= PRESS

SAP PRESS is issued by
Bernhard Hochlehnert, SAP AG

SAP PRESS is a joint initiative of SAP and Galileo Press. The know-how offe-
red by SAP specialists combined with the expertise of the publishing house

Galileo Press offers the reader expert books in the field. SAP PRESS features
first-hand information and expert advice, and provides useful skills for pro-

fessional decision-making.

SAP PRESS offers a variety of books on technical and business related topics
for the SAP user. For further information, please visit our website:
WWWw.sap-press.com.

Horst Keller

The Official ABAP Reference

2-volume set with 3 CDs

2nd Ed. 2005, 1216 pp., ISBN 1-59229-039-6

Horst Keller

The ABAP Quick Reference

Instant access to keywords, additions,
syntax diagrams and more

2005, 231 pp., ISBN 1-59229-057-4

Ui Hoffmann
Web Dynpro for ABAP
2006, approx. 450 pp., ISBN 1-59229-078-7

Harald Réser

Workshop SAP Controls

SAP PRESS Essentials 10

2006, approx. 160 pp., ISBN 1-59229-073-6

ik, ’!yw«.li?lm.vhaéﬁ-’ﬁ

Z
£

Brian McKellar, Thomas Jung

Advanced
BSP Programming

7 PRESS

"fu‘Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

21
2.2

2.3
24
25

Introduction s h5
Target AUIENCE ..o 15
On What Releases Can You Use BSP? ... 16
BSP vs. Web Dynpro ABAP 16
Acknowledgements OSSO OUORSVBUROPOROON 17
What is BSP? ' R 21
Internet Communication Manager ... 21
Internet Communication Framework ..., 24
BSP Development Environment 25
HTMLB Rendering Family 26
BSP Compilercooviicice i 27
BSP RUNEIME oot s en s 28
BSP DebUZEEr ..ot et 29
MIME REPOSItOTY ...oooovvvrveecnieeveseesssssssssssess s e 30
SUIMIMATY oot s et enencrne 30
'HTTP and HTML -
Viewing the HTTP Traffic ... 32
Structure of HTTP .o 32
2.2.1 The HTTP Request Status Line ... s 35
2.2.2 HTTP Request Headers . 35
2.2.3 HTTP Header/Body Separator ... 37
2,24 HTTP Request Body ..o 37
2.2.5 The HTTP Response Status Line 37
2.2.6 HTTP Response Headers 38
2.27 HTTP Response Body ... eecns 39
Server Objects for HTTP Request and Response ... 39
HTML Forms and Data Handling ... 41
Mapping of HTML onto HTTP Requests ... 46
257 INPUE FIldS Lo 46
2.5.2 Checkboxes, Radio Buttons and Dropdown List Boxes ... 48
2.53 File Upload and Download ... 49
Contents

5

6

2.6 COOKIES ..ottt et et s 54
2.7 HTTP Redirects ..o e e e 58
2.8 Handling of HTML Resources in HTTP ... rceens 59
2.9 Troubleshooting Examples ... 62
2.9.1 MISSING RESOUICE .oviiviiieeicvceiev e 62
2.9.2 Non-Secure Warnings T s 63
293 Relative URLs That Become Invalid .. 63
2.9.4 Estimating Performancec..coovecivcccinrincnnnc i s s 65
3 HTTP Handler : - 67
3.1 URL Handling in the ICF Treec.cooviviovieencrineonennsss e 67
3.2 URL MaPPING .ooeieic ettt 68
3.3 Sample Handler for Reading Imagesccooccccoiomiimrnnecorninecinimncnns 69
3301 URL SYNTEX i s 71
3.3.2 Handler CoAINg ..o 72
3.4 Alias Handling 74
3.5 Handler Example—Table QUETY ..o sviees 77
3.5.1 Table Query Handler Implementation ..o 78
4 URLsinBSP 83
4.1 URL MANGHNE ..o i 83
411 What is URL Mangling? ..o cnrinicceceiiccncssenenssiranns 83
4.1.2 How is URL Mangling Done? ... 84
4.1.3 Attempting to Hide the URL Manglingccccev oo 85
4.2 Fully Qualified Domain Names 89
4.2.1 Motivation for FQDN ... 90
4.2.2 ICM Configuration 91
4.2.3 Browser Requirements 91
4.3 Namespace Mapping ... 92
4.4 URL Parameters ... e 93
4.5 URL ESCAPING oottt o 95
5 Authentication S 97
5.1 Basic Authentication ... e 98
5.2 SINGIE SIZN-OM .ottt e 102
53 Digital Certificates ... e e 105
54 ANONYMOUS SEIVICESiiieiieiiciiieni ittt st ene 108
5.5 Form-Based Authentication ... 109
Contents

5.6
5.7

6.1
6.2

6.3
6.4
6.5
6.6
6.7

71
7.2

7.3

7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Implementing a Simple Logon Applicationccocomreccicvcncnnecns 110
De-AUhenticationoocc.oooooesoeseesrcses s, e 113

‘S‘essio,n 'Ma.nageme»nt - o 115

Session 1dentification ... e e et rerans 115
SeSSION TIMEOUL ..ot esb et e 118
6.2.1 Catching and Handling a Session TIMeoUtccccvcveervermvavenss 119
6.2.2 Session TimeoUut iN BrOWSErcooiiiiicv oot essre v 120
Confusion with Processing Timeout 121

Catching and Handling a Restart after Timeouto.ccccooovovricccinniinn. 123
Session Management from the Browser ..o iivsvnnerennenones 125
Warning the User of a Pending Timeoutcc.....cooooovvvnirivoicineronnns 128
SUMIMANY . onoiiiecit e et et ettt aa e s e b b an s s snseemsassreenen 131

Using BSP Applications in SAP GUI Tl 133

Using a BSP Application in @ DYNPro ...
Pitfalls when Using BSP Applications with SAP GUI

7.2.1 Communication Path ...
7.22 The Second Authentication ...
7.2.3 The Second SESSION ..o vttt s sssaneneis
7.2.4 Window Open Behavior .
7.25 Effects of SAP's New Visual DeSIgN .coorviieeensecmnnineenesensecssanns
7.2.6 Loading HTML Pages Directly ...
Interaction between SAP GUI and BSP Applicationscccccccoivveine, 144
7.3.1 BSP Application Event to SAP GUI ..o
7.3.2 SAP GUI Event to BSP Application ... e e eenecccnnens

Starting a New Browser Outside the SAP GU! ..

Performance Measurements 151

Test Applications ... s 152
Quick Sizing with HTTP Trace TOO! ..ot 153
NetWOork Latency ... st ceress e

Server Processing Time

Browser ReNAering TIMEcoccocuriiuiieriienieenveeneenerecneenseneencnnscesccsnnes o

Determining HOtspots ... e 159
Load TESLING ... e e 161
SQL TIACES .ot et et e 165

Contents

7

]

9.1

9.2

9.3

10

10.1

10.2

11

BSP Extensions 167

Extension OVEIVIEW ...
9.1.1 Extension Technology .
9.1.2 Using BSP Extensions,
9.1.3 Finding Details about the EXtENSIONSc..occcvmiierrerieneencnnne 169
9.1.4 Available Extensions .

9.1.5 Extensions Designs

9.1.6 High Level Elements

HTMLB Event System
9.2.1 Event Dispatching

9.2.2 Manually Handling EVENtSccciiviiiiiiicie e 181
Common Extension Elements

9.3.1 <htmlb:tableView> ...

9.3.2 <htmlb:itree> ..o

9.3.3 <phtmlb:matrix> ..o .
9.3.4 <xhtmlb:protectDoubleSubmit> ..o 196
935 <phtmlb:containerTabStrip> ..o 197
9.3.6 <phtmlb:formLayout> .. 200

BSP Element Expressi“ohs and: Iterators N 20‘5:5

BSP Element EXPressions ... 205
10.1.17 Whatis @ BEE? oo 205
10.1.2 N=1, Using Any BSP Element as BEE ..o 206
10.1.3 HTML BEE i .. 209
10.1.4 Table BEE .o 211
1015 XML BEE oo st s e 212
10.1.6 Errors and Error Handling ..o e 215
Table View Iterators ... 215
10.2.1 What is a Table View Iterator? ... 217
10.2.2 Method GET_COLUMN_DEFINITIONS . 218

10.2.3 Method RENDER_ROW_START ...t e 220
10.2.4 Method RENDER_CELL_START ... RO TSRIUUUPPRTRRRRION 222
10.2.5 Finished OUEPUL ..ccciic e s 225

Creatihg yourown BSP Extension Element 227

Creating a BSP Extension Element ...
11.1.1 Extension Framework Hierarchy

11.1.2 User-Defined Validationcccccccenninnnas

11.1.3 Element ConteNnt wo e e
Writing a Composite Element ...
11.2.1 Designing a New Composite Element ... 231
11.2.2 Processing Other BSP EleMents ..o 233

Contents

12

121

12.2

12.3

13
13.1
13.2

11.2.3 Writing the Composite BSP Element
11.2.4 Handling of Inner Data BSP Elements

A Deeper Look at BSP Extensions Eventsccoconmnnniienn

11.3.1 Introduction to BSP Extension Events

11.3.2 Rendering EVENtS ..o

11.3.3 Handling Incoming Events ..., .
11.3.4 Rendering an Event via the <bsp:htmibEvent> Element 243
Event Handling in Composite Elements ... ivnecnnciiinnnns 244
11.4.1 Extending the Design of the Composite Elementcc.ccccovmuvnnees 245
11.4.2 Using the Composite Elementcccooviiiiiiireee,

1143 USE OF IDS oo

11.4.4 Integrating into the HTMLB Manager ..

11.4.5 Data-Handling ... s s
11.4.6 Event-Handling ..o
Additional BSP Extensions 253
Business Text Framework ... 253
1211 SAP EXAMPIE it s 253
12.1.2 BTF FUNCEHONAILY ..o e e 254
12.1.3 Database STOrage ..o 255
12.1.4 BSP Extension Element ' 256
12.1.5 BTF Editor in the Page Layout ... 257
12.1.6 Preparing the BTF DOCUMENT ..ot 258
12.1.7 Retrieving BTF Content on nput ... 258
Internet Graphics Service ...t 260
12.2.1 IGS Setup and Administration [260
12.2.2 SAP Examples ... 261
12.2.3 1GS BSP EXLENSION oeoieieiiiicece e e 261
12.2.4 Chart Dataoocriiiiiiie et 262
12.2.5 Chart Mode! Classes 264
12.2.6 1GS Customizingcccoeeenn . 266
12.2.7 Image Click Event Handling 267
12.2.8 Image CONVEISION .ot s 268
BSP LIDIArY ..ot e e 268
12.3.1 findAndReplace Element ... 268
12.3.2 htmlbEvent Element

12.3.3 Portal Integration ..o s

MVC—Model View Controller | 275

MVC Design Paradigm ... 275
Application Structure ... 275
13.2.17 MODEI it e

13.2.2 Controller .
T3.2.3 VW e e e

Contents

9

10

13.3

13.4
13.5

13.6

14

141

14.2
14.3

15
15.1

15.2
15.3

15.4

Contents

MOE] BINAINE oo et sa e 284

13.3.1 Getter/Setter methods .ot 286
Dynamic Model BINdINGcccoooviieiiiiiiie e 288
Stateless MVC 291
13.5.1 XML Serialization of ABAP Objects 291
13.5.2 Server Cookie Storage of the XML Streamccccoevene. . 292
13.5.3 Controller Modifications to Support Serialized Models 293
Building a Pattern Engine with MVCccccoooimminmvirneiereeressseeecs s 295
13.6.1 The Final ESS Application ... e 297
13.6.2 Writing the ESS Applicationceoeeeeerieee e 298
13.6.3 Writing the Pattern ENgineccoocvmnmiinmenecmcenissnens e 301

Help Systems 307

F1—Field Level Help ..o et 307
1471 The Help Ul s 307
14.1.2 Implementing the BSP Extension Elementcccccnevvccrnnine 31

14.1.3 BSP Element Properties
14.1.4 BSP Element Attributes
14.1.5 Element Handler Class

14.1.6 BSP F1 Help Controller Method—DO_REQUEST ... 318
14.1.7 Implementing the BSP F1 Help Application—Model . 318
Dialog WINAOWSc.cuiiiiire ettt 319
FA—Value Help ..ottt 322
14.3.1 Value Help ReqUIremMents 322
14.3.2 The Solutionccccoevian. ... 323
14.3.3 The New BSP Element .. 324
14.3.4 Input Help Controller 325
14.3.5 INpUL HElP VIEW (oot 326
14.3.6 Input Help Model ..o 329
Internationalization - 337
Multiple Language SUPPOTt ..ot
LOGON LANGUAZEcoooiiiiii ettt e
URICOAE ittt et et eb b
15.3.1 What is Unicode? ...

15.3.2 Unicode in BSP .ottt
Online Text Repository (OTR)coocovciiineiimrre e
15.41 Types of OTR: Alias and LONG .cocceiirieicivriicre e 347
15.4.2 Working with OTR from ABAP Code ..ot 348
15.4.3 Special Note about using OTR ..o e 349

15.5

15.6
16
16.1

16.2
16.3

16.4
16.5

16.6

16.7

16.8

16.9

17

17.1
17.2
173

TrANSIATION <o e 349
15.5.T OTR ettt cacr s e 350
15.5.2 Field Labels and Quick INfO ..o 351
Date FOIMat . e 352
Document Handling in BSP - - 355
MIME Repository

ICM File Handler

Handling Non-HTML Documents

16.3.1 Test Program

16.3.2 Display Document Inline

16.3.3 Display Document Inside HTML Page

16.3.4 Display Document in New Windowcccuiriemeinnenricrnnnnnns
Data Manipulation ...
Microsoft Excel Download ..o
16.5.1 Excel Files

16.5.2 Excel Unicode Text File ..o
16.5.3 Unicode Formats and Endians with EXcelccocooovviveirinicnnins 369
16.5.4 Conversion to Binary STring ... 370
16.5.5 Addition of the Byte Order Mark ..o 371
Pushing the Excel Content back through the browsercccoceoe. 371
16.6.1 Push Using the Current RESPONSE Object

16.6.2 Push Using a Cached ReSPOMSEcccocorniiivnieneeneneeieeinrcereeeceine

BSP Extension Element for Excel Download ..o
16.7.1 The Download Element User Interfacec.coeocicninincnenns
16.7.2 The Element Properties and Attributesccoicicnciniicciins
16.7.3 Compile Time and Runtime Checks
16.7.4 Rendering LOGIC ..o
16.7.5 Trapping EVENES ..ot e
16.7.6 Calling the Element from a Page Layout

16.7.7 Event Handler

16.7.8 Get Structure Definition ..
16.7.9 Process Excel Download ..o
Alternatives to the MIME RepoSitoryoccocvcimminnininirceececcenns
16.8.1 ICM File Handler ...
16.8.2 SAP Content and Cache Server ...

ZIP TOON 1o IR
Customization 395
Customization OVerview ...
Export—Maodify—Import ...

NetWeaver Theme EdItOr ...

Contents

"

LY

17.4 ALFS—ABAP Look-and-Feel Service ... iicecincsiensnninn, 398
17.4.1 ALFS TOOI SCOPE ..oriiicisircerecnnieten et 399
17.4.2 WHRAL 1S ALFS? oo iiiieessare s sriees coscsne e csessssnsss e cese oo 399
17.4.3 How Does Customization Normally Work? ... 401
17.4.4 A New Theme from Five Colors . 401
17.4.5 Integration into Web AS ... 402
17.4.6 The Source Code: Making 1 WOTKo..oorienrcvcenemenrrcrionnroniee s 404
17.4.7 ALFS Theme Editor in DEtailccococeererreormeniierenneiieci oo 405
17.5 Configure a Theme ROOT ..o oo 406
17.6 Theme Root White List 406
17.7 Error Pages . 408
17.7.1 Historical BSP Error Pagescooeoceiuiereeniririincienennn e . 408
17.7.2 Error Pages—New Approach ..o oennes . 409
17.8 Logon Application 412
18 Skilled in the Art ' S 417
181 Fleld HIiSTory ...ttt e 417
18.1.1 Working with <phtmlb:comboBoX> ..o 417
18.1.2 Processing the Field HiStory ... 419
18.2 Server-Side Printing ... s
18.2.1 PRINT Method Interface .
18.2.2 PRINT Method Coding
18.2.3 Printer DIZlOZ oovvreceeeeteee e e
18.3 Select-Options/Parameters ... et
1831 UL DESIZN oottt e enenen
18.3.2 Solution Structure .
18.3.3 Select-Option Controller Class Attributes .
18.3.4 Select-Option Controller Class Coding 432
18.3.5 Select-Option Model Class Attributesoccocuivcrinnnciincinns 434
18.3.6 Select-Option Model Class Coding ..o 436
18.3.7 Recreating Transaction SET6cccoocieinivcccciee e 442
19 Breaking Out of the Mold 449
19,1 Interactive EXCE ..ot 449
T19.2 RSS FEBAS .o s s 451
19.2.1 Consuming an RSS Feedciviiiniiiiececc s 451
19.2.2 HTTP CHENE woeiii et e et em ettt e v aeenene s enn 452
T9.2.3 XML oiiccrim et bbb 453
19.2.4 BSP Output .. 454
19.25 XSLT e . 456
19.2.6 Creating an RSS Feed ..o, e 457
T Antontc

g

i e ol

) e st

19.3

20

Mini-Portal ..o et Lt b bbbt 458
19.3.1 Mini-Portal Example 1—Common Page Headerccoccc..... 458
19.3.2 Mini-Portal Example 2—Portal with Navigation .

19.3.3 Portal within the SAP GUI ..o
19.3.4 Current Weather Displayco....cooo.coooiormmreesoeo oo
Closing o o 471

Appendix—BSP Utility Classés S '“473‘

The Authors - 483
‘Index 485
Contents

13

Introduction

The history of BSP began in the late 1990s. Back then, the SAP Internet Transac-
tion Server (ITS) and the SAP Workplace—SAP's first attempt at a portal—
depended heavily on the use of external Web servers. These solutions neither lev-
eraged the inherent strengths of the ABAP technology nor re-used current devel-
opers' skill sets.

Therein lay the greatest technical challenge to SAP as Web-based technologies
became essential to all businesses. Companies began to realize that E-business
was still just business and therefore expected their ERP solutions to transition eas-
ily into this brave new world.

Starting with Release 6.10, SAP began a major overhaul of its ABAP technology
stack. The company broke the traditional Basis layer away from the applications
that ran on it and renamed this new technology layer Web Application Server
(Web AS). But this name change was far more than a marketing move. With this
release, SAP had begun to build native Web server technology into the ABAP Ker-
nel. No longer would SAP technology be dependent upon external Web servers
or programming languages. ABAP itself was now HTTP-enabled!

Naturally, ABAP was extended with a new Web development environment,
called Business Server Pages (BSP). Like all other ABAP programming tools, BSP is
integrated into the ABAP Workbench (SE8Q) and fully supports the Transport
Management System (TMS). And, given its recent birth, BSP also fully embraces
the new ABAP object-oriented technology.

Target Audience

The target audience for this book is anyone who is currently an ABAP developer
or who is interested in becoming an ABAP developer. BSP is another tool in the
developer's tool box, one that adds value to any ABAP development team.

It does not matter if you have never done BSP development, are a novice BSP
developer, or have several years of BSP development under your belt; there
should be something for everyone in this book. We attempted to make this the
definitive work on the subject of BSP, revealing behind-the-scenes aspects and
discussing features in a new way.

This book is not based solely on the underlying technology. Several years of expe-
rience building real-world BSP applications at a customer site were also used in
writing this book. Therefore, you will find solutions and sample source code to

Iintroduction

15

-

help you overcome common development hurdles. Toward that goal, you will
find all the example source code presented in this book on the accompanying CD.

On What Releases Can You Use BSP?

BSP has been shipped as an integrated ‘part of the ABAP technology stack since
Web AS Refease 6.10. Release 6.10 contains the functionality to create basic BSP
pages with flow logic.

With Web AS Release 6.20, SAP introduced major enhancements to the BSP
technology: Model View Controller and BSP Extension Elements. With Release
6.20, Service Pack 34, a new HTML rendering engine, and a complete new BSP
Extension library, PHTMLB, were added. Because of these additional enhance-
ments to BSP, customer development should really only be done on Web AS 6.20
with SP34 or higher.

SAP continued to enhance BSP with SAP NetWeaver '04 (Web AS 6.40) and SAP
NetWeaver '04S (Web AS 7.0); however, nearly every feature of BSP is in sync
between the major releases. This means that even if you are on an older Web AS
6.20, you still reap the benefits of new developments within the NetWeaver
releases. Although you will rarely find in this book that a feature is limited to a
specific release, we will point this out when it occurs.

With the coverage for BSP within the latest technology releases of ABAP, you will
find BSP present in the equivalent releases of the SAP application components as
well. This means, for instance, that R/3 Enterprise (with or without Extension Set
110 and 2.00) and mySAP ERP 2005 (also known as Enterprise Core Component
5.00 or ECC 5.00) both contain the technology necessary to create BSP applica-
tions.

BSP vs. Web Dynpro ABAP

In the past year, much of the attention within the SAP world has focused on SAP's
next generation technology: Web Dynpro. As this book goes to print, Web Dyn-
pro for ABAP is scheduled for general availability in spring of 2006.

In truth, Web Dynpro contains many of the enhancements that BSP developers
have always wanted. Enhancements like built-in value-help and select options
will become standard in Web Dynpro, but must be added by the customer into
the BSP environment. Do not worry, however: The task of adding many of these
enhancements to BSP is the subject of the last one-third of this book.

All this begs the question: If Web Dynpro ABAP (WDA) is so great, why continue
to use BSP (or for that matter why write a book about it?). There are several archi-

latendiirtinn

tectural differences between BSP and WDA. WDA may have some more
advanced features compared to BSP, but it is a far more restrictive framework.
First of all, WDA is stateful only. BSP supports both stateful and stateless pro-
gramming models. Stateless programming is essential to high-performance Inter-
net-facing applications.

WDA is also designed to be future-proof, obscuring the specific client's rendering
technology. As a consequence, the tool does not allow low-level access to include
your own custom HTML, JavaScript, or other controls, WDA targets the browser
today, but tomorrow it might well be running within a smart client using entirely
different technologies (such as XML and native Ul controls). To keep this technol-
ogy switch possible, the rendering logic is completely hidden from the developer,
presenting only an abstract Ul layer with abstract controls. On the other hand,
BSP has no such restrictions. BSP is strictly centered on browser-based deploy-
ment and therefore allows an extreme level of custom rendering. This makes BSP
a perfect platform for applications that require pixel-perfect fayout or specialized
Ut efements.

The other aspect to consider is that Web Dynpro ABAP will not be available until
NetWeaver '045. Therefore, you must upgrade your existing system to be able to
use these new development tools. BSP, on the other hand, has been available for
several years and is included in the vast majority of supported SAP product
releases. For several more years, BSP may be your only choice for Web develop-
ment using the ABAP language.

Acknowledgements

First, we would like to thank the SAP Developer Network (SDN) content team,
particularly Mark Finnern and Craig Cmehil, for not only providing a great service
in the form of SDN, but also making sure that BSP has its comfortable little home
there.

This book itself has deep roots within SDN. In fact, it is doubtful that it would
exist at all if were not for SDN. Several sections of the book have their roots as
SDN weblogs. The two authors of this book (who to this day have never met in
person or even spoken on the phone) would likely never have crossed paths were
it not for the virtual community that is SDN.

For their support, guidance and suggestions, Thomas would like to thank co-
workers and friends: Chris Cassidy, Sam Mason, Lynn Scheu, and Sandy Smith. A
special thanks goes to Steffen Knoeller, who behind the scenes has influenced
many chapters in this book, without even knowing it!

Aclenowwladoemente

a7y

aR

Brian would wish to thank the complete team that made BSP happen. There is
Albert Becker, who showed a team can work across many groups, and who taught
the lesson late one night that VPs still know how to debug ABAP code. There are
the ICM colleagues, Oliver Luik and Bernhard Braun, who measured performance
in CPU cycles and give a new appreciation for "blazing fast.” Not to be forgotten
are their partners in crime, the ICF colfeagues: Masoud Aghadavoodi, Christoph
Hofmann, and Daniel Walz, who has helped many hours so that we could write
our first Web-based logon application. Then there are the men in black, the secu-
rity group: Wolfgang Janzen and Martin Rex. The last import group required to
start the project was the ABAP Language Group: Andreas Blumenthal, who fights
like a lion for anything with ABAP stamped on it and who did a lot for BSP (even
afthough it was not called ABAP Server Pages!); Holger Janz, who taught me the
elegance of ABAP programming; Jirgen Lehmann and Peter Januschke, who
taught me the complexities of compiler writing in ABAP and that it is actually
quiet easy; Klaus Ziegler and Kay Mueller-Silva, who integrated JavaScript, Ulrich
Elsaesser, who always used a short pencil for the pre-compiler; and the x-team,
Karsten Bohlmann (XSLT) and Rupert Hieble (XML).

In building BSP itself, the Workbench needed minor tweaking, plus some hard
development by: Sigrun Wintzheimer, Michael Wenz, Margarethe Czarnecki,
Andreas Herrmann, and, of course, Jirgen Remmel. The runtime was done by our
small group: Rudiger Kretschmer, who had the idea (and together with a col-
league wrote the first ABAP book, and always knows the answers to everything or
knows someone that knows); Bjérn Goerke who hacked the runtime years ago;
Regina Breuer who did MVC; Jutta Bindewald, and Arndt Rosenthal.

And then there is Steffen Knoeller, who shared my office for years and taught me
HTML. Quality management was done by Michael Lottbrein, who rolled the first
sneak preview out the door, Judith Rabetge, and Rainer Liebisch. Heidi von Gei-
sau and Tina Haug wrote all documentation. Our first support steps were handled
by Dongyan Zhao. Not to be forgotten is our extended support troop: Artem
Gratchev, Vitaly Romanko, Yulia Kuznetsova, Dmitry Vladimirov, and Andrey Ali-
mov. They not only taught me two words in Russian, but they also showed each
and every time that the trickiest problems are theirs to solve! Finally, a good
product required a few good salesmen: Axel Kurka (who passed away unexpect-
edly and before his time; we will remember him fondly) and Dirk Feeken, who
came up with the BSP name over lunch!

Brian can only say: it is still a great team!

For his guidance and patience, we wish to thank our publisher from Galileo Press,
Florian Zimniak. Although we broke every rule and deadline he gave us, he stuck

Introduction

with us till the end. We also thank John Parker of SAP PRESS America for his edi-
torial skills and for also putting up with our rule-breaking nature.

Finally we must thank our families who put up with us through this experience.
Without the support of our wives, Shari and Anja, we would never have pulled it
through.

Acknowledgements

19

S

1 What is BSP?

This chapter gives an overview of BSP, showing both the design and
runtime aspects. Infrastructure such as the MIME repository, debug-
ging and logging are touched on, to show BSP as a complete Web-
authoring environment.

Whenever one is asked “What is BSP?", the best answer is usually "a plain white
sheet of paper, ready to be drawn on.” At the most abstract level, BSP provides
both a complete development environment in which Web pages can be written
and the runtime to serve these pages on request to a browser. BSP does not place
any constrains on what can be rendered with a BSP page.

However, at a technical level, BSP can be split into a number of different compo-
nents, all of which are closely integrated. This chapter provides an overview of the
major components, which together can be called BSP. In all cases, an abstract
view will be given to help you better visualize how each component works within
the Web AS.

14 Internet Communication Manager

The Internet Communication Manager (ICM) is responsible for handling all
aspects of the HTTP communications between all browsers and the Web AS. The
ICM is completely implemented inside the Web AS kernel, and always runs as a
separate process, to be able to handle the high overhead involved in establishing
and managing TCP/IP connections. Figure 1.1 provides a graphical overview.

When the user enters a URL in the browser that points to the Web AS, the
browser will first open a TCP/IP connection to the Web AS. The ICM will accept
the incoming TCP/IP connection and then will wait until the complete HTTP
request has been received from the browser before dispatching it to the next layer
for processing. After processing within the ABAP stack, an HTTP response is avail-
able for transmission to the browser. The HTTP requests and responses are trans-
ferred between the ICM (running in a separate process) and the ABAP stack using
shared memory pipes.

The ICM rarely, if ever, examines the incoming HTTP request. Not even authenti-
cation information is extracted from the HTTP request. All of this processing is
done within the ABAP stack.

What is BSP?

21

BSP Applications

|
[HTMLB Rendering Library |
]

MIME

Business Server Pages Run'tlme Repository

Internet Communication Framework (ICF)

Internet Communication Manager (ICF)

Figure 11 Block Diagram of BSP and Other Relevant Components

Whereas the [CM runs as one process for all HTTP requests, within ABAP different
sessions are executed in their own "processes." The most important decision that
ICM must make is into which session a HTTP request is placed. Either it can be an
existing session, or the ICM can open a new session for the specific HTTP request.
Whether the session is switched to stateful, to also handle future requests for the
same application, is decided by the upper layers within the ABAP stack, which are
also responsible for setting a session identifier in the HTTP response. Session iden-
tification is done by ICM, but the application at the upper level carries the
responsibility for associating a session with a specific browser instance. This can
be done either by setting a cookie that contains the session 1D, or to encode the
session ID into the URL.

To improve performance, the ICM is capable of opening many connections in par-
allel. In addition, the browser normally uses at least two connections for loading
Web pages from the server. For some requests, loading images for example, it is
not critical whether the requests are processed in parallel in different ABAP ses-
sions. However, once multiple HTTP requests are received for the same session, as
happens when a complete frameset is loaded, the ICM will queue the HTTP
requests that all must be processed in the same session. It is not deterministic in
which sequence requests are processed. However, it is guaranteed that the
requests will be serialized for each session and that only one request will be pro-
cessed at any time within a specific ABAP session.

The last important aspect of the ICM fayer is that it supports a cache, into which
frequently requested resources can be placed. The decision to cache a specific
HTTP response is done by the upper tayers. Once the flags are set, |CM will asso-
ciate the URL from the HTTP request with the results from the HTTP response.
This information is placed into the cache. All subsequent HTTP requests for the

22 What is BSP?

same URL are answered directly from the cache and do not even enter the ABAP
stack. This infrastructure is frequently used to cache all non-volatile objects usu-
ally associated with a Web page, for example cascading style sheet files, JavaScript
files, and images.

= ' CEE
List Edit Goto Administratton Selings System Heip

Gl e aBieee SNE 8D W

ICM Monitor V
JE A @& rasmsenos [[EEE o

C

Relesse s | 1[5 3] 81127]|

(]
ICH Status: Running - ©oQ =
Restart After Error true i
Trace Level (8-3): 1
Created Worker Threads: 10 / 12 / 20 (Current / Peak / Maximum) i
Connections Used: 4 / 17 [560 { Current / Peak / Maximum)} -
Queue Entries Used: 9 /7 4 /5688 (Current / Peak / Maximum) -

tatis” L TProgessed Request

3.885 Available
3.804 Available
2.725 Available
2.694 Available
3.867 Availabte

<]

[

- | 8B (1) 000 P u=0o4s [INs [31]

Figure 1.2 Transaction SMICM

The operation of ICM is controlled via transaction SMICM (see Figure 1.2). This
transaction gives a complete overview of all facets of ICM. For developers, the
following aspects are particularly interesting:

» Overview of available ports and the associated protocols (HTTP/HTTPS).
» Activating HTTP tracing and reviewing the trace file.

» An overview of the HTTP log, which shows all HTTP requests for the specific
Web AS server. This is also off interest to review for unusual HTTP traffic, or to
see unexpected HTTP requests (for example a broken link resulting in a "Not
Found" message each time).

» An overview of the ICM cache and the possibility to clear the server cache.
This high-level overview of the ICM has only highlighted those aspects that are
important for a BSP developer. In essence, ICM accepts HTTP requests, places

them into the ABAP stack (the correct session) and will return a HTTP response
afterwards. The question now is: What happens within the ABAP stack?

Internet Communication Manager

23

A

1.2 Internet Communication Framework

The Internet Communication Framework (ICF) handles access control, authenti-
cation, and dispatching of incoming HTTP requests. In addition, the ICF starts and
controls the debugging of HTTP requests. The operations of the ICF layer is con-
trolled by transaction SICF (see Figure-1.3).

Maintagl service
[Create Hosysenice |[%7||][]
=lal@m)S

Virtuei Hosts { Sepvices
N .L default_host

[Documentation
VTR, DEFRULTHOST

b &) 1wWoA
l> [:) my : ’]
. S NAMESI?ACE SAP 1S O
T ~ RESERVED SERVICES AVAIL
" IPUBLIC SERVICES Sl

: BASIS TREE {BASIS FUNCTIC
BUSINESS SERVER PAGES

< & sap NAMESPACE SAP
abapcalc
KA/ | RN S e
L : - i I BBB(1) 000 (2] us0048 [INS
T TR T - = CoE .

Figure 1.3 Transaction SICF

As a basis for its work, the ICF maintains a tree of URL segments, which looks very
similar to a directory structure on disk. For each incoming HTTP request, the
requested URL is split into segments. Each segment is then matched against a
node in the tree. In effect, the segments are used to navigate the tree.

The first check done by ICF is to ensure that all nodes traversed are active. SAP
only ships the complete ICF tree in an inactive state, and customers are advised to
activate only those parts of the tree that will be used productively. This is just a
first line of defence for enabling only required ICF nodes. All inactive nodes will
cause a HTTP answer of "Not Active" to the browser, preventing the specific HTTP
handler from even being started. If the incoming URL can not be matched with a
tree traversal, ICF will answer with "Not Found."

After a valid path has been followed through the ICF tree, an authentication step
is performed. Authentication information is either read from the incoming
request, or can be configured for a specific ICF node. If no authentication infor-
mation is available, the HTTP request is answered with "Unauthorized,” in order

What i< RSP?

to trigger the browser to bring up a small popup asking for the user's name and
password.

After the authentication step is completed successfully, all handlers that were
found traversing the tree are processed in sequence, starting at the handlers for
the root node and moving down to the handlers for the leaf node. Each handler
Is started and given the HTTP request to process. Should the handler not process
the HTTP request, the request is passed to the next handler. For BSP, the HTTP
handler is installed on the BSP root node along the path /sap/bc/bsp. ICF han-
diers are discussed in detail in Chapter 3.

1.3 BSP Development Environment

A BSP application is essentially a collection of BSP pages (or controllers). The
application itself is only a logical object for collecting the pages, and setting some
global attributes. There is no true functionality tied to the RSP application, with
the exception of an application class that is made available to all BSP pages.

The BSP development environment is completely integrated into the ABAP Work-
bench (transaction SE8Q). In the navigation tree, all BSP pages, controllers, views,
and MIME objects are displayed. On the right side, it is possible to edit the BSP
pages (see Figure 1.4).

i} BaPPage Emt Goto Utvlmes Environment Sywtem Help

k3 'm‘@@}@ig“f‘ﬂﬁ

@'Mm\e Repository
& Repository Browser

BSP-Applikation

"3

fitco

Lxlge]

e R EER IR
1

Object Name
7 2] Pages with Flow Logic
P (g nav
I basic_abap.him
basic_include.htm
I basic_javascripthim

Iﬁlmjl

IW [JIIIII)

<%€ page language="abap” %=

<%€ inctude file="head_abap htm" %> -
This page checks basic ABAP scr1pnng 4
except for control directives.

<p= .
<h2>1. Runtime fields: </h2>
<table border=1 width="100%"> 5
<tr bgcolor="#c@chHeh"><td> Source CU(E]
=tr><td nowrap=runtime->application_ YLJ‘

ctreetd powranerinfime. »anniicatian

@

% BBB(1) 000 I\ us0049 | INS

]‘ -

Figure 1.4 BSP Development Environment

BSP Development Environment

25

The first important aspect of the BSP development environment is the support of
all development-related activities, such as creating new BSP applications, editing,
and deleting. The second important aspect is that the BSP development environ-
ment also manages the integration into the transport system. BSP applications are
effectively development objects, and they have the same integration into SE80 do
normal ABAP classes. ’

The other major responsibility of the BSP development environment is to trigger
the BSP compiler when requested.

1.4 HTMLB Rendering Family

Although the BSP approach itself is a “clean sheet of paper” for the developer's
own creativity, BSP does provide a complete rendering library, called HTMLB
(HTML for Business). With this library, it is possible to use high-level programming
constructs to achieve an excellent rendering, much faster than can be done by
hand. For example, using one control such as <atmlb:tableView> is sufficientto
render out a table in HTML that supports paging (see Figure 1.5).

The HTMLB fibrary initially supported nearly all typical controls that are required
for a feature rich Web user interface. Later, the HTMLB library was extended with
two additional libraries: XHTMLB (Extended HTMLB) and PHTMLB (Pattern
HTMLB). These two libraries contain more complex controls that are useful for

improving the user interface.

The HTMLB family of libraries are discussed in detail in Chapters 9 and 10.

<#@extension name="htmib” prefix="htmib"g>
<htmlib:content design="desTgn2an3">
<htmib:page>

<htmlb: form>

<% DATA: tbl TYPE STANDARD TABLE OF t100. f
SELECT * FROM t100 INTD TABLE tbl WHERE SPREL = 'EN™. %> ;

<htmib:.tableView id="tv1" table="<%=tb1%>" visipleRowCount="5" />

<Ihtmlb: form> AR

<thtmib:page>
</htmlb:content>)i

6} AGeb . | Msglr Nachrichtenlext |

| | /SAF’D!.\C«’LSY.{L‘Id B The \D\-)ermm cannot be greater tharrthe upper (mit

rafg‘l—éAPDMULSMW] 808 No file could be found far the imperted data

i EM ‘ ISAPDMCLSIAW | 810 | No pertner exists wth the name '8, type ‘&

’—;Ni [isaporcasun | 211 [Create a partner profile for message type ‘&'

m i ISAFTMC/ALSNMW | 812 k File & transferred for Daoc generation

T senel™ T vonzsend [z 7 T T

&) Done) [R ¥ P intranet e |

- —

Figure 1.5 Example Program Using HTMLB Library

26 Whatis BSP?

1.5 BSP Compiler

BSP pages are written as normal text. However, if you were to process these
dynamically in any form, you would never be able to achieve an acceptable per-
formance. Therefore, BSP pages are "compiled” into normal ABAP classes, which
can be executed at runtime. The actual generation and compilation of the BSP
pages is done the very first time that a BSP page is requested. As the first step, a
small part of Workbench code will retrieve the BSP layout from the database, and
request that the BSP compiler transform the layout into ABAP code within one
method of a class. The ABAP compiler is used to compile the class, and store a
load for it. Thereafter, the BSP runtime can work with the class. On subsequent
requests, the same ABAP class will be used.

It is worthwhile to learn a little more about what the BSP compiler does. Let us
assume a small BSP application with the following code, which is a mixture of
HTML and ABAP coding.

<html><body><{form)
<% DATA: tbl TYPE STANDARD TABLE OF t100,
row LIKE LINE OF tbl.
SELECT * FROM t100 INTO TABLE tbl WHERE SPRSL = 'EN'. %>
{table border=1>
<% LOOP AT tbl INTC row. %>
<tr><td><%=row- SPRSL%><{td><%=row-TEXT%></tr>
<% ENDLOQP. %>
{/table>
{/form></body></html>

For each BSP page, a separate class is generated, usually with a very complex
name consisting mainly of numbers. The BSP development environment will store
the mapping of URLs of pages onto the generated class name. The class will have
one layout method that is generated by the BSP compiler. Note that this code
below has been extremely simplified, so as to retain the character of the transfor-
mation without having too much complexity here.

METHOD layout.
print('<html><body><{formd>').
DATA: tbl TYPE STANDARD TABLE OF t100,
row LIKE LINE OF tbl.

SELECT * FROM t100 INTO TABLE tbl WHERE SPRSL = 'EN'.
print('{table border=1>').
LOOP AT tbl INTO row.

print('<rr><wdd').

BSP Compiler

27

print(row-SPRSL).
print('<td>').
print(row-TEXT).
print('</te>!).
ENDLOGP .
print(1{/tabled</form><{/body></html>!).
ENDMETHOD.

Similarly, all event handlers of BSP pages are placed into separate methods on the
same class. Page attributes become class attributes. With this model, the BSP
runtime will have one class that contains all relevant functionality of a BSP page.

Handling of rendering libraries, such as the HTMLB library, is very similar. Let us
look at the one line that rendered the table.

{(htmlb:tableView id="tv1" visibleRowCount="5" table="<%=tb1%>">
</htmlb:tableView>

This BSP code will be transformed by the BSP compiler into the following ABAP

statements:

DATA: _tagl23 TYPE REF TO cl_htmlb_tableview.
CREATE OBJECT _tagl23.

_tagl23-vid = 'tvl’.
_tagl23->visibleRowCount = '5'.

GET REFERENCE OF tb_ INTO _tag123->table.
_tagl23-YBEGIN().

_tagl?3->END().

The BSP compiler has a mapping table to determine how specific controls are
mapped onto classes. Code is generated in order to have a reference available to
instantiate the class, set the attributes correctly, and then call the class to render

the corresponding HTML.

1.6 BSP Runtime

Given the already excellent infrastructure of the HTTP framework, the BSP run-
time is simply hooked into the framework with one HTTP handler class. It is this
class that receives the incoming requests, installs an error handler, and then does

the main processing required for the B5P page.
The main processing of the BSP runtime is actually a very lightweight layer. Ils

main function is to map the incoming URL onto the generated class that repre-
sents the BSP page. The class is instantiated, and then the corresponding methods

28 Whatis BSP?

are called to do event handling. Finally, the layout method is called to write the
answer for the browser,

1.7 BSP Debugger

A debuggeris a must in a good development environment, and BSP it is no differ-
ent. Breakpoints can be set from within the BSP development environment (see
Figure 1.6). When the BSP page is executed, the processing of the BSP page will
be stopped within the debugger at the breakpoint. Note that this requires the
developer to have an open SAP GUI session with the application server.

_'Properties oA, EventHandier . ‘P’E’;’Ea?iﬁﬁiﬁ‘téﬂ
[Entnis<body=<forn>

<% DATA: tbl TYPE STARDARD TABLE OF 1108,
row LIKE LINE OF thl.
SELECT * FROM t108 INTO TABLE tbT WHERE SPRSL'= 'EN". &%=

<tabte border=1>

% LIPS

<t bugging Edit © kpoint ;
< proud.. Debugging Edil CGoto Breakpaints Setin
<ftable AR

</form=</b

Flefds Table J Ereakpointﬂﬁf‘JatmpOims ﬂ Calis . h Qverview Jrsem'ngs 5
BSP Application | BODK_CHAPTERDH <) K =
{ BSP Page default ntmt - T =i

11 Business Server Page 7

> @ SELECT * FROM t100 INTO TABLE tb] WHERE SPRSL = 'EA". %>
P «<table border=1i= . o o o
Main Program CL_0232ACNZSFIWDBSEPEBSNEENTOC, (3] M DE
RalE

Source cade of _ |CL_U23ZACOZSFIMDBS EPGBASNBEWTOCHI03 | < N

4 [METHOD _ONLAYOUT (CL,_U23ZACQZSFWWDBSEPBBASNEEWTO),”

i = @ SELECT * FRCM tiBD INTO TABLE tbl WHERE SPRSL : "EN’ .’ .)
_M_PAGE_CONTEXT->M_0UT ->PRINT_STRING(VALUE = _M_HTHL POOL OFFSET = 24 ' -

LOOP AT tb1 INTG row. o

:

4l

Figure 1.6 BSP Debugger: Setting a Breakpoint, Source View, and Code View

When looking at Figure 1.6, we see first the BSP debugger in a source-view mode.
The BSP source is displayed as it was entered by the developer, and it is possible
to step through the page at source level. Notice also Lhe display of the BSP appli-
cation and page names. Next to the application name is a button with which the
display view can be toggled between source and generated code. When the view
is toggled, the generated name of the BSP class also is visible, and the real gener-
ated ABAP source code is displayed.

BSP Debugger

29

1.8 MIME Repository

Web applications consists not only of HTAL pages, but also require a diverse col-
lection of other resources to enable a rich user interface. Typically, CSS files, Java-
Script source, and images are used within an application. For this the storage of
these objects, the BSP MIME repository is available (see Figure 1.7).

o basic_abap m

@‘MIMEReposnow R
eni Handier - ¢

£FuRepository Browser

Name - l !
N @ oo - :
D ebusmess g(f e
T rather _sonjpg -
|> [jnm o

|| =%@ page language="abap” %> -
<%@ include file="head_abap.htm" %> A
* This page checks basic ABARP scripting -4 -
j except for control directives. Al

el

<h2»1. Runtime fields: </hZ>)
<table border=1 width="108%"> :
<ir ‘bgeolor="#cOcBcl"><td> Source Coc- 5
“<tr><td nowrap>ruptime- >apphcat10n r.

] stivetd riowranenuntimo, 3:nr\11r‘uf‘lnn r

‘:mml :
fa(nooo' us0048 msl r/ ~

RE
_1

' <p>

Figure 1.7 BSP MIME Repository

The MIME repository is primarily a storage area for binary objects that belong to
the Web application. However, two important features are integrated into the
MIME repository. The first is that the binary objects are also handled as develop-
ment objects, and therefore are fully integrated into the transport system. The
other is that the MIME repository also has a HTTP interface (effectively a handler
class plugged into the ICF tree), with which requests from the browser for

resources can be handled.

1.9 Summary

As this chapter has shown, BSP is actually the sum of many parts to create one
complete development environment. This environment includes both the design-
time integration into the usual tools as expected by ABAP developers, and the
runtime aspects that are needed to truly develop Web applications. Especially
important for Web applications is the availability of high-level rendering libraries
and a repository for the additional binary objects required.

\Alhat ic QDY

2 HTTP and HTML

Often, developers will make good progress by using the BSP rendering
libraries without looking at the basics of HTTP and HTML. However,
once the going gets tough, it is this fundamental understanding of
HTTP and HTML that an advanced programmer need to complete the
work or troubleshoot a problem.

In this chapter, we will examine HTTP (Hypertext Transfer Protocol) and HTML
(Hypertext Markup Language), and the relationship between the two. We only
concentrate on those aspects we know from practical experience to be important.
This chapter is not to be a final reference; its goal is to lay the foundation. For the
interested reader, we recommend using RFC2616 as a search keyword in your
favorite search engine.

HTTP is the protocol used between the browser and the server. HTTP is strictly a
request-response protocol, whereby the client (usually the browser) will send an
HTTF request to the server and wait for the HTTP response from the server, It is
not possible for the server to initiate a transfer to the browser; it is only possible
for the server to answer an HTTP request with a response.

Typically, a single HTTP request is transmitted over one connection, and then the
first received HTTP response is matched to this outstanding request. Although
HTTP now allows streaming—whereby a browser can transmit a number of
requests on one connection and match received responses in sequence to the
transmitted requests—this is not commonly in use in any current browsers. How-
ever, what is standard is that the browser opens parallel connections (usually two)
to have more than one HTTP request outstanding: one per connection. For the
Web AS, this could imply that the same browser has a number of requests out-
standing that must be processed in the same Web AS session. To prevent race and
deadlock conditions, the HTTP requests will be queued in the ICM, and only pro-
cessed in serial within one session.

HTML is a text-based markup language that telis the browser what should be ren-
dered on screen and how it should look. HTML is the payload of an HTTP
response; effectively, it is the answer from the server. It is important to point out
that HTML is not sent from the browser to the server in the HTTP request, but
only in the HTTP response from the server to the browser.

HTTP and HTML

31

= e]

2.1 Viewing the HTTP Traffic

In the browser, one sees only the HTAAL that is returned each time from the server
as mark-up. The underlying HTTP protocol is not visible. To see this traffic, the
typical technique would be to use an HTTP proxy. This is an approach whereby a
program will install itself between the browser and the server, allowing it trace the
HTTP traffic. The use of a proxy between the browser and the server has the dis-
advantage that it is not possible to trace secure HTTP (HTTPS) data that is
encrypted end-to-end.

Over time, HTTP-tracing tools have become available that plug directly into the
browser. This allows the tool to also trace HTTP traffic, and in some cases even to
show information about the cache behavior of the browser. For this chapter, we
will use one such a tool, HttpWatch1, to trace HTTP traffic and show how HTTP
works. Any other tool that can trace both HTTP and HTTPS data and can show
both the HTTP headers and bodies can be used alternatively.

See Figure 2.1 for an example of such a tool used to trace a website. We see in the
first window an overview of all HTTP requests/response cycles. [t is important that
the tool matches the HTTP request to the correct HTTP response (keep in mind
the existence of parallel HTTP requests outstanding). What this tool shows, in
addition, is a summary of the requests (useful to see errors at a glance), the
roundtrip time (useful to analyze performance), and the type of response (HTML
versus images) returned by the server.

2.2 Structure of HTTP

As a first step, let us build a small BSP application with which we can show the
basic behavior of HTTP. All that this program does is render out a button to the
browser, using the current system time as the text for the button (see Figure 2.2).

<html>
<body>
{form>
{input type="submit" value="{%=sy-uzeith>">
{/form>
</body>
</html>

1 HttpWatch is a tool that is available from Simtec Limited (www.simtec./td.uk), and of which
we bought a copy. As such, it will be used within this chapter to illustrate all aspects of HTTP
tracing. There are many other tools available that also can be used to trace HTTP traffic. Our
selection of this program just reflects the fact that it is widely in use within our environment,
and that we are very familiar with it.

