite Elements .

11.4.1 Extending the Design of the Composite Element ..
11.4.2 Using the Composite Element
11.4.3 Use of IDs
11.4.4 Integrating into the HTMLB Manager .
11.4.5 Data-Handling .. .
11.4.6 Event-Handling ..

11.3

12

12.1

12.3

11.4

12.2

167

168
168
169
172
172
174

180

180
181

186

187
192
194
196
197
200

Extension Overview ..

BSP Extensions

9.1.1 Extension Technology ..
9.1.2 Using BSP Extensions ,................ .. .
9.1.3 Finding Details about the Extensions .
9.1.4 Available Extensions ..
9.1.5 Extensions Designs .. .
9.1.6 High Level Elements .

HTMLB Event System

9.2.1 Event Dispatching ;......
9.2.2 Manually Handling Events

Common Extension Elements

9.3.1 <htmlb:tableView> . ..
9.3.2 chtmlb.tree» .
9.3.3 <phtmlb:matrix>
9.3.4 <xhtmlb:protectDoubleSubmit> ..
9.3.5 <phtmlb:containerTabStrip> .
9.3.6 <phtmlb:formLayout> .

9.3

10.2

9.2

10

9.1

9

10.1

11.1 Creating a BSP Extension Element 227

11.1.1 Extension Framework Hierarchy..... 227
11.1.2 User-Defined Validation 22B
11.1.3 Element Content. .. 230

11.2 Writing a Composite Element. .. 231

11.2.1 Designing a New Composite Element 231
11.2.2 Processing Other BSP Elements. .. 233

13

13.1

13.2

MVC-Model View Controller

MVC Design Paradigm.

Application Structure.

13.2.1 Model ..
13.2.2 Controller .
13.2.3 View

275

275

275

276
277
2B3

I
R Contents Contents 9

13.3 Model Binding .. 284 15.5 Translation. 349

13.3.1 Getter/Setter methods ... 286 1.5.5.1 mR 350

15.5.2 Field Labels and Quick Info 351
13.4 Dynamic Model Binding ... 288

15.6 Date Format 352
13.5 Stateless MVC ... 291

13.5.1 XML Serialization of ABAP Objects ... 291

13.5.2 Server Cookie Storage of the XML Stream 292

16 Document Handling in BSP 355
13.5.3 Controller Modifications to Support Serialized Models 293

13.6 BUilding a Pattern Engine with MVC ... 295

16.1 MIME Repository. 355
13.6.1 The Final ESS Application 297

13.6.2 Writing the ESS Application .. 298 16.2 ICM File Handler .. 357

13.6.3 Writing the Pattern Engine ... 301
 16.3 Handling Non-HTML Documents ... 358

16.3.1 Test Program 359

16.3.2 Display Document Inline ... 361
14 Help Systems 307
 16.3.3 Display Document Inside HTML Page 363

16.3.4 Display Document in New Window 366

14.1 F1-Field Level Help ... 307
 16.4 Data Manipulation .. 366

14.1.1 The Help UI .. 307
 16.5 Microsoft Excel Download ... 367

14.1.2 Implementing the BSP Extension Element 311

16.5.1 Excel Files ... 368
14.1.3 BSP Element Properties .. 311

16.5.2 Excel Unicode Text File .. 369
14.1.4 BSP Element Attributes ... 312

16.5.3 Unicode Formats and Endlanswith Excel 369
14.1.5 Element Handler Class .. 312

16.5.4 Conversion to Binary String ... 370
14.1.6 BSP F1 Help Controller Method-DO_REQUEST 318

16.5.5 Addition of the Byte Order Mark .. 371
14.1.7 Implementing the BSP F1 Help Application-Model 318

16.6 Pushing the Excel Content back through the browser 371
14.2 Dialog Windows .. 319

16.6.1 Push Using the Current RESPONSE Object 371

14.3 F4-Value Help ... 322

16.6.2 Push Using a Cached Response 372

14.3.1 Value Help Requirements ... 322

16.7 BSP Extension Element for Excel Download .. 374
14.3.2 The Solution ... 323

14.3.3 The New BSP Element .. 324 16.7.1 The Download Element User Interface 374

14.3.4 Input Help Controller ... 325 16.7.2 The Element Properties and Attributes 375

14.3.5 Input Help View .. 326 16.7.3 Compile Time and Runtime Checks ... 376

14.3.6 Input Help Model .. 329 16.7.4 Rendering Logic ... 377

16.7.5 Trapping Events ... 379

16.7.6 Calling the Element from a Page Layout .. 380

15 Internationalization 337 16.7.7 Event Handler ... 381

16.7.8 Get Structure Definition 385

16.7.9 Process Excel Download .. 386

15.1 Multiple Language Support ... 337

16.8 Alternatives to the MIME Repository ... 389

15.2 Logon Language 338

16.8.1 ICM File Handler.,.. 389

15.3 Unicode ... 341
 16.8.2 SAP Content and Cache Server 390

15.3.1 What is Unicode? .. 341
 16.9 ZIP Tool. ... 3~

15.3.2 Unicode in BSP .. 343

15.4 Online Text Repository (OTR) 346

15.4.1 Types of OTR: Alias and Long 347 17 Customization 395

15.4.2 Working with OTR from ABAP Code .. 348

15.4.3 Special Note about using OTR 349

17.1 Customization Overview. 395

17.2 Export-Modify-Import 395

17.3 NetWeaver Theme Editor ... 397

10 Contents Contents 11

17.4 ALFS-ABAP Look-and-Feel Service 398 .,
 19.3 Mini-Portal.......................... 458

17.41 ALFSTool Scope ... 399 ,f
 19.3.1 Mini-Portal Example 1-Common Page Header 458

17.4.2 What is ALFS? ... 399
 19.3.2 Mini-Portal Example 2- Portal with Navigation 460

17.4.3 How Does Customization Normally Work? 401
 19.3.3 Portal within the SAP GUI ... , 464

17.4.4 A New Theme from Five Colors 401
 19.3.4 Current Weather Display..... 466

17.4.5 Integration into Web AS .. 402

17.4.6 The Source Code: Making It Work .. 404

17.4.7 ALFSTheme Editor in Detail .. 405
 20 Closing 471

17.5 Configure a Theme Root .. 406

17.6 Theme Root White List ... 406

17.7 Error Pages .. 408 A Appendix-BSP Utility Classes 473

17.7.1 Historical SSP Error Pages ... 408

17.7.2 Error Pages-New Approach ... 409

B The Authors 483
17.8 Logon Application 412

Index
18 Skilled in the Art 417 485

18.1 Field History .. 417

18.1.1 Working with <phtmlb:comboBox> .. 417

18.1.2 Processing the Field History ... 419

18.2 Server-Side Printing ... 422

18.2.1 PRINT Method Interface 423

18.2.2 PRINT Method Coding 424

18.2.3 Printer Dialog .. 426

18.3 Select-Options/Parameters .. 429

18.3.1 UI Design ... 430

18.3.2 Solution Structure .. 431

18.3.3 Select-Option Controller Class Attributes 432

18.3 .4 Select-Option Controller Class Coding 432

18.3.5 Select-Option Model Class Attributes ... 434

18.3.6 Select-Option Model Class Coding 436

18.3.7 Recreating Transaction SE16 442

19 Breal<ing Out of the Mold 449

19.1 Interactive Excel... 449

19.2 RSS Feeds ... 451

19.2.1 Consuming an RSS Feed ... 451

19.2.2 HTTP Client .. 452

19.2.3 XML 453

19.2.4 SSP Output ... 454

19.2.5 XSLT 456

19.2.6 Creati ng an RSS Feed 457

r"ntpnte;

Contents 1

-~;- t)'t!'.'-" --'<3 '-i'jiB ~.-\ ~....«SM-A-?'·*#-+\

Introduction

The history of BSP began in the late 1990s. Back then, the SAP Internet Transac­

tion Server (ITS) and the SAP Workplace-SAP's first attempt at a porta/­

depended heavily on the use of external Web servers. These solutions neither lev­

eraged the inherent strengths of the ABAP technology nor re-used current devel­

opers' skill sets.

Therein lay the greatest technical challenge to SAP as Web-based technologies

became essential to all businesses. Companies began to realize that E-business

was still just business and therefore expected their ERP solutions to transition eas­

ily into this brave new world.

Starting with Release 6.10, SAP began a major overhaul of its ABAP technology

stack. The company broke the traditional Basis layer away from the applications

that ran on it and renamed this new technology layer Web Application Server
(Web AS). But this name change was far more than a marketing move. With this

release, SAP had begun to build native Web server technology into the ABAP I<er­

nel. No longer would SAP technology be dependent upon external Web servers

or programming languages. ABAP itself was now HTIP-enabled!

Naturally, ABAP was extended with a new Web development environment,

called Business ServerPages (BSP). Like all other ABAP programming tools, BSP is

integrated into the ABAP Workbench (SE80) and fully supports the Transport

Management System (TMS). And, given its recent birth, BSP also fully embraces

the new ABAP object-oriented technology.

Target Audience

The target audience for this book is anyone who is currently an ABAP developer

or who is interested in becoming an ABAP developer. BSP is another tool in the

developer's tool box, one that adds value to any ABAP development team.

It does not matter if you have never done BSP development, are a novice BSP

developer, or have several years of BSP development under your belt; there

should be something for everyone in this book. We attempted to make this the

definitive work on the subject of BSP, revealing behind-the-scenes aspects and

discussing features in a new way.

This book is not based solely on the underlying technology. Several years of expe­

rience building real-world BSP applications at a customer site were also used in

writing this book. Therefore, you will find solutions and sample source code to

,~ Introduction 15
I

help you overcome common development hurdles. Toward that goal, you will

find all the example source code presented in this book on the accompanying CD.

On What Releases Can You Use BSP?

BSP has been shipped as an integrated 'part of the ABAP technology stack since

Web AS Release 6.10. Release 6.10 contains the functionality to create basic BSP

pages with flow logic.

With Web AS Release 6.20, SAP introduced major enhancements to the BSP

technology: Model View Controller and BSP Extension Elements. With Release

6.20, Service Pack 34, a new HTML rendering engine, and a complete new BSP

Extension library, PHTMLB, were added. Because of these additional enhance­

ments to BSP, customer development should really only be done on Web AS 6.20

with SP34 or higher.

SAP continued to enhance BSP with SAP NetWeaver '04 (Web AS 6.40) and SAP

NetWeaver '04S (Web AS 7.0); however, nearly every feature of BSP is in sync

between the major releases. This means that even if you are on an older Web AS

6.20, you still reap the benefits of new developments within the NetWeaver

releases. Although you will rarely find in this book that a feature is limited to a

specific release, we will point this out when it occurs.

With the coverage for BSP within the latest technology releases of ABAP, you will

find BSP present in the equivalent releases of the SAP application components as

well. This means, for instance, that R/3 Enterprise (with or without Extension Set

1.10 and 2.00) and mySAP ERP 2005 (also known as Enterprise Core Component

5.00 or ECC 5.00) both contain the technology necessary to create BSP applica­

tions.

BSP vs. Web Dynpro ABAP

In the past year, much of the attention within the SAPworld has focused on SAP's

next generation technology: Web Dynpro. As this book goes to print, Web Dyn­

pro for ABAP is scheduled for general availability in spring of 2006.

In truth, Web Dynpro contains many of the enhancements that BSP developers

have always wanted. Enhancements like built-in value-help and select options

will become standard in Web Dynpro, but must be added by the customer into

the BSP environment. Do not worry, however: The task of adding many of these

enhancements to BSP is the subject of the last one-third of this book.

All this begs the question: If Web Dynpro ABAP (WDA) is so great, why continue

to use BSP (or for that matter why write a book about it?). There are several archi­

lf-~'""'.-I,j+-i....,.n

tectural differences between BSP and WDA. WDA may have some more

advanced features compared to BSP, but it is a far more restrictive framework.

First of all, WDA is stateful only. BSP supports both stateful and stateless pro­

gramming models. Stateless programming is essential to high-performance Inter­
net-facing applications.

WDA is also designed to be future-proof, obscuring the specific client's rendering

technology. As a consequence, the tool does not allow low-level access to include

your own custom HTML,)avaScript, or other controls. WDA targets the browser

today, but tomorrow it might well be running within a smart client using entirely

different technologies (such as XML and native UI controls). To keep this technol­

ogy switch possible, the rendering logic is completely hidden from the developer,

presenting only an abstract UI layer with abstract controls. On the other hand,

BSP has no such restrictions. BSP is strictly centered on browser-based deploy­

ment and therefore allows an extreme level of custom rendering. This makes BSP

a perfect platform for applications that require pixel-perfect layout or specialized
UI elements.

The other aspect to consider is that Web Dynpro ABAP will not be available until

NetWeaver '04S. Therefore, you must upgrade your existing system to be able to

use these new development tools BSP, on the other hand, has been available for

several years and is included in the vast majority of supported SAP product

releases. For several more years, BSP may be your only choice for Web develop­
ment using the ABAP language.

Aclmowledgements

First, we would like to thank the SAP Developer Network (SDN) content team,

particularly Mark Finnern and Craig Cmehil, for not only providing a great service

in the form of SDN, but also making sure that BSP has its comfortable little home
there.

This book itself has deep roots within SDN. In fact, it is doubtful that it would

exist at all if were not for SDN. Several sections of the book have their roots as

SDN weblogs. The two authors of this book (who to this day have never met in

person or even spoken on the phone) would likely never have crossed paths were

it not for the virtual community that is SDN.

For their support, guidance and suggestions, Thomas would like to thank co­

workers and friends: Chris Cassidy, Sam Mason, Lynn Scheu, and Sandy Smith. A

special thanks goes to Steffen I<noeller, who behind the scenes has influenced

many chapters in this book, without even knowing it!

Ark-nrHI\II,::.,-juo::>m,::.nt<

Brian would wish to thank the complete team that made BSP happen. There is

Albert Becker, who showed a team can work across many groups, and who taught

the lesson late one night that VPs still know how to debug ABAP code. There are

the ICM colleagues, Oliver Luik and Bernhard Braun, who measured performance

in CPU cycles and give a new appreciation for "blazing fast." Not to be forgotten

are their partners in crime, the ICF colleagues: Masoud Aghadavoodi, Christoph

Hofmann, and Daniel Walz, who has helped many hours so that we could write

our first Web-based logon application. Then there are the men in black, the secu­

rity group: Wolfgang Janzen and Martin Rex. The last import group required to

start the project was the ABAP Language Group: Andreas Blumenthal, who fights

like a lion for anything with ABAP stamped on it and who did a lot for BSP (even

although it was not called ABAP Server Pages l) ; Holger Janz, who taught me the

elegance of ABAP programming; Jurgen Lehmann and Peter Januschke, who

taught me the complexities of compiler writing in ABAP and that it is actually

quiet easy; Klaus Ziegler and I<ay Mueller-Silva, who integrated JavaScript, Ulrich

Elsaesser, who always used a short pencil for the pre-compiler; and the x-team,

Karsten Bohlmann (XSLT) and Rupert Hieble (XML).

In building BSP itself, the Workbench needed minor tweaking, plus some hard

development by: Sigrun Wintzheimer, Michael Wenz, Margarethe Czarnecki,

Andreas Herrmann, and, of course, Jurgen Remmel. The runtime was done by our

small group: Rudiger I<retschmer, who had the idea (and together with a col­

league wrote the first ABAP book, and always knows the answers to everything or

knows someone that knows); Bjorn Goerke who hacked the runtime years ago;

Regina Breuer who did MVC; Jutta Bindewald, and Arndt Rosenthal.

And then there is Steffen I<noeller, who shared my office for years and taught me

HTML. Quality management was done by Michael Lottbrem, who rolled the first

sneak preview out the door, Judith Rabetge, and Rainer Liebisch. Heidi von Gei­

sau and Tina Haug wrote all documentation. Our first support steps were handled

by Dongyan Zhao. Not to be forgotten is our extended support troop: Artem

Gratchev, Vitaly Romanko, Yulia I<uznetsova, Dmitry Vladimirov, and Andrey Ali­

mov. They not only taught me two words in Russian, but they also showed each

and every time that the trickiest problems are theirs to solve' Finally, a good

product required a few good salesmen: Axel I<urka (who passed away unexpect­

edly and before his time; we will remember him fondly) and Dirk Feeken, who

came up with the BSP name over lunch'

Brian can only say: It is still a great team:

For his guidance and patience, we wish to thank our publisher from Galileo Press,

Florian Zimniak. Although we broke every rule and deadline he gave us, he stuck

.. R Introduction

with us till the end. We also thank John Parker of SAP PRESS America for his edi­

torial skills and for also putting up with our rule-breaking nature.

Finally we must thank our families who put up with us through this experience.

Without the support of our wives, Shari and Anja, we would never have pulled it
through.

Acknowledgements 191

1 What is SSP?

This chapter gives an overview of BSp, showing both the design and

runtime aspects. Infrastructure such as the MIME repository, debug­

ging and logging are touched on, to show BSP as a complete Web­

authoring environment.

Whenever one is asked "What is BSP?", the best answer is usually "a plain white
sheet of paper, ready to be drawn on." At the most abstract level, BSP provides
both a complete development environment in which Web pages can be written
and the runtime to serve these pages on request to a browser. BSP does not place

any constrains on what can be rendered with a BSP page.

However, at a technical level, BSP can be split into a number of different compo­
nents, all of which are closely integrated. This chapter provides an overview ofthe
major components, which together can be called BSP. In all cases, an abstract
view will be given to help you better visualize how each component works within

the Web AS.

1.1 Internet Communication Manager

The Internet Communication Manager (ICM) is responsible for handling all
aspects of the HTIP communications between all browsers and the Web AS. The
ICM is completely implemented inside the Web AS kernel, and always runs as a
separate process, to be able to handle the high overhead involved in establishing
and managing TCP/IP connections. Figure 1.1 provides a graphical overview.

When the user enters a URL in the browser that points to the Web AS, the
browser will first open a TCP/IP connection to the Web AS. The ICM will accept
the incoming TCP/IP connection and then will wait until the complete HTIP
request has been received from the browser before dispatching it to the next layer
for processing. After processing within the ABAP stack, an HTIP response is avail­
able for transmission to the browser. The HTIP requests and responses are trans­
ferred between the ICM (running in a separate process) and the ABAP stack using

shared memory pipes.

The ICM rarely, if ever, examines the incoming HTIP request. Not even authenti­
cation information is extracted from the HTIP request. All of this processing is

done within the ABAP stack.

What is SSP? 21

BSP Applications I HTMLB Rendering Library I

Business Server Pages Runtime
MIME
Repository

Internet Communication Framework (ICF)

Internet Communication Manager (ICF)
~

Figure 1.1 Siock Diagram of SSP and Other Relevant Components

Whereas the rCM runs as one process for all HTIP requests, within ASAP different
sessions are executed in their own "processes," The most important decision that
ICM must make is into which session a HTIP request is placed. Either it can be an
existing session, or the ICM can open a new session for the specific HTIP request.
Whether the session is switched to stateful, to also handle future requests for the
same application, is decided by the upper layers within the ASAPstack, which are

also responsible for setting a session identifier in the HTIP response. Session iden­
tification is done by ICM, but the application at the upper level carries the

responsibility for associating a session with a specific browser instance. This can
be done either by setting a cookie that contains the session ID, or to encode the

session ID into the URL.

To improve performance, the ICM is capable of opening many connections in par­
allel. In addition, the browser normally uses at least two connections for loading
Web pages from the server. For some requests, loading images for example, it is
not critical whether the requests are processed in parallel in different ASAP ses­
sions. However, once multiple HTIP requests are received for the same session, as

happens when a complete frameset is loaded, the ICM will queue the HTIP
requests that all must be processed in the same session. It is not deterministic in
which sequence requests are processed. However, it is guaranteed that the

requests will be serialized for each session and that only one request will be pro­

cessed at any time within a specific ASAPsession.

The last important aspect of the [CM layer is that it supports a cache, into which
frequently requested resources can be placed. The decision to cache a specific
HTIP response is done by the upper layers. Once the flags are set, ICMwill asso­
ciate the URL from the HTIP request with the results from the HTIP response.
This information is placed into the cache. All subsequent HTIP requests for the

same URL are answered directly from the cache and do not even enter the ASAP
stack. This infrastructure is frequently used to cache all non-volatile objects usu­
ally associated with a Web page, for example cascading style sheet files, JavaScript
files, and images,

@ . ' G] 1QI 0m ····j':'" list Edit Goto Aorrurustranon Settings System Help ·,:~.;;:c~.'J' ',,'

'e. (~~~,'~"~":~ ·•. .-:.·~~[(©l-.i·-.~~@~~~iJ~~®~T~-~~)1i ;;;~~~i
..' I~. M...Monit~r~. .• ' .•.... ..m'.. ."""
J~[g]@@!]lR.el.eas.eNotesli·tlilJ[jJJJ~l!J k'f$,1~ i~J~I~~[§]ll~U~.1!~

,jl

. ····G
ICI1 Status Running cca G

Restart After Error true

Trace Level (G· 3) : 1

Created Worker Threads 10 I 12 I 20 (Current I Peak I 11aximum)

Connections Used: 4 I 17 I 500 (Current I Peak I Naximum)

Queue Entri es Used o I 4 I 500 (Current I Peak I Maximum)

~:·:::~=~=~~lirejiCIP:::::::]J::T:~~:~~~~~:::·.:::.::':=-=E'tQ~jiXS-.e&R~q~§'~C::::~
0, .2.·15 3.804 Available I

'0 356 3.725 Available

o 4]7 3,694 Available .
o),~;j8 3.867 Available B

__~.__~~_~~.,...:;l-;Cli
'"' --- ! ----.- I .- I .•" I//-~s Ii

Figure 1.2 Transaction SMICM

The operation of ICM is controlled via transaction SMICM (see Figure 1.2). This

transaction gives a complete overview of all facets of ICM. For developers, the

following aspects are particularly interesting:

~ Overview of available ports and the associated protocols (HTIPIHTIPS).

~ Activating HTIP tracing and reviewing the trace file.

~ An overview of the HTIP log, which shows all HTIP requests for the specific

Web AS server. This is also off interest to review for unusual HTIP traffic, or to
see unexpected HTIP requests (for example a broken link resulting in a "Not
Found" message each time).

~ An overview of the rCM cache and the possibility to clear the server cache.

This high-level overview of the ICM has only highlighted those aspects that are
important for a BSP developer. In essence, ICM accepts HTIP requests, places
them into the ASAP stack (the correct session) and will return a HTIP response
afterwards. The question now is: What happens within the ASAP stack?

Internet Communication Manager 2322 What is SSP?

1.2 Internet Communication Frameworl<

The Internet Communication Framework (ICF) handles access control, authenti ­

cation, and dispatching of incoming HTIP requests. In addition, the ICF starts and

controls the debugging of HTIP requests. The operations of the ICF layer is con­

trolled by transaction SICF (see Figure-1.3).

@ [;;][Q)0~ .•.\'
ServicelHost Edit Go10 Client System Help . - ~_\y{;£-;,-<':"::""

rit~~::~~~~==~~~rQ;T~~~:~~Wf~I-~~§:~'i~:~?:ff:;;;; ..·~
Maintain service jl
.. . ',..,,_. . :-._ _~.]
I. c:,,~~~~s.t'~~Nic:I[jZI@J§2I~l~~[§~J~ .. ~y~t,,~.!~"!":o~.'n:~~"J11iJ.:!-
~![OO]I~ Ell!
(Virtuel Hostsf Services IDocumentation Eli:
xti~7~oSL........... !'I1F3T.LJ~.[l~fA.UL:r.~()ST··I'; ~
; ;.

v R<i,sapJSAPNAMESPft.CE; SAPIS OBII f·..~* ~~:~f .. -....... -'---"-';:~:~~V:~~~~~:~CESAVN~ ~
I
v iGi; bc . BASIS TREE (BASIS FUNCTIC I

.. . £.~L~~~~ -----..---- --:'~==:ElQSINESS'SE1<vrnp:AGES~._ IiI " i§ili sap NAMESPACE S.AP G Ii.'I ~ abapcalc EIi;
GJI>l[I,.'. '.~ ..g•....: ... ·;:;.·:.'JGJ0 [

L L> IBBB(l) 000 ~ Ius0049 IINiLi]/iii Ii
I,....... ~.

Figure 1.3 Transaction SICF

As a basis for its work, the ICF maintains a tree of URL segments, which looks very

similar to a directory structure on disk. For each incoming HTIP request, the

requested URL is split into segments. Each segment is then matched against a

node in the tree. In effect, the segments are used to navigate the tree.

The first check done by ICF is to ensure that all nodes traversed are active. SAP

only ships the complete ICF tree in an inactive state, and customers are advised to

activate only those parts of the tree that will be used productively. This is just a

first line of defence for enabling only required ICF nodes. All inactive nodes will

cause a HTIP answer of" Not Active" to the browser, preventing the specific HTIP

handler from even being started. If the incoming URL can not be matched with a

tree traversal, ICF will answer with" Not Found."

After a valid path has been followed through the ICF tree, an authentication step

is performed. Authentication information is either read from the incoming

request, or can be configured for a specific ICF node. If no authentication infor­

mation is available, the HTIP request is answered with "Unauthorized," in order

IAIh"t ic R<;P7

to trigger the browser to bring up a small popup asking for the user's name and
password.

After the authentication step is completed successfully, all handlers that were

found traversing the tree are processed in sequence, starting at the handlers for

the root node and moving down to the handlers for the leaf node. Each handler

is started and given the HTIP request to process. Should the handler not process

the HTIP request, the request is passed to the next handler. For SSP, the HTIP

handler is installed on the SSP root node along the path / sap/bc/bsp. ICF han­
dlers are discussed in detail in Chapter 3.

1-3 BSP Development Environment

A SSP application is essentially a collection of SSP pages (or controllers). The

application itself is only a logical object for collecting the pages, and setting some

global attributes. There is no true functionality tied to the SSP application, with

the exception of an application class that is made available to all SSP pages.

The SSP development environment is completely integrated into the ASAP Work­

bench (transaction SE80). In the navigation tree, all SSP pages, controllers, views,

and MIME objects are displayed. On the right side, it is possible to edit the SSP
pages (see Figure 1.4).

~.'~~.'.-:-p. p•..a.~._..eJ.~;;'~ ..g".iron~~: n~~x",te-", !:'''.I..P.'•...~ ~ "'·.·~·l.~..:.;..· ...•... t'.. ~o.t~._~~ilities .•.E ,,"_. ..~.'7'.[Q)."~ Wt..•.. ...•..;.:..••.•."~ C in, <l1fJ) j e 0 @ I Q rnJ ["31 ~'1V.J ['lID .)~:.~~.:>.

~i3:~;~~;~:r.;I~~ijj;,;E~~;,~~~'D;~11.j..·.

I~ . R.
"" MIME Repository Page .• . . basic abap.hlm.. . .8 I

llil"oRe
p

oSilOryBrowser, .. Pi;pe.rti.·'es.. . ' ··EVe..•.n.l. H.aridJeFl'~~.. ·". 1.

,.,.

§.APPlikatlon ~ '\C' _ =. <. .r., 1;1 :_;. 1,
litoO i I"""J Ii'd IJI.PJ 10T!?l roor;m m@l I

I fr,@ page 1anguageoo"abap" %' ~1 i4-linl";>I,jlll \'71 fl.11 [#lJ!tl~iIW]I[~
I

<%8 include ft1e="head_abaphtm" %> •• ['
Tht s page checks basic ABAP scnpting i : f:

ObjectName 1. except for control directives. . 1..'....'1;.....
v 61Pages With FlowLogic G II

D " I <p> . ,..-.,
!> ~3V -.:;.- I <h2>1. Runtime fields: <fh2>.::
~ baslc_abap.htm . <table border=1 width="100~"> Wi

basJc_~nclude ..htm G <tr bgco1or="#c!3cOcO"><td:o. Source CocG l

[) basicjavaacnpthfrn EI <tr><td nowrap::--runtime->apPlicat"iOI'l_r-l.d

• I ·".-r,...."..,-+r1 f,nl.lIl"':In-=-rlln+;mCl.,.".",,,,..,l;,...,,,t-'inn " :.J,:

GJ0r== I ==JGB 1,
[@ l> I BBB(l) 000 ~ Ius0049 IINS I ·ld I.. ' I

Figure 1.4 BSP Development Environment

BSP Development Environment 25

The first important aspect of the BSP development environment is the support of

all development-related activities, such as creating new BSP applications, editing,

and deleting. The second important aspect is that the BSP development environ­

ment also manages the integration into the transport system. BSP applications are

effectively development objects, and they have the same integration into SE80 do

normal ASAP classes. •

The other major responsibility of the BSP development environment is to trigger

the SSP compiler when requested.

1.4 HTMlB Rendering Family

Although the BSP approach itself is a "clean sheet of paper" for the developer's

own creativity, BSP does provide a complete rendering library, called HTMLB

(HTML for Business). With this library, it is possible to use high-level programming

constructs to achieve an excellent rendering, much faster than can be done by

hand. For example, using one control such as <htm.lb : tableView> is sufficientto

render out a table in HTML that supports paging (see Figure 1.5).

The HTMLB library initially supported nearly all typical controls that are required

for a feature rich Web user interface. Later, the HTMLB library was extended with

two additional libraries: XHTMLB (Extended HTMLB) and PHTMLB (Pattern

HTMLB). These two libraries contain more complex controls that are useful for

improving the user interface.

The HTMLB family of libraries are discussed in detail in Chapters 9 and 10.

<eeext ens-on name="lltml b" prefix::::: "htm'l b"%>

<lItml b: content oes- gn=" cesrgn2.803">
<ntm b: page>

<trtml b: form>

<%	 DATA: tot TYPE STANDARD TABLE OF t1DO
SELECT' FROM t100 INTO TABLE tol WHERE SPRSL = 'EIJ'. %>

<:htmlb~tableVlew id="tv1" table=""?~=tbl~>" visibleRo',VCount=n5" I>

</htmloform>
</htmlb:page>I

I</html 0: content>

~~~=~~JI,·~::~~;~}·~;~:irJc;;~;'Z;~~~~;;;;;=;;'~n-;~;~

m\t~~~~~ti/%t~;;;0<~~'%tsf,-~~; 

l EN , IS.ll"PDl.1C1LSMW ' 809 N()fi~ couldbe found far the Importejj aata , 

i!~'l : /SAPDMCjLSr~w I 51!} I NDPertnerexlst5wrththename'&',type:~__ i 
IH~1ISAPD/.lCflSI.\W ! 811 Create II partner profile for message t'jpe ',t',.' l 
rrn-~:-/SAPDMC':LSMW i 812 ,F~e '&' transferred far roacgeneration ! 

Er:I"~ffir::!E~~2~~~=~·=~~.~:.. ~,~,~~-_~~~~.~~~===~j 
;-ID. Done	 i 'iJ Local intranet 

Figure 1.5 Example Program Using HTMLB Library 

,6 What is BSP? 

1.5 BSP Compiler 

BSP pages are written as normal text. However, if you were to process these 

dynamically in any form, you would never be able to achieve an acceptable per­

formance. Therefore, BSP pages are "compiled" into normal ABAP classes, which 

can be executed at runtime. The actual generation and compilation of the BSP 

pages is done the very first time that a BSP page is requested. As the first step, a 

small part of Workbench code will retrieve the BSP layout from the database, and 

request that the BSP compiler transform the layout into ABAP code within one 

method of a class. The ABAP compiler is used to compile the class, and store a 

load for it. Thereafter, the BSP runtime can work with the class. On subsequent 

requests, the same ABAP class will be used. 

It is worthwhile to learn a little more about what the BSP compiler does. Let us
 

assume a small BSP application with the following code, which is a mixture of
 
HTML and ABAP coding.
 

<htrnl><body><form>
 

<% DATA: tbl TYPE STANDARD TABLE OF tIOO.
 

row LIKE LINE OF tbl.
 

SELECT * FROM tlOO INTO TABLE tbl WHERE SPRSL
 'EN'. %> 
<table border=l> 

<% LOOP AT tbl INTO row. %> 

<tr><td><%=row-SPRSL%><td><%=row-TEXT%></tr> 

<% ENDLOOP. %> 

</table> 

</form></body></html> 

For each BSP page, a separate class is generated, usually with a very complex 

name consisting mainly of numbers. The SSP development environment will store 

the mapping of URLs of pages onto the generated class name. The class will have 

one layout method that is generated by the BSP compiler. Note that this code 

below has been extremely Simplified, so as to retain the character of the transfor­

mation without having too much complexity here. 

HETHOD layout. 

print( '<html><body><forrn>, ). 

DATA: tbl TYPE STANDARD TABLE OF tIOO. 

row LIKE LINE OF tbl. 

SELECT * FROM tlOa INTO TABLE tbl WHERE SPRSL 'EN' .
 
print ( '<table border=I>' ).
 

LOOP AT tbl INTO row.
 

print ( '<tr><td>' i.
 

BSP Compiler 27 



print( row-SPRSL ).
 

print ( '<td>' ).
 
print( row-TEXT).
 
print ( '</tt:>' ).
 

ENDLOOP. 
print( '</table></forrn></bod~></html>' ). 

ENDMETHOD. 

Similarly, all event handlers of BSP pages are placed into separate methods on the 
same class. Page attributes become class attributes. With this model, the BSP 
runtime will have one class that contains all relevant functionality of a BSP page. 

Handling of rendering libraries, such as the HTMLB library, is very similar. Let us 

look at the one line that rendered the table. 

<htmlb:tableView id="tvl" vis~bleRowCount="5" table="<%=tbl%>"> 

</htmlb:tableView>
 

This BSP code will be transformed by the BSP compiler into the following ABAP
 

statements:
 

DATA: _tag123 TYPE REF TO cl_htmlb_tableview.
 

CREATE OBJECT _tag123.
 
_tag123-)id = 'tvl'.
 
_tag123-)visibleRowConnt = '5'.
 
GET REFERENCE OF tb~ INTO _tag123->table.
 

_tag123 - )BEGIN ( ).
 
_tag123-)END( ).
 

The BSP compiler has a mapping table to determine how specific controls are
 
mapped onto classes. Code is generated in order to have a reference available to
 
instantiate the class, set the attributes correctly, and then call the class to render
 

the corresponding HTML.
 

1.6 BSP Runtime 

Given the already excellent infrastructure of the HTIP framework, the BSP run­
time is simply hooked into the framework with one HTIP handler class. It is this 
class that receives the incoming requests, installs an error handler, and then does 

the main processing required for the BSP page. 

The main processing of the BSP runtime is actually a very lightweight layer. Ils 
main function is to map the incoming URL onto the generated class that repre­
sents the BSP page. The class is instantiated, and then the corresponding methods 

are called to do event handling. Finally, the layout method is called to write the 

answer for the browser. 

1.7 BSP Debugger 

A debugger is a must in a good development environment, and BSP it is no differ­
ent. Breakpoints can be set from within the BSP development environment (see 
Figure 1.6). When the BSP page is executed, the processing of the BSP page will 
be stopped within the debugger at the breakpoint. Note that this requires the 
developer to have an open SAP GUI session with the application server. 

,:'pm~rtteS-BhF."b 

rhtm1><b-ody><form> 

<0. OATA: tl>l IYPE STAIIDARD TABLE OF t100, 
row UKE UNE OF tbl 

SELECT' FROM tl00 INTO TABLE tbl WHERE SPRSl ';' 'EN'. ", 

<table oorderet> 

-&'lOO~ 
-&,~~~, _};e~"u,!lp~~g,~~~t. ~~!~~~C:~kP,oi:'t_,,-~~ett~n.9.s., .~.~lo£"2:nt 
<{tablei ~ 1 --- ~ <l ~ I ::::.~ @}?j Jg rnJ 

ICl_0232ACQZSFMWDBSEP6BdSNBBWTOCP II@] w::=~ 
tCl 023ZACQZSFlPNDB5EPBB4SNBBWTOCM003 I B:=.:!TI ... !£l 

IMETHOD ONUWOUT (CL 023ZACQZSFMWDB5EP694SNB6WTO)/ 
"'~--'l'* @ SELECT' FRCM t iee INTO TABLE tbl_HERE SPRSl ~ 'EN'.
 

.M]AGE.GONTEXT->M.OUT ->PRHrr_STRING ( VALUE ~ _M.HTlll.POOL OFFSET ~ 24 ,'.'
 

, lOOP AT to j INTO row t
I 

Figure 1.6 BSP Debugger: Setting a Breakpoint, Source View, and Code View 

When looking at Figure 1.6, we see first tile BSP debugger in a source-view mode. 
The BSP source is displayed as it was entered by the developer, and it is possible 
to step through the page at source level. Notice also the display of the BSP appli­
cation and page names. Next to the application name is a button with which the 
display view can be toggled between source and generated code. When the view 
is toggled, the generated name of the BSP class also is visible, and the real gener­
ated ABAP source code is displayed. 

BSP Debugger 29
,R What is BSP? 



1.8 MIME Repository 

Web applications consists not only of HTML pages, but also require a diverse col­
lection of other resources to enable a rich user interface. Typically, CSS files, Java­

Script source, and images are used within an application. For this the storage of 
these objects, the SSP MIME repository is available (see Figure 1.7). 

@,'ld ~ lOI L~.~ ·y.o;;;"",., " 
BS!'.Page. §.dit .,'§oto " 1!titities E!,,,,ronment-: Sxs1~m '.'!:ielp , ........•.... ," , ~c.....,..f~:;;;i;;.<, 

iI '-.~'~~:~,~~~:, ..."~.'.~ ..~-~I~'iii~fi :$3~foo.I:~·~ :B~ ....·.0·:;;~£aL: 

Se~~~~on~m;~iriJl;.~g.I~8t~r~;:~ni~:Il.~t
 
.... ".--'- EJ 

~MIME RepOSitory Page bastcabao.mm G 
o"'cRepository Browser ..... . .... " " ::~!'&P;;iji~s~EVenfH~i!11 

~llIffflIOOIOOI'7@II~I~ ,1 1 "'1 10' 1.1" I~I fFl-."'llcQ,-, IrblLName. l ,I;' :.':i !~~J; , ,~o'J '.~~:I lJtI ;..1,] 13i.r ~ 

V' e itOO ..,.~ <%@ page language='~abap" ~> .
 
---~-.---.,---; _ <.%@ include file=~'head_abap_htm" %>
 

.q ebusmess.~lr •...c: .. " ", Thi s page checks basi c ABAP scripting I" o father~son.jpg '5] except for control directives. 

~ SJ itD1 EJ I <p> 
c:h2>1. Runtime fields:- <fh2> 

~ <table bordar<t width="180%">
 
"::-: <tr -bgcolor="#cOc-8cQ"~td> Source COCG
 

THE REST-RUN E·BUS~P-JE5SES RUN tili:.ll <tr--std nowrap>runtiroe->~ppli cation_rEi
 

•1 l,:ij [iJ[8I<+r~'rl ri~T:;::'"hmo''",~~;:;r~f0[;j 

I t> I)38B(1) 000 ~ Iu80049 I INS I ,Ii 14 
" __,3~... ._~, _ ,{; ;,,:<,.,_ _,~~·.,,"l~,. 

Figure 1,7 SSP MIME Repository 

The MIME repository is primarily a storage area for binary objects that belong to 
the Web application. However, two important features are integrated into the 

MIME repository, The first is that the binary objects are also handled as develop­
ment objects, and therefore are fully integrated into the transport system, The 
other is that the MIME repository also has a HTIP interface (effectively a handler 
class plugged into the ICF tree), with which requests from the browser for 
resources can be handled. 

1.9 Summary 

As this chapter has shown, SSP is actually the sum of many parts to create one 

complete development environment. This environment includes both the design­
time integration into the usual tools as expected by ASAP developers, and the 
runtime aspects that are needed to truly develop Web applications. Especially 
important for Web applications is the availability of high-level rendering libraries 
and a repository for the additional binary objects required. 

\fl/h ....+ ;r QeD? 
"",:.S.• 

2 HTTP and HTML 

Often, developers will make good progress by using the BSPrendering 
libraries without looking at the basics of HTTP and HTML. However, 

once the going gets tough, it is this fundamental understanding of 
HTTP and HTML that an advanced programmer need to complete the 
work or troubleshoot a problem. 

In this chapter, we will examine HTIP (Hypertext Transfer Protocol) and HTML 
(Hypertext Markup Language), and the relationship between the two. We only 

concentrate on those aspects we know from practical experience to be important. 
This chapter is not to be a final reference; its goal is to lay the foundation. For the 
interested reader, we recommend using RFC2616 as a search keyword in your 
favorite search engine. 

HTIP is the protocol used between the browser and the server. HTIP is strictly a 
request-response protocol, whereby the client (usually the browser) will send an 

HTIP request to the server and wait for the HTIP response from the server. It is 
not possible for the server to initiate a transfer to the browser; it is only possible 
for the server to answer an HTIP request with a response . 

Typically, a single HTIP request is transmitted over one connection, and then the 
first received HTIP response is matched to this outstanding request. Although 
HTIP now allows streaming-whereby a browser can transmit a number of 
requests on one connection and match received responses in seq uence to the 
transmitted requests-this is not commonly in use in any current browsers. How­
ever, what is standard is that the browser opens parallel connections (usually two) 
to have more than one HTIP request outstanding: one per connection. For the 
Web AS, this could imply that the same browser has a number of requests out­
standing that must be processed in the same Web AS session. To prevent race and 
deadlock conditions, the HTIP requests Will be queued in the ICM, and only pro­
cessed in serial within one session. 

HTML is a text-based markup language that tells the browser what should be ren­
dered on screen and how it should look. HTML is the payload of an HTIP 
response; effectively, it is the answer from the server. It is important to point out 
that HTML is not sent from the browser to the server in the HTIP request, but 
only in the HTIP response from the server to the browser. 

HTTP and HTML 31 



2.1 Viewing the HTTP Traffic 

In the browser, one sees only the HTML that is returned each time from the server 
as mark-up. The underlying HTTP protocol is not visible. To see this traffic, the 

typical technique would be to use an HTTP proxy. This is an approach whereby a 
program will install itself between the browser and the server, allowing it trace the 
HTTP traffic. The use of a proxy between the browser and the server has the dis­
advantage that it is not possible to trace secure HTTP (HTTPS) data that is 

encrypted end-to-end. 

Over time, HTTP-tracing tools have become available that plug directly into the 
browser. This allows the tool to also trace HTTP traffic, and in some cases even to 
show information about the cache behavior of the browser. For this chapter, we 
will use one such a tool, HttpWatch \ to trace HTTP traffic and show how HTTP 
works. Any other tool that can trace both HTTP and HTTPS data and can show 

both the HTTP headers and bodies can be used alternatively. 

See Figure 2.1 for an example of such a tool used to trace a website. We see in the 
first window an overview of all HTTP requests/response cycles. It is important that 
the tool matches the HTTP request to the correct HTTP response (keep in mind 
the existence of parallel HTTP requests outstanding). What this tool shows, in 
addition, is a summary of the requests (useful to see errors at a glance), the 

roundtrip time (useful to analyze performance), and the type of response (HTML 

versus images) returned by the server. 

2.2 Structure of HTTP 

As a first step, let us build a small SSP application with which we can show the 
basic behavior of HTTP. All that this program does is render out a button to the 
browser, using the current system time as the text for the button (see Figure 2.2). 

<html>
 
<body>
 

<form>
 
<input type="submit" value="<%=sy-uzeit%>">
 

</form>
 
</body>
 

</htm1>
 

HttpWatch is a tool that is available from Simtec l.lrnlted (www.simtec.!td.uk), and of which 
we bought a copy. As such, it will be used within this chapter to illustrate all aspects of HTIP 
tracing. There are many other tools available that also can be used to trace HTIP traffic. Our 
selection of this program just reflects the fact that it is Widely in use within our environment, 
and that we are very familiar with it. 

,... HTIP and HTMI 

~; 

HtlpWatch 3.2 I:s 
Q A plug-in HTTP Viewer ForInternet Explorer 

o shows headers, cookies, query strings and 
pasted form values 

o Supports HTI1lS, compression, redirection 
& chunked encoding 

o Includes advanced filtering 

I Hom' '11 
[ Overl'iew J 
~~ 
I Customers I 
~~~ 
I pricjflg~

! Download i

Figure 2.1 Example of an HTIP Plugin Tool

II	 I120258 I
_. f

Figure 2.2 Example BSP Application to Show Time on a Button

Assuming that the button has now been pressed a few times, we press it once

more, and look at the HTTP traffic. The first important aspect highlighted imme­
diately is the asymmetric nature of HTTP and HTML. When the user presses the
button, we see that an HTTP request is send to the server. In this example, the
HTTP request has only headers and no payload. With later examples, we will see

HTTP requests that have a body.

GET /sap(bDIX==)/bc/bsp/sap/chapter02/examplel.htm HTTP/l.l

Accept: image/gif. image/x-xbitmap. image/jpeg. image/pjpeg.

application/vnd.ms-excel.
application/vnd.ms-powerpoint. application/msword.

* I *
Referer:	 http://us4049.wdf.sap.corp:1080/sap(bDlX==)/

bc/bsp/sap/chapter02/examplel.htm

Structure of HTIP 33

Accept-Language: de,en-us;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:1080

Connection: Keep-Alive

Cookie: sap-appcontext=c2F ... UVA

Authorization: Basic VGhhbmtzIGZvciBidXlpbmcgYm9vayE=

Listing 2.1 HTIP Request

The server will answer with an HTIP response that contains HTML as body. Notice

that the HTML matches closely the BSP program that was executed, with the print

sequence resolved to the time of the actual response.

HTTP/1.1 200 OK

Content-Type: text/html; charset=iso-8859-1

Content-Length: 111

Expires: 0

Pragma: no-cache

Cache-Control: no-cache

Server: SAP Web Application Server (1.0;640)

<html>

<body>

<form>

<input type="submit" value="120256">

</form>

</body>

</html>

Listing 2.2 HTIP Response

The HTIP request and HTIP response always have this format:

~ The status line, terminated with one carriage-return/linefeed (CRLF).

~ Any number of HTIP headers separated by CRLF.

~ An empty line (effectively only a CRLF) that separates the headers from the

body.

~ The bodies of the HTIP request and response. For the HTIP request, the body

is only send with a POST request and will usually be of the form name=value
pairs, separated by &-characters (see Section 2.4). For the HTIP response, the

body is typically either HTML or an image (binary object).

~4 HTIP and HTML

HTIP header lines are always terminated by a CRLF, never in the middle of the

line. The above listing has header lines over more than one text line, but only due
to technical limitations of a printed page. For all following examples, we will

shorten or remove headers that are not important, so that the HTIP headers are
more correct in print.

In addition, the HTIP specification recommends, but does not enforce, capitaliza­

tion of HTIP header names. Within a Web AS system, we will find these always
only lowercase because of an optimization done in the kernel. For this book, the

headers will be capitalized again, to match more closely the real nature of the

HTIP protocol.

2.2.1 The HTTP Request Status Line

The first token in the request line is the called method, where we will usually only

see GET and POST requests. Although other methods are defined (example OPT I ­

ONS, PUT, etc.), they are not typically used for browser to server communication

and won't be further discussed here. The difference between the two methods
will be described in Section 2.4.

After the method, separated by a space character, is the URL for which we are

fetching the data. Notice that only the absolute path is used when the browser is

connecting directly the server. If the browser is connecting via a proxy, then the

absolute URL (protocol, host, and absolute path) will be given.

The last token on the line is the HTIP version. Only two versions, HTIP/1.0 and

HTIP/1.1, are standardized and widely in use. For us, at a practical level, the big­

gest difference is that HTIP/1.1 also supports the possibility of having the

response compressed before transfer.

2.2.2 HTTP Request Headers

All HTIP headers are of the form Name: value CRLF. As we will see when we

examine the HTIP response as well, there are some headers that are common to

both request and response, whereas some headers are only used in one or the

other. A number of different headers are specified, and we will concentrate on

those that we commonly see and use. A few additional headers will be discussed

in later sections.

~ Accept

This header lists all the MIME types that the browser can accept In the HTIP

response. In this example, we see image/gif and image/jpeg listed to show

that GIF and JPEG images are welcome. The last entry in the list * I>, shows

that the browser will also accept any type of document. The reason for listing

Structure of HTIP 35

specific MIME types followed by the wildcard, is to inform the server that the

browser prefer answers in the more specific format if available; otherwise the

server should just send whatever is possible. For the rest of the chapter, we will

shorten this header in the listings to just' l>,

~ Accept-Encoding
This header is only available since HTIP/1.1 and indicates to the server that the

browser is willing to accept a compressed HTIP response. It is important to

remember that this does not force the server to compress the answer. It only

indicates the browser's capabilities to also decompress specific types of HTIP

responses.

~ Accept-Language
This header lists the languages that the user has defined within the browser.

This field is also by default used to determine the logon language if no other is

set. The q=O. 5 is a quality indicator, that signals to the server de as first prefer­

ence (q=l. 0), followed by en (50 % value). This string allows the server to bet­

ter match preferences against its capabilities.

~ Authorization
This header lists the user credentials, in this case the user name and password

is encoded as value. The topic of authentication is discussed in detail in Chap­

ter 5 and not further considered here, nor listed.

~ Connection
Also a header new in HTIP/1.1, this informs the server not to close the under­

lying TCP connection. The connection is left open for a few seconds extra,

allowing the browser to reuse the same TCP connection for the next request.

This HTIP header is not listed again for all other examples in this chapter.

~ Cookie
This header sends a browser cookie to the server. The specific sap-appcon­

text cookie is one that is used by the BSP runtime. Cookies are discussed in

detail in Section 2.6. For clarity, we will also not list this specific BSP cookie for

these examples.

~ Host
This very important header contains the name of the application server that the

browser is connected to (including the port number). It is exactly the string as

entered in the URL, and does not have to match the true server name. For

example, when a proxy is used, this header contains the server name as the

browser sees it, even although the proxy can forward the request to another

server for answeri ng.

~ Referer

This header contains the name of the HTIP request that triggered this new

request. Note that the header was misspelled (instead of "referrer") in the orig­

inal specification, and has kept this spelling. This header is useful only in limited

troubleshooting scenarios to find HTML pages triggering bad links to resources,

and is not further listed in this chapter.

~ User-Agent

This header tells the server what type of browser is used. This is important

when rendering HTML, as not all HTML constructs are supported by all brows­

ers. The exact format of the string is not standardized, making it difficult to eas­

ily parse the string. There are many web sites that list the strings in all variations

and match these to different browser versions. For a Web AS, the kernel

already provides routines to parse the string correct (see Section 2.3).

2.2.3 HlTP Header/Body Separator

An empty line (only a CRLF) is used to terminate the HTIP headers, and to start

the HTIP optional body.

2.2.4 HlTP Request Body

Although not shown in the above example, the HTIP request also can have a

body when it is a POST request and will be Signaled by a Content -Length

header. The body, if available, will normally be of the form name=value pairs,

separated by &-characters. This will be described in more detail in Section 2.3.

2.2.5 The HlTP Response Status Line

The first token in the HTIP response status line is the protocol version. This will

usually match the protocol version from the request, although it is possible for the

server to "switch down" to a lower protocol in the response.

This is followed by the HTIP return code, which is the most important bit of infor­

mation from this line. Last, a short textual description is given of the return code.

This phrase is intended for human readers and does not necessarily have to be in

English or stated exactly as in the specification.

Although many different HTIP return codes are specified, only a few-listed in

the table below-are in everyday use and should be known to any advanced pro­

grammer.

Structure of HTIP 37
_It:. UTTD ::lnrl ~TAI\f

Return Codeand Phrase Explanation

The HTIP requestwascorrectly processed and the HTIP response200

01< contains the answer.

The requested URL is not available, and the browseris redirected302
Moved Temporarily to another URL for the answer. SeeSection 2.7.

The browser already hasan object in its cacheand then queried 304
the serverfor a new version. Withthe 304 answer, the server NotModified
states that the browser's copyisstill up to date, and no content is
transferred again. SeeSection 2.8.

The browser sends an HTIP requestwith user credentials. The401

Unauthorized
 serverrejects the request. Authentication is discussed in detail in

Chapter4.

Theserverhasfound the requestedobject, but does not have403
permission to answerthe HTIP request. This scenario usually indi­Forbidden

cates that the ICF node is not active.

In this case, the requested objectwas not found, and therefore 404

Not Found
 the serveranswers with 404.

Any severeerror. Usually an exception was raised at the server 500
that caused a short dump to be written (seetransaction ST22).Internal Server Error
Thereafter, the A8AP session is destroyed.

Table 2.1 HTIP Return Codes

2.2.6 HTTP Response Headers

The HTIP headers for the response are structured the same as that of the header.

Often the same headers are used in both the request and the response. Again, we

will examine those headers we see often.

~	 Content-Length
This is the transfer length of the HTIP response body. Specifically, if the HTIP

response is compressed (Content -Encoding: gz Lp), the length will be that of

the compressed content that 'IS transferred, and not the rea/length.

~	 Content-Type
Describes what type of content the server has placed in the HTIP response. For

normal HTML pages, this is typically text/html, followed by the character set

in which the HTML was written. Note that each type of resource will have a

different content-type. For example image/ gif for GIF images, text/ css for

CSSfiles or application/x- javascript for JavaScript resources.

~	 Server
This is a string that is similarto the User-Agent from the browser. This tells the

HTIP client what server and version is active. For our purpose, this is only of

interest to confirm that we are really interacting with a Web AS.

38 HTIP and HTML

The headers Cache-Control, Pragma, and Expires all control caching of the

HTIP response. Caching is a very complex functionality that was changed exten­

sively between HTIP/1.0 and HTIP/1.1. Often, there are still older versions of

proxies that do not interpret these fields correctly. Therefore, a complete series of

headers are always set to conform to both protocol versions of caching. For us, it

is only important to know that pages are either cached or not cached. The BSP

runtime always assumes that a BSP page is dynamically generated, and therefore

cannot be cached (these defaults can be overwritten on the properties tab of the

page). For our discussion, except when necessary, only the Cache - Control

header will be shown.

2.2.7 HTTP Response Body

The HTIP response body can be any data stream. Typically, it is either HTML or a

resource that was requested for the page.

2·3 Server Objects for HTTP Request and Response

We have now seen that HTIP is characterized by a request and a corresponding

response. We now will see how one can access these from within a BSP applica­

tion. Let us create a small example, where we ourselves read data from the

incoming request and write the outgoing response completely. The application

has an input field of which all entered text is rendered on a button. Figure 2.3

shows the application in the browser.

<%
DATA: btntxt TYPE string.

btntxt = request->get_form_field('btntxt').

DATA: html TYPE string.

CONCATENATE

'<html><body><form>'
'<input type=text name="btntxt" value="">'

'<input type="submit" value='" btntxt '''>'

'</form></body></html>'

INTO html.

response->set_cdata(html).

%>
When looking at the source code, we see that a variable request is used without

having been declared at all. This is a variable made available In all BSP pages, of

Server Objectsfor HTIP Request and Response 39

type IF_HTTP_REQUEST, and is the ABAP representation of the HTIP request.
Similarly, there is also a response variable of type IF_HTTLRESPONSE available.

IlL [iHitr.r"l J !
~__._~"~_"",,~...,,,.-,-....,...,.,.,.-_-,-,,........_._~._-"V".,_:

Figure 2.3 Example SSP Application to show the HTIP Request/Response Objects

When looking at the two HTIP interfaces, we will find many methods that seem
to make no immediate sense, for example SET_HEADER_FIELD on the request
Interface. An HTIP request is received at the server, and thus it seems as though
we should be more interested in getting the headerfields. However, keep in mind
that the Web AS itself can play "browser" and make an outgoing connection to

another Web service. In this case, the setter methods are justified.

Let us look briefly at the functionality provided by the interfaces, concentrating
only on those methods that are useful in the Web AS' traditional role as HTIP
server. Only those methods in everyday use will be listed. Interested readers

should check the online documentation for a complete overview.

On the IF~.HTTP_REQUESTinterface, we have:

~	 Some methods that allow us to read the status line: GELMETROD and GET

VERSION.

~	 A method that will give us the exact type and version of browser in use: GET_

USER_AGENT. The integer constants for browser types are defined in the IHTTP

type pool.

~ Methods that allow us to read header fields GET_READER_FIELD (S) .

~ We have briefly touched on the fact that in the HTIP request, data is trans­
ferred in the form name=value pairs, called form fields (see Section 2.4). There
are a few methods to deliver this data in a "ready to use" format: GET_FORM_

FIELD (S)

~ In Section 2.5.3, we will learn how to perform a file upload where we use the

methods: NUM_MULTIPARTS and GET_MULTIPART.

~ Cookies will be discussed in detail in Section 2.6. Cookies are in effect small
bits of data transferred in one HTIP header, and these methods will allow us to

read the cookies as semantic entities: GET_COOKIE (S) .

On the ILRTTP_RESPONSE interface, we have similarly interesting methods:

~	 A method to set the HTIP response correctly on the status line: SET_STATUS.

40 HTIP and HTML

~	 Methods for special headers, such as content-type (SET_CONTENT_TYPE), or
special situations, such as handling an HTIP redirect (REDIRECT), discussed
later in Section 2.7.

~ Methods to set the header fields of the response: SET_READER_FIELD (S).

~ Again methods to set cookies, which are just logical objects mapped onto

header fields: SET~COOKIE and DELETE_COOKIE_AT_CLIENT.

~	 The HTIP response is effectively a data stream that is either HTML (character

data), or binary objects (normal data). For writing data, methods are available

to either completely set the body of the response (SET_(C)DATA), or to
append data onto the response (APPEND_(C)DATA).

When we review the test application again, we can see that only two calls were

used to complete the simple Web page. The first, request - >get_fa rm_field, is
used to retrieve the data of the input field from the incoming HTIP request. This

complete HTML is then constructed and written using response->set_cdata.

Although not shown, the BSP runtime also, at a minimum, calls response->set_
header_field to set the content-type oftext/html and response->set_sta­

tus with a value of 200 OK to show to the browser that the response is correct.

With this understanding of the principles of an HTTP request/response cycle, and
how the objects can be manipulated within BSP, it is possible to look at more

detailed aspects.

2.4 HTML Forms and Data Handling

A HTML document starts with an <ht ml> tag, then can have an <header/>

sequence, a <body/> sequence, and ends with the </html> tag. Within the body,
the next-most important element is the <form> sequence. An HTML document

can have more than one form, but forms must be placed one after another. They

cannot be nested.

Each form is exactly the transfer unit for submitting an HTIP request to the server.
Only those fields within the form are actually submitted. Thus, one would typi­

cally use different forms for different parts of the screen, so as to transmit only rel­

evant data back to the server for the specific query.

Each <form> tag has a method attribute that can be set to either the value GET

(default) or POST. With the GET method, all form fields are appended onto the

URL, using the ?-character as separator between the URL and the form fields and

the &-character as separator between the individual name=value pairs. As the
data is sent as part of the URL, the amount of data is limited by the maximum

length of a URL, usually 2,048 bytes.

HTML Forms and Data Handling 41

I

For the POST method, all data is sent in the body of the HTTP request. There is no

(theoretical) limit to the amount of data that can be sent. The data volume is only

constrained by the memory limits of the browser.

To look at this difference in more detail, let us construct a small program that uses

both form methods.

<html><body>

<form method="GET">

<input type="text" name="klm" value="456">

<input type="text" name="klm" value="789">

(input type="text" name="xyz" value="bsp">

<input type="submit" value="GETI">

</form>

<form method="POST">

(input type="text" name="klm" value="456">

<input type="text" name="klm" value="789">

<input type="text" name="xyz" value="bsp">

<input type="submit" value="POST!">

</form>

<%

DATA: ffs TYPE tihttpnvp,

ff TYPE ihttpnvp.

request->get_form_fields(CHANGING fields ffs).

%>

<table border="l">

<% LOOP AT ffs INTO ff. %>

<tr><td><%=ff-name%></td><td><%=ff-value%></td></tr>

<% ENDLOOP. ~o>

</table>

</body></html>

This example program has two identical forms. The only difference is In the

method attribute. Note that the forms must be placed after one another. Thereaf­

ter, additional code is added to show the behavior of form fields in the different

cases. The results of the application can be seen in Figure 2.4.

i ~d?~ess _~S-1O<19, wdf.sap. corp: 1080/sap(bD1k:ZSZjPTAWMA==}/Dcibsp/sapibook_~~Ptero2/example3,htrn?klm=456&k1m = 739&xyz=bspI

[4s6------~rm=-~~---I[GET!I

1456-------1~9 =:::J ~sp II POSTI I

r~14561 i AQdre~: I~US4049.wdf.sap.corp:lOso/sap{bD1kZSZjPTA'N~~:·~);~-;~/s~~~~~-k ~~;t~r~2/~xample3.htm?abc-123~_~[789

~;-~PI
 l456--------] [789---- --] ~~p------::J[GET!I f

[45£ I[f3~- -~I ~ 1(POST! I

'abc '123

klmA56

Ikhn.789
~~i
iX)'Z ,bsp i

._-_._--_..~'-"-.~-,~-~---..,,...."_."----.-.-~~-..-~.- ------"'~ \

Figure 2-4 Example SSP Application to Show the Form GETand POST

For the first test, we start the application with an additional parameter in the URL

(... / chapter 02 / exampl e3 . htm? abc=12 3), and then press the GET! button. Let

us first examine the HTTP request.

GET /sap(bDlX==)/bc/bsp/sap/

chapter02/example3.htm?klm=456&klm=789&xyz=bsp HTTP/l.l

Accept: */*
Accept-Language: de,en-us:q=0,5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0: Windows NT 5.1)

Host: us4049.wdf.sap.corp:l080

In the source, the <form> tag had the attribute method=GET. This results in a GET

HTTP request (see first token in status line). The next important aspect is that data

from the form is carried as name=value parameters within the URL, separated

from the URL with the? -character and from one another with the &-character.

Duplicate names are allowed (see k lrn twice in URL). The GET request has no

body, and therefore no Content -Length header is set.

The other interesting aspect is that initially the application was started with the

sequence? abc=123 in the URL. We see in the trace and also in Figure 2.4 that

this URLwith its parameters has been completely replaced with the new GET URL.

The request is processed by the SSP application, and a new HTTP response is writ ­

ten. The first part of the response is just static HTML code, and exactly the same

as listed on the SSP page.

HTML Forms and Data Handling 4342 HTIP and HTML

HTTP/l.l 200 OK
Content-Type: text/html; charset=iso-8859-l

Content-Length: 696

Cache-Control: no-cache

Server: SAP Web Application Server (1.0;640)

<btml >

<table border="l">

<tr><td>klm</td><td>456</td></tr>

<tr><td>klm</td><td>789</td></tr>

<tr><td>xyz</td><td>bsp</td></tr>

</table>

</body>

</html>

Pay close attention to the small bit of source code that we had on the BSP page to

dump out all the form fields that was received by the BSP application. We see in

the HfIP response above, and also in Figure 2.4, that exactly three fields were

found, matching the three fields that were in the form, and transferred as URL

parameters to the server.

We start the BSP application new, again with the URL parameter abc=123, and

then press the POST! button.

POST /sap(bDlX==)/bc/bsp/sap/
chapter02/example3.htm?abc=123 HTTP/l.l

Accept: <l :

Accept-Language: de,en-us;q=0.5

Content-Type; application/x-www-form-urlencoded

Accept-Encoding: gzip. deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:l080

Content-Length: 23

klm=456&klm=789&xyz=bsp

The first difference is the POST method in the HfIP request status line. Next, note

that the URL in the status line, to which the Hnp request is posted, is exactly the

same as that with which the application was started. Our URL parameter abc=123

is still part of the URL that is also transmitted to the server.

44 HTTP and HTML

Because of the POST request, all data from the form is now transported within the

body of the HlIP request, again separated by &-characters. Notice the use of the

empty line to terminate the list of H'Fl P headers, and to start the body of the

HfIP request. The server must be informed about the length of the body

(Content -Length header) and the type of the body (Content -Type). The Con­

tent -Type usually has the value x -www-form-urlencoded to indicate

name/value pairs separated by &-characters. In Section 2.5.3 we see how this
header field changes when a file is uploaded.

The H'FlP response and the output shown in Figure 2.4 are now similar to that of

the GET request, except that the table now shows four entries.

HTTP/l.l 200 OK
Content-Type: text/html; charset=iso-8859-l

Content-Length: 742

Cache-Control; no-cache

server: SAP Web Application Server (1.0;640)

<html>

<table border="l">

<tr><td>abc</td><td>123</td></tr>

<tr><td>klm</td><td>456</td></tr>

<tr><td>klm</td><td>789</td></tr>

<tr><td>xyz</td><td>bsp</td></tr>

</table>

</body>

</html>

The table was rendered based on the values that the get_form_fields method

returned. This method collects all data from both the URL, which the POST did

not change, and from the body of the Hnp request. This helps the programmer

by removing the need to worry about parsing different parts of the H'FfP request

for similar data.

However, the method can cause major problems if duplicate names exist in both

the URL data and in the body. We know that duplicate names are valid and that

the request object will just return all of them. This could result in the application

using the wrong value. For this reason, we recommend that you always set the

action attribute in the <form> tag as well with the URL of the target page.

We also recommend using a POST rather than a GET, as the data capabilities of the

GET request is limited by the maximum length of an URL, typically 21<B.

HTML Forms and Data Handling 45

2.5 Mapping of HTML onto HTIP Requests

Until now, we have only used simple input fields to show the basic structure of

HTIP. Let us now look in more detail how different HTML controls will transfer

their information back to the server. This is not an exhaustive list, but will concen­

trate on the basics that any Web programmer should know.

2.5.1 Input Fields

To examine the behavior of input fields, we will first quickly build a small test pro­

gram that used different types of input fields, with the results shown in Figure 2.5.

<html><body)

<form method="POST")

<input type="text" name="abc" value="123")

<input type="text" name="klm" id="abc" value="456")

<input type="text" id="xyz" value="789")

<input type="text" name="dis" value="disabled" disabled)

<input type="text" name="ro" value="readonly" readonly)

<input type="hidden" name="hid" value="hidden")

<input type="submit ll name=lIbtn" value=IIHit Me!lI)

</form)

</body)</html>

[1E---~[456------"-]:7a9--- IIcls8bled ~[r;';;;;;;;iY---'J I HitMe' II
_~__~............,...~ ..~__~~"__,~~~ ~ _,..-~.~ . E

Figure 2.5 Example BSP Application to Show the Behavior of Input Fields

The program first uses three input fields that have either names, IDs, or both set.

This is followed by a disabled and a read-only input field (notice in Figure 2.5 the

difference in visualization). Finally, an input field of type=hidden is used. This is

the typical way that data in the form of name=value pairs are persisted in the

browser, to be returned later. One sees that the hidden input field is not visual­

ized by the browser.

Let us look at the HTIP request to see what happens when the button is pressed.

The HTIP response will not be examined, as it just statically renders out the same

HTML page again.

POST /sap(bDIX==)/bc/bsp/sap/chapter02/example4.htm HTTP/l.l

Accept: * / *

Accept-Language: de,en-us;q=0.5

46 HTTP and HTML

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4049.wdf.sap.corp:l080
Content-Length: 52

abc=123&klm=456&ro=readonly&hid=hidden&btn=Hit+Me%21

The first input field is transferred as we expected with abc=123. For the second

input field, both the name and an id attributes are set, but the data is transferred

with the name value of klm=456. The third input field (with the value=789

attribute) has only its id attribute set, and we see immediately that this data is not

in the HTIP request. This already demonstrates the first important aspect of

HTML controls and their mapping onto HTIP requests. The HTML controls can

have both id and name attributes, where the id attribute is only of interest within

the rendered HTML code. The name attribute is significant for the HTIP request.
Only named data is actually transferred to the server.

This naming aspect will playa big role in programs based on Model-View-Control­
ler. The id attribute matches what the programmer used in the HTML, and allows

manipulation of the HTML with JavaScript based on this known id value. The

name attribute will be set to match exactly the position of the data within the

model. This allows the server to update the model with incoming data from the
HTIP request. See this Simple example:

<input type=lItext" id="age" name="model.childAge" value=1I11l)

The next two input fields were flagged disabled and readonly respectively. This
influences the way that the browser will visualize the two input fields. (For the

interested reader: Disabled input fields appear dimmed, do not respond to user

input, and cannot be focused. With read-only, the input field can be focused but

still cannot be changed.) It is worth noting that a disabled input field is not trans­
ferred back to the server, and we can not see any data dis=disabled in the HTIP
request,

The hidden input field is transFerred back to the server within the HTIP request

without further semantics being attached to them. This is the technique that state

information can be "stored" within the HTIP request/response cycle, allowing

stateless programming, but still having the necessary data available to process the

next incoming HTIP request. For example, assume that we must also have a key
available to update the user's data. We could write:

<input type="hidden" name="user_keyll value="D027140")

Mapping of HTML onto HTTP Reauests

The last interesting aspect is the onscreen button that is achieved with the

input=submit sequence. As this is again an input field, and named, it is also

transferred back to the server. The value, btn=Hit+Me%21, has been encoded to

match the Content-Type header. In the encoding, spaces are replaced with

+-characters, and some characters are replaced with a %-character and their two

byte hex code (%21=!).

In summary, we can say that all named and not disabled input fields within the

<form> will be returned to the server.

2.5.2 Checkboxes, Radio Buttons and Dropdown List Boxes

Following the same approach as above, we first quickly develop a small test pro­

gram with which we can show the behavior of checkboxes, radio buttons, and

dropdown list boxes. The rendered page can be seen in Figure 2.6.

<html><body>

<form method="POST">

<input type="checkbox" name="chkl" value="123" checked>123

<input type="checkbox" name="chk2" value="456">456

<input type="radio" name="radl" value~"123" checked>123

<input type="radio" name="radl" value="456">456

<input type="radio" name="radl" value="789">789

<select name="sell">

<option value="123" selected>123

<option value="456">456

<option value="789">789

</select>

<input type="submit" name="btn" value="Hit Me!">

</form>

</body></html>

~ 123 0456 0123 0456 07891 123iJ [Hit Mel I
~"~~"C"<"'_ --'-"'-''''~ --.--._""--,.....",,''''''-,.-...--..,.• ..,.•,~"~.,.,.--.,..~~-...---~• .,,",..

Figure 2.6 Example BSP Application to Show the Behavior of other Basic Controls

Again, only the HTIP request is examined. The HTIP response will be the same

static page rendered again.

POST /sap(bDIX==)/bc/bsp/sap/chapter02/example5.htm HTTP/l.l

Accept: */*

Accept-Language: de,en-us;q=0.5

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:1080

Content-Length: 38

chkl=123&radl=123&sell=123&btn=Hit+Me%21

The first part of the application shows two checkboxes, one having its checked

attribute set. The rendering is expected, but in the HTIP request we see only the

data for the checkbox that is actually checked (chk l =123). In the HTIP request,

we do not see any reference to the unchecked checkbox chk2. This conforms to

the idea that the check will enable the transfer of the value back to the server. A

request - >get_form_field method callan an unchecked checkbox will find no

value in the incoming HTIP request and will return an empty string, effectively

signaling no value.

RadiO buttons are actually a group of buttons, where all buttons with the group

are given the same name (name=radl). Only one of the buttons can be selected

at any time (have its checked attribute set), and exactly this named value will be

returned to the server (rad1=123).

Dropdown list boxes, using the <select> tag in HTML, have a similar construct.

Each dropdown list box has a number of <option> tags, one of which can be

selected. This value is then returned to the server for the name of the <select>

tag (sell=123).

In summary, the named and not-disabled aspects still hold. In addition, only

checked checkboxes are transferred. For radio buttons and dropdown list boxes,

the selected value is returned against the name of the control.

2.5.3 File Upload and Download

The last type of input that we wish to quickly examine is type=file. This is the

basic, and only, HTML building block for handling a file upload to the server.

<html><body>

<form method="POST">

<input type="text" name="fld1" value="abc">

<input type="file" name="fil1">

<input type="submit" value="Failure!">

</form>

<form method="POST" enctype="multipart/form-data">

Mapping of HTMLonto HTIP Requests 49
48 HTIP and HTML

(input type="text" name="fldl" value="abc">

(input type="file" name="fill">

(input type="submit" value="Hit Me!">

(/form>

</body></html>

<%
DATA: entity TYPE ref to if_http_entity,

name TYPE string,

content TYPE xstring,

content_type TYPE string,

idx TYPE i VALUE 1.

WHILE idx (= request->num_multiparts().

entity = request->get_multipart(idx).
name = entity->get_header_field('-content_filename').

IF name IS NOT INITIAL.
content_type = entity->get_header_field('Content-Type').

content = entity->get_data().

response->set_data(content).

response >set_header_field(name 'Content-Type'

value content_type).

EXIT.

ENDIF.
idx = idx + 1.

ENDWHILE.

%>

The example program is slightly more complex, as there is a small complication
that one should know about when programming a file upload. First, the BSP

application shows a (form> tag as used previously in all other examples, followed
by a modified (form> tag with the additional enctype attribute (transfer encod­
ing type). The last part of the application looks into the incoming request and

fishes out the file. This will be discussed after examining the HHP requests.

The result of the application is depicted in Figure 2.7, showing the application,

and-in the success case-the downloaded image.

Note Often developers willask for a tech nique to change the" Browse... " string
displayed by the HTML control. This is not possible, because the string is set by

the browser and the language used is determined from the client language.

It cannot be influenced by the server. The other request one often sees is to
programmatically set the filename for uploading. This is not possible because,
for security reasons, a user must explicitly select a file that will be transmitted
to the server. The browser does not allow the server to snag files without the

user's active participation.

Figure 2.7 Example BSP Application to Show the Behavior of a File Upload

Let us examine first the request for the Failure! case. Here, a normal form is used

to POST the data to the server.

POST /sap(bDlX==)/bc/bsp/sap/chapter02/example6.htm HTTP/l.l

Accept: */*
Accept-Language: de,en-us:q=O.5
Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (MSIE 6.0: Windows NT 5.1)

Host: us4049.wdf.sap.corp:l080

Content-Length: 46

fldl=abc&fill=%5Cbcm%5Cpictures%5Cimg_0354.jpg

We see that data for the input field (fldl=abc) is transferred. However, the file

upload sequence also behaves exactly like an input field, sending the name

(fill=%5Cbcm%5Cpictures%5Cimg_035 4. j pg) of the selected file only. Notice

the URL encoding that replaces the \-character with %5C.

The reason for the failure is that the specification requires that a file upload must

be done with a multi-part POST request. This is one HTML programming mistake
that is seen quite often. The second <form> tag does have this additional enc­

type attribute set to multipart/form-data. Let is look at the new HHP

request.

Mapping of HTML onto HTIP Requests 51
50 HTIP and HTML

POST /sap(bDIX==)/bc/bsp/sap/chapter02/example6.htm HTTP/l.l

Accept: * / *

Accept-Language: de,en-us;q=0.5

Content-Type: multipart/form-data; boundary=---7d53433beca

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE. 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:l080

Content-Length: 563726

---7d53433beca

Content-Disposition: form-data; name="fldl"

abc

---7d53433beca

Content-Disposition: form-data; name="fill";

filename=" \ bern\pictures \img_0354. j pg"

Content-Type: image/pjpeg

.. .binary data of image ...

The first difference between this and past examples is that the Content-Type

header was changed to a new value of a mul tipart, plus the additional informa­

tion that the different bits of data are now separated by the boundary string

- - -7d53433beca. This boundary string is a random-generated string, relatively

long (in this example shortened to fit one book page), that indicates the start of

each field that is submitted to the server.

Within the body, we actually now have sub-bodies, submitted one per field. Each

sub-body is again a sequence of HTIP headers, an empty line, and then the value

string. This shows the large overhead of a mul tipart submit, and why it should

only be used when uploading files.

For the input field, the first part has only the HTIP header Content - Disposi­

tion' listing the name of the field. The value is transferred within the body of the

part.

In the next part, we see the file to be uploaded. The Content - Disposi tion

header now also lists the (local) filename that is uploaded and the Content -Type

of the file, determined at the client. The body contains the binary data of the

image.

Note that each part does not have a separate Content - Length HTIP header. The

length is set for the complete HTIP request, and the boundary string is used to

split the request into different parts.

52 HTIP and HTML

The important aspect of multi-part requests is that each form field is listed in a

separate part, and that all files uploaded in the same HTIP request are also listed

in parts. To read the form fields (for example the value of fldl above), do we

have to now parse the HTIP request body ourselves? Luckily no; the same meth­

ods request - >get_form_field (s) also work with multi-part requests, and will

return the same values as when the data is transferred in a GET or a normal POST.

These methods shield us on the server from the complexity of reading the form

fields in all the different cases.

However, uploaded files are not considered to be form fields and cannot be

retrieved as such. They are handled as separate parts of the request. Let us look at

a small extract of the text program in more detail.

WHILE idx <= request->num_multiparts().

DATA: entity TYPE ref to if_http_entity,

entity = request->get_multipart(idx).

name ~ entity->get_header_field('~content_filename').

IF name IS NOT INITIAL.

content_type = entity->get_header_field('Content-Type') .

content = entity->get_data().

length ~ XSTRLEN(content).

ENDIF.

idx = idx + l.

ENDWHILE.

First, the number of parts is determined. Included in this list are all parts, not only

those that are uploaded files. For each part, we get a reference onto that part and

then can again query the header fields. We saw before that both parts had a Con­

tent - Disposi tion header. This header is already parsed into its different

attributes within the request object. We can identify file uploads by the fact that

the filename attribute is also specified, made available with the pseudo header

~content_filename.Once a file name is found, we extract the content type and

the actual content from this specific part. The actual file size can be computed

with the ASAP operation XSTRLEN.

With the extracted information, the minimum requirement to echo the file back

to the browser consists of the response->set_data call and the response->

set_header_field to set the Content-Type header. The remaining require­

ments are met by default values set by the HTIP response object.

HTTP/l.l 200 OK

Content-Type: image/pjpeg; charset=iso-8859-1

Mapping of HTML onto HTIP Requests 53

Content-Length: 563426

Cache-Control: no-cache
Server: SAP Web Application Server (1.0;640)

., .binary datE of image ...

The HTIP response, although it 'IS our first binary response, amounts to business

as usual. Figure 2.7 also shows the uploaded image displayed in the browser.

2.6 Cookies

A cookie is a small bit of information that the server sends to the browser to

"remember" until the next HTIP request. This is a very convenient way for a

server, especially in stateless cases, to store application-relevant data for each user

and to have the relevant data returned with the next incoming request. There are

strict limits to the size of each cookie (usually a maximum 41<B) and the number

of cookies allowed per server (a maximum of 20).

There is controversy whether cookies are good or bad, but we do not wish to

become too deeply involved in the debate here. In principle, cookies are good,

but can be misused to follow a user's travels through the Internet. If this is a con­

cern for you, then we highly recommended you use your favorite search engine to

read up a little on cookies and the possibility for misuse. As "the good guys," we

will concentrate on a number of valid uses of cookies.

A cookie can be sent to the browser with the Set - Cookie HTIP header within

the HTIP response. The basicform of the cookie is the name=value data. In addi­

tion, a number of attributes can be set. An interesting aspect of cookies names

and values is that they may not include semicolon, comma, or white-space char­

acters, as these are used as separators within the cookie attributes. This is espe­

cially important for the value string and also for the path string. These must not

contain any of the separator characters.

Set-Cookie: NAME=VALUE; expires=DATE; domain=DOMAIN_NAME;

path=PATH; secure

The name can be any user-assigned name and the value effectively can be any

string, as long as it does not contain any of the excluded characters. The optional

expiry dace controls the timeframe for which the browser will store and use the

cookie. lftimeframe is not specified, the browser will store the cookie only until

the end of the browser session.

The optional domain can be used to indicate that the cookie is not only valid for

this specific web server ("default if not set"), but also must be sent to other com­

puters with the same tail-matched domain. For example, if one is setting domain

to SEp. com, then the cookie will be sent with any HTIP request to a Web server
within SAP.

The path attribute limits the cookie to specific URLs on the server. A value of I
would indicate that the cookie is valid for all URLs on the server, whereas

Isap/bc/bsp would limit the cookie so that it could be be sent only to BSP appli­

cations.

The optional secure flag limits the browser to sending the cookie only over
HTIPS connections.

For our further investigation of cookies, we again have a small test program, with

the output shown in Figure 2.8.

<%
DATA: cookie TYPE string.

request->get_cookie(EXPORTING name 'nyCookie'

INPORTING value cookie).

%>

<ht.ml >
<body>

<form method="POST">

Cookie: <%= cookie %>

<input type="submit" value="Hit Me!">

</form>
</body>

</htJll>

<%
response->set_cookie(name = 'myCookie'

path = runtime->runtime urI

value = '123') .
response->set_cookie(name 'myCookie'..

path = runtime ->page_url

value '456') .
response->set_cookie(name = 'myCookie'

path = 'I'
value = '789') .

%>

For this example, we are going to turn around the viewing perspective and start

by examining the HTIP response. Initially, when the application is started, it will

find no cookies with the data it requires, and a cookie will be set.

Cookies 5554 HTIP and HTML

Cookie: 456 ~

Figure 2.8 Example BSP Application to show the Behavior of Cookies

It is very important to remember .that cookies are set from the server to the

browser, and the correct call is response->set_cookie. It is also possible to call

the get_cookie method on the HTIP request, but this only makes sense in cases

where the server is functioning as client to another server.

In the example application, we will set three cookies, all with the same name but

different values and on different paths. This action can now be easily seen in the

HTIP response. Pay particular attention to the different paths used for the differ­

ent cookies.

HTTP/1.1 200 OK

Set-Cookie: myCookie=123; path=/sap(bD1X==)/bc/bsp

Set-Cookie: myCookie=456;

path=/sap(bD1X==)/bc/bsp/sap/chapter02/example7.htm

Set-Cookie: myCookie=789; path=/

Content-Type: text/html; charset=iso-8859-1

Content-Length; 147

Cache-Control: no-cache

Server: SAP Web Application Server (1.0;640)

<html> ... </html>

With the above HTIP response, the browser now receives three new cookies. If

the cookie jar is full, older cookies are discarded, and the new cookies are stored.

As no expires attribute is set, the cookies will only be stored until the end of the

browser session.

When the user presses the button again, the browser knows the target server and

the URL for which the HTIP request will be generated. In the cookie jar on the

browser, all cookies are gathered that match this specification. In this example,

we set three different cookies, but in all cases the paths we used did match the

URL of the current running application. Let us look at the POST request.

POST /sap(bDIX==)/bc/bsp/sap/chapter02/example7.htm HTTF/1.1

Accept: -t­
Accept-Language: de,en-us;q=0.5

Content-Type: application/x-www form-urlencoded

Accept-Encoding: gZip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:1080

Content-Length: 0

Cookie: myCookie=456; myCookie=123; myCookie=789

We see a new Cookie header with the HTIP request, containing three

name=value pairs matching our three myCookie value sets. However, even

though our application set the cookies in the sequence 123, 456, and 789, they

returned in a different sequence with 456 first. The reason is that cookies are

sorted by the strongest path. The cookie with a path that matches the most char­

acters against the URL is placed first in the list. In addition, only the cookie values

are returned to the server. No path, domain or expires attributes are set on the
Cookie header.

Within the test application, a cookie can be read with the request->get_

cookie method. This method can also export the other attributes, but we saw

already that they exist nowhere within the HTIP request. This method can only

return these extra attributes in cases where the server is functioning as client and

to read the actual set cookie.

We see in Figure 2.8 that the get_cookie method returned only the first name­

matched cookie, and the value will be rendered out into the HTIP response.

<htmD

Cookie: 456

</htmD

It is not possible to delete cookies at a client. A cookie can be set to a new value

only if it has effectively expired. The browser then will place the newly set cookie

into the cookie jar, find that it is stale, and discard it. As the setting of dates in a

correct HTIP format is complex (you have to know that January 1st, 1980 was a

Tuesday, for example), the response object also supports a method delete_

cookie at client

response->delete_cookie_at_client(name 'myCookie'

path I / I).

This method then will set the correct HTIP header.

Set-Cookie: myCookie=O;

expires=Tue, 01-Jan-1980 00;00:01 GMT; path=/

In summary, remember that cookies are set on the HTIP response and later

retrieved with a get calion the incoming HTIP request.

56 HTIP and HTML Cookies 57

2.7 HTTP Redirects

An HTIP redirect is typically used on a website after reorganization, so that HTIP

requests for old bookmarks will be forwarded automatically to the correct page.

The other use is for simple website navigation. After the server has evaluated the
incoming HTIP request, it can decide to have the user view a different page. This

is also achieved with a redirect.

At a technical level, the browser has already sent an HTIP request to the server,

and the server has no choice but to answer with an HTIP response. As the server

does not have the valid data, but knows where it can be obtained, the server will

answer with an HTIP return code of 302 Moved Temporarily and also supply

the new destination. The browser will automatically, without the user's interven­

tion, start a new HTIP request to the new destination.

As a first step, we will build a small test program with one input field for a new

target URL. If the input field is filed, we go to the new website. For this example,

we do not do any error checking. However, in any real-world website, it is impor­

tant to first validate that the URL does not contain any form of code that will

allow a cross-site scripting attack. This topic is unfortunately beyond the scope of

this book. The results of the application can be seen in Figure 2.9.

<html>

<body>

<form method="POST">

Redirect:

<input type="text" name="redirect">

<input type="submit" value="Hit Me!">

</form>

</body>

</html>

<%

DATA: redirect TYPE string.

redirect = request->get_form_field('redirect').

IF redirect IS NOT INITIAL.

response->redirect(redirect).

ENDIF.

'/,>

The first part of the BSP application isjust a simple layout to collect the new target

URL. The second part looks for the availability of such a new redirect URL, and if

entered, will use the response->redirect method to instruct the browser to go

to the new Web page.

58 HTIP and HTML

Redirect [hio/1/WwWsap-press:com] ~ Hit Mel I

~PRESS
Figure 2.9 Example BSP Application to Show the Behavior of Redirects

For this application, as it has only one input field, the POST request will have only

the body: redirect=http%3A%2F%2Fwww.sap-press.com. Notice the effect of
the URL encoding on the incoming data, with the :-character replaced with %3A

and the / -character with %2F. We are interested in the HTIP response that the
server gives to the browser.

HTTP/l.l 302 Moved Temporarily
Content-Type: text/html; charset=iso-8859-1

Content-Length: 0

Cache-Control: no-cache

Location: http://www.sap-press.com

Server: SAP Web Application Server (1.0;640)

In the HTIP response, note first the return code in the status line. The value of
302 indicates to the browser that the answer it seeks is to be found by following

another URL. The second difference is the Location HTIP header that specifies
the new target URL. The browser will start a new HTIP sequence with the speci­

fied URL.

GET http://www.sap-press.com/ HTTP/I.l

Accept: */*
Accept-Language: de,en-us;q=O.5

Proxy-Connection: Keep-Alive

Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: www.sap-press.com

One subtle point in this HTIP request is the status line that now contains the
absolute URL (protocol, host, and absolute path) as this request is sent by the

browser to a proxy to complete the request.

2.8 Handling of HTML Resources in HTTP

Until now, we have concentrated mostly on HTML and the relevant HTIP condi­
tions. Let us look also at the way resources are loaded. We will write quickly a

Handling of HTML Resources in HTIP 59

small application that just shows an icon and a button to trigger server round

trips. The result is shown in Figure 2.10.

<htrnl><body><forrn rnethod="POST">

<i mg s r c>" <%=CL_BSP_MIMES=>SALICON(id=' ICON_OKAY') %>,,>

<input type="subrnit" valu~="Hit Me!">

</form></body></htrnl>

I<,/ [HilMel II
........~,..---....,,--...-.~..,;..,

Figure 2.10 Example BSP Application to Show the Behavior of Resource Caching

Let us concentrate on the loading of the image itself. Once the HTML page is

loaded, the browser starts a second GET HTIP request to fetch the image for dis­

play, a process similar to all requests we have seen before. However, let us look at

the HTIP response received.

HTTP/1.1 200 OK

Content-Type: irnage/gif

Content-Length: 191

Last-Modified: Fri, 13 Aug 2004 12:17:27 GMT

Cache-Control: rnax-age=604800

Server: SAP Web Application Server (1.0;640)

Date: Sun. 25 Sep 2005 12:32:49 GMT

Expires: Sun. 02 Oct 2005 13:23:22 GMT

GIF89a ...

We see that a number of new headers are available. The Cache-Control header

with the value max -age=604800 (seconds) informs the browser that the returned

data can be cached for seven days without further problems. Some of the other

HTIP headers (Last-Modified, Date and Expires) are set in addition to convey

the same message for older HTIP/1.0 based proxies that might be encountered

enroute. Thus, the browser now has an image in cache that is valid for the next

seven days. Figure 2.11 shows a summary of the HTIP traffic.

x i[QJ SLilrt ~ Stop "Clear ~ Filter IT?J COVi 8 Sav['. W About l
fS"t;ted Time S,.. Met." Re". Type ; URi. ;
11"oo~o-o-~o-o:6oo' 0.073 36-3 GET- -- -26"0-" te)(t,f;'tml.,-·"'-httP~7T~s·'1Q':;9.wdf.sap,C()rp: 1080/sap{bDlkiSZjPTAwMA==)lbc/b~lJ/sap,., ~
ii 00:00:00.112 0.003 513 GET 200 image!gtf h~:l!uS"1O'l9,lfI'df.~ap.corp:l080/sap/pubhC/bc)icon;;/5_B_OKAy.glf f

~'LQ.Ql9g&5..~~i,"L.~9;Q18_.....l'§~-.!9.SI. ?~QO~_~IJ;J..l!:~h;,_,J)!!P_:UJ}!7!2~:.:.\.:g[.s~ap~c;o.!Jll1Q§fJ/~3:l~(QQJ,Ig:~.f]IT~~'1,~U9flb-~~J.~~p-,,.J

Figure 2.11 The First Time a Resource is Loaded

60 HTIP and HTML

After we have played around with this complex application, we close the browser

and take a break. Later in the afternoon, we start the application again. Figure

2.12 shows what happens at the HTIP level. The first GET HTIP request loads the

application. The HTML page contains the reference to an image for displaying.

The browser looks into its cache, finds an image matching the requested URL that

is still valid for at least six days and a few hours, and uses the image. This behavior

is shown to us by our HTIP trace tool with the (Cache) indicatorfor the result of

the HTIP request.

@S~p~~~~A~~ g~rnAbDut l
. , ~me i S,,Met.:. R;€Slllt ~'flJ_e, _ .Y~ _ 0 ••••, __ .' ., •••_. ,._,.,~, •• ~ •• _-,--" __~_._," __ __,_,,",_.__• J_ ,_~._, .,~~,~,~~~

0.073 570 GET 200 !:Ext/htrnl h~:lfu5'1049.wdf.s2lp.corp:1080/sap{bD1kZSZjPTAwMA===J/bcjbsp/sap. ,~

0.003 a GET (Cache) imagejgif h~:llus'1049.'Ndf.sap,corp:l080/sap/public/tJC/icons/s_8_0KAy.gif t

__~~O_52~c...,-.2::Z.l........3~_?~~__..?J~ . ~~~:~~u:..~~~,sa~.~rp:,lOSa/~pQJ~ 1kZSZjF'TAwMA====)ftJcftJ~/sap .• ~

Figure 2.12 Resource is Loaded from Browser Cache

As this application bores us a little, we take a longer break from the content of this

chapter and return eight days later to test the application once more. Looking at

the results from our HTIP trace tool (Figure 2.13), we see that the server decided

to send a new GET HTIP request to load the image (the copy it had has now

expired) and was answered with an HTIP return code of 304.

x I ~ 5t.3rt ® 5trJp -,(Clear .~ Filter UE! Copy 9 Save W~ut ~

il"o~o~~~~6:oHoJ_···_O~~~~' __ -~fuJ·';Ef~:-"·~k~~!~·_~~~t~r~h~}jC;4019-:~r;p'~7,;71~;;;P~D1kZszjPTAWMA;==)ft;c7bsP7sap ..~~

1111000°';00:0°.. 093 0.004 252. GET.. 304. imaQ..e/Qif.. h~:./IUS40"r9,W.d.f,saP.,corp:1080!Sap!.jJubliC/bqi."o.nS.!S_8_0.KAYo9If. .~

~Qg':o~O~Lf.C2..s:r~2fl!L._._-!~~tm~~~.,.,..h!!PJ1l~;;j2:'1J~r::dfc;EEEJ!E29~E~l£R....~El.~.tt~ ~JJE £I2..sp.L~g.;,;.J

Figure 2.13 Resource is Verified with the Server to be Valid

It is interesting to examine the GET HTIP request first.

GET /sap/public/bc/icons/s_B_OKAY.gif HTTP/1.1

Accept: «] »

Accept-Language: de,en-us;q=0.5

Accept-Encoding: gzip. deflate

If-Modified-Since: Fri, 13 Aug 2004 12:17:27 GMT

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:1080

We see a relatively standard HTTP request, but with one new HTIP header: If ­

110dified - Since. This informs the server that the browser already has the object

matching this URL and that the copy the browser has was last changed on Friday,

August 13, 2004. This date matches the date from the Last-Modified header

that was set when the resource was initially loaded.

Handling of HTML Resources in HTIP 61

The server looks at the If-Modified -Since header and compares this date

against the last modified date of the actual resource. As the date matches exactly,
the server answers with return code 302. Because the browser already has the
correct resource, the Content -Length is set to zero, and the resource is not

transmitted again. With this, the browser again has the resource for a valid period

of seven days before it will check once more.

HTTP/1.1 304 Not Modified

Content-Type: image/gif

Content-Length: 0
Date: Sun, 25 Sep 2005 12:47:03 GMT
Last-Modified: Fri, 13 Aug 2004 12:17:27 GMT

Server: SAP Web Application Server/7.10

Cache-Control: max-age=604800

As images are usually cached in the server at the ICM level as well (in the kernel
before the ABAP stack), these HTIP requests can be answered very quickly and do

not place much load on the server.

2.9 Troubleshooting Examples

I<nowing how HTIP works and having a good HTIP trace tool at hand, we are

able to troubleshoot many different types of situations without even looking at

the source code. In this section we will look at a few problems that we often

encounter.

2.9.1 Missing Resource

The "little red X" is seen often (see Figure 2.14). It is very annoying, but actually

very simple to at least isolate to specific URLs.

..

EJ IH'tMe' I

x I ~ st", @ SlD,)(Clear ~ F,ltEf lIJ U,c'i 18Save mAbO" G Help

Started Time S".: Me.. , Result, Type UP.L
60:'00;60.000 --0,079- -344'"~P'OsT-'-- 200 ·-·---~;~~I:.~ http://~54049:;~;df.;p:~Q;P·;io'807;;po;D1kZsziTA:N-r-''A;;;;;)lbc?[;~P I s a p
00:00:00.116 0,004 2.". GET 404 texl:;'himl.. http://us4049.'II'df.~p.c:orp:1080/bad~mage.gif

Figure 2.14 Troubleshooting a Missing Resource

Looking at the HTIP trace, we see that an HTIP request is first answered with a

return code of 200, and the content type is set to text/html. This is an HTML page
that contains a reference to an image. The next HTIP request attempts to load the

image itself, and is answered with an HTIP return code of 404 (not found).

62 HTIP and HTML

The 404 shows immediately that this is the HTIP request that was not loaded cor­

rectly. There are typically two problems that can account for this situation. The
first is that the URL itself is not correct. In this case, use the Referer HTIP header

from this request to see what HTML page contains the bogus link (always one
higher up in the HTIP trace), and start there to investigate further. The other
alternative is that the URL is correct, and the server has a problem answering the

request for the resource. Paste this requested URL directly into the browser and
debug the server side to resolve the issue.

2.9.2 Non-Secure Warnings

The warning message" page contains non-secure items" always causes calls for
help. This warning message usually indicates that the website is been accessed via

an https: / / protocol, and that now one of the resources on the page is been
requested via the http://protocol.Letuslook at the HTIP trace in Figure 2.15.

.1' .;"!!,~,,.;y~:(,,;;;,

'''d

~I HitMe'1
 Doyou wantto display thenonsecure items?

v!
X)(Clear '\I' e Helpr"'y~"tl~(Morelrrfo]

~b'lll~': s.~._L Me,. . I
0.084 374 GET 200 'tex\:thbnl.,. http::;:lfus4049.wdf.sap.corp: 1443!::;ap(bD 1k2Sz1"PTA~tM"A-';;~ }jbc/b::;p/::;a·.~~~'~·

00:00:00.103 0,006 513 GET 200 image/glf http://u::;4049,wdf.sap,c:orp:WaO/sap!publieJbc/icons/s_8_0KAy,gjf

Figure 2.15 Troubleshooting Non-Secure Warnings

We can see that the last HTML page (type text/html) is loaded with https: / /

protocol. However, the next HTIP request (with a response of type image/ gif)

was with http: / / protocol. This is the reason for the warning. Using the Referer
HTIP header of the image, it is possible to easily cross reference it to the HTML

page that requested this image and that contains the URL with the wrong proto­

col.

The other reason that we often see for this warning is that <iframe> tags are used

on page with the src attribute set. This is a typical technique in HTML for later

triggering the <iframe> loading dynamically.

2.9.3 Relative URLs That Become Invalid

The next example is from an application that worked for a long time. Then one
day, the same application was not started under its usual URL, but via a short

alias. Figure 2,16 shows the "little red X" and the corresponding HTIP trace.

Troubleshooting Examples 63

I

IG [HitMe! I
v

x	 IEJI @ Stnp 'jI((Ie., W 'lite, ~ ,c"" III S.,e WAbout. 0 Help

r sta-ted . : lime S... i Me". j aeant : Type i URl

Ilo,"oo,oo,ooo"o~07i'- 372 200 http'I/U'40<9.';df"prn,p:l0.80/bO.Ok~ch~Pte.'..02.(bD1kZ ..-"'---"­GET """hlm.I., ... SZj':AWMA~:-
J~Qq.l04 0.010 2... GET 404 te~...k.~~j~~~Q.coro:;W801pJd.~~(~ B ~KAY·9L..,..~~_·

Figure 2.16 Troubleshooting Invaiid URLs

We see already from the first HTIP request that it is not our usual / sap/bc/bsp
path, but a much shorter alias. The next HTIP request for an image is now

answered with an HTIP return code of 404, and a quick examination shows that

the URL is wrong (the / sap segment is not specified). From this, we know that

the URL is invalid. Let us look at the last response received for the HTML page.

HTTP/l.l 200 OK
Content-Type: text/html; charset=iso-8859-1
Content-Length: 186
Cache-Control: no-cache
Server: SAP Web Application Server (1.0;640)

<html><body><form method="POST">
" .. / .. / .. / .. / public/bc / icons/ s_B_OKAY. gi f " >
<input type="submit" value="Hit Me!">

</form></body></html>

We see in the HTIP response that the HTML page is requesting a relative URL

.. / .. / .. / .. /public/ This urn on its own looks to be perfectly accept­

able. However, from the HTIP trace we know that the URL of the requested

HTML page is /book_chapter02 (...) / exampleNN. html. Given this absolute

URL, plus the relative URL specified, we now can see why the browser con­

structed the new URL /public/ .. '. Effectively, the relative path stripped all

tokens from the original URL until none were left. All other / .. sequences to

specify the parent node are ignored, and then the browser starts again with the

first token / public from the relative path to build the new URL.

In HTML pages, we recommend using absolute paths to public resources. If rela­

tive paths are used, then it should only be in the relative-as-child relationship, and

not over the parent (/ ..) path.

2.9-4 Estimating Performance

In this section, we want to highlight other uses of an HTIP trace tool. Often, we

are interested in having some performance numbers for a website. An HTIP trace

can already help to get a rough estimate of a Web application's performance.

x	 I[Q) ~'::3r[r@ Step)(clear ~ Fil~r ITli Copy 9 Save W About ~ G He~
Starred : lime Size Me.. , Result i Type ! URL ;Sl;

I -015':-6"0;00',000 .-3,863 - 17330 POST 2.00 -tExt/riimi:.-· ·-h-ttP)/~S4049~~~df.-~ap:corP; lOBO/;~P(bDili"SZjPTAV:MA==~TIb~7P]~;-::=
I to 00:07 660 1437 173::;0 POST 200 textfntrnl.. http://uS''1049.wdf,sap.corp:lOao/sap(bD1kZSZjPTAVI'MA~=)lbc:bsp/sap,

00 00 12.252 1454 17330 POST 200 textfntml, .. htlp:l!us4049.'fl'df.Gap,corp:1080/sap(bD1kZSZJPTAWMA====JIbCJbsp/sap,
00 01 00 471 0009 372 GET 2.00 im~ge/glf htlp:IIUS"1049.VI'df,s<lp.(Qrp:l0S0/(;ap/publ1c/bc/ur/Des~gn2.002/themesh.

I 00'0100475 0,006 400 GET 200 imagejQlf ht!+J://US4049.wdf.sap,corp:1080/sap/publlclbcjur/Deslgnzoo2/themes!S:',V):

1I~ ~' f)n ~"~', ,~::~=-~~"~ 7'~~.I_:~. i~~' fl. '__A~~A_~~_~:~ ~-- ~_~~-' 1;">_:~ ':~ ~.::~~I;~~~ ~n~~~~=:~r~~ ~JI ~~,A~__ =_
~.J

Figure 2.17 Troubleshooting Performance of HTTP Requests

In Figure 2.17, we can see the number of requests, the size in bytes that each

request retrieves from the server, the resources that are loaded, and whether in

subsequent testing these resources are cached or continuously reloaded. For

example, the same HTML page was loaded three times, and in all three cases

17,330 bytes were loaded. However, the first request took 3.8 seconds to com­

plete, while each of the other two requests took only 1.4 seconds. As the pages

rendered the same (sized) HTML output, it looks as though initialization of the

page on the first request took a long time. These measurements are round-trip

latencies, and reflect the time to transfer data to the server, process the data, and
respond to the server.

64 HTIP and HTML Troubleshooting Examples 6S

3 HTTP Handler

Understanding the underlying structure of the ICF tree and its inner

implementation through handler classes is a powerful addition to any
BSP developer's toolbox. Handlerclasses are especiallyuseful because

they allow for direct access and complete control over the HTTP
request and response objects.

3.1 URL Handling in the leF Tree

A Web server is like a large shopping center where thousands of incoming cus­

tomers are all asking for specific shops. In the case of the Web server, we have

thousands of incoming requests, all asking to be processed. The problem is how

to dispatch each HTIP request to the correct handler.

This is the work of the Internet Communication Framework (ICF). The ICF takes

the URL from the HTIP request and splits it into tokens. The tokens are used to

route the HTIP request through a tree of services.

IVirt.Hosts I Services sap/bc/bsp/sap/absenceform_new/default.htm

..'7 ~~~:~.:5f::="-0;! ==-===-::i J J~ ·
1>0 option 1

. 1>0 pUblicl

~,~~. ';7 ~~~~. __. _.1
'7 i.§1) bsp

'7 ($) sap -- ­

~ absenceform
~abS8rl[8'fu;m~ne~'~ ---------~
~ ·~i~~tinb~;;---_·_-_··_·

~ alertinboxwap

Figure 3.1 URL to ICF Tree Mapping

Each node within the ICF tree can be configured to contain zero or more HTIP
handlers. The handlers are processed in sequence, until one handler signals that it

has processed the request completely. After that, the HTIP response is returned

to the browser. The sequence of processing is primarily from the root node down,

and then secondarily in sequence for each node. You effectively process all han­

dlers for the specific node (one can use the expression that the handlers are

chained), and then go to the next deeper node. A node does not require a han­

dier. If no handler is found on a specific node, the next deeper node is checked.

HTIP Handler 67.

For example, in Figure 3.1, the nodes sap and bc have no handlers. The node bsp

contains the BSP runtime handler. It will look at the incoming HTIP request and

process it completely. Because the BSP runtime indicates to the ICF that the

request has been fully processed, no further searching is done through lower lev­

els of the ICF tree.

The important concept to grasp is that ICF uses the tokens one by one to navigate

deeper into the handler tree until one handler signals that the HTIP request has

been processed. The rest of the URL is then not considered at all. The feature also

can be used to embed data into the URL as part of the URL segments. It is simply

a question of what the receiving handler will do with the rest of the URL, which

is considered to be effectively data (one string) passed to the handler.

Note The usual problem of one global namespace, and how to segment it,

also applies to the ICF tree and in effect to the domain of all possible URLs.

Here, the agreement that is enforced is thatall SAP development take place

within the I sap sub-tree. At the next level, the bc node represents SAP basis

development. Similarly, it is expected that customers will do their develop­

ment under a I customer namespace.

3.2 URL Mapping

For each handler, it is important to know what part of the URL was used to find

the handler and to have the rest of the URL available to make its own decision on

what actions it wishes to take. ICF makes this information available in special

header fields. These header fields are added to the incoming request by ICF, and

are not actually part of the original request.

sap/bc/bsp/sap/absenceform_new/default.htm
, '

-scriptname -pathjnfo

-requesturi

Figure 3.2 URL Separation into Request Headers

The three most interesting fields are:

~ -request_uri: This is the complete URL requested from the browser.

~ -script_name: This is the first part of the URL that was used to navigate

through the ICF tree until this specific handler was found.

~ -path_info: The rest of the URL that has not yet been used to resolve a han­

dler. The handler uses it to decide what action to take.

68 HTIP Handler

In Section 3.4, the other fields will be discussed in detail with a small example.

3.3 Sample Handler for Reading Images

An HTIP handler is a normal ABAP class that implements the interface IF_HTTP_

EXTENSION with one method HANDLE_REQUEST. Once the ICF has found a node

that contains a handler, the class is instantiated and called to process the request.

As an input parameter, this method gets a server object, which is effectively a

wrapper object containing the HTIP request and response objects.

This information should already be sufficient for us to create a first simple HTIP

handler. We will use the following test case: We have many pictures already

stored in a database, and we want to make them accessible in the browser. In our

BSP pages, we would like to have a symbolic way to reference these pictures.

What we would like to write, is something like:

<%@page language="abap"%>

<html>

<body>

<image src="/my/images/ICON_ARROW_LEFT">

<image s r c>" Imy I images/ ICON_ARROICRIGHT" >

</body>

</html>

The results we would expect to see in the browser are displayed in Figure 3.3.

I+-~.~~
Figure 3.3 Example Results

For the actual HTIP handler, we start this example by creating the class YCL_

IMAGE_HANDLER and specifying that it implements the interface ILHTTP_EXTEN­

SION. For the HANDLE_REQUEST method, we will start with some very simple

placeholder coding to test that We have all the pieces in order.

METHOD if_http_extension-handle_request.

if_http_extension-flow_rc = if_http_extension=>co_flow_ok.

server->response->set_status(code = 200 reason = 'OK').

server->response->set_cdata(

'<html><body>Hello World!</body></html>').
ENDMETHOD.

Sample Handler for Reading Images 69

The flow-return code informs the ICF that we have finished processing the

request and have written a complete response. For this simple example we do not

set any of the content specific headers and rely on the default behavior of ICM.

This is not recommended for actual production programs. The only value that we

set explicitly is the HTTP return code (value 200 implies it is Ol(for HTTP traffic).

The last line is the classic Hello World! for Web servers.

We now have a handler class that will respond with valid HTML coding when

called. We now must decide where we wish to place this handler in the ICF tree.

The handler is not a BSP application and therefore should not be placed under

I sap/bc/bsp. We have seen that our images are loaded from a path

Imy/images. Thus, we must effectively create these two nodes within the ICF

tree and can theoretically put our new handler on any of the two nodes. How­

ever, we might later want to install other handlers below the Imyl path, so let us

put our handler on the next node.

Patr, (default hostlmy ~ SeNice [Inactive)

SeNice Name limages I
~"f,~c"'~"~:;;;"""7,:;",,:('''m Lang. IEnglish i!l1 (Not maintained)

IDescription /,----'-'
Des?"!~

Figure 3-4 Creation of New Handler Class Node

With this, we have defined a new HTTP handler. We activate the node and use

the context menu to start a test for this node. In our output we should see our

simple Hello World I placeholder.

We can see from Figure 3.5 that our handler works for all types of URLs that start

with Imy/images. The ~script_name part of the URL is used to find the handler.

The rest of the URL, ~path_info, is ignored by the handler at this time.

Hello World! j ~_~_9r"~5"5.1 http://MyHost/mY!lmages!abc/k!m?xyz=l23

Hello World!

Figure 3.5 Handler Initial Output

3-3.1 URL Syntax

There are two ways that URLs can be defined. We could use the rest of the URL

to contain additional information we need. For example, we could expect

ImyI images INAl1Ewhere NAl1E is the image we will display. The other option is to

apply parameters to the URL to define the image required. In this case, our URL

would be Imy/images?name=NAME. Both techniques are similar, but the first is

more elegant and slightly shorter.

You remember from our initial code that we placed the images directly on our BSP

page. This required us to know exactly where in the ICF tree this handler is

installed. However, this is not very flexible for future changes and opens the pos­

sibillty of typing mistakes. What we really want is a method that can generate the

correct URLs for us. Should we later decide to change anything in our system

setup (using for example an external image server), we only need to update the

URLgenerator once.

We will add a new static public method URL() to the class, with name as the

import parameter, and url as the return parameter. Both are type STRING. The

complete source code is:

METHOD urI.

CONCATENATE '/my/images/ ' name INTO urI.

ENDMETHOD.

You might be tempted to consider appending. gif onto the URL to help the

browser determine what type of image it is loading. However, this is not required.

The browser will use the Content -Type header from the loaded images to deter­

mine the image type.

With our new URL generator, use of our images can now be done with less pos­

sibility of typing mistakes with this sequence:

<image src="<%=YCL_IMAGE_HANDLER=>URL(

I I CON_ARROW_LEFT I) %>">

Sample Handler for Reading Images 71
70 HTIP Handler

3.3.2 Handler Coding

We are now ready to write the core logic of the handler itself, most of which

resides in the single method HANDLE_REQUEST. The HANDLE_REQUEST method

can be broken into four distinctive parts, each with fewer than ten lines of code!

We start by informing ICF that this handler has finished processing the HTIP

request. Due to the use of the URI. () static method to build our URLs, we expect

that most HTIP requests will be correct. If any errors occur, we just raise an

exception.

METHOD if_http_extension-handIE_request.

if_http_extension-flow_rc ~ if_http_extension~>co_flow_ok.

Next, we must determine the required image. The -path_info header field con­

tains the part of the string that has not yet been used by ICF. Keep in mind that

the beginning of the URL was used to find this node in the ICF. The string is deter­

mined and manipulated slightly: uppercase conversion, strip leading / -character,

etc.

To avoid hard-coding the name of the -path_info header field, we use instead

the interface IF_HTTP_HEADER_FIELDS_SAP. We actually have two interfaces

IF_HTTP_HEADER_FIELDS_SAP and IF_HTTP_HEADER_FIELDS to cover all the

possible header field names via public constants.

•	 Determine image name fro~ -path_info (= image_name)

DATA: name TYPE string.

name ~ server->request->get_header_field(

name = if_http_header_fields_sap=>path_info).

TRANSLATE name TO UPPER CASE.

IF STRLEN(name) >= 1 AND name(l) = '/'.

SHIFT name LEFT.

ENDIF.

Up to now, all code has used relatively common handling of HTIP requests. A lit­

tle application logic is now required to determine the graphics interchange format

(GIF) image and load it. Starting this block of code, we have the name of the

image as input and expect an XSTRING containing the GIF image as output. The

exact storage mode and location are not relevant to our discussion here.

Error handling is done with the usual ABAP exceptions. The ICF has an exception

handler installed, and will correctly render out an error message should we

encounter any problems loading the image content.

Application logic

DATA: content TYPE xstring.

content = me->load(name).

IF XSTRLEN(content) IS INITIAL.

RAISE EXCEPTION TYPE cx_http_ext_excep~ion

EXPORTING msg = 'Invalid URL! ' .

END=F.

The last part of the handler is the HTIP response-handling. First, we set the HTIP

return code to 200. This is the defined code to indicate that the HTIP request was

processed correctly (see Chapter 2). HTIP status code descriptions can be found

in the global Interface IF_HTTP_STATUS. The Content -Type header is set to indi­
cate that this is a GIF image.

*	 Set up HTTP response

server->response->set_status(code = 200 reason
 'OK').
server->response->set_teader_field(

name = if_h~tp_header_fields~>content_type

value = 'imagc/gif').

server->response->server_cache_expire_rel(

ex.pires_rel = 86000).

server->response->set_header_field(

na~e = if_http_header_fields=>cache_control

value = 'max-age=86000').

server->resporse->set_data(content).

ENDMETHOD.

Notice that the Content -Length header is not set. It will automatically be set

when the H ITP response is streamed to ICM. In addition, some older kernel ver­

sions present a minor problem. If the Content-Length is set and the HTIP

response is gzip encoded, then the Cont err: -Length is not reset. This causes the

browser to wait indefinitely on the rest of the input.

The HTIP response is flagged so that both the browser and the server will cache

it. Caching the image also in the ICM improves performance when the next user

requests the same image.

The final statement places the content into the HTIP response. Notice that there

are methods for handling both XSTRINGs, seCdata and append_data, as well as

STRINGs, set_cdata and append_cdata.

The handler is finished, so let us try our test program.

72 HTIP Handler Sample Handler for Reading Images 73

5tjmyrlmages~con_que:;tion

1i>J

~~
~ Add~es~ i http:/{MyHost/my~mages{lcon does not_exist ---l

Error when processing your request

wh-at has h~1ppened? I
!

ThlO' L1RL http:n~.~yHost/5ap(b(jybookjmage5jl(Qn_does_not_exi5t was not calleddueto an error. t
~e	 ,

• Thefollowl~g errortext w::!s processed in the systemBSP ,An exception that could not be caught occurred. ~
• The error occurredon the applicationserver 1"1~/Ho~t_B5P _00 and in the 'Norkprocess 0 . ~

l
• Thetermination type '.'las: RABAX_STATE

• TheABAP callsteckwes.	 t

,~ }'P;; _ ,J;"~~

.~~.~.~,_~f!lUE~ttT.Jf",~~ENS~ON::;'.1i~2~l-~,..,~~,.cJ!;!~a..ol~gr~~:S~,.,I!'~g,/:J~~~~~~,::;.==::=======",c~..., __J

Figure 3.6 Handler Final Output

For our first test, we enter a URL to a new image in the browser directly, and see

that the new image is displayed as well. Notice that this URL contains no . gif

extension. Nevertheless, the browser knows that it is an image due to the Con­

tent-Type header. For our final test, we enter an illegal URL. Remember the

check for this plus the raise exception sequence. The ICF returns an error page

for the caught exception.

3.4	 Alias Handling
As we have seen, the exact URL has an important meaning for mapping onto the

handler list. However, a deep hierarchy of nodes in ICF leads to lengthy URLs

which reduce the usability of your application. Luckily, there is an alias technique

that can be used to reduce the length of the URL while still maintaining the ser­

vice hierarchy.

This alias type is created as a normal ICF node from within transaction SICF by

selecting Reference to an Existing Service. It has no associated handler class, but

just points to another place in the ICFtree where the URL resolving is continued.

ICF also supports the concept of external aliases. These are treated as local con­

figurations, whereby string comparisons are made against the incoming URLs and

are matched against external aliases, which again point back into the ICFtree. The

difference is that, while normal aliases are considered development objects that

are also transported through the landscape, external aliases are simply local con­

figuration data.

As HTIP handler writers, we are very dependent on the URL form and structure to

decide what the actual request is. However, developers and system administrators

have a different aesthetic sense and can create URLs that have no relationship to

those we are used to.

Let us look at a small example. In the first step, we write asmall handler class that

will just echo back to us all the different header fields set by the ICF framework

(all start with '~'). The complete source code is only a few lines long.

METHOD if_http_extension~handle_request.

if_http_extension~flow_rc = if_http_extension=>co_flow_ok.

DATA:	 hfs TYPE tihttpnvp.

hf TYPE ihttpnvp.

html TYPE string.

server->request->get_headerjields(CHANGING fields hf s) .

html = '<html><body><table>, .

LOOP AT hfs INTO hf WHERE name CS '~'.

CONCATENATE html

'<tr><td>' hf-name '</td><td>' hf-value '</td></tr>
INTO html.

ENDLOOP.

CONCATENATE html '</table></body></html>' INTO html.

server->response->set_status(code = 200 reason = 'OK').

server->response->set_header_field(

name	 = if_http_header_fields=>content_type

value	 = 'text/html').

server->response->set_cdata(html).

ENDMETHOD.

This handler is placed into the ICFtree on the path Imyl echo. We then add a new

node abc without a handler below Imy/echo. With the URL Imy/echo/abc in

the browser, the ICFframework will also match the abc from the URL against the

node in the tree, and test that this node is active before starting the handler.

Should a customer not wish to have service abc active, it can simply be deacti­

vated, and ICFwill correctly answer the incoming HTIP request. Now, with a path

Imyl echo/xyz, ICFwill match only the first two segments, find them active, and

start the handler.

Alias Handling 75
74 HTIP Handler

This is why BSP adds a node to the ICF tree for each BSP application. At runtime,

BSP verifies that the specific application actually started does have a node in the

ICF tree. With this approach, only one handler is installed in the ICF tree, but all

applications are shown, with each application capable of being deactivated (this is

the default case when shipped).

Given the nodes along the path Imy I echol abc in the ICF tree, we create an addi­

tional alias in the ICF tree Isap/public/123 that points directly onto our path

Imy/echo/abc.

With this ICF configuration, one possibility is to call our handler with the path

Imy/echo/abc/klm/xyz. The handler will be found after processing the nodes

Imy I echo, leaving the sequence I abc/klmlxyz as ~path_info.

Let us look more closely at our alternative ICF path. In this case, it is possible to

call the handler with the URL I sap I publici 123 IkIml xyz. I<eep in mind that we

specifically created the alias with a name that is more meaningful to us . In this

case, the ICF runtime will use Isap/public/123 to find the alias for

Imy I echol abc, where the handler is also found. The remainder of the URL for

the ~path_info is only IkIm/xyz. The labc segment was never in the URL and

never visible at any time. Should our echo handler have required three segments

in the URL, the -path_info would definitely have made it fail. See Figure 3.7 for

the output from the handler in two different cases.

! AQdrm.lcID htlp:// ... /my/echolabcJ1dm/xyz ! Addre~~T~ htlp~1I ,./sap/public/123,!jm/xyz

4Cequest_method GET -crequestjnethod GET

-eequesturi /myiechoiabc!klm.lxyz 4CequesUni /sapipublic.l123/klm1xyz

~ath imyiechoiabeiklm/xyz ~ath isapipublici1131k1miXyz

-path_translated .my/ecbo/abc/klm'xyz ~ath_translated /sap/public.l113/klmixyz

-eerverjprotocol HTI"PiLI -server-'p!otocoI HTI"P/LI

-vservcrnarne us4049.wdf.sap.corp -eerverjiame us4049.wdf.sap.corp

-serverjiort 1080 -eerverport 1080

-eerverjiame_expanded ns4049.wdf.sap.corp -eerver_name_expanded us4049.wdf.sap.corp

-server-port_expanded 1080 -server-porl_expanded 1080

-remoteaddr 10.18.110.143 -cemote jiddr 10.18.110.143

-urLscheme_expanded HTI"P -uri_scheme_e.xpanded HTI"P

-script_name /my'echo -cscripr neme !saplpublicil23

-path_info /abc/klm'xyz ~ath_info .!kImlxyz

-script_name_expanded /myiecho -script_name_expanded ,Imyiecho

-pa~:.mr.~:.e.x.l"~d-,,_~_~~~~:,):z ~ath_info_expanded /ahoklmix)'z l

Figure 3.7 Handler Output for two URL Tests

From this example, we see that the use of ~script_name and -path_info could

in specific cases lead to the wrong result. These fields reflect the data from the

URL that the user enters into the browser and the path that was logically tra­

versed to relate the URL to a handler. They do not reflect the true path within the

rCF tree, which is what developers work against. For this, we must look at the

fields -script_narne_expanded and ~path_info_expanded, which again has
the correct values.

The other ,~, fields are used from time to time; but not at the same critical level

as these specific two fields.

3.5 Handler Example-Table Query

Although BSP is the focus of this book, we hope this small excursion into HTIP

handler programming has been very useful. With only 20-40 lines of code, a new

service can be plugged into the HTIP framework.

With such an HTIP handler, you are completely in control of the HTIP request

and response, and can better control the exact rendering. For specific scenarios,

the services of the BSP runtime are not required, so you can use this alternative

technique of rendering directly,

In our last example, we returned the binary content of image. We also saw how

we could render HTML directly in the previous example. But we couldjust as eas­

ily return XML. We now have the ability to build small data interfaces with the

handler approach.

To explain this ability, we will take the first example and modify it. Instead of pass­

ing in the name of an image on the URL, we will pass the name of a database table

instead. We will then query the records from this table, convert the results from

an ABAP internal table to a binary XML stream, and then return this XML stream

with the HTIP response.

We will even take this example one step further. Not only will the table name be

passed on the URL, but we will support WHERE conditions for our table query to

be passed as URL parameters. Therefore the following URL would generate the

output in Figure 3.8.

http://(host>/rny/book_query/sflight?carrid=AA&connid=0064

One word of warning: This is a very powerful handler that should not be installed

in a system unless the necessary precautions are taken, At a minimum, the code

must be extended to include an authorization check. Also, never run this code on

any public node. The handler effect provides direct database access. It is similar to

a hex editor. It is hardly ever required, but it is the only tool for this particular job.

76 HTIP Handler Handler Example-Table Query 77

; Address 1 htlp://MyHost/my/oook~querYfsflight?carrid="AA&:onnid="0064

<?xml varsicnet Lu" encoding:::"utf-SII ?>

_ c asx: ebap xmlns: aSi<::::"http://~'H'H'~ .sap .com/ebepxml" version:::

t1

1 .O":>
 ~
<as x: values;>-	 !
- <IT AB> !

- <SFLlGHT>
<M,6.NDT;>088</~~ANDT>	 !

t<CARRlD>AA</C.ARRlD>
<CONI,ID>0064<!COr,INID> !

(
<cFLDATE>2004-11-19 <!FLDATE>

<PRICE>422.94<!PRICE> ~

<CURRENCY>USD<!CURRENCY>

i
1

<PLI>l'IEn PE>A31O-300<!PLANET YPE>

<SEATSMAX>280<!SEATSMAX>

<SEA TSOCC>26 7<!SE,t., TSOCC>

<P ,t., YME~JTSUM> 130358 ,67</PAYMENTSUM>

<SEATSMA)<_B>22</SEATSMA)<_B>

<SEATSOCC_B>21</SEATSOCC_B>

<SEA TSMAXJ> 10</SE iI,TSM.AXJ >

<SEATSOCC_F>9</SEATSOCC_F>

</SFLIGHT:>
- <SFLlGHT>

<MAI'DT>088</MANDT>

<CARRlD>AA</CARRlD>
· <CON~I1D>006+</CONWD>

<FLDATE>2004-12-17<!FLDATE>	 \I_~'~"""""~'__"_~_'~_7>'".~"""""'~""---'--".'---_'_~-._-,..,..,.--.,..._,..,...,,~_.--'-- ­

Figure 3.8 Table Query Handler Output

3.5.1	 Table Query Handler Implementation

We begin our process much the same way as our first example. We still pull the
table name out of the URLjust like we extracted the image name earlier.Thereaf­

ter, we collect all URL parameters for our WHERE condition.

, Determine table name from URL -path_info (= Table Name)

data: name type string,
name = server->request->get_header_field(

name = if_http_header_fields_sap=>path_info).

translate name to upper case.
if strlen(name) >= 1 and name(l) = '/'.

shift name left.

endif.
server->request->get_form_fields(

CH&~GING fields = m_parameters).

All we need now is the call to the application-specific logic and then the buidltng

of the HTTP response that we had in the original example. The only difference
now is that, because we are retrieving dynamic data instead of static image con­
tent, we do not activate the server and client caching of the response.

78 HTIP Handler

,	 Application logic
DATA: content TYPE xstring.
content = me->load(name).
IF XSTRLEN(content) IS INITIAL.

RAISE	 EXCEPTION TYPE cx_http_ext_exception

EXPORTING msg = 'Invalid URL!'.

ENDIF.

server->response >set_data(content).

This time, however, let us take a closer look at the application logic. We will start

the application logic by dynamically creating an internal table that matches the

database table we are going to select from.

DATA: itab TYPE REF TO data.

FIELD-SYMBOLS: <tab> TYPE table.

CREATE DATA itab TYPE TABLE OF (i_name).

ASSIGN itab->' TO <tab>.

Next, we will take the parameters that we have pulled out of the URL and use

them to build the database query.

FIELD-SYMBOLS: <wa_parameter> TYPE t_parameter.

DATA cond_syntax TYPE string.

LOOP AT m_parameters ASSIGNING <wa_parameter>.

CONCATENATE	 cond_syntax <wa_parameter>-name

, = " <wa_parameter>-value ','

INTO cond_syntax.

IF sy-tabix sy-tfill.

ELSE.

CONCATENATE	 cond_syntax ' and ' INTO cond__syntax.

END IF .
ENDLOOP.
IF cond_syntax IS INITIAL.

SELECT' FROM (i_name) INTO TABLE <tab>.
ELSE.

SELECT ' FROM (i_name) INTO TABLE <tab>
WHERE (cond_syntax).

ENDIF.

Now that we have our data in an internal table, we just need to convert it to XML.

DATA:	 g_ixml TYPE REF TO if_ixml.
g_stream_factory TYPE REF TO if_ixml_stream_factory,

Handler Example- Table Query 79

g_encoding TYPE REF TO if_ixml_encoding.
CONSTANTS encoding TYPE string VALUE 'UTF-S'.
DATA: resstream TYPE REF TO if_ixml ostream,

ressize TYPE i VALUE O.
""Create an instance of the Ixml Processor
g_ixml = cl_ixml=)create():
""Create the Stream Factory
g_stream_factory = g_ixml-)create_stream_factory().

""Create an Endcoding and Byte Order
g_encoding = g_ixml-)create_encoding(

character_set = encoding byte_order = 0).
""Create the output stream with a pointer to our binary
resstream = g_stream_factory-)create_ostream_xstring(

r_content).
""Set the Encoding into a stream

resstream-)set_encoding(encoding = g_encoding).
""Call Transformation using the simple XSLT id indent

CALL TRANSFORMATION id_indent
SOURCE itab = <tab) RESULT XML resstream.

The returned XML content works well if you want to use this handler for some
sort of data interface, but the XML output is not particularly human- readable.
This is a problem with a simple solution. We can add some logic that will further

convert our XML stream into HTML using XSLT.

We do not want to have to create a whole new handler class for just this one
slight branch in our logic. Instead we will just create another leF service but use

the same handler class for it.

1,IECreatejChange a Service

llctp.~(~; IdefaulChosUmyl

reF Object Ibook queEy htm I@@ Service (Active) .

Description in !E~I English llli G
!BSPBook· ICF Handler Example to dynamicallyquery a table and return "

Ithe content as HT~IL

,~'\'!:

Handler list (in execution otder):

rn
_~~..~rll iYCL•.:r~LE .~UE_R~ ..__._~.~._~.LJ:J_I_.~.~:

Figure 3.9 Second ICF Service Linked to the Same Handler Class

80 HTIP Handler

In the coding of our handler class, we can now check for the unique portion of
our URL and branch our logic accordingly.

IF	 i_server-)request-)get_header_field(
name = if_http_header_fields_sap=)request_uri
CS 'book_query_htm'.

DATA: xsource TYPE xstring.

xsource = r content.

CLEAR r_content.

CALL TRANSFORMATION xmlgroup

SOURCE XML xsource
RESULT XML r content.

ENDIF.

For this example, we have used an SAP's XSLT program called XMLGROUP for con­
version from XML to HTML.

AddressI http://MyHost!my/book.querLhtm/tDOO

QQD .. _.__ . __ _.. __

QQQ9:Q°:QO... . -- --, ---------- --------- ----------- ----- ------­
~ _... .. -- _.----. -- -- -- -- -- -- -- -- -- -- -- - -- - -- -- -- -- -- -- -- - -- --. --.- ­
[)[\1 . . __ . . __ _ __ .. _

.~--_ ---­ ------_ ----------_ -- ------. ----------_ --- .. --­

.S,",P.A~ .I~9~.2.er.n . __ . . __ _.... _. _. .. _.. .

~~~!Ido!f. ... .. _.. _.. . .... ... . . 
X .. . .. __ . . .. __ .. _ 

generated by XTe 2.0 (S..4PAG) 
_._~.~..... -~~~'~~-,.,.~~~-~-.-_. __.-"--.....".--.-.-'~,....,~...,.....--_ ' -.,.~;.. -_.=_...

Figure 3.10 Table Query Handler Output-HTML 

Handler Example- Table Query 81 



4 URLs in asp 

The URL is a versatile part of any Web application. It is the entry 

point, transaction code, and command-line interface equivalents all 
rolled together. In this chapter, we will look at certain unique aspects 
of the URL, such as URL mangling and Fully Qualified Domain Names, 
in the context of 8SP 

4.1 URL Mangling 

4.1.1 What is URL Mangling? 

When accessing a website, the URL of the page usually is shown exactly as 

entered. However, once a URL is entered for BSP applications, it has a nasty habit 

of changing itself quickly. 

Address I http://MyHost,com/sap/bc/bsp/sap/decode_url/default,htm vJ 

.L Address I http://MyHost,com!sap(bD IlbiZjPTMOA=:::)Jbc/bsD/sap/decode_url/default.htm v,1 
__ __ ••.• _ •. n • _ •.. __ .• ,~~.,_~"" _~._~ .~. ~_~_ ~_~_ 

Figure 4.1 BSP URL Before and After a Change by BSP Runtime 

This process is called URL mangling, and it is worth looking at it in more detail. 

The first question is always what is hidden inside the URL. Usually, the current 

logon client and language are written into the URL. However, additional onfigura­

tion information is stored inside the URL from time to time. Typical examples are 

the theme in use, portal start-up information and, in extreme cases, a session ID. 

SAP provides a small BSP application called decode_url/ default. htm to 

decode the mangling. 

~ ~d~)es~ ~/fMYHost.comJsaD(bD1biZjPTA40A==}/bcJbsp/sap/decodeurl/default.htm ,~':l~ 

URL 
Ihtlp:!iMyHost.,omlsap(bD1Ibi7JPTA40.~==)!bcibsp!sapldecode urlidefaul! htm 

I! 

I analyse. I 

Name Ivaluel 
(Ilanguagele" ,
 

(ellien! 1088 I
 
1;<1"1 "!':l;.;j 1/1 r 

Figure 4.2 decode_url-a BSP Application that Decodes the URL Mangling 

URLs in BSP 83 



The second question is: Why did SAP introduce this mangling? During Web AS 
6.10 development, a theme concept was devised whereby specific objects in the 
MIME repository can be overwritten into different themes. For each BSP applica­
tion, a cookie is set with all relevant information. However, this cookie is set 
exactly to the matching URL of the BSP application and is not sent by the browser 
when the MIME repository is accessed (/ sap/ something~else/... ). 

The logic behind this concept is that you could have more than one active BSP 
application at the same time, and each application must convey its own configu­
ration information over different stateless HTIP GET requests to the MIME repos­
itory. As the same MIME repository URL is accessed, it is not possible to set dif­
ferent cookies in different windows of the browser, locked onto the same path. 

The only reliable solution was to encode information into the URL. 

Encoding information into the URL has proved to be very useful in some cases, 
but in others has made life difficult. Currently, this coding is so deeply engrained 
into the BSP runtime that for Web AS 6.20 and 6.40 it is impossible to reverse the 
situation. We must accept that URL mangling is a fact of life and that it cannot be 

switched off or prevented. 

4.1.2 How is URL Mangling Done? 

For the first request into the server, the BSP runtime sees that the URL is not in 
mangled form. In this case, an HTIP redirect is done, with the mangled URL as the 
new location. In the new URL, all relevant configuration information is encoded. 

A small HTIP trace, with all irrelevant headers deleted, shows this process: 

GET /sap/bc/bsp/sap/itOO/default.htm HTTP/I.I
 
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0)
 

Host: MyHost.com:80
 

HTTP/I.I 302 Moved temporarily 
Content Length: 25 
Location: /sap(bDllbiZjPTAwMA==)/bc/bsp/sap/itOO/default.htm 

Content-Type: text/html 

GET /sap(bDIlbiZjPTAwMA--)/bc/bsp/sap/itOO/default.htm HTTP/I.I 
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0) 

Host: MyHost.com:80 

HTTP/I.I 200 OK
 
Content-Length: 336
 
Content-Type: text/html
 

... content ... 

84 URLs in BSP 

We see that the first request is received without URL mangling. The server 
answers with a redirect-HTIP return code 302-and supplies the new URL. On 
the next HTIP request, the browser accesses the server with the new, mangled 
URL. 

4.1.3 Attempting to Hide the URL Mangling 

The nature of the BSP framework makes it impossible to disable the URL man­

gling. However, you can hide the mangling. Consider the following HTML code 
snippet: 

<frameset> 

<frame src=nhttp://<host>/~ap/bc/bsp/sap/itOO/default.htmn> 

</frameset> 

Effectively, this loads a frameset into the browser, which loads the application 
into a frame. Inside the browser, we now have a stable URL (in this example 

loaded from local disk of the client machine) and the mangled URL is hidden 
inside the <frame>. 

Figure 4. 3 shows the results of this action in the browser. We can see that the 

loaded URL has not changed and we see the original URL only via the properties 
page. 

itOO: ~i~~. ~," ,. ",:,' . is:3 on I 
svst ~G"e,,[ j.' 

........:....:. 

I I~ itOo, Stenderd8SP TestApplication on 
'"","'"

~.!i,.',,; 

men I' ~c,:fr 
(Hit-Co	 i. 

Proto,"I:,	 H"e,T"IT""le, Protocol ..'. J!.,
1 \ Type" HTMLDocument	 unctionality in i 

• I	 cept for control ' Stat i Connection NotEncrypted J
 
IITest	 Address; h\tp:!!.M'yHa~!.com/sap ." ,; 

(UALJ lbDl:bi.ZIPT,~40A="')/bc/bsp/sapillOO/t(lle.htm f, 
Size:	 299bytes F: 

~ I	 I _C i~'c,e~ed_ 9122/2005	 

1 t 
Modned;	 912212005 ---:--c-- ~ 

I2. B~ I I Il1~~~T~~40A t 
Tests i I ""t'hoal" I I r 

I abap.htm r 
1 P ~~ ~_.:':"",_~ Dl1bJZjPTA4oA.-:l 

[<-I ',I >, L< ,I ..>:' -I 
~~ UnknownZone (Mixed) :~ 

Figure 4.3 Hiding the URL Mangling Using a Frameset 

URL Mangling 85 



However, it is difficult to distribute such a file to all users. We must insert this 

frameset directly before the application is loaded. 

Let us look briefly at the process that is followed when an application is started. 

The URL from the incoming HTIP request is matched segment-for- segment 

against the ICF tree. On each node. of the tree, you can specify a handler class for 

the URL. For the BSP node, we have already defined one handler that will be exe­

cuted for all BSP applications. Figure 4.4 shows the BSP handler within the ICF 

tree. 

~~~:~~-~~:------------~i~~"-~"-~;::e~~t,,,e-j,,,C~h:;;:'~::,Ig,,-e-~a~s~e-r,,-:~i:"-·-~-__-_·__--_·_·__·__"_-_'·_-_--­

-'~-j <._~r,_:","",~~:~,-~~~r~	 lKf=~~ilij jdefault-Dostjsapjbcj

ICFObject ~ ----=:J~ Service (Active)

Description in \ENEnglish iD I
ISusrNESS SERVER PAGES (SSP)RUNTIME

I
i
:l/serv(cetia1;'#I UMM1tI $1 ~~y

sap

o option

D 0 public

:..-- "'~~~lb~L___________	 \1
D ~ lbcdwb --I i
'V ~@! I~

absenceform	 !~
,~------~~.-

Figure 4-4 Standard SSP Handler Class

As we learned in Chapter 3, handler classes can be chained. However, the

sequence for processing handler classes always moves downward from the root of

the ICF tree. This means that if we want to place ourselves into this chain, we

would require a new handler before the BSP handler. The new handler will inter­

cept the initial request and write out the frameset first. After that, the next

request is processed as usual.

First, you must write a small handler class. All that the handler class must do is sig­

nal that it has finished processing and that the next handler must be called.

Create a new class YCL_BSP_EX_HIDE_URL_MANGLING implementing the inter­

face IF_HTTP_EXTENSION. For the HANDLE_REQUEST method, implement the fol ­

lowing code:

if_http_extension-flow_rc
if_http_extension=>co_flow_ok_others_mand.

Save and activate.

86 URLs in SSP

Now that we have our HTIP request handler completed, let us insert this into the

ICF tree. But beware: For this example we are making a modification to an ICF

node that is a transportable change. Only try this in a development system!

@Create!Changea Service

ll.~fJ'.~!'~j jdefault_hostjsapjbcj -l
rCFObject Ibap I~ Service (Active) ~
Description in IEN English mI !
IBUSINESS SERVER PAGES (BSP)RUlmME i
I r

Virt.Hosts j Services IDoc I	 f
,'~:~~~~C1M_.~:Err6f~'_..• --~

_Handler list On sxecutlonorder):
!!

I>
V' P~CL	 tBSP EX HIDE URL lWrGLING

in lITrP EXT BoP fD ~ lbcdwb ABA

~ ~ sap NA~1 1:
~ ~ scmb Nam

bsp_dev WEB

Figure 4.5 New SSP Handler Assignment

Test with any BSP application. Each time, the new handler will be called before

the BSP handler is called.

The most difficult aspect now is ensuring that this new handler class will recognize

the first request instead of all other requests. A number of techniques exist, but

none are 100 % perfect.

~	 Assume that all the BSP applications are stateful. The first HTIP request will

open a session; all other HTIP requests will run into an existing session. How­

ever, stateless applications and their support is an absolute must for scalable

Internet applications.

~	 Use the" Referer:" HTIP header field to see whether the new incoming HTIP

request is from our running BSP application. This would mean that it is not a

first request. This is a very promising approach, but still will not be 1000/0 reli­

able. There exist HTIP proxies and firewall technologies that excel in stripping

these header fields,

~	 Use a cookie that is set on the first incoming HTIP request. On all subsequent

requests, the browser sends this additional cookie. It fails when a new browser

window is opened, as the cookie also applies for the new window, However,

typical experience shows that new windows are usually popup windows,

where the toolbars are hidden.

URL Mangling 87

server >response->set_header_field(~	 Use a special start URL. Usually the BSP application is started with Iname­
space/application/page.ext as part of the URL. Consider distributing name if_http_header_fields=>content_type

value = 'text/html').bookmarks where the page is not specified. The default start page is usually

specified for a BSP application and can be queried on the first request to

* This handler finished processing requestrebuild a new URL. This will fail when SE80 is used to start the BSP application.
if_http_extension~flow_rc= if_http_extension=>co_flow_ok.

~	 Consider the "O"-sequence in the URL as an indicator that the redirect has

already happened. Here, you must be careful to exclude MIME resources that
ENDMETHOD.

are also loaded via the BSP handler and do not always have the URL mangled.

However, we need to keep in mind a few negative aspects of this solution:
 ~	 Add an extra signature segment to the URL. This still does not help for the SE80

test cases, but works perfectly for URLs that we send out. ~	 One additional round trip is required to first install the loader frame. In a LAN,

this adds about 10-15ms to the time it takes for the application to be dis­None of the above techniques guarantees 100 % success. In the end, you are
played.

forced to use a set of heuristics to distinguish the first request versus other

requests reliably. For the purpose of this example, we use the extra-segment ~ The additional round trip also implies the one-off cost of about 500 extra bytes

approach to demonstrate how this can be done. Let us assume that all our special (keep the HTIP headers of the request and response in mind). For each addi­

URLs are of the form Isap/bc/bsp/~/namespace/application/page.ext. tional round trip, the extra cookie is transported.

Just before emailing out such an URL, we added the I~I segment, which will trig­ ~ For each incoming request, the new ICF handler is triggered first before the

ger our handler and hide the mangling. BSP handler is called. This implies a small code overhead per request.

~ A repair transport to the ICF node is required to insert the additional handler. METHOD if_http_extension~handle_request.

This node still has SAP as the owner, and it does not fall into the customer's

domain.*	 Get URL to check for signature. possible for <frame>

DATA: urI TYPE string. All of the above are minor overhead concerns compared to the latency added by
urI = server->request->get_header_field(the BSP runtime; they are listed here for technical precision. This approach is not

if_http_header_fields_sap=>request_uri).
an ideal solution, especially because using such a handler before the BSP handler

~~

IF urI NS '/~/'. requires a system modification. Even so, this investigation has been very instruc­
if_http_extension~flow_rc = tive, both for understanding URL mangling and for exploring further the use of

if_http_extension=>co_flow_ok_others_mand. ICF handlers.
RETURN.

ENDIF .
 4·2 Fully Qualified Domain Names

One of the most common errors that new BSP developers encounter is what we* Build HTML string for frameset
call the Fully Qualified Domain Name check (FQDN).DATA: html TYPE string.

REPLACE '/~/' IN urI WITH 'I'.
 In essence, FQDN requires that the host name be specified with a complete
CONCATENATE '<html><frameset><frame src='" urI domain name when addressing the server. For example http://MyHost . sap.

'"></frameset></html>' com/sap/bc/bsp/sap/itOO instead of http://MyHost/ sap/bc/bsp/sapl
INTO html. itOO.

Usually, only the host name in the URL IS required for the browser to determine * Set response
the IP address to use. You can use a ping tool to verify this with any of your SAPserver->response->set_cdata(data = html).
servers.server->response->set_status(code = 200 reason 'OK').

Fully Qualified Domain Names 8988 URLs in BSP

~ ..A.~,dre.ss I http://MyHostlsop/bclbsp/sap/itOO

Business Server Page (BSP) error

What happened?

Calltng the B5Ppagewasterminated dueto an error,

SAPNote

•	 The followingerror teat was processed in the system:· - ". . .
TheURLdoesnot contain a fulldomain specification (f'llyHost insteadof ~llyHost, <~omain~, <ext»,

Exception CIa!;:'!> " CX=FQDN­ ,

Erl'Or Name

P~o.gram. n --­

Include _.', ...:_"___ . _. .:_. r-c

Figure 4.6 Fully Qualified Domain Name Error

In the first instance, the host-name part of the URL exists only so the browser can

find a route to the Web server. Once on the Web server, the rest of the path start­

ing at the first / is used to resolve the specific page to view. So why would BSP

require a FQDN and other Web services would not?

4.2.1 Motivation for FQDN

The first important fact to understand is that the host name in the URL is effec­

tively a routing string, which tells the browser how to reach the target. A typical

situation is that a host might have an Intranet name (example

1s0028. wdf. sap. corp) that is totally different from the Internet name (example

bsp. sap. com), This means that the FQDN is determined by the browser's posl­

tion relative to the Web AS it is connecting to. The name entered in the URL is

important for the SAP Web AS, as this tells us the route that was followed to the

server.

This host name is always placed into the HTIP header (header field Host). Infor­

mation is available on the server concerning what the browser thinks the correct

name is.

There are three reasons why the browser must accessthe Web Application Server

(Web AS) with a fully qualified domain name:

~ It is important for the use of the HTIPS protocol. Secure Sockets Layer (SSL)

requires that the server and browser names match the names in the certifi­

cates.

~ When setting cookies for a specific domain, it is important to know the domain

the browser requires for the cookie, so that the cookie will always be returned

90 URLs in BSP

to the server. A typical example is the SS02 cookie used for Single Sign-On

(SSO) over multiple servers.

~	 For JavaScript calls to work over different frames (from different hosts in the

same domain), each frame must relax its document domain. Typically, the host

name is stripped, and the domain is set to the FQDN. For this to work, the

browser must already know the FQDN for the document that it is retrieving.

This information cannot be set from the server and must be correct from the

beginning of the request. This concept of domain relaxation is especially

important for BSP/portal integration.

Especially for the domain-relaxation aspect, the BSP runtime cannot know

beforehand if the domain-relevant aspects will influence the application. If FQDN

is not enforced, the door is open for many other types of more difficult-to-diag­

nose problems.

The above obstacles also prevent the acceptance of an IP address as host name,

even although the browser can handle it correctly. In such cases, it is again impos­

sible to set domain wide cookies correctly or to participate in cross-frame com­

munications with a portal page.

4.2.2 ICM Configuration

Usually, FQDN and its use constitute a browser-related problem. The URL is

entered at the browser and should be correct.

However, there are cases where a URL is created at the server. One typical exam­

ple occurs when a BSP application is tested in the Development Workbench­

SE80. A browser window is opened with the URL to test. In this case, of course,

the URL must also be a FQDN.

By default, the ICM picks up the correct name and domain for the server from a

domain name server (DNS). However, there are some cases where this does not

work accurately. For these, ICM supports a profile parameter, icm/host_name_

full. SAP recommends you configure this parameter. This is the host name that

will be used to build fully qualified URLs.

4.2.3 Browser Requirements

In addition to the checks that the BSP runtime will enforce for FQDN, there are

certain similar browser specifications that you should be aware of. These specifica­

tions effect BSP when cookies, SSOS, HTIPS, or portal integration come into play.

The browser has certain criteria that must be met before it will transmit a cookie

back to the server. These criteria differ between Microsoft and Netscape. Both

Fully Qualified Domain Names 91

IT

browsers require a domain specification. Netscape allows domains with the

extension "com," "edu." "net," "org," "gov," "mil," or "int" to pass with only one

additional domain component. For any other extension, the URL must contain at

least two additional domain parts.

For example, http://wwwsap.comis fine, whereas http://wwwsap.de would not

pass.You would need aU RL like htip://wwwbspsap.de to passthe Netscape test.

Microsoft is less strict with its check. Internet Explorer allows domains with only

one additional component, as long as that component has three or more charac­

ters in it. Therefore http://www.sap.de would now be fine, but http://wwwco.uk

would not.

To further complicate matters, Internet Explorer 6.0 or 5.5 with Security Patch

MS01-055 will also reject domain names that contain an underscore.

4.3 Namespace Mapping

SAP decided that each BSP application must have its own node inside the ICF

tree. This allows the ICF to also support additional functionality and configuration

options for the individual BSP applications. Typically, you can activate or deacti­

vate a specific BSP application via its corresponding ICF node. It is also possible to

configure user-logon information for the specific BSP application in its ICF node.

However, the biggest motivation is that of security. With these sub-nodes

checked and enforced by the BSP runtime to be available, the ICF runtime will

actually have checked that all the nodes for the application are active, before

starting the BSP runtime. This way, a higher level of security is reached by dis­

abling all nodes for BSP applications that are not required. Nodes are, by default,

shipped in a disabled state.

The usual problem of one global namespace, and how to segment it, also applies

to the ICF tree and effectively applies to the domain of all possible URLs. Here,

the enforced agreement is that all SAP development will be within the / sap sub­

tree. At the next level, the bc node represents SAP NetWeaver development.

Similarly, it is expected that customers will also do their own development under

a / customer namespace.

SAP recommends that customers do register and create unique namespaces for

their own development. This can be done on the Service Marketplace (http://

service.sap.com/namespaces). However, for BSP development, customers can also

follow the traditional Z & Y reserved object name range within the SAP

namespace. Therefore the following situations are possible.

92 URLs in SSP

Scope SSP Application

SAP abc

CUSTOMER zabc

CUSTOMER with registered namespace /company/abc

Table 4.1 Namespace Patterns for SSP Development

ICF Tree

/sap/bc/bsp/sap/abc

/sap/bc/bsp/sap/zabc

/sap/bc/bsp/company/abc

For this exercise, we will simulate the use of a namespace by borrowing one of the

SAPdelivered namespaces. We will start by specifying the ABAP Workbench Gen­

erated Object namespace as we create our BSP application.

I@web Application BUilder: Create BSPApplication

BSP.~pplication I/IBCDWB/bsp book ch3

Short Description IBsp Book Chapter 3 Examples ~

Figure 4.7 SSP Application Creation Within a Narnespace

Now, when we navigate to transaction SICF and view the ICF tree, we should see

a new path that has been generated to hold the objects within our namespace.

IVirt.Hosts / Services

t' i1L~ default host
-"'?')g;j';~p-' .
.."j;-<8 ~Ption'

r, 0 public

? (sr). ge. .'. .
 - .--- -<';:(;3)[;;;;- ..-- ----- ---aUsiNESSSERVER PAiiEs (SSP) RUNTi~IE
.
-- ­

v iQi Ibedwb ABAP;N'O~kb8nd,N;;~;;;"::e - ­ ---~

~ bsp_book_ch3 BSPBook Chapter 3 Examples ~

~
~
~ sap

~ scmb

NAr~ESPACE SAP

Namespace

~
1

":';-'-"-._._--~"...",,"",_.~._~.~_.~.._.~-,,,,..,...,. ... ~._.~--.......""',"~-~.~~._.- ...,.....~""""'.,.,.-<

Figure 4.8 Namespace Entry in the ICF Tree

4.4 URL Parameters

Several specially named forms fields can be set as URL parameters. These can be

used to set and control important system variables, such as the logon language

and client. You might see them added to a standard BSP URL such as the follow­

ing: /sap/bc/bsp/sap/itOO?sap-client=OOl&sap-language=DE to start the

BSP application rTOO in client 001 in German.

URL Parameters 93

IDocu.

: VIRTUJI.L OEFAUL T HOST ii.
'SAP NM~ESPACE; SAPIS OBLIGED NtlT TO DELIVER ~

--RESERVED SERVICES AVAILABLE GLOBALLY

PUBLIC SERVICES

:BASISTR~E (BASISFUNCTIONS) .• . • .: :.;

URL Parameter	 Description

Activation/deactivation of the accessibility flag for the HTMLS libraries.
Activation ofthis option will cause additional tags and descriptions to be

sap-accessibi­

lity
written into the rendered output in order to support screen readers for
the visually impaired. Please note: This flag only expresses the wish for
accessibility support. The application itself must contain the additional
rendering logic to handle this case. If the HTMLB libraries are used,
accessibility is handled correctly for the relevant rendered HTML.

Sets the logon client. If specified, this parameter overrides the default

client.
sap-client

sap-htmlb-design	 Allows you to set the HTMLS Design (see Chapter 9 for more details).
This is the same as setting the attribute design of the element
<htmlb:content>. Valid values are CLASSIC, 2002, or 2003. This param­
eter will only switch between designs that the application states it sup­
port, and cannot be used to force an application onto a design it was not

tested with.

sap-language	 Sets the logon language. The language value must be specified via the

ISO language key.

sap-password	 It is possible to logon to a SSP application by supplying the user name
and password as URL parameters. However, be careful if you enter the
password directly in the URL, as it will most likely be stored in your

browser's history in clear text.

sap-rtl	 This parameter activates/deactivates the flag for right-to-Ieft rendering in
the HTMLB libraries. This option is used to support proper rendering in

, languages such as Arabic. Please note: as with accessibility, this flag has
only a meaning for the HTMLS rendering library. If you have hand-coded
HTML on thepage, you have to test thisflag and add your own addi­

tional support.

sap-sessioncmd	 This parameter sends actionstothe session manager:

open-starts a new session.

close or logoff-'--ends the current application and redirects the browser

to the URL supplied by the parameter sap-exiturl.

cancel-is similar to close, but already handled by ICM.

usr_abort and usr_close- is used by the portal to control SSP sessions.

sap-contextid	 This is where the BSP runtime stores its session cookie. The session
cookie groups requests into one common session for a stateful applica­
tion. Can also be used as URL parameter, but not as form field inside the

body of a POST.

sap-syscmd	 The only value supported is nocookie. This tells the SSP runtime to
mangle the session ID into the URL, and not use a cookie for handling
the session id. This is especially required when the same stateful applica­
tion must be run multiple times in situations where session ids in cook­
ies would have resulted in all applications mapping onto the same ses­

sion.

Table 4.2 URL Parameters

94 URLs in BSP

URL Parameter	 Description

sap-theme	 This is the same value that can be set from the SSP application· Proper­

ties tab. This is the older concept of theme for MIMEs that is deprecated

and not be used anymore.

sap-themeRoot	 This sets the themeRoot for the HTMLS libraries Design (see Chapter 9

and Chapter 17 for more details). This is the same as setting the attribute

themeRoot of the element <htmlb : content>.

sap-trace	 This allows you to trigger the activation of a developer runtime trace for

the current application.

sap-user	 It is possible to logon to a SSP application by supplying the user name

and password as URL parameters.

Table 4.2 URL Parameters (cont.)

4.5 URL Escaping

We have already seen how special URL parameters are used to control system set­

tings such as the logon language. However you also can use URL parameters to

pass data from page to page or to initialize a value at the start of an application.

URLs have to be parsed by the browser and the server to process their separate

sections of data. Characters such as /, ?, and & have special meanings when trying

to process the information on the URL. What happens when the data that you

want to pass along through a parameter also contains one of these special char­

acters?

In such a situation the process of escaping comes into play. Escaping simply

means that you replace the offending character with an escape sequence. This is

similar process within HTML itself to include reserved or special characters.

Let us take for example the following fictional URL: http://www.sap.com?exit=

http://sdn.sap.com. We have a parameter called exit with a value of http:/ /

sdn. sap. com. We know that we will need to encode this parameter as we add it

to the URL. The results would be: http://www.sap.com? exit=http%3a%2f

%2fsdn%2esap%2ecom, where %3a is the encoding for:, %2ffor' and %2e for ..

Be careful that only the values are encoded; do not encode the full URL.

Luckily, we do not have to perform this conversion on our own. SAP offers a static

method of class CL_HTTP_UTILITY called ESCAPLURL.

DATA: urI TYPE string.

urI = cl_http_utiIity=>escape_url('http://sdn.sap.com/').

CONCATENATE 'reIoad.htm?exit=' urI INTO urI.

URL Escaping 95

But there is an even simpler solution if you are going to be building a URL that ~r .

links to another BSP application. In this case, you can use the static method of I'
class CL_BSP_RUNTIME called CONSTRUCT_BSP_URL. This method has an import­ r
ing parameter, IN_PARAMETER, which allows you pass in all your name/value I
pairs. This method then is responsible for assembling the complete URL, including

the URL escaping. f
f

96 URLs in SSP

5 Authentication

Authentication is very much like the game "Knock-Knock/Who's
there?" that we played as children. Each HTTP request has to play this
game before being processed. Although the question "Who's there" is

simple, the answer can be complex. Let us explore this situation.

In Chapter 1, we showed the basic block diagram with the HTIP framework. The

Internet Communication Manager (lCM) will accept HTIP requests from any

browser, and then will pass them to the Internet Communication Framework

(ICF) layer for processing. However, before any processing can start, the incoming

HTIP request has to be connected to a known ABAP user. This is the authentica­

tion step, and each incoming HTIP request is effectively subjected to it.

Authentication plays no immediate role in normal BSP development. Being

prompted for a name and password at startup is an everyday experience that, all

users have long accepted. However, if suddenly, in the middle of the session, the

user is prompted again for authentication, the support desk soon faces confused

questioning. The "Why authentication again?" question can only be answered if

one understands what form of authentication allowed all previous HTIP requests

to be processed, and why that method fails now. And for this question, one has

to address the potential complexity of all different forms of authentication.

I<nowing how authentication works also allows one to understand the difference

between authentication and session management (discussed in the next chapter).

Every once in a while, we see the following problem: "One user has successfully

logged off from the server and leaves the browser running. Now, the next user sit­

ting at this terminal is treated as the previous user. Why is he not prompted for his

password?" Effectively, the logoff sequence just closes the session on the server;

it does not make the browser forget the credentials 1 that it has available. On the

next HTIP request to the server, the same credentials (from the previous user) are

transmitted with the request, allowing the server to process the new HTIP

request by starting the BSP application in a new session. Thus, understanding

authentication also helps us to see ways of removing the credentials from the

browser (although this turns out to be impossible in many cases).

Credentials imply any form of user authentication information used between the browser
and the server, and are not limited to the typically used name-and-password approach.

Authentication 97

5.1 Basic Authentication

Basic authentication is the most common and familiar authentication form.

Let us start a browserfor the first time and request a URL from the server. For this
testing, any BSP application will do. The browser first sends the HTIP request to
the server, attempting to see if the server will answer the request as is.

GET /sap/bc/bsp/sap/itOO/default.htm HTTP/l.l

Accept: */*
Accept-Language: en-us,de;q=0.5
User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:l080

The server receives the HTIP request, and a new ABAP session is opened to pro­
cess the request. As a first step, authentication information is required to assign
an ABAP user to the session. No authentication information is available in the
request. The server therefore refuses to process the HTIP request and answers the
browser that the user is not authorized for the request.

HTTP/l.l 401 Unauthorized

Content-Type: text/html; charset=iso-8859-1

Content-Length: 2041

SAP-System: BBO

SAP-Client: 000

WWW-Authenticate: Basic realm="SAP Web App Server [BBO]"

Server: SAP Web Application Server (1.0;710)

<html>

<head><title>Logon Error Message</title></head>

<body><h1>Logon failed</h1> ...

There are a number of very interesting aspects in this HTIP response. The first is
the HTIP return code of 401. This is standard defined HTIP return code for
authentication failures. The browser must now obtain the user's credentials and

supply them to the server.

The server also sets two headers: SAP-System and SAP-Client. The system
header is the one against which the authentication failed and useful for trouble­
shooting. The client header displays the client that will be used for the authenti­
cation. As no client was specified in the URL, the default system client, in our case

000, will be used.

The most interesting header is WWW-Authenticate header. The first token
informs the browser that only basic authentication is accepted. The other, more

98 Authentication

complex digest authentication is not supported. The next token, the realm, is a
string that defines a specific part of the server's URL space and allows the browser
to associate different sets of credentials with different URLs on the server. With
the realm, it is possible forthe serverto require different name and password sets,
depending on which URL is accessed. The browser would then store the user-sup­
plied data with the realm as key. Should the server challenge the browser later
with exactly the same realm, the same credentials are used. This way, the server
can group URLs and require the browser to prompt the user for different authen­
tication data depending on the URL requested. For the SAP Web Application
Server, only one realm is supported, and it always contains the name of the server

as well.

The last interesting aspect is that the HTIP response actually has a body that con­
tains an error message. However, this HTML code is not shown immediately (see

Figure 5.1).

~ ~gdre~s

SAP WEbApp~cation Server[BB.O]

\Jser name: 1f1 mckellar :::,;1

2.assword: I·········
D Remember mypassword

~~ ,~

Figure 5.1 Basic Authentication Prompt

Once the browser receives a 401 HTIP response, it is faced with the problem that
it requires a user name and password. For this, a standard browser dialog is dis­
played that prompts the user to enter a name and password. Notice that the
realm is also displayed in the popup. Often, when the server does not accept the
authentication, it is worthwhile to double-check this string. In cases where differ­
ent Web AS systems run on the same physical computer, but use different HTIP
ports, this string is the best indicator that the HTIP request, and thus the
attempted authentication, has been addressed to the wrong Web AS server
(effectively to the wrong HTIP port).

It is impossible in the popup dialog to set the client for which the authentication
is required. The dialog is provided by the browser, and cannot be influenced by

Basic Authentication 99

the server. If the logon is required against a specific client, then this must be set

beforehand with the URL parameter sap-client. If it was not set, the default

configured SAP client is used together with this authentication information (refer

to SAP-Client header field that was set by the server).

Impossible in the dialog is also to request that the logon be in a specific language.

Sy default, the configured language from the browser is used (see the Accept­

Language header), or the requested language can be explicitly set with the URL

parameter sap -language, using two character ISO codes as values.

Should the user decide not to supply authentication information, but to cancel

the browser dialog, then the error HTML page sent with the 401 HTIP response

is displayed (see Figure 5.2).

logon failed

what has happened?
Call ofURL http://us4449.wdf.sap.corp:1080jsap,bcjbspjsapAtoOjdefault.htm terminated due to error inlogondata.

Note
Loponperformedin systemBBO . N~ !?9~n data provided.

whet: can I do?

• If you donot yet have a user10, contactyoursvstemadministrator.

HTTP 401 - Unauthorized

YourSAPInternet Communication FrameworkTeam

~m Done .l t(..ILocallntrenet

Ejle !;;.dit ~ew F£vorites: IDols t!elp

Figure 5.2 Cancelled Basic Authentication

Let us enter our name and password and see what the browser does then.

GET /sap/bc/bsp/sap/itOO/default.htm HTTP/1.1

Accept: */*

Accept-Language: en-us,de:q=0.5

User-Agent: Mozi1la/4.0 (MSIE 6.0: Windows NT 5.1)

Host: us4449.wdf.sap.corp:1080

Authorization: Basic VGhhbmtzIGZvciBidXlpbmcgYm9vayE=

The only difference we see from the first request is the addition Authorization

header. The first token again indicates that basic authentication is used, and the

next token is the authentication data. The user name and password are stored in

one string "username:password" and then base64 encoded. It is not encrypted,

and even our children would require less than three minutes to find a base64

decoder in the Internet and read our passwords. So, always be careful when send­

ing out HTIP traces to the help desk for analysis. In general, you should carefully

consider whether to use basic authentication and probably should do so over

HTIPS networks or use switched Ethernet in order to protect passwords from net­

work snooping.

HTTP/1.1 302 Moved temporarily

Content-Type: text/html; charset=iso-8859-1

Content-Length: 25

Location: /sap(bDlk==)/bc/bsp/sap/itOO/default.htm

Server: SAP Web Application Server (1.0;710)

BSP URL requires rewrite.

As the HTIP request now contains acceptable credentials, the SSP runtime is

started to process the incoming HTIP request. As an HTIP response, the URL

mangling (see Chapter 4) is started with a 302 HTIP response to cause the

browser to redirect to a new URL (see the Location header).

We would expect that from the next URL, the browser will now always set the

Authentication header, allowing the server to process each HTIP request. Let

us look at the next HTIP request/response cycle.

GET /sap(bD1k==J/bc/bsp/sap/itOO/default.htm HTTP/1.1

Accept: * l :

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:1080

HTTP/l.1 401 Unauthorized

141,0114 -Authenticate: Basic realm=" SAP Web App Server [BBOJ"

We see that the new SSP-mangled URL is requested from the server, but without

any authentication information. The server therefore again sends a 401 HTIP

response. The reason for this is that the URL has changed from / sap/ ... to

/ sap (bD1k==) / For the browser, this is a different part of the URL

namespace, and it will always attempt to first get a response without any authen­

tication information. As the HTIP request was answered with an authentication

request that contains exactly the same realm for which the browser already has

our user name and password, it does not again display the popup prompting for

data.

100 Authentication Basic Authentication 101

The browser just takes note that the URL namespace / sap (bD1k==) / ... also

requires the same authentication information. It will resend the HTIP request

immediately, but this time with the Authorization header set.

GET /sap(bD1k==)/bc/bsp/sap/itOO/default.htm HTTP/1.1

Accept: */*

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:1080

Authorization: Basic VGhhbmtzIGZvciBidXlpbmcgYm9vayE=

From now on, the basic authentication data will "stick," and it will be transmitted

with each HTIP request for the BSP application.

It's worth noting that basic authentication supports only a name and password.
But how does the server know to which client the credentials belong? If no infor­

mation is set or available, as in the traces above, it is assumed that the credentials

are for a default-configured client. However, if the basic authentication was done

for another client by setting the URL parameter sap-client, then this informa­

tion also must be known. The ICF layer handles this with the sap-usercontext

cookie. If either the client or language is changed to be different than the default

values, the cookie will be set and used in conjunction with the basic authentica­

tion information.

Set-Cookie: sap-usercontext=sap-client=003; path=/

Note that the basic authentication information is tied to a specific system (via the
realm string) and client (via the sap -usercontext cookie). This information can

only be set once forthe browser, and it is not possible to have two sets of data for

the same Web AS system. This constraint also means that it is not possible to run

two BSP applications in different clients from the same browser.

5.2 Single Sign-On

Single Sign-On (550) within the browser environment usually refers to the use of
a HTIP cookie to store the user's identity. The process is relatively simple. If the

browser is started anew, no credentials are available when the user requests an

URL from the server. In this situation, no 5502 cookie is available either, and thus

550 cookies are not a technique that can be used for the first round of authenti­

cation. Another form of authentication is required, such as the basic authentica­

tion described above.

Once the user has been authenticated, and if the server is so configured, it will set

a 550 cookie (called MYSAPSS02) that is typically valid for the complete domain.

The server can also be configured to set the cookie to be returned only to the spe­

cific server. Now, on all subsequent HTIP requests, the browser will send the
cookie with the HTIP request. The targeted server then can use the information
within the cookie as credentials to authenticate the user.

Let us look at a HTIP trace of this process first. In the first round, the URL is

requested as we saw in the previous section without any form of authentication,
and the server replies with a 401 HTIP response. The HTIP trace is exactly as it
was before and is not shown again. The browser will display the popup window

prompting the user for name and password. On the next request the Authoriza­
tion header will be set.

GET /sap/bc/bsp/sap/itOO/default.htm HTTP/1.1

Authorization: Basic VGhhbmtzIGZvciBidXlpbmcgYm9vayE=

HTTP/1.1 302 Moved temporarily

Set-Cookie: MYSAPSS02-AjExM ... +615 ... kOv5d; path-I;

domain-wdf.sap.corp
Content-Type: text/html; charset=iso-8859-1
Content-Length: 25

Location: /sap(bD1k==)/bc/bsp/sap/itOO/default.htm
Server: SAP Web Application Server (1.0;710)

BSP URL requires rewrite.

The HTIP response from the server contains the answer from the BSP runtime and
an additional Set - Cookie header. The server has verified the credentials supplied

from the basic authentication, and now sets a MYSAPSS02 cookie. Notice that the

cookie is set with the root path and for the complete domain. Effectively, for each
new HTIP request to any server within this domain, the cookie will be added.

The cookie itself is roughly 625 characters and now shown completely in the

HTIPtrace. Just keep in mind from Chapter 2 that cookies are set only once to the
browser, but always returned for each and every HTIP request where the server

domain and path match. This means that all following HTIP requests will have the
additional payload of the 625 characters. This is the price paid for the functional­
ity provided by 550.

The next HTIP request has the MYSAPSS02 cookie set, and is answered with a 200

HTIP response and the correct HTML for the application.

102 Authentication Single Sign-On 103

GET /sap(bD1k==)/bc/bsp/sap/itOO/default.htrn HTTP/1.1

Accept: */*
Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:10S0

Cookie: MYSAPSS02=AjExM ... +u15 ... kOv5d

HTTP/1.1 200 OK

Content-Type: text/html; charset=iso-SS59-1

Content-Length: 334

Server: SAP Web Application Server (1.0;710)

<ht.n.l>...

Notice that this HTIP request does not contain the Authentication header. As

discussed in the previous section, the URL change for the browser (because of

mangling) implies a new URL namespace, and the browser will never send the

basic authentication until challenged for it (by a 401 HTIP response with match­

ing realm). In this case, the MYSAPSS02 cookie has now assumed the role of pro­

viding a different set of credentials for each HTIP request.

Looking at the last HTIP request, one quickly concludes that, at the end of the

SSP application, the browser can be instructed to stop running in the name of a

user by deleting the MYSAPSS02 cookie. Theoretically, then, there are no creden­

tials in the browser, and the next user will be prompted to supply his or her user

name and password. However, the basic authentication is still slumbering in the

background. Once the cookie is deleted, the next request will have no credentials

and the server will answer with a 401 HTIP response, causing the browser to just

retry again with the Authentication header set. This proves that to really under­

stand authentication one has to understand each and every type of authentication

that could be active and also understand what type of authentication allowed

each HTIP request to be processed.

Using SSO cookies against the same server is one technique for easily handling

credentials over the lifetime of the browsing session, although at a corresponding

payload price for each HTIP request. The more interesting facet of SSO cookies is

the SSO principle. The first server did all the work to authenticate the user. The

SSO cookie is send to all other servers and also accepted without further ado. This

is effectively a single sign-on over all systems:

104 Authentication

To understand how this works, we have to look at an abstract level at exactly what

a SSO cookie is. For our discussion, the important aspect for is that it contains our

SAP user name. This is effectively the user name (sy-unarne) of the logged-on sys­

tem. What the cookie does not contain are any client settings (as this can be dif ­

ferent per system), nor language, email addresses, etc. The server will extract the

name from the cookie, take also the additional information about the correct cli­

ent to use (either default client or from cookie), and verify that the user name is

valid for the system. Note that the SSO cookie forces the user name to be con­

stant over all systems.

How does the server protect itself against a fake cookie? This is achieved by sign­

ing the user name in the cookie with the server's own digital certificate. This also

explains why the cookie is so largel Any receiving server will first look into the

cookie to see which server issued the cookie. It then looks in its store of digital

certificates to see if it has the public part of the issuing server's certificate. Using

this, it will verify that the data is actually correct. The principle of SSO cookies is

that servers must have a trusted relationship with one another. This is achieved by

configuring each server with the certificates of the other servers it may trust (see

transaction STRUST).

5.3 Digital Certificates

Within the Web context, digital certificates always refer to X.509 certificates. A

X.509 certificate binds a public key to a distinguished name that is issued by a cer­

tificate authority. The security aspects of X.509 certificates, although very inter­

esting, are not the focus of this book. We primarily need to understand that a cer­

tificate is so constructed (digitally signed by a certificate authority) that the

receiving web server can again validate the distinguish name. The distinguished

name itself is usually of the form C=<country> O=<cornpany> CN=<certifi ­

cate name> and can include other attributes that uniquely name a person. There

are standard procedures whereby a company can obtain and issue such certifi­

cates to each employee.

The first step is to import the certificate into the browser (see Figure 5.3). With

this, the browser now has our identity in a digital format that can be verified again

by the server.

The next step is to update the Web AS server be able to map the distinguished

name onto a user name. This mapping can be configured with transaction SM30,

in the table USREXTID (see Figure 5.4). The externallD is the distinguished name

from the X.509 certificate and must be entered exactly the same into the table,

including the preservation of case and spaces.

Digital Certificates 105

106

I

t,.ar:10\'f: '~I~se

Issued To I Issued 8

[!1ilDOOS146 SSO_CA

-",,~, ,;r~

··I!. cJI'Import, I:
'-'-'-' -

'OK

Figure 5.3 Import of Digital Certificate

Change View "Assignment of ExternallD to Users"

E)dernallD type [DNl

E)dernallD ICN~D005146, O~SAP·AG, C~DE

Seq. No ~",O=OO",-_~_
User IMCKE'cLAR

Min,date I --==::J
~Aclivated

Figure 5-4 Mapping of Certificate Distinguished Name to User Name

Although it is slightly tedious to complete this process for one user, it is shown

here to highlight the basic principle of integrating certificates and using them to

identify users. In large corporations, this configuration usually is done centrally as

part of the user management for the Web AS system.

The question now is how to get the browser to send the certificate to the server.

This answer turns out be very simple. The moment the protocol is switched from

HTIP to HTIPS, the certificate is automatically sent as part of the encryption layer

used to secure the HTIPS connection. No further work is required.

Let us make a very simple SSP application: <html><%=sy-uname%></html>. The

first time, we execute the application with an http:/ I URL, and thereafter with

an https:/ I URL. See Figure 5.5. It is important that each protocol requires its

own port number. If the default port numbers are configured,: 80 for HTIP and

: 443 for HTIPS, we need not specify port numbers.

Authentication

Figure 5.5 Access Same BSP Application with HTIP and HTIPS

---_._[~..,..."1I_lolxl . i

,jEiI" ~dit l"e., F"vorile,. IDol' I:!elp- -rm "' j [J;e •.... ~di~ .~iew f~vorites jools Ijelp

,;J Mdres< !@ http://u'4449,wdf,,ap,corp:1080!,ap/bc!b,::J 1 ..~. 'll~ , ., .. i'
Ie" ; . .M?lxll!MCKELLARJ
:iID' ~ Please type you, user ~ame and password, . .j I~ Done '•.• : .• '[:'~J

"..::.1 Realm SAPV/eb,6.ppllcahon Server[8801 ," . . :,,': ,.~-r,,~:~,;~ -~. i~r

~:;;_J.~~.w~_~_~~~r~~,~~~~,__ .J._. __ ,.~_ ..~. ._ ;,~,:~~, .i, ~.'~~,_ u, ,;~ ,1" ., ,-y :,;,~i:f~:!~' ;;:'~

With the HTIP request, the server finds no available authentication information,

and answers with the expected 401 HTIP response. With the HTIPS request, the

server answers immediately with the response from the SSP application. Notice

the small lock symbol to show that a secure connection is active.

This "automatic authentication" aspect also helps typical logon applications. The

connection is switched to HTIPS mode to transfer securely the user name and

password. However, at that moment the browser supplies a certificate. This

allows the server to identify the user, set a SSO cookie, and then switch back to

HTIP. With two HTIP round trips and no user interaction, the authentication was

completed. However, this only works together with a SSO cookie. Otherwise, the

return back to HTIP leaves us again without credentials.

For SSP pages, it is possible to set a checkbox that states whether these pages

must be run in secure mode. Once the checkbox is set, the SSP runtime will auto­

matically switch the connection into secure mode if the page is accessed. This

function was designed for shopping scenarios, where only the checkout phase

(with credit card numbers, etc) must be secure. One could be tempted to expect

the checkbox to also help get the certificate authentication working without user

interaction by forcing HTIPS. However, authentication is handled and completed

at ICF layer, long before the SSP runtime is started. Any answer from the SSP

runtime implies also that authentication has been completed.

If one should look at the HTIPS traffic itself, there is nothing special to see. The

certificate handling is done at the encryption layer below the HTIP traffic, and the

HTIP traffic itself is effectively the same as described in the next section on anon­

ymous services. We have incoming HTIP requests that are immediately answered

without any visible trace of authentication information.

Digital Certificates 107

5.4 Anonymous Services

Sometimes we need Web AS be able to run Web applications in the way a normal

Web server would, without any form of authentication checks. However, the

ABAP session itself must run within the context of a specific user. It is not possible

to have anonymous ABAP services.

The technique for achieving this is to configure a specific node, or sub-tree, within

the ICF tree (see transaction SICF) to store the authentication information that

must be used for all URLs that are matched through the specific node. When the

server sees an incoming HTIP request that contains no authentication informa­

tion, it checks whether one of the ICF nodes has a user name and password

stored. If it does, these credentials are used to open the ABAP session and process

the HTIP request. We highly recommend that you first read the documentation

so as to be aware of all aspects of anonymous nodes. This allows unchecked

access to the specific application.

We recommend creating a /myCompany/public path, similar to /sap/public

that is the only anonymous access granted to the system. Only this public node

gets assigned a user name and password. Then use internal ICF links within this

public path to specific BSP applications that must be run anonymously (see Figure

5.6). This way, one can see immediately which BSP applications can be accessed

without any form of authentication.

Service data

.Anonymous LagonData /' Service options /

Logon DataRequired sarver-croup:

Client ' 080
 SAP Authorization: ErrorType

User ANON_USER :SessionTimeout 000: 00 00 (HH:MM:SS)

Password I"" 01-..

Language Cl I

Figure 5.6 Configuring an Anonymous Service in Transaction SICF

Let us link BSP application ITOO under a newly created public path, and look at

the HTIP trace of the application.

108 Authentication

GET /my/public/itOO/default.htm HTTP/l.l

Accept: */*
Accept-Language: en-us,de:q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0: Windows NT 5.1)

Host: us4449.wdf.sap.corp:l080

HTTP/l.l 302 Moved temporarily

Location: /my(bDlk==)/public/itOO/default.htm

GET /my(bDlk==)/public/itOO/default.htm HTTP/l.l

Accept: «] »

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:lD80

HTTP/l.l 200 OK

Content-Type: text/html: charset=iso-8859-l

The HTIP trace shows no form of authentication information. Not even

MYSAPSS02 cookies are set for anonymous access. In principle, the application

behaves like a normal Internet website.

5.5 Form-Based Authentication

Form-based authentication is achieved by setting two form fields: sap-user and

sap-password. The other two form fields that can be considered to be set are

sap -language and sap -eli ent. From Chapter 2 we know already that form

fields can be transported either as part of the URL or within the body of a HTIP

POST request.

The simplest tech niqu e is via URL parameters: http: / / ... / defau l t . htm? sap­

user=username&sap-password=password. We definitely do not recommend

this technique, as the browser will store all URLs-now including authentication

information-in the browsing history. But it is a fast and convenient technique to

test some forms of authentication problems and definitely worthwhile to under­

stand.

GET /sap/bc/bsp/sap/itOO/default.htm

?sap-user=username&sap-password=password HTTP/l.l

Accept: <t :

Form-Based Authentication 109

Accept-Language: en-us,de;q=O.S

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:1080

HTTP/1.1 302 Moved temporarily

Content-Type: text/html; charset=iso-8859-1

Content-Length: 25

Location: /sap(bD1k==)/bc/bsp/sap/itOO/default.htm

?sap-user=username&sap-password=++++++++

Server: SAP Web Application Server (1.0;710)

ESP URL requires rewrite.

The HTIP request contains the correct form fields and is answered immediately

with a 200 HTIP response. Pay attention to the Location header. We see that the

sap-password form field has been overwritten by security rules. And this makes

itself noticeable in the next HTIP request/response cycle.

GET /sap(bD1k==)/bc/bsp/sap/itOO/default.htm

?sap-user=username&sap-password=++++++++ HTTP/1.1

Accept: */*
Accept-Language: en-us.de:q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:1080

HTTP/1.1 401 Unauthorized

This means that form-based logon cannot work without another form of saving

the credentials after the first HTIP roundtrip. One technique could be the activa­

tion of 550. Then, the very first request that still had the valid user name and

password would be authenticated, the MYSAPSS02 cookie would be set, and all

subsequence HTIP requests would use 550 for credentials.

HTTP/1.1 302 Moved temporarily

Set-Cookie: MYSAPSS02=AjExM ...

5.6 Implementing a Simple Logon Application

Now that we have grasped the basics of form-based authentication, let us quickly

look at how one can use it for a very simple logon application. Let us assume that

110 Authentication

we wish to start the SSP application ITOO using form based logon. As a first step,

the user must call some form of URL that will at least render the form to enter

authentication data, without itself requiring credentials. We create a small HTIP

handler (discussed in Chapter 3), or an alias to a different SSP application under

some path, for example the /my/public/start_itOO.

The HTML displays two input fields to enable the user to enter his user name and

password. It is very important that the names of the input fields be correctly set

to match exactly the corresponding sap-user and sap-password fields required

for form-based authentication. The form action attribute is set to start the appli­

cation when the form is submitted.

<html><body>

<form method="POST"

action-"/sap/bc/bsp/sap/itOO/default.htm">

<table>

<tr>

<td>User:</td>

<td><input type="text" name-"sap-user"></td>

</tr><tr>

<td>Password:</td>

<td><input type="password" name-"sap-password"></td>

</tr><tr>

<td><input type="submit" value="Logonl"></td>

</tr>

<I table>

</form>

</body></html>

With this HTML available via an anonymous URL, it is now possible to start our

minimal logon application without any authentication, and render out the real

logon screen. See Figure 5.7.

EJle £dit ~ew Fgvorites

User: !mckellar
==~

Password: !••••••••

I Logon! I
~i

~

Figure 5.7 Minimal Form-Based Logon

Implementing a Simple Logon Application 111

The BSP application is started via the public path /my/public/starCitOO. The

first HTIP round trip just renders out the HTML of our minimal form- based logon

application. The user now enters his user name and password and presses the

button to start the application.

POST /sap/bc/bsp/sap/itOO/~efault.htm HTTP/l.l

Accept: */*
Accept-Language: en-us.de;q=0.5

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4449.wdf.sap.corp:l080

Content-Length: 39

sap-user=username&sap-password=password

HTTP/l.l 200 OK

Set-Cookie: MYSAPSS02=AjExMD ...

Content-Type: text/html; charset=iso-8859-1

Content-Length: 334

server: SAP Web Application Server (1.0;710)

<htm.I>...

The POST is submitted directly against the application URL, and sap-user and

sap-password form fields are set in the HTIP body. Given the valid credentials,

the BSP application is stared immediately. Within the HTIP response, the

MYSAPSS02 cookie is set, enabling authentication for all subsequent HTIP

requests.

This example is very simple and only useful for showing the principle that is used

to write logon applications. A real logon application must also handle all different

types of problems around user logon, for example users who are locked, users

who are forced to change their password, and those users who wish to change

their passwords. Also, the BSP runtime does not support applications that are

started with a POST, forcing some additional work on the logon application to

handle the first POST itself to acquire the MYSAPSS02 ticket, and then to start the

application with a GET HTIP request. All application startup parameters must be

saved during the logon application and reset when the application is started.

In Release 6.20, a BSP application SYSTEM is provided that uses this principle to

build a complete logon application. This is replaced in 6.40 with a much better

logon application that is tightly integrated into the ICF layer, and the old SYSTEM

112 Authentication

application will not be supported from 6.40 upwards in the future. Chapter 17

describes the new ICF logon application in detail.

5.7 De-Authentication

Unfortunately, this is the thorniest section to write, as there is actually very little

that can be said on this topic. Once the browser has stored a fixed set of creden­

tials, it is difficult if not impossible to remove these.

The typical scenario that triggers the question on de-authentication is that of a

shared computer somewhere on the factory floor. One person has finished work­

ing and presses the logoff button. The next finds the browser open, and starts to

work, running suddenly in the name of the previous co-worker. The reason for

this is that the logoff sequence terminates the server session, but does not

remove any credentials from the browser.

Probably the safest solution to this problem is to close the browser at the end of

each session. From JavaSmpt, this can be achieved with a top. close ()

sequence. If it is a browser window previously opened with JavaScript, this

sequence works without further prompting. However, if the user opened the

browser window, a confirmation prompt is first shown by the browser, and this

must be confirmed. Many usability experts object to software that just closes the

browser window. Whether this practice matches your scenario is a decision that

you must make yourself.

Basic authentication is Widely used, and nearly impossible to remove from the

browser. The only technique that we are aware of works only for Microsoft Inter­

net Explorer 6.0 SP1 +. You can call the execCommand method on the document,

passing in ClearAuthenticationCache as the command parameter. This flushes

all credentials in the cache, so that no basic authentication headers are sent. Here

a very small test program that closes the session on logoff (discussed in detail in

Chapter 6) and then clears the browser's authentication cache.

<html)<form)

<% DATA: counter TYPE string.

counter = request')get_form_field('counter') + 1. %)

<input type="submit" name="counter" value="<%=counter%)")

<input type="submit" name="logoff" value="Logoff")

<% IF request-)get_form_field('logoff') IS NOT INITIAL. %)

<% runtime-)keep_context = O. %)

<script)

document. execCommand ('ClearAuthenticationCache');

De-Authentication 113

document.URL '/sap/bc/bsp/sap/myApp/startPage.htm' ;

<I script>

<'Yo ENDIF. 'Yo>

</form><html>

Remember that this technique only works for Internet Explorers 6 SP1 onwards.

One should only consider it in a corporate network where the browser installa­

tions can be centrally managed. No equivalent techniques that work for other

browsers are known to the authors at the time of writing.

With 550, the situation is complicated for a different reason. As 550 is handled

with the MYSAPSS02 cookie, de-authentication can theoretically be achieved by

deleting the cookie with a response->delete_cookie_at_client or with Jav­

aScript operations on the document. cookie.Computing the correct domain

string to use can be tricky, because this depends on profile settings. However, SAP

considers the 550 concept to be also "sticky" once set. In theory, one does not

know who sets the MYSAPSS02 cookie, and deleting it could cause other software

components, for example an SAP Enterprise Portal, to suddenly fail.

With certificates, the handling is completely under the browser's control, and

there is not much to do. Elegant solutions using certificates with a card reader are

available on the market, but very seldom used because of their cost. The use of

smart card readers has the benefit that when the user leaves the computer, his

credentials leave with him.

For anonymous access through the corresponding Ipublic path in the ICF tree,

nothing more can be done. The browser never required any authentication infor­

mation, and thus none is available for deleting.

Unfortunately, there is no easy answer to this question. Probably the best

approach that also works over all browsers is to consider the closing of the win­

dow. When the logoff sequence is started, redirect to a final page that contains a

good description on security (to scare everyone), and then place a window-close

button on the page «button onclick="top. cLose l L: ">Close Window</but­

ton». This gives the user at least a much better feeling that the application was

closed correctly, and did not just die on him or her.

6 Session Management

Using stateful BSP applications provides a programming model that
shouldfeel veryfamiliar to those experienced in traditional ABAP
dynpro programming. However, it also introducesnew challenges in
properlymanagingthe state. In this chapter, we will look at a number
of these challenges and possible solutions to them.

Typically, Web pages are designed to be stateless, meaning that the server will

process an incoming request from a browser and then completely forget about

that browser. In such scenarios, all possible state information required must be

stored with the browser. The server stores no state information. This model allows

one server to handle many clients and even may allow different requests from the

same client to be handled by different servers each time, governed by a load-bal­

ancing algorithm.

However, for more complex business applications, where more information is

involved or where database locks are required until an application is completed,

a stateful approach is required. This implies that the ABAP session is not destroyed

after the HTTP response has been processed but rather left in memory. All subse­

quent HTTP requests will not start new sessions but will all be processed within

the same session. This session is exactly the same as a session opened with SAP

GUI.

The only difference between these sessions is that SAP GUI sessions are managed

over TCP/IP connections that are not closed until the end of the session. Should

the server suddenly see that a TCP/IP connection is closed, it knows that the SAP

GUI was closed prematurely and can clean up the session. For HTTP, no such per­

manent TCP/IP connection is used, and the server does not know whether the

browser has been closed suddenly.

Open sessions can be seen in transaction SM04. In Figure 6.1, notice that the

HTTP sessions have a different "type" than the SAP GUI sessions, allowing one to

separate them easily. It is also possible to close session from this transaction.

6.1 Session Identification

We saw in Chapter 1 that the session selection is done by the Internet Commu­

nication Manager (ICM). For all intents and purposes, once an incoming HTTP

request is placed into the ABAP stack, it is already in the correct user session

where it must be processed.

Session Management 115
114 Authentication

~ IS8s(1)DOO tID Ius0D49!INS I " 14

Figure 6.1 SAP GUI and HTIP Sessions in Transaction SM04

A session ID is required for session identification. This is a relatively complex

string containing random elements that uniquely identifies the session. The exact

format is not important and not really known outside of the ICM layer. The ses­

sion ID will nearly always be identified as sap-contextid with the HTIP request.

The ICM layer will look at a number of different places within the incoming HTIP

request to find the session ID and map the HTIP request into the correct session.

The first three places are all variations on having the session ID stored as part of

the URL. Session ID can be mangled into the URL, it can be part of the Ur\L itself

(using a ;-character as separator), or it can be a form field attached onto the URL.

POST Isap /main.htm?sap-contextid=sid-NEW HTTP/1.l

POST Isap /main.htm;sap-contextid=sid-NEW HTTP/1.l

POST Isap(s=sid-NEW)/ ... /main.htm HTTP/1.l

Although the first two entries look nearly the same, they are very different in sub­

tle ways. In the first case, the session ID is transferred as a form field, and can be

part of any number of form fields in the URL. In this case, the Web application

must take care to each time add this extra form field to any URL. In the second

case, the session ID is actually part of the URL, effectively the last segment of the

URL is main. htm; sap - contextid=sid -NEW. For the browser, the ; -character

sequence in the URL has no further meaning. If an URL generator is used, this

approach can correctly attach the session ID onto each URL generator, and the

form fields are left for the use of the application. The one problem is that a rela­

tive navigation (for example to a new URL .. Ipage2. htm), will drop the session

ID with the last segment from the URL.

In the last form, the session ID is mangled into the URL, where it does not inter­

fere with form fields and is immune to relative URLs. As it is mangled onto the

first segment, the session ID will also exist in all URLs used for the application. It

sure looks ugly though!

116 Session Management

SAP does not support having the session ID stored as form field within the body

of a POST request.

The biggest negative aspects of having a session ID within an URL is that resources

(images, etc) loaded with a session ID will be cached with the session ID part of

the URL, and will thus only be valid for the specific session. A new start of the

application will cause the resources to be reloaded. The best workaround is to

load resources with an URL that contains no session ID. This will cause the loading

to be done in a new stateless session.

The last possibility is to transfer the session ID as a cookie within the HTIP

request. This has the benefit that the browser will always send the cookie with all

HTIP requests that match the cookie path.

POST Isap ... HTTP/1.l
Cookie: sap-contextid=sid-NEW;

The downside is that the application must set the path correctly, so that the

cookie will only be transported for the specific application. Also, it is not possible

to run a second session with the same URL, as the sessions will then share the

same cookie, with the second session then overwriting the session ID of the first

session.

In all the above examples, the session was only shown as sid - NEW. The sid is rep­

resentative of the session ID itself, of which the format is neither known nor

important. However, the session ID also has a sub-comment -NEW or -ATT
attached to it. The sequence -NEW is an indicator to the ICM layer to place the

incoming HTIP req uest Into an existing session or to create a new session if the

old session is not found. This ensures that the HTIP request will be processed.

With -ATT, if the session does not exist any more, the ICM layer will display a ses­
sion-timeout message, and the HTIP request will never be processed within the

ABAP layer.

The BSP runtime uses only two formats for storing the session IDs. The first is to

set a cookie with the -NEW sequence directly on the path of the application. The

makes the handling of URLs and navigation with the application very easy, but

does have the two disadvantages mentioned before: Only one instance of a spe­

cific BSP application can be executed at any time, and the application is given no

notice of this fact in case of a session timeout and restart.

The second format used by the BSP runtime is to mangle the session ID into the

URL. This can be requested only on the very first startup request (before any URL

mangling has been completed) with the URL parameter sap - syscmd=nocookie.

In this case the -ATT subcommand is used, so that on a timeout, the application

Session Identification 117

is not restarted. The reason for the difference in subcommand is that once the
session 10 is in the URL, it will stay there all the time. If a new POST was to open
a new session, the old session 10 itself in the URL is still stored in the browser,
and the newly assigned session 10 is not stored. Each subsequent request from
the stale URL will open a new session. Thus, the -ATT mode is used, so that­

once a timeout happens- processing is stopped, and the application must be
restarted.

The advantage of this approach is that it is now easy to run any number of
instances of the same BSP application, as each will store its own session 10 man­
gled in the URL, and the BSP applications will not overwrite the session ids of one

another. One disadvantage is that the URL length is dramatically increased, and
this payload price is also paid twice in each HTIP request, once mangled in the

URL and the second time in the Referer header field.

6.2 Session Timeout

Oue to the "disconnected" model of HTIP, it is never known whether the user is

actually still browsing our specific application or has already moved to another
website. To protect critical resources, inactive sessions are cleaned up by ICM

after a configured idle time has been exceeded.

The maximum idle time is configured in the system profile with the parameter
rdispl plugin_auto_logout; 30 minutes by default. The profile parameter also

can be changed (until next system restart) using transaction RZ11.

HTIP is a strict request/response protocol, where the browser will always send a
HTTP request, and the server can only answer at that time with a HTTP response.

It is not possible for the server to send any HTIP traffic to the browser at other
times. Therefore, when a timeout condition is detected, the server has no way to

inform the browser of the situation. The session will just be terminated.

Within the browser, no update will appear. When the user returns at a later stage,

he will still find the browser indicating a normal running Web application. Only
on the next action that triggers a server roundtrip will the lost session be noticed.

The maximum idle time is used for the complete application server. It is not pos­

sible to have idle sessions that are longer than this time. You can set the idle time
for specific applications within transaction SICF to be shorter than this time. If a
longer idle time is required, then the profile of a specific application server has to
be updated and those applications only executed against this one application
server.

6.2.1 Catching and Handling a Session Timeout

Normally, when a session is cleared because of a timeout situation, a rollback is
done, all locks are released, and the session is cleared. This is sufficient for nearly
all types of applications.

However, let us assume your application also acquires resources that must be
released on timeout. For our small example, we use a counter merely to reserve
something until the transaction is completed. The reservation counter is stored in
memory, and all those objects reserved cannot be taken into consideration by
other users.

<%@extension name="htmlb" prefix="htmlb"%>

<%
DATA: reserveCounter TYPE string.

IMPORT reserveCounter = reserveCounter

FROM SHARED MEMORY indx(qq) ID 'reserveCounter'.
reserveCounter ~ reserveCounter + 1.

%>

<htmlb:content design="design2003"><htmlb:page><htmlb:form>
<htmlb:button text = "<%=reserveCounter%>"

onClick = "myClickHandler" I>
</htmlb:form></htmlb:page></htmlb:content>
<%

EXPORT reserveCounter = reserveCounter

TO SHARED MEMORY indx(qq) ID 'reserveCounter'.
%>

If the application runs into a timeout, we certainly would like to clear this reser­

vation counter, so that the reserved objects will be available for other users.

The rCF layer does provide an ABAP event when the session is cleared. It is a sim­
ple step to hook this event and clear the counter in shared memory. For the

example, we will use the application class of the BSP application. This application
class can implement an optional interface IF__BSP_APPLICATION_EVENTS, which

will cause the BSP runtime to then call the application at different time points. We
define a new class that implements the event interface.

In the application class, we define a new method on_timeout that is an event
handler for the timeout event available on the IF_HTTP SERVER Interface (see
Figure 6.2).

118 Session Management Session Timeout 119

Memoa Level I@ChangeMethod ON_TIMEOUT ~ .

<IF_BSP_APPLIGATIO~_EVEfITS> Object type [GL BOOK_GHAPTEROfi_APPLICATION I
_.. --- IO!LTIMEOUT.-::-1

Description I l
~§iili/
.@ Public

IIMethodro Static

o Protected 11.@lnstance

J-'~-T-"-"~-"'-'~~"-"·_;;- ~<., ••• !.•.,.... ",IIOpriVa!e JLI__~~ ---.J

~ Event handlerfor=-==-==~ __
Classnn!e""ce IfF HTTP_SERVER ~

IEVENTKfNDJONTEXT_TER~IINATION I
'E;'~~;~'i ~r .

Figure 6.2 Defining Method As Event Handler

Two methods merit our interest. The first is the on_start method that is called by

the SSP runtime when the application is started. Here we just register our timeout

handler against the server instance.

METHOD if_bsp_application_events~on_start.

DATA: reserveCounter TYPE string VALUE '0'.

EXPORT reserveCounter = reserveCounter

TO SHARED MEMORY indx(qq) ID 'reserveCounter'.

SET HANDLER me->on timeout FOR runtime->server.
ENDMETHOD.

The second method to implement is the actual timeout handler itself. Here we

just reset our reservation counter.

METHOD on_timeout.

DATA: reserveCounter TYPE string VALUE '0'.

EXPORT reserveCounter = reserveCounter

TO SHARED MEMORY indx(qq) ID 'reserveCounter'.

ENDMETHOD.

This simple hook allows us to clean up in critical cases where more than database

locks are held.

6.2.2 Session Timeout in Browser

As we have discussed before, a session timeout in the server happens while no

HTIP request is being processed. Thus, it is not possible for the server to write an

update to the browser. The user who now returns to his or her desk will still find

an application that gives no indication of the timeout.

One simple hack after we suspect a server timeout has happened is to clear the
browser screen.

<script>

var T = (30+3) /*min*/ * 60 /*sec*/ * 1000 /'millisecs'/;

window,setTimeout("document.URL = 'about:blank' ;". T);

</ script>

As long as the user interacts with the application, each page loaded will return the

previous running times and set itself a new timer. The timer is set to be the con­

figured idle time plus three minutes. Note that the JavaScript function requires

the values in milliseconds. Should the user now leave the program unattended for

33 minutes, the screen will be blanked, so that on return the application that was
terminated at the server will not be displayed in the browser.

6.3 Confusion with Processing Timeout

Note also the length of time that one HTIP request will be processed before it is

aborted. This time can be seen in transaction SMICM (see Figure 6.3). It is a value

that defined per service (open HTIP port) and that controls the time that one

HTIP request can be processed by the ASAPstack. It can be configured within the
system profile as part of the icm/ server_port parameter.

I-~I==~~~=·=~=~:~.~~~~~~~~~:I-~--=~~~~~~l~F?'~
leM Monitor· Service Display

1 "HTTP 1OBO us4849 .wdf . sap. corp 38 608 W'

2 IHTIPS 1443 us40J9 .wdf . sap. corp 38
 eon W'
3 JS~ITP 25021 us4049 .wdf . sap.corp 30 600 W'

Figure 6.3 Processing Timeout in Transaction SMICM

When the HTIP request takes too much time within the ASAP stack, the ICM

layer will terminate the ASAP session and write back an error message to the
browser (see Figure 6.4)

Notice in Figure 6.4 that the time shown by the HTIP trace tool is a little over 604

seconds, just marginally longer than the configured 600 seconds for this specific

port. The "Connection timed out" message reflects the fact that the "connection"

between the ICM layer and the ASAP stack has timed out; the message does not
have anything to do with the idle timeout.

120 Session Management Confusion with Processing Timeout 121

500 Connection timed out

Error -5
Version: 7010
Component: ICM
Datefflme: ManOcl3 05.53:41 2005
Module: icxxthr_mtc
line' 2696
Server: b20main_B20_21
ErrorTag {-}
Detail: Connection 10 partner timed outafter6005

~S~P~d~~A~~~Q~g~m~ut OH~

Started i TIme: see M... ; Re.,; Type URL

00":-60-: 06'.000 -604: 3g6-·-2osf~-posT~500-~-tExtlhbnT-4~htlp:TJus4049.~~dfs~p:"corp ;·iCisOi5ap(bDiliszj~AWMA "'~)~c/D$p/~ap'

00:10:04.404 0.709 14,., GET 200 imagejjpeg http;/lus4049,wdf.sap,corp:l0S0/t<ap/publlC,/icman(img/tlleme.jpg

00:10:04,430 0.689 '.i336 GET 7!lO image/jpeg http~lfus4049.wdf,sap.corD:1080/sap/pIJblic,liananrllTlg/graybar_ble.jpg

00:10:04.429 0.761 1247 GET 280 imagejQlf htlp:!lus4049.'Ndf,sap.c:orp: iOSO/sapJpubiiC/icman/lmg/bluebar _b1e.gif

@)Done ,..g LocalIntranet

Figure 6-4 Processing Timeout as Seen in Browser

For production systems, the processing time usually is set relatively short so that

no runaway HTTP request can block work processes for a long time. The latter sit­

uation could be a nightmare on HTTP connections, where such long-running

requests are very easy to trigger from a browser. However, the downside of an

optimal configuration is that it is also not possible to debug any BSP application.

The debugger is also subject to the same processing limits.

The workaround is to temporarily define a new HTTP port that has a very long

maximum processing time allowed (see Figure 6.5). Note that this change is only

available until a restart.

fSDso INew service Port

, og

Max. ProcessingTime . 19999 J
Keep Alive (in Sec.)

Figure 6.5 Defining a New Port with tong Processing Timeout Value

122 Session Management

In the last step, just change the start URL of the application within the browserto
use the new port, in our example: 8080.

For readers especially interested in the subject: The keep-alive time sets the time

in seconds that the ICM layer will keep an idle TCP connection open, waiting for

a new request from the browser, before closing it. Reusing TCP connections helps

improve the total latency of HTTP requests, as no additional roundtrips are

required to first set up the TCP connection. However, the server is limited in the

number of open TCP connections it can maintain at anyone time. Therefore,

unused connections are closed after a few seconds idle time. This relates well to

the HTML model, whereby one HTML page and then all of its referenced
resources are loaded in one burst.

6.4 Catching and Handling a Restart after Timeout

We saw earlier that the BSP runtime will use by default session ids that instruct

the ICM layer just to call the application in a new session if the old one timed out

(the - NEW subcommand). We also saw that at the moment the timeout happens

it is not possible for the server to update the browser. Thus, should the user now

return to the application and trigger any event, the application will be restarted in
a clean environment.

What happens next is really up to the application. Perhaps the application is rela­

tively simple and had all information in the incoming HTTP request, so that the

lost session was not noticed. This behavior would normally have indicated an

application model more suited to stateless mode. What more normally happens,

though, is that the application sudden Iy runs into a situation that was not fore­

seen, and it generates a logical error. All of this causes unnecessary calls to the
support desk.

It would better if the application actually caught such a session restart, and then
restarted the application anew.

This solution actually turns out to be quite simple. A BSP application class, when

implementing the interface IF_BSP_APPLICATION_EVENTS, will have its method

oD_request called for each incoming request.

The first task is to filter out the first oD_request method that starts the applica­

tion. This is done with a class attribute (type abap_bool) that is just toggled after
the first time.

The question now is whether this an initial start of the application or a restart of

the application. In the case of a restart, we would like to show the user a small

error page and start the application from the beginning.

Catching and Handling a Restart after Timeout 123

We need something that tells us if the HTTP request we are receiving is for a

restart. The best way is to check if the incoming HTTP request contains any form

fields with htmlb in the name, as this indicates a previously rendered HTML page

with HTMLB library of elements (assuming they are used).

Another good form field to checkJor is onInputProcessing. This is a very special

field that indicates to the BSP runtime that an event requires processing from the

HTTP request, and it will also be set by the HTMLB library.

We use the same small example that was started before (see Section 6.2.1). The

on_request method is implemented to contain our restart guard, and if required,

to navigate to a restart page.

METHOD if_bsp_application_events~on_request.

* Class Attribute: first_time TYPE abap_bool VALUE abap_true

IF first_time = abap_true.

first_time = abap_false.

IF request->get_form_field('onInputProcessing')

IS NOT INITIAL.

navigation->exit('restart.htm').

RETURN.

ENDIF.

ENDIF.

ENDMETHOD.

The restart page now just shows a small error message, and has a button to start

the application anew.

<%@extension name="htmlb" prefix="htmlb"%>

<htmlb:content design="design2003"><htmlb:page><htmlb:form>

<htmlb:textView text = "Session has timed out!"

design = "EMPHASIZED" I>
<htmlb:button text = "Restart"

onClientClick = "document.URL = 'main.htm';" I>
</htmlb:form></htmlb:page></htmlb:content>

The document. URL sequence will set the reference for the HTML page to a new

value, triggering the browser to load the new page.

If you want to test the timeout situation, it is easy to simulate it without having to

actually wait for a timeout. In transaction SM04 you can see all connected users

whether the connection is from the SAP GUI or from the browser. You can dou­

ble-click on an entry in this list and then end the session with a menu option. This

will have the same result as if the ICM had cancelled the session because of a

124 Session Management

timeout. Just be sure to choose the correct session and not to accidentally kick

yourself out of the system.

6.5 Session Management from the Browser

Until now, we have only looked at the aspect of a server-triggered session time­

out. What happens if the user navigates outside of our application or shuts down

his or her browser? The server state remains, consuming valuable resources and

also maintains locks that prevent other users from working. These lost sessions

will only be cleaned up by the ICM after the maximum idle timer has expired,

which is a very course-grained protection.

We need a technique for also closing the server session once the browser "closes"

its concept of the session. This can happen because the user decides to navigate

to a different website, or to just close his browser.

The first problem is to hook into the browser to detect these conditions. One

technique is to use the onunload event of each page. This is a JavaScript event
that will call our code if the current page is unloaded because the user decided to

navigate to another page. However, each time that our page is also submitted to

the server because of a user event, the page is also effectively unloaded and

reloaded. Here, we do not want to trigger the session to be closed prematurely.

The solution is to use a HTML <f r amcs et >. This loads a very small document into

the browser, which itself will then load the actual application. As the application

is now in one <frame>, its roundtrips are not significant.

<html>

<script language="JavaScript">

function appUnload () { ... j

</script>

<frameset name="guard" rows="*,O"

onUnLoad=" appUnload () ;">

<frame src="main.htm">

</frameset>

</html>

When looking at the source skeleton above, we see that we have a defined a Java­

Script function appUnload that is tied to the onUnLoad event of the <frameset>.

Should the user now navigate to any other website, the frameset will be unloaded

by the browser, triggering our function. The <frame> itself will load the main

page of the application, and the user will not even be aware of the guard we

placed into position.

Session Management from the Browser 125

However, the browser close is a very special situation. Some browsers will also fire

this event when the browser is closed (our experience shows that Microsoft Inter­
net Explorer does it), whereas other browsers, for example older versions of

Netscape, will not fire the event.

With the hook in place, it is nec.essary to inform the server to close the current
session. In this JavaScript code, there is no information available about the next
URL to which the browser will navigate. Any algorithm of the form: "first go to

server and close session, then redirect to next URL" will fail. Any solution using

the current document. URL to first force our session to close will either fail or

cause many user complaints, because the targeted URL of the user then will not
be navigated to. Essentially, it must be possible to trigger a HTIP request to server

that is not part of the current document.

The initial methods we used had a window. open to load the session termination
URL into a small window. However, this causes user irritation because the popup

window flashes onto screen, to be closed moments later, and is relatively slow.

This approach works reasonably well under most situations. But it does have
some minor problems. To most end users, popup windows that fire without their

triggering an action are as unwelcome as spam. The situation has become so seri­
ous that we have popup blockers being built into just about every Internet

browser that will prevent the window from opening at all, thus breaking session

management completely.

The alternative solution that we found to work very well is to load an image. This

will trigger a server roundtrip and can be done without setting the document. URL

new.

function appUnload()

var img=new Image;

img.src = ... ;

var stop = (new Date()) .getTime() + 1000 /*millisecs*/;

while((new Date()) .getTime() (stop)

forte in document. all) tmp=e.innerHTML;

The one problem with attem pting to load an image at this moment is that after

the appUnload function has completed, the browser will terminate all outstand­
ing HTIP requests, thus stopping the image request before it has even had time to

reach the server. JavaScript has no technique for easily putting a function to sleep.
We use a busy loop that will keep the function active for one second, so that the

image has time to be loaded. It is actually not important that the image be com­

126 Session Management

pletely loaded, just that the request will reach the server and terminate the ses­

sion.

For the image to load, we use a special 1x1 URL. The BSP runtime has a perfor­
mance improvement that will always reply with a lxl.gif for an incoming URL
of the format ... / lxl . gif. To create such an URL, we just take the current doc­

ument URL and add the sequence below. This URL will then be intercepted by the
BSP runtime and answered immediately.

img.src = document.URL + "/lxl.gif"
+ "?sap-contextid=(%= cl_http_utility=>escape_

url(runtime->session_id)%>"
+ "&sap-sessioncmd=CANCEL";

Now that we have the image to load, we need to add the session ID so that the

ICM layer will know to which session we are referring.

The last step is to actually get the session terminated. Here we use the fact that

the ICM layer supports an URL parameter sap - sessioncmd=CANCEL that will ter­
minate the session for which the URL is received. The URL then is processed in a

new session. This is acceptable, as in the new session, still stateless, the BSP run­

time will answer the request for the GIF image.

The benefit of this brute-force approach is that by using document. URL, the ses­

sion 1D either stored in a cookie on the application path or mangled inside the
URL is actually already available. We add the session ID onto the URL again just to

ensure that the session is really killed.

We place this coding onto a default .htm page within the application and always

start it with this page. This will install the guard first, and then start the application.
Ifthe user now navigates away, the session will still be closed (see Figure 6.6).

t!J13f2:1
Ecre [?:Jit l£iew F@.\loriles Iools !:ielp ,j Li['.~ '": iif

:~,l,dcr~~s 1~htq;:/f.'1w'll'.~p-press.OJml ~

;IDDone ~Internet

Figure 6.6 HTIP Trace of the Termination URL

Session Management from the Browser 127

I

When we look closely at the HTIP trace, we see that it looks as though the new

URL is first loaded before the termination URL. This is mostly an artifact of the

HTIP trace tool. A final check in transaction SM04 shows no HTIP sessions for

our user.

If we look back at Section 6.4, we also had a restart page that was used to show

a small message to the user and then to replace the URL of the page with the new

start URL. The problem is now that our default.htm page is guarding the ses­
sion, and the application is running within a child <frame). Should the restart

mechanism be used within this context, it will reload the application with docu­

ment. URL, which will then effectively load a new default .htm within the old

<frame) as guard. A number of small changes are required to the client Java­

Script code used for restarting.

<script language="JavaScript")

function restart()

parent.document.getElementById("guard") .onunload null;

parent.document.URL = 'default.htm';

J

</script)

<htmlb:button text "Restart"

onClientClick "restart () ;" /)

The restart. htm page will be called at a time that the old session has already

expired, or was closed by someone. As a result, the guard page is protecting a ses­

sion that does not exist anymore. The first line of code we now have will unhook

the onUnLoad event handler, so that it cannot continue to fire. Notice the use of

parent. document to reference the <frameset) where the guard page is and not

the document of the restart page itself.

The next small step is to now load the default. htm page so that a new guard

page is installed to protect the new session. Again, the parent.document is used

so that the old page can be unloaded and the new page can replace it.

A more complex example for handling session management 'IS also available in the

BSP application ITSM that is shipped as standard.

6.6 Warning the User of a Pending Timeout

You are bound sometime to encounter users who complain that they were logged

off the system for a timeout even while they were actively working. It is easy for

a user to get distracted with a phone call or work in another window. Or, perhaps

128 Session Management

r
I
1

the user has been typing for some time into a text box and simply has not done

anything to trigger a server event.

An elegant solution would be to warn users shortly before the timeout and give

them an opportunity to preserve their sessions and reset the timeout timer. The

session timeout still has a valuable purpose to protect your system's precious

memory resources, so you do not want to disable it all together.

As we already have the extra <frameset) installed to protect the session against

navigation steps to other websites, let us extend this to include our warning code.

All of the following code will be added onto the default. htm page.

<'Yo

DATA: timeout TYPE i.

IF runtime-)server-)session~timeoutIS INITIAL.

DATA: name TYPE pfeparname,

value TYPE pfepvalue.

name = 'rdisp/plugin_auto_logout'.

CALL 'c SAPGPARAM' ID 'NAME' FIELD name

ID 'VALUE' FIELD value.

timeout value.

ELSE.

timeout = runtime-)server-)session_timeout+0(2) * 3600

+ runtime-)server-)session_timeout+2(2) * 60

+ runtime-)server-)session_timeout+4(2) .

ENDIF.

timeout timeout - 60. "one minute warning

timeout timeout * 1000. " milliseconds for JavaScript

%)

The first step is to quickly determine the current timeout value. By default, the

session timeout value is controlled by the profile parameter rdisp/plugin_

auto_logout, set in seconds. However, it is also possible to configure a shorter

value with a specific node within transaction SICF, that will then be available on

the server object in the format HHMMSS. From the computed timeout value, we

deduct 60 seconds as warning time (see Figure 6.7, below).

As a next step, we need the actual warning code.

var timer_id = 0;

function warning()

[

var prompt:

Warning the User of a Pending Timeout 129

prompt = (new Date ()) . toLocaleString ()

+ '\r\n'
+ 'Session will timeout in I minute. '
+ 'would you like to renew iT?"

if(confirm(prompt))

(

var img=new Image;
img.src = document.URL+"/lxl.gif?sap-contextid=<%= cl_http_

utility=)escape_url(runtime-)session_id)%)&sap­

unique="+((new Date()) .getTime());
timer id = window.setTimeout('warning()' . <%=timeout%» ;

The function just uses a simple JavaScript confirm() call to place the prompt on

screen. Upon confirmation, the same Ix l . gif hack is used as before to quickly
update the session-inactivity timer. The only problem is that the server will

instruct the browser to cache the image after the first roundtrip. Therefore, we
add a unique number (timestamp in milliseconds) onto the URL, to ensure that

the URL really will be loaded from the Web server and not from a cache.

The last part of the code is just to install our timer that will trigger on a session

timeout and to restart it with each new page loaded.

function pageLoaded()

window.clearTimeout(timer_id) ;

timer id = window.setTimeout('warning()' . <%=timeout%») ;

<frameset ... onLoad="pageLoaded () ; ,,)

This code updates the <frameset> to also trigger a call each time that a new page
is loaded. This is elegant, as the trigger code is not required on each page but

rather installed centrally in the guard page. For each new page loaded, the old

timer is stopped, and a new timer is started.

This current coding does have one slight disadvantage. The JavaScript confirm()
method cannot be interrupted again with a timeout. Thus, the prompt will stay on
screen until the user returned (this is the reason for the added timestamp!). A

more complex solution would involve using a window. open () and win­

dow. focus () to load the prompt text into a separate window.

130 Session Management

03 October 2005 12,42,04 1.]) Session wil! timeout In 1minute, would youjke torenewit?

[i.iK~:] [cancel~

,ID Done ~] Local intranet

Figure 6.7 Warning on Session Timeout Pending

In addition, a timer is then installed in order to close the prompt window after a

minute and just redirect the application to a termination page. In such a more
complex example, care must be taken that the newly opened window does not in

anyway trigger a request into the existing session, as this will reset the idle timer,
giving the session a new lease on life.

WARNING Given the state of the art described above, a developer can

become very quickly tempted to skip the confirm () sequence completely,
and just tickle the session automatically. However, this will definitely keepses­

sions open, resources pinned down, and locks set, even though users are not in
the office, possibly for the whole day. This is definitely not recommended.

6.7 Summary

Although it might seem that only one technique for session management is

required, it is more likely that all are required in parallel. The <frameset) is
required to guard against user navigation that leaves a dangling session. The

restart protection is required for cases where the backend session suddenly gets
terminated without our knowledge (for example from transaction SM04). The

event handler to catch a server timeout is only critical in cases where resources
are held, other than database locks that are freed automatically. The warning mes­

sage is probably not critical from a technical point of view, but does help to
reduce calls to the support desk.

Summary 131

I

7 Using SSP Applications in SAP GUI

Running BSP applications in the SAP CUI might seem strange at first,

but there are times when it is required. This chapter shows how to do

this and-even more important-the pitfalls to avoid.

The question naturally arises: "Why run a SSP at all in the SAP GUI"? Here we

have a brand new Internet application, and yet we wish to tie it to the old world

of ASAP dynpro programming. The answer is that dynpro programming is still the

technique used most frequently for developing SAP programs, and often it is the

best solution for a specific task.

Often, one wishes to develop a new add-on for an existing application in such a

way that both the old application and the add-on are available via browser. For

this, SSP applications are one alternative. They can run stand-alone in a browser,

and one just needs to deal with the SAP GUI integration.

Other reasons for running the SSP application in the SAP GUI is to integrate new

types of browser-based applets or to achieve specific rendering effects. For exam­

ple, there are a number of Java applets available for SSP that also come with

libraries to use these applets In a SSP application. When they are required in SAP

GUI, the Simplest approach is to just use them as usual in a SSP application, and

integrate the complete SSP application.

Effectively, SSP applications within SAP GUI provide a slow migration path,

whereby new features can be developed with Web technology, and thereby also

used in stand-alone fashion, but at the same time be integrated into existing

applications.

The ASAP dynpro has an HTML Viewer control that can be used to show HTML

within a dynpro. It is in essence a wrapper control around an Internet Explorer

browser. This control can be used by placing a custom control on the dynpro and

using the class cl_gui_html_viewer to instantiate and configure the browser.

See transaction DWDM for a number of example programs.

7.1 Using a BSP Application in a Dynpro

Let us start by quickly developing a small SSP application that we can use.

Although the test program might at first look strange and useless, the next section

will show the method in our madness. All that the following section of code does

is list the number of ASAP sessions that we have open and provide two buttons.

Using SSPApplications in SAP GUI 133

~·'T

The first increments a side-side counter, and the second opens a new window

where the same application will continue running.

The BSP application is set as stateful, and one page is added with a page attribute
counter type string. Having the counter attached to the page, rather than
being stored as a hidden input field within the HTML rendering, shows that ses­
sion is stateful, and that each time we return to the server it will be possible to

update the same counter in the same session.

<%@extension name="htmlb" prefix="htmlb"%>
<htmlb:content design = "design2003"

controlRendering = "browser">
<htmlb:page>

<htmlb:form>

<% counter = I + counter. %>

<htmlb:button id = "btnl"

text = ,,<%= counter %>"

onClick "increaseCounter" I>

<htmlb:button text "New Window"

onClientClick "window.open(document.URL);" I>

<%

DATA: userlist TYPE TABLE OF UINFO,

user LIKE LINE OF userlist.

CALL FUNCTION 'TH_USER_LIST'

TABLES LIST = userlist.

DELETE userlist WHERE BNAME <> sy-uname.

%>

<htmlb:tableView id "tvll!

table ,,<%= userlist 1'0>" !>

</htmlb:form>

</htmlb:page>

</htmlb:content>

Once the BSP application is finished, it can be activated and tested quickly. The
next step is for the dynpro to host the BSP application. For this we write a new
report and start Dynpro 100, which contains a custom control as the only screen
element. Most of the code sample comes directlyfrom the examples of the HTML
Viewer control and the relevant documentation.

The only BSP specific part is the URL generation, shown in the code below. This is
achieved using the cl_bsp_runtime=>construct_bsp_url method with the

134 Using BSP Applications in SAP GUI

name and page of our test application. Figure 7.1 shows the BSP test application,
both running both in the SAP GUI and also running stand-alone directly in the
browser.

REPORT book_chapter07_examplel.

DATA:	 html_viewer TYPE REF TO cLgui_html_viewer,
htmL_container TYPE REF TO cl_gui_custom_container,
fcode LIKE sy-ucomrn.

SET SCREEN 100.

MODULE status_0100 OUTPUT.
SET PF-STATUS 'TESTHTM1'.
SET TITLEBAR '001'.
IF html_viewer IS INITIAL.