HTTP and HTML

mWa PViewer oG 0%0 amakExplore % & ; g&

i He Edt View Favontes Toole Help

’|

Overview
[reotures X Hitpwatch 3.2 R .
Customers & A plug-in HTTP Viewer for Intemet Explorer
HTTP Gall
allery Shows headers, cackies, query strings and

Pricing ' pasted form values

1
i

Download

@
@ Supports HTTPS, compression, redirection
03

e am— 1z | HttpwatcHk & chunked encoding i
Try out HitpWatch | - The Easy Way to View HTTe |5
and learn about HTTP || e et R Includes advanced filtering
% | K Cear 3 Emer [y copy [save (T about
Cdethod Rt Tye - LR o T
GET 00 Yext/himi http: /e, cimtec.l T e

textfcss h amtzc,ltd.uk/_th Si101L.csn

textjess hrip: fAvraw, smtecltd.ukfstles. css

‘mage/gf hitp: fpwww. smiectd.uk/mapes/spacer, gif

inage/ai hittpe frew. smtec It ukfmages fogo. gif
mage/gif i teclid i e

| 5T Data ContentJ Skream |
Q And [B Bxport 13904 bytes received by 10, 18,210, 243:3960
[ETTR/1.1 200 ox
{'Server: Mictosofn-I15/5.D
Powered-8y: ASD.NET
‘'Content-Location: hutp:/ /. simnec ltd.uk/Default .hra

te: Sun, 25 Sep 7DOS 09:35:16 GMT

ntent-Type: Caxt/hoal
cept-Ranges. bvies

j Summ
| 438 bytes sent o 147.204.5.43:2080

T hutp://vwww. simcec led.ux/ HITR/L.1 Al
cepv: amage/qif, imsge/x-xbitmap. image/jpeq, ipage/pIpec
cept-Langiage: de,en-us;g=0.3
cept-Znceding: gzip, deflace .
er-Agent: Mozilla/4.0 (compatible; MSIZ §.0; Windows NT O
: . simoec. lud. uk
v-Connection: Reen-Alive

Figure 2.2 Example BSP Application to Show Time on a Button

Assuming that the button has now been pressed a few times, we press it once
more, and look at the HTTP traffic. The first important aspect highlighted imme-
diately is the asymmetric nature of HTTP and HTML. When the user presses the
button, we see that an HTTP request is send to the server. In this example, the
HTTP request has only headers and no payload. With later examples, we will see
HTTP requests that have a body.

GET /sap(bD1X==)/bc/bsp/sap/chapter02/examplel.htm HITP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg., image/pjpeg,
application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword,
fx
Referer: http://usi049.wdf.sap.corp:1080/sap(bD1¥==)/
be/bsp/sap/chapter02/examplel .htm

Structure of HTTP

33

34

Accept-Language: de,en-us;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4&049.wdf.sap.corp:1080

Connection: Keep-Alive

Cookie: sap-appcontext=c2F...UVA

Authorization: Basic VGhhbmtzIGZvciBidXlpbmegYm9vayE=

Listing 21 HTTP Request

The server will answer with an HTTP response that contains HTML as body. Notice
that the HTAML matches closely the BSP program that was executed, with the print
sequence resolved to the time of the actual response.

HTTP/1.1 200 OK

Content-Type: text/html; charset=isc-8859-1
Content-Length: 111

Expires: 0

Pragma: no-cache

Cache-Control: no-cache

Server: SAP Web Application Server (1.0;640)

<html>
<body>
{form»
{input type="submit" value="120256">
{/form>
{/body>
{/html>

Listing 2.2 HTTP Response

The HTTP request and HTTP response always have this format:

» The status line, terminated with one carriage-return/linefeed (CRLF).

» Any number of HTTP headers separated by CRLF.

» An empty line (effectively only a CRLF) that separates the headers from the
body.

» The bodies of the HTTP request and response. For the HTTP request, the body
is only send with a POST request and will usually be of the form name=value
pairs, separated by &-characters (see Section 2.4). For the HTTP response, the
body is typically either HTML or an image (binary object).

HTTP and HTML

HTTP header lines are always terminated by a CRLF, never in the middle of the
line. The above listing has header lines over more than one text line, but only due
to technical limitations of a printed page. For all following examples, we will
shorten or remove headers that are not important, so that the HTTP headers are
more correct in print.

In addition, the HTTP specification recommends, but does not enforce, capitaliza-
tion of HTTP header names. Within a Web AS system, we will find these always
only lowercase because of an optimization done in the kernel. For this book, the
headers will be capitalized again, to match more closely the real nature of the
HTTP protocol.

2.2.1 The HTTP Request Status Line

The first token in the request line is the called method, where we will usually only
see GET and POST requests. Although other methods are defined (example OPTI-
ONS, PUT, etc.), they are not typically used for browser to server communication
and won't be further discussed here. The difference between the two methods
will be described in Section 2.4.

After the method, separated by a space character, is the URL for which we are
fetching the data. Notice that only the absolute path is used when the browser is
connecting directly the server. If the browser is connecting via a proxy, then the
absolute URL {protocol, host, and absolute path) will be given.

The last token on the line is the HTTP version. Only two versions, HTTP/1.0 and
HTTP/1.1, are standardized and widely in use. For us, at a practical level, the big-
gest difference is that HTTP/1.1 also supports the possibility of having the
response compressed before transfer.

2.2.2 HTTP Request Headers

All HTTP headers are of the form Name: value CRLF. As we will see when we
examine the HTTP response as well, there are some headers that are common to
both request and response, whereas some headers are only used in one or the
other. A number of different headers are specified, and we will concentrate on
those that we commonly see and use. A few additional headers will be discussed
in later sections.

» Accept
This header lists all the MIME types that the browser can accept in the HTTP
response. In this example, we see image/gif and image/jpeg listed to show
that GIF and JPEG images are welcome. The last entry in the list */*, shows
that the browser will also accept any type of document. The reason for listing

Structure of HTTP

35

-

specific MIME types followed by the wildcard, is to inform the server that the
browser prefer answers in the more specific format if available; otherwise the
server should just send whatever is possible. For the rest of the chapter, we will
shorten this header in the listings to just */*.

» Accept-Encoding

This header is only available since HTTP/1.1 and indicates to the server that the
browser is willing to accept a compressed HTTP response. It is important to
remember that this does not force the server to compress the answer. It only
indicates the browser's capabilities to also decompress specific types of HTTP
responses.

» Accept-Language

This header lists the languages that the user has defined within the browser.
This field is also by default used to determine the logon language if no other is
set. The q=0.5 is a quality indicator, that signals to the server de as first prefer-
ence (q=1.0), followed by en (50% value). This string allows the server to bet-
ter match preferences against its capabilities.

» Authorization

This header lists the user credentials, in this case the user name and password
is encoded as value. The topic of authentication is discussed in detail in Chap-
ter 5 and not further considered here, nor listed.

» Connection

Also a header new in HTTP/1.1, this informs the server not to close the under-
lying TCP connection. The connection Is left open for a few seconds extra,
allowing the browser to reuse the same TCP connection for the next request.
This HTTP header is not listed again for all other examples in this chapter.

» Cookie

This header sends a browser cookie to the server. The specific sap-appcon-
text cookie is one that is used by the BSP runtime. Cookies are discussed in
detail in Section 2.6. For clarity, we will also not list this specific BSP cookie for

these examples.

» Host

This very important header contains the name of the application server that the
browser is connected to (including the port number). It is exactly the string as
entered in the URL, and does not have to match the true server name. For
example, when a proxy is used, this header contains the server name as the
browser sees it, even although the proxy can forward the request to another
server for answering.

LUTTD and HTAAI

» Referer
This header contains the name of the HTTP request that triggered this new
request. Note that the header was misspelled (instead of "referrer") in the orig-
inal specification, and has kept this spelling. This header is useful only in limited
troubleshooting scenarios to find HTML pages triggering bad links to resources,
and is not further listed in this chapter.

» User-Agent
This header tells the server what type of browser is used. This is important
when rendering HTML, as not all HTML constructs are supported by all brows-
ers. The exact format of the string is not standardized, making it difficult to eas-
ily parse the string. There are many websites that list the strings in all variations
and match these to different browser versions. For a Web AS, the kernel
already provides routines to parse the string correct (see Section 2.3).

2.2.3 HTTP Header/Body Separator

An empty line (only a CRLF) is used to terminate the HTTP headers, and to start
the HTTP optionai body.

2.2.4 HTTP Request Body

Although not shown in the above example, the HTTP request also can have a
body when it is a POST request and will be signaled by a Content-Length
header. The body, if available, will normally be of the form name=value pairs,
separated by &-characters. This will be described in more detail in Section 2.3.

2.2.5 The HTTP Response Status Line

The first token in the HTTP response status line is the protocol version. This will
usually match the protocol version from the request, although it is possible for the
server to "switch down" to a lower protocol in the response.

This is followed by the HTTP return code, which is the most important bit of infor-
mation from this line. Last, a short textual description is given of the return code.
This phrase is intended for human readers and does not necessarily have to be in
English or stated exactly as in the specification.

Although many different HTTP return codes are specified, only a few—listed in
the table below—are in everyday use and should be known to any advanced pro-
grammer.

Structure of HTTP

37

38

Return Code and Phrase

200
OK

302
Moved Temporarily

304
Not Modified

401
Unauthorized

403
Forbidden

404
Not Found

500
{nternal Server Error

Explanation

The HTTP request was correctly processed and the HTTP response
contains the answer. ’

The requested URL is not available, and the browser is redirected
to another URL for the answer. See Section 2.7.

The browser already has an object in its cache and then queried
the server for a new version. With the 304 answer, the server
states that the browser's copy is still up to date, and no content s
transferred again. See Section 2.8.

The browser sends an HTTP request with user credentials. The
server rejects the request. Authentication is discussed in detail in
Chapter 4.) i

The server has found the requested object, but does not have
permission to answer the HTTP request. This scenario usually indi-
cates that the |CF node is not active.

In this case, the requested 'ob]e'ct was not found, and therefore
the server answers with 404.

Any severe error. Usually an exception was raised at the server
that caused a short dump to be written (see transaction ST22).
Thereafter, the ABAP session is destroyed.

Table 21 HTTP Return Codes

2.2.6 HTTP Response Headers

The HTTP headers for the response are structured the same as that of the header.
Often the same headers are used in both the request and the response. Again, we

will examine those headers we see often.

» Content-Length

This is the transfer length of the HTTP response body. Specifically, if the HTTP
response is compressed (Content-Encoding: azip), the length will be that of

the compressed content that is transferred, and not the real length.

» Content-Type

Describes what type of content the server has placed in the HTTP response. For
normal HTML pages, this is typically text/html, followed by the character set
in which the HTML was written. Note that each type of resource will have a
different content-type. For example image/gif for GIF images, text/cas for
CSS files or application/x- javascript for JavaScript resources.
» Server

This is a string that is similar to the User-Agent from the browser. This tells the
HTTP client what server and version is active. For our purpose, this is only of
interest to confirm that we are really interacting with a Web AS.

HTTP and HTML

The headers Cache-Control, Pragma, and Expires all control caching of the
HTTP response. Caching is a very complex functionality that was changed exten-
sively between HTTP/1.0 and HTTP/1.1. Often, there are still older versions of
proxies that do not interpret these fields correctly. Therefore, a complete series of
headers are always set to conform to both protocol versions of caching. For us, it
is only impaortant to know that pages are either cached or not cached. The BSP
runtime always assumes that a BSP page is dynamically generated, and therefore
cannot be cached (these defaults can be overwritten on the properties tab of the
page). For our discussion, except when necessary, only the Cache-Control
header will be shown.

2.2.7 HTTP Response Body

The HTTP response body can be any data stream. Typically, it is either HTML or a
resource that was requested for the page.

2.3 Server Objects for HTTP Request and Response

We have now seen that HTTP is characterized by a request and a corresponding
response. We now will see how one can access these from within a BSP applica-
tion. Let us create a small example, where we ourselves read data from the
incoming request and write the outgoing response completely. The application
has an input field of which all entered text is rendered on a button. Figure 2.3
shows the application in the browser.

<%
DATA: btntxt TYPE string.
btntxt = request->get_form field('btntxt').

DATA: html TYPE string.
CONCATENATE
*<html><body><{form>>
*{input type=text name="btntxt" value="">"
“{input type="submit" value="" btntxt "">°
“S form></body></html>"
INTO html.

response->set_cdata(html).
%>

When looking at the source code, we see that a variable request is used without
having been declared at all. This is a variable made available in all BSP pages, of

Server Objects for HTTP Request and Response

39

40

type IF_HTTP_REQUEST, and is the ABAP representation of the HTTP request.
Similarly, there is also a response variable of type IF_HTTP_RESPONSE available.

T [Tivis! | '

Figure 2.3 Example BSP Application to Show the HTTP Request/Response Objects

When looking at the two HTTP interfaces, we will find many methods that seem
to make no immediate sense, for example SET_HEADER _FTELD on the request
interface. An HTTP request is received at the server, and thus it seems as though
we should be more interested in getting the header fields. However, keep in mind
that the Web AS itself can play "browser" and make an outgoing connection to
another Web service. In this case, the setter methods are justified.

Let us look briefly at the functionality provided by the interfaces, concentrating
only on those methods that are useful in the Web AS' traditional role as HTTP
server. Only those methods in everyday use will be listed. Interested readers
should check the online documentation for a complete overview.

On the IF_HTTP_REQUEST interface, we have:

» Some methods that allow us to read the status line: GET_METHOD and GET_
VERSION.

» A method that will give us the exact type and version of browser in use: GET_
USER_AGENT. The integer constants for browser types are defined in the THTT?
type pool.

» Methods that allow us to read header fields GET_HEADER _FIELD(S).

» We have briefly touched on the fact that in the HTTP request, data is trans-
ferred in the form name=value pairs, called form fields (see Section 2.4). There
are a few methods to deliver this data in a “ready to use” format: GET_FORM_
FIELD(S).

» In Section 2.5.3, we will learn how to perform a file upload where we use the
methods: NUM_MULTIPARTS and GET _MULTIPART.

» Cookies will be discussed in detail in Section 2.6. Cookies are in effect small
bits of data transferred in one HTTP header, and these methods will allow us to
read the cookies as semantic entities: GET_COOKIE (S).

On the IF_HTTP_RESPONSE interface, we have similarly interesting methods:

» A method to set the HTTP response correctly on the status line: SET_STATUS.

HTTP and HTML

» Methods for special headers, such as content-type (SET_CONTENT_TYPE), or
special situations, such as handling an HTTP redirect (REDIRECT), discussed
later in Section 2.7.

» Methods to set the header fields of the response: SET_HEADER_FIELD(S).

» Again methods to set cookies, which are just logical objects mapped onto
header fields: SET_COOKIE and DELETE_COOKIE_AT CLIENT.

» The HTTP response is effectively a data stream that is either HTML (character
data), or binary objects (normal data). For writing data, methods are available
to either completely set the body of the response (SET_(C)DATA), or to
append data onto the response (APPEND__(C)DATA).

When we review the test application again, we can see that only two calls were
used to complete the simple Web page. The first, request->get_form field, is
used to retrieve the data of the input field from the incoming HTTP request. This
complete HTML is then constructed and written using response->set_cdata.
Although not shown, the BSP runtime also, at a minimum, calls response->set_
header_field tosetthe content-type of text/html and response->set_sta-
tus with a value of 200 OK to show to the browser that the response is correct.

With this understanding of the principles of an HTTP request/response cycle, and
how the objects can be manipulated within BSP, it is possible to look at more
detailed aspects.

2.4 HTML Forms and Data Handling

A HTML document starts with an <html> tag, then can have an <header/>
sequence, a <body/> sequence, and ends with the {/htm1> tag. Within the body,
the next-most important element is the <form> sequence. An HTML document
can have more than one form, but forms must be placed one after another. They
cannot be nested.

Each form is exactly the transfer unit for submitting an HTTP request to the server,
Only those fields within the form are actually submitted. Thus, one would typi-
cally use different forms for different parts of the screen, so as to transmit only rel-
evant data back to the server for the specific query.

Each {form> tag has a method attribute that can be set to either the value GET
(default) or POST. With the GET method, all form fields are appended onto the
URL, using the ?-character as separator between the URL and the form fields and
the &-character as separator between the individual name=value pairs. As the
data is sent as part of the URL, the amount of data is limited by the maximum
length of a URL, usually 2,048 bytes.

HTML Forms and Data Handling 41

42

For the POST method, all data is sent in the body of the HTTP request. There is no
(theoretical) limit to the amount of data that can be sent. The data volume is only
constrained by the memory limits of the browser.

To look at this difference in more detail, let us construct a small program that uses
both form methods.

<html><body>

{form method="GET">
{input type="text" name="klm" value="456"
{input type="text" name="klm" value="789">
{input type="text" name="xyz" value="bsp">
{input type="submit" value="GETI")

{/form>

{form method="POST">
{input type="text" name="klm" value="456"
{input type="text" name="klm" value="789">
{input type="text" name="xyz" value="bsp">
{input type="submit" value="POST!">
{/form>

<%

DATA: ffs TYPE tihttpnvp,

ff TYPE ihttpnvp.

request->get_form fields(CHANGING fields = ffs).
%>
{table border="1">
<% LOOP AT ffs INTO ff. %

tr><ed><Y=FF -name%><{/td><td><%=ff-value%></td></tr>
<% ENDLOOP. %>
{/table>

{/body><{/html>

This example program has two identical forms. The only difference is in the
method attribute. Note that the forms must be placed after one another. Thereaf-
ter, additional code is added to show the behavior of form fields in the different
cases. The results of the application can be seen in Figure 2.4.

HTTP and HTML

; Address EE hitp:/fus4049. wdf. sap. corp: maﬂ/SHD(bDMSZJ?TAWMA==)/bCy’b’JD/r-aD/b0ukdchraplzrozfexamule&hm?klm=456€Jdm=789&xy;=bsp
CER I B Cr— =)
{456 {789 [[osp “I[PosT
-
fmiss| ‘ e o
‘r}&; 789 : Addfess 133 hitp: /fus 4049.wdf.sap.corp: 1080/sap(bD kZSZFTAWMA ==)/bc/bsp/sap/bock_chapter02/example3,him2abe=1238
= , — n
e AL 79 [osp]
o 456 J{789 i[bsp |(PosT!
e 123
Kklm 456
lkim 789
—

Figure 2.4 Example BSP Application to Show the Form GET and POST

For the first test, we start the application with an additional parameter in the URL
(.../chapter02/example3.htm?abe=123), and then press the GET! button. Let
us first examine the HTTP request.

GET /sap(bDiX==)/bc/bsp/sap/
chapter02/example3.htm?klm=4568k1m=789&xyz=bsp HTTP/1.1

Accept: */*

Accept-Language: de,en-us;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:1080

In the source, the <form> tag had the attribute method=GET. This results in a GET
HTTP request (see first token in status line). The next important aspect is that data
from the form is carried as name=value parameters within the URL, separated
from the URL with the ?7-character and from one another with the &-character.
Duplicate names are allowed (see klm twice in URL). The GET request has no
body, and therefore no Content-Length header is set.

The other interesting aspect is that initially the application was started with the
sequence 7abc=123 in the URL. We see in the trace and also in Figure 2.4 that
this URL with its parameters has been completely replaced with the new GET URL.

The request is processed by the BSP application, and a new HTTP response is writ-
ten. The first part of the response is just static HTML code, and exactly the same
as listed on the BSP page.

HTML Forms and Data Handling

43

a4

HTTP/1.1 200 OK

Content-Type: text/html; charset=iso-8859-1
Content-Length: 696

Cache-Control: no-cache

Server: SAP Web Application Server (1.0;640)

<html>

{table border="1">
Cero<tddklmd/ td><td>456</ td></tr>
Crro<eddklm</td><td>789</ td></tr>
Cerddtddxyzd/td><td>bsp</td></tr>
{/table>
{/body>
</html>

Pay close attention to the small bit of source code that we had on the BSP page to
dump out all the form fields that was received by the BSP application. We see in
the HTTP response above, and also in Figure 2.4, that exactly three fields were
found, matching the three fields that were in the form, and transferred as URL

parameters to the server.

We start the BSP application new, again with the URL parameter abc=123, and
then press the POST! button.

POST /sap{(bD1X==)/be/bsp/sap/
chapter02/example3.htm?abe=123 HITP/1.1
Accept: */*
Accept-Language: de,en-us;q=0.5
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4049.wdf.sap.corp:1080
Content-Length: 23

k1m=4568k1m=7894&xyz=bsp

The first difference is the POST method in the HTTP request status line. Next, note
that the URL in the status line, to which the HTTP request is posted, is exactly the
same as that with which the application was started. Our URL parameter abe=123
is still part of the URL that is also transmitted to the server.

HTTP and HTML

Because of the POST request, all data from the form is now transported within the
body of the HTTP request, again separated by &-characters. Notice the use of the
empty line to terminate the list of HTTP headers, and to start the body of the
HTTP request. The server must be informed about the length of the body
(Content-Length header) and the type of the body (Content-Type). The Con-
tent-Type usually has the value x-www-form-urlencoded to indicate
name/value pairs separated by &-characters. In Section 2.5.3 we see how this
header field changes when a file is uploaded.

The HTTP response and the output shown in Figure 2.4 are now similar to that of
the GET request, except that the table now shows four entries.

HTTP/1.1 200 OK

Content-Type: text/html; charset=iso-8859-1
Content-Length: 742

Cache-Control: no-cache

server: SAP Web Application Server (1.0;640)

<htmlD

{table border="1">
{tr><tddabe</td><td>123</td></tr>
Cer><tddkIm</td><td>456</td><{/tr>
Cro<tddkIm</td><td>789</td></tr>
<er><tddxyz</td><td>bsp{/td></tr>

{/tabley

{/body>
</html>

The table was rendered based on the values that the get_form _fields method
returned. This method collects all data from both the URL, which the POST did
not change, and from the body of the HTTP request. This helps the programmer
by removing the need to worry about parsing different parts of the HTTP request
for similar data.

However, the method can cause major problems if duplicate names exist in both
the URL data and in the body. We know that duplicate names are valid and that
the request object will just return all of them. This could result in the application
using the wrong value. For this reason, we recommend that you always set the
action attribute in the {form> tag as well with the URL of the target page.

We also recommend using a POST rather than a GET, as the data capabilities of the
GET request is limited by the maximum length of an URL, typically 2KB.

HTML Forms and Data Handling 45

46

2.5 Mapping of HTML onto HTTP Requests

Until now, we have only used simple input fields to show the basic structure of
HTTP. Let us now look in more detail how different HTAML controls will transfer
their information back to the server. This is not an exhaustive list, but will concen-
trate on the basics that any Web programmer should know.

2.5.1 Input Fields

To examine the behavior of input fields, we will first quickly build a small test pro-
gram that used different types of input fields, with the results shown in Figure 2.5.

<html><body>
{form method="POST">
{input type="text" name="abc" value="123">
{input type="text" name="klm" id="abc" value="456">
{input type="text" id="xyz" value="789">
{input type="text" name="dis" value="disabled" disabled>
{input type="text" name="ro" value="readonly" readonly>

{input type="hidden" name="hid" value="hidden">
{input type="submit" name="btn" value="Hit Me!">
{/form?>

<{/body></html>

i

chsabled H—[;@g——*w :

¥

[123 [sss |[789 |

Figure 2.5 Example BSP Application to Show the Behavior of Input Fields

The program first uses three input fields that have either names, IDs, or both set.
This is followed by a disabled and a read-only input field (notice in Figure 2.5 the
difference in visualization). Finally, an input field of type=hidden is used. This is
the typical way that data in the form of name=value pairs are persisted in the
browser, to be returned later. One sees that the hidden input field is not visual-

ized by the browser.

Let us look at the HTTP request to see what happens when the button is pressed.
The HTTP response will not be examined, as it just statically renders out the same
HTML page again.

POST /sap(bD1X==)/bc/bsp/sap/chapter02/example4.htm HTTP/1.1

Accept: */*
Accept-Language: de,en-us;q=0.5

HTTP and HTML

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4049.wdf.sap.corp:1080

Content-Length: 52

abc=1238klm=4564&r0=readonly&hid=hidden&btn=Hit+Me%2]

The first input field is transferred as we expected with abe=123. For the second
input field, both the name and an id attributes are set, but the data is transferred
with the name value of klm=456. The third input field (with the value=789
attribute) has only its 1d attribute set, and we see immediately that this data is not
in the HTTP request. This already demonstrates the first important aspect of
HTML controls and their mapping onto HTTP requests. The HTML controls can
have both id and name attributes, where the id attribute is only of interest within
the rendered HTML code. The name attribute s significant for the HTTP request.
Only named data is actually transferred to the server.

This naming aspect will play a big role in programs based on Model-View-Control-
ler. The id attribute matches what the programmer used in the HTML, and allows
manipulation of the HTML with JavaScript based on this known id value. The
name attribute will be set to match exactly the position of the data within the
model. This allows the server to update the model with incoming data from the
HTTP request. See this simple example:

{input type="text" id="age" name="model.childAge" value="1")

The next two input fields were flagged disabled and readonly respectively. This
influences the way that the browser will visualize the two input fields. (For the
interested reader: Disabled input fields appear dimmed, do not respond to user
input, and cannot be focused. With read-only, the input field can be focused but
still cannot be changed.) It is worth noting that a disabled input field is not trans-
ferred back to the server, and we can not see any data dis=disabled in the HTTP
request.

The hidden input field is transferred back to the server within the HTTP request
without further semantics being attached to them. This is the technique that state
information can be “stored" within the HTTP request/response cycle, allowing
stateless programming, but still having the necessary data available to process the
next incoming HTTP request. For example, assume that we must also have a key
available to update the user's data. We could write:

{input type="hidden" name="user_key" value="D027140")

Mapping of HTML onto HTTP Reauests

A7

48

The last interesting aspect is the onscreen button that is achieved with the
input=submit sequence. As this is again an input field, and named, it is also
transferred back to the server. The value, brn=Hit+Me%21, has been encoded to 4
match the Content-Type header. In the encoding, spaces are replaced with
‘+-characters, and some characters are replaced with a %-character and their two
byte hex code (%21=1).

In summary, we can say that all named and not disabled input fields within the
{form> will be returned to the server.

2.5.2 Checkboxes, Radio Buttons and Dropdown List Boxes

Following the same approach as above, we first quickly develop a small test pro-
gram with which we can show the behavior of checkboxes, radio buttons, and
dropdown list boxes. The rendered page can be seen in Figure 2.6.

<html><body>

{form method="POST">

{input type="checkbox" name="chkl" value="123" checked>123

input type="checkbox" name="chk2" value="456">456
name="radl" value="123" checked>123
name="radl" value="456">456
name="radl" value="789">789

{input type="radio"
{input type="radio"
{input type="radio"
{gelect name="gell"?
{option value="123" selected>123
Coption value="456">456
{option value="789">789
{/select”
{input type="submit"
{/form>
{/body></html>

name="btn" value="Hit Me!">

F1123 (456 © 123 €456 789|123 v)| HitMe!

Figure 2.6 Example BSP Application to Show the Behavior of other Basic Controls
Again, only the HTTP request is examined. The HTTP response will be the same
static page rendered again.

POST /sap(bD1%==) /bc/bsp/sap/chapter02/example5. htm HTTP/1.1
Accept: */*
Accept-Language: de,en-us;q=0.5

HTTP and HTML

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4049.wdf.sap.corp:1080

Content-Length: 38

chk1=123&radl=123&sel1=1238&btn=Hit+tMe%21

The first part of the application shows two checkboxes, one having its checked
attribute set. The rendering is expected, but in the HTTP request we see only the
data for the checkbox that is actually checked (chk1=123). In the HTTP request,
we do not see any reference to the unchecked checkbox chk2. This conforms to
the idea that the check will enable the transfer of the value back to the server. A
request->get_form_field method call on an unchecked checkbox will find no
value in the incoming HTTP request and will return an empty string, effectively
signaling no value.

Radio buttons are actually a group of buttons, where all buttons with the group
are given the same name (name=radl). Only one of the buttons can be selected
at any time (have its checked attribute set), and exactly this named value will be
returned to the server (rad1=123).

Dropdown list boxes, using the <select> tag in HTML, have a similar construct.
Each dropdown list box has a number of <option> tags, one of which can be
selected. This value is then returned to the server for the name of the <select?
tag (sell=123).

in summary, the named and not-disabled aspects still hold. In addition, only
checked checkboxes are transferred. For radio buttons and dropdown list boxes,
the selected value is returned against the name of the control.

2.5.3 File Upload and Download

The last type of input that we wish to quickly examine is type=file. This is the
basic, and only, HTML building block for handling a file upload to the server.

<html><body?
{form method="POST">
{input type="text" name="f1ld1l" value="ahc"?
{input type="file" name="fill">
{input type="submit" value="Failure!">
{/form>
{form method="POST" enctype="multipart/form-data">

Mapping of HTML onto HTTP Requests

49

{input type="text" name="fld1" value="abc"?
{input type="file" name="fill™>
{input type="submit" value="Hit Me!">

{/form
{/body><{/html>
<%
DATA: entity TYPE ref to if_http_entity,
name TYPE string,
content TYPE xstring,

content_type TYPE string,
idx TYPE i VALUE 1.

WHILE idx <= request->num multiparts().
entity = request->get_multipart({ idx).
name = entity->get_header_field('~content_filename’).
IF name IS NOT INITIAL.
content_type = entity->get_header field('Content-Type').
content = entity->get data().
respongse->set_data(content).
response‘>set7header_field(name = 'Content-Type'
value = content_type).
EXIT.
ENDIF.
idx = idx + 1.
ENDWHILE.
%>

The example program is slightly more complex, as there is a small complication
that one should know about when programming a file upload. First, the BSP
application shows a <form> tag as used previously in all other examples, followed
by a modified {form> tag with the additional enctype attribute (transfer encod-
ing type). The last part of the application looks into the incoming request and
fishes out the file. This will be discussed after examining the HTTP requests.

The result of the application is depicted in Figure 2.7, showing the application,
and—in the success case—the downloaded image.

Note Often developerswill ask fora technique to change the "Browse..." string
displayed by the HTML control. This is not possible, because the string is set by
the browser and the language used is determined from the client language.

HTTP and HTML

It cannot be influenced by the server. The other request one often sees is to
programmatically set the filename for uploading. This is not possible because,
for security reasons, a user must explicitly select a file that will be transmitted
to the server. The browser does not allow the server to snag files without the
user's active participation. ‘

i
labe ‘ \@ow&e“. } |_Failurel [Y

oo

abc - \b_cmi\plT:lu e s\i;_g___OBrQ Hit Mel

Figure 2.7 Example BSP Application to Show the Behavior of a File Upload

Let us examine first the request for the Failure! case. Here, a normal form is used
to POST the data to the server.

POST /sap (bD1X==)/bc/bsp/sap/chapter02/example6.htm HITP/1.1
Accept: */*

Accept-Language: de,en-us;q=0.5

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:1080

Content-Length: 46

f1d1=abc&fill=%5Cbcm%5Cpicturesk5Cimg 0354. jpg

We see that data for the input field (f1d1=abc) is transferred. However, the file
upload sequence also behaves exactly like an input field, sending the name
(F111=%5Cbem%5Cpictures%5Cimg_0354 . jpg) of the selected file only. Notice
the URL encoding that replaces the \-character with %5C.

The reason for the failure is that the specification requires that a file upload must
be done with a multi-part POST request. This is one HTML programming mistake
that is seen quite often. The second {form> tag does have this additional enc-
type attribute set to multipart/form-data. Let is look at the new HTTP
reguest.

Mapping of HTML onto HTTP Requests

51

52

POST /sap(bD1X==)/bc/bsp/sap/chapter02/examplef.htm HITP/1.1
Accept: */*

Accept-Language: de,en-us;q=0.5

Content-Type: multipart/form-data; boundary=---7d53433beca
Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE.6.0; Windows NT 5.1)

Host: us4049.wdf.sap.corp:1080

Content-Length: 563726

---7d53433beca
Content-Disposition: form-data; name="fldl"

abc

---7d53433beca

Content-Disposition: form-data; name="fill";
filename="\bem\pictures\img 0354.ipg

"

Content-Type: image/pjpeg

...binary data of image...

The first difference between this and past examples is that the Content-Type
header was changed to a new value of amultipart, plus the additional informa-
tion that the different bits of data are now separated by the boundary string
---7d53433beca. This boundary string is a random-generated string, relatively
long (in this example shortened to fit one book page), that indicates the start of
each field that is submitted to the server.

Within the body, we actually now have sub-bodies, submitted one per field. Each
sub-body is again a sequence of HTTP headers, an empty line, and then the value
string. This shows the large overhead of a multipart submit, and why it should
only be used when uploading files.

For the input field, the first part has only the HTTP header Content-Disposi-
tion, listing the name of the field. The value is transferred within the body of the
part.

In the next part, we see the file to be uploaded. The Content-Disposition
header now also lists the (local) filename that is uploaded and the Content-Type
of the file, determined at the client. The body contains the binary data of the
image.

Note that each part does not have a separate Content-Length HTTP header. The
length is set for the complete HTTP request, and the boundary string is used to
split the request into different parts.

HTTP and HTML

The important aspect of multi-part requests is that each form field is listed in a
separate part, and that all files uploaded in the same HTTP request are also listed
in parts. To read the form fields (for example the value of £1d1 above), do we
have to now parse the HTTP request body ourselves? Luckily no; the same meth-
ods request->get_form field(s) also work with multi-part requests, and will
return the same values as when the data is transferred in a GET or a normal POST.
These methods shield us on the server from the complexity of reading the form
fields in all the different cases.

However, uploaded files are not considered to be form fields and cannot be
retrieved as such. They are handled as separate parts of the request. Let us look at
a small extract of the text program in more detail.

WHILE idx <= request->num multiparts().
DATA: entity TYPE ref to if_http_entity,
entity = request-»>get_multipart(idx).
name = entity->get_header field('~content_filename').
IF name IS NOT INITIAL.
content_type = entity->get_header field('Content-Type').

content = entity->get_data().
length = XSTRLEN(content).
ENDIF.
idx = idx + 1.
ENDWHILE.

First, the number of parts is determined. Included in this list are all parts, not only
those that are uploaded files. For each part, we get a reference onto that part and
then can again query the header fields. We saw before that both parts had a Con-
tent-Disposition header. This header is already parsed into its different
attributes within the request object. We can identify file uploads by the fact that
the filename attribute is also specified, made available with the pseudo header
~content_filename. Once afile name is found, we extract the content type and
the actual content from this specific part. The actual file size can be computed
with the ABAP operation XSTRLEN.

With the extracted information, the minimum requirement to echo the file back
to the browser consists of the response->set_data call and the response->
set_header_field to set the Content-Type header. The remaining require-
ments are met by default values set by the HTTP response object.

HTTP/1.1 200 OK
Content-Type: image/pjpeg: charset=iso-8859-1

Mapping of HTML onto HTTP Requests

53

Content-Length: 563426
Cache-Control: no-cache
Server: SAP Web Application Server (1.0:640)

...binary date of image...

The HTTP response, although it is our first binary response, amounts to business
as usual. Figure 2.7 also shows the uploaded image displayed in the browser.

2.6 Cookies

A cookie is a small bit of information that the server sends to the browser to
“rermember" until the next HTTP request. This is a very convenient way for a
server, especially in stateless cases, to store application-relevant data for each user
and to have the relevant data returned with the next incoming request. There are
strict limits to the size of each cookie (usually a maximum 4KB) and the number
of cookies allowed per server (a maximum of 20).

There is controversy whether cookies are good or bad, but we do not wish to
become too deeply involved in the debate here. In principle, cookies are good,
but can be misused to follow a user's travels through the Internet. If thisis a con-
cern for you, then we highly recommended you use your favorite search engine to
read up a little on cookies and the possibility for misuse. As “the good guys,” we
will concentrate on a number of valid uses of cookies.

A cookie can be sent to the browser with the Set-Cookie HTTP header within
the HTTP response. The basic form of the cookie is the name=value data. In addi-
tion, a number of attributes can be set. An interesting aspect of cookies names
and values is that they may not include semicalon, comma, or white-space char-
acters, as these are used as separators within the cookie attributes. This is espe-
cially important for the value string and also for the path string. These must not
contain any of the separator characters.

Set-Cookie: NAME=VALUE; expires=DATE; domain=DOMAIN_NAME;
path=PATH; secure

The name can be any user-assigned name and the value effectively can be any
string, as long as it does not contain any of the excluded characters. The optional
expiry daze controls the timeframe for which the browser will store and use the
cookie. [f timeframe is not specified, the browser will store the cookie only until

the end of the browser session.

The optional domain can be used to indicate that the cookie is not only valid for
this specific web server ("default if not set"), but also must be sent to other com-

54 HTTP and HTML

L

[
!
&
[

puters with the same tail-matched domain. For example, if one is setting domain
to sap.com, then the cookie will be sent with any HTTP request to a Web server
within SAP.

The path attribute limits the cookie to specific URLs on the server. A value of /
would indicate that the cookie is valid for all URLs on the server, whereas
/sap/bc/bsp would limit the cookie so that it could be be sent only to BSP appli-
cations.

The opticnal secure flag limits the browser to sending the cookie only over
HTTPS connections.

For our further investigation of cookies, we again have a small test program, with
the output shown in Figure 2.8.

<%
DATA: cookie TYPE string.
request->get_cookie(EXPORTING name = 'myCookie’
IMPORTING value = cookie).
%7
<html>
<body>
{form method="POST">
Cookie: <%= cookie %>
{input type="submit" value="Hit Mel">
{/form>
{/body>
</htal>
<%
response->set_cookie(name = 'myCookie'
path = runtime->runtime_url
value = '123').
response-’set_cookie(name = "myCookie'
path = runtime->page_url
value = '456').
response-yset_cookie(name = 'myCookie'
path = '/"
value = '789').
%>

For this example, we are going to turn around the viewing perspective and start
by examining the HTTP response. [nitially, when the application is started, it will
find no cookies with the data it requires, and a cookie will be set.

Cookies

55

56

E Cookie: 456 [HitMel | ¢

Figure 2.8 Example BSP Application to Show the Behavior of Cookies

It is very important to remember that cookies are set from the server to the
browser, and the correct call is reaponse->set_cookie. It is also possible to call
the get_cookie method on the HTTP request, but this only makes sense in cases
where the server is functioning as client to another server.

In the example application, we will set three cookies, all with the same name but
different values and on different paths. This action can now be easily seen in the
HTTP response. Pay particular attention to the different paths used for the differ-
ent cookies.

HTTP/1.1 200 OK
Set-Cookie: myCookie=123; path=/sap(bD1X==)/bc/bsp
Set-Cookie: myCookie=456;
path=/sap (bD1X==) /bc/bsp/sap/chapter02/example7 . htm
Set-Cookie: myCookie=789; path=/
Content-Type: text/html; charset=iso-8859-1
Content-Length: 147
Cache-Control: no-cache
Server: SAP Web Application Server (1.0;640)

<htmlY. . . </html>

With the above HTTP response, the browser now receives three new cookies. If
the cookie jar is full, older cookies are discarded, and the new cookies are stored.
As no expires attribute is set, the cookies will only be stored until the end of the

browser session.

When the user presses the button again, the browser knows the target server and
the URL for which the HTTP request will be generated. In the cookie jar on the
browser, all cookies are gathered that match this specification. In this example,
we set three different cookies, but in all cases the paths we used did match the
URL of the current running application. Let us look at the POST request.

POST /sap(bD1X==)/bc/bsp/sap/chapter02/example7.htm HTTP/1.1
Accept: */*

Accept-Language: de,en-us;gq=0.5

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

HTTP and HTML

Host: us4049.wdf.sap.corp:1080
Content-Length: 0
Cookie: myCookie=456; myCookie=123; myGookie=789

We see a new Cookie header with the HTTP request, containing three
name=value pairs matching our three myCookie value sets. However, even
though our application set the cookies in the sequence 123, 456, and 789, they
returned in a different sequence with 456 first. The reason is that cookies are
sorted by the strongest path. The cookie with a path that matches the most char-
acters against the URL is placed first in the list. In addition, only the cookie values
are returned to the server. No path, domain or expires attributes are set on the
Cookie header.

Within the test application, a cookie can be read with the request->get
cookie method. This method can also export the other attributes, but we saw
already that they exist nowhere within the HTTP request. This method can only
return these extra attributes in cases where the server is functioning as client and
to read the actual set cookie.

We see in Figure 2.8 that the get_cookie method returned only the first name-
matched cookie, and the value will be rendered out into the HTTP response.

<html>

Cookie: 456
{/html>
Itis not possible to delete cookies at a client. A cookie can be set to a new value
only if it has effectively expired. The browser then will place the newly set cookie
into the cookie jar, find that it is stale, and discard it. As the setting of dates in a
correct HTTP format is complex (you have to know that January 1st, 1980 was a

Tuesday, for example), the response object also supports a method delete
cookie_at_client.

response->delete_cookie_at_client(name = 'myCookie’
path = '/').

This method then will set the correct HTTP header.

Set-Cookie: myCookie=0;
expires=Tue, 01-Jan-1980 00:00:01 GMT; path=/

fn summary, remember that cookies are set on the HTTP response and later
retrieved with a get call on the incoming HTTP request.

Cookies

57

58

2.7 HTTP Redirects

An HTTP redirect is typically used on a website after rearganization, so that HTTP
requests for old bookmarks wili be forwarded automatically to the correct page.
The other use is for simple website navigation. After the server has evaluated the
incoming HTTP request, it can decide to have the user view a different page. This
is also achieved with a redirect.

At a technical level, the browser has already sent an HTTP request to the server,
and the server has no chaice but to answer with an HTTP response. As the server
does not have the valid data, but knows where it can be obtained, the server will
answer with an HTTP return code of 302 Moved Temporarily and also supply
the new destination. The browser will automatically, without the user's interven-
tion, start a new HTTP request to the new destination.

As a first step, we will build a small test program with one input field for a new
target URL. If the input field is filed, we go to the new website. For this example,
we do not do any error checking. However, in any real-world website, it is impor-
tant to first validate that the URL does not contain any form of code that will
allow a cross-site scripting attack. This topic is unfortunately beyond the scope of
this book. The results of the application can be seen in Figure 2.9.

<html>
<{body>
{form method="POST">
Redirect:
{input type="text" name="redirect">
{input type="submit" value="Hit Me!')
{/form>
{/body>
{/html>
<h
DATA: redirect TYPE string.
redirect = request->get_form_field('redirect').
IF redirect IS NOT INITIAL.
response-rredirect(redirect }.
ENDIF.
%>

The first part of the BSP application is just a simple layout to collect the new target
URL. The second part looks for the availability of such a new redirect URL, and if
entered, will use the response->redirect method to instruct the browser to go
to the new Web page.

HTTP and HTML

Redirect lﬁp//wwwvsap-press.com E HitMe! |

= PRESS!

Figure 2.9 Example BSP Application to Show the Behavior of Redirects

For this application, as it has only one input field, the POST request will have only
the body: redirect=http%3A%2F%2Fwww.sap-press.com. Notice the effect of
the URL encoding on the incoming data, with the :-character replaced with %34
and the /-character with %2F. We are interested in the HTTP response that the
server gives to the browser. ‘

HTTP/1.1 302 Moved Temporarily

Content-Type: text/html; charset=iso-8859-1
Content-Length: ©

Cache-Control: no-cache

Location: http://www.sap-press.com

Server: SAP Web Application Server (1.0;640)

In the HTTP response, note first the return code in the status line. The value of
302 indicates to the browser that the answer it seeks is to be found by following
another URL. The second difference is the Location HTTP header that specifies
the new target URL. The browser will start a new HTTP sequence with the speci-
fied URL.

GET http://www.sap-press.com/ HTTP/1.1

Accept: */*

Accept-Language: de,en-us;g=0.5

Proxy-Connection: Keep-Alive

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: www.sap-press.com

One subtle point in this HTTP request is the status line that now contains the
absolute URL (protocol, host, and absolute path) as this request is sent by the
browser to a proxy to complete the request.

2.8 Handling of HTML Resources in HTTP

Until now, we have concentrated mostly on HTML and the relevant HTTP condi-
tions. Let us look also at the way resources are loaded. We will write quickly a

Handling of HTML Resources in HTTP

59

60

small application that just shows an icon and a button to trigger server round
trips. The result is shown in Figure 2.10.

<html><body><{form method="POST">
{img src="<{%=CL_BSP_MIMES=>SAP_TCON(id="ICON_OKAY')%>">
{input type="submit" value="Hit Me!"?
{/form><{/body></html>

Figure 210 Example BSP Application to Show the Behavior of Resource Caching

Let us concentrate on the loading of the image itself. Once the HTML page is
loaded, the browser starts a second GET HTTP request to fetch the image for dis-
play, a process similar to all requests we have seen before. However, let us look at
the HTTP response received.

HTTP/1.1 200 OK

Content-Type: image/gif

Content-Length: 191

Last-Modified: Fri, 13 Aug 2004 12:17:27 GMT
Cache-Control: max-age=604800

Server: SAP Web Application Server (1.0;640)
Date: Sun, 25 Sep 2005 12:32:48 GMT

Expires: Sun, 02 Oct 2005 13:23:22 GMT

GIF8%a ...

We see that a number of new headers are available. The Cache-Control header
with the value max - age=604800 (seconds) informs the browser that the returned
data can be cached for seven days without further problems. Some of the other
HTTP headers (Last-Modified, Date and Expires) are set in addition to convey
the same message for older HTTP/1.0 based proxies that might be encountered
enroute. Thus, the browser now has an image in cache that is valid for the next
seven days. Figure 2.11 shows a summary of the HTTP traffic.

X {F st @ swop K Clear §F Fiter [cone save [T About 1

Sterted Tine | So.i Met.. Rew i Type o URL i e e s e e
I ooieoio0.060 0073 363 GET T E0textfiml.. Nitp://is40%9. wdf.sap.corp: 1080/sap(bD IKZSZIFTAWMA= =)befosp sap... ¢
31 00:00:00.112 0,003 513 GET 200 image/af http:/fus4049, wdf.sap.corp: 1080/sap/public/bc/icons/s_B_OKAY.gif ¢
| 00:00:05.254 __0.048 __363_POST__ 200 text/iml.., _hbp://us4049. wdf s20,corp:1080/san(EO IKESZIPTARMAZ S bcbon/san.. .

Figure 241 The First Time a Resource is Loaded

HTTP and HTML

After we have played around with this complex application, we close the browser
and take a break. Later in the afterncon, we start the application again. Figure
2.12 shows what happens at the HTTP level. The first GET HTTP request loads the
application. The HTML page contains the reference to an image for displaying.
The browser looks into its cache, finds an image matching the requested URL that
is still valid for at least six days and a few hours, and uses the image. This behavior
is shown to us by our HTTP trace tool with the (Cache) indicator for the result of
the HTTP request.

L Stop ¥ Clear & Alter Ty Topy [Save About

ik
Started 1 Tme! 5.0 Met.. | Result Type URL .
00:00:00.000 0.073 570 GET 100 text/himl... http://usa048. wdf.5ap.corp: 1080 /sap(bD IZEZP T AWMA = =) be/bsp/sap. ..
00:00:00.091 0.003 Q GET (Cache) imagefgif http:/fus4049. wdf.sap. corp: 1080/sap/oublichcficons/s_B_OKAY .gif
00:00:05.570 0.071 363 POST 200 text/himl... hitp:/fus4049,wdf.sap.corp: 1080 /sap{bD 1k2SZjPTAWMA ==)/bc/bspfsap. ..

s e

Figure 242 Resource is Loaded from Browser Cache

As this application bores us a little, we take a longer break from the content of this
chapter and return eight days later to test the application once more. Looking at
the results from our HTTP trace tool (Figure 2.13), we see that the server decided
to send a new GET HTTP request to load the image (the copy it had has now
expired) and was answered with an HTTP return code of 304.

x a Start @ Stop * Clear ? Filter {a Copy Save m About

 Started i Time! S.: Met. , Resut . Type ! URL . S 3 o
00:00:00.000 0.078 570 GET 200 text/html... htp:/jusd043,wdf.sap.corp: 1080/5ap(bD 1k2SZiPTAWMA ==)/bc/bsp/ssp. ..
00:00:00.093 0,004 252 GET 304 imagefgif http:/fus4049.wdf.sap.corp: 1080san/public/beficons/s_B_OKAY.aif
00:00:08.057__ 0.059 363 POST 200 text/trh,, Dttp:{fus4049, waf. sap corp: 1080/s2p(bDIZSZPTARMA =) bcbepfsan... ¥

Figure 213 Resource is Verified with the Server to be Valid

Itis interesting to examine the GET HTTP request first.

GET /sap/public/bc/icons/s_B_OKAY.gif HTTP/1.1
Accept: */*

Accept-Language: de,en-us;q=0.5

Accept-Encoding: gzip, deflate

If-Modified-Since: Fri, 13 Aug 2004 12:17:27 GMT
User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4049.wdf.sap.corp:1080

We see a relatively standard HTTP request, but with one new HTTP header: If-
Modified-Since. This informs the server that the browser already has the object
matching this URL and that the copy the browser has was last changed on Friday,
August 13, 2004. This date matches the date from the Last-Modified header
that was set when the resource was initially loaded.