CREATE OBJECT html_container
EXPORTING container_name = 'HTML'.

CREATE OBJECT html_viewer
EXPORTING parent = html container.

DATA: urI TYPE string. urlc(2048) TYPE c.

cl_bsp_runtime=>construct_bsp_url(

EXPORTING in_application = 'booK_chapter07'

in_page = 'examplel.htm'

IMPORTING out abs_url = urI).

urIc = urI. " type conversion STRING to C

html_viewer->show_url(urI = urIc).

ENDIF.
ENDMODULE.

MODULE user_command_010a INPUT.
IF fcode = 'BACK'.

html_viewer->free(). FREE html_viewer.

html container->free(). FREE html container.

LEAVE PROGRA.t'1.

ENDIF.

CALL METHOD cl_gui_cfw=>dispatch.

CLEAR fcode.

ENDMODULE.

Using a BSP Application in a Dynpro 135

;..g Local lntraoet

@
Program Edit Goto System Help

.i:~r=:~'., ,:=...-~<l~~i~eer~~;~ ,: ;:~2~;,;, ffj:, ")2;

HTML Control als WWW Browser

..2J New Window I

24

Figure7.1 The Same Application in SAP GUI and in the Browser

7.2	 Pitfalls when Using BSP Applications with
SAP GUI

As we have seen from the coding above, placing a BSP application on a dynpro

amounts to a few lines of code and works out of the box. However, there are a

number of pitfalls in this scenario, which will be addressed in this section, along

with solutions to solve them.

7.2.1	 Communication Path

Probably the most difficult problem to anticipate involves the different communi­

cation paths that are used. This problem usually only arises in complex production

landscapes, at a moment when we did not expect it.

The SAP GUI uses the DIAG protocol (effectively, binary data in TCP/IP) for com­

municating with the server. The browser uses HITP (also a TCP/IP connection,

usually text). As long as the client can reach the server with a direct TCP/IP con­

nection, you will experience no problems. However, once a complex landscape is

in use, the SAP GUI could begin communicating with the server via a SAP router.

Typically, this happens in scenarios where satellite offices are connected to the

data center via the wide-area networks managed by the SAP router. In this case,

only DIAG data streams can be transferred via the SAP router. When a dynpro

appears that contains a HTML Viewer control, the container browser will attempt

136 Using BSP Applications in SAP GUI

to set a HITP connection back to the server. Forthis to work in practice, an addi­
tional HITP route must be avaiiable .

One possible solution is to route the HITP traffic out into the Internet and then

back over the corporate firewall to the server. There is no need for the two data

streams to follow the same communication path. However, in such a case, care

should be taken to use-at a minimum-encrypted HITPS connections.

7.2 .2	 The Second Authentication

When the BSP application is started within the SAP GUI, a second authentication

is required (see Figure 7.2). Effective!y, the SAP GUI already knows the credentials

of the user. However, the embedded browser is a completely different entity that

is started anew and is not aware of the credentials. This second authentication is
very annoying!

.. I.
~i

~~

r!1 mckefar

[a:mml =l

SAP Web AppIiGltion Server

!J.sername·

fas5word:

~ Bemember mypassword

Figure7-2	 Second Authentication Requested

The SAP GUI team built an unorthodox solution to the problem. User credentials

usually are transferred via a Single Sign-On (550) cookie. However, it is not pos­

sible to set a cookie into the browser instance that is started by the SAP GUI.

What was possible was to set a special header field. The problem is that the newly

set header field is only used in the next HITP request for which it has been set.

Thereafter, the information is again lost. To make the information sticky, a cookie

is really needed, and the browser will only accept cookies that are received from
the server.

Thus, when the browser is first started with the request to navigate to a specific

URL, the request is changed by the SAP GUI to navigate to the very special desti-

Pitfalls when Using BSP Applications with SAP GUI 137

nation I sap/public/myssocntl. In addition, two header fields are set. The first

is the SSO data with a very short timestamp. The second aszheader is the real tar­

get URL. The handler on the server for the destination I sap/public/myssocntl

will retrieve and validate the SSO header. Once accepted, a real SSO cookie is set.

Thereafter, a HTTP redirect is made to the original URL requested. No second

authentication is required with this approach, as the server can now retrieve the

user credentials from every HTTP request just by looking at the SSO cookie.

This described behavior is not the default, and must be explicitly requested by the

code that hosts the HTML Viewer. (See also SAP Note 612670, "sso for local BSP

calls using SAP GUI HTML Control.") To accomplish this, after creating the HTML­

viewer control in our report, we add the additional method call enable_sapsso.

This one method call alone activates the complete SSO mechanism, and a second

authentication is not required.

CREATE OBJECT html_viewer EXPORTING parent = html container.

html_viewer->enable_sapsso (enabled - 'x').

A note of caution: This method requires that SSO be configured correctly for the

server by the system administrator, and the path I sap/public/myssocntl

within ICF must be active.

7.2.3 The Second Session

When we examine the source code of our test BSP application closely, we see that

it lists the number of sessions that are open for our specific user. However, when

looking closely at Figure 7.1, we can see that there are two sessions open!

The first is the SAP GUI session. The second session is opened by the BSP applica­

tion. It is impossible to run the BSP application within the SAP GUI session. There

are a number of implications that the developer must consider.

One is that of scalability. Once a (stateful) BSP application is used with a typical

SAP GUI application, each end user will immediately require two sessions on the

server to complete the transaction. This factor-of-two increase in sessions must

be taken into consideration when the sizing of the application servers is done.

The next problem is that of data handling. If the same data is to be manipulated by

both the SAP GUI and the BSP application, then some form of shared data space

should be used. This can be done via database tables, shared memory, or from

NetWeaver releases with ABAP shared objects. One additional alternative is to use

SAPEVENTS between the SAP GUI and the browser (discussed in Section 7.3).

138 Using SSP Applications in SAP GUI

The biggest problem that must be handled is that of session management. When

the dynpro is closed, the HTML Viewer control will also be unloaded. It is impor­

tant at this moment to also terminate the BSP session.

The previous chapter already discussed session management in detail. All we need

to do now is to add the additional few lines of code to build a session, terminate

URL, load it into the browser, and wait a moment to give the browser time to

transmit the URL to the server and have the BSP session terminated.

IF fcode = 'BACK'.

html_viewer->get_current_url(IMPORTING urI - urIc).
cl_gui_cfw->flush().

CONCATENATE urIc 'I' sy-uzeit '/lxl?sap-sessioncmd-cancel'
INTO urIc.

html_viewer->show_url(urI - urIc).
cl_gui_cfw->flush().
WAIT UP TO 1 SECONDS.

html_viewer->free(). FREE html_viewer.

html_container->free(). FREE html_container.

ENDIF.

The additional flush () calls are required by the fact that calls to the HTML

viewer control (such as retrieving the current URL) are queued and only executed

on the next roundtrip. This call ensures that the data is retrieved immediately.

7.2.4 Window Open Behavior

In the BSP application example, there is also a button to open a new window

using the typical JavaScript sequence window. open (). From the previous chapter

on session management, we know that the new browser window will have the

same browser instance on the client, and thus share the same set of cookies with

the old window. As the session ID is stored in a cookie, all requests from the new

window will be processed in the same session. This is the expected behavior, and

it can be important, for example when F4-help windows are used.

Figure 7.3 shows this expected behavior. With the BSP application started in the

browser, the first button was pressed five times, and then the new window was

requested. On each round trip to the server, the counter is incremented, and we

see in the new window the expected value six.

Pitfalls when Using SSP Applications with SAP GUI 139

I

Figure 7.3 Expected Behavior of an Open Window Sequence

The same steps are repeated (see Figure 7.4), with the exception that the BSP
application is now started in the SAP GUI. After five button presses, the new win­
dow is opened. Instead of the counter now showing the value six as we expected,

the counter is showing again the value one.

This behaviour is also highlighted by the fact that the newly opened browser win­
dow now lists three sessions for our user, instead of the expected two.

10-18.21G243

10 1821 [}.243

OJ I New Window]

271 00

O(}ctlll 24 [JOO I~CKELLAR

27 eco ", CKELlA.R

2I NewWindow'

Figure 7.4 Real Behavior of an Open Window Sequence

The reason for this change is that within the HTML Viewer control, the win­
dow. open () sequence will give a new window with a new browser instance,
which of course starts with an empty cookie jar. The HTIP request to fill the new
window reaches the server without a session cookie, a new session is opened,

and a new session cookie is set.

140 Using BSP Applications in SAP GUI

This behavior of the HTML Viewer can break application logic that depends on

having different windows working against the same session; typically this would

happen in F4 help systems. The best solution to this problem is to request that the

BSP runtime not use cookies to identify sessions, but rather mangle the session

identification into the URL. This is done by adding the URL parameter sap-sys­

cmd=nocookie.

cl_bsp_runtime=>construct_bsp_url(

EXPORTING in_application = 'book_chapter07'

in_page = 'examplel.htm'
IMPORTING out abs_url = urI).

CONCATENATE urI '?sap-syscmd-nocookie' INTO urI.
urIc = urI. " type conversion STRING to C

Now a window-open sequence (using a relative URL) will use an URL that has a

session identifier mangled into the URL, causing the request to land in the same
session.

7.2.5 Effects of SAP's New Visual Design

When looking at Figure 7.1, we see that the buttons are rendered differently,
depending on whether the BSP application is running with an external browser or
within the SAP GUI hosted browser. These differences are especially noticeable in
the rendering of buttons, dropdown list boxes and checkboxes.

The reason for this different rendering of the same BSP page is the combination of
two aspects. The first is that the browser renders many user interface elements
using the native Window controls. However, once the browser is used with SAP
GUI, the complete control rendering is intercepted by the SAP GUI, so that it can

render the requested controls in SAP's new visual design. This causes all controls
to be rendered similarly to those of the SAP GUI, once the BSP page is executed
within the HTML Viewer.

The solution to have the same visual rendering over all browser windows is to
change the HTML rendering so that native window controls are not triggered by

the browser. For the HTMLB family of rendering libraries (discussed in detail in
Chapter 9), this can be achieved by setting the controlRendering attribute from
browser to SAP.

<%@extension name="htmlb" prefix="htmlb"%>

<htmlb:content design = "design2003"
controlRendering - "SAP">

Pitfalls when Using BSP Applications with SAP GUI 141

Figure 7.5 shows that with this code change, the buttons are now rendered the

same in both the SAP GUI and in the browser.

<II
:ID Done 1!it':] Local intranet

Figure 7.5 Effect of Setting controlRendering="SAP"

7.2.6 Loading HTML Pages Directly

Often, using a SSP application within the SAP GUI amounts to using a solution

that is much bigger than the problem. A typical example would be to host a Java

applet on an HTML page. Having a separate SSP application, implies a second

development object, and possibly a second session at runtime. In such cases, it

would be nice to just load the HTML directly into the HTML Viewer.

Another situation where this feature would also be very helpful is a "Loading... rr

page that gives the user immediate feedback that the SSP application is starting.

This is usually important in cases where the SSP application must still be activated

and started.

The HTML Viewer does support such a direct HTML load feature. The HTML is

just concatenated into a string and loaded. Instead of calling the show_url ()
method directly, we write a small HTML page that will display the text message

and then auto-submit the form to the start the actual SSP application.

DATA: htrnl TYPE string.
DATA: source TYPE TABLE OF char2SS.
CONSTANTS: crlf TYPE strirrg VALUE

cl_abap_char_utilities=>cr_lf.

CONCATENATE
, (html> ,

crlf '(body onload="document.all['frrn'] .subrnit() ;">'
crlf '(form id="frrn" method="GET" action='" urI '''>'

142 Using SSP Applications in SAP GUI

."~-

crlf '<table border="O" width="lOO%" height="lOO%">'
crlf '<tr>'

crlf '<td align="CENTER" valign="MIDDLE"> '

crlf ' Loading ... '

crlf '<ltd>'

crlf '</tr>'

crlf '</table>'

crlf '</form>'

crlf '</body>'

crlf '</html>'

INTO htrnl.

"SPLIT html AT crlf INTO TABLE source.
CALL FUNCTION 'SCMS_STRING_TO_FTEXT'

EXPORTING text = html
TABLES ftext_tab = source.

htrnl_viewer->load_data(IMPORTING assigned_urI urlc
CHANGING data table source).

html_viewer->show_url(urI = urIc).

In this example, the most significant call is the load__data (), which will place

the HTML into that data container for transfer to the SAP GUI, and return a new

pseudo URL that can then be used for the show_url () call. The new improved

version of our application is shown in Figure 7.6.

o Bem~mber mypassword

I OK II Cancel I

,Iti mckellar lm i
I~

Figure 7.6 Use of a Small Loader Page

Is it really improved? It is true thatthe user sees immediately the "Loading... " text

in the HTML Viewer, but suddenly the second authentication problem is back:

The problem is that with this technique no initial URL is available that will be send

Pitfalls when Using SSPApplications with SAP GUI 143

I

to the server with the SSO information. The data is effectively made immediately

available, and then subsequent HTTP requests do not have a SSO cookie available

to transport the user credentials.

There are also a few other pitfalls that must be considered when loading HTML

directly. For one, the HTML is transferred to the SAP GUI by the data container as

a table of 255-character lines. ltis important that the nicely formatted HTML

code be repacked as 255-character lines. A simple split on the end of line

sequences will result in each 255-character line being filled with spaces, thereby

increasing the download size dramatically.

Should the HTML become too large (either because of space-filling or actual

HTML coding), it will not be downloaded in time to the SAP GUI. Then the show_

url () method will then reference HTML that has not yet available (or only par­

tially available), causing rendering errors in the SAP GUI. This constraint limits this

feature to small HTML pages (a few kilobytes) with the recommendation to also

"pack" into each line as much HTML as possible.

The positive benefit of such a technique of also removing the second BSP session

has the downside that now the complete HTML generation must also be done in

the SAP GUI update cycle. For large HTML pages, this additional HTML genera­

tion and downloading will affect the SAP GUI responsiveness. Having a separate

BSP application brings the benefit that the HTML generation is done in a separate

session and does not affect SAP GUI at all.

7.3	 Interaction between SAP GUI and BSP

Applications

Running the BSP application with the SAP GUI is actually a marriage of two differ­

ent applications, running in two sessions. Often, these two applications must

exchange small pieces of information or be updated in sync. For example, press­

ing the save button in the dynpro application should also cause the BSP applica­

tion save its data. This section will show techniques to fire events in both direc­

tions or just to transfer data.

7.3.1	 BSP Application Event to SAP CUI

The HTML Viewer, when starting an imbedded browser control, also hooks into

the browser control to handle some forms of navigation. The most interesting of

these are pseudo URLs of the form SAPEVENT:.". (instead of the typical

http: ... or ftp: ... forms). Once such an URL is triggered, the browser will

delegate the fetching of the "URL" to the HTML Viewer control.

144 Using SSP Applications in SAP GUI

I

r
I

!
~

R r

~

f
1'.

So the solution comes down to using any form of HTML that will cause the

browser to load an URL of the form SAPEVENT:. SAP Note 191908, titled "Col­

lective Note: HTML Viewer Control," describes this technique, and also describes
the constraints when using it.

For our BSP application, we will add a new button that when pressed must inform

the SAP GUI (effectively, the dynpro code) what the current counter value is. For

this, we add one new button to the code that will call our JavaScript function
post Counter () to do the hard work.

(htmlb:button text "Post Counter"

onClientClick "post Counter () ;" />

For the actual data transfer, we just use a normal form, as we would do for sub­

mitting data to a server. The form will just have one input field to transfer the

data. The postCounter () method sets the input field correctly and submits the
form.

(form id="sapForm" name="sapForm" method="POST"

action="SAPEVENT:POST_COUNTER">

(input name="counter" type="hidden">

(/form>

(script>

function postCounter()

document.all["counter"] .value

document.all["btnl"] .innerText;
document. forms [" sapForm"] " submit () ;

)

(/script>

The only unusual aspect about this HTML code is the form action that does not

point to an URL on the server, but is the special SAPEVENT: URL. The rest of the

string is just an action name that has an application-specific meaning.

Two minor HTML aspects must be kept in mind. In HTML, forms cannot be

nested but must be placed below one another in the HTML. Just place the above

code towards the end of the page, outside the (htmlb: form> used. Also, when

submitting a form, a response usually is received from the server that is then ren­

dered again by the browser. This would replace our BSP application with some­

thing else. However, this is not so for SAPEVENT: -based forms. They do not return

any form of response from the server.

Interaction between SAP GUI and SSP Applications 145

With these minimal changes of one new form and a button to submit it, it is pos­

sible to fire an event with data from the BSP application directly to the SAP GUI.

The next step is to catch and process the event

As we will require in the next steps features from the HTML Viewer that are only

accessible in protected methods, we will just create a new class that inherits from

the c1_gui_html_viewer class.'

CLASS cl_my_html_yiewer DEFINITION
INHERITING FROM cl_gui_html_viewer.

PUBLIC SECTION.
METHODS: constructor

IMPORTING parent TYPE REF TO CL_GUI_CONTAINER.

METHODS: on_sapevent

FOR EVENT sapevent OF cl_gui_html_viewer

IMPORTING action postdata.

ENDCLASS.

The most interesting part of this code is the on_sapevent method, which is

declared as an event handler for the sapevent event This ABAP event will be

fired in the server when the HTML Viewer receives a SAPEVENT: within the SAP

GUI.

The constructor method will inform the HTML Viewer that we are interested in

this event and then set our on_sapevent method as handler for this event.

METHOD constructor.

super->constructor(parent = parent).

DATA: event_tab TYPE cntl_simple_events,

event TYPE cntl_simple_event.

event-appl_event = 'X'.

event-eventid = me->m_id_sapevent.

APPEND event TO event tab.

me->set_registered_events(events = event tab).

SET HANDLER me->on_sapevent FOR me.

ENDMETHOD.

When the on_sapevent method is called (because the button had been pressed

in the browser), it will have two parameters (see signature of this method in the

class definition above). The first is the action string that is the value that was

used in the SAPEVENT: URL (everything after the colon character). The other

parameter is postdata, which is just a table of strings of the form name=value

that reflects the form fields submitted in the browser. All that our coding does is

to read the value of the counter and to display it with a MESSAGE statement.

146 Using BSP Applications in SAP GUI

!
r'_

i
[

, f'

f

f.

r

~

!
~

f

f

l
r

!

I
,

METHOD on_sapevent.

IF action CS 'COUNTER'.
DATA: counter TYPE string.

READ TABLE postdata INDEX 1 INTO counter.

SPLIT counter AT '=' INTO counter counter.

MESSAGE counter TYPE 'I'.
END IF .

ENDMETHOD.

As a last step, the only change to the report itself is to change the html_viewer

object to be an instance of this newly created class. The rest of the report was not

changed.

DATA: html_viewer TYPE REF TO cl_my_html_viewer.

See Figure 7.7 for the results. Pressing the button in the browser displays a mes­

sage within the SAP GUI with the correct current value from the button.

@
Program Ed.lt Gala System Help

'~n:::="'~ ­ "' ~' -; IRt re'@e-~---
HTML Control as WWW Browser

Figure 7.7 Interaction with SAP GUI

7.3.2 SAP CUI Event to BSP Application

For the reverse route, we add a new method get_counter to our class and wire

the method call to a button on the dynpro. Now, when the button is pressed, we

call the get_counter method and expect that it will show exactly the same mes­

sage as previously.

We know already how to cause the browser send events and data to the SAP GU I.

So the problem amounts to injecting some code into the BSPapplication that will

fill and submit such a special SAPEVENT form. Let us first look at the complete

source code.

Interaction between SAP GUI and BSP Applications 147

.. ~"-.-

METHOD get_counter.

DATA: js TYPE STANDARD TABLE OF CHAR255,

line TYPE STRING.

APPEND:

TO js,'.function _getCounter () l '
TO j s , var _value = document. all ["btnl"] . innerText;'
TO js,var _frm = document. createElement ('form') ; ,
TO js,_frm.setAttribute('id', '_sapForm');'
TO js,_frm.setAttribute('name', '_sapForm');'
TO js,_frm.setAttribute('method', 'POST');'

_ frm.setAttribute('action', 'SAPEVENT:COUNTER');' TO js,

TO js,var _if = document.createElement('input');'
TO js,_if.setAttribute('name', '_counter');'
TO js,_if. setAttribute ('type', 'hidden');'
TO js,_if.setAttribute('value', _value);'
TO js,_frm. appendChild (_if) ;'
TO js,document.body. appendChild (_frm) ;'
TO js,document. forms ["_sapForm"] . submit () ;'

'1 ' TO js,
I

TO js.'window. setTimeout("_getCounter () ;", 200 /*ms*/);'

me->secscript(script = js []).

me->execute_script().

ENDMETHOD.

All that this method does is to create a JavaScript function, inject it from the SAP

GUI into the HTML Viewer, and then have the JavaScript function executed. This

approach was the main motivation for the inheritance that we selected previ­

ously. The set_script and execute_script methods are protected and can

only be used from a derived class.

The JavaScript function itself will just use dynamic HTML (DHTML) to create a

new form, attach a new input field with the correct value to the form, and then

attach the form to the document. As a last step, the form is submitted, which will

again trigger the on_sapevent method in our class.

An important aspect of this script is that the execution of the injected method is

delayed by 200ms. This value was empirically determined, and is required

because of the distributed nature of solution. The ABAP code itself runs in the

server, but the actual JavaScript injection and handling are done in the SAP GUI.

The delay gives the SAP GUI time to complete its round trip before the browser

fires a new event again. When the programmed button is triggered on the dyn­

pro, we will see exactly the same results as in Figure 7.7.

148 Using BSPApplications in SAP GUI

7.4 Starting a New Browser Outside the SAP GUI

The last section of this chapter describes a technique that can be used to start a

new separate browser window. Although not exactly part of the topic in execut­

ing a BSP application within the SAP GUI, the solution is tied very closely to the

HTML Viewer.

There are a number of techniques, all encapsulated in functions, that allow the

SAP GUI to start an external browser to the server. However, they all require that

the user must perform a second authentication. Again, it would be better if the

browser could be started with a call that will also transfer the user credentials

from the SAP GUI to the browser. For this, there exists a method called show_

url_in_browser. However, this method has many constraints which makes it

usable only in very special cases.

To enhance this functionality, a new method-detach_url_browser-was

added. This method is very new. It will only be available with a new SAP service

pack and also with the installation of a new SAP GUI. See SAP Note 864528

(Detach URL in Browser) for the exact dates and releases.

The more pertinent question is: How can we program one technique that will

start a BSP application in a browser window, and in the most optimal case not

require a second authentication? In the cases where the new functionality is not

available, the browser should just perform the second authentication routine (as

it always done up to now).

The solution amounts to placing a dynamic call to the new method, and, if it fails,

just to use an older function as fallback.

REPORT book_chapter07_example4.

DATA: urI TYPE string, urlc(2048) TYPE c.

cl_bsp_runtime=>construct_bsp_url(

EXPORTING in_application = 'book_chapter07'

in_page ~ 'examplel.htm'

IMPORTING out abs_url = urI).

urIc = urI. " type conversion STRING to C

TRY.

DATA: viewer TYPE REF TO cl_gui_html_viewer.

DATA: empty_container TYPE REF TO cl_gui_container.

CREATE OBJECT viewer EXPORTING parent = empty_container.

CALL METHOD viewer->enable_sapsso

EXPORTING enabled = 'X'

Starting a New Browser Outside the SAP GUI 149

EXCEPTIONS OTHERS ~ 1.
CALL METHOD vlewer->('DETACH_URL_IN_BROWSER')

EXPORTING urI ~ urIc.
cl_gui_cfw~>fIush().

CATCH ex_root.
CALL FUNCTION 'CALL_BROW£ER' EXPORTING urI = urIc.

ENDTRY.

Notice the use of the dynamic-call method. If this code executes on an older SAP

release, the call will fail, and the catch code will call the old function.

150 Using SSP Applications in SAP GUI

8 Performance Measurements

In these days of gigahertz and gigabytes, one can be tempted not to

worry about performance. However, the performance of an applica­
tion is critical to its scalability. The chapter will look at different ways
to gauge the application performance.

We usually recognize performance problems by observing that "the application is

slow." But this should only be the starting point for a thorough inspection in

which we take the application apart and to look at the different components. The

frequently heard comment that "BSP is slow" shows that the developer did not do

his or her homework, or was not sure how to do it. Let us dive deep into the per­

formance-measurement topic and demonstrate tools that help get an accurate

number for everything moving on a Web page.

A good place to start is the user's perception of performance: A button is pressed,

and the answer is rendered moments later. This is the only real latency that users

care about. At a technical level, there are a number of components that playa role

in the complete delay the user experiences.

For the user, time crawls by in seconds. However, for each component, time flies

by, and each component usually requires only a small slice of one second. So, for

our measurements we will always work in milliseconds.

The first temporal component is the time that the browser requires to submit a

form, effectively the time from the pressing of the button until the HTIP request

is dispatched. For typical HTMLB-based applications (discussed in Chapters 9 and

10), this time is insignificant. However, We have seen frameworks that hook into

the submit sequence, and their additional JavaScript code added a few hundred

milliseconds. For our applications, we will not consider this, but do keep the fac­

tor in mind if you are hooked into the submit sequence.

The next component is the transfer time for the HTIP request to the server. Usu­

ally, HTTP requests are small and do not contribute much to the total latency.

However, when Single Sign-On (550) is active, the MYSAPSS02 cookie alone is

already a few hundred bytes, and then the HTIP request becomes an aspect

worth considering.

Once the HTIP request reaches the server, the work really starts, and the com­

plete server processing time is added onto the total latency. This is usually the first

large number to measure.

Performance Measurements 151

Thereafter, the H'FlP response is returned to the browser. As this is HTML code for

the complete screen rendering, it can easily be 1001<B or more. If GZIP compres­

sion is switched on, the data transfer volume is low, but the transfer time is now

replaced by the compression and decompression time.

The last big component is the .HTML-rendering time. For complex screens, for

example using tables and tabstrips, this time can also be a few hundred millisec­

onds.

In the next sections, we will look at a number of approaches to get a handle on

the performance of each component of the latency.

8.1 Test Applications

Naturally, we are interested in the performance of our own test application. How­

ever, just having one final performance number without knowing the effects of

the different components, makes it harder to understand the significance of that

number.

The best technique for understanding the effects of the different components is

to start a full measurement, but with only a simple "Hello World!" application.

This already provides a baseline number for the network latency to the server and

back, plus the time required to pass through the complete BSP runtime and have

one BSP page executed. This provides an absolute minimum number and reflects

accurately the total BSP overhead. Such a test page is shipped within the BSP

application IT03, page textOKB. htm.

As a next step, we want to see the effects of network-transfer time and "memory

bandwidth" of the application server (the speed at which data can be passed

through all layers). These numbers can later be compared to the actual page size

of our application page to determine the pure transfer time. Again, IT03 has a

number oftest pages to help. These pages are all named text<N>KB. htm, where

<N> can be one of 1,2,4,8,16,32, or 64. This allows us to measure the effects

of, for example, pages that are 321<B in size. In such a case, we are measuring the

time to get the data into an ABAP buffer, transferred to the Internet Communica­

tion Manager (ICM) layer (in kernel), streamed out onto the network and trans­

ferred from the server to the browser.

Similarly, our application can have images of different sizes. These are usually

cached in the server and also at the browser. The fact that these images must be

loaded has its costs. To measure this effect, use the images image<N>KB. gif,

again from IT03 and with the same range for <N>. Because these images are

loaded into the [CM cache on the first request, we have a load test as a measure­

ment of the ICM-cache and network-transfer times. Usually, the [CM cache

involves just one memory transfer, which is insignificant compared to the network

component, so that we can use this test to get a good estimate of the true net­

work-transfer cost.

The other application worth looking at is ITOs, starting at page main. do. This is

effectively a mock-up of a complex screen from a real application. When measur­

ing with this application, we are not only looking at the network component and

the BSP runtime, but also adding the HTMLB family of rendering libraries. Unfor­

tunately, these libraries do add some overhead, and their total overhead is pro­

portional to the number of controls used and their complexity. For serious perfor­

mance measurements, having such a mock-up of a representative screen with its

measurement number available helps to quantify the total cost of the BSP run­

time plus the rendering libraries. When this number is later compared to the

overall time of the real application, the difference will give a very good indicator

of true application runtime.

A final aspect to consider is that of page activation and URL mangling. When a BSP

page is new in the system, no temporary class is available to process it. On the first

request, such a class is created, loaded into the ABAP program buffer and can only

then be executed. On subsequent requests, the class representing the page can

always be executed directly from the program buffer. For this reason, we always

measure a number of times, so that the system is in a "warm" state. Similarly on

the first request, the BSP runtime will mangle the URL (see Chapter 4), causing an

additional roundtrip. Only start measurements after the URL has been mangled.

8.2 Quick Sizing with HTTP Trace Tool

The Simplest technique for getting a good overview of an application's behavior is

to execute it while using a Hnp trace tool. This gives a very good overview of the

pages and the additional resources (style-sheet pages, JavaScript code and

images) that the pages load. The tool will also show which resources are correctly

cached. More important, though, will be numbers that the trace tool shows. This

presents a complete measurement of the network and server times. With these

numbers alone, a developer already has a very good overview of an application's

performance. This is the minimum testing that should be done:

Looking at Figure 8.1, we see first a number of load sequences for the

text3 2KB. ht m page. The first request took 377ms, whereas all other requests for

this page took about 80ms. This shows that the first time the page is requested, it

has first to be activated and loaded into the ABAP program buffer. For our perfor­

mance measurements, the lower numbers from the warm system is used, as this

reflects the normal operating state of the system. The slow numbers will only be

experienced once by the first user accessing the page.

>1 Quick Sizing with HTIP Trace Tool 153Performance Measurements 152

x Ifj!jj ",,' @ Stnp 'J(Clear ~ Rtce ~ Copy 19 Sm WAb,,'	 G Hdp

tSt:a~ __ : l1m~' Si~~! ~,~, ,_.R':,.. i Type JURL
1100:6-0:65-,0 12- --O~377·' 33835 GET ... 2.60---fex"tfriC: _·ht4J:lJus4i54;fwdfs:ap.cDrP:·io8b7sap'l:bb-1kZSZ~MA·;~)/octbsp/saplf6jTteXt32KB.hl

I,~~~~~~~:~~ ~:~~~ ~~~~~ ~g ~~ :~~~::: ~:~~~~:::::~i:~::~~~~~~~:~~~:~~~~:::;~~~~~~::~~'~~~~::~:
1100:00:13.558 0,080 32960 GET 200 1:E'xl:lht.. http://uS4049.wdf.sap,corp:l080/sap(bD1kZSZjMA==)/Dc,lbsp/sap{rto3{lEill2l<B.htrn

I 00:00:14,647 0.080 32960 GET 200 1:E'xt/nt.. http://uS4049.wdf.sap,(Qrp:l080(~p(bD1kZSZjMA==)/Dqbsp/sap~to3/I:E'Xt3ZKB.htrn
l 00:01:18,897 1.516 33114 GET 200 image/glf http://us4049,'Ndf,s.ap.corp:l080/Sap(bD1kZSZiMA==)/bc/DsP/sap{lto3~mage32KB,gjf
II 00:02:09.268 0.061 33076 GET 200 image!gif http://uS4049.'Ndf.sap.corp:1IJ80/sap(bD1kZSZ]MA=~)/Dc/Dsp/sap{llD3{Image32J<B,gif
I.00:02: 13.282 0.004 221 GET 304 imagelglf ~ttp:IIUS4049.wdf,sap.corp:1080/sap(bD1kZSZJMA==)/Dc/bsp/sap~to3{lmaQe32KB,glf

_~~I__=~ "__ "~ --,= _ " .__ L._. .-----_.. _.~~.

Figure 8.1 HTIP Trace Tool Analysis

The next numbers show the same behavior for loading an image. On the first

request, the image must be retrieved from the MIME repository and then written

into the [CM cache before transmission. The total time of 1,515ms is again only

experienced once by the first user. All other users will find the request already in

the ICM cache, from where the image will be streamed out again, giving us a t·
speedy 61 ms for the image. As a last test, we looked at the time for a cache check,

when the browser just needs to confirm that its image is still valid. As the image ~

is not transferred again, only the Not Modified message (HTIP return code 304),

we see the complete roundtrip completed in 4ms!
 I
With a good HTIP trace tool,. it is already possible to get an accurate answer to

the question on the application's behavior.

8.3 Networl< Latency

The simplest technique for measuring strictly the network transfer time is to use

the ping tool. This is an application that will send out a small test request to the

server (by default 32 bytes), and the server will simply echo the data back. This is

done at the operating-system level and thus does not contain much server over­

head. The time is dominated by the network time.

Using a small request of 32 bytes produces only network latency, without the

influence of the network bandwidth. Effectively, a slow dial-up line will test com­

parably to a fast DSL line, as the requests are small and the time is dominated by

the overhead to traverse the physical distance.

I

To test a more realistic scenario, set the request size to the expected size of our r
HTIP traffic using the -1 parameter for ping command. However, this command t,
is symmetric, in that it sends and then receives the same data volume. In HTIP,

the request is normally small, whereas the response is large and contains the com­

plete answer from the server. For example, for our text32KB .htm test from Sec­

tion 8.2, we see am HTIP request size of 1,302 bytes (size is influenced by SSO

cookie that is active) and an HTIP response size of 32,960 bytes (includes HTIP

headers). Thus, we must test these two cases individually.

154 Performance Measurements

Also, the numbers from ping reflects both the sending and receiving of the same

data. But, in the HTIP traffic, the HTIP request is only sent, and the HTIP

response only received. So, in each case divide the number by two.

Figure 8.2 Ping Command Used to Determine Network-Transfer Speed

Looking at Figure 8.2, we can see that the simple ping to our server takes lessthan

1ms. But it carries effectively no data. Using more realistic numbers from our test

scenario, we have roughly O.5ms for the upstream data representing the HTIP

request, and 3ms for the down stream data representing the HTIP response.

Accepting measurement inaccuracies, we can say that a 321<B HTIP

request/response cycle should consume roughly 4ms. This is still slightly less than

the 6ms we measured with an image download from cache. Keep in mind that the

image download amounts to the small HTIP request, and a 321<B HTIP response.

The difference between the two numbers is of a technical nature: In effect, the

HTIP traffic is transferred within a TCP connection, where a slow-start algorithm I
with a sliding window prevents the complete use of available bandwidth, but i

slowly scales up the data transmission. The ping command sends it data without
1
II
!:I

TCP. It only matters that the two numbers must be in the same ball park and must Ii
!

confirm our estimates of network-transfer time.	 "I

8.4 Server Processing Time

The simplest technique for estimating the complete server processing time is to

measure it with two GET RUN TIME calls, bracketing the page.

<%	 DATA: server_start TYPE i.

GET RUN TIME FIELD server start.

Server Processing Time 155

%>

<%@extension name="htmlb" prefix="htmlb"%>
<htmlb:content design="design2003"><htmlb:page><htmlb:form>

<htmlb:button text =" Hello World!"
onClick = "'myClickHandler" / >

</htmlb:form></htmlb:page></htmlb:content>

<% ~.
I,

DATA: server end TYPE i, I
run_time TYPE string.

GET RUN TIME FIELD server_end.

server end = (server_end - server start) / 1000.

run_time = server end.

CONDENSE run_time.

'j,>
<script>

"Server=" + "<%=run_time%>" + "ms";
window. status

</script>

At the beginning of the page, the first time point is stored. Atthe end of the page,

a new time point is taken and the difference calculated in milliseconds. As a last

step, the time is written in the browser into the status line (see Figure 8.3). This

measures only the time spent within the application coding. It does not include

the BSP runtime overhead.

tile £dit ~.iew F~vDrires louis tielp

t
1
f

!II HelloWor~! I ,"']loool Intranet .::

I;IDServer 38ms

Figure B.3 Example of Server Runtime Measurement

A better technique to measure the actual processing time of the server is to use

statistical records These are very small timestamps written by the Internet Com­

munication Framework (ICF) layer. These reflect the complete ABAP runtime,

leaving only an insignificant time from the ICM layer unmeasured.

Statistical records are by default not enabled for HTIP.They either can be enabled

with the profile parameter rdisp/no_statistic or with the ABAP program

RSSTATISTIC (from transaction SE38). After statistical records have been

enabled, execute the BSP application.

Use transaction STAD to view the statistical records. Set the time filter around the

time of the tests and limit output to that of program SAFMHTTP. (The program

SAFMHTTF is the very first basic activation step where HTIP calls are placed into
the ABAP stack.)

When the program is started, a list of statistical records according to the filter cri­
teria is shown (see Figure 8.4). Already one can see that the first hit takes much

longer than the following hits on the same page. For the first run, the ABAP load

for the BSP page has to be fetched from the database and loaded into the pro­

gram execution buffer. This hit includes a large database overhead. All subsequent
hits on the same test page have no database overhead.

Started Server

Figure B,4 Output from Statistical records

Looking at these records, we see that after the first page, 'all other pages have a

server component of roughly 52ms. This is in line with our measurements of HTIP
roundtrip latency of 80ms for the same page.

The statistical records reflect the complete ABAP runtime, but do not include the

ICM time (kernel part). This additional time, plus the network time of roughly

6ms, will explain a difference of a few milliseconds between the statistical records

(ABAP runtime) and the HTIP roundtrip latency. The remaining time difference

must be attributed to inaccuracies in the entire process.

8.5 Browser Rendering Time

Investigating the browser rendering time is slightly more difficult. For us, the

browser is a closed box, and we do not know much about what is happening from

the moment the HTIP response is received until the bitmap is actually placed

onto screen. The only easy technique we have is to use JavaScript coding.

Browser Rendering Time 157156 Performance Measurements

--r

i[

"1,1

8.6 Determining Hotspots
<script>

var render start new Date () ;
 After a first round of performance measurements, the next logical question is: can

</script> we improve that performance? This question can only be answered if we know
what the application in question is doing.

<script> For this piece of the puzzle, we will use runtime analyses to get a detailed picture
var render end new Date () ; , of an application's runtime behavior. The runtime analysis of a BSP application is
var render~time render_end.getTime()

I
activated from transaction SICF. Just select from the Edit menu the entry Runtime render_start.getTime() ;
Analysis. Thereafter, execute the test BSP application."Server=" + "<%=run_time%>" + "ms"window. status

+ "ms";+" RenderTime=" + render time The data collected by the runtime analyses can be seen using transaction SE30.

<I script>

Looking at the above program, we see that we added a line of JavaScript code

right at the beginning of the page to mark the time that the page was started.

Although this script block occurs even before the <html> tag, the browser does

.
accept it. [.=.."E_"••. ~ ~.· J I@MeasurementDalaFiles .. . D',",

ABAP Runtime Analys ...Directly at the end of the page we place a second block of JavaScript code to f r 1lri.l Ti~~-~T~~~~J'~"'~':"J::(iI~Ji~§t1 :]'2]@1ioJXJt?~Iii:::=-:-:-'C'::C:·.L?;:=::;::'~] t,iij!ij! 1:\again mark the end time, and to calculate the elapsed time, which should be
I .. 'JMGKELLAR IlsaPlbclbSPlsaPlit83ltext32KB.htm HTIProughly the rendering time. This value is then displayed in the status bar of the D MCKELLAR IsaplbclbspisaplitD31text32KB .htm ffTTP
1 M to I F'I/ DMGKELLAR IsaplbclbsplsaplitD3ltext32KB.htm HTIPbrowser as shown in Figure 8.5. I easuremen a a ue [7SilP?i> D MCKELLAR IsaplbclbspisaplitD31text32KB htm ffTTP

Application Isaplt>

Short descrtpbon IHTIP GJIIJI n'!k!!li""'2:ijjGJIIJ

Measurement dale r[2'0B0 I? :~;;~liJlillmI:E1mmrEJJ~T~1~mr")~::~"~;'.'7.'1
FllesizeinKB 'j ,-,;,

IIIkJ Evaluate 11C8 other File... IIIiJ Filelnfo..I.IIl]. Delel.e,."'"'' r.. G~~."""I Hello World! I G ',Cc

! 'Ylocal lntranet ~ 1888 (1)000 ~I usDD4gI INS I"! 14 ' ,~Server=3&ns RenderTIme=344ms
A, ,Z; , ,",., .,..... ", "·,d. "'-,'" •• " + .."."• ,

Figure 8.5 Example of Browser-Rendering Measurement Figure 8.6 Selecting One Request from SE30 for Runtime Analysis

Although these are the last statements on the page that does not necessarily Let us look briefly at the type of information that can be learned from transaction

mean that the browser is finished. It is typical for browsers to first build parts of
 SE30. The true value of this tool can only be learned from practical work and as

the HTML page into a bitmap, which is only displayed after it has finished HTML
 such we will not dive into low-level detail, but we recommend that each devel­

rendering. But still, this measurement is already a good indicator of the rendering
 oper invest some time with the tool to see its potential (see Figure 8.7).

time required for the page.

The first notable aspect is the Hit List. This shows all methods and functions

Given these performance-measurement ideas, one could consider to place the
 called, and their gross and net times. To get an overview of which methods have

coding into a BSP element (see Chapter 9) for easy use on all pages. Then the BSP
 the longest runtimes, sort on the net times.

element can turn the measurements on only when required. For BSP, such an

Database access is usually the more expensive part of an application, and the
 example is available in the benchmark library and shown in use in BSP application

Database Hit List provides detailed information about database tables that were

ITOS.

accessed.

Determining Hotspots 159

Simply select Other File... for the specific user, then double-click on any of the
URLs listed (see Figure 8.6).

@ Gl [g]8]m;;;F~i":
"".. Ru•.ntime an~lysis Edit Gota... Unllties ~e1tings System Help ~;:~ft~%{i): './ J~(ir:=:' ': ': ~',"r==~=~'=~~~~-''''~'~'''"'~ .;: ..<;:~

158 Performance Measurements

8.7 Load Testing

Performance measurement (How fast does it go?) is the inverse of the question of

scaling (How large must the box be"). We have now already looked at approaches

to calculate the performance times for Simple "Hello World!" pages, for larger

sized pages, and images. However, at the end of the day, one has to measure all

pages from one application.

There are many programs available for stress testing Web applications, In princi­

ple, any program can be used, We will use the Web Application Stress Tool from

Microsoft1. It is quick to install and contains all the necessary features required for

good stress testing,

The stress tool permits a record mode, whereby we just browse through a website

while the stress tool itself records all the URLs that we accessed, including all

resources loaded by the browser, We use this feature to quickly load our

text3 2KB. htm and image3 2KB, gif pages (see Figure 8.8).

j ~?I[]II2I ..ill ~I,:)' Xlille;;I'(o1!-!J
61·.'"tJDefaults

Server: !us4049.wdf,sap.corp' .." Set1ings
Cfj.~ SampleScript

a· ?1 New Recorded Script

tE Content Tree

.%Settings
.itlJPerf Cocnters

.ji! Page Groups

..I) Users

~Clients
.l!il Cookies

Verb Path Group

GET 'jsap(bDlliSZjPT AwMA - ")/bc/bspjsap~tiJ3jtext.l2K8. h1m default

GET jsap(bDlliSZJPTAwMA -")/be/bspjsapf,tiJ3jtext32K8,him default

GET fsap(bDlliSZJPTAwMA - -)/bqbspIsap~ t03/text32K8.htrn default

GET jsap(bDlliSZjPT A'NMA - -)jbc/b,p/sapf'tO 3jtext32K8. htrn default

GET {sap(bDlklSZjPTAwMA - -)/Ocjbsp{sapflto3/image32KE ,gif default

GET fsap{bO lklSZjPTAwMA - -){tn::!bsp/sap~to3~mage.3 2KB ,gif default

GET fsap(bDlliSZjPT AwMA"")/bc/bspjoap~tiJ3~mage3 2K8,gif default

~ Scripts: New R..

Figure 8.8 Web Application Stress Tool: Recorded Session

A comment on the stress tool: In recording mode, the server field is not set cor­

rectly and must be later quickly corrected,

One of the factors to consider is that of URL mangling, When conducting perfor­

mance measurements, the goal is to run the same test many times to generate a

real load on the server, However, most test programs are structured so that each

test is run individually, the results are recorded, and then the test is started anew,

The program can be downloaded from Microsoft's website, http://www.mlcrosoft.com. Rec­

ommended is to search for "Web Application Stress Tool," as the exact location on the web­

site changes from time to tlrne

Load Testing 161

f

t
!
t

i

The Call Hierarchy shows the calling sequence of the application. This can be a t
daunting display for complex applications, but does help to correlate the dynamic

behavior of the application to the more static code one sees in the editor. This is

especially helpful in understanding paths taken through the code, and to answer

the "who-called-this-method" type of questions.

It is always possible to use forward navigation (double-clicking) to get more

detailed information about any specific sequence that is displayed. Use the blue

Display Source Code button at any point to jump directly to the relevant source

code.

For the application IT03, there is no application-relevant logic. The results are

dominated with ICF layer and SSP runtime aspects. Experience has shown that in

larger applications the application code itself, and also the rendering from the

HTMLB libraries, usually dominates the performance.

160 Performance Measurements

13B !Select Single 02APPL

125 Call ~. CXJODN=>CHECK

122 select Single ICFSERVICE

117 Load Report SAPLSECH

61 Call rune. AlITH_TRACE_GET_STATUS

1~~ ~~i~ ~~~~rt A~HB~~~G~~=~~us ~===CP I' ,GE_INTERN_HASH
87 Open Cursor 02PAGPAR - - ~CE_WRITE_USOBHASH
671call M LCL HR TI~ER=>IF ABAP RUNTItiE-GET RUNTIIIE RACE_CALC_HASH
86 Load Report-CX-ROOT~--- .. - ~~~-=CP SEGH

.I•. - - e- - .,- "I - LATE_HASHJOR_GHAR
r

_ , ._
I

6
4
6
1
1
3
2
1

. I \ 114 61 Gall SNG ABAP SERVICE
' ..

RU0~ 43

l

122

66

Figure 8.7 Overview of Transaction SE30

142 5 Select Slngl. USOBHASH
36 'l Select S'inql a USOBHASH
28 3 Call Func. AUTH_TRACE_INTERN_SET_NAtiE

6 4 Call SUSR USER BUFFER
9 -I Call AlITH-TRAGE

36 1 1 Call ~. LCL_HR_THIER=>GET_RUNTItiE
7& 1 Load Report GX NO CHECK CP
66 11 Load Report CX=ROOT=======CP

125 1 Cali M. cXJOON=>CHECK

• .__~~__d._

This dictates that specific actions experienced only once by a user are measured

continuously by the test. URL mangling is one such action. Thus, to measure the

real performance, and not the start-up rime of the redirects to mangle each URL,

we use only mangled URLs in our tests.

A similar one-time cost is that of authentication. The very first HTTP request will

be rejected by the server, requesting that authentication information first be sup­

plied. Once the browser has the authentication information from the user, this

data will also be set, and does not play any additional role. The Web stress tool

works similarly. It will also send an HTTP request without authentication, and only

after the authentication challenge will it send its available authentication data. In

this case, two roundtrips for each test are measured, once for the authentication

challenge and once for the real work.

(automatic)

BasicVGhhbmtlIGZvdBidXlpbmcgYm9vayE=
(automatic)

qnp, deflate
Mozil1a/4,O (compatible; t>1SIE 5.0j WindQ',\Is Nf 5.1i ,NETCLR 1,O,3705j ,

Value

deren-usjq=O,5

image/gif
r

image!x-xbitmap, image/jpeQ, image/pjpeg, application/x-shod

Authori2ation

Cookie

Host

Accept-Language

User-Agent

Accept-Encoding

Name

Accept

ltJ ole l;.dit ~cripts 'Yiew ~indow tielp

j ~ ,pIQJltll'i'l1 friiDI 'XI di,l[i~I~I·-!J

Verb: IGET 3 ~
Path: rcls-a-p(b'"'D""l'"'k-=ZS""Zj""P--T-A-w-M-A~---)/'"'bc-!b'"'s-p"'I,-ap-!'"',O--'3'"',t-ext'"'3--Z"K=-S,:-C-htm ~ancel J
Version: IHTIP/l1 3
Pon.. 110&0 '

guef%l.ring I., Eost data tleader I :S.SL

r .useStatic Header Values Only

~ Scripts: New R.. lib 'sap{bOl kZSZjPT..

Figure 8.9 Web Application Stress Tool: Setting Authentication

To suppress this additional roundtrip, we add from the beginning authentication

data to all requests. In Figure 8.9 we can see that we manually added the Autho­

rization header (we saved the string while the recording was done). Thereafter,

we pressed the Apply to All button so that this header is set on all recorded

requests.

With this, we are ready to configure the actual stress test (see Figure 8.10).

162 Performance Measurements

I

t
Ii'

rf

I

I
t

,~'

For the test, we don't wish to simulate many browsers. If we did so, we would get

effects of all HTTP requests competing for resources, with the result that, once the

server comes under heavy load, more time would be spent with queue manage­

ment than with real processing. For our test runs, we are interested in the maxi­

mum load that the server can handle for one browser. This gives us the average

processing time per request. From this, we can compute an upper maximum per

time unit. Thus, we configure to exactly one the number of threads to use.

We also know that the first request always has a higher overhead to ensure that

the matching temporary class for the SSP page is generated and loaded into the

program buffer. Similarly, the first request for an image requires additional over­

head to load the image and place it into the leM cache. These start-up times are

very expensive and can influences the average times (specifically on short runs).

Therefore, we configure a short warm-up time.

For this test run, three minutes is sufficient to provide an example and to see that

everything is working correctly. For serious stress testing, one can consider run­

ning the test over 24 hours,

After a test run, we should first look at an overview of the results, just to confirm

that the test ran successfully.

Code Description Count
200 OK 3780

Load Testing 163

IT
IT

r Use users,passwords. and save cookies.

P" Savepagestatistics

~ Throughput--~-------------,

?" Scripts: New R..

Defaults
'\ItSEttings

[±] -'?l SampleScript
3- 'fU New RecordedScript

.. ~ ContentTree

% Settings.

ibb Perf Counters.
. ::Jil Page Groups

(J Users

~Client5
tit Cookies

Figure 8.10 Web Application Stress Tool Configuring Test Run

I

Page Hits

GET /sap(bD1kZSZjPTAwMA==)/bc/bsp/sap/it03/text32KB.htm 540

GET /sap(bD1kZSZjPTAwMA==)/bc/bsp/sap/it03/text32KB.htm 540

GET /sap(bD1kZSZjPTAwMA==)/bc/bsp/sap/it03/text32KB.htm 540

GET

GET

GET

GET

/sap(bD1kZSZjPTAwMA==)/bc/bsp/sap/it03/text32KB.htm 540

/sap(bD1kZSZjPTAwMA==)/bc/bsp/sap/it03/ima ge32KB.gif 540

/sap(bD1kZSZjPTAwMA==)/bc/bsp/sap/it03/ima ge32KB.gif 540

/sap(bD1kZSZjPTAwMA==)/bc/bsp/sap/it03/ima ge32KB.gif 540 r
We can see that in the three minutes 3,780 HTIP requests were sent to the

server, and all were answered with an HTIP return code of 200 OK. This is always t
the very first number to check, to ensure that the test ran correctly. The rest of the

overview just shows that each URL was requested 540 times.

The next step is to look at the detailed results for each request. As we did not use

different URLs in the test series, but just repeated the same URL a number of

times, let us look at one of each.

image32KB.gif
text32KB.htm
540540

Hit Count:

(in milliseconds)Time to First Byte
2.3368.26

Average: 1. 9344.02
Hin: 2.4168.9325th Percentile: 2.6770.9850th Percentile:

2.9573.0475th Percentile: 8.4477.82
Max:

(in milliseconds)Time to Last Byte
7.1672.99

Average: 5.4247.88
Hin: 6.1173.3025th Percentile: 6.4575.4050th Percentile: 8.0977 .3375th Percentile:

25.1284.67
Max:

bytes)Downloaded Content Length (in
3279932772

Min: 327993277225th Percentile: 327993277250th Percentile: 327993277 275th Percentile: 3279932772
Max:

164 Performance Measurements

When testing in an ideal environment, one would expect that all data is trans­

ferred in one packet from the server to the browser. However, at low levels, data

is split into small packets for transmission (typically 1,500 bytes over Ethernet). In

addition, we have the slow-start algorithm in TCP that slowly increases the use of

available bandwidth to determine a network saturation point. This has motivated

the developers of the stress tool to give both the "Time to First Byte" received

(TIFB) and "Time to Last Byte" (TILB) received. We know that the ICM will only

send complete HTIP responses, and not stream out answers incrementally as they

are generated. Thus, the difference between these two numbers shows the net­

work latency Especially in wide-area networks, these numbers will be far apart.

Typically, for our tests, we use the TILB, as this is really the time that data transfer

is finished.

The other interesting aspect is the difference between the average and 50th per­

centile values. Only a few out-risers in the measured data can dramatically influ­

ence the average value, specifically over a short test time. Because of this, we usu­

ally use the so" percentile values as the reference value.

Looking at the data, we see that the server took roughly 75.40ms for a

text3 2KB. htm page and took 6.45ms for an image3 2KB. gif page over 540 hits.

As both pages were roughly the same size, we can see the 6ms to be about the

complete network component, and place the server-processing time for the

text3 2KB. htm page at 69ms (75 - 6).

From these numbers, one can now calculate rough estimates of how many hits

per minute are possible. As only one browser was active, the server also used only

one processor, and it was ideal whenever the data was in transit. So one can mul­

tiply the hit rate with the available processors, and then use the same stress tool

to generate load to slowly bring the server to saturation. The approach would be

to increase the number of threads around the point where we calculated the

upper limits to be, while at all times the HTIP return codes must still be 200 OK.

Also, the 25 th
, so": and 75th percentile numbers must still be relatively close to

one another. The presence of numbers spread far out indicates many requests had

to be queued until processing was completed.

8.8 SQL Traces

BSP applications are to all intents and purposes just normal ABAP classes that are

loaded by the BSP runtime and cailed to render HTML output. For this reason, all

the tools that are used for analysis of normal ABAP programs can also be used for

BSP applications. One such important tool is SQL traces, used to see the behavior

of the BSP application in terms of database usage.

SQL Traces 165

<%@extension name="htmlb" prefix="htmlb"%>

<%
DATA: counter TYPE string.

cl_bsp_server_side_cookie=>get_server_cookie(...) .

counter = counter + 1.

%>
<htmlb:content design="design2003"><htmlb:page><htmlb:form>

<htmlb:button text = "<%=counter%>"
onClick = "myClickHandler" I>

</htmlb:form></htmlb:page></htmlb:content>

<%
cl_bsp_server_side_cookie=>set_server_cookie(...) .

%>

The above test program shows a button that contains a counter, incremented for

each roundtrip. The value of the counter is stored in a server-side cookie, which

will cause updates on the database.

SQL traces are activated from transaction SE80 using the menu path System, Util ­

ities and Performance Trace. Here the SQL tracing can be activated. The applica­

tion can then be started and executed as usual. Afterwards, the tracing can be dis­

abled again, and reviewed (see Figure 8.11).

Jj~fat l§nJ oQLri:am~.] 01'::-]1;'ht.mpnfd

967 SSCOOKIE OPEN SELECT WHERE "MANOT" = '000' ANO "RELlO" = 'BP' ANO "NAME" = 'counter'

183 5SCOOKIE FETCH

61 SSCOOKIE cLaSE

60955CDDKIE EXECSTM UPOATE SET "EXPIRYO" = 28051010 , "EXPIRYT" = 082354 , "CLUSTR" = 53 ,
359 SSCOOI(JE EXECSTM OELETE \IHERE "MANOT" = '008' ANO "RELlO" = 'BP' ANO "NAI1E" = 'counter' l

2 049 EXECSTA COI1MIT IWRK !
;

Figure 8.11 Extract from SOL Trace of a SSP Application

Although this section showed only SQL traces, deemed to very important, many

other standard ABAP traces that can be used together with BSP applications. This

is because BSP applications are relatively standard ABAP classes at runtime.

9 BSP Extensions

BSP Extensions present what IS perhaps the most powerful aspect of
BSP programming. This technology makes it possible to encapsulate
largeand complicated sections of user-interface coding, thereby creat­
ing Simple reusable components.

9.1 Extension Overview

BSP application development gives you the freedom to create and use whatever

browser presentation technology that you want. This means that you can code

your own HTML, JavaScript, style sheets, and even include calls to ActiveX con­

trols or Java applets if you wish.

However, combining all these raw elements together to create consistent user­

interface (UI) components can become quite a chore. Take, for example, the com­

mon business requirement for displaying tabular data. A simple HTML table is

hardly appropriate for most business applications. Users need the ability to sort

and filter their data. Column presentation needs to be clear and have explicit col­

umn headers. Users often have huge amounts of data that they need to present.

Scrolling through a large HTML table quickly becomes impractical.

In order to meet the needs of the modern business-application user, you would

need a presentation that looks something like the one shown in Figure 9.1.

Figure 9.1 Extension Example - Complex Table Presentation

You can imagine the thousands of lines of HTML and JavaScript that it requires to

render such a feature-rich table. The sheer complexity of such coding would make

such an object seldom obtainable.

This is the very reason that the BSP extension technology exists. In essence, BSP

extensions take this complex rendering and make it reusable and easy to use by

hiding the details. Instead of interacting with thousands of lines of coding, you

instead only have to deal with a handful of custornization attributes.

SSP Extensions 167
166 Performance Measurements

""'·· ·..
..T

9.1.1 Extension Technology

A BSP extension is really just a high-level group for a set of UI elements. An exam­
ple of an extension might be HTML Business (HTMLB) extension. This extension is

delivered by SAP and contains nearly 50 individual elements A single element,

for example, might be <htmlb: button>.

Every BSP element is implemented via an ABAP class This class contains the cod­

ing necessary to generate the required HTML and JavaScript.

This directive tells the compiler which BSP extensions you are going to be using
and what prefix you wiil use to identify the extension as you code the use of indi­
Vidual elements.

Once we have the directive in place, we insert the call to the SSP element itself.

<htmlb rb.rt t on id "BuyBook"
text "Buy Book" I>

This coding begins with the element prefix which should match with our directive
I
I

I	

I

Although you can create your own SSP extensions and elements (a technique

covered in Chapter 11), SAP delivers nearly 200 elements of its own. The idea is

to define the extension we will be using. This is followed by the element name

itself. Finally, we have two attributes in use for this element: a unique ID and the
text we wish to appear on the button itself.

The structure of the BSP element call is that ofa markup language,just like HTML.

Ultimately the contents of a BSP page layout are parsed via XML, including the

BSP element definitions. This means that elements can have inner content

between beginning and ending designators. In the example above, the button has

no inner content and designates the end of the button definition with the "I"
before the closing bracket.

We could just as easily have an <htmlb :link> element that wraps around its
inner content.

<htmlo:l:'.nk id = "BookExampleLink"

reference = ..http://www.sap-press.com.. >
Sam?le Link to SAP PRESS

</html b: link>

9.1.3 Finding Details about the Extensions

that these elements cover the common aspects of UI development for business

applications. Asyou create your BSP applications, you already have a rich set of UI

components to draw from.

Ihe combination of the technology implementation of extensions and the deliv­

ered set of elements has a number of advantages for SSP development:

~ Unlike raw HTML and JavaScript, the syntax of BSP elements is known to the

BSP compiler and can be checked at design time.

~ Complex UI coding is only done once. Code reuse is maximized. This reduces

the time and cost to testing and malntairung this code.

~	 Because SAP delivers so many UI components, BSP application development

can be done by developers who do not have extensive knowledge of HTML or

JavaScript.

~	 The extension framework streamlines implementations where the use of spe­
cific browsers is required. SAP's elements currently support several different

mainstream browsers. Use of the elements instead of low-level coding pro­

vides applications with browser lndependence.	 t
~ All of SAP's delivered elements share a common look and feel. This design has

been done by professionals to make the resulting applications highly usable.

~ SAP spends a considerable effort ensuring that its delivered elements meet the

highest standard for security and accessibilty.

9.1.2 Using SSP Extensions

With several different SAP-delivered extensions, each containing quite a few ele­

ments, a developer could get overwhelmed without some tools to organize and

document the available functionality. Luckily, the~e are several ways to get to this

information within the ABAP Development Workbench.

First, there is a special navigation view within the development workbench; called

Tag Browser. This view allows you to see all the BSP extensions, their elements,

and the element attributes. Elements and attributes can be inserted into BSP
Let us examine how easy it is to put the BSP extension technology to use. Inser­

I
f
f

pages via Drag&Drop from this View. If there is online documentation for an ele­
tion of BSP extensions into a BSP page has two parts. First the extension directive ment.ut can be accessed by double-clicking on the element name.

must be declared at the beginning of your page.
In addition to the Tag Browser, shown in Figure 9.2, the ABAP workbench also

<%@extellsion name~"ht;nlb" allows you to view BSP elements from within the Repository Browser, as shown inprefix="htmlb" %>
!

r Figure 9.3.

t

I
 Extension Overview 169168 SSP Extensions ~ .
~L....-

~'
~MIME Repos~ory

i
"""'Repos~ory Browser !,
:WSRepos~Ory Information System (
@T~g~B~;;'s';;- t

-~ Qj.Transport Organ~er

t
!Tags In SSP Pages in]W;U::
~-D BSP-Directives . ',f

& '-t!' SSP~ten_sjons __.' ,_. :; -'':::::''.'. _:j~
1~~·7 ~~it~~b'e ~~:~~ -:-. --cJl,

~ <htmlb:breadCrumb> ~
~ <htmlb:breildCrumbltem> I:
'V «htmb-buttcn> r

[§ deSign 1:
[§ disabled I
[§ encode f
[§ id i

---.-~--~.--_.~--._--~

Figure 9.2 Tag Browser View in the ABAP Workbench

You can see the full technical view of the element attributes from here as well as

the implementing ABAP class. For even easier access to the technical view of an
element, you can simply double-click on the element in your application coding,

and you will be forward~navigated to its definition.

.
1~Tr.msport Orgarllzer il, Attribute R,o. 0... ,Cl.Bi.., Typing me,. Assodat... Dnt value

')!ldf;!3iqn II JjltJiCJG!l TYPE LnISIRlNG
i,disabled Ie: 11,'inio '1 TIPEOiSTRIRG :,

!~~~~!0h5tr51TIPE-'rn!srtUNG
~__.J [J i 01 0 I[J:1 IYPE-~ING-i

1!,~1@j19idli~i~l~ 111 tncli-==---·ill~o:_O!l.IYPE ,i!lF1NG:
I • !~~Cli~t~lli~~.:l TYPE U':SIRING I

jUX1; --. iD! 0, L: i,O:l TYPE i:lISTRU1G !
i=-~~~ctinn!~:0~iC:,1 ~ !B,STRING

t~OltiP II ~112J:l:~_LO;l TYPE !BrING

uible !C i ~ 1c i 0:1 TYPE m!SIRING

~~~""",o_=-~,~,S~j.~J9L~~!;::-~~:~~-~====-~~_.,-,~- _,_~_~ .._J 

Figure 9.3 Element Attribute View from the ABAP Workbench 

"""9 ,row", liI~IC1Jlj;jCB1I[i·.I~_ . ..... ­
Description ~_ 

~TANDARD .'SMAll/STANDARDf BJIPH; 

~c:t:lV<lte<l r 
~UE L t 
--- IElement10 -----J 

lonetd; Event Handler ~ 
:onaBntCliC:kE~ 
:T~xt ~, 

I .	 i 
,Quick~. r --tt 

There is important information about each element attribute that can only be 

gathered from this view. 

First, you see a row of four checkboxes after the attribute name. Each of these 
checkboxes controls a setting that affects how your application can interact with 

this current attribute. Here are expanded definitions for those four checkboxes: 

~ Required 
This checkbox defines whether an attribute is required. Quite often, the unique 
identifying attribute of the element (usually named "id") is the only required 
attribute. 

~	 Dynamic Value Allowed 

This checkbox controls if the value for the attribute can be supplied dynami­
cally via an ABAP variable or must be a static string. Nearly all element 

attributes support dynamic values. Dynamic values are supplied to attributes 
using a special BSP expression «%= ... %». 

We can now adjust our simple button example to supply the text for the but­
ton via a dynamic value. 

<% data: book_text type string value 'Buy Book'. %> 

<htmlb:button id = "BuyBook" 

text = "<%= book_text %>" /> 

~	 Call by Reference 
ABAP by default already uses a pass-by-reference, copy-on-write architecture. 

So even for a large internal table being passed into the <htmlb: tableView> 

element, it would have been no problem had we passed in the table itself 

directly. The problem is more that of generics. The <htmlb: tableView> 
needed to support rendering of any type of table. Thus it needed a data type 
that could be used to accept any table, and only with the data type this is pos­

sible. However, this type can only be used in a ref to data mode. Thus, the 

only reason for this style of coding in the <htmlb :tableView> was to get the 

generics correct. 

t But the <htmlb: tableView> is actually a very special case. The real reason this 
1,

option exists is to enable passing/transferring of data out of the tag back to the ! 
rendering page. 

For this setting, the corresponding Type Method must be set to TYPE REF TO. 

Behind the BSP page is ABAP code interpreting the element and attribute def­
initions. This ABAP code must map these attributes into the underlying ABAP 

class that represents the element. In order to prepare an ABAP data object for t 
I	 this Call-by-Reference operation, a generic reference must be created for the 

object. The following code sample shows what the BSP page interpreter has to 

I
I 

do to complete this operation. This example will be important later, once you 
learn how to call BSP elements directly via the ABAP implementing class. 

t 
data itab type ref to data.
 
get reference of items into itab.
 

~
 
~.
 
( 

l	 Extension Overview 171 
SSP Extensions170 



__

-~ 

f 
~	 Bindable 

The Bindable checkbox defines whether an attribute supports Model View 

Binding. Data-binding is an important aspect of the Model View Controller 

design pattern (covered in detail in Chapter 13). This functionality allows a 

developer to connect the business data objectto the corresponding UI element. 

In this example, we can see the bindable option in use. The text for the hyper
 

link is now supplied via an attribute that is filled from a binding string.
 

"BookExampleLink"<htmlb:link	 id
 
reference "http://www.sap-press. com"
 

"//model/sample_text" />text 

9.1.4 Available Extensions 

SAP delivers three main extensions. They are HTMLB, XHTMLB, and PHTMLB.
 

You might sometimes see these core extensions all referred to generically as
 

HTMLB or the HTMLB family 

HTMLB, short for "HTML for Business", was the first extension delivered. It con­

tains your most elementary User Interface components, such as buttons, links, or 

images. XHTMLB-Extended HTMLB- was added at a later date mostly to meet 

the specialized requirements of one of SAP's in-house development groups. It has 

extended functions such as a toolbar, button group, and an updated tabstrip. The 

most recent extension is PHTMLB, or Pattern HTMLB. This extension is focused 

on the delivery of UI pattern elements. Perhaps the best example of one of these 

new patterns is the form layout contained in PHTMLB. 

Each of these major extensions has a delivered application (SBSPEXT_HTMLB, 
SBSPEXT_XHTMLB, and SBSPEXT_PHTMLB) that demonstrates its capabilities. 

These example applications provide excellent coding examples, and demonstrate 

the possible values for each element attribute. 

There are several other specialized extensions: btf, Benchmark, Graphics, and bsp. 

These extensions and their use are discussed in detail in Chapter 12. 

9.1.5 Extensions Designs 

\ 
i 

i 
I 

SAP currently ships three different design options for the HTMLB family of exten­

sions: CLASSIC, DESIGN2002, and DESIGN2003. The choice of design affects the 

look and feel as well as some of the functionality of these inner elements. This is 

demonstrated in Figure 9.5. In this example we have an <htmlb: tray> with 

some Inner content comprised 

<htmlb:dropdownListBox>. 

of <htmlb:textVie\.J>, <htmlb:button>, and I 
f 

- 172 asp Extensions 
j 

~~. 

gb30~xl htm tJ ! ~soext xhtmlti I sbspexl table I htmlb ~E1.rnDIes I De511}n DESIGN2(J(J3 I Languu-ge EN 1With AccesslbITity 0 t 
I~-;~'-- -- -EJ-~'I-"'ad-m-,p-ht~---------- - -----------------i 
I,O,,,a"2Q03]~ :1';;::='IW':::Upd":'::ale~1-----~----'---'-----j!II 

Itr5deS.haW H . 1.I,rt,,,,Pao' [SELECTED. ITI l 
~ ·1 II· I endcclut [SELECTEDH ~ . II number of roecuap Items ~	 ~I Wilh Accessibility 0' .~.	 ~ 

IR~~~erin~_: 0 _:-I	 WlDEFAULT f~'1 IftlstepDesign	 ISEl£cnDJ!lIDEFAULT 

I PlffMLB	 ~EJ 1")i3lnterElctrve ITRUE !~I[§QLEJITRUE ~1 .... 1 

'~,'@;Ro~j!~'cip "<;, [eteonescrbucn ~~IStepDescrlptlon2=:=J@ili~~ ~ 
~ ~ Seled13b~Link8ar 1 I I stepftarne 11 ~ 12 113 ~' 

:: ~~:CSeq",,,oe .~ 1 

1100'" ~_u __ ~~"-,- J~a,,,~ J['oo-",--,-_~ 
..© Con!amerTabS-hlp '~, -~	 ~ 

<,,":-:~ ~ontl])l'IerTnl~ :1 II rosamapsempre.htm E 

.@> Mess"""",, ~.~ f"3L----r; 
· $	 Horizon~alm.,iQ§. '1 I 

·1 

f' ~ -~ ~~ , ~ 
" ,@ f'mqreS~lndlC':8.tDr ~ Example Step De:>cnptlorl2 Step Oescnpllorl 3 

le rlu 
! @ Pom.lol, l I ~ 
',.'~ MatnxLa'{Dwt 1 ~ 

• ~ 11enuBar :	 ~ 

• @> 9-,n'Cnart J •	 i
"@>AOOul - j	 ! 
• ~ ru"mLa,out j	 ~ 

-~~~::::r~:~~~~~ ~~ __ .~~_~~~-... ....__~_ ¥ ~ ~~__.._ _r_~ -=""'~~j 

Figure 9-4 Example Application SBSPEXT_PHTMLB 

There were absolutely no changes to the coding of inner elements between these 

three images. All of the changes in look, feel, and functionality come about auto­

matically just by changing the design. 

=-:EJ 

Classic 

Figure 9.5 Examples of the different Designs. 

Different BSP extensions have different requirements for which design they can 

run within. The HTMLB extension supports all three designs (CLASSIC, 

DESIGN2002, and DESIGN2003), whereas the newer XHTMLB extension only 

supports DESIGN2002 and DESIGN2003. The most recent BSP extension, 

PTHMLB, only supports the DESIGN2003 option. 

Of the design options, DESIGN2003 is the most recently developed and most 

advanced and should really be the only design used for any new development. In 

a very near-future release, SAP is extremely likely to completely drop support for 

CLASSIC and DESIGN2002 all together. 

Extension Overview 173 



DESIGN2003 became available as of Support Package 32 of Web AS 6.20. As you 

can see from Figure 9.5, DESIGN2003 has functionality such as the pop up menu 
that the other designs do not have. It is also important to note that DESIGN2003 
is built upon what SAP calls Unified Renderer. This means that the HTML, Java­
Script, and style sheets behind the scenes of DESIGN2003-based BSP applica­
tions will be the same as those of 'the Enterprise Portal, Visual Composer, and 
Web Dynpro-based application. This gives your BSP appl·lcation a look and feel ,~that is consistent with all of SAP's other UI technologies. 

~ 

Because the design you choose controls which low-level rendering libraries are 

used, this also affects which client browsers are supported. The following are the 

latest supported browsers based upon a Web AS 6.40 SP13 system. 

The CLASSIC and DESIGN2002 design supports only Internet Explorer 5.50 and 

higher. DESIGN2003 supports IE >=5.5, Netscape >=7.00, Mozilla >=1.7.5 and 

Firefox >=1.0. Apple Safari, is only supported"tn an Internet Explorer 6 mode. 

These should be viewed as general guidelines for browser support across the 

designs. However, support for different browsers is constantly changing to meet 
market and customer demands. For the most recent information, always refer to 

OSS note 598860. 

9.1.6 High Level Elements 

A BSP page that is going to use BSP HTMLB-family of extensions must include a 
few high-level elements that form the basic framework that all other elements 

within the page will run in. 

<htmlb:content> 
The first of these elements is <htmlb: content). This must be the first BSP ele­

ment inserted into your page. All BSP elements that you want to use must be 
included inside this element. This next code sample demonstrates how all BSP 

Element and regular HTML content for a page is included inside the <htmlb: con­

tent) element. 

<%@page language="abap" %)
 
<%@extension name="htmlb" prefix="htmlb" %)
 

<htmlb:content design="design2003" )
 
<htmlb:page title="BSP Book Example" )
 

<htmlb: form) 
"BookExampleLink"<htmlb: link id 
"http://www.sap-press.com"reference
 

text "Sample Text for link" I)
 

174 SSP Extensions 

<b) <i) Some more raw HTML sample text</b)</i) 

</htmlb:form> 
</htmlb: page> 

</htmlb:content> 

The <htmlb: content> element has the important responsibility of setting the 
rendering context for the current page. Its primary role is for setting the design 

that will be used by all the inner BSP elements. The value for the design attribute 

will determine which rendering library will be used. 

As if this was not enough functionality to draw from this one little attribute, the 

chosen design also influences the version of SAP's Enterprise Portal that is sup­

ported. Enterprise Portal 5.0 only supports the older two designs, CLASSIC and 

DESIGN2002). Enterprise Portal 6.0 supports all three designs. 

To support this variation across the Enterprise Portal versions, the <htmlb: con­ [I i 

tent> tag allows you to supply multiple design values. The runtime will then 
choose the best design to match the version of the Enterprise Portal that is in use. 

You should note, however, that this option does not remove any of the design 

requirements on BSP extensions (such as the PHTMLB requirement for 

DESIGN2003). 

<htmlb:content design="DESIGN2002+DESIGN2003" ) 

Given this code, the BSP runtime would analyze the version of the Enterprise por­

tal that it was running in. If it was not running within the portal, it would choose 

DESIGN2003. If it was inside a portal of version 5.0, it would choose 

DESIGN2002. Finally, in Enterprise Portal 6.0, it would choose DESIGN2003. 

The <htmlb: content> element has attributes that control aspects other than set­

ting the design for the application. One of these is controlRendering. This 
attribute, which is only supported under DESIGN2003, further allows you to 

affect the look and feel of your application. There are some UI controls, such as 

the <htmlb: dropdownListBox>, that-when rendered with HTML-retain the 
design of the hosting browser or the surrounding operating system. This attribute 

allows you to specify whether you want the Browser to continue to control this 

aspect of the rendering, or if you want to switch to the SAP rendered control 

(default). Figure 9.6 shows the differences in the rendered output for our earlier 
DESIG N2003 example when the two different possible options for controlRen­

dering are used. 

The forceEncode attribute causes all inner BSP elements to perform an HTML 
encoding or escaping of their attribute values. This means that certain characters 

that would otherwise have special meaning within HTML or that are not available 

Extension Overview 175 



in the plain ASCII character set are replaced with a special escape sequence. For 

instance, if you actually want to use a less than sign («) in an attribute value and 

you do not want it to be interpreted as an HTML opening tag, you would replace 

this character with the escape sequence &It;. The use of encoding also elimi­

nates the vulnerability to cross-site scripting attacks (for more details, refer to 

CERT® Advisory CA-2000-02: Malicious HTML Tags Embedded in Client Web 

Requests). 

I3IElI controtnendennq HOT Specified 

bodyof the tray r.­ --L1 """-",,~~~,=~,,,""£l,,,".:::EJ . I conl,"lRen"e"n"" BROWSER 131 El 
; SAPAG Konzern v I Ibody of the tray I ~~.,~- -.<-';..,--,~~~;";~~,.;~~~..:} 

l._:.:::~~~~'t:':c~~~,,~ If :;::~I Koozem • 

"~ 

Figure 9.6 Examples of Control Rendering under DESIGN2003 

The sessionManagement attribute allows you to specify if you want your appli­

cation's session to be managed by the Enterprise Portal. Setting this attribute 

really only makes sense if you have a stateful application; otherwise, there is no 

session to manage. 

Certain languages, such as Arabic and Hebrew, are written right to left. The BSP 

runtime supports right to left (RTL) rendering for Internet Explorer under 

DESIGN2003. You can active RTL rendering support via the rtlAutoSwitch 

attribute, although this does not actually trigger the RTL mode. It is just the signal 

to the rendering engine that the application has been tested with RTL, and if it 

detects a RTL based language (using the logged on language), it should switch. If 

the RTLattribute is set, and the browser is using a RTL language, then it automat­

ically switch into RTL mode. One way you can force the switch to RTL regardless 

of the language setting is by calling the SELRIGHLTO_LEFT method of the BSP 

Runtime or via the URL parameter sap-rtl='X'. 

I Standard Left to n-,_.....n-__ .l__"__ 

Ibody ot the tray
1~ HIg:IILLULCIL~rrn 
iISAP AG Koozem ----a I 
~~= i 

:~_.~~~~--"~-:.-:~=.= ... _~--~~-~--_._--_ .._.__._.__..---­
Figure 9.7 R',ght to Left (RTL) rendering 

176 SSP Extensions 

When rendering with DESIGN2003, field labels are prefixed with a small notch to 

set them out. This visual identification allows the label to stand out. However, 

there could be circumstances where you need more control over the look of the 

application and therefore want to disable this function. The attribute label­

DesignBar will disable this functionality if it is set to LIGHT. 

Ii Label Design Bar - Default I3JEI 
body of thetray 

label Design Bar - UghtI Submrt I 
SAPAG Konzem I,~I baDYa- f the tray ~ ~ 

[ Submrt I 
'7'""?,_.. !,.-->"A'-'i.,.""·,-~_~7"",,,,";~::?l 

rSAP AG Kcnzem I~ I 

Figure 9.8 labelDesignBar STANDARD and LIGHT examples 

The discussion around <htmlb: content> has centered heavily on the look and 

feel of the resulting page. When using DESIGN2003, an additional piece­

themes-is added to the look-and-feel puzzle. A theme is a set of colors and fonts 

that complement the overall design. The topic of creating and changing themes is 

discussed in detail in Chapter 17. 

The concept of themes is central to the Enterprise Portal. You might create a com­

pany-branded theme that you want all your applications to share. The attribute 

themeRoot allows you to specify one of these themes for your application. 

<htmlb:page> 

Whereas the <htmlb: content> element was very specific to the functionality of 

BSP, the remaining high-level elements all have close approximations in standard 

HTML. In BSP pages that are going to use extension elements, we must follow up 

the <htmlb: content> with one of two different header elements. 

The first alternative is <htmlb: page>. This is the less extensive of the two options, 

allowing for only a small amount of control over the document structure. This ele­

ment will be wrapped around all our inner BSP elements or plain HTML content. 

The <htmlb: page> element has four attributes that control the document mar­

gins on all sides (marginBottom, marginLeft, marginRight, and marginTop). It 

also has an attribute, title, which allows you set the document title that will 

appear in your browser's title bar. 

The onLoad attribute allows the specification for a client-side script that you 

write, usually in JavaScript, to be executed when the document loads. This client 

script will be executed once the document is finished loading within the browser. 

Extension Overview 1n 



With the attribute reposition, a page should be able to retain the cursor posi­

tion even after a server event. It saves the scrollX and scrollY coordinates of 

the document body before submitting the form. If these values are received by 

the HTMLB library, it will also generate a scrollTo calion next-page rendering, 

so that the browser shows the same section of the screen as in the previous call. 

This attribute defaults to TRUE, soyou only need to add it to the <htmlb :page> 

element if you	 want to disable this functionality. 

Finally, the attribute scroll allows you to disable the use of scroll bars in your 

page. However, the browser should only enable scroll bars if necessary for proper 

navigation. Disabling the scroll bars via this attribute is rarely a good idea. 

<htmlb:documenb 
For greater control over the document structure, SAP offers a separate set of BSP 

elements that can be used instead of <htmlb: page>. The document elements 

work as	 a set in which you combine the use of <htmlb:document>, 

<htmlb: documentHead>, <htmlb: head Include> , and <htmLb : document­

Body> This technique is especially required if additional CSS or JS files must be 

included into the header of the HTML document. In the following code sample, 

we have adjusted the code example for the beginning of the chapter to now be 

structured using the document elements. 

<%@page language="abap" %>
 

<%@extension name="htmlb" prefix="htmlb" %>
 

<htmlb:content design="design2003" >
 

<htmlb:document>
 
<htmlb:documentHead title="BSP Book Example" >
 

<%-- load here additional includes --%>
 

<htmlb:headInclude/> 

</htmlb:documentHead> 

<htmlb:documentBody> 

<htmlb:form> 

<htmlb: link	 id 
reference 

text 

<b><i>Some more sample 

</htmlb:form> 

</htmlb:documentBody> 

</htmlb:document> 

</htmlb:content> 

178 SSP Extensions 

"BookExampleLink" 

"http://www.sap-press. c om" 

"Sample Text for link" /> 

text</b><Ii> 

All the same attributes that are exposed by the <htmlb: page> element are also 

represented through the use of the document elements. They are simply spread 

out across the different individual elements. The <htmlb: documentHead> gets 

the title attribute. The element <htmlb: documentBody> gets all the remaining 
attri b utes. 

In addition to all the other attributes exposed by the <htmlb:page>, the 

<htmlb: documentBody> also has the powerful attributeBee attribute. This 

attribute accepts a BSP Element Expression (BEE-discussed in detail in Chapter 

10) that will be rendered in-line as the element builds the HTML body element. 

This is especially useful if you wish to hook your own JavaScript client scripts onto 

any of the additional document events. 

<htmlb:form> 

The <htmlb: form> element is built right on top of the basic HTML FORM con­

struct. Any inner content that has user input or events will require the 

<html b: form> element It is this elementthat is uItImately responsible for setting 

up all communications between the browser and the server. 

The action, target and method attributes come right from the definition of 

HTML FORM. Action allows you to specify the URI destination for input form 

data. Most ofthe time in BSP, you simply do not specify a value for this attribute. 

If you do, input will be brought back to the page where it originated. 

Method determines the type of HTTP request that will be sent back to the server. 

The options are POST or GET, with POST as the default value. GET passes all input 

information appended to the request URL. This makes all input values visible in 

the address bar of your browser. However, this can also be a big problem, becauseI 
~.	 now your input is limited in size to the maximum length of a request string (typi­

cally two to four I<B). POST, on the other hand, imbeds all input information in the 

body of the request object This allows for the greatest flexibility and keeps the 

browser address bar clean. 

The target attribute further defines the destination for input form data. With 

target, you might specify the name of a HTML FRAME or you might choose one 

of the special targets such as _blank. _blank will cause the creation of a new 

browser window. A common example of the use of target in the context of 

frames is to click in one frame that has a navigation tree. The corresponding 

results are then loaded into a separate frame. For a good example of this concept 

in BSP, have a look at the sample program SBSPEXT_HTMLB. 

There are two attributes of <htmlb:form>, doValidate and validation­

Script, that are marked in documentation as reserved for future implemen­

f 

f	 Extension Overview 179 
.~-



;t'J:i 

tation. However, the inner coding of the <html.b : form> does reveal that these 

attributes will generate HTML code for calling some sort of validation scripting on 

input Furthermore, placing a JavaScript alert in the validationScript attribute 

does appear to fire correctly. 

<htn.Lb: form validationScroipt="2.lert ('Hi! ') ,,> 

The autoCom:>lete attribute is intended to activate or deactivate the Internet 

Explorer auto-complete functionality for form fields. However, this feature is not 

supported with the new DESIGN2003 rendering and also does not work with 

MVC applications. The reason is that IE autoComplete runs on the nane attribute 

of input fields, and that for MVC applications the name attribute is prefixed with 

the controller and model of the data, thus invaliding any form of semantic names 

that would have been required to make this work. As an example, a field <inpuL 

name="mail" > will give you a list of items you typed into fields with the name 

"mail." The value set of the autoComplete feature is grouped by the name's t 
l 

value Think of a number of mail fields within a table. Certainly they all have dif­ I 
ferent "names" because ofthe way that the data binding ties the data of each row !to a different table row using the name attribute. The user will be surprised that 

he or she cannot choose the mail address that he or she typed into the first mail ! 
1

field (rnailrow l ) in the second mail field (mailrow2). Only after the table is filtered 

and the previous mailrow2 becomes mailrow1 can the user choose the value pre­

viously typed in mailrow1. 

The encod i ngType attribute specifies the content type that will be used to send 

data back to the server The default type is applicationlx-www-jorm-urlencoded. 

This type is normally sufficient. In a situation where you need to support the 

<htn.l.b : fileUpload> element, you should instead use multipart/jorm data. [ 

9.2 HTMLB Event System 

9.2.1 Event Dispatching 

It does not do you much good to render BSP elements with server events if you 

do not know how to catch and thereby respond to those events.
 

For this purpose, we will examine a small example. With this example we can see
 ~,
the three different ways that events can be trapped and responded to. 

In this example, a small stateful BSP page will contain two buttons, inside a 

<xhtmlb: buttonGroup>. These two buttons will simply either increment or dec­

rement an index between the values of 1 and 7. When the upper or lower bounds 

of the index are reached, the corresponding navigation button will be disabled 

r 
t 

180 BSP Extensions r 
-..-L...~._ . 

. - - EJ[§'::";\""
- - dling HTMlB Even!s_.. . .....' ......•........' '\'"A;'" EJ[§ ,


1~]~"~~d~i0211~~t~j;~;!·:::_, .......~:c1 i
 
~ . ICUrrentltefllJil..~ 7 ,_,_ . =---' ~~·,;,@;;\;:;;!r.':k;;jc..)i':LJ;;:;.;"iL~' ~ ~~ 

Figure 9.9 Handling HTf\J\LB Events Example Application 

The <xhtmlb .but t onuroup >has two buttons for moving to the previous or next
 

item. Notice that only one event is registered for the complete button group, and
 

that it will be fired regardless of which button is pressed.
 

<xhtmlb::abStrip id = "ts" 

renderSingleTabAsHeading = "TRUE" > 

<xhtrnlb:tajStripItern title = "Handling HTMLB Eve~ts" 

name = "tsil" > 

<xh~mlb:buttonGroup id = "btngrp" 

onClick = "ButtonPager" > 

<xhtmlb:buttonGroupItem key = "prev_item" 

text = "Previous" 

design = "PREVIOUS" 

disabled = ,,<%= vlndex_prev_disablec. %)" ) 

<xhtmlb :buttonGroupltem key = "next item" 

text = "Next" 

design = "NEXT" 

disabled = ,,<%= vIndex_next disabled %>" I> 
<)xhtmlb:buttonGro~p> 

Current I~em Index: <%= vIndex %> 

<)xhtmlb:tabStripltem) 

<)xhtrnlb:tabSt~ip> 

9.2.2 Manually Handling Events 

The first approach to HTMLB event-handling is to retrieve the event and then sim­

ply investigate what type of event it is. This type of coding is usually done in the 

OnInputProcessing handler of a BSP page. 

The incoming event is retrieved with the method call cl_htmlb_manager=>get_ 

event_ex. In all cases, only this new method must be used. The older get_ 

event method is obsolete and not supported for the XrlTMLB and PHTMLB 

libraries. Note that this method can be called more than once within the same 

input cycle, and will always return the same event. 

HTMLB Event System 181 



The get_event_ex method will return an event object that implements at least 

the IF~HTMLB_DATA interface. This interface has a number of interesting parame­

ters that can be examined to see what type of event has been received. 

IF_HTMLB_DATA Attribute 

event_class 

event_name 

event_type 

evenCid 

event_server_name 

event_defined 

Description 

The name of the class that decoded this event 
(example: cLxhtmlb_buttongroup). 

The name of the element that fired the event 
(example: buttonGroup). 

The type of event that was triggered for the specific element. 
Typically a button is "clicked", an entry is "selected" in a drop­
down listbox, and a tree will be "expanded" or "collapsed". 

The ID of the element that fired the event (example: btngrp). 

The string that was specified in the onClick handler. This string 
has no further meaning to the event handling system and is 

transported verbatim (example: ButtonPager). 

Usually an event can contain additional parameters. However, 
the ILHTMLB_DATA interface has to be cast to the correct 
event handler class, and the parameters retrieved from there. 
Many events only require one small string to return, and will 
use the event-defined string. For our example, the button­
Group will place the key of the actual button that was clicked 
into the event_defined string. (example: prev_itern or next_ 

item from <xhtmlb: buttonGroupItemkey/»). 

Table 9.1 Parameters of Interface IF_HTMLB_DATA 

Once the event is available, it can still be a bit of a guessing game to know the
 
possible values for event_name and event_type. Adetailed overview is required
 

to determine what elements can fire what events.
 

This information is available in the classes HTMLB_EVENTS, XHTMLB_EVENTS and
 
PHTMLB~EVENTS. These classes contain constant strings of all elements that can
 
fire events (the values to match against event_name), plus a list of all the different
 

types of events that each element will fire (the values to match against event_
 

type).
 

For this example, we wish to check that we have received a <xhtmlb :button­


Group> event of type click.
 

data: event type ref to if_htmlb_data.
 
event = cl_htmlb_manager=>get_event_ex( request ).
 

if event is not initial
 
and event->event~name = xhtmlb_events=>buttongroup
 

182 BSP Extensions 

! 
!
 

I
1 

I
 

and event->event_type = xhtmlb_events=>buttongroup_click. 
case event->event_defined. 

when 'prev_item'. 
vindex = vindex - 1. 

if vindex < 1. vindex = 1. endif. 
when 'next item'. 

vindex = vindex + 1. 

if vindex > 7. vindex = 7. endif. 

endcase. 
endif. 

Class Interface IXHIMLB EVENTS IImplemented I Active ~ 
"~~~tO~i:;' ,iOt~~c~~~_~:~@sj"m;@tM· ,~Metllo~sl ..,Even~~\~i ;:~A~~u ~-

;IrEll"ijj : 1i?I[il1';):njD'"1181I0OlOO DFi~er! 
- -~" 

Attribute [Level IVisLIRea..lTyping IAssDG.. D.. Ilnml value 11 
~~j tonstanlPublid 0 ~ype ~STRING 5> ~'xhtmlbl -~J 'i 
BUITONGROUP ~~Ublir~_ 'S7RING~ P__XHTMLB_BUnONGROUP~>CO_EVENT_NAME -i 
BurroNGROUP CLICK !constan:publiQ 0 !Type :STRIJfG~ __:u XHTMLB BUTTONGROUP"">CO 'EVENT CllCKED r 
BUITONGROUP TOGGLE !constan'publiq 0 ~~'S7RIl1G 9 ki XHTI~LB 8UTTONGROUP~>CO EVENT TOGGLED ~ 

, • ! I A I - ~
 
PAGER iConst:lnPubilq IJ Fype ' IHG ~-f XHTMLB PAGER=>CO EVENT NAME ~:
 

m~~ =__~~~=~~"-~~~iJ!lqJI,~,,_,§~~C%:L!~;;.;n~_ ,_,~ '.' .,."~ J 
Figure 9.10 XHTMLB EVENTS Class 

This approach of event-handling is very fast to program, especially on a SSP page. 
The disadvantage of this approach is that the code quickly explodes once events 
for many controls must be handled. 

Dispatching Events via IF_HTMLB_EVENTS 

The HTMLB rendering libraries also contain a technique to dispatch events to a 
handler class. For this, use the cl_htmlb_manager=>dispatch_event_ex 
method. One of the parameters is a handler class that will accept the incoming 
event and process it. Typically, this can be a separate developed class, a controller 
class, or even the application class. 

In this example, we will use a handler class that has been developed separately. 
On the BSP page, in the OnlnputProcessing method, the event-handling code 
now reduces to a few lines. All that is required is an instance of the handler class, 
and then the dispatcher is called. 

DATA: handler TYPE REF TO YCL_BSP_BOOK_HANDLING_EVENTS. 
CREATE OBJECT handler. 
cl_htrnlb_manager=>dispatch_event_ex( 

request = request 

HTMLB Event System 183 
11'1L,i i 



page_context = page_context
 

event_handler = handler ).
 

The benefit of this approach is that the event-handling code is placed in a sepa­

rate class, where the full strength of the ASAP workbench can be used. This 

approach also reduces clutter in SSP pages. In addition, if new elements are 

added, no further event handling code is required on the SSP page. All events will 

be dispatched by this one call. Especially when using the model-view-controller 

(MVC) paradigm, the standard approach is to implement all event handlers for a 

view in the corresponding controller class. 

The important questions are: How will the handler class know what events are 

available, and what parameters each event handling method must have? The 
interface IF_HTMLB_EVENTS is defined to solve this. This interface contains all the 

possible events that can be fired by the HTMLS library. Each method contains the 

correct parameters with which it will be called. Similar interfaces IF_XHTMLB 

EVENTS and IF_PHTMLB_EVENTS exist for the other two major libraries. 

Class Intemce [YCL BSP BOOK HANDLING wrrs-] lmplementedI Act"';.
 

"p;~P;r1j~~"l." '-~terfct-ce~'~i 'Frten-'a;:~~ '5::AttiiJ;[t;s~'') . ~ i' -:~E;e;;ts:1A
 

Figure 9.11 Event Handler class Implementing the IFjHTMLB_EVENTS Methods 

The handler class must now just implement these interfaces. 

definition public.class ycl_bsp_book_handling_events 

public section. 
interfaces if_htmlb event . 

interfaces if_htmlb events . 

interfaces if_xhtmlb events 

endclass. 

class YCL_BSP_BOOK_HANDLING_EVENTS implementation.
 

method IF_XHTMLB_EVENTS~BUTTONGROUP_CLICK.
 

! 

r 
f 
! 

case buttonclicked. 

when 'preV_item'. 

vindex ~ vindex - 1. 

if vindex < 1. vindex 

when 'next item'. 

vindex = vindex + 1. 

if vindex > 7. vindex 

endcase.
 

endmethod.
 

endclass. 

1. endif. 

7. endif. 

For this example, the if_xhtrnlb_events~buttongroup_clickmethod is 

implemented. It will be called by the dispatch method with one interesting 

parameter: buttonClicked. This will contain the key of the button that was 
clicked. 

The advantage of this technique is that event-handling coding can be placed in 

normal classes and broken down per event type. Each method receives all of its 

parameters correctly unpacked. The biggest disadvantage of this technique is still 

that events are grouped according to their event types. Thus, for all buttons on a 

page, the method iLhtmlb_events-button_click will be called. In this 

method, you might still have to look at the 10 to decide which button was clicked. 

Further, this technique still groups large blocks of event-handling code into one 

method. Another disadvantage: One should theoretically implement all the event 

methods with at least a minimal empty body, which can involve some work. 

Dispatching Events via OnClick Handlers 

It would be nice if the save button would call the save method on the event han­

dier. The cl_htmlb_manager=>dispatch_event_ex method contains such 
additional functionality. 

It will first examine the event handler class to see if it implements the IF_HTMLB_ 

EVENTS interface. If so, it will then dispatch the event via this interface, as previ­

ously described. If this interface is not implemented by the event handler class, it 

will blindly call an event handling method based on the event_servecname 

string. This string is usually supplied to the onClick handlers. 

In the initial layout, the <xhtmlb :buttonGroup> was specified as follows: 

<xhtrnlb:buttonGroup id = "btngrp" onClick = "ButtonPager"> 

In a new event handler class, we now define method ButtonPager that has one 

importing parameter. The parameter is event_obj ect TYPE REF TO if htmlb 

i~ HTMLB Event System 185
184 BSP Extensions 



data. It is important to note that this parameter must be specified exactly like 

this. The existence of the parameter and both the name and type of the parameter 

are critical for the event-dispatching to work. 

In the event handler class, ensure that none of the ILHTMLB_EVSNTS family of 

interfaces is implemented. lnstea~, define a new method ButtonPager, and 

implement it. 

class YCL_BSP_BOOK_HANDLING_EVENTS2 definition public. 

public section. 

METHODS ButtonPager IMPORTING 
event_object TYPE REF TO if_htmlb data. 

endc1ass. 

CLASS ycl_bsp_book_handling_events2 IMPLEMENTATION. 

I1ETHCJD J:)uttonPager. 

CASE event_object->event_defined. 

WHEN 'prev_item'. 

vindex = vindex - 1. 
IF vindex < ~. vindex = 1. ENDIF. 

WI-IEN 'next_item'. 

vindex = vindex + 1. 
IF vindex > 7. vindex = I. ENDIF. 

ENDCASE. 

ENDMETHOD. 

ENDCLASS. 

I<eep in mind that this technique of event dispatching is only triggered if the IF_ 

9.3.1 <htmlb:tableView> 

The ability to have a rich Ul control for interacting with tabular data is critical to 

any business-application environment. In the classic ASAP Dynpro world, this 

need is fulfilled by the ALV Grid. The ALV Grid, especially in its control-based ver­

sion, has a considerable amount of functionality that goes beyond the basic tab­

ular display. If you are a long-time ASAP programmer and have used the ALV 

Grid, you will probably approach SSP with some fairly high expectations for 

equivalent functionality. 

The SSP solution is the <htmlb :tableView>. Overall, this element does a good 

job of matching up functionality-wise to its thick-client big brother. You will not 

find a one-for one-match for every piece of functionality in the ALV Grid, but a 

close approximation of most of the critical functionality is present. 

As you might imagine, this element is so large and flexible that it deserves an 

example SSP application all of Its own. This application, SBSPEXT_TABLE, covers 

a wide range of different topics, including row selection, column filters, editable 

data, and data navigation. 

It is important to note that the most advanced techniques involving the 

<htmlb: tableView> will probably require the use of an iterator class. This is a 

special rendering class that gives the developer control over even individual cell 

creation. The use of the table-view iterator is discussed in detail in Chapter 10. 

The most important attribute of the <htmlb: tableView> is the table attribute. 

With this attribute you supply the single ASAP internal table that will contain the 

data represented in the table view for rendering. 

It would be easy to be overwhelmed by all the attributes of the <htmlb: table­HTMLB_EVENTS interface is not implemented in the event handler class. 
Vie',,> element. Instead of looking at all the possible attributes, let us instead i

if 
The benefit of this approach is that you can actually implement the code to han­

dle each event in its own method. The only disadvantage is that, because of the 

dynamic nature of the call, no compiler checks are done to ensure that the 

method is specified correctly The actual call itself is protected inside a try 

sequence, to ensure that non-existing methods do not break the SSP application. 

The fired event will then just be lost. 

9-3 Common Extension Elements 

With SAP delivering nearly 200 BSP extension elements, it would be impractical 

to cover the use of everyone of them in this text. Instead, this section will 

attempt to address a few of the most commonly used and most important ele­

ments. 

focus on a small sample of the table view that demonstrates some of the most 

commonly used attributes. 

This simple example will read data from table t002t. This is the system configu­

ration table that contains all the languages supported by SAP and their descrip­

tions. 

To start our example, we will use only the two required attributes of the 

<htmlb: tableView>, id and table. 

<htmlb:tableView id "TableExample" 

table n<%= it002t %>n I> 

This results in a simple, yet plain looking tabular representation of the data in the 

given table. 

Common Extension Elements 187
186 BSP Extensions 



'7' gu.i""¢Tc;ngu!~~n~~lu¥TZ1i1
~~,~c<,~s;~· I Serbian ----c;rEAEN I - , chinese ...._.
 
EN ... ,,:H'-!-n;;,; -.__1rr
 

EN ---~TH..--fKo;~-;,;-~"- '-f KO I _ _ 

EN IRD 1 Romanian \EN I _ 

i_.~N __ "". __ 1_,~~ __ . 1_.~~~_~~~~_, .. t
 
I EtJ T'HR : croatian. ~.'
f-C'----..1.'--~--------'1 
~~~ala:Ja~---¥ 
IEN I UK ! Ukrainian t
1 __...........___.....___. ..

Figure 9.12 Simple <htmlb:tableView> Example

Now we are ready to use a few attributes to spice up the table view a bit. First we

will make our table output a little more readable by using the design attribute
with a value of ALTERNATING to produce a look that is similar to the ALV Grid

stripped pattern.

Next we want to allow the user to have the option to sort or filter the data in the

table view. To activate these abilities, we will set both the filter and sort
attributes to SERVER. Although this element allows you to program the filtering

and sorting using either client-side scripting or server-side events, you also have
the option of just letting the element provide this basic functionality for you. If

you do not specify the server event names in attributes onHeaderClick or

onFil ter, then the element will respond to the events for you.

Finally, we want to add a table header with a brief description of what we are dis­

playing. We can activate the table header by setting the attribute headerVisible
to TRUE. To supply the text for the header, you use attribute headerText.

Please note that the first blank row that is now rendered in our table output is the

filter row. This empty row of input areas is where the user can place the values

that they wish to filter their output results by.

The coding of our example now looks like this:

<htrnlb:tableView id	 "TableExarnple"

,,<%= it002t %>"
table

design "ALTERNATING"

"SERVER"filter
"SERVER"sort

headerVisible "TRUE"

headerText "SAP Language Table" I>

Now we need to do something with the column definitions. To start with, we do

not really need the first column. It is showing us which language we are using to

188 BSP Extensions

display the description. Since this example is programmed to only pull descrip­

tions matching the logon language, this column is unnecessary and confusing. We

should also change the description on the columns and deactivate sorting on the

language key field.

"EN AfrikaBh.sI, Af

Er~ I AR Arabic

,.:'~~~-'------,~~f~-n-~--._~
II---~-+--- I I

I.~ - 1 ZH ,! Chit:l~ T

lEN I ZF Chmese trad •

1- - - r~------f---- - ---­
I EN 1 HR ~tian J­

~ 1 Z1 ~ust~~reserYe ~
""'=-..,=;;-~- ~- -.,.,.,""""'...-,.--.:....., ~~~:r;;t,..."...,..--

Figure 9.13 <htmlb:tableView> Example with Sorting and Filtering

To accomplish these changes, we have three options. First, a table-view iterator

class has functionality to control the table column definitions. This will be dis­

cussed in Chapter 10. The second option is to supply all the column definitions

via an ASAP internal table of type TABLEVIEWCONTROLTAB to the attribute

colurnnDefinitions. The final option, and the one we will use here, is to use the

inner SSP elements <htrnlb:tableViewColurnns> and <htrnlb:tableV.iewCo'
lurnn> to define the column layout in our page.

<htrnlb:tableView id =	 "TableExarnple" '" >

<htrnlb:tableViewColurnns>

<htrnlb:tableViewColurnn

colurnnNarne = rrSPRSL"

sort = "NONE"

title = "Language Key" I>
<htrnlb:tableViewColurnn

colurnnNarne = "SPTXT rr

sort = "SERVER"

title = "Language Description" I>
</htrnlb:tableViewColurnns>

</htrnlb:tableView>

The last thing we want to do to our table is to address navigation. Currently, a

user would have to scroll within the browser to see the entire contents of the

table view. This is fine when the table view is the only element on the page (and

is not too largeI). However, quite often you have a restricted amount of space in

Common Extension Elements	 189

There is an alternative to allowing the table view to provide its own navigation.
which to display the table. Or you also might want to reduce the amount of data

The SSP element <xhtmlb: pager> allows greater control over the look and feel

that has to be rendered for large tables and sent to the client, in order to conserve

as well as the placement of the navigation UI (typically in a tool bar above the

bandwidth and rendering time.

table view). It can interact with the table view by supplying a value for the

<htmlb: tableView> attribute visibleFirstRow. However this approach

requires more programming, as the developer is also responsible for the server

events of the <xhtmlb: pager>.
IAF 1 Afrikaans ~
lAO \ Arabic [The following demonstrates the code required to create a custom

I-BG , BUlgarian - .', _ _~

...._ .. -_·r ~._---~~"_.

i CA ! Catalan r

l	 <xhtmlb:pager>. A complete example is also shipped in the SSP application

SBSPEXT_PHTHLB.~~ __w~~._y_l~~~~~~ "J
Figure 9.14 <htmlb:tableView> Example with Custom Column Definitions <htmlb:tableView id = "TableExample"

table = ,,<%= it002t %>"

To do all this, we will need to limit the number of rows that are displayed initially

and then give the user a navigation tool to page through the table. To supply the	 footerVisible "FALSE"

number of rows we want displayed at one time, we have the attribute visible­	 visibleRowCount "8"

RowCount. Simply by supplying a value to this attribute, we have not only limited	 visibleFirstRow ,,<%= vindex * 8 - 7%>" >

the amount of rows displayed, but we also now have navigation tools in the

<% data vmax type i.

footer of our table view that allow the user to move through the data. To provide
data remainder type i.

a consistent length to our table view we will also use the attribute fillUpEmpty­
vmax = lines(it002t) I 8.

Rows to even out any odd table rows on the last page.
remainder = lines(it002t) mod 8.

id = "TableExample"	 if remainder ne 0 and remainder < 4. <htmlb:tableView

,,<%= it002t %>" vmax = vmax + 1.
table

"ALTERNATING" endif. %>
design

filter
 "SERVER"
<xhtmlb:pager id = "pager"

"SERVER"sort text "Page [$vIndex$] of $vHax$"

headerVisible
 "TRUE"

onPage	 "pager_onPage"
"SAP Language Table"headerText vHax ,,<%= vmax %>"

visibleRowCount
 "7"
design "VERTICAL_SIHPLE+INDICATOR" I>

fillUpEmptyRows "TRUE" >

Listing 9.1 Custom <xhtmlb:pager> layout coding

DATA: pager TYPE REF TO cl_xhtmlb_pager.

pager ?=	 cl_htmlb_manager=>get_data(request request

name = 'xhtmlb:pager'

id = 'pager').

vindex = pager->vindex.

Listing 9.2 Custom cxhtrnlb.pager» event handler

Figure 9.15 <htmlb:tableView> Example with Page Navigation

Common Extension Elements 191
190 SSP Extensions

I

9.3.2 <htmlb:tree>

It is not uncommon to display data in a hierarchical view, for example in a navi­

gation area. Quite often, navigation is grouped by the concept of folders and

items. This need is fulfilled by the BSP element <htmlb :tree>.

The <hcmlb :tree> is very similar to the classic dynpro control CL_GULSIMPLE_
TREE. It allows for the bullding of a tree by supplying all data nodes and the par­

ent/child relationship between nodes. Unfortunately, the data that you can rep­
~~.,
~:

resent within a node on the tree is output as a single area. In other words there is
V no approximation to the CL_GULCOLUMN_TREE, which allows more complex data

representation per node. The only close approximation of this functionality is pro­

vided by a hierarchy column in an <htmlb :tabl eView>.

The <htmlb: tree> element itself is relatively simply. It has attributes such as
height, width, title, showTitle, and tooltip that control the basic format­

ting of the element. The attribute onTreeClick allows you to set a server side

event handler for whenever any node text is clicked on.

The restoreViewState controls how the tree reacts to server events. By default,

the tree element will remember which nodes were opened or closed by the user

and restore these same settings back after the server event. However, you may
want the ability to reset all node statuses back to their initial state by setting res­

toreViewState equal to FALSE.

The powerful attribute toggle controls what happens when the user expands or
collapses a node. In the default FALSE state, only the visible nodes will be ren­

dered to the client. When the client opens a new node that has children, a server

event will occur to retrieve the details for these children nodes. This reduces the

size of the content that must be sent to and rendered in the browser. However,

the user may experience a delay while waiting for the server round trip to finish.

The other option is to set this attribute to TfIUE. If the client's browser has suffi­

cient support, all the nodes will be sent to the browser initial. The expansion or
collapse then can occur on the client, providing a better visual experience at the

cost of the higher initial load

There are two ways to supply the nodes to the <htrnlb: tree>. The first is to sim­
ply imbed them into the page layout using the inner element of <htmlb: tree­

Nodc>. This works nicely for a small number of nodes that are relatively static,

such as a simple navigation area. <htrnlb :treeNode> Elements can be nested
Within each other to create the folder/item hierarchy. The following example

shows a simple tree with a single folder and two inner items.

ssp Extensions

<htrnlb:tree id~"exarnpleTree" >

<htmlb:treeNode id = "nodel"

texc = "Folderl" >
<htmlb:creeKode id ~ "node2"

text = "Iteml" I>
<htmlb:treeNode id = "node3"

text = "Item2" I>
</htmlb:treeNode>

<lhtrnlb:tree>

Figure 9.16 Simple <htmlbtree> Example

The other option is to supply the nodes via attributes of the <htm1b:tree> ele­
ment. The attribute t ab I oZ accepts an internal table of type TVIEW2 containing

the nodes and their relationships. Passing the nodes via an internal table obvi­
ously has advantages for trees that will contain a large number of nodes or where
you need to supply the nodes dynamically.