Handling of HTML Resources in HTTP

61

62

The server looks at the If-Modified-Since header and compares this date
against the last modified date of the actual resource. As the date matches exactly,
the server answers with return code 302. Because the browser already has the
correct resource, the Content-Length is set to zero, and the resource is not
transmitted again. With this, the browser again has the resource for a valid period
of seven days before it will check once more.

HTTP/1.1 304 Not Modified

Content-Type: image/gif

Content-Length: O

Date: Sun, 25 Sep 2005 12:47:03 GMT
Lagt-Modified: Fri, 13 Aug 2004 12:17:27 GMT
Server: SAP Web Application Server/7.10
Cache-Control: max-age=604800

As images are usually cached in the server at the 1CM level as well (in the kernel
before the ABAP stack), these HTTP requests can be answered very quickly and do
not place much load on the server.

2.9 Troubleshooting Examples

Knowing how HTTP works and having a good HTTP trace tool at hand, we are
able to troubleshoot many different types of situations without even looking at
the source code. In this section we will look at a few problems that we often

encounter.

2.9.1 Missing Resource

The “little red X" is seen often (see Figure 2.14). It is very annoying, but actually
very simple to at least isolate to specific URLs.

T

& (e

X }@ stwr) stop YK Clear rier Iy Coor [save About & Hep
Sarted | Tme S.. Me. Resdt, Tpe 0 URL A

“Goi:00.000 0.078 “H44 POST 200 texthuml.. Fittps 54048 wF. 53p. carp: 1080/sap(bD LZSZPTAWM
00:00:00. 116 0.004 2. GET 404 text/hml.., httu://us‘l@“lg.wdf.sap‘mrp:mSO/‘badﬁmagE.glf

Figure 214 Troubleshooting a Missing Resource

Looking at the HTTP trace, we see that an HTTP request is first answered with a
return code of 200, and the content type is set to text/html. This is an HTML page
that contains a reference to an image. The next HTTP request attempts to load the
image itself, and is answered with an HTTP return code of 404 (not found).

HTTP and HTML

The 404 shows immediately that this is the HTTP request that was not loaded cor-
rectly. There are typically two problems that can account for this situation. The
first is that the URL itself is not correct. In this case, use the Referer HTTP header
from this request to see what HTML page contains the bogus link (always one
higher up in the HTTP trace), and start there to investigate further. The other
alternative is that the URL is correct, and the server has a problem answering the
request for the resource. Paste this requested URL directly into the browser and
debug the server side to resolve the issue.

2.9.2 Non-Secure Warnings

The warning message "page contains non-secure items” always causes calls for
help. This warning message usually indicates that the website is been accessed via
an https:// protocol, and that now one of the resources on the page is been
requested via the http:// protocol. Let us look at the HTTP trace in Figure 2.15.

i E— £ This page contairs both secure and nonsecure
Y i Rems.
-
- Do yau warl 1o display the nonsecure tems?
% |7 o A4 7 e f:
Ja taet @ Stop Y Clear FP ™ Yea “ o] { More o J € Help ;
: : , i
[saree [Tmels..| me. Ly

00:00:00.000 0,084 374 GET 200 text/Mtml... https://us4048.wdF.5ap.corp: 1943/53p (b0 ZSZPT ARMASJbc/bspfEan.,
00:00:00.103 0.006 513 GET 200 imagefqif http:{fus4049.wdf sap.corp: 1080/sap/publicicficons/s_B_OKAY.gif

I

Figure 215 Troubleshooting Non-Secure Warnings

We can see that the last HTML page (type text/html) is loaded with https://
protocol. However, the next HTTP request (with a response of type image/gif)
was with http:// protocol. Thisis the reason for the warning. Using the Referer
HTTP header of the image, it is possible to easily cross reference it to the HTML
page that requested this image and that contains the URL with the wrong proto-
col.

The other reason that we often see for this warning is that <iframe> tags are used
on page with the src attribute set. This is a typical technique in HTML for later
triggering the <iframe> loading dynamically.

2.9.3 Relative URLs That Become Invalid

The next example is from an application that worked for a long time. Then one
day, the same application was not started under its usual URL, but via a short
alias. Figure 2.16 shows the "little red X" and the corresponding HTTP trace.

Troubleshooting Examples

63

64

-~

HitMel!

x i@ St @ stop WK Cear P Filter ™ cony save [T} About . @ teb |

| started | Tme S..] Me.| Result: Type i URL

00:00:00000 D071 §72 GET 20 eyl hitpjjsdas. wf sap. corp: 1080 /oook_cepter020 IS TP TARMA = ...
| 00:00:00.104 __0.010 2. GET _ 404 __ texthimi.. httni/fus4049,wdf.sap.corp:1080/public/bc/consss B OKAY.Gf

. 3

Figure 246 Troubleshooting nvalid URLs

We see already from the first HTTP request that it is not our usual /sap/bc/bsp
path, but a much shorter alias. The next HTTP request for an image is now
answered with an HTTP return code of 404, and a quick examination shows that
the URL is wrong (the /sap segment is not specified). From this, we know that
the URL is invalid. Let us look at the last response received for the HTML page.

HTTP/1.1 200 OK

Content-Type: text/html; charset=iso-8859-1
Content-Length: 186

Cache-Control: no-cache

Server: SAP Web Application Server (1.0:640)

<html><body><{form method="POST">
{img sre="../../../../public/bc/icons/s _B_OKAY.gif">
{input type="submit" value="Hit Me!">
{/form></body><{/html>

We see in the HTTP response that the HTML page is requesting a relative URL

oo/ /public/. ... This URL on its own looks to be perfectly accept-
able. However, from the HTTP trace we know that the URL of the requested
HTML page is /book_chapter02(...)/exampleNN.html. Given this absolute
URL, plus the relative URL specified, we now can see why the browser con-
structed the new URL /public/.... Effectively, the relative path stripped all
tokens from the original URL untif none were left. All other /.. sequences to
specify the parent node are ignored, and then the browser starts again with the
first token /public from the relative path to build the new URL.

In HTML pages, we recommend using absolute paths to public resources. If rela-
tive paths are used, then it should only be in the relative-as-child relationship, and

not over the parent (/. .) path.

HTTP and HTML

2.9.4 Estimating Performance

In this section, we want to highlight other uses of an HTTP trace tool. Often, we
are interested in having some performance numbers for a website. An HTTP trace
can already help to get a rough estimate of a Web application's performance.

X[vore @ stop WK Clear W Fiter [[Y copy [EF save [T about ' @ rep |
Sared : Tme Size Me.,: Resut! Type | URL o
00:00:00.000 3863 17330 POST 300 “textyiiml. Fitp:/jusa045. waf sap. corp: 1080 s (oD IISTHT AR S <) oe oo,
00:00:07.680 1.437 17330 POST 200 textfhiml... http://us%‘iﬁ.wdf.saucorp:1080/sap(bD1kZSZjPTAwMA==)/b(;bsp/sap.
00:00:12.252 1,954 17330 POST 200 textfhiml.. htlp:/fus4099.wdf 5ap.cor: 1080/sap(bD IKZSZITAWMA==)befbsp fsap.
00:01:00.471 0.009 372 GET 200 image/gif hrm://us%"":\.wdf.aap.(orp:1050lsap/pubﬁc/bc/ur/Design200Z,IH'\Emes[s.
00:01;00,475 0.006 400 GET 200 image/gif htlp:/Aus4098.df.sap.corp: 1080/sap/public/bc/ur/Design2002 them
ot LE e i nons i et ee

_Ante ne feT Aan . bbbt 11, ADAN o€ rmm my 1

%t e fos i

Figure 217 Troubleshooting Performance of HTTP Requests

In Figure 2.17, we can see the number of requests, the size in bytes that each
request retrieves from the server, the resources that are loaded, and whether in
subsequent testing these resources are cached or continuously reloaded. For
example, the same HTML page was loaded three times, and in all three cases
17,330 bytes were loaded. However, the first request took 3.8 seconds to com-
plete, while each of the other two requests took only 1.4 seconds. As the pages
rendered the same (sized) HTML output, it Tooks as though initialization of the
page on the first request took a long time. These measurements are round-trip
latencies, and reflect the time to transfer data to the server, process the data, and
respond to the server.

Troubleshooting Examples

65

H
i
i

3 HTTP Handler

Understanding the underlying structure of the ICF tree and its inner
implementation through handler classes is a powerful addition to any
BSP developer's toolbox. Handler classes are especially useful because
they allow for direct access and complete control over the HTTP
request and response objects.

3.1 URL Handling in the ICF Tree

A Web server is like a large shopping center where thousands of incoming cus-
tomers are all asking for specific shops. In the case of the Web server, we have
thousands of incoming requests, all asking to be processed. The problem is how
to dispatch each HTTP request to the correct handler.

This is the work of the Internet Communication Framework (ICF). The ICF takes
the URL from the HTTP request and splits it into tokens. The tokens are used to
route the HTTP request through a tree of services.

,Virt.HDStS / Services sap/bc/bsp/sap/absenceform_new/default.htm

X fault_host -

e

@ option
- b & public

[} alertinbox
[alertinboxwap

Figure 31 URL to ICF Tree Mapping

Each node within the ICF tree can be configured to contain zero or more HTTP
handlers. The handlers are processed in sequence, until one handler signals that it
has processed the request completely. After that, the HTTP response is returned
to the browser. The sequence of processing is primarily from the root node down,
and then secondarily in sequence for each node. You effectively process all han-
dlers for the specific node (one can use the expression that the handlers are
chained), and then go to the next deeper node. A node does not require a han-
dler. If no handler is found on a specific node, the next deeper node is checked.

HTTP Handler

67

68

For example, in Figure 3.1, the nodes sap and be have no handlers. The node bsp
contains the BSP runtime handler. It will look at the incoming HTTP request and
process it completely. Because the BSP runtime indicates to the ICF that the
request has been fuily processed, no further searching is done through lower lev-
els of the ICF tree.

The important concept to grasp is that ICF uses the tokens one by one to navigate
deeper into the handler tree until one handler signals that the HTTP request has
been processed. The rest of the URL is then not considered at all. The feature also
can be used to embed data into the URL as part of the URL segments. It is simply
a question of what the receiving handler will do with the rest of the URL, which
is considered to be effectively data (one string) passed to the handler.

Note The usual problem of ohe global namespace, and how to segment it,
also applies to the ICF tree and in effect to the domain of all possible URLs.
Here, the agreement that is enforced is that all SAP development take place
within the /sap sub-tree. At the next level, the be node represents SAP basis
development. Similarly, it is expected that customers will do their develop-
ment under a /customer namespace.

3.2 URL Mapping

For each handler, it is important to know what part of the URL was used to find
the handler and to have the rest of the URL available to make its own decision on
what actions it wishes to take. ICF makes this information available in special
header fields. These header fields are added to the incoming request by (CF, and
are not actually part of the original request.

sap/bc/bsp/sap/absenceform_new/default.htm

~sCript_name ~path_info

~request_uri

Figure 3.2 URL Separation into Request Headers

The three most interesting fields are:

» ~request_uri: This is the complete URL requested from the browser.

» ~script_name: This is the first part of the URL that was used to navigate
through the ICF tree until this specific handler was found.

» ~path_info: The rest of the URL that has not yet been used to resolve a han-
dler. The handler uses it to decide what action to take.

HTTP Handler

arirs

in Section 3.4, the other fields will be discussed in detail with a small example.

3.3 Sample Handler for Reading Images

An HTTP handler is a normal ABAP class that implements the interface IF_ETTP_
EXTENSION with one method HANDLE_REQUEST. Once the ICF has found a node
that contains a handler, the class is instantiated and called to process the request.
As an input parameter, this method gets a server object, which is effectively a
wrapper object containing the HTTP request and response objects.

This information should already be sufficient for us to create a first simple HTTP
handler. We will use the following test case: We have many pictures already
stored in a database, and we want to make them accessible in the browser. In our
BSP pages, we would like to have a symbolic way to reference these pictures.
What we would like to write, is something like:

(%@page language="abap"%>
<htmld
<body>
{image src="/my/images/ICON_ARROW_LEFT">
{image src="/my/images/ICON_ARROW_RIGHT">
{/body>
{/html>

The results we would expect to see in the browser are displayed in Figure 3.3.

e

Figure 3.3 Example Results

For the actual HTTP handler, we start this example by creating the class YCL
IMAGE_HANDLER and specifying that it implements the interface TF_HTTP_EXTEN-
SION. For the HANDLE_REQUEST method, we will start with some very simple
placeholder coding to test that we have all the pieces in order.

METHOD if http extension~handle_request.
if_http extension~flow_rc = if http_extension=>co flow_ok.
server-yresponse-yset_status(code = 200 reason = 'OK').
server->response->set_cdata (
"¢html><body>Hello World!</body>{/html>®).
ENDMETHOD .

Sample Handler for Reading images o9

70

The flow-return code informs the ICF that we have finished processing the
request and have written a complete response. For this simple example we do not
set any of the content specific headers and rely on the default behavior of ICM.
This is not recommended for actual production programs. The only value that we
set explicitly is the HTTP return code (value 200 implies it is OK for HTTP traffic).
The last line is the classic Hello World! for Web servers.

We now have a handler class that will respond with valid HTML coding when
called. We now must decide where we wish to place this handler in the ICF tree.
The handler is not a BSP application and therefore should not be placed under
/sap/bc/bsp. We have seen that our images are loaded from a path
/my/images. Thus, we must effectively create these two nodes within the ICF
tree and can thearetically put our new handler on any of the two nodes. How-
ever, we might later want to install other handlers below the {/my/ path, so letus
put our handler on the next node.

Virt, Hosts / Senices " [oocumentation v
< G default_host VIRTUAL DEFAULT HOST -~

B b | NewSub-Element

Display Senice Path Idefault_hostmy
Delete Service Sepvice Name |images

o Lang. English
Descripfion ./
Description -

Service (Inactive}

3| (Not maintained)]

BSP Book - ICF image Handler

Handiar List i Ordét of Exeeafion):
N |Handler) ‘
1 [YCL IMAGE HANDLER i

Figure 3.4 Creation of New Handler Class Node

With this, we have defined a new HTTP handler. We activate the node and use
the context menu to start a test for this node. In our output we should see our
simple Hello World! placeholder.

We can see from Figure 3.5 that our handler works for all types of URLs that start
with /my/images. The ~script_name part of the URLIs used to find the handler.
The rest of the URL, ~path_info, is ignored by the handler at this time.

HTTP Handler

i Address http:/MyHostfmy images

Heilo Worldl Address | hiip:/Mytost/my/mages/abcmPxyz=123

Hello World!

Figure 3.5 Handler Initial Output

3.3.1 URL Syntax

There are two ways that URLs can be defined. We could use the rest of the URL
to contain additional information we need. For example, we could expect
/my/images/NAME where NAME is the image we will display. The other option is to
apply parameters to the URL to define the image required. In this case, our URL
would be /my/images?name=NAME, Both techniques are similar, but the first is
more elegant and slightly shorter.

You remember from our initial code that we placed the images directly on our BSP
page. This required us to know exactly where in the ICF tree this handler is
installed. However, this is not very flexible for future changes and opens the pos-
sibility of typing mistakes. What we really want is a method that can generate the
correct URLs for us. Should we later decide to change anything in our system

setup (using for example an external image server), we only need to update the
URL generator once.

We will add a new static public method URL{) to the class, with name as the
import parameter, and url as the return parameter. Both are type STRING. The
complete source code is:

METHOD url.
CONCATENATE '/my/images/' name INTO url.
ENDMETHOD .

You might be tempted to consider appending .gif onto the URL to help the
browser determine what type of image it is loading. However, this is not required.
The browser wiil use the Content-Type header from the loaded images to deter-
mine the image type.

With our new URL generator, use of our images can now be done with less pos-
sibility of typing mistakes with this sequence:

{image src="<%=YCL_IMAGE_HANDLER=>URL (
"TCON_ARROW_LEFT')%>">

Sample Handler for Reading images

ral

72

3.3.2 Handler Coding

We are now ready to write the core logic of the handler itself, most of which
resides in the single method HANDLE REQUEST. The HANDLE_REQUEST method
can be broken into four distinctive parts, each with fewer than ten lines of codel

We start by informing ICF that this handler has finished processing the HTTP
request. Due to the use of the URL () static method to build our URLs, we expect
that most HTTP requests will be correct. If any errors occur, we just raise an

exception.

METHOD if_http_extension~handle request.
if_http_extension~flow_rc = if_http_ext engion=>co_flow_ok.

Next, we must determine the required image. The ~path_info header field con-
tains the part of the string that has not yet been used by ICF. Keep in mind that
the beginning of the URL was used to find this node in the ICF. The string is deter-
mined and manipulated slightly: uppercase conversion, strip leading /-character,
etc.

To avoid hard-coding the name of the ~path_info header field, we use instead
the interface IF_HTTP HEADER_FIELDS SAP. We actually have two interfaces
IF_HTTP_HEADER FIELDS_SAP and IF_HTTP_HEADER_FIELDS to cover all the
possible header field names via public constants.

* Determine image name from ~path_info (= image_name)
DATA: name TYPE string.
name = server->request->get_header field(
name = if_http_header fields_sap=>path_info).
TRANSLATE name TO UPPER CASE.
IF STRLEN{ name) >= 1 AND name(l) = '/".
SHIFT name LEET.
ENDIF.

Up to now, all code has used relatively common handling of HTTP requests. A lit-
tle application logic is now required to determine the graphics interchange format
(GIF) image and load it. Starting this block of code, we have the name of the
image as input and expect an XSTRING containing the GIF image as output. The
exact storage mode and location are not relevant to our discussion here.

Error handling is done with the usual ABAP exceptions. The ICF has an exception
handler installed, and will correctly render out an error message should we
encounter any problems loading the image content.

HTTP Handler

» Application logic
DATA: content TYPE xstring.
content = me->load(name).
IF XSTRLEN(content) IS INITTAL.
RAISE EXCEPTION TYPE cx_http*ext_excep:ion
EXPCRTING msg = 'Invalid URL!'.
ENDZF.

The last part of the handler is the HTTP response-handling. First, we set the HTTP
return code to 200. This is the defined code to indicate that the HTTP request was
processed correctly (see Chapter 2). HTTP status code descriptions can be found
in the global interface TF_HTTP_STATUS. The Content -Type header is set to indi-
cate that this is a GIF image.

* Set up HTTP response
server->response->set_status(code = 200 reason = 'OK').
gerver-Jresponge-Yaet_keader_field(

name = if_h-tp_header_fields=>content_type

value = 'imagc/gif').
server->response->server_cache~expire_re1(

expires_rel = 86000 }.
server->response-rset_header_field(

name = if_http header_fields=>cache_control

value = 'max-age=86000').
server->resporse-rset_data{ content).

ENDMETHOD .

Notice that the Content-Length header is not set. It will automatically be set
when the HITP response is streamed to [CM, In addition, some older kernel ver-
sions present a minor problem. If the Content-Length is set and the HTTP
response is gzip encoded, then the Contenz-Length is not reset. This causes the
browser to wait indefinitely an the rest of the input.

The HTTP response is flagged so that both the browser and the server will cache
it. Caching the image also in the ICM improves performance when the next user
requests the same image.

The final statement places the content into the HTTP response. Notice that there
are methods for handling both XSTRINGs, set_data and append_data, as well as
STRINGs, set_cdata and append_cdata.

The handler is finished, so et us try our test program.

Sample Handler for Reading Images

73

74

Aﬁ;{ress http: /MyHost/my/images/ficon_question

7A<d’d<r§5i http: /MyHost/sap/bc/bspfsapfy_book/book_icf_handler.htm

&= L. e
F Address iﬂmyﬂost/myﬁmagesﬁcﬂn_dces_not_exist o

Error when processing your request

What has happened?

The URL betp: §jMyHostfsapfbefybook_imagesficon_daes_nok_exist was net called due to an error.

Note . X . - s
The fﬁllow«‘xng error text was processed in the SYSI‘EI{‘I BSP ‘an Exfeptinn that could nok be caught accurred. ;
The error c‘cr,urred on the application server MyRost_B3P_00 and in the work process 0, 4
The termination type whas: RABAK»STATE’)

The ABAR call stack was: . .
Form: IF_HTTR_EXTENSION-HANDLE_REQUEST of program ¥CL IMAGE_HANDLER

Figure 3.6 Handler Final Output

For our first test, we enter a URL to a new image in the browser directly, and see
that the new image is displayed as well. Notice that this URL contains no .gif
extension. Nevertheless, the browser knows that it is an image due to the Con-
tent-Type header. For our final test, we enter an illegal URL. Remember the
check for this plus the raise exception sequence. The ICF returns an error page

for the caught exception.

3.4 Alias Handling

As we have seen, the exact URL has an important meaning for mapping onto the
handler list. However, a deep hierarchy of nodes in ICF leads to lengthy URLs
which reduce the usability of your application. Luckily, there is an alias technique
that can be used to reduce the length of the URL while still maintaining the ser-
vice hierarchy.

This alias type is created as a normal ICF node from within transaction SICF by
selecting Reference to an Existing Service. It has no associated handler class, but
just points to another place in the ICF tree where the URL resolving is continued.

ICF also supports the concept of external aliases. These are treated as local con-
figurations, whereby string comparisons are made against the incoming URLs and
are matched against external aliases, which again point back into the ICF tree. The
difference is that, while normal aliases are considered development objects that
are also transported through the landscape, external aliases are simply local con-

figuration data.

HTTP Handler

As HTTP handler writers, we are very dependent on the URL form and structure to
decide what the actual request is. However, developers and system administrators
have a different aesthetic sense and can create URLs that have no relationship to
those we are used to.

Let us look at a small example. In the first step, we write a small handler class that
will just echo back to us all the different header fields set by the ICF framework
(all start with '~"). The complete source code is only a few lines long.

METHOD if_http_extension~handle_request.

if_http extension~flow_rc = if http_extension=>co_ flow_ok.

DATA: hfs TYPE tihttpnvp,
hf TYPE dihttpnvp.
html TYPE string.

server->request->get_header_ fields(CHANGING fields = hfs).

html = '<html><body>{tabled>'.
LOOP AT hfs INTO hf WHERE name CS '~'.
CONCATENATE html
1<{tr>{td> " hf-name '</td><td>' hf-value '</td>{/tr>
INTO html.
ENDLOOP .
CONCATENATE html '</table><{/body></html>' INTC html.

gserver->response-yset_status(code = 200 reason = '0K').
server-J>response-yset_header_field(

name = if http_header fields=>content_type

value = 'text/html').
server-yresponse-’set_cdata(html).

ENDMETHOD .

This handler is placed into the ICF tree on the path /my/echo. We then add a new
node abe without a handler below /my/echo. With the URL /my/echo/abc in
the browser, the ICF framework will also match the abc from the URL against the
node in the tree, and test that this node is active before starting the handler.
Should a customer not wish to have service abc active, it can simply be deacti-
vated, and ICF will correctly answer the incoming HTTP request. Now, with a path

/my/echo/xyz, ICF will match only the first two segments, find them active, and
start the handler.

Alias Handling

75

76

This is why BSP adds a node to the ICF tree for each BSP application. At runtime,
BSP verifies that the specific application actually started does have a node in the
ICF tree. With this approach, only one handler is installed in the ICF tree, but all
applications are shown, with each application capable of being deactivated (this is
the default case when shipped).

Given the nodes along the path /my/echo/abc in the ICF tree, we create an addi-
tional alias in the ICF tree /sap/public/123 that points directly onto our path
/my/echo/abe.

With this ICF configuration, one possibility is to call our handler with the path
/my/echo/abc/klm/xyz. The handler will be found after processing the nodes
/my/echo, leaving the sequence /abc/klm/xyz as ~path_info.

Let us look more closely at our alternative ICF path. In this case, it is possible to
call the handler with the URL /sap/public/123/klm/xyz. Keep in mind that we
specifically created the alias with a name that is more meaningful to us . In this
case, the ICF runtime will use /sap/public/123 to find the alias for
/my/echo/abe, where the handler is also found. The remainder of the URL for
the ~path_info is only /klm/xyz. The /abc segment was never in the URL and
never visible at any time. Should our echo handler have required three segments
in the URL, the ~path_info would definitely have made it fail. See Figure 3.7 for
the output from the handler in two different cases.

Agdress]@ Hém‘://...}s‘ap/pubhc/’lz."ﬂdm/xyz

AQ;—J«TESS @ http:ff.../myfechofabckimfxyz

~request_method GET ~request_method GET ‘
~request_uri /my/echo/abeiklmixyz [j~request uri /sap/public/123/kdm/xyz
~path ‘mylecholabeklmizyz §~path /sap/public/123/kim/xyz
~path_translated /myfechofabeikimixyz §~path_translated /sap/public/12 3/ kimixyz ’
~server_protocol HITP/1.] ~server_protocol HTTP/1.1

~SeTVer_name us4043 wdf sap.corp §~server_name us4049 . wdf.sap.corp
~server_port 1080 ~server_port 1080
~server_name_expanded us4049 wdf sap.corp {|~server_name_expanded 154049 wdf.sap.corp
~server_port_expanded 1080 ~server_port_expanded 1080

~remote_addr 10.18.210.243 ~remote_addr 10.18.210.243 "
—~mi_sch;mt:_exp anded HTTP ~uri_scheme_expanded HTTP 3
~script_name Imylecho ~script_name fsaplpublic/123
~path_info fabckim/xyz ~path_info toixyz ¥

~script_name_expanded ‘my‘echo
~path_info_expanded ‘abokimixyz ‘

~script_name_expanded /my/echo
~path_iofo_expanded fabc/kimyxyz

Figure 3.7 Handler Output for two URL Tests

From this example, we see that the use of ~script_name and ~path_info could
in specific cases lead to the wrong result. These fields reflect the data from the

HTTP Handler

£
{
¥
{

URL that the user enters into the browser and the path that was logically tra-
versed to relate the URL to a handler. They do not reflect the true path within the
ICF tree, which is what developers work against. For this, we must look at the
fields ~script_name_expanded and ~path_info_expanded, which again has
the correct values.

The other '~' fields are used from time to time; but not at the same critical level
as these specific two fields.

3.5 Handler Example—Table Query

Although BSP is the focus of this book, we hope this small excursion into HTTP
handler programming has been very useful. With only 20-40 lines of code, a new
service can be plugged into the HTTP framework.

With such an HTTP handler, you are completely in control of the HTTP request
and response, and can better control the exact rendering. For specific scenarios,
the services of the BSP runtime are not required, so you can use this alternative
technique of rendering directly.

In our last example, we returned the binary content of image. We also saw how
we could render HTML directly in the previous example. But we could just as eas-
ily return XML. We now have the ability to build small data interfaces with the
handler approach.

To explain this ability, we will take the first example and modify it. Instead of pass-
ing in the name of an image on the URL, we will pass the name of a database table
instead. We will then query the records from this table, convert the results from
an ABAP internal table to a binary XML stream, and then return this XML stream
with the HTTP response.

We will even take this example one step further. Not only will the table name be
passed on the URL, but we will support WHERE conditions for our table query to
be passed as URL parameters. Therefore the following URL would generate the
output in Figure 3.8.

http://<host>/my/book_query/sflight?carrid=AAconnid=0064

One word of warning: This is a very powerful handler that should not be installed
in a system unless the necessary precautions are taken. At a minimum, the code
must be extended to include an authorization check. Also, never run this code on
any public node. The handler effect provides direct database access. It is similar to
a hex editor. It is hardly ever required, but it is the only tool for this particular job.

Handler Example—Table Query 77

i * Application logic

i Address th;)j;//MyHostlmy/book_‘query/sﬂlght?camd=AA&mnn’|d’=0064
Frecres DATA: content TYPE xstring.

5 content = me-»load(name).

i

e N IF XSTRLEN(content) IS INITIAL.

 ZITAB> 3 E RAISE EXCEPTION TYPE cx_http_ext_exception

- £SFLIGHT>
<MANDT>088</MANDT> EXPORTING msg = 'Invalid URL!'.
<CARRID>AA</CARRID> .
<CONMID>0064</CONNID>] i ENDIF
<FLDATE>2004-11-19</FLDATE ¢ NDIF.
<PRICE>422.94/PRICE> : : server-yresponse-rset_data(content).
<CURRENCY>USD</CURRENCY ; ‘
<PLANETYPE>A310-300</PLANET YPE>] ; o)

e h . .)

TATAMANS200%/3EA TEMAKS z_ This tim g éwever, let us take a closer look at the application logic. We will start
<SEATS0CC>267</SEATSOCCS : the application logic by dynamically creating an internal table that matches the
<PAYMENTSUM>130358.67</PAYMENTSUM> ! database tabl .
<SEATSMAX_B»22</SEATSMAR_B> atabase table we are going to select from.
<SEATSOCC_B»21</SEATSOCC_B>

<?wml version="1.0" encoding="utf-8" 7>
- <asx:abap amins: asy="http:/ /wweve.sap.com/abapxml’ version="1.0">

<SEATSMAX_F>10</SEATSMAX_F>] DATA: itab TYPE REF TO data.
SEATSOCC_F>9</SEATSOCC_F] :
Pheapiiseit g ; FIELD-SYMBOLS: {tab> TYPE table.

~ <SFLIGHT> : b ; 7 :
S ANDT >088</MANDT> CREATE I.)ATA itab TYPE TABLE OF (i_name).
<CARRID>AA</CARRID>] ASSIGN itab->* TO <tab>.
<CONNID>DUB+<,’CONNID> o

’ <FLDATE>2004-12-17</FLDATE> e] : Next, we will take the parameters that we have pulled out of the URL and use

them to build the database
Figure 3.8 Table Query Handler Output a query.

FIELD-SYMBOLS: <{wa_parameter> TYPE t_parameter.

3.5.1 Table Query Handler Implementation 'i DATA cond_syntax TYPE string.
We begin our process much the same way as our first example. We still pull the LOOP AT m_parameters ASSIGNING (wa_parameter).
: CONCATENATE cond_syntax {wa_parameter>-name

= 1

table name out of the URL just like we extracted the image name earlier. Thereaf- '
=t * = " {ya_parameter>-value '

ter, we collect all URL parameters for our WHERE condition. ;\
3 INTO cond_syntax.

* Determine table name from URL ~path_info (= Table Name) : IF sy-tabix = sy-tfill.
data: name type string. i ELSE.
name = server*>request->get_header,field(; CONCATENATE cond_syntax * and * INTO cond syntax.
name = if_http_header_fields_sap=>path_info). ENDIEF. B
translate name to upper case. ENDLQOP.
if strlen(name) >= 1 and name(1) = '/’. IF cond_syntax IS INITTAL.
shift name left. ; SELECT * FROM (i_name) INTO TABLE <tab>.
endif. : ELSE.
server->request->get_form fields(R SELECT * FROM (i_name) INTO TABLE <tab>
CHANGING fields = m_parameters) WHERE (cond_syntax) .
ENDIF.

All we need now is the call to the application-specific logic and then the buidling
of the HTTP response that we had in the original example. The only difference
now is that, because we are retrieving dynamic data instead of static image con-
tent, we do not activate the server and client caching of the response.

Now that we have our data in an internal table, we just need to convert it to XML.

DATA: g ixml TYPE REF TO if ixml,
g stream_factory TYPE REF TO if ixml_stream_factory,

78 HTTP Handler Handler Example —Table Query

}.,,.,,."_m.‘.‘ P
f
I

8o

g_encoding TYPE REF TO if ixml_encoding.
CONSTANTS encoding TYPE string VALUE 'UTF-8'.
DATA: resstream TYPE REF TO if_ixml_ostream,
ressize TYPE i VALUE 0.
*x+*Croagte an instance of the Ixml Processor
g_ixml = cl_ixml=>create()
****Create the Stream Factory
g_stream_factory = g,ixml*>create_streamffactory().
**++Create an Endcoding and Byte Order
g_encoding = g_ixml->create_encoding(
byte_order = 0).

#+#*¥Create the output stream with a pointer to our binary

character_set = encoding

resgtream = g_stream_factory»>createiostream_xstring(
r_content).
*+***Sat the Encoding into a stream
regstream-yset encoding(encoding = g encoding).
+++*0all Transformation using the simple XSLT id indent
CALL TRANSFORMATION id_indent
SOURCE itab = <{tab> RESULT XML resstream.

The returned XML content works well if you want to use this handler for some
sort of data interface, but the XML output is not particularly human- readable.
This is a problem with a simple solution. We can add some logic that will further
convert our XML stream into HTML using XSLT.

We do not want to have to create a whole new handler class for just this one
slight branch in our logic. Instead we will just create another ICF service but use

the same handler class for it.

llj;—Create!Change a Service
iCF Path: Idefault_hostimy?
ICF Object |book_gquery htu Service (Active)
Description in [EN English &) I

IBSP Brok - ICF Handler Examnple to dynamically query a tatle and retumn
Ehe content as HTML !

17]1 [CL_TABLE QUERY L -

Figure 3.9 Second ICF Service Linked to the Same Handler Class

HTTP Handler

In the coding of our handler class, we can now check for the unique portion of
our URL and branch our logic accordingly.

IF i_server->request->get header field(
name = if_http_header_ fields_sap=>request_uri)
CS 'book_query htm'.
DATA: xsource TYPE xstring.
xsource = r_content.
CLEAR r_content.
CALL TRANSFORMATION xmlgroup
SOURCE XML xsource
RESULT XML r_content.
ENDIF.

For this example, we have used an SAP’s XSLT program called XMLGROUP for con-
version from XML to HTML.

i Address

http: /MyHost/my/bock_query_htm/t000 T L

BI] |

B http:/iwww.sap.comfabapxmi]

generated by XTC 2.0 (SAP AG) ;

Figure 310 Table Query Handler Cutput—HTML

Handler Example—Table Query 81

L 4 URLs In BSP
The URL is a versatile part of any Web application. It is the entry
point, transaction code, and command-line interface equivalents all

: rolled together. In this chapter, we will look at certain unique aspects
of the URL, such as URL mangling and Fully Qualified Domain Names,
in the context of BSP.

4.1 URL Mangling

L 4411 What is URL AMangling?

When accessing a website, the URL of the page usually is shown exactly as
entered. However, once a URL is entered for BSP applications, it has a nasty habit
of changing itself quickly.

? “Addrés: http:I/MyHost;:om}sap/bcibsp/sapidecode;tJrIfdeFau\t,htm VJ E‘

b e -]

* é»AAdrdres’s http:/{MyHost com{sap(bD 1 biZiPTA40A==)/bc/bspjsapfdecode_url/default.htm v

L Figure 41 BSP URL Before and After a Change by BSP Runtime

i This process is called URL mangling, and it is worth looking at it in more detail.
The first question is always what is hidden inside the URL. Usually, the current
logon client and language are written into the URL. However, additional onfigura-
tion information is stored inside the URL from time to time. Typical examples are
: the theme in use, portal start-up information and, in extreme cases, a session ID.
SAP provides a small BSP application called decode url/default.htm to
decode the mangling.

: Address [;http://Minasttcam/sap(bD 1biZjPTA4QA==)/bc/bsp fsap/decode _url{default.him

URL
\ hitp:fivtyHost comisap(hD1IhiZiP TA40A==Yhcibspfsap/decode_urlidefault him

; analyse

Name {Value
: ; (Nanguage|en

! (client |088

E=EEE 11 {

Figure 4.2 decode_url—a BSP Application that Decodes the URL Mangling
URLs in BSP 83
3

The second question is: Why did SAP introduce this mangling? During Web AS
610 development, a theme concept was devised whereby specific objects in the
MIME repository can be overwritten into different themes. For each BSP applica-
tion, a cookie is set with all relevant information. However, this cookie is set
exactly to the matching URL of the BSP application and is not sent by the browser
when the MIME repository is accessed (/sap/something else/...).

The logic behind this concept is that you could have more than one active BSP
application at the same time, and each application must convey its own configu-
ration information over different stateless HTTP GET requests to the MIME repos-
itory. As the same MIME repository URL is accessed, it is not possible to set dif-
ferent cookies in different windows of the browser, locked onto the same path.
The only reliable solution was to encode information into the URL.

Encoding information into the URL has proved to be very useful in some cases,
but in others has made life difficult. Currently, this coding is so deeply engrained
into the BSP runtime that for Web AS 6.20 and 6.40 it is impossible to reverse the
situation. We must accept that URL mangling is a fact of life and that it cannot be
switched off or prevented.

4.1.2 How is URL Mangling Done?

For the first request into the server, the BSP runtime sees that the URL is not in
mangled form. In this case, an HTTP redirect is done, with the mangled URL as the
new location. In the new URL, all relevant configuration information is encoded.

A small HTTP trace, with all irrelevant headers deleted, shows this process:

GET /sap/be/bep/sap/it00/default.htm HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0)
Host: MyHost.com:80

HTTP/1.1 302 Moved temporarily

Content-Length: 25
Location: /sap(bD11biZjPTAuMA==)/bc/bsp/sap/it00/default. htn
Content-Type: text/html

GET /sap(bD11biZjPTAwMA==)/bc/bsp/sap/it00/default htm HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0)
Host: MyHost.com:80

HTTP/1.1 200 OK
Content-Length: 336
Content-Type: text/html

...content...

84 URLsinBSP

We see that the first request is received without URL mangling. The server
answers with a redirect —HTTP return code 302—and supplies the new URL. On

the next HTTP request, the browser accesses the server with the new, mangled
URL. |

44.3 Attempting to Hide the URL Mangling

The nature of the BSP framework makes it impossible to disable the URL man-

gling. However, you can hide the mangling. Consider the following HTML code
snippet:

(framesget>

(frame src="http://<host>/sap/bc/bsp/sap/it00/default .htm")
{/frameset>

Effectively, this loads a frameset into the browser, which loads the application
into a frame. Inside the browser, we now have a stable URL (in this example
loaded from local disk of the client machine) and the mangled URL is hidden
inside the <frame>.

Figure 4. 3 shows the results of this action in the browser. We can see that the
loaded URL has not changed and we see the original URL only via the properties
page.

§ Address | C:yt00.bim e b
it00: B e e e i on

svat] [Goed]

men k) it00. Standard BSP Test Apglication an W

(Hi-Co B -

Protacof: HyperText Transfer Protacol

1. Type: HTML Document unctionality in
Statd | Connection NotEncypted cept for control
Tests

Addiess: hitp://MyHast.com/sap .
(UAL) (6DVDZIPTA40A==)/be/bsp/sap DN e htm

Size: 299 bytes

o | crested: s/22/2005 ‘
Modfed 9/22/2005

2. I
B2 I D1biZiPTA404
Tests i [il
1 h Lok [caed) oo [abap htm)
SR - o ID1biZ{PTA404 &
X O S VI .
E] “ >

Unknown Zane (Mixed)

Figure 4.3 Hiding the URL Mangling Using a Frameset

URL Mangling 885

86

However, it is difficult to distribute such a file to all users. We must insert this
frameset directly before the application is loaded.

Let us look briefly at the process that is followed when an application is started.
The URL from the incoming HTTP request is matched segment-for- segment
against the ICF tree. On each node of the tree, you can specify a handler class for
the URL. For the BSP node, we have already defined one handler that will be exe-
cuted for all BSP applications. Figure 4.4 shows the BSP handler within the ICF
tree.

Tt

lE?Create/Change a Service !
kR o '
fdefault_hast/sap/bcf ‘

ICF Object |bsp : Service (Active) {'
Description in ﬁEN English a g

|BUSINESS SERVER PAGES (BSP) RUNTIME

Elal@BE]
[virt.Hosts / Services
default_host .

0oL
b . @option .
"B & public
e L

-

@ tbcdwb - . I R —
Rpi sap - . g
absenceform .

Figure 4.4 Standard BSP Handler Class

As we learned in Chapter 3, handler classes can be chained. However, the
sequence for processing handler classes always moves downward from the r400t of
the ICF tree. This means that if we want to place ourselves into this chain, we
would require a new handler before the BSP handler. The new handler will inter-
cept the initial request and write out the frameset first. After that, the next

request is processed as usual.

First, you must write a small handler class. All that the handler class must do is sig-
nal that it has finished processing and that the next handler must be called.

Create a new class YCL_BSP_EX_HIDE_URL_MANGLING implementing the inter-
face IF_HTTP_EXTENSION. For the HANDLE. REQUEST method, implement the fol-

lowing code:

if_http_extension~flow _rc =
if_http_extens ion=vco_Tflow_ok_other s mand.

Save and activate.

URLs in BSP

i e

.
i
¥

Now that we have our HTTP request handler completed, let us insert this into the
ICF tree. But beware: For this example we are making a modification to an ICF
node that is a transportable change. Only try this in a development system!

=
Systern Help [CreatefChange a Service

g B WERWR /defalt_hostsap/oc

Create/Change a Servid ICFObect [bep Service (Active) §

Description in[EMEngish - @]
BUSINESS SERWVER PAGES (BSR) RUNTIME

BaEER
Wirt,Hosts { Services

_Handler list (ir exgciition Grder): |7 -

i sg L . .BUST] {¥CL BSP_EX HIDE URL MANGLING
> (@ 1bcdwb ABAR 2 ICL_HTTP_EXT BSP
D e NAM R I
4 scmb Marm . "
bsp_dev WEB]
= . - — 5

Figure 4.5 New BSP Handler Assignment

Test with any BSP application. Each time, the new handler will be called before
the BSP handler is called.

The most difficult aspect now is ensuring that this new handler class will recognize
the first request instead of all other requests. A number of techniques exist, but
none are 100 % perfect.

» Assume that all the BSP applications are stateful. The first HTTP request will
open a session; ali other HTTP requests will run into an existing session. How-
ever, stateless applications and their support is an absolute must for scalable
Internet applications.

» Use the "Referer:" HTTP header field to see whether the new incoming HTTP
request is from our running BSP application. This would mean that it is not a
first request. This is a very promising approach, but still will not be 100 % reli-
able. There exist HTTP proxies and firewall technologies that excel in stripping
these header fields.

» Use a cookie that is set on the first incoming HTTP request. On all subsequent
requests, the browser sends this additional cookie. It fails when a new browser
window is opened, as the cookie also applies for the new window. However,
typical experience shows that new windows are usually popup windows,
where the toolbars are hidden.

URL Mangling

87

88

» Use a special start URL. Usually the BSP application is started with /name-
space/application/page.ext as part of the URL. Consider distributing
bookmarks where the page is not specified. The default start page is usually
specified for a BSP application and can be queried on the first request to
rebuild a new URL. This will fail when SES0 is used to start the BSP application.

» Consider the "()"-sequence in the URL as an indicator that the redirect has
already happened. Here, you must be careful to exclude MIME resources that
are also loaded via the BSP handler and do not always have the URL mangled.

» Add an extra signature segment to the URL. This still does not help for the SE80
test cases, but works perfectly for URLs that we send out.

None of the above techniques guarantees 1009% success. In the end, you are
forced to use a set of heuristics to distinguish the first request versus other
requests reliably. For the purpose of this example, we use the extra—segmeht
approach to demonstrate how this can be done. Let us assume that all our special
URLs are of the form /sap/bc/bSp/N/namespace/application/page.ext.
Just before emailing out such an URL, we added the /~/ segment, which will trig-

ger our handler and hide the mangling.

METHOD if http_extension~handle_request.

* Get URL to check for signature, possible for {frame>
DATA: url TYPE string.
url = server->requestf>get_header~field(
if_http_header;fields;sap=>request_uri).
IF url NS '/~/'.
if_http_extension~flow_rc =
if_http_extension=>co_flow_okfothers_mand.
RETURN.
ENDIF.

* Build HIML string for frameset
DATA: html TYPE string.
REPLACE '/~/' IN url WITE '/'.
CONCATENATE “<html><{frameset>{frame src="" url
15/ frameset></html>"
INTO html.

* Set regponse
server-»response-rset_cdata(data = html).
server->response-rset_status(code = 200 reason = 'OK').

URLs in BSP

gy ey

AT

S

server-yresponse-,set_header_ field(
name = if http_header_fields=)content_type
value = 'text/html').

* This handler finished processing request

if_http extension~flow_rc = if hitp_extension=>co_flow_ok.

ENDMETHOD .
However, we need to keep in mind a few negative aspects of this solution:

» One additional round trip is required to first install the loader frame. In a LAN,
this adds about 10-15ms to the time it takes for the application to be dis-
played.

» The additional round trip alsc implies the one-off cost of about 500 extra bytes
(keep the HTTP headers of the request and response in mind). For each addi-
tional round trip, the extra cookie is transported.

» For each incoming request, the new ICF handler is triggered first before the
BSP handler is called. This implies a small code overhead per request.

» A repair transport to the ICF node is required to insert the additional handler.
This node still has SAP as the owner, and it does not fall into the customer's
domain.

All of the above are minor overhead concerns compared to the latency added by
the BSP runtime; they are listed here for technical precision. This approach is not
an ideal solution, especially because using such a handler before the BSP handler
requires a system modification. Even so, this investigation has been very instruc-
tive, both for understanding URL mangling and for exploring further the use of
ICF handlers.

4.2 Fully Qualified Domain Names

One of the most common errors that new BSP developers encounter is what we
call the Fully Qualified Domain Name check (FQDN).

In essence, FQDN requires that the host name be specified with a complete
domain name when addressing the server. For example http://MyHost.sap.
com/sap/be/bsp/sap/it00 instead of http://MyHost/sap/be/bsp/sap/
1t00.

Usually, only the host name in the URL is required for the browser to determine
the IP address to use. You can use a ping tool to verify this with any of your SAP
servers,

Fully Qualified Domain Names

89

90

¢ Address http: {fMyHost sapfbic/bspfsap/itaD

Business Server Page (B5P) error

What happened?
Callng the BSP page was terminated due to an error,

‘GAP Nate _ 7
: = The following error test was processed in the system: 7) .)
The URL does nat cantain a full domain sperification (MyHast instead of MyHost. <‘.:Iumam>_4 <ext).

Enception tlass <~ JOUFGDN

-Include

Figure 4.6 Fully Qualified Domain Name Error

In the first instance, the host-name part of the URL exists only so the browser can
find a route to the Web server. Once on the Web server, the rest of the path start-
ing at the first / is used to resolve the specific page to view. So why would BSP
require a FQDN and other Web services would not?

4.24 Motivation for FQDN

The first important fact to understand is that the host name in the URL is effec-
tively a routing string, which tells the browser how to reach the target. A typical
situation is that a host might have an intranet name (example
150028 .wdf.sap.corp) that is totally different from the internet name (example
bsp.sap.com). This means that the FQDN is determined by the browser’s posi-
tion relative to the Web AS it is connecting to. The name entered in the URL is
important for the SAP Web AS, as this tells us the route that was followed to the

server,
This host name is always placed into the HTTP header (header field Host2). Infor-
mation is available on the server concerning what the browser thinks the correct

name is.

There are three reasons why the browser must access the Web Application Server

(Web AS) with a fully qualified domain name:

» It is important for the use of the HTTPS protocol. Secure Sockets Layer (SSL)
requires that the server and browser names match the names in the certifi-
cates.

» When setting cookies for a specific domain, it is important to know the domain
the browser requires for the cookie, so that the cookie will always be returned

URLs in BSP

|

to the server. A typical example is the SSO2 cookie used for Single Sign-On
(SSO) over multiple servers.

» For JavaScript calls to work over different frames (from different hosts in the
same domain), each frame must relax its document domain. Typically, the host
name is stripped, and the domain is set to the FQDN. For this to work, the
browser must already know the FQDN for the document that it is retrieving.
This information cannot be set from the server and must be correct from the
beginning of the request. This concept of domain relaxation is especially
important for BSP/portal integration.

Especially for the domain-relaxation aspect, the BSP runtime cannot know
beforehand if the domain-relevant aspects will influence the application. If FQDN
is not enforced, the door is open for many other types of more difficult-to-diag-
nose problems.

The above obstacles also prevent the acceptance of an P address as host name,
even although the browser can handle it correctly. In such cases, it is again impos-
sible to set domain wide cookies correctly or to participate in cross-frame com-
munications with a portal page.

4.2.2 ICM Configuration

Usually, FQDN and its use constitute a browser-related problem. The URL is
entered at the browser and should be correct.

However, there are cases where a URL is created at the server. One typical exam-
ple occurs when a BSP application is tested in the Development Workbench—
SE80. A browser window is opened with the URL to test. In this case, of course,
the URL must also be a FQDN.

By default, the ICM picks up the correct name and domain for the server from a
domain name server (DNS). However, there are some cases where this does not
work accurately. For these, ICM supports a profile parameter, icm/host_name_
full. SAP recommends you configure this parameter. This is the host name that
will be used to build fully qualified URLs.

4.2.3 Browser Requirements

In addition to the checks that the BSP runtime will enforce for FQDN, there are
certain similar browser specifications that you should be aware of. These specifica-
tions effect BSP when cookies, SSOS, HTTPS, or portal integration come into play.

The browser has certain criteria that must be met before it will transmit a cookie
back to the server. These criteria differ between Microsoft and Netscape. Both

Fully Qualified Domain Names

o1

92

browsers require a domain specification. Netscape allows domains with the
extension “com,” "edu," “net,” "org," "gov," "mil," or “int" to pass with only one
additional domain component. For any other extension, the URL must contain at

least two additional domain parts.

For example, http://www.sap.com is fine, whereas http.//www.sap.de would not
pass. You would need a URL like htt'p://www.bsp.sap.de to pass the Netscape test.

Microsoft is less strict with its check. Internet Explorer allows domains with only
one additional component, as long as that component has three or more charac-
ters in it. Therefore http.//www.sap.de would now be fine, but http://www.co.uk
would not.

To further complicate matters, Internet Explorer 6.0 or 5.5 with Security Patch
MS01-055 will also reject domain names that contain an underscore.

4.3 Namespace Mapping

SAP decided that each BSP application must have its own node inside the ICF
tree. This allows the ICF to also support additional functionality and configuration
options for the individual BSP applications. Typically, you can activate or deacti-
vate a specific BSP application via its corresponding ICF node. it is also possible to
configure user-logon information for the specific BSP application in its ICF node.

However, the biggest motivation is that of security. With these sub-nodes
checked and enforced by the BSP runtime to be available, the ICF runtime will
actually have checked that all the nodes for the application are active, before
starting the BSP runtime. This way, a higher level of security is reached by dis-
abling all nodes for BSP applications that are not required. Nodes are, by default,
shipped in a disabled state.

The usual problem of one global namespace, and how to segment it, also applies
to the ICF tree and effectively applies to the domain of all possible URLs. Here,
the enforced agreement is that all SAP development will be within the /sap sub-
tree. At the next level, the bec node represents SAP NetWeaver development.
Similarly, it is expected that customers will also do their own development under

a /customer namespace.

SAP recommends that customers do register and create unique namespaces for
their own development. This can be done on the Service Marketplace (http://
service.sap.com/namespaces). However, for BSP development, customers can also
follow the traditional Z & Y reserved object name range within the SAP
namespace. Therefore the following situations are possible.

URLs in BSP

AP g —

Scope BSP Application ICF Tree
SAP abe /sap/bc/bsp/sap/abc
CUSTOMER zabe /sap/be/bsp/sap/zabc

CUSTOMER with registered namespace /company/abe /sap/be/bsp/company/abe

Table 41 Namespace Patterns for BSP Development
For this exercise, we will simulate the use of a namespace by borrowing one of the

SAP delivered namespaces. We will start by specifying the ABAP Workbench Gen-
erated Object namespace as we create our BSP application.

IC:’Web Application Bulder: Create BSP Application

BSP Application J18COWE/bsp_book_ch3

BSP Book Chapter 3 Examples

Shart Description

| D%]

Figure 4.7 BSP Application Creation Within a Namespace

Now, when we navigate to transaction SICF and view the ICF tree, we should see
a new path that has been generated to hold the objects within our namespace.

\irt,Hosts | Services . - |pocu,

"RESERVED SERVICES
PUBLIC SERVICES e
-BASIS TREE (BASIS FUNCTIONS)

BUSINESS SERVER PAGES (BSP) RUNTIVE -
ABAP iwarkhench Namespace |
BSP Book Chapter 3 Examples

bsp_book_ch3

b sap NAMESPACE 54P
b) scrmb Namespace : : H

Figure 4.8 Namespace Entry in the ICF Tree

4.4 URL Parameters

Several specially named forms fields can be set as URL parameters. These can be
used to set and control important system variables, such as the logon language
and client. You might see them added to a standard BSP URL such as the follow-
ing: /sap/be/bsp/sap/it002sap-client=001&sap-language=DE to start the
BSP application IT00 in client 001 in German.

URL Parameters

23

URL Parameter

sap-accessibi-
lity

sap-client

sap-htmlb-design

sap-language

sap-password

sap-rtl

Description

Activation/deactivation of the accessibility flag for the HTMLB libraries.
Activation of this aption will cause additional tags and descriptions to be
written into the rendered output in order to support screen readers for
the visually impaired. Please note: This flag only expresses the wish for
accessibility support. The application itself must contain the additional
rendering logic to Handle this case. If the HTMLB libraries are used,
accessibility is handled correctly for the relevant rendered HTML.

Sets the logon client. If specified, this parameter overrides the default
client.

Allows you to set the HTMLB Design (see Chapter 9 for more details}).
This is the same as setting the attribute design of the element
<htmlb:content>. Valid values are CLASSIC, 2002, or 2003. This param-
eter will only switch between designs that the application states it sup-
port, and cannot be used to force an application onto a design it was not
tested with.

Sets the logon language. The language value must be specified via the
ISO language key.

Itis possible to logon to a BSP application by supplying the user name
and password as URL parameters. However, be careful if you enter the
password directly in the URL, as it will most likely be stored in your
browser's history in clear text.

This parameter activates/deactivates the flag for right-to-left rendering in
the HTMLB libraries. This option is used to support proper rendering in

o _languages such as Arabic. Please note: as with accessibility, this flag has

sap-sessioncmd

sap-contextid

sap-syscmd

only a meaning for the HTMLB rendering library. If you have hand-coded
HTML on the page, you have to test this flag and add your own addi-
tional support.

This pa'ramétef sénd; actions to'the session manager:

bpen—starts a new session. o

close or logoff—ends the current application and redirects the browser
to the URL supplied by the parameter sap-exiturl.

cancel—is similar to close, but already handled by ICM.

usr_abort and usr_close—isused by the portal to control BSP sessions.

This is where the BSP runtime stores its session cookie. The session
cookie groups requests into one common session for a stateful applica-
tion. Can also be used as URL parameter, but not as form field inside the
body of a POST.

The only value supported is nocookie. This tells the BSP runtime to
mangle the session ID into the URL, and not use a cookie for handling
the session id. This is especially required when the same stateful applica-
tion must be run multiple times in situations where session ids in cook-
ies would have resulted in all applications mapping onto the same ses-
sion.

Table 4.2 URL Parameters

94 URLsin BSP

B

URL Parameter Description

sap-theme This is the same value that can be set from thé BSP application - Proper-

ties tab. This is the older concept of theme for MIMEs that is deprecated
and not be used anymore.

sap-themeRoot This sets the themeRoot for the HTMLB libraries Design (see Chapter 9

and Chapter 17 for more details). This is the same as setting the attribute
themeRoot of the element <htmlb:content).

sap-trace This allows you to trigger the activation of a developer runtime trace for
the current application.
sap-user It is possible to logon to a BSP application by supplying the user name

and password as URL parameters.

Table 4.2 URL Parameters {cont.)

4.5 URL Escaping

We have already seen how special URL parameters are used to control system set-
tings such as the logon language. However you also can use URL parameters to
pass data from page to page or to initialize a value at the start of an application.

URLs have to be parsed by the browser and the server to process their separate
sections of data. Characters such as /, ?, and & have special meanings when trying
to process the information on the URL. What happens when the data that you
want to pass along through a parameter also contains one of these special char-
acters?

In such a situation the process of escaping comes into play. Escaping simply
means that you replace the offending character with an escape sequence. This is
similar process within HTML itself to include reserved or special characters.

Let us take for example the following fictional URL: http://www.sap.com?exit=
http://sdn.sap.com. We have a parameter called exit with a value of http://
sdn.sap.com. We know that we will need to encode this parameter as we add it
to the URL. The results would be: http://www.sap.com?exit=http%3a%2f
%2fsdn%2esaph2ecom, where %3a is the encoding for :, %2£ for * and %2e for ..
Be careful that only the values are encoded; do not encode the full URL.

Luckily, we do not have to perform this conversion on our own. SAP offers a static
method of class CL_HTTP_UTILITY called ESCAPE URL.

DATA: url TYPE string.
url = cl_http utility=>escape_url(“http://sdn.sap.com/").
CONCATENATE “reload.htm?exit=" url INTO url.

URL Escaping 95

96

But there is an even simpler solution if you are going to be building a URL that
links to another BSP application. In this case, you can use the static method of
class CL_BSP_RUNTIME called CONSTRUCT_BSP_URL. This method has an import-
ing parameter, IN_PARAMETER, which allows you pass in all your name/value
pairs. This method then is responsible for assembling the complete URL, including
the URL escaping.

URLs in BSP

5 Authentication

Authentication is very much like the game "Knock-Knock/Who's
there?" that we played as children. Each HTTP request has to play this
game before being processed. Although the question "Who's there” is
simple, the answer can be complex. Let us explore this situation.

In Chapter 1, we showed the basic block diagram with the HTTP framework. The
Internet Communication Manager (ICM) will accept HTTP requests from any
browser, and then will pass them to the Internet Communication Framework
(ICF) layer for processing. However, before any processing can start, the incoming
HTTP request has to be connected to a known ABAP user. This is the authentica-
tion step, and each incoming HTTP request is effectively subjected to it.

Authentication plays no immediate role in normal BSP development. Being
prompted for a name and password at startup is an everyday experience that, all
users have long accepted. However, if suddenly, in the middle of the session, the
user is prompted again for authentication, the support desk soon faces confused
guestioning. The “Why authentication again?" question can only be answered if
one understands what form of authentication allowed all previous HTTP requests
to be processed, and why that method fails now. And for this question, one has
to address the potential complexity of all different forms of authentication.

Knowing how authentication works also allows one to understand the difference
between authentication and session management (discussed in the next chapter).
Every once in a while, we see the following problem: "One user has successfully
logged off from the server and leaves the browser running. Now, the next user sit-
ting at this terminal is treated as the previous user. Why is he not prompted for his
password?" Effectively, the logoff sequence just closes the session on the server;
it does not make the browser forget the credentials’ that it has available. On the
next HTTP request to the server, the same credentials (from the previous user) are
transmitted with the request, allowing the server to process the new HTTP
request by starting the BSP application in a new session. Thus, understanding
authentication also helps us to see ways of removing the credentials from the
browser (although this turns out to be impossible in many cases).

1 Credentials imply any form of user authentication information used between the browser
and the server, and are not limited to the typically used name-and-password approach.

Authentication

97

5.1 Basic Authentication
Basic authentication is the most common and familiar authentication form.

Let us start a browser for the first time and request a URL from the server. For this
testing, any BSP application will do. The browser first sends the HTTP request to
the server, attempting to see if the server will answer the request as is.

GET /sap/bc/bsp/sap/it00/default.htm HITP/1.1
Accept: */*

Accept-Language: en-usg,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

The server receives the HTTP request, and a new ABAP session is opened to pro-
cess the request. As a first step, authentication information is required to assign
an ABAP user to the session. No authentication information is available in the
request. The server therefore refuses to process the HTTP request and answers the
browser that the user is not authorized for the request.

HTTP/1.1 401 Unauthorized

Content-Type: text/html; charset=iso-8859-1
Content-Length: 2041

SAP-System: BBO

SAP-Client: 000

WWW-Authenticate: Basic realm="SAP Web App Server [BBO]"
Server: SAP Web Application Server (1.0;710)

<html>
<head><titledLogon Error Message</title><{/head?
<body»><hl>Logon failed</hl>...

There are a number of very interesting aspects in this HTTP response. The first is
the HTTP return code of 401, This is standard defined HTTP return code for
authentication failures. The browser must now obtain the user's credentials and
supply them to the server.

The server also sets two headers: SAP-System and SAP-Client. The system
header is the one against which the authentication failed and useful for trouble-
shooting. The client header displays the client that will be used for the authenti-
cation. As no client was specified in the URL, the default system client, in our case
000, will be used.

The most interesting header is WWW-Authenticate header The first token
informs the browser that only basic authentication is accepted. The other, more

98 Authentication

o s e

S ——

e D N

complex digest authentication is not supported. The next token, the realm, is a
string that defines a specific part of the server's URL space and allows the browser
to associate different sets of credentials with different URLs on the server. With
the realm, it is possible for the server to require different name and password sets,
depending on which URL is accessed. The browser would then store the user-sup-
plied data with the realm as key. Should the server challenge the browser later
with exactly the same realm, the same credentials are used. This way, the server
can group URLs and require the browser to prompt the user for different authen-
tication data depending on the URL requested. For the SAP Web Application
Server, only one realm is supported, and it always contains the name of the server
as well.

The last interesting aspect is that the HTTP response actually has a body that con-
tains an error message. However, this HTML code is not shown immediately (see
Figure 5.1).

ORI R0 2L T Y AR o
Fle Edit Yiew Favorites Tools Help

SAP Web Application Server [BHO]

User name:] £ mckellar le 4

Password: | toncersan [

I_:| Remember my password

Figure 51 Basic Authentication Prompt

Once the browser receives a 401 HTTP response, it is faced with the problem that
it requires a user name and password. For this, a standard browser dialog is dis-
played that prompts the user to enter a name and password. Notice that the
realm is also displayed in the popup. Often, when the server does not accept the
authentication, it is worthwhile to double-check this string. In cases where differ-
ent Web AS systems run on the same physical computer, but use different HTTP
ports, this string is the best indicator that the HTTP request, and thus the
attempted authentication, has been addressed to the wrong Web AS server
(effectively to the wrong HTTP port).

It is impossible in the popup dialog to set the client for which the authentication
is required. The dialog is provided by the browser, and cannot be influenced by

Basic Authentication

S

99

the server. If the logon is required against a specific client, then this must be set
beforehand with the URL parameter sap-client. If it was not set, the default
configured SAP client is used together with this authentication information (refer
to SAP-Client header field that was set by the server).

Impossible in the dialog is also to request that the logon be in a specific language.
By default, the configured language from the browser is used (see the Accept-
Language header), or the requested language can be explicitly set with the URL
parameter sap-language, using two character ISO codes as values.

Should the user decide not to supply authentication information, but to cancel
the browser dialog, then the error HTML page sent with the 401 HTTP response
is displayed (see Figure 5.2).

Logon failed

What has happened?
Call of URL hitp: ffus 4443, wdf sap.corp: 1080/sap be/bsp//sap/it00/default.htm terminated due to errer in logon data.

Note B .
Logon performed in system BBO . No logon data provided. R
What can I do?

m If you do not yet have a user ID, contact your system adminisirator.

HTTP 401 - Unauthorized
Your 5AP Internet Communication Framework Team

T T

:éjDone) o o 7 N . i b] v‘z‘gvmmiinh'anat

Figure 5.2 Cancelled Basic Authentication

Let us enter our name and password and see what the browser does then.

GET /sap/bc/bsp/sap/it00/default.htm HTTP/1.1

Accept: */*

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

Authorization: Basic VGhhbmtzIGZvciBidXlpbmecgYm9vayE=

The only difference we see from the first request is the addition Authorization
header. The first token again indicates that basic authentication is used, and the
next token is the authentication data. The user name and password are stored in
one string "username:password” and then base64 encoded. It is not encrypted,
and even our children would require less than three minutes to find a base64

100 Authentication

decoder in the Internet and read our passwords. So, always be careful when send-
ing out HTTP traces to the help desk for analysis. in general, you should carefully
consider whether to use basic authentication and probably should do so over
HTTPS networks or use switched Ethernet in order to protect passwords from net-
work snooping.

HTTP/1.1 302 Moved temporarily

Content-Type: text/html; charset=iso-8859-1
Content-Length: 25

Location: /sap(bDlk==)/bc/bsp/sap/it00/defanlt.htm
Server: SAP Web Application Server (1.0:;710)

BSP URL requires rewrite.

As the HTTP request now contains acceptable credentials, the BSP runtime is
started to process the incoming HTTP request. As an HTTP response, the URL
mangling (see Chapter 4) is started with a 302 HTTP response to cause the
browser to redirect to a new URL (see the Location header).

We would expect that from the next URL, the browser will now always set the
Authentication header, allowing the server to process each HTTP request. Let
us look at the next HTTP request/response cycle.

GET /sap(bD1k==)/bc/bsp/sap/it00/default.htm HTTP/1.1
Accept: */*

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="SAP Web App Server [BBO]"

We see that the new BSP-mangled URL is requested from the server, but without
any authentication information. The server therefore again sends a 401 HTTP
response. The reason for this is that the URL has changed from /sap/... to
/sap(bbDlk==)/.... For the browser, this is a different part of the URL
namespace, and it will always attempt to first get a response without any authen-
tication information. As the HTTP request was answered with an authentication
request that contains exactly the same realm for which the browser already has
our user name and password, it does not again display the popup prompting for
data.

Basic Authentication

101

102

The browser just takes note that the URL namespace /sap(bD1k==)/... also
requires the same authentication information. It will resend the HTTP request
immediately, but this time with the Authorization header set.

GET /sap(bD1k==)/bc/bsp/sap/1it00/default.htm HTTP/1.1
Accept: */*

Accept-Language: en~us,de;ﬁ=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

Authorization: Basic VGhhbmtzIGZvciBidXIpbmeg¥mdvayE=

From now on, the basic authentication data will “stick,” and it will be transmitted
with each HTTP request for the BSP application.

It's worth noting that basic authentication supports only a name and password.
But how does the server know to which client the credentials belong? If no infor-
mation is set or available, as in the traces above, it is assumed that the credentials
are for a default-configured client. However, if the basic authentication was done
for another client by setting the URL parameter sap-client, then this informa-
tion also must be known. The ICF layer handles this with the sap-usercontext
cookie. If either the client or language is changed to be different than the default
values, the cookie will be set and used in conjunction with the basic authentica-
tion information.

Set-Cookie: sap-usercontext=sap-client=003; path=/

Note that the basic authentication information is tied to a specific system (via the
realm string) and client (via the sap-usercontext cookie). This information can
only be set once for the browser, and it is not possible to have two sets of data for
the same Web AS system. This constraint also means that it is not possible to run
two BSP applications in different clients from the same browser.

5.2 Single Sign-On

Single Sign-On (SSO) within the browser environment usually refers to the use of
a HTTP cookie to store the user's identity. The process is relatively simple. If the
browser is started anew, no credentials are available when the user requests an
URL from the server. In this situation, no SSC2 cookie is available either, and thus
SSO cookies are not a technique that can be used for the first round of authenti-
cation. Another form of authentication is required, such as the basic authentica-
tion described above.

Once the user has been authenticated, and if the server is so configured, it will set
a SSO cookie (called MYSAPSSO02) that is typically valid for the complete domain.

Authentication

sy e s £

The server can also be configured to set the cookie to be returned only to the spe-
cific server. Now, on all subsequent HTTP requests, the browser will send the
cookie with the HTTP request. The targeted server then can use the information
within the cookie as credentials to authenticate the user.

Let us look at a HTTP trace of this process first. In the first round, the URL is
requested as we saw in the previous section without any form of authentication,
and the server replies with a 401 HTTP response. The HTTP trace is exactly as it
was before and is not shown again. The browser will display the popup window
prompting the user for name and password. On the next request the Authoriza-
tion header will be set.

GET /sap/bc/bsp/sap/it00/default.htm HTTP/1.1

Authorization: Basic VGhhbmtzIGZvciBidXlpbmegYm9vayE=

HTTP/1.1 302 Moved temporarily

Set-Cookie: MYSAPSSO2=AjExM...+615...k0v5d; path=/;
domain=wdf.sap.corp

Content-Type: text/html; charset=iso-8859-1

Content-Length: 25

Location: /sap(bDlk==)/bc/bsp/sap/it00/default.htm

Server: SAP Web Application Server (1.0;710)

BSP URL requires rewrite.

The HTTP response from the server contains the answer from the BSP runtime and
an additional Set-Cookie header. The server has verified the credentials supplied
from the basic authentication, and now sets a MYSAPSS02 cookie. Notice that the
cookie is set with the root path and for the complete domain. Effectively, for each
new HTTP request to any server within this domain, the cookie will be added.

The cookie itself is roughly 625 characters and now shown completely in the
HTTP trace. Just keep in mind from Chapter 2 that cookies are set only once to the
browser, but always returned for each and every HTTP request where the server
domain and path match. This means that all following HTTP requests will have the
additional payload of the 625 characters. This is the price paid for the functional-
ity provided by SSO.

The next HTTP request has the MYSAPSSO02 cookie set, and is answered with a 200
HTTP response and the correct HTML for the application.

Single Sign-On

103

CET /sap(bD1lk==)/be/bsp/sap/it00/default . htm HITP/1.1
Accept: */*

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

Cookie: MYSAPSSO2=AjExM...+615...k0v5d

HTTP/1.1 200 OK

Content-Type: text/html; charset=iso-8859-1
Content-Length: 334

Server: SAP Web Application Server (1.0;710)

<html>. ..

Notice that this HTTP request does not contain the Authentication header. As
discussed in the previous section, the URL change for the browser (because of
mangling) implies a new URL namespace, and the browser will never send the
basic authentication until challenged for it (by a 401 HTTP response with match-
ing realm). In this case, the MYSAPSSO2 cookie has now assumed the role of pro-
viding a different set of credentials for each HTTP request.

Looking at the last HTTP request, one quickly concludes that, at the end of the
BSP application, the browser can be instructed to stop running in the name of a
user by deleting the MYSAPS302 cookie. Theoretically, then, there are no creden-
tials in the browser, and the next user will be prompted to supply his or her user
name and password. However, the basic authentication is still slumbering in the
background. Once the cookie is deleted, the next request will have no credentials
and the server will answer with a 401 HTTP response, causing the browser to just
retry again with the Authentication header set. This proves that to really under-
stand authentication one has to understand each and every type of authentication
that could be active and also understand what type of authentication allowed
each HTTP request to be processed.

Using SSO cookies against the same server is one technique for easily handling
credentials over the lifetime of the browsing session, although at a corresponding
payload price for each HTTP request. The more interesting facet of SSO cookies is
the SSO principle. The first server did all the work to authenticate the user. The
SSO cookie is send to all other servers and also accepted without further ado. This
is effectively a single sign-on over all systems!

104 Authentication

To understand how this works, we have to fook at an abstract level at exactly what
a SSO cookie is. For our discussion, the important aspect for is that it contains our
SAP user name. This is effectively the user name (sy -uname) of the logged-on sys-
tem. What the cookie does not contain are any client settings (as this can be dif-
ferent per system), nor language, email addresses, etc. The server will extract the
name from the cookie, take also the additional information about the correct cli-
ent to use (either default client or from cookie), and verify that the user name is
valid for the system. Note that the SSO cookie forces the user name to be con-
stant over all systems.

How does the server protect itself against a fake cookie? This is achieved by sign-
ing the user name in the cookie with the server's own digital certificate. This also
explains why the cookie is so large! Any receiving server will first look into the
cookie to see which server issued the cookie. It then looks in its store of digital
certificates to see if it has the public part of the issuing server's certificate. Using
this, it will verify that the data is actually correct. The principle of SSO cookies is
that servers must have a trusted relationship with one another. This is achieved by
configuring each server with the certificates of the other servers it may trust (see
transaction STRUST). ’

5.3 Digital Certificates

Within the Web context, digital certificates always refer to X.509 certificates. A
X.509 certificate binds a public key to a distinguished name that is issued by a cer-
tificate authority. The security aspects of X.509 certificates, although very inter-
esting, are not the focus of this book. We primarily need to understand that a cer-
tificate is so constructed (digitally signed by a certificate authority) that the
receiving web server can again validate the distinguish name. The distinguished
name itself is usually of the form C=<country> 0={company> CN=<certifi-
cate name> and can include other attributes that uniguely name a person. There
are standard procedures whereby a company can obtain and issue such certifi-
cates to each employee.

The first step is to import the certificate into the browser (see Figure 5.3). With
this, the browser now has our identity in a digital format that can be verified again
by the server.

The next step is to update the Web AS server be able to map the distinguished
name onto a user name. This mapping can be configured with transaction SM30,
in the table USREXTID (see Figure 5.4). The external ID is the distinguished name
from the X.509 certificate and must be entered exactly the same into the table,
inciuding the preservation of case and spaces.

Digital Certificates

105

. " Ganéral | Secunty COHtEﬂt Cunnemons I Programs l Advanced [

v ~Contert Advisor————

Ratings help you vontral the Internet content that can be
@I wewed on th|> Lomputer

1] o Enchle... :

| "’PEI’5006| lOther Pemp!e l

Certificate:

L Certificates—

) % Use certificates ko positively |dent1fy your ‘
’7 5 authontie:u and publisher: Issued To] Issued By | Expiratio. . ! ; :
o N : |Elooosi46 50 _CA 2006-05-04 g

i Rarave

o oo s et v

Change View “ASSlgnment of External lD tn Users :
External ID type
External ID CN=D00&146, 0=5AP-AG, C=DE
Seq. No. - {aele) o B

User MOKELLAR | o

Min. date | ' |

Activated

N T e e e S PO S TR T oo TR

Figure 5.4 Mapping of Certificate Distinguished Name to User Name

Although it is slightly tedious to complete this process for one user, it is shown
here to highlight the basic principle of integrating certificates and using them to
identify users. In large corporations, this configuration usually is done centrally as
part of the user management for the Web AS system.

The question now is how to get the browser to send the certificate to the server.
This answer turns out be very simple. The moment the protocol is switched from
HTTP to HTTPS, the certificate is automatically sent as part of the encryption layer
used to secure the HTTPS connection. No further work is required.

Let us make a very simple BSP application: <html><%=sy-uname%»></html>. The
first time, we execute the application with an http:// URL, and thereafter with
an https:// URL. See Figure 5.5. It is important that each protocol requires its
own port number. If the default port numbers are configured, : 80 for HTTP and
:443 for HTTPS, we need not specify port numbers.

106 Authentication

J File Edit View Favorites Tools Help ‘ . ‘Elle . Edit Siew Fawjntgc T00|> Help } B
JAddrPss 2] http 154449 wdF, sap corp: 1080{sapfbc/bs ¥ I ‘ dres,- I@ https ;;us4449 wdf, sap corp 144°f;ap(b mvi

] KR ; : I CKELL’\R

{E‘- ? Please type your user name and password. Vel Done ot v

L a
Aealm SAP Web Applicalion Server [BBO]

;‘? ' i Lser Name
Ao

Figure 5.5 Access Same BSP Application with HTTP and HTTPS

With the HTTP request, the server finds no available authentication information,
and answers with the expected 401 HTTP response. With the HTTPS request, the
server answers immediately with the response from the BSP application. Notice
the small lock symbol to show that a secure connection is active.

This "automatic authentication" aspect also helps typical logon applications. The
connection is switched to HTTPS mode to transfer securely the user name and
password. However, at that moment the browser supplies a certificate. This
allows the server to identify the user, set a SSO cookie, and then switch back to
HTTP. With two HTTP round trips and no user interaction, the authentication was
completed. However, this only works together with a SSO cookie. Otherwise, the
return back to HTTP leaves us again without credentials.

For BSP pages, it is possible to set a checkbox that states whether these pages
must be run in secure mode. Once the checkbox is set, the BSP runtime will auto-
matically switch the connection into secure mode if the page is accessed. This
function was designed for shopping scenarios, where only the checkout phase
(with credit card numbers, etc) must be secure. One could be tempted to expect
the checkbox to also help get the certificate authentication working without user
interaction by forcing HTTPS. However, authentication is handled and completed
at ICF layer, long before the BSP runtime is started. Any answer from the BSP
runtime implies also that authentication has been completed.

If one should look at the HTTPS traffic itself, there is nothing special to see. The
certificate handling is done at the encryption layer below the HTTP traffic, and the
HTTP traffic itself is effectively the same as described in the next section on anon-
ymous services. We have incoming HTTP requests that are immediately answered
without any visible trace of authentication information.

Digital Certificates

107

5.4 Anonymous Services

Sometimes we need Web AS be able to run Web applications in the way a normal
Web server would, without any form of authentication checks. However, the
ABAP session itself must run within the context of a specific user. It is not possible
to have anonymous ABAP services.

The technique for achieving this is to configure a specific node, or sub-tree, within
the ICF tree (see transaction SICF) to store the authentication information that
must be used for all URLs that are matched through the specific node. When the
server sees an incoming HTTP request that contains no authentication informa-
tion, it checks whether one of the ICF nodes has a user name and password
stored. If it does, these credentials are used to open the ABAP session and process
the HTTP request. We highly recommend that you first read the documentation
so as to be aware of all aspects of anonymous nodes. This allows unchecked
access to the specific application.

We recommend creating a /myCompany/public path, similar to /sap/public
that is the only anonymous access granted to the system. Only this public node
gets assigned a user name and password. Then use internal ICF links within this
public path to specific BSP applications that must be run anonymously (see Figure
5.6). This way, one can see immediately which BSP applications can be accessed
without any form of authentication.

IVirt. Hosts / Services
' fL default_hest

- | Path idefault_hostimy
00 | senice Name [pubiic ~ -

o “Senvica data § F

[Anonymous Logen Data Senvice opfions
Logon Data Required - || Server-Groop: .)) o) o
Cient '@se | sAPAuthorizatn: ErrorType
User ANON_USER | Session Timeolt ~00:80:00 (HHMM.SS)
Pasaword 1t - . .
Language a o s

Figure 5.6 Configuring an Anonymous Service in Transaction SICF

Let us link BSP application IT00 under a newly created public path, and look at
the HTTP trace of the application.

108 Authentication

GET /my/public/it00/default.htm HTTP/1.1

Accept: */*

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0: Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

HTTP/1.1 302 Moved temporarily
Location: /my(bD1k==)/public/it00/default.htm

GET /my(bD1k==)/public/it00/default.htm HTTP/1.1
Accept: */*

Accept-Language: en-us,de:q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

HTTP/1.1 200 OK
Content-Type: text/html; charset=iso-8859-1

The HTTP trace shows no form of authentication information. Not even
MYSAPSS02 cookies are set for anonymous access. In principle, the application
behaves like a normal Internet website.

5.5 Form-Based Authentication

Form-based authentication is achieved by setting two form fields: sap-user and
sap-password. The other two form fields that can be considered to be set are
sap-language and sap-client. From Chapter 2 we know already that form
fields can be transported either as part of the URL or within the body of a HTTP
POST request.

The simplest technique is via URL parameters: http://.../default.htm?sap-
user=username&sap-password=password. We definitely do not recommend
this technigue, as the browser will store all URLs—now including authentication
information—in the browsing history. But it is a fast and convenient technique to
test some forms of authentication problems and definitely worthwhile to under-
stand.

GET /sap/bc/bsp/sap/it00/default.htm
?sap-user=username&sap-password=password HTTP/1.1
Accept: */*

Form-Based Authentication

109

Accept-Language: en-us,de;q=0.5
User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

HTTP/1.1 302 Moved temporarily

Content-Type: text/html; charset=iso-8859-1

Content-Length: 25

Location: /sap(bDlk==)/bc/bsp/sap/it00/default.htm
?5ap-user=username&sap-password=t+it+i++

Server: SAP Web Application Server (1.0;710)

BSP URL requires rewrite.

The HTTP request contains the correct form fields and is answered immediately
with a 200 HTTP response. Pay attention to the Location header. We see that the
sap-pagsword form field has been overwritten by security rules. And this makes
itself noticeable in the next HTTP request/response cycle.

CET /sap(bDl1k==)/be/bsp/sap/it00/default.htm
?sap-user=username&sgap-password=t++ti+i+ HTTP/1.1

Accept: */*

Accept-Language: en-us,de;q=0.5

User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)

Host: ugkt4S.wdf.sap.corp:1080

HTTP/1.1 401 Unauthorized

This means that form-based logon cannot work without another form of saving
the credentials after the first HTTP roundtrip. One technique could be the activa-
tion of SSO. Then, the very first request that still had the valid user name and
password would be authenticated, the MYSAPSS02 cookie would be set, and all
subsequence HTTP requests would use SSO for credentials.

HTTP/1.1 302 Moved temporarily
Set-Cookie: MYSAPSSO2=AjExM...

5.6 Implementing a Simple Logon Application

Now that we have grasped the basics of form-based authentication, let us quickly
fook at how one can use it for a very simple logon application. Let us assume that

110 Authentication

we wish to start the BSP application ITOO using form based logon. As a first step,
the user must call some form of URL that will at least render the form to enter
authentication data, without itself requiring credentials. We create a small HTTP
handler (discussed in Chapter 3), or an alias to a different BSP application under
some path, for example the /my/public/start_it00.

The HTML displays two input fields to enable the user to enter his user name and
password. It is very important that the names of the input fields be correctly set
to match exactly the corresponding sap-user and sap-password fields required
for form-based authentication. The form action attribute is set to start the appli-
cation when the form is submitted.

<html><body>
{form method="POST"
action="/sap/be/bsp/sap/it00/default . htm")
{table>
{tr>
{td>User:<{/td>
{td><input type="text" name="gap-user"></td>
{Jerrlte>
{td>Password:<{/td>
{td>{input type="password" name="sap-password"><{/td>
el
<{td><input type="submit" value="Logon!"><{/td>
{Jtr>
{/table>
{/form>
<{/body></html>

With this HTML available via an anonymous URL, it is now possible to start our
minimal logon application without any authentication, and render out the real

logon screen. See Figure 5.7.

: Hle Edit View Favorites

User: !@:}
Password: m@
¥
B i 5

Figure 5.7 Minimal Form-Based Logon

Implementing a Simple Logon Application

1

The BSP application is started via the public path /my/public/start_it00. The
first HTTP round trip just renders out the HTML of our minimal form- based logon
application. The user now enters his user name and password and presses the
button to start the application.

POST /sap/bc/bsp/sap/it00/default.htm HTTP/1.1
Accept: */*

Accept-Language: en-us,de;q=0.5

Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/4.0 (MSIE 6.0; Windows NT 5.1)
Host: us4449.wdf.sap.corp:1080

Content-Length: 39

sap-user=username&sap-password=password

HTTP/1.1 200 OK

Set-Cookie: MYSAPSSO2=AjExMD...
Content-Type: text/html; charset=iso-8859-1
Content-Length: 334

server: SAP Web Application Server (1.0;710Q)

<html>. ..

The POST is submitted directly against the application URL, and sap-user and
sap-password form fields are set in the HTTP body. Given the valid credentials,
the BSP application is stared immediately. Within the HTTP response, the
MYSAPSS02 cookie is set, enabling authentication for all subsequent HTTP
requests.

This example is very simple and only useful for showing the principle that is used
to write logon applications. A real logon application must also handle all different
types of problems around user logon, for example users who are locked, users
who are forced to change their password, and those users who wish to change
their passwords. Also, the BSP runtime does not support applications that are
started with a POST, forcing some additional work on the logon application to
handle the first POST itself to acquire the MYSAPSSO2 ticket, and then to start the
application with a GET HTTP request. All application startup parameters must be
saved during the logon application and reset when the application is started.

In Release 6.20, a BSP application SYSTEM is provided that uses this principle to
build a complete logon application. This is replaced in 6.40 with a much better
logon application that is tightly integrated into the ICF fayer, and the old SYSTEM

1412 Authentication

application will not be supported from 6.40 upwards in the future. Chapter 17
describes the new ICF logon application in detail.

5.7 De-Authentication

Unfortunately, this is the thorniest section to write, as there is actually very little
that can be said on this topic. Once the browser has stored a fixed set of creden-
tials, it is difficult if not impossible to remove these.

The typical scenario that triggers the question on de-authentication is that of a
shared computer somewhere on the factory floor. One person has finished work-
ing and presses the logoff button. The next finds the browser open, and starts to
work, running suddenly in the name of the previous co-worker. The reason for
this is that the logoff sequence terminates the server session, but does not
remove any credentials from the browser.

Probably the safest solution to this problem is to close the browser at the end of
each session. From lavaScript, this can be achieved with a top.close()
sequence. If it is a browser window previously opened with JavaScript, this
sequence works without further prompting. However, if the user opened the
browser window, a confirmation prompt is first shown by the browser, and this
must be confirmed. Many usability experts object to software that just closes the
browser window. Whether this practice matches your scenario is a decision that
you must make yourself.

Basic authentication is widely used, and nearly impossible to remove from the
browser. The only technique that we are aware of works only for Microsoft Inter-
net Explorer 6.0 SP1+. You can call the execCommand method on the document,
passing in ClearAuthenticationCache as the command parameter. This flushes
all credentials in the cache, so that no basic authentication headers are sent. Here
a very small test program that closes the session on logoff (discussed in detail in
Chapter 6) and then clears the browser's authentication cache.

<html><form>
<% DATA: counter TYPE string.
counter = request->get form field('counter') + 1. %>
{input type="submit" name="counter" value="<{%=counter%>" >

{input type="submit" name="logoff" value="Logoff" >

% IF request->get_form field('logoff') IS NOT INITIAL. %>
{% runtime->keep_context = 0. %>
{script>
document.execCommand { 'ClearAuthenticationCache');

De-Authentication

113

document.URL = '/sap/bc/bsp/sap/myApp/startPage.htm';
{/script>
<% ENDIF. %>
{/form><html>

Remember that this technique only works for Internet Explorers 6 SP1 onwards.
One should only consider it in a corporate network where the browser installa-
tions can be centrally managed. No equivalent techniques that work for other
browsers are known to the authors at the time of writing.

With S5O, the situation is complicated for a different reason. As 550 is handled
with the MYSAPSS02 cookie, de-authentication can theoretically be achieved by
deleting the cookie with a response->delete_cookie_at_client or with Jav-
aScript operations on the document.cookie.Computing the correct domain
string to use can be tricky, because this depends on profile settings. However, SAP
considers the SSO concept to be also "sticky” once set. In theory, one does not
know who sets the MYSAPSS02 cookie, and deleting it could cause other software
components, for example an SAP Enterprise Portal, to suddenly fail.

With certificates, the handling is completely under the browser's control, and
there is not much to do. Elegant solutions using certificates with a card reader are
available on the market, but very seldom used because of their cost. The use of
smart card readers has the benefit that when the user leaves the computer, his
credentials leave with him.

For anonymous access through the corresponding /public path in the ICF tree,
nothing more can be done. The browser never required any authentication infor-
mation, and thus none is available for deleting.

Unfortunately, there is no easy answer to this question. Probably the best
approach that also works over all browsers is to consider the closing of the win-
dow. When the logoff sequence is started, redirect to a final page that contains a
good description on security (to scare everyone), and then place a window-close
button on the page (<button onclick="top.close();">Close Window</but-
ton). This gives the user at least a much better feeling that the application was
closed correctly, and did not just die on him or her.

114 Authentication

6 Session Management

Using stateful BSP applications provides a programming model that
should feel very familiar to those experienced in traditional ABAP
dynpro programming. However, it also introduces new challenges in
properly managing the state. [n this chapter, we will look at a number
of these challenges and possible solutions to them.

Typically, Web pages are designed to be stateless, meaning that the server will
process an incoming request from a browser and then completely forget about
that browser. In such scenarios, all possible state information required must be
stored with the browser. The server stores no state information. This model allows
one server to handle many clients and even may allow different requests from the
same client to be handled by different servers each time, governed by a load-bal-
ancing algorithm.

However, for more complex business applications, where more information is
involved or where database locks are required until an application is completed,
a stateful approach is required. This implies that the ABAP session is not destroyed
after the HTTP response has been processed but rather left in memory. All subse-
quent HTTP requests will not start new sessions but will all be processed within
the same session. This session is exactly the same as a session opened with SAP
GUI.

The only difference between these sessions is that SAP GUI sessions are managed
over TCP/IP connections that are not closed until the end of the session. Should
the server suddenly see that a TCP/IP connection is closed, it knows that the SAP
GUI was closed prematurely and can clean up the session. For HTTP, no such per-
manent TCP/IP connection is used, and the server does not know whether the
browser has been closed suddenly.

Open sessions can be seen in transaction SM04. In Figure 6.1, notice that the
HTTP sessions have a different "type" than the SAP GUI sessions, allowing one to
separate them easily. It is also possible to close session from this transaction.

6.1 Session Identification

We saw in Chapter 1 that the session selection is done by the Internet Commu-
nication Manager (ICM). For all intents and purposes, once an incoming HTTP
request is placed into the ABAP stack, it is already in the correct user session
where it must be processed.

Session Management

115

116

User Edit Goto List Seffings System Help

@] SERIE)

User List
S sessions &)1 IR

Transadiien Time Type|

B[ciie.]user names |Terminal
000 MCKELLAR |10.18210.243 152236 | Plugin HTTF |
000" *MCKELLAR 'JP127969 SMod 152240 eulj. -
L T Bear)o00 2] us0048 |INS | = 7 |

Figure 64 SAP GUI and HTTP Sessions in Transaction SMO04

A session 1D is required for session identification. This is a relatively complex
string containing random elements that uniquely identifies the session. The exact
format is not important and not really known outside of the ICM layer. The ses-
sion D will nearly always be identified as sap-contextid with the HTTP request.

The ICM layer will look at a number of different places within the incoming HTTP
request to find the session ID and map the HTTP request into the correct session.

The first three places are all variations on having the session 1D stored as part of
the URL. Session ID can be mangled into the URL, it can be part of the URL itself
(using a ;-character as separator), or it can be a form field attached onto the URL.

POST /sap.../main.htm?sap-contextid=sid-NEW BTTP/1.1
POST /sap.../main.htm;sap-contextid=sid-NEW HITP/1.1
POST /sap(s=sid-NEW)/.../main.htm HTTP/1.1

Although the first two entries look nearly the same, they are very different in sub-
tle ways. In the first case, the session D is transferred as a form field, and can be
part of any number of form fields in the URL. In this case, the Web application
must take care to each time add this extra form field to any URL. In the second
case, the session |D is actually part of the URL, effectively the last segment of the
URL is main.htm;sap-contextid=sid-NEW. For the browser, the ;-character
sequence in the URL has no further meaning. If an URL generator is used, this
approach can correctly attach the session 1D onto each URL generator, and the
form fields are left for the use of the application. The one problem is that a rela-
tive navigation (for example to a new URL .. /page2.htm), will drop the session
|D with the last segment from the URL.

In the last form, the session ID is mangled into the URL, where it does not inter-
fere with form fields and is immune to relative URLs. As it is mangled onto the
first segment, the session 1D will also exist in all URLs used for the application. It
sure looks ugly though!

Session Management

SAP does not support having the session D stored as form field within the body
of a POST request.

The biggest negative aspects of having a session ID within an URL is that resources
(images, etc) loaded with a session 1D will be cached with the session ID part of
the URL, and will thus only be valid for the specific session. A new start of the
application will cause the resources to be reloaded. The best workaround is to
load resources with an URL that contains no session [D, This will cause the loading
to be done in a new stateless session.

The last possibility is to transfer the session ID as a cookie within the HTTP
request. This has the benefit that the browser will always send the cookie with all
HTTP requests that match the cookie path.

POST /sap... HTTP/1.1
Cookie: sap-contextid=gid-NEW;

The downside is that the application must set the path correctly, so that the
cookie will only be transported for the specific application. Also, it is not possible
to run a second session with the same URL, as the sessions will then share the
same cookie, with the second session then overwriting the session ID of the first
session.

In all the above examples, the session was only shown as sid-NEW. The sid is rep-
resentative of the session ID itself, of which the format is neither known nor
important. However, the session ID also has a sub-comment -NEW or -ATT
attached to it. The sequence -NEW is an indicator to the ICM layer to place the
incoming HTTP request into an existing session or to create a new session if the
old session is not found. This ensures that the HTTP request will be processed.
With -ATT, if the session does not exist any more, the ICM layer will display a ses-
sion-timeout message, and the HTTP request will never be processed within the
ABAP layer.

The BSP runtime uses only two formats for storing the session |Ds. The first is to
set a cookie with the -NEW sequence directly on the path of the application. The
makes the handling of URLs and navigation with the application very easy, but
does have the two disadvantages mentioned before: Only one instance of a spe-
cific BSP application can be executed at any time, and the application is given no
notice of this fact in case of a session timeout and restart.

The second format used by the BSP runtime is to mangle the session ID into the
URL. This can be requested only on the very first startup request (before any URL
mangling has been completed) with the URL parameter sap-syscmd=nocookie.
In this case the -ATT subcommand is used, so that on a timeout, the application

Session Identification

117

118

is not restarted. The reason for the difference in subcommand is that once the
session |D is in the URL, it will stay there all the time. If a new PGST was to open
a new session, the old session 1D itself in the URL is still stored in the browser,
and the newly assigned session ID is not stored. Each subsequent request from
the stale URL will open a new session. Thus, the -ATT mode is used, so that—
once a timeout happens—processing is stopped, and the application must be
restarted.

The advantage of this approach is that it is now easy to run any number of
instances of the same BSP application, as each will store its own session 1D man-
gled in the URL, and the BSP applications will not overwrite the session ids of one
another. One disadvantage is that the URL length is dramatically increased, and
this payload price is also paid twice in each HTTP request, once mangled in the
URL and the second time in the Referer header field.

6.2 Session Timeout

Due to the “disconnected" model of HTTP, it is never known whether the user is
actually still browsing our specific application or has already moved to another
website. To protect critical resources, inactive sessions are cleaned up by ICM
after a configured idie time has been exceeded.

The maximum idle time is configured in the system profile with the parameter
rdisp/plugin_auto logout; 30 minutes by default. The profile parameter also
can be changed (until next system restart) using transaction RZ11.

HTTP is a strict request/response protocol, where the browser will always send a
HTTP request, and the server can only answer at that time with a HTTP response.
It is not possible for the server to send any HTTP traffic to the browser at other
times. Therefore, when a timeout condition is detected, the server has no way to
inform the browser of the situation. The session will just be terminated.

Within the browser, no update will appear. When the user returns at a later stage,
he will still find the browser indicating a normal running Web application. Only
on the next action that triggers a server roundtrip will the lost session be noticed.

The maximum idle time is used for the complete application server. t is not pos-
sible to have idle sessions that are longer than this time. You can set the idle time
for specific applications within transaction SICF to be shorter than this time. If a
longer idle time is required, then the profile of a specific application server has to
be updated and those applications only executed against this one application
server.

Session Management

6.2.1 Catching and Handling a Session Timeout

Normally, when a session is cleared because of a timeout situation, a rollback is
done, all locks are released, and the session is cleared. This is sufficient for nearly
all types of applications.

However, let us assume your application also acquires resources that must be
released on timeout. For our small example, we use a counter merely to reserve
something until the transaction is completed. The reservation counter is stored in
memory, and all those objects reserved cannot be taken into consideration by
other users.

{h@extension name="htmlb" prefix="htmlb"%>
<
DATA: reserveCounter TYPE string.
IMPORT reserveCounter = reserveCounter
FROM SHARED MEMORY indx(qq) ID 'reserveCounter'.
reserveCounter = reserveCounter + 1.
%
<htmlb:content design="design2003"><htmlb:page><htmlb:form>
<htmlb:button text = "{%=reserveCounter¥%>"
onClick = "myClickHandler" />
</htmlb:form><{/htmlb:page><{/htmlb:content)
<%
EXPORT reserveCounter = reserveCounter
TO SHARED MEMORY indx(qq) ID 'reserveCounter'.
%>

If the application runs into a timeout, we certainly would like to clear this reser-
vation counter, so that the reserved objects will be available for other users.

The CF layer does provide an ABAP event when the session is cleared. It is a sim-
ple step to hook this event and clear the counter in shared memory. For the
example, we will use the application class of the BSP application. This application
class can implement an optional interface 1F_BSP_APPLICATION_EVENTS, which
will cause the BSP runtime to then call the application at different time points. We
define a new class that implements the event interface.

In the application class, we define a new method on_timeout that is an event
handier for the timeout event available on the IF HTTP SERVER interface (see
Figure 6.2).

Session Timeout

119

120

o Parameters| & Exceptions | TE[{|E ERIEEEIEIEENER
Method Tevel J[= Chiange Methed ON_TIMEOUT

<IF_B5P_APPLICATION_EVENTS> Object ype [CL_BOOK_CHAPTERDE_APPLICATION |
ON_RERUEST Lnstart ihod ON_TTHEOUT] f
ON_RESPONSE Tnstar] — ;

ON_START Trstar Lesdiption I]
oN_STOP Tnstan |- S0ty Method /- g
ON_TINEOUT Thsia ‘@ Public* QO static
O Pratected : @ Instance K
5| OPrivate i

[¥] Event handler for
] Ciassinterface [TF_HTTP_SERVER I
7 Event [EVENTKIND_CONTEXT_TERHINATION | [

IR

L N PN FVN S DS S

Figure 6.2 Defining Method As Event Handler

Two methods merit our interest. The first is the on_start method that is called by
the BSP runtime when the application is started. Here we just register our timeout
handler against the server instance.

METHOD if _bsp_application_events~on_start.
DATA: reserveCounter TYPE string VALUE '0'.
EXPORT reservelounter = reserveCounter
TO SHARED MEMORY indx(qq) ID 'reserveCounter'.
SET HANDLER me->on_timeout FOR runtime->server.
ENDMETHOD .

The second method to implement is the actual timeout handler itself. Here we
just reset our reservation counter.

METHOD on_timeout.
DATA: reserveCounter TYPE string VALUE '0'.
EXPORT reserveCounter = reserveCounter
TO SHARED MEMORY indx(qq) ID 'reserveCounter'.
ENDMETHOD.

This simple hook ailows us to clean up in critical cases where more than database

locks are held.

6.2.2 Session Timeout in Browser

As we have discussed before, a session timeout in the server happens while no
HTTP request is being processed. Thus, it is not possible for the server to write an
update to the browser. The user who now returns to his or her desk will stilt find
an application that gives no indication of the timeout.

Session Management

i
i
4
i

One simple hack after we suspect a server timeout has happened is to clear the
browser screen.

{script>
var T = (30+3) /*min*/ * 60 /*sec*/ * 1000 /*millisecs*/;
window.setTimeout ("document.URL = 'about:blank' T
{/script>

As long as the user interacts with the application, each page loaded will return the
previous running times and set itself a new timer. The timer is set to be the con-
figured idle time plus three minutes. Note that the JavaScript function requires
the values in milliseconds. Should the user now leave the program unattended for
33 minutes, the screen will be blanked, so that on return the application that was
terminated at the server will not be displayed in the browser.

6.3 Confusion with Processing Timeout

Note also the length of time that one HTTP request will be processed before it is
aborted. This time can be seen in transaction SMICM (see Figure 6.3). It is a value
that defined per service (open HTTP port) and that controls the time that one
HTTP request can be processed by the ABAP stack. It can be configured within the
system profile as part of the icm/server_port parameter.