Each record in the node internal table supports the same attributes that you could

supply to the <htn.lb :treeNode>. Attributes such as irng, text, and t co l t Lp

allow you to specify the output content for the node. Since the <htrnlb: tree> is
a natural way of building navigation structures, the nodes themselves have special

attributes, link and target, that allow for turning your node content into a

hyper link. You also have the ability to control the toggle attribute and to specify
a server on Click event at the node level.

When creating the nodes via the <htmlb:treeNode> method, you can simply

create hierarchies by nesting the elements. On the other hand, our internal table

is a flat structure. Therefore, the relationship between records must be created by

specifying a parentid and childid on each node. To demonstrate this, let us

recreate the earlier example now using the table2 attribute to supply the nodes.

<hLmlb:tree	 id = "exampleTree"

table2 = "<%= nodes %>" I>

listing 9.3 Page Layout

nodes type tview2

listing 9.4 Page Attributes

Common Extension Elements
192 193

FIELD-SYMBOLS: <wa_node> LIKE LINE OF nodes.

APPEND INITIAL LINE TO nodes ASSIGNING <wa_node>.

<wa_node>-treeid 'exampleTree' .

<wa_node>-childid 'nodel' .

<wa_node>-text 'Folderl' ,

APPEND INITIAL LINE TO nodes ASSIGNING <wa_node>.

<wa_node>-treeid 'exampleTree' .
. f

I nadel' .<wa_node>-parentid

<wa_node>-childid 'node2' .

<wa node>-status 'FINAL' .
, Iteml' .<wa node>-text

APPEND INITIAL LINE TO nodes ASSIGNING <wa_node>.

<wa node>-treeid = 'exampleTree'.

<wa_node>-parentid = 'nodel'.

<wa_node>-childid = 'node]'.

<wa_node>-status = 'FINAL'.

<wa_node>-text = 'Item2'.

Listing 9.5 OnCreate Event

9.3.3 <phtmlb:matrix> t
The <phtmlb:matrix> element is a close equivalent of the standard HTML table.

Unlike the <htmlb :tableView>, which is concerned with the output of a single

internal table, the <phtmlb :matrix> is used to layout content. For example, you

might have a number of input fields and labels that you want to align. The

<phtmlb:matrix> allows you to setup these elements within an invisible grid so

that everything is lined up and well readable.

There is actually an older 8SP element called <htmlb: gridLayout> that was
commonly used in the past for this same functionality. However, the

<phtmlb :matrix> is superior to the older element in that it is easier to program

and has considerably better rendering performance.

The <phtmlb:matrix> has several attributes (height, width, marginLeft, mar­

ginRight, marginTop, and marginBotton) that allow you to control the overall

size of the enti re matrix.

Individual cell spacing and padding are controlled by two additional attributes,

separation and design. The separation attribute controls the column spacing

in addition to allowing you to specify a vertical separator between cells. By

default, there are no separators or additional spacing. You have the additional val­

ues of SMALL, SMALLWITHLINE, LARGE, and LARGEWITHLINE. The attribute

design is concerned with cell padding. The default value is to have cell padding

on the right, top and bottom. There are also values for LRNOPAD (cell padding only

top and bottom), LPAD (cell padding left, top, and bottom), LRPAD (cell padding

right, left, top, and bottom), PADLESS (no cell padding).

The cells themselves can be supplied to the <phtmlb:matrix> in two ways. The

most common method is to use the inner element <phtmlb :matrixCell>. In

this case the <phtmlb :matrix> and <phtmlb: mat r LxCel l >simply wrap around

the additional content that you are grouping. The other option is to supply all the

cells and their content dynamically via an internal table. This table of type

PHTMLB_MATRIXCELLS is passed to the attribute cells. Although potentially very

complex to program, because all the inner content within the matrix must be

included, this is a powerful capability that assists you in creating dynamically gen­

erated user interfaces.

One final attribute in the <phtmlb:matrix> is the cellWidths. Normally the

matrix is based upon the size of the content within its columns. However, if you

want to set specific column widths in advance, you can supply them all here as a

single string of lengths separated by commas.

The inner <phtmlb :matrixCell> element has many of the formatting options

that you might expect, such as the ability to wrap the inner content (attribute

wrapping), to specify the alignment (attributes hAlign and vAlign for horizon­

tal and vertical alignment respectively), and to specify column spacing (attribute

separation). There is also the option for a single cell to cover more than one col­

umn or row with the attributes colSpan and rowSpan.

Now we come to the real power of the <phtmlb:matrix> compared to the

<htmlb: gridLayout>. In the <htmlb: gridLayoutCell>, you are required to

supply a specific row and column index number. This can make your layouts

inflexible, because you have to renumber all later elements when you add some­

thing new in the middle.

<phtmlb :matrixCell> attempts to solve this problem by giving you several

options when supplying the values for the attributes col and row. You can still

use the absolute column and row specifications; but now you also have the ability

to use relative positioning. With this, you specify via +N the number of columns

or rows that you wish to move relative to the last one rendered. Youcan even not

specify a column or row at all. If no column is specified, then the inner content is

placed automatically in the next column. If no row is specified, the content is

automatically placed in the same row as the last cell. It is important to remember

that you can only use ascending values whenever incrementing columns or rows.

1: Common Extension Elements 195
194 BSP Extensions

The example in Figure 9.17 places several images in a matrix using only relative
I

.1 position ing.

r ~ @ ~::.• ...
@l 1m ~.

I:
~\

..,..." q ., .. ,,.,.,,..,.,.=15

Figure 9.17 <phtmlb:matrix> Example

<phtmlb:matrix width="SO%" >

<phtmlb:matrixCell/>
<htmlb:image src="ICON_SAP" I>

<phtmlb:matrixCell col="+l" I>
<htmlb:image src="ICON_DECEASED_PATIENT" I>

<phtmlb:matrixCell col="+l" I>
<htmlb:image src="ICON_SYMBOL_FEMALE" I>

<phtmlb:matrixCell row="+l" I> <%-- col auto reset --%>

<htmlb:image src="ICON_SYMBOL_MALE" I>
<phtmlb:matrixCell col="+l" I>

<htmlb:image src="ICON_STATUS CRITICAL" I>
</phtmlb :matrix>

Notice from the example how the coding is cleaner and more condensed than the

corresponding code would be if we had used an <htmlb: gridLayout>. This is

because of the unique nature of the <phtml.b :matrixCell>. Instead of having to

wrap our content in beginning and ending elements, the <phtmlb :matrixCell>

simply works as delimiters between the content.

9.3.4 <xhtmlb:protectDoubleSubmit>

When browser-based applications need to return to the server for processing or

loading of data, the user has very little information about the progress of that

processing and loading. There is nothing stopping the user from getting impatient

and submitting the server event again. This can lead to all kinds of problems on

the backend, perhaps even duplicate postings ofthe same information.

In all likelihood, you have visited a website where you finish your shopping and

are ready to hit the submit button to complete your order, only to have the web­

site inform you that you need to be patient and not hit "submit" more than

once-or else you might receive multiple orders. It seems as though there should

be a way to prevent duplicate data without having to rely upon end users not to

accidentally do something.

196 SSP Extensions

The BSP element <xhtmlb: protectDoubleSubmi t.> solves this problem. The

element can be used within any BSP page that utilizes the <htmlb: form> ele­

ment. When an event is sent to the server, all screen input is immediately blocked

by placing a transparent .gif over the screen. This ensures that users can not sub­

mit another event to the server while the first is still processing. After a certain

amount of processing time has passed without receiving a response, the element

produces a pop up window asking the user to please wait.

This element only has four attributes. The first is active. This determines if the

element will function on the next response cycle. That way, you can disable or

activate the <xhtmlb: protectDoubleSubmi t > element dynamically in code.

With the attributes text and title you can customize the UI of the pop up win­

dow. Finally the attribute timer allows you to set the amount of wait time on the

client before the popup is activated. This attribute is measured in milliseconds and

defaults to 2,500 or 2.5 seconds. 2.5 seconds is a practical duration that allows

for quick server roundtrips to still fire with no disruption to the user. However,

you have the ability to override and set this timer shorter or longer.

In the following example, we have simply placed an ABAP WAIT statement in the

event handler of the page to simulate some extended processing so that the

<xhtmlb: protectDoubleSubmi t > element can be demonstrated.

<htmlb:form>

<xhtmlb:protectDoubleSubmit

title = "Customized Double Submit"

text = "This demonstrates a customized Double Submit"

I>
<% WAIT UP TO 3 SECONDS. %>

<htmlb:textView text = "Customized Double Submit"

design = "EMPHASIZED" I>

</htmlb:form>

9.3.5 <phtmlb:containerTabStrip>

Tabstrips are important Ul elements that allow us to simplify an application by

reducing the amount of navigation that the user needs to perform. Tabstrips have

been a part of standard ABAP development since Basis release 4.0, so it is not sur­

prising that the functionality for tabstrips within BSP is considerable.

There are actually three different sets of elements that can be used to produce a

tabstrip: <htmlb: 't ab S'tr i p>, <xhtmlb: tabStrip> and <phtmlb: container­

'I'ab Sr r Lp >.

Common Extension Elements 197

'-

Your request is beingprocessed ...

Thisdemonstrates a customized Double
Submit

f1'rirB'fmi'lt;-r:J:-'J ~ -iff(1 i1(::.--l.,"TIliffi

Figure 9.18 Two <xhtmlb:protectDoubleSubmit> Examples: Default Attributes and Attributes

Customized by Program

Each new version of.the tabstrip produced greater functionality. Therefore, we
will take a closer look at the latest version with the most functionality and flexi­

bility: <phtmlb: containerTabStrip>.

To create a complete tabstrip there are really three BSP elements involved. The

first is the <phtmlb: containerTabStrip> itself. This element has the attributes

that affect the entire tabstrip. The attributes collapsed and collapsible and
onCollapse all work to together to support collapsible tabstrip areas.

<phtmlb: containerTabStrip> defaults to collapsible being TRUE, however,
for this to work you must also supply an onCollapse event handler. Within that

handler, you should trap the collapsed state and then feed that back to the ele­

ment through the attribute collapsed.

The <phtmlb: containerTabStrip> gets considerable functionality via the
items attribute. This attribute allows the inner content of the tabstrip, including

all the UI elements that will be rendered into each tab, to be supplied dynamically

via an ABAP internal table of type PHTMLB_CONTAINERTABSTRIPITEM. This is

another example of how BSP supports dynamic UI creation.

The maxVisibleItems attribute allows you to control how many of the tabs are

visible in the strip area. If the total number of tabs exceeds this value, navigation
controls will be generated to allow the user to page through multiple sets of tabs.

By default, the element will generate and control this paging for you. You could
also build a custom options menu, perhaps to further support navigation or to
allow for removal of personalization of the tabstrip, via the attribute option­

MenuId. You actually define a separate <phtmlb: popupMenu> element in your
page. You then connect this to your tabstrip in the strip area by supplying the

<phtmlb: popupMenu> element ld to the optionMenuId attribute.

198 SSP Extensions

{,'

, '

T

l

Finally we have the attribute selectedIndex. This attribute must to be set to

control which tab is the active one. This attribute expects an integer value for the
index of the tab that you wish to be active. If this attribute is not supplied or has

an initial value, no content will be displayed in the tabstrip area. When the user

clicks on a changed tabstrip, a server event is fired. It is the responsibility of the
application to trap this event and place the new selected tab index into a variable
that will be passed back into this attribute.

Each tab is defined with <phtmlb: containerTabStripItem>. For this element

you can set the ID, title and tool tip that will appear for the tab in the strip

area. You can also disable a single tab with the attribute enabled and control the

scrolling mode of the inner content with the attribute scrollingMode.

Once again, we have the ability to supply the inner content of a tab dynamically.
The attribute contentItems allows for dynamic elements to be supplied via an

internal table of type PHTMLB_CONTAINERCONTENTITEM.

Finally, we reach the inner most element in our tabstrip, the <phtmlb: contai­

nerContentItem>. Each tabstrip item can contain one or more of these

<phtmlb: containerContentItem> elements. The inner UI elements, such as

input fields or text views, are all rendered within this element. We can set a scroll­

ing mode that overrides the one specified at the tabstrip item level using the

attribute scrollingMode. At the content level, you can also control visual ele­

ments such as cell padding, attribute hasP adding, and bordering, attribute bor­
der with a default value of FALSE.

The following example shows a Simple tabstrip with three items, the third of

which 'has been disabled. The example also has the event-handling necessary to

support the SWitching of the active tab.

<phtmlb:containerTabStrip id = "TabStrip"

selectedIndex = "<%= selected tab %>"
firstVisibleItemIndex = "2" >

<phtmlb:containerTabStripItem id "Tab1 tt

title = "Tab 1" >
<phtmlb:containerContentItem>

<htmlb:textView>Inner Content of Tab 1
</htmlb:textView>

</phtmlb:containerContentItem>

</phtmlb:containerTabStripItem>

<phtmlb:containerTabStripItem id = "Tab2"

ti tIe "Tab 2" >

Common Extension Elements 199

•

<phtmlb:containerContentItem>

<htmlb:textView>Inner Content of Tab 2

</htmlb:textView>

</phtmlb:containerContentItem>

</phtmlb:containerTabStripItem>

<phtmlb:containerTabStripltem id = "Tab3"

title = "Tab 3"
enabled = "FALSE" >

</phtmlb:containerTabStripItem>

</phtmlb:containerTabStrip>

Listing 9.6 Layout

DATA: event TYPE REF TO if_htmlb_data.
event2 = cl_htmlb_manager=>get_event_ex(request).
IF event->event_type = phtmlb_events=>containerts_tab_selected.

selected_tab = event->event server_name.

ENDIF.

Listing 9.7 OnlnputProcessing

I.~t"hl~! :T~ti?1 ElITd
InnerContent ofTab 2

Figure 9.19 <phtmlb:containerTabStrip> Example

9.3.6 <phtmlb:formLayout>

As a BSP application developer, you will be spending a lot of time creating form

layouts. A good portion of that time will be spent designing the complex matrixes

to align input fields and their labels so that data input is attractive. Even with the

advances that the <phtmlb :matrix> makes over the <htmlb: gridLayout>, the

creation and maintenance of large forms can still be daunting.

However this task does not have to be that difficult, thanks to the

<phtmlb: formLayout> element The <ph'trilb : formLayout> does all this work

for you by creating the label, input element, and supporting matrix structure, all

from the definition of a single element

The best way to learn about the <phtmlb: formLayout> is to begin with a simple

example and then dissect it. In this example, we will have a small form that will

request input of a person's first name, family name, and email address.

200 BSP Extensions

<phtmlb:formLayout>

<phtmlb:formLayoutInputField id = "FName"
label = "First Name"

value = "<%= namel%>" />

<phtmlb:formLayoutInputField id = "SName"
label = "Family Name"

pos = "asNeighbour,tiedTo=FName"
value = "<%= name2%>" />

<phtmlb:formLayoutInputField id = "Email"

label = "Email Address"
pos = "skipRow,colspan=2"
value = ,,<%= email %>" />

<phtmlb:formLayoutItem idOfItem = "Submit"

pos = "skipRow" >

<htmlb:button id = "Submit"
onClick = "Submit"

text =" Submit" / >
</phtmlb:formLayoutItem>

</phtmlb:formLayout>

First Name I I FamilyName I I

~-- I I
ISubm, I

Figure 9.20 <phtmlb:formLayout> Example

The <phtmlb: formLayout> element itself has just a few attributes that give you

some control over the design of the form. Our example keeps all the default val­

ues for these attributes, but you can control the spacing between the form ele­

ments and their labels using the attribute fieldToLabelFactor. You can also

insert a vertical separator between columns using attribute verticalLineSepa­

ration and you can move the labels to be right aligned using labelAlignment.

But looking at the example, you can see that the real details come from the inner

elements of the <phtmlb: formLayout>. What SAP has done is to create a few of

the most used data input elements in simplified versions for use in the

<phtmlb: formLayout>. These elements follow the 80/20 rule: that 20 % of the

functionality is used 80% of the time. True to that rule, these inner elements do

not have all the functionality of the originals; however, they do contain the most

used and useful functions.

Common Extension Elements 201

SAP implements four of these simplified inner elements: <phtrnlb: formLayout­

InputField>, <phtmlb:formLayoutDropDownListBox>, <phtrnlb:forrnLay­

outCheckBox> and <phtrnlb: formLayoutTextEdi t >. Obviously there are going

to be times when you need one of the more specialized attributes of the elements

that are wrapped within the <phtmlb: formLayoutX> items. Or perhaps you

need to include a SSP extension element other than input fields, dropdown list

boxes, check boxes, or text edit boxes. For this, we have a generic form layout

item called <phtmlb: formLayoutltem>. As you can see from the example, we

have used this generic item to insert an <htmlb:button>.

Use of the form layout items immediately addresses one concern laid out to begin

with the generation of input elements with matching labels. That is only part of

the value we gain by using the <phtmlb:formLayout>. The other time saving

aspect is the positioning of elements relative to one another.

All of the positioning options are set by the single attribute pos. This single ele­

ment has a considerable amount of functionality packed into. At its most basic

form the attribute pos allows you to set the relative values of the row and the col­

umn for the element separated by a comma. For example pos= =" r owr l , col=0"

means new row, same column. Likewise to move to the next column in the same

row you would use pos=" r ow<I ,col=1-1".

In addition to directly specifying the positioning via a row and column value,

there are also special positionlng directives for two of the most common actions.

These are Nm-lCOLUMN and SKIPROW. Use NEWCOLUMN to move to the next column

in the same row. For instance, you have finished all output for the current col­

umn, and through the use of NEVlCOLUMN output now goes to the next column.

SKIPROW results in an empty row. It is effectively row=+2.

For large input elements, such as the email-address input field in our example,

you may want to take up more than one column or row. For this activity we can

use the pos attribute addition of COLSPAN or ROWSPAN. Our email element pos of

pos=" col span=2" produced an element on the next row that covered two col­

umns.

You may also want to ensure that two or more fields are always aligned next to

each other regardless of what happens to the relative positioning of the elements

around them. In our example, we wanted this functionality for the first name and

family name elements. Instead of using relative positioning or the NEWCOLUMN pos

value, we used the ASNEIGHBOUR directive.

It turns out that positioning and simplified interface are only two of the three

application using the IMG, any <phtral o : formLayout> allows you to give the

ability to your business users to do code free customization of the form layout.

To support customization, you must first change the definition of the

<pbtml.b : f or ml.ayout.> and add a value for the attribute custornizationKey.

This is the key value that will be used later to match up with the customization

settings. You can imagine how you might generate a key for different organiza­

tional structures, such as company code or plant. The business would then have
the flexibility to configure different input options along these lines.

This customization is made possible via the use of three database tables. The

developer of the application must first create an entry in two of these tables,

PHTMLB_FLI and PHTMLB_FLCTEXT, in order to expose each element of their

form layout where customization is possible. The first table, PHTMLB~FLI, has two

keys. The first key, NS_APPL_PAGE, requires you to specify the SSP application

namespace, application name and page/view. An example might be: SAP /Y_
PHTMLB_TEST / tesCpage. html. The other key, FLCID, is a value that must

match up with the ID given to each form layout item.

The second table, PHTMLB_FLCTEXT, allows the developer to supply a language­

dependent description for each item in PHTl'1LB_FLI. You should note, however,

that this description is only used during the customization activity; it will not be

used to supply the label for the form element at runtime.

The final table, PHTMLB_FLI_CUST, is where the actual customization values are

stored. It has the same two key fields as PHTl'1LB_FLI for matching up to the SSP

page and form layout element. It also has a key called VARIANT_KEY that should

match the custornizationKey attribute of the <phtml b : forrnLayout>. Finally

we have th e field called 1'10DIFIER that sets the customization option for the ele­

ment in question. The following are the possible customization values.

Attribute Value	 Definition

As Defined	 The inner element is rendered exactly as defined in the original coding.

This is the default contlgurat.on option.

Invisible	 The inner element is not rendered at all, nor is a space reserved for it.

All later elements are moved up a position to fill its space.

Hidden	 Although similar to Invisible in the effect that it has on the element in
question, Hidden affects the elements around it differently. With Hid­
den the space for the element continues to be reserved. However,
entire empty rows are still removed. As you can see, with the use of
Invisible and Hidden, the earlier pos attribute value of ASNEIGHBOUR
becomes even more important.

major factors when working with <phtrnlb: forrnLayout>. There is also layout

I Table 9.2 Possible Values for MODIFIER customization functionality. Similar to the way that you can customize the R/3

Common Extension Elements

-~.	 203202 BSP Extensions

I

Attribute Value

Required

Optional

Read Only

204 BSP Extensions

Definition

If this value is set, during the rendering of the label for the element a
required indicator, visualized as a small red star, is output. This only
affects the visual rendering of the label. The application is stili responsi­
ble for actually checking to make sure a value was supplied.

If the appiicatiori had set in code an element to be required, this cus­
tomization now can set it to be optional. Just as with the Required cus­
tomization option, this value only affects Visualization and not applica­
tion logic.

The inner element is displayed in a Read Only mode.

Table 9.2 Possible Values for MODIFIER (cont.)

it is important to note that SAP does not deliver any user interface for maintaining

these customization tables. Standard table maintenance has been generated, so

updates are possible using the SAP GUI transaction SM30. This is fine for the

entries that the application developer must maintain in PHTMLB_FLI and

PHTMLB_FLI_TEXT. However, you are more likely to have to create a custom

application or build a personalization screen into your application to support

business-level customization of table PHTMLB_FLI CUST.

The discussion on customization does bring us back around to one final value for

the attribute pas. Going back to our example where we wanted to make sure that

first name and family name were always kept together, it also makes sense that

customization options should apply to both fields. It does not really make sense

to allow someone to hide one field without the other. Therefore, the tiedTo

option can be added to the pos string. This will allow the form item to inherit

whatever customization is set for the field it is tied to.

10 asp Element Expressions and Iterators

The most powerful aspect of BSPdevelopment is the fact that that as
a developer you are not locked into a ridgedframework. SAPhas given
us the ability to work outside its rendering libraries. Even more impor­
tant are the opportunities that BSP Element Expressions (BEEs) and
tableView Iterators provide to alter the rendering within the existing
framework.

Any rendering library is like a corset. It does the work it was designed for, but

does not allow the flexibility to break out where required. The most interesting

example is custom-rendering for specific <htmlb: tableView> cells. Sometimes

you would like to render something special inside such a cell, for instance an icon

to indicate a status, depending on the values of three other fields in the table row. t
This chapter discusses the building blocks used to group small parts of renderingl
code into a generic interface that then can be used to custom-render specific

areas of the layout.

10.1 BSP Element Expressions

10.1.1 What is a BEE?

Effectively, a BEE can be described asan interface with one method RENDER (). The

complete interface (ignoring the trivial second RENDER_TO_STRING method) is:

INTERFACE IF_BSP_BEE.

METHODS render IMPORTING page_context

TYPE REF TO if_bsp_page_context .

ENDINTERFACE.

Any class can implement the interface. Once it comes to rendering, the RENDER

method receives the page context as an import parameter. The page context con­

tains information about the current BSP page being rendered and the current

writer active, and provides methods to handle rendering of BSP elements.

Given a class that implements the IF_BSP_BEE interface, a simple element

<bsp :bee> is also available to render such a class inline anywhere on a BSP page,

if required.

bee->RENDER(page_context = me->m_page_context).

In summary, a BEE is any class that implements the IF_BSP_BEE interface, and

that can render itself when requested.

BSP Element Expressions and Iterators 205

10.1.2 N=1, Using Any BSP Element as BEE

BEEs were initially designed for custom-rendering one specific cell in an
<htmlb: tableView>. It was sufficient to specify one BSP element, for example
an <htmlb: inpu tField> or <htmlb: image>. All HTMLB elements had to imple­

ment the IF_BSP_BEE interface to be usable as BEEs.

The simple solution was to implement this interface in the base class for all BSP
elements (CLBSP_ELEMENT). With this small change, it suddenly became possi­

ble to use any BSP element for custom-rendering as a BEE.

You will need a general understanding of how BSP elements are used inside a BSP

page. There are three steps involved:

~ Create an instance of element class.

~ Set all attributes.

~ Process BSP element.

The BSP compiler can look up what class is associated with a specific BSP element.

It then will generate roughly the following code:

DATA: tagI TYPE CL_<class_name>.

CREATE OBJECT tagI.

TagI->AI = VI.

TagI->An = Vn.
... process tagI

Ifyou wish to use any BSP element as a custom-renderer at a later stage, you only
have to complete the first two steps. Each BSP element has the interface IF_BSL
BEE via the base class, and the render method of this interface knows how to

"process" the BSP element at the right time.

The matching class name can easily be looked up via the ABAP Workbench as

shown in Figure 10.1.

However, using the above technique of setting attributes is still slightly error­

prone. You have to keep all attributes in mind, their names and types, and espe­
cially remember to set all required attributes. For this reason, a factory method is
also generated for each BSP element to handle all the hard work. Therefore, the

above code would reduce to the following form:

DATA: tagI TYPE CL_<class_name>.
VI An Vn).TagI = CL_<class_name>=>FACTORY(Al

. .. process tagI ...

206 BSP Element Expressions and Iterators

@ . . glQl§I......

sse. Extension ~drt Q.oto UtilIties(r:.!) En~ronment S'istem !:!elp fiiaJ.

~n¥:~.'iT~oo-.5.[i~75j§'i5-'Tl~:~Ti:[(rt1.~i~~1':J:G~[:E,

'R;:::~~~::5er ~ ~ :GSE·.~:~~~0-.fj_ .:~~~d l~ctiV8~~I..

'MLB""dl "; .. .' I
~:;"::',========:::;;;o.J~~~~11 Short Description - . -- [EPUt Field - - , : ;

" 61htmlb -- HTMq~ Element Handler Cia" I CL IITMLB INPUTFIELD I [

il_,f: __~~~UtFleld __.'._.. _.. _.. JGJ~~l,.~:~e:~~~_:a~.C1:::."._~~ c:'=:,~,,,rrrF~~LD j f

Figure 10.1 Class Name Lookup Using the Workbench.

The benefit of this approach is that the ABAP compiler is used to check all
attributes during the compile phase. If you are uncertain about the available
attributes, a simple double-click on the FACTORY brings you immediately to the
definition of the method.

In order to demonstrate the effectiveness of the BEE, we will build a simple test
program. We know that there are four supported techniques for using BEEs. So
the test program must show four buttons, and it must provide an open piece of
canvas into which we can render anything at runtime. The complete coding is:

<%@page language="abap"%>
<%@extension name="bsp" prefix="bsp"%>
<%@extension name="htmlb" prefix="htmlb"%>
<%@extension name="xhtmIb" prefix="xhtmlb"%>
<%-- general document structure --%>
<htmlb:content design="design2003">

<htmlb:page> .

<htmlb:forrn>

<%-- button group with four test cases --%>

<xhtmlb:toolbar id="tbbgl" >

<xhtmlb:toolbarItem>
<xhtmlb:buttonGroup id "buttons"

onClick "buttonPressed" >
<xhtmlb:buttonGroupItem key "single"

text "Single" I>
<xhtmlb:buttonGroupItem key "html"

text "HTML" I>
<xhtmlb:buttonGroupItem key "table"

text "Table" I>
<xhtmlb:buttonGroupItem key II xml "

text "XML" I>

BSPElement Expressions 207

</xhtmlb:buttonGroup>

</xhtmlb:toolbarItem>

</xhtmlb:toolbar>

<%-- dynamic rendering --%>

<bsp:bee bee = ,,<%= bee %>" />

</htmlb:form>

</htmlb:page>

</htmlb:content>

For the program, three page attributes are defined:

bee TYPE REF TO IF_BSP_BEE

text TYPE STRING (auto fill)

urI TYPE STRING (auto fill)

The bee is the actual instance of rendering code that will be rendered. The text

and ur I fields are used for our small example. We would like to render two input

fields below one another. This first allows us to specify some text for a URL. The

URL will be displayed in the second (disabled) input field.

Finally, the onInputProcessing event-handling code must be as follows:

urI = 'http://www.sap.com'.

DATA: event TYPE REF TO if_htmlb_data.

buttongroup TYPE REF TO cl_xhtmlb_buttongroup.

event = cl_htmlb_manager=>get_event_ex(

runtime->server->request).

IF event IS NOT INITIAL
AND event->event_name = cl_xhtmlb_buttongroup=>co_event_name.

buttongroup ?= event.

CASE buttongroup->buttonclicked.

WHEN 'single'. ". TO DO

WHEN 'html'. ". TO DO

WHEN 'table'. ". TO DO

WHEN 'xml'. ". TO DO

ENDCASE.

ENDIF .

This code just sets the URL, static for our example, and then checks for an event

from the HTMLB library. For button-group events, the corresponding action is

taken.Given our test harness, we have a "hole" in the layout that we wish to fill

with one BEE. We know that each BSP element can function as a BEE. So let us

use an <htmlb: inputField> as a BEE. I<eep in mind that we only must create

the BEE. The actual "processing" is done later by the <b sp :bee> element.

The code is only a few lines (where variable bee is of type IF_BSP_BEE):

WHEN 'single'.

DATA: tag_if TYPE REF TO cl_~tmlb_inputfield.

tag_if = cl_~tmlb_inputfield=>factory(id = 'text'

value = text).

bee = tag_if.

A new <htmlb: inputField> is declared and then instantiated via its factory

method. Thereafter, the <htmlb: inputField> is ready to be rendered. For this,

we assign the instance to the bee page variable. This works because each BSP ele­

ment implements the IF_BSP_BEE interface via the base class.

The code can be reduced to:

WHEN 'single'.

bee = cl_htmlb_inputfield=>factory(id 'text'

value = text).

With the first button now completed, we run the BSP page again, and look at the

output in Figure 10.2.

, Sinale \IHTMLIiT"""IA l~

@Done -!--. '1 ~ Local IntranetI

Figure 10.2 Starting Point of the Example

It works as designed! Even with the BSP element declared in one place, the ren­

dering at a later stage during the layout phase works perfectly. And with this,

nearly 80 % of the work is done for the <htnl.b : tableView> custom-rendering.

10.1.3 HTML BEE

Using BSP elements to fill "holes" is interesting, but sometimes greater rendering

control is required. For this, there is nothing better than pure, raw HTML.

For raw HTML, a second BEE is available. This class, CL_BSP_BEE_HTML, also

implements the IF_BSP_BEE interface and therefore can be rendered later. Its

primary goal is to store HTML sequences and render them out later.

For this example, we want to have two input fields, one for the text and the sec­

ond to display a URL. Here is the code:

SSP Element Expressions 209208 SSP Element Expressions and Iterators ~L_

WHEN 'htrnl'.

DATA: bee_htrnl TYPE REF TO cl_bsp_bee_htrnl.

CREATE OBJECT bee_htrnl.

bee_htrnl-)add(

htrnll = '<input narne="text" id="text" '

htrnl2 = 'title="Inputfield for text" '

htrnl3 = 'value="'

htrn14 = text

htrnlS = '")'

htrnl6 = '<BR)').

bee_htrnl-)add(

htrnll = '<input narne="url" id="url" '

htrnl2 = 'title="Inputfield for urI disabled"

htrnl3 = 'value="'

htrn14 = url

htrnlS = '" '

htrnl6 = 'readonly style="baekground-eolor:1FABABAB")').

bee = bee_htrnl.

In the first step, an instance of the HTML BEE is allocated. The add method is

called twice, once for each input field. The add method has a handy feature that

allows the HTML string to be supplied in snippets, which are internally concate­

nated together. In the last step, the BEE is assigned to be rendered later.

We run the test page again, and press the HTML button. The results can be seen

in Figure 10.3.

-JLlITabie
rn;;

'ID Done ~ Local jntrenet

Figure 10.3 HTML BEE Example

The HTML is rendered in the "hole," as expected.

WARNING Using raw HTML is not recommended for the faint of heart. In

principle, HTMLcoding is easy to understand and use. However, once it is writ­

ten, you must also accept responsibility that the code will work in other sup­

ported browsers, for example Netscape. Even more important, you must han­

dle all accessibility aspects, at a minimum setting the title attribute correctly.

210 BSP Element Expressions and Iterators

10.1.4 Table BEE

The N=1 case was powerful, but did not go very far. What is really required is a set

of BSP elements that can be rendered together: effectively, an expression!

For our stated problem, we could have written the following code directly in the

layout of the BSP page:

"url ll

"<%=url%)"

"TRUE" /)

"text"id

value = "<%=text%)" /)

<htrnlb:inputField

<htrnlb:inputField id

value

disabled

</htrnlb:gridLayoutCell)

</htrnlb:gridLayout)

WHEN 'table'.

DATA: bee_table TYPE REF TO cl_bsp_bee_table.

CREATE OBJECT bee_table.

</htrnlb:gridLayoutCell)

<htrnlb:gridLayoutCell colurnnlndex = "1"
rowlndex = "2")

<htrnlb:gridLayout eolurnnSize = "1" rowSize = "2")

<htrnlb:gridLayoutCell colurnnlndex = "1"
rowlndex = "1")

However, we wish to process something similar dynamically. We already know

how to create an instance of any BSP element via its factory method. Now all we

need are techniques to put all these BSP elements into one expression, and still

keep the relationship among them. For this, the table BEE-shown below-was

designed.

.u

"iJ

i'

";Ii
II

ji
iLl
'1"iii
Ii
'I~
).\

DATA: tag_if_text TYPE REF TO el_htrnlb_inputfield.

tag_if_url TYPE REF TO cl_htrnlb_inputfield.

tag_if_text = el_htrnlb_inputfield=)factory(id = 'text'

value = text).

tag_if_url = cl_htrnlb_inputfield=)factory(id = 'urI'

value = urI disabled = 'TRUE').

DATA: ta8-g1 TYPE REF TO cl_htrnlb_gridlayout.

tag_ogle_text TYPE REF TO cl_htrnlb_gridlayoutcell.

tag_gle_url TYPE REF TO cl_htrnlb_gridlayouteell.

tag_gl = el_htrnlb_gridlayout=)faetory(

ColurnnSize = 'I' rowSize = '2').

!

SSP Element Expressions 211

i'
,1
"

11)1,

tag_glc_text
I ~ = cl_htmlb_gridlayoutcell=>factory(

columnIndex = 'I' rowIndex = 'I').

tag_glc_url = cl_htmlb_gridlayoutcell=>factory(

ColumnIndex = 'I' rowIndex = '2').

bee_table->add(level ='1 element tag_gl).

bee_table->add(level = 2 element tag_glc_text).

bee_table'>add(level = 3 element tag_if_text).

bee_table->add(level = 2 element tag_glc_url).

bee_table->add(level = 3 element tag_if_url).

bee = bee_table.

First the table SEE iscreated. The next part of the code just uses the factory meth­
ods of the different SSP elements to create all the SSP element instances
required, Then each ssp element is added in the sequence that it will be pro­
cessed,

Very special care must be taken with the level attribute, This isan integer number
used later during processing to determine if the next BSP element in sequence is
a child of the current ssp element, or must be processed at the same level. The
RENDER method of the table BEE knows how to render such a complex expression.

The final output can be seen in Figure 10A,

~ Sincle MHTML II TableIIXML

®Done i t@ Local intrenet

Figure 10-4 Table BEE Example

With this, we now achieve complete dynamic rendering of a "hole" with a
sequence of BSP elements (the expression),

10.1.5 XML BEE

Writing all this code by hand can be complex, Imagine instead loading the com­
plete sequence from a string, possibly even one stored in the database, Astring is
easy to write, can easily be understood, and can be changed to dynamically define
an overriding layout for a specific part of the screen.

So the final example takes an XML string containing a BSP element expression and
renders it into the "hole,"

212 asp Element Expressions and Iterators

WHEN "xm l ".

DATA: xml_string TYPE STRING.

CONCATENATE

'<bee:root> '

<htmlb:gridLayout columnSize ="1" rowSize ="2"> '
<htmlb:gridLayoutCell columnIndex="l"

rowIndex="l"> '
<htmlb:inputField id ="text" ,

value ="<%=text%>" I> '
</htmlb:gridLayoutCell> '
<htmlb:gridLayoutCell columnIndex="l" ,

rowIndex="2"> '
<htmlb:inputField id ="url"

value ="<%=url%>'"

disabled = "TRUE"I> ,

</htmlb:gridLayoutCell>

</htmlb:gridLayout> '

'</bee:root> '

INTO xml_string.

DATA: xml_parms TYPE TABLE_BSP_BEE_PARMS.

FIELD-SYMBOLS: <xml_parm> TYPE BSP_BEE_PARM.

INSERT INITIAL LINE INTO TABLE xml_parms ASSIGNING

<xml_parm>.

<xml_parm>-name = 'text'.

<xml_parm>-value = text.

INSERT INITIAL LINE INTO TABLE xml_parms ASSIGNING
<xml_parm>.

<xml_parm>-name = 'urI'.
<xml_parm>-value = urI.

DATA: bee_xml TYPE REF TO cl_bsp_bee_xml.

CREATE OBJECT bee_xml.

bee_xml->set(EXPORTING xml
 xml_string

parms xml_parms
IMPORTING xml errors xml errors).

bee = bee xml.

asp Eiement Expressions 213

The first block of code just "writes" the BSP page code dynamically into a string.

With a few small exceptions, this is written exactly as in the layout part of any BSP

page.

The next block of code handles the dynamic attributes. These attributes are stored

in a table, from which the values can be looked up when the BEE is processed.

The last block creates a new XML BEE and sets both the XML string and dynamic

parameters.

The final output-in what might at first seem like a slight anti-climax-looks

exactly like that of the table BEE. That is quite simply because exactly the same

BSP elements are executed!

Although the table and XML BEEs achieve the same goal, they still have slightly

different dynamics. For the table BEE, some form of code must be known before­

hand, and written, in order to fill the table.

The XML BEE is completely dynamic. It also has the benefit that configuration-like

layout sequences can be read from the database.

WARNING This flexibility comes at a high price. The XML BEE was rewritten

three times by one of the best programmers in the ABAP Language Group.

However, this still does not help with the fact that XML is parsed, interpreted,

and code-executed dynamically. This technique will always be slow and only

recommended for very special cases.

What Can be Used in the XML String?

Most important, the <bsp: root> node must be used as root node. This is just a

pseudo-node added to enable a valid XML DOM for parsing.

Another pseudo-node that is supported is <bee: html>. It can be used to pack

HTML text into the string. Although the inner HTML text does not conform to

XML rules, this is a user-friendly way of writing. The HTML block is internally

placed into a CDATA section before the DOM is parsed.

All other XML nodes in the DOM are considered to be BSP extension elements.

No dynamic prefixes are supported. The prefixes used must match directly the

BSP extension IDs, not to be confused with the recommended default IDs.

BSP elements with "element-dependent" bodies are not supported. There are no

such elements within all HTMLB rendering libraries, so this should not be a prob­

lem.

214 SSP Element Expressions and Iterators

Dynamic expressions from BSP pages «% ... %» are not supported.

Any CDATA section is printed verbatim onto the output stream.

10.1.6 Errors and Error Handling

Of course, this small program was completed quickly and worked flawlessly.

Unfortunately on the first pass through when creating this sample, the XML BEE

failed! No output was rendered. An hour was spent chasing this error down (for

the gory details of one small XML bug revealing a BEE bug, see OSS/CSN note
674230).

The lesson is to not ignore the return codes of method calls. The bee_xml- >set ()

method returns a list of XML errors. These where ignored originally. Had we con­

sidered this table immediately, the hour of debugging would have been saved.

To show the power of the BEEs, the ultimate solution was extended. In case of an

error, we now replace the output with an error table, asshown below. Please note

that xmLerrors is defined as a page attribute of type TIXMLTERR in order to

keep the data reference alive even after onInputProcessing has been com­

pleted:

IF	 LINES(xml_errors) > O.

DATA: table_ref TYPE REF TO DATA.

GET REFERENCE OF xml_errors INTO table_ref.

bee = CL_HTMLB_TABLEVIEW=>FACTORY(id = tvievl',I

table = table ref).

ENDIF.

If an error occurred, the <htmlb: tableView> would be used as a BEE to render

out the error table. This shows the importance of error-handling and the strength

of the custom-rendering provided by the BEEs.

Final Note

Like all powerful tools, BEEs must be used with care. For rendering small parts of

the layout, they are excellent and highly recommended.

10.2 Table View Iterators

Often, you must influence the rendering of the <htmlb:tableView>. Maybe

more (virtual) columns are required. Or perhaps the presentation of the data

should not be done as text, but rather as icons or input fields.

Table View Iterators 215

I

i

For this, the <htmlb :tableView> supports the concept of an iterator. The

<htmlb: tableView> will use this callback interface during rendering for each

row and cell to allow you to control the exact rendering.

In order to demonstrate the table view iterator, we will create a very small BSP

application that will display an <htmlb: tableView>.

TYPES: TABLE_SFLIGHT TYPE TABLE OF SFLIGHT.

Listing 10.1 Type Definitions:

flights TYPE
iterator TYPE REF TO

i,

Listing 10.2 Page Attributes

SELECT * FROM SFLIGHT

Listing 10.3 On Create Event

TABLE_SFLIGHT
IF_HTMLB_TABLEVIEW_ITERATOR

INTO TABLE flights.

<%@page language="abap"%>
<%@extension name="htmlb" prefix="htmlb"%>
<htmlb:content design="design2003"

controlRendering = "SAP">

<htmlb:page>
<htmlb:form>

<htmlb:tableView id "tvl"

visibleRowCount "10"

selectionMode "lineEdit"

table "<%=flights%>"

iterator "<%=iterator%>" I>
</htmlb:form>

</htmlb:page>

</htmlb:content>

Listing 10-4 Layout

Forthis test, we will display some information from the SFLIGHT table. We define

a type table of sflight, and then declare a page attribute of this table type

to hold all records from the database. In the layout section, the <htmlb:table­

View> is used to display the table.

The output, as shown in Figure 10.5, is as expected, although not very exiting.

216 BSP Element Expressions and Iterators

~ 088 AA 0017 i 11~ 712004 I422.94 I USD 747-400 385 374 192,124.98

~ 088 AA ~o~~J 12~ s~~ 42~~ USD 747-400 38S 372 193,148.41-- ­ +-­
!ill 088 AA 0017 I 01112;2005 422.94 uso 747-400 38S 374 192,556.44

!ill 088 AA 0017 ~2ill912005 I 422.94 uso 747-400 38S 371 191,164.88

0017 03!ll912005 1422.94
1- ­

IJI 088 AA USD 747-400 385 374 195,622.64

l'!:ll 088 AA 0017 i 04ill612005 422.94 USD 747-400 385 373 192,420.96

Glil 088 AA 0017 I 05ill412005 422.94 USD 747-400 385 373 193,199.26

~ 088 AA ' 0017 I 06ill112005 422.94 USD 747-400 385 367 190,039.79

I}jj 088 IAA 0017 i 0612912005 422.94 IUSD i 747-400 385 363 189,071.40

[I 088 I AA I 0017 I 0712712005 422.94 IUSD I747-400 385 0 0.00

Figure 10.5 Basic <htmlb:tableView> Output

With the help of the table view iterator, we are going to do some rendering

improvements to this output.

~	 Render a new column in the beginning with a little airplane icon.

~	 Instead of having available and occupied columns for first, business, and econ­

omy class seats, we would like to render one column of the format "Occu­

pied/Max."

~	 In edit mode, the currency should be picked from an <htmlb: dropDownList­
Box>, and it should be possible to edit the occupation for the different seats

individually, even if they are displayed only in summed format.

10.2.1 What is a Table View Iterator?

In principle, a table view iterator is any class that implements the interface iL
htmlb tableview_iterator.

INTERFACE if_htmlb_tableview_iterator PUBLIC.

METHODS get_column_definitions

METHODS render row_start ...

METHODS render cell start

ENDINTERFACE.

This interface supports three methods. The get_column_defini tions method is

called once at the beginning of rendering, to allow an update or complete speci­

fication of all column definitions. This is very similar to the classic ABAP ALV Grid

Field Catalog.

The row and cell start methods are called at the start of a new row and cell respec­

tively. The complete parameter list will be discussed later.

Table View Iterators 217

Let us complete the last part of our test program. We need an iterator to enable

custom-rendering of the <htmlb: t ab i ev.i ew>. For this, we use transaction SE24

or SE80, and create a new class that implements the iterator interface. All meth­

ods are implemented initially as empty.

Our iterator class looks like this:

CLASS ycl_bsp_book_iterator DEFINITION PUBLIC CREATE PUBLIC.

PUBLIC SECTION.

INTERFACES if_htmlb_tableview_iterator

ENDCLASS.

CLASs ycl_bsp_book_iterator implementation.

METHOD
if_htmlb tableview_iterator~get_colurnn_definitions.

ENDMETHOD.
METHOD if_htmlb_tableview_iterator~render_cell_start.

ENDMETHOD.
METHOD if_htmlb_tableview_iterator~render_row_start.

ENDMETHOD.

ENDCLASS.

As a final step, we extend the onCreate event to also instantiate such an iterator.

SELECT * FROM sflight INTO TABLE flights.

CREATE OBJECT iterator TYPE ycl_bsp__book_iterator.

Listing 10.5 OnCreate Event

It is unfortunately not possible to implement local classes inside a BSP page.

Therefore we must implement the iterator interface in a separate class. For this

example, a new global class is created to implement the interface. If the

<htmlb: t ab i ev i ew> is used in the context of Model View Controller, another

idea is to implement the iterator interface in the calling controller class. Alterna­

tively, you could also place the iterator inside the application class. However, this

approach becomes difficult when more than one iterator is required. The recom­

mendation in such cases would be to use local classes housed within your appli ­

cation class.

10.2.2 Method GET_COLUMN_DEFINITIONS

The method GET_COLUMN_DEFINITIONS is called at the beginning of the render­

ing. It receives the list of existing column definitions, and can update the list. This

method has three parameters:

Parameters

P_TABLEVIEW_ID Importing STRING

P_COLUMN_DEFINITIONS Changing
TASLEVI EWCONTROLTAS

P_OVERWRITES Changing TASLE­
VI EWOVERWRiTETAB

Table 10.1 Parameters of Method GET_COLUMN_DEFINITIONS I'
U

Usually, column definitions are done with the inner tags <html b : tableView­
\i
Iii

Column) or supplied via the <htm l b : t ab l eva ew> attribute columnDefiniti ­ iii
~ ons. This is still possible. The already configured columns will be listed in the col­ :!l
II!

umn-definition table. However, setting the column definitions dynamically cleans I

up the layout, and allows the flexibility to decide at runtime which columns

should be rendered.

For our example table, the complete coding is:

METHOD if_htmlb_tableview_iterator~get_column_definitions.

FIELD-SYMBOLS: <def) LIKE LINE OF p_column_definitions.

APPEND INITIAL LINE TO p_column_definitions ASSIGNING <def).

i;
Ii

Comments
~ q

The 10 of the current table being re~d~redis supplied, I
for the situation in which the same iterator lmplernen­
tation is used for more than one table. . - - !

!i
The columns definition is actually the most interesting­ J
parameter. It contains the content of all <htmlb: table­ .I

o

ViewColumn> SSP elements. For a detailed description ~

of all fields, please refer to the documentation of this
SSP element and/or see ODIC definition for this struc­
ture. IThis parameter allows the iterator to fill a table of spe­ 1.1

cial BEEs that will be rendered at the specific row and II
column indexes. However, the overwritten BEEs must ~

all'be created in advance, without even knowing if they

will be used. The recommendation is to ignore this 1'1:

attribute in most cases. I,

III

<def)-COLUMNNAME

<def)-TITLE

APPEND INITIAL LINE

<def)-COLUMNNAME

APPEND INITIAL LINE

<def)-COLUMNNM1E

APPEND INITIAL LINE

<def)-COLUMNNAME =

APPEND INITIAL LINE

<def)-COLUMNNfu~E =

APPEND INITIAL LINE

<def)-COLUMNNAME =

= 'ICON'.

= ' '.

TO p_column_definitions ASSIGNING <def).

= 'CARRID'.

TO p_column_definitions ASSIGNING <def).

= 'CONNID'.

~ 1
TO p_column_definitions ASSIGNING <def).

'FLDATE'. <def)-EDIT = 'X'.

TO p_column_definitions ASSIGNING <def).

'PRICE'. <def)-EDIT = 'X'.

TO p_column_definitions ASSIGNING <def).

'CURRENCY'. <def)-EDIT = 'X'.

Table View Iterators 219
218 SSP Element Expressions and Iterators ~i_

~
iii ,
~tl
i!I';.

fl
'

~Li:,
APPEND TNITIAL LINE TO p_calumn_definitians ASSIGNING <def>.fl) I

: ~,' ! <def>-COLUMNNAME =

APPE~D INITIAL LINE
<dcf>-COLUMNNAME =

<deO-TITLE =

<deO-EDIT =

EKDMETHOD.

'PLANETYPE'.

TO p_calumn_definitians ASSIGNING <def>.
'SEATS'.
'Seats' (oon.
'X'.

The column-definition structure provides us with many options for fine-tuning
the display of each column. However, for this example, only a few options will be
sufficient.

As our first step, we add a new column called ICON. As this column does not
even exist in the table, it cannot be rendered by the <htmlb: tableView>.
Instead we will have to create the custom-rendering for this column ourselves.

In the next block, only those columns that must be displayed are listed. The
names used match column names defined in the table. For some columns, we set
the EDITflag to indicate that these columns are editable. By default, no columns
can be edited. Also, no title information is set. Not specifying a title means that it
will be read for us directly from data dictionary.

Last, we add our new SEATS column that will be the sum of all values.

The new output shown in Figure 10.6 demonstrates a dramatic improvement:

Figure 10.6 Enhanced <htmlb:tableView> Output

10.2.3 Method RENDER_ROW_START

The method RENDER_RQl.CSTART is called once at the beginning of each row. The
biggest benefit from this call is to dynamically load relevant data for only those

--'----- ----=.,.:>n_B$~l:.lern.en.t.Expressions and Iterators

Table 10.2 Parameters of Method RENDER_ROW_START

For our example program, we will only use ?ENDER_RmCSTART to store the ref­
erence to the actual data row. For this, we define a new class attribute m_raw_ref
TYPE REF TO SFLIGHT in the iterator class.

mcthac IF_HTMLB_TABLEVIEW_ITERATOR~?ENDER_ROWSTART.
m_raw_ref ?= p_raw_data_ref.

endmethad.

That little question mark is not a mistake, but a cast operator in ASAP. It is a little
know feature of ABAP that like object references you can cast data references. We
have now cast our untyped data reference into a typed one without ever copying
any memory.

,;.".1. __
Table View Iterators 221

rows that will be rendered. It is important to note that this method is only called
for rows actually rendered. I<eep in mind that in our layout, we defined that the
<htmlb: tableView> would only have ten visible rows at a time. Our SFLIGHT
internal table could potentially have thousands of rows.

This method has a number of parameters, of which the most interesting is the
data reference to the actual row. Because the <htmlb: tableView> works gener­
icallywith tables, it cannot supply a typed reference. However, the iterator usually
should know the type and can cast this reference into the correct type. This is the
fastest way to access the current row data.

The complete list of parameters is

Parameter

CTABLEVIE~CID Importing STRING

P_ROW_INDEX Importing I

CROW_KEY Importing STRING

P]O\CDATA_REF Importing REF TO
DATA

P_EDIT_MODE Importing XFELD

P_5KIP_ROW Returning XFELD

Comments

The ID of the current table being rendered is supplied,
for the situation in which the same iteratar implemen­
tation is used for more than one table.

The table index of the row that will be rendered.

If a key column has been defined, the key for the row
will be supplied.

This is a reference to the current row to be rendered.
Probably the most important parameter. it is not neces­
sary to reload the data.

Indicator whether this row is in edit mode.

Flag that can be set to indicate that this row should not
be rendered. It can be used to implement user-defined
filters.

10.2.4 Method RENDER_CELL_START

The RENDER_CELL_START method will be called for each and every cell that will

be rendered, including those cells in virtual columns. In all cases, it is highly rec­

ommended that you not implement any code in RENDER_CELL_START for any cell

in which you simply want to enable the default rendering of the <htmlb: table-

View>.

This method supports a large number of parameters. The most significant ones are

listed below. Note that many parameters are equal to those of RENDER_ROW_

START. Of course, it is optimal to do the work only once for the entire row. The

parameters that are the same as RENDER_ROW_START are not listed again.

CommentsParameter

, The correct (HTML) 10 that has been computed for P_CELL_ID Importing STRING
this cell. This value contains the tableView 10, the
row and column index.

This value is only set if the table has been bound P_CELL_BINDING Importing STRING
using Model View Controller. This is the binding path
for the cell being rendered. It can be used in your

. customer rendering of new BSP elements.

Index of current column relative to column defini­P_COLUMN_INDEX Importing I
tions.

Name of the column being rendered. P_COLUMlU<EY Importing STRING

If this value is ieft initial, the default <htmlb: table­P_REPLACEHENT_BEE Exporting REF TO
View> rendering action will be taken. However, withIF_BSP_BEE
this exporting parameter, it is possible to set a new
BEE that will then be rendered into the current cell.
This new BEE can, but does not have to, keep the
current EDIT mode in mind.

Table 10.3 Parameters of Method RENDER_CELL_START

The best approach to using RENDER_CELL_START is to always implement only the

absolute minimum needed. Leave the default rendering to the <htmlb :table­

View>. For our example, we wish to custom render the ICON and SEAT fields. For

the FLDATE and CURRENCY fields, we want to accept the default display handling,

and use a different rendering only for editing.

The skeleton code will begin as:

METHOD if~htIDlb_tableview_iterator~render_cell start.

CASE p_column_key.

WHEN 'ICON'.

WHEN 'CURRENCY'.

222 BSP Element Expressions and Iterators

IF p_edit_mode IS NOT INITIAL.

ENDIF.

WHEN 'SEATS'.

ENDCASE.

ENDMETHOD.

In the next step, we wish to complete the code for these columns. In all cases,

when we require direct access to the data from the row that is currently been ren­

dered, we use the row reference which we stored earlier using method RENDER_

ROW_START. This is fast, clean, and safe. Specifically, no dynamic programming is

done with this type of access, and the compiler can completely check at compile

time that we are referencing the correct data in the correct format.

For the ICON column, we require a small icon at all times. So an <htmlb: image>

is created and returned as BEE.

WHEN 'ICON'.

p_replacement_bee = CL_HTMLB_IMAGE=>FACTORY(

id = p_celLid

src = 'ICON_WS_PLANE').

For currency, we are only interested in handling the Edit mode. For this, we want

to render an <btralb : dropDownListBox>. There are a number of techniques to

fill the data. For this example, we created a name/value table, type TIHTTPNVP, in

the class constructor and already filled it with the currencies that we support. A

reference to this table is stored in class's attribute ID_currencies_ref (ABAP

statement GET REFERENCE OF var INTO ref).

WHEN 'CURRENCY'.

IF p_edit_mode IS NOT INITIAL.

p_replacement_bee = CL_HTMLB_DROPDOWNLISTBOX=>FACTORY(

id = p_cell_id

selection = m_row_ref->CURRENCY

table m_currencies ref

nameOfKeyColumn 'NAME'

nameOfValueColumn 'VALUE').

ENDIF.

For the SEATS column, our work is slightly more complex. For the display part,

we need to show only the final totals of the form "Occupied/Max." The work boils

down to calculating the values for the current row that has been rendered, and

placing them into a string. An <html.b : textView> is used to render the string. It

is important to note that this display was not selected to be functionally perfect,

but rather to have a little complexity in order to show data manipulation directly

Table View Iterators 223

against the selected table row. For this reason, the achieved layout is not really

recommended.

The code for edit mode is only slightly more complex. For this example, we will

show all three values directly inline, each in its own input field. The complete

coding consists of creating three (htmlb: inputField>, and using a table BEE to

build them into one expression.

WHEN 'SEATS'.
IF p_edit_mode IS INITIAL.

DATA: max TYPE string, occ TYPE string,

value TYPE string.

max m_row_ref->seatsmax + m_row_ref->seatsmax_b

+ ffi_row_ref->seatsmax_f.

occ = m_row_ref->seatsocc + m_row_tef->seatsocc_b

+ m_row_ref->seatsocc f.

CONDENSE: max, occ.

CONCATENATE occ ' / ' max INTO value.

p_replacement_bee = cl_htmlb_textview=>factory(

text = value).

ELSE.

DATA: if_first TYPE REF TO cl_htmlb_inputfield.

if_first = cl_htmlb_inputfield=>factory(

id = p_cell_id id_postfix = '_first'

type = 'INTEGER' size = '4').

if first->value = m_row_ref->seatsocc_f.

DATA: If bus TYPE REF TO cl_htmlb_inputfield.

if bus = cl_btmlb_inputfield=>factory(

id = p_cell_id id_postfix = '_bus'

type = 'INTEGER' size = '4').

if_bus->value = m_row_ref->seatsocc_b.

DATA: if_econ TYPE REF TO cl_htmlb_inputfield.

if_econ = cl_htmlb_inputfield=>factory(

id = p_cell_id id_postfix = '_econ'

type = 'INTEGER' size = '4').

if econ >value = m_row_ref->seatsocc.

DATA: seats_bee TYPE REF TO cl_bsp_bee_table.

CREATE OBJECT seats_bee.

....... RSP Element Expressions and Iterators

seats_bee->add_html(html = '<table><tr><td>') .
seats_bee->add(level = 3 element = if_first) .

seats_bee->add_html(html = '</td><td>') .
seats_bee->add(level = 3 element = if_bus) .

seats_bee->add_html(html = '</td><td>') .
seats_bee->add(level = 3 element = if_econ) .

seats_bee->add_html(html = '</td></tr></table>') .
p_replacement_bee = seats_bee.

END IF .

In the code above, there are three important aspects. The first is that the FACTORY

parameter id_postfix is used to create new IDs for each input field relative to

the supplied cell id. The postfix string is appended onto the supplied 10 by the

factory method. The other significant aspect is that value is not set during the fac­

tory call. It is not possible to supply INN values to STRING parameters. The values

are set directly after the factory call in order to use ABAPMOVE conversion seman­

tics. This way of initializing a BSP element is completely acceptable. Finally, we

had to use a small amount of HTML around the input fields in order to align them

correctly within the cell.