Elw

s sKEED_BTTVE

0 1HTTP 1080 us4049 wdf.sap.corp 38 600 o '
D 2 HTTPS 1443 us40489 .wdT .sap.corp 30 o0 :
77 3 jsMTP 25021

us4049 .wdT.sap.corp 30 800 o

Figure 6.3 Processing Timeout in Transaction SMICM

When the HTTP request takes too much time within the ABAP stack, the ICM
layer will terminate the ABAP session and write back an error message to the
browser (see Figure 6.4).

Notice in Figure 6.4 that the time shown by the HTTP trace tool is a little over 604
seconds, just marginally longer than the configured 600 seconds for this specific
port. The "Connection timed out" message reflects the fact that the “connection”
between the ICM layer and the ABAP stack has timed out; the message does not
have anything to do with the idle timeout.

Confusion with Processing Timeout

121

122

500 Connection timed out.

Error: -5

Version: 7010

Compaonent: ICM

Date/Time: Mon Oct 3 05.53.41 2005
Module: icxdhr_mt.c

Line: 2696

Server: b20main_B20_21

Error Tag: {4}

Detail: Connection to partner timed out after 600s :
X |3 ctet @ st K Cear L Filer Iy fory [sove’ 2N about - - @b |

. Typa URL o S R
POST Textiml ittp s 048, vwdF. sap.corp 1080/5ap (b0 KZSZIPTAwMA ==)
GET 200 imagefjpeg http:/fus4049,wdf.sap.corp: 1080/sap/public/icman/img/theme. jpg i
GET - 200 imagefipeg http:/fus4049.wdf. sap.corp: 1080/sap/publicfiamanfimg/graybar_ble.jpg]
GET 200 image/af hiip:/fus4049.wdf.sap.corp: 1030/sapfpublicicman fimg bluebar_He. gif

i & Local mtranet

N 0.702
00:10:04,430 0.589
00:10:04.429 Q.781

&) oone - N R

Figure 6.4 Processing Timeout as Seen in Browser

For production systems, the processing time usually is set relatively short so that
no runaway HTTP request can block work processes for a long time. The latter sit-
uation could be a nightmare on HTTP connections, where such long-running
requests are very easy to trigger from a browser. However, the downside of an
optimal configuration is that it is also not possible to debug any BSP application.
The debugger is also subject to the same processing limits.

The workaround is to temporarily define a new HTTP port that has a very fong
maximum processing time allowed (see Figure 6.5), Note that this change is only

available until a restart.

=
Service Edit Goto List Semngs'Sgsiem Help

G B H Goe ORB OToR BE.

-TJ Change s f S Define New Service
% Delete shitfz |
o

Activate 8080

Deadlivate
= Log HTTP

“1 Stalistics

New Service Part

Keep Alive {in Sec.)

Max Processing Time

Figure 6.5 Defining a New Port with Long Processing Timeout Value

Session Management

In the last step, just change the start URL of the application within the browser to
use the new port, in our example :8080.

For readers especially interested in the subject: The keep-alive time sets the time
in seconds that the ICM layer will keep an idle TCP connection open, waiting for
anew request from the browser, before closing it. Reusing TCP connections helps
improve the total latency of HTTP requests, as no additional roundtrips are
required to first set up the TCP connection. However, the server is limited in the
number of open TCP connections it can maintain at any one time. Therefore,
unused connections are closed after a few seconds idle time. This relates well to
the HTML model, whereby one HTML page and then all of its referenced
resources are loaded in one burst.

6.4 Catching and Handling a Restart after Timeout

We saw earlier that the BSP runtime will use by default session ids that instruct
the ICM layer just to call the application in a new session if the old one timed out
(the -NEW subcommand). We also saw that at the moment the timeout happens
it is not possible for the server to update the browser. Thus, should the user now
return to the application and trigger any event, the application will be restarted in
a clean environment.

What happens next is really up to the application. Perhaps the application is rela-
tively simple and had all information in the incoming HTTP request, so that the
lost session was not noticed. This behavior would normally have indicated an
application model more suited to stateless mode. What more normally happens,
though, is that the application suddenly runs into a situation that was not fore-
seen, and it generates a logical error. All of this causes unnecessary calls to the
support desk.

It would better if the application actually caught such a session restart, and then
restarted the application anew.

This solution actually tums out to be quite simple. A BSP application class, when
implementing the interface IF_BSP_APPLICATION_EVENTS, will have its method
on_request called for each incoming request.

The first task is to filter out the first on_request method that starts the applica-
tion. This is done with a class attribute (type abap_bool) that is just toggled after
the first time.

The question now is whether this an initial start of the application or a restart of
the application. In the case of a restart, we would like to show the user a small
error page and start the application from the beginning.

Catching and Handling a Restart after Timeout

123

124

We need something that tells us if the HTTP request we are receiving is for a
restart. The best way is to check if the incoming HTTP request contains any form
fields with htmlb in the name, as this indicates a previously rendered HTML page
with HTMLB library of elements (assuming they are used).

Another good form field to check for is onInputProcessing. Thisis a very special
field that indicates to the BSP runtime that an event requires processing from the
HTTP request, and it will also be set by the HTMLB library.

We use the same small example that was started before (see Section 6.2.1). The
on_request method is implemented to contain our restart guard, and if required,
to navigate to a restart page.

METHOD if_bsp_application_events~on_request.
* Clagss Attribute: first_time TYPE abap_bool VALUE abap_true
IF first_time = abap_true.
first time = abap_false.
IF request->get_form field('onInputProcessing’)
IS NOT INITIAL.
navigation->exit('restart.htm’).
RETURN.
ENDIF.
ENDIF.
ENDMETHOD .

The restart page now just shows a small error message, and has a button to start

the application anew.

{%@extension name="htmlb" prefix="htmlb"%>
¢htmlb:content design="design2003"><htmlb:page><htmlb:form>

<htmlb:textView text = "Seggion has timed out!"
design = "EMPHASIZED" />
<htmlb:button text = "Restart"
onClientClick = "document.URL = 'main.htm';" />

{/htmlb:form><{/htmlb:page></htmlb:content?

The document. URL sequence will set the reference for the HTML page to a new
value, triggering the browser to load the new page.

If you want to test the timeout situation, it is easy to simulate it without having to
actually wait for a timeout. In transaction SMO04 you can see all connected users
whether the connection is from the SAP GUI or from the browser. You can dou-
ble-click on an entry in this list and then end the session with a menu option. This
will have the same result as if the ICM had cancelled the session because of a

Session Management

timeout. Just be sure to choose the correct session and not to accidentally kick
yourself out of the system.

6.5 Session Management from the Browser

Until now, we have only looked at the aspect of a server-triggered session time-
out. What happens if the user navigates outside of our application or shuts down
his or her browser? The server state remains, consuming valuable resources and
also maintains locks that prevent other users from working. These lost sessions
will only be cleaned up by the ICM after the maximum idle timer has expired,
which is a very course-grained protection.

We need a technique for also closing the server session once the browser "closes”
its concept of the session. This can happen because the user decides to navigate
to a different website, or to just close his browser.

The first problem is to hook into the browser to detect these conditions. One
technique is to use the onunload event of each page. This is a JavaScript event
that will call our code if the current page is unloaded because the user decided to
navigate to another page. However, each time that our page is also submitted to
the server because of a user event, the page is also effectively unloaded and
reloaded. Here, we do not want to trigger the session to be closed prematurely.

The solution is to use a HTML {frameset>. This loads a very small document into
the browser, which itself will then load the actual application. As the application
is now in one {frame>, its roundtrips are not significant.

<html>
<script language="JavaScript">
function appUnload() { ...}
</script>
<frameset name="guard" rows="*,60"
onUnLoad="appUnload () ;">
<frame src="main.htm">
</frameset>
{/html>

When looking at the source skeleton above, we see that we have a defined a Java-
Script function appUnload that is tied to the onUnLoad event of the {frameset>.
Should the user now navigate to any other website, the frameset will be unloaded
by the browser, triggering our function. The <{frame> itself will load the main
page of the application, and the user will not even be aware of the guard we
placed into position.

Session Management from the Browser

125

126

However, the browser close is a very special situation. Some browsers will also fire
this event when the browser is closed {our experience shows that Microsoft Inter-
net Explorer does it), whereas other browsers, for example older versions of
Netscape, will not fire the event.

With the hook in place, it is necessary to inform the server to close the current
session. In this JavaScript code, there is no information available about the next
URL to which the browser will navigate. Any algorithm of the form: "first go to
server and close session, then redirect to next URL" will fail. Any solution using
the current document.URL to first force our session to close will either fail or
cause many user complaints, because the targeted URL of the user then will not
be navigated to. Essentially, it must be possible to trigger a HTTP request to server
that is not part of the current document.

The initial methods we used had a window.open to load the session termination
URL into a small window. However, this causes user irritation because the popup
window flashes onto screen, to be closed moments later, and is relatively slow.

This approach works reasonably well under most situations. But it does have
some minor problems. To most end users, popup windows that fire without their
triggering an action are as unwelcome as spam. The situation has become so seri-
ous that we have popup blockers being built into just about every Internet
browser that will prevent the window from opening at all, thus breaking session
management completely.

The alternative solution that we found to work very well is to load an image. This
will trigger a server roundtrip and can be done without setting the document.URL

new.

function appUnload()
{
var img=new Image;
img.src = ...;
var stop = (new Date()).getTime() + 1000 /*millisecs*/;
while((new Date()).getTime() < stop)
for{e in document.all) tmp=e.innerHTML;

}

The one problem with attempting to load an image at this moment is that after
the appUnload function has completed, the browser will terminate all outstand-
ing HTTP requests, thus stopping the image request before it has even had time to
reach the server. JavaScript has no technique for easily putting a function to sleep.
We use a busy loop that will keep the function active for one second, so that the
image has time to be loaded. It is actually not important that the image be com-

Session Management

hesicosiicn -

pletely loaded, just that the request will reach the server and terminate the ses-
sion.

For the image to load, we use a special 1x1 URL. The BSP runtime has a perfor-
mance improvement that will always reply with a 1x1.gif for an incoming URL
of the format .../1x1.gif. To create such an URL, we just take the current doc-
ument URL and add the sequence below. This URL will then be intercepted by the
BSP runtime and answered immediately.

img.src = document.URL + "/1x1.gif"

+ "?7sap-contextid=<{%= cl_http_utility=>escape_
url{ runtime->session_id)%>"

+ "§gap-sessionemd=CANCEL";

Now that we have the image to load, we need to add the session 1D so that the
ICM layer will know to which session we are referring.

The last step is to actually get the session terminated. Here we use the fact that
the ICM layer supports an URL parameter sap-sessioncmd=CANCEL that will ter-
minate the session for which the URL is received. The URL then is processed in a
new session. This is acceptable, as in the new session, still stateless, the BSP run-
time will answer the request for the GIF image.

The benefit of this brute-force approach is that by using document . URL, the ses-
sion 1D either stored in a cookie on the application path or mangled inside the
URL is actually already available. We add the session [D onto the URL again just to
ensure that the session is really killed.

We place this coding onto a default.htm page within the application and always
start it with this page. This will instalf the guard first, and then start the application.
If the user now navigates away, the session will still be closed (see Figure 6.6).

le Edit View Favortes Tools Help

£] http: /fwaw.sap-press.com/

<0 - e L i R AR | R

| - :

* @ @ son K e WAt [y cooy [save [T About @ b §
| Tme. Sz M. R. Type URL A

0.103 3151 POST 200 texth... hip:/jse098,wdF,sap.com: BDIZSZIPTAWMA = =)/be/b: Book_char — §

0.055 4161 POST 200 texth...
1.527 25317 GET 20¢ texth...

1U54043 . WdF, 53p.COrP: 1080/sap(bD KZSZPTAWMA ==)/befbsp/san/baok_chap
:ffweiws.5ap-press.com/
0082 276 GET 20 imagefgif hitpy,

199, wdf. sap. corp: (bD IKZSZIPTAv:MA==)/oc/bsp/sap/book_chap _
; K 0.424 7959 GET 200 magefgf htip:/fwwa.sap-press.comfimages/header_sap_press{780x35).qif ~
(A e i B
&) Done

AD Intemnet

Figure 6.6 HTTP Trace of the Termination URL

Session Management from the Browser

127

128

When we look closely at the HTTP trace, we see that it [ooks as though the new
URL is first loaded before the termination URL. This is mostly an artifact of the
HTTP trace tool. A final check in transaction SM04 shows no HTTP sessions for
our user.

If we loak back at Section 6.4, we also had a restart page that was used to show
a small message to the user and then to replace the URL of the page with the new
start URL. The problem is now that our default.htm page is guarding the ses-
sion, and the application is running within a child <frame>. Should the restart
mechanism be used within this context, it will reload the application with docu-
ment . URL, which will then effectively load a new default.htm within the old
(frame> as guard. A number of small changes are required to the client Java-
Script code used for restarting.

{script language="JavaScript">
function restart()

{

parent.document.getElementByld ("guard").onunload = null:

parent.document .URL = 'default.htm':
}
{/script?
<htmlb:button text = "Restart”

onClientClick = "restart();" />

The restart.htm page will be called at a time that the old session has already
expired, or was closed by someone. As a result, the guard page is protecting a ses-
sion that does not exist anymore. The first line of code we now have will unhook
the onlUnLoad event handler, so that it cannot continue to fire. Notice the use of
parent.document to reference the {frameset> where the guard page is and not
the document of the restart page itself.

The next small step is to now load the default.htm page so that a new guard
page is installed to protect the new session. Again, the parent.document is used
so that the old page can be unloaded and the new page can replace it.

A more complex example for handling session management is also available in the
BSP application ITSM that is shipped as standard.

6.6 Warning the User of a Pending Timeout

You are bound sometime to encounter users who complain that they were logged
off the system for a timeout even while they were actively working. It is easy for
a user to get distracted with a phone call or work in another window. Or, perhaps

Session Management

the user has been typing for some time into a text box and simply has not done
anything to trigger a server event.

An elegant solution would be to warn users shortly before the timeout and give
them an opportunity to preserve their sessions and reset the timeout timer. The
session timeout still has a valuable purpose to protect your system's precious
memory resources, so you do not want to disable it all together.

As we already have the extra {frameset> installed to protect the session against
navigation steps to other websites, let us extend this to include our warning code.
All of the following code will be added onto the default.htm page.

<%

DATA: timeout TYPE 1.

IF runtime->server->session_timeout IS INITIAL.
DATA: name TYPE pfeparname,

value TYPE pfepvalue.
name = 'rdisp/plugin_auto_logout’.
CALL 'C_SAPGPARAM' ID 'NAME' FIELD name
ID '"VALUE' FIELD value.

timeout = value.

ELSE.

timeout = runtime-’server->gession timeout+0(2) * 3600

+ runtime->server->session_timeout+2(2) * 60
+ runtime->server->session_timeoutt4(2).
ENDIF.
timeout = timeout - 60. " one minute warning
timeout = timeout * 1000. " milliseconds for JavaScript

%

The first step is to quickly determine the current timeout value. By default, the
session timeout value is controlled by the profile parameter rdisp/plugin_
auto_logout, set in seconds. However, it is also possible to configure a shorter
value with a specific node within transaction SICF, that will then be available on
the server object in the format HHMMSS. From the computed timeout value, we
deduct 60 seconds as warning time (see Figure 6.7, below).

As a next step, we need the actual warning code.

var timer_id = 0;
function warning()
{

var prompt;

Warning the User of a Pending Timeout

129

130

prompt = (new Date()).toLocaleString{)
+ "\r\n’
+ 'Session will timeout in 1 minute, '
+ 'would you like to renew it?';
if(confirm(prompt))
{
var img=new Image;
img.sre = document .URL+"/1x1.pif?sap-contextid=<{%= cl_http_
utility=>escape_url{ runtime->session_id)%>&sap-
unique="+((new Date()).getTime());

timer id = window.setTimeout('warning() ', <{%=timeout%>);

}

The function just uses a simple JavaScript confirm() call to place the prompt on
screen. Upon confirmation, the same 1x1.gif hack is used as before to quickly
update the session-inactivity timer. The only problem is that the server will
instruct the browser to cache the image after the first roundtrip. Therefore, we
add a unique number (timestamp in milliseconds) onto the URL, to ensure that
the URL really will be loaded from the Web server and not from a cache.

The last part of the code is just to install our timer that will trigger on a session
timeout and to restart it with each new page loaded.

function pageLoaded()
{

window.clearTimecut (timer_id);

timer_id = window.setTimeout('warning()’ ,<%=timeout%>) ;

{frameset onLoad="pageLoaded () ;">

This code updates the <frameset> to also trigger a call each time that a new page
is loaded. This is elegant, as the trigger code is not required on each page but
rather installed centrally in the guard page. For each new page loaded, the old
timer is stopped, and a new timer is started.

This current coding does have one slight disadvantage. The JavaScript confirm()
method cannot be interrupted again with a timeout. Thus, the prompt will stay on
screen until the user returned (this is the reason for the added timestamp!). A
more complex solution would involve using a window. open() and win-
dow.Focus () to load the prompt text into a separate window.

Session Management

7
| B
. Py 030ctober 2005 12:42:04
\x’ Sessior will imeout n 1 minute, would you like to renew it?
;@ Done ' Z . ‘-31 Local intranet

Figure 6.7 Warning on Session Timeout Pending

In addition, a timer is then installed in order to close the prompt window after a
minute and just redirect the application to a termination page. In such a more
complex example, care must be taken that the newly opened window does not in
anyway trigger a request into the existing session, as this will reset the idle timer,
giving the session a new lease on [ife.

WARNING Given the state of the art described above, a developer can
become very quickly tempted to skip the confirm{() sequence completely,
and just tickle the session automatically. However, this will definitely keepses-
sions open, resources pinned down, and locks set, even though users are not in
the office, possibly for the whole day. This is definitely not recommended.

6.7 Summary

Although it might seem that only one technique for session management is
required, it is more likely that all are required in parallel. The {frameset> is
required to guard against user navigation that leaves a dangling session. The
restart protection is required for cases where the backend session suddenly gets
terminated without our knowledge (for example from transaction SMO04). The
event handler to catch a server timeout is only critical in cases where resources
are held, other than database locks that are freed automatically. The warning mes-
sage is probably not critical from a technical point of view, but does help to
reduce calls to the support desk.

Summary

131

7 Using BSP Applications in SAP GUI

Running BSP applications in the SAP GUI might seem strange at first,
but there are times when it is required. This chapter shows how to do
this and—even more important—the pitfalls to avoid.

The question naturally arises: *“Why run a BSP at all in the SAP GUI"? Here we
have a brand new Internet application, and yet we wish to tie it to the old world
of ABAP dynpro programming. The answer is that dynpro programming is still the
technique used most frequently for developing SAP programs, and often it is the
best solution for a specific task.

Often, one wishes to develop a new add-on for an existing application in such a
way that both the old application and the add-on are available via browser. For
this, BSP applications are one alternative. They can run stand-alone in a browser,
and one just needs to deal with the SAP GU!V integration.

Other reasons for running the BSP application in the SAP GU! is to integrate new
types of browser-based applets or to achieve specific rendering effects. For exam-
ple, there are a number of Java applets available for BSP that also come with
libraries to use these applets in a BSP application. When they are required in SAP
GUI, the simplest approach is to just use them as usual in a BSP application, and
integrate the complete BSP application.

Effectively, BSP applications within SAP GUI provide a slow migration path,
whereby new features can be developed with Web technology, and thereby also
used in stand-alone fashion, but at the same time be integrated into existing
applications.

The ABAP dynpro has an HTML Viewer control that can be used to show HTML
within a dynpro. It is in essence a wrapper control around an Internet Explorer
browser. This control can be used by placing a custom control on the dynpro and
using the class ¢1_pui_html_viewer to instantiate and configure the browser.
See transaction DWDM for a number of example programs.

7.1 Using a BSP Application in a Dynpro

Let us start by quickly developing a small BSP application that we can use.
Although the test program might at first look strange and useless, the next section
will show the method in our madness. All that the following section of code does
is list the number of ABAP sessions that we have open and provide two buttons.

Using BSP Applications in SAP GU!

133

-

134

The first increments a side-side counter, and the second opens a new window

where the same application will continue running.

The BSP application is set as stateful, and one page is added with a page attribute
counter type string. Having the counter attached to the page, rather than
being stored as a hidden input field within the HTML rendering, shows that ses-
sion is stateful, and that each time we return to the server it will be possible to
update the same counter in the same session.

(Y@extension name="htmlb" prefix="htmlb"%>
<htmlb:content design = "design2003"
controlRendering = "browser"?
<htmlb:page?
<htmlb:form>

<% counter = 1 *+ counter. %>

<htmlb:button id = "btnl"
text = "<{%= counter %"
onClick = "increaseCounter" />

<(htmlb:button text = "New Window"
onClientClick = "window.open(document .URL);" />

<%
DATA: userlist TYPE TABLE OF UINFO,
user LIKE LINE OF userlist.
CALL FUNCTION 'TH_USER_LIST'
TABLES LIST = userlist.

DELETE userlist WHERE BNAME <> sy-uname.
%>
<htmlb:tableView d4d = "tvl"
table = "<%= userlist %>" />

{/htmlb:form>
{/htmlb:page>
{/htmlb:content>

Once the BSP application is finished, it can be activated and tested quickly. The
next step is for the dynpro to host the BSP application. For this we write a new
report and start Dynpro 100, which contains a custom control as the only screen
element. Most of the code sample comes directly from the examples of the HTML
Viewer control and the relevant documentation.

The only BSP specific part is the URL generation, shown in the code below. This is
achieved using the c¢l_bsp_runtime=>construct_bsp_url method with the

Using BSP Applications in SAP GUI

name and page of our test application. Figure 7.1 shows the BSP test application,
both running both in the SAP GUI and also running stand-alone directly in the
browser.

REPORT book_chapter(7_examplel.

DATA: html_viewer TYPE REF TO cl_gui html viewer,
html_container TYPE REF TO cl_gui custom_container,
fcode LIKE sy-ucomm.

SET SCREEN 100.

MODULE status_0100 OUTPUT.
SET PF-STATUS 'TESTHTM1'.
SET TITLEBAR '001'.

IF html_viewer IS INITTAL.

CREATE OBJECT html_container

EXPORTING container name = "HTML'.
CREATE OBJECT html_viewer

EXPORTING parent = html_container.

DATA: url TYPE string, urlc(2048) TYPE c.
cl_bsp_runtime=yconstruct_bsp_url(
EXPORTING in_application = 'book chapter07'

in_page = 'examplel.htm'
IMPORTING out_abs_url = url).
urlc = url. " type conversion STRING to C
html viewer->show_url(url = urlc).
ENDIF.
ENDMODULE.

MODULE user_command_0100 INPUT.
IF fcode = 'BACK'.
html_viewer->free(). FREE html_viewer.
html container->free(). FREE html_container.
LEAVE PROGRAM.
ENDIF.
CALL METHOD c1l_gui_cfw=>dispatch.
CLEAR fcode.
ENDMODULE.

Using a BSP Application in a Dynpro

135

136

= =
Program Edit Goto System Help :

) —R Y

HTML Control als WWW Browser

_1] New Window

Femivispbiatar, ia | Sanermanen] Trareasreosas] Toa] Babe

| 10.18210.243 | 130153

l 1ICKELLAR

Fle Edit View Favorites Tools Help

Hew Window

erminatdentikation’ 1t | Denuemanen: Transakions Code] Jerminal | Diiogzai
L 24 | 000 | MCKELLAR 1018210.243 | 125928 §;
-4 29 | oo | mekELLAR | SEu_niT przreee | 125328
N

' ?Q Done

o i %3 Local intranet

Figure 71 The Same Application in SAP GU| and in the Browser

Pitfalls when Using BSP Applications with
SAP GUI

As we have seen from the coding above, placing a BSP application on a dynpro
amounts to a few lines of code and works out of the box. However, there are a
number of pitfalls in this scenario, which will be addressed in this section, along

7.2

with solutions to solve them.

7.2.1 Communication Path

Probably the most difficult problem to anticipate involves the different communi-
cation paths that are used. This problem usually only arises in complex production
landscapes, at a moment when we did not expect it.

The SAP GUI uses the DIAG protocol (effectively, binary data in TCP/IP) for com-
municating with the server. The browser uses HTTP (also a TCP/IP connection,
usually text). As long as the client can reach the server with a direct TCP/IP con-
nection, you will experience no problems. However, once a complex landscape is
in use, the SAP GUI could begin communicating with the server via a SAP router.

Typically, this happens in scenarios where satellite offices are connected to the
data center via the wide-area networks managed by the SAP router. In this case,
only DIAG data streams can be transferred via the SAP router. When a dynpro
appears that contains a HTML Viewer control, the container browser will attempt

Using BSP Applications in SAP GUI

to set a HTTP connection back to the server. For this to work in practice, an addi-

tional HTTP route must be available.

One possible solution is to route the HTTP traffic out into the Internet and then
back over the corporate firewall to the server. There is no need for the two data
streams to follow the same communication path. However, in such a case, care
should be taken to use—at a minimum—encrypted HTTPS connections.

7.2.2 The Second Authentication

When the BSP application is started within the SAP GUI, a second authentication
is required (see Figure 7.2). Effectively, the SAP GUI afready knows the credentials
of the user. However, the embedded browser is a completely different entity that

is started anew and is not aware of the credentials. This second authentication is
very annoying!

g
Program Edit Gofo System Help

el T uEcaa

HTML Control als‘W\'/\ilW Browser

SAP "Neb Application Server
T r—F
Een{emiaer my pas’swu’rd:

o]

User name:

Eésswcrd:

Cancel

Figure 7.2 Second Authentication Requested

The SAP GUI team built an unorthodox solution to the problem. User credentials
usually are transferred via a Single Sign-On (SSO) cookie. However, it is not pos-
sible to set a cookie into the browser instance that is started by the SAP GUI.

What was possible was to set a special header field. The problem is that the newly
set header field is only used in the next HTTP request for which it has been set.
Thereafter, the information s again fost. To make the information sticky, a cookie

is really needed, and the browser will only accept cookies that are received from
the server.

Thus, when the browser is first started with the request to navigate to a specific
URL, the request is changed by the SAP GUI to navigate to the very special desti-

Pitfalls when Using BSP Applications with SAP GUI

137

138

nation /sap/public/myssccntl. In addition, two header fields are set. The first
is the SSO data with a very short timestamp. The second aszheader is the real tar-
get URL. The handler on the server for the destination /sap/public/myssocntl
will retrieve and validate the SSO header. Once accepted, a real SSO cookie is set.
Thereafter, a HTTP redirect is made to the original URL requested. No second
authentication is required with this approach, as the server can now retrieve the
user credentials from every HTTP request just by looking at the SSO cookie.

This described behavior is not the default, and must be explicitly requested by the
code that hosts the HTML Viewer. (See also SAP Note 612670, "SSO for local BSP
calls using SAP GUI HTML Control.") To accomplish this, after creating the HTML-
viewer control in our report, we add the additional method call enable_sapsso.
This one method call alone activates the complete SSO mechanism, and a second
authentication is not required.

CREATE OBJECT html_viewer EXPORTING parent = html_container.
html_viewer->enable_sapsso (enabled = 'x').

A note of caution: This method requires that SSO be configured correctly for the
server by the system administrator, and the path /sap/public/myssocntl
within ICF must be active.

7-2.3 The Second Session

When we examine the source code of our test BSP application closely, we see that
it lists the number of sessions that are open for our specific user. However, when
looking closely at Figure 7.1, we can see that there are two sessions open!

The first is the SAP GUI session. The second session is opened by the BSP applica-
tion. It is impossible to run the BSP application within the SAP GUI session. There
are a number of implications that the developer must consider.

One is that of scalability. Once a (stateful) BSP application is used with a typical
SAP GUI application, each end user will immediately require two sessions on the
server to complete the transaction. This factor-of-two increase in sessions must
be taken into consideration when the sizing of the application servers is done.

The next problem is that of data handling. If the same data is to be manipulated by
both the SAP GUI and the BSP application, then some form of shared data space
should be used. This can be done via database tables, shared memory, or from
NetWeaver releases with ABAP shared objects. One additional alternative is to use
SAPEVENTS between the SAP GUI and the browser (discussed in Section 7.3).

Using BSP Applications in SAP GUI

The biggest problem that must be handled is that of session management. When
the dynpro is closed, the HTML Viewer control will also be unloaded. It is impor-
tant at this moment to also terminate the BSP session.

The previous chapter already discussed session management in detail. All we need
to do now is to add the additional few lines of code to build a session, terminate
URL, load it into the browser, and wait a moment to give the browser time to
transmit the URL to the server and have the BSP session terminated.

IF fcode = 'BACK'.

html_viewer->get_current_url(IMPORTING url =~ urle).

el _gui_cfw=>flush().

CONCATENATE urle '/' sy-uzeit '/1x1?sap-sessioncmd=cancel'
INTO urle.

html_viewer->show_url({ url = urlec).

cl_gui_cfw=>flush().

WAIT UP TO 1 SECONDS.

FREE html_viewer.
html_container->free(). FREE html container.

html_viewer->free().

ENDIF.
The additional flush() calls are required by the fact that calls to the HTML

viewer control (such as retrieving the current URL) are queued and only executed
on the next roundtrip. This call ensures that the data is retrieved immediately.

7.2.4 Window Open Behavior

In the BSP application example, there is also a button to open a new window
using the typical JavaScript sequence window. open (). From the previous chapter
on session management, we know that the new browser window will have the
same browser instance on the client, and thus share the same set of cookies with
the old window. As the session 1D is stored in a cookie, all requests from the new
window will be processed in the same session. This is the expected behavior, and
it can be important, for example when F4-help windows are used.

Figure 7.3 shows this expected behavior. With the BSP application started in the
browser, the first button was pressed five times, and then the new window was
requested. On each round trip to the server, the counter is incremented, and we
see in the new window the expected value six.

Pitfalls when Using BSP Applications with SAP GUI

139

140

i Fle Edit Mew Favorites

e iR i

Tools Hefp

i Fle Edit View Favorites Tools ualb

B Doy f]

s code,, Terminal Al
1018210 243 §,

| Termirabidenttiaton] MAt| Denutzetamen Trar
27 | OO | MCKELLAR

|7 TREAR
28 | DOC | MCKELLAR S04

[p1zrees

| ‘ ":3 Local intranet
Figure 7.3 Expected Behavior of an Open Window Sequence

The same steps are repeated (see Figure 7.4), with the exception that the BSP
application is now started in the SAP GUI. After five button presses, the new win-
dow is opened. Instead of the counter now showing the value six as we expected,
the counter is showing again the value one.

This behaviour is also highlighted by the fact that the newty opened browser win-
dow now lists three sessions for our user, instead of the expected two.

=
Program Edit Goto Systemm Help 2
@ | e e,

HTML Control

i Fle Edit Mew Favorites Toals Help i ‘ ..: g

. New Window
d

_f:l hewy Window i

; Jermuighentfaton, Md S

i 27 | 006 “Termna [dentifkation! dt | Benutzemamend Transaktions-Code! Termnal - 1F

L 20) oo 24 | 000 | wckeLLAR ~ lrosez1ee

Aol sets, vont f|| 27 | 000 | WCKELLAR 1018210243 ;
29| 000 | WCKELLAR | SE38 P127560 4

&
= Q Done

- § ‘l} Local intranet

Figure 7.4 Real Behavior of an Open Window Sequence

The reason for this change is that within the HTML Viewer control, the win-
dow.open() sequence will give a new window with a new browser instance,
which of course starts with an empty cookie jar. The HTTP request to fill the new
window reaches the server without a session cookie, a new session is opened,

and a new session cookie is set.

Using BSP Applications in SAP GUI

This behavior of the HTML Viewer can break application logic that depends on
having different windows working against the same session; typically this would
happen in F4 help systems. The best solution to this problem is to request that the
BSP runtime not use cookies to identify sessions, but rather mangle the session
identification into the URL. This is done by adding the URL parameter sap-sys-
cmd=nocockie.

cl_bsp_runtime=> construct_bsp url(
EXPORTING in_application = 'book_chapter(7'
in_page = 'examplel.htm'
IMPORTING out_abs_url =url).
CONCATENATE url '?sap-syscmd=nocookie' INTO url.
urle = url. " type conversion STRING to C

Now a window-open sequence (using a relative URL) will use an URL that has a
session identifier mangled into the URL, causing the request to land in the same
session.

7.2.5 Effects of SAP's New Visual Design

When looking at Figure 7.1, we see that the buttons are rendered differently,
depending on whether the BSP application is running with an external browser or
within the SAP GUI hosted browser. These differences are especially noticeable in
the rendering of buttons, dropdown list boxes and checkboxes.

The reason for this different rendering of the same BSP page is the combination of
two aspects. The first is that the browser renders many user interface elements
using the native Window controls, However, once the browser is used with SAP
GUI, the complete control rendering is intercepted by the SAP GUI, so that it can
render the requested controls in SAP's new visual design. This causes all controls
to be rendered similarly to those of the SAP GUI, once the BSP page is executed
within the HTML Viewer.

The solution to have the same visual rendering over all browser windows is to
change the HTML rendering so that native window controls are not triggered by
the browser. For the HTMLB family of rendering libraries (discussed in detail in
Chapter 9), this can be achieved by setting the controlRendering attribute from
browser to SAP.

(h@extension name="htmlb" prefix="htmlb"%>
<htmlb:content
controlRendering = "SAP")

design = "design2003"

Pitfalls when Using BSP Applications with SAP GUI

141

142

Figure 7.5 shows that with this code change, the buttons are now rendered the
same in both the SAP GUI and in the browser.

= . [m=s|
Program Eoit Gote System Help B

QL I (g;

Edit View Favorites Tools Help

S —
_Teminal-dentifikalion; Kd!

27 | ool Ferminakice

i Fle

ifikation] Mt | Benutzernamen] Transakions-Code| Yerminal .
10.18.2102F

P127969

29 | 00
T

1] =

— ‘ o
I @Done . ; i ! !gLomlinwanet

27 | 00D | MCKELLAR
20 | 000 | MCKELLAR SE3B

Sel tlvenilziz o o o o

Figure 7.5 Effect of Setting controlRendering="SAP"

7.2.6 Loading HTML Pages Directly

Often, using a BSP application within the SAP GUI amounts to using a solution
that is much bigger than the problem. A typical example would be to host a Java
applet on an HTML page. Having a separate BSP application, implies a second
development object, and possibly a second session at runtime. In such cases, it
would be nice to just load the HTML directly into the HTML Viewer.

Another situation where this feature would also be very helpful is a "Loading..."
page that gives the user immediate feedback that the BSP application is starting.
This is usually important in cases where the BSP application must still be activated
and started.

The HTML Viewer does support such a direct HTML load feature. The HTML is
just concatenated into a string and loaded. Instead of calling the show_url()
method directly, we write a small HTML page that will display the text message
and then auto-submit the form to the start the actual BSP application.

DATA: html TYPE string.

DATA: source TYPE TABLE OF char255.

CONSTANTS: crlf TYPE string VALUE
cl_abap_char_utilities=>cr_1f.

CONCATENATE
“<html>®
crlf “<body onload="document.all['frm'].submit();">"
crlf *{form id="frm" method="GET" action="" url ~">°

Using BSP Applications in SAP GUI

L

b

crlf *{table border="0" width="100%" height="100%">"

crlf “Ler>?

crlf “<td align="CENTER" valign="MIDDLE"> °
crlf * Loading. ..’

crlf VAR P

crlf VAN

crlf “{/table>®

crlf “</form>®

erlf ~</body>®

crlf ~</html>®
INTO html.

"SPLIT html AT crlf INTO TABLE source.
CALL FUNCTION 'SCMS_STRING_TO_FTEXT'
EXPORTING text = html
TABLES ftext_tab = source.
html viewer->load_data(IMPORTING assigned_url = urle
CHANGING data_table = source).
html_viewer->show_url(url = urlc).

In this example, the most significant call is the load_data(), which will place
the HTML into that data container for transfer to the SAP GUI, and return a new
pseudo URL that can then be used for the show_url() call. The new improved
version of our application is shown in Figure 7.6,

= ==
Program Edit Goto System Help
@l B aBie
N . .
HTML Control as WWW Browg - |2,
i
Loading__. SAﬁ Wéb Apphcation Server
User mame: }ﬂ mckellar El{ g
Password:]m — }
Bemembermypasswurd ’

‘ Cancal

Figure 7.6 Use of a Small Loader Page

Is it really improved? It is true that the user sees immediately the "Loading..." text
in the HTML Viewer, but suddenly the second authentication problem is back!
The problem is that with this technique no initial URL is available that will be send

Pitfalls when Using BSP Applications with SAP GUI 143

144

to the server with the SSO information. The data is effectively made immediately
available, and then subsequent HTTP requests do not have a SSO cookie available
to transport the user credentials.

There are also a few other pitfalls that must be considered when loading HTML
directly. For one, the HTML is transferred to the SAP GUI by the data container as
a table of 255-character lines. It is important that the nicely formatted HTML
code be repacked as 255-character lines. A simple split on the end of line
sequences will result in each 255-character line being filled with spaces, thereby
increasing the download size dramatically.

Should the HTML become too large (either because of space-filling or actual
HTML coding), it will not be downloaded in time to the SAP GUI. Then the show_
url() method will then reference HTML that has not yet available (or only par-
tially available), causing rendering errors in the SAP GUI. This constraint limits this
feature to small HTML pages (a few kilobytes) with the recommendation to also
"pack” into each line as much HTML as possible.

The positive benefit of such a technique of also removing the second BSP session
has the downside that now the complete HTML generation must also be done in
the SAP GUI update cycle. For large HTML pages, this additional HTML genera-
tion and downloading will affect the SAP GUI responsiveness. Having a separate
BSP application brings the benefit that the HTML generation is done in a separate
session and does not affect SAP GUI at all.

7.3 Interaction between SAP GUI and BSP
Applications

Running the BSP application with the SAP GUI is actually a marriage of two differ-
ent applications, running in two sessions. Often, these two applications must
exchange small pieces of information or be updated in sync. For example, press-
ing the save button in the dynpro application should also cause the BSP applica-
tion save its data. This section will show techniques to fire events in both direc-
tions or just to transfer data.

7.3.1 BSP Application Event to SAP GUI

The HTML Viewer, when starting an imbedded browser control, also hooks into
the browser control to handle some forms of navigation. The most interesting of
these are pseudo URLs of the form SAPEVENT:... (instead of the typical
http:... or ftp:... forms). Once such an URL is triggered, the browser will
delegate the fetching of the "URL" to the HTML Viewer control.

Using BSP Applications in SAP GUI

T P ——

So the solution comes down to using any form of HTML that will cause the
browser to load an URL of the form SAPEVENT:. SAP Note 191908, titled "Col-
lective Note: HTML Viewer Control,” describes this technique, and also describes
the constraints when using it.

For our BSP application, we will add a new button that when pressed must inform
the SAP GUI (effectively, the dynpro code) what the current counter value is. For
this, we add one new button to the code that will call our JavaScript function
postCounter () to do the hard work.

<¢htmlb:button text = "Post Counter”
onClientClick = "postCounter():" />

For the actual data transfer, we just use a normal form, as we would do for sub-
mitting data to a server. The form will just have one input field to transfer the
data. The postCounter () method sets the input field correctly and submits the
form.

(form id="sapForm" name="sapForm" method="POST"
action="SAPEVENT:POST COUNTER")
{input name="counter" type="hidden")
{/form>

{script>
function postCounter()
{
document.all["counter"] .value =
document.all ["btnl"] .innerText:
document. forms ("sapForm"] . submit ()
}
{/scriptd

The only unusual aspect about this HTML code is the form action that does not
point to an URL on the server, but is the special SAPEVENT: URL. The rest of the
string is just an action name that has an application-specific meaning.

Two minor HTML aspects must be kept in mind. In HTML, forms cannot be
nested but must be placed below one another in the HTML. Just place the above
code towards the end of the page, outside the <htmlb:form> used. Also, when
submitting a form, a response usually is received from the server that is then ren-
dered again by the browser. This would replace our BSP application with some-
thing else. However, this is not so for SAPEVENT : -based forms. They do not return
any form of response from the server.

Interaction between SAP GUI and BSP Applications

145

146

With these minimal changes of one new form and a button to submit it, it is pos-
sible to fire an event with data from the BSP application directly to the SAP GUI.
The next step is to catch and process the event.

As we will require in the next steps features from the HTML Viewer that are only
accessible in protected methods, we will just create a new class that inherits from

the c1_gui_html_viewer class.”

CLASS ¢l _my html viewer DEFINITION
INHERITING FROM cl gui_html_viewer.
PUBLIC SECTION.
METHODS: constructor
IMPORTING parent TYPE REF TO CL_GUI_CONTAINER.
METHODS: on_sapevent
FOR EVENT sapevent OF cl_gui_html_viewer
IMPORTING action postdata.
ENDCLASS.

The most interesting part of this code is the on_sapevent method, which is
declared as an event handler for the sapevent event, This ABAP event wiil be
fired in the server when the HTML Viewer receives a SAPEVENT : within the SAP
GUI.

The constructor method will inform the HTML Viewer that we are interested in
this event and then set our on_sapevent method as handler for this event.

METHOD constructor.
super->constructor (parent = parent).
DATA: event_tab TYPE cntl_simple events,
event TYPE cntl_simple_event.
event-appl_event = 'X'.
event-eventid = me->m_1id_sapevent.
APPEND event TO event_tab.
me->set_registered events(events = event tab).
SET BANDLER me->on_sapevent FOR me.

ENDMETHOD.

When the on_sapevent method is called (because the button had been pressed
in the browser), it will have two parameters (see signature of this method in the
class definition above). The first is the action string that is the value that was
used in the SAPEVENT: URL (everything after the colon character). The other
parameter is postdata, which is just a table of strings of the form name=value
that reflects the form fields submitted in the browser. All that our coding does is
to read the value of the counter and to display it with a MESSAGE statement.

Using BSP Applications in SAP GUI

METHOD on_sapevent.
IF action CS 'COUNTER'.
DATA: counter TYPE string.
READ TABLE postdata INDEX 1 INTO counter.

SPLIT counter AT '=' INTO counter counter.
MESSAGE counter TYPE 'I'.
ENDIF.
ENDMETHOD .

As a last step, the only change to the report itself is to change the html viewer
object to be an instance of this newly created class. The rest of the report was not
changed.

DATA: html viewer TYPE REF TO cl_my_html viewer.

See Figure 7.7 for the results. Pressing the button in the browser displays a mes-
sage within the SAP GUI with the correct current value from the button,

= HO&
Erogﬁgrﬁ A,Edn. go!nm Sgste‘m Help

el . pduicea =

HTML Control as WWW Browser

New Window | [Post Counter

v[erihﬁinal—ldé:nﬁff}:a’ﬁdri}'v!‘d'd('._’ Betutzernamen Transaitions-Cade| Termnal. | Disbgzel
24000 | WCKELLAR | 18.210.243 | 153624 [
| l@lnforma_t[an] o i _ F

|

Figure 7.7 Interaction with SAP GUI

7.3.2 SAP GUI Event to BSP Application

For the reverse route, we add a new method get_counter to our class and wire
the method call to a button on the dynpro. Now, when the button is pressed, we
call the get_counter method and expect that it will show exactly the same mes-
sage as previously.

We know already how to cause the browser send events and data to the SAP GUI.
So the problem amounts to injecting some code into the BSP application that will
fill and submit such a special SAPEVENT form. Let us first look at the complete
source code.

Interaction between SAP GUI and BSP Applications 147

148

METHOD get_counter.

DATA: js TYPE STANDARD TABLE OF CHAR255,
line TYPE STRING.

APPEND:
“function _getCounter() {° TO js,
* var _value = document.all["btnl"].innerText;’ TO js,
* vyar _frm = document.createElement('form');’ TO js,
Y _frm.setAttribute('id’, ' _sapForm') ;" TO js.

_frm.setAttribute('name’, ' _sapForm') ;' TO Js.
> frm.setAttribute('method’, 'POST");" TO js.
) _frm.setAttribute('action‘,'SAPEVENT:COUNTER');‘ TO js,
S var _if = document.createElement('input‘);‘ T0 js,
© if.setAttribute('name', ‘_counter');’ TO js,
* _if.getAttribute('type', ‘hidden');’ TO js,
> _if.getAttribute('value', _value);’ TO js,
* 7frm.appendChild(_if);‘ TO js,
* document.body.appendChild (_frm);’ T0 js,

document . forms ["_sapForm"] .submit ()" T0 js,
i TO js,
“window.setTimeout ("_getCounter ();", 200 /*ms*/);" TO js.

me-Yset_script(script = is[]).
me-Yexecute_gecript().
ENDMETHOD .

Al that this method does is to create a JavaScript function, inject it from the SAP
GUT into the HTML Viewer, and then have the JavaScript function executed. This
approach was the main motivation for the inheritance that we selected previ-
ously. The set_script and execute script methods are protected and can

only be used from a derived class.

The JavaScript function itself will just use dynamic HTML (DHTML) to create a
new form, attach a new input field with the correct value to the form, and then
attach the form to the document. As a last step, the form is submitted, which wil
again trigger the on_sapevent method in our class.

An important aspect of this script is that the execution of the injected method is
delayed by 200ms. This value was empirically determined, and is required
because of the distributed nature of solution. The ABAP code itself runs in the
server, but the actual JavaScript injection and handling are done in the SAP GUL.
The delay gives the SAP GUI time to complete its round trip before the browser
fires a new event again. When the programmed button is triggered on the dyn-
pro, we will see exactly the same results as in Figure 7.7.

Using BSP Applications in SAP GUI

7.4 Starting a New Browser Outside the SAP GUI

The last section of this chapter describes a technique that can be used to start a
new separate browser window. Although not exactly part of the topic in execut-
ing a BSP application within the SAP GUI, the solution is tied very closely to the
HTML Viewer.

There are a number of techniques, all encapsulated in functions, that allow the
SAP GUI to start an external browser to the server. However, they all require that
the user must perform a second authentication. Again, it would be better if the
browser could be started with a call that will also transfer the user credentials
from the SAP GUI to the browser. For this, there exists a method called show_
url_in_browser. However, this method has many constraints which makes it
usable only in very special cases.

To enhance this functionality, a new method-~detach_url_browser—was
added. This method is very new. It will only be available with a new SAP service
pack and also with the installation of a new SAP GUI. See SAP Note 864528
(Detach URL in Browser) for the exact dates and releases.

The more pertinent question is: How can we program one technique that will
start a BSP application in a browser window, and in the most optimal case not
require a second authentication? In the cases where the new functionality is not
available, the browser should just perform the second authentication routine (as
it always done up to now).

The solution amounts to placing a dynamic call to the new method, and, if it fails,
just to use an older function as fallback.

REPORT book_chapter07_examples.
DATA: url TYPE string, urlc(2048) TYPE c.

cl_bsp_runtime=>construct_bsp_url(
EXPORTING in application = 'book chapter(07'’

in_page = 'examplel.htm'
IMPORTING out_abs_url =url).
urle = url. " type conversion STRING to C

TRY .
DATA: viewer TYPE REF TO cl_gui_html viewer.
DATA: empty_container TYPE REF TO cl_gui container.
CREATE OBJECT viewer EXPORTING parent = empty_container.
CALL METHOD viewer->enable_sapsso
EXPORTING enabled = 'X'

Starting a New Browser Outside the SAP GUI

149

150

EXCEPTIONS OTHERS = 1.
CALL METHOD viewer->('DETACH_URL_IN_BROWSER')
EXPORTING url = urlc.
cl_gui_cfw=>flush().
CATCH cx_root.
CALL FUNCTION 'CALL_BROWSER' EXPORTING url = urlc.
ENDTRY.

Notice the use of the dynamic-call method. If this code executes on an older SAP
release, the call will fail, and the catch code will call the old function.

Using BSP Applications in SAP GUI

8 Performance Measurements

In these days of gigahertz and gigabytes, one can be tempted not to
worry about performance. However, the performance of an applica-
tion is critical to its scalability. The chapter will look at different ways
to gauge the application performance.

We usually recognize performance problems by observing that "the application is
slow." But this should only be the starting point for a thorough inspection in
which we take the application apart and to look at the different components. The
frequently heard comment that "BSP is slow” shows that the developer did not do
his or her homework, or was not sure how to do it. Let us dive deep into the per-
formance-measurement topic and demonstrate tools that help get an accurate
number for everything moving on a Web page.

A good place to start is the user's perception of performance: A button is pressed,
and the answer is rendered moments later. This is the only real latency that users
care about. At a technical level, there are a number of components that play a role
in the complete delay the user experiences.

For the user, time crawis by in seconds. However, for each component, time flies
by, and each component usually requires only a small slice of one second. So, for
our measurements we will always work in milliseconds.

The first temporal component is the time that the browser requires to submit a
form, effectively the time from the pressing of the button until the HTTP request
is dispatched. For typical HTMLB-based applications (discussed in Chapters 9 and
10), this time is insignificant. However, we have seen frameworks that hook into
the submit sequence, and their additional JavaScript code added a few hundred
milliseconds. For our applications, we will not consider this, but do keep the fac-
tor in mind if you are hooked into the submit sequence.

The next component is the transfer time for the HTTP request to the server. Usu-
ally, HTTP requests are small and do not contribute much to the total latency.
However, when Single Sign-On (SSO) is active, the MYSAPSSO2 cookie alone is
already a few hundred bytes, and then the HTTP request becomes an aspect
worth considering.

Once the HTTP request reaches the server, the work really starts, and the com-
plete server processing time is added onto the total latency. This is usually the first
large number to measure.

Performance Measurements

151

152

Thereafter, the HTTP response is returned to the browser. As this is HTML code for
the complete screen rendering, it can easily be T00KB or more. If GZIP compres-
sion is switched on, the data transfer volume is low, but the transfer time is now
replaced by the compression and decompression time.

The last big component is the HTML-rendering time. For complex screens, for
example using tables and tabstrips, this time can also be a few hundred millisec-
onds.

in the next sections, we will look at a number of approaches to get a handle on
the performance of each component of the latency.

8.1 Test Applications

Naturally, we are interested in the performance of our own test application. How-
ever, just having one final performance number without knowing the effects of
the different components, makes it harder to understand the significance of that

number.

The best technique for understanding the effects of the different components is
to start a full measurement, but with only a simple "Hello World!" application.
This already provides a baseline number for the network latency to the server and
back, plus the time required to pass through the complete BSP runtime and have
one BSP page executed. This provides an absolute minimum number and reflects
accurately the total BSP overhead. Such a test page is shipped within the BSP
application IT03, page text0KB.htm.

As a next step, we want to see the effects of network-transfer time and *memory
bandwidth" of the application server (the speed at which data can be passed
through all layers). These numbers can later be compared to the actual page size
of our application page to determine the pure transfer time. Again, IT0O3 has a
number of test pages to help. These pages are all named text<N>XB.htm, where
<N> can be one of 1, 2, 4, 8, 16, 32, or 64_ This allows us to measure the effects
of, for example, pages that are 32KKB in size. In such a case, we are measuring the
time to get the data into an ABAP buffer, transferred to the Internet Communica-
tion Manager (ICM) layer (in kernel), streamed out onto the network and trans-
ferred from the server to the browser.

Similarly, our application can have images of different sizes. These are usually
cached in the server and also at the browser. The fact that these images must be
loaded has its costs. To measure this effect, use the images image<N>KB.gif,
again from IT03 and with the same range for <N>. Because these images are
loaded into the ICM cache on the first request, we have a load test as a measure-
ment of the |CM-cache and network-transfer times. Usually, the ICM cache

Performance Measurements

involves just one memory transfer, which is insignificant compared to the network
component, so that we can use this test to get a good estimate of the true net-
work-transfer cost.

The other application worth looking at is TT05, starting at page main.do. This ié
effectively a mock-up of a complex screen from a real application. When measur-
ing with this application, we are not only looking at the network component and
the BSP runtime, but also adding the HTMLB family of rendering libraries. Unfor-
tunately, these libraries do add some overhead, and their total overhead is pro-
portional to the number of controls used and their complexity. For serious perfor-
mance measurements, having such a mock-up of a representative screen with its
measurement number available helps to quantify the total cost of the BSP run-
time plus the rendering libraries. When this number is later compared to the
overall time of the real application, the difference will give a very good indicator
of true application runtime.

A final aspect to consider is that of page activation and URL mangling. When a BSP
page is new in the system, no temporary class is available to process it. On the first
request, such a class is created, loaded into the ABAP program buffer and can only
then be executed. On subsequent requests, the class representing the page can
always be executed directly from the program buffer. For this reason, we always
measure a number of times, so that the system is in a "warm" state. Similarly on
the first request, the BSP runtime will mangle the URL (see Chapter 4), causing an
additional roundtrip. Only start measurements after the URL has been mangled.

8.2 Quick Sizing with HTTP Trace Tool

The simplest technique for getting a good overview of an application's behavior is
to execute it while using a HTTP trace tool. This gives a very good overview of the
pages and the additional resources (style-sheet pages, JavaScript code and
images) that the pages load. The tool will also show which resources are correctly
cached. More important, though, will be numbers that the trace tool shows. This
presents a complete measurement of the network and server times. With these
numbers alone, a developer already has a very good overview of an application’s
performance. This is the minimum testing that should be done!

Looking at Figure 8.1, we see first a number of load sequences for the
text32KB.htm page. The first request took 377ms, whereas all other requests for
this page took about 80ms. This shows that the first time the page is requested, it
has first to be activated and toaded into the ABAP program buffer. For our perfor-
mance measurements, the lower numbers from the warm system is used, as this
reflects the normal operating state of the system. The slow numbers will only be
experienced once by the first user accessing the page.

Quick Sizing with HTTP Trace Tool

153

-

154

X |G nat @ swp % Clear Y Alter [Y Copy B save [T About @ Hebp '
i Tme' mzel M. R Type T URL e N
razi T 33835 GET 200 RexHE T EEpJUEA045 wilt Sap.corp: 1080]sap(bD 1kZSZiM c/Dsp/sapﬁtOBﬁE)dJﬁ.ga

0.087 32060 GET 300 texiht.. http:/fus4049.wdf.sap.corp: 1080/sap (oD IZSZM =)/bc/bsp/sapﬂ!03/text3m.hm‘
100112, 0.080 32960 GET 200 textht.. http://us%%.wdﬁsap.cnrp:IGED/Sap(bD1kZSZ]MA=—)/bc/bsp[sap[ltﬂi/taﬁm.hm
00:00:13.558 0,080 32950 GET 200 fextht.. htm://us%%.wdﬁsap.corp:lﬁal)lsap(bD]kZSZ]IMA:*)/bdbsp/sapﬁzgltxamhm
00:00:14.647 0.080 32960 GET 200 textht.. htq:://uswqg.wdf.sap.mrp;mewsap(huﬂasz;m::)/bc/bsp/sapﬂm X8 i
00:01:18.897 1516 33114 GET 200 image/of http://us4049.wdf.s.ap.cnrp:1080/sap(hDlkZSZ]MA==)/b:/bsp/sap/’lmjﬁmage3m.gif
00:02:09.265 0061 3307 GET 200 image/gif htp:/jusa0a0wdF.sap.corp: 1080/sap(bD kZSZMA==) be/bsp/sapi [xmageam.ﬁlf .
0002113232 0004 221 GET 304 imagefaf hittp://usd049.wdf.sap.corp: 1080/sap(GDKESZIMA==)/bchsp/sap/t03image 2B aF §

|

.

Figure 81 HTTP Trace Tool Analysis

The next numbers show the same behavior for loading an image. On the first
request, the image must be retrieved from the MIME repository and then written
into the ICM cache before transmission. The total time of 1,515ms is again only
experienced once by the first user. All other users will find the request already in
the ICM cache, from where the image will be streamed out again, giving us a
speedy 61ms for the image. As a last test, we looked at the time for a cache check,
when the browser just needs to confirm that its image is still valid. As the image
is not transferred again, only the Not Modified message (HTTP return code 304),
we see the complete roundtrip completed in 4ms!

With a good HTTP trace tool,.it is already possible to get an accurate answer to
the question on the application's behavior.

8.3 Network Latency

The simplest technique for measuring strictly the network transfer time is to use
the ping tool. This Is an application that will send out a small test request to th.e
server (by default 32 bytes), and the server will simply echo the data back. This is
done at the operating-system level and thus does not contain much server over-
head. The time is dominated by the network time.

Using a small request of 32 bytes produces only network latency, without the
influence of the network bandwidth. Effectively, a slow dial-up line will test com-
parably to a fast DSL line, as the requests are small and the time is dominated by
the overhead to traverse the physical distance.

To test a more realistic scenario, set the request size to the expected size of our
HTTP traffic using the -1 parameter for ping command. However, this command
is symmetric, in that it sends and then receives the same data volume. In HTTP,
the request is normally small, whereas the response is large and contains the com-
plete answer from the server. For example, for our text32KB.htm test from Sec-
tion 8.2, we see am HTTP request size of 1,302 bytes (size is influenced by SSO
cookie that is active) and an HTTP response size of 32,960 bytes (includes HTTP
headers). Thus, we must test these two cases individually.

Performance Measurements

Also, the numbers from ping reflects both the sending and receiving of the same
data. But, in the HTTP traffic, the HTTP request is only sent, and the HTTP
response only received. So, in each case divide the number by two.

C:\>ping - 000 VL_ISIAEMS_.wdf.sapv.corp.; :

Reply from 10-21.82:172: bytes=32 time<lins TTL=251 =
Reply from-10.21:82.172: bytes=32 time<lms TTL=251" " "

Reply- from: 10.21.82:172: bytes=32 time<lms TTL=251 - |
C:A\>ping -1°1382 -w 1000 usé049.wdf.sap.corp -
Reply- from 18.21.82.172: bytes=1302 t

Reply from 10.21.82.172: bytes=1302-1
Reply from 10.21.82.172: bytes=1302: tim L

pi 32960 -w 2000 us4049.wdf . sap.corp
Reply. from: 16.21,82,172: bytes=32960 time=6ms TIl:=251"
Reply from.10:21.82.172:. bytes=32968 time=6ns. TTL=25
Reply from"1@;21.82.1?2:-.bytes=32‘963 time,=6ms’TTL=25 ;

Figure 8.2 Ping Command Used to Determine Network-Transfer Speed

Looking at Figure 8.2, we can see that the simple ping to our server takes less than
Tms. But it carries effectively no data. Using more realistic numbers from our test
scenario, we have roughly 0.5ms for the upstream data representing the HTTP
request, and 3ms for the down stream data representing the HTTP response.

Accepting measurement inaccuracies, we can say that a 32KB HTTP
request/response cycle should consume roughly 4ms. This is still slightfy less than
the 6ms we measured with an image download from cache. Keep in mind that the
image download amounts to the small HTTP request, and a 32KB HTTP response.
The difference between the two numbers is of a technical nature: In effect, the
HTTP traffic is transferred within a TCP connection, where a slow-start algorithm
with a sliding window prevents the complete use of available bandwidth, but
slowly scales up the data transmission. The ping command sends it data without
TCP. tt only matters that the two numbers must be in the same ball park and must
confirm our estimates of network-transfer time.

8.4 Server Processing Time

The simplest technique for estimating the complete server processing time is to
measure it with two GET RUN TIME calls, bracketing the page.

{% DATA: server_start TYPE 1i.
GET RUN TIME FIELD server_start.

Server Processing Time

155

156

ﬂ/ﬂ>

(%@oxtension name="htmlb" prefix="htmlb"%>
<htmlb:content design="design2003“><htmlb:page><htm1b:form>
<htmlb:button text " Hello World!"
onClick = "myClickHandler" />
¢/htnlb: form></htmlb:page></htmlb:content?

]

<%
DATA: server_end TYPE 1,
run_time TYPE string.
GET RUN TIME FIELD server_end.
server end = (server_end - server start) / 1000.
run_time = gerver_end.
CONDENSE run_time.
%>
{script>
window.status = "Server=" + "(Y=run_time%>" + "ms";

{/script?

At the beginning of the page, the first time point is stored. At the end of the page,
a new time point is taken and the difference calculated in milliseéonds. As a las't
step, the time is written in the browser into the status line (see Figure 8.?). This
measures only the time spent within the application coding. It does not include
the BSP runtime overhead.

e Edit View Favorites Tools Help

‘ Helio World!

I;’a Server=38ms

i i % Local intranet

Figure 8.3 Example of Server Runtime Measurement

A better technique to measure the actual processing time of the server is to use
statistical records. These are very small timestamps written by the Internet Com-
munication Framework (ICF) layer. These reflect the complete ABAP runtime,
leaving only an insignificant time from the ICM layer unmeasured.

Statistical records are by default not enabled for HTTP. They either can be enabled
with the profile parameter rdisp/no_statistic or with the ABAP program
RSSTATISTIC (from transaction SE38). After statistical records have been
enabled, execute the BSP application.

Performance Measurements

Use transaction STAD to view the statistical records. Set the time filter around the
time of the tests and limit output to that of program SAPMHTTP. (The program
SAPMHTTP is the very first basic activation step where HTTP calls are placed into
the ABAP stack.)

When the program is started, a list of statistical records according to the filter cri-
teria is shown (see Figure 8.4). Already one can see that the first hit takes much
longer than the following hits on the same page. For the first run, the ABAP load
for the BSP page has to be fetched from the database and loaded into the pro-
gram execution buffer. This hit includes a large database overhead. All subsequent
hits on the same test page have no database overhead.

=4

Workload Edit Tgals goté Monltor Sistem Help
L REELCICE LN
SAP Workload: Single Statistical Records - Overview
E o;wmuaﬂ@ [«] ‘L[TE Disp. mam@Selﬁelds |

Started Server Program User Response

[2)

time {ms) =

‘ HCKELLAR a k

17:07:07 b20main_B20_24 SAPMHTTP /sap/bc/bsp/sap/it83 [MCKELLAR 252 '

17:07:13 b20main_B20_21 SAPMHTTP ‘/sap/bc/bsp/sap/it63 |MCKELLAR 52
17:07:14 b20main_B208_21 SAPMHTTP /sap/bc/bsp/sap/it03 |MCKELLAR 83
17:07:16 b20main_B20_21 SAPMHTTP /sap/bc/bsp/sapfit03 |MCKELLAR . 52 | [k
17:07:17 b20main B20 2t SAPMHTTP /sap/bc/bsp/sap/itd3 |MCKELLAR 56 E]-

PRe

Gl |
e

i b1 eEs (1) 000 PA[usaoas [NS [| 7

Figure 8.4 Output from Statistical records

Looking at these records, we see that after the first page, all other pages have a
server component of roughly 52ms. This is in line with our measurements of HTTP
roundtrip latency of 80ms for the same page.

The statistical records reflect the complete ABAP runtime, but do not include the
ICM time (kernel part). This additional time, plus the network time of roughly
6ms, will explain a difference of a few milliseconds between the statistical records
(ABAP runtime) and the HTTP roundtrip latency. The remaining time difference
must be attributed to inaccuracies in the entire process.

8.5 Browser Rendering Time

Investigating the browser rendering time is slightly more difficuit. For us, the
browser is a closed box, and we do not know much about what is happening from
the moment the HTTP response is received until the bitmap is actually placed
onto screen. The only easy technique we have is to use JavaScript coding.

Browser Rendering Time

157

158

{script>

var render_start = new Date();
{/script>
{script>

var render_end = new Date();

ver render_time = render_end.getTime() -

render_start. getTime() ;
window.status = wServer=" + "<%=run_timek>" + "ms"

+ " RenderTime=" + render_time + "ms";
{/script>
Looking at the above program, we see that we added a line of JavaScript code

right at the beginning of the page to mark the time that the page was started.
Although this script block occurs even before the <html)> tag, the browser does

accept it.
Directly at the end of the page we place a second block of JavaScript code to

again mark the end time, and to calculate the elapsed time, which should be
roughly the rendering time. This value is then displayed in the status bar of the

browser as shown in Figure 8.5.

i Hle Edit View Favorites Tools

Helio Worlkd!

) Server=38ms RenderTime=344s o W Lol intranet Y

Figure 8.5 Example of Browser-Rendering Measurement

Although these are the last statements on the page that does not necessarily
mean that the browser is finished. It is typical for browsers to first build parts of
the HTML page into a bitmap, which is only displayed after it has finished HTML
rendering. But still, this measurement is already a good indicator of the rendering
time required for the page.

Given these performance-measurement ideas, one could consider to place the
coding into a BSP element (see Chapter 9) for easy use on all pages. Then the BSP
element can turn the measurements on only when required. For BSP, such an
example is available in the benchmark library and shown in use in BSP application

ITOS.

Performance Measurements

8.6 Determining Hotspots

After a first round of performance measurements, the next logical queétion is: can
we improve that performance? This question can only be answered if we: know
what the application in question is doing. . o

For this piece of the puzzle, we will use runtime analyses to get a detailed piAct‘ufe‘l
of an application's runtime behavior. The runtime analysis of a BSP application is
activated from transaction SICF. Just select from the Edit menu the entry Runtime
Analysis. Thereafter, execute the test BSP application.

The data collected by the runtime analyses can be seen using transaction SE30.

Simply select Other File... for the specific user, then double-click on any of the
URLs listed (see Figure 8.6).

=

ABAP Runtime Analy

Tips & Tricks | - .

Runtime analysis Edit Golo Ulilities Seftings System Help

j I_E?Measurernem Data Files
B

JFLTETUsER| Ty

[IMCKELLAR /sap/bc/bsp/sap/iti3/iext32KB htm v HTTP
[] HCKELLAR /sap/bc/bsp/sap/it03/text32K8 .htm [HTTP
MessurementData Fie. [JHCKELLAR Isaplbclbsplsapljt03/text32KB,htm HTTP
— : | [CIHCKELLAR /sap/bc/bsp/sap/it63/text32KB htm |[HTTP
Application 1/sap/t . :
Short descripion wrre |l §
N 7 FEET e e 7 s
Measurement dale 2665-1 | [y anaze |[8) (&) 3I W[« D D [l [alf=]
File size in KB : e =
Ip . Evavate © Otherfile.. [E_ﬁ Fleinfo.. | @@ Delete.
D 888 (1) oo PHl] usoode [ins i [7 I:

Figure 8.6 Selecting One Request from SE30 for Runtime Analysis

Let us look briefly at the type of information that can be learned from transaction
SE30. The true value of this tool can only be learned from practical work and as
such we will not dive into low-level detail, but we recommend that each devel-
oper invest some time with the tool to see its potential (see Figure 8.7). v

The first notable aspect is the Hit List. This shows all methods and functions
called, and their gross and net times. To get an overview of which methods have
the longest runtimes, sort on the net times.

Database access is usually the more expensive part of an application, and the
Database Hit List provides detailed information about database tables that were
accessed.

Determining Hotspots

159

160

=

- EHEE

Runtimeana[is Edit Goto Utilities S!stem Help

Ch T Eieeeibn

Runtime Analysis Evaluation: Overview

FEECEREEREN.

22.472

e N [K

= 75.3%
166 = 55
§.742 = 19,2%

e —

29.850 = 100,0%

ey

select Singte Q2APPL
Call M. CX_FQDN==CHECK

seject Single ICFSERVICE

Load Report SAPLSECH. .

Calt Func. AUTH_TRACE_GET_STATUS

Load Report CL_BSP_PAGE:::—-—:;::::EP" ’
Call Func. AUTH_TRACEAGET_STATUS

Dpen Cursor 02PAGPAR - ° :

| CE_INTERN_HASH
ACE_WRLTE_USOBHASH
‘RACE_CALC_HASH

call M. LCLﬁHR_TINER:>IF_ASAP;RUNTINE~GEI'_RUNTIHE CEGH i

Load Report CX_ROOT=s====—===== ——=CP. LATE _HASH_FOR_GHAR :
114 | 6 Call SNC_ABAP_SERVICE
142 | B Select Single USOBHASH

38 | 4 Salect Single USOBHASH
43 28 | 3 Catl Func. AUTH_TRACE_INTERN_SELNAME 3
6 | 4 Call SUSR_USER_BUFFER i

g |4 Call AUTH_TRACE ;

TCPDB i

USOBHASH 4 36 | 1| Calt M. LCL_HR_TIHER:>GEI’_RUNTIHE
TCPBSA 8 78 | 1| Load Report CX_NO_CHECK: CcP
3| 02PAGDIR 1 86 | 1| Load Report CX_ROOT==== ====CP
3| G2APPL 1 125 | 1| Call M. CX_FQDN=+CHETK

| 2PAGPAR 3 -

3 ICFSERVICE 2 o122 fuil ICF Service Tree

LS—%DF;LASSQF | 1 l 88 |generic \Deﬁ'm‘tion of class/interface

Figure 8.7 Overview of Transaction SE30

The Call Hierarchy shows the calling sequence of the application. This can be a
daunting display for complex applications, but does help to correlate the dynamic
behavior of the application to the more static code one sees in the editor. This is
especially helpful in understanding paths taken through the code, and to answer
the "who-called-this-method" type of questions.

It is always possible to use forward navigation (double-clicking) to get more
detailed information about any specific sequence that is displayed. Use the blue
Display Source Code button at any point to jump directly to the relevant source
code.

For the application 1T03, there is no application—re}evant logic. The results are
dominated with ICF layer and BSP runtime aspects. Experience has shown that in
larger applications the application code itself, and also the rendering from the
HTMLB libraries, usually dominates the performance.

performance Measurements

8.7 Load Testing

Performance measurement (How fast does it go?) is the inverse of the question of

scaling (How large must the box be?). We have now already looked at approaches

to calculate the performance times for simple "Hello World!" pages, for large
! . r

sized pages, and images. However, at the e
. : s nd of the day, one has t
pages from one application. o messure sl

There are many programs available for stress testing Web applications. In princi
ple, any program can be used. We will use the Web Application Stress Tool from

Microsoft". It is quick to install a i
. nd contains all the necessary feature i
good stress testing. ’ sreauredor

The stress tool permits a record mode, whereby we just browse through a websit
while the stress tool itself records all the URLs that we accessed, includin) Iel
resources loaded by the browser. We use this feature to quic’kly loadgoir
text32KB.htmand image32KB.gif pages (see Figure 8.8).

| & @lglelw =5

1]

=8 & Defouits
‘% Settings Server: 1us4@45.wdf.sap.corp
= g Sample Script
=3 !\Jﬂew Recorded Soipt Verb |Path a :
[%] Content Tree Gl i g
T j —=]
B, settings . Jsap{bD IkZSZPTAWMA==)bc/bspfsap/it03/texC 2B him |default £

GET | /sap{bD tkZSZiPTAWMA ==)/bc fosp/sap/it03/text32KB.htm | default

- B4 Perf Countars =
Gl feap{bD kZSZIPTAWMA ==}/bc/bsp/sap itD3ftext32KB.him | default

H ﬂ Page Groups

0 Us‘e(s B GET |/sap(bD1kZSZIPTAVMA==)/bcfbspfsapitd3ftext32B.him |default
. %% El;lse GET | fsap(b0 IKZSZIPTAWMA==)/oc bspfsap ft03/image32KB. oif | default
5 GET | /sap(b01kZSZPTARMA==)/bcfbsp/sap/it03fimage32KB.gif |default

GET | /sap{bDIkZSZjPTAWMA==}/bc/bspfsap it03/image32KB. gt |default

P Scripts : New R, |

Figure 8.8 Web Application Stress Tool: Recorded Session

A comment on the stress tool: In recording mode, the server field is not set cor-
rectly and must be later quickly corrected.

One of the factors to consider is that of URL mangling. When conducting perfor-
mance measurements, the goal is to run the same test many times to generate a
real load on the server. However, most test programs are structured so that each
test is run individually, the results are recorded, and then the test is started anew

1 The program can be downloaded from Microsoft's website, http.//www.microsoft.com. Rec-

ommended is to search for "Web A p i
) P lication Stress Tool," as io b
: i i ‘ ¢ the exact locati on the web

Load Testing 161

162

This dictates that specific actions experienced only once by a user are measured
continuously by the test. URL mangling is one such action. Thus, to measure the
real performance, and not the start-up time of the redirects to mangle each URL,

we use only mangled URLs in our tests.

A similar one-time cost is that of authentication. The very first HTTP request will
be rejected by the server, requesting that authentication information first be sup—
plied. Once the browser has the authentication information from the user, this
data will also be set, and does not play any additional role. The Web stress tool
works similarly. It will also send an HTTP request without authenticatio.n, and only
after the authentication challenge will it send its available authentication dlata.. In
this case, two roundtrips for each test are measured, once for the authentication

challenge and once for the real work.

e
g File Edt Soipts Ve

Verb:]G?

Patfr: lTsap(bD‘IkZSEF‘TAwMA==};'bc/bsp/‘sapﬁl(‘iB/te?dBZKE.ht'rn Canced

Version: WTP/H ’ lj
Port: . 1080 . - -

Querysting |, Postdata Headr ~ | . sst] BDS]

» : to al d

[~ Use Static Header Values Only S) - . Applyto @ :

Mame value . - .

" {accept image/gif, image /x-xbitmap, image/jpeg, image/nipeg, application/x-sho

Accept-Language de,en-us;q=0.5

| Accept-Encoding gzip, deflate :

" |User-agent Mozlla/4.0 {compatible; MSIE 6.0; Windows MT 5.1; .MET CIR 1,0.3705; . :

Host {autoratic) 8

Cookie {automatic) y

] ARuthorization Basic VGhhbmtzIGZvaBidxipbmegYmSvayE= :

I ——
%8 Seripts : New Al 5 fsap(bD1KZSZiPT..

Figure 8.9 Web Application Stress Tool: Setting Authentication

To suppress this additional roundtrip, we add from the beginning authentication

data to all requests. In Figure 8.9 we can see that we manually added the Autho-

rization header (we saved the string while the recording was done). Thereafter,
we pressed the Apply to All button so that this header is set on all recorded

requests.

With this, we are ready to configure the actual stress test (see Figure 8.10).

Performance Measurements

¥ Fle Edt Soipts View Window Help NEE

| =] elolelsl #ol x[4= 2]
B %ﬁ%ﬁ“]m Concurent Connections
E Settings

1 %8 Sample Saript Stress leve! threads):
= New Recorded Saript

‘E ContentTree

Stress muttiplier (sockets per thread): 1) g

- ‘%},} Settings i

;- 3 Perf Counters Test Run Time i :

-2 Page Groups Days: [Hrs: D Mins: 3 Sec: [i} 3

Q Users I e -

+-gY Clients LE

i T Cookies ‘—Suspend - ;
B\’armup: Hrs: 0 Mins: 0 Sec: 30
i Throughput

™ Use users, passwords, and save cookies

7 Save page satistics i

¥ Scripts : New R.._]

Figure 810 Web Application Stress Tool: Configuring Test Run

For the test, we don't wish to simulate many browsers. if we did so, we would get
effects of all HTTP requests competing for resources, with the result that, once the
server comes under heavy load, more time would be spent with queue manage-
ment than with real processing. For our test runs, we are interested in the maxi-
mum load that the server can handle for one browser. This gives us the average
processing time per request. From this, we can compute an upper maximum per
time unit. Thus, we configure to exactly one the number of threads to use.

We also know that the first request always has a higher overhead to ensure that
the matching temporary class for the BSP page is generated and loaded into the
program buffer. Similarly, the first request for an image requires additional over-
head to load the image and place it into the ICM cache. These start-up times are
very expensive and can influences the average times (specifically on short runs).
Therefore, we configure a short warm-up time.

For this test run, three minutes is sufficient to provide an example and to see that
everything is working correctly. For serious stress testing, one can consider run-
ning the test over 24 hours.

After a test run, we should first ook at an overview of the results, just to confirm
that the test ran successfully.

Code Description Count
200 oK 3780

Load Testing

164

Hits
zgie/sap(bleZSZjPTAwMA==)/bc/bsp/sap/itOB/textBQKB.htm ?zg
GET /sap(bleZSZjPTAwMA==)/bc/bsp/sap/it03/textBZKB.htm ;40
GET /sap(bleZSZjPTAwMA==)/bc/bsp/sap/itOB/text32KB.htm e
GRET /sap(bD1kZSZiPTAWM ==)/bC/bsp/sap/itO3/?ext32KB.htT 520
GET /sap bleZSZjPTAwMA==)/bC/bsp/sap/itOB/%mage32KB.g%i "
GET /sap bleZSZjPTAwMA=S)/bC/bsp/sap/itOB/%mageBZKB.g%f i
GET /sap (bD1kZSZIPTAWM ==) /be/bep/sap/it03/inage32KB. gl

—

— e~ o~

We can see that in the three minutes 3,780 HTTP requests were s.en.t t<]) the
server, and all were answered with an HTTP return code of 200 OK. This |sta v;/;ililz
the very first number to check, to ensure that the test ran- correctly. The rest o
overview just shows that each URL was requested 540 times.

The next step is to look at the detailed results for each request. As we did ngt usi
j o
different URLs in the test series, but just repeated the same URL a number

times, let us look at one of each.

text32KB.htm image32KB.gif
540
Hit Count: 540
Time to First Byte (im milliseconds) -
Average: 68.26 1.93
Min: 44.02 R
5tk 2.41
25th Percentile: 68.93 o
50th Percentile: 70.98 2.95
75th Percentile: 73.04 .M
Max : 77.82 8.
Time to Last Byte (in milliseconds)
Average: 72.99 715
Min: 47.88 5.
ok 6.11
25th Percentile: 73.30 s
50th Percentile: 75.40 8.09
75th Percentile: 77.33 . .
Max: 84.67 25.1
Downloaded Content Length (in bytes) .
Min: 32772 32799
A 32799
25th Percentile: 32772 S
50th Percentile: 32772 e
75th Percentile: 32772 o
Max: 32772 327

Performance Measurements

When testing in an ideal environment, one would expect that all data is trans-
ferred in one packet from the server to the browser. However, at low levels, data
is split into small packets for transmission (typically 1,500 bytes over Ethernet). In
addition, we have the slow-start algorithm in TCP that slowly increases the use of
available bandwidth to determine a network saturation point. This has motivated
the developers of the stress tool to give both the "Time to First Byte" received
(TTFB) and "Time to Last Byte" (TTLB) received. We know that the [CAA will only
send complete HTTP responses, and not stream out answers incrementally as they
are generated. Thus, the difference between these two numbers shows the net-
work latency. Especially in wide-area networks, these numbers will be far apart.

Typically, for our tests, we use the TTLB, as this is really the time that data transfer
is finished.

The other interesting aspect is the difference between the average and 50™ per-
centile values. Only a few out-risers in the measured data can dramatically influ-

ence the average value, specifically over a short test time. Because of this, we usu-
ally use the 50t percentile values as the reference value.

Looking at the data, we see that the server took roughly 75.40ms for a
text32KB.htm page and took 6.45ms for an image32KB. gif page over 540 hits.
As both pages were roughly the same size, we can see the 6ms to be about the

complete network component, and place the server-processing time for the
text32KB.htm page at 69ms (75 - 6).

From these numbers, one can now calculate rough estimates of how many hits
per minute are possible. As anly one browser was active, the server also used only
one processor, and it was ideal whenever the data was in transit. So one can mul-
tiply the hit rate with the available processors, and then use the same stress tool
to generate load to slowly bring the server to saturation. The approach would be
to increase the number of threads around the point where we calculated the
upper limits to be, while at all times the HTTP return codes must still be 200 OK.
Also, the 25th, 50th, and 75t percentile numbers must still be refatively close to

one another. The presence of numbers spread far out indicates many requests had
to be queued until processing was completed.

8.8 SQL Traces

BSP applications are to all intents and purposes just normal ABAP classes that are
loaded by the BSP runtime and cailed to render HTAML output. For this reason, ali
the tools that are used for analysis of normal ABAP programs can also be used for
BSP applications. One such important tool is SQL traces, used to see the behavior
of the BSP application in terms of database usage.

SQL Traces

165

{Y@extension name="htmlb" prefix="htmlb"%>

<%
DATA: counter TYPE string.
c1_bsp_server;side_cookie=>get_server_cookie(o)
counter = counter * 1.

%>
<htmlb:content design="design2003"><htmlb: page><htmlb: form>

<htmlb:button text = "{Y=counter®h>"
onClick = "myClickHandler" />
¢/htmlb:form><{/htmlb:page></htmlb:content?
<%
clfbsp‘server_side_cookie=>set_servericookie(.).

%>
The above test program shows a button that contains a counter, incremented for
each roundtrip. The value of the counter is stored in a server-side cookie, which

will cause updates on the database.

SQL traces are activated from transaction SE80 using the menu path System, Util-
ities and Performance Trace. Here the SQL tracing can be activated. The applica-
tion can then be started and executed as usual. Afterwards, the tracing can be dis-

abled again, and reviewed (see Figure 8.11).

e | 0p2
Jopen |SELECT WHERE "MANDT® = 'GBB‘ AND "RELID" = 'BP' AND "MAME" = ‘courter'

103|55C00KIE | FETCH

59 |55C00KIE | CLOSE

509|SSCODKIE |EXECSTM|UPDATE SET "EXPIRYD"
. 369|55C00K1E | EXECSTM|DELETE WHERE “HANDT"
EXECSTA|COMMIT WORK

20851010 , "EXPIRYT" = 082354 , “CLUSTR" = 53 , L
900’ AND “RELIDY = 'BP' OND "NAME" = 'counter’ ¥

nou

Figure 811 Extract from SQL Trace of a BSP Application

Although this section showed only SQL traces, deemed to very important, many
other standard ABAP traces that can be used together with BSP applications. This
is because BSP applications are relatively standard ABAP classes at runtime.

166 Performance Measurements

9 BSP Extensions

BSP Extensions present what is perhaps the most powerful aspect of
BSP programming. This technology makes it possible to encapsulate
large and complicated sections of user-interface coding, thereby creat-
ing simple reusable components.

9.1 Extension Overview

BSP application development gives you the freedom to create and use whatever
browser presentation technology that you want. This means that you can code
your own HTML, JavaScript, style sheets, and even include calls to ActiveX con-
trols or Java applets if you wish.

However, combining all these raw elements together to create consistent user-
interface (Ul) components can become quite a chore. Take, for example, the com-
mon business requirement for displaying tabular data. A simple HTML table is
hardly appropriate for most business applications. Users need the ability to sort
and filter their data. Column presentation needs to be clear and have explicit col-
umn headers. Users often have huge amounts of data that they need to present.
Scrolling through a large HTML table quickly becomes impractical.

In order to meet the needs of the modern business-application user, you would
need a presentation that looks something like the one shown in Figure 9.1.

fest bat Ravanced Uikt * 1 Aavancod, 31, lest Currency! L

B | 121152004 | TableViewtera . | IsblsViewleraid 42204 USD : @ 77799 | 0017
011272005 | TableViwlers | TabeViewteratd 42294 USD . T @ 456,456 70 | 0017

[E] © .| Iabievewters. . | Tsbeviewteratd 42294 USD | el] %) 80.99 | 0M7

= T TavkeViewtera [TableViewterstd 422.94 USD | AU ICON_SYSTEM_EN] 99,999,912.20- | 0017

DB | 04062005 | TabioViewliora | TableViewtersid 422.94 USD | 2= @ 900 | 0017
US/04/2005 [sp/bebspsn .. sao | 42284USD wio a T sao | o017

I @ 612005 | TobeViewtera.. | TableVieweratd 42294USD | DE | [@ eamones a7
5] 42234 USD | = @ | aeraseres

Figure 91 Extension Example — Complex Table Presentation

You can imagine the thousands of lines of HTML and JavaScript that it requires to
render such a feature-rich table. The sheer complexity of such coding would make
such an object seldom obtainable.

This is the very reason that the BSP extension technology exists. In essence, BSP
extensions take this complex rendering and make it reusable and easy to use by
hiding the details. Instead of interacting with thousands of lines of coding, you
instead only have to deal with a handful of customization attributes.

BSP Extensions

167

168

9.11 Extension Technology

A BSP extension is really just a high-level group for a set of Ul elements. An exam-
ple of an extension might be HTML Business (HTMLB) extension. This extension is
delivered by SAP and contains nearly 50 individual elements. A single element,
for example, might be <htmlb:button>.

Every BSP element is implemented via an ABAP class. This class contains the cod-
ing necessary to generate the required HTML and JavaScript.

Although you can create your own BSP extensions and elements (a technique
covered in Chapter 11), SAP delivers nearly 200 elements of its own. The idea is
that these elements cover the common aspects of Ul development for business
applications. As you create your BSP applications, you already have a rich set of Ul
components to draw from.

The combination of the technology implementation of extensions and the deliv-
ered set of elements has a number of advantages for BSP development:

» Unlike raw HTML and JavaScript, the syntax of BSP elements is known to the
BSP compiler and can be checked at design time.

» Complex Ul coding is only done once. Code reuse is maximized. This reduces
the time and cost to testing and maintaining this code.

» Because SAP delivers so many Ul components, BSP application development
can be done by developers who do not have extensive knowledge of HTML or
JavaScript.

» The cxtension framework streamlines implementations where the use of spe-
cific browsers is required. SAP's elements currently support several different
mainstream browsers. Use of the elements instead of Jow-level coding pro-
vides applications with browser independence.

» All of SAP's delivered elements share a common look and feel. This design has
been done by professionals to make the resulting applications highly usable.

» SAP spends a considerable effort ensuring that its delivered elements meet the
highest standard for security and accessibilty.

9.1.2 Using BSP Extensions

Let us examine how easy it is to put the BSP extension technology to use. Inser-
tion of BSP extensions into a BSP page has two parts. First the extension directive
must be declared at the beginning of your page.

(h@extension name="htmlb" prefix="htmlb" %>

BSP Extensions

i |

This directive tells the compiler which BSP extensions you are going to be using
and what prefix you will use to identif i

i y the extension as you code t indi
vidual elements. g ° the use ofind:

Once we have the directive in place, we insert the call to the BSP element itself

¢htmlb:button id =
text =

"BuyBook"
"Buy Book" />

This coding begins with the element prefix which should match with our directi

to define the extension we will be using. This is followed by the elemente e
itself. Finally, we have two attributes in use for this element: a unique ID a r(’jar;'e
text we wish to appear on the button jtself. e

The structure of the BSP element call is that of a markup language, just like HTAML
Ultimately the contents of a BSP page layout are parsed via XML, includin thé
BSP element definitions. This means that elements can have ’Inner Coftent
between beginning and ending designators. In the example above, the button has
no inner content and designates the end of the button definition with the */"
before the closing bracket.

We could just as easily have an <htmlb:1link> element that wraps around its
inner content.

<htmlo:link id = "BookExampleLink"
reference = "http://www.sap-press.com" »
Sample Link to SAP PRESS
{/htmlb:link>

9.1.3 Finding Details about the Extensions

With several different SAP-delivered extensions, each containing quite a few ele-
ments, a developer could get overwhelmed without some tools to organize and
document the available functionality. Luckily, there are several ways to get to this
information within the ABAP Development Workbench.

First, there is a special navigation view within the development workbench; called
Tag Browser. This view allows you to see all the BSP extensions, their elelments
and the element attributes. Elements and attributes can be in’serted into BSI;
pages via Drag&Drop from this view. If there is online documentation for an ele-
ment, it can be accessed by double-clicking on the element name.

In addition to the Tag Browser, shown in Figure 9.2, the ABAP workbench also
allows you to view BSP elements from within the Repository Browser, as shown in
Figure 9.3.

Extension Overview

169

170

@’MIME Repository
&% Repasitory Browser
TeeRepository Information System

[&]Tag Browser
ks Transport Organzer B

| [Tags in BSP Pages oLl

&] BEP-Directives
e)

CiBsp Extensions_ -~

v Efhmb .
D <htmib:breadCrumb>
D <htmib:breadCrumbitern>.
©_<htmib:button>

design’

A dsabled

encode

@id

Figure 9.2 Tag Browser View in the ABAP Workbench

You can see the full technical view of the element attributes from here as well as
the implementing ABAP class. For even easier access to the technical view of an
element, you can simply double-click on the element in your application coding,
and you will be forward-navigated to its definition.

[Zrmmee Repostory 7 A
| faRé;ibéito'ry'Bmwsar E it reeR)
Sperepository Information System — -
[2]Tag Browser i :lﬂ |d|. @ . .) e ‘ B
Transport Organeer | I Tattribute R, ca [pi. Tryoing me_{Assodat.. Joft value Tbescription
J 9
. Mesian i [ng al TANDARD ‘SMALL / STANDARD / EMPH.
- - — = e
| BSP Extension ai ldisabled] g P ;Deachvated
jhtmb loxdd| [lencoce] RE |
aiThe T1vee BSTRING | Element 1D
[lanca i i STRING | | dl
! | lonClick T O e u‘ e | 'OnClick Event Handler -
| JonCrientcrickt D) I foa TYeR ﬂ}wentcﬁ(k Event Handler
: = M . OlB D 01 oeE GpRee | Text
R i . £ L e A R
b {3 breadCrumb [T loexopioeorton [R o {1 Ty2E BSTRING |
p (1 breadCrumbItem e T Ti1 TYeE 3STRING | ‘QuickInfa___
5 . tooltip i oc
s gurmn 2 l Thismple - |LIZ {01 e WSTRING | o
it PO Wl S : —
disabled H e |CE(OID e apme wah

Figure 9.3 Element Attribute View from the ABAP Workbench

There is important information about each element attribute that can only be

gathered from this view.

First, you see a row of four checkboxes after the attribute name. Each of these
checkboxes controls a setting that affects how your application can interact with

this current attribute. Here are expanded definitions for those four checkboxes:

BSP Extensions

» Required
This checkbox defines whether an attribute is required. Quite often, the unique
identifying attribute of the element (usually named "id") is the only required
attribute.

» Dynamic Value Allowed

This checkbox controls if the value for the attribute can be supplied dynami-
cally via an ABAP variable or must be a static string. Nearly all element
attributes support dynamic values. Dynamic values are supplied to attributes
using a special BSP expression (<%=...%>).

We can now adjust our simple button example to supply the text for the but-
ton via a dynamic value.

<% data: book_text type string value 'Buy Book'. %>
<htmlb:button id = "BuyBook"
text = "<%= book_text W" />

» Call by Reference

ABAP by default already uses a pass-by-reference, copy-on-write architecture.
So even for a large internal table being passed into the <htmlb:tableView>
element, it would have been no problem had we passed in the table itself
directly. The problem is more that of generics. The <htmlb:tableView>
needed to support rendering of any type of table. Thus it needed a data type
that could be used to accept any table, and only with the data type this is pos-
sible. However, this type can only be used in a ref to data mode. Thus, the
only reason for this style of coding in the <htmlb:tableView> was to get the
generics correct.

But the <htmlb:tableView> is actually a very special case. The real reason this
option exists is to enable passing/transferring of data out of the tag back to the
rendering page.

For this setting, the corresponding Type Method must be set to TYPE REF TO.

Behind the BSP page is ABAP code interpreting the element and attribute def-
initions. This ABAP code must map these attributes into the underlying ABAP
class that represents the element. In order to prepare an ABAP data object for
this Call-by-Reference operation, a generic reference must be created for the
object. The following code sample shows what the BSP page interpreter has to
do to complete this operation. This example will be important later, once you
learn how to call BSP elements directly via the ABAP implementing class.

data itab type ref to data.
get reference of items into itab.

Extension Overview

171

172

» Bindable
The Bindable checkbox defines whether an attribute supports Model View

Binding. Data-binding is an important aspect of the Model View Controller
design pattern (covered in detail in Chapter 13). This functionality allows a
developer to connect the business data object to the corresponding Ul element.

in this example, we can see the bindable option in use. The text for the hyper
link is now supplied via an attribute that is filled from a binding string.

<{htmlb:link id = "BookExampleLink"
reference = "http://www.sap-press.com”
tText = //model/sample_text" /7

9.1.4 Available Extensions

SAP delivers three main extensions. They are HTMLB, XHTMLB, and PHTMLB.
You might sometimes see these core axtensions all referred to generically as

HTMLB or the HTMLB family.

HTMLB, short for "HTML for Business”, was the first extension delivered. It con-
tains your most elementary User Interface components, such as buttons, links, or
images. XHTMLB—Extended HTMLB— was added at a later date mostly to meet
the specialized requirements of one of SAP's in-house development groups. It has
extended functions such as a toolbar, button group, and an updated tabstrip. The
most recent extension is PHTMLB, or Pattern HTMLB. This extension is focused
on the delivery of Ul pattern elements. Perhaps the best example of one of these

new patterns is the form layout contained in PHTMLB.

Each of these major extensions has a delivered application (SBSPEXT_HTMLB,
SRSPEXT XHTMLB, and SBSPEXT_ PHTMLB) that demonstrates its capabilities.
These example applications provide excellent coding examples, and demonstrate
the possible values for each element attribute.

There are several other specialized extensions: btf, Benchmark, Graphics, and bsp.
These extensions and their use are discussed in detail in Chapter 12.

0.4.5 Extensions Designs

SAP currently ships three different design options for the HTMLB family of exten-
sions: CLASSIC, DESIGN2002, and DESIGN2003. The choice of design affects the
look and feel as well as some of the functionality of these inner elements. This is
demonstrated in Figure 9.5. In this example we have an <htmlb:tray> with
some inner content comprised of (htmlb:textView, <htmlb:button>, and

¢htmlb:dropdownListBox).

BSP Extensions

sbspext himib) sbspext xhtmit | sbspext table | hmib_samples | Design DESIGN2003 | Languuge EN | With A)
o ceessibility

I Settings =] ‘I roadmap.htm
I Cesian 2003 { T N _ Update
[rgshow]=] [startingpoint SELECTED <
L ’ | endPoiut [SELECTED 7]
| Wi Accsssiiy o e | number of roadMap tems
frTL Ren‘dering O
e e | stepDesign SELECTED |v|[DEFAULT |} [DEFAULT [+] :
I»PtﬂvMLB. _ | sintersctve [TRUE_]+][TRUE [~][TRUE [+] ‘ ‘;
' Roagiép | stepDescriplio 3
i @ Sebctahletini(aar J :steDNﬂme - ‘fxamwe “S(ep = ij
: § st ! (—|——
& gontoier ’ ootip ftootip 1 | [tookip 2 ftookips]
& ConteverTabgip 4
-:rg qnnminerTme IR l rosdmapSample ktm
. HMessugeBar oo
"o Horizontaiider 1 1] -2} 8—=o
+ & Progressidicator : Example StepDescrpton2 Step Oescription 3
+» & Popupleny
el Ratrdlavoit
¥ MenuBac
¢ GenChart |~ ’
S about - T
« & rormLavout - o

D FormateTag " -

Figure 9.4 Example Application SBSPEXT_PHTMLB

There were absolutely no changes to the coding of inner elements between these
three images. All of the changes in look, feel, and functionality come about auto-

matically just by changing the design.

Classic :

body of the tray .)
Submit Design 2002
SAP AG Konzesm body of the tray

Submit I Design 2003

4 body of the tray

SAP AG Kenzemn >

=
7
[Remove

P e prpr

Figure 9.5 Examples of the different Designs.

Different BSP extensions have different requirements for which design they can
run within. The HTMLB extension supports all three designs (CLASSIC
DESIGN2002, and DESIGN2003), whereas the newer XHTMLB extension onl);
supports DESIGN2002 and DESIGN2003. The most recent BSP extension
PTHMLB, only supports the DESIGN2003 option. |

Of the design options, DESIGN2003 is the most recently developed and most
advanced and should really be the only design used for any new development. In
a very near-future release, SAP is extremely likely to completely drop support for
CLASSIC and DESIGN2002 all together.

Extension Overview

173

174

DESIGN2003 becarne available as of Support package 32 of Web AS 6.20. As you
can see from Figure 9.5, DESIGN2003 has functionality such as the pop up menu
that the other designs do not have. itis also important to note that DESIGN2003
is built upon what SAP calls Unified Renderer. This means that the HTML, Jéva-
Script, and style sheets behind the scenes of DESIGN2003-based BSP applica-
tions will be the same as those of 'the Enterprise Portal, Visual Composer, and
Web Dynpro-based application. This gives your BSP application a look and feel
that is consistent with all of SAP's other Ul technologies.

Because the design you choose controls which low-level rendering libraries are
used, this also affects which client browsers are supported. The following are the
latest supported browsers based upon a Web AS 6.40 SP13 system.

The CLASSIC and DESIGN2002 design supports only Internet Explorer 5.50 and
higher. DESIGN2003 supports 1E >=5.5, Netscape >=7.00, Mozilla >=1.7.5 and
Firefox >=1.0. Apple Safari, is only supported in an Internet Explorer 6 mode.

These should be viewed as general guidefines for browser support across the
designs. However, support for different browsers is constantly changing to meet
market and customer demands. For the most recent information, always refer to

0SS note 598860.

9.1.6 High Level Elements

A BSP page that is going to useé BSP HTMLB-family of extensions must include a
few high-level elements that form the basic framework that all other elements

within the page will run in.

<htmlb:content>

The first of these elements is Chimlb:contenty. This must be the first BSP ele-
ment inserted into your page. All BSP elements that you want to use must be
included inside this element. This next code sample demonstrates how all BSP
Element and regular HTML content for a page is included inside the <htmlb:con-

tent> element.

(h@page language="abap" %>
(y@extension name="htmlb" prefix="htmlb" %2
<htmlb:content degign="design2003" >
(htmlb:page title="BSP Book Example" »
¢htmlb:form?

¢htmlb:link id = "BookBExampleLink"
reference = ”http://www.sap-press.com"
text = "Sample Text for 1ink" />

BSP Extensions

{b><i>Some more raw HTML sample text<{/b><{/i>
¢/htmib:form>
{/htmlb:page>
{/htmlb:content?

The <htmlb:content> element has the important responsibility of setting the
rendering context for the current page. Its primary role is for setting the design
that will be used by all the inner BSP elements. The value for the design attribute
will determine which rendering library will be used.

As if this was not enough functionality to draw from this one little attribute, the
chosen design also influences the version of SAP's Enterprise Portal that is sup-
ported. Enterprise Portal 5.0 only supports the older two designs, CLASSIC and
DESIGN2002). Enterprise Portal 6.0 supports all three designs.

To support this variation across the Enterprise Portal versions, the <htmlb:con-
tent> tag allows you to supply multiple design values. The runtime will then
choose the best design to match the version of the Enterprise Portal that is in use.
You should note, however, that this option does not remave any of the design
requirements on BSP extensions (such as the PHTMLB requirement for
DESIGN2003).