10.2.5 Finished Output

The finished output, shown in Figure 10.7, is just what we expected.

~~~F}j: _ .;':r'-rn i':-- tIr~:FhHtl\:;' 

~ kt AA 00"17 121'1512004 422.94 United statesDollar [;] 

~ AA 0017 01t1212005 422.94 (Internal) United states Dollar(5 Dec.) f------­

ii:a	 ~ AA 0017 02iD912005 422.94 ' . • •
 
, Uzbekistan Sam
 

~ ~_~~~ 03iD~~()[J~ E
G]I~ f!. tJ, 0017 0410612005 

t: I ' 
b1Jl k#-I I l!. 1',. I 00'17 0510412005 

!" I I
 
1ZiI!-@ I AA I 0017 I 06iD11200S I 422.94 I Samoan Tala
 ~t= 
[fd ~8t- 0612~~~~'.:.~ ~(j17 
Gll AA 0017 0712712005~L:~~ ~<:~.).,.<;",.~ Jj!~XL;<;~, ,~:'~;~; 

Figure 10.7 Final <htmlb:tableView> Version 

Nearly all the work for rendering cells, in both display and input mode, is done by 

the <htmlb: tableView>. We only had to add about 100 lines of code to get the 

special cases rendered correctly. Using BEEs and the table-view iterator together 

greatly enhances the final rendering. This can be considered a critical part of any 

BSP programmer's toolbox. 

Table View Iterators 225 



11	 Creating your own BSP Extension 
Element 

We alreadyhave seen in the last few chaptershow powerful the SSP 
Extension Framework is. Fortunately, this is also an open technology 
framework that allows SAP'scustomers to build their own SSP exten­
sions and to combine existing extensions to create composite ele­
ments. 

11.1 Creating a BSP Extension Element 

In Chapter 9, we took a close look at how BSP extension elements are structured 

• 

in order to better understand how to use them. However, this only scratched the 

surface of what lies within the BSP extension element. Before we begin the pro­

cess of writing our own elements, it is important to study in detail the most 

important part of an extension element: its element-handler class. 

11.1.1 Extension Framework Hierarchy 

The element-handler class actually represents an inherited hierarchy of class 

objects that all come together to form the extension framework. It is important to 

build this inheritance hierarchy correctly, because much of the functionality we 

will code within our handler will be placed inside of redefinitions of inherited 

methods. 

The core extension framework comprises two objects, IF_BSP_ELEMENT and CL_ 

BSP_ELEMENT. IF_BSP~ELEMENT defines all the core methods and attributes for 

the extension framework. CL_BSP_ELEMENT implements the IF_BSP_ELENENT 

interface and provides the basic functions that support all BSP extension ele­

ments. 

There are two more objects within this hierarchy, both specific to the individual 

extension element. The first is a generated basis class, usually created with the fol­

lowing naming standard: 

(Z)CLG_<EXTENSION)_<ELEMENT) 

This class is automatically generated by the BSP development environment. When 

you define attributes for your extension element inside the BSP extension editor, 

these attributes will be generated as public attributes of this basis class. This class 

should also inherit from CL_BSP_ELEMENT and provide the specific constructor 

for the element. By dynamically generating this class, all the attributes of your ele­

ment can be strictly typed and checked at compile time. 

r 
~L	 Creating your own BSP Extension Element 227 



, The final object is the core handler class itself. It should inherit from the generated 
" 

basis class, and its name is completely user definable. However it is probably good 

form to following a naming standard such as the following: 

(Z)CL_<EXTENSION>_<ELEMENT> 

This class is where you will be spending most of your time as an element author. 

This class has the method redefinitions and any specific methods or attributes 

needed to implement the element. 

11.1.2 User-Defined Validation 

SSP extension elements are unique among the ABAP language tools in their 

approach to input validation. The extension runtime gives you the opportunity to 

code different validation routines that will be executed at runtime and compile 

time. That means that the syntax check of a BSP page will fire validation code that 

you can write. This gives you the ability to throw compiler errors for your own 

elements. 

In order to implement user-defined validation, we must redefine two methods in 

our handler class that were inherited down from IF_BSP_ELEMENT. 

The first method is COMPILE_TIME_IS_VALID. This is where we will code our 

compile time checks. SAP provides a series of validation methods (in class CL_ 

BSP_ELEMENT_CT_ATTR_VALID), which assist in this process. In addition to pro­

viding simple checks, these methods also properly convert attribute-input string 

values into Boolean and integers values where necessary. 

What follows are coding examples for the validation routines of a fictional BSP 

Extension Element. They contain common types of checks in order to demon­

strate the different possible techniques. 

METHOD if_bsp_element~compile,--time_is_valid 

validator->to_enum( name = 'Color' 

COllums = 'RED/BLUE/GREEN' ). 

validator->to_enum( name = 'alignment' 

ellums ~ 'LEFT/lIGHT' ). 

validator->to_boolean( name = 'disabled' ). 

validator->to_integer( name - 'size' ). 

valid = validator->m_all_values_valid. 

ENDMETHOD. 

We also have the method RUNTIME_IS3ALID, This method is useful for checking 

attribute values that are supplied dynamically, such as through BSP expressions 

«%=... ~O) only at runtime, or for attributes whose values are transformed into 
another data type. 

METHOD if_bsp_element~runtime_is_valid.
 

get_class_named_parent(
 

class_name = 'CL_HTMLB_CONTENT' l.
 
IF runtime_parms = ,/*/, OR runtime_parms CS 'alignment'.
 

alignment = m_validator->to_enum(
 

name = 'alignment'
 

value = alignment
 

enums = 'LEFT/RIGHT'
 

required = space ).
 
ENDIF.
 

IF runtime_parms = '/*/' OR runtime_parms CS 'disabled'.
 

disabled = m_validator->bindable_to_boolean(
 

name = 'disabled'
 

value = disabled
 

binding_path = _disabled
 

page_context = m_page_context ).
 
ENDIF. 

IF runtime_parms = '/*/' OR runtime_parms CS 'size'. 

size = m_validator->bindable_to_integer( 

riane = 'size' 

value = size 

binding_path = _size 

page_context = m_page_context ). 
ENDIF. 

ENDMETHOD. 

The first line in the runtime validation method checks that this SSP element is 

used with an <htmlb: content> element. It is not possible to check this at com­

pile time, as different elements can be used in different views, and these are com­

piled separately. We surround each of our dynamic value checks with an IF check 

for performance. That way we only perform validation routines on attributes that 
actually have values set dynamically. 

It is important to note that these two validation methods will only be called if the 

User-Defined Validation option is selected in the SSP Element Properties. That 

way, if you have no validations that you wish to perform in your element, you can 

save the time that it would have taken for the framework to make calls into Simply 
empty methods. 

I 
________~22.8_C~ea:ti_ngyour own SSP Extension Element 

Creating a SSP Extension Element 229.l-~ ---=-_------.:....~ 



11.1.3 Element Content 

Three methods in our element-handler class control the flow of creation of ele­

ment content. They are DO_AT_BEGINNING, DO_AT_ITERATIONand DO_ALEND. 

DO_AT_BEGINNING is always accessed by the runtime at the beginning of the ele­

ment processing. You can control-the flow of processing after DO_AT_BEGINNING 

by setting the return parameter RC. If your processing is simple and only requires 

logic in the DO_AT_BEGINNING, you can set RC to CO_ELEMENT_DONE. Processing 

is then completed and returned to the BSP runtime. However setting RC to CO_ 

ELEMENT_CONTINUE will allow processing to move on to the body of the element. 

This means that all inner tags are given the change to render themselves. A small 

example might be that within a tabstrip there are many <lib: tabStripItem> 

elements. But, only one tabstrip item is required and must be rendered. Conse­

quently, each item checks whether it is active and visible. Those that are not 

active are set rc to CO_ELEMENT_DONE to skip the processing of all inner ele­

ments, as this not needed for rendering. Only the one active tab strip item will 

actually continue with processing of its inner tags to generate the required HTML. 

If the option Iteration Through Element Content was selected in the element 

properties screen, the method DO_AT_ITERATIONcan be called following DO_AT_ 

BEGINNING. This method allows the element handler to make several passes over 

its inner content. 

The method DO_AT_END is accessed after all other processing is completed. At this 

point, all the element content is available and can be further manipulated. This 

method is especially useful for BSP elements that contain inner elements. 

The combination of DO_AT_BEGINNING and DO_AT_END methods are very similar 

to the structure of basic HTML. They are most useful for their ability to render 

before and after their inner content. 

Let us assume the following example: 

<htmlb:link href= ..http://www.sap-press.com.. >
 

SAP PRESS
 

</htmlb: link> i 
In this example, the DO_AT_BEGINNING method of the <htmlb: link> element 

will render out the HTML <a href= tt http://www.sap·press.com..> and then 

set CO_ELEMENLCONTINUE. 

This causes the runtime to process the inner body, which in this case only outputs 

the string "SAP PRESS". Thereafter, the DO_AT_END method is called, which corre­

sponds very much to the end tag in HTML. This method will render out the HTML 

230 Creating your own BSP Extension Element 

<fa> sequence. Here the two methods very much reflect the way that HTML is 

structured with leading/trailing markup, allowing for efficient rendering. 

11.2 Writing a Composite Element 

Very often, we find the same pattern repeated on some or all of our BSP pages. 

Although such coding can be easily placed on all pages with cut-and-paste pro­

gramming, it quickly becomes tedious and error-prone. Modifications suddenly 

require code updates over all BSP pages. 

One approach to this problem, is to place the specific pattern into a page frag­

ment and simply include it on every page where required. This has the advantage 

that changes are only required once in the page fragment. However, it still has the 

disadvantage that the code inside the page fragment is expanded inline into each 

BSP page. This increases the size of each page and can result in a GEN_ 

BRANCHOFFSET_LIMIT error when generation limits are reached. 

11.2.1 Designing a New Composite Element 

What we most would like to have is a principle of composition. Usually these reus­

able patterns are Just a collection of HTMLB elements. Would it not be nice if we 

could combine such a collection into one composite element? Well, we can, by 

creating our own BSP Extension Element. 

Let us first look at an example application that could benefit from a redesign with 

composite elements in mind. This example shows the typical process of navigat­

ing back and forth inside a simple form. Normally, this can be done by using the 

<htmlb .but t on> element, with the new previous and next designs. Let us 

assume that we would like to place two navigation buttons at the bottom of each 

page. 

...body comes here.. 

l~ 
~age 10-1IIPage 10+1 »1 

rID Done i ~ Local intranet .:ft . ,':,'~] 

Figure 11.1 Composite Element Example 

<%@extension name="htmlb" prefix="htmlb"%>
 

<%@extension name="phtmlb" prefix="phtmlb"%>
 

<htmlb:content design="design2003">
 

<htmlb:page> 

Writing a Composite Element 231 



<htmlb: form> 

., .body comes here ... 
= "TRUE"<phtmlb:horizontalDivider hasRule 

separationHeight "LARGE" /> 

<phtmlb:matrix width = "100%" >
 

<phtmlb:matrixCell hAlign = "RIGHT" />
 
= "Page In-I"
<htmlb:button	 text 
= "PREVIOUS"design 
= "pageln-l.bsp" />onClick 
= "Page In+l"<htmlb:button	 text
 

design
 = "NEXT" 

= "pageln+l.bsp" />onClick 

</phtmlb:matrix> 

</htmlb:form> 

</htmlb:page> 

</htmlb:content> 

The goal is to replace this entire navigation rendering with one simple element. 

The expected final code on each BSP page would then be: 

<%@extension name="htmlb" prefix="htmlb"%>
 

<%@extension name="ybook" prefix="ybook"%>
 

<htmlb:content design="design2003">
 

<htmlb:page>
 

<htmlb:form>
 

... body comes here ...
 
<ybook:pager prev = "Page In-I" next = "Page In+l" />
 I 

</htmlb:form>
 

</htmlb:page>
 

</htmlb:content>
 I 
We want one element that takes a previous and/or next attribute with the text to 

display. As we are slightly lazy in this example, we assume that pages are named 

exactly the same as the descriptive text, except that they are without spaces, and 

terminated with our typical. bsp extension. 

The definition in the workbench, transaction SE80, of the new BSP element is 

quickly done. It has only two string attributes. Once this BSP element has been 

defined and activated, the above example BSP page will actually compile and run. 

It will just not yet render any output 

r,p,tin" vour own BSP Extension Element	 .~L 

Iyet ESP BOOK EXTENSION PAGER~ 

IPrevious!Next Navigation j 

IZCLGYBOOKPA~~ 

OData 

@Blank 

Element: .content 

ShortDescription 

Element Handler Class 

Generated Basis' Class 

o ''pAGE DONE" is not returned at end of BSP element 

Further' options / 

Figure 11.2 BSP Element Properties and Attributes 

11.2.2 Processing Other SSP Elements 

Now that we have defined our new <ybook: pager> element and already written 

the test program, it is time to complete the code forthe composite element itself. 

Before processing other elements, it is important to understand how elements are 

processed on BSP pages. It is only possible to use existing BSP elements within 

our new element in this way. 

A BSP element is written on a page using an XML format As a first step, the BSP 

compiler must map the XML name onto a specific handler class. This class name 

can be seen in the workbench, when looking at the BSP element. The compiler 

generates code to create a new temporary variable to hold the reference to the 

handler class (data: statement), and then to create an instance of this BSP ele­

ment-handler class. Next, the compiler generates the source code to initialize 

each attribute with its specified value. Finally, the BSP element is pushed onto a 

stack, which contains all elements that are currently in process, and the do_at_ 

beginning method is called. 

<xyz.element AI = "V;"> 

.body of element 

</xyzelement> 

DATA. % e123 T'!PE REF TO CL XYZ ELEtvlENT. 
CREATE-OBJECT% e123. - ­
%_eI23->AI = 'Vi'. ­
push( %_8123 ) 
%_e123_>DO_AT_BEGINNING() 
'DO 

...body of element r 
LVVHILE%_8123->DOJTERATION() l%_8123->DO_AT_END() 
pop( %_8123) 

Figure 11.3 Element Processing Flow 

Writing a Composite Element 233 



In the simplest case, the element has no body or is defined as empty. In this case, 

the do_acend method is called directly afterwards. If the element has a body, it 

is processed between the two method calls. It is also possible for the BSP element 

to request that the body be skipped, for example if you have an inactive tabstrip 

body. In the most extreme case, the SSP element can request that it reiterates 

over its body, which results in thebody being processed as long as the do_ite­

ration method requests that this be done. 

In principle, it is difficult to know the exact code required to process each specific 

SSP element. It can also happen that, the SSP element is changed over time, and 

then has a different execution sequence. 

You can break down the element-processing parts into the following phases. 

~	 Each SSP element is first instantiated, and then its attributes are set correctly. 

This coding is very specific for the BSP element and will be different for each 

one. 

~ Thereafter, preamble coding is required to get the element onto the stack and 
process the do_at_beginning method call. This generic code is the same for 

each element. 

~ The body is processed. The body depends completely on the element being 

used. It can contain more BSP elements, or even raw HTML code can be ren­

dered. 

~ More coding is required either to complete the processing of the BSP element, 

or to set it up correctly for a new iteration. 

Specifically the fact that a BSP element can iterate over its body implies that some 

form of loop will be required. In addition, framework coding is required before 

and after the body to ensure correct processing. In order to encompass all these 

aspects, the following processing model was designed: 

user written factory and attribute initialization code ... 

WHILE m_page_context->element_process( the element
 

= CO_ELEMENT_CONTINUE.
 

. .. body of element .,.
 

ENDWHILE. 

This approach leaves the programmer the freedom to initialize the specific BSP
 

element correctly. Thereafter, only one WHILE construct is required to process any
 

SSP element in any of its variations. The element_process method will be called
 

as many times as required to ensure that the SSP element is processed correctly.
 

234 Creating your own BSP Extension Element	 ---L_ 

Important Do not attempt to process BSP elements any other way! Such an 

attempt will fail, and it will not be supported by SAP. This WHILE construct is 
the only correct method. 

Let us now look at a few detailed examples of processing existing elements. For 

our first example, let us assume that we have the following code on our BSP page: 

<htmlb:button	 text "Page In-I"
 
design "PREVIOUS"
 
onClick "pageIn-I.bsp" I>
 

Then the correct code to process this <htmlb :button> dynamically would be: 

DATA: myBtn TYPE REF TO CL_HTMLB_BUTTON.
 
CREATE OBJECT myBtn.
 

myBtn->text = 'Page In-I'.
 

myBtn->design = 'PREVIOUS'.
 

myBtn->onClick = 'pageIn-I.bsp'.
 

WHILE m_page_context->element_process( element = myBtn )
 
= CO_ELEMENT_CONTINUE.
 

ENDWHILE.
 

The workbench must be used to find the correct class that implements this spe­
cific SSP element. 

Alternatively, you can use the factory method that is automatically generated 

onto all BSP elements. The benefit of the factory method is that you can double­

click on it to see the exact list of required parameters, and the ABAP language 
compiler is used to enforce required attributes. 

DATA: myBtn TYPE REF TO CL_HTMLB_BUTTON. 

myBtn = CL_HTMLB_BUTTON=>FACTORY( text = 'Page In-I'
 

design 'PREVIOUS'
 

onClick 'pageIn-I.bsp' ).
 
WHILE m_page_context->element_process( element = myBtn )
 

CO_ELEMENT_CONTINUE .
 

ENDWHILE.
 

Now let us look at a slightly more complex example. Assume that we are using an 

<htmlb: link> element that contains, as body, both an <htmlb: image> element 
and normal text. The source code on a BSP page would be: 

<htmlb:link id = "Ink" reference = "http://www.sap.com" >
 
<htmlb:image src = "logo.gif" I>
 

Writing a Composite Element 235 



• <htmlb:image src = "logo.gif" I> 
SAP 

myImg->src = "logo.gif".
</htmlb: link> 

WIU ... 
To process this sequence dynamically, the correct coding would be: 

The reason for this is very subtle. Inside BSP elements, strings are written using 
DATA: myLnk TYPE REF TO CL_HTMLB_LINK. XML syntax with double quotes. Typically, code is cut-and-pasted from BSP pages 
myLnk = CL_HTMLB_LINK=>FACTORY( id = 'Ink' directly into an ABAP class for the processing sequence. However, the double­

reference = .http://www.sap.com. ). quote character in ABAP starts a comment sequence that extends up to the end of 
myLnk )WHILE m_page_context->element_process( element the line. So, in the above source, the ABAP compiler will see myImg-vs r c = 

CO_ELEMENT_CONTINUE. WHILE.
 

DATA: myImg TYPE REF TO CL_HTMLB_IMAGE.
 The correct coding is: 
myImg = CL_HTMLB_II1AGE=>FACTORY( src = 'logo.gif' ). 

I! • <htmlb:image src = "logo.gif" I>WHILE m_page_context->element_process( 
myImg->src 'logo.gif' .element = myImg ) = CO_ELEMENT CONTINUE. 
WHILE ... 

ENDWHILE.
 

DATA: out TYPE REF TO IF_BSP_WRITER.
 11.2.3 Writing the Composite asp Element~ 

out = m_page_context->get_out( ). t We already defined a test page that shows us the required rendering. Further­
out->print_string( 'SAP' ). t more, we defined a new BSP element. As this will be an empty BSP element, we

fENDWHILE. 

The WHILE loop to process the <htmlb: image> is placed inside the WHILE loop of 

the <htmlb: link>, This reflects the fact that the image is part of the body of the 

link. In addition, text or raw HTML can be rendered as body of an element being 

processed. This is done by obtaining a reference to the active writer at the top of 

the stack and writing the relevant text. 

Do not attempt to cache this writer reference. In all cases, always do the get_out 

call again after any element_process call. It is always possible for any new ele­

ment on the stack to also push an additional writer onto the stack. The get_out 

call always returns the active writer. 

In later support packages, there is a helper method called print_string that 

should be Inherited from the super class CL_BSP_ELEl1ENT. This method already 

contains the logic to correctly retrieve the writer reference, allowing you to sim­

plify your coding, In the example above, you could replace the text output with 

redefine only the do_at_beginning method and paste the code from the test 

page into this method. The code changes become straightforward, given the 

examples above. 

Below is an extract ofthe code. 

METHOD if_bsp_element~do_at_beginning. 

. .. <phtmlb:horizontaIDivider/> ... 

•	 <phtmlb:matrix width = "100%" > 

DATA: phtmlb_matrix TYPE REF TO cl_phtmlb_matrix. 

phtmlb_matrix = cl_phtmlb_matrix=>factory( 

width = '100%' ). 

WHILE m_page_context->element_process(
 

element = phtmlb_matrix ) = co_element_continue.
 

<phtmlb :matrixCell hAlign = "RIGHT" I> r phtmlb_matrix->mc __halign = 'RIGHT'.the following single line of code. 
phtmlb_matrix->do_set_data( 

print_string( 'SAP' ). element name = 'matrixCell' ). 

. " prev button ...Often, while writing the code to process a BSP element dynamically, you get 
space between two buttonsIweird error messages from the compiler. For example, the code snippet below 

me->PRINT_STRING( '&nbsp;' ).produced the error "Field WHILE unknown" 
. .. next button '"I 

1	 Writing a Composite Element 237
236 Creating your own BSP Extension Element -



*	 </phtmlb:matrix>
 

ENDWHILE.
 
*	 Set return code to done (empty element) 

rc = co element_done.
 

ENDMETHOD.
 

Notice the use of a WHILE statement around the code that represents the body of 

the <phtmlb :matrix>. Another important fact: When a very small piece of raw 

HTML is required, we obtain the active writer at the moment that we require it. 

We have not yet explained the do_set_data call. 

11.2.4 Handling of Inner Data SSP Elements 

Often we will find constructs where child SSP elements are used to feed informa­

tion into the parent SSP element for later rendering. A typical example is 

<htmlb:breadCrumb>. 

<htmlb:breadCrumb id = "myBreadCrumbO">
 
<htmlb:breadCrumbltem key="k1" value="text1" I>
 
<htmlb:breadCrumbltem key="k2" value="text2" I>
 
<htmlb:breadCrumbltem key="k3" value="text3" I>
 

</htmlb:breadCrumb> 

Each item has only stub code for finding the parent and supplying the configured 

parameters: 

METHOD if_bsp_element-do_at_beginning
 
DATA: breadcrumb TYPE REF TO cl_htmlb_breadcrumb.
 

breadcrumb ?= get_class_named_parent(
 

'CL_HTMLB_BREADCRUMB' ).
 

breadcrumb->append_item(
 

key = key
 

value = value ).
 

rc co element_done. 

ENDMETHOD.
 

However, for each item on the SSP page, code must be generated to instantiate a
 

new <htmlb :breadCrumbItem>, setits attributes, and then to process the ele­


ment. This is very high overhead for simply adding additional configuration infor­


mation to the parent item. To improve the performance for this typical usage pat­


tern, a new SSP element oftype Data was created.
 

Effectively, the name ofthe parent handler class is specified for the new SSP ele­


ment. The SSP library generator will then place all the attributes of the data ele­

238 Creating your own SSP Extension Element 

ment onto the parent element, using the camel-case abbreviation of the name as 

key to prefix the attributes. For example, for <phtmlb :matrixCell>, the camel­

case abbreviation will be mc_. The <phtmIb :matrixCell> has at least two 
attributes: col and row. For these defined attributes, new attributes mc col and 
mc_row are generated on the handler class of the parent. 

BSP Element !macr:ixcell IActive 

-IU- , : 'Altribut81	 t 
~. 

short Description IMatrixLayout Cell I
 
Element HandlerClass ICL PIIT1~LB !lATRIX I ~
 
Generated Basis Class I I 

! 
~
 

] Element: content /
 

@Data
 .. ,. .,- __ ,...~_ ..___ .. ______ J~
 . - . - ...• .._---." ,,-.-.-. __~~" ~~- --~ ~.~ .,~,,--

Figure 11,4 DATA SSP Element Type 

When the <phtmlb :matrixCell> is used on a SSP page, the SSP compiler keeps 

a list of the surrounding SSP elements. It sees that <phtmlb :matrixCell> is a 

data element attached to the class cl_phtmlb_matrix. As a result, the following 

code is generated: 

%_matrix 6->mc col = 1. 

%_matrix_6->mc row = 2. 

%_matrix_6->DO_SET_DATA( element_name = 'matrixCell' ). 

The %_matrix_6 is the outer instance of type <phtmlb :matrix>. The attributes 

are set on the parent class, and the DO_SET_DATA call is placed, giving the name 

of the actual data element being processed. This way, data can be moved into the 

parent element with better performance. 

11.3 A Deeper Loole at BSP Extensions Events 

11.3.1 Introduction to SSP Extension Events 

HTML/HTIP does not support the concept of server events. At the lowest level, 

the only building block that is available is forms in HTML, which can be submitted 

to a server. When a form is submitted, all input fields-including hidden input 

fields-are transported to the server. Therefore, event-handling in the browser is 

reduced to setting up specific predefined input fields, usually type="hidden", 

with values that reflect the event to be sent to the server, and then submitting the 

form. 

A Deeper Look at SSP Extensions Events 239 



""'-I'~'r' 

r'~ 

Script output together directly, as this will cause problems if the underlyingWhen using the HTMLB family of rendering libraries, it is very seldom that any 
event-handling code is modified. raw HTML is required. The rendering libraries already have sufficiently extensive 

sets of controls. However, once some HTML is required, you are immediately Rendering Phase: 
faced with a few perplexing problems. One is the question of transporting events I 

I <htmlb:button id="myBtn" onClick="button_clicked"l>from the browser to the server. 
CL_HTMLB_BUTTON 

<htmlb:form id="myform" > ... event = CL_HTMLB_MANAGER=>RENDER_EVENT_CALL( ... ). 
<input type="hidden" name="s_event_id" value ="TEST"I> ... render onclick="htmlbSubmitLib( ... )"r,I <SCRIPT language="JavaScript"> l In the above examples, the JavaScript function htmlbSubmitLib is shown. How­function myEventHandler(event_id) ( 

ever, the exact call that will be generated depends on a number of factors, for document.myform.s_event_id.value = event_id: f 
Ii document.myform.submit(): J 

</SCRIPT> 
<button id="Test" 

onclick="myEventHandler ('button_clicked ') :"> 

Submit! </button><br> 
Event = <%= server event id %> 

</htmlb: form> 

Listing 11.1 Triggering a "Server Event" via the HTML form submit 

The HTMLB library comes with its own event-handling system, which also 

includes a large piece of JavaScript code. If native HTML code, such as the code 

listing above, is added on a page that bypasses the HTMLB event system, the 

HTMLB library could be negatively affected. 

One typical example is the <xhtmlb: protectDoubleSubmi t >element. This item 

example whether a client-side event is also involved, or whether the event is 

listed in a predefined dictionary. Consider the output of the RENDER_EVENT_CALL 
method as a black box. 

In the browser, once a control event is triggered, the JavaScript code in the 

onClick handler is executed. This code calls the defined JavaScript code, which 

packs the relevant event information into hidden input fields and then submits 
the form: 

In Browser: 

1. User clicks on button 

2. onclick is triggered, calls htmlbSubmitLib ( ... ) 

3. Sets up a number of input fields with correct values 

4. Calls form. submi t f ) : 

hooks into the HTMLB event system in the browser and will display a wait mes­ RENDER_EVENT_CALL Method 
sage once an event is sent to the server. Therefore, it is helpful for other library 

The render_event_call can only be used within a BSP element. One of the writers, and for people writing native HTML, to use the HTMLB event system for 
checks that this method does is to see if it is used within an HTMLB form. This is 

their event handling as well. l
 
verified by checking the processing stack of all BSP elements, looking for an 

<htmlb: form> element. This method has a relatively complex interface that is 
11.3.2 Rendering Events 

discussed below in detail. 
During rendering, each element might require one or more events. This is usually 

done by wiring the HTML onClick attribute with some JavaScript code that will Parameter Name Description
 
handle the event. This specific, required JavaScript code is obtained by a call to
 

bsp_element IF_ESP_ELEMENT This is the actual element that is rendering the event. From

the method cl_htmlb_manager=>render_event_call. this interface, the library name, the element name and the 

ID will be used for event-rendering. The first two values are 
This method will return a sequence of JavaScript code, which consists of one or generated into the base class of the element. The ID string
 
more calls to the different JavaScript functions that are available for event han­ must be set by the element.
 

dling in the browser The output of this method is for internal use only. This out­
Table 11.1 Parameters of Method RENDER_EVENT_CALL

put has been improved a number of times. Do not try to concatenate this Java­

,

A Deeper Look at BSP Extensions Events 241240 Creating your own BSP Extension Element _L.
 



Parameter Name	 Description 

This string indicates what type of event was fired by the ele­event_type STRING 
ment. Typically, a button could fire a click event, a pager 
could fire page up or down events, and a table could fire a 
row-select or header-click event. This string has no further 
meaning for the HTMLB event system, and is transported 
transparently. 

This string is defined by the user of the element for the server event STRING 
event. A typical example would be to write <htmlb :button 
onClick~"myHandler"I>.This string can contain informa­
tion to help the user to handle the event correctly. This 
string has no further meaning for the HTMLB event system, 
and is tram ported transparently. 

'Thisstring reflects the typical onClientClick attribute used client_event STRING 
on many elements. It must contain valid JavaScript code that 
will be executed in the browser. This string is not returned to 
the server. At a minimum, one of the server or client events 
must be spe'cified.'Otherwise, no event-handling code will 
be generated. 

Initially, it was 'up to the control to render out a JavaScript client_event_inlined XFELD 
function that had a predefined name containing the client_Default SPACE 
event code. However, during HTML-parsing, small JavaS­
cript functions cause a high overhead for the HTML-render­
ing. Thus, the inline flag leaves the rendering of the JavaS­
cript code to the HTMLB manager class. It only creates a Jav­
aScript function if this event should actually be triggered. 
We highly recommend that you set the value always to "X". 

Many events require a minimal string to contain additional event_defined STRING 
information for the event. Instead of using additional param­Default 'null' 
eters, you can use this one string for carrying the informa­
tion. This string has no further meaning for the HTMLB 
event system, and is transported transparently. 

Number of parameters that will be transported in this event. 
param~count I 

This value must be set correctly for the render_event_call 

method. 

A comma-separated string of parameters (strangely starting param_string STRING 
with a comma!). This list of parameters is copied verbatim 
into the generated event handling function. It is also possi­
ble to imbed the names of JavaScript variables in the event­
parameter string with this format, which is then automati­
cally used during the event-handling. 

An alternative option is to specify the par am_string stringparam_l .,. 9 STRING 
as single parameters from param_l to param_9. The parame­
ters are copied together during the rendering of the event. If 
the parameters are supplied individually, each parameter is 
considered to be a constant string, and will be rendered 
with quotes, 

Table 11.1 Parameters of Method RENDER_EVENT_CALL (cont.) 

242 Creating your own BSP Extension Element 

Parameter Name	 Description 

return_value STRING	 I<eep in mind that the actual generated JavaScrlpt Is placed 
inside an HTML onelick sequence. In HTML, itis important 
to keep event- bubbling in mind. One typical instance 
occurs when an anchor is used to render a control. If the 
oncllck does not return false, the <a href> Will b~ triggered 
as well. By default, all JavaScript contains a "return f al ss" . 
as the last instruction. This parameter can be either true or 
false to set the value to be returned, or blank to prevent the 
rendering of a return value. This is unfortunately a very com­
plex aspect of HTML rendering; when in doubt, leave the 
default value. 

Table 11.1 Parameters of Method RENDER_EVENTJALL (cont.) 

11.3.3 Handling Incoming Events 

On the server, the event-handling system will look at the incoming HTIP request. 
If it detects form fields with well-known names, for example all HTMLB element­
event input fields having a prefix htmlbevt_, it will signal an HTMLB event. The 
runtime then unpacks the relevant fields into an event object. 

On Server: 

event = CL_HTMLB_MANAGER=>GET_EVENT_EX( request) 

~ examines HTIP request for fields matching htmlbevt_ * 

~ creates event object cl_htmlb_button, unpacks fields 

This action of unpacking the relevant fields into an event object is done by the 
class cl_htmlb_manager. It will map the event onto the correct class, which is by 
default the same class used for rendering the BSP element. It instantiates a new 
copy of this class and then does a query for the iLhtmlb__data interface. 

The method event_ini tialized will be called with all the standard attributes of 
an HTMLB event. The values are restored onto the event attributes defined on the 

interface if_htmlb_data. The last call will be to event_set_parameters with 
all additional parameters that were available in the incoming HTIP request. These 
are also restored into the class attributes. 

11.3.4 Rendering an Event via the <bsp:htmlbEvent> Element 

It is useful to understand the way to directly interact with the CL_HTMLB_M.ANA­

GER=>RENDER_EVENT_CALL method if you are going to create your own custom 
BSP elements. This method call can be included in the rendering code of your 
ABAP class. 

A Deeper Look at BSP Extensions Events 243 

I 



What ifyou simply want to render an event in-line in your BSP page and attach it 
to some standard HTML or another BSP Element? For this task, SAP prOVides the 

<bsp: htmlbEvent> element. This element can either return the event JavaScript 

code for later use, or it can generate a JavaScript function that, when called, will 

fire an event back to the server. 

For example, the control can be used as: 

<bsp:htmlbEvent name="fireMyEvent" p1="a" p2="b" I> 

It will write into the output stream the following: 

<script> function fireMyEvent(a,b) {... } </script> 

Ii 
This function can now be called directly from HTML or JavaScript: 

<button onclick=" return fireMyEvent ( I myButton' ,123) ,,> 

myButton</button> 

With this design, it is actually possible to use the HTMLB event system, without 
even knowing what is rendered out. The <bsp:htmlbEvent> element renders 

out a wrapper function that can be called directly, and it even allows additional 

parameters to be transported. 

Another approach is to request that the <bs p :htmlbEvent> element return the 

JavaScript code for direct use. By flagging an attribute on the element as a refer­

ence attribute, it will get a reference to a local variable, and then can write back 

the information. In the example below, event_code will be updated by the 

<bsp :htmlbEvent> element with the final generated JavaScript code, and the 

code can now be used directly inline when writing HTML. 

<% DATA: event_code TYPE string. %> 

<bsp:htm1bEvent event_defined="myBtn2" 
event code="<%=event_code%>" I> 

<button onclick = "<%=event_code%>">myButton2</button> 

11.4 Event Handling in Composite Elements 

Earlier in this chapter, we built a composite element, but you may have noticed 

that the example did not fire any events and was not tied into the HTMLB event 
manager. Now that we have studied the HTMLB event manager in detail, we are 

ready to return the earlier example and improve it by changing the fired 

<htmlb: button> events into real native events from this element. In addition, 

we will add support for a data interface. 

11.4.1 Extending the Design of the Composite Element 

As the names of all IDs and events used in the previous example were hard coded, 

it was not possible to use two pagers on the same HTML page. For example, this 

could be interesting in scenarios where a split screen snowing two logical inde­
pendent sequences is used, and can be paged separately. Thus, we need to begin 

our enhancements by adding an ID attribute 

In addition, one never knew what the current page was. The pager only handled 

the previous and next pages. We will also add a current attribute, which is the 

~ -, name of the current page. This will also be rendered left-aligned on screen. 

Last, we are adding an onPage attribute to allow us to configure the event han­

dier that must be called on return. Note that we will have both pagePrevious 

and pageNext events. The onPage is just a string that is the user's handle for the 

event. Although In most elements we define an onX per event, it is not required 

Using one such onXstring for a number of events is perfectly acceptable. 

0'::'7~:::::P~??T~ 

BSP Element IpaQe:r2 _ Active 

"'liI­ .•. , 'Attrii:jutEi'~ 

Short Description IPrevious/Next NaVigation withEventsl I· 
----.J 

'r, 
ElementHandler Class jyCL ESP BOOK EXTEHSIOH PAGER2 J '..

, • _ ," --l 

GEnerated Basis Class !ZCLG YEOOK PAGER2 I ~}!;:<"'-~~ 
. ,f{'P~6P~rtie~~¥_1 ~ 

Element: conteny Ii 
'mribute IR. ID.. 1ea IBi. hYPingme.IA5sociaJiDescriPtion ; Ouata 
~t 10I0l~0:, TYPE ~,5TRING li____t@)Blank 
id iB I0 ![J I 0 \1 TYPE ~ ,smnTG I ~18ment ID iII 
next; I[J I0'1 0 iu 1 TYPE 'i!I'STRING 11 --\ 

Furtheroptions/ I 
. B ''pAGE DONE" isnot returnee OIl~~e.+CJl~~_!ld ~:r:r~~!5TRIII~_lt-I 

rev ! 0 :[J [J i0 1 TYPE _~E"mIG ___I 
.. ..." ---- - ...•. <._", •• -- ••..•. ~_.. _.'..- ____ • ~ __ .~~~~...i, 

_~~-_.,~..,.~. ~.~~ 

I 
r 

Figure 11.5 SSP Element Properties and Attributes 

As Figure 11.5 demonstrates, we have created a new element for these enhance­

ments so as to keep the older example for reference. But it is also possible simply 

to change the original code. 

f 
11.4.2 Using the Composite Element 

Before we start looking under the hood at the code that will be needed to com­

plete the work, let us first use the new element. This will give us a good idea of 

what must be supported. The test program will be similar to that used previously. 

We only have to set additional attributes for the element. 

Event Handling in Composite Elements 245 
244 Creating your own BSP Extension Element ,~~~,. 



For each page, we define the following source code: 

<htmlb:content design="design2003"><htmlb:page><htmlb:form> 

.. . body comes here ... 

<ybook:pager2	 id = "<any id string>" 
prey = "<name of previous page>" 

current = "<name of this page>" 

next = "<name of next page>" 

onPage = "<name of event handler>" I> 
</htmlb:form></htmlb:page></htmlb:content> 

For the onInputProcessing code, we would now like to use code that is similar 

to that of the HTMLB library: 

DATA: event TYPE REF TO if_htmlb data. 

event = cl_htmlb_manager=>get_event_ex( request). 

IF event IS NOT INITIAL AND event->event_id = 'myPager'. 

navigation->goto_page( event->event defined).
 

ENDIF.
 

In addition, the element should support minimal data retrieval, where it is possi­

ble to query the previous, current, and next pages. The typical code for the data 

call is: 

DATA: pager TYPE REF TO ycl_bsp_book_extension_pager2. 

pager ?=	 cl_htmlb_manager=>get_data( request = request 

name = 'ybook:pager2' 

id = 'myPager' ). 

* use here pager->current. pager->next. pager->prev 

Notice that for the get_data call it is important to also supply the library and ele­

ment name. The HTMLB manager has no other help available to determine the 

correct handler class. The library name is not that of the prefix used in the layout, 

but the original name under which the library was created. This allows the HTMLB 

manager to again determine the correct handling class. 

We see from the above coding that we wish to achieve a new pager element that 

will work transparently with the HTMLB manager. Any consumer of our new ele­

ment should not be able to see a difference between it and any other standard 

SAP-delivered element. 

11.4.3 Use of IDs 

The first significant aspect is the handling of the element ID. Once we allow the 

option that the same element can be used multiple times on the same page, each 

must have a unique ID. First, the element was given a new required ID attribute. 

246 Creating your own BSP Extension Element 

dling. 

Method 

RESTORE_FROM_REQUEST 

EVENT_INITIALIZE 

The pager element itself does not really do any rendering. Primarily, it uses two 

<htmlb :button> elements. Each of these buttons requires an ID. This at first was 

solved by just hard coding the ID string. 

htmlb_button cl_htmlb_button=>factory(
 

id = I ybook__pager_next'
 

With the new approach, we would like to have IDs that are unique and indepen­

dent of the usage count. This goal can be achieved by using the ID of the element 

as the basis for creating new IDs. All new IDs will typically be of the form Gd> 

_<sub string>. 

This is such a common pattern when building composite elements that the fac­

tory methods were extended to handle the concept of an id, plus a postfix 

string that must be attached. 

htmlb_button cl_htmlb_button=>factory(
 

id = id
 

id_postfix = __Previous'
 

... ). 

htmlb_button cl_htmlb_button=>factory(
 

id = id
 

id_postfix = __Next'
 

... ). 

The factory method will concatenate the id and id_postfix strings together to 

create the new ID for the specific button. 

11.4.4 Integrating into the HTMLB Manager 

The HTMLB manager interacts with the element-handler class via the iLhtmlb 

data interface. The interface has four methods used for the data and event han­

Description 

This method is called by the HTMLB manager to restore view state 
from the incoming request. This is always triggered by the gee 
data call. 

The get_event_.ex call will result in a call to this interface, with the 
event data already decoded. The code has to fill the evene' 
attributes of the iChtmlb_data interface. 

Table 11.2 Methods of Interface IF_HTMLB_DATA 

Event Handling in Composite Elements 247 



Method	 Description 

EVENT_SET_PARANETERS	 Called directly after event_Initialize to set the additional event 

parameters p1 to p9. 

EVENT_DISPATCH	 If the HTMLB manager is used to dispatch the event and the target 
handler has also implemented at least the iChtmlb_event inter­
face, then this method will be called with the handler object to dis­

patch the event using a typed method call. 

Table 11.2 Methods of Interface IF_HTMLB_DATA (cont.) 

When implementing these methods, the biggest problem is the interaction 

between data and events. For example, assume that we have an <htmlb: group> 

element and that the minimize button was pressed. Using only the get_data call, 

the view state would actually indicate that the group container is still maximized. 

After restoring the previous view state, you therefore must check whether the 

incoming event must be applied onto the data. Similarly, if only the get_event_ 

ex call is used, it is usually practical that the rest of the view state data is also 

restored, so that no additional get_data call is required. 

For this reason, we always implement the event_iniatilize code to also call 

the restore_froID_request method, thereby simulating a get_data call. The 

restore_from_request code uses the event_id as a flag to determine whether 

it is called from the event-handling code, in which case it continues to restore 

data, or whether it is triggered from a get_data call, in which case it will use an 

HTMLB manager call to apply an event if required. 

METHOD if_htmlb data~event_initialize. 

*	 Initialize event_* parameters
 

me->if_htmlb_data~event * = ...
 

* Restore all data	 from the request 

me	 >if_htmlb_data~restore_from_request( 

request = p_request 
id = if_htmlb_data~event_id ). 

. . . now apply event onto restored data ...
 

ENDMETHOD.
 

METHOD if_htmlb_data~restore_from_request. 

* Use event_id as flag to check whether we also have an 

* event. Let it do	 work. 
IF	 me->if_htmlb data~event id IS INITIAL AND
 

CL_HTMLB~ANAGER=>CHECK_AND_INITIALISE_EVENT(
 

instance me 

request request 

event_id_expected = id 

class_name = m_class_name 
) IS NOT INITIAL. 

RETURN. means an event found and restored 

*	 (recursively called here)
 

ENDIF.
 

... restore values from request ...
 

ENDMETHOD. 

11.4.5 Data-Handling 

We require the pager to be able to restore the values of the previous, current, and 

next pages. We must keep in mind that any control on the page can trigger an 

event to the server, and thus it is not always possible to retrieve this information 

from the event data. 

The best technique for storing the view state within an HTML page is to use hid­

den input fields. This information is not rendered and will be returned to the 

server when the form is submitted. 

The following code is used within the do_at_beginning method to render the 

view state into the response, so that it will be returned to the server on the next 

request: 

DATA: html TYPE STRING. 

CONCATENATE 

'<input type="hidden" name='" id _vaIPrev" 

value='" prey '''>' 

'<input type="hidden" name='" id _vaICurrent" 

value='" current '''>' 

'<input type="hidden" name='" id _vaINext" 

value~'" next '''>' 

INTO html. 

print_string( html ) . 

Notice the use of the ID with sub strings to create new names for each hidden
 

input field. The values are taken from the current element attributes.
 

To restore the values, the code below is used in the restore_from_request
 

method:
 

me->id = id.
 

CONCATENATE me >id '_vaIPrev' INTO name.
 

me->prev = request->get_form_field( name).
 

Event Handling in Composite Elements 249
248 Creating your own BSP Extension Element	 -.L_ 



CONCATENATE me->id '_valCurrent' INTO name. 

rne->current = request->spt_form_field( name). 

CONCATENATE me->id '_valNext' INTO name. 

me->next = request->get_form_field( name). 

Notice again the use ofthe ID to compute the actual names ofthe form fields that 

hold the data in the incoming HTIP request. 

11.4.6 Event-Handling 

Event-handling is slightly more complex. The pager element uses two 

<htmlb: button> elements. As such, when one of these buttons is pressed, a 

HTMLB button-clicked event is returned to the server. What we actually want is 

to present a pager event. 

The problem is that the HTMLB manager has the class cl_htmlb_button defined 

as handler class for the button-click. We want our new pager class defined as the 

handlerfor these events. For this, the HTMLB manager supports an escape mech­

anism. Usually events are encoded in the HTML in the form: 

htmlb:button:click:null 

But, it is also possible to add an additional handler classes onto this string, using 

'": ." as separator sequences. 

htmlb:button:2lick:null: : <handler class>: : <event defined> 

This means that even although a button-click event is received, the newly speci­

fied handler class must be called to decode the event. As It is not possible to con­

figure these escape strings when processing another element, the HTMLB man­

ager will also accept these escape sequences when they are attached to the event­

server name, onX strings. 

DATA: htmlb_button TYPE REF TO cl_htmlb_button. 

htmlb_button = cl_htmlb_button=>factory( 
id = 
id_postfix = 

text = 

design = 

id
 
' __pagePrevious'
 

prev
 

'PREVIOUS' ).
 

CONCATENATE onPage ': :YCL BSP_DOOK_EXTEKSION_PAGER2::' 

prey '.bsp' 

INTO htmlb_button->onclick. 

WHILE m_page_context->element_process( htmlb_button ) 
cO_Element_continue. 

END\1HILE. 

250 Creating your own BSP Extension Element 

In the previous example we have hard-coded the class name. This approach is 

simple but can lead to problems if you rename your handler class. If you want to 

use the element handler as the event handler, it is best to retrieve the class name 

dynamically using the CLG (base) class. 

CONCATENATE onPage '::' me->m_class name , .. , 

prey '.bsp' 

INTO htmlb buttcn >onclick. 

Instead of Just writing onClick = onPage, we are now adding our YCL_BSP_ 

BOOK_EXTENSION_PAGER2 class into the escape string to function as the handler 

for this specific button-click event. We use our event-defined string to carry the 

name of the previous page. With this small change, our handler class will always 

be called when one of the buttons is pressed. 

For an incoming event, the event_ini tialize method will be called with the 

information about the button click. First, we set up all the event_* attributes. 

Afterwards, we would like to map a button-click event onto a pager pagePre­

vious or pageNext event. 

Our first step is to set the new event name to the name of this BSP element 

(pager2). As a next step, the ID has to be set correctly. Remember that the initial 

::D was post-fixed with a constant string __<direction>. Therefore, we split the 

string at "__" to get the original ID again and the event type, which was effec­

tively encoded as a sub string in the ID. 

METHOD if_htmlb_data-event_initialize 

, Copy those parameters which we keep 

if_htmlb_data-event_id 

if_htmlb_data-event~type 

if htmlb data-event_class 

if~htmlb data-event_name 

if_htmlb_data-event server name 

p_event_server_name. 

if_htmlb data-event defined 

I p_event_defined. 

verbatim 

p_event_id. 

p_eveot_ty?e. 

p_event_class. 

p_ever.t_name. 

I if_htmlb_data-event~intercept_depth 

p_event_interce?t_depth. 

, The pager uses two <htmlb:button> elements. Massage the 

l event to bo pager ovent. 

I 
, Event name will be 'button', should be our 'pager2'. 

, Event Id will be <id>__pageNext or <id>__pagePrevious 

, Eve~t Type will be click from ~he cutton. The actual value 

i 
Event Handling in Composite Elements 251.__L 



12 Additional SSP Extensions * we want, was already encoded into the ID before. 
if_htmlb data~event name = me->m_name. 

SPLIT if htmlb data~event_id AT ' Although a Web AS is delivered with nearly 200 BSPextension ele­
INTO if_htmlb data~event_id ments, there are a few that stand out as being unique in function or 

if_htmlb_data~event_type. application. In this chapter, we will examine some of these more spe­
* Restore view state from Lhe request cialized elements. 

if_htmlb_data~restore_from_request(request = p_request
 
id = if_htmlb_data~event_id ).
 

ENDMETHOD.
 12.1 Business Text Framework 
With the above changes, events are now presented as pager2 events, as shown in We begin our examination of these special-purpose BSP elements with the exten­
Figure 11.6 sion library called Business Text Framework (BTF). This extension exposes a text Ii"

editor that represents a considerable improvement over the old SAPscript tech­
,..body comeshere .. nology or plain-text editors. 
iD--;;i-a-:[]-' ImyPager I 
~Class !YCL BSP BOOK EXTENSION PAGER2 Unlike SAP's previous versions of text editors, this new editor is not based upon 
!Event-ID \myPager I , any proprietary internal format. This new editor is actually an easy-to-use WYSI­
[Ev'ent-Name !pager2 ~ 
IEvent-Type !pagePrevious _ 

[Ev'e nt-Server Nome:handl,ec:...PaC'g>...in~g,--c-__=c:::-_ 
IEvent-Defined [iNOk composite intra BSP _ 

book_composite_oll'crview lo(cbook composite intraI 

Figure 11.6 Intercepted Events 

WYG (What you see is what you get) HTML-based editor. Therefore, the docu­

ments produced by this editor are especially simple to integrate into BSP or other 

Web-based applications. Such integration makes an excellent foundation for cre­

ating HTML-based emails. 

SAP has two implementations of this editor. One is for the use in traditional Dyn­

pro screens via the Control Framework Technology. This editor is accessed via 
ABAP class CL_BTF_EDITOR. SAPalso has exposed this same editor technology to 

BSP pages via the BSP extension BTF, BSP element ed,itor. 

Before we even get into this section on the BTF editor, the reader should we 

aware that the implementation of the BTF editor is really only fully functional in 

the Internet Explorer browser. In other browsers that BSP supports, a simple text 

editor exposing the raw HTML tags is displayed instead of the user-friendly WYSI­
WYG editor. The reason for this is that the BTF editor uses proprietary features of 

Internet Explorer. 

In short, if you are concerned about cross-browser support, then you are proba­

bly gOingto have to skip the BTF editor. However, ifyou know you have an inter­

nally facing application that only needs to support Internet Explorer, then learning 

about the BTF editor is well worth your time. 

12.1.1 SAP Example 

Besides the examples put forth in this text, SAP delivers an example BSP applica­

tion named BTF_EXT_DEMO. This example, although limited in scope, does provide 

Additional SSP Extensions 253252 Creating your own SSP Extension Element ~L~ 



the basics of loading a document into and retrieving a document from the editor. 

Because the editor generates HTML code, the example application also demon­

strates how easily the resulting text can be displayed inline in a SSP application. 

12.1.2 BTF Functionality 

Before we get Involved with any code, let us first have a look at the BTF editor in 

action and discuss some of its advantages and hidden features. 

:;11 @J db ~ ~ 1M I£lra
 
[ Times New Roman l:J l .~. B I !! ~ ~ g: '§' ~ §. l''' EO ~¥: ~¥:
 

Figure 12.1 BTF Example 

RTF Toolbar 

Going through the user interface icons, you get an idea of the basic functionality 

of the BTF editor. The first button (which can be hidden by an attribute) allows 

the user to switch back and forth between the WYSIWYG editor and a raw HTML 

code editor. This is a nice feature to expose in case you have users who aren't 

scared off by HTi\I\L. 

Next, we have a Print icon. This allows us to print the contents of the BTFeditor 

using the user's Pc. This means that the list of printers users will have to choose 

from, will be the ones installed on their client machines, not your SAP server 

printers. It is possible to use the BTF editor in display-only mode, just so you can 

expose this print functionality. 

Next come the expected Cut, Copy, and Paste functions. Because this is a HTML
 

editor, the ability to paste in elements from other richly formatted locations is
 

quite powerful. You can even copy and then paste in links to images from other
 

Web-based sources. 

This is followed by a Find and Replace feature for mass editing. For the last icons 

on the first bar we have an Upload and Download function. This is again a nice 

feature that you wouldn't necessarily expect in a Web-based HTML editor. f
The second row gives us the tools we will need to control the text formatting and 

Pj.eaae add new training .logo CJL 

Polis:h: lOqzz.§.s41.SZi Thai: J]'l"g"'hm1lj 

Russian: <!lY13HKa 

• Item.9 

sdfasdfsadffsdf ~l 

cr;e training ~ at s i qn on time 

Chane ae : +:~~'tfiij 

Next up, we have a set of buttons that allow us to set the Text Justification (left, 

centered, right, and full). Finally, we have four buttons for setting up lists. The first 

two turn on either Numbered or Bulleted lists. The last two buttons move the 
text indentation Left or Right. 

Content Example 

A look at the content the example contains a/50 tells a story of the BTF editor's 
capabilities. 

You can see the effects that altering the text size, color, font, and other formatting 

options has on the output. You can also see in the middle of the editor that there 

is a link to a Web image. This was done by pasting in the image from the original 
source. 

Finally, we come to what is one of the most important aspects of the BTF editor. 

The BTF editor supports the editing of Unicode1 documents, even if your backend 

SAP system is not Unicode. 

As you can see from the example, we have a mixture of languages from a variety 

of codepages. The system this example was built on is neither MDMp2 nor Uni­

code, yet we have no problem processing and storing this data. 

How is all this possible? The BTF editor expects to receive and return its docu­

ment data via a binary string. This allows your back-end SAP system to store the 

Unicode document Without any character corruption regardless of the codepage 

the system runs under. Of course Unicode isn't your only option. You can also set 

the document content to any Single codepage. We will look at the coding for the 

use of Unicode in detail in this example. 

12.1.3 Database Storage 

We will start by looking at how the example application stores the content that is 

generated within the BTF editor. As stated earlier, the BTF editor expects its data 

to be received and returned as a binary string Therefore the simplest way to store 

the data is by writing the data into the database as a binary string. 

'i 
i 

2 

The Unicode Standard is the universal character encoding standard used for representation of 
text for computer processing. The Unicode Standard provides the capacity to encode all of 
the characters used for the written languages of the world. To keep character-coding simple 
and efficient, the Unicode Standard assigns each character d unique numeric value and name. 
http://wwwunicode.org. 
NlDMP: an SAP Specific technology that predales Unicode. MDMP (Multiple Display Multi­

alignment. We have basic text formatting, such as Font, Size, Bold, Italics,	 ple Processing) allows for the processing of multiple codepages within a single system 
instance and database, however only one codepage can be processed at a time. 

Underline, Text Color, and Background Color. 

Business Text Framework 255 
.,,,... Arlrlitional BSP Extensions 



I 

Luckily this is now a possibility as of Web AS 6.x. We can have strings and binary 
strings of undetermined length stored as database fields. Figures 12.2 and 12.3 

demonstrate what this table layout can look like. 

ITransp. Table (YiITi;:TElIT~ Active 

l - -....-T.c,_.'::;;.T . ', 
'~1A1'iDT I~ I ~ iSY1WIDT run I 31 OH!3 System, ClientNumber from Logon 

ID ~ 01 0 iYY BU IE),."! ID ~~ 101 0iBTF Text Storage.·..!<.ey (InnagUla,y Text ID).,II/
III . ::;XI ~LSI.~IElIT_~WSTR::G~". .oL..._~i\m T:X:..cContent . ~t~,:~e r:amp~_. .J 

Figure 12.2 Example Database Table for String BTF Content 

Dato element [IT BYE IElIT --=--.J Active 
=='----------1 

Short Text [BTl'Text Content· Storage Example 

/Attfii);;fes~~CF'jrilieich._ract<!rlsl:icS~ 

@.Elementary Type l!!!l NOlength restr ictiOn ..~ 
1 o Domain . c==. I F 

1.@predefinedType [Jato.Type IRA"SIRING iByte String of VariableLength~ 
I ... . . • ... . Length CJ .. DeannalP"ces· .r-] f 

-._, "_----..,~"'"",.....<> ..~~-~~.. ~~,__.....,..., ._..~~~=__~,...........~~~,=,_.._____.._. '_""'~'"'" ~~---,-o....'
 

Figure 12.3 Binary String Data Element 

12.1.4 BSP Extension Element 

The BSP extension element for the BTF editor has only a handful of fairly simple 

attributes. The content ofthe document itself is the most important attribute. For 

this attribute, you must pass an instance of a class that implements the interface 
IF_BTF_DOCUMENT. 

Name 

id 

(mandatory) 

doc.ument 
(mandatory) 

Description 

Unique indentification for the BSP element 

The pointer to the BTF Document Object itself. This object must 
implement the ILBTF_DOCUHENTinterface. This is how the content 
within the BTF editor gets passed to the extension element. 

Table 12.1 BSP Element Editor Attributes 

256 Additional BSP Extensions 

Name Description 

disabled This attribute sets the BTF editor into Edit or Display only mode. 
Allowed values are FALSE (default value) and TRUE. 

width This attribute sets the display width of the BTFeditor 

height This attribute sets the display height of the BTF editor 

onClientlnsertlmage This attribute sets a client-side event handler, which you are responsi­
ble for coding in JavaScript, that will be called whenever the Insert 
Image button is clicked. The button will not be shown in the editor 
unless an event handler is specified here. 

onClientlnsertLink This attribute sets a client-side event handler, which you are responsi­
ble for coding in JavaScript. The event handler will be called when­
ever the Insert Link button is clicked. The button will not be shown in 
the editor unless an event handler is specified here. 

sourceView This attribute controls whether the BTF Document is displayed in the 
editor in WYSIWYG mode or raw HTML Source. The possible values 
are FALSE (default value) and TRUE. 

Table 12.1 BSP Element Editor Attributes (cont.) 

12.1·5 BlF Editor in the Page Layout 

Inclusion ofthe <btf:editor> extension into a BSP page layout is simple. In the
 
following example, the document object comes from the BSP application class.
 
Although this element-attribute value could just as easily have come from a
 

model class or page attribute, you should note that none of the <btf: editor>
 
attributes support Model View Binding. Be careful with the document attribute
 
however. If the document attribute contains a null pointer, you will get a short
 
dump for passing an invalid object reference.
 

Also please notice that in order to properly support the <btf: edi tor> element,
 
the default value for encodingType of the <html b: form> element must be set to
 
multipart/form-data. This is done so that the <btf:editor> element can
 
support the upload of content from the client.
 

<%@page language="abap" %>
 

<%@extension name="htmlb" prefix="htmlb" %>
 
<%@extension name="btf" prefix="btf" %>
 
<htmlb:content design="design2003" >
 

<htmlb:page title="Sample BTF editor Page " >
 
<htmlb:form id
 "myFormld" 

method = "post" 
encodingType = "multipart/form-data" > 

<btf:editor id "btfl" 

Business Text Framework 257 



,/,> " ,,<%= application->btf_document 

height "lOOpx" 

width "400px" /> 
<br /> 

document 

<htmlb:button id = "Submit"
 

onClick "Submit"
 

text "<OTR>Submit</OTR>" />
 

</htmlb:form> 

</htmlb:page> 

</htmlb:content> 

Listing 12.1 STF Page Layout Example 

12.1.6 Preparing the BTF Document 

In the following section of code, we will prepare a BTF document and either set 

an initial message into this document or the one we loaded from the database 

earlier. You can trigger this logic in the DO_REQUEST method of a controller class 

if you have a MVC application. In a non-MVC page, you would most likely want 

to do this in the onlnitialization event handler. 

We start our processing by getting a pointer to the BTF itself. Then we create a 

BTF document class instance if we don't already have one. 

*'*'btf is type ref to if_btf. 

if btf is initial. 
btf = cl_btf=>get_reference( ). 

endif. 
*'*'btf_document is type ref to if_btf_document 

if btf_document is initial. 
btf_document = btf->create_document( sy-Iangu ). 

endif. 

Listing 12.2 STF Initialization Example 

12.1.7 Retrieving BTF Content on Input 

Now we are ready to look at the process for getting the edited content back out 

of the BTF editor. For every server event, regardless of what the event does, you 

need to capture the data that is returned by the BTF control. This is necessary for 

you to have the content to send back out via the BTF element as the layout is 

rebuilt. Even inside a stateful BSP application, you must treat the BTF editor and 

its document content as though it is stateless. 

For Model View Controller based application in this example, we perform this 

action in the DO_HANDLE_DATA method of the controller class. In a non-MVC 

application this same logic could be applied in an OnlnputProcessing routine. 

We will start the processing by getting a pointer to a BTF editor (class CL_BTF_ 

BSP_EDITOR) by requesting one from the special event handler class for BSP BTF 

(CL_BTLBSP_MANAGER). 

"'*Cast a pointer to my application class 

data: appl type ref to ycl_es_bsp_appl_main. 

appl ?= application. 

'***Read data from editor: 

data: editor type ref to cl_btf_bsp_editor. 

editor ?= cl_btf_bsp_manager=>get_data( request request 

name = 'editor' 

id = 'btfl' ). 

Listing 12.3 BTF Editor Pointer Retrieval Example 

In the next code sample, we first will make sure that a valid editor pointer was 

passed back. Only an active BTFeditor should be processed. Next, we will ask the 

BTF editor to give back its content, supplying the binary string, language, and 

encoding. Use a test condition to see if you have an encoding returned. If you do, 

then you know you have a valid document in the editor class. 

If you pass all of these checks, you can then pass the document from the BTF Edi­

tor into the document class and store it there. 

if editor is not initial. 

data: I_encode type string. 

data: I_lang type spras. 

editor->document->get_content( importing text appl->text 

encoding = I encode 

language = I_lang ). 

if I encode is not initial. 

appl->btf_document = editor->document. 

endif. 

endif. 

Listing 12,4 Extract the Document Content From the Editor Example 

You might experience slight irritation with the HTML that the BTF editor creates, 

as it inserts a XHP tag into the HTML code. This tag tends to mess up the display 

of the generated HTML under certain circumstances. One solution to this might 

l-
f __L Business Text Framework 259 

,c:R Additional SSP Extensions 



be to go back and strip out all occurrences of this tag after the content is 

retrieved. 

The editor returns its content in a Unicode binary string. So first you need to con­

vert this Unicode binary string into a Unicode character string. The SAP function 

module SCP_TRANSLATE_CHARS provides one possible way of doing this. You can 

then do a replace all occurrences of to remove the offending tag. Finally, 

you turn the Unicode string back into a Unicode binary string, also with the func­

tion module SCP_TRANSLATE_CHARS. This forms a nice example of how you can 

manipulate the content generated by the BTF editor within ABAP. 

',·\i	 12.2 Internet Graphics Service 

Eventually most developers will encounter a business requirement for some sort 

of analytical application that requires a graphical presentation. In other develop­

ment environments, you might be forced to look to a third-party tool to support 

such requirements. Luckily, SAP delivers a tool in the Web AS that supports the 

easy generation of complex graphs and charts. This tool is called the Internet 

Graphics Service (IGS). 

The IGS is not a new tool, nor is it specific to SSP. The IGS has been around for a 

few years and already has integration points with the Enterprise Portal, classic 

ABAP Dynpro and the Internet Transaction Server (ITS). It is available on the 

Server Tools disc or via download from the SAP Service Marketplace. In Web AS 

6.40 the IGS is now available as an integrated kernel component. 

The IGS only takes a few minutes to install. The software then listens on HTIP 

and/or RFC ports. It accepts the input data and formatting via Unicode XML 

streams. It then returns your graphic as a binary data stream. 

12.2.1 IGS Setup and Administration 

Before beginning any coding in BSP, it would be wise to make sure that your Web 

AS has a proper IGS installation connected to it. 

The first place to check is transaction SM59 (RFC Destination Maintenance). There 

should be a RFC destination set up under type TCP/IP Connections called IGS_ 

RFC_DEST SAP requires that you use this name. Some older SAP GUI applications 

are hard-coded to only use this destination name. A simple test connection on this 

RFC destination should confirm that you have a correct IGS installation. 

If you need to do more than verify that the IGS is installed correctly and want a 

full administration tool, look at the ABAP program GRAPHICS_IGS_ADMIN. This 

260 Additional BSPExtensions 

tool gives you full view into the health and state of your IGS application. You can 

also track statistics on its use from there. 

Max.Avg. 

III 

H~ 
g II I 
I I I 

Calls 

50 

Copyright (C) SAP AG 1999-2002 

Figure 12-4 IGS Administration Program 

SAP Internet Graphics Service 

+-------i j-----I\i----, 100 

i---------j ':1-------JlJ---j 150 

-1---H II ,25 
20 

12.2.2 SAP Examples 

In addition to the administration application, SAP also delivers several example 

and test applications that all begin with the name GRAPHICS_IGS*. If you need to 

study IGS examples for use in BSP, have a look at the BSP applications GRAPH_ 

BSP_TEST, GRAPH_TUT_CHART, and GRAPH_TUT_JNET. 

12.2.3 IGS BSP Extension 

Once you have established that the IGS is connected to your system and func­

tioning properly, it is time to look at it in the context of BSP. For that we have a 

single BSP extension called graphics. 

This extension has 13 elements that allow for a wide range of functionality. You 

might want a simple bar chart or graph with hard-coded values. However, these 

elements also allow for interactive charts with a complex number of different 

series of data all supplied dynamically via XML. 

For the purpose of this example, we will focus on a single element of this exten­

sion call <graphics: chart>. This main element exposes the majority of the basic 

charting and graphing functionality that you would want to work with. Even as 

we look at the attributes of this element, it becomes apparent that this element 

controls the overall look and feel of the generated graphic. 

Internet Graphics Service 261 



Name Description 

Unique indentification for the IGS chart elementid 

The overall graphical type of the chart. Depending upon the releasechart type 
you are on, there ore about 25-27 options here. Some examples are 

columns, ba~s, area, pie, etc. 

Allows you to choose between 2D, 2.50, and 3D look for the result­dimension 
ing chart. 

This attribute specifies the default font that will be used for texts infont_familiy 
the generated graphic. If not specified, Arial will be used. 

The graphical format of the resulting image (jPG, GIF, Bitmap, etc). f o rtna't 

Height specified in number of pixels for the generated image.height 

This attribute allov.:s you to specify the RFC destination that will be igs_rfc_destination 
used to communicate with the IGS. It does default to the destination 

named IG·SjFC_DEST. 

The language used during image generation.language
 

Name of the server side event that will be raised if the user clicks on
onclick 
the image. This event will return the series and the data point that 
were selected, allowing for simple image interactivity. 

This attribute allows you to specify style sheet information that over­style 
rides the default presentation of the generated image. 

The attribute that allows you to mark a color as transparent in thetransparent_color 
generated image. It should be specified as a RGB string. Example: 

RGB(255, 64,25) 

Width specified in number of pixels for the generated image.width 

Table 12.2 BSP Element <graphics:chart> Attributes 

12.2.4 Chart Data 

If you study the attributes of the (graphics: chart> element, you might notice 
something is missing: a way to get actual data into IGS to use as a basis for image 

generation. So far, all we have seen are attributes that affect the overall look and 

feel of the generated image. 

This is where some of the other elements in the graphics extension come into 
play. Elements such as (graphics: data> and (graphics :nativexml> can be 
imbedded between the chart-begin and chart-end tags in order to pass data to 

the IGS. The structuring of multiple imbedded BSP extension elements is a little 

different from the way that most other standard extensions work. 

Looking at the following simple example, we can see this interaction between the 
elements. in this case, the data for image generation will be passed via native XML 

, 

in line in the BSP page. The raw XML data has been removed for demonstration 
purposes. 

<graphics:chart width=1300" height=1300" fDrmat~IJPG" > 
<graphics:data> 

<graphics:nativexml> 
. ., Raw X:1L 

(/graphics:nativexml) 
(/graphics:data> 

(/graphics:chart> 

Listing 12.5 Chart with nativexml inner element 

So, now we know how to format the BSP parts of the equation. To produce a fin­
ished image, we will need to study the way that the IGS expects its XML data 
stearn formatted. For this we will look at the example image in Figure 12.5 

80l==)Fu--Y ---I ---mE=1!

I 60 I II 

40 

20 

Category 2 3 Category 4 c..~tegory 5 i 
t

OSe-rieo: 1 DSeries 2 
_""'~'~~',-;~··" ""~.~~_._~7 _7_·'~· __ ~_"_ 

Figure 12.5 IGS Sample Image 

This example is helpful because in its simplicity it represents the three major ele­
ments of the XML stream structure for the IGS. These three elements are catego­
ries, series, and data points. 

! 
In this bar chart example, you can see that one or more categories define the x 

axis of the chart. We then have one or more series that correspond to individual 
bars within each category. This is where we can build useful comparisons 
between two objects Within the same category Finally, data points represent the 
value of an individual series within the given category Therefore in our example 

l
 chart, the data point value for category 1, series 1 is 42.
 

The raw XML to build this simple example looks like the example below. Note 
that there is no well-defined connection between the categories and series. 
Everythlllg IS simply processed in the order received and aligned as it is input. 

Internet Graphics Service 263262 Additional BSP Extensions 



<?xml ve::sion="I.O" encoding="utf-8"?>
 

<SimpleChartData)
 

<Categories)
 

<C>Category I</c>
 

<C)Category 5</c;
 
<ICategories)
 

<Series)
 

<S)42</S) 

<S)5</S)
 
</Series>
 
<Series)
 

<S)10</s>
 

<S)50</s>
 
</Series>
 

</SimpleChartData> 

12.2.5 Chart Model Classes 

We have seen how to build the XML to pass to the IGS for generating images, but 

so far all the XML content has had to be built inline in the BSP page or view. This 

approach is really only appropriate for the simplest of charts. Following good 

deSign practices, it quickly becomes apparent that cluttering up the presentation 

layer with a lot of XML coding just is not a good idea. 

Luckily there is another, cleaner approach to passing data to the IGS. Looking 

closer at the <graphics :data> element, you can see that there are two 

attributes that can be used to pass the XML data to the IGS rather than embed­

ding it in the BSP page. 

The first attribute IS urI. To use this attribute, simply supply a URL that will return 

the required XML stream when called via HITP. This could be effective if the data 

you want to process is already available via XML on another system. 

The more likely attribute to be used is the model one. This attribute requires a ref­

erence to any ABAP class that implements the interface IF_GRAPH_DATA_MODEL. 

With this approach you can encapsulate all your data retrieval, manipulation, and 

conversion to X/IAL into its own class. 

The IF_GRAPILDATA_MODEL interface has a single method that must be imple­

mented called GET_DATA_XML. This method returns your XML to the calling IGS 

classes as a binary string. 

.. .,;" Additional asp Extensions 

If we take the Simple example chart from earlier, we can now create that same 

XML inside a class with the following coding. The code has been trimmed to dem­

onstrate specifically how to create each type of element (category, series, and 

data point) and then convert to XML. 

DATA: ixml TYPE REF TO if_ixml,
 

document TYPE REF TO i: ixml_document,
 

root TYPE REF TO if_ixml element.
 

DATA: s TYPE string.
 

DATA: categories TYPE REF TO if_:xml element.
 
DATA: seriesI TYPE REF TO if_ixml element.
 

DATA: streamfactory TY?E REF TO if_ixml_stream_factory, 

ostream T~PE REF TO if_ixml ostream.
 

ixml = cl_ixml=>create( ).
 

document ~ ixml->credLe ducument( ).
 

root =
 

document->create_element ( name = 1 SimpleChartData' ).
 

document->ap~end_child; new_child = root).
 

categories - document->create_sirrple_e1ement(
 

name = 'Categories'
 

parent = root ).
 

document->create_simple_element(
 

parent - categuries
 

name = 'C 1
 

value = 'Category I' ).
 

Series 1 - ducumenL->create_simple_element(
 

parent ~ root
 

neme = 'Series' ).
 

document->create_simple_element(
 

parent = seriesl
 

name = 'S'
 
value = '42' ).
 

streamIacLury ~ ixml->create_stream_factory( ).
 

ostream = streamfactory->crpate_ostream_xstring( xml ).
 

document->render( ostream = ostream recursive = 'X' ).
 

Internet Graphics Service 265 



12.2.6 IGS customizing 

So far we have a nice-looking chart in this example, but it is rather plain. The 

<graphics: chart> element had some basic formatting options that can be 
applied to the entire image, but more fine granular customizing is often necessary. 
Once again the IGS solution provides an opportunity to control the image gener­

ation to a considerable degree. 

The same way that you can pass the raw data to the IGS via XML, you also can 
pass customizing settings. This XML can be added inline like in the following 

example. 

<graphics:custom><graphics:nativexml>
 
<?xml version="l.O" encoding="utf-8"?>
 

<SAPChartCustomizing version="l.O">
 

<Global Settings>
 

<Defaults>
 
<FontFamily>Arial Unicode MS</FontFamily>
 

</Defaults>
 
</GlobalSettings>
 

</SAPChartCustomizing>
 
</graphics:nativexml></graphics:custom>
 

Also, just like the <graphics: data> element, the <graphics: custom> has the 
model and url attributes. The model is set up to accept a class that implements 
IF_GRAPH_CUSTOM_MODEL interface. In the end, you can generate your XML for 

the customizing just as we just did for the data. 

On the other hand, there are potentially thousands of options that can be set. The 
IGS allows you to customize look-and-feel down to the individual data point 
level. A developer would easily be overwhelmed by the complexity of generating 
this XML without a nice visual chart-design tool. Luckily, SAP delivers several dif­

ferent versions of just such a tool. 

The first tool option is a standalone chart-designer executable program available 
as a free download from SAP Developer Network. This tools starts off with a sim­
ple wizard that walks you through the most common customization options. Then 
it opens up a complete editor that allows the full range of eustomization options. 

From Figure 12.6, you can see that we have taken our simple little chart example 

and made some drastic changes to its visual design. 

266 Additional BSP Extensions 

~r--

88. 

LJ I~r' I ! 

r ~ ,-i-----i+--­

BSP BOOK 'l·eJ2~;:f~;;Z;~:{;l"1~72~¥:'~?;~~m 
Funwrth IGSChllJ1ing m- t;;l Textures ~i; i 

IliM~I~::~:~~ones. 
100 

EA 
i~l~ ;,nmiif'§!fu1i 

~Lilbel1/1 

~Lilbd1/1 

80 ~ldbel1/3 

.~label1/4 

~labell/S 

±].~ senesz 

60 

~ 
~ 

40 

2iJ ~
 

Category1 CategoryZ Category3 Category4
 

HOrilOllwl
 

OSerleS2 05efies1 

Figure 12.6 IGS Standalone Chart Designer 

Ifyou are on Release 6.40, there is another option in the form of a chart designer 
implemented in ABAP. This program name is GRAPHICS_GUI_CE_DEMO. However 

both the standalone tool and the ABAP tool require a recent patch level of the 

6.20 or 6.40 SAP GUI because that is where the chart designer ActiveX control 
actually gets installed. 

12.2.7 Image Click Event Handling 

Now that our example has a custom look-and-feel to it, we are ready to enhance 

it further by adding interactivity. Graphs and charts are great ways of presenting 

summarized data to a user; but if you really want to give your users a powerful 
analytical tool, you should consider giving them the option to drill into the details 

behind the graphical summary. 

Earlier in the discussion of the attributes of the <graphics: chart> element, we 

saw that there was an attribute called onClid" In order for the IGS to generate 
server-side events when the user clicks on an area in the graphic, all you must do 

is supply the name of the event you want it to raise through this attribute. 

Catching and processing the event is quite easy as well. In your event handler, you 
will just want to cast the event data into an object of type CL_GRAPH_CHART_EXT. 

You can query this object to access the series and data point that the user clicked 
on. 

Internet Graphics Service 267 



DATA: event_data TYPE REF TO if_htmlb data. 
DATA: chart 1 TYPE REF TO cl_graph_chart_ext. 
event_data = cl_htmlb_manager=>get_event_exC 

runtime->server->request ). 

IF event data IS NOT INITIAL AND 
event_data->event_id = "chartl'. 

chart 1 ?= event_data. 
series = chartl->clicked_series. 
point = chartl->clicked_point. 

ENDIF. 

12.2.8 Image Conversion 

Our discussion of the IGS has so far focused on the dynamic generation of images 
as charts and graphs. The IGS possesses another piece of functionality that should 

be of interest during BSP development: a built-in image converter that you can 

interact with via an ABAP class. 

Let us say, for instance, that you have images that you want to include in a BSP 
application. The images are delivered to you as bitmaps. You could sit down with 
a desktop image converter and change the file format on the images to something 
a little more bandwidth-friendly. As a developer, though, you surely have better 

things to do with your time then convert a bunch of images. 

The IGS can do the job for you on the fly. SAP delivers a sample program called 
GRAPHICS_IGS_IMGCONV_DEMO that shows how you can convert from a TIF, JPG, 

or Bitmap to a GIF image. 

12.3 SSP Library 
Tucked away in the BSP extensions library is an unimposing little extension with 
the name of bsp. This extension provides a series of helpful utilities that do not 
really have a home of their own but that offer some of the most powerful func­

tionality you will find. 

12.3.1 findAndReplace Element 

The first element we will look at is <bsp: findAndReplace>. This amazingly pow­
erful element gives the developer the freedom to alter the raw rendering stream 
of a BSP page. This means that you not only have access to the JavaScript and 
HTML produced by other BSP extensions, but you also have the opportunity to 

alter this rendered code. 

Obviously any such technique that allows low-level interaction with already ren­
dered code comes with a warning. If you change the rendered output of other 
SAP elements, you are responsible for the consequences. The code you are 
changing could be different based upon which browser the end-user has. This 
code is obviously subject to change from release to release and even across sup­
port packages. 

In the end, this element can lead to dangerous programming hacks that could 
break at any minute. However, to solve a problem, you sometimes need just this 
kind of access to the low-level system. 

In the following very simple example, you can see how this element is used to 
convert bold HTML tags to italics. 

<bsp:findAndReplace findl="<b>" replacel="<i>" 

find2="</b>" replace2="</i>"> 
<htmlb:textView text="<br><b>original text</b>"I> 

</bsp:findAndReplace> 

12.3.2 htmlbEvent Element 

One of the powerful benefits to using BSP is the ease with which events can be 
handled with server-side coding and thus by the ABAP programming language. 
Many of the SAP-delivered BSP elements already contain the code necessary to 
trigger these server-side events. However, if you ever wanted to code your own 
event trigger, the <bs p :htmlbEvent> element is how you could do it. 

This element will generate the client-side JavaScript function that is necessary for 
triggering a server event and passing parameters from the front end to the server 
during this event. 

The best way to learn about this element is to study a simple example. Let us say 
for instance that you want to implement value help for an input field. The stan­
dard HTMLB input field only has a client-side event for onValueHelp. In our fic­
tional situation, we really decide that we want a server event instead of a client 
event. This is exactly where <bs p :htmlbEvent> come to the rescue. 

The following code from a BSP page will generate the necessary JavaScript to fire 
a server-event onValueHelp request. 

<bsp:htmlbEvent onClick "specialEvent" 
id "specialEvent" 
name "bspEventTrigger" 
return_value "TRUE" I> 

SSP Library 269268 Additional SSP Extensions 



"EventTest"<htmlb:inputField	 id 
value "<%= valuel%>" 

onValueHelp "bspEventTrigger() ;" 

showHelp "TRUE"I> 

Event Name: <%= event_name %> 

With the following little bit of event-handling code, you can catch your custom 

server-side event and even query-parameter values for the CL_BSP_HTMLB_EVENT 

class. 

DATA: event_data TYPE REF TO if_htmlb_data. 
DATA: htmlb event	 TYPE REF TO cl_bsp_htmlb_event. 

event_data = cl_htmlb_manager=>get_event_ex(
 

runtime->server->request ).
 

IF event data IS NOT INITIAL AND
 
event_data->event_id = 'specialEvent'.
 

htmlb event ?= event_data. 

event_name htmlb event->onclick. 

ENDIF. 

12.3.3 Portal Integration 

BSP technology is designed for easy integration into the SAP Enterprise Portal. 

The bulk of this integration is activated by simply setting a check mark on the 

properties tab of the BSP application. 

InitialESP r 
ApplicationClass . I	 I 
Theme I	 I 
Dstateful 

.gis.~~-P~it;:p_-p.~iih~~~t;;;~::_....-

Figure 12.7 Activate Portal Integration 

This magical little checkbox puts your application under the state-management 

control of the portal. It also allows your application to inherit the theme (look­

and-feel) from the portal. That is quite a lot of functionality for just one click of 

the mouse. 

But once you are ready to create an application that truly interacts with the portal, 
you will want to have a look at a few of the extension elements that SAPsupplies. 

270 Additional BsP Extensions 

Portal Eventing 

The first element is the <bsp: portalEvent>. This element allows your applica­

tion to subscribe to a portal event via the Enterprise Portal Client Framework, or 

EPCF. The EPCF is a component of the Enterprise Portal written in JavaSeript and 

Java applets that allow for inter-iView communication and eventing. The supplied 

BSP element simply allows your application to hook into this portal JavaScript by 

supplying the namespace and name of the event you wish to subscribe to. 

These portal events can then be trapped and responded to by BSP server-side 

event handlers. The HTMLB event manager will return details about the Portal 

event. The key here is to look for any event name called portalEvent. 

DATA: event TYPE REF TO if_htmlb_data. 

event = cl_htmlb_manager=>get_event_ex( 

runtime->server->request ). 

IF event IS BOUND. 

IF event->event_name EQ 'portalEvent'. 

event_dataobject = event->event_server_name. 

event sourceid = event->event defined. 

SPLIT event->event id AT ': I 

INTO event_namespace event_name. 

ENDIF. 

ENDIF. 

SAP does not supply a BSP extension element for raising a portal event since this 

would not make sense. All you really need is the JavaScript function that exposes 

this functionality from the portal. All the necessary JavaSeript functions are ren­

dered out by the method CL_HTTP_EXT_BSP_HTMLB->EVENTS_JS and included 

in your application automatically. 

This means that all you will have to code is the call to the JavaScript function por­

talFireEvent. This call to a JavaScript function can be added to any existing BSP 

extension element that supports an onClientClick attribute. 

For instance, you might create an <htmlb: button> and in the onClientClick 

attribute place the call to the required JavaScript function. I<eep in mind that this 

JavaScript executes from the client browser not the SAP server. Therefore, any 

data that you wish to pass along to the event must be accessed via JavaScript and 

the browser. 

This example code demonstrates the possibility of raising a portal event from BSP 

through the press of an <html b: button>. It also shows how to pass data from an 

<htmlb: inputField> into the event. 

ssP Library 271 



<htmlb:inputField id = "bookTitle" 
value = "BSP for Fun and Profit" I> 

<htmlb:button id = "fireBuyBook" 
text = "Buy Book" 

onClientClick = "portalFireEvent ( 'myBooksEvents' . 
'fireBuy' :document.getElementById('bookTitle'). 

value) ;" I> 

Portal Navigation 

If you choose to create an iView using BSP that must control navigation to sepa­
rate content within the portal, whether that addition content is SSP or not, you 

can do this through another set of SSP-extension elements. The elements 

<bsp:portaINavigationAbso~ute>, <bsp:portaINavigationRelative>, 
and <bsp:portaINavigationToOhject> expose the critical navigation APls of 

the EPCF. 

<bsp :portaIKavigationAbsolute> requires that you specify the full path 
name of the component that you are calling using the attribute navigationTar­

get. 

The attribute navigationl1ode has three possible values SHOW_INPLACE, SHOW_ 

EXTERNAL, and SHOW_EXTERNAL_PORTAL with SHOW_INPLACE being the default 

value. SHOW_INPLACE's actual outcome depends upon the setting in the Portal 
WorkProteet feature. Depending upon the value of the dirty indicator in the Work­

Protect, the new content is either opened in a new window or on the current por­

tal desktop. SHOW_EXTERI':AL always opens the target in a new window that has 

no Portal header or navigation bar. SHOW_EXTERNAL_PORTAL does just the oppo­
site. It opens the target in a new window, but with the Portal header and naviga­

tion bar. 

The attribute windowFeatures allows you to control the look-and-feel of the 
new window ifthe content is to be opened that way. This attribute should receive 

its values via a comma-separated list with no blank. The syntax of these values 

should match that of the JavaScript method wi nc ow. open. 

With the attribute windowName, you can specify a window title if the content is to 

be opened in a new window. 

The attribute historyl1ode has three possible values: ALLOW_DUPLICATIONS, NO_ 
DUPLICATIONS, and NO_HISTORY. The value NO_HISTORY is the default value. 

272 Additional SSP Extensions 

The attribute targetTitIe will set the title for the page title bar. However, if the 
navigation target is sent through an integrator, the title will then be the integrator 
tile. 

Soth the businessParameters and the launcherParameters attributes allow 
you to specify URL parameters for the navigation target. These Name/Value pairs 
will simply be appended to the end of the navigationTarget URL. 

With the element <bsp: portalNavigationlelativ e>, you can specify a navi­
gation target relative to the location of the current navigation node. This element 

supports the same basic attributes as the absolute navigation element. It does 
have three addition attributes used to determine the absolute navigation path 
from the relative one. 

The baseURL attribute specifies your starting point- in other words, the current 
node URL. The levelsUp attribute allows you to specify the number of hierarchy 

levels to step up through. This attribute only accepts integers. Finally, we have the 
pathList attribute. In this attribute you can supply all the names ofthe children 
nodes relative to the node that you want to navigate to. 

Object-based navigation, using the element <bsp : portalNavigationTo­

01j ect >, takes a completely different approach from that of the other navigation 

elements we have already looked at. This element allows for navigation based 
upon the business object in your back-end system. These business objects must 

be exposed to the portal via iView :'.mplementers. With this functionality, you are 

not required to know the technical URL for your navigation target, just some 
identifying metadata about it. 

The attribute system allows you to specify a system alias that has been pre-con­
figured in the portal. This will be the business-application system that houses the 
business object you wish to call. 

The obj ectType attribute specifies the business object name that you need to 
navigate to. If your business object has more than one method that can be exe­
cuted, you can pick the one you want with the operation attribute. 

The objectValue attribute represents any data that needs to be sent to the nav­
igation target. The objectValue and the businessFarameters attribute will be 
added to the navigation target as URL parameters. 

SSP Library 273 



13 M VC- Model View Controller 

As you begin to develop largeSSP applications, you may find you need 
a better organizational structure for the application components than 

simple SSP pages can provide. The Model View Controller design 
approach is the answer to that problem. 

13.1 MVC Design Paradigm 

Model View Controller (MVC) is not a specific technology, nor is it unique to the 

SAP, ABAP, or the BSP environments. MVC is a design pattern or paradigm that, 

like so many modern programming techniques and technologies, originated from 

the Smalltalk programming language. 

The core concept of MVC is the separation and encapsulation of the three major 

components of an application. The model component represents all application 

data and the logic necessary to retrieve or manipulate that data. The view is the 

visual representation of this data, generally regarded as the user-interface layer. 

Finally the controller houses the logic that affects the program flow. It is respon­

sible for responding to events and user input and for dispatching the resulting 

changes to the view or the model. 

Not only does MVC offer a clean organizational structure, but by separating the 

sections logically it creates better maintenance opportunities. Because the layers 

of MVC are separated the way they are, you can make changes to the user inter­

face without having to touch or see the coding of your business logic. Of course 

the opposite is true as well, in that alterations to the business logic can be iso­

lated. Theoretically, this should also reduce the amount of testing needed as 

changes are made. 

So far nothing discussed about MVC is specific to Web development. Both the 

traditional Microsoft Foundation Classes and the Java Swing Library are based 

upon MVC. However, the difficulties of managing large modern Web applications 

have pushed MVC into the spotlight and made the design pattern nearly synony­

mous with Web development. Some of the more popular Web development 

frameworks outside of the SAP environment, such as JavaServer Faces, Jakarta 

Struts, and Ruby on Rails, heavily support MVC. 

13.2 Application Structure 

The BSP implementation of MVC relies heavily upon the concepts of ABAP object 

t' orientation. If you have never taken the time to get really comfortable with some

1_ MVC-Model View Controller 275 



~ 
ric ~ 

of the more advanced topics of ABAP 00, such as inheritance and polymorphism, 

now is the time to do so. MVC is likely to push your 00 skills to a whole new 

level. 

The model implementation is so decoupled from the rest of the MVC framework 

within BSP that you do not even SE:e the model objects within the navigation tree 

of the ABAP Workbench. Within a BSP application node in the navigation tree, 

only controllers, views, pages with flow logic, and multipurpose Internet mail 

extensions (MIMEs) are displayed. As you become serious about MVC BSP devel­

opment, you find yourself switching the view that you use within the Workbench 

Navigator from BSP application to package. 

Grouping a BSP application and all its implementing classes together into one 

package is the only way to get the complete view to all the objects within the 

workbench navigator. In Figure 13.1, you can see that by working at the package 

level we have quick accessto and visibility of the underlying controller classes, the 

application class, the model class, and all the inherent BSP application compo­

nents. 

IPackage ~~I 

IZE_BCfAO_OO_U18 [.,..[,&:J 

~~I~II~T{iillnG111~ 
'amed Name ""~ciqijjOii'{/" ·<·,·.•t'·;y>S'~'." .. ill 
;07 D ZE_BC640_00_U18 . . 640 Del:> T",ining 'UQ~ lBBSP MVC(Model ~; 

-~~~~~bs~~§~: __•..._.. ~:". ·-·~~~·.:===~=;;-:2··;;~·;:~2:i~ ·Jr 
~ D ZCL,BC640,OO,U18,BSPJTRL_CLNT rcntroter class for ze,bc640,OO,ex2 .' 

.[) D ZCL:_BC640_00~U18_asp_CTRl_DEF ControJler Class for·ze~bc640_00_ex2. ": ~> 

~ D ZCL,BCf>41COO,U1B,BSP,EX2 . BCf>4Q: 640 Delta T",ining: BSP Aoojcatcn Clas' 

~ D ZCL,BC640_00.U18,BSP~M . BC640: 640 Dalta Traninqi Model Classfor BSP; 

-~?-9~E5j~j~pl~ti~~i_=--=-.=.=;__2==E~:::L==::.. _'-:::~=~,~ •.:·::.df 
I~ D ze.",.bc64Q=_~~~~ ._-,~.~..BC64C!~_~O D.~~ TlGining'_I?~_~.~ APPIi~tio.n~f
 
~ 'V D Controller ~
 

dent_info.do BC640: 640 Delta Training: SSP &2. r--1VC - die 1,
 
default.do 8e640: 640 DeltaTraninq: 8SPEx. 2: DefaultF~
 

v 6l Views t
 
D default.bsp 8C540: 640 Delta Training:8SP Ex. 2: Default ,1
 

dev_cIient.bsp 8C540: 640 Delta Training: asp Ex.2: MVC - De
 

_~_,--",-,_, __ -, <__ ~~.~!.-:~~_~~~_~ ~.__A<;""7--,-~.~.-~E~~: ~2_.~_e,..~..T~i.~~g~~_~~_~_2~~'~~~-'o~_~j 

Figure 13.1 Package View of an Entire MVC SSP Application 

13.2.1 Model 

The model object IS represented directly by a Single ABAP Class that inherits from 

CL_BSLMODEL. The ABAP workbench and the BSP design tools do not really have 

aspects specific to the model object. To create a model, you create a class in the 

workbench just as you would any other class, setting the inheritance from CL_ 

BSLMODEL manually. 

276 MVC-Model View controller 

For now, we will keep our example very simple. We will use our model class as 

our container for our business data and logic. Later, we will look at the more 

advanced techniques possible with MVC, such as the model binding and get­

ter/setter methods. 

We start our example by creating a normal ABAP class that inherits from CL_BSL 

MODEL. We will then expose our business data directly from the model class by 

creating public instance attributes. For this example we will have two attributes. 

The first is an internal table called ISFLIGHT with all fields from the database table 

SFLIGHT. This attribute will be displayed later in an <html b :tableView>. The 

second attribute, called CARRID, will be used later in an <h'tm.lb : dropDownList· 

Box> to narrow the selection of data from SFLIGHT. 

I~~~~~IIT !~:sta:~l~u~~:~ ~ Ewe i~~~~~,:ABl ~GHT Internal toblel 

Figure 13.2 Model Class Attributes 

While in our model, we will add one public instance method called READ_ 

SFLIGHT that will select the data from the database with the selection criteria of 

CARRID. 

METHOD read_sflight. 

SELECT * FROM sflight 

INTO TABLE isflight 

WHERE carrid = carrid. 

ENDMETHOD. 

13.2.2 Controller 

The controller is represented in BSP as two separate entities. First, you have the 

controller object that is part of your BSP application. The controller object con­

tains the attributes of the controller, such as statefullstateless, caching, compres­

sion, HTIPS, etc. This is also the only object within MVC that is addressable via 

URL. It is this controller object, and its name that for navigation is the equal to the 

standard BSP page. 

Controller Active r 

Descnpt'on ISimple MVCExample 

Controller Class IYCL_BSP_ GIRL_BOOK_SIMPLE 

Figure 13.3 Controller Object 

Application Structure 277 



The controller object definition also lists the name of a controller class, however.
 
This ABAP class is actually the heart of the controller logic. This is where all the
 
ABAP code for implementing the many controller responsibilities will reside. Cre­


ating this class is a little simpler than creating your model was. You can just type
 
in the name you want to give the class in the controller object screen. When you
 
double click on the class name Dr save the controller, a class with the proper
 

inheritance will be generated for you.
 

Controllers should inherit from the class CL_BSP_CONTROLLER2. This is the inher­

ited class that will be used by default in the automatic generation of controller
 

classes.
 

You may find after a little time developing MVC that you are writing a lot of the
 

same code Within your controller. Different development groups will often come
 
up with their own internal standards and ways of doing such tasks as event han­


dling or model initialization. This is the perfect opportunity to use the 00 struc­

ture of MVC to its maximum. Do not be afraid to create your own framework of
 
controller classes that inherit from CL_BSP_CONTROLLER2. You can easily change
 

the generated inheritance on the controller class to use any such controller frame­

work you like, as long as CL_BSLCONTROLLER2 is in the inheritance hierarchy.
 

Controller Methods 

At first, you might be overwhelmed by the sheer number of inherited methods 
and attributes within your new controller class. Do not worry. Many of these 
methods are internal to the processing of the controller. There are also a few 

methods supplied to help with your processing of code. 

Let us instead focus on some of the methods that address the flow logic of the 

controller. There are several methods whose purpose corresponds to the event 
handlers of your traditional BSP page. These methods are delivered empty 
through inheritance, but with the correct interfaces. The MVC runtime will call 
the correct method for the event at hand. Yourjob is to redefine the methods for 

the events that you want to add coding for. 

Redefinition is done via the	 ABAP Class Builder. You must select the inherited 

method you wish to add coding to and then hit the redefinition icon. 

So, how do these controller methods match up to the event handlers that you are 

probably already familiar with from BSP pages? The OnCreate and OnIni t i al i : 

zation event handlers have direct replacements in the form of methods DO_I1HT 

and DO_INITATTRIBUTES respectively. 

278 MVC-Model View Controller 

Figure 13.4 Redefinition of Controller Methods 

The OnRequest, OnInputProcessing, OnLayout, and OnManipulation page 
event handlers all map more or less onto the single controller method DO_ 

REQUEST. This controller method, DO __REQUEST, is very important because it is 

responsible for the main flow of input and output. Let us look at the following 
sample controller DO_REQUEST method to demonstrate this. 

data: view type ref to	 if_bsp_page. 
dispatch_input ( ). 

if is_navigation_requested( ) is not initial. 
return. 

endif. 

view = create_view( view_name = 'book_mvc_simple.htm' ). 
call_view( view ). 

The processing starts with a call to the controller method dispatch_input. This 

internal method triggers all the input processing. It is responsible for performing 

any input-data binding and triggering of input events. It also calls three more con­

troller methods that can be redefined to add code to the input processing. 

The first method that it will call is the DO_HANDLE_DATA. This method is charged 

with retrieving data from the input event. If left with its default coding, it will 

automatically map all input form fields into their corresponding model attributes 
(this is the input part of model binding). 

More complex operations also can be performed here. Perhaps you also have 

input elements that do not support model binding, and you want to retrieve their 

values as well. The fact that this method has an input parameter, FORM_FIELDS, 

that is an internal table of input form fields, makes this process very simple. How­

ever if you redefine this method and you also want to support data binding as 
well, remember to include the call to the super-class in your redefined code. 

super->do_handle_data(	 form_fields = form_fields 

global_messages = global_messages ). 

The next method called is DO__HANDLE_EVENT. This is the method that you can 

redefine in order to program event handling. To help you with your event-han-

Application Structure 279 



dling coding, this method already has input parameters such as HTMLB_EVENT_EX 

of type U"_HTMLB_DATA, which has the details about the incoming event. This 

saves the developer from having to code to get this information, as he or she 

would have to do in the classic BSP page event handler. 

The final method is DO_FINISH~INPUT. This method is mainly used when you 

have a set of nested controllers. The controller handling the current event can set 

the GLOBAL_EVENT attribute during the DO_HANDLE_EVENT method. This 

GLOBAL_EVENT will then be passed into any sub-controllers so that they can react 

to this event as well. 

Getting back to the processing in the DO_REQUEST method, we can see that after 

we return from the inner call to DISPATCH_INPUT; there is a check to see if navi­

gation was requested within the event handling. If a navigation redirection was 

already set, there is no reason to continue with the navigation logic within this 

controller. 

Assuming that we do continue with the navigation logic, you can see that the 

controller initializes an instance of the view that it will navigate to and performs 

the navigation with the CALL_VIEW method. This example was a rather simple 1:1 

controller to view relationship. However, in complex real world applications, you 

often have multiple views that can be called from a Single controller. For instance, 

you might have different views depending whether you are in create, change, or 

display mode in your application. 

Model Lifetime 

So far we have seen how the controller is responsible for the flow of logic and 

data from input to output. However, the controller has another major mission. It 

is responsible for the model object's instantiation and lifetime. 

After the controller creates one or more model instances, it keeps track of them 

internally as attributes. Because of the way the model instances are tracked and 

used automatically during controller input processing, MVC is generally used only 

in stateful applications. This way the model instance is retained within the con­

troller classthrough the lifetime of the application. This does not mean that state­

less MVC is not possible within BSP. Stateless MVC simply requires some special 

techniques to restore any model instances at the correct point in time. Later in 

this chapter, we will look at these techniques. For now, we will keep with our sim­

ple example that is stateful. 

This listing of models is kept in the protected attribute M_HODELS. There are public 

methods, SET_MODEL, CREATE_MODEL, DELETE_MODEL, and GET_MODEL, of the 

controller that allow for manipulation of this list of models. 

For this example, we will want easy access to the model instance within the con­

troller logic as well. The model references in the H_MODELS attribute are stored as 

references to the super-class CL_BSP_MODEL. In order to work with our specific 

model implementation, we must be able to cast the reference into our exact class 

type. Therefore we will create a single private attribute called MODEL of TYPE REF 

TO YCLBSP_MODEL_BOOK_SIMPLE that will be easily available for this casting 

operation. This action of casting between generic and specific object implemen­

tations is referred to as polymorphism. 

For the creation of the model instance we now will redefine the coding of the 

controller method DO_INIT. Remember that this method corresponds to our 

OnCreate event handler in BSP page processing. Therefore, it is only called once 

for a stateful application. 

We will accomplish several things with the logiC given below. With the single call 

to CREATE_MODEL, we manage to create the instance of our model class. We also 

place a reference to this instance into our M_MODELS attribute under the ID "MS". 

We can use this id to refer to this exact instance in calls to the other controller's 

method manipulation. Finally, we also place a reference into our model attribute 

for easy access to the specific implementation of this single model. 

METHOD do_init. 

IF model IS INITIAL. 

model 7= create_model( model_id = 'MS' 

class_name 'YCL__BSP_MODEL_BOOK_SIMPLE 1 ). 

ENDIF. 

ENDMETHOD. 

Eventing 

Although the process of responding to events within the controller is relatively 

unchanged from the same processing in BSP page event handlers, it is interesting 

to study how we can use some of the additional functionality within the control­

ler to save ourselves time. 

The main difference within the controller is that that we do not have to make the 

call to CL_HTMLB_MANAGER=>GET_EVENT_EX. One of the attributes passed into 

DO_HANDLE_EVENT is an object of type iLhtmlb_data. For more details on this 

f
t object and how to use it for HTMLB eventing, see Section 9.2. 

l For this Simple example, we need to respond to the input event on the drop 

down list box and load the new corresponding data. 

t 
I 

Application Structure 281 
280 MVC-Model View Controller _.~_. 



METHOD do_handle_event.
 
CHECK event IS NOT INITIAL.
 
IF htmlb event ex->event_name
 

htmlb~events=>dropdownlistbox 

AND htmlb_event_ex->event_type =
 
htmlb_events=>dropdownlistbox_select.
 

model->read_sflight( ).
 

ENDIF .
 
ENDMETHOD.
 

Subcontrollers and Components 

For large, complex applications even breaking your application into a single con­

troller with multiple views really is not enough granularity. For these applications 

you can create components-a nesting of a single high level controller and one or 

more subcontrollers. 

It is important to note that the very powerful and important DISPATCH_INPUT 
method only needs to be called from within the DO_REQUEST method of the high­

est level controller. The MVC framework coding will make sure that the corre­

sponding methods in all the subcontrollers will be called correctly. This simple 

approach allows for nesting of event handlers within the controller hierarchy. 

This nesting of controllers can be created using two different methods. The first 

approach is to create the sub controller with ABAP coding from within the highest 

level controller. This is done with a call to the controller method CREATE_CONT­

ROLLER. 

In this example we will create a subcontroller and send it our current model 

instance to be its model as well. 

DATA: model TYPE REF TO zcl_bsp_m_doc_srch_list.
 

DATA: docdetails TYPE REF TO cl_bsp_controller2.
 

model ?= create_model(
 
class~name = 'zcl_bsp_m_doc_srch_list' 

model_id = 'ml' ). 
docdetails ?= create_controller(
 

controller_name = 'docdetails.do'
 

controller_id = 'dd' ).
 
docdetails->set_model(	 model_id = 'ml'
 

model_instance = model ).
 

The other way to create a subcontroller is from the view coding. 

282 MVC-Model View Controller 

I
 

._-,~... 

Similar to the way a controller keeps a listing of all methods under its influence, a
 

listing is made of all subcontrollers. We can do this using the special BSP exten­


sion element <bsp : call>. This approach is particularly useful when creating tab­


strips. It seems logical to use subcontrollers to represent the inner content of each
 

tab. This also allows you greater dynamic flexibility for your tab content and
 

enables you to separate the event handling of each tab.
 

<phtmlb:containerTabStrip id = "TabStripUpdatel"
 

selectedIndex = "<%= model->SELECTED tab %>" >
 
<phtmlb:containerTabStripItem id ~ "Tl"
 

title = "Basic Data" >
 
<phtmlb:containerContentItem I>
 

<bsp:call urI = "header form.do"
 
comp_id = "hd" I>
 

</phtmlb:containerContentItem>
 
</phtmlb:containerTabStripItem>
 
<phtmlb:containerTabStripItem id = "T2"
 

title = "Materials" > 
<phtmlb:containerContentItem > 

<bsp:call urI = "materials form.do" 
comp_id = "mt" I> 

</phtmlb:containerContentItem> 

</phtmlb:containerTabStripItem> 
</phtmlb:containerTabStrip> 

Subcontrollers can also be dynamically activated and deactivated so that process­

ing does not have to pass through them unnecessarily. This is an efficient way to 

handle hidden or out-of-scope subcontrollers. The controller method 

CONTROLLER_SET_ACTIVE allows for this control. 

The folloWing code would deactivate the subcontroller that we created in the first 

example. 

controller_set_active(	 controller_id = 'dd'
 

active = 0 ).
 

13.2.3 View 

Of the three parts that make up Model View Controller, the view is probably the 

area where developers accustomed to BSP pages will feel the most at home. 

The view is very much like the BSP page. Working with the presentation logic is 

exactly the same in the view as from the page. The main difference you will notice 

Application Structure 283 



is the lack of interface for coding any event handlers Of course all of this logic is 

replaced by the methods within the controller that we have already discussed. 

Another important aspect to keep in mind is that the view is not an object than 

can be add ressed via a URL. Views are constructs that have no meaning to the cli­

ent browser. Only the controller .can be addressed by the client browser. 

However, views can still have attributes similar to the page attributes. All of these 

attributes must be mapped in via the controller. The most common attribute to fill 

on a view is a reference to the model class. This model attribute is necessary to 

have within the view for model binding. Let us change the coding of the control­

ler in our example to pass in the model instance through an attribute to our view. 

view = create_view( view_name = 'book_mvc_simple.htm' ). 

view->set_attribute( name = 'MYMODEL' 
value = model ). 

call_view( view). 

13.3 Model Binding 
Model binding is an important benefit, yet a part of MVC that many people often 

overlook. Model binding reduces the amount and complexity of the coding in 

your typical application; thereby lowering the cost of development and mainte­

nance. 

The work done by binding is twofold. First, when you bind model attributes to 

SSP extension elements, metadata about the objects is automatically read from 

the binding. For instance, when you bind an attribute to an <htmlb: label>, you 

do not have to supply the label text. If available, the language-specific text will be 

pulled automatically from the data-dictionary definition of the attribute that the 

element is bound to. 

The second reason for binding is the automatic transfer of input and output values 

between model attributes and elements and their form fields. No longer in input 

processing do you have to map values back from the http form fields. All this logic 

is performed for you by the MVC runtime and proper placement of the 

DISPATCH_INPUT controller method. 

Figure 13.5 shows the definition of the mymodel view attribute. This view 

attribute connects the model instance from the controller to the view. 

<phtmlb:matrix width="lOO%" > 

<phtmlb:matrixCell/> 
<htmlb :1abel for=" II mymodell car rid " I> 

284 MVC-Model View controller 

Figure 13.5 MVC-View Attributes 

In this example, we supply very few attributes for the <htmlb: label> or 

<htmlb: dropdownListBox>. No text is supplied for label, nor do we have an 

internal table of possible values for the drop down list box. Yet we are able to pro­

duce the application interface shown in Figure 13.6. 

IAirline t Luftharrsa i7'61
 
American Airlines
 
Air Berlin
 
A ir Canada
 

L Ai~ France
 
____ Alitalia
 
\ 068 [L Britis:h Airways


Q:88TL ContJnen~al Airlines.

j 

088-t--L=Airlines 

Figure 13.6 Model Binding Example 

t 

:l
"~.L__ 

You might be wondering about the strange values that were placed in the 

attributes for, helpValues, etc. Instead of directly passing a reference to the 

model attribute, we need to use a special binding string. 

These strings have several different formats in order to address single attributes, 

fields within structures, and fields within an internal table. 

Model Binding 285 

<htmlb:dropdownListBox	 helpValues 
selection 
onSelect 

<phtmlb:matrixCell row="+l" I> 
<htmlb:tableView id = 

visibleRowCount "1011 

"1Imymodel/carrid" 
"1Imymodel/carrid" 
"Submit" I> 

"tbll" 

table "1Imymodel/isflight" I> 
</phtmlb:matrix> 



- --

The most basic form of the binding string points to a single attribute. It consists of 
the model class identifier followed by the model attribute name. The string 
I Imymocell car rid represents a view attribute named model that is a valid ref­

erence to your model instance. This is followed by car rid, the name of the 

attribute within the model. 

In complex applications, you would not want to create attributes in your class for 
every field in a large structure. You can avoid this by binding to single elements 
within a structure as well. For example, let us say we defined a work area called 
wa_sfEght as an attribute in our model class to hold one selected record from 
our isflight internal table. We could bind to the car rid element of this struc­

ture with the following binding string. 

IIQodel/wa_sflight.carrid 

The final variation of the binding string is the one required for processing internal 

tables. Naturally, we would need a way to bind to a particular row and a particular 
element within an internal table. Let us now change the binding string of our 

example to point to row 5 of the isflight table, element carrid. 

I Imodel! isflight [5] . carrid 

The entire possible syntax for binding strings can be represented by the following 

syntax: 

" " column"II" model_name "!,, attibute [ "r" row"]" 

13.3.1 Getter/Setter methods 

Another nice advantage to using model binding is the ability to create getter and 
setter methods in your model class. These methods will be automatically fired by 
the MVC runtime during input and output binding and during the retrieval of 

metadata. 

Providing these override methods gives developers the opportunity to code their 
own methods for the input and output model binding. But equally important are 
the special metadata getters. They are called during the retrieval of any metadata, 
such as field length and data type, as part of the MVC process. Later in Chapter 
18, we will see the incredible power of MVC and custom getter/setters as we 

build a BSP version of SELECT -OPTIONS. 

Because these methods are called dynamically by the runtime, it is important that 
their parameter Interface matches what is expected. Therefore, you should always 
copy your methods from the templates that SAP provides as part of the interface 

IF_BSP_MODEL_SETTER_GETT3R. 

286 MVC-Model View Controller 

The templates for metadata getters are: 

~ _GET_M_S_XYZ for structures 

~ _GET_M_T_XYZ for tables 

~ _GET_M_XYZ for simple attributes 

The templates for getters are: 

~ GET S xrz for structures 

~ _GELT_Xn for tables 

~ _GET_XYZ for simple attributes 

The templates for setters are: 

~ _SET_S_XYZ for structures 

~ _SET_T_XYZ for tables 

~ _GET_XY7. for simple attributes 

When you copy the method, you must rename it so that the naming will match 

the name of the attribute you creating it for. The xn in each of the template 
names must be replaced with the name of the attribute. Also you remove the 
leading underscore. Therefore to create a metadata getter for our attribute CAR­

RID, we would copy _GE'::'_M_XYZ and rename it GET_M_CARRID. 

The following is a sample implementation of the model getter GET_M_CARRID. In 

this example, we will override the English label text that is determined by default. 
Ina more complex situation, you might even decide to use your own metadata class 

that inherits from CL_BSLMETADATA_SIMPLE. You then could redefine methods 
such as the GET3ALUELIST to provide your own application-specific logic. 

DATA: I_field ref TYPE REF TO data, 
l_dfies_wa TYPE dfies, 

l_rtti_elem TYPE REF TO cl_abap_elemdescr. 

l_field_ref = if_bsp_mDdel_binding-ge~_attribute_data_ref( 

attribute_path = attribute_path ). 
l_r~ti_elem 7= cl_abap_elemdescr=>describe_by_data_ref( 

I fielLref ). 

l_d:ies_wa = l_rtti_elem->get_ddic_field( ). 
IF l_dfies_wa-Iangu = 'E'. 

I dfies_wa scrtext_m ~ 'Override Text'. 

ENDIF. 
CREATE OBJECT metadata TYPE cl_bsp_metadata_simple 

EXPORTING info = I dfies_wa. 

Model Binding 287 



13.4 Dynamic Model Binding 

We have already seen how powerful data binding can be. Besides the benefits 

already put forward for using it, data binding really shines when it comes to cre­

ating dynamic UI elements. 

For an example of the power of the dynamic model binding, let us examine a sit­

uation that would be very difficult to reproduce in classic ABAP dynpro. We will 

start with a structure that represents a reduced number of fields in a database 

table. We want to expose each one of these fields as individual input fields with 

their own labels. 

Of course we could manually design the UI for our structure, creating each indi­

vidual element by hand. This could become time consuming depending upon the 

size of the structure at question. Also every time we add or remove fields from the 

structure, we have to return to the user interface and adjust it as well. 

Would it not be much simpler if we could just supply the data object for the 

structure to the user interface and let it dynamically build all the necessary input 

fields, with metadata pulled from the structure and automatic field-input 

retrieval? Well, that is exactly what model binding makes possible. 

We will start this example by creating a structure that is a subset of the fields in 

the table SFLIGHT. For now, we will throw out MANDT and all the fields that break 

down first classand business class. Our structure leaves us with about three-quar­

ters of the original fields. 

,~tructure !YBSP SET.IGHT LITE, -,-,-" ,-,-,-,IActNe
 

IShort Text IReduced Version of the SFLlGHT Table
 

\;;Atthbut~*"I1@@4-.)rit y1ie~idle'd< ,i, '~;;;;Wfquiintit';'ffi,Wi;~ I 
I , 

[I »i1~1~1~11BJ 1>:7/I1illE=]il.1 Predefined Type I 1 I 9 I 
I Icomponent [RT Icomponent IDatil Type ILength IDoom IShort Text I 

II	 ~ARRID ~l:L~ CARR ID _~_--l__1 0ttrhno Code i 
<:<)I~iI~ __LQJS_c:~~~2D__ ~i_~~IF'9ht Connection ~~__ J 
FLDATE i 0 '5 DATE =,~o]FiQht date t,iDllS 

PRICE i 0 :5 PRICE F= __l...:..:..:sL 2lAirfarei 
CtmPl:NCY--TE5l5"cORRCODE leITKY !_ si ----o]Local currencyofairline [ 

;;LAJ,f.T·{PE '0 is PLA!{ErtE iCH.~ i l~lAirCldft Type ! 

II ~!AT'S}~X- ----@Js- SEAI5Kil-X fINT4-~-~I-lOf-'-oJM~u~;~-tty In eCDnOmj class l 
1' S£ATSOCC : 0 is SEAISOCC 'INT4 I 101 0iOccupied se<lts in economy class 

PA-n1EiITSill!! 0 's SUM ,= ! 171 2!Tobl of current bookings .--l 
.•-..-.....".".;~ ...........
1 . ,-",,____ -' ,_t,~---,~~,- ·~-,-;-.'··==-.:;o-~ __~,_;:o:,c,~=,-~_._~ ~-;c;;_~_~.__ 

Figure 13.7 Reduced SFLlGHT Structure 

288 MVC-Model View Controller 

From here on we will keep everything as dynamic as possible so that if we want 

to extend our user interface, all we have to do is add or remove fields from this 

YBSP_SFLIGHT_LITE structure. Our model class will have a public attribute of 

type of the structure we just created. It also will have the logic to select a single 

record from the database table SFLIGHT for the corresponding fields of this 
attribute. 

Inside of our view, we are ready to start our dynamic element creation. The first 

thing we will need to do is retrieve a listing of the fields in our structure using the 
ABAP Runtime Type Services or RITS. 

DATA: descriptor TYPE REF TO cl_abap_structdescr. 
descriptor ?= cl_abap_structdescr=>describe_by_data( 

model~>isflight ). 
DATA: flddescr TYPE ddfields. 

flddescr = descriptor->get_ddic_field_list( ).

I Now, we are going to be able to loop through our field listing and create a label 

and input field for each entry. What we would like to do is just build our bindingf 
string into a variable and give that variable to the BSP elements. However, when 

working within pages or views, BSP elements do not expose separate attributes 

for the bound and unbound values. Therefore, if we send a dynamic binding 

string into a BSP element attribute as a variable, it will incorrectly interpret that 

action. The element will assume that we are taking the value directly from the 
variable instead of trying to read it as a binding string. 

One might also think that completing the binding string dynamically, as in the fol" 
lowing example, would also be possible. 

<htmlb:label 

for="llmodel.isflight.<%= <wa_field>-fieldname %>" I> 

By design the BSP runtime can not identify this example as a direct value assign­

ment. Effectively for each attribute X that can also be bound, we have an addi­

tional _X attribute that is the binding string, If you look at for example the 

<htmlb :tableView>, you find that the table attribute is a REF TO DATA, and it 
is not possible to write a binding string into this attribute, 

f 

This is the reason why we have both X and _X for all bindabie attributes. So in the 

normal writing of <lib: tag INT = "I Imodel! ... "I> already the compiler 

must make a very hard decision to generate code of the form o->x = string, 
Where ABAP move semantics will do a string to integer conversion, or o->_x = 
string, where we want to save the binding string. This is the reason why binding 

strings are enforced to be static, so that compiler can do its magic. Of course, 

Dynamic Model Binding 289 



once you want to do dynamic binding, you must also assume the role of the com­

piler and then must know about this additional complexity. 

If you create the BSP element directly via the ABAP class, the separate X and _X 

attributes are exposed for unbound and bound values. For instance, in the 

<htmlb: label> the tmplernenting class, CL_HTMLB_LABEL, has two attributes­

for and _for. The attribute that will expect a binding string always comes with 

the underscore. 

Within our view we will now generate the BSP elements directly via code much as 

we did when creating a composite BSP element (see Chapter 11). We can then 

render the BSP element using its factory method and output that element via the 

<bsp: bee> element. 

<% data: descriptor type ref to CL_ABAP_STRUCTDESCR.
 

descriptor ?= CL_ABAP_STRUCTDESCR=>describe_by_data(
 

model->isflight ).
 

data: flddescr type DDFIELDS.
 
flddescr = descriptor->GET_DDIC_FIELD_LIST( ).
 

field-symbols: <wa_field> like line of flddescr.
 

data: label type ref to cl_htmlb_label.
 

data: input type ref to CL_HTMLB_INPUTFIELD.
 

data: binding_string type string.
 

loop at flddescr assigning <Wa field>.
 

clear label. 

clear input. 
concatenate 'Ilmodel/isflight. I <wa field>-FIELDNAME 

into binding_string. 
label ?= cl_htmlb_label=>factory( _for = binding_string) . 

input ?= cl_htmlb_inputfield=>factory( 

_value = binding_string ). %> 

We will use the flexibility of the <phtmlb: matrix> to support our dynamic user 

interface.
 

"TOP" I>
<phtmlb:matrixCell row = "+1" vAlign
 

<bsp:bee bee="<%= label %>" I>
 
"TOP" I><phtmlb:matrixCell col = "+1" vAlign
 

<bsp:bee bee="<%= input %>" I>
 

With only a handful of lines of code, we have generated our nine fields from our 

simplified SFLIGHT structure. Moreover, the same number of lines of code could 

have just as easily created 90 input fields and their labels. And the same code 

290 MVC-Model View Controller 

works for different structures, making it the typical type of code to integrate into 

a new tag for automatic form layout! 

I Airline ~ 
I FlightNumber ~ 
I Date Ifili7I2GG4 ilii'ill 
JAirfare I 42294] 

IAirlineCurrency ~ 
I Plane Type 1747-4GD I 
I Max capacity econ. I 3351 

I occupied econ. I 3741 
III Tot.1 i 92,'.24:¥j 

Figure 13.8 Dynamic Model Binding Output 

13.5 Stateless MVC 

SAP's implementation of MVC is designed to be used within stateful applications. 

There are two inherent assumptions made that require a stateful application. The 

first is the assumption that the model class itself will persist between 

request/response events. If you must recreate your model instance during every 

event, any data retrieval or manipulation must be repeated before the input data 

binding to ensure consistency. 

This is complicated by the second assumption: that the controller class instance 

will also persist. The controller class contains the table of references to all of its 

models and is responsible for triggering the model binding. In a stateless applica­

tion, all models would have to be reset into the controller before binding 

occu rred. 

These difficulties can be overcome, as can the general inefficiencies that come 

from having to reread and reprocess the same data over and over. 

The goal is to create a situation where our model-class instance, which should 

contain all of our business data, persists without having to maintain the entire ses­

sion state. This way, we avoid the overhead of the total size of the session state, 

the management of the session state, and the unnecessary re-retrieval of data 

from the underlying business system. In short you end up with the benefits of 

both stateless and stateful applications without the downsides of either. 

13.5.1 XML Serialization of ABAP Objects 

But how best can we accomplish this persistence of the model class? The first 

technology we will look to is the XML serialization of ABAP Objects. The ABAP 

Stateless MVC 291 



runtime has built-in support for the conversion of data and class objects to XML. 

But more important is its ability to restore object instances from these XML rep­

resentations at a later time. This technique allows any object to live on in another 

form even after its in-memory representation has been destroyed. 

In order for an ABAP object to support serialization, it must inherit the interface 

IF_SERIALIZABLE_OBJECT. The normal model-class inheritance, CL_BSP_MODEL, 

does not contain this interface, so you will have to add it manually. 

There are a couple of important aspects to keep in mind when serializing your 

model class. The first is to remember that the constructor method is not called 

when the object is restored. Also, static attributes are ignored during serialization 

and de-serialization. Finally, if you have inner ABAP classes declared as attributes 

of your class, these can be serialized and restored along with your object. How­

ever, for this occur; these inner classes, too, must implement the IF 

SERIALIZABLE_OBJECT interface. 

DATA: ostream TYPE string. 

CALL TRANSFORMATION id
 
SOURCE model = model
 

RESULT xml ostream.
 

Listing 13.1 XML Serialization of a Model Instance 

13.5.2 Server Cookie storage of the XML stream 

Using this XML technique, we can convert the entire object instance to a string 

and then store this string in memory, in the database, or even in the file system of 

the application server. 

Within the context of BSP, however, there is an even simpler approach to storing 

this XML representation of your model class, namely the server cookie. The the­

ory of the server cookie is very similar to that of standard browser cookies; the 

main difference being that server cookies are stored in the back-end database 

instead of within the client's browser. 

Server cookies are tied to the BSP application that created them, as well as being 

user- and session-ID specific. I<eep in mind that even stateless applications will 

still have a unique session ID. 

Server cookies contain expiration times and are cleaned up by the scheduling of 

the ABAP program BSP_CLEAN_UP_SERVER_COOKIES. They also can be viewed 

with the program BSP_SHOW_SERVER_COOKIES. 

cl_bsp_server_side_cookie=>set_server_cookie( 

name = i_name 

application_name = runtime->application_name 

application_namespace = runtime->application_namespace 

username - sy-uname 

session_id = runtime->session_id 

data_name = i_name 

data value = ostream 

expiry_time.Jel = '1200' ). 

Listing 13.2 Server Cookie creation example 

13.5.3 Controller Modifications to Support Serialized Models 

So far, we have not had to make very many changes to the model class to support 

this stateless approach. The simple inclusion of the IF_SERIALIZABLE_OBJECT 

interface has been the extent of the modifications. It appears that it must fall to 

the controller class to be responsible for the saving and proper restoration of the 

model instance before data binding occurs. 

The first thing to consider if you are going to implement this technique is how 

best to reuse the logic for model-class serialization and restoration. It would be 

impractical to code this over and over in each of your controller classes. Instead 

you might want to create your own controller super-class that inherits from CL_ 

BSP_CONTROLLER2. You could then code reusable SAVE_MODEL and READ_MODEL 

methods into your controller framework. 

These methods should be designed with generic processing in mind. For example, 

your SAVE_MODEL method would probably want an input parameter for the 

cookie data name. You would also have an input parameter for your model class 

instances. You can make your method reusable by not specifying the exact type 

reference for your model class. Instead, only specify the type from the inherit­

ance, CL_BSP_MODEL. Using the 00 concept of polymorphism, your more spe­

cific model instance can still be passed into this parameter and processed within. 

i 
,~ ~~ .~~ ~.. ~ ~.~~~~ ~:?d~!_~dS~c~ss.t

t 
u'-"­

Figure 13.9 SAVE_MODEL Method Interface 

Stateless MVC 293
292 MVC-Model View Controller 



Once the serialization logic is written and exposed to the controller class, we are 
ready to concentrate on the model's lifetime within the controller flow. Since we 
want to be able maintain our ability to data bind to the model class, the order in 

which we place our code within the controller class becomes very important. 

The first thing we will want to dois attempt to restore our model instance. If we 

are able to restore the model instance from the server cookie, then we need to re­

initialize it into the controller's listing of models. If, however, we are not able to 
restore the model class, then we might assume that this is the first time this page 

is being called for this session. Therefore we will create the model and run any 

necessary model-initialization methods. 

model 7= read_model( ). 

IF model IS NOT INITIAL.
 
me ).
model-)if_bsp_model~init( id = 'BB' owner 

set_model(	 model_id = 'BB'
 
model instance = model ).
 

ELSE.
 
model 7= create_model( model_id = 'BB'
 

class_name = 'YCL_BSP_M_BOOK_XML_EXP' ).
 

model-)initialize_data( ). 

END IF , 

Once the model is restored, the controller can make the call to its internal 
method DISPATCH_INPUT. It is this method that will trigger all input data binding 

and event handling. Ifour serialization and restoration of the model class was suc­
cessful, then the inner binding and eventing methods should notice no difference 

between a normal stateful model and this stateless one. 

After returning from the DISPATCH_INPUT method, we probably want to take this 
opportunity to save our model instance. This will ensure that new input values 

brought in through data binding or new data retrieved because of an event are 
captured within a new snapshot of our model class. The server cookie will be 

overwritten each time with the new XML representation of our model class. 

I<eep in mind, however, that if you directly change attribute values of your model 
during any view coding, these changes will not be retained unless you force 

another serialization of your model class. Since your view should only contain 
presentation logic, it is always a good idea to avoid such direct manipulation of 

the model class. 

294 MVC-Model View Controller 

13.6 Building a Pattern Engine with MVC 

Employee Self Services (ESS) is one of the hottest new developments in the 

intranet environment. Most companies attempt to streamline processes by having 
employees complete simple administrative processes directly themselves. Typical 
examples are holiday scheduling, address changes, or ordering office supplies. 
These processes are all targeted at occasional use, and must be simple to use. The 
typical approach is to use a fixed pattern that all ESS applications follow, so that 
the casual user will be able to complete the process easily. 

In order to demonstrate bUildinga pattern engine, we would like to write an ESS 

application for holiday/vacation scheduling. First, we will write a pattern engine 
that does all of the generic work and handles the overall layout. Then, we will 
write our small ESS application. 

Note The work presented here does not come from any SAP product. The 
words ESS and pattern engine are used here in a generic way, and do not 
reflect any specific SAP prod uct development work. 

We would like to have the same layout for all our ESS applications, At the top 
should be the title. A roadmap will be used to give an overview of all the steps to 

be followed, plus the current active step. Navigation buttons must be piaced at 
the bottom of the page. All ESS processes will have at a minimum an introduction 

page to explain how to complete the process, the actual work pages, and a save 
page giving a summary of the entered data, plus a final confirmation page. 

I <title> 
,	 I 

~i 
'.	 II

r 

Introduction Overview Entry Save Confirm I 

I <body>	 i 
,	 I 

Ii I~ .PreviousIiNext ~ I i Canceli	 I 
~"""""".;.....="">;;,=,~~",.;;",,~;:::,-~;.;,,,~,~,~~,;;;;;;;;..... 
~~",...,....,..,--,._.~.~._._..~.-.~~-~-~-~-~.__.-._.._­

Figure 13.10 Sample Output of the Pattern Engine 

One might assume that a good approach would be to use a composite element to 

handle the complete layout, wrapped around the body of the ESS application. 
While BSP elements are excellent at handling rendering, they are not appropriate 
for complex logic. In this case, we would have required additional data structures 
to hold configuration information and extra classes to handle events. 

Building a Pattern Engine with MVC 295 



Using a controller has many benefits. The code for the controller is placed in a 

separate class. Adding the controller into a BSP application is just one data entry. 

The same controller can then be used many times within one BSP application. As 

a controller is effectively a normal ABAP class, it is possible to place all the type 

declarations and event handling into this class. Furthermore, it is possible to use 

the same techniques employed in composite elements, in controllers as well. In 

this way, the controller can contain rendering code and is quite capable of pro­

cessing BSP elements. 

For our design, we have one controller that will be the pattern engine. The pat­

tern engine is responsible for handling the complete layout, determining the cur­

rent active step, and displaying it. In addition, the pattern engine will offer a num­

ber of events, mapped onto method calls, to help the ESS application. 

[ p att~ I <title> 
Engine 

1~--fTI----0--{}J-~ 
Entry Save ConfirmIntroduction Ollerview 

> <body> I I 
Pattern
 
Engine
 

Pattern
 
Engine
 

Figure 13.11 Application Breakdown 

The ESS application will comprise a controller that inherits from the pattern 

engine, a model class, and all the views that are required for rendering each step. 

Because the ESS application inherits from the pattern engine, it is very easy to 

complete the configuration data about the pattern and to overwrite any events of 

interest. Furthermore, the ESS application will contain all the business logic. 

The use of a model class is optional. It is used for the ESS application because the 

model binding makes it easier to have the data from the incoming request auto­

matically returned to the model. The model class also handles the conversion 

between internal and external representation. A typical example is the conversion 

of a date from YYYYMMDD into any of the several display versions, such as YYYY­

MM-DD and MM/DD/YYYY 

For each step in the ESS application, one view is written. The view itself will only 

contain the BSP elements that represent that actual ESS step. Everything else will 

be done by the pattern engine. 

296 MVC--Model View Controller 

i 
I 

!~'"'lj c"''''"JIc,oceo 

[2OOi:O~ ---~ 1.•;",'""" •• ,\.; '.-"/'i 
i_-= II, Holiday Booking . . " " 

c:: I>-CI] [l] [1}------@-~I 

I 

I Introduction Overview Entry Salle Confirm r 

IStart Dale ~-08-24 I 1 
1 IEndD(;fe ~~ __------.J I 

ID'" [ --------~ 

I Comment ~mer br~___ =:JI 

i 
I_____._J 

I 
®~--

BUilding a Pattern Engine with MVC 297 

Figure 13.12 Steps One and Two of the Sample Application 

13.6.1 The Final ESS Application 

Our small ESS application will have five steps. The first is an introduction page, 

which explains the complete process quickly, The second step will give an over­

view of the holidays that have been taken this year and list the available holidays. 

The next step will be to enter the data for the next holiday. After the data has 

been verified as correct, it will be presented in read-only mode in step four, with 

a confirm button. Up to this step, it's always possible to navigate back to the pre.­
vious steps, or to cancel the process. 

Before looking at the actual code, let us first look at what we want to achieve. This 

will make the actual code much easier to understand 

I Holiday Booking 

1 " --{[J-~~~[1j---<! 
I"trocluctlon Overview Entry Save conmn 

I 

I 
I start Dale • 

IEndDale' 
I 

,I I I comment 

1._..must be specrnec 

~~~~ 

Figure 13.13 Steps Three and Four of the Sample Application

In the last step, a final confirmation shows that the holiday has been booked.

Now the only navigation option is to press the finish button. For typical ESS appli­

cations, this exit URLwill be configured to return to a small portal that contained

all the different ESS applications.

13.6.2 Writing the ESS Application

Before looking at the more complex pattern engine, let's first look at the work

required to develop the ESS application. We create a new BSP application that has

one controller and five views.

ob'je'ctN1me'<C\{j tl~SCIilftiOl\" <S .: :> c"

v D Y.J)e_ess Pattern Enginef~r'ESS ~Ecationl
-'Q'D~-r----'-'--'--"--- ~

go.do Main Controller I:
veI"!lews. _ ,~i

[> confrm.htm ,.~" :.__ , _.,~,~_c:"; ·1

~ entry.htm ~

~ ntroducton.htm ,

[> overvew.htm

~.e;.;.h::..t;:.:m::..-~_~_~

Figure 13.14 Object Overview

Each view will have two attributes, which will be set automatically by the pattern

engine. The first will be a reference to the defined model class; the second is a ref­

erence onto the pattern engine (pe) controller.

model TYPE REF TO ycl_pe_ess_model

pe
 TYPE REF TO ycl_pe_ess_controller

Given that all the data is stored in the model class, the views themselves are very

simple, and quickly written. Here is the entry view as an example. It uses the

<ph tm l b : formLayout> element to quickly get the required elements on screen.

The other views are of the same complexity.

<%@extension name="phtmlb" prefix="phtmlb" %> <phtmlb:formLayout>

<phtmlb:formLayoutInputField

id = "holiday_start"

label = "Start Date"

required = "TRUE"

showHelp = "TRUE"

type = "DATE"

value = "llrnodel/holiday_start" I>

<phtrnlb:formLayoutInputField

id = "holiday_end"

label = "End Date"

29 8 MVC-Model View Controller

required = "TRUE"

showHelp = "TRUE"

type = "DATE"

value = "Ilmodel/holiday_end" I>
<phtmlb:formLayoutInputField

id = "holiday_comment"

label = "Comment"

type = "STRING"

value = "Ilmodel/holiday_comment" I>
</phtmlb:formLayout>

The model class is required to hold all relevant information. For our ESS applica­

tion, we need a table that contains a list of all holidays taken, plus a few data val­

ues for the new holiday to be booked, such as days available, start and end dates,

and comment string. Everything needed to make model binding work, is done by

the base class (cLbsp_model). The model class is just a data holding class, as well

as the constructor to fill the holidays_taken table.

CLASS ycl_pe_ess~rnodel DEFINITION

INHERITING FROM cl_bsp_model.

PUBLIC SECTION.

TYPES: BEGIN OF t_holiday,

start TYPE d,

end TYPE d,

days TYPE i,

comment TYPE string,

END OF t_holiday,

t_holidays TYPE STANDARD TABLE OF t_holiday.

DATA holidays_taken TYPE t_holidays.

DATA holiday_start TYPE d.

DATA holiday_end TYPE d.

DATA holiday_days TYPE i.

DATA holiday_comment TYPE string.

DATA holiday_available TYPE i.

METHODS constructor. " fill table holidays_taken ENDCLASS.

In our final step, the ESS controller is required. It contains the code necessary to

configure the pattern engine, plus the business logic to book the actual holiday.

The most important aspect is the fact that this controller will inherit from the pat­

tern engine.

Building a Pattern Engine with MVC 299

CLASS ycl __pe_ess_controller DEFINITION

INHERITING FROM ycl_ess_pattern_engine.

DATA model TYPE REF TO ycLpe_ess_model.

METHODS do_init REDEFINITION.

METHODS do_handle_data' REDEFINITION.

METHODS pe_confirm REDEFINITION.

ENDCLASS.

The do_ini t method is used to create our required model class and to configure

the pattern engine. The most interesting code is the filling of the pe_steps table.

This table contains a list of all views in sequence. With this, the pattern engine can

render the required road map to give an overview of all steps, call the correct view

for each step, and control the navigation buttons.

METHOD do init.

* Create	 our model object

model	 7= create_model(class_name

'YCL_PE_ESS_MODEL' model id = 'm').

*	 Setup Pattern Engine

pe_model = model.

pe_title = 'Holiday Booking' (001).

pe_exit_url = 'http://sdn.sap.com'.

APPEND 'Introduction' (100) TO pe_steps.

APPEND 'Overview' (101) TO pe_steps.

APPEND 'Entry' (102) TO pe_steps.

APPEND 'Save' (103) TO pe_steps.

APPEND 'Confirm' (104) TO pe_steps.

*	 Initialize also pattern engine

super->do_init ().

ENDMETHOD.

Data handling is done via the model class. However, some sanity checking is

required to ensure that the entered holiday booking is actually acceptable. For

this, we just overwrite the do_handle_data method. Once we see the entry view

(step three), we quickly check that the entered data range is valid. In case of prob­

lems, an error message is added and the flag is set to prohibit navigation to the

next step.

METHOD do_handle_data.
super->do_handle_data(form_fields = form_fields

global_messages = global_messages).

'100 MVC-Model View Controller

IF pe_step_current = 3. " Entry

IF model->holiday_start IS INITIAL

OR model->holiday_end IS INITIAL.

messages->add_message(condition

'start II end INITIAL'

message =' Specify both dates' (l00)).

pe_step_next_prohibited = ABAP TRUE.

RETURN.

ENDIF.

model->holiday_days =	 model->holiday_end

- model->holiday_start + 1.

* do additional complex logic to for weekends ENDIF.

ENDMETHOD.

Lastly, our ESS application must book the holiday. The pattern engine maps its

own events onto methods. These methods can be overwritten where required.

We overwrite the pe_confirm method and add the logic required to book the

holiday.

METHOD pe_confirm.

save data

*	 . - .complex steps to dump data from model onto

*	 database ...

super->pe_confirm(event_object = event_object) .

ENDMETHOD.

Although the above section suggests a lot of work is involved in writing the ESS

application, the truth is that once the pattern engine is done, ESS applications of

this complexity can be written in less than one hour!

Let's recap the steps needed so far.

..	 Create a model class with the relevant data.

..	 Create a controller to configure the pattern engine.

..	 Add validation logic and coding for the final business logic.

..	 Create the relevant views.

13.6.3 Writing the Pattern Engine

Although the pattern engine is not very complex, it does involve a lot of code.

Only small extracts will be shown here. Most important, the pattern engine is also

a BSP controller, and as such must inherit from the class cl_bsp_controller2.

BUilding a Pattern Engine with MVC 301

I	 I

I

I

A number of configuration parameters are required for the pattern engine. These
are all declared as protected data, so that the actual ESS application can fill the
data. We need to display a title and a typical exit URL Lastly, we require a list of

all the steps that the application contains.

A number of event methods are defined. These will be called to handle events
from the navigation buttons. It enables the ESS application to eas'lly handle spe­

cific events via redefinition.

CLASS ycl_ess_pattern_engine DEFINITION

INHERITING FROM cl_bsp_controll er2.

PROTECTED SECTION.

DATA pe_title TYPE string.

DATA pe_exit_url TYPE string.

nATA pe_steps TYPE string_table.

IMPORTING event_object TYPE REF TO

if_htmlb_data.
11ETHODS pe_previous IMPORTING even::_ob ~ ect TYPE REF '1'0

if_htmlb_data.

METHODS pe_cancel

METHODS pe_nexL

IMPORTING event_object TYPE REF TO

if_htmlb_data.
METHODS pe_finished IMPORTING event_object TYPE REF TO

if_htmlb_data.

METHODS pe_confirm IMPORTING event_object TYPE REF TO

iLhtmlb data.

ENDCLASS.

The most complex part of the pattern engine is the do_request method. Usually,
when writing controllers, this method will just decide the next view and call it.
However, using views to also contain the layout of the pattern engine would
make it more complex to use and reuse. In addition, these layout views would
haveto be copied into the current ESS application. Instead, the complete render­
ing is done by processing other BSP elements, as if we are writing a composite

element.

The actual coding is straightforward, although tedious. As if we were writing the
BSP elements on a page, they are all systematically processed. Notice that the
method of writing the code reflects exactly the same structure as the elements

would display on a page.

METHOD do_reques::.
*<htmlb:eontent>

:>0" MVC-Model View Controlier

DATA: content TYPE REF TO cl_htmlb_content.

content ~ cl_htmlb_content=>factory(

design = 'design2003').

WHILE page_context-)element_process(element = content)

~ co_element continue.

*	 <htmlb:page>
DATA: page TYPE REF TO cl_htmlb_page.
page = cl_htmlb_page=)factory().
WHILE page_context->element_?rocess(element = page)

~ co element_continue.

<htmlb:form)

<phtmlb:containerTitle)

<phLmlb:containerContentI::em)

<phtmlb:roadmap/>

Actua~ content, call correct view

DATA: view TYPE REF ~O if_bsp_page.

READ TABLE pe_steps INDEX pe_step_current

INTO name.
view = create_view(view_name = name).
.view-)set_attribute(name = 'pe' value me).
view->set_attribute(name = 'model'

value = pe_model).
call_view(view).

<phtmlb:messageBar/)
IF rnessages->num_messages()) O.

ENDIF.

<ht mib :button/)

DATA: button TYPE REF TO cl_htrnlb_button.

IF me-)pe_step_current) 1 AND me-)pe_step_current

< me-)pe_step~rnax.

button = cl htmlb button=)factory(
id = 'sdn_pattern_engine_preVious'
text = 'Previous' (001)
design = 'PREVIOUS'
onclick = 'PE PREVIOUS').

WHILE :'aze~context-)element_process(

BUilding a Pattern Engine with MVC 303

I

element = button) =

if_bsp_element=)co_element_continue.

ENDWHILE.

END IF .

****Additional Button Processing

</phtmlb:container~ontentItem)

</phtmlb:containerTitle)

</htm1b:form)

</htm1b:page)

</htmlb:content)

ENDl1ETHOD.

The most interesting part of the above coding is the code to call the correct view.

After the roadmap has been processed, a specific view must be rendered out.

Here, the current step is used as the index into the steps table; the view is cre­

ated; the two standard attributes, controller and model are set, and the view is

rendered. Then the rest ofthe pattern layout is completed.

Another important part of the pattern engine is the way that events are handled.

From Chapter 9, we know that the onX event string specified by the user is trans­

ported back transparently as the event server name. We will use this string to call

a specific method to handle the event. The do_handle_event will have been

called with the correct HTMLS event. We just have to do the dynamic call to the

correct event method.

METHOD do_handle_event.

IF	 htmlb_event_ex IS NOT INITIAL.

DATA: method TYPE STRING.

method = htmlb_event ex-)event server_name.

TRANSLATE method TO UPPER CASE.

TRY.

CALL METHOD me-)(method)

EXPORTING event_object = htmlb event ex.

CATCH CX_ROOT.

ENDTRY.

ENDIF.

ENDMETHOD.

The event methods themselves are small, each handling the interaction of one

button. As a typical example, we will look at the code for the Next and Finished

buttons. For the next event, the current step will be incremented. For the finished

button, a navigate-to-the-exit-URL will be done. Using the exit method here

ensures that our session is also cleaned up.

304 MVC-Model View Controller

METHOD pe_next.

IF	 pe_step_next_prohibited ABAP_TRUE.

RETURN.

END IF .

pe_step_current = pe_step_current + 1.

ENDMETHOD.

METHOD pe_finished.

navigation-)exit(pe_exit_url).

ENDMETHOD.

In the end, the use of a SSP controller enabled us to write a pattern engine that

is simple and elegant to use. With this building block, it is easy to develop similar

ESS applications within hours, all of them with the same look and feel. Ifthe lay­

out for all ESS applications needs changing, this is done in one method only.

The placement of all rendering code within the controller, instead of a view,

makes the actual code slightly difficult to write once, but makes this pattern very

easy to use. With this approach, usage reduces to declaring a new controller with

the BSP application, which then derives from the pattern engine. No further work

is required, and this same controller can reused extensively. If the layout code was

placed in a view, then this view had to be copied into each SSP application where

the pattern engine is used. This small project shows the power of SWitching

between layout code that the compiler generates code for, and just hand writing

the equivalent code.

BUilding a Pattern Engine with MVC 305

I

14 Help Systems

If you are developing SSP applications as replacements for SAP GUI
business transactions, you probablywill miss certain help systems, like
the F1 Field Help and F4 Value Help. In this chapter, we will look at
ways to provide similarfunctionality in SSP.

You should be aware in advance that this chapter is a little different from most in

this book. Because SAP does not deliver full solutions for field help or value help,

we are going to look at some solutions that you can build yourself. These should

just be considered as starting points to get your own development moving in the

right directi 0 n.

The complete source code for all solutions is available on the book CD; therefore,

not all coding is presented in line in this text. These examples use highly generic

and flexible coding that can be integrated into just about any application. By

necessity, generic coding is often complex and lengthy. We will try to hit all the

important architecture elements of the examples without spending too much

time on each line of code.

14.1 F1-Field Level Help

Long-time SAP GUI transaction users will probably automatically reach for the F1

key when they find fields in their applications that they do not understand. Some

form of context-sensitive help is a sorely missed feature in BSP.

The goal of this example is to recreate not just the context help but also the tech­

nical information about the field that is exposed in the classic dynpro.

As you develop large and complex BSP applications, especially very dynamic ones,

you will badly want some mechanism to identify what part of the code houses a

particular element.

14.1.1 The Help UI

In the SAP GUI environment you really get all of this functionality for free, in that

no special coding is required to attach this functionality to your field. For this

example, we wanted to have a similarly non-intrusive approach to existing cod­

ing. The addition of the field help should be easy to implement. On the other

hand, the use of this help should be intuitive even to users who have never

worked with a SAP GUI transaction.

Help Systems 307

GJ[f;j][8/

External Name of 8SP Application (Upper and Lower Case)
I@Technical Information SL/

A asp application is an independenq

created and processed usingthe SA~rsae~

ISAPL02 APPLICATION I
Sirnilartoa classical transaction a 811 Program Name
are grouped together to a logical 'unit ScreenNumber [10001

The user interface ofa BSP apPlicati~ ~UI Dafa /
socalledBusinessSe/llerPages (BS -'-~'

Program Name

I stat~s . '.

Field oW

ISAPL02 APPLICATION _~

;_E_APPL~CATION ~

p Field Name ,lAPPLEXT

"II Qata Elef]1ent ·I02APPLEXT

DESupplement ' rrr-'1

Figure 14.1 Typical Context Help with Technical Information in the ClassicSAP GUI

stylesheets, andso on.

Table N~_I 02APPLATrR

TD that end, this example was designed to wrap its functionality so as to fire the

field help around the <htmlb: label> element. It will generate a hyperlink that

will open the context help in a modeless window when clicked.

We hope the resulting solution ends up being so simple to implement in your

code that all you have to do is change the name of the element from

<htmlb: label> to <yourextension: flLabel> if you are using Model View

Binding.

If you are not using binding or if you want to override the data element from the

binding attribute, you only need to add one attribute to the standard label

attributes to provide this data element name.

The ease with which this new element can be introduced into existing applica­

tions is especially important if we consider the amount of code that you might

want to go back and retrofit with this new functionality.

Figure 14.2 demonstrates <htmlb: labels> that have been wrapped by this

example and now have hyperlinks.

308 Help Systems -"~L

ExpJo~~B,6M (Level byLevel) ,

(Material' I
IE'!.9.!:!k c=J
Il1pplHtion *c=J
IDisplay[

=

Figure 14·2 Label Element with Hyperlink to Context Help

Figure 14.3 shows that when you click on the label hyperlink you get a basic

browser modeless window where there are two tabs. In the first and default tab,

there is the Data Element Help itself. The Internal ITF (SAPscript) format for the

Help has been converted to HTML for this display.

=7
Iztir••,4t System Information

I MateriDIPlanl , I ~

I ,!!.,ppliCe1tIO~ c=J
IDisplay I Definition

Alphanumeric key uniquely identifying the
material.

Figure 14.3 Context Help; Extended Definition

Notice the internal hyperlink in the example help for Material. In the converted

HTML, this link actually points to a SAPEVENT. If you have ever done any program­

ming for HTML content in the SAP GUI HTML viewer, you might remember that

this is a special event that will be caught and returned to dynpro-event processing
(see Chapter 7).

However, this SAPEVENT link is useless in the BSP context. Therefore, the BSP help

solution will have to convert this to a normal hyperlink to make it functional.

Also, most of these internal links point to glossary entries instead of data-element

texts. Therefore, this solution will also need internal processing to support the

navigation and output of both types of help objects. Figure 14.4 shows the help

after we navigate through the Material link.

F1-Field Level Help 309

<zbook:flLabel	 for "Ilmodel/matnr"

required "TRUE" I)

14.1.2 Implementing the asp Extension Element

The solution has two major parts. The first is the BSP extension element itself. This

element will be responsible for all the rendering of the label with the surrounding

hyperlink. The second part is a BSP MVC application for displaying the extended

help in the popup modeless window. This application will be stateless and anon­

ymous so that it can be integrated with any type of hosting BSP application.

In this design, our BSP extension element will be responsible for creating the

model class that will be used later in the popup dialog. This is necessary so that

the field's runtime information can be easily passed from the hosting application

to the help-dialog one. After creating and initializing the model class, the BSP

extension element will serialize it to XML and then write it into a server cookie.

The keys for retrieving this model class later will be the only information that we
will actually pass to the dialog application via the URL.

As you might see by now, this example builds upon many of the technologies we

have introduced in past chapters. Be sure to have read Chapter 9, BSP Extensions;

Chapter 11, Writing a Composite Tag; and Chapter 13, Model View Controller,

before attempting to recreate this example.

14.1.3 asp Element Properties

We will start our example by creating a new BSP element in an existing BSP exten­

sion. If you are creating your first extension, just make sure that it uses the CL_

HTMLB_ELEMENT class as its generated Basis class (Very Important: This is in the

extension, not the element!).

Iybook -~ Activel~.~~_E;!\en'!9Dj

Ai3W1'mt1fr.'1
I _ . - I	 .

Short DescnptlonBSP Book Examples ,

DefaultPrefix [YbDDk - --.J

BSP ExtensionCla5s t

BSP Element Basis Class l£l'::IlTIILB EI.ElIENT I
"T _ .• ,,_,.~ .•. _.,,_.,~. _-., r' ,~~. _~~._c_¥ ~~ __~.~.__ ~ .. , _~~~ ,__ ~ ~ _

Figure 14.6 Extension Properties

For the element properties, be sure to check User Defined Validation. We will

use this later to write our own compiler check for one of the element attributes.

F1- Field Level Help 311

IMaleri<1I'

I Plan' '

I ,I:l,pplication'\ c==J
llliE§]

The goodsthat are'the subject of business
activity.

The material can be traded. used in

manufacture, consumed,or produced.

Retail (IS-R) B

<II ~W

Figure 14-4 Internal Help Navigation to a Glossary Item

The second tab is the one that, as a developer, you are probably more interested

in. This is the tab that displays the technical information about the field in ques­

tion. In order to display the most possible information here, you will want to use

Model View Binding for the BSP extension help element we are creating. That

way it will have visibility to the hosting controller, view, model-class, model­

attribute, model-binding-string, and data-element types for the field in question.

Figure 14.5 shows the technical information for the Material field.

'\,,-;F

::eXt~nde_~'~;fTniti~n~

Figure 14.5 Help System Information

Before we dig into the coding for the example solution, let us have a look at the

small amount of code that gets inserted into the host page to produce the screens

we have seen.

310 Help Systems

ISSPAPplication

I Page

I CallingController

I Sub-p<1ge Object

I Moael Class

IBinding String

IDataelement

I No. 01 Characters

IScr_data type

IABAP type

~~~[ 

@ili\J~._dO ~ 

idetau~.clo ~ 

idef€lu~.bSp I 

-:=] 

[MATN-R-- ----::J 
~ 

'!c-h<o-,a-ct-er--::S'--::rin-g--=::3J 

~er string _~~I 



li Short Description fTextlabel with Built in Fl Help=~ 

ElementHandler Class I~CL~tI:J!' Ul'1NT Fl HELP~ 

GeneratedBaSiS Class fuii:~o_~ Fl~~__~ 

EJerD~ 
Ouata 

OSiank 

o BSP Elementsonly 

(~' BSP. Elernen.ts Olnd S. t..~tiC HTML 
CJElementInterprets.Content Itself IE
Furtheroptions 

o Us8t'-Deiined Validation
 

o Iteration over Elementcontent:
 

Dr~lanipulatlol1 of Element Content
 

o "PAGE OOr--JE oT 15 not return8cfat end o(8SP ele,~1l8tf1f
 

Figure 14.7 Extension Element Properties 

14.1.4 BSP Element Attributes 

Because we are wrapping our element around the standard SAP <htmlb: label> 

element, we will want to include all the attributes of the inner element. You could 

either cut and paste to bring these over from the <htmlb: label> element or just 

start by copying the entire <htmlb :label> element. 

The first additional attribute is dataElement. If you are not using Model View 

Binding, then you will have to explicitly state the data element that you want to 

use for the field-level help. This is also useful if your model field is of a generic 

type and does not point to a particularly helpful data-dictionary element. 

The second attribute to add is rfcDest. Now, we are going to mark this as not yet 

implemented. In the future you might want to be able to read the help from 

remote systems. For now, however, we will use this element to demonstrate how 

you can program a compiler check to throw an error if anyone does try to use this 

attribute before we have programmed for it. 

14.1.5 Element Handler Class 

We only have one attribute that we will add to the BSP element class. This is an 

attribute that will store an instance of model class that we are creating. 

The first method that we will inherit and redefine is compile_time_is_valid. 

This is where we can code our compiler checks for this extension element. We 

only want to check and make sure that no one uses the rfcDest attribute before 

we have coded for it. Figure 14.10 shows the error that this routine generates in 

the editor if someone does use the rfcDest attribute. 

~1:Z Help Systems 

Attribute ]f]O:::Ja.lBi. .ITyp;ng. IAssocia.. IOftt valuelOescr;ption 

Figure 14.8 Extension Element Attributes 

class Interface fYCi:::B,P ELIlNf Fl HELP LBL !rmplemented I Active .: 

"properti~; ~j'Jni8riac:~n.·friends"i"M_, :~letfi';ti5~, °E·leniS7\.;:fyp~,Y,iI~~Ii ' 

OFllter 

Figure 14.9 Extension Element Handler Class Attributes 

~taxerror
~criPti~~ '. . =. :-- IROW JJ;;1." ' .. .
 
,ssp~.pphcation YES TESTl,BSP Page BOOIU'lHELP.HT~l 17, lXo ,i
 
I<YBOoK:flLabel>: (Attnbute-rIi:Dest) RFC Destination attr'bute has 

I~"~,:,~~_~,~~~~~~~~=~~=~t~._._ 

Figure 14.10 Custom Syntax Error 

DATA: value TYPE string. 

value = element_data->get_attribute( name = 'rfcDest' ). 

IF value <> cl_bsp_element_data=>co_no__attribute_value. 
validator->error( 

name 'rfcDest' 

msg = 'RFC Destination attribute has yet been 
implemented' (cOl) ). 

valid validator->m_any_value_in_error. 
ELSE. 

valid validator >m_all values_valid. 
ENDIF. 

F1- Field Level Help 313 



do_acbeginning is the next method that we will inherit and redefine. This is 
the method that will control the actual rendering-code generation of the element 
at runtime. This method for the most part contains the inner call to CL~HTMLB_ 

LABEL. This type of logic has already been covered in depth in Chapter 11. 

DATA: javascript_link TYPE string.
 
DATA: link TYPE REF TO cl_htmlb link.
 
CREATE OBJECT system_state.
 
****Model Bind?
 
IF me->dataelement IS INITIAL.
 

me->resolve_model_binding( ). 

ELSE. 
IF id IS INITIAL. 

CONCATENATE for '_1' INTO id. 

ENDIF. 
ENDIF.
 
****Serialize the System State and pass the Keys
 
javascript_link = me->record_system_state( ).
 

on the URL 

****Initialize the Link Object 
link ?= cl_htmlb_link=>factory( 

id = me->id 
onclientclick = javascript_link 
target = '_Top' ). 

WHILE m_page_context->element_process( 
element = link) = co 

DATA: label TYPE REF TO cl_htmlb label. 
label ?= cl_htmlb_label=>factory( 

. . , Rendering Logic 

element_continue. 

In addition to the inherited methods that we will be redefining in the SSP ele­
ment class, we will add two methods. The first, record_system_state, is 
responsible for completing the model class. It then serializes it to XML and writes 
the XML string into a server cookie for later consumption. Finally, the method 
creates the URL with keys included for reading the server cookie that will point to 

the field help SSPapplication. 

To record the model class in the server cookie, we need a unique id in order to 
avoid overlaying data from another field on the screen that might have the same 
data element. If we do not have data about our model class, then we can go 

ahead and just record the details according to the data element. 

314 Help Systems 

J 
! 
t 
I
r 

METHOD record_system_state.
 

ReturningVALUE( R_JAVASCRIPT_LINK )TYPE STRING
 
DATA: data_name TYPE string.
 

****If we didn't record the system state from the model.
 
****then our only key is the data element name.
 

IF system_state->rollname IS INITIAL.
 
system_state->rollname = me->dataelement.
 
data_name = me ->dataelement.
 

ELSE.
 

****System State came from the model. therefore we will
 
****create a unique ID for each entry.
 

IF STRLEN( me->id ) GT 30.
 

DATA: guid._22 TYPE gUid_22.
 
CALL FUNCTION 'GUID_CREATE'
 

IMPORTING ev_guid_22 = gUid_22.
 
MOVE guid_22 TO data_name.
 

ELSE.
 
MOVE me->id TO data_name.
 

ENDIF.
 
ENDIF .
 

In this section of code, we look up some of the details about the SSP application
 
we are running within. We use the page-context object to find most of these
 
details.
 

****Record the system state - BSP Page and Application
 
system_state->02applext = me->mc_runtime->application_name.
 
system_state->o2pageext = me->mc_runtime->page_name.
 
DATA: page_context TYPE REF TO cl_bsp__page_context .
 
TRY.
 

page_context ?= me->m~page_context. 

IF	 page_context IS NOT INITIAL.
 

system_state->sub_page = page_context->m~page_name.
 

IF page_context->m_caller IS NOT INITIAL.
 
DATA: parent_controller 

TYPE REF TO cl_bsp_controller. 
parent_controller ?= page_context->m_caller. 
IF parent_controller IS NOT INITIAL. 

system_state->sub_controller = 
parent_controller->controller_name. 

END IF . 

F1-Field Level Help 315 



,.
 

ENDIF. 
ENDIF.
 

CATCH cx_sy_move_cast_error.
 

ENDTRY.
 

This next section will serialize the model object to XML and write the data into 
the server cookie. Notice that we do not set any application name or namespace. 
This allows details for the same data element to be used across applications. 

DATA:	 ostream TYPE string,
 
xslt err TYPE REF TO cx_xslt_exception.
 

TRY.
 
CALL TRANSFORMATION id SOURCE model = system_state
 

RESULT XML ostream.
 
cl_bsp_server_side_cookie=>set_server_cookie(
 

name = data_name
 
application_name = "
 
application_namespace
 
username = 'FIHELP'
 
data_name = data_name
 
data value = ostream
 
expiry_time_rel = '1200' ).
 

CATCH cx_xslt_exception INTO xslt err.
 

ENDTRY.
 

This final section will create the URL for calling the popup window, passing the 

data keys in the URL. 

DATA: urI TYPE string. page TYPE string.
 

page = 'Fl_Help.do'.
 
DATA: params TYPE tihttpnvp.
 
FIELD-SYMBOLS: <wa_params> LIKE LINE OF params.
 
APPEND INITIAL LINE TO params ASSIGNING <wa_params>.
 

<wa_params>-name = 'DOCUOBJECT'.
 
CONCATENATE 'DE' me->dataelement INTO <wa_params>-value.
 

<wa_params>-name = 'SESSION_ID' .. ,.
 
... <wa_params>-name = 'RFCDEST' .
 
.. , <wa_params>-name = 'DATA_NAME' ,
 

****Copy over the current theme to the popup window 

DATA: selection TYPE string.
 
selection = mc_runtime->get_external_theme_root( ).
 

IF selection IS INITIAL.
 

316 Help Systems 

selection = 'sap_standard'.
 
ENDIF.
 

. .. <wa_params>-name = 'sap-themeRoot'.
 
****Use your application name here
 

CALL METHOD
 
c1_bsp_runtime=>construct_bsp_url
 
EXPORTING in_application = 'yes_test1'
 

in_page = page
 
in_parameters = params
 

IMPORTING out_local_url = urI.
 
CONCATENATE 'newDialog = window.open("' url
 

'II, I"_blank", r es i zabl e=yes .hei ght =300 .wi dt h=300") : '
 
INTO r_javascript_Iink.
 

The second method, resolve_modeLbinding, will be used to process a data­
binding string and turn it into a data reference. It will determine the class and 
attribute that correspond to the provided binding string. Thismethod will also use 
the Runtime TypeServices (RTTS) to determine information about the model class 
and details about the model attribute data type. 

METHOD resolve__model_binding. 
DATA: I for TYPE string. 

DATA: model TYPE REF TO if_bsp_model_binding. 
metadata TYPE REF TO if_bsp_metadata_simple, 
metadata_base TYPE REF TO if_~sp~metadata, 

value_path TYPE string. 
DATA: class_name TYPE string.
 
model = m_page_context->get_model( _for).
 
CALL METHOD
 

cl __bsp_model=>if_bsp_model_util~split_binding_expression
 

EXPORTING binding_expression = _for
 
IMPORTING attribute_path = value_path.
 

CHECK value_path IS NOT INITIAL.
 
system_state->model_string = _for.
 
IF model IS NOT INITIAL.
 

DATA: class_desc TYPE REF TO cl_abap_typedescr .
 
clas s_desc = cl.abap_classdescr=>describe_by__obj ect_ref (
 

model ).
 
class_name = class_desc->get_relative_name( ).
 

ENDIF.
 
I for = model->get_attribute_name(
 

F1- Field Level He!n :l1"7-




attribute_path = value_path ).
 

IF id IS INITIAL.
 
CONCATENATE I_for' l' INTO id.
 

ENDIF.
 
****Get Data Reference to bound data object
 

DATA: I_data TYPE REF TO data.
 
I_data = model->get_attribute_data_ref(
 

attribute_path = value_path ) .
 

CHECK I_data IS NOT INITIAL.
 

****Get the RTTI Drescriptor for this data reference
 

DATA: descriptor TYPE REF TO cl_abap_elemdescr.
 
descriptor ?= cl_abap_elemdescr=>describe_by_data_ref(
 

I_data ). 
****Read Data Dictionary information for this reference
 

DATA: flddescr TYPE dfies.
 
flddescr = descriptor->get_ddic_field( ).
 

me->dataelement = flddescr-rollname. 
system_state->rollname = me->dataelement. 

ENDMETHOD. 

14.1.6 BSP F1 Help Controller Method-DO_REQUEST 

Inside a stateless anonymous SSP application, we will fill our F1 Help popup start­

ing with a new controller. For this controller, we will have a fairly normal DO_ 

REQUEST method to control the flow of our application. As with most any high­

level controller, we will have logic to initialize our model class. 

However this initialization will be different from the normal model-view-control­

ler (MVC) method. If the model is initial, which in stateless applications will 

always be true, we will need to read our keys from the URL with request ->get_ 

form_field. Then the model is restored with a call to cl_bsp_server_side_ 

cookie=>get_server_cookie followed by the de-serialization. 

14.1.7 Implementing the BSP F1 Help Application-Model 

The final component in our help SSP application is the model class. This class has 

all the logic to read our field help or glossary entry. It also has the logic to convert 

the SAPEVENT hyperlinks. Do not forget to include the IF_SERIALIZABLE_ 

OBJECT interface in this class definition. This is the interface that will allow us to 

convert the class instance to XML. 

~18 Help Systems 

You can explore the complete logic to this class on the CD for this book. Although
 
not related directly to SSP, it contains the logic for reading the help or glossary
 
and converting the internal SAP ITF format to HTML.
 

14.2 Dialog Windows 

In our first solution, we were able to open a new browser window with the Java­


Script call window.open. This approach actually matches the SAP GUI solution
 
fairly well. Users are able to minimize or move the help-off screen. You do have
 

the disadvantage that ifyou close the browser window with your application, the
 
help window still remains.
 

However this solution really is not optimal for a Value Help solution. With the 

popularity of the so-called popup blocker on the Internet, the technologies to 

create floating IFrames, which are movable and resizable using JavaScript, have 
also become quite popular. This design is really closer to what we are looking for 
in a Value Help solution. 

Thanks to the open nature of SSP, you should be able to find most any Java­

Script/DHTML example on the Internet that meets your needs and hook it into 

the SSP event system. For this text we are going to take an even more drastic 

approach. Web Dynpro will have just such dialog windows. SAP has already 
developed the JavaScript libraries for Web Dynpro, we will just need to adapt 

them for SSP. The JavaScript libraries in question are shipped for customer use as 

of Web AS 6.20 SP56 and 6.40 SP15 and can be found in the MIME repository­
/sap/bc/ur/design2002/js/popup* .js. 

How better to expose this Web Dynpro element than as its own SSP extension 

element. We start with a rather simple header element that has the responsibility 
of hooking into the event system for the dialog. It has three attributes. These 

attributes are an element ID, a server-side event ID named onClick, and a client 
side event JavaScript function named onClientClick. 

The Web Dynpro JavaScript coding already has a hook to fire a custom JavaScript 
on the Hide Dialog event. We just need to connection our events into this hook. 

For this we have the following code. This allows us to create a JavaScript function 
that will fire an event on the client side, the server side, or both. 

data: event_script type string. 

data: id type string value 'Parameterl'. 
data: popup_id type string value 'Parameter2'. 
event_script = 

cl_htmlb_manager=>render_event_call( 
bsp_element = me 

Dialog Windows ~1Q 



, click'event_type 
me->onclickserver event 
me->onclientclickclient event 

par am_count 2 

param_l id 

param_2 popup_id 

client event_inlined 'X' ). 

As we render out the JavaScript callback function within our element processing, 

we can just call the JavaScript function we just rendered. 

concatenate html out 

, <script>' 
'function ptrOnHideModalDialog(id,popupId), 

'[ , 

'if(typeof(id)==" undefined"), 

'return true;' 

'var check=true;' 

'if (popupId==' 1) [ else {' 

event_script ';}' 

'return check;' 
'} , 

'ptrDialogObj=new Object();' 

'ptrDialogObj . popupIdArray=new Array () ;' 

'</script>' 

into html_out. 

me->print_string( html_out ). 

rc = co_element_done. 

We can now create individual BSP extension elements that make the call to the 

JavaScript functions provided by SAP to initialize the different types of dialog win­

dows. Mostly this involves exposing customizing settings such as width and 

height and concatenating them into the JavaScript function. 

concatenate html out
 

'<script>'
 
'function' me->clientevent '()'
 

'l' 
'ptrPopup.ptrModalDialogUrl(window, ' 

", me->url ",' 

", me->title " ' 

, " me->style 

me->width 

:'120 Help Systems 

me->height 
" ' me->id ");' 
'\ ' 

J 

'</script>'
 

into html_out.
 

me->print_string( html out).
 

rc = co element done.
 

I.::f ~bi~" S'~/'e:cti~h '_>C,~ 

Figure 14.11 Dialog Window 

Figure 14.11 demonstrates the rich UI that this dialog window functionality from 

SAP provides. You have window maximizing, resizing, dragging-basically every­

thing that you would expect with any dialog window. However, this frame is not 

a separate window within the browser. Therefore it shares the same system state; 

if you close the browser window or navigate away from the application, it will 

close as well. 

Not only does this solution fit nicely into the Value Help solution, but it also dem­

onstrates how powerful the openness of BSP is. We were able to take an external 

JavaScript library that was originally designed for Web Dynpro and adapt this to 

BSP. You could have just as easily have integrated one of hundreds of open-source 

code samples from the Internet as well. 

Dialog Windows ~21 



14-3 F4-Value Help 

If you have worked in the classic ABAP Dynpro world, you probably learned to 
take for granted just how powerful and easy to use is the built-in functionality for 
Value Help. It is not until you begin BSP development that you realize just how 
much you miss all that functionalit.y that you never really gave a second thought 

to. 

14.3.1 Value Help Requirements 

Once again, we are looking in the standard functionality provided by BSP for one 
possible way to fill this gap. Here are the requirements that this possible solution 

would need to meet. 

..	 First this solution must be easy to use. We want only to have to Insert a BSP 
extension in the source pages in order to use a. We want it to support model 
binding directly. So, to start we are going to have a BSP extension that is a 

wrapper around the <htmlb: inputField> . 

.. We wanted more than just a simple selection of data dictionary Help values 
from the local Web AS System. Simple value/description pairs could already be 

created easily with an <htrnl b: dropDownListBox> and data binding on the 
helpValues attribute. The solution has to be able to support more complex 
value selections. An example of this is the common selection of User in reports. 
Just listing User ID or even User Name is not enough. We want to have a value 
list that shows Building, Business Unit, First Name, Last Name, etc. This 
means the value selection routine needs to have a powerful exit mechanism, 
similar to ABAP search helps, so that each consuming application can control 
the value list. It also needs to support complex search helps with one or more 
inner element search helps. Furthermore, it is rather common to have a sepa­
rate Web AS for the backend data system, such as a separate R/3 system. This 
means that we also need to be able to retrieve the help values from a remote 

system via RFC. 

~	 We want the Help Values display to be powerful but easy to use for the end 
user. The solution should have filtering and sorting capabilities on the value list. 
Therefore, the solution displays the Help Values in an <htrnlb: tableVicw> 

element. 

..	 The user needs to be able to choose more than one value from the help list. 
That means that our new BSP element will have to be a wrapper around 

<htrnlb: listBox> as well as <htmLJ: inputFicld>. 

~	 The Help Values dialog needed to work in both stateful and stateless applica­

tions. 

=122 Help Systems 

14.3.2 The Solution 

Much as we did with F1 Field Help, we will create a new BSP extension element 
that will be a wrapper around existing elements. We will hook our own event into 
the onValueHelp. 

When the user requests Value Help, this example will create a stateless, Model­
View-Controller page that will be displayed in a floating IFrame dialog box. The 
solution will include the JavaScript that allows this IFrame to be dragged around 
the window like it was a modal dialog box. 

Finally, this IFrame will write its selected values back into the source 

<htrnlb:inputField> or <ttrnlb:listBox>. Figure 14"12 shows the most 
advanced version of this solution in action. This example is a complex search help 
with several elemental helps . 

customer 

--"-."~ --.--~. '·':'_-·'·'-'--_,._ ..__ .c~"_;.~ ,·",_'"i~,.~,,_ ., ',­ " _.:c..,._.,',,,. __ .,.,.-:,: 

for bookings according to travel agency 
/AgencyNo I I ITo I-.~ 
I Booking number . ) I lie I ! 

, 'IA/rlin' I I ITo'· I I
 
ICtty[ t I To
 I I
 
/ Flight Number I I ITo
 .. 1 I 
I country I I /To I I
 
ID.'e [ I liTO I I
 

.ITravel8gency name I I ITo
 I I
 
/ Max.no.at linn I =:§QQ]
 

I,QU~? D~~ L.I More ,Entries I~-'''''''7'".~~~c:c,.~.,..,.,,",:~ .'-.--,~~'-.""":'e;:-:~.':':'"""~>~J"-~~7 ..... ~.T~~"'"'"'-".~.......~-~{.,.",.""~j
 
"., -( Agency No. ~ t 8ool(ing number *\Aifline ~ j"City ::_, . ~! .Flight N:.unber ,*0.- - COlml~y ~ ; Date 

12;) . i 'Il I<I'! 
I [J! 00000114 ) 00000001 i AA ;1 Htlnnover 

i 
0017 ' 

\ l]1 \ 00000222 1 000]0002 \ p../).. i Los Anqetes :: 001~
 
I f""l' I " '
Icj r 000001 04 " 00000004 i AA ' Neornarxt 0017 IA' I .OU, U' 
ill! i 00000087 ~OOJOOOS I AA, i Berlin ! 0017 2004' 

~~ I 00OJ0107__J.cl0000~__~~-+-B,nnrrgh"n nOl7 IGS 2004­

~ 00000111 100000007 All, 18o:5-1on 0017 US 2004'
 

' ~O J0 1 1 7 _L~_~1l0008 ,_J1~_~__~~ 1D~~
 
[}j 00000108 I 00000009 Aft I London 0017 rOB r 2004 G
~<I	 I [I] 

~L CancelI --.-",~ 

Figure 14.12 Value Help Example 

At the top of the Help Values dialog we have a <phtrnlb: popupMenu>that will be 
use to select elemental search helps if we are attached to a collective search help. 

F4- Value Help ~2=1 

I 



• 

On the right side of this area, we also have navigation controls for moving 

through the result list that is displayed in an <htmlb: tableView>. 

On the next line in the user interface we have the check-mark (for 01<) and Can­

cel icons. Choosing the OK icon will fire the JavaScript to copy the selected 

value(s) back into the originating element. Selecting the Cancel icon, the Cancel 

button at the bottom of the dialog window, or the "X" Icon in the top right corner 

of the dialog window will all close the window without copying back any values. 

The final item on this line is the Download menu. This is actually another custom 

BSP extension element that will download the value results as Excel, XML, or 

HTML. This solution is discussed in detail in Section 16.5. 

The next area shows input fields that can be used to narrow our selection. 

Although the value output is displayed in an <htmlb: tableView> with sorting and 

filtering turned on, we want to support more opportunities to reduce our value 

results than what a single filter could accept. Finally, we have an input field called 

Max. no. of lines. This input field allows you to control the maximum number of 

records that are returned in the value selection. This is helpful for keeping the runt­

imes Iowan the initial display of a value selection with many potential results. 

We should state here that recreating this solution is not a small or simple exercise. 

There is a signification amount of coding involved in getting this solution up and 

running in your system. The coding for the current version of this example is avail­

able on the book CD. We strongly encourage you to download and study it in 

detail before attempting to recreate this example. 

14.3.3 The New BSP Element 

We will start the process of recreating this example by designing our new BSP ele­

ment. As we said earlier, we want to trigger the Value Help dialog from either an 

<htmlb: inputField> or <htmlb: listBox>. Therefore, just as with the F1 Field 

Help solution, we will want to copy all the attributes from these inner elements. 

Far more interesting, however, will be the new attributes that we must add to 

support the three different types of Value Help dialogs. The first type is the deter­

mination of the search help via data reference from the local system only. Of the 

three approaches, this is the one that we are going to look at in detail in this text. 

To support this type of dialog, we will add one attribute called dataRef of type 

STRING. It must contain the name of the data dictionary field that we will use to 

determine the search help. 

<% data: data2 type sflight-carrid. %> 

<ybook:inputHelp id = "In2" 

324 Help Systems 

value "<%= data2%>" 
dataRef "SFLIGHT-CARRID" I> 

Although this method is simple to use, a better approach might be to also deter­

mine the dataRef value dynamically from the data object that is being passed 

into the value attribute. To do that, we really just need a static class method to 
look up the help-id for us. 

method read_field_type. 
* Input: FIELD TYPE ANY 
* Returning: VALUE( DATAREF ) TYPE STRING 

describe field field help-id dataref.
 
endrnethod.
 

Listing 14·1 Method READJIELD_TYPE of Class YCL_ABAP_UTILITIES 

<% data: data2 type sflight-carrid. %>
 
<ybook:inputHelp id = "In2"
 

value - "<%= data2%>"
 
dataRef = "<%=
 

YCL_ABAP_UTILITIES=>READ_FIELD_TYPE( data2 ) %>" I>
 

Listing 14.2 Modified Use of our Value Help Element 

14·3.4 Input Help Controller 

Because the rendering logic of the BSP extension element is really very similar to 

the F1 Field Help, we will skip ahead and look instead at the application that 
resides inside the Value Help dialog. 

Once again, we will create the content of the dialog as a separate stateless MVC 

application. Our entrance into this application will be through a controller. This 

controller will be responsible for reading the keys for the value selection from the 
URL and initializing the model class. 

Because this is a stateless application, the instance of our model class is lost after 

each request/response cycle. We could have taken a similar approach to the F1 

Field Help and serialized the model class to a server cookie. However, due to the 

nature of the processing when working with the search-Help function modules 

and/or BAPls, doing this would not have provided much value. Therefore we sim­
ply recreate the model fresh for each cycle. 

The most important role ofthe controller, however, will be choosing which of the 

three logic paths we want to take based upon the attributes that were set in the 
calling BSP element. 

F4-Value Help 325 



****Requested Simple Help Values
 

if not mode12->data ref is initial.
 

mode12->get_helpvalues_complex( ).
 

****Requested Help Values Via an RFC Exit
 

elseif not mode12->rfcfunction is initial.
 

mode12 - >get_helpvalues_'exi t ( ).
 

elseif not mode12->objtype is initial.
 

mode12->get_helpvalues_bapi( ).
 

else.
 
mode12->message = 'Element ID can not be blank' (e03) .
 

endif .
 

14.3.5 Input Help View 

For the most part, the view for the UI rendering is fairly standard. We use a 

<xhtmlb: toolbar > to layout the first two rows of the dialog that contain the 

element search help popup, the <htmlb: tableView> naVigation, and then the 

buttons. 

The values of the elemental search help popup menu are built dynamically using 

an internal table that is filled during model processing. 

<%	 if lines( model->bapishlp ) > 1.
 

data: popupitems type phtmlb_popupmenuitems.
 

field-symbols <wa_menu> like line of popupitems.
 

field-symbols <wa_bapishlp> 
like line of model->bapishlp. 

loop at model->bapishlp assigning <wa_bapishlp>. 

append initial line to popupitems assigning <wa_menu>. 

<wa_menu> -text = <wa_bapishlp> - title. 

<wa_menu>-MENUITEMID = <wa_bapishlp>-shlpname. 

<wa_menu>-enabled = 'X'. <wa_menu>-cancheck = 

<wa_menu>-checked = " <wa_menu> hasseperator = 

endloop. %> 

<phtmlb:popupTrigger id = "shlpPop" 

popupMenuld = "shlpMenu" > 

<htmlb:image src="popl.jpg" I>
 
</phtmlb:popupTrigger>
 

<phtmlb:popupMenu id = "shlpMenu"
 

maxVisibleltems = "30"
 

items "<%= popupitems %>" I>
 
<% endif. %>
 

:;126	 Help Systems 

Unfortunately, an <xhtmlb: toolbarButton> does not support the display of an 

icon. However, in our output we wanted to emulate the classic SAP GUI Value 

Help dialog with the buttons that display the green check mark and red "X." To 

accomplish this, we just rendered the image directly into the text of the button. 

<%	 data image type ref to cl_htmlb_image. 
data	 image_string type string. 

create object image. 

image->id = 'UserCance12', 

image->src = cl_bsp~mimes=>sap_icon( 'ICON~INCOMPLETE' ). 
image->tooltip = ". 

image_string = image->IF~BSP_BEE~RENDER_TO_STRING( 

page_context ). %> 

<xhtmlb:toolbarButton id = "UserCancel" 

onClientClick "ptrPopup.ptrHideModalDialog('CANCEL') ;" 
text = "<%= image_string %>" I> 

The internal table that we will use for the value results must be a generic type. At 

design time, we have no idea what kind of structure this table will need. In the 

model, we have declared this internal table as TYPE REF TO DATA. Later in the 

model-processing logic, you will see the code necessary to dynamically redefine 

this internal table. However, because this internal table is just a reference to a 

generic data object, we must pass it to the <btml c : te.bleView> by first assigning 
it to a field symbol. 

<%	 field-symbols: <tab> type table. 

assign model->idata->* to <tab>. 

if <tab> is assigned. %> 

<htmlb:tableView id = "ml_users" 

table "<%= <tab> '10)" 

. .. I> 
<% endif. %> 

The last interesting aspect of the view is the dynamic creation of the input fields. 

Because the definition for the input fields varies depending upon the search-Help 

we are working with, the fields' UI coding must be dynamic as well. To simplify 

this process, we will rely upon model binding to bring our values back in from the 

browser on input. We will use the dynamic-binding-string approach that we 
learned about in Section 13.4. 

<%	 field-symbols: <wa_mvc> like line of model->shlp_mvc. 

data: input_string type string, 

F4-Value Help 327 



inputZ->_value = <wa_wvc>-bind_low.
 

inputZ->size = 15.
 
inputZ->maxT.ength = 30.
 

label = <wa_mvc>-TITLE.
 
inpucstring = Lnpu t Z->IF_BSP_BEE-~RENDER_TO_STRINC ( 

page_context ). %> 
,,<%= inputZ->id %>"<phtmlb:formLayout=tem	 idOfItem =
 

label
 ,,<%= label %>" > 

<%= input_string %>
 

</phtmlb:formLayoutltem>
 

</phtnlb:formLayout> 

There is one last thing that we will use model binding for. Remember that because 

our Value Help dialog application is stateless, our model instance will be lost. 

However, there is a small amount of data that we would like to retain about the 

state of the model. The simple approach to accomplishing this is to just write 

these items out to hidden input fields. The values will then be restored automat­

ically thanks to data binding. 

"1/model/SHLPNAME"<htmlb:inputField	 value 

visible "FALSE" I> 

328 Help Systems 

14.3.6 Input Help Model 

The final piece to the puzzle in the Value Help example is the model class itself. 

We are only going to look in detail at the method, GET_HELPVALUES_CO'lPLEX, 

which supplies the logic for one of the three approaches that we support. Once 

you understand the processing of one of the three methods, you will see that the 

other two amount to slight variations in processing. 

The goal of this method was to have all of the functionality of the GET_ 

HELPVALUES_BAPI, but with much less complexity in its use. This method only 

runs locally, but requires just a data type. From this data type we will determine 

what Help values, if any, are available and process the results into the same out­

put structures as used in GELHELPVALUES_BAPI. We thus will not be reqUiring 

any changes to the UI coding to support both methods. 

We start this method by setting a default 500 rows of returned values in case no 

value was supplied for max_rows. Next, we want to validate that the da t ajrc; 

attribute was supplied and passed in. Both of these fields are required and vali­

dated in the extension element, but it never hurts to check. 

METHOD get_helpvalues_complex
 

IF me->max_rows IS INITIAL.
 

me->max_rows = 500.
 

ENDIF.
 

DATA: field TYPE REF TO data.
 

TRANSLATE me->data_ref TO UPPER CASE.
 

IF me->data_ref IS INITIAL.
 

mc->message ~
 

'Da~a Type of Value Help can not be blank' (eDZ) .
 

RSTURN.
 

ENDIF.
 

We now will dynamically create a variable of whatever type was passed in. This 

will allow us to further validate that we have a correct data type. 

DATA: error4 TYPE RE2 TO cx_sy_create_data_error.
 

TRY. CREATE DATA field TYPE (me->data_ref).
 

CATCH cx_sy_create_data_error INTO error4.
 

me-)message = error4->get_text( ).
 

RETURN.
 

ENDTRY.
 

Next, we will use the ABAP Runtime Type Information (RTII) classes to further 

check our data element, making sure it is a data-dictionary type. We will then also 

F4~Value Help 32 

data: input2 type ref to cl_htmlb_inputfield.
 

data: input_id type string.
 

data: tabix type string.
 

data: label type string. %>
 

"LEFT"<phtmlb:fo:mLayout	 labelAl~gnment 

design "SOLID" 

verticalLineSeparation "TRUE" 

fieldToLabel?actor "1.0" 

customizationKey 

<% loop at model->shlp_mvc assigning 

move sy-tabix to tabix. 

condense tabix. 

create object inpLtZ. 

concatenate <wa_mvc>-select_fld 

into inputZ->id. 

condense inpuL_id no-gaps. 

"ZEOOOZ" > 
<wE._mvc>. 

tabix '_low' 

I 



use the RTTI to query for the help id attached to the object. If this help id refer­
ences a structure and a field we will need to split them in two, tEbname and 

fieldname, before further processing. 

DATA:	 rtti TYPE REF TO el_abap_elemdeser,
 
fixvalues TYPE ddfixvalues.
 
l_help_value T~PE shsvalstr2.
 

DATA: l_typename ~YPE dfies-tabname.
 
l_eompname TYPE dfies-fieldname.
 

rtti ?= el_abap_typedeser=>deseribe_by_data_ref( field).
 

if rtt~->is~ddie_type( ) = abap_false.
 
MOVE 'input type not DDIC Type' (e99) TO ne->message.
 

RETURN.
 
ENDIF.
 
DATA: l_helpid TYPE string.
 
IF me->data_ref CS '-'.
 

l_helpid = mc->data ref.
 

ELSE.
 
l_helpid = rtti->help_id.
 

ENDIF.
 
CONSTANTS: component_separator TYPE c VALUE
 
SPLIT l_helpid A~ component_separator
 

INTO l_typename l_eompname. 

In the next section, we get some help from some SAP-provided function modules. 
First, we call DD_SHLP_GET_HELPMETHOD. This will return whatever search help, 

complex or elemental, that is attached to our help ID. 

This is another validation that there is Value Help attached to our element. Ifthe 
object returned was a complex search help, we need to expand that object out so 
that we have all the details about its inner search helps as well. 

It is safe to pass even an elemental search help through the function module 
F4ILEXPAND_SEARCHHELP. It will only create an internal table with the single 
record for the elemental help. This way we have a common interface to work with 

through the rest of our processing. 

DATA: shIp TYPE shlp_deser. 
CAL~ FLNCTlON 'DD_SHLP_GET_HELPMETIIOD' 

l_typenameEXPORTING	 tabname 
fieldnane l_compname 

CHANGING shIp shIp.
 

IF shlp-fielddeser IS IKITIAL.
 

~~o Help Systems 

MOVE 'Ko Help Values Available' (e98) TO me->rnessage. 
RETURN.
 

ENDIF.
 
DATA: shIps TYPE shlp_cesct.
 
CALL FUNCTION 'F4IF_EXPAND_SEARCHHELP'
 

EXPORTING shIp_top = shIp
 
IMPORTING shIp_tab = shIps.
 

We next have a section to record the listing of inner-element search helps if we 
have a complex search help. We remove characters that are not HTML- safe from 
the search-help descriptions because we are using these descriptions in a 
<phtmlb:popupMenu> later 

FIELD-SYMBOLS: <wa bapishlp> LIKE LINE OF me >bapishlp.
 
FIELD-SYMBOLS: <wa_shlp> LIKE LINE OF shIps.
 
CLEAR me->bapishlp.
 
IF LINES( shIps) > 1.
 

LOOP AT sh~ps ASS=GNING <washlp>.
 
APPEND INITIAL LINE TO me->ba?ishlp
 

ASSIGNING <wa_bapishlp>. 
MOVE <wa_shlp>-shlpname TO <wd_bapishlp>-shlpname. 
MOVE <wa_shlp>-shlptype TO <wa_bapishlp>-shlptype. 
MOVE <wa_shlp>-:ntdeser-ddtext TO <wa_bapishlp>-title. 
REPLACE ALL OCCURENCES OF '/' 

IN <wa_bapishlp>-tiLle WITH space. 

ENDLOOP.
 
ENDIF.
 

Ifthe user has not selected a search help yet, or there is only one search help to 
choose from, we will initialize to the first record. Otherwise we will read our list­
ing of elemental search helps to find a match to the one the user has selected. 

IF me->shlpname IS INITIAL.
 
READ TABLE me->bapishlp ASSIGNING <wa bapishlp>
 

INDEX 1.
 
IF sy-subre = O.
 

me >shlpname ~ <wa_bapishlp>-shlpname.
 
me->shlptype = <wa bapishlp>-shlptype.
 
me->shlpdese = <wa_bapishlp>-title.
 

ENDIF.
 
READ TABLE shIps INTO shIp INDEX 1.
 

F4-Value Help 331 



ELSE.
 
READ TABLE me->bapishlp ASSIGNING <wa_bapishlp>
 

WITH KEY shlpname = me->shlpname.
 
me->shlptype = <wa_bapishlp>-shlptype.
 
me->shlpdesc = <wa_bapishlp>-title.
 
READ TABLE shIps INTO shlp
 

WITH KEY shlpname = me->shlpname.
 

ENDIF.
 

Now, we corne to the processing section, where we will take an input-selection 

criterion frorn the UI and turn it into a valid range, 

FIELD-SYMBOLS: <wa_mve> LIKE LINE OF me->shlp_mve.
 
FIELD-SYMBOLS: <wa_sel> TYPE ddshselopt.
 
LOOP AT me->shlp_mve ASSIGNING <wa_mve>.
 

APPEND INITIAL LINE TO shlp-selopt ASSIGNING <wa sel>.
 
MOVE-CORRESPONDING <wa_mve> TO <wa_sel>.
 
MOVE <wa_mve>-select_fld TO <wa_sel>-shlpfield.
 

<wa_sel>-sign = 'I'. "Inclusive
 
IF <wa_sel>-high IS NOT INITIAL.
 

<wa_sel>-option = 'BT'.
 
ELSEIF <wa_sel>-low CA '*' or
 

<wa_sel>-low CA '+'.
 
<wa_sel>-option = 'CP'.
 

ELSEIF <wa_sel>-low IS NOT INITIAL.
 
<wa_sel>-option = 'EQ'.
 

ENDIF.
 
ENDLOOP.
 

We are alrnost ready to call DD_SHLP_GET_HELPVALUE to actually perform our 
value selection, However, before we do, we will take a backup copy of the selec­
tion fields. We do this so that we can return our input pararneters back to the 

screen with the results, 

DELETE shlp-selopt WHERE low IS INITIAL.
 
DATA: b_shlp TYPE zes_shlp_mve_tbl.
 
b_shlp[] = me->shlp_mve.
 
DATA: feat TYPE lve_t_feat.
 
FIELD-SYMBOLS: <wa_feat> LIKE LINE OF feat.
 
DATA: fname TYPE lve_fname.
 
CLEAR me->tbl_def.
 
FIELD-SYMBOLS: <wa_def> LIKE LINE OF me->tbl def.
 

332 Help Systems 

DATA: I_output TYPE TABLE OF seahlpres.
 
DATA: I_shIp LIKE shIp.
 
Lshlp = shIp.
 
CALL FUNCTION 'DD_SHLP_GET_HELPVALUES'
 

EXPORTING maxrows = me->max_rows
 
TABLES output_values = I_output
 
CHANGING shIp = I_shIp.
 

CLEAR me->shlp_mve.
 
DATA: new_shlp(l) TYPE e.
 
DATA: tabix TYPE string.
 
IF b_shlp IS INITIAL. new_shIp = 'X'.
 
ELSE. me->shlp_mvc[] = b_shlp[].
 
ENDIF.
 

We now will build a listing of all the input fields for the search help that was
 
returned as well. This allows us to setup the table of input fields that we will
 
dynarnically generate in the output view.
 

FIELD-SYMBOLS: <wa_fields> LIKE LINE OF shlp-fielddescr.
 
LOOP AT shlp-fielddeser ASSIGNING <wa_fields>
 

WHERE fieldname NE '_HIGH'.
 

APPEND INITIAL LINE TO fcat ASSIGNING <wa_fcat>.
 
APPEND INITIAL LINE TO me->tbl_def ASSIGNING <wa def>.
 
<wa_fcat>-col_pos = <wa_fields>-position.
 
<wa__fcat>-fieldname = <wa_fields>-fieldname,
 
<wa_def> columnname = <wa_fields>-fieldname.
 
MOVE 'X' TO <wa_def>-sort.
 
<wa_fcat>-datatype = 'CHAR'.
 
<wa_fcat>-inttype = 'C'.
 
<wa_fcat>-intlen <wa_fields>-leng.
 
<wa deO-title <wa_fields>-scrtext_m.
 
IF new_shIp = 'X'.
 

APPEND INITIAL LINE TO me->shlp_mvc 
ASSIGNING <wa_mvc>.
 

<wa_mvc> select fld = <wa_fields>-fieldname.
 
<wa_mvc>-title = <wa_fields>-scrtext_m.
 

ENDIF.
 
ENDLOOP.
 

We are now ready to build our internal table of input fields for the search help, 
First, we have code to process rnultiple input values for the sarne item. We want 
to rnake sure that we have at least one input field for each itern that is ernpty and 

F4-Value Help 333 



ready for input. This Is where we will build a More Values item. Next, we build 

our blnding string for the low and high values in our range. 

DATA: last_field TYPE stcing.
 
DATA: last_value TYPE string.
 
LOOP AT Iile->shlp_Iilve ASSI?NING <wa_Iilve>.
 

MOVE sy-cabix TO tabix.
 
CONDENSE tabix.
 
IF last_field = <wa_Iilve>-seleet fld AND
 

<wa_Iilve>-low IS INITIAL AND 
last_value IS INITIAL.
 

DELETE me->shlp_nve.
 
CONTINUE.
 

ELSEIF last_field = <wa_Iilve>-seleet fld.
 
<wa_Iilve>-title ~, ... More Values' (001).
 

ELSE. 
READ TABLE shlp-fielddeser ASSIGNING <wa_fields> 

WITH KEY FIELDNAME = <wa_Iilve>-seleet_fld. 
<wa_Iilvc>--::itle = <wCl_fields>-scrtext_Iil. 

END IF . 
MOVE <wa_Iilve>-seleet_fld TO ~ast_field. 

~OVE <wa_Iilve>-low TO ~ast_value. 

CONCATEKATE '//Iilodel/shlp_Iilvcl' tabix 
'J .low' INTO <wa_Iilve> -bind_low. 

CONCATENATE '//model/shlp_mvel' tabix 
'J .high' INTO <wa_Iilve>-binLhigh. 

ENDLOOP. 

Next we will dynamically create an internal table that has the data structure of the 
returned values for the Search Help. For this example, we stayed with the CL_ 
ALV_'::ABLE_CREATE method for creating the internal table so that the coding will 
be compatible with Web AS 6.20. Ifyou are on Web AS 6.40, you are welcome to 

replace this with calls to the RTTS. 

Forsimplicity, after creating our dynamic 'Internal table, we query the structure of 
the internal table with a call to a static method 'In a helper class called YCL_ABAL 
UTILITIES. The source code for th's class is also available for download with the 

rest of this example. 

CALL METHOD el_alv_table_ereate=>ereate_dynaIilie_table
 
EXPORTING it_fieldeatalog - feat
 
IMPORTING ep_tablp = Iile->idata
 

334 Help Systems 

e_style_fname = fname.
 
FIELD SYMBOLS: <tab> TYPE table,
 

<wa> TYPE any,
 
<f> TYPE any.
 

ASSIGN me->idata->* TO <tab>.
 
APPEND INITIAL LIN3 TO <tab>.
 
DATA: struet TYPE extdfiest.
 
FIELD-SYMBOLS <wa_desc> LIKE LINE OF sLruet.
 
CALL METHOD yel_abap_.Ltilities=>get table_strueturp
 

EXPORTING itab = me->idata
 
RECEIVING struet = struet.
 

Finally, we come to the most complex part of the processing in this method. We 
need to move the data from our generic search-help result structure into the 
dynamic internal table. To make sure that all data is displayed properly, we will 
need to look up and process any attached conversion exits for each field. To make 
matters even more complex, all the data in the search-help results is returned in 
a single string. Therefore, we have to dynamically parse out this string based upon 
the definition of receiving internal table. 

CEAR <ob>.
 
DATA: eonv_exit(IO; TYPE e.
 
FIELD SY~BOLS: <wa_values> LIKE LINE OF l_cutput.
 
DATA: taJix_tIilp TYPE sytabix.
 
LOOP AT I_output ASSIGNING <wa_values>.
 

APPEND INITIAL LINE TO <tab> ASSIGNING <wa>. 
***'For each eOIilponent (fie~d) in the table -Output the data 

LOOP AT struct ASSIGNING <wa_dese>.
 
ASSIGN COMPONENT sy-tabix OF STRUCTURE <wa> TO <f>.
 
CHECK sy-subre = O.
 
READ TABLE shlp-fielddeser ASSIGNING <wa_fields>
 

WITH KEY fleldnElme ~ <wa desc> fieldname.
 
CHECK sy-subrc = O.
 
IF <wa_fields>-fieldnaIile = '_HIGH'.
 

tabix_tmp = sy-tabix + 1.
 
READ TABL~ shlp-fielddescr
 

ASSIGNING <wa_fields> INDEX tabix_tnp.
 
IF sy-subre = O.
 

IF <wa_fields>-eonvexit IS NOT INITIAL.
 
CLEAR cony_exit.
 
CONCATENATE '==' <wa_fields>-eonvexit
 

F4-Value Help 335 



INTO conv exit. 
WRITE <wa_values>~string+<wa_fields>~ 

offset«wa_fields>~leng) TO <f> 

USING EDIT MASK conv_exit. 

ELSE. 
WRITE <wa_valu~s>~string+<wa_fields>~ 

offset«wa_fields>~leng) TO <f>. 

ENDIF.
 
ENDIF.
 
me~>key_field '_LOW' .
 
RETURN.
 

ELSE. 

ENDIF.
 
ENDLOOP.
 

ENDLOOP.
 

We now only have to set the key field so that the JavaScript in the UI knows what 

element from the returned value list to pullout and pass back to the originating 

input field. 

IF me~>key_field IS INITIAL. 
IF l_compname IS INITIAL. 
me~>key_field = l_typename. 

ELSE. 
me~>key_field = l_compname. 

ENDIF. 
ENDIF. 

ENDMETHOD. 

15 Internationalization 

In today's global economy, successful businesses rarely operate in only 

one language or geographic region. With globalization comes many 

technical challenges. In this chapter we will look at the tools and tech­

niques in BSP that will allow you to open your applications to a whole 

new world. 

15.1 Multiple Language Support 

SAP software has always been known for its strong support for internationaliza­

tion. SAP's core product, R/3, is used around the world and is available in 40 

country versions and 30 different languages. SAP currently has installations in 140 
countries around the world. 

BSP joins the rest of the ABAP toolset with its strong support for multiple lan­

guages and code pages. In this chapter, we will examine several aspects of BSP 

that support internationalization. Figure 15.1 demonstrates how the same BSP 

page can support multiple languages. This page receives much of its translated 

content automatically, using the techniques we will discuss in this chapter. 

Figure 15.1 Multi-Language Example: English, German, Polish, Chinese 

The most important aspects of supporting multiple languages require that you 

only use two of the BSP development techniques already discussed in this book: 

BSP Extensions and Model View Controller As Figure 15.1 demonstrates, the 

tooltip for the expand/collapse button on the <htmlb; tray> is translated into 

each of the different languages, as is the calendar in the help for the input field. 

However, the developer did not have to perform this translation. Because this 

application reuses the SAP-delivered extension elements, SAP has already done 

Internationalization 337336 Help Systems 



the translation for you This is just one more reason to rely upon the extension
 

framework and SAP's delivered elements.
 

You might also notice that our <htmlb: label> and <htmlb: dropDownListBox>
 
values were all translated as well. These translations are coming directly from their
 
definitions in the data dictionary. SAP has supplied translations for these values as
 IClient'	 !O:6i[l 

,------------_.,IUsers'well. However, by using Model View Binding, we do not even need logic to pull (------_.--~

1···_····_--····1IPassword tthe correct language versions of these descriptions. The data-binding logic will ._....:---_....""]I LangLlage English V,}perform all the language-specific selections for us. 
Chinese 
Chinese trad 

ill.og on--/ !Changepassw ~,. ". .....
15.2 Logon Language Oermen 

Ctlp~m'Jht2002-2004 SA.P A POlis~ ~L jSpanlshWhen you log onto the SAP system via the traditional SAPGUI method, you must 
Thai 

select a language from the logon screen. This selection has two effects. First, it
 
sets the language that will be used for the user interface. This effect is fairly obvi­


Figure 15.2 8SP Application Logon Screen 
ous and probably the only thing that most people suspect is happening when they
 
choose the logon language. However, the system could also be setting the correct
 

~illtJ:ian\ll~L'N['1,Er(o('f';age£' 
-code page to match your logon language. This allows processing of texts in order ­

to be correctly stored in the database when your system is set up to work with Logon Procedurs / SerVice Option; , ~ \
f
 

o standard	 imultiple languages. All of this occurs provided that your system is not Unicode	 ServerGroup: I I 
r
 

(see Chapter 15.3), in which case all languages are contained in a single code o Alternative Logon Ordor SAP,8.u7.ho(lz. L~ Err. Type 0 t
 
@ Logon Data Required . [ Session Timeout: , .... ~ (HH:MM:SS) I
 

page. 1,0 Cert. (SSL)Required Compre'5ion (if posSIble) ... " .,. 0 (
 
D~.II_ogoll; ,I qUlLick . ..' .,. D. .I Settings I I lBSP applications running in Web AS 6.40 and higher can be configured to have 

~similar logon screens, as shown in Figure 152, but not every application will be 
f:
 

configured to go through a manual logon screen. You might have configured Sin­ .Anonymous Lo"gon Data;/ ~~eqLJremel1t~/
 

gle Sign-On for instance; in which case no logon screen at all would be displayed.	 ®Standard
 

Client [000)
 OSSl	 
I!f 

;There are actually several different ways that BSP applications can have their	 User I I I r 
password. ~~ still Initial Basic Authentication / logon languages set. They are layered one on top of the other in a hierarchy of	 

,, 
_Language IDE German 1])) . C!J St.3,1dard R/3 User ~
 

checks. The order that they are listed in this text is the order in which the BSP
 ~ CJ!nternet User 
rruntime processes them. 

-_._.•.".,..'-~•• - .~~.~ ",-" -"-'='".-.- '-'-~"'~"~.•.,-- -,.- ----.-- -_-";- ..• ~_ ~ __ ••.1 

~ In transaction SICF, if the service has the flag Logon Data Required set, the sys­	 Figure 15·3 Language Determination via SICF 

tem uses the language that is entered in the Anonymous Logon Data area. 

~ If it is still impossible to determine a language, the system then will/ook at the 
~ If no setting is maintained in SICF, but the HTIP request contains the language 

browser settings. The system selects as the logon language the first language 
in the HTIP header-either as a header or as a form field-this logon language 

from the list in the browser that matches one of the installed installed lan­
will be used. The field that the runtime is looking for is called sap-language. 

guages in the SAPsystem. With Internet Explorer, you can set the language by 
You can supply a value to this field as an ISO language ID, such as EN for 

choosing Tools· Internet Options· Languages. Technically, the browser trans­
English or DE for German. If you want to test this fieid's abilities, simply add 

fers this value us.ng the HTIP header field accept -language.
the field to the URL string in the browser after loading a BSP application: 

http://(host>/sap/bc/bsp/sap/ybsp/book.htm?sap-language=DE 

Logon Language	 339338 Internationalization 



l~[ Ca;{] 

~J 

l-r\11)'!~lIp _.I 1'1 
- i 

I 

I 
I 

~I 

!!i~~'D~,~·~\ . 

Menus anddialog boxes arecurrently displayed 
inEnglish (United States), 

English (United States) [en-us] 
Polish[pi] 
Chinese [zh] 
Thai [th] 

! 

German (Germany)[de] 
~aniSh (~lexi(o) [as-mx] 

~J I Fonls.. ) I Languages ... ) [Accessibility. ] 

[OK -) [~J 

Some Websites offercontent inmultiple languages, You can 
choose several languages below; theywill be treatedin orderof 
priority. 

Figure 15.4 Language Setting in Internet Explorer 

~	 If no language can be determined up to this point, the classic SAP system 

mechanisms are used. The logon language is based on the user settings, in 

transaction SU01. Finally, if nothing is maintained even here, the default lan­

guage of the SAP system is used automatically. 

You might find it useful to be able to switch the logon language of your BSP appli­

cation programmatically. The easiest way to do this is to attach the sap -Larigu­

age header field to your URL as you navigate. 

DATA: params TYPE tihttpnvp.
 

FIELD-SYMBOLS: <wa_params> LIKE LINE OF params.
 

APPEND INITIAL LINE TO params ASSIGNING <wa_params>.
 

<wa_params>-name = 'sap-language'.
 

<wa_params>-value = 'DE'.
 
DATA: bsp__abs_url TYPE string.
 

CALL METHOD
 
cl_bsp_runtime=>construct_bsp_url 

EXPORTING	 in_application = runtime->application_name 

in__page = runtime->page_name 

in_parameters = params 

IMPORTING	 out abs_url = bsp_abs_url. 

340 Internationalization 

currenttime = sy-uzeit.
 

CALL METHOD cl_http_server=>append_field_url
 

EXPORTING name = 'sap-unique'
 

value = currenttime
 

CHANGING urI = bsp_abs_url.
 

navigation->exit( urI).
 

Listing 15.1 SWitching the Logon Language to German 

In the above listing, we have used two different techniques for appending a form 

field to the URLs (cl_bsp_runtime=>construct._bsp_url and cl_http_ser­

ver=>append_field_url) in order to demonstrate their use. Also note that 

reloading the current application with a different logon language will require that, 

in a stateful application, we get a new session. Therefore we will lose access to 
any stateful data we had in memory. 

That is also the reason we are attaching the sap-unique header field as well. If 

our application is stateful, it may be running within a frame that uses JavaScript to 

watch the URL for changes and destroy the session when no longer needed. 

However by only adding a different language to the URL, this JavaScript may not 

pickup the	 change. The addition of the sap-unique header can assist in this 
determination. 

15-3 Unicode 

15.3.1 What is Unicode? 

A brief explanation of Unicode is in order here. Computers do not understand 

human language characters; they only understand numbers. A mapping table is 

therefore necessary to connect characters to numbers for output to human-read­
able displays. 

Ideally, there would have been one single mapping that gave every character in 

every language a unique number of its own. This would have required more than 

one byte per character. Years ago, when computer memory was expensive, the 

overriding concern when it came to any design was the conservation of memory. 

Therefore different languages were separated in code pages and numeric values 

were reused from code page to code page. This allowed a Single character from 

most languages to be represented by only one byte. However, it introduced the 

complexity that only one code page could be used at a time and consequently 

limited the number of languages that could be processed together. 

Unicode 341 



With the advent of the Internet age and globally operating businesses, it is no 

longer possible to work in one or just a few languages. Today's applications need 

to be usable in just about any language known to man. This is where Unicode 

comes into play. 

Unicode uses multiple bytes per c~aracter in order to have a single code page that 

holds every character from every modern language, and even some not- so-mod­

ern ones. One might think that this would solve all incompatibility problems 

when it comes to characters and code pages. 

Unfortunately that is not the case. There are several different implementations of 

Unicode that use a different number of bytes per character, varying in use from 

one to four bytes. The three major flavors are UTF-8, UTF-16, and UTF-32. UTF­

8 uses as little as 1 byte per character and as many as 4 bytes. UTF-16 uses a min­

imum of 2 bytes per character and as many as 4 bytes. Unlike UTF-8 and UTF-16, 

UTF-32 uses the same number of bytes (4) for every character. This has the advan­

tage of not requiring any processing overhead for the variable byte conversion, 

but the disadvantage of requiring the largest amount of memory. 

To complicate matters further, when you work with Unicode you also must con­

sider the Byte Order Mark, or BOM. When you have two or more bytes repre­

senting a character, the processing program of these characters needs to know 

which byte is the significant one. 

Significant byte has to do with how the underlying hardware architecture stores 

the bytes in memory. Big Endian means that the most significant byte is stored in 

the lowest memory address. Some architectures that use this approach are 

Motorola 68000 and SPARe Little Endian means that the least significant or lit­

tlest byte is stored in the highest memory address. This method is used in Intel 

X86 and DEC VAX. 

Therefore, a Unicode string should begin with a special BOM that signifies what 

byte order to use when processing the string. This BOM also can be used to deter­

mine the encoding as well. The following table lists the BOMs and explains what 

is meant by significant byte. 

Bytes Encoding Form 

0000 FE FF UTF-32, Big-Endian 

FF FE 00 00 UTF-32, Little-Endian 

FE FF UTF-16, Big-Endian 

Table 15.1 Possible Values for the BOM 

342 Internationalization 

Bytes Encoding Form 

FF FE UTF-16, Little-Endian 

EF BB BF UTF-S 

Table 15.1 Possible Values for the BOM (cont.) 

15.3.2 Unicode in asp 

Use of a Unicode Web AS clearly solves many problems for processing in multiple 

languages. If your Web AS is Unicode, it can process input or output data in any 

of SAP's supported languages. 

But what if you are running on a system that has not yet been converted to Uni­

code? This is, after all, the more likely situation, given that Unicode conversions 

and installations for the Web AS are just now beginning to become common. 

Because of the higher memory requirements for Unicode, many customers will be 

putting off Unicode conversions for quite a few years. 

However, there are some techniques that allow you to take advantage of Unicode 

within BSP even on a non-Unicode Web AS. You should use these techniques 

with caution, as their improper use could lead to data corruption. 

The first technique is the use of the BTFWYSIWYG HTML editor. This BSP exten­

sion element supports the use of binary strings in Unicode format for transferring 

the data to or from the editor control in the browser. The <bt f : edi tor> element 

was discussed in detail in Section 12.1. 

But instead of a full blown HTML editor, let us say you only want to display some 

text strings. And, suppose these strings all come from a different code page in a 

back-end Multi Display Multi Processing (MDMP) system. MDMP is the pre-Uni­

code, SAP-speCific technology that allows the processing of multiple code pages 

within a Single system. However, MDMP has a major restriction in that only one 

code page can be processed at a time. Therefore in our situation, where we want 

to display descriptions from three different languages, we receive data corruption 

during the output, as shown in Figure 15.5. 

Test 
EN:Test· English 
PL Nrezaparni etanedanezostan± utracone wm I 
~H_ll:~_:o.'~_~§:~~~~~~!..:~a~~~~~~:.~i~Aa~~_.J 

Figure 15.5 MDMP Display Data Corruption 

We can start correcting this corruption by setting the MIME type on the Proper­

ties tab of the BSP page. With the MIME type setting, we override the default 

Unicode 343 



------------------------------

.,. 

I 

character set for the page generated by the system and force the ICM to publish 
the page as Unicode. 

text/html; charset=UTF-8 

This effectively sets the browser to Unicode encoding, but does nothing to the 
data stream itself. Therefore, as Figure 15.6 demonstrates, we now have corrup­
tion because the text streams are not Unicode encoded. 

'-, . i 'roolbers , I'.A. ' I ,." - "",'
: {~Bar.!' -I [earch '.:.-.,' Favorites €I ~ ... (cj. ~t 
• ~lo.I5tatusBar 1---

I --t 
Test 1_"_,_:.~~!~~_~r~_B_~~,..,.", _.... ",__". ~__ I 
EN:Test· I Go To , ,. 

PL: ~Ii ezaJ stop Esc i utracone Wm 
TH: ?f@:J!Di __Refre>h ._F_5_.P??DDlbr.>. 

i Text Size ~ t 
IW't,@li!\til@itMt4t1 " Auto'Sele~t' 'I 

Source Western European (Windows) 

Privacy Repcrt.c. W~stern European (ISO) 

ScriptDebugger .. • Unicode(UTF-8) 
1

FujiScreen F11 I More 

• left- Ta-RightDocument 

Figure 15.6 Browser Set to Unicode, But Corruption Still Occurs 

Although we have taken a step in the right direction, we obviously need to do 
something to convert our individual text strings to Unicode as well. The first step 
in this process will be to create an RFC destination in transaction SM59 (Figure 
15.7) for each language we wantto read data from. This allows us to logon to that 
language and temporarily set our code page correctly to read the text string from 
the database. 

Security OPtio~ " ~.I. 
" 

Trusted System . aND' @Yes o toaon Scre-en - I~ 
- .

.

i 
I\ill SNC I ® Inactive a Acti'ie . _I 

Authorizationfor DestlnatiDn'c:::::=J ' .t 
!lOQOn/ II 
langUag~ 

client rooor! 
I iser C1c~='C~ ~__ __ J 

Figure 15.7 RFC Setup per Language 

=144 Internationalization 

Inside the processing of our RFC that will be called through each destination, we 
will already be set to the correct code page. Therefore we can read the data from 

the database without corruption. To preserve the data while passing it back to the 
calling BS P page, we will convert the text string to a binary string before retu rning it. 

FUNCTION y_e_rfc_Iang_testl. 
*" --- ­

"·"·Local interface: 
EXPORTING 

VALUE (O_XSTRING) TYPE XSTRING 

DATA: dktxt TYPE dktxt. 

SELECT SINGLE dktxt FROM drat INTO dktxt 
WHERE dokar = 'ISS' 

AND doknr = '0000000010000000000002195'
 
AND dokvr = '00'
 
~~D doktl = '000'
 

AND langu = sy-Iangu.
 
FIELD-SYMBOLS; <f> TYPE x.
 

ASSIGN dktxt TO <f> CASTING TYPE x.
 
MOVE <f> TO o_xstring.
 

ENDFUNCTION. 

Once back in the processing of our BSP page, we have our binary string. Now we 

just need to convert that binary string into a Unicode text string. For that we will 
use the SAP function module SCP_TRANSLATE_CHARS. Before converting, how­
ever, we will cross-reference the standard external name of the code pages into 
the SAP internal 
EXTERNAL_.NA1'lE. 

numbers using the function module SCP_CODEPAGE_BY_ 

METHOD translate_pl. 

DATA: encoding TYPE string. 

DATA: codepage TYPE cpcodepage. 
encoding = 'iso-8859-2'. 

CALL FUNCTION 'SCP_CODEPAGE_BY_EXTERNAL,_NAME' 
EXPORTING external_name = encoding 
IMPORTING sap_codepage = codepage. 

DATA: codepage2 TYPE cpcodepage. 
encoding = 'utf-8'. 

CALL FUNCTION 'SCP_CODEPAGE_BY_EXTERNAL_NAME' 
EXPORTING external_name = encoding 

IMPORTING sap_codepage = codepage2. 

Unicode 345 



DATA: xdocument_length TYPE i.
 
xdocument_length = XSTRLEN( me->pl_xstring ).
 

CALL FUNCTION 'SCP_TRANSLATE_CHARS'
 
EXPORTING inbuff = me->pl_xstring 

inbufflg = xdocument_length 

inc ode = codepage 
outcode = codepage2 

substc_space 'X' 

substc '00035' 
= me->pl_string.IMPORTING outbuff 

ENDMETHOD. 

We can now output our Unicode text string to the BSP without any further special 

processing and receive the uncorrupted output as shown in Figure 15.8 

<htmlb:form> 
<OTR>Test</OTR><br> 
EN: <%= application->en_string %></br> 
PL: <%= application->pl_string %></br> 
TH: <%= application->th_string %></br> 

</htmlb:form> 

~~	 (
EN: Test- English ~ 
PL' f\!iezapamiEitane danezostanautracone w m~ 

TH ihvhuli~l'hn~'trmihl1J..nu'1I'\t.j'hhuf1lmJ t 
,.."'.............._.=1'~~'
 

Figure 15.8 Normal Output Thanks to Unicode 

15-4 Online Text Repository (OTR) 

Through out this text you may have noticed the use of the following syntax: 

<htmlb:textView	 text = "<OTR>Hello!</OTR>"
 
design = "HEADERl" />
 

Perhaps you were curious why text literals were quite often surrounded by the
 
<OTR> tag. This technique is very similar to the following syntax in standard ABAP.
 

write:/ 'Hello!' (Ool).
 

Both techniques have the same purpose: to expose a text-literal string to transla­


tion.
 

~46 Internationalization 

The term OTR actually stands for Online Text Repository. By surrounding any text 
literal in your BSP application with OTR identifiers, you have in effect separated 
your text from the BSP coding. Not only is the text stored separately now, but it 
is stored in a language-dependent format. This means that for a single text string 
you could have several different language versions. 

The BSP runtime will automatically retrieve the correct language version based 
upon the user's logon language. If no translated texts exist in that language, the 
BSP runtime will automatically substitute with the corresponding text version 
from the system language. 

15·4·1 Types of OTR: Alias and Long 

There are actually two different forms of OTR texts; Alias texts and Long texts. 
Alias texts are those texts that are reused frequently and are less than 255 charac­
ters. These texts are stored independently of the BSP page they are used on. This 
supports reuse and consistency from application to application. This also gives 
you the opportunity to reuse the thousands of terms that SAP has already trans­
lated in the standard system. 

These texts are formatted a little differently when used in your SSP page. 

<htmlb:textView	 text "<%= otr($tmp/ybook_testl) 70>"
 
design "HEADERl" />
 

The downside is that you cannot display or maintain the text for your editing lan­
guage from within the BSP page itself. You must double-click on the OTR string to 
even be able to view the text. This reduces the overall readability of your page 
coding. 

When you do double click on the OTR string, an editor window is brought up 
(Figure 15.9). From here you must set the maximum length for the text across all 
translations. You can also set the text for the language in which you are currently 
editing your page. 

OTR aliases also support the concept of contexts as well. This allows you to create 
variations of your text strings for a particular country or industry. However a sys­
tem may only have one country and one industry context value set for it. That 
means that a single system cannot support both Spanish - Mexico and Spanish _ 
Spain. 

In Figure 15.10, we see how we might use the context to create a variation on the 
English greeting "Hello" that better suits our friends "down under." 

Online Text Repository (OTR) ~47 



...-.ilj.· 

@(hange Text 18 

Alias I~THP/YBOOK TEST! 

Text Length IJiOl 

r,4! ClI~llti~+;"llooIL\jI[~I~1 

C"",,~JI u 1, Co1 i,Ln 1- i..n 1 of i-lines 

/9 [i"1ntP'It II 

Figure 15.9 OTR Alias Editing 

I@(ontexts Di,play . [] /il 
I II I(try /Indust !eontextFI IText . '. ilIDIl J

ffii' [,.j¥.:-,;~~~_ =::JJu
 
Figure 15.10 Australian Context for Hello 

The otherform of OTR is called the LongText. This OTR type has the advantage of 
being able to maintain the texts directly from within the SSP page or view. How­
ever this also means that this text object is stored only with the page in question. 
These objects cannot be shared across multiple pages. This makes this variant of 
OTR suitable for longer strings, entire sentences instead of single words, that are 
not often used. 

15.4.2 Working with OTR from ASAP Code 

So far, we have looked at the OTR within the context of a SSP Page or view only. 
However, OTR texts actually can be used in any ASAP coding via a few supplied 
ASAP classes. This is useful for processing texts, such as error messages, within 
event handling or program flow. 

To make OTR programming easy with SSP, the runtime object, class CL_BSP_RUN­

TIME, has a method called GET_OTR_TEXT. This method functions very similarly to 
the use of the OTR Alias in a page or view. You simply supply the OTR Alias, and 
a text stream with the results will be returned. The method handles the switch to 
the system language for you if the text is not available in the current logon lan­
guage. Ifthe method cannot find the alias, an error is not raised. The method sim­
ply returns an empty string in that situation. 

~48 Internationalization 

METHOD get_otr_text 

IMPORTING alias TYPE string
 
RETURNING text TYPE string.
 

Ifyou do not have easy access to the BSP Runtime object, you can also choose to 
use the class CL_BSP_GET_TEXT_BY_ALIAS. It has a single static method called 
GET_TEXT. The main difference between the runtime method and this one is that 
the CL_BSP__GET_TEXT_BY_ALIAS=>GET_TEXT also has an importing parameter 
that allows you to specify the language that you wish to retrieve the text fOL This 
gives you the ability to get a text other than the one that matches your logon­
language_ 

METHOD get_text 

IMPORTING language TYPE sylangu 

alias TYPE string
 
RETURNING alias_text TYPE string.
 

15.4·3 Special Note about using OTR 

There is special aspect of using OTR that should be made clear. If you create an 
OTR string and then translate it into two different languages, the lengths of the 
translation in two different languages often may be very different. Therefore, a 
long OTR string could have a very short translation in a different language. 

However, the OTR system is so designed that it stores a length of the original text 
with the string and will always return the string filled with trailing spaces This 
causes perfectly normal HTML rendering to produce some strange output. For 
example a button that is suddenly much too wide. 

Luckily, there is a solution for this problem. There is a page directive that will have 
the SSP compiler automatically generate additional code to CONDENSE each 
<OTR> sequence after it has been looked up. 

<%@page language="ABAP" otrTrim="true" %> 

15.5 Translation 

We have so far discussed the techniques for enabling our SSPapplications to sup­
port multiple languages. However, this does not do us much good if we do not 
know how to translate our elements and in turn use those translations. 

Translation ~4q 

'..... _.__.-.. _.._-= 



15.5.1 OTR 

Although OTR texts can be translated using the Translation Workbench, transac­

tion SE63, we do not really want to focus on the overall translation tool. The 

translation workbench may be worth studying on its own if you are serious about 

doing full blown translation proje.cts. More likely, you will just want to translate a 

few texts within your own pages. 

This simple translation effort can be performed directly in the ABAP Workbench. 

In the Workbench, we can choose menu Goto • Translation. In the context of a 

BSP page or view, we should have two options: one for OTR Long texts, and one 

for OTR short texts. 

----lIT: IHola! TlUNG ,,23/200520:53:01 .,,23/200520:56,17 3 

Figure 15.11 OTR Long-TextTranslation Tool 

The two tools do have slightly different user interfaces because of their different 

focuses. The Alias editor assumes you have a single word or small phrase. There­

fore, it provides only the single-line input area for the translation. 

The OTR Long Text supports larger groups of words and phrases. It is also 

designed to protect HTML tags that might be included amongst the text you are 

translating. Further, it allows language-dependent application of bold and italics 

attributes. 

Figure 15.13 demonstrates the translated output of our two example OTR ele­

ments in English and in Spanish. 

~ ..o Internationalization 

0001

'lo0i~~'~ IChonge.IObJe letry [E]I "
Hello 

Pr:uebB. D<::1 Lab t nIva IT"P 

0 

I§ :Hello! TJUNG WAPP I~ 'G'd~Y M.~t8 TJUNG WAPP AU I 

1<l[iJ[ ,.. t 
:! 

Display Other Languages I Administration Info I WI,ece-usedListllll[ E[J I 
Alias HMPIYBOOK_TEST1 
Package $TMP Temporary Objects (never transported!) 
Original Lal\,cruage EN 

Transfation Lecel 1 (into all languages) 
Created by: TJUNG 
Created on: 081231200521:13:42 
Las' ChangedBy TJUNG 
Changed On 081231200521 :16:08 
Object Type: WAPP PayelCon/roller ofa aspApplication 
Technical Name 3601 B4840CBE8942926B5804F1440E9B~--~~, - '-~'--~""--~- ---- ,-.----------~~ ---- - - ._.--~ -----'~--- .', ..•,-----------.~.... . ---------- ,,-- -------~"-.~---_.~~-.-..-,,---.--~.-

Figure 15.12 omAlias Text Translation Tool 

";) ';c"f ,,) G ~ ':;) P Search Favorites o -~"~'~',",",'" 

!Hello! • _.. , ~~<""'-";':-_~--'----l...""",-;{
 

IHello : J E, r .'" 0 ~ ,:,) P Search ":, Favorrtes e,
 
~-~'~1HOla! 

Prueba Del Libro 
!:.,-~ 1 ~ ~ _~_~ _~ _~~ .¥-_. "-"__.,,__o/~~~_~~.,, .,." •• ~"~~r--J 

Figure 15.13 Translation Output 

15·5.2 Field Labels and Quick Info 

As we use <htmlb: inputField> and <htmlb: label>, we quite often need to fill 

texts from the corresponding data-dictionary fields. Reusing the translations that 

already exist in the data dictionary will save you time and provide an even greater 
level of consistency than just using OTR texts alone. 

As we noted earlier, if you Use Model View Controller, the framework will auto­


matically pull the correct language version of these kinds of texts for you.
 

But what if you are not Llsing MVC? You could of course write your own custom 

SQL to read the texts directly from the database tables that house these texts. But 

repeating this custom logic all through out your applications is unnecessary. SAP 

has provided methods of the DDIC_UTILS object for retrieVing texts for both Field 

Labels and Quick Info. The DDIC_UTLLS object is already available in most parts of 

your BSP application as an attribute of the RUNTINE object instance. 

For both methods you only need to supply a reference to any data object. You can 
also override the default logon language if you Wish. 

Translation ::r..1 

,II j Ho La I 

,, 
"I 

II 

Date IV 

...23/2005 20:51:56 TlUNG ".23/200520:51:56 3 

Hello! 

Display other language~ 

" :0 EN $Tf'.~p 
Concept 

I 

Author 

Administration Info 

·Q·tj"EN'H~il~i" ..------. 

lIT:Hellol TlUNG 
'V 6JES iHola! 



METHOD get_field_label 
IMPORTING data_object_ref TYPE REF TO data 

langu TYPE spras DEFUALT sy-langu 

RETURNING label TYPE string. 

METHOD get_quickinfo 
IMPORTING data_object_ref TYPE REF TO data 

langu TYPE spras DEFUALT sy-langu 

RETURNING quickinfo TYPE string. 

The following simple example and Figure 15.14 demonstrates the use of these 

methods. 

<htmlb:form> 
<%	 DATA: l_matnr TYPE matnr.
 

DATA: data_ref TYPE REF TO data.
 
GET REFERENCE OF l_matnr INTO data_ref. %>
 

<htmlb:label for = "test"
 
text
 "<%= runtime->ddic_utils->get_field_label(
 

data_ref) %>"
 

tool tip "<%= runtime->ddic_utils->get_quickinfo(
 
data_ref) %>" I>
 

</htmlb:form>
 

_ 

IMateri IMateria 
Numetade material 

11~6] 

~~ 
II Materia;:;~ l~tJJ~1 

~n~1I IMaterial"""" I 

By using the BSP Extension Element <htmlb:inputField>, you can avoid any 
problems with the conversion from the internal to external date formats and auto­
matically use the format that the user has selected in his or her SAP user profile. 

<% DATA: current_date TYPE sydatum.
 
current_date = sy-datum.
 
DATA: data ref TYPE REF TO data.
 
GET REFERENCE OF current_date INTO data ref. %>
 
<htmlb:label for = "AsString"
 

text = "<%= runtime->ddic_utils->get_field_label( 
data_ref) %>" 

tooltip = ,,<%= runtime->ddic_utils->get_quickinfo( 
data_ref ) %>" I> 

<htmlb:inputField	 id = "AsString"
 
value = ,,<%= current date %>"
 
type = "STRING" I><br>
 

<htmlb:label for = "AsDate"
 
text = ,,<%= runtime->ddic_utils->get_field_label(
 

data_ref ) %>"
 
tool tip = "<%= runtime->ddic_utils->get_quickinfo(
 

data ref) %>" I>
 
<htmlb:inputField id = "AsDate"
 

value "<%= current date %>" 
showHelp "TRUE" 
type "DATE" I> 

Inthis code example and in Figure 15.15, you can see how setting the type of the 
<htmlb : inputField> to DATE triggers the extension to properly support various 
date formats. 

Figure 15·15 Different Date Formats for a German and English Logon User 

Date Format :l£:2 

I i Figure 15.14 Automatic Field Label and Quickinfo Translation 

15.6 Date Format 

So far, our discussion about internationalization has focused on character strings 
and translation. However, the output format of dates is also an import aspect to 
consider as well. There are many different formats used around the world. Let us, 
for instance, consider two of these different formats: DD.MM.YYYY and 
MM/DD/YYYY. In this case 01.12.2000 is a very different date than 01/12/2000. 

In order to support various date formats, ABAP stores dates internally as an eight­

position character string:YYYYMMDD. 

:152 Internationalization 



16 Document Handling in SSP 

Excel files, PDF documents, ZIP files, images: Before longyou will 
need to process at least one of these document types within your BSP 
application. This chapter explainshow to accomplish this for many 
non-HTML documents. 

16.1 MIME Repository 

BSP applications like any Web-based application are going to have a need refer­
ence existing MIME objects. Altheiugh MIME actually stands for Multipurpose 
Internet Mail Extensions, the term has come to represent any non-HTML or XML 
content such as images and style sheets. 

To facilitate this need, SAP delivers the MIME repository as an integrated compo­
nent of the ABAP Workbench. The MIME objects themselves are stored in the 
underlying database. However, they are represented through the MIME reposi­
tory as a hierarchy of folders and items, much like the file system of a traditional 
Web server. This allows MIME objects to be referenced via relative path from 
within BSP applications. 

Gmg s r c>" .. /public/bsp_book/ example. jpg"> 

~lIME Repository 

6~8Repository Browser 

~epositDry Information System 

I£]Tag Browser 

~Transport Organizer 

CflI~I[BNI@] 
[Descmtlcn 

?~SAr, __, EJ~. 
'V Dsc.. ... .

D DBSP"­
Ell

'­ r 
~ i::J fp f 
r> D WebD}npm 

DD~ 
r·

( 

• 'V ~ ~s~~c - - -'~1 

F-=-~~~~~--=-~-::=== !
 
f 

htrrerrotvhover html ' 

0 reseo9,f Ei!
Il ~ DJ5 B: 
I ~~~~~_~_~ '"[<]01 _.100 [ 

Figure 16.1 MIME Repository View in SE80 

Document Handling in SSP =155 



r 
! 

The MIME Repository browser, as shown in Figure 16.1, displays the complete 
hierarchy of all folders and items. Solutions other than BSP use the MIME Repos­
itory; however a new folder is automatically created for each BSP application. 

MIME objects can also be created or imported for use in a specific BSP application 
without having to ever go through.the MIME Repository. These objects are placed 

in the automatically created folder that represents each BSP application. 

Figure 16.2 Import MIME Objects Directly into a BSP Application 

I 
I 

!i 
I. 

Once you have one or more MIMEs attached to a BSP application, they will show 
up in the object browser along with the other components of the BSP application 
(shown in Figure 16.3). From this view, you can update or display the MIME 

objects as well. 

All of the traditionally SAP GUI icons are also stored in the MIME repository and 
ready to use in BSP applications. However it is best not to refer to them directly 
via their relative path. SAP may decide to change this path at some point. Also if 
you want to support RTL (right-to-Ieft) rendering, there are a separate set of icons 

with a different MIME path. 

The best approach is to use the class CL_BSP__MIMES to retrieve information about 
the standard SAP Icons. There is a static method called SAP_ICON that allows you 
to retrieve the full path for an icon MIME object by supplying either the icon 
name, such as ICON_CHECKED, the ABAP icon 10, such as@OI@, or the ABAP inter­
nal name, such as @LOKAY@. The BSP application ITOO has a page called mime_ 
sap_icons. htm that does an excellent Job of demonstrating the use of CL_BSP_ 
MIMES as well as listing all possible icons with their IDs, internal names, icon 

names, and MIME names. 

:li..6 Document Handling in SSP 

ObjectName. .'. • . .ID.scriPtion '. .... .. 'd II.. .~ 
- Q.~eUe5t1_.__. ~~•. ._;~~~.AfJQ~c.a!iCC'lEx.af1l~S_~~_~':::. I8SP .~
 

~ 0 Controller 11 ' ~..,

[) D Views . ~~_J
 
~ 0 Pages with Flow Logic . rie . • i 

----=-Qc- MIMEs6J8C640 02 II atefiJl . '.... I 
~
 

-- .. '-~~~~--. ~-'--. -~~-~"""""""-~--~---. ---.-. Apports Portal Inti:
 
'5.eR!9g~,g~ ..........!
 

~ D 8C640_0 CQange I! 

~ g~:~~~nto r'J:::~iD~W~];ad -"~~'-'-'; '~Q;V~18~r1'l:da?'-~~~1 r 
o Q. !~?1~!n~7tJj·-~·~';i:;t't'"tCJ~·;~,A_'~"'-'~-'--~"'~'J----~"-,_.~.,.,,~ ~I~;d=;d·~;;~~;·"~~i ~ 

Qe~te B.emCi'·...e Block i 
P~opertjes Downlo~d f 
ElliJiration Time Client Carha t 

Other Functjons 

_.~-, ..,.,......--~_.,-..~Je 

Figure 16.3 MIME Objects Inline in the SSP Application View 

16.2 leM File Handler 

The MIME repository is great for storing and cataloging MIME objects that are 
necessary for use in our BSP applications. It supports the transport mechanism 
and translation. But sometimes we might need a Simpler solution that does not 
require objects to be uploaded in advance and stored in the system's database. 

The Internet Communication Manager (ICM) allows just such access to any file 

system accessible to the underlying operating system. You can map operating file 
system directories into ICM URL paths using the profile parameter icm/HTTP/ 
file_access <xx>. 

Ifyou have never maintained one of the system-profile parameters, now is good 
time to make friends with your Basis administrator. With the following additions 
to our instance profile and a quick restart of the ICM, we are now able to access 
file system directories via HTTP. 

icm/HTTP/file_access_O 

PREFIX=/doc/, DOCROOT=/usr,BROWSEDIR=2 

icm/HTTP/flle~access_l 

PREFIX=/doc2/, 

DOCROOT=\\server\SAPPatches\Netweaver04,BROWSEDIR=2 

In the first entry, we are just going to map to the local directory usr. We are able 
to control the user's options to browser a directory via the additional parameter 
BROWSEDIR. The possible values are: 0 - no browsing allowed, 1 - only file names 
are displayed, and 2 - file names along with their size and last change date are dis­
played. 

leM File Handler 357 



file Edit View favorites Tools »_ ~ ~d~re.::~ I _~lID1m11 ~ 
t· 

Current Directory /doc2/ABAP/ 

SizeLaa t modifiedName 

Ok 
Ok 
Ok 
Ok 

29k 

Ok 
Ok 
Ok 
Ok 

Tue, 02 Nov 2004 09:56:34 
Fri, 29 Jul 2005 13:40:04 
Fri, 29 Jul 2005 13:25:23 
'(i,Ted, 18 xav 2005 12 :54:09 

Tue, 02 Nov 2004 09:56:35 
Tue , 22 Dec 2004 14:51:51 
Tue, 02 Nov 2004 07:48:11 

'(Jed, 22 Jan 2005 19:51:34 
Tue, 02 Nov 2004 07:30:12 

Ba8 i3 P 1ugins 
IG5640 

ins(.coll 32blt. Zip 
Kernel 
3APSECULIE 

SPAn Update 
SupporL PackaQe3 

Figure16-4 iCM FILCACCESS browse 

The second entry really shows off the power of this profile parameter. We are able 
to expose a directory on a remote server via UI\JC paths. Of course the security on 

that directory would have to be open to allow read-and-browse access. There is 

also no real mechanism to apply security to the ICM URL for this file access node, 

so you will want to be careful what you expose through it. 

16.3 Handling Non-HTML Documents 

BSP pages contain, effectively, HTML. When binary objects are requested, they 

are placed in the MIME repository and referenced from there. However, it is often 
necessary to handle binary objects or documents during the runtime of the pro­

gram. It is not feasible to place these runtime documents in the MIME repository. 

For any change in the MIME repository, transport records are written. This is usu­
ally not possible on a production system, and is relatively slow compared to the 

runtime requirements of the running BSP application. 

Some real world examples are: 

~ For a personnel system, all colleagues' pictures are available in a database table 

and must be displayed as part of an HTML page. 

~ To use an ActiveXobject, like Flash or SVG plug-in, the application dynamically 

generates XML data that is available for the plug-in via HTIP. 

~ Some internal data is converted into a PDFdocument that must be displayed in 
the browser. 

Assume we are somewhere on a BSP page and we wish to display the complete 

document. A typical example: A button is pressed for a receipt, and then a PDF 
document must be displayed. 

=158 Document Handling in BSP 

A slightly more complex example is to display the new document as part of an 
HTML page. This requlres that the HTML page must be rendered back and then, 
on a second HTIP request, the document is fetched and displayed in the same 
page. 

The last approach is to open a new window and display the document in the win­
dow. 

16·3.1 Test Program 

Our first step is to build a small test program to have a document available to dis­
play. As we do not feel like generating PDF documents on the fly or reading 
images from some database table for this simple example, we will instead just 
upload the test document from the client. In all cases, we assume that either an 
image (. jpg, . gi f or . prig) or some "known" document (. pdf, . doc, . xl s, etc.) 
is specified. 

After the document is uploaded, we have it "in our hands" and must do SOme­
thing with it. J<eep in mind that after the response is processed, our session will 
be closed because this example is a stateless program. 

First, we create a new BSP application and add a few page attributes: 

file_length TYPE STRING 
file_mime_type TYPE STRING 

file_name TYPE STRING 
file_content TYPE XSTRING 
display_type TYPE STRING 
display_urI TYPE STRING 

The four file_ * attributes reflect the dynamic document that we "created" via an 
upload. Note that the content is of type XSTRING because we are working with 
binary documents. 

The next step is to write the BSP application that will do the upload. 

<%@page language="abap" %> 

<%@extension name="htmlb" prefix="htmlb" %> 
<htmlb:content design="design2003" > 

<htmlb:page> 

<htmlb:form method = "post" 

encodingType = "multipart/form-data" > 
<htmlb:radioButtonGroup id="display_type" > 

(htmlb:radioButton id = "inline" 

Handlin/( Non-HTML Documents :";:a 



tex~="Display Inline" I>
 
<h~mlh:radioBu:ton id = "html"
 

text="Display Ins~de HTHL Page" I>
 
<htmlb:radioButton ~d = "window"
 

text="D~splRY In New Window" I)
 
</htnlb:radioButto~Group)
 

"myUploac"<hbnlb:fileUpload id 
"HsndleUplcad"onUpload 

uplosd_text "Display" 

size "90" I> 
<hr>
 
<br)Narre = <%= file_narre%>
 
<br>MIl1E-Type = <%= file_mime_type%)
 
<br>Length = (%= file_length%>
 

(/htmlb:form)
 
(/htmlh:page)
 

(/htmlb:content)
 

Listing 16.1 Layout 

Here the (htmlb: * > SSP extension is used to create two elements on the web 
page. The first is a radio-button group to see which of the test cases to execute. 
The next is the file-upload element. The encodingType attribute set for the 
(;1.tmlb: Eorm> is very important! This is absolutely required for file uploading. 

The last and most important aspect is to retrieve the uploaded document from 
the HTIP request and to fill our page attributes with the correct values. This is 

done in the oEIEputProcessirg event handler. 

DATA: fileUpload ~YPE REF TO CL_HTMLB_FILEUPLOAD. 
filoUpload 7= CL_HTHLB_HANAGER=>GET_DATA(
 

request = request
 
id = 'myllplcClc.'
 
Eame = 'fileUplcad' ).
 

fileUplosd->file_name.file_name 
fileUpload ->file_content.type.file_mime_type 
fiJe~pload-)file_length.file leEgth 
fileUpload-)file_content.file content 

DATA: radioButtonGroup TYPE REF TO
 
CL_HTMLB_RADIOBUTTONGROUP.
 

radioButtonGroup ?= CL_HTMLB_MANAGER=>GET_DATA(
 
request = request
 

,Gn Document Handling in BSP 

id = 'display_type' 
name = 'radioEuLtonGroup' ). 

display_type = radioButtonGroup-)selection. 

Listing 16.2 OnlnputProcessing 

The final results in the browser are shown in Figure 16.5. 

I'Display 'nn-e 

C DISplEiY InsideHTMLPage 

n Display In New l,l\lllldow 

11. Browse... 11 Display) 

Name=C\Download\beach !pg 
lvI/ME-Type =image/pjpeg
Length =12'1012 

Figure 16.5 Test Application User Interface 

16.3.2 Display Document Inline 

With this Simplest approach, we have an incoming HTIP request for an HTML 
page. Instead of processing the SSP page, thus rendering out HTML code, we just 
send out the dynamic document that we uploaded so that it is displayed inline. 

What do we have to do? In essence, write the content that we already have avail­
able into the HTIP response, and set the correct content data. Finally, inform the 
8SP runtime that the response has been completely Written and that no further 
processing is required. 

. .. codc previoLsly displEyed above 
IF display_type = 'inline' AND 

XSTRLEN( file_content) > O. 

DATA: response TYPE REF TO if_http_response. 
response = runtime->server-)response. 
resDonse->set_data( file_content). 
res7onse->set_headcr_field( 

name ~ i£_h:tp_header_fie~ds=>content_type 

va~ue = fi~e_m:me_type ).
 
response->delete_header_field(
 

name = if_http_header_fields=>cache_control ).
 
respor-se->delete_header_field(
 

name = if_http_header_fields=)expires ).
 

Handling Non-HTML Oocumpnt<; ::::JI&:" 



response->delete_header_field(
 

name = if_http~header_fields=>pragma ).
 

navigation->response~complete:).
 

RETURN.
 

ENDIF.
 

Listing 16.3 OnlnputProcessing 

The IF statement checks that it is the inline test and that we actually have con­

tent available to display. The set_data () method writes the complete XSTRING 

into the response. The "Content-Type" HTrP header field is set. This MIME type is 

critical so the browser knows what is coming down the pipe. 

Theoretically we also want to set the "Content-Length" HTrP header field. It is 

good programming practice within our HTrP framework to never manually set the 

content length field. It is the kernel-serial'lze code's task to determine the actual 

serialized length. This may depend on various side effects such as compression. 

One can also consider deleting the three HTrP headers "Cache-Control", 

"Expires" and "Pragma". As BSP pages are effectively HTML pages with business 

data, the BSP runtime already pre-set these HTrP headers to indicate that BSP 

pages must not be cached. However, we are now reusing the HTrP response for 

our binary document. We can delete these headers. 

The last problem is that after the onlnputProcessing method, the layout is also 

processed. As a result, all output from the layout is also written into the response. 

Consequently, the response_complete () call informs the BSP runtime that the 

response is completed and no further processing is required. 

Figure 16.6 shows how the browser now displays only the returned image. 

16·3.3 Display Document Inside HTML Page 

Displaying the document inside the eXisting HTML page is slightly more complex. 

The problem is that in the response we must write HTML coding In order for the 

browser to render the page. The HTML coding must reference the dynamic doc­

ument that we have available at this very moment. The question arises: Where 

should we park the dynamic document until the browser has time to fetch it"? 

Keep in mind that once the response has been processed, the session will be 

closed and we will lose everything we had 'In memory. 

The solution is actually very simple and elegant. The ICM supports an excellent 

HTrP cache. Whenever a MIME object is retrieved from Web AS, it is also added 

into the rCM cache. All other requests for the same document are served directly 

from the cache and do not require a call to ABAP. These requests are processed in 
the kernel. 

When we have the dynamic document on-hand, we can write it into the ICM 

cache. Thus, any HTrP requests for the document, actually for this specific URL, 
will retrieve the document from the cache. 

The first significant part of the code is to write the dynamic document directly 
into the ICM cache. 

. " code preViously displayed above
 

IF display_type = 'html' AND
 
XSTRLEN( file_content) > O.
 

DATA: cached_response TYPE REF TO if_http_response.
 

CREATE OBJECT cached_response TYPE CL_HTTP_RESPONSE
 

EXPORTING add_c_msg = ~.
 

cached_response->set_data( file_co~tent ).
 

cached_response->set_header_field(
 

name = if_http_heEder_fields=>content_type 

value ~ file_mIme_type ). 

cached_response->set_status( code = 200 reason = 'OK' ). 
cached_response->server_cache_expire_rel( 

expires_reI = 180 ). 

DATA: guid TYPE gUid_32. 

CALL FUNCTION 'GUID_CREATE' IMPORTING ev guid_32 guid. 
CONCATENATE runtime->application_url 'I' guid 

INTO display_urI. 

cl_http_server=>server_cache_uploac( 

urI = display_urI 

Figure 16.6 Document Display Inline 

Handling Non-HTN\L Documents ~6~
",t::.. nnClIm"nt Handline in SSP 



response cached_response ).
 

RETURN.
 
ENDIF.
 

Listing 16,4 OnlnputProcessing 

To write the information into th'e ICM cache, it is necessary to create a complete 

HTIP response. I<eep in mind that the browser will later send an HTIP request for 
this document, to which the ICM cache will return the cached HTIP response 

directly. 

First, we create a new HTIP response object and add a new message. The mes­
sage contains the actual buffers requ'lred to move the document from the ABAP 

VM into the kernel. 

The next few lines were already discussed above. We set the content into the 

response and the content type. The set_status () call is required to indicate to 
the browser that for the cached request-response cycle everything went perfectly. 

The next aspect is to set the time that the dynamic document will stay in the ICM 
cache. I<eep in mind that this time should be long enough for the browser to load 

all URLs referenced in the HTML page. However, there is no need to leave the 
document in the ICM cache for a long time. Here a value of 3 minutes (180 sec­

onds) is used. Any time interval between 1 and 5 minutes should be 01<. 

The more difficult problem is which URL to use. This URL serves as the "address" 
of the dynamic document on the server. The browser will later fetch the docu­

ment from the server with this key. 

The first idea was to use the uploaded filename as part of the URL. In this case, 
take care to replace the":" and" /" characters in the URL to make it a new valid 
URL. However, such a static type of URL does not scale very well. What happens 

if different people are running the same application and uploading the same 
generic document, for example: "travel_expenses.xls"? Then, each new response 
will overwrite the previous copy in the cache. Therefore, the recommendation is 

to use some form of random number (GUID) in the URL that is generated. 

We could place the generated URL anywhere in the "namespace" of valid URLs. 
However, we recommend placing the URL in the "namespace" of the current 
active BSP application. You also could copy the document extension (. doc, . gif, 
etc.) from the uploaded filename into the URL. However, this is not critical. It is 

more important that the MIME type is set correctly in the HTIP response. 

The last step is to place the document into the ICM cache. 

364 Document Handling in SSP 

With the above coding, we successfully created a new HTTP response in the ICM 
cache that can be addressed under the URL stored in di sp LayurI (page 
attribute of type STRING). The last step is to change the rendered HTML coding so 
that it also displays the uploaded document. For this, we just use an <iframe>. 
The following HTML sequence is added in the layout, just before the end of the 
page. 

code previously displayed above
 
<% IF display_type ~ 'html' AND
 

display_urI IS NOT INITIAL. %>
 

<iframe src="<"/o=display_url%>" width=" 100%"
 
he i ght>" 5 OOpx" >
 

</iframe>
 
<% END IF . %>
 

</htmlb:page>
 

</htm~b:content> 

Listing 16.5 Layout 

This isJust an IF-guard to check for the specific case of displaying the document 
inline, plus the <iframe> sequence to load the newly created URL. 

The output is as expected. Both the data about the dynamic document and the 
document itself are displayed as shown in Figure 16.7. 

1/',ile edit Yr~~< F~¥oll\e~ Tuul,. » 

C Dlsplsy In''''' 

(o'DlsplaylnsideHTMLPage 

Figure 161 Document Display Inside Existing HTI\!\L Page 

There isjust one smaller problem with this approach that should not be forgotten. 
Ifthe ICM cache is too small, or flushed by someone, we will get the dreaded bro­

ken image in the browser. But this is a small risk, considering the power of this 
technique. 

Handling Non-HTI\!\L Documents 365 



16.3.4 Display Document in New Window 

By now, most of the difficult work is complete. For the final leg of our explora­

tions, we would like to place the dynamic document into a new window. The big­

gest problem is just how to trigger the opening of a new window. 

It is not possible to open a new 'browser window from the server. The simplest 

technique is to open the new window directly in the browser with a small Java­

Script sequence: window.open(url). 

The first step is to require the dynamic document stored as a URL on the server. 

All this coding is already in place. We just change the IF-guard to include this 

new case: 

, .. code previously displayed above .. , 
'window' )IF ( display_type = 'html' OR display_type
 

AND XSTRLEN( file_content) > O.
 

. . , code as previously displayed .,.
 

ENDIF.
 

Listing 16.6 OnlnputProcessing 

Next, add the code in the layout to open the new window. This is quickly done 

with: 

code previously displayed above .,.
 

<% IF display_type = 'window' AND
 

display_urI IS NOT INITIAL. %>
 

<script language="Javascript">
 

window. open ("<%=display_url%)") .focus();
 

</script>
 

<% ENDIF. %>
 

</htmlb:page>
 

</htmlb:content>
 

Listing 16.7 Layout 

With the final results shown in Figure 16.8. 

16.4 Data Manipulation 
For binary documents, using XSTRINGS is always recommended. However, there 

are cases where it is worthwhile to have the data available as STRING, even if only 

for debugging: Another such case occurs when the data is actual text readable­

as with XML data-and must be manipulated. 

366 Document Handling in SSP 

.,C·j'.$~' i!i";]JItiimmt'-~~1til'_~~~i',~~!'i.':~,"_*M!tL .:1 ~ Go :Jrf" Ed~ 're... F""arll'l Tools » 

r 
r OIsflJ.'YWUl. 

rDlspl~)''''~ideHrMl..Pag~ 

r.'DlsployIrlNewW<l<I<Jw 

r= " ---=-__ I~-.;::j~ 

Nernee C\Oownloadlbeach.Jpg 
MiME-Type:::: ,magelp!peg 
Length:: 121012 

Figure 16.8 Document Display Inside New Window 

One technique is to use the character interface of the request/response objects. 

For this, the get_cdata() and set_cdata() methods exist. 

The alternative is to convert the XSTRING into a STRING. The simple sequence 

string = xstring does not work. A conversion can be done in ABAP using the 

following classes: CL_ABAP_CONV_IN_CE and CL_ABAP_CONV_OUT_CE 

Example coding for converting an XSTRING to a STRING is: 

DATA: conv TYPE REF TO CL_ABAP_CONV_IN__CE. 

conv = CL_ABAP_CONV_IN_CE=>CREATE( input = Xcontent ). 

conv->READ( importing data = content len = len). 

Another alternative for converting XSTRING to STRING is use of the function mod­

ules contained in Function Group SCMS_CONV. There are also many function mod­

ules for converting from string types to internal tables or vise versa. 

16.5 Microsoft Excel Download 

If your users have a R/3 background, they might be slightly disappointed by the 

first reports and analytical applications that you build in BSP. Long-time SAP 

application users have grown accustomed to the impressive level of Microsoft 

Office integration that is delivered standard in SAP GUI transactions. 

These users will especially miss the Microsoft Excel integration that is so com­

monly used, especially in the SAP ALV Grid. The ability to quickly download dis­

played data to Excel for some extensive analysis is a useful tool that your users will 

appreciate in their BSP applications. 

Microsoft Excel Download 367 

I 



In this section we wUI look at how to accomplish just this feat. We will start by 

studying how Excel reads its data files. We will then look at how to build a reus­

able component as a custom BSP extension element that will allow for simple 

inclusion of an Excel data download into just about any BSP application. 

16.5.1 Excel Files 

Before we get into the actual techniques for delivering Excel content from the BSP 

application through the browser and onto the client machine; we should first 

examine the way we want to format au r data in ABAP so that it will be readable 

by Excel. 

For this step we have several possible solutions. We could try to emulate the pro­

prietary Office format. Even assuming you could find documentation on how 

Microsoft's internal format works, there is no guarantee of capability across the 

different releases of Office. In the end, this solution is needlessly complex. 

A more viable option would be to use XML. While this seems like a logical choice 

because of XML's open nature, there are downsides. Not every version of 

Microsoft Office supports XML files. Also, due to the structure of the XML file 

needed to represent an Excel spreadsheet, the resulting XML file would be large 

and complex. This solution definitely adds to the amount of bandwidth needed to 

move the files to the client. 

A third solution, and the one we will look at here in more detail, is the use of tab­

delimited text files. Although this is not actually an open-standards-based 

approach, many applications have functionality to read tab-delimited text files 

due to their very simple structure. This simplicity also adds to the ease with which 

we can implement this solution within ABAP. This solution is also very commonly 

used in data downloads within the traditional SAP GUI R/3 environments. Finally, 

the size of the resulting dataset is usually quite reasonable, having very little over­

head. There is one major drawback to this solution: we can only transfer the data 

itself, not any formatting information. If you need to retain any special formatting, 

such as fonts, macros, or calculations; you will want to look at the XML solution. 

There are several different ways that you can convert your data from the internal 

ABAP formats into a tab-delimited string. The following is a simple code sample 

where we use control character definitions from the SAP class CL_ABAP_CHAR_ 

UTILITIES. 

DATA: I_string TYPE string.
 
LOOP AT itab INTO wa.
 

CONCATENATE I_string wa-partner
 
wa-adr_kind wa-addrnumber
 

368 Document Handling in SSP 

cl_abap_char_utiIities~>cr_If 

INTO I_string SEPARATED BY
 

cl_abap_char_utiIities=>horizontal_tab.
 
ENDLOOP.
 

This is obviously a simple example that requires specific knowledge of the data
 

structure from which it originates. Later, we will see a code technique that works
 

dynamically with internal tables by querying their structure definition through the
 
RTTI 1. 

16.5.2 Excel Unicode Text File 

Once we have our data in a tab-delimited string, We need to decide what type of
 

text format we want to use. Traditionally, ABAP programs would normally accept
 

the use of regular text files. In the Internet environment, however, we should
 

consider the use of Unicode tab-delimited text files.
 

There are two situations in which using a Unicode tab-delimited text file has def­


inite advantages over the use of regular text files in avoiding data corruption. The
 

first situation occurs when your SAP Web AS system is running as Unicode. If you
 

download data from this Unicode system, you run a high risk that the data will
 

not be read correctly by Excel unless you properly inform Excel that this file is
 
Unicode. 

The next situation can occur even in a non-Unicode Web AS system. If you are 

downloading Excel content to a client machine that has a different code page 

than the one your Web AS system is running on, data corruption will occur for 

any characters that are not common between the two code pages. 

The image in Figure 16.9 demonstrates how data can be displayed correctly in line 

in the BSP application, but on the same computer it becomes corrupted once it is 
saved as a plain text file. 

16.5.3 Unicode Formats and Endians with Excel 

For general and detailed definitions of Unicode, Endians, and Byte Order Marks 

(BOMs), please see Section 15.4. For working with Unicode and Excel, the first 

thing we have to understand is what kind of Unicode file Excel wants. Excel 

expects a UTF-16 encoded file with a BOM of Little Endian, the native X86 

Endian. EVidently all the Microsoft Office tools use UTF-16 when saving files in 
their primary format. 

The SAP Runtime Type Information. This is a series of ABAP Classes that allow you to query 
the structure and type information for objects and object references. 

Microsoft Excel Download 369 



For this conversion to work, we must specify the character encoding that we want
f:.~~~;I~'D~~~~~';-~~dli;h··~I~~~~rt;;~~~r~~r~D;~~j6~T~-~ 

to use for the binary string. We do this through the mimetype parameter of the 
j I<lESIEi'NA LISTp~L"'~~!Kavw . I function call. The following is the value that we want to set for our conversion to 

UTF-16 Little Endian. 

!!!~l 
app_type = 'APPLICATION/MSEXCEL: charset=utf-16Ie' .ole _~dit -',>jj~W, - Insert 'Pgfrnat <IDols 'Q,<:I~e' ~ndbw'- t~nID 

.....c.'..- •." -.-..~ ~ ~" '.'c '.' " ~.•.•
[,~ IJ IZ5 Q L,§ I @Q, I~ ,)'1'! ~ ~';W.OO! ~ i\~
 
i A1 ..' . {xl K?TO\JVNIK KARTONOWY L-750 i,
 

i .' . A '.' I B I C f
 For reference, the SAP internal Code page numbers are 4102 for UTF-16be, 
1 IK?TO\JVNIK KARTONO\JVY L-750 I .' I, 4103 for UTF-16Ie, and 4110 for UTF-S. These can be found in table TCPOOA 

or by calling function module: SCP_CODEPAGE_BLEXTERNAL_NAME.rn~~~~~:~~:illft~~}[:~s~,-:{__.=j__ :==.l 
Figure16.9 Plain Text File Data Corruption 

16.5.5 Addition of the Byte Order Marie 

If you want to verify this information, just open Excel and save a spreadsheet as 
That was actually quite easy. Now we have our output formatted as Unicode Text 

Unicode text. This creates a tab-delimited text file in Unicode format. Then open Tab Delimited - UTF-16, Little Endian; we just need to add the BOM to the begin­
the file in a Hex editor. You should see the UTF-16Ie, Little Endian, Byte Order ning of the binary string. 
Mark - FF FE - right at the beginning of the file. t 

CONCATENATE cl_abap_char_utiIities=>byte_order_mark_little 

I_xstring INTO I_xstring IN BYTE MODE .01 .. FFlFE~ooJ6Eloo,,63,OO!6310016F'OO\64j~o:65i..?oj~j 1yJpJD !n~l:-:r-~I i~fI':~~I~~[r,c
..----~~,'I ?_~._~_~\~?_:.7~.EE§.·.,~~-i~-?I,,~,~-.L??).',-~?loo~.'.:~-~??o.! i~L.'.,eLBTl.-LL. -T:__.. .•
__ "Ji.~II_----'-.il~-- .. r.,~.: __l.,if-_t	 Once again, we have taken advantage of the functionality that SAP has provided ; 'i "I I ",:" • 1'1 'r i ": ,,'. . 221 ?8_0CJ]').'.LO~~.oJ~()i46,:'oI~9, oo.,.~G~06s.; ()0201o~1.5"! ><j":"~--i-f~tl'i i_1)...:-=d_~_i~J 
in the form of the helper class for character manipulation: CL_ABAP_CHAR_UTI­~, 3~,1 OOI65io,oi?al~t;±ooiOD!OO[o~l~~~_~,L-LJ ~~~L:l_UJl~L-klJ \~~, 
LITIES. This class already has the BOMs for UTF-S, UTF-16be, and UTF-16Ie I 

1 ! Figure 16.10 Unicode Text File Byte Order Mark as Seen from a Hex Editor defined for you. 

16.5.4 Conversion to Binary String 16.6 Pushing the Excel Content bade through the 
browserEarlier in this chapter, we assembled our ABAP data into a single string object. 

This string object will be encoded in whatever code page your Web AS system is No\JV that you have your data reformatted in the way you want it and available as 
currently running in. The next step to take will be to convert this string to a binary a binary string, you are ready to begin pushing this content back to your user 
string. The conversion process gives us the opportunity to convert our character though their browser.
 
encoding from the internal Web AS code page to our needed UTF-16. Also by
 

converting to a binary string, we will preserve the character encoding in our 16.6.1 Push Using the Current RESPONSE Object 
string. This allows us to have our string in UTF-16 even if our Web AS is not run­

There are two different options for doing this, The first one we will look at has the 
ning the Unicode I(ernel. 

advantage of only requiring ABAP code in your event handler. However, in this 
To accomplish this conversion, we will call the SAP-provided function module approach we use the current response and navigation objects to deliver the 

SCMS_STRING_TO_XSTRING. content back to the user. While being the simpler of the two options to imple­

ment, this approach can complicate further event-processing that you want to 
DATA: I_xstring TYPE xstring. take place within this same event. 
CALL FUNCTION 'SCMS STRING_TO_XSTRING' 

EXPORTING text = I_string The first thing we will want to do in the coding is to clear some header fields from 

mimetype app_type	 the response object. These header fields can cause caching problems with some 

browsers when downloading Files.IMPORTING buffer I_xstring. 

Pushing the Excel Content back through the browser 371370 Document Handling in BSP 

I 



* some Browsers have caching problems when loading Excel 

response->delete_header_field( 

name = if_http_header_fields=>cache_control ). 

response->delete_header_field( 

name = if_http_header_fields=>expires ). 

response->delete_header_fieid( 

name = if_http_header_fields=>pragma ). 

The next section of code sets a header field in the response object that will 

inform the process that we are sending it a file. This should cause the browser to 

trigger a SAVE/OPEN Option. You can also see that we can use this header field 

to propose a filename for our content. 

response->set_header_field( 

name = 'content-disposition' 
value = 'attachment; filename=excel_example.xls' ). 

In the final section of code, we set our binary string as the main data of the 

response object, which also requires us to tell the response object how large 

the data object is. We then need to tell the navigation object that the response 

is complete so that further unnecessary processing can be avoided. 

I_len = XSTRLEN( l_xstring ).
 

response->set_data( data = l_xstring
 
length = I_len ).
 

navigation->response_complete( ).
 

16.6.2 Push Using a Cached Response 

This second approach is slightly more complicated to implement, but results in 

cleaner interaction with the BSP framework. In this approach, we will place our 

content into a cached response object. We will then place this cached object 

directly into the ICM and generate a URL that references this cached object. The 

URLwill be placed within a hidden IFrame in our layout, thereby having the same 

effect for the user without the messy interaction with the main response and 

navigation objects. 

Like our first example, nearly all the code takes place in an input event handler. 

As we saw in Section 16.3.3, we will create a new cached response object to 

work with instead of the main response object. 

Next we will set our binary string content into this new cached response object. 

cached_response->set_data( l_xstring ). 

Since this is a new response object, we do not need to delete the header field as 

we did in the previous example. However, we do need to set header fields for the 

content type and the content disposition. 

cached_response->set_header_field( 

name ~ if_http_header_fields=>content_type 

value = 'APPLICATION/xLS; charset~utf-16Ie' ). 

cached_response->set_header_field( 

name = 'Content-Disposition' 

value = 'attachment; filename=excel_example.xls' ). 

Next, we want to set a good status code into the cached response object. 

cached_response->set_status( code = 200 reason = 'OK' ). 

We are going to be placing this cached response object directly into the ICM's 

server cache. We only need it to be there long enough to finish building the page 

and allow the IFrame object on the client to request this content. Therefore, we 

will set a reasonably short time, 60 seconds, to avoid consuming resources in the 

ICM Cache unnecessarily. 

cached_response->server_cache_expire_rel( 

expires_reI = 60 ). 

Before we insert this object into the server cache, we need to make sure that we
 

have a completely Unique URL. The best way to do this is to simply generate a
 

GUID and attach that to the end of our application URL.
 

DATA: gUid TYPE guid_32.
 

DATA: urI TYPE string.
 

CALL FUNCTION 'GUID_CREATE'
 

IMPORTING ev_guid_32 = guid. 

CONCATENATE runtime->application_url 'I' gUid INTO urI. 

Finally we will insert our cached Response into the server cache with the newly 

generated unique URL. 

cl_http_server=>server_cache_upload( 

url = url 

response cached_response ). 

Somehow you are going to want to impart persistence to this URL so that it is 

available in the processing of your layout. In this example, we are goingto assume 

that we have a stateful application and that during the event processing we cop­

ied the generated URL for our cached Response into an attribute in the applica­

tion class. 

Pushing the Excel Content back through the browser 373 
372 Document Handling in BSP 



Therefore once we reach the processing of our layout, we can do a simple test to 
see if there is a value in this URL application-class attribute. If so, we will generate 
an IFrame to trigger the browser to fetch the cached content. We create an 
Erame that is only 1 pixel by 1 pixel. That way we have an area that effectively 

does not take up any space in the rendered output. 

<% IF application->display_ur~ IS NOT INITIAL. 
MOVE application->display_url TO ur~_string. %> 
<iframe src=" <%= apo Li cat i on - >display_url "10>" 

width=" I px" height=" t px" > 

</iframe> 
<% ENDIF. %> 

16.7 SSP Extension Element for Excel Download 

So far, we have examined the logic necessary to convert an ABAP internal table to 

a Unicode tab-delimited text file ready for Excel consumption. We also have seen 
the coding necessary to pass this content back to the front-end client. 

As you can see, a considerable amount of coding is involved in the overall pro­
cess. It seems unwise to repeat this coding in each application that requires this 
functionality. Would it not be better if this functionality was available as a simple, 

reusable BSP extension element? 

That is exactly what we are going to do next. We are going to use the techniques 
introduced in Chapter 11 to create this reusable element ourselves as a BSP 

extension element. 

16.7.1 The Download Element User Interface 

Our download element only needs a very simple user interface. This example is 

actually going to allow for the download of data in several different formats. Once 
we complete coding for downloading one data object type, it becomes quite sim­
ple to extend that to other useful data types. To start off with in addition to 

Microsoft Excel, we will also offer pure XML and HTML download options. 

For our only UI element that the user will interact with, we will reuse the SAP pro­
vided <phtmlb:popupMenu>. This menu will give the user the opportunity to 

choose their download format. 

374 Document Handling in SSP 

Figure 16.11 User Interface for the Download Cxtension 

16.7.2 The Element Properties and Attributes 

Following the instructions from Chapter 11, we wdl begin by creating a new ele­
ment in our BSP extension. This element will be named dowr l oad'l'ab i ef'xc el . 
Our handler class for this element will be called YCL_BSP_ELMNT_DWN_TBL 
EXCEL. 

Next, we need to create the element's attributes. None of the elements are 

required. and all of them should be marked as supporting dynamic values. The 
text attribute should be marked as bindable. 

Element Attribute	 Description 

dsabled	 The disaJled attribute gets passed through to the inner
 
<phmlb:popupMenu>. This attribute allows you to disable the elements
 
on the popup menu. For instance, you might use this ifyour table you
 
are going to download is currently empty.
 

dsplay_url	 When this element generates the download content, it places it into the 
ICA~ cache. It then generates a temporary URL to this entry in the cache. 
Finally, it passes this URL back out of the event handler. The element 
then expects to receive this URLagain on the Layout build (see Section 
16.3.3). 

The SSP Element will then render this URL into a 1 pixel IFrame. All this 
allows for the download prompt to come up over the current page with­
out disrupting the logic flow: Allthat the developers who are using this 
element need to know is that they must provide a variable that can be 
accessed both 'In the event handler and in the page or view. 

id	 Unique identification for an instance of this element. If the consumer 
does not specify an ID, the element will generate one later in processing. 

onDownload	 This attribute gives the calling program an option to specify its own event 
name for the onliownLoad event. This is helpful if you are going to place 
more than one instance of this element Within one page. If the user does 
not specify a name for the event, it will later default a name of DOWNLOAD. 

text	 This attribute exists so the user can specify the text he or she wants to
 
appear on the popup trigger. If nothing is specified, the element will
 
default in the value Down Load later.
 

Table 16.1 Attributes of Element downloadTableExcel 

BSPExtension Element for Excel Download 375 

I 



16.7.3	 Compile Time and Runtime Checks 

Both a compile time and runtime syntax check can be programmed within the 

element. The methods for these checks should be inherited into our element han­

dier class, YCL_BSP_ELMNT_DWN_TBL_EXCEL. If you want the compiler to call 

these methods, you must also select the User Defined Validation option in the 

element properties. You can implement these syntax checks by redefining the 

inherited methods. 

This element is relatively simple. At compile time, the only check we need to per­

form is to make sure that the disabled flag has a valid Boolean flag. 

validator->to_boolean( name = 'disabled' ). 

valid	 = validator->m_all_values_valid. 

Listing 16.8 Compile Time Syntax Check 

The runtime check has a little more going on than the compile time-check did. 

First, the element needs to make sure that we are within an (htmlb: content> 

element and that this is DESIGN2003. The element needs DESIGN2003 because 

internally it is going to contain a PHTMLB element, which only supports this latest 

design. Next, it will generate an id if one was not supplied. Then it validates the 

text and disabled attributes. 

data: content type ref to cl_htmlb_content.
 

content 7= me >get_class_named_parent(
 

class_name = 'CL_HTMLB_CONTENT' ).
 

IF content->design (>
 

cl_htmlb_content=>co_design_2003.
 

me->raise_error( msg =
 

'Supported for DESIGN2003 only.' (002) ).
 

ENDIF.
 

IF me->id IS INITIAL.
 

content->m_button_id_counter 

content->m_button_id_counter + 1.
 

me->id = content->m_button_id_counter.
 

CONDENSE me >id NO-GAPS.
 

CONCATENATE 'z_download_' me->id INTO me->id.
 

ENDIF .
 
me->text = m_validator->bindable_to_string(
 

name = 'text' value = me->text
 

binding_path = me->_text
 

page_context = m_page_context ).
 

Document Handling in BSP 376 

me->disabled = m_validator->to_boolean(
 

name = 'Disabled' value = me->disabled ).
 

Listing 16.9 Runtime Syntax Check 

16.7.4	 Rendering Logic 

Just as we did for our syntax checks, we have a method that we must redefine in 

order to program our rendering logic. This method is called DO_AT_BEGINNING. 

This method is going to render several other SAP elements inside itself 

«phtmlb:popupTrigger>, <htmlb:image>, <htmlb:textView>, and 

<phtmlb: popupMenu». For all of these, it is going to use the id of itself for the 

inner element IDs. It will then tack on the id_postfix to create a unique id for 

each of the inner elements. 

This method also provides the code that is necessary to redirect the onSelect 

event of the <phtml n : popupMenu> into our event. We will have more code later 

to complete this event redirection. It then concatenates this class name (me->m_ 

class_name) into the inner element's event handler. The BSP runtime then 

knows to send this event to our element handler class for processing. 

Finally, the element has all the code it needs to render the standard HTML 

IFrame element. The code sample is abbreviated in text, but the complete source 

is available on the accompanying CD. 

METHOD if_bsp_element-do_at_beginning 

DATA: id_temp TYPE string. 

DATA: menu_id TYPE string. 

IF me->ondownload IS INITIAL. 

me- >ondownload C~ 'DOWNLOAD'.
 

ENDIF.
 

DATA popup_trigger TYPE REF TO cl_phtmlb_popuptrigger.
 

CONCATENATE me->id '_popupMenu' INTO menu_id.
 

popup_trigger 7= cl_phtmlb_popuptrigger=>factory(
 

id = me->id
 

id_postfix = ' __popupTrigger'
 

is interactive = 'true'
 

popupmenuid = menu_id ).
 

WHILE	 m_page_context->element_process(
 

element = popup_trigger) = co element continue.
 

'***Build the Download Image 

DATA: image TYPE REF TO cl_htmlb_image. 

. .. Image Element Processing 

BSP Extension Element for Excel Download 3n 



****Build the Text Label 
DATA: label TYPE REF TO cl_htmlb_textview. 

. .. Text Element Processing 

ENDWHILE. "End Popup Render 

****Create the Popup Menu its~lf 

DATA: popupitems TYPE phtmlb_popupmenuitems. 
DATA popup_menu TYPE REF TO cl_phtmlb_popupmenu. 

FIELD~SYMBOLS <wa_menu> LIKE LINE OF popupitems. 

****Excel Download Item 
APPEND INITIAL LINE TO popupitems ASSIGNING <wa_menu>. 

<wa_menu>~cancheck = ". <wa_menu>~checked = " 

IF me~>disabled = 'TRUE'. 
<wa_menu>~enabled = " ELSE. <wa_menu>~enabled 'X' . 

ENDIF. 
<wa_menu>~hasseperator = " 
<wa_menu>~text = 'Download to Excel' (d02). 

****XML Download Item 

<wa_menu>~text = 'Download as XML' (d03). 

****HTML Download Item 

<wa_menu>~text = 'Download as HTML' (d04). 
popup_menu ?=	 cl_phtmlb_popupmenu=>factory( id me~>id 

id_postfix = ' __popupMenu' 

firstlevelvisible = 'FALSE' 

firstvisibleitemindex = '1' 

maxvisibleitems = '7' 
items = popupitems ). 

CONCATENATE me~>ondownload '::' me~>m_class_name
 

': :DownloadChoosen'
 
INTO popup_menu~>onselect.
 

WHILE m_page_context~>element_process(
 

element = popup_menu) = co element continue.
 

ENDWHILE.
 

****Get Link URL if it exists
 

DATA html TYPE string.
 
IF display_urI IS NOT INITIAL.
 

CONCATENATE '<iframe src="' display_urI 

378 Document Handling in BSP 

'" width="lpx" height="lpx"></iframe>' INTO html. 
me~>print_string( html ).
 

ENDIF .
 
rc = co element done.
 

ENDMETHOD. 

Listing 16.10 Rendering Logic 

16.7.5 Trapping Events 

Now we come to the coding that will allow for the trapping of incoming events to 

this element We have four methods inherited from the Interface IF_HTl1LB 

DATA. Once again, we will use the redefinition action to insert our own coding 

here. 

This special logic is used to redirect the events of the <phtmlb: popupl1enu> 
object into our own events in this element. This is quite useful because we can 

hide the fact that we have inner elements in this element. This also simplifies the 

event handling for the consumer of this new element. This technique was dis­

cussed in detail in Chapter 9. 

l1ETHOD if_htmlb_data~restore_from_request. 

IF me~>if_htmlb data-event id IS INITIAL AND 
cl_htmlb_manager~>check_and_initialise_event( 

instance = me request = request 
event_id_expected = id class_name = m_class_name 

) IS NOT INITIAL. 

RETURN. " means an event found and restored
 
ENDIF.
 
me~>id = id.
 

ENDl1ETHOD. 

Listing 16.11 Restore from Request 

METHOD if_htmlb_data~event initialize 
me~>if_htmlb_data~event_id p_event_id. 
me~>if_htmlb_data-event_type p_event_type. 
me~>if_htmlb_data-event_class p_event_class. 
me~>if_htmlb_data~event_name p_event_name. 
me~>if_htmlb data~event server name 

p_event_server_name.
 

me~>if_htmlb_data-event defined p_event_defined.
 
me~>if_htmlb_data-event_intercept_depth
 

p_event_intercept_depth. 

BSP Extension Element for Excel Download 379 



~"..c 

16.7.7 Event Handler
me->if_htmlJ_data~event_name= me->m_ncme.
 

SPLIT me >If_htmlb_data~event_id AT ' __
 Now we are ready to look at the code in the controller's DO_qANDLE_EVENT 
INTO me->if_htmlb da~a~event_ld method. You will see that the controller gets a pointer to both the application and 

me >if_jtmlb_uata~event_type. model classes in this method so that critical data is easy to access. 
, restore view state from tje request 

The processing looks for the event_id and calls the event handier method for theIJe - >if_htmlb_dilta~restore_fToIILreques t ( 
element. Because the event handling is not overly complex, you can simply codereql1est = p_request id = me >~f_htmlb_data~evenL id ). 
the event handler logic into the same class that was used for the SSP element/ele­ENDl1ETHOD . 
ment handler class. You will see in some of SAP's delivered elements that they 

Listing16.12 Event I~itialize create separate classes for this functionality. 

METHOD jf_htmlb_data~event_set_parameters. in this instance, model- >xref is the internal table that has the data that is to be 

""Take parameters from the original eve~t ane map them downloaded. Only a reference to the table is passed into the event handler. Also 

IF p_param_count > 1. we have used an <htmlb: tableView> iterator class to manipulate the structure 

me->selected_st:ing = p_param_l. of our internal table when we displayed it on the screen. Ifyou would like to have 

me->selected_id = p_param_l. this same manipulation done when you download the data, you can pass a refer­

me->selected_text = p_param_2. ence to the iterator object as well. 

ENDIF. 
DATA: model TYPE REF TO ycl_bsp_model_exiimple.

ENDMETHOD. 
DATA: appl TYPE REF TO ycl_bsp_appl_example. 

Listing16.13 Event-Set Parameters appl 7= application. mode' 7= appl->modol. 

DATA itab TYPE REF TO data. 
""No coding ~ecessary GET REFERENCE OF model->xref INTO itab. 

Listing16.14 Event Dispatch DATA iterator TYPE REF TO ycl_iterator_test. 

CREATE OBJECT iterato:. 
16.7.6 Calling the Element from a Page Layout appl->disp~ay_url = 

ycl_bsp_elmnt_dwn_tbl_exeel=>handle_event(Before we look at the code for the event handler, let us first examine the use of 
htmlb event ex = htmlb event exthis element. ThE' following is how It looks once inserted into the typical page or 
rur.tine runtime 

view: 
iterator iterator 

<ybsp:dJwnloadTableExcel id = "DOWNLOAD" i tab itab ). 
disabled =" <%= model- >download disabled '0" 

Listing16.16 Do-Handle Event 
d i s pl ay jur I = ,,<%= application->display_url %>" I> 

Listing16.15 PageLayout Finally, we reach the event handler code of our element. In this example, the 

event handler is implemented as a static method of the main element class itself 
In this example, an ID is specified but not an event name because we only have This is done to simplify the understanding and maintenance of the code. 
one instance of this element in the application. The disabled flag comes from a 

The main event handler .s going to expect a few parameters. Naturally it wants amodel class. This example might actually test for an empty table and set this flag 
pointer to the data it is going to download (parameter i tab). Next it wants a copyin the controller's DO_REQUEST method. Finally, the display_urI variable comes 
of the CITMLB_EVENT_EX structure so it can determine what <phtmlb: popup­from the stateful application class. 
Nenu> item was selected. Next it needs a reference to the nntime object so that 

it can use the app l i c s t t onjiam« and application_uri in its processing. 

SSP Extension Element for Excel Download 381
380 Document Handlingin SSP 



Finally it has an optional parameter, in case the consumer wants to specify the 

filename for the download. Otherwise the processing will generate a filename 

using the application_name. Another way to allow for the formatting of the 

table data before download, you can pass in a reference to an <htmlb :table­

View> iterator or a column-definition table. All the method returns is the URL to 

the cached download content. 

Parameter name Direction Type	 Descri pti 0 n 

itab Importing Type Ref to DATA	 Internal data table that 
will be downloaded 

htmlb_event ex Importing Type Ref to IF_HTMLB_DATA	 HTMLB event data 

runtime Importing Type Ref to IF_BSP_RUNTIME	 The BSPruntime object 

Type STRING	 Download file namei filename Importing 

iterator Importing	 Type Ref to IF_HTMLB_ lterator for output for­

TABLEVIEW_ITERATOR matting 

col_def Importing Type TABLEVIEWCONTROLTAB	 Table view column defini ­
tions 

url Returning Type STRING	 URL for the downloading 
of cached content 

Table 16.2 Parameters for Main Event Handlers 

In the coding you will see that processing branches the logie, depending upon 

what type of download the user requested. It then builds a filename. 

METHOD handle_event .
 

DATA: app_type TYPE string, I_string TYPE string,
 

l_xstring TYPE xstring, extension TYPE string. 

DATA: error TYPE REF TO cx_root. 

DATA: I_col def TYPE tableviewcontroltab. 

IF col def IS INITIAL N~D iterator IS NOT INITIAL. 

DATA: p_overwrites TYPE tableviewoverwritetab. 

iterator->get_column_definitions( 

EXPORTING p_tableview_id 'DOWNLOAD' 

CHANGING p_column_definitions I_col def 

p_overwrites p_overwrites ). 

ELSEIF col_def IS NOT INITIAL. 

1 col def = col def. 

ENDIF. 

TRY. 

382 Document Handling in BSP 

I 

DATA: ipopup TYPE REF TO cl_es_bsp_elmnt_dwn_tbl_excl.
 

ipopup ?= htmlb_event_ex.
 

IF ipopup->selected_id CS 'Iteml'.
 

app_type = 'APPLICATION/xLS; charset=utf-161e'. 

l_xstring = 

ycl_es_bsp_elmnt_dwn_tbl_excl=>process_xls_download( 

itab = itab
 

i_col_def = l_col_def ).
 

extension = '.xls'.
 

ELSEIF ipopup->selected_id CS 'Item2'.
 

. .. xml processing
 

ELSEIF ipopup->selected_id cs 'Item3'.
 

... html processing
 

ENDIF.
 

DATA: value TYPE string.
 

IF i_filename IS NOT INITIAL.
 

CONCATENATE 'attachment; filename='
 

i filename extension INTO value.
 

ELSE.
 

CONCATENATE 'attachment; filename='
 

runtime->application_name extension
 

INTO value.
 

ENDIF. 

The next small block of code below will handle any errors that we might encoun­

ter during the conversion of the content to Excel, XML, or HTML. Basically it 

catches all errors using the high-level exception handler class cx_root. 

To support this error handling, this example creates a generic exception handler 

class called YCLSERIALIZABLE_ERROR. This class includes the IF 

SERIALIZABLE_OBJECT interface. That way, the element can take any error infor­

mation and serialize it to XML. It then returns this erroneous XML to the user in 

the download instead of the content they expected. Not a great solution, but far 

better than just producing a short dump. This also allows the element to return 

error information to the user without having to disrupt the hosting layout's user 

interface. 

method constructor 

me->short text = error->get_texd ). 

me->long_text = error->get_longtext( ). 

call method error->get_source_position 

importing program_name	 = me->program 

BSP Extension Element for Excel Download 383 



include_name = me->include
 
source line = me->source_Iine.
 

me->kernel errid = error->kernel_errid.
 

endmethod.
 

Listing 16.17 YCL_SERIALIZASLE_ERROR ~onstructor Coding 

Aswe continue looking at the coding of the event-handler method, we can see 
how the error handling is resolved. We see how we finish the event handler by 
placing the content into the ICM cache with a generated unique URL and then 

passing this URL back to the calling program. 

CATCH cx_root INTO error. 
DATA: xml err TYPE REF TO ycl_serializable_error. 
CREATE OBJECT xml_err EXPORTING error = error. 

DATA: g_ixml TYPE REF TO if_ixml. 
g_stream_factory 

TYPE REF TO if_ixml_stream_factory, 

g_encoding TYPE REF TO if_ixml_encoding. 

CONSTANTS encoding TYPE string VALUE 'UTF-g'. 
DATA res stream TYPE REF TO if ixml ostream. 

g_ixml = cl_ixml=>create( ). 
g_stream_factory = g_ixml->create_stream_factory( ). 

g_encoding = g_ixml->create_encoding( 
character_set = encoding byte_order = 0 ). 

resstream = g_stream_factory->create_ostream_xstring( 

l_xstring ). 

resstream->set_encoding( encoding = g_encoding ). 

CALL TRANSFORMATION id 
SOURCE error = xml_err result xml resstream. 

app_type = 'APPLICATION/XML; charset=UTF-g'. 
value = 'attachment; filename=Error.xml'. 

ENDTRY. 

DATA: cached_response TYPE REF TO if_http_response. 
CREATE OBJECT cached_response TYPE cl_http_response 

EXPORTING add_c_msg = 1.
 
cached_response->set_data( l_xstring ).
 
cached_response->set_header_field(
 

name = if_http_header_fields=>content_type 

value = app_type ). 

384 Document Handling in SSP 

cached_response->set_header_field( 
name = 'Content-Disposition' 
value = value ). 

cached_response->set_status( code = 200 reason = 'OK' ). 
cached_response->server_cache_expire_rel( 

expires_reI = 60 ). 
DATA: guid TYPE guid_32. 

CALL FUNCTION 'GUID_CREATE' IMPORTING ev_guid_32 = guid. 
CONCATENATE runtime->application_url '/' guid INTO urI. 
cl_http_server=>server_cache_upload( urI = urI 

response = cached_response ). 
ENDMETHOD. 

Listing 16.18 Continuation of the Event Handler Method 

16.7.8 Get Structure Definition 

In order to support the methods that will convert our ABAP internal table to the 
different output types, the element handler has a static method that will deter­
mine the definition of the input internal table that IS going to be downloaded. 
Much of the processing of this method was borrowed from the standard SAP cod­
ing of the <htmlb :tableView> class. After all, it has been said that good pro­
grammers write good code, but great programmers reuse the good programmers' 
good code. 

This method has the following interface: 

Parameter name Direction Type Description 

itab Importing Type Ref to DATA Internal data table that 
will be downloaded 

st r uc t Returning Type EXTDFIEST Data dictionary struc­
ture definition 

Table 16.3 Interface of Static Element Handler Method 

Basically this method isgoing to use the ABAP descriptor classes to determine the 
structure of the internal table that is being worked with. Due to the size of the 
code listing for this method and the fact that it is only marginally related to BSP; 
we have not included the source code in this text. It is however available, along 
with this entire solution, on the CD for this book. 

SSP Extension Element for Excel Download 385 



16.7.9 Process Excel Download 

This routine begins by concatenating the individual data elements of our down­

loaded internal table together, separated by cl_abap_char_utili ­

ties=)horizontal_tab and cl_abap_char_utilities=)cr_If.
 

That means that this coding is responsible for the output format of all the possible
 
intrinsic ASAP data types. Luckily, SAP has once again done most of the work for
 
us. The routine just reuses the very useful TO_STRING method of the IF_BSP_
 
PAGE object. The method then completes the conversion by transforming the
 
string into UTF-16 as discussed earlier in this chapter.
 

This method does use functionality of the RTIS that was first introduced in Web
 
AS 6.40 in order to dynamically build the new internal table that represents the
 
modified structure of the iterator. There is a slightly more complex version of this
 
method that does not use the RTIS and that is provided, along with all the source
 
code for the book, on the accompanying CD.
 

DATA: r_string TYPE string.
 
DATA: lapp_type TYPE char30, str TYPE string.
 
DATA: l_col_def TYPE tableviewcontroltab.
 
Lcol_def[] = i_coLdef[].
 
····Set the application Type - character set for conversion
 
····Excel Requires UTF-16 with Little Endian
 
lapp_type = 'text/unicode; charset=utf-16Ie'.
 
FIELD-SYMBOLS: <tab) TYPE table, <wa) TYPE ANY,
 

<wa2) TYPE ANY, <f) TYPE ANY.
 
····Get Reference to our Internal Table
 
ASSIGN itab-)' TO <tab).
 
····Read the Table Structure
 
DATA: struct TYPE extdfiest.
 
DATA: struct2 TYPE extdfiest.
 
FIELD-SYMBOLS: <wa struct) LIKE LINE OF struct.
 
FIELD-SYMBOLS <wa_desc) LIKE LINE OF struct.
 
CALL METHOD
 

ycl_es_bsp_elmnt_dwn_tbl_excl=)get_table_structure 

EXPORTING itab = itab 
RECEIVING struct = struct. 

····Adjust the internal table and structure definitions 
····for Iterators and Table View Column Definitions 
IF l_col_def IS NOT INITIAL. 

FIELD-SYMBOLS: <wa_col) LIKE LINE OF I col_def. 

386 Document Handling in SSP 

LOOP AT l_col_def ASSIGNING <wa_col). 
READ TABLE struct ASSIGNING <wa_struct> 

WITH KEY fieldname = <wa_col>-columnname. 
IF sy-subrc = O. 

IF <wa_col)-title IS NOT INITIAL. 
<wa_struct)-coltitle = <wa_col>-title.
 

ENDIF.
 
APPEND <wa_struct> TO struct2.
 

ENDIF. 
ENDLOOP. 
struct [] = struct2 [J . 
FREE struct2. 
DATA: camp_tab TYPE 

cl_abap_structdescr=)component_table. 
FIELD-SYMBOLS: <wa_comp) LIKE LINE OF camp_tab. 
LOOP AT struct ASSIGNING <wa struct>. 

APPEND INITIAL LINE TO comp_tab ASSIGNING <wa_comp).
 
IF <wa struct> rollname IS INITIAL.
 

<wa_comp)-type ?=
 
cl_abap_typedescr=>describe_by_name( 'STRINGVAR' ).
 

ELSE.
 