<htmlb:content desipgn="DESIGN2002+DESIGN2003" >

Given this code, the BSP runtime would analyze the version of the Enterprise por-
tal that it was running in. If it was not running within the portal, it would choose

"DESIGN2003. If it was inside a portal of version 5.0, it would choose

DESIGN2002. Finally, in Enterprise Portal 6.0, it would choose DESIGN2003.

The <htmlb:content> element has attributes that control aspects other than set-
ting the design for the application. One of these is controlRendering. This
attribute, which is only supported under DESIGN2003, further aliows you to
affect the look and feel of your application. There are some U! controls, such as
the <htmlb:dropdownListBox>, that—when rendered with HTML—retain the
design of the hosting browser or the surrounding operating system. This attribute
allows you to specify whether you want the Browser to continue to control this
aspect of the rendering, or if you want to switch to the SAP rendered control
(default). Figure 9.6 shows the differences in the rendered output for our earlier
DESIGN2003 example when the two different possible options for controlRen-
dering are used.

The farceEncode attribute causes all inner BSP elements to perform an HTML
encoding or escaping of their attribute values. This means that certain characters
that would otherwise have special meaning within HTML or that are not available

Extension Overview

175

¥
£
el
&

176

in the plain ASCII character set are replaced with a special escapej sequence. For
instance, if you actually want to use a less than sign (<) in an attribute value and
you do not want it to be interpreted as an HTML opening tag, you would rep!ac.e
this character with the escape sequence &1t;. The use of encoding also elimi-
nates the vulnerability to cross-site scripting attacks (for more details, refer to
CERT® Advisory CA-2000-02: Malicious HTML Tags Embedded in Client Web
Requests).

I controlRendering HOT Specified El .
K

B8g -

I controlRendering = BROWSER o

l body of the tray
H

\I controlRendering = SAP

Test EarlyWatch Profiles

Figure 9.6 Examples of Control Rendering under DESIGN2003

The sessionManagement attribute allows you to specify if you want your appli-
cation's session to be managed by the Enterprise Portal. Setting this attribute
really only makes sense if you have a stateful application; otherwise, there is no

session to manage.

Certain languages, such as Arabic and Hebrew, are written right to left. The BSP
runtime supports right to left (RTL) rendering for Internet Explorer u.nder
DESIGN2003. You can active RTL rendering support via the rtlAutoSwitch
attribute although this does not actually trigger the RTL mode. It is just the Sig.na:ll
to the rendering engine that the application has been tested with RTL, and if it
detects a RTL based language (using the logged on language), it should switch. If
the RTL attribute is set, and the browser is using a RTL language, then it automat-
icaily switch into RTL mode. One way you can force the switch to RTL regardless
of the language setting is by calling the SET RIGHT_TO_LEFT method of the B5P
Runtime or via the URL parameter sap-rt1="X".

i Standard Left to Right Rendering =] E‘

! body of the tray
|

[Submit
i

Right to Left (RTL) Render‘mg! ',
{ | SAP AG Kanzem -

body of the tray \‘ :
B

Submit
- SAP AG Konzern
|

Figure 9.7 Right to Left (RTL) rendering

BSP Extensions

When rendering with DESIGN2003, field labels are prefixed with a small notch to
set them out. This visual identification allows the label to stand out. However,
there could be circumstances where you need more control over the look of the
application and therefore want to disable this function. The attribute label-
DesignBar will disable this functionality if it is set to L/GHT.

i Label Design Bar - Defautt =
i

1 body of the tray

Label Besign Bar - Light
! i
SAP AG Konzemn [~] body of the tray

Submit
SAP AG Konzern :

N ——

Figure 9.8 labelDesignBar STANDARD and LIGHT examples

The discussion around <htmlb:content> has centered heavily on the look and
feel of the resulting page. When using DESIGN2003, an additional piece—
themes—is added to the look-and-feel puzzle. A theme is a set of colors and fonts

that complement the overall design. The topic of creating and changing themes is
discussed in detail in Chapter 17.

The concept of themes is central to the Enterprise Portal. You might create a com-
pany-branded theme that you want all your applications to share. The attribute
themeRoot allows you to specify one of these themes for your application.

<htmib:page>

Whereas the <htmib:content> element was very specific to the functionality of
BSP, the remaining high-level efements all have close approximations in standard
HTML. In BSP pages that are going to use extension elements, we must follow up
the <htmlb:content> with one of two different header elements.

The first alternative is <htmlb:page>. This is the less extensive of the two options,
allowing for only a small amount of control over the document structure. This ele-
ment will be wrapped around all our inner BSP elements or plain HTML content.

The <htmlb:page> element has four attributes that control the document mar-
gins on all sides (marginBottom, marginLeft, marginRight, and marginTop). It
also has an attribute, title, which allows you set the document title that will
appear in your browser's title bar.

The onLoad attribute allows the specification for a client-side script that you
write, usually in JavaScript, to be executed when the document loads. This client
script will be executed once the document is finished loading within the browser.

Extension Overview

177

With the attribute reposition, a page should be able to retain the curfor posi-
tion even after a server event. It saves the scrollX and scroll¥ coordm.ates of
the document body before submitting the form. If these values are recelved‘ by
the HTMLB library, it will also generate a scrollTo call on next-page re‘nderlng,
so that the browser shows the same section of the screen as in the previous call.
This attribute defaults to TRUE, so you only need to add it to the <htmlb:page>
element if you want to disable this functionality.

Finally, the attribute scroll allows you to disable the use of scroll bars in your

page. However, the browser should only enable scroll bars if necessary for proper
navigation. Disabling the scroll bars via this attribute is rarely a good idea.

<htmlb:document>

For greater control over the document structure, SAP offers a t
elements that can be used instead of ¢htmlb:page>. The document elements
work as a set in which you combine the use of <htmlb:document?,
¢htmlb:documentHead>, <htmlb :headInclude>, and <htmlbfdocumen‘tc)-
Body>. This technique is especially required if additional CS5 or- JS files must | e
included into the header of the HTML document. In the following code sample,
we have adjusted the code example for the beginning of the chapter to now be

structured using the document elements.

separate set of BSP

Ci@page language="abap" %’
(h@extension name="htmlb" prefix="htmlb" %>
¢htmlb:content design="design2003" >
<htmlb:document?
¢htmlb:documentHead title="BSP Bock Example” >
¢%-- load here additional includes - %>
¢htmlb:headInclude/>
{/htmlb:documentHead>
<(htmlb:documentBody?

<htmlb:form? ‘
<htmlb:link id = "BookExamplelink"

reference = "http://www.sap-press.com

"Sample Text for link" /7

text
by<id>Some more sample text{/b>{/i>
{/htmlb:form>
¢/htmlb:documentBody?
¢/htmlb:document
¢/htmlb:content>

178 BSP Extensions

All the same attributes that are exposed by the <itmlb:paged element are also
represented through the use of the document elements. They are simply spread
out across the different individual elements. The <htmlb:documentHead) gets
the titleattribute. The element <htmlb:documentBody> gets all the remaining
attributes.

In addition to all the other attributes exposed by the <htmlb:page>, the
¢htmlb:documentBody> also has the powerful attributeBee attribute. This
attribute accepts a BSP Element Expression (BEE—discussed in detail in Chapter
10) that will be rendered in-line as the element builds the HTML body element.
This is especially useful if you wish to hook your own JavaScript client scripts onto
any of the additional document events.

<htmib:form>

The <htmlb:form> element is built right on top of the basic HTML FORM con-
struct. Any inner content that has user input or events will require the
<htmlb:form> element. It s this element that is ultimately responsible for setting
up all communications between the browser and the server.

The action, target and method attributes come right from the definition of
HTML FORM. Action allows you to specify the URI destination for input form
data. Most of the time in BSP, you simply do not specify a value for this attribute.
If you do, input will be brought back to the page where it originated.

Method determines the type of HTTP request that will be sent back to the server.
The options are POST or GET, with POST as the default value. GET passes all input
information appended to the request URL. This makes all input values visible in
the address bar of your browser. However, this can also be a big problem, because
now your input is limited in size to the maximum length of a request string (typi-
cally two to four KB). POST, on the other hand, imbeds all input information in the
body of the request object. This allows for the greatest flexibility and keeps the
browser address bar clean.

The target attribute further defines the destination for input form data. With
target, you might specify the name of a HTML FRAME or you might choose one
of the special targets such as _blank. _blank will cause the creation of a new
browser window. A common example of the use of target in the context of
frames is to click in one frame that has a navigation tree. The corresponding
results are then loaded into a separate frame. For a good example of this concept
in BSP, have a look at the sample program SBSPEXT_HTMLB.

There are two attributes of <htmlb:form>, doValidate and validation-
Script, that are marked in documentation as reserved for future implemen-

Extension Overview

179

180

tation. However, the inner coding of the <htmlb:form> does reveal that these
attributes will generate HTAAL code for calling some sort of validation scripting on
input. Furthermore, placing aJavaScript alert in the validationScript attribute
does appear to fire correctly.

Chemlb:form validationScrdpt="alert ("Hil')">

The autoComslete attribute is intended to activate or deactivate the Internet
Explorer auto-complete functionality for form fields. However, this feature is not
supported with the new DESIGN2003 rendering and also does not work with
MV C applications. The reason is that [E autoComplete runs on the naxne attribute
of input fields, and that for MVC applications the name attribute is prefixed with
the controller and model of the data, thus invaliding any form of semantic names
that would have been required to make this work. As an example, a field <input
name="mail"> will give you a list of items you typed into fields with the name
“mail." The value set of the autoComplete fealure is grouped by the name's
value. Think of a number of mail fields within a table. Certainly they all have dif-
ferent "names" because of the way that the data binding ties the data of each row
to a different table row using the name attribute. The user will be surprised that
he or she cannot choose the mail address that he or she typed into the first mail
field (mailrow1) in the second mail field (mailrow?2). Only after the table is filtered
and the previous mailrow2 becomes mailrow can the user choose the value pre-

viously typed in mailrow1.

The encodingType attribute specifies the content type that will be used to send
data back to the server. The default type is application/x-www-form-urlencoded.
This type is normally sufficient. Ir a situation where you reed to support the
¢htrlb:fileUpload> element, you should instead use multipart/form data.

9.2 HTMLB Event System

9.2.1 Event Dispatching

It does not do you much good to render BSP efements with server events if you
do not know how to catch and thereby respond to those events.

For this purpose, we will examine a small example. With this example we can see
the three different ways that events can be trapped and responded to.

In this example, a small stateful BSP page will contain two buttons, inside a
{xhtmlb:but tonGroupy. These two buttons will simply either increment or dec-
rement an index between the values of 1 and 7. When the upper or Jower bounds
of the index are reached, the corresponding navigation button will be disabled.

BSP Extensions

I“HandﬁngﬁHTMLE Events W

Iw <[t b R
_ E—{andling HTMLE Events

| € Previous | Hext »

’Current ltem Ind

Current ltem Index. 1

Figure 5.9 Handling HTMLB Events Example Application

The <xhtmlb:buttonGroup> has two buttons for moving to the previous or next

item: Ngtice that only one eventis registered for the complete button group, and
that it will be fired regardless of which button is pressed. '

{xhtmlb:zabstrip id : = g

renderSingleTabAsHeading = "TRUE" >
{xhtmlb:tabStripItem title = "Handling HTMLB Everts"

name = "tgil" >
{xhzmlb:buttonGroup id = "btngrp"
onClick = "ButtonPager" >

{xhtmlb:buttonGroupItem key = "prev_item"

text = "Previous"

design = "PREVIOUS"

disabled = "{(%= vIndex_prev_disablec %" />
{xhtmlb:buttonGroupltem key = "next item"

text = "Next” 7

design = "NEXT"

i

disabled = "<%= vIndex_next disabled %>" />
{/xhtmlb:buttonGroup>

Current Item Index: <%= vIndex %>
<{/xhtmlb:tabStripltem>
</xhtmlb:tabSt-ip>

9.2.2 Manually Handling Events

The first approach to HTMLB event-handling is to retrieve the event and then sim-

ply investigate what type of event it is. This type of coding is usually done in the
OnInputProcessing handler of a BSP page.

The incoming event is retrieved with the method call ¢1_htmlb_manager=>get
event_ex. In all cases, only this new method must be used._ The older get\
event method is obsolete and not supported for the XHTMLE and PHTMLg
!ibraries. Note that this method can be called more than once within the same
input cycle, and will always return the same event.

HTMLB Event System

181

182

The get_event_ex method will return an event object that implemnents at least
the TF_HTMLB_DATA interface. This interface has a numnber of interesting parame-
ters that can be examined to see what type of event has been received.

IF_HTMLB_DATA Attribute Description

event_class The name of the class that decoded this event
(example: 1 _xhtmlb_buttongroup).

event_name The name of the element that fired the event
(example: buttonGroup).

event_type The type of event that was triggered for the speciﬁc' 'element.
Typically a button is nclicked”, an entry is “selected” in a drop-
down listbox, and a tree will be "expanded" or "collapsed”.

event_id The ID of the element that fired the event (example: btngrp).

The string thét was specified in the onClick handler. This string

has no further meaning to the event handling system and is
transported verbatim (example: ButtonPager).

event_server_name

event_defined Usually‘an event can contain additional parameters. However,
B the TF_HTMLB_DATA interface has to be cast to the correct

event handler class, and the parameters retrieved from there.
Many events only require one small string to return, and will
use the event-defined string. For our example, the button-
Group will place the key of the actual button that was clicked
into the event_defined string. (example: prev_item OF next_
item from <xhtmlb -buttonGroupltemkey/>).

Table 91 Parameters of Interface IF_HTMLB_DATA

Once the event is available, it can still be a bit of a guessing game to know the
possible values for event_name and event_type. A detailed overview is required
to determine what elements can fire what events.

This information is available in the classes HTMLB_EVENTS, XHTMLB_EVENTS and
PHTMLE_EVENTS. These classes contain constant strings of all elements that can
fire events (the values to match against event_name), plus a list of all the different
types of events that cach element will fire (the values to match against event_
type).

For this example, we wish to check that we have received a <xhtmlb:button-
Groupy event of type click.

data: event type ref to if_htmlb_data.

event = cl_htmlb_manager=>get_event_ex(request).

if event is not initial

and event-’event _name = xhtmlb_events=>buttongroup

BSP Extensions

and event->event type = xhtmlb_events=>buttongroup_click.
case event-revent_defined.
when 'prev_item'.
vindex = vindex - 1.
if vindex < 1. vindex = 1. endif.
when 'next_item'.
vindex = vindex + 1.

if vindex > 7. vindex = 7. endif.

endcase.
endif.

Class Interface |Imu\emented | Active

- Properties - Interf “Methods 7, Events \ L1yp

T EJ I :) .

I%Iﬂﬂ B , [Fiter

Attribute Level {Visi {Rea [Typing lAssoq_v D {Intal value

LIBRARY! Constanpublic [] fiyee STRING| & xhtmib’

Publ -

[BUTTCNGROUP iConsmniflubhc O aype 'string| ® (L_XHTMLB_BUTTONGROUP=>CO_EVENT_NAME
BUITONGROUR_CLICK [ConstanPublid [Type STRING] {CL_XHTMLB_BUTTONGROUP=>CO_EVENT_CLICKED
BUTTONGROUP_TOGGLE IConstanPublc [Type STRING| 2 ‘i(l_)(HTMLB_BUTTONGROUP=>CO_EVENT_TOGGLED
PAGER ConstanPublic [fype ISTRING| .9 ';CL_)CHTMIB»PAGER=>CO_EVENT_NAME i
PAGER_EVENT Constanpublid [type bTRWNG| & | levent’ :

Figure 910 XHTMLB_EVENTS Class

This approach of event-handling is very fast to program, especially on a BSP page.
The disadvantage of this approach is that the code quickly explodes once events
for many controls must be handled.

Dispatching Events via IF_HTMLB_EVENTS

The HTMLB rendering libraries also contain a technique to dispatch events to a
handler class. For this, use the cl_htmlb_manager=>dispatch_event_ex
method. One of the parameters is a handler class that will accept the incoming

event and process it. Typically, this can be a separate developed class, a controller
class, or even the application class.

In this example, we will use a handler class that has been developed separately.
On the BSP page, in the OnInputProcessing method, the event-handling code

now reduces to a few lines. All that is required is an instance of the handler class,
and then the dispatcher is called.

DATA: handler TYPE REF TO YCL_BSP_BOOK_HANDLING_EVENTS.
CREATE OBJECT handler.

cl_htmlb_manager=>dispatch_event_ex(
request = request

HTMLB Event System

il
i
H

3

184

page_context = page c ontext
event_handler = handler).

The benefit of this approach is that the event-handling code is placed in a sepa‘—
rate class, where the full strength of the ABAP workbench can be used. This
approach also reduces clutter in BSP pages. In addition, if new elements ar-i
added, no further event handling code is required on the BSP page. »AH events wi
be dispatched by this one call. Especially when using the model—vlew—contr;)ller
(MVC) paradigm, the standard approach is to implement all event handlers for a
view in the corresponding controller class.

The important questions are: How will the handler class know what ever;ts are
available, and what parameters each event handling method must ha.Lve. The
interface T _HTMLB_EVENTS is defined to solve this. This interface contams.all the
possible events that can be fired by the HTMLB library. Eac‘h method contains the
correct parameters with which it will be called. Similar m‘terfaTces 'IFFXHTMLB_
EVENTS and IF_PHTMLB_EVENTS exist for the other two major libraries.

HANDLING d / Acive

EVEEIE] Implemente

Class Interface |¥
. /il?ﬁ;éﬂrwﬁééwii Interfaces

t o parameters{ B Exceptions !E;Ll% 3

| Analyze Level {visi [M |Description g‘
\<IF_XHTWLE EVENTS: R]
" Ph6ER_PAGE _ lnstanpumt | N

PAGER [ELETE . [tpstanlPudli

PAGER INSERT Itnstaniun
PAGER VERTICAL_SELECTOUnstanPubli | o
BUITONGROJE_CLICK \InstaniPubli |<xhtmb:buttonGroup> onCick

i | htmib:buttonGroup> onTogagle &
VEUTTONGROUP_IPGGIE .Instan:Pub} (<x nGroL ag K

Figure 911 Event Handler Class implementing the JF_XHTMLB_EVENTS Methods

The handler class must now just implement these interfaces.

class yel_bsp_book handling events definition public.

public section.
interfaces if _htmlb_event .
interfaces if_htmlb_events
interfaces if xhtmlb _events

endclass.

class YCL_BSPfBOOK_HANDLING_EVENTS implementation.
method IF_XHTMLBAEVENTSNBUTTONGROUPACLICK.

BSP Extensions

case buttonclicked.
when ‘'prev_item'.
vindex = vindex - 1.
if vindex < 1. vindex = 1. endif.
when 'next_item'.
vindex = vindex + 1.
if vindex > 7. vindex = 7. endif.
endcase.
endmethod.

endclass.

For this example, the if_xhtmlb_events~buttongroup_click method is
implemented. It will be called by the dispatch method with one interesting

parameter: buttonClicked. This will contain the key of the button that was
clicked.

The advantage of this technique is that event-handling coding can be placed in
normal classes and broken down per event type. Each method receives all of its
parameters correctly unpacked. The biggest disadvantage of this technique is still
that events are grouped according to their event types. Thus, for all buttons on a
page, the method if htmlb_events~button_click will be called. in this
methad, you might still have to look at the 1D to decide which button was clicked.
Further, this technique still groups large blocks of event-handling code into one
method. Another disadvantage: One should theoretically implement all the event
methods with at least a minimal empty body, which can involve some work.

Dispatching Events via OnClick Handlers

It would be nice if the save button would call the save method on the event han-

dler. The cl_htmlb manager=>dispatch_event ex method contains such
additional functionality.

It will first examine the event handler class to see if it implements the TF_HTMLE_
EVENTS interface. If so, it will then dispatch the event via this interface, as previ-
ously described. If this interface is not implemented by the event handler class, it
will blindly call an event handling method based on the event_server name
string. This string is usually supplied to the onClick handlers.

In the initial layout, the <xhtmlb:buttonGroup> was specified as follows:
{xhtmlb:buttonGroup id = "btngrp" onClick = "ButtonPager">

In'a new event handler class, we now define method ButtonPager that has one
importing parameter. The parameter is event_object TYPE REF TO if htmlb_

HTMLB Event System

185

186

data. It is important to note that this parameter must be specified exactly like
this. The existence of the parameter and both the name and type of the parameter
are critical for the event-dispatching to work.

In the event handler class, ensure that none of the IF HTMLB_EVINTS family of
interfaces is implemented. Instead, define a new method ButtonPager, and

implement it.

class YCL BSP_BOOX_HANDLING_EVENTS2 definition public.
public section.
METHODS ButtonPager IMPORTING
event_object TYPE REF TO if htmlb_data.

endclass.

CLASS ycl,bsp_book_handling_eventsZ IMPLEMENTATICN.
METHOD ButtonPager.
CASE eventAobject->event_defined,
WHEN 'prev_item'.
vindex = vindex - 1.
IF vindex ¢ .. vindex = 1. ENDIF.
WHEN 'next _item'.
vindex = vindex *+ 1.
IF vindex > 7. vindex = /. ENDILK.
ENDCASE.
ENDMETHOD .
ENDCLASS.

Keep in mind that this technique of event dispatching is only triggered if the TF_
HTMLE_EVENTS interface is not implemented in the event handler class.

The benefit of this approach is that you can actually implement the code to han-
dle each event in its own method. The only disadvantage is that, because of the

dynamic nature of the call, no compiler checks are done to ensure that the

method is specified correctly. The actual call itself is protected inside a try
sequence, to ensure that non-existing methods do not break the BSP application.

The fired event will then just be lost.

9.3 Common Extension Elements

With SAP delivering nearly 200 BSP extension elements, it would be impractical
to cover the use of every one of them in this text. Instead, this section will
attempt to address a few of the most commonly used and most important ele-

ments.

BSP Extensions

9.3.1 <htmlb:tableView>

The ability to have a rich Ul control for interacting with tabular data is critical to
any business-application environment. In the classic ABAP Dynpro world, this
need is fulfilled by the ALV Grid. The ALV Grid, especially in its control-based ver-
sion, has a considerable amount of functionality that goes beyond the basic tab-
ular display. If you are a long-time ABAP programmer and have used the ALV
Grid, you will probably approach BSP with some fairly high expectations for
equivalent functionality.

The BSP solution is the <htmlb:tableView>. Overall, this element does a good
job of matching up functionality-wise to its thick-client big brother. You will not
find a one-for one-match for every piece of functionality in the ALV Grid, but a
close approximation of most of the critical functionality is present.

As you might imagine, this element is so large and flexible that it deserves an
example BSP application all of its own. This application, SBSPEXT _TABLE, covers
a wide range of different topics, including row selection, column filters, editable
data, and data navigation.

ft is important to note that the most advanced techniques involving the
<htmlb:tableView> will probably require the use of an iterator class. This is a
special rendering class that gives the developer control over even individual cell
creation. The use of the table-view iterator is discussed in detail in Chapter 10.

The most important attribute of the <htmlb:tableView is the table attribute.
With this attribute you supply the single ABAP internal table that will contain the
data represented in the table view for rendering.

It would be easy to be overwhelmed by all the attributes of the <htmlb:table-
View> element. Instead of looking at all the possible attributes, let us instead
focus on a small sample of the table view that demonstrates some of the most
commonly used attributes.

This simple example will read data from table t002t. This is the system configu-
ration table that contains all the languages supported by SAP and their descrip-
tions.

To start our example, we will use only the two required attributes of the
<htmlb:tableView?, id and table.

i

<htmlb:tableView id
table

"TableExample"
Y= 1t002t %>t />

W

This results in a simple, yet plain looking tabular representation of the data in the
given table.

Common Extension Elements

187

188

“Eanguage! Langt

[en i SR
EN D
B |m
B ko
EN RO | Romanian 1
(v [st e s
EN HR ! Croatian 3
e ws | wamysen &
| EN UK [Ukrainien |

Figure 912 Simple <htmib:tableView> Example

Now we are ready to use a few attributes to spice up the table view a bit. First we
will make our table output a little more readable by using the design attribute
with a value of ALTERNATING to produce a look that is similar to the ALV Grid
stripped pattern.

Next we want to allow the user to have the option to sort or filter the data in the
table view. To activate these abilities, we will set both the filter and sort
attributes to SERVER. Although this element allows you to program the filtering
and sorting using either client-side scripting or server-side events, you also have
the option of just letting the element provide this basic functionality for you. If
you do not specify the server event names in attributes onfleaderClick or
onFilter, then the element will respond to the events for you.

Finally, we want to add a table header with a brief description of what we are dis-
playing. We can activate the table header by setting the attribute headerVisible
to TRUE. To supply the text for the header, you use attribute headerText.

Please note that the first blank row that is now rendered in our table outputis the
filter row. This empty row of input areas is where the user can place the values
that they wish to filter their output results by.

The coding of our example now looks like this:

<htmlb:tableView id = "TableExample”

table = n{%= 1t002t %"

design = "ALTERNATING"

filter = "SERVER"

sort = "SERVER"

headerVisible = "TRUE"

headerText = "SAP Language Table" />

Now we need to do something with the column definitions. To start with, we do
not really need the first column. It is showing us which language we are using to

BSP Extensions

display the description. Since this example is programmed to only pull descrip-
tions matching the logon language, this column is unnecessary and confusing. We
should also change the description on the columns and deactivate sorting on the
language key field.

Afrikasns

|Ev AR Arabic

EN BG Bulgarian

EN CA Catalan

EN . ZH i Chinese
| EN ZF Chinese frad
TEN. IR . .| Croatian
’ EN Z1 Customer reserve

Figure 913 <htmlb:tableView> Example with Sorting and Filtering

To accomplish these changes, we have three options. First, a table-view iterator
class has functionality to control the table column definitions. This will be dis-
cussed in Chapter 10. The second option is to supply all the column definitions
via an ABAP internal table of type TABLEVIEWCONTROLTAB to the attribute
columnDefinitions. The final option, and the one we will use here, is to use the
inner BSP elements <htmlb:tableViewColumns> and <htmlb:tableViewCo-
lumn> to define the column layout in our page.

<htmlb:tableView id = "TableFxample" ... >
<htmlb:tableViewColumnsy
<htmlb:tableViewColumn
columnName = "SPRSL"
sort = "NONE"
title = "Language Key" />
<htmlb:tableViewColumn
columnName = "SPTXT"
"SERVER"
title = "Language Description" />
{/htmlb:tableViewColumns>
{/htmlb:tableView>

f

sort

The last thing we want to do to our table is to address navigation. Currently, a
user would have to scroll within the browser to see the entire contents of the
table view. This is fine when the table view is the only element on the page (and
is not too large!). However, quite often you have a restricted amount of space in

Common Extension Elements

189

190

which to display the table. Or you also might want to reduce the amount of data
that has to be rendered for large tables and sent to the client, in order to conserve
bandwidth and rendering time.

[AF I Afriaans X
i AR Arabic
f,;é Bulgarian - ;

| { Catalan 3
| CA £
Fzd . |chnese - = &

Figure 944 <htmlb:tableView> Example with Custom Column Definitions

To do all this, we will need to limit the number of rows that are displayed initially
and then give the user a navigation tool to page through the table. To su.pp'ly the
number of rows we want displayed at one time, we have the attribute v1s.1bl1e-
RowCount. Simply by supplying a value to this attribute, we have ‘not only ||.m|ted
the amount of rows displayed, but we also now have navigation tools in t‘he
footer of our table view that allow the user to move through the data. To provide
a consistent length to our table view we will also use the attribute £111UpEmpty-
Rows to even out any odd table rows on the last page.

(htmlb:tableView id = "TableExample”

table = %= 1t002t %"
design = "ALTERNATING"
filter = "SERVER"

sort = "SERVER"
headerVisible = "TRUE"

headerText = nSAP Language Table"
visibleRowCount = "7"

£i11UpEmptyRows = "TRUE"

Figure 915 <htmlb:tableView> Example with Page Navigation

BSP Extensions

kicin i

There is an alternative to allowing the table view to provide its own navigation.
The BSP element <xhtmlb:pager> allows greater control over the look and feel
as well as the placement of the navigation Ul (typically in a toolbar above the
table view). It can interact with the table view by supplying a value for the
(htmlb:tableView> attribute visibleFirstRow. However this approach

requires more programming, as the developer is also responsible for the server
events of the <xhtmlb:pager>.

The following demonstrates the code required to create a custom

{xhtmlb:pager>. A complete example is also shipped in the BSP application
SBSPEXT_PHTMLB.

<htmlb:tableView id = "TableExample"

table = "{%= it002t %>"
footerVisible = "FALSE"

visibleRowCount = "8"

visibleFirstRow = "<%= vindex * & - 7%>" >

<% data vmax type 1i.
data remainder type 1.
vmax = lines{ it002t) / 8.
remainder = lines(it002t) mod 8.
if remainder ne 0 and remainder < &.
vmax = vmax + 1.
endif. %>

{xhtmlb:pager id = "pager"

text = "Page {[SvIndex$] of S$vMax$"
onPage = "pager onPage"

vMax = "<%= vmax %>"

design = "VERTICAL_SIMPLE+INDICATOR" />

Listing 91 Custom <xhtmib:pager> layout coding

DATA: pager TYPE REF TO cl_xhtmlb_pager.

pager 7= cl htmlb manager=>get_data(request = request
name = 'xhtmlb:pager'
id = 'pager').

vindex = pager->vindex.

Listing 9.2 Custom <xhtmlb:pager> event handler

Common Extension Elements

191

192

9.3.2 <htmib:tree>

It is not uncommon to display data in a hierarchical view, for example in a navi-
gation area. Quite often, navigation is grouped by the concept of folders and
items. This need is fulfilled by the BSP element <htmlb:treed.

The <htmlb:treep is very similar to the classic dynpro control CL_GUI_SIMPLE_
TREE. It aliows for the building of a tree by supplying all data nodes and the par-
ent/child relationship between nodes. Unfortunately, the data that you can rep-
resent within a node on the tree js output as a single area. In other words there is
no approximation to the CL_GUI_COLUMN_TREE, which allows more com.ple.x data
representation per node. The only close approximation of this functionality is pro-
vided by a hierarchy column in an {htmlb:tableView>.

The <htmlb:tree> element itself is relatively simply. It has attributes such as
height, width, title, showlitle, and tooltip that control the basic form‘at-
ting of the element. The attribute onTreeClick allows you to set a server side
event handler for whenever any node text is clicked on.

The restoreViewState controls how the tree reacts to server events. By default,
the tree element will remember which nodes were opened or closed by the user
and restore these same settings back after the server event. However, you may
want the ability to reset all node statuses back to their initial state by setting res-

toreViewState equal to FALSE.

The powerful attribute toggle controls what happens when the user e-xpands or
collapses a node. In the default FALSE state, only the visible nodes will be ren-
dered to the client. When the client opens a new node that has children, a server
event will occur to retrieve the details for these children nodes. This reduces the
size of the content that must be sent to and rendered in the browser. However,
the user may experience a delay while waiting for the server round trip to finish.

The other option is to set this attribute to TRUE. If the client's browser has suffi-
crent support, all the nodes will be sent to the browser initial. The expansion or
collapse then can occur on the client, providing a better visual experience at the
cost of the higher initial load.

There are two ways to supply the nodes to the <htmlb :tree>. The firstis to sim-
ply imbed them into the page layout using the inner element of <htm1b:tre§-
Node>. This works nicely for a small number of nodes that are relatively static,
such as a simple navigation area. ¢htmlb:treeNode> Elements can be nested
within each other to create the folder/item hierarchy. The following example
shows a simple tree with a single folder and two inner items.

BSP Extensions

<htmlb:tree id="exampleTree" >

<htmlb:treeNode id = "nodel"
text = "Folderl™" >
<htmlb:treeNode id = "nodel"
text = "Iteml" />
<htmlb:treeNode id = "node3"
text = "Item2" />

{/htmlb:treeNode>
</htmlb:treed>

¥ Falder

« fomi,

e

Figure 916 Simple <htmlb:trees> Example

The other option is to supply the nodes via attributes of the <htmlb:tree) ele-
ment. The attribute table2 accepts an internal table of type TVIEW2 containing
the nodes and their relationships. Passing the nodes via an internal table obvi-
ously has advantages for trees that will contain a large number of nodes or where
you need to supply the nodes dynamically.

Each record in the node internal table supports the same attributes that you could
supply to the <htmlb:treeNode>. Attributes such as img, text, and tooltis
allow you to specify the output content for the node. Since the <htmlb:tree) is
a natural way of building navigation structures, the nodes themselves have special
attributes, link and target, that allow for turning your node content into a

hyper link. You afso have the ability to control the toggle attribute and to specify
a server onClick event at the node level.

When creating the nodes via the <htmlb:treeNode> method, you can simply
create hierarchies by nesting the elements. On the other hand, our internal table
is a flat structure. Therefore, the relationship between records must be created by
specifying a parentid and childid on each node. To demonstrate this, let us
recreate the earlier example now using the table? attribute to supply the nodes.

<humlb:tree id

"exampleTrea"
table? = "<{%= nodes w" />

Listing 9.3 Page Layout

nodes type tview?

Listing 9.4 Page Attributes

Common Extension Elements

193

194

FIELD-SYMBOLS: <wa_node> LIKE LINE OF nodes.

APPEND INITIAL LINE TO nodes ASSIGNING {wa_node>.
{wa_node>-treeid = texampleTree'.
{wa_node>-childid

{wa_node>-text

'nodel’.
'Folderl',

APPEND INITIAL LINE TO nodes ASSTCNING {wa_node?.

{wa_node>-treeid = 'exampleTree’.
{wa_nodey-parentid = thodel!
{wa_node>-childid = 'node2'.
{wa_node>-status = 'FINAL'.
{wa_node>-text = 'Tteml’.

APPEND INITIAL LINE TO nodes ASSIGNING <wa_node,.

{wa_node>-treeid = texampleTree' .
{wa_node>-parentid = 'nodel!.
{wa_node>-childid = 'node3'.
{wa_node>-status = tFINAL'.
{wa_node>-text = 'Jtem2'.

Listing 9.5 OnCreate Event

9.3.3 <phtmlb:matrix>

The <phtmlb:matrix> elementisa close equivalent of the standard HTML table.
Unlike the <htmlb:tableView», which s concerned with the output of a single
internal table, the <phtmlb:matrix> is used to layout content. For example, you
might have a number of input fields and labels that you want to align. The
¢phtmlb:matrix> allows you to setup these elements within an invisible grid so
that everything is lined up and well readable.

There is actually an older BSP element called ¢htmlb:gridLayout> that was
commonly used in the past for this same functionality. However, the
<phtmlb:matrix> is superior 10 the older element in that it is easier to program
and has considerably better rendering performance.

The {phtmlb:matrix> has several attributes (height, width, merginLeft, mar-
ginRight, marginTop, and marginBotton) that allow you to control the overall
size of the entire matrix.

Individual cell spacing and padding are controlled by two additional attributes,
separation and design. The separation attribute controls the column spacing

in addition to allowing you to specify a vertical separator between cells. By
default, there are no separators or additional spacing. You have the additional val-

BSP Extensions

ues of SMALL, SMALLWITHLINE, LARGE, and LARGEWITHLINE. The attribute
design is concerned with cell padding. The default value is to have cell padding
on the right, top and bottom. There are also values for LRNOPAD (cell padding only
top and bottom), LPAD (cell padding left, top, and bottom), LRPAD (cell padding
right, left, top, and bottom), PADLESS (no cell padding).

The cells themselves can be supplied to the <phtmlb:matrix> in two ways. The
most common method is to use the inner element <phtmlb:matrixCell>. In
this case the {phtmlb:matrix> and <{phtmlb:matrixCell> simply wrap arOl;nd
the additional content that you are grouping. The other option is to supply all the
cells and their content dynamically via an internal table. This table of type
PHTMLB_MATRIXCELLS is passed to the attribute cells. Although potentially very
complex to program, because all the inner content within the matrix must be
included, this is a powerful capability that assists you in creating dynamically gen-
erated user interfaces.

One final attribute in the {phtmlb:matrix> is the cellWidths. Normally the
matrix is based upon the size of the content within its columns. However, if you
want to set specific column widths in advance, you can supply them all here as a
single string of lengths separated by commas.

The inner <phtmlb:matrixCell> element has many of the formatting options
that you might expect, such as the ability to wrap the inner content (attribute
wrapping), to specify the alignment (attributes hAlign and vAlign for horizon-
tal and vertical alignment respectively), and to specify column spacing (attribute
separation). There is also the option for a single cell to cover more than one col-
umn or row with the attributes colSpan and rowSpan.

Now we come to the real power of the <{phtmlb:matrix> compared to the
¢htmlb:gridlayout>. In the <htmlb:gridLayoutCell>, you are required to
supply a specific row and column index number. This can make your layouts
inflexible, because you have to renumber ali fater elements when you add some-
thing new in the middle.

{phtmlb:matrixCell> attempts to solve this problem by giving you several
options when supplying the values for the attributes col and row. You can still
use the absolute column and row specifications; but now you also have the ability
to use relative positioning. With this, you specify via +N the number of columns
or rows that you wish to move relative to the last one rendered. You can even not
specify a column or row at all. If no column is specified, then the inner content is
placed automatically in the next column. If no row is specified, the content is
automatically placed in the same row as the last cell. It is important to remember
that you can only use ascending values whenever incrementing columns or rows.

Common Extension Elements

195

196

The example in Figure 917 places several images in a matrix using only relative

positioning.

P @_ H
&

&

Figure 947 <phtmlb:matrix> Example

{phtmlb:matrix width="50%" >
{phtmlb:matrixCell/>
(htmlb:image src="TCON_SAP" />
{phtmlb:matrixCell col="+1" />
<htmlb:image src=" ICON_DECEASED_PATIENT" />
{phtmlb:matrixCell col="+1" />
<htmlb:image src="TCON_SYMBOL_FEMALE" />
{phtmlb:matrixCell row="+1" /> <%-- col auto reset --%>
(htmlb:image sre="ICON_SYMBOL_MALE" />
{phtmlb:matrixCell col="+1" />
<htmlb:image sre="ICON_STATUS_CRITICAL" />
{/phtmlb:matrix>

Notice from the example how the coding is cleaner and more condensed than the
corresponding code would be if we had used an <htmlb:gridLayout>. This is
because of the unique nature of the <phtmlb :matrixCell>. Instead of having to
wrap our content in beginning and ending elements, the {phtmlb:matrixCell>
simply works as delimiters between the content.

9.3.4 <xhtmlb:protectDoubleSubmit>

When browser-based applications need to return to the server for processing or
loading of data, the user has very little information about the progress of that
processing and loading. There is nothing stopping the user from getting impatient
and submitting the server event again. This can lead to all kinds of problems on
the backend, perhaps even duplicate postings of the same information.

In all likelihood, you have visited a website where you finish your shopping and
are ready to hit the submit button to complete your order, only to have the web-
site inform you that you need to be patient and not hit "submit" more than
once—or else you might receive muitiple orders. It seems as though there should
be a way to prevent duplicate data without having to rely upon end users not to

accidentally do something.

BSP Extensions

The BSP element <xhtmlb:protectDoubleSubmit> solves this problem. The
element can be used within any BSP page that utilizes the <htmlb:form> ele-
ment. When an event is sent to the server, all screen input is immediately blocked
by placing a transparent .gif over the screen. This ensures that users can not sub-
mit another event to the server while the first is still processing. After a certain
amount of processing time has passed without receiving a response, the element
produces a pop up window asking the user to please wait.

This element only has four attributes. The first is active. This determines if the
element will function on the next response cycle. That way, you can disable or
activate the <xhtmlb:protectDoubleSubmit)> element dynamically in code.
With the attributes text and title you can customize the Ul of the pop up win-
dow. Finally the attribute timer allows you to set the amount of wait time on the
client before the popup is activated. This attribute is measured in milliseconds and
defaults to 2,500 or 2.5 seconds. 2.5 seconds is a practical duration that allows
for quick server roundtrips to still fire with no disruption to the user. However,
you have the ability to override and set this timer shorter or longer.

In the following example, we have simply placed an ABAP WAIT statement in the
event handler of the page to simulate some extended processing so that the
{xhtmlb:protectDoubleSubmit> element can be demonstrated.

<htmlb:form>
{xhtmlb:protectDoubleSubmit
title = "Customized Double Submit"
text
/>
<% WAIT UP TO 3 SECONDS. %~
<htmlb:textView text = "Customized Double Submit"
design = "EMPHASIZED" />

"This demonstrates a customized Double Submit"

{/htmlb:form>

9.3.5 <phtmlb:containerTabStrip>

Tabstrips are important Ul elements that allow us to simplify an application by
reducing the amount of navigation that the user needs to perform. Tabstrips have
been a part of standard ABAP development since Basis release 4.0, so it is not sur-
prising that the functionality for tabstrips within BSP is considerable.

There are actually three different sets of elements that can be used to produce a
tabstrip: <htmlb:tabStrip>, <{xhtmlb:tabStrip» and <phtmlb:container-
TabStrip).

Common Extension Elements

197

198

Standard Dauble Submit

Customized Double Submit

e

Your request is being processed.

This demonstrates a customized Double
Submit

Figure 918 Two <xhtmlb:protectDoubleSubmit> Examples: Default Attributes and Attributes
Customized by Program

Each new version of the tabstrip produced greater functionality. Therefore, we
will take a closer look at the latest version with the most functionality and flexi-
bility: <phtmlb:containerTabStrip>.

To create a complete tabstrip there are really three BSP elements involved. The
first is the <phtmlb:containerTabStrip» itself. This element has the attributes
that affect the entire tabstrip. The attributes collapsed and collapsgible and
onCollapse all work to together to support collapsible tabstrip areas.
<phtmlb:containerTabStrip> defaults to collapsible being TRUE, however,
for this to work you must also supply an onCollapse event handier. Within that
handler, you should trap the collapsed state and then feed that back to the ele-
ment through the attribute collapsed.

The <phtmlb:containerTabStrip»> gets considerable functionality via the
items attribute. This attribute allows the inner content of the tabstrip, including
all the Ul elements that will be rendered into each tab, to be supplied dynamically
via an ABAP internal table of type PUTMLB_CONTAINERTABSTRIPITEM. This is
another example of how BSP supports dynamic Ul creation.

The maxVisibleItems attribute allows you to control how many of the tabs are
visible in the strip area. If the total number of tabs exceeds this value, navigation
controls will be generated to allow the user to page through multiple sets of tabs.
By default, the element will generate and control this paging for you. You could
also build a custom options menu, perhaps to further support navigation or to
allow for removal of personalization of the tabstrip, via the attribute option-
Menuld. You actually define a separate {phtmlb:popuplenu> element in your
page. You then connect this to your tabstrip in the strip area by supplying the
{phtmlb:popupMenu> element id to the optionMenuld attribute.

BSP Extensions

Finally we have the attribute selectedIndex. This attribute must to be set to
control which tab is the active one. This attribute expects an integer value for the
index of the tab that you wish to be active. If this attribute is not supplied or has
an initial value, no content will be displayed in the tabstrip area. When the user
clicks on a changed tabstrip, a server event is fired. It is the responsibility of the
application to trap this event and place the new selected tab index into a variable
that will be passed back into this attribute.

Each tab is defined with {phtmlb:containerTabStripItem). For this element
you can set the ID, title and tooltip that will appear for the tab in the strip
area. You can also disable a single tab with the attribute enabled and control the
scrolling mode of the inner content with the attribute scrollingMode.

Once again, we have the ability to supply the inner content of a tab dynamically.
The attribute contentItems allows for dynamic elements to be supplied via an
internal table of type PATMLB_CONTAINERCONTENTITEM.

Finally, we reach the inner most element in our tabstrip, the <phtmlb:contai-
nerContentItem>. Each tabstrip item can contain one or more of these
{phtmlb:containerContentItem> elements. The inner Ul elements, such as
input fields or text views, are all rendered within this element. We can set a scroll-
ing mode that overrides the one specified at the tabstrip item level using the
attribute scrollingMode. At the content level, you can also control visual ele-

ments such as cell padding, attribute hagPadding, and bordering, attribute bor-
der with a default value of FALSE.

The following example shows a simple tabstrip with three items, the third of
which has been disabled. The example also has the event-handling necessary to
support the switching of the active tab.

{phtmlb:containerTabStrip id = "TabStrip"
selectedIndex = "{%= selected tab %>"
firgtVisibleltemIndex = "2" >

{phtmlb:containerTabStripltem id

Moo
"Tab 1" >

i

title
{phtmlb:containerContentItem>
<htmlb:textView>Inner Content of Tab 1
{/htmlb:textView>
{/phtmlb:ceontainerContentltem>
{/phtmlb:containerTabStripltem>
{phtmlb:containerTabStripItem id
title

"Tab2"
"Tab 2" >

Common Extension Elements

199

200

{phtmlb:containerContentItem>
<htmlb:textView>Inner Content of Tab 2
{/htmlb:textView>

{/phtmlb:containerContentItem’

{/phtmlb:containerTabStripltem>

{phtmlb:containerTabStripItem id = "Tab3"
title = "Tab 3"
enabled = "FALSE" >

{/phtmlb:containerTabStripItem>
{/phtmlb:containerTabStrip>

Listing 9.6 Layout

DATA: event TYPE REF TO if htmlb_data.

event? = cl_htmlb_manager=>get_event_ex(request).

IF event-Yevent_type = phtmlb_events=>containerts_tab_selected.
gselected _tab = event-Jevent_server_name.

ENDIF.

Listing 9.7 OninputProcessing

O ¢

O————

Figure 919 <phtmlb:containerTabStrip> Example

9.3.6 <phtmib:formLayout>

As a BSP application developer, you will be spending a lot of time creating form
layouts. A good portion of that time will be spent designing the complex matrixes
to align input fields and their labels so that data input is attractive. Even with the
advances that the <phtmlb:matrix> makes over the <htmlb:gridLayout?, the
creation and maintenance of large forms can still be daunting.

However this task does not have to be that difficult, thanks to the
{phtmlb:formLayout> element. The {phtmlb:formLayout> does all this work
for you by creating the label, input element, and supporting matrix structure, all
from the definition of a single element.

The best way to learn about the <phtmlb:formLayout> is to begin with a simple
example and then dissect it. In this example, we will have a small form that will
request input of a person’s first name, family name, and email address.

BSP Extensions

{phtmlb:formLayout>
{phtmlb:formLayoutInputField id = "FName"
label = "First Name"
value = "<%= namel%>" />
{phtmlb:formLayoutInputField id = "SName"
label = "Family Name"
pos = "asNeighbour,tiedTo=FName"
value = "<%= namel%>" />
{phtmlb:formLayoutlnputField id = "Email"
label = "Email Address"
pos "skipRow, colgpan=2"
value = "<%= email %" />

{phtmlb:formLayoutItem id0OfItem = "Submit"

i

pos = "gkipRow" >
<htmlb:button id = "Submit"

onClick = "Submit"

text = "Submit" />

{/phtmlb:formLayoutltem>
{/phtmlb:formLayout>

First Name

— e

Email Address | |

| ASR—

Figure 9.20 <phtmib:formtayout > Example

The <phtmlb:formLayout> element itself has just a few attributes that give you
some control over the design of the form. Our example keeps all the default val-
ues for these attributes, but you can control the spacing between the form ele-
ments and their labels using the attribute fieldToLabelFactor. You can also
insert a vertical separator between columns using attribute verticalLineSepa-
ration and you can move the labels to be right aligned using labelAlignment.

But looking at the example, you can see that the real details come from the inner
elements of the <phtmlb:formLayout>. What SAP has done is to create a few of
the most used data input elements in simplified versions for use in the
{phtmlb:formLayout>. These elements follow the 80/20 rule: that 20% of the
functionality is used 80 % of the time. True to that rule, these inner elements do
not have all the functionality of the originals; however, they do contain the most
used and useful functions.

Common Extension Elements

201

202

SAP implements four of these simplified inner elements: <phtmlb:formlayout-
InputField>, {phtmlb:formLayoutDropDownListBox?, {phtmlb:formLay-
outCheckBox) and <phtmlb:formLayoutTextEdit>. Obviously there are going
to be times when you need one of the more specialized attributes of the elements
that are wrapped within the <phtmlb:formLayoutX> items. Or perhaps you
need to include a BSP extension element other than input fields, dropdown list
boxes, check boxes, or text edit boxes. For this, we have a generic form layout
item called <phtmlb:formLayoutItem>. As you can see from the example, we
have used this generic item to insert an <htmlb:button>.

Use of the form layout items immediately addresses one concern laid out to begin
with: the generation of input elements with matching labels. That is only part of
the value we gain by using the <phtmlb:formLayout’>. The other time saving
aspect is the positioning of elements relative to one another.

All of the positioning options are set by the single attribute pos. This single ele-
ment has a considerable amount of functionality packed into. At its most basic
form the attribute pos allows you to set the relative values of the row and the col-
umn for the element separated by a comma. For example pos=="rowt1,col=0"
means new row, same column. Likewise to move to the next column in the same

row you would use pos="row=1,col=F1".

In addition to directly specifying the positioning via a row and column value,
there are also special positioning directives for two of the most common actjons.
These are NEWGOLUMN and SKIPROW. Use NEWCOLUMN to move to the next column
in the same row. For instance, you have finished all output for the current col-
umn, and through the use of NEWCOLUMN output now goes to the next column.
SKIPROW results in an empty row. It is effectively row=+2.