<wa_comp)-type ?=
 
cl_abap_typedescr=)describe_by_name(
 

<wa struct)-rallname ).
 
ENDIF.
 
<wa_comp)-name = <wa_struct>-fieldname.
 

ENDLOOP.
 
DATA: struct_type TYPE REF TO cl_abap_structdescr,
 

table_type TYPE REF TO cl_abap_tabledescr. 
struct_type = cl_abap_structdescr=>create( camp_tab). 
table_type = cl_abap_tabledescr=)create( 

p_Iine_type = struct_type 
p_table_kind = cl_abap_tabledescr=)tablekind_std ). 

DATA: dref TYPE REF TO data. 
CREATE DATA dref TYPE HANDLE table_type. 
FIELD-SYMBOLS <table> TYPE STANDARD TABLE. 
ASSIGN dref-)' TO <table). 
LOOP AT <tab) ASSIGNING <wa). 

APPEND INITIAL LINE TO <table> ASSIGNING <wa2>.
 
MOVE-CORRESPONDING <wa) TO <wa2>.
 

SSP Extension Element for Excel Download 387 



ENDLOOP.
 
UNASSIGN <tab>.
 
ASSIGN dref->' TO <tab>.
 

ENDIF.
 
""Populate the Column Headers
 
LOOP AT struct ASSIGNING <wa_~esc>.
 

CONCATENATE	 r_string <wa_desc>-coltitle 
cl_abap_char_utilities=>horizontal_tab 

INTO r_string.
 

ENDLOOP.
 
CONCATENATE r.string cl_abap_char_utilities=>cr_lf
 

INTO r_string.
 
DATA: output TYPE string. s(256) TYPE c.
 
DATA: I_page TYPE REF TO cl_bsp_page_base.
 

CREATE OBJECT I_page.
 
""'Loop through the Data Table
 
LOOP AT <tab> ASSIGNING <wa>.
 
""For each component (field) in the table -Output the data 

LOOP AT struct ASSIGNING <wa_desc>. 
ASSIGN COMPONENT sy-tabix OF STRUCTURE <wa> TO <f>. 

CHECK sy-subrc = O. 
IF <wa_desc> IS ASSIGNED 

AND <wa_desc>-convexit IS NOT INITIAL. 

""Process any output conversion routines 
CONCATENATE 'CONVERSION_EXIT' <wa desc>-convexit 

'_OUTPUT' INTO str. 

CALL FUNCTION str
 
EXPORTING input = <f>
 
IMPORTING output = s.
 

ELSE. 
""Use the BSP Page to_string Meth. to output any data type 

s = Lpage->if_bsp_.page-to_string( value = <f> ). 

ENDIF. 
CONCATENATE r_string s 

c L_abap_char_utili ties=>horizontal_tab 

INTO r_string. 

ENDLOOP. 
CONCATENATE r_string cl_abap_char_utilities=>cr_lf 

INTO r_string.
 

ENDLOOP.
 

388 Document Handling in SSP 

""Convert the string to Binary string (UTF-16Ie) 
CALL FUNCTION 'SCMS_STRING_TO_XSTRING' 

EXPORTING text ~ r_string 
mimetype = lapp_type 

IMPORTING buffer = r_xstring. 

""Add the UTF-16 Little Endian Byte Order Mark 
CONCATENATE cl_abap_char_utilities~>byte_order_mark_little 

r_xstring INTO r_xstring IN BYTE MODE. 

Listing 16.19 Process Excel Download 

16.8 Alternatives to the MIME Repository 

The SAP MIME Repository is really designed to hold development objects. 

Becauseof this, there is much overhead in its management of objects. The perfor­

mance for uploading or reading many files or very large files is not optimal. Also 

the dependence upon the transport system for MIME objects, often removes flex­

ibility that is needed when working with a large number of dynamic objects. 

So what are some of the alternatives to using the MIME Repository? First you 

could simply store you binary content in a custom database table. This would 

remove the dependency upon the transport system and might improve perfor­

mance. However this could require you to make extensive changes to your appli­

cations to read the content and present it to the users. 

16.8.1 leM File Handler 

A better approach might be to take advantage of the ICM file handler functional­

ity discussed in Section 16.2. By setting up a file handler to local disk storage, you 

now have an easy to manage and access approach that still is easy to reference 

from within BSP and takes advantage of the ICM caching functionality. 

You could take this approach one step further and even create a BSP application 

for managing the objects within these file handler locations. This way users could 

maintain the objects, without needing Operating System access to the place they 

are stored. 

Figure 16.12 demonstrates one such sample application. It allows you to choose 

the file handler you wish to manage. The drop down list of possible file handlers 

is read directly from the ICM configuration profile. 

On the teft hand side of the screen, we have the directory/file listing. This is our 

navigation area as well. On the right side, we display the currently selected object 

in an IFrame. The user has the ability to delete or update the current document 

Alternatives to the MIME Repository 389 



Figure 16.12	 Sample File Handler Maintenance Program 

Although a simple example, this might serve as a starting point for something 

more specific. Perhaps you might decide to add SAP authorization checks on the 

file handler or directories Within the file handler. The complete source code for 

the sample application is contained within the code samples on the enclosed CD. 

16.8.2 SAP Content and Cache Server 

A third approach might be to take advantage of the SAP Content and Cache Serv­

ers. The SAP Content and Cache Servers are an extension of the R/3 Document 

Management System. They allow for the easy distribution and access of docu­

ments across diverse geographies 

Let us consider for a moment a corporation that has operations in North America 

and Europe. Their centralized R/3 and Web AS systems reside in Europe. There­

fore users in North America access SSP applications across the Wide Area Net­

work frorn a data center III Europe. 

This works fine for the SSP pages them selves, but for large MIME objects this is 

inefficient. 

In this situation, both North America and Europe would have a Content and 

Cache Server. The index of all documents would still reside in the European R/3 

system, as weli as the SSP application itself. However the MIME objects could be 

cached and referenced from the North American Cache Server. 

Two problems arise from this situation however. First, we do not want the appli­

cation to have to be aware of the complexities of the underlying Cache Servers. 

You want the number and locations of the Cache servers to be dynamic. 

The second problem involves the users passing around shortcuts to the docu­

ment. Users will often cut and paste short cuts from such websites into Emails and 

other documents. If the URL to the document contains the direct address of the 

cache server for that user, this URL may break over time with the reorganization 

of cache servers. Also if the page was generated by a North American users but a
!	 European user accesses the URL, they will inefficiently directed to the North 

American cache Server. 

To enhance this solution, you mightconsider creating your own ICF Service Han­

dier. This way you could create URLs that are independent of Content/Cache 

server being used. The URLs instead would point to your custom Service Handler 
providing only the DMS document keys. 

ICF Object IContServ ~ I@l Service (Active) 

DeSCription	 in ~ ==-roJ 
[contentServerInterface VIa R/3 Document Info Records 

L. 
I 

~. 

1'* Other languages Ir 
~ 

::=J 
~ 

.Ser;; 

Handler list On execution orusr):-_ 

1._~JD11:'=o'~"~;~~E~~~ffIT~.=·P=.E~"XT~.=C=SI~F~"D~m --~-LDL,-_~;;;;.".;".~"~,.~,,",".,.,_, 
Figure 16.13 Custom ICF Service Handler for the SAP Content/Cache Server 

This service handler could then lookup the DMS details about the document in 

question using a BAPI Call, BAPCDOCUMENT_GETDETAIL2. 

The service handler then uses the Client IP address, details from the DMS system, 

configuration about the Cache Servers stored in table sdokstca, and a call to the 

function module SCMS_URL_GENERATE to build a URL and to trigger a HTIP redi­

rect to the best possible location to retrieve the file. 

The complete source code to the described example, alone with all source code 

samples for this book, is available on the accompanying CD. 

390 Document Handling in SSP Alternatives to the MIME Repository 391 



16.9 ZIP Tool 

SAP has delivered GZip-based compression in the Web AS for some time now. 

GZip compression is used automatically by the ICM when acting as an HTIP 

server, if configured to do so. 

In more recent support package levels for Web AS 620 and standard in Web AS 

6.40, SAP provides a series of ASAP classes that allow for the compression and 

decompression of text and binary data steams. These classes are: CL_ABAP_GZIP, 

CL_ABAP_GZIP_BINARY_STEAM, CL_ABAP_GZIP_TEXLSTEAM, CL~ABAP_UNGZIP_ 

BINARY_STEAM, and CL_ABAP_UNGZIP_TEXT_STEAM. 

These classes allow you to compress and decompress one data stream, but you 

are still responsible for storing the results. This means that you can compress data 

and store it in a database table, but they do not have functionality for creating 

true stand-alone ZIP files that can be opened by PC based applications. 

The following example works with a binary sting that is stored in a database table. 

This string represents the content of a STF editor (see Section 12.1). The code 

example uses CL_ABAP_GZIP to compress and decompress the data stream as it is 

read from and Written to the database table. 

DATA: I_text TYPE xstring. 

DATA: desc_text TYPE string. 

SELECT SINGLE text FROM ybtf_text 

INTO I_text WHERE id = me->id. 

CALL METHOD cl_abap_gzip=>decompress_binary 

EXPORTING gzip_in = I_text 

IMPORTING raw_out = desc text. 

Listing 16.20 Read and Decompress 

DATA: btf_wa TYPE xstring. 

CALL METHOD cl_abap_gzip=>compress_binary 

EXPORTING raw_in = input_text 

IMPORTING gzip_out = btf_wa-text. 

MOVE me->id TO btf_wa-id. 

MODIFY ybtf_text FROM btf_wa. 

Listing 16.21 Write and Compress 

The compression classes in ASAP are very useful for saving database size; however 

they lack the full functionality for integration with the client or other applications. 

For this we would want a class that could create a properly formatted ZlP file with 

multiple inner contents and CRC logic. 

Web AS 6.40 SP13 delivers the class CL_ABAP_ZIP to do just that. You can add
 

one or many text or binary objects to a compression steam that in turn can be
 

downloaded to a file or send back through a SSP response stream.
 

In this next example, we will retrieve multiple documents from an SAP Content
 

Server. We will ZIP all of these documents together and return them as a single
 

Zl P file using the cached response technique that we looked at earlier in this
 

chapter.
 

DATA: zip TYPE REF TO cl_abap_zip.
 

CREATE OBJECT zip.
 

DATA: absolute_uri(2000) TYPE c.
 

DATA: response_body TYPE TABLE OF x_table.
 

DATA: response_headers TYPE TABLE OF c_table.
 

DATA: content TYPE xstring.
 

LOOP AT doc_details ASSIGNING <wa doc>.
 

CLEAR absolute_uri.
 

CLEAR response_body.
 

absolute_uri = <wa dor>-urI2.
 

CALL FUNCTION 'HTTP2 GET'
 

EXPORTING absolute_uri absolute_uri 

TABLES response_bodyresponse_entity_body 

response_headers response_headers 

EXCEPTIONS OTHERS = 1. 

IF sy-subrc NE O. 

=message 

'Unable to retrieve content for ZIP inclusion' (ez2). 

EXIT. 

END IF . 

CLEAR content. 

CALL FUNCTION 'SCMS_BINARY_TO_XSTRING' 

EXPORTING input_length = '999999999'
 

IMPORTING buffer = content
 

TABLES binary_tab = response_body.
 

zip->add( name = <wa_doc>-filename content content ). 

ENDLOOP. 

DATA: zip_results TYPE xstring. 

zip_results = zip->save( ). 

""Create the cached response object 

DATA: cached_response TYPE REF TO if__http_response. 

CREATE OBJECT cached_response TYPE cl_http_response 

392 Document Handling in SSP ZIP Tool 393 



~ 

EXPORTING add_c_msg = 1. 

cached_response->set_data( zip_results). 
cached_response->set_header_field( 

name = if_http_header_fields=>content_type 

value = 'APPLICATION/ZIP' ). 

""Set the filename into the response header 

cached_response->set_header_fie1d( 
name = 'Content-Disposition' 
value = 'attachment; fi1ename=download.zip' ). 

cached_response->set_status( code = 200 reason = 'OK' ). 

cached_response->server_cache_expire_re1( 

expires_reI = 60 ). 

""Create a unique URL for the object 

DATA: guid TYPE guid_32. 

CALL FUNCTION 'GUID_CREATE' 
IMPORTING ev_guid_32 = guid. 

CONCATENATE runtime->application_url 'I' guid 

INTO dir_ur1. 
cl_http_server=>server_cache_upload( urI = dir_url 

response = cached_response ). 

RETURN. 

This example is slightly extreme, but it demonstrates retrieving the files for com­

pression and download from an external content server. However, the ZIP 

approach works just as well with files that were stored in the MIME repository or 

files that we have stored on disk and read via an ICM handler. 

394 Document Handling in BSP 

•
 

17 Customization 

Although SAP has spent considerable time and money designing pro­

fessional themes for 5SP applications, there may be valid business rea­

sons for creating pages with your own unique look and feel. In this 

chapter, we will focus on the technologies and techniques that make 

this level of customization possible. 

17.1 Customization Overview 

At some point, you are likely to be asked to customize the look and feel of your 

BSP pages. For example, a corporate color scheme or special font must be applied 

to your application. 

You could always just create your own CSS files to alter the look and feel of your 

application. This would mean either not using the BSP extension elements or try­

ing to attach new style tags to the generated HTML using a mechanism like the 

<bsp: findAndReplace> element. Both of these approaches are less than opti­

mal, so for the purposes of this text we will assume that you wish to continue to 

work within the standard extension framework. 

If you are lucky enough to always run your BSP application within a recent version 

of the SAP Enterprise Portal, you should have no problem at all. As discussed in 

Section 9.1.5, BSP applications that use the BSP extension framework get their 

look and feel from a set of designs. However BSP applications also support portal 

integration. That means that they will automatically inherit the theme that the 

portal is currently running without any changes to the BSP application. This allows 

you to use all the theme editing capabilities within the Enterprise Portal. How­

ever, let us assume that you do not have the Enterprise Portal, or that you need 

your application to be available with or without the portal. 

17.2 Export-Modify-Import 

The first approach that we might take is to create our own design themes. If you 

are using DESIGN2003, the <htmlb: content> element allows you to specify one 

of several themes that SAP delivers. You can use BSP Application SBSPEXT_HTMLB 

to view samples of the different BSP extension elements under the various stan­

dard themes. 

It is a fairly simple process to copy and then modify one of these delivered 

themes. SAP delivers a standard ABAP program, BSP_UPDATE_MIHEREPOS, to 

Customization 395 



export and import objects from the MIME Repository. This program can work 

with a single MIME element, a single folder, or a folder and all of its sub-folders. 

Let us say that we want to export the theme TRADESHOW as our staring point. 

We would just need to supply its MIME path (/SAP/Public/BC/UR/ 

Design2002/thernes/sap_tradeshow)to BSP_UPDATE_MIMEREPOS. 

Update the MIME Repository based on frontend data 

~Ii!!l 

I~nport/Expmt,/ 

o E){port to disk 

® Import from disk D Createwtth differenttotes 

OJ~~~,,·, 

@Processwholestructure 
I
i 0 Process flatstructure 1: 
I . 

I 0 Process indi"/ldual nle only 

--_.~-'-~ ~.-~ 

Figure '7' Theme Export Settings 

You might be slightly confused by the use of the name DESIGN2002 within the 

path for the theme considering themes can only be used in DESIGN2003. As it 

turns out, the original project to create the Unified Renderer (the technology that 

packages all controls and all themes into a central technology that can be reused 

over all SAP platforms) was an off shoot from the DESIGN2002 project. Later the 

Unified Renderer, and its concept of themes, was ready to be integrated back into 

BSP. By this point however, DESIGN2002 had already shipped to customers and 

could not be changed. Therefore DESIGN2003 was born. Although within the 

terminology of BSP, we have the new DESIGN2003, the underlying code and 

paths could not change from their references to DESIGN2002. 

You now have a copy of all the MIME objects that make up the TRADESHOW 

theme on your PC, and you are ready to edit in your favorite CSS or graphic edit­

ing tool. 

After you make whatever changes you need, you use the same program to import 

the MIME objects back into SAP as a different theme. It is important to be careful 

not to overwrite SAP's delivered themes. 

The path you then supply to BSP_UPDATE_MIMEREPOS will then be /SAP/BC/ 

BSP / SAP / ybsp_book. Remember from reading Section 16.1 that a BSP applica­

396 Customization 

tion will automatically create a folder in the MIME Repository when it is created. 

Therefore we are using a MIME folder that to hold our new theme that corre­

sponds to an existing BSP application. 

We can now use our new theme in a BSP application by changing the themeRoot 

value of the <htmlb: content> element. 

<htmlb:content design "DESIGN2003" 

themeRoot "/SAP/BC/BSP/SAP/ybsp_book" > 

There is a major disadvantage to using this approach, however. As SAP makes 

changes to the low-level rendering libraries, the developers often are forced to 

make changes to the structure and content of the underlying MIMEs. This means 

that it is very possible that every support package that you apply to your system 

will break your copied themes. In reality, you must re-copy the theme and re­

apply your modifications after each support-package application. 

17.3 NetWeaver Theme Editor 

The idea of exporting and working with all the individual files is a little over­

whelming. What we really need is a theme editor that understands the structure 

of the objects within SAP's themes and simplifies the process of updating them 

but without the reliance on the Enterprise Portal. Even if customers have the 

Enterprise Portal implemented, they may not have the version that has the theme 

editor (EP 6.0 running on at least Web AS 6.40 SP9). 

To meet this need, SAP now has available a standalone version of the theme edi­

tor that runs within the NetWeaver Developer Studio. You can download the 

theme editor and the theme packages from SAP Developer Network (SDN). This 

is also where you must go to get support on the tool, because it is not officially 

supported through SAP's Online Support System (OSS). 

This tool is heavily promoted as a solution for Web Dynpro. A standalone Web 

Dynpro application really has the same issue when it comes to themes that BSP 

has. Using the MIME import approach from the previous section, we can edit the 

themes in the standalone tool and then import them for use in BSP with BSP 

UPDATE_MIMEREPOS. 

As Figure 17.2 demonstrates, the theme editor is quite full featured. You have the 

listing of all the UI elements that are available for modification. Then you have 

your preview pane. Finally, you have a properties window with allowed values 

and color selectors built in. 

The standalone theme editor does have the drawback of being very dependent 

upon matching the support package level of your Web AS. Just as when editing 

NetWeaver Theme Editor 397 



the raw MIMEs, you must make sure that the starting theme package and the 

release of the theme editor match exactly the release of the Web AS you are going 

to import the files into. 

".4 f,ifll i11h.rmiTii}'t\J:r.Jif,1rf;Ti Ir:vr:::rr,T,T'- "=2,;~m~!' iilTiiiil 
file Edit N<;viqc;te Seilrch Project Run Window Help ------I' 

!6· "" 1i1. eo 111Ii'~: CilIl't, '1' li'\)-· "*.: "'J:. ill9~?"'" 
tB'i U!l tuenes Editor Projects x --J Welcome ~~/" X 

~ I L::j 'GP BSPl[C\BSP'\NW045tackI3Them ~ Elements , I "[;J 

~~: ~ ::~=~~~ome ~ ~~e::5:a~I~:~J~~ ~u,,'~, ~'v~ I "~'"'Q''' Positive Critical, Neqanve _,"°'::-'00"::-'::"_--'-=::-=--_-==-=-__---"­
i ~ ~apJ,lgh(ont iq, Cursor 

Standard Standarc S!aivj;-,td Standard 

Emphasized Emphasized Empuaslz ed Emphasized 

!lti Dete Nevrqetor 
II . ~ :::=:::::;:w G3- ~m:::: EI,m,,', 

Srncn smea Sm;;11 

L1Groups Reference Reference Ref",rel1ce Reference 
~LayoutControls
 

I ~'::linkbar
 Heading 1 Heading 1 Heading 1 Heading 1 
' Ei Meo' 6" Heading 2 Heading 2 Heading 2 HeadIng 2 
-~'Pag\n"ltor Heading 3 Headinq 3 lleadinq J Heading 3 

I ~ Pattern Containers HeDding 4 Heading 4 lIe~(liI"J -l Heading 4 
'Cf> Pop-upMenu I <= proo-ess trocetor
 

'I ;'~'.' Ro;d I'I;;p
 
·mJ Tables 
LJ 'lebstnp
 

I = roolber
 

I <'1- i.e' ':,:1 > ~ nee 
I ~Trays 

I ~;. Outline X~' G:7 SmpleElements G 
n outlineIsnot available. 1>00 pageSreadcr.,mD <Ii =::J G 

I !!!!I euttors 
Parameter I Value I :3'1'I 'We Labelsand fl~lds 

~~N ~il' 
BackgroundColorof Appllc"tion #E.BEFF2 -" I 
M#lM®*ff#¥OO~-fiClm:@tjli@§!'4iii 

'I I ~ ~~~:O~e~:: rtccer ~~II~~ ~; ~;~~~',,~~~ottom Inside Border ~~~~~;; I 
DScrollbar 

Color of noht end BottomOutside Bor,.. #EBF1FS II "iiG3- ,,,,,,,t,C,,,,,I, 
Colorof Sc;oliBar Track #E8F1FS " 
Colorof ScrollBOI: andScrollArrows #DDEAf5 
Colorof Upper end Left Inside Border #E8FlF8 i) 

li<;i _~, ~Generate .., ~$Refresh D EJ;tern"llPreview II I -----------------1&'I 

Figure 17.2 NetWeaver Standalone Theme Editor 

17.4 ALFS-ABAP Look-and-Feel Service 

So far, we have looked at two approaches for generating new themes for BSP 

applications. The first approach of directly modifying the underlying CSS files 

requires considerable effort. The second approach brings in the standalone theme 

editor to make the situation a bit easier" However if you only want to make a few 

simple adjustments, you might be overwhelmed by the sheer number of individ­

ual settings in this tool. In short, the power that it contains to tweak every detail 

of the theme might be overkill for some projects. 

It might take many hours to change from any predefined SAP theme to a new cor­

porate theme with either of these two previous approaches. In order to bridge 

that gap, SAP developed a quick-and-dirty look-and-feel service for the ABAP 

stack that allows us to have a new color scheme up and running in three minutes. 

The new scheme will probably not be a perfect match for anyone responsible for 

398 Customization 

corporate branding. However, for a presentation or a project smaller than a com­

plete re-branding, this tool fits the bill.
 

17.4.1 ALFS Tool Scope 

The quick-end-diriv here refers in no way to the quality of the programming, or to 

the quality of the algorithm it uses Some of the brightest minds at SAP worked 

diligently to put this solution together. Instead, the phrase reflects more on the 

scope of the solution and the constraints that are imposed by the implementation 

route that was chosen. This work was not done as part of any SAP development 

plan, but is more the result of having some fun over a series of lunch hours. As the 

tool was deemed to have value for a large group of people, the official decision 

was made to ship it. 

Originally, this tool was developed on the Web AS, as SAP had many require­

ments from consultants who wanted to enhance their presentations at customers 

and did not have the space on their laptops to also run an Enterprise Portal instal­

lation. As they usually have already a mini-Web AS running, SAP decided to reuse 

this infrastructure. 

Please note: This tool has a number of constraints. The use of the tool implies the 

acceptance of these limitations. Support for the tool will be provided via 055 on 

queue BC-BSP on a best-effort basis only. This means SAP will do everything pos­

sible to keep it running smoothly, but there are no guarantees that it will be sup­

ported indefinitely. Also, because ALFS is built upon the concept of themes, it will 

only work with BSP applications using DESIGN2003. 

17.4.2 What is ALFS? 

Figure 17.3 shows the same BSP application with different predefined themes. 

These themes were defined using ALFS to quickly show the effects of applying a 

new theme to a BSP application" 

Figure 17.4 shows the complete theme editor. Effectively, you define five new 

colors from which the complete theme is then generated" If the corporate brand­

ing colors are already defined, then just plug them into the editor and press the 

preview button. 

The editor generates new CSS files on the fly, as well as hundreds of new GIF 

images in exactly the right colors. Two interesting ideas flowed into this theme 

editor. The first is that a few basic colors are sufficient to specify the complete 

theme" The second is that it is possible, even with ABAP, to generate all the MIME 

objects on the fly as they are requested without a noticeable speed hit. 

ALFS-ABAP Look-and-Feel Service 399 

I 



~EJEIP 

L92,12~.90 

19),14a.41 

192,556A4 

191,164,88 

195,622,64 

192,4<'0.96 

ful~:-~ 
Bo"kln~ total 

747·400 

422,94 U5D 747·400 

42U14 USD 747·400 

42Z.94 USD 741·400 

422,')4 USD 747·~OO 

~22.9~ USD 

00000001 J••~ Summer 

00000002 AndrM,Ei"h\J~um 

00000003 Chri,tophDumbocl1 

.J AA 0017 11/17/2004 

'~AI>. 0017 1l/17/WD4 

:J Ai>. 0017 11/17/2004 

" ..J AA 0017 11/17/2004 

J AI>. 0017 12/15/;'004 

.J AA 0017 Ol/tZ/lOOS 

.:J AI>. 0017 02/09i"~05 

t.l All 0017 O~/09/2DOS 

.J I>.A 0017 ~4/06/2005 

, 
I El!!, Sal~, Team, Gool, ! Prodvc\$ f 1J~lv.!ion I Cornp.iitor~ 'I S"l~, Assi~tant II 

10 ',0, D~tn aOr,klM ~I~",. d ;ho P""cn']Mf J::.':!·,') 

1I1111~3 

1111111"]· 
lIIaD~1 

LBls~\J. ,"':.1 :11 ,:opportu~iti~S 
f~l~i;~~~" 3J 'J~el;;ctl Lr~~:~J~~:,:~·~ 'Yiiirtn:~d.'~:R;'~'~;~t.;r~~~~ 

17.4-3 How Does Customization Normally Work? 

The normal full process for customizing a theme is to use the tools provided by 

the Enterprise Portal. These tools provide the complete freedom to change all dif ­

ferent aspects of the theme. This might be important for corporate branding pur­

poses, but even getting an initial theme running is a lot of work. For example, the 

typical steps include all GIF images, over 300 per theme, being loaded into a bit ­

map editor individually to set their colors correctly. Even a first version can take 
hours to get up and running. 

What the theme editor in the Enterprise Portal does is store all customer settings 

as metadata, rather than store them directly in the CSS files. Thereafter, in a gen­

eration step, the actual required CSS files are created. This is important for han­
dling upgrades. 

When SAP ships new rendering classes, the information required for the CSS files
 

are also shipped only in metadata form. This is mixed with the old theme settings,
 

and new CSS files then are generated at runtime.
 

Therefore the first requirement of ALFS was to have a solution that would survive
 
a new service pack.
 

To work around this constraint, ALFS generates new themes on the fly. They are 

never stored in any database, but only cached on both the server and browser. 

After an upgrade, the BSP runtime will load the CSS files with a new version num­

ber. This bypasses the cache, causing the CSS files to be loaded and patched 

again. This implies that ALFS does not store any generated theme In the MIME 
Repository. 

The goal of ALFS was never to replace the theme editor already available in the 

Enterprise Portal. This approach attempts only a quick approximation of the 

results, which should be sufficient for showrng an application to a customer in 

nearly the correct color scheme. If fine-tuning of a theme is required, this must 

still be done with the usual theme editor. 

17.4·4 A New Theme from Five Colors 

The heart of ALFS is its simplicity. Instead of asking the user to configure and edit 

all colors, it only wants to have one color-for example, blue for SAP. Just give 
ALFS the base color, and it will do the rest. 

In the end, it turns out that five colors are required and sufficient: one back­

ground color, two branding colors, and two selection colors. 

ALFS-ABAP Look-and-Feel Service 401 

Figure 17.3 The Effects of ALFS on a SSP Application 

[EAP tf;tWeaue~ABAPTheme Editor 

Themes 

II
I Precefoec
 

,Preview 

I ITheme Root 

I 

Theme 
I ITemplate 

[BiSilUe 
f!S?plbclbsp/sapfI!.05/entrypoint.hl.m 

j/saptpublicfoctur/design2002Ahemes/-aij 

~~ I 
i
If' 

~eam',ne =::::'2J- IIL 

It 
~ 

Y.ll ~' 
] i 

~' 

Branding Cninr ?II Primary 1#382D1rf] .!I~d r 
I Secondary ~74E"'1 II~~:!; !l 
Selection Color I~I 

,Prmerv I#DAA52(f] I 
I ISecondary [#£65656 I lIIW1ili[j It 

Background Color 'It 
I ApP\icfltion I#FF.E4C4~ . [ 

I 
I Font 1 
I IFolll.Family G:231,sans-senl '~ Ii 

, ". .. ,',,_.__ ., .....1, 

Figure 17-4 The Complete ALFS Theme Editor 

ALFS even parses and patches each GIF file that is used within the theme during 

the usual load process. 

4 0 0 Customization 



What the BSP development team did was to manually analyze all style classes for 
all SAP base themes. From this, they grouped relevant classes together and deter­
mined heuristics of how the colors are used in the base themes. Specifically, they 
calculated the distance of a specific color from the base color of the theme. Then, 
given the five new colors, they apply the same distance to the base colors to have 

the data for the new theme. Distance is just a calculation of how much the color 
shifted in RGB space from the original source color. 

The other important aspect is the template theme from which the new theme 
should be generated. SAP today ships five standard themes. Each theme is differ­
ent in metrics such as padding, font sizes, and margins as well as different in the 
spectrum of colors used. 

The distances between the different colors and the base color is an important 
aspect of the theme used as the template. For example, typically the high-con­
trast themes group colors more closely together at two extremes, achieving the 
required contrast on screen. Today, SAPsets as the default theme Tradeshow, and 
we recommend using this as the template in most cases. 

17.4.5 Integration into Web AS 

As we said earlier, the biggest constraint on the design for ALFS was that the new 
theme must be able to survive an upgrade. The first approach that was taken was 
to update all CSS and GI.F files, and store them in the MIME Repository. However, 
this takes a very long tilne to generate, and had the side effect that ALFS had to 
patch resources that might not even be needed. The bigger problem was that it 
had no hooks to update the MIME Repository after a new service pack was 
applied. 

The route that the BSP development team ended up taking was to write a new 
HTIP handler. This handler will intercept all requests to MIME objects. Once it 
detects that a customized object is required, the handler will load the MIME 
object, patch it, and then send it out to the browser. Typically, the time it takes to 
load a MIME object far exceeds the time required to quickly patch the colors in 
memory. 

As a last step, the MIMEs are cached for seven days in both the server and 
browser caches. This works because the BSP runtime was changed in later service 
packs to load all MIMEs with a version number. Once a new service pack is 
installed; the version number changes and the MIMEs will be loaded anew. With 
the caching, the performance of this patch on-the-fly solution is blazing fast. 

When using ALFS and this HTIP handler on lower service-pack levels, it is recom­
mended to reduce the cache time back to one hour. This might negatively impact 

402 Customization 

overall performance. Only with Web AS 6.20 SP54 and 6.40 SP13 will the caching 
automatically be updated to seven days. 

The first problem the BSP development team had was where to store the new 
color information required. Initial approaches always placed this basic color data 
in the database. However with the browser caching seven days, once a color was 
changed the browser would not know, nor would it request, the update files until 
at the end of the seven days. After some deliberation, the BSP development team, 
taking into account that five colors is only 30 bytes, decided to add this informa­
tion directly into the URL. 

For example, for the Bisque theme shown in Figure 17.3, the theme root was set
 
to:
 

/sap/public/bc/ur/design2002/themes/ 
~alfs-l000202FFE4C43B2DlB7D674EDAA520565656 

Here, ALFS has encoded inside the URL the template to use (one byte), the font
 
family to use (one byte with a lookup table) and then the 30 bytes for the five col­

ors.
 

The big win in this approach was that any minor change in the theme resulted in
 
a change of the generated URL. This effectively implied new objects that were not
 
already in the cache. Thus, the complete theme again is loaded on the fly.
 

The other benefit was that it was now possible to have hundreds of themes active
 
in parallel, without writing them into the MIME Repository. This was especially
 

important when testing to find the right color combination. All the different tests
 
with minor color changes have different URLs, thus keeping the cache content
 
consistent for each test run and allowing you to quickly compare the different
 
themes. 

However, this solution does add about 50 bytes per roundtrip to the complete 
rendered overhead. The SSP development team did experiment with using a 
base64 encoding on the color values to reduce the overhead by about 20 bytes, 
but it was not worth the effort. 

Looking at this solution in slightly more detail, we see that DESIGN2003 MIME 
resources are loaded via the path /sap/public/bc/ur/design2002/themes/ 
sap-tradeshow/ .... On this path there is already one HTIP handler installed. 
What was done was to write a new HTIP handler that is chained into this path. 
The new handler is called first. It looks at the incoming URL to search for its sig­
nature ~alfs~. If the signature is found, the correct MIME is loaded, patched 
(with the color information from the URL), and the response is written (with 
caching). All other systems requesting the same resource will be served from the 

ALFS-ABAP Look-and-Feel Service 403 



ICM cache, thus making the patch work a one-off process, Should the URL not 

contain the correct signature, the handler will just signal that it did not handle the 

incoming HTIP request, and the usual MIME repository handler will then be 

scheduled, 

17.4.6 The Source Code: Making It Work 

By now, you should be really excited about ALFS and ready to dig in and try it out 

ALFS is officially shipped with Web AS 6.20 SP54, 6.40 SP13, and 7.00 SP03. 

However, if you are not at those service-package levels yet, you are not out of 

luck. OSS Note 850851, "ALFS: ABAP (Quick and Dirty) Look and Feel Service," 

has the complete source code. A ZIP file with the source code is attached to the 

note. This can be manually installed on any Web AS system. 

No Note assisted corrections are provided for this solution, so manual application 

of the code will be required. 

To install the code, create a new class and add the interface IF_HTTP_EXTENSION. 

Paste the following code into the HANDLE_REQUEST method: 

METHOD if_http_extension~handle_request. 

TRY.
 
server->transactional = if_http_server=>co_enabled.
 

if_http_extension~flow_rc= 

if_http_extension=>co_flow_ok_others_mand. 

IF server->request->get_header_field( 

if_http_header_fields_sap=>path_info ) CS I~alfs-'. 

lcl_alfs=>handle_request( server). 

if_http_extension~flow_rc= 

if_http_extension=>co-flow_ok. 

ENDIF. 

CATCH cx_root. 

ENDTRY. 

ENDMETHOD. 

All that this code does is quickly checkforthe ALFS signature. Once it is found, all 

further processing is done in local classes. Observe the setting of the flow_rc 

variable to signal whether the HTIP request has been handled or not. 

In the next step, edit both the definition and implementation sections of this 

class. Paste the complete source from the OSS note into the corresponding sec­

tions. Save and activate the class. I<eep in mind that the supplied code is slightly 

different between Web AS 6.20 and 6.40. 

As the final step, start transaction SICF. Find the node I sap/public/bc/ur and 

edit it Add the new handler class to the list of handler classes. 

~?'7(~T5~P_-_:~._~._~_, ',_,~J1[gcreate/Change OJ ?ervice __ ~
 
~ 0 option RE ------ t
 
v 0 public P li.c(p_ai.~j IdefaulChostlsaplpublicibel i
 

v 0	 bc Ba ICFObject IliE I~ Serv,ce (Active) r
 
~ ICOns Ie Description in IENEnglish ===wJ i
 
~ konsjtl R IUnifiedRendering \
 

~~its In,- ff 
~ur U 1_ " 

~ ~ webdvnprW C 1 
[> ~ workflow au 'i(5s1V'tt:8'B1ta • w, ,.' ~R~s';~ r: 

~ 0 bsp B .. -' 
Ii" 

-', 

0icfcheck T " ;
 
~ 0 icf=info IC Handler,."'.t (,n sxecuton order): t
 

o ieman ER t{, GJ~ ~___ f 
o info Sy D~"fu;L lITH EXT ALFS i hli ~ 
o myssocntl Se LE-!Ci _IfITP_ EXT lJEBDAV PUBLIC J!] I 

____ ~,~C'o __*' ~"""~~'~~ --."~_ ~ .,.,.,};:o "'" _ _ _<'-~_ _.~~. ."...,~ _ ___

Figure 17.5 Editing the Service Node to Add the New Handler Class 

If you are manually applying this change to a Web AS 6.20, the ICF node is deac­

tivated after the change and must be activated again. 

17.4.7 ALFS Theme Editor in Detail 

Now that you have ALFS installed in your system, you are ready to start using it. 

The editor can be started with the URL: 

Isap/public/bc/ur/design2002/themes/-alfs-editor 

Now you just decide which template theme to start from, pick one font, and set 

the required five colors. Press the Preview button to see the new theme in action. 

The most important output is the theme root that is displayed. This string can 

later be integrated in a number of ways into one SSP application. 

The simplest way, at least for testing, is to use the sap-themeRoot URL parame­

ter. It is very important, though, to note that the string rnust be URL-encoded ("/" 

--+ "%2f"). 

http://<host>:<port>/sap/bc/bsp/sap/itOS/entrypoint.htm?sap­

themeRoot=%2fsap%2fpublic%2fbc%2fur%2fdesign2002%2fthemes%2f 

-alfs~l000202FFE4C43B2D1B7D674EDAAS20S6S6S6 

The alternative technique would be to set the theme root directly on the 

<htmlb: content> tag. This has the benefit that it is always formatted correctly as 

far as URL encoding is concerned and does not require external configuration 

data, which is more difficult to manage, 

ALFS-ABAP Look-and-Feel Service 405404 Customization 



<htmlb:content design="DESIGN2003" 

themeRoot="/sap/public/bc/ur/design2002/themes/-alfs 

-l000202FFE4C43B2DIB7D674EDAA520565656"> 

17.5 Configure a Theme Root 

AI! three approaches for altering the theme of a BSP application require changing 

the theme-root attribute. We have seen that you can alter the theme root either 

through the sap-themeRoot URL parameter or as an attribute of the element 

<htmlb: content>. Both of these methods require applying changes of some sort 

to each BSP application that you wish to have the new theme. This is less than 

optimal if you want to implement your new theme across many BSP applications. 

In Web AS 6.20 SP50 and 6.40 SP12, SAP delivers a solution that attempts to 

solve this problem. They have created a configuration table called BSPTHEMEROOT. 

If no theme root is supplied by the URL parameter or in the <htmlb: content> 

element, the BSP runtime will check this configuration table before applying the 

standard theme. 

Since there is no standard table maintenance for BSPTHEMEROOT delivered, you 

will have to use transaction SE16 to maintain it or create your own maintenance 

view. 

The following are the fields in BSPTHEMEROOT and the effects that they have on 

processing. 

~	 SORT_KEY: In this field you must supply an unique key. Entries are processed in 

order by sorting on this field. 

~	 URL: This is a string that will be matched against the URL to determine what 

theme to use. You can wildcard this match with the character *. Through the 

use of aliases that can be setup in transaction SICF, it is possible to have more 

than one theme for the same application. The matching process is always case 

insensitve. 

~	 THEMEROOT: The new theme to use. You can supply one of the SAP predefined 

themes by name; for example sap_tradeshow. You can also specify a URL to 

the themeRoot on your local Web AS or on a remote one. 

17.6 Theme Root White List 

Regardless of the method used to set the theme root, the fact that the theme root 

supports remote URLs poses a potential security risk. Imagine if someone was 

able to supply a bogus theme root to your application. This would not be very dif­

ficult to accomplish especially considering that the theme root can be set via a 

URL parameter. In this situation a malicious theme root URL on a remote server 

could be designed to open your application to a Cross Site Scripting attack. 

To protect their customers, SAP has developed a white list solution in the HTIP 

framework as of Web AS 6.20 SP54, 6.40 SP14 and 7.00 SP3. This white list gives 

the customer the capability to create patterns that will be checked against exter­
nal URLs before been used in generated HTML code. 

Similar to the BSPTHEMEROOT table, the white list is delivered as a configurationI. 
table, HTTP_WHITELIST, which has no table maintenance. So, once again, you 

can either use SE16 to maintain it or create your own maintenance view. 

SAP delivers the white-list table empty. If there are no entries in the white- list 

table, all checking is disabled. Therefore, it would be advisable to at least setup an 

entry that checks that the request is coming from any server within your corpo­
rate domain. 

For the purpose of the processing of the white list, we will break a typical URL 
request into the following parts: 

protocol:llhost.domain.extension:port/url 

The following are the fields in HTTP_WHITELIST and the effects that they have on 
processing. 

~	 ENTRY_TYPE: This field lets you identify what type of URL matching you want 

to check against. For instance you might mark an entry as BSP Theme Match­
ing. 

~	 HOST: Value to be checked against the host+domain+extension portion of the 

URL as described above. If this entry is left blank then no check is performed. 

The entry can be wildcarded with the * character. 

~	 PROTOCOL: Protocol, generally HTIP or HTIPS, to be verified. Leave this field 

empty if you do not want to check against the protocol. 

~	 PORT: Port number in digits only that you want to check. Once again simply 

leave this field blank if you do not want to check against the port. I<eep in mind 

that even if a port is not specified in a URL, it still has one. For HTIP the stan­

dard defined port is 80, for HTIPS it is 443. 

~	 URL: This is the check against the remainder of the entire URL specification 

after the protocol+host+domain+extension+port. The wildcard * is accepted 
here as well. 

It is important to distinguish between leaVing an entry blank and using the wild­

card. In the case of protocol if you left the entry blank, all protocols would pass 

the check. Therefore the protocol might be HTIP, HTIPS, or FILE.That last proto­

406 Customization 
Theme Root White List 407 



col in the list might be a bit suspicious. Therefore in this case, to be safe it would 

be better to use the wildcard with an entry HTTP'. That way we allow both HTIP 

and HTIPS. 

17.7 Error Pages 

So far, all of our customization options are centered on changing the look and feel 

of BSP applications via the use of themes. There are two other types of BSP pages 

that have special opportunities for customization. The first of these two types is 

BSP Error Pages. 

17.7.1 Historical SSP Error Pages 

SAP introduced the concept of BSP error pages so that, inside each application, 

you could designate one or more pages or views to act as error pages. These pages 

were marked with a speclal icon in the Workbench object viewer. On the rest of 

your pages orviews, you could then designate which error page would be respon­

sible for it. This relationship can be seen in Figure 17.6 

Figure 17.6 Classic Error Pages 

The BSP runtime places a TRY/CATCH check around every call to a page, view or 

controller. If an exception occurs within the processing of the inner object, the 

BSP runtime will catch it and then pass control to the configured error page. 

The main problem with this approach is that the error page itself is another BSP 

page. Therefore, this error page has been started within the error environment of 

the original page. The error page has no knowledge of what mayor may not 

already have been written out by the original page into the HTIP response object. 

Also, the BSP element stack could be in a questionable state. If the original page 

has already created an <htmlb: content> element, the error page can not create 

408 Customization 

another element because you can only have one instance on the stack. On the 

other hand, the original page may have produced an error before reaching or 

while processing the <htmlb: content> element. Now the error page is respon­

sible for creating an <htmlb: content> element itself. In the worst-case situation, 

the error page itself might produce an error while processing the output from the 
original error. 

Because of these cornpiexities, SAP has discontinued support for the BSP error
 

page as of Web AS 6.20 SP48 and 6.40 SP11. As of these releases, any configura­

tion for the error-page options will simply be ignored by the SSP runtime.
 

17.7.2 Error Pages-New Approach 

Although SAP has stopped support for the old BSP error pages solution, the com­

pany has not left customers without a method for creating custom error pages. As 

of the same support package levels that disable the old approach, SAP also deliv­
ers a new method for producing custom error pages. 

Now when an exception occurs, control exits the SSP framework completely, 

allowing the exception to pass all the way up to the ICF (Internet Communication 

Framework). Inside the ICF there is the SSP class that integrates into ICF, CL_ 

HTTP_EXT_BSP, which is now responsible for catching exceptions from BSP appli­

cations and producing a generic error page. The rendering routine in this class that 

is mostly likely used to produce this generic error page is REPORT_ERROR_HTML. 

In order to test this new exception-handling technique, we will create a BSP page 

that purposely has a runtime error. We will simply use the programmer's worst 
enemy-divide by zero! 

<htmlb:content design="design2003" > 

<htmlb:page title=" " > 

<htmlb:form> 

<% data: results type i. 

results = 1 / o. %> 

</htmlb:forrn> 

</htmlb:page> 

</htrnlb:content> 

The amount and type of information on this generic error page is quite impres­

sive. It contains most all the information anyone could want to begin diagnosing 

a problem. SAP understands that many customers are going to want to customize 

this error page, so they deliver a table where you can configure an alternative 

class and method to be called in the error condition. 

Error Pages 409 



Business Server Page (BSP) error 

What happened? 

C~lIing the ssp page was terminated due to an error. 

• The 

i'~~t;i~t~~~~~Z~;-~~;;;~gti,~~~·;t;;,~;:===~===~=====-=i 

Anexceptionwiththe type CX3't _ZERODIVIDE occurred, but was: neither handledlocally! nor declaredin a RAISING clause 
following error text was processed in the system: 

Exception [lass 

'Error Name 

Program 

.Include 

·ABAP [lass 

Analyze
 

aspApplication
 

8SP Page
 

Line 

'Lonq text 
....•••._.c_ .._ _ 

Error type: Exception 

Your SAPBusinessServer Pages: Team 

Figure 17.7 GeneriC Error Page Produced by REPORT_ERROR_HTML 

This way each customer can create their own REPORT_ERROR method. The only 

requirement is that the signature (exception type ref to ex_root and ser­

ver type ref to iL_http_server) of the customer method matches that of 

REPORT_ERROR from CL_HTTP_EXT_BSP. Also, the method must be defined as
 

STATIC and PUBLIC.
 

The configuration table, BSPERRHANDLER, is maintained in transaction SE16 Dur­


ing maintenance, we can use wildcards (*) in the URL to set custom error handlers
 

for entire sets of BSP applications. Creating aliases in transaction SICF even allows
 

us to have multiple error pages for the same application.
 

Figure 17.8 shows the entry for setting up a custom error handler for a single BSP
 

application.
 

"-~ 
Table BSPERRHANDLER Insel't 

tGiJ_ 
rV1A\\IDT fOs8l 
SORT KEY i!JOol1 

UR1 1~/'rE:;; __TE5Tlr
 

ERR CL.1\SS IYCL_ESP EXCEPTIOl,IS ~
 
ERR I~ETHOD IREPORT ERROR lfTI[L I
 

.~-_. -,.,-..,~..~~-~-----~~~-_.------.~-..~_.."". ~-~ ..._...~_.~,~"'"',.....~--

Figure 17.8 BSPERRHANDLERTable Maintenance 

410 Customization __.l 

In Figure 17.9, we see the results from a sample handler class, CL_BSP_ 

ERRHANDLER_SAMPLE, which SAP delivers. It creates an error page with a very dif ­

ferent look and feel than the standard one. 

Errol' 500: Internal server ErrOl' 

Anexception with the type CX_SY_2ERODIVIDE occurred, but was neither handled locally, nor declaredind
 

RAISING deuse
 

If you need further help, cor-teetour webmester. 

:,·c.:·: 

Figure 17.9 CL_BSP_ERRHANDLER_SAMPLE Output 

You could copy the sample class and use it as your starting point. However, the 

generic output from CL_HTTP_EXT_BSP actually has a lot more detail and is 

already nicely formatted. If all you want to do is add some company specific con­

tact information, you might consider copying the REPORT_ERROR_HTML method 

from this class as your starting point instead. 

~~-"~.,- .. ---~' -:TY~~ri~d t~-divide b;z~-t~d;;;-th~~~;~ation 'I'.
'-~~rl9,,~~~"~, ._._,__~_ --_.__._~--~,--_._--~-_._-~--_._-~--_.~._-._--_..._--~ 

Errortype; Exception
 

YourSAPBusinessServer Peqes Team
 

If 'jOU feel you need additional support Fortlus problem,please callOOl~800-555·SS55
 

'--~--"--~~-~"~.~--'---'--'_. ~~-

Figure 17.10 Slightly Modified Output from the CL_HTTP_EXT_BSP Class 

Keep in mind that as you implement the coding of these error pages that you are 

not inside the BSP framework. That means that you cannot rely on the BSP Exten­

sions. You have to build your own style sheets and raw HTML directly into the 

response object. This is just one more reason why you might want to start with 

CL_HTTP_EXT_BSP. 

To achieve our modification of adding the support phone number in Figure 17.10, 

we only had to add the following to the coding of our error method. 

concatenate '<tr)' & 

'<td)' & 

'<p class="note")' "!fEC NOTEXT 

'Business Server Page (BSP) Fehler' (011) 

'&nbsp; , 

Error Pages 411 



strexception 

'</p>' & 

'<p>' "#EC NOTEXT 

'Ihr SAP Business Server Pages Team' (012) 

'</p>' & 

'<p>' 
'If you feel you need additional support _ 

for this problem, please call OOl-800-555-5555'(cOl) 

'</p>' &
 
'<ltd>' &
 

'</tr>' &
 

'</table>' &
 
'</body>' &
 

'</html>' "#EC NOTEXT
 

into html.
 

server->response->append_cdata( html ).
 

17.8 Logon Application 

The other special type of page that can be customized is on the opposite end of 

the spectrum from error pages. This is the use of a web based logon page, instead 

of the default browser popup for name and password. Such a web based logon 

page enables supporting of additional features such as a password change 

sequence, and also enables the support of displaying more information (from 

SM02, typically maintenance information, etc). 

Starting in Web AS 6.40, SAP delivers a new, highly customizable logon page. You 

will find this referred to in the documentation as the System Logon. This should 

not be confused with the 6.20 BSP application SYSTEM and its logon. htm page. 

The customization of this new logon page begins within transaction SICF. 

In 6.20, BSP applications could choose to use the SYSTEM logon application. The 

use of this older logon method should be replaced with the System Logon on 

Web AS 6.40 and higher. The new System Logon has significant enhancements 

and is not tied to the BSP framework. As an example, both Web Dynpro ABAP 

and the integrated ITS use the new System Logon. 

If you go into maintenance mode on an individual service and then navigate to 

the Error Pages tab, you should see several options for Logon Errors. In Web AS 

6.20, you could use the Redirect to URL approach and send the user to a BSP 

application called SYSTEH. This approach was nice and somewhat customizable, 

but has no where near the functional of the new System Logon approach. 

412 Customization 

$erl,li\=~ Data>!~ Hat1~h~r List :..6fII~~rllH"i;' 

·"C"~,,"'''''_''I~~-''C'-

8nnl.l=rrnr·:: 

10 Documentation Ia ExplIcitResponse Time 

Header: ~J@] 

Body: rur~ I 

~ 

status: na Redirect to URL 
,- ­

®'Wjo Form Fields ClFotHl Fld::: (Text Form) 

o Form rlelds(835864) 

@System Logon I Settings I 

Figure 17.11 Service Node Maintenance 

In order to use the new functionality, you must choose System Logon option. You 

then can hit the Settings button to begin the customization fun. 

\ Settings Selection// 

Ousa Global Settings 

@Define Service-Specific Settings ~ 
Svstem ~ogon Settings/ 

iSelect .. Display/ ~'Defalilt/ 
o system lD Client. I)iS8J 
o Client Language I inI 

Language ~;;;:::::;:;;::;::;:;;:;;:;;=;========~II 0 
~ Systemmessages Irogan LavoU~ arid Procedure/'
 

0Logon and system Information @SAPImplementation
 

. Tmpl. N=E=T,c-!V=E~c-, Nc­"I .v=E=Rc­ etc-v\=in::"11 

1­

ra [gJ I~a'l~ dSGI~bal Setting, 1. 

Figure 17.12 System Logon Configuration 

Figure 17.12 demonstrates the many customization options that are possible with 

a Simple dialog. Right away, you might notice that for each service node you have 

Logon Application 413 



the ability to reuse a global set of settings or define service-specific settings. With 
the use of aliases, you could in theory have a different set of logon screens for the 

same application. This is very useful if you need to support separate internal and 
external views of an application. 

With the many options, you might decide not to display the input of client and 
language and instead default to fixed values. This also might be useful in an exter­

nally facing application where the term "client" would be meaningless to your 
users. 

One option you should note is the No Toggle to HTIPS option. It is advisable to 
use HTIPSto encrypt the user name and password. By default, the System Logon 

does not care ifyour application is started with HTIPS or HTIP. Ifthe logon screen 
is configured, it will switch to HTIPS during the redirect. Following the successful 
logon, the application will be started with the originally requested protocol. 

Therefore it is not advisable to check the option No Toggle to HTIPS. 

Now we come to the section where we can adjust the look and feel of the system 

logon page. In the Logon Layout and Procedure section of the customization, 
you will see that we have the choice of three different templates. To add to this 

we also have the choice of one of the standard SAPthemes. 

Figure 17.13 System Logon Templates: Normal, IDES, and NetWeaver 

But ifyou are the type of person who thinks that three templates with five themes 
each, along with numerous other configuration options just is not enough cus­
tomization, then you will still be quite happy with the System Logon. The very last 
option in the dialog is User-Specific Class. That is right: You have the ability to 
create your own logon class inheriting from the SAP class CL_ICF_SYSTEM_ 

LOGIN. Actually, each of the three templates are all separate classes and available 

as starting points: CL_ICF_BASIC_LOGIN, CL_ICF__IDES_LOGIN, and CL_ICF_ 

NW04_LOGIN. SAP also sends along an example customized logon class, CL_ICF_ 
EXAMPLEOI LOGIN. 

You will find that the coding in these classes is very similar to the ABAP program­
ming for BSP extension-element handler classes. Using inheritance, you have the 
freedom to redefine most any of the rendering methods and either make small 
changes or go crazy and create an all-new interface. 

In the folloWing example we have redefined the method RENDER. We are going to 
replace the copyright section with our own little text. A comment must be made 

about the way the coding works in general within the System Logon. The System 

Logon application was designed and implemented to work directly against the 
Unified Rendering library; thus the use of UR in the class names such as clur * 
and ifur *. 

Although you have to use these classes within a custom System Logon rendering 
class, they are not technically released for customer use. This means there is not 

any documentation on their use. You will probably notice that their structure is 

very close to that of the underlying classes of the HTMLB libraries. Therefore, the 
only other concern to deal with is the fact that SAP does not guarantee that it will 
not change the interfaces to these classes in the future. However the risk of mas­

sive changes to these classes in the future is very slight and should not necessarily 
deter you from creating a custom System Logon rendering class. 

lr_gridlayoutcell = clur_d2_factory=>gridlayoutcell(
 
halign = ifur_d2=>cellhalign_left
 

valign = ifur_d2=>cellvalign_bottom
 
paddingtop = 'lOpx'
 
paddingbottom = 'lOpx'
 
paddingleft = 'lSpx' ).
 

lr_gridlayoutrow->cells_add( lr_gridlayoutcell ). 
lr_textview = clur_d2_factory=>textview(
 

text = 'BSP Book Example System Logon'
 
tool tip = 'BSP Book Example System Logon'
 

design = ifur__d2=>textviewdesign_headerl
 
wrapping = abap_false ).
 

lr_gridlayoutcell->content = lr textview. 

These changes produce the new logon screen seen in Figure 17.14. 

414 Customization 
Logon Application 415 



~, 

SAP NetWeaver~
 
SAP !'Nob Applic;;;~tioi1 Server ..
 

I Client ~ @OO -l
 
I Users'
 

Ipassword ~ 

ILanguage	 IEnglish ",II
 
D Accessibil~y
 

til Logon IIChangePassword I 

BSP Book Example System Logon	 ~ 

Figure 17.14 Customized System Logon Class 

416 Customization 

18 Skilled in the Art 

Until now, we have been studying a great deal offoundation technol­

ogy. Now it is time to learn how we can put this technology to good 

use in the form of some real-life BSP example applications. 

Now that you have spent some time learning the advanced technologies within 

BSP, such as Model View Controller and Pattern Engines, you will begin to see 

how you can apply these technologies to meet unique and difficult programming 

tasks. 

In this chapter, we will challenge ourselves to think outside of the box and begin to 

apply many of the technologies and techniques introduced in previous chapters. 

18.1 Field History 

In Section 9.6, we discussed the fact that the implementation of <htmlb: form> 

combined with the dynamic nature of element ids causes the browser's field his­

tory or auto-complete functionality to be disabled in BSP. 

Although the technical reasons this functionality is missing make perfectly good 

sense, that does not change the fact that users really miss it. The question 

becomes: Why not create our own server side field history? 

We have a UI element that would fit nicely. The <phtmlb: comboBox> has an 

attribute called behavior. Ifthis attribute is set to FREETEXT, you essentially get 

an input field that allows free-text input. But you also get a drop-down list box 

attached to this input field. We can use the drop-down list box to store the field 

history. Users can then browse back through the last 20 or so entries they have 

made on this field using the drop-down list box and selectively reuse one of the 

old values. 

This means that when a user manually types in a new value, we will need to trap 

that value and store it somewhere, as well as update that value into the history 

drop-down list box. 

18.1.1 Working with <phtmlb:comboBox> 

Before jumping into the coding solution for this example, it is important to note 

a small problem with the <phtmlb: comboBox> when using behavior = FREE­

TEXT and Model View Binding. Apparently, the raw HTML generated by the 

<phtmlb: comboBox> in FREETEXT mode creates two separate elements. By 

default, model-binding logic can only restore values from one HTML form field. 

Skilled in the Art 417 



IY'~'J00001 46720050003I Matenal Doc. 
·ITlTI1i:li~r"'M'IITi"l.illlll 

:;;:;;====-_=1500000146720050002 -0
c==--.o==="'1500000146720050001 

test input 

~~1:~ ~ChOOS:~- 1234 

~~lIl~ 500000123120040001 

IThe table does not 45456446 
- 8888 R 

Figure 18.1 Custom Field History Using a <phtmlb:comboBox> 

One quick call to the friendly SAP BSP support desk, and we have a simple solu­

tion: You just need to implement a small bit of JavaScript that will sync the values 

between these two elements before input. This script does interact with the 

underlying rendered HTML and therefore might be broken by a future support 

package. This should be considered a possible sample solution to the problem 

that might require some adjustment based upon your particular support package 

level. 

In the following example, please note that the element ids are hard-coded. They 

correspond to the <phtmlb: comboBox> ID of DDLB. Also you must take into 

account the controller id, which is s2. 

<phtmlb:comboBox id	 "DDLB"
 
"Ilmodel/matdoc sel.material_doc"
selection
 

table
 "Ilmodel/matdoc_hist"
 

behavior
 "FREETEXT"
 

onSelect
 "show_DDLB" 

onClientSelect "setMyNewKey() ;"
 

nameOfKeyColumn "key"
 

nameOfValueColumn "value ll
 

width "150" I>
 

<script defer language="JavaScript">
 

function setMyNewKey() (
 

var sList=sapUrMapi_ItemListBox_getList(
 

"s2_DDLB-lb" ,document);
 

var sListArray=sList.split(" II");
 
var sListTable=new Object;
 

for(var i=O;i<sListArray.lenght;i++) (
 

var sListItem=sListArray [L] . split (" I ") ;
 
if(typeof sListItem[lj !="undefined")
 

sListTable [s Lj.s t Lt e-nl l • ]=sListItem[O];
 

418 Skilled in the Art 

var value=sapUrMapi_ComboBox_getSelectedValue("s2_DDLB"); 

document. getElementById ( 's2_DDLBKey' ) . value=value; 

for(var key in sListTable) ( 

if(value==sListTable[key]) ( 

var o=sapUrMapi_ComboBox_getObject("s2_DDLB"); 

o.txt.setAttribute("k",key) ; 

o. txt. setAttribute ("ks" ,key) ; 

document.getElementById('s2_DDLBKey') .value= 

key;break; 

<I script> 

18.1.2 Processing the Field History 

As you can see from the <phtmlb: comboBox> code sample in the previous sec­

tion, we are goingto have an internal table in our model class to house the history 

values. This table, matdoc_hist, just needs to be defined as the typical drop­

down list box key/value pair. You might consider using the table type SHSVALTAB 

or TIHTTPNVP for its definition. 

In orderto keep the data in this history table persistent, we will create a database 

table. This table will be designed to be generic enough to hold input history for 

almost any type of field. We want to store input history specific to a user and a 

particular field. We also want to store the timestamp for the last time that value 

was used. This gives us something to use when determining which value should 

come off the list once it is full. It also allows us to sort our history according to 

most recently used values. 

Transp, Table IZES.BSPJ1DHSTI Active
 

Short Text IField Input History for asp Input Fields
 

1 J 5 

l)~;~ry aMMai~tenill1cE{~Eniry help/check'""l, 

IR:::~: -+~: ~=~~ 
IC1""1 3i 
:CHAR 12

1 

II ,FIELD i011?i IFIELDNAME :CHAR 
---+­

II 
Figure 18.2 Field Input History Database Table Definition 

Field History 419 



Now we need a generic routine that will sync the values between this database 

table and our internal table for a given field. For easy reusability, we will create 

this as a static method of a utility class. 

This method will have two importing and one changing parameters. The changing 

parameter C_HIST is for the history table itself. It is defined as SHSVALTAB. The 

first importing parameter is NEW_VALUE type CSEQUENCE. This is where the new 

input value is passed in. Declaring this parameter as CSEQUENCE gives us the free­

dom to supply this value via any text-type field, character, or string. The final 

importing parameter is FIELD. This is how we specify the field name under which 

we want to store this history. By using a consistent field name here, we can share 

input help across multiple input fields in the user interface. 

METHOD update_bsp_field_hist. 

*Importing NEW_VALUE TYPE CSEQUENCE 

*Importing FIELD TYPE FIELDNAME Field Name 

*Changing I_HIST TYPE SHSVALTAB 

CHECK new_value IS NOT INITIAL. 

In this first section of code, we will remove the new value from the history table 

if it is already in there. This allows us to re-insert it later with a new timestamp. 

This way it moves to the top of the stack. 

READ TABLE c_hist TRANSPORTING NO FIELDS 

WITH KEY key = new_value. 

IF sy-subrc = O. 

DATA: I_value TYPE shvalue d. 

I_value = new_value. 

DELETE FROM zes_bsp_fldhst 

WHERE uname sy-uname 

AND field field 

AND value I_value. 

ENDIF. 

The next section has the logic to pop the oldest entry off the stack if we have 

exceeded our maximum history size of 20 entries. 

DATA: icount TYPE i. 

SELECT COUNT( * ) FROM zes_bsp_fldhst INTO icount 

WHERE uname = sy-uname 

AND field = field. 

IF icount >~ 20. 

DATA: old_tstamp TYPE timestamp. 

420 Skilled in the Art 

SELECT MIN( tstamp ) FROM zes_bsp_fldhst INTO old_tstamp
 
WHERE uname = sy-uname
 

AND field = field.
 

DELETE FROM zes_bsp_fldhst
 

WHERE uname sy-uname
 

AND field field
 

AND tstamp old_tstamp.
 
ENDIF.
 

This final section of code will record the new value into the history database table.
 

It will then rebuild the history internal table.
 

DATA: inew TYPE zes_bsp_fldhst.
 

inew-uname = sy-uname.
 

inew-field = field.
 

inew-value = new_value.
 

GET TIME STAMP FIELD inew-tstamp.
 

INSERT zes_bsp_fldhst FROM inew.
 

CLEAR Lhist.
 

DATA: ihist TYPE TABLE OF zes_bsp_fldhst.
 

FIELD-SYMBOLS: <wa_string> LIKE LINE OF ihist.
 

<wa_hist> LIKE LINE OF i_hist.
 

SELECT * FROM zes_bsp_fldhst INTO table ihist
 

WHERE uname = sy-uname
 

AND field = field
 

ORDER BY tstamp DESCENDING.
 

LOOP AT ihist ASSIGNING <wa_string>. 

APPEND INITIAL LINE TO i_hist ASSIGNING <wa_hist>.
 

<wa_hist>-key = <wa_string>-value.
 

<wa_hist>-value = <wa_string>-value.
 

ENDLOOP. 

ENDMETHOD. 

All that is left now is to put the pieces together and make sure that we process the 

field history on an input event for our <phtmlb: comboBox>. For this, we will use 

the DO_HANDLE_DATA method of our controller class. 

We will directly query the <pl.t.nl o : comboBox> and use the current value to 

update the field history. 

DATA: combobox TYPE REF TO cl_phtmlb_combobox.
 

combobox ?= cl_htmlb_manager=>get_data(
 

request = request
 

Field History 421 



name = 'phtmlb:comboBox'
 

id = 's2_DDLB' ).
 

IF combobox IS NOT INITIAL.
 

CALL METHOD ycl_abap_utilities=>update_bsp_field_hist
 

EXPORTING new_value = combobox->value
 

field =. 'MATDOC'
 

CHANGING i_hist = model->matdoc_hist.
 

END IF .
 

18.2 Server-Side Printing 

It is generally accepted that printing from the browsers leaves something to be 

desired. Printing usually brings about alignment problems, such as text running 

off the side of the page, or loss of background graphics. Consider also that a good 

user interface often hides many elements or only allows for a small number of 

records in a table to be displayed at a time, thereby making a good printout from 

the browser nearly impossible. 

There are many possible solutions. You might decide to open a separate page with 

dedicated rendering better suited to a print layout. You could also consider third­

party solutions that will re-render the output to PDF. 

But why not instead leverage the server side print infrastructure that is already in 

place in any ABAP based SAP solution? The purpose of this example was to come 

up with a reusable approach that would allow you to take an internal table that 

was being used as the source of an <htmlb :tableView> and output it using ALV 

Grid. That way, we could take advantage of all the rich printing and formatting 

that ABAP programmers had come to rely on in classical dynpro development. 

This example is implemented as a static class method that will process an internal 

table and, using the ALV Grid List output mode, force the results to the print 

spooler. We have used the new Web AS 6.40 ALV object model. However, since 

the ALV classes are mostly wrappers around the ALV control or reuse function 

modules, it should be easy to back port this solution to Web AS 6.20. 

Naturally, though, we did not want just to output the entire internal table. You 

often have extra fields used in internal processing that you do not display in the 

output. We also may have changed the column headers. To support these situa­

tions, the static method will also apply a table-view iterator or column-definition 

table to the data before processing it in the ALV Grid. 

As if this was not enough, you probably will soon realize that you need a reusable 

printer dialog. You need a way for users to choose which printer they want and 

set other printer settings such as Print Immediately or Delete after Output. Luck­

422 Skilled in the Art 

ily it is not too difficult to take what we know about custom BSP extensions 

(Chapter 11) and dialog windows (Chapter 14) and build a new BSP extension 

element that will provide the UI elements for querying the printer', number of 
copies, etc. during server-side printing. 

18.2.1 PRINT Method Interface 

We will start with the coding for the static method that performs the output. First 

we need to have a look at the interface of this method. 

CLASS-METHODS print 

IMPORTING 

itab TYPE REF TO data 

iterator TYPE REF TO 

if_htmlb_.tableview_iterator OPTIONAL 

coL.def TYPE tableviewcontrol tab OPTIONAL 

print_options TYPE sfpprip 

messages TYPE REF TO cl_bsp_messages. 

We have five importing parameters. The first is a reference to the data table we 

want to process. By declaring this as a TYPE REF TO DATA, we can receive and 

process an internal table of any flat structure. Next, we have two optional param­

eters: the iterator and the column-definition table. Neither are critical to the 

overall process, but if we want control over what columns are output or what col­

umn headers are used we will want to use one of them. The column definitions 
table has priority over the iterator. 

Next, we have a structure in which we will pass in our printer parameters. This 

exam pie used type SFPPRIP because that is what the printer dialog expects. The 

printer dialog was originally designed for the output of Adobe Print Forms, so this 

is the structure for Adobe Forms. 

If you are not on Web AS 6.40, you might not have this structure. Most of the 

fields are the same asthe SmartForms or List processing options structure, but the 

names might be different. Later, you will see that we map these values to the list 

options. If you are not on 6.40, or if you are not goingto use the example printer 

dialog, you might want to go ahead and defining a different importing structure. 

Finally, we have a reference to the messages object so that any processing errors 

can be passed back out to the calling routine. Using the CL_BSPjlESSAGES object 

is not required: you could just as easily pass an error string in and out of the 
method. 

Server-Side Printing 423 



18.2.2 PRINT Method Coding 

We start our processing by getting a usable handle to our internal table reference. 
You then can see some variables we will use later: a reference to the ALV Grid 
class and the variables for list-print output. If you did not want to pass in 
SFPPRIP, you might want to just fill a,structure of type PRLPARAMS and pass it in 
instead. 

METHOD print. 
FIELD - SYMBOLS: <tab> TYPE table. 
ASSIGN itab->* TO <tab>. 
DATA: table TYPE REF Te cl salv table. 
DATA: print_parameters TYPE pri_params, 

valid_flag(ll TYPE c. 

Next, we need to map the input print options structure into the one needed for 
list processing. You never want to attempt to fill PRLPARANS yourself. You should 
always use the function module GET_PRINT_DARA.NETERS. 

CALL FUNCT~ON 'GET_PRINT_?ARAMETERS' 

INPORTING out_parameters = print_parameters 

Even though we are inside SSP processing, we can still force list output directly to 
the print spool with the printer options our user selected. To do this, we just need 
a call to NEW -PAGE. 

NEN-PAGE PRINT	 ON PARAMETERS print_param~t~rs
 

NO DIALOG.
 

Next, we will create our instance of ALV and get a pointer to the columns object. 
You will see that while the processing is very different from that used by the pre­
6.40 ALV Grid, it has been streamlined. 

DATA: salv_msg TYPE REF TO cx_salv_msg.
 
DATA: error_string TYPE string.
 
TRY.
 

cl_salv_table=>factory(
 
EXPORTING list_display abap_true
 
INPORTING r_salv_table tcble
 
CHANGING t table <tab> l.
 

CATCH cx_salv_ffisg INTO salv_ITlsg.
 
messages->add_message_froffi_excepticn(
 

condition = 'prj nt'
 

424 Skilled in the Art 

exception salv_msg ).
 
RETURl\.
 

ENDTRY.
 

DATA: columns TYPE REF TO cl_salv_columrs table.
 
columns = table->get_columns( ).
 
columns >set_optimize( abap_true l.
 

Ifthe caller of this method has supplied an iterator or table-column definition, we 
need to apply it here by altering the columns object of ALV. For pre-6AO this 
would be the same as generating a field catalog and manipulating it. 

DATA: l_col_def TYPE tableview~ontroltab.
 

DATA: iterator_error TYPE REF TO
 
cx_sY_dyn_call_illegal_method.
 

IF col_def ~S :NITIAL AND iterator IS NOT INITIAL.
 
DATA: p_overwrites TYPE cableviewoverwritetau.
 
TRY.
 

iterator->get_colcmn_definitions( 
EXPORTING p_tableview_id = 'itab' 
CHANGING p_column_definitions = I col def 

p_overwrites = p_overwrites l. 
CATCH cx_sY_dyn_call_illegal_method INTO iterator_error. 

messages->add_message_from_exceotion( 
co~dition = 'print' 
exceptio~ = iterator _error ). 

RETURN. 
ENClTRY. 

ELSEIF col_def IS ~OT INITIAL. 
I col de: ~ col def. 

ENDIF . 

IF I_col def IS NOT INITIAL. 
DATA: scrtext 1 TYPE scrtext_=, 

scrtext_m TYPE scrtext_ffi, 
scrtext_s TYPE scrtext_s, 
tooltip TYPE lvc_tip. 

DATA: col TY?E salv_t_column_ref. 
FIELD-SYMBOLS: <wa_col> ~IKE LINE OF col, 

<wa_col_def> LI~E ~IN~ O~ l_col_def.
 
col = col un.n s - >get ( ).
 
LOOP AT col ASSIGNINr, <WE col>.
 

READ TABLE l_col_def ASSIGNING <wa_col def>
 

Server-Side Printing 425 



;il 
I: 

IF 

WITH KEY columnname = <wa col>-columnname. 

sy-subrc = O. 
<wa_col>-r_column->set_visible( abap_true ). 

IF <wa_col_def>-title IS NOT INITIAL. 

scrtext 1 = <wa col def>-title. 

<wa_col>-r_column->set_short_text( scrtext s 

END IF . 

ELSE. 
<wa_col>-r_column->set_visible( abap_false ). 

ENDIF. 

ENDLOOP. 

ENDIF. 

). 

Finally, we close out the processing by forcing the ALV to produce its output and 

then closing the list processing. 

table - >display ( ). 

NEW-PAGE PRINT OFF. 

messages->add_message2( 
condition = 
message = 

messagetype = 

ENDMETHOD. 

'print' 
'Print Output is complete' (iOl) 

'I' ). 

18.2.3 Printer Dialog 

The coding supplied here is not so much a complete solution as a starting point. 

You have the structure and rendering of the UI element in order to save time in 

case you want to implement something similar. You could just render these ele­

ments in line in an existing application. In that case you could just about use all 

the coding as is. 

You might want instead to open this dialog in another window. For this, you 

might use the modal window using the floating IFrame solution from Section 

14.2. This keeps the browser from treating the area as another window, so that 

instead it can share the model class that contains the results directly via a stateful 

application. For this reason you will find a small block of JavaScript code toward 

the end of the element processing. 

DATA: javascript_close TYPE string. 
CONCATENATE me->id '_Close' INTO javascript_close. 

DATA: closedialog TYPE REF TO 

426 Skilled in the Art 

ycl_bsp_elmnt_close_dialog.
 

closedialog 7= ycl_bsp_elmnt_close_dialog=>factory(
 

clientevent = javascript_close ).
 
WHILE m_page_context->element_process(
 

element = closedialog ) = co_element continue. 
ENDWHILE. 

CONCATENATE javascript_close '();' INTO javascript_close. 
DATA: button TYPE REF TO cl_htmlb_button. 

button 7= cl_htmlb_button=>factory( 

id = me->id
 

id_postfix = ' __PrintBtn'
 

onclientclick = javascript_close
 

text = 'Print' (pOl) ).
 

listing 18.1 Printer Dialog-Close Hook 

1jliljjljji~W;_i?t*1'1f1@$&¥!JI!EI£I: 

IOutputDevice t zjS6 - f(EG GO Fairway S 
ffI Spool Request El[ 

I>I,me 1 I I 'I'I Te,1 I ~
 
I1,1>.uthorinilon I ~
 
I : 

I, 50001 .......... r ... 1
 

I Print Immediately ~ 

I Delete ,I.l,tterOutput 0 
I Hew :::poolreque:;( 0 
I Flni.~1 0 

IJ5p(,01 rErterrticm pd c=:::§] Day(s) 

f I Om<>c'o:. Mode 

Figure 18.3 Printer Dialog User Interface 

BW~j~~~~f ~.t:inte:rDialog IActive 

<l,:pfoPertjes"'-'~ 

18K;.lII;;;;I~I'EIII[;JlI~
 
Attribute IR ID.. lca.!Bi.ITYPing me... IAssociated .!D-!Description I~
 
arcllode I0 i0 i[J !~ i1 TYPE i!I!SFPOlITARC 'FormProcessing: Options far Archiving;~:
 

dereuj cpeuena : C i ~ IC I~:1 TYPE i!l::SFPPRIP arm Processing: Print Parameters 

i d I~ I ~ i [J ID !1 TYPE en !STRING ,~Iement IDL .. _.. _"._... . __._. _, ._ ~_ ".._.._" "_ "' . 

Figure 18-4 Printer Dialog Element Attributes 

Server-Side Printing 427 



r'
[;', ' 

t 
r~ 

Most likely you can ignore this section of code that hooks the JavaScript function 
into the close button, since it is specific to the dialog window processing. Or per­
haps this is where you can put your own logic to close your processing area. 

IF _defaultparams IS NOT INITIAL. 
CONCATENATE _defaultparams '.DEST' INTO binding. 

CLEAR text. 
ELSE. 

text = ycl_abap_utili ties=> read_field_desc ( 
defaultparams-dest ). 

CLEAR binding. 
ENDIF. 
CLEAR fllabel. 
fllabel ?= ycl_bsp_elmnt_fl_help_lbl=>factory( 

id = me->id
 
id_postfix = '_DestLbl'
 
for = 'defaultparams.dest'
 
text = text
 
_for = binding ).
 

WHILE	 m_page_context->element_process( element fllabel ) 

= co element continue. 

ENDWHILE. 
CLEAR ddlb values. 
SELECT padest pamsg FROM tsp03 INTO TABLE ddlb_values. 
LOOP AT ddlb_values ASSIGNING <wa_ddlb>. 

CALL FUNCTION 'CONVERSION_EXIT_SPDEV_OUTPUT'
 
EXPORTING input = <wa_ddlb>-key
 
IMPORTING output = <wa_ddlb>-key.
 

CONCATENATE <wa_ddlb>-key <wa_ddlb>-value 
INTO <wa_ddlb>-value SEPARATED BY , ­

ENDLOOP. 
SORT ddlb_values BY value. 
GET REFERENCE OF ddlb values INTO itab. 

CLEAR ddlb. 
ddlb ?= cl_htmlb_dropdownlistbox=>factory( 

id = me->id
 
id_postfix = '_DestDDLB'
 
_selection = binding
 
selection = defaultparams-dest
 
nameofkeycolumn = 'KEY'
 
nameofvaluecolumn = 'VALUE'
 

428 Skilled in the Art 

table = i tab ).
 
WHILE m_page_context->element_process( element ddlb )
 

co element_continue.
 
ENDWHILE.
 

Listing 18.2 Printer Dialog- Rendering Example 

You might also notice that we use the context-help label from Section 14.1. You 
probably are beginning to see how these solutions can layer one on top of the 
other to provide even more value. 

If you do not want to implement this custom extension as well, just adjust the 
calls to ycLbsp_elmnt_fl_help_lbl with cLhtmlb_label. We also have a 
routine called ycl_abap_utilities=>read_field_desc. We use this routine 
in case you did not take advantage of data binding. Thisstatic method will look up 
the language-dependent descriptions from the data dictionary. It is not terribly 
impressive, but it is a nice little space saver. 

METHOD read_field_desc .
 
*Importing FIELD TYPE ANY
 
*Returning VALUE ( DESC) TYPE SCRTEXT_M Medium lbl
 

DATA:	 el_desc TYPE REF TO cl_abap_elemdescr,
 
isddic TYPE abap_bool,
 
field_d TYPE dfies.
 

TRY.
 

el_desc ?= cl_abap_typedescr=>describe_by_data( field).
 
isddic = el_desc->is_ddic_type( ).
 
CHECK isddic = abap_true.
 
field_d = el_desc->get_ddic_field( ).
 
desc = field_d-scrtext_m.
 

CATCH cxYoc t ,
 

ENDTRY.
 
ENDMETHOD. 

18.3	 Select-Options/Parameters 

If you are a long-time ASAP programmer but have never done much program­
ming outside this area, you might not realizejust what a luxury Select -Options 
and Parameters provide. 

Without hardly any effort on the programmer's part, they are able to generate 
powerful UI elements for performing data selection. That single element allows 
for multiple ranges of input criteria, wild card values, negative and positive selec­
tions, greater than/less than evaluations, etc. 

Select-Options/Parameters 429 



As you might imagine, recreating or adapting this solution to BSP was a bit of a 

challenge. The goal was to create a solution that was flexible and easy to integrate 

into existing BSP applications, yet still produced ABAP RANGES for back-end data 

selection. 

While this solution needed to keep back-end compatibility to ABAP RANGES, it 

also needed to change the UI to adapt to the Web environment. We kept many 

of the icons used in the SAP GUI. On the other hand, the SAP GUI approach uses 

many dialog windows to manipulate the Select -Options. Although dialog win­

dows can technically be used within BSP, they complicate the programming task 

considerably. Instead, this solution takes the route of rendering additional fields 

inline when needed. 

18.3.1 UI	 Design 

As you can see from Figure 18.5, there are three different display levels to each 

Select -Option. The Date Select - Option shows the default fully collapsed ele­

ment. We have the selection options icon-the red, yellow and blue flower­

which expands the display to the second level. 

II Airline 21 ~ I to c.:::=:DJ 
1:( IISelect specified values ,~] [ Greater or Equal ~= value in field LCWV 

Zit aJ ~ 

Zit ~?~ c=::::JjjJ 
:ziP~~ c=::li]] 

:ziP~~ c=::li]] 
» ~~ c=::::JjjJ 
:i» ~~ c=::::JjjJ 

I Fligt,t Number ~~~ 

I to c:::::JEj1] 
I to c=::::JjjJ 
Ito c:::::::Ja] 
I to c=::li]] 
I to c=::::JjjJ 
I to i Jj] 

Ito ~ 
):( ISelect specified values ~;( c= 

I Dot.	 ~~ I IITrii I to c=:=:::m 
t!'.:":t~~_._~!.L ,..o~LI.!.~_~_L ~~DI 

Figure 18.5 Select-Options UI Example 

6> IJ' 
~~I 

t 
:9 m' ~ 

L~ll ~. 
S m'i 

~Jd 

This level,	 as shown in the Flight Number selection, renders additional fields to 

choose positive or negative selection options. These options are sensitive to the 

value already placed in the Select-Option. Therefore, if your value contains a 

wildcard character, you will see the extra Contains Pattern/Not Contains Pattern 

criteria. 

The fully expanded level, shown in the field Airline, provides an area to input mul­

tiple ranges. The UI will always generate five empty input areas. If you fill those 

up, you can press on any of the red arrows to generate another set offive empty 

430 Skilled in the Art 

inputs. The yellow arrow on the far right side collapses and expands the additional 
selections area. 

Finally, all elements have a trash-can icon in order to quickly clear out all input 
values and criteria. 

18.3.2 Solution Structure 

In order to study the architecture for this solution, we will begin at the end. We 
J	 start by looking at the coding that must be placed in the view in order to house 

the Select - Option area. 

<bsp : call	 ur I = "selop.do"
 

comp~id = "SOC" >
 
<bsp:parameter name = "HODEL"
 

value = ,,<%= model %>" I>
 
</bsp: call>
 

You might have expected to see a BSP extension element used here. However we 

can see from the UI that we will need a lot of event handling for the elements 

inside the Select -Option area. Rather than put the burden on the calling pro­

gram to even to have to dispatch these events, would it not be better to com­

pletely encapsulate them as well? 

Therefore, we take the approach that we studied in Section 13.6. Similar to the 

pattern engine that was built in that section, we will place the entire UI rendering 

and event handling within a reusable controller class. An application merely has 

to define a controller object and then hook it into this reusable controller class in 

order to have access to the 1,000 or so lines of ABAP code that control the UI ren­

dering and event handling. 

The controller class is fixed in its coding and interface. It was never intended to be 

inherited or redefined; in fact, we have marked it as FINAL to protect it from any 

such attempts. However, we still need a flexible way of defining our Select­

Options. For this we have created a model class that is intentionally designed to 

be inheritable. 

We are able to create a generic model class that has all the basic methods neces­

sary for initializing. building and retrieving a set of Select -Options. It is this 

generic class that the controller will reference and work with. We then have the 

freedom to inherit this model and provide more specific implementations of the 

generic methods through redefinition. 

The model will have two ways of building the Select-Options. First there is a 

method that can be redefined and allows for a completely customized list of 

Select-Options/Parameters 431 



Select -Options. The other choice is to supply the name of a data-dictionary 

structure. The model will then use this structure as the definition of the listing of 

Select -Options; pulling details for each field from the data dictionary. 

18.3.3 Select-Option Controller Class Attributes 

Our controller class begins with three public attributes that can be set via the 

<bsp: parameter> call in our view. These three attributes function as the settings 

that will choose the path that the controller will take. 

model TYPE REF TO ycl_bsp_m_selop_param 

model class TYPE seoclsname 

dd structure TYPE tabname16 

We have two options for supplying the model to be used. First the view could 

pass in an already created instance of a model class. This model object needs to be 

of our generic Select-Options model type or it needs to inherit from that type. 

The other option is to request that the controller class creates the model instance 

for you. To do this, you specify the name of the model class in the attribute 

MODEL_CLASS. The controller will then place this instance into the attribute 

MODEL. The same rules apply in that the model class name specified must be the 

generic Select-Options model or it must inherit from it. 

18.3.4 Select-Option Controller Class Coding 

Once again, all the source code for all solutions can be found on the book CD. 

There is far too much coding in the controller class to list it all within this text. 

The vast majority of the coding is UI rendering logic like that we have already seen 

many times within this book. We will use certain internal tables from the model 

class that define the Select-Options and their listings of values to loop through 

and generate UI.elements. We will use the technique of dynamic model binding 

introduced in Section 13.4. The following is a small excerpt of the UI coding. 

LOOP	 AT model->fields ASSIGNING <wa_fields> 

WHERE group = <wa_group>-group. 
'\ 

tabix ~ sy-tabix.
 

CONDENSE tabix.
 

CLEAR label.
 

CLEAR binding_master.
 

READ TABLE model->values ASSIGNING <wa values>
 

WITH KEY id = <wa fields>-id. 

IF	 sy-subrc NE O. 

ENDIF.
 

CONCATENATE '//model/values[' tabix 'J.'
 
INTO binding_master.
 

CONCATENATE binding_master 'LOW' INTO binding_string.
 

CLEAR input.
 

input ?= ycl_bsp_elmnt_input_help_v2=>factory(
 

id = <wa fields>-id 

id_postfix = '_InputLow' 

dataref = <wa_fields>-dataref 

value = binding_string ). 

WHILE page_context->element_process( element = input
 

if_bsp_element=>co_element_continue.
 

ENDWHILE.
 

Once again, we continue to reuse custom elements that were created earlier, such 

as the Help Values element from Section 14.3, providing more and more value 

with each layer. 

The only other code section of particular importance within the controller class 

comes at the very beginning of the processing in DO_REQUEST. This is the section 

that initializes the model object and hooks into the initialization of the Select­

Options. 

IF	 model IS initial. 

IF model_class IS INITIAL. 

model class = 'YCL_BSP_M_SELOP_PARAM'.
 

ENDIF.
 

model ?= create_model( model_id = 'SO'
 

class_name = model class ).
 

model->initialize_selection_screen( ).
 

IF dd_structure IS NOT INITIAL.
 

model->initialize_fields_from_dd( dd structure ). 

ENDIF. 

ELSE. 

IF get_model( 'SO' ) IS INITIAL. 

set_model( model id = 'SO' model instance = model). 

ENDIF. 

ENDIF. 

I 
432	 Skilled in the Art Select-Options/Parameters 433 

~
 



You can see the multiple options within the initialization of our controller. If the 
model instance is not supplied, we must create it. The consumer of the controller 
might have specified a model class. If not, we will simply use the default one. 

Once the model is created, we will call the base method to initialize it, 
initialize_selection_screen. If this was an inherited model class, the 

ini tialize_selection_screen method may have been redefined to supply a 
custom set of Select -Options. On the other hand, perhaps the consumer is 
going to supply the definition ofthe Select -Options via a data dictionary struc­
ture. In that case, they will have passed the name of that structure in through the 
attribute DD_STRUCTURE, and we will now process it using the method 
initialize fields from_dd 

The other option is that the caller of this controller already would have created an 
instance of the model object. This allows complete control to initialize the model 
class with whatever custom methods are necessary. The controller now is only 

responsible for making sure the model instance is properly registered to the con­
troller in the MVC framework so that the data binding will work correctly. 

18.3.5 Select-Option Model Class Attributes 

The heart of the Select - Option definition is really spread across three different 
internal tables all exposed as public attributes of the model class. 

Structure IZES nsp SEL GROUPS IActive I 
short Text Issp Select Options/Parameters Groups ~ 

~ 
,,:AHrit;;1t~.il!jiiliiilM¥4i.B1trYhel~7d:;eck'\;fCUrr~2Y7fi~~J1ru'g~
 

. ~
 
i 

g-~I r'ft;!LJ~ilfII;;U IYI-JI:: " t 

1'----" 

J.u.u£' I LJ j i':>lr:.u~1.:t I ui Ulllll.t: 

OOLTIP 'D :STRING 01 0Qulck Info
 

-:.n.TI1 _HILJ~~~::L._t~~idth __
 

Figure 18.6 Select-Options Groups 

The first internal table is the listing of groups. We have the ability to define mul­

tiple groups of Select-Options. Each group will be rendered out into its own 
<html b i t r ay>. 

The next internal table, FIELDS, has the definition of each Select-Option. This 
is where you can set the type of Select-Option: drop-down list box, checkbox, 
date, basic help, and BAP! help 

434 Skilled in the Art 

I

Structure IZES nSP_SEL FIELDS . ] Active !
 
Short Text SSPSelect Options/Parameter Fields =:J !
 

[. 
, .. -, .,~)tr;Ck'1~2~YlleTdTI ~ 

I 

. LC , fSTRIlIG I 0 0 ield10 & 

i;;;:;IGE-------j-o-tooiwi ICHAR--I--l OSoolean \ianable (X=True, -=False, spac;;i

'Xr--~-~~I---=-~TRINGT-Oo,Tek!Cabel------===t 
r•. 
D

ATARE.r D.. ' r 'LSTRING± 0 D.pata TypeRelerence ~.-~-._-----.--- '--r--.'-~. ~'.'-_. ---r........,--~-------'--. ~__~ 

DATA ELEMElIT D ; ISTRIIIG 0 OData Element i 

OBJ.IGATORY ; D BOOLEAN ;CHAR '1' io~n \iariableJX=True, -=False, Space,;. - . t-- - - r------,---- r--f--- ~-- ~ ~. 

lAS DDLB -----+g:"O"O_LEiI]L iCHAR__ ]i0SOOle-:n \iariable (X=True, '=False,Spacet ,I__

I~S CHECKBOX I 0 £OOLEAN iCHAR II 1 0, oclaan Variable (X=True, -=False space',;--------------1=-"------ ,.__+__ -.-~--_.. . l .__ . 

§:r:
lAS DATE I D BOOLEAN iCHAR ~80oiean \iarlable (X=Tru8, -=False, Spac8'1 

AB LED -~j:1...~___ !sTRING L..!~~bled (Output O~ ----t 
IBASIC ~ I D [8()()I!AII iCHAR ~l OBool8an \iarlable (X=True, -=False, space": 

~NCLUDE D _'lEo ESP _:J__~ i ..o.~~p Sele.:tion 0lJtions/fl..ara,rn~!""'-FiEllds _j 
,:SAP! HELP 0 ~OOlEAN JCHAR l 11 OBoolean Variable (X=Tru8J ~=Fa)seJ Spacef 

iRFCDEST -W' RFCDEST ~-----I ~Ogi[al Destination (Specified inFunction ,y.... 
~------ ----r----···-i------,----- '------------- _
 
iOBJTYPE __"lLL-iSTRIJ.Jr;._L...o._ OfOR Object Ty;J~_ ;
 

iOBJIJAllE----L[J~-----l'T"REN~l-~. O~2R~bJE>:!~a-"",-- ,
 
11lETIlOD I D : iSTRING! 010HOPI Method ;
- - --T---~-~---+-+--- --<
 

~ARAJr ~ ISTRI1vG +~I O~API f',~thDd P~meter ----f
 
~ I D I .STRIlJG i 0f-"/'iax Number of rows r
 
IKEYFIELD ----4 or---:STRIJ.JG I o~ke\' Field inthe Returning data ~
 
IMORE -- 1-[rBOOLEAN-=-!~HAR-~ ~-i~~~al;;n Var~ble (x:rr~~Fa~~?
 
C7.=~_==~'"'__ ._",.~,,o.'_., __.=_. __. "~----"'~ ,"__ ~o_ ~~ ' __ • ,_" ._ ,, ' • 

Figure 18·7 Select-Options Fields 

You choose whether this element is rendered as a Select-Option or a Parame­

ter based upon the value of the field RANGE. Finally, the DATAREF field must con­
tain a valid reference to a data-dictionary element. We will use this reference for 
data binding and to create the dynamic element within the ABAP RANGE. 

The final internal table, VALUES, will contain the input values for each Select­

Option. This is the internal table that we will actually bind to. Notice, however, 

that the LOW and HIGH fields must be defined generically, as simple strings. 
Because this internal table must be a public attribute in order to bind to it, we 
needed to keep its definition static. Later, you will see how we will use custom 

Getter and Setter methods to keep referencing the specific data type as defined in 
the internal table FIELDS for our data binding. 

Select-Options/Parameters 435 



:ture !ZES BSP SEL VALUES ~ Active 

Short Text issp Selection Options/parameters valueIidfll:ll:l~ 

• II ­ .;renb:Y·h·iH/~cW·~if,'ltiilr~frff'''sti'~~,'.. ,.. S". ... .,"" .0·.· " ••ilI1. "0 

~ 
;;,; [@j1D'i,IRlCH 1'01tID1~-a1 Predefined Type-I R 

Compo... RT... IComponent ...OataTy... L...D., lshort Text ~ 
01
 

SIGN
 

10.1 o I ISTRING L aField ID .' i 
o RALDB ZIG!l 'CHAR I 1 ObIGN fieldIn creationof SELECT-O~ 

OPTION o IlALDB aPTI CHAR 2 a,oPTlON fieldin structure of SELEC~ 

LOTJ I 0 I STRTIlG 0 al'From' value ~ 
jIlrGH 0 i STRING OJ 01'To'. value ~ 

~_ I g~D?~~__ ~~,_"' __ "L1~~~~nkV~:iabI7 (X:_~~~~~ ~~F~I~e)t' 

Figure 18.8 Select-Options Values 

18.3.6 Select-Option Model Class Coding 

The main method that we will want to consider for filling the Select -Options 
definition table FIELDS is INITIALIZE_FIELDS_FROM_DD. This method will pop­
ulate the Select -Options definitions via a data-dictionary structure. However, it 
also offers a coding example in case you want to build your own custom Select­
Options. 

Our processing begins by getting the definition of the input structure and making 
sure that it is a data-dictionary type. 

METHOD initialize_fields_from_dd 
*ImportingI_STRUCTTYPE TABNAME16 

CLEAR: fields, groups, values. 
DATA: descriptor TYPE REF TO cl_abap_structdescr. 
descriptor ?= cl_abap_structdescr=>describe_by_name( 

i_struct ).
 
DATA: flddescr TYPE ddfields.
 
flddescr = descriptor->get_ddic_field_list( ).
 
IF flddescr IS INITIAL. RETURN. ENDIF.
 
FIELD-SYMBOLS: <wa_def> LIKE LINE OF flddescr.
 

<wa_field> LIKE LINE OF me->fields. 
<wa_group> LIKE LINE OF me->groups. 

Next, we have some processing to get the description of the structure to use in 
the title and tooltip of the group. 

DATA: reI_name TYPE string.
 
DATA: str_desc TYPE string.
 
DATA: I dd071 TYPE dd071.
 

436 Skilled in the Art 

reI_name = descriptor->get_relative_name( ).
 
SELECT SINGLE ddt ext FROM dd02t INTO str_desc
 

WHERE tabname = reI_name
 
AND ddlanguage = sy-Iangu
 
AND as4local = 'A'.
 

IF str_desc IS INITIAL.
 
str desc = reI_name.
 

ENDIF.
 

APPEND INITIAL LINE TO me->groups ASSIGNING <wa_group>.
 
<wa_group>-group = '1000'.
 
<wa_group>-title = str_desc.
 

CONCATENATE reI_name str desc INTO <wa_group>-tooltip
 
SEPARATED BY •
 

<wa_group>-width = '100%'.
 

We are going to look at each field contained in the structure and create an entry
 
in Select -Options internal table.
 

LOOP AT flddescr ASSIGNING <wa_def> 
WHERE fieldname NE 'MANDT'.
 

APPEND INITIAL LINE TO me->fields ASSIGNING <wa_field>.
 
<wa_field>-group = '1000'.
 

<wa_field>-id = <wa_def>-fieldname.
 
<wa_field>-text = <wa_def>-scrtext_m.
 
<wa_field>-data_element = <wa_def>-rollname.
 
<wa_field>-range = abap_true.
 
CONCATENATE <wa_def>-tabname <wa_def>-fieldname INTO
 

<wa field>-dataref SEPARATED BY '-' 

Depending upon the metadata about the field that was retrieved from the Runt­
ime Type Identification (RTII), we will decide what kind of Select -Option we 
want. Ifthe field isa DATE data type, we will naturally use the date selection. Ifthe 
field has simple domain values, we will use the drop-down list box. Otherwise, if 
the field has F4 help attached to it we will use the basic help rendering. This will 
produce a field with the pop up help selection described in Section 14.3. 

IF <wa_def>-inttype = 'D'.
 
<wa field> as_date = abap_true.
 

ELSEIF <wa_def>-valexi = abap_true.
 
SELECT SINGLE * FROM dd071 INTO I dd071
 

WHERE domname = <wa_def>-domname.
 
IF I dd071-domvalue_h IS INITIAL.
 

Select-Options/Parameters 437 



<wa_field>-as_ddlb = abap_true. 
ELSE. 

<wa_field>-basic_help = abap_f~lse. 

ENDIF. 
ELSEIF <wa_def>-f4availabl = abap_false. 

CLEAR <wa_field>-basic_nelp. 

ELSE. 
<wa_field>-basic_help = abap_true. 

END IF . 
ENDLOOP. 

ENDMETHOD. 

After we have created our Select-Options, the next thing we need to be con­
cerned with is the data binding for their values. We saw earlier how we are using 
simple string fields for the LOW and HIGH values of the Select -Options. How­
ever for binding to work correctly, we really need to reflect the true data type of 

the underlying field. 

By writing our own methods we can control the binding processing and make 
sure that the proper conversion exits are being fired. For a detailed discussion on 

custom GETTER/SETTERS, please see Section 13.3. 

We will look at the custom SETTER method to get an idea of the processing 
required. This routine will be fired when data binding brings data in from the 
browser. It will be responsible for properly restoring it back into the correspond­

ing ABAP data field. 

We begin processing by using the model attribute path to get a grip on the corre­

sponding ABAP data field. 

METHOD set_t_values. 
*Importing ATTRIBUTE_PATH 

*Importing INDEX 
*Importing COMPONENT 
*Importing VALUE ( VALUE) 

TYPE 
TYPE 
TYPE 
TYPE 

STRING 
I 
STRING 
STRING 

Attribute 
Table 
Table 
Value 

Path 
Index 
Column 
Assigned 

DATA: l_attr ref TYPE REF TO data. 
1 field ref TYPE REF TO data. 

CALL METHOD if_bsp_model_util~disassemble_path 

EXPORTING path = attribute_path 
IMPORTING name = I_name. 

FIELD-SYMBOLS:	 <1 attribute> TYPE ANY. 

438 Skilled in the Art 

ASSIGN me->(I_name) TO <I_attribute>.
 
GET REFERENCE OF <I_attribute> INTO l_attr_ref.
 
l_field_ref = if_bsp_model_util~get_attribute_as_ref(
 

attribute ref = l_attr ref
 
index = index
 
component = component ).
 

ASSIGN l_field_ref->* TO <I_camp>. 

We next need to split up the attribute path so that we can get the binding field 
name we are dealing with. We only need special logicfor the binding of the LOW 
and HIGH fields. 

FIELD-SYMBOLS:	 <a_data> TYPE ANY.
 
<n_data> TYPE ANY.
 
<I_camp> TYPE ANY.
 

DATA:	 junk TYPE string.
 
rest TYPE string,
 
t_index(lO) TYPE c.
 

SPLIT attribute_path AT ,[. INTO junk rest.
 
SPLIT rest AT 'J' INTO t_index junk.
 
DATA: field TYPE REF TO data.
 
DATA: t_string TYPE string.
 
IF junk CS '.sign' OR junk CS .option'.
I 

<I_camp> = value.
 
RETURN.
 

ELSE.
 

If we are processing LOW or HIGH fields, we will now dynamically create a field 
with the data type matching the underlying data base element for that Select­
Option. 

FIELD-SYMBOLS: <wa_values> LIKE LINE OF me->values.
 
<wa_fields> LIKE LINE OF me->fields.
 

READ TABLE me->values INDEX t_index
 
ASSIGNING <wa_values>.
 

IF sy- subrc = O.
 
READ TABLE me->fields ASSIGNING <wa fields>
 

WITH KEY id = <wa_values>-id.
 
IF sy-subrc = O.
 

TRANSLATE <wa_fields>-dataref TO UPPER CASE.
 
IF <wa_fields>-dataref IS INITIAL.
 

RETURN.
 
ENDIF.
 

Select-Options/Parameters 439 



TRY. 
CREATE DATA field TYPE «wa_fields> dataref). 

CATCH cx_sy_create_data_error. 
EXIT.
 

ENDTRY.
 
ASSIGN field->* TO <n~data>.
 

MOVE <l_comp> TO <n_data>.
 
END IF .
 

ENDIF .
 

Now that we have a reference to a field with our specific data type, we can use 

that to process the input value. 

TRY. 
if_bsp_model_util~convert_from_string( 

data_ref = field 

value value 

attribute_path attribute_path 

use_bsp_exceptions abap_true 

no converslon_exit o ). 
Exceptions
 

ENDTRY.
 
IF <n_data> IS INITIAL.
 

CLEAR <I_comp>.
 

ELSE.
 
MOVE <n_data> TO <I_comp>.
 

END IF . 

The last problem we will want to look at is how to return an ASAP RANGE table 
out of the model class. We have two methods for this. The first, GET_GENERIC_ 
RANGE_TABLE, returns a fixed table of type RSELOPTION. This table type uses 
generic CHARACTER 45 fields for the LOW and HIGH values. This method is very 
easy to implement and works fine, especially if you need to pass the range back 

across an RFC connection. 

However, ifyou want to generate a RANGE that accurately represents the underly­
ing data type, you will need the slightly more complex rendering logic of GET_ 
SPECIFIC_RANGE_TABLE. For this second method, we use functionality of the 
Runtime Type Services (RTIS) that is only available in Web AS 6.40 and higher. 

We will start our processing by dynamically creating a field with the data defini­

tion of the value in question. 

440 Skilled in the Art 

METHOD get_specific_range_table. 
*Importing I_ID TYPE STRING 
*Exporting VALUE ( RANGE) TYPE REF TO DATA 
*Exporting DATAREF TYPE STRING 
FIELD-SYMBOLS: <wa_values> LIKE LINE OF me->values, 

<wa_fields> LIKE LINE OF me->fields. 
READ TABLE me->values WITH KEY id = i_id 

TRANSPORTING NO FIELDS. 
IF sy-subrc NE O. 

RETURN. 
ELSE. 

READ TABLE me->fields ASSIGNING <wa fields> 
WITH KEY id = i id. 

IF sy-subrc NE O. 
RETURN. 

ELSE.
 
DATA: field TYPE REF TO DATA.
 
IF <wa_fields>-dataref IS INITIAL.
 

RETURN.
 
ENDIF.
 
TRANSLATE <wa_fields>-dataref TO UPPER CASE.
 
dataref = <wa_fields>-dataref.
 
TRY.
 

CREATE DATA field TYPE «wa_fields>-dataref). 
CATCH cx_sy_create_data_error. 

EXIT. 
ENDTRY. 

ENDIF. 
ENDIF. 

We will use the RTII to generate a starting point structure like RSDSSELOPT. We 
will then replace the data type for the LOW and HIGH fields with one generated by 
our new data field. 

DATA: g_range_type TYPE REF TO cl_abap_structdescr.
 
comp_tab TYPE cl_abap_structdescr=>component_table.
 
rtti TYPE REF TO cl_abap_elemdescr.
 

g_range_type 7= 
cL_abap_typedescr=>describe_by_name( 'RSDSSELOPT' ).
 

FIELD-SYMBOLS: <wa_comp> LIKE LINE OF comp_tab.
 
comp_tab = g__range_type- >get_components ( ).
 

Select-Options/Parameters 441 



rtti ?= cl_abap_typedescr=>describe_by_data_ref( field). 

LOOP AT comp_tab ASSIGNING <wa_comp>. 

IF <wa_comp>-name = 'LOW' OR <wa..comp>-name = 'HIGH'. 

<wa_comp>-type ?= rtti. 

ENDIF. 

ENDLOOP. 

Now we can use the RTIS to create a new internal table with the override struc­

ture. 

DATA: range_type TYPE REF TO cl_abap_structdescr. 

range_tabletype TYPE REF TO cl_abap_tabledescr. 

range_type = cl_abap_structdescr=>create( comp_tab ). 

range_tabletype = cl_abap_tabledescr=>create( 

p_line_type =	 range_type 

p_table_kind = cl_abap_tabledescr=>tablekind_std ). 

FIELD-SYMBOLS <table> TYPE STANDARD TABLE. 

CREATE DATA range TYPE HANDLE range_tabletype. 

ASSIGN range->' TO <table>. 

Finally, we assign the values from our generic Select-Options value internal 

table to the more specific RANGE table. 

FIELD-SYMBOLS:	 <wa_value> LIKE LINE OF me->values. 

<wa_range> TYPE ANY. 

<field> TYPE A~Y. 

LOOP AT me->values ASSIGNING <wa_value> WHERE id = i_id. 

APPEND INITIAL LINE TO <table> ASSIGNING <wa_range>. 

ASSIGN COMPONENT 1 OF STRUCTURE <wa_range> TO <field>. 

<field> = <wa_value>-sign. 

ENDLOOP. 

18.3.7 Recreating Transaction SE16 

To demonstrate the power and flexibility of these new Select-Options, let us 

try and use them in an extremely dynamic application. What better solution than 

trying to recreate SE16 (the generic table query transaction) as a SSP application. 

When you use SE16 inside the SAP GUI, the system is actually dynamically gen­

erating and storing entire programs. That means that if you run SE16 for SFLIGHT 

and for SBOOK, there are two different programs behind the scenes. 

442 Skilled in the Art 

II "·'ax na at h,s' I 5001 
L~~iSPlay Text Descriptions 

I, Flight Ell 
I ,11.irlirre t'l,c::::::JQil 110 I-~ 

I FligrltNumlJer t'lt~ 110 [ 0000 lOll j> l!J.. ' -a Il,r::»QJ t
IDate t'ltC ,il)J1 110 I 11llJ1 

9l!J II 
1·Ll.,irfare t'lt! 0.001 Ito I 0001 9l!J f 
I Airline Currency t'ltc:::=D Ito c:::=D :i>QJ II, I PI,Clne Type t'lt~~ Ito I lOll 5> Ell I'I Max. capac~'t eccn t'ltC==------oJ Ito I 01 , .9.. Ell.' IfI Occupied ec0D..o t'ltl 01 110 I 01 9QJ r 
ITolal t'lt1 0001 110 I o.ooJ it 

9TIJ III Max, capacity bus t'lt~Ql 110 I 01 9 [jJ " 
I Q£cupied bus ~+I __01 Ito [ ___01 

9 TIl

I M:'1x, capacity 1sf t'ltL~ Ito I 01
 9 ITi II.­ AI 01 110 I 01 9A11 I[II'O"~.'" -,	 

Ii 

I ­
I	 

-,-, 

1~; ,~'Tb:~:f~~~- ~J~-"D~e-~·,~:~_~J,~klar_~=~·(~~~~:Ti eZ~~~~Yf;,~~~r~'~J~~p·~~rt'~;i~e~'~~T?cf~_~~:,~*',1·Of-~~pie9

1 I	 1II I I I	 I 
088 

11 iAA 0017 i 111'171200~~_D_9 385 i . ______. . ~iI 

11.~+~~~~QO04 t.~33;'+~ 747-400 _______.__3S.s..;.;

U088" AA. I ~~~7 _ 0~~~12005~~ . ~~2.94 ..,_ USD, 747-400 ~"""","_~ ____~.____3_8?_Lr_.. __ ..,..,...~
 

Figure 18.9 Select-Options Example-SE16 Recreated in BSP 

Instead we will use the dynamic power of SSP to generate the UI at runtime 

depend ing upon what table the user selects. 

Using the INITIALIZE_FIELDS_FROM_DD method, we are able to regenerate our 

Select-Options easily as users choose a new table to query. We will output our 

data using an <htmlb:tableView>. So that the structure of the table is adjusta­

ble, we will simply define an attribute as TYPE REF TO DATA. 

This does mean that we are going to need a single dynamic routine that will rede­

fine the output data table and generate a SQL command that uses our Select­

Option RANGES. For this, we will dynamically generate a class at runtime. 

We will start our processing by dynamically redefining our output data table. 

DATA itabl TYPE TABLE OF string. 

DATA prog TYPE string. 

DATA class TYPE string. 

Select-Options/Parameters 443 



DATA code_string TYPE string.
 
CLEAR me->itab.
 
CREATE DATA me->itab TYPE TABLE OF (me->ddstructure).
 
FIELD-SYMBOLS: <wa_fields> LIKE LINE OF me->fields.
 

<wa_values> LIKE LINE OF me->values. 

Beforewe dive into the code that builds the dynamic class, let us first have a look 
at the resulting code that will be executed. It really only needs to define the 
ranges and then perform a SQL statement. We could code the SQL statement 
dynamically without the need for the generated class, however the key here is the 
variable number of ranges that need to be defined for the where condition. 

In this example generated code we are reading from SFLIGHT with asingle where 
condition of airline carrier id (CARRID) isequal to AA and Flight Number (CONNID) 

is equal to 0017. 

PROGRAM.
 
CLASS main DEFINITION.
 

PUBLIC SECTION.
 
CLASS-METHODS meth
 
IMPORTING
 

itab TYPE REF TO data
 
values TYPE zes_bsp_sel_values_tbl
 
fields TYPE zes_bsp_sel_fields_tbl.
 

ENDCLASS. "main DEFINITION
 

CLASS main IMPLEMENTATION.
 
METHOD meth. 

FIELD-SYMBOLS <table> TYPE ANY TABLE. 
ASSIGN itab->* TO <table>. 
FIELD-SYMBOLS: <wa_value> LIKE LINE OF values. 
FIELD-SYMBOLS: <wa_field> LIKE LINE OF fields. 
DATA carrid TYPE RANGE OF sflight-carrid. 
FIELD-SYMBOLS <wa_carrid> LIKE LINE OF carrid. 
READ TABLE fields ASSIGNING <wa_field> 

WITH KEY id = 'CARRID'.
 
LOOP AT values ASSIGNING <wa_value>
 

WHERE id = <wa_field>-id. 
APPEND INITIAL LINE TO carrid ASSIGNING <wa~carrid>. 

MOVE-CORRESPONDING <wa_value> TO <wa_carrid>. 

ENDLOOP.
 
DATA connid TYPE RA}lGE OF sflight-connid.
 
FIELD-SYMBOLS <wa_connid> LIKE LINE OF connid.
 

444 Skilled in the Art 

READ TABLE fields ASSIGNING <wa_field>
 
WITH KEY id = 'CONNID'.
 

LOOP AT values ASSIGNING <wa_value>
 
WHERE id = <wa_field>-id. 

APPEND INITIAL LINE TO connid ASSIGNING <wa_connid>. 
MOVE-CORRESPONDING <wa_value> TO <wa connid>. 

ENDLOOP.
 
SELECT * FROM sflight INTO TABLE <table>
 

UP TO 500 ROWS
 
WHERE car rid IN car rid
 

AND connid IN connid.
 
ENDMETHOD. "meth
 

ENDCLASS. "main IMPLEMENTATION
 

Next we will study the code for creating our dynamic class by inserting the source 
code into an internal table. As you can see we are going to pass our model 
Select-Options VALUES and FIELDS internal table into our dynamic class. 

APPEND 'PROGRAM.' TO itabl. 
APPEND 'CLASS main DEFINITION. ' TO itabl. 
APPEND PUBLIC SECTION.' TO i tabl. 
APPEND CLASS-METHODS meth TO itabl. 
APPEND IMPORTING ' TO i tabl. 
APPEND itab TYPE REF TO DATA' TO itabl. 
APPEND values TYPE ZES_BSP__SEL_VALUES_TBL 

TO itabl. 
APPEND fields TYPE ZES_BSP_SEL FIELDS TBL.' 

~; TO itabl. 
APPEND 'ENDCLASS.' TO itabl. 
APPEND 'CLASS main IMPLEMENTATION.' TO itabl. 
APPEND METHOD meth.' TO itabl. 
APPEND FIELD-SYMBOLS <table> TYPE ANY TABLE.' 

TO itabl. 
APPEND ASSIGN itab->* TO <table>.' TO itabl. 
APPEND FIELD-SYMBOLS: <wa_value> LIKE LINE OF values.' 

TO itabl. 
APPEND FIELD SYMBOLS: <wa_field> LIKE LINE OF fields.' 

TO itabl. 

We now will loop through our listing of Select-Options with input values in our 
model. For each record, we find we will generate corresponding data definition 
entries and population logic in our dynamic class. 

Select-Options/Parameters 445 



LOOP AT me->fields ASSIGNING <wa~fields>.
 

READ TABLE me->values TRANSPORTING NO FIELDS
 
WITH KEY id = <wa_fields>-id. 

CHECK sy-subrc = O. 
CONCATENATE 'data' <wa_fields>-id ' TYPE RANGE OF ' 

<wa_fields>-dataref '.' INTO code_string. 

APPEND code_string TO itabl. 
CONCATENATE 'FIELD-SYMBOLS <wa~' <wa_fields>-id '>' 

, LIKE LINE OF ' <wa~fields>-id 

INTO code_string. 
APPEND code_string TO itabl. 
CONCATENATE 'READ TABLE fields ASSIGNING <wa field> 

'WITH KEY id = " 
<wa_fields>-id ".' INTO code_string. 

APPEND code_string TO itabl. 
APPEND 'LOOP AT values ASSIGNING <wa_value> 

'WHERE id = <wa_field>-id.' TO itabl. 

CONCATENATE	 'APPEND INITIAL LINE TO ' 
<wa_fields>-id ' ASSIGNING <wa_' 
<wa_fields>-id '>.' INTO code_string. 

APPEND code_string TO itabl.
 
CONCATENATE 'MOVE-CORRESPONDING <wa_value> TO <wa~'
 

<wa_fields>-id '>.' INTO code_string. 

APPEND code_string TO itabl. 
APPEND 'ENDLOOP.' TO itabl. 

ENDLOOP. 

Using the same process we will dynamically generate our SQL statement. 

DATA: s_max_records TYPE string.
 
MOVE me->max_records TO s_max_records.
 
CONCATENATE 'SELECT' FROM' me->ddstructure
 

, INTO TABLE <table> '
 
, UP TO ' s~max_records ' ROWS '
 

INTO cod~_string.
 

APPEND code_string TO itabl.
 
DATA: first_pass TYPE boolean VALUE abap_true.
 
LOOP AT me->fields ASSIGNING <wa_fields>.
 

READ TABLE me->values TRANSPORTING NO FIELDS 
WITH KEY id = <wa fields>-id. 

CHECK sy-subrc = O. 

446 Skilled in the Art 

IF first_pass = abap_true.
 
first_pass = abap_false.
 
MOVE WHERE' TO code~string.
 

ELSE. 

MOVE AND to code_string.
 
ENDIF.
 
CONCATENATE code_string <wa_fields>-id
 

, IN ' <wa fields>-id INTO code_string. 
APPEND code~string TO itabl.
 

ENDLOOP.
 
MOVE' .' TO code_string.
 
APPEND code_string TO itabl.
 
APPEND ENDMETHOD. ' TO itabl.
 
APPEND 'ENDCLASS.' TO itabl.
 

We finish our processing by generating our dynamic class. We then can prepare 

the model internal tables for passing to the dynamic-class method. Finally, we are 

able to call our dynamic-model method. 

GENERATE SUBROUTINE POOL itabl NAME prog.
 
CONCATENATE '\PROGRAM=' prog '\CLASS=MAIN' INTO class.
 
DATA: ptab TYPE abap~parmbind_tab,
 

ptab_line TYPE abap_parmbind.
 
ptab_line-name = 'ITAB'.
 

ptab_line-kind = cl_abap_objectdescr=>exporting.
 
GET REFERENCE OF itab INTO ptab_line-value.
 
INSERT ptab_line INTO TABLE ptab.
 

CALL METHOD (class)=>meth
 
PARAMETER-TABLE ptab.
 

Select-Options/Parameters 447 



19 Breaking Out of the Mold 

Eventually, all programmers encounter development requirements 

that will push them to break the rules. In this chapter, we will focus 

on solutions that-while useful-certainly push the boundaries of 

traditional SSP development. 

19.1 Interactive Excel 

Downloading data to Excel is a critical functionality, but relatively well known. 

Eventually everyone gets a business requirement for greater interactivity. Users 

who are accustomed to full interactive Excel in their applications will expect it in 

SSP applications as well. 

Perhaps you have to integrate existing Excel spreadsheets into your application. 

You might have extensive macros or complex formatting. Therefore recreating this 

functionality in some other tool is often just not reasonable. 

Luckily there is a solution provided by Microsoft that integrates quite well into 

SSP. It is called Office Web Components (OWe). This is basically an ActiveX inter­

face to the Microsoft Office Suite. If you have Office XP or higher installed, then 

you should have the necessary control. However, a read-only version of the con­

trol can also be downloaded from Microsoft's website. 

I Available bourc attachments: [SAP!xamp\e :3 
c, 1on 1:JI ~ ~ ! J: IH • :H • ~ 11JJ I~ I!Ell ill 
-- , • 8 I ( IDE F L~', 

SSP BOOK Examplei 
2 f'leaseenternewva,lu,es,h,ere_ ' _100 -- t ! i 

1 

~ --,l:r~=~~==ll
 
i"l ~---~-~1-t~t:-ll 
14 •"'I -I 'I 

i~ -=:~=--===-~--~~-!3~=- :=~=-=~=::==T:' 
sheet! T .~'I, __ - -- ',i'i- -'- -,I ~I~ 

~ChElnge I .A.bendon ChangesI 

Figure 19.1 owe Inside a BSP Application 

Breaking Out of the Mold 449 



J 

I 
I: 

I.' II 

1 
'f 

Calling this ActiveX control from BSP is really very simple, even though there is no 
SAPstandard function for this solution. We will simply use the open power of BSP 

that allows us to include any standard HTML content. The following is all the code 
that it takes to instantiate the OWC control in a BSP application. 

<OBJECT	 id=myexcel 

style='LEFT:Opx; WIDTH:593px;TOP:Opx;HEIGHT:377px' 
height=377 width~593 

classid='clsid:0002E551-0000-0000-COOO-000000000046' 
name=myexcel VIEWASTEXT> 

<PARAM NAME='DataType' VALUE='XMLDATA'>
 
<PARAM NAME='XMLData ' VALUE='<%= model->my_out_xml %>,>
 

</OBJECT> 

In this example, you can see that there are some simple parameters for setting the 
position and size of the control. There are many more parameters that affect the 

use of this control. However, this text will concentrate instead on getting data in 

and out of this control. Ifyou wish to further explore other options on this con­

trol, they are well documented in Microsoft's online repository. 

We are going to use the XML capabilities of Excel to pass data in and out of the 

control. If you have an existing template or spreadsheet that you want to start 

with, you can simply save it as XML to get a starting XML stream. The data in this 
stream is what we use to pass into the OWC control in the example (model- >my_ 
out_xml). 

Getting the data back out of OWC and into our application can be another story 
altogether. Even if your BSP application is stateful, the Excel control is not. For 

any event that would trigger a round trip to the server, all the data in the Excel 

control must be retrieved and re-sent with that request/response cycle. 

The only way to pull the current state of the Office control is with JavaScript. Many 
other examples have some sort of trigger, such as a button, that allows the data in 

the Excel control to update the back-end system. However, to emulate the kind of 
functionality your users might be used to from working with standard SAP GUI 

transactions, this control might need to be embedded inside rather complex appli­
cations. Add to this the architecture of the delivered BSP extensions, where so 

many of the elements can trigger server events. It simply is not very practical to 
have to hook aJavaScript function into each of those objects. That would also make 

reusability and maintenance of the view that hosted this control very difficult. 

The better solution is to hook a piece of JavaScript into the event handlers of the 
Office control itself. This will allow you to trap the SheetChange event which 
gives you access to the office control content after every cell change. 

450 Breaking Out of the Mold 

Then, you can use JavaScript to copy this content into a hidden input field. You 

can even go as far as to make this hidden input field an <html.b : inputField> 

with model binding. That way your Excel content is copied directly back into our 
model class at any server event. 

The folloWing small amount of code accomplishes what has just been described.
 

Notice that in this example we have JavaScript code that will run within the
 

browser. This example also follows the Model View Controller principle. There­

fore, ifthis JavaScript code is going to work correctly, you must remember to con­


catenate the controller's component ID onto the front of the fieldname of our
 
hidden Input Field. 

<htmlb:inputField	 id "sendinfo_bnd II
 
visible
 

value = "Ilmodel/sendinfo_bnd" I>
 
(script language=Ijavascript' for='myexcel'
 

event='SheetChange(Sh, Target) ,>
 

document.update.(%= controller->component_id
 
%> sendlnfo_bnd.value =
 

document.update.myexcel.XMLData:
 
<I script>
 

19.2 RSS Feeds 

RSS is an acronym that can stand for really simple syndication, RDF site summary, 

or rich-site summary. Whatever term one uses, RSS-an XML format for syndicat­
ing Web content-is undeniably important to the modern Internet. So much 

information is available on the Internet that the most important tools are those 

that help people shift through the madness to find gems. RSS is an important 
technology that fills just such a role. 

RSS, at its heart, is built on top of established technologies such as HTIP and 

XML. Luckily, these technologies are readily available within the ABAP/BSP world 

as well. We will take a look at two different approaches for working with RSS 
within BSP. First we will look at how to create a BSP page that consumes an exter­

nal RSS feed and presents its content to the user. In the second example, we will 
use BS P to host an RSS feed. 

19·2.1 Consuming an RSS Feed 

Whenever one thinks of HTIP in the context of BSP, one pictures the browser 

starting the HTIP request, and that the server returns an HTIP response. How­

ever, in the Web AS it is also possible to play the role of a browser and to effec-

RSS Feeds 451 



tively make outgoing HTIP calls. For a detailed example of this process, have a 

look at program RSHTTPOl. 

It is precisely this role of HTIP client that our system will be using to call to an 

external system and ask for its RSS XML. We will use this example program to 

open a connection to the SAP Developer Network (SON) website and request the 

RSS feed for all recent SSP Weblogs. 

19.2.2	 HTTP Client 

For this example, we decided to use the minimum number of lines of code. No 

error handling is done. If the exceptions are not mapped onto s y -aub r c during 

the method calls, they will just be raised and the SSP program will be terminated. 

This is acceptable for our example. 

DATA:	 urI TYPE STRING.
 

http~client TYPE REF TO IF_HTTP~CLIENT.
 

rc TYPE I.
 

content TYPE STRING.
 

urI = .http://weblogs.sdn.sap.com/pub/q/weblog~rss_topic? 

x-topic=24&x-ver=1.O' . 

cl_http_client=>create~by_url( 

EXPORTING urI = urI 

IMPORTING client = http~client ). 

http_client->send( ). 

http_client->receive( ). 

http_client->response->get_status( IMPORTING code = rc ). 

content = http~client->response->get_cdata( ). 

http_client->close( ). 

These few lines are sufficient to pull the RSS data from SON. The first line creates 

a new client using a complete URL that already contains the protocol to use 

("http:"), plus destination system and port (implicitly port 80) and the requested 

URL. Once we have the HTIP client instance, we send the request and receive the 

answer. It is very important to include the close method call, to ensure that the 

resources held by the HTIP client are released. 

When using the HTIP client, there are a number of interesting additional aspects 

to consider: 

~	 Setting headers such as Accept-Encoding and User-Agent in the request. 

~	 Setting the HTIP protocol and version to use and the method GET or POST. 

452 Breaking Out of the Mold 

~	 Setting up of authentication information for the remote site, possibly also
 

proxy authentication information. Proxy setup can be maintained from trans­


action SICF.
 

~	 Looking at the rc (return code) and taking additional action. Interesting values 

would be rc=200 (01<), rc=302 (Redirect), rc=401 (Authentication Required) 

and rc=500 (Server Error). 

19.2.3	 XML 

Once the RSS data has been retrieved, the next step is to parse this into an XML 

document. One could consider using normal string operations to extract the 

interesting data, but it does not have the same elegance. Instead, we will take full 

advantage of the power of the ASAP XML API. 

TYPE-POOLS: ixml. 

DATA:	 ixml TYPE REF TO if_ixml, 

streamFactory TYPE REF TO if~ixml~stream~factory, 

istream TYPE REF TO if_ixml_istream, 

parser TYPE REF TO if_ixml_parser, 

document TYPE REF TO if~ixml~document. 

IF content CS '<!DOCTYPE' AND content CS ']>'. 

DATA dummy type string. 

SPLIT content AT '<lDOCTYPE' INTO dummy content. 

SPLIT content AT 'J>' INTO dummy content. 

ENDIF.
 

ixml = cl_ixml=>create( ).
 

streamFactory = ixml->create_stream_factory( ).
 

istream = streamFactory->create_istream~cstring(
 

content ). 

document = ixml->create_document( ). 

parser = ixml->create_parser( 

stream~factory = streamFactory
 

istream = iStream
 

document = document ).
 

parser->set_normalizing( ). 

parser->set_validating( 

mode = if_ixml_parser=>co_no_validation ). 

parser->parse( ). 

The only unusual code from above is the handling of the DOCTYPE. The content 

returned from SON is formatted in such a way that the ASAP XML parser has prob­

lems with it. Therefore, a small modification was made to eliminate the section. 

RSS Feeds 453 



Later for the display of the Weblogs, we would like to extract relevant <item> 
sequences from the RSS feed into an internal table. Let us define the table to use. 

TYPES: BEGIN OF t_blog, 
title TYPE string, 

link TYPE string, 
description TYPE string, 
creator TYPE string, 
date TYPE string, 

END OF cblog, 
t_blogs TYPE TABLE OF t_blog. 

DATA: blogs type t_blogs. 

FIELD-SYMBOLS: <blog> type t_blog. 

With this, everything is in place to iterate over the XML document, gather all 
<item> nodes, and extract the relevant bits and pieces. 

DATA: collection TYPE REF TO if_ixml_node_collection, 

node TYPE REF TO if ixml_node, 

element TYPE REF TO if_ixml_element, 

index TYPE i. 
collection = document->get_elements_by_tag_name( 

name = 'item' ). 
WHILE index < collection->get_length( ). 

APPEND INITIAL LINE TO blogs ASSIGNING <blog>. 
node = collection->get_item( index). 
element ?= node->query_interface( ixml_iid_element ). 

index = index + 1. 
node = element->find_from_name( name = 'title' ). 
<blog>-title = node->get_value( ). 
... , repeat above two line sequence for all info 

required 
ENDWHILE. 

The main part of the code just loops over the collection of <item> nodes. For 
each node, we look under it five times to find sub-nodes with specific names. We 
are interested in the title, link, description, creator and date sub-nodes. All the 
data is accumulated into an internal table. 

19.2.4 BSP Output 

The final part of the puzzle is to display the output. One technique could be to 
use an <htmlb: tableView>. Another could be to transform the table into raw 

454 Breaking Out of the Mold 

HTML. However, let us have some fun and use a <phtmlb:formattedText> ele­
ment. 

The <phtmlb: formattedText> element accepts as input an XML string that con­
tains markup sequences, similar to those of HTML. As a first step, just loop over 
the internal table with acquired data and generate the XML string. 

DATA: formattedText TYPE string. 
formattedText = '<ROOT><H1>BSP Weblogs</H1>'. 
LOOP AT blogs ASSIGNING <blog>. 

CONCATENATE formattedText
 
'<P>' '<LINK href="' <bl og>-link '"><B>'
 
<blog>-title '</B></LINK>'
 
, by <I>' <blog>-creator '<II> on ' <blog>-date
 
<blog>-description '</p>' INTO formattedText.
 

ENDLOOP.
 
CONCATENATE formattedText '</ROOT>' INTO formattedText.
 

Notice the use of' . sequences in the CONCATENATE command to preserve trail­

ing spaces in the strings. The <ROOT> elements are required to make this a valid
 
XML document.
 

The display of results is now very easy.
 

<%@page language=" abap"%>
 
<%@extension name="htmlb" prefix="htmlb"%>
 
<%@extension name=" phtmlb" prefix=" phtmlb"%>
 
<htmlb:content design=ldesign2003">
 

<htmlb:page> 
<htmlb:form> 
<phtmlb:formattedText text = 1<%=formattedText%>" I> 

</htmlb:form> 
</htmlb:page> 

</htmlb:content> 

BSPWeblogs 

Using Eel (Engineering Client 3D Viewer) 'Iliewer in BSP application by DurairajAthavan Rajaon 2005-09~14 -- This:
 
blog shows howto getthe functlcnldv of CL_GUI_ECL_3DVIE'V'JER (engineering drawinq viewer) inasp applications.
 

Die MenschhMasehine by EddyDe C/ercqon2005.09-·13 -- We've charged our battery and new we're full of energy. We're
 
back, but not as you know it. AmI a manor a machine?Let's find out. <STRONG>Gregor Wolf found someslipups and did
 
somecorrectionsand improvements onthe code. Manythanks tor this.
 

Figure 19.2 RSS Consumption - Final Output 

RSS Feeds 455 



19.2.5 XSLT 

Looking at the final program, it is clear that the XML code required to parse the 

RSS data feed and extract the relevant data, is nearly 70 % of the entire applica­

tion. XML definitely has a highly granular APII 

However, we have XML as input (the RSS data), and we want XML as output, the 

formatted text. For this, the perfect tool of choice is Extensible Stylesheet Lan­

guage Transformations (XSLT). 

All it takes is these few lines of magic to replace all of the XML parsing and iterator 

code. 

<xsl:transform version="l.O"
 
xmlns:xsl="http://www.w3.org/1999/XSLlTransform"
 

xmlns:rss="http://purl.org/rss/l.O/"
 
xmlns:de="http://purl.org/de/elements/l.l/"
 

exelude-result-prefixes="rss de">
 

<xsl:output method="html"l>
 

<xsl:template mateh="I">
 

<ROOT>
 
<Hl>BSP Weblogs</Hl>
 
<xsl:for-eaeh seleet="*/rss:item">
 

<P> 
<LINK href="https:llweblogs.sdn.sap.eom{rss:linkl"> 

<B> <xsl:value-of seleet="rss:title" 
disable-output-escaping="yes"l> </B> 

</LINK> 
by <I> <xsl:value-of select="dc:creator"l> <II> 
on <xsl:value-of select="substring(dc:date,l,lO)"I> 
-- <xsl:value-of select="rss:deseription" 

disable-output-escaping="yes"l> 

</p> 
</xsl:for-each> 

</ROOT> 
</xsl:template>
 
</xsl:transform>
 

In the BSP page, all of the XML coding is replaced with this short call sequence to 

produce the same output as the original coding. 

DATA: formattedText TYPE string.
 
CALL TRANSFORMATION Y_BSP~BOOK_SDN_RSS_TO_FTEXT
 

456 Breaking Out of the Mold 

SOURCE XML content
 
RESULT XML formattedText.
 

19.2.6 Creating an RSS Feed 

You will probably be happy to note that creating an RSS feed from BSP is consid­

erably simpler than consuming one. We quite often assume that a BSP "page" is 

delivering content as HTML Text. However there are actually many formats that 

can be delivered by BSP. By simply setting the MIME type on the Page or View 

Properties tab, we can force our content to be interpreted as XML. 

i"~~ 

Description I ~
 

~~Ime Type Itext/xml t
 
l 

Compression I None r; 
o V'I/O Script Code '. ...• . . . i 

-, .• _"~~""",..,..,,....,.,,~-_. ~">=~~,.~,..-,.."""--......"""".,.,;"""",=..""~."....,,...;,,,~.,...,,-...,..,,.,--'-" 

Figure 19.3 SSP Page Set to the XMLMIME Type 

We can then build the content of the XML document in the Page Layout just like 

we would on an HTML page. 

<?xml version="l.O"?> 
<rdf:RDF xmlns="http://purl.org/rss/l.O/" 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns!f" > 
<channel rdf:about="<%= urI %>n> 

</rdf:RDF> 

By studying the documented XML format for RSS, you can easily build your own 

feeds. You still have the ability to loop through and cut in dynamic ABAP ele­

ments. 

You can image the possibilities that exposing your system via RSS brings. Users 

can now subscribe to the data events and alerts that interest them and are critical 

to their jobs. You might, for instance, create an RSS feed for all new purchase 

requisitions over a certain monetary value. Using a commercial RSS Reader, users 

can monitor and receive alerts when new data is ready for review. 

Another example, for which the sample source code is available on the book CD, 

would be to expose ABAP short dumps via a RSS feed. System administrators 

could subscribe to such a feed and receive notification within seconds of the 

dump occurring. You could even take this example further and link into trans-

RSS Feeds 457 



--

action ST22 to display the details, using the ITS or by building a custom BSP appli­

cation to display the dump. 

FITe Tools Help 
t 

~@ Refres~ I~~ ~clress:[hUP~/JM\!Server.comls"P/bc!bSP!Sap/YbOOk!dUmps.'~mI _ , 
~ Subscnbed Feeds (1/481' Tdle I oete T I Author I Subject
 
81::) Irrmorted trom teedre 1-- 2lSAPSQlINITABllLEC;AL-~GN--~g;S~oo"i5; PM-- .------,----- ---~--~
 

G t:J SAP System Dumps r3lCALl_FUNCTION_CONFLILT TYP 9/1412005::; O:?PM


::;l ABAPDumps 0 I 8 SAPSQlJlRRAY~NSERUUPRE '04~OO550"M
 

I
f 

~ ~.::: ~~~P:: ~ B LOAD_PROGf~AM_LOST 09tl4J20 9(14[20055:02 PM
 

~ ABAP Dum:~: r- i 6) SAPSQ!.j'lRRAYJNSCRT_DUPRE 9114f20055:02 PM
 

~ ABAPDump;: p·11 g LOAOYROGRAM_LOST 09t14120 9t141200511:59 AM
 

'"0 SOli (114100) II "" PERFORM}IOTJOUNO 090'/200 ... '"4Q0058.01 AM 

@ (:::l NelFII>: (0/455) r2l~ . ••. II • II • 

II	 !2l RAIS'-EXCEPTION 0011212005 10... 9112/20051124 AM 
i B SAPSQL_ARRAYJNSERT_DUPRE. 9t12f2005 9:23 AM
 
~"'"'''' ,," >" .. m,..,.,....~ ....~"' ....n,. ........"'~~~".,' •••
 s 

09/15/200."j Proqram to Output an ABAP Dump - For conve r t anq t 

Exception oonua t.Lon "CUTL_ERROR" raised. 

Hhat. halJl.'ened?! 
The currentlUlAP/<1 llrog.r<lJTt encount e r eu an uneanect.ea 
situation. 

I lfilat can you dc j 

lTote the aot.tons and Lnpu t. th'at oauseet the error. 
I 
I .jrrto rm your SAP system administrator. 

You can print out this messewe jlY choosing "Print". Transaction 
a.l..1aw-s you to tlisplay enu manaqe t c rmtnat.a on me s s aqes , includ.ing 

them })eyoml theil' no rmej, de.Le t a rm date. 

->- •• ~ 

! ;2) LOAD_PROGRAM_LOST 09f13f20.. 9tl3f200511:23 AM 

i S COMPUTE_8CD_OVERFlOVV0911.. 9t13f200510:23,n,M 

.1 9 LOAD_PROGRAI'/1_LOST 09112120." 9112120057.25 PII'I

II 8CALL]UNCTION_CONFLlCT_TYP... 9112120052:25 PM ! 

Figure 19-4 RSS Feed for ABAP Short Dumps 

19.3 Mini-Portal 

This section of the book is not intended to discourage you from using or exploring 

the SAP Enterprise Portal. It is an excellent tool that just about any SAP customer 

could benefit from using. However, there are situations where you need some of 

the functionality of a common portal framework, such as personalization and nav­

igation, but your company is not in a position to implement the full Enterprise 

Portal. 

In this situation, you may very well look to BSP to fill that gap. We are going to 

look at two such mini-portals. As you will see, the power, flexibility and openness 

of BSP is more than enough to build such a tool. 

19.3.1 Mini-Portal Example 1-Common Page Header 

In the first example we have a relatively Simple common header implemented as 

custom BSP Extension Element. This element provides a common branding and 

personalization interface with a minimal impact to the application that hosts it. 

458 Breaking Out of the Mold 

. ...., r" ."c "if
.'."...~.",;,,<E"'

c_·~~"E~,,~,.,;~~~L.·i'::'.A:"::':.~",,:""_.:jr:
IIradeshovv

JungThomas ~fJ '~'~p"l~~;,"',;~
 
Welcome. 

I Language: iij I Vllttt) Access,;bility 0, I&er Settings J Sys: asp r
 
First Name f
I	 ] IFamilyNome ~: 
Em61if Address I ~ 

Isubmnl __.~~~~,~__,__ ._._,_J 
Figure 19·5 Mini-Portal Example 1 ~Common Header 

It can be inserted within its own HTML frame in an application. It then only
 
requires the following small amount of coding.
 

<%@page language="abap" %>
 

<%@extension name="htmlb" prefix="htmlb" %>
 

<%@extension name="YBOOK" prefix="YBOOK" %>
 
<htmlb:content design = "design2003"
 

labelDesignBar = "light" > 
<htmlb:document> 

<htmlb:documentHead> 
</htmlb:documentHead> 
<htmlb:documentBody> 

<htmlb:form action = "Index~Frames.htm" 

target = "_parent" > 

<YBOOK:pageHeaderDesign2003 NumberOfParents = "2" 
CustomLogo "logo_netweaver,gif" 

RFCDest "REMOTE_SYS" /> 
</htmlb:form> 

</htmlb:documentBody> 
</htmlb:document> 

</htmlb:content> 

In this interface, we provide the means to set basic personalization across all BSP 

applications. The user can switch his or her logon language and DESIGN2003 

theme, and activate the accessibtntv features. These settings are changed by 

reloading the current application and passing the new values via their URL param­
eters. 

IF	 htmlb._event->server_event EO 'HandleLangSubmit'. 
CONCATENATE urI '?sap-Ianguage=' s_spras 

INTO ur 1.
 

currenttime = sy-uzeit.
 

CALL METHOD cl_http_server=>append~field_url
 

EXPORTING name = 'sap-unique' 

Mini-Portal 459 



value = currenttime 

CHANGING url = url , 

navigation->exit( url ). 

ENDIF. 

The link to User Settings will launch the SAP GUI transaction SU3 using the ITS. 

This allows users to change their address, communication settings, and system 

defaults such as decimal notation and date format. 

Finally, this header also provides information about what system you are con­

nected to. In the Sys area, we display the system 10 that you are currently con­

nected to. If the user clicks on this area, he or she will receive a popup window 

that contains more details that might be useful when troubleshooting. 

::~!\Sy_stem Information 

L­ ~ I FernilvNeme 

ISubmIT I 
~~~ ._._~__~_~._.__"~__'_~~. ".' I 

Figure 19.6 Mini-Portal Example 1-Common Header-System Information

19.3.2 Mini-Portal Example 2-Portal with Navigation

Our first example provides a nice common header for each application. However

this is not a high-level framework. It also does nothing to support navigation

between different applications. It has the disadvantage of needing to be inserted,

although with very little effort, into each application.

A more encompassing approach would be to build a framework page in BSP that

can host inner pages inside of HTML IFrames. Figure 19.7 demonstrates just such

a framework.

However this example goes just a little bit further. It actually uses the flexibility of

BSP to share very similar stylesheets and JavaScript with the Enterprise Portal.

Therefore, the look and feel of the page along with the two-tier navigation bar

really comes right from the Enterprise Portal. The framework, navigation area, and

even the elements you see on the home page all are built in BSP.

460 Breaking Out of the Mold

I Current Wl:ilthl:r Conditio~~__:, 0

I Palo Alto, C:" c:' I
Fl

_____---.J
~ 57 OF

Cloudy
Feels Like: 57 "f

Humidity: 72 %

Wind: srnntr

JEntercilyhip e.
!M

We~ther d~td prQvided b~ ~~;;;.;;~....

Lart Updated: OQf1412005 10:15:22

SAP DEVnopm NETWORK

Figure 19.7 Mini-Portal Example 2-Portal with Navigation

Further taking advantage of the SAP Unified Framework for rendering; the news

and weather areas, built using <html b : tray>, look just like normal EP IViews.

We are even able to support personalization through the standard BSP elements.

Looking at the coding of the framework page we can see that mostly we are just

interacting with the JavaScript functions necessary to build the UI for the naviga­

tion menu.

gNavTree = new NavNode ("Top". "Top", 0, 0, 0, 0,

new NavNode("#", "<OTR>Corporate Sites</OTR>", 0, 0, 0, 0,

new NavNode("portal_home.htm". "BSP <OTR>Home</OTR>" ,
0, 0, 0, 0),

new NavNode ("http: I IW\oJW. sap. coml"'- "<OTR>Home</OTR>" ,

0,0, O. 0),

new NavNode("#". "SAP Team". O. 0, 0, 0,

new NavNode(''http://help.sap.com'', "<OTR>Help</OTR>",

O. 0, o. 0),

new NavNode("/sap/bc/bsp/sap/Y_DOC_SEARCH/main.do?

sap-themeRoot=<%= themeRoot%>&themeRoot=<%= themeRoot%>".

"<OTR>Document Search</OTR>", 0, 0, 0, 0)

)
) ;

The inner content itself is then hosted within an IFrame. JavaScript functions are

fired on the window-resize event to make sure that the inner content continues

to fill the content IFrame area.

Mini-Portal 461
._.~._L.

f

<IFRAME frameBorder="O" id="iViewFrameId" name="iViewFrameId"

src="content_sap.html?themeRoot=<%= themeRoot%>&appIUrl=

<%= appIUrl%>&s=<%= script%>" style="WIDTH:100%;"

fuIIPage="true"></IFRAME>

<SCRIPT>

iViewFrameId.window.onerror ~ stopError

</SCRIPT>

<SCRIPT>

if(isIE){
window.attachEvent("onresize",SetTLNSize) ;
window.attachEvent("onresize",adjustFuIIPageIViews) ;
window.attachEvent("onload",adjustFuIIPageIViews) ;

) else{
window.addEventListener("resize",SetTLNSize,false) ;
window.addEventListener("resize",adjustFuIIPageIViews,

false) ;
window.addEventListener("load",adjustFuIIPageIViews,

false);)
</SCRIPT>

The navigation menu sets the URL for the inner content via a call to the BSP Page
CONTENT_SAP. HTML. This is the BSP Page that is hosted within the framework
page'sIFrame. It in turn hosts the actual content URL within its own inner IFrame.

<% data applUrl type string.

applUrl = request->get_form_field('appIUrl').

IF applUrl IS initial.

applUrl = 'porta1_home.htm'.

ELSE.

themeRoot = c1_http_utility=>escape_url(

unescaped = themeRoot).

ENDIF.

CONCATENATE applUrl '?sap-themeRoot=' themeRoot

INTO applUrl.

DATA accessibility TYPE string.

accessibility = runtime->WITH_ACCESSIBILITY().

IF accessibility IS NOT initial.

CONCATENATE applUrl '&sap-accessibility=X'

INTO applUrl.

ENDIF,

DATA is_rtl TYPE string.

is rtl = runtime->with_right_to_left().

462 Breaking Out of the Mold

I IF is_rtl IS NOT initial.

CONCATENATE applUrl '&sap-rtl=X' INTO applUrl.

ENDIF. %>

<IFRAME frameBorder="O" id="iViewFrameContentId"

name="iViewFrameContentld" src="<%= appIUrl%>"

style="WIDTH: 100 %; height: 100%" >< I I FRAME>

Listing 19.1 CONTENT_SAP.HTML

This structure of IFrames allows for the ability to host external content inside our
BSP mini-portal as well. Figure 19.8 shows three such examples. We have another
BSP Application, a page from the Internet, and Microsoft Outlook Web Accessfor
reading email all hosted within our BSP mini-portal. None of these other applica­
tions were designed for or modified in any way in order to be hosted.

::j

LI<O,· ..._ • ..,."""""""""'OhI"..C
.....~""....,.,"""_~"'mJ

\ ~'"
I~L~"-

I"'.........LL<'••
I,:"""",,~

t~;;::T~~~~~~L.
Il~ o:~:~

".r·~

Figure 19.8 Mini-Portal Example 2-Hosting External Content

But hosting full applications within the content area of our mini-portal page is not
really enough. We want to be able to arrange multiple smaller elements, com­
monly referred to as IViews within the SAP Enterprise Portal, together in one area.
We may even want to support personalization for the layout of these IViews.

This can be done as well using BSP and IFrames. Our sample start page had two
areas: one that displayed the current weather and one for news. The weather sec­
tion of this page is actually a separate BSP application hosted in place using an
IFrame. We layout the individual elements within the BSP page using a
<phtmlb: matrix>.

<%@page language="abap" %>

<%@extension name="htmlb" prefix="htmlb" %>

Mini-Portal 463

<%@extension name~"phtmlb" prefix="phtmlb" %>

<htmlb:content design="design2003" >

<htmlb:page title="Main Home Page" >

<htmlb:form>

<phtmlb:matrix cellWidths = "30%,70%"

height . =" 100 %" >

<phtmlb:matrixCell vAlign="TOP" />
<IFRAME frameBorder="O" id="iViewWeatherFrame"

name="iViewWeatherFrame"

src=" .. /zes_weather/weather.do"

style="WIDTH: 100 %; HEIGHT: 250px" ></ IFRAl'lE>

<phtmlb:matrixCell vAlign="TOP" />
<htmlb:tray	 id = "News"

width = "100%"

title = "News" >

<htmlb:trayBody>
<htmlb:textView wrapping="TRUE" >

Today - It is going to be a wonderful day!

</htmlb:textView>
</htmlb:trayBody>

</htmlb:tray>
</phtmlb:matrix>

</htmlb:form>
</htmlb:page>

</htmlb:content>

19.3.3 Portal within the SAP CUI

Although many companies look to a portal as an option to replace the SAP GUI

on user's desktops; there still remains considerable demand to have users work

directly within the SAP GUI fat-client environment. This is not meant to be a dis­

cussion on the pros and cons of using the SAP GUI client; instead, we want to

look at how you might embed your SSP mini-portal within the SAP GUI start

transaction.

Unfortunately, SAP does not offer an exit mechanism to insert custom content

within this area of the main start transaction. In order to insert our page, we will

need to make a small modification to the delivered SAP program. Remember that

SAP does not recommend or support modifications to its code. If you implement

these modifications, you are on your own.

464 Breaking Out of the Mold

P,"'''". CA II

& 57°F
Cloudy

feel .. lJke:~r'1'

lIumldtty.72li.
W1"d:Gmpll

JEnlelCII)'/lIP~. I'

.~	

-~ SAP DEl/D.OPal I'ltrWOAK

~9n

::'~:'d~;:: ~~~~~: ~;;~~ I u
B

Figure 19.9 Mini-Portal Example 2~Running Within the SAP GUI Start Transaction

The main-menu application is SAPLSMTR_NAVIGATION. The first modification will

be in the form control_createimagecontrol in include LSMTR_
NAVIGATIONF17. We will replace the current call to WB~BITMAP_SHOW, which dis­

plays the static image, with the code to host our SSP mini-portal application

within an HTML control.

*(REPLACE

*\ call function 'WB_BITMAP SHOW'

CREATE OBJECT html control
EXPORTING parent = image_cont

EXCEPTIONS others ~ 1.

html_control->enable_sapsso(enabled = 'x').

DATA: zz_url TYPE string.

DATA: zz_urI2(255) TYPE c.

CALL METHOD cl_bsp_runtime=>construct~bsp_url

EXPORTING in~application = 'z PORTAL'

in_page = 'default SAP.htm'

IMPORTING out~abs_url = zz urI.

MOVE zz_url TO zz_urI2.

CALL METHOD html control->show_ur1

EXPORTING urI = zz_url2
EXCEPTIONS others = 1.

*) REPLACE

The only other small modification that must be made is to declare the definition

of our html_control instance in the top Include, LSMTR_NAVIGATIONTOP.

Mini-Portal 465

91

;j'.1: I

rl:
>lj DATA: image_control TYPE REF TO cl_gui_picture.q;
:1· • (INSERT

html control TYPE REF TO cl_gui_html~viewer.

') INSERT
custom_container TYPE REF TO cl_gui_custom~container.

19.3.4 Current Weather Display

You might have noticed the current weather window from our second mini-portal

example. This application has several interesting aspects and is worth looking at in

greater detail.

First, this application was originally posted to SDN by Prakash Singh as a Java

application. Right from the start, we can see that converting this application from

Java to ABAP/BSP is a relatively simple process. Looking at the complete source

code for each solution, one might even make the case that the implementation

within ABAP/BSP is simpler.

The other interesting aspect is the technology that sits behind this technology. In

both the Java and BSP versions, an HTIP client call is made to Weather. com, in

much the same way as was done in the RSS consumer example earlier this chap­

ter. If you have any problems making the HTIP client connection to Weather.com
because of the handling of the default port, please read ass Note 858970.

Weather.com then returns an XML stream as the body of the response. Using an

XSLT script, the XML from Weather.com is transformed into HTIP. Even the exact

same XSLT script can be used from both Java and ABAP!

METHOD call~webservice.

DATA: urI TYPE string.
DATA: t_url TYPE string.
DATA: client TYPE REF TO if_http_client.
DATA: x_xml TYPE xstring.
CONCATENATE 'http://xoap.weather.com/weather/local/'

i_key '?cc=*&prod=xoap&par='
zcl_es_shared_mem_weather~com=>partner_num

'&key='
zcl_es_shared_mem_weather_com=>license_key
'&unit=' i_unit INTO urI.

CONDENSE urI NO-GAPS.

CALL METHOD cl~http_client=>create_by_url

EXPORTING urI = urI

466 Breaking Out of the Mold

IMPORTING client = client
EXCEPTIONS others ~ 1.

client- >send ().

CALL METHOD client->receive

EXCEPTIONS others = 4.

e_xml = client >response->get_data ().

DATA: xslt err TYPE REF TO cx_xslt_exception,

s TYPE string.

TRY.

CALL	 TRANSFORMATION zes~weather

SOURCE xml e_xml

RESULT xml e~html.

CATCH cx_xslt_exception INTO xslt err.
IF NOT xslt_err IS INITIAL.

s = xslt_err->get_text().
ENDIF.

ENDTRY.
ENDMETHOD.

The rendering of the output from the XML to HTML transformation is quite sim­

ple.

<htmlb:tray id = "WeatherTray"
onEdit "Personalize"
width "100 %"

title = "<OTR>Current Weather Conditions</OTR>" >
<phtmlb:matrix cellWidths = "100%"

width = "100%" >
<phtmlb:matrixCell hAlign="CENTER" />

<%= controller->model->html %>
<phtmlb:matrixCell hAlign = "CENTER"

row = "+1" />
<htmlb:textView design="LABELSMALL" >

<OTR>Last Updated: </OTR>
<%= controller->model->s_time %>

</htmlb:textView>
</phtmlb:matrix>

</htmlb:tray>

At this point we will diverge from the original Java example and include some

additional features. First it would be nice to allow the user to set some customiz­

ing settings, such as location for which to display weather and whether to display

Mini-Portal 467

I

temperature in Celsius or Fahrenheit. This is especially useful when running inside

a portal where users expect a certain measure of personalization.

I Un~ of me::'lsure

!Updale _I

Fl·

-

Figure 19.10 Weather Exam ple- Personalization

We already activated the personalization event in the surrounding <h trnlb : tray>

when we first rendered it.

<htmlb:tray id "WeatherTray"

onEdit "Personalize"

width "100%"

title "<OTR>Current Weather Conditions</OTR>" >

When the onEdit event is triggered, we will just navigate to a different controller.

IF htmlb_event_ex IS NOT INITIAL

AND htmlb_event_ex->event_name = phtmlb_events=>popupmenu

AND htmlb_event_ex->event_type =

phtmlb_events=>popupmenu_select.

navigation->goto_page('customizing.do').

ENDIF.

We are going to store the user's personalization in a simple browser cookie.

Therefore, as we load the customizing controller we need to read any previous

settings from that cookie before we display the view.

*****Restore Default Settings from the Browser Cookie

CALL METHOD i_runtime->server->request->get_cookie

EXPORTING name = 'WeatherSettings'

IMPORTING value = I_settings.

Likewise, when the user wishes to return from the customizing screen, we need

to record his or her new settings back into the browser cookie.

IF htmlb_event_ex IS NOT INITIAL

AND htmlb_event_ex >event name = htmlb events=>button

AND htmlb_event ex >event_type = htmlb_events=>button_click.

DATA: I_settings TYPE string.

CONCATENATE me->unit me->key INTO I_settings.

468 Breaking Out of the Mold

CALL METHOD i~runtime->server->response->set_cookie

EXPORTING name = 'WeatherSettings'

path = '/'

value = I_settings.

navigation->goto_page('weather.do').
ENDIF.

Our second major change has to do with the HTIF call to Weather. com. We really

do not want to have to make the call, request the XMLand then convert it every

time any user accesses this page. There should be a mechanism to cache the

returned data.

You could take several approaches to this caching. You might decide to write the

information into the database or store it as a server cookie. However, for maxi­

mum performance, this example will take advantage of the new Web AS 6.40

shared-memory classes. Shared-memory classes allow for copy-free reading of

memory in a cross-process pool. That means that all users can read from the single

shared-memory area allowing for caching across user sessions.

In our processing, we will need to attach to our shared-memory class and then

attempt to read from it.

DATA: area TYPE REF TO zcl es area_weather com.
TRY.

area = zcl_es_area_weather_com=>attach_for_read().

CATCH cx_shm_no_active_version.

WAIT UP TO 1 SECONDS.

area = zcl_es_area_weather_com=>attach_for_read().

ENDTRY.

FIELD-SYMBOLS: <wa_cache> LIKE LINE OF area->root->icache.

DATA: I_cache LIKE LINE OF area->root->icache.

READ TABLE area->root->icache ASSIGNING <wa_cache>

WITH KEY w_key = i_key unit = i_unit.

If we found a record, we need to make sure it is not too old. If the record is older

than 15 minutes, we want to ignore it and request new information from
Weather. com.

e_html = <wa_cache>-html.

eo_timestamp = <wa_cache> -tstamp.

DATA: l_tstmp TYPE timestamp.

GET TIME STAMP FIELD l_tstmp.

DATA: I secs TYPE tzntstmpl.

Mini-PDrta_1_4::::.:6:.:9==- --"__

secs	 cl_abap_tstmp=>subtract(

tstmpl = l_tstmp

tstmp2 = <wa_cache>-tstamp).

I

If we were able to find a valid record, then we have our HTML output, and we can

proceed with processing. Otherwise. we need to request the data from

Weather.com, convert it from XML to HTML and then store it away in our shared­

memory class.

METHOD update_cache.
DATA: area TYPE REF TO 2cl_es_area_weather_com,

root TYPE REF TO 2cl es shared_mem_weather com.

****get a pointer to the Shared Area

TRY.
area = 2cl_es_area_weather_com=>attach_for_update().

CATCH cx_shnLno active_version.
WAIT UP TO 1 SECONDS.
area = zcl_es_area_weather_com=>attach_for_update().

ENDTRY.
****Get a pointer to the Root

root ?= area->get_root().

IF root IS INITIAL.

****Create an instance of our root

CREATE OBJECT root AREA HANDLE area.

ENDIF.

****Delete any old records

DELETE root->icache WHERE w_key i_key

AND unit i_unit.

****Create new records
FIELD SYMBOLS: <wa_cache> LIKE LINE OF root->icache.
APPEND INITIAL LINE TO root->icache ASSIGNING <wa cache>.

<wa_cache>-w_key = i_key.
<wa cache>-unit = i_unit.
<wa_cache>-html = i_html.
<wa cache>-xml = i_xml.
GET TIME STAl1P FIELD <wa_cache>-tstamp.

r_timestamp = <wa_cache>-tstamp.
****Set the root back into the Area

area->set_root(root).

****Commit and detatch

area->detach_commit().

ENDHETHOD.

470 Breaking Out of the Mold

20	 Closing

We have taken ajourney through the world of BSP development. We have shared

tips and tricks and insider information for those who may have always wanted to
know what made BSP tick.

As you set out on your own to put what you have learned to good use, you are

not alone. Remember all the code samples and examples from this book are avail­

able on the CD for this book. BSP also has a strong presence on the SAP Devel­

oper's Network. This book would not likely exist Without the start that it got
within SON.

Whenever you have a question about BSP or anything you read about in this

book, a great place to go would be SON. You can find unique code samples, over

200 weblogs, and a BSP forum with over 2,000 questions and 12,000 individual

postings. Chances are very good that you will find someone on the BSP forum just

about any day of the year that can help you out. Whether your answer comes

from Raja, Craig, Maximilian, Rainer, Thomas R., Eddy or any of the other fre­

quent contributors, you can be sure you are in good hands.

Closing	 471

A Appendix- SSP Utility Classes

There are many classes that can play important roles during BSP
development. Unfortunately, many of these are not documented to
their fullest potential, In this appendix, we list many of the more
useful classes and briefly describe their uses,

This appendix offers a collection of many of the useful classes related to BSP

development It should not be treated as a replacement for online help, It is

merely a starting point for further research,

IF_SSP_RUNTIME

This class represents the BSP runtime itself, so naturally there are many useful

methods in it Most are instance methods, but it is not too difficult to get a refer­

ence to the runtime object from MVC, Pages, or BSP Extensions,

CONSTRUCT_BSP_URL: This is a static method for building the full URL given the

BSP application name (and other optional parameters),

GET_OTR_TEXT: Have you ever wanted to read a particular OTR text programmat­

ically? This is the method for doing that Give it the alias and it will return the text

string back to you, Details on OTR can be found in Chapter 15,

WITH_ACCESSIBILITY and SET_ACCESSIBILITY: These methods allow you read

the status of or set the accessibility flag, This attribute can also be set via URL

parameter: sap-accessibility, The accessibility flag only expresses the wish for

accessibility support, The application itself must contain the additional rendering

logic to handle this case, If the HTMLB libraries are used, accessibility is handled

correctly for the relevant rendered HTML,

WITH_RIGHT_TO_LEFT: This is similar to the WITH_ACCESSIBILITY method,

except that it returns the current status of the right-to-left status, This flag (RTL) is

the special setting for languages that read from right to left (such as Hebrew and

Arabic), This flag only has meaning for the HTMLB rendering library, If you have

hand-coded HTML on the page, you have to test this flag and add your own addi­

tional support

GET_URL: This method returns the URL for the current page,

GET_DOHAIN_RELAX_SCRIPT: Have you ever had to include the domain-relaxa­

tion script in your page?This is the method that will write that script into the page

Appendix- SSP Utility Classes 473

for you. Most often you see it included directly in a page or View just like the fol­

lowing:

<%= runtirne->GET~DOMAIN_RELAX_SCRIPT() %>

GET_URL_SAME_SESSION, GET_URL_STATELESS, and GET_URL_NEW_SESSION.

These methods generate URLs for BSP applications that either will run in the same

session as the current application, either statelessly or statefully but in a new ses­

sion. The difference between these three methods only makes sense when the

session id is transported via URL. This is true if the application is called with the

parameter sap - syscrnd=nocookie, or if it is called from the portal.

CL_BSP_UTILITY

All the methods in this class are public and static and obviously designed to be

reusable utilities.

CREATE_REWRITE_URL: This method will recreate the input URL adding in a list of

URI parameters. Most developers will probably find CL_BSLRUNTIME, method

CONSTRUCT_BSP_URL more useful.

DOWNLOAD: This method has all the coding you need to download a binary string

or content from an internal table into a HTIP response object. We have seen this

same coding used in examples to download Excel files. By using this method, you

could avoid having to set all the response header fields yourself. The following

simple little example from an OnInitialization event of the BSP page shows

the downloading of records from SFLIGHT as Unicode tab-delimited.

DATA:	 flights TYPE flighttab,

flight LIKE LINE OF flights,

output TYPE string,

app_type TYPE string,

l_xstring TYPE xstring.

CONSTANTS:

crlf TYPE string VALUE

cl_abap_char_utili ties=>cr_l f ,

tab TYPE string VALUE

cl_abap_char_utilities=>horizontal_tab.

SELECT' FROM sflight INTO TABLE flights UP TO 20 ROWS.

LOOP AT flights INTO flight.

CONCATENATE output flight-carrid tab '"

crlf INTO output.

ENDLOOP.

474	 Appendix- BSP Utility Classes

app_type ~ 'APPLICATION/MSEXCEL;charset=utf-161e'.

CALL FUNCTION 'SCMS STRING_TO_XSTRING'

EXPORTING text = output

rnirnetype = 'APPLICATION/MSEXCEL;charset=utf-161e'
IMPORTING buffer = l_xstring.

, Add	 the Byte Order Mark - UTF-16 Little Endian

CONCATENATE cl_abap_char_utilities=>byte_order_rnark_little

l_xstring INTO l_xstring IN BYTE MODE.

CALL METHOD cl_bsp_utility=>download

EXPORTING object_s = l_xstring

content_type = app_type

content_disposition = 'attachrnent;filenarne=webforrns.xls'

response = response

navigation = navigation.

CHANGE_URL: This method merges a full and a relative URL.

original URL '/a/b/c.htrn'
relative URL , .. Idie. h trn '

results '/a/d/e.htrn'

INSTANTIATE__DATA and INSTANTIATE_SIMPLE_DATA: These methods are used

to take a HTIP form field and create an ABAP data object to hold the correspond­

ing data. These methods are better left to their higher- level consumers (CL_BSP_

MODEL, CL_HTMLB_EVENT_TABLEVIEW, and CL_HTMLB_MANAGER). But if you want

a nice example of how they work, have a look at CL_HTMLB_MANAGER, method

GET_SIMPLE_DATA.

SERIALIZE_DATA: This method is the opposite of the two we just looked at. It

takes an ABAP data object and writes it into a HTML form field. Its best example

can be found in CL_BSP_NAVIGATION, method SET_PARAMETER.

MAKE_STRING: This method takes any of ABAP's various data types and turns it

into an output string. It has very similar functionality to the page - >to_string ()

method. The main difference is that MAKE_STRING throws exceptions instead of

issuing page messages (if_bsp_page~rnessages- >add_rnessage).

GET_TAGLIBS: This method will scan BSP source code and report back on BSP

Extension Libraries being used. This method is probably nothing more than a curi ­

osity to the average BSP developer. This would probably only be useful if you are

interested in dynamically generating BSP pages via CL_BSP_APCGENERATE.

Appendix-BSP Utility Classes 475

DATE_TO_STRING_HTTP: This method will take an ABAP timestamp and convert it

to the HTIP header format. The use of this method comes right from the method

SET_BROWSER_CACHE.

DATA: ts TYPE timestamp,
tz TYPE timezone VALUE 'UTC' .

GET TIME STAMP FIELD ts.
ts = cl_abap_tstmp=>add(tstmp = ts secs = max_age).

CONVERT TIME STAMP ts TIME ZONE tz
INTO DATE I_date TIME l_uzeit.

time_reI (8) = I_date.
time_rel+8(6) = l_uzeit.
exp_value = cl_bsp_utilitY=>date_to_string_http(time_reI).

CREATE_PUBLIC_URL: Give this method a BSP application and page name, and it

will create a full URL for it. This method also adds the current language as a URI

parameter.

SET_BROWSER_CACHE: This method allows you to set the expiration for the

browser cache. You can see an example in CL_BSP_CONTEXT, method SET

CACHING.

UPLOAD: This method is the opposite of the earlier DOWNLOAD method. In this case,

however, you could always use the <htmlb: fileUpload> and the CL_HTMLB_
MANAGER=> GET_DATA to read the content. However this method would be useful

if you were not using the HTMLB libraries.

ENCODE_STRING: This very helpful utility allows you to encode a string for use

(RAW, URL, HTML, WML, or JavaScript) inside other elements. In the following

example, we take an OTR string that happened to contain an apostrophe (test

encoding: it's a nice day) and encoded it for safe use in JavaScript.

<script>
<% data: otr_string type string.

otr_string = page->OTR_TRIM('$TMP/mytext'). %>
alert("<%= cl_bsp_utility=>encode_string(in = otr_string

encoding = if_bsp_writer=>co_javascript) .%>");

</script>

CL_HTTP_UTIL1TY

CL_HTTP_UTILITY is another helpful utility class to use with all public static

methods. As we go through it, you will see that many of the methods are very

similar to those in CL_BSP_UTITLITY. It is heavily focused on encoding, decod­

_J476 Appendix-SSP Utility Classes

ing, and escaping strings. If you look at the coding, most of these methods are just

wrappers for kernel calls (for faster performance).

DECODE_BASE64 and ENCODE_BASE64: As their names imply, these two methods

decode/encode a string to Base64. There is an example of SAP's use of both

methods in the class CL_BSP_VHELLCONTROLLER.

ESCAPE_HTML, ESCAPE_URL, and ESCAPE_WML: These methods provide the same

functionality as CL_BSLUTILITY=>ENCODE_STRING. In fact if you look at the

coding of ENCODE_STRING, it just has calls to these methods. However you might

prefer the ENCODE_STRING method because it is more concise and also has the

JavaScript encoding, which we do not have in this class.

UNESCAPE_URL: It is logical that if you have methods to escape a sequence, you

also should have a method to undo that escaping. That is the role this method

plays.

STRING_TO_FIELDS and FIELDS_TO_STRING: These methods are used to put

field information into the URL. If you want to decode a BSP URL, you can always

use the ABAP Program BSP_DECODE_URL. It is the perfect example of how to use

these methods.

REWRITE_URL: This method is used to take input form fields and write them into

the URL. This method, combined with FIELDS_TO_STRING, is what SAP uses to

encode fields like client, logon language, etc. and put them into the URL.

CL_HTMLB_MANAGER

This is a very important class when working with events in BSP extension libraries.

See Chapters 9 and 11 for more details on the use of this class.

CL_HTTP_S ERVE R

For the most part, we are only interested in the static methods within this class.

This class represents the HTIP server itself. You will find this object as one of many

public attributes in a controller class. These static methods have many uses. Once

again we can find many redundant functions between this class and the ones we

have already seen.

APPEND_FIELD_URL: This is a very helpful method that allows you to set or

change any of SAP's special URL attributes, such as sap-language, sap-theme,
etc. These attributes are listed in Section 4.4.

CALL METHOD cl_http_server=>append_field_url
EXPORTING name = 'sap-language'

value = s_spras

AppendiX-SSP Utility Classes 4n

CHANGING urI = urI.

navigation->exit(urI).

GET_LOCATION and GET_LOCATION_EXCEPTION: These two methods return

information, such as host name and port, for a given protocol.

GET~LOCATION_EXCEPTIONwill make' a lookup in the HTTPURLLOC table to see

how URLs should be generated in cases where external proxies are in use. For a
detailed description of this relatively new development, see SAP Note 871004,
"Use of HTIPURLLOC Table for Generating SE80 URLs". GET_LOCATION is the rec­

ommended method to use. It will first look up exception information, and, if

none is available, return the current system information for URL generation.

cNote We recommend that you never explicitly supply a protocol as in param
eter, but to rather accept the returned protocol. This also allows the code to

work correctly in cases where only HTIPS is configured,or in scenarios where

HTIPS in used from the browser to the proxy and HTIP is used from the proxy

to the server (and an HTIPS URLis then required for the browser).

CREATE_ABS_URL and CREATE_REL~URL: These two methods are useful when

assembling absolute or relative URLs. Perhaps you only know the path you want
to link to, but you need an absolute URL. That is where CREATE~ABS_URL comes

in. It accepts PROTOCOL, HOST, PORT, PATH, and QUERYSTRING as input parame­
ters. These are all optional parameters, so the method can fill in the protocol,

host, and port for you.

CL_BSP_SERVICES

This class has many static public methods. Most ofthe methods here provide data
dictionary services, such as labels and help values. These methods are especially

useful, though, because they work off a direct data reference.

GET_FIELD_LABEL and GET~QUICKINFO: These methods read the label or quick

info for a given data reference from the data dictionary. The quick info will return
the 60-character short text description of a field. The GET_FIELD_LABEL will ana­

lyze the size to give either the small, medium, or large label from the data dictio­

nary.

DATA: mandtl TYPE symandt.

DATA: labell TYPE string.
DATA: data ref TYPE REF TO data.
GET REFERENCE OF mandtl INTO data ref.

EXPORTING data_object_ref data ref
RECEIVING label labell.

WRITE:/ labell.

GET_SIMPLE_HELPVALUES and GET_SIMPLE_HELPVALUES2: These methods are
similar to the first two in that they import a data-object reference. However, these
methods return a set of help values. These methods are great for returning a small
set of configuration codes for a data dictionary field. The main difference between
the two is that HELVALUES2 returns the key, value, and maximum value. HELPVA­

LUES only returns the key and value. In the example below, we dynamically get
field values for a field (described via just the field name).

DATA: DATA_REF TYPE string.
data_ref = I SYMANDT' .

DATA: field
DATA: helpl

CREATE DATA

CALL METHOD

EXPORTING

CHANGING

TYPE REF TO data.
TYPE SHSVALTAB.

field TYPE (me->data_ref).

cl_bsp_services=>if_bsp_services~get_simple_helpvalues

data_object_ref ~ field

helpvalue_tab = helpl.

GET HISTORY.ID and GET LOCAL_HISTORY_ID: Both of these methods are used
to generate history ids. They fetch the ABAP parameter id that is attached to a
field in the data dictionary. It is then formatted as such: sap .mat for field MATNR.

GECDAY_COLLECTION and GELMONTH_COLLECTION: These are nice little utility
methods for retu rning the abbreviations and names of the days of the week and
months respectively.

I
GET_TABL_INFO: This method, given a data reference to an internal table, will
return the structural information about it. The functions of this method are also
provided by the Runtime Type Services (RTIS) classes.

CL_BSP_APPLICATION

I

Ifyou declare an application class for your BSP application, you are going to want

to implement the IF_BSP_APPLICATION interface and thereby inherit the func­

tionality of the CL_BSP_APPLICATION class. Most of the methods are very

straightforward and allow your BSP application to query information about itself

at runtime.

I

GET_APPLICATION_NAME, GET_APPLICATION_Nfu~ESPACE, GET_APPLICATION_

START_PAGE, GET_APPLICATION_THEME and GET_APPLICATION_URL: These

methods allow you to read application settings at runtime.

CALL METHOD cl_bsp_services=>get_field_label

478 Appendix- BSP Utility Classes Appendix- BSP Utility Classes 479_J

GET_REQUEST, GET_RESPONSE and GET_RUNTIME: These methods give you point­

ers to the corresponding objects (Request - IF_HTTP_REQUEST, Response - IF_

HTTP_RESPONSE, and the BSP runtime - IF_BSP]UNTIME).

GET_TIMEOUT and SET_TIMEOUT: For stateful applications, this allows you to read

or set the timeout measured in seconds.

IS_STATEFUL and SET_STATEFUL: These methods will query whether your appli ­

cation is running statefully or dynamically switch its stateful status.

IF _HTTP_REQUEST

This is the class that represents the request data object coming from the HTTP d­
ent. Most of the important methods in this class are going to involve reading from

this request object.

IF_HTTP_RESPONSE

The counterpart to the HTTP request object, this class represents the HTTP

response object. Most often we work with the response object when we want to

set certain header fields (most common when downloading data; see CL_BSP_

UTILITY=)DOHNLOAD). Note that both the RESPONSE and REQUEST objects have

methods for manipulating cookies at the client side.

IF_BSP_NAVIGATION

Just like its name suggests, this class represents the navigation object. It is con­

cerned with navigation from page to page and application to application. Most of

the methods are self-explanatory. You have methods such as EXIT, GOTO_PAGE,

NEXT_PAGE, SET_PARAMETER, and RESPONSE_COMPLETE.

CL_BSP_PAGE

This class represents the page object itself. As you look through the methods in

this class, most of which are inherited from IF_BSP_PAGE, you will see that many

of them are duplicates of those within CL_BSP_APPLICATION.

GET_APPLICATION_NAME, GET_APPLICATION_NAMESPACE, GET_APPLICATION_

START._PAGE, GET_APPLICATION_THEME and GET_APPLICATION_URL: These

methods allow you to read application settings at runtime.

GET_REQUEST, GET_RESPONSE and GET_RUNTIME: These methods give you point­

ers to the corresponding objects (Request - I F_HTTP_REQUEST, Response - IF~

OTR_TRIM: This is another method that will read OTR texts. It is similar to CL_
BSP]UNTIME=)GELOTR_TEXT.

GET_PAGE_NAME and GET_PAGE_URL: These methods read the name or URL of a
page at runtime.

TO_STRING: This nice little method will take a field of any data type and write it

out as a string. This is especially useful for outputting dates, times, currency
amounts, etc.

CL_BCS

Although not unique to BSP, sending emails is a normal requested activity that

many BSP developers encounter. The Business Communication Service (8CS)

classes provide a simple method for sending ernails from A8AP.

CL_BSP_SERVER_SlOE_COOKIE

This is the class that provides the interface to the server-side cookie mechanism

with BSP. Section 13.5 contains an example of the use of this class to store a

model-class state from a stateless application.

IF_MR_API

Sometime people would like to access data from or write data to the MIME

Repository. For this there is an excellent API called IF_H.l_API that can be instan­

tiated via the class CL_HHIE_REPOSITORY_API. This avoids having to interact

directly with LOIOs.

CL_HTTP_EXT_BASE_HANDLER

This class provides an excellent starting point for creating your own HTTP handler

classes. For more details, see Chapter 3.

IF_HTTP_HEADER_FIELDS and IF_HTTP_FORM_FIELDS

IF_HTTP_HEADER_FIELDS/IF_HTTP_HEADER_FIELDS_SAP and IF_HTTP_FORM_

FIELDS/IF_HTTP_FORM_FlELDS_SAP contain constant strings of all header/form

fields that you regularly use. The use of constants from this interface prevents typ­

ing mistakes like "ContenLDisposition" (that should have been spelled with a

hyphen). Typical examples:

request-)get_header_field(if._http_header_fields=)host).

HTTP_RESPONSE, and the BSP runtime - IF_BSP_RUNTIl1E). response-)set_header_field(

name = if_~ttp_header_fields=)content_type

value = 'text/htrnl').I

480 Appendix- BSP Utility Classes Appendix- BSP Utility Classes 481~J

B The Authors

Brian McKellar is Development Architect for BSP and Web

Dynpro ABAP at SAP in Walldorf. The past five years he has

worked on the development of first BSP, and slowly moved

over to Web Dynpro. He knows the complete BSP runtime

better than the back of his hand, having worked on the

development of large parts of it. Also, from handling prob­

lem tickets of years, there is not a problem within the BSP

field which he has not seen at least once. Brian is also very

active in SON, and regularly contributes with technical

weblogs on BSP.

Thomas Jung is an applications developer for the Kimball

Electronics Group. He has been involved in SAP implemen­

tations at Kimball asan ABAP Developer since 1996. He has

done some work in the Microsoft world with VB and .NET

Development, but his first love remains as always: ABAP.

For the past several years, Tom has been involved in the use

of BSP Development at Kimball and more recently the !

I
I introduction of ABAP Web Services for critical interfaces.

Tom also holds the Chair position forthe Web Technologies

Special Interest Group within ASUG (Americas' SAP Users' Group). In 2004 and

2005, Tom won the award for overall top contributor to SON.

I This book was born of the Business Server • •
® SAP DEVELOPER NETWORK Pages (BSP) community on the SAP Devel­~

1
 oper Network (SON). SON is where ABAP,

Java, .NET, and other cutting-edge technologies converge, forming the premier

technical resource and collaboration channel for SAP developers, consultants,

integrators, and business analysts. Authors Thomas Jung and Brian McKellar, both

longtime SON members and contributors, met on SON. As virtual collaborators

I (Thomas and Brian have never met, or even spoken to one another), the two

authors used content and ideas originally published in their respective SON blogs

I
 as the foundation of this excellent book. Advanced BSP Programming is a testi ­

mony to the strength and innovative spirit of the SON community. Be a part of it

at http://sdn.sap.com.

I

The Authors 483~._~1

Index

<bee:html> 214

<bsp:bee> 205, 290

<bsp.cail» 283

<bsp:findAndReplace> 268,395

<bsp:htmlbEvent> 243,269

<bsp.pararneter» 432

<bsp.portaltvent» 271

<bsp:portaINavigationAbsolute> 272

<bsp.portal Navigation Relative> 272,

273

<bsp:portaINavigationToObject> 272,

273

«bsp.root» 214

«btf.edltor» 257,343

<graphics:chart> 261,262,266

<graphics:custom> 266

<graphics:data> 262,264,266

<graphics:nativexml> 262

<htmlb:breadCrumb> 238

-chtmlb.button» 202, 231, 244

<htmlb:content> 174,395,408

<htmlb:document> 178

<htmlb:documentBody> 178

<htmlb:documentHead> 178

<htmlb:dropDownListBox> 175,223,

322, 338

<htmlb:fileUpload> 180

<htmlb:form> 179, 197, 241, 360

<htmlb:gridLayout> 194,200

<htmlb:gridLayoutCell> 195

<htmlb:group> 248

<htmlb:headlnclude> 178

<htmlb:image> 206

<htmlb:inputField> 206,322,323,351,

353

<htmlb:inputField> as BEE 208

<htmlblabel> 308,312,338,351

<htmlb:listBox> 323

<htmlb:page> 177

<htmlb:tableView> 187,205,206,215,

322, 422, 443

<htmlb:tableViewColumn> 189

<htmlb:tabieViewColumns> 189

<htmlb:textView> 223

«htmlb.tray» 337,434,461,468

___ ._..l.c

<htmlb:tree> 192

<htmlb:treeNode> 192

<phtmlb:comboBox> 417,419

<phtmlb:containerContentltem> 199

<phtmlb:containerTabStrip> 197

<phtmlb:contalnerTabStripltem> 199

<phtmlb:formattedText> 455

<phtmlb:formLayout> 200,298

<phtmlb:formLayoutCheckBox> 202

<phtml b:form LayoutDrop Down-

ListBox> 202

<phtmlb:formLayoutlnputField> 202

<phtmlb:formLayoutltem> 202

<phtmlb:form LayoutTextEdit> 202

<phtmlb:formLayoutX> 202

<phtmlb:matrix> 194, 200, 290, 463

<phtmlb:matrixCell> 195,239

<phtmlb:popupMenu> 198,323,331,

374

<xhtmlb:buttonGroup> 180,182,185

<xhtmlb:pager> 191

<xhtmlb:protectDoubleSubmit> 196,

240

«xhtmlb.toolbar» 326

<xhtmlb:toolbarButton> 327

1X1 U RL 127

A

ABAP Class Builder 278

ABAP Kernel 15

ABAP Look-and-Feel Service, ALFS

39 8

ABAP Workbench 15, 25

ABAP XML API 453

Accept, HTTP request header 35

Accept-Encoding, HTTP request

header 36

Accept-Language, HTTP request

header 36

accessibility flag 473

ActiveX 358, 449

Adobe Forms 423

ALFS 398

integration to Web AS 402

source code 404

Index 485

alias handling 74

alias texts 347
ALV Grid 187,367,422,424
ALV Grid Field Catalog 217

anonymous service 108

applets 133
authentication 97, 137

anonymous service 108

basic 98, 113
form-based 109

logon application 111

SSO 114
Authorization, HTIP request header

36

B
Base64 100, 477
basic authentication 98

cancelled 100
de-authentication 113

BEE 205, 253
creating own 227

element content 230

error handling 215

for Excel download 374

help function 311

HTML 209
table 211
user-defined validation 228

XML 212

Big Endian 342

binary string 370,474

breakpoint 29
browser cache, expiration 476

browser rendering time 157

BSP Application Event 144

BSP element

composite 231
inner data 238

processing 233
processing flow 233

writing a composite 237
BSP Element Expressions 205

BSP Extension Element

help function 311
BSP Extension Framework Z27

BSP extensions 16, 167, 253

designs 172

486 Index

element 186
extension framework 168

library 268

technology 168

using 168
BSP extensions event 239

BSP library 268
BSPs, interaction with SAP GUI 144

BTF 253, 343
BTF content 258

BTF document 258

BTF editor 253
BSP extension element 256

database sto rage 255

functionality 254

tool bar 254

Unicode 255

Business Communication Service

(BCS) 481
Business Server Pages (BSP) 15

Business Text Framework (BTF) 253

Byte Order Mark (BOM) 342,369, 371

C
category, IGS 263

certificate

de-authentication 114

digital 105

chart data 262

chart designer 267

chart model class 264

checkbox 48

CL_BCS 481
CL_BSP_APPLICATION 479

CL_BSP_ELEMENT 227

CL_BSP_PAGE 480

CL_BSP_RUNTIME 474
CL_BSP_SERVER_SIDE_COOI<IE 481

CL_BSP_SERVICES 478

CL_BSP_UTILITY 474

CL_HTMLB_MANAGER 477
CL_HTIP_EXT_BASCHAN 0 LER 481

CL_HTIP _SERVER 477

CL_HTIP_UTI L1TY 476

CLASSIC 172

compiler 27

component 282

composite element 231

event handling 244

using 245

composition 231

Connection, HTIP request header 36

Content-Length, HTIP response

header 38

Content-Type, HTIP response header

38
Control Framework 253

controller 277
eventing 281

methods 278

model lifetime 280

modifications 293

sub- 282

cookie 54
basic authentication 102

SSO 102

SS02 91

Cookie, HTIP request header 36

credentials 97

CSS file 395

customization 395

D
data manipulation 366

data point, IGS 263

data-handling 249

date format 352

DDICUTILS 351
de-authentication 113

debugger 29

DEC VAX 342

decode_uri 83

design pattern 275

DESIGN2002 172

DESIGN2003 172

development environment 25

DIAG protocol 136

digital certificates 105

dirty indicator 272

document handling 355
display in new window 366

display inline 361

display inside HTML 363

Excel 368

non-HTML 358

download 49

dropdown list box 48

Dynpro 133, 187, 253, 288, 322

E

element class 312

element 10 246

Employee Self Services (ESS) 295

Enterprise Core Component 5.00 16

Enterprise Portal Client Framework

(EPCF) 271

error handling 72

error pages 408

event

handling in composite elements 244

handling incoming 243

handling manually 181

rendering 240

rendering via <bsp

htmlbEvent> 243
event dispatching 180

IF_HTMLB_EVENTS 183

onClick 185

event-handling 250

image click 267

eventing 281

Excel 355, 474
interactive 449

Excel download 367

Excel Unicode text file 369

Extensible Stylesheet Language Trans­

formations (XSLT) 456
extension framework 168

F
F1 help 307

controller method 318

model 318

F4 help 322
field help 307

field history 417,419
field label 351

Flash 358
flow logic 16
form-based authentication 1°9, 111

FQDN 89
browser requirements 91

Fully Qualified Domain Names 89

Index 487

G
GET 43
GET_COLUMN DEFINITIONS 218

get_cookie 57
getter method 286

GUID 364

GZip 392

H
HANDLE REQUEST 72,86

handler class 70

help UI 307
Host, HTIP request header 36

HTML 31
mapping onto HTIP 46

HTML BEE 209

HTML forms 41
HTML Viewer 133, 142, 309

HTMLB 26,168,172,174

event system 180

HTMLB event manager 244, 271

HTMLB event system 240

HTMLB manager 247, 250

HTIP 21,31, 97

Header/Body Separator 37

redirect 58

request 34

request body 37

request headers 35

request status line 35

response 34

response body 39

response headers 38

response status line 37

retu rn codes 37

structu re 32

HTIP cache 363

HTIP form field 475

HTIP handler 67

HTIP proxy 32

HTIP server 477

HTIP trace tool 153

I

ICF tree 67

ICM File Handler 357,389

ID 246

IF_BSP_APPLICATION_EVENTS 119,

123
IF_BSP_BEE 205
IF_BSP_ELEMENT 227
IF_BSP_MODEL_SETIER_GETIER 286

IF_BSP_NAVIGATION 480

IF_BSP_RUNTIME 473
IF_HTMLB_DATA 182

IF_HTMLB_EVENTS 183

IF_HTIP_EXTENSION 69, 86

IF_HTIPJORMJIELDS 481
IF_HTIP_HEADERJIELDS 72,481

IF_HTIP_HEADERJIELDS_SAP 72

IF_HTIP_REQUEST 40,480

IF_HTIP _RESPONSE 40,480

IF_HTIP _SERVER 119

IF_MR_API 481
IF]HTMLB_EVENTS 184

IFjHTMLB_EVENTS 184

IFrame 323,426
IGS 260

BSP extension 261

chart data 262

chart designer 267

customizing 266

image 355
image click 267
image conversion 268

images 69
input field 46

input help 325
Intel X86 342
internationalization 337
Internet Communication Framework

(ICF) 24, 67, 97, 156, 409

Internet Communication Manager

(ICM) 21, 97, 115,152,357

Configuration 91

Internet Graphics Service (IGS) 260
Internet mail extensions (MEs) 276

Internet Transaction Server (ITS) 260

invalid URL 64

J
Java applets 133

JavaScript libraries 319

l
List processing 423

Little Endian 342, 369, 371
load testing 161

load-balancing 115

logon application 110, 412
logon errors 412

logon language 338

switch 341
long texts 347

M
mangling 83
M"lcrosoft Office 449
Microsoft Outlook Web Access 463

MIME objects

direct import 356

inline 357
MIME repository 30,355,481

alternatives 389
MIME repository browser 356

MIME type setting 343

Mini-Portal 458,460
within SAP GUI 464

missing resource 62

model 276

lifetime 280

serialized 293
model binding 284

dynamic 288

model view binding 308
Model View Controller (MVC) 16,184,

275, 417

Motorola 68000 342
Multi Display Multi Processing

(MDMP) 343
multiple language support 337

MVC 275,417
application structure 275

controller 277

model 276
pattern engine 295,301

stateless 291

view 283
mySAP ERP 2005 16
MYSAPSS02 110,114, 151
MYSAPSS02 cookie 102

N
namespace mapping 92
network latency 154
non-secure warnings 63

o
Office integration 367

Office Web Components (OWC) 449
onClick 182

onHeaderClick 188

onl nputProcessing 124, 181

Online Text Repository (OTR) 346,

473, 476, 481
OWC control 450

p
Parameters 429

pattern engine 295,301,417

PDF 355, 358, 422

pending timeout 128

performance 65, 151

browser rendering time 157

runtime analysis 159

server processing time 155

SQL trace 165

statistical record 157

test 152

personalization 468
PHTMLB 16,26,172

pictures 358

ping 154
portal eventing 271

portal integration 270
portal navigation 272

POST 43
printing 422

dialog 426

PRINT method coding 424

PRI NT method interface 423

processing timeout 121

PTHMLB 173

Q
Quick Info 351

quick siZing 153

Index 489
4 88 Index

server cookie storage 292 RZ11 118 URL mangling 83, 161

R/3 337 server processing time 155 SE16 406,410,442 URL mapping 68

R/3 Document Management System server runtime measurement 156 SE30 159 URL parameter 93

R

r
Server, HTIP response header 38 !
 SE38 156 URL syntax 7139°

R/3 Enterprise 16 server-side printing 422 SE63 350 User-Agent, HTIP request header 37

radio button 48 session 138 SE80 25,166,232,355 UTF-X 342, 369, 371I

RDF site summary (RSS) 451 session ID 116 SICF 24, 74, 108, 118, 129, 159, 338, utility classes 473

rdisp/no_statistic 156 session identification 115 405,410I

rdisp/plugin_autoJogout 129 session management 115 1
 SM04 115, 124 V
redirect 58 browser-based 125 SM30 105, 204 value help 307, 322

Referer, HTIP request header 37 session timeout 118 SM59 260, 344 view 283

relative URL 63 in browser 120 SMICM 23, 121 Visual Composer 174

RENDER_CELL_START 222 seLcookie 56 ST22 38,458I
render_evenCcall 241 setter method 286 1

j. STRUST 105 W
RENDER_ROW_START 220 shared-memory class 469 j SU01 340 weather display 466

J
Single Sign-On (SSO) 91,102, 110,137, SU3 460 Web Application Stress Tool 161,162Repository Browser 169
]

151, 338 translation 349 Web Dynpro 174, 319 resource caching 60

restart 123
RFC destination maintenance 260

right to left (RTL) rendering 176,473

RSHTIP01 452

RSS feed 451

RSSTATISTIC 156

runtime 28

runtime analysis 159

Runtime Type Information (RTII) 329,

437
Runtime Type Services (RTIS) 289,317,

de-authentication 114

small loader page 143

Smalltalk 275

Smart Forms 423

SPARC 342

SQL trace 165

5502 cookie 91

statistical record 157

stress testing 161

subcontroller 282

SVG 358

I
Translation Workbench 3501 Transport Management System (TMS)

15
troubleshooting 62

I
j

U
Unicode 255,338,341, 369, 474

and Excel 369

I
~

in BSP 343

Unified Renderer 174, 396

I upload 49

Web Dynpro ABAP 16

Window Open Behavior 139

Work Protect 272

X
X·509 certificate 105

XHTMLB 26, 172, 173
XML BEE 212

XML serialization 291

XMLGROUP 81

XSLT 80

1
 URL 83 system logon 412440, 479
sy-u name 105 ": 1X1 127 Z

detach in browser 149 ZIP 355 S
T t URL escaping 95 ZIP tool 392

.;

SAP Content and Cache Server 390
Table BEE 211SAP Enterprise Portal 174,270,395,

458

SAP GUI 133,464

interaction with BSPs 144

SAP GUI event 147

SAP GUI session 115
SAP Internet Transaction Server (ITS)

15
SAP NetWeaver 16

SAP Unified Framework 461

SAPEVENT 144

sap-language 338

SAPMHTIP 157

SAPscript 253,3°9

Select-Options 429

series, IGS 263

490 Index

table query handler 78 ~
table view iterator 215, 217,422

Tag Browser 169

TCP/IP 21,115,136

testing 152,161

text editor 253

Theme Editor 397

theme export 396

theme root 406

white list 406

timeout 118

pending 128

ti mestamp 476

transaction

DWDM 133

Index 491

	Contents

	Introduction
	Target Audience
	On What Releases Can You Use BSP?
	BSP vs. Web Dynpro ABAP
	Aclmowledgements

	1 What is BSP?

	1.1 Internet Communication Manager
	1.2 Internet Communication Framework

	1.3
 BSP Development Environment
	1.4 HTMLB
 Rendering Family
	1.5 BSP Compiler
	1.6 BSP Runtime
	1.7 BSP Debugger
	1.8 MIME Repository
	1.9 Summary

	2 HTTP and HTML
	2.1 Viewing the HTTP Traffic
	2.2 Structure of HTTP
	2.2.1 The HTTP Request Status Line
	2.2.2 HTTP Request Headers
	2.2.3 HlTP Header/Body Separator
	2.2.4 HlTP Request Body
	2.2.5 The HlTP Response Status Line
	2.2.6 HTTP Response Headers
	2.2.7 HTTP Response Body

	2.3
 Server Objects for HTTP Request and Response
	2.4 HTML Forms and Data Handling
	2.5 Mapping of HTML onto HTIP Requests
	2.5.1 Input Fields
	2.5.2 Checkboxes, Radio Buttons and Dropdown List Boxes
	2.5.3 File Upload and Download

	2.6 Cookies
	2.7 HTTP Redirects
	2.8 Handling of HTML Resources in HTTP
	2.9 Troubleshooting Examples
	2.9.1 Missing Resource
	2.9.2 Non-Secure Warnings
	2.9.3 Relative URLs That Become Invalid
	2.9-4 Estimating Performance

	3 HTTP Handler
	3.1 URL Handling in the leF Tree
	3.2 URL Mapping
	3.3 Sample Handler for Reading Images
	3-3.1 URL Syntax
	3.3.2 Handler Coding

	3.4 Alias Handling
	3.5 Handler Example-Table Query
	3.5.1 Table Query Handler Implementation

	4 URLs in BSP

	4.1 URL Mangling
	4.1.1 What is URL Mangling?
	4.1.2 How is URL Mangling Done?
	4.1.3 Attempting to Hide the URL Mangling

	4.2
 Fully Qualified Domain Names
	4.2.1 Motivation for FQDN
	4.2.2 ICM Configuration
	4.2.3 Browser Requirements

	4.3 Namespace Mapping
	4.4 URL Parameters
	4.5 URL Escaping

	5 Authentication
	5.1 Basic Authentication
	5.2 Single Sign-On
	5.3 Digital Certificates
	5.4 Anonymous Services
	5.5 Form-Based Authentication
	5.6 Implementing a Simple Logon Application
	5.7 De-Authentication

	6 Session Management
	6.1 Session Identification
	6.2 Session Timeout
	6.2.1 Catching and Handling a Session Timeout
	6.2.2 Session Timeout in Browser

	6.3 Confusion with Processing Timeout
	6.4 Catching and Handling a Restart after Timeout
	6.5 Session Management from the Browser
	6.6 Warning the User of a Pending Timeout
	6.7 Summary

	7 Using BSP
 Applications in SAP GUI
	7.1 Using a BSP Application in a Dynpro
	7.2 Pitfalls when Using BSP Applications withSAP GUI
	7.2.1 Communication Path
	7.2 .2 The Second Authentication
	7.2.3 The Second Session
	7.2.4 Window Open Behavior
	7.2.5 Effects of SAP's New Visual Design
	7.2.6 Loading HTML Pages Directly

	7.3 Interaction between SAP GUI and BSPApplications
	7.3.1 BSP Application Event to SAP CUI
	7.3.2 SAP GUI
 Event to BSP Application

	7.4 Starting a New Browser Outside the SAP GUI

	8 Performance Measurements
	8.1 Test Applications
	8.2 Quick Sizing with HTTP Trace Tool
	8.3 Network
 Latency
	8.4 Server Processing Time
	8.5 Browser Rendering Time
	8.6 Determining Hotspots
	8.7 Load Testing
	8.8 SQL Traces

	9 BSP Extensions
	9.1 Extension Overview
	9.1.1 Extension Technology
	9.1.2 Using SSP Extensions
	9.1.3 Finding Details about the Extensions
	9.1.4 Available Extensions
	9.1.5 Extensions Designs
	9.1.6 High Level Elements

	9.2 HTMLB Event System
	9.2.1 Event Dispatching
	9.2.2 Manually Handling Events

	9.3
 Common Extension Elements
	9.3.1 <htmlb:tableView>
	9.3.2 <htmlb:tree>
	9.3.3 <phtmlb:matrix>
	9.3.4 <xhtmlb:protectDoubleSubmit>
	9.3.5 <phtmlb:containerTabStrip>
	9.3.6 <phtmlb:formLayout>

	10 BSP
 Element Expressions and Iterators
	10.1 BSP Element Expressions
	10.1.1 What is a BEE?
	10.1.2 N=1, Using Any BSP Element as BEE
	10.1.3 HTML BEE
	10.1.4 Table BEE
	10.1.5 XML BEE

	10.2 Table View Iterators
	10.2.1 What is a Table View Iterator?
	10.2.2 Method GET_COLUMN_DEFINITIONS
	10.2.3 Method RENDER_ROW_START
	10.2.4 Method RENDER_CELL_START
	10.2.5 Finished Output

	11 Creating your own BSP ExtensionElement
	11.1 Creating a BSP Extension Element
	11.1.1 Extension Framework Hierarchy
	11.1.2 User-Defined Validation
	11.1.3 Element Content

	11.2 Writing a Composite Element
	11.2.1 Designing a New Composite Element
	11.2.2 Processing Other SSP Elements
	11.2.3 Writing the Composite asp Element
	11.2.4 Handling of Inner Data SSP Elements

	11.3 A Deeper Loole at BSP Extensions Events
	11.3.1 Introduction to SSP Extension Events
	11.3.2 Rendering Events
	11.3.3 Handling Incoming Events
	11.3.4 Rendering an Event via the <bsp:htmlbEvent> Element

	11.4 Event Handling in Composite Elements
	11.4.1 Extending the Design of the Composite Element
	11.4.2 Using the Composite Element
	11.4.3 Use of IDs
	11.4.4 Integrating into the HTMLB Manager

	11.4.5 Data-Handling
	11.4.6 Event-Handling

	12 Additional SSP Extensions
	12.1 Business Text Framework
	12.1.1 SAP Example
	12.1.2 BTF Functionality
	12.1.3 Database Storage
	12.1.4 BSP Extension Element
	12.1.5
 BlF Editor in the Page Layout
	12.1.6 Preparing the BTF Document
	12.1.7 Retrieving BTF Content on Input

	12.2 Internet Graphics Service
	12.2.1 IGS Setup and Administration
	12.2.2 SAP Examples
	12.2.3 IGS BSP Extension
	12.2.4 Chart Data
	12.2.5 Chart Model Classes
	12.2.6 IGS customizing
	12.2.7 Image Click Event Handling
	12.2.8 Image Conversion

	12.3 BSP
 Library
	12.3.1 findAndReplace Element
	12.3.2 htmlbEvent Element
	12.3.3 Portal Integration

	13 MVC
- Model View Controller
	13.1 MVC Design Paradigm
	13.2 Application Structure
	13.2.1 Model
	13.2.2 Controller
	13.2.3 View
	13.3 Model Binding
	13.3.1 Getter/Setter methods
	13.4 Dynamic Model Binding
	13.5 Stateless MVC
	13.5.1 XML Serialization of ABAP Objects
	13.5.2 Server Cookie storage of the XML stream
	13.5.3 Controller Modifications to Support Serialized Models
	13.6 Building a Pattern Engine with MVC
	13.6.1 The Final ESS Application
	13.6.2 Writing the ESS Application
	13.6.3 Writing the Pattern Engine

	14 Help Systems
	14.1 F1-Field Level Help
	14.1.1 The Help UI
	14.1.2 Implementing the BSP
 Extension Element
	14.1.3 BSP
 Element Properties
	14.1.4 BSP Element Attributes
	14.1.5 Element Handler Class
	14.1.6 BSP F1 Help Controller Method=
DO_REQUEST
	14.1.7 Implementing the BSP F1 Help Application=
Model

	14.2 Dialog Windows
	14.3
 F4-Value Help
	14.3.1 Value Help Requirements
	14.3.2 The Solution
	14.3.3 The New BSP Element
	14.3.4
 Input Help Controller
	14.3.5 Input Help View
	14.3.6 Input Help Model

	15 Internationalization
	15.1 Multiple Language Support
	15.2 Logon Language
	15.3
 Unicode
	15.3.1 What is Unicode?
	15.3.2 Unicode in BSP

	15.4
 Online Text Repository (OTR)
	15.4.1
 Types of OTR: Alias and Long
	15.4.2 Working with OTR from ABAP
 Code
	15.4.3
 Special Note about using OTR

	15.5 Translation
	15.5.1 OTR
	15.5.2
 Field Labels and Quick Info

	15.6 Date Format

	16 Document Handling in SSP
	16.1 MIME Repository
	16.2 lCM
 File Handler
	16.3 Handling Non-HTML Documents
	16.3.1
 Test Program
	16.3.2 Display Document Inline
	16.3.3
 Display Document Inside HTML Page
	16.3.4 Display Document in New Window

	16.4 Data Manipulation
	16.5 Microsoft Excel Download
	16.5.1 Excel Files
	16.5.2 Excel Unicode Text File
	16.5.3 Unicode Formats and Endians with Excel
	16.5.4 Conversion to Binary String
	16.5.5 Addition of the Byte Order Marie

	16.6 Pushing the Excel Content bade through the browser

	16.6.1 Push Using the Current RESPONSE Object
	16.6.2 Push Using a Cached Response

	16.7 BSP
 Extension Element for Excel Download
	16.7.1 The Download Element User Interface
	16.7.2 The Element Properties and Attributes
	16.7.3 Compile Time and Runtime Checks
	16.7.4 Rendering Logic
	16.7.5 Trapping Events
	16.7.6 Calling the Element from a Page Layout
	16.7.7 Event Handler
	16.7.8 Get Structure Definition
	16.7.9 Process Excel Download

	16.8 Alternatives to the MIME Repository
	16.8.1 leM File Handler
	16.8.2 SAP Content and Cache Server

	16.9 ZIP Tool

	17 Customization
	17.1 Customization Overview
	17.2 Export-Modify-Import
	17.3 NetWeaver Theme Editor
	17.4 ALFS-ABAP Look-and-Feel Service
	17.4.1 ALFS Tool Scope
	17.4.2 What is ALFS?
	17.4.3
 How Does Customization Normally Work?
	17.4.4
 A New Theme from Five Colors
	17.4.5 Integration into Web AS
	17.4.6 The Source Code: Making It Work
	17.4.7 ALFS Theme Editor in Detail

	17.5 Configure a Theme Root
	17.6 Theme Root White List
	17.7 Error Pages
	17.7.1 Historical SSP Error Pages
	17.7.2 Error Pages-New Approach

	17.8 Logon Application

	18 Skilled in the Art
	18.1 Field History
	18.1.1 Working with <phtmlb:comboBox>
	18.1.2 Processing the Field History

	18.2 Server-Side Printing
	18.2.1 PRINT Method Interface
	18.2.2 PRINT Method Coding
	18.2.3 Printer Dialog

	18.3 Select-Options/Parameters
	18.3.1 UI Design
	18.3.2 Solution Structure
	18.3.3 Select-Option Controller Class Attributes
	18.3.4 Select-Option Controller Class Coding
	18.3.5 Select-Option Model Class Attributes
	18.3.6 Select-Option Model Class Coding
	18.3.7 Recreating Transaction SE16

	19 Breaking Out of the Mold
	19.1 Interactive Excel
	19.2 RSS Feeds
	19.2.1
 Consuming an RSS Feed
	19.2.2 HTTP Client
	19.2.3 XML
	19.2.4 BSP Output
	19.2.5 XSLT
	19.2.6 Creating an RSS Feed

	19.3 Mini-Portal
	19.3.1 Mini-Portal Example 1-Common Page Header
	19.3.2 Mini-Portal Example 2-Portal with Navigation
	19.3.3 Portal within the SAP GUI

	19.3.4 Current Weather Display

	20 Closing