For large input elements, such as the email-address input field in our example,
you may want to take up more than one column or row. For this activity we can
use the pos attribute addition of COLSPAN or ROWSPAN, Our email element pos of
pog="colspan=2" produced an element on the next row that covered two col-

umns.

You may also want to ensure that two or more fields are always aligned next to
each other regardless of what happens to the relative positioning of the elements
around them. In our example, we wanted this functionality for the first name and
family name elements. Instead of using relative positioning or the NEWCOLUMN pos
value, we used the ASNEIGHBOUR directive.

It turns out that positioning and simplified interface are only two of the three
major factors when working with <phtmlb:formLayout>. There is also layout
customization functionality. Similar to the way that you can customize the R/3

BSP Extensions

application using the IMG, any <phtmlb:formLayout) allows you to give the
ability to your business users to do code free customization of the form layout.

To support customization, you must first change the definition of the
<phtmlb:formLayout> and add a value for the attribute customizationKey.
This is the key value that will be used later to match up with the customization
settings. You can imagine how you might generate a key for different organiza-
tional structures, such as company code or plant. The business would then have
the flexibility to configure different input options along these lines.

This customization is made possible via the use of three database tables. The
developer of the application must first create an entry in two of these tables,
PHTMLB_FLI and PHTMLB_FLI_TEXT, in order to expose each element of their
form layout where customization is possible. The first table, PHTMLB_FLT, has two
keys. The first key, NS_APPL_PAGE, requires you to specify the BSP application
namespace, application name and page/view. An example might be: SAP/Y_
PHTMLB_TEST/test_page.html. The other key, FLI ID, is a value that must
match up with the 1D given to each form layout item.

The second table, PHTMLB_FLI_TEXT, allows the developer to supply a language-
dependent description for each item in PHTMLB_FLI. You should note, however,
that this description is only used during the customization activity; it will not be
used to supply the label for the form element at runtime.

The final table, PHTMLB_FLI_CUST, is where the actual customization values are
stored. It has the same two key fields as PHTMLB_FLI for matching up to the BSP
page and form layout element. it also has a key called VARIANT_KEY that should
match the customizationKey attribute of the <phtmlb:formLayout>. Finally
we have the field called MODIFIER that sets the customization option for the ele-
ment in question. The following are the possible customization values.

Attribute Value Definition

As Defined The inner element is rendered exactly as defined in the original coding.
This is the default configuration option.

Invisible The inner element is not rendered at all, nor is a space reserved for it.
All later elements are moved up a position to fill its space.

Hidden Although similar to Invisible in the effect that it has on the element in
question, Hidden affects the elements around it differently. With Hid-
den the space for the element continues to be reserved. However,
entire empty rows are still removed. As you can see, with the use of
Invisible and Hidden, the earlier pos attribute value of ASNEIGHBOUR
becomes even more important.

Table 9.2 Possible Values for MODIFIER

Common Extension Elements

204

Attribute Value Definition

If this value is set, during the rendering of the label for the element a
required indicator, visualized as a small red star, is output. This only A
affects the visual rendering of the label. The application is still responsi-
ble for actually checking to make sure a value was supplied.

Required

If the applicatiof had set in code an element to be required, this cus-
tomization now can set it to be optional. Just as with the Required cus-
tomization option, this value only affects visualization and not applica-
tion logic.

Optional

Read Only The inner element is displayed in a Read Only mode.

Table 9.2 Possible Values for MODIFIER (cont.)

It is important to note that SAP does not deliver any user interface for maintaining
these customization tables. Standard table maintenance has been generated, so
updates are possible using the SAP GUI transaction SM30. This is fine for the
entries that the application developer must maintain in PHTMLB _FLI and
PHTMLB FLI_TEXT. However, you are more likely to have to create a custom
application or build a personalization screen into your application to support
business-level customization of table PHATMLB_FLI_CUST.

The discussion on customization does bring us back around to one final value for
the attribute pos. Going back to our example where we wanted to make sure that
first name and family name were always kept together, it also makes sense that
customization options should apply to both fields. It does not really make sense
to allow someone to hide one field without the other. Therefore, the tiedTo
option can be added to the pos string. This will allow the form item to inherit
whatever customization is set for the field it is tied to.

BSP Extensions

10 BSP Element Expressions and Iterators

The most powerfuf aspect of BSP development is the fact that that as
a developer you are not locked into a ridged framework. SAP has given
us the ability to work outside its rendering libraries. Fven more impor-
tant are the opportunities that BSP Element Expressions (BEFs) and
tableView fterators provide to after the rendering within the existing
framework.

Any rendering library is like a corset. It does the work it was designed for, but
does not allow the flexibility to break out where required. The most interesting
example is custom-rendering for specific ¢htmlb:tableView> cells. Sometimes
you would like to render something special inside such a cell, for instance an icon
to indicate a status, depending on the values of three other fields in the table row.
This chapter discusses the building blocks used to group small parts of rendering
code into a generic interface that then can be used to custom-render specific
areas of the layout.

10.1 BSP Element Expressions

10.1.1 What is a BEE?

Effectively, a BEE can be described as an interface with one method RENDER(). The
complete interface (ignoring the trivial second RENDER_TO_STRING method) is:

INTERFACE IF_BSP_BEE.
METHODS render IMPORTING page_context
TYPE REF TC if_bsp_page_context
ENDINTERFACE.

Any class can implement the interface. Once it comes to rendering, the RENDER
method receives the page context as an import parameter. The page context con-
tains information about the current BSP page being rendered and the current
writer active, and provides methods to handle rendering of BSP elements.

Given a class that implements the IF_BSP_BEE interface, a simple element
¢bsp:bee> is also available to render such a class inline anywhere on a BSP page,
if required.

bee->RENDER(page_context = me-’m_page context).

In summary, a BEE is any class that implements the TF_BSP_BEE interface, and
that can render itself when requested.

BSP Element Expressions and Iterators

205

206

10.1.2 N=1, Using Any BSP Element as BEE

BEEs were initially designed for custom-rendering one specific cell in an
(htmlb:tableView>. It was sufficient to specify one BSP element, for example
an <htmlb:inputField> or <htmlb:imaged. All HTMLB elements had to imple-
ment the IF_BSP_BEE interface to be usable as BEEs.

The simple solution was to implement this interface in the base class for all BSP
elements (CI_BSP_ELEMENT). With this small change, it suddenly became possi-
ble to use any BSP element for custom-rendering as a BEE.

You will need a general understanding of how BSP elements are used inside a BSP

page. There are three steps involved:

» Create an instance of element class.
» Set all attributes.

» Process BSP element.

The BSP compiler can took up what class is associated with a specific BSP element.
It then will generate roughly the following code:

DATA: tagl TYPE CL_<class_name?.
CREATE OBJECT tagl.
TagI->Al = V1.

Tagl->An = Vn.
. process tagl

If you wish to use any BSP element as a custom-renderer at a later stage, you only
have to complete the first two steps. Each BSP element has the interface IF_BSP_
BEE via the base class, and the render method of this interface knows how to
“process” the BSP element at the right time.

The matching class name can easily be looked up via the ABAP Workbench as

shown in Figure 10.1.

However, using the above technique of setting attributes is still slightly error-
prone. You have to keep all attributes in mind, their names and types, and espe-
cially remember to set all required attributes. For this reason, a factory method is
also generated for each BSP element to handle all the hard work. Therefore, the
above code would reduce to the following form:

DATA: tagl TYPE CL_<class_name>.
Tagl = ¢l _<class_name>=>FACTORY(Al = V1
. process tagl

. An = Vn).

BSP Element Expressions and Iterators

= .
BSP Extension Edit Goto Utilties(i)) Environment System Help

@ oEieee BHRITnD

GELICL

ﬁRepEgtnry Browsér ’
BSP Extension 3
HTMLB
<
& htmib . & 7ﬁ%{ i Element Handler Class
- { Generated Basks Class

[t

Short Desériptiun, ~7 % |Input Feld s .
o J[CL_HTHLB TNPUTFIELD

CLG HTHLE INPUTFIELD

i

Figure 104 Class Name Lookup Using the Workbench.

The benefit of this approach is that the ABAP compiler is used to check all
attributes during the compile phase. If you are uncertain about the available
attributes, a simple double-click on the FACTORY brings you immediately to the
definition of the method.

In order to demonstrate the effectiveness of the BEE, we will build a simple test
program. We know that there are four supported techniques for using BEEs. So
the test program must show four buttons, and it must provide an open piece of
canvas into which we can render anything at runtime. The complete coding is:

h@page language="abap"%>

{h@extension name="bsp" prefix="hsp"%>
{%@extension name="htmlb" prefix="htmlb"%>
{%@extension name="xhtmlb" prefix="xhtmlb"%>
{%-- general document structure --%>
<htmlb:content design="design2003">
<htmlb:page> ‘

<htmlb:form>

{%-- button group with four test cases --%>

{xhtmlb:toolbar id="tbbgl" >

{xhtmlb:toolbarItem>

{xhtmlb:buttonGroup id = "buttons"
onClick = "buttonPressed" >

{xhtmlb:buttonGroupItem key = "single"

text = "Single" />
{xhtmlb:buttonGroupltem key = "html"

text = "HIML" />
{xhtmlb:buttonGroupltem key = "table"

text = "Table" />
{xhtmlb:buttonGroupltem key = "xml"

text = "XML" />

BSP Element Expressions

207

208

{/xhtmlb:buttonCroup>
{/xhtmlb:toolbarItem>
{/xhtmlb:toolbar>
{%-- dynamic rendering --%>
{bsp:bee bee = "<%= bee %" />
</ttmlb:form> -
{/htmlb:page>
{/htmlb:content>

For the program, three page attributes are defined:

bee TYPE REF TO IF_BSP_BREE
text TYPE STRING (auto fill)
url TYPE STRING (auto fill)

The bee is the actual instance of rendering code that will be rendered. The text
and ur1 fields are used for our small example. We would like to render two input
fields below one another. This first allows us to specify some text for a URL. The
URL will be displayed in the second (disabled) input field.

Finally, the onInputProcessing event-handling code must be as follows:

url = ‘http://www.sap.com'.
DATA: event TYPE REF TO if_htmlb_data,
buttongroup TYPE REF TO cl_xhtmlb_buttongroup.
event = cl_htmlb_manager=>get_event_ex(
runtime->server->request).
IF event IS NOT INITIAL
AND event-Yevent name = cl_xhtmlb_buttongroup=rco_event _name.
buttongroup 7= event.
CASE buttongroup-»buttonclicked.
WHEN 'single'. “* TO DO
WHEN ‘'html'. “* TO DO

WHEN ‘table’. “* TO DO
WHEN 'xml'. “* TO DO
ENDCASE.
ENDIE.

This code just sets the URL, static for our example, and then checks for an event
from the HTMLB library. For button-group events, the corresponding action is
taken.Given our test harness, we have a "hole" in the layout that we wish to fill
with one BEE. We know that each BSP element can function as a BEE. So let us
use an <htmlb:inputField> as a BEE. Keep in mind that we only must create
the BEE. The actual "processing" is done later by the <bsp:bee> element.

BSP Element Expressions and Iterators

The code is only a few lines (where variable bee is of type IF_BSP_BER):

WHEN 'single'.
DATA: tag if TYPE REF TO cl htmlb_inputfield.
tag if = cl_htmlb_inputfield=>factory(id = 'text'
value = text).
bee = tag if.

A new <htmlb:inputField> is declared and then instantiated via its factory
method. Thereafter, the <htmlb:inputField> is ready to be rendered. For this,
we assign the instance to the bee page variable. This works because each BSP ele-
ment implements the IF_BSP_BEE interface via the base class.

The code can be reduced to:

WHEN 'single'.
bee = cl_htmlb_inputfield=>factory(id = 'text'
value = text).

With the first button now completed, we run the BSP page again, and look at the
output in Figure 10.2.

ﬁg{ ‘Single [FTML | Table | XL

The ERP Company

&) bore ! I T S ocalintranet

Figure 10.2 Starting Point of the Example

It works as designed! Even with the BSP element declared in one place, the ren-
dering at a later stage during the layout phase works perfectly. And with this,
nearly 80 9% of the work is done for the <htmlb:tableView> custom-rendering.

10.1.3 HTML BEE

Using BSP elements to fill "holes” is interesting, but sometimes greater rendering
control is required. For this, there is nothing better than pure, raw HTML.

For raw HTML, a second BEE is available. This class, CL_BSP_BEE_HTML, also
implements the IF_BSP_BEE interface and therefore can be rendered later. Its
primary goal is to store HTML sequences and render them out later.

For this example, we want to have two input fields, one for the text and the sec-
ond to display a URL. Here is the code:

BSP Element Expressions

209

WHEN 'html'. 10.1.4 Table BEE

DATA: bee_html TYPE REF TO cl_bsp_bee_html.
CREATE OBJECT bee_html.
bee_html->add(

htmll = “<input name="text" id="text" °

The N=1 case was powerful, but did not go very far. What is really required is a set
of BSP elements that can be rendered together: effectively, an expression!

For our stated problem, we could have written the following code directly in the
layout of the BSP page:

html2 = “title="Inputfield for text" °

hrml3 = Tvaluemt <htmlb:gridlLayout columnSize = "1" rowSize = "2") b
htmld = ’\tfx‘\c <htmlb:gridLayoutCell columnIndex = "1"
penls . ’ . . rowIndex =
ntml6 = TR : <htmlb:inputField id = "fext" :
pee_html->add(value = "<%=text%>" /> [
htmll = <input name='url" 1d="url® ° 3 ¢/htmlb: gridLayoutCelld i
himl? = “title="Inputfield for url disabled” ° b <htmlb:gridlLayoutCell columnlIndex = "1" 2
html3 = “value="" -k rowlndex = "> 1
htmlsd = url <htmlb:inputField id = "url" “
hemls = " - B value = "{Y=url%>" I
htmlé = “readonly style="background»color:#ABABAB"V). digabled = "TRUE" /> :1
bee = bee html. 1 {/htmlb:gridLayoutCell> i

In the first step, an instance of the HTML BEE is allocated. The add method is </htmlb:gridLayout?

called twice, once for each input field. The add method has a handy feature that ' : However, we wish to process something similar dynamically. We already know
allows the HTML string to be supplied in snippets, which are internally concate- R how to create an instance of any BSP element via its factory method. Now all we
nated together. In the last step, the BEE is assigned to be rendered later. " need are technigues to put all these BSP elements into one expression, and still
We run the test page again, and press the HTML button. The results can be seen keep the relationship among them. For this, the table BEE—shown below—was
in Figure 10.3. designed.
WHEN 'table'. !
TSinge (oL | Table o] -] DATA: bee_table TYPE REF TO cl_bsp_bee table. i
[The ERP Campary _| : CREATE OBJECT bee_table.
/ety SRGCAM . i] |
a b I
o — T Qe ' DATA: tag if text TYPE REF TO cl_htmlb_inputfield, ‘
‘ tag_if_url TYPE REF TO cl_htmlb_inputfield. :
Figure 10.3 HTML BEE Example .v tag_if_text = cl_htmlb_inputfield=>factory(id = 'text’

value = text).
tag_if url = cl htmlb_inputfield=>factory(id = 'url’
value = url disabled = '"TRUE').

The HTML is rendered in the “hole,” as expected.

WARNING Using raw HTML is not recommended for the faint of heart. In ' DATA: tag gl TYPE REF TO cl_htmlb_gridlayout,
principle, HTML coding is easy to understand and use. However, once it is writ- ' tag glc_text TYPE REF TO cl_htmlb_gridlayoutcell,
ten, you must also accept responsibility that the code will work in other sup- ' tag gle url TYPE REF TO cl_htmlb_gridlayoutcell.
ported browsers, for example Netscape. Even more important, you must han- ' tag gl - ¢1_htmlb_gridlayout=>factory(

dle all accessibility aspects, at a minimum setting the title attribute correctly. : ColumnSize = '1' rowSize = '2').

BSP Element Expressions 241

210 BSP Element Expressions and lterators

212

tag_gle_text = cl_htmlb_gridlayoutcell=>factory(

columnIndex = '1' rowlndex = '1').
tag_glc_url = cl_htmlb gridlayoutcell=>factory(
ColumnIndex = '1' rowlndex = '2').

element = tag_gl).
element = tag_glc_text).
element = tag if text).
element = tag glc url).
element = tag if url).

bee_table->add
bee_table->add(level

(level =

(
bee_table->add{ level =

(

(

i

il

bee_table->add
bee_table->add
bee = bee_table.

level

|
W N W N

level

First the table BEE is created. The next part of the code just uses the factory meth-
ods of the different BSP elements to create all the BSP element instances
required. Then each BSP element is added in the sequence that it will be pro-
cessed.

Very special care must be taken with the level attribute. This is an integer number
used later during processing to determine if the next BSP element in sequence is

a child of the current BSP element, or must be processed at the same level. The
RENDER method of the table BEE knows how to render such a complex expression.

The final output can be seen in Figure 10.4.

{ Single || HTML | Takle | XML | -
The ERP Company
Ftp: Avesvw sap.com

&) pone ' b S Lecalintranet
Figure 10.4 Table BEE Example

With this, we now achieve complete dynamic rendering of a "hole" with a
sequence of BSP elements (the expression).

10.1.5 XML BEE

Writing all this code by hand can be complex. Imagine instead loading the com-
plete sequence from a string, possibly even one stored in the database. A string is
easy to write, can easily be understood, and can be changed to dynamically define
an overriding layout for a specific part of the screen.

So the final example takes an XML string containing a BSP element expression and
renders it into the "hole.”

BSP Element Expressions and lterators

WHEN ‘xml'.

DATA: xml_string TYPE STRING.
CONCATENATE
"<{bee:root>

i

' <htmlb:inputField 4d ="text" !

' {/htnlb:gridLayoutCell)> '

' <htmlb:inputField id ="url" ¢

' </htmlb:gridlayoutCell)
" </htmlb:gridLayout) !
'{/bee:root> '

INTO xml_string.

rowIndex="1">

<htmlb:gridLayout columnSize ="1" rowSize ="2n)
<htmlb:gridLayoutCell columnIndex="1"

value ="{%=text¥>" /> !

<htmlb:gridlayoutCell columnIndex="1" °
rowlndex="2"> '

value ="<%=urly%>" !
disabled = "TRUE"/)>!

DATA xml_parms TYPE TABLE_BSP_BEE_PARMS.
FIELD-SYMBOLS : <Xml_parm> TYPE BSP_REE PARM.

INSERT INITIAL LINE INTO TABLE xml_parms ASSIGNING

{xml parm>.
{xml_parm>-name = 'text'.
<{xml_parm>-value = text.

INSERT INITIAL LINE INTO TABLE xml_parms ASSIGNING

<{xml_parm>.
{xml_parm)-name = 'url'.
<{xml_parm>-value = url.

DATA: bee_xml TYPE REF TG cl _bsp_bee_xml.
CREATE OBJECT bee_xml.
bee_xml->set{ EXPORTING xml

= zml_string

parms = xml_parms

IMPORTING xml_errors = xml_errors).

bee = bee_xml.

BSP Element Expressions

213

214

The first block of code just “writes” the BSP page code dynamically into a string.
With a few small exceptions, this is written exactly as in the layout part of any BSP
page.

The next block of code handles the dynamic attributes. These attributes are stored
in a table, from which the vatues can be looked up when the BEE is processed.

The last block creates a new XML BEE and sets both the XML string and dynamic
parameters.

The final output—in what might at first seem like a slight anti-climax—looks
exactly like that of the table BEE. That is quite simply because exactly the same
BSP elements are executed!

Although the table and XML BEEs achieve the same goal, they still have slightly
different dynamics. For the table BEE, some form of code must be known before-
hand, and written, in order to fill the table.

The XML BEE is completely dynamic. It also has the benefit that configuration-like
layout sequences can be read from the database.

V WARNING Th|s ﬂex|b|llty comes at a h|gh prlce The XN\L BEE was rewrltten
three times by one of the .best programmers in the ABAP Language Group.
However, this still does not help with the fact that XML is parsed, interpreted,

and code-executed dynamlcally This techmque will always be slow and only

: recommended for very spectal cases.

What Can be Used in the XML String?

Most important, the <bsp:root> node must be used as root node. This is just a
pseudo-node added to enable a valid XML DOM for parsing.

Another pseudo-node that is supported is <bee:html>. It can be used to pack
HTML text into the string. Although the inner HTML text does not conform to
XML rules, this is a user-friendly way of writing. The HTML block is internally
placed into a CDATA section before the DOM is parsed.

All other XML nodes in the DOM are considered to be BSP extension elements.
No dynamic prefixes are supported. The prefixes used must match directly the
BSP extension IDs, not to be confused with the recommended default 1Ds.

BSP elements with "element-dependent” bodies are not supported. There are no
such elements within all HTMLB rendering libraries, so this should not be a prob-

lem.

BSP Element Expressions and lterators

Dynamic expressions from BSP pages (<%. . .%>) are not supported.

Any CDATA section is printed verbatim onto the output stream.

10.1.6 Errors and Error Handling

Of course, this small program was completed quickly and worked flawlessly.
Unfortunately on the first pass through when creating this sample, the XML BEE
failed! No output was rendered. An hour was spent chasing this error down (for
the gory details of one small XML bug revealing a BEE bug, see OSS/CSN note
674230).

The lesson is to notignore the return codes of method calls. The bee_xml->set ()
method returns a list of XML errors. These where ignored originally. Had we con-
sidered this table immediately, the hour of debugging would have been saved.

To show the power of the BEEs, the ultimate solution was extended. In case of an
error, we now replace the output with an error table, as shown below. Please note
that xml_errors is defined as a page attribute of type TIXMLTERR in order to
keep the data reference alive even after onInputProcessing has been com-
pleted:

IF LINES(xml_errors) > 0.
DATA: table_ref TYPE REF TO DATA.
GET REFERENCE OF xml_errors INTO table_ref.
bee = CL_HTMLB_TABLEVIEW=>FACTORY(id = Ttview'
table = table_ref).
ENDIF.

If an error occurred, the <htmlb:tableView> would be used as a BEE to render
out the error table. This shows the importance of error-handling and the strength
of the custom-rendering provided by the BEEs.

Final Note

Like all powerful tools, BEEs must be used with care. For rendering small parts of
the fayout, they are excellent and highly recommended.

10.2 Table View Iterators

Often, you must influence the rendering of the <htmlb:tableView>. Maybe
more (virtual) columns are required. Or perhaps the presentation of the data
should not be done as text, but rather as icons or input fields.

Table View Iterators

215

216

For this, the <htmlb:tableView> supports the concept of an iterator. The
Chtmlb:tableview> will use this callback interface during rendering for each
row and cell to allow you to control the exact rendering.

In order to demonstrate the table view iterator, we will create a very small BSP
application that will display an <htmlb:tableView.

TYPES: TABLE_SFLIGHT TYPE TABLE OF SFLIGHT.

Listing 101 Type Definitions:

TABLE_SFLIGHT
IF_HTMLB_TABLEVIEW_ITERATOR

flights TYPE
iterator TYPE REF TO

Listing 10.2 Page Attributes

SELECT * FROM SFLIGHT INTO TABLE flights.

Listing 10.3 OnCreate Event

{%@page language="abap"%>
¢h@extension name="htmlb" prefix="htmlb"%>
<htmlb:content design="design2003"
controlRendering = "SAP">
<htmlb:page>
<htmlb:formy

<htmlb:tableView id = "gyl"
vigibleRowCount = "10"
selectionMode = "lineEdit"
table = "{Y%=flightsh>"
iterator = "{Y=iterator%>" />

{/htmlb:form»
{/htmlb:page>
{/htmlb:content>

Listing 10.4 Layout

For this test, we will display some information from the SFLIGHT table. We define
atype table of sflight, and then declare a page attribute of this table type
to hold all records from the database. In the layout section, the <¢htmlb:table-
View is used to display the table.

The output, as shown in Figure 10.5, is as expected, although not very exiting.

BSP Element Expressions and lterators

: 5 P 1%
088 | A | 0017 | 11712004 o | s | p 152,12;.9?%?
083 | AA | 0017 | 1271572004 | 422,84 | USD | 747-400 385 o2 | 1o &
W@ | 088 | AA | 0017 | 0171272005 | 422.94 | USD | 747-400 385 374 | 19255644 '
088 | AA | 0017 | 02009/2005 | 42294 | LUSD | 747-400 385 a1 | 10110488 [
088 | AA | 0017 | 0308/2005 | 42294 | USD | 747-400 385 374 | 19552264
B | 086 | AA | 0017 | 0410672005 | 42294 | LUSD | 747-400 385 373 | 19242008 ||
088 | AA | 0017 | 0510472005 | 422.94 | USD | 747-400 385 373 | 15319926 |
BH | 086 | AA | 0017 | 0510172005 | 42294 | USD | 747-400 385 w7 | Te0pm7a |
[| 088 | AA | 0017 | 06/29/2005 | 422.94 | USD | 747-400 385 363 | 183,071 40
4 | 058 | AA | 0017 | 0772772005 | 422.94 | USD | 747-400 385 0 000

AR

Figure 10.5 Basic <htmlb:tableView> Output

With the help of the table view iterator, we are going to do some rendering
improvements to this output.

» Rendera new column in the beginning with a little airplane icon.

» Instead of having available and occupied columns for first, business, and econ-
omy class seats, we would like to render one column of the format "Occu-
pied/Max."

» In edit mode, the currency should be picked from an <htmlb:dropDownList-
Box»>, and it should be possible to edit the occupation for the different seats
individually, even if they are displayed only in summed format.

10.2.1 What is a Table View Iterator?

In principle, a table view iterator is any class that implements the interface if_
htmlb_tableview iterator.

INTERFACE if_htmlb_tableview_iterator PUBLIC.
METHODS get_column _definitions
METHODS render_row_start
METHODS render_cell start

ENDINTERFACE.

This interface supports three methods. The get_column_definitions methodis
called once at the beginning of rendering, to allow an update or complete speci-
fication of all column definitions. This is very similar to the classic ABAP ALV Grid
Field Catalog.

The row and cell start methods are called at the start of a new row and cell respec-
tively. The complete parameter list will be discussed later.

Table View lterators

217

218

Let us complete the last part of our test program. We need an iterator to enable
custom-rendering of the <htmlb:tableView>. For this, we use transaction SE24
or SE80, and create a new class that implements the iterator interface. All meth-

ods are implemented initially as empty.
Our iterator class looks like this:

CLASS ycl_bsp_book_iterator DEFINITION PUBLIC CREATE PUBLIC.
PUBLIC SECTION.
INTERFACES if htmlb_tableview_iterator
ENDCLASS.

CLASs ycl_bsp_book_iterator implementation.

METHOD
if_htmlb_tablevi ew_iterator~get_column _definitions.

ENDMETHOD.
METHOD if_htmlb_tableview__iteratorNrender_cell_start.
ENDMETHOD .
METHOD if_htmlb_tableviewﬁiteratorNrender_row_start.
ENDMETHOD.

ENDCLASS.

As a final step, we extend the onCreate event to also instantiate such an iterator.

SELECT * FROM sflight INTO TABLE flights.
CREATE OBJECT iterator TYPE ycl_ bsp_book _iterator.

Listing10.5 OnCreate Event

it is unfortunately not possible to implement local classes inside a BSP page.
Therefore we must implement the iterator interface in a separate class. For this
example, a new global class is created to implement the interface. if the
¢htmlb:tableView) is used in the context of Model View Controller, another
idea is to implement the iterator interface in the calling controlier class. Alterné-
tively, you could also place the iterator inside the application class. However, this
approach becomes difficult when more than one iterator is required. The recorr?—
mendation in such cases would be to use local classes housed within your appli-

cation class.

10.2.2 Method GET_COLUMN_DEFINITIONS

The method GET COLUMN_DEFINITIONS is called at the beginning of the render-
ing. It receives the list of existing column definitions, and can update the list. This

method has three parameters:

BSP Element Expressions and Iterators

Parameters Comments

P_TABLEVIEW_LD Importing STRING The ID of the current table being feﬁélé"reﬁ is siJP;f‘)Hed,“
for the situation in which the same iterator implemen-
tation is used for more than one table. = "~ "

P_COLUMN_DEFINITIONS Changing The columns definition is actually thé most interest‘i‘ng~
TABLEVIEWCONTROLTAB ‘
ViewColumn> BSP elements. For a detailed description
of all fields, please refer to the documentation of this

parameter. It contains the content of all <htmlb:table-

BSP element and/or see DDIC definition for this struc: ¢

ture, -

P_OVERWRITES Changing TABLE-
VIEWOVERWRITETAB

column indexes, However, the overwritten BEEs must

all be created in advance, without even knowing if they

will be used. The recommendation is to ignore this
attribute in most cases.

Table 104 Parameters of Method GET_COLUMN_DEFINITIONS

Usually, column definitions are done with the inner tags <htmlb:tableView-
Column? or supplied via the <htmlb:tableView> attribute columnDefiniti-
ons. This is still possible. The already configured columns will be listed in the col-
umn-definition table. However, setting the column definitions dynamically cleans
up the layout, and allows the flexibility to decide at runtime which columns
should be rendered.

For our example table, the complete coding is:

METHOD if_htmlb_tableview iterator~get_column_definitions.
FIELD-SYMBOLS: <def> LIKE LINE OF p_column_definitions.
APPEND INITIAL LINE TO p_column definitions ASSIGNING <def).

{def>-COLUMNNAME "ICON'.
{def>-TITLE " '.

]

APPEND INITIAL LINE TO p_column_definitions ASSIGNING <def>.
{def>-COLUMNNAME = 'CARRID'.

APPEND INITIAL LINE TO p_column definitions ASSIGNING <def).
{def>-COLUMNNAME = 'CONNID'.

APPEND INITIAL LINE TO p_column definitions ASSIGNING <def).
{def>-COLUMNNAME = 'FLDATE'. {def>-EDIT = 'X'.

APPEND INITIAL LINE TO p_column_definitions ASSIGNING <def>.
{def>-COLUMNNAME = 'PRICE'. {def>-EDIT = 'X'.

APPEND INITIAL LINE TO p_column_definitions ASSIGNING <def>.
{def>-COLUMNNAME = 'CURRENCY'. <def>-EDIT = 'X'.

Table View lterators

This parameter allows the iterator to fill‘a table ofhspé;:, ‘T
cial BEEs that will be rendered at the specific row and -

219

APPEND TNITIAL LINE TO p_column_definitions ASSIGNING <def>.

rows that will be rendered. It is important to note that this method is only called
{def>-COLUMNNAME = 'PLANETYPE'.

for rows actually rendered. Keep in mind that in our layout, we defined that the
<htmlb:tableView> would only have ten visible rows at a time. Our SFLICHT

APPEND INITTAL LINE TO p_column_definitions ASSIGNING <def>. internal table could potentially have thousands of rows.

{def>-COLUMNNAME = 'SEATS'.]
<def>-TITLE = 'Seats' (001). This method has a number of parameters, of which the most interesting is the
<def>-EDIT = iy, data reference to the actual row. Because the <htm1b itableView> works gener-
ically with tables, it cannot supply a typed reference. However, the iterator usually
ENDMETHOD.

should know the type and can cast this reference into the cor

rect type. This is the
fastest way to access the current row data.

Lot The column-definition structure provides us with many options for fine-tuning
L : the display of each column. However, for this example, only a few options will be
5 sufficient.

The complete list of parameters is:

As our first step, we add a new column called ICON. As this column does not
even exist in the table, it cannot be rendered by the <htmlb:tableView).
Instead we will have to create the custom-rendering for this column ourselves.

Parameter Comments 1
P_TABLEVIEW_ID Importing STRING The (D of the current table being rendered is supplied, B
for the situation in which the same iterator implemen-
tation is used for more than one table.

| 5 i i . The
i k, only those columns that must be displayed are listed SE
b Lr;rihees Sse;j :1l§rcch colu):nn names defined in the table. For some columns, we set cE E_ROW_INDEX Importing | The table index of the row that will be rendered,

the EDIT flag to indicate that these columns are editable. By default, no columns N £_ROW X5Y Importing STRING 2 ey Column has been defined, the key or the rom
§ can be edited. Also, no title information is set. Not specifying a title means that it z will be supplied.

will be read for us dirECﬂy from data dictionary. P_ROW_DATA REF Importing REFTO This is a reference to the current row to be rendered.

DATA Probably the most important parameter. it is not neces:
Last, we add our new SEATS column that will be the sum of all values. sary to reload the data. ‘
The new output shown in Figure 10.6 demonstrates a dramatic improvement: P_EDIT_MODE Importing XFELD Indicator whether this row is in edit mode.

P_SKTP_ROW Returning XFELD

Flag that can be set to indicate that this row should not

be rendered. It can be used to implement user-defined :
filters.

RN Curr 3, Plan
r@ AA | 0017 | 19472004 | 42284 | UsD | 747
aa | 0017 | 12150004 B 42294 | USD | 747-400
iz
=
15

< Dacember 20C4 ﬂ 422.94 | USD | 747-400 |
: -3

Table 10.2 Parameters of Method RENDER_ROW_START
WE T
@F}'L Slals h

42294 | USD | 747-400 |

o o ta tiz] 4224 | Uso | 747400 | : 2 For our example program, we will only use RENDER_ROW_START to store the ref-
151617118 1191 42094 | USD | 747-400 :
- | 42284

: LB erence to the actual data row. For this, we define a new class attribute m_row_ref
%EF ?: 2‘5 28 42294 | USD | 747-400 : g

1 USD | 747-400 ; TYPE REF TO SFLIGHT in the iterator class.
5 o [7 & | 4228 - .
P R Ee s ;::ZEE methoc IF_HTMLB TABLEVIEW_ITERATOR~IENDER RCW START.
0017 | 072772005 422.94 | USD - i R

m_row_ref ?= p_row_data_ref.
endmethod.
Figure 10.6 Enhanced <htmlb:tableView> Output

That little question mark is not a mistake, but a cast operator in ABAP. It is a little
b know feature of ABAP that like object references you can cast data references. We
10.2.3 Method RENDER_ROW_START 3

have now cast our untyped data reference into a typed one without ever copying

The method RENDER_ROW_START is called once at the beginning of each row. The any memory.

biggest benefit from this call is to dynamically load relevant data for only those

s Table View (terators
230 BSP Element Expressions and Iterators b a a 221
20 BSP Element Ex

222

10.2.4 Method RENDER_CELL_START

The RENDER_CELL_START method will be called for each and every cell that wilt
be rendered, including those cells in virtual columns. In all cases, it is highly rec-
ommended that you not implement any code in RENDER_CELL_START for any cell
in which you simply want to enable the default rendering of the <htmlb:table-
View>.

This method supports a large number of parameters. The most significant ones are
listed below. Note that many parameters are equal to those of RENDER_ROW_
START. Of course, it is optimal to do the work only once for the entire row. The
parameters that are the same as RENDER_ROW_START are not listed again.

Parameter “ - Comments

: The correct (HTML) ID that has been computed for
. this cell. This value contains the tableView 1D, the
- _row and column index.

P_CELL_ID Importing STRING

“This value is only set if the table has been bound
using Model View Controller. This is the binding path
for the cell being rendered. It can be used in your

- customer rendering of new BSP elements.

P_CELL_BINDING Importing STRING

Index of current column relative to column defini-

P _COLUMN_INDEX Importing l
: tions.

P_COLUMN_KEY Importing STRING Name of the column being rendered.

P REPLACEMENT_BEE Exporting REF TO If this value is left initial, the default <htmlb:table-

IF_BSP_BEE : ~ View> rendering action will be taken. However, with
this exporting parameter, it Is possible to set a new
BEE that will then be rendered into the current cell.
This new BEE can, but does not have to, keep the
current EDIT mode in mind. :

Table 10.3 Parameters of Method RENDER_CELL_START

The best approach to using RENDER_CELL_START is to always implement only the
absolute minimum needed. Leave the default rendering to the <htmlb:table-
View>. For our example, we wish to custom render the ICON and SEAT fields. For
the TLDATE and CURRENCY fields, we want to accept the default display handling,
and use a different rendering only for editing.

The skeleton code will begin as:

METHOD if#htmlb;tableviewﬁiteratorNrender_cell~start.
CASE p_column_key.
WHEN 'ICON'.
WHEN 'CURRENCY'.

BSP Element Expressions and lterators

IF p_edit_mode IS NOT INITIAL.
ENDIF.
WHEN 'SEATS'.
ENDCASE.
ENDMETHOD.

In the next step, we wish to complete the code for these columns. In all cases,
when we require direct access to the data from the row that is currently been ren-
dered, we use the row reference which we stored earlier using method RENDER_
ROW_START. This is fast, clean, and safe. Specifically, no dynamic programming is
done with this type of access, and the compiler can completely check at compile
time that we are referencing the correct data in the correct format.

For the TCON column, we require a small icon at all times. So an <htmlb:image>
is created and returned as BEE.

WHEN 'ICON'.
p_replacement_bee = CL_HTMLE_IMAGE=>FACTORY (
id = p_cell_id
src = 'ICON_WS_PLANE').

For currency, we are only interested in handling the Edit mode. For this, we want
to render an <htmlb:dropDownListBox>. There are a number of techniques to
fill the data. For this example, we created a name/value table, type TIHTTPNVP, in
the class constructor and already filled it with the currencies that we support. A
reference to this table is stored in class's attribute m_currencies_ref (ABAP
statement GET REFERENCE OF var INTO ref).

WHEN 'CURRENCY'.
IF p_edit_mode IS NOT INITIAL.
p_replacement_bee = CL_HTMLB DROPDOWNLISTBOX=>FACTORY (

id = p cell_id
selection = m_row_ref->CURRENCY
table = m_currencies_ref
nameOfKeyColumn = 'NAME'
name0fValueColumn = 'VALUE').

ENDIF.

For the SEATS column, our work is slightly more complex. For the display part,
we need to show only the final totals of the form "Occupied/Max." The work boils
down to calculating the values for the current row that has been rendered, and
placing them into a string. An <htmlb:textView> is used to render the string. It
is important to note that this display was not selected to be functionally perfect,
but rather to have a little complexity in order to show data manipulation directly

Table View Iterators

223

against the selected table row. For this reason, the achieved layout is not really
recommended.

The code for edit mode is only slightly more complex. For this example, we will
show all three values directly inline, each in its own input field. The complete
coding consists of creating three <htmlb: inputField>, and using a table BEE to

build them into one expression.

WHEN 'SEATS'.
IF p_edit_mede IS INITIAL.
DATA: max TYPE string, occ TYPE string,
value TYPE string.
max = m_row ref->seatsmax + m_row_ref->seatsmax_b
+ m_row_ref->seatsmax_f.
oce = m_row_ref->seatsocc t m_row ref->seatsocc b
+ m_row_ref->geatsocc_f.
CONDENSE: max, occ.
CONCATENATE occ ~ / ° max INTO value.
p_replacement_bee = c1_htmlb_textview=>factory!(
text = value).

ELSE.
DATA: if_first TYPE REF TO cl_htmlb_inputfield.

if first = c1_htmlb_inputfield=>factory!
id = p_cell_id 1id_postfix = '_first!
type = 'INTEGER' size = '&').

if first->value = m_row_ref->seatsocc_T.

DATA: if_bus TYPE REF TO ¢l _htmlb_inputfield.
if bus = cl,,htmlb#inputfield=>factory(

id = p_cell id id_postfix = ' bus'

type = 'INTEGER' size = '4').

if _bus-Pvalue = m_row_ref->seatsocc_b.

DATA: if econ TYPE REF TO cl_htmlb_inputfield.
if_econ = cl_htmlb_inputfie1d=>factory(
id = p_cell_id id postfix = ' _econ'
type = 'INIEGER' size = '4').

if econ->value = m_row_ref-D>geatsocc.

DATA: seats bee TYPE REF TO cl#bsp_bee_tableA
CREATE OBJECT seats_bee.

=24 RSP Element Expressions and Iterators

seats_bee->add_html(html = 'Ctabler<tr><td>!').
seats_bee->add(level = 3 element = if first).
geats_bee->add_html{ html = 7 {/td><ed>).
seats_bee->add(level = 3 element = if bus).

seats_bee->add_html(html = 1/ ed><edd>),
seats_bee-Y>add(level = 3 element = if econ).
seats_bee-Yadd _html(html = {/td><{/tr></tabled").

p_replacement bee = seats_bee.
ENDIF.

In the code above, there are three important aspects. The first is that the FACTORY
parameter 1d_postfix is used to create new IDs for each input field relative to
the supplied cell id. The postfix string is appended onto the supplied ID by the
factory method. The other significant aspect is that value is not set during the fac-
tory call. It is not possible to supply INT4 values to STRING parameters. The values
are set directly after the factory call in order to use ABAP MOVE conversion seman-
tics. This way of initializing a BSP element is completely acceptable. Finally, we
had to use a small amount of HTML around the input fields in order to align them
correctly within the cell.

10.2.5 Finished Output

The finished output, shown in Figure 10.7, is just what we expected.

Srat
1141712004 42294 | United States Dollar

1241512004 422,94 {United States Dollar
01422005 422,94 {(Internal) United States Dollar (5 Dec.)

02/0912005 42294
03/09/2005 42294
04/06/2005 42294 “ietnamese Dong
050442005 42254 |vanuetu Vatu
06/01/2005 422.94 {Samcan Tala
06/28/2005 42294 ; USD

07/27/2005 42294 j USD

U istan Som
Venezuelan Bolivar

747-400 413 1437

747-400 D /437

Figure 10.7 Final <htmlb:tableView> Version

Nearly alf the work for rendering cells, in both display and input mode, is done by
the <htmlb:tableView>. We only had to add about 100 lines of code to get the
special cases rendered correctly. Using BEEs and the table-view iterator together
greatly enhances the final rendering. This can be considered a critical part of any
BSP programmer's toolbox.

Table View lIterators

225

11 Creating your own BSP Extension
Element

We already have seen in the last few chapters how powerful the BSP
Extension Framework is. Fortunately, this is also an open technology
framework that allows SAP's customers to build their own BSP exten-
sfons and to combine existing extensions to create composite ele-
ments.

111 Creating a BSP Extension Element

In Chapter 9, we took a close look at how BSP extension elements are structured
in order to better understand how to use them. However, this only scratched the
surface of what lies within the BSP extension element. Before we begin the pro-
cess of writing our own elements, it is important to study in detail the most
important part of an extension element: its element-handler class.

11.1.1 Extension Framework Hierarchy

The element-handler class actually represents an inherited hierarchy of class
objects that all come together to form the extension framework. It is important to
build this inheritance hierarchy correctly, because much of the functionality we
will code within our handler will be placed inside of redefinitions of inherited
methods.

The core extension framework comprises two objects, TF_BSP_ELEMENT and CL_
BSP_ELEMENT. IF_BSP_ELEMENT defines all the core methods and attributes for
the extension framework. CL_BSP_ELEMENT implements the IF_BSP_ELEMENT
interface and provides the basic functions that support all BSP extension ele-
ments.

There are two more objects within this hierarchy, both specific to the individual
extension element. The first is a generated basis class, usually created with the fol-
lowing naming standard:

(7)CLG_<EXTENSION>_<ELEMENT>

This class is automatically generated by the BSP development environment. When
you define attributes for your extension element inside the BSP extension editor,
these attributes will be generated as public attributes of this basis class. This class
should also inherit from CL_BSP_ELEMENT and provide the specific constructor
for the element. By dynamically generating this class, all the attributes of your ele-
ment can be strictly typed and checked at compile time.

Creating your own BSP Extension Element

227

The final object is the core handler class itself. it should inherit from the generated
basis class, and its name is completely user definable. However it is probably good
form to following a naming standard such as the following:

(Z)CL_CEXTENSION> <ELEMENT

This class is where you will be speriding most of your time as an element author.
This class has the method redefinitions and any specific methods or attributes
needed to implement the element.

11.1.2 User-Defined Validation

BSP extension elements are unique among the ABAP language tools in their
approach to input validation. The extension runtime gives you the opportunity to
code different validation routines that will be executed at runtime and compile
time. That means that the syntax check of a BSP page will fire validation code that
you can write. This gives you the ability to throw compiler errors for your own

elements.

In order to implement user-defined validation, we must redefine two methods in
our handler class that were inherited down from TF_BSP_ELEMENT.

The first method is COMPILE_TIMFE_TS_VALID. This is where we will code our
compile time checks. SAP provides a series of validation methods (in class CL_
BSP_ELEMENT_CT_ATTR_VALID), which assist in this process. In addition to pro-
viding simple checks, these methods also properly convert attribute-input string
values into Boolean and integers values where necessary.

What follows are coding examples for the validation routines of a fictional BSP
Extension Element. They contain common types of checks in order to demon-
strate the different possible techniques.

METHOD if bsp_element~compile. time_is_valid

validator->to_enum(name = 'Color’
ecnums = 'RED/BLUE/GREEN').
validator->to_enum(name = 'alignment'
enums = 'LEFT/RIGHT').
validator->to_boolean(name = ‘'disabled').
validator->to_integer(name = 'size').
valid = validator->m_all values_valid.
ENDMETHOD .

We also have the method RUNTIME_IS_VALID. This method is useful for checking
attribute values that are supplied dynamically, such as through BSP expressions

228 Creating your own BSP Extension Element

(<%=...%>) only at runtime, or for attributes whose values are transformed into
another data type.

METHOD if_bsp_element~runtime_is_valid.
get_class_named_parent(
class_name = 'CL_HTMLB_CONTENT' 7.

IF runtime_parms = '/*/' OR runtime_parms CS 'alignment"'
alignment = m_validator->to_enum(
name = 'alignment'

value = alignment
enums = 'LEFT/RIGHT'
required = sgpace).

ENDIF.
IF runtime_parms = '/*/' OR runtime_parms CS 'disabled'.
disabled = m_validator ->bindable_to_boolean(

name = 'disabled'

value = disabled
binding path = _disabled
page_context = m_page context).

ENDIF.
IF runtime_parms = '/*/' OR runtime_parms (S 'gize'.
size = m_validator->bindable_to_integer (
name = 'size!'

value = gize

binding path = _gize
page_context = m_page_context).
ENDIF.
ENDMETHOD .

The first line in the runtime validation method checks that this BSP element is
used with an <htmlb:content> element. It is not possible to check this at com-
pile time, as different elements can be used in different views, and these are com-
piled separately. We surround each of our dynamic value checks with an IF check
for performance. That way we only perform validation routines on attributes that
actually have values set dynamically.

Itis important to note that these two validation methods will only be called if the
User-Defined Validation option is selected in the BSP Element Properties. That
way, if you have no validations that you wish to perform in your element, you can
save the time that it would have taken for the framework to make calis into simply
empty methods.

Creating a BSP Extension Element 229

230

11.1.3 Element Content

Three methods in our element-handler class control the flow of creation of ele-
ment content. They are DO_AT_BEGINNING, DO_AT_ITERATION and DO_AT END.

DO_AT_BEGINNING is always accessed by the runtime at the beginning of the efe-
ment processing. You can control-the flow of processing after DO_AT_BEGINNING
by setting the return parameter RC. If your processing is simple and only requires
logic in the DO_AT_BEGINNING, you can set RC to CO_ELEMENT_DONE. Processing
is then completed and returned to the BSP runtime. However setting RC to CO_
ELEMENT_CONTINUE will allow processing to move on to the body of the element.

This means that all inner tags are given the change to render themselves. A small
example might be that within a tabstrip there are many {lib:tabStripItem>
elements. But, only one tabstrip item is required and must be rendered. Conse-
quently, each item checks whether it is active and visible. Those that are not
active are set rc to CO_ELEMENT_DONE to skip the processing of all inner ele-
ments, as this not needed for rendering. Only the one active tab strip item will
actually continue with processing of its inner tags to generate the required HTML.

If the option Iteration Through Element Content was selected in the element
properties screen, the method DO_AT_ITERATION can be called following DO_AT_
BECINNING. This method allows the element handler to make several passes over

its inner content.

The method DO_AT_END is accessed after all other processing is completed. At this
point, all the element content is available and can be further manipulated. This
method is especially useful for BSP elements that contain inner elements.

The combination of DO_AT BEGINNING and DO_AT_END methods are very similar
to the structure of basic HTML. They are most useful for their ability to render
before and after their inner content.

Let us assume the following example:

<htmlb:link href="http://www.sap-press.com"
SAP PRESS
{/htmlb:1link>

In this example, the DO_AT_BEGINNING method of the <htmlb:link> element
will render out the HTML and then
set CO_ELEMENT_CONTINUE.

This causes the runtime to process the inner body, which in this case only outputs
the string “SAP PRESS". Thereafter, the DO_AT_END method is called, which corre-
sponds very much to the end tag in HTML. This method will render out the HTML

Creating your own BSP Extension Element

{/a> sequence. Here the two methods very much reflect the way that HTML is
structured with leading/trailing markup, allowing for efficient rendering.

11.2 Writing a Composite Element

Very often, we find the same pattern repeated on some or all of our BSP pages.
Although such coding can be easily placed on all pages with cut-and-paste pro-
gramming, it quickly becomes tedious and error-prone. Modifications suddenly
require code updates over all BSP pages.

One approach to this problem, is to place the specific pattern into a page frag-
ment and simply include it on every page where required. This has the advantage
that changes are only required once in the page fragment. However, it still has the
disadvantage that the code inside the page fragment is expanded inline into each
BSP page. This increases the size of each page and can result in a GEN_
BRANCHOFFSET_LIMIT error when generation limits are reached.

11.2.1 Designing a New Composite Element

What we most would like to have is a principle of composition. Usually these reus-
able patterns are just a collection of HTMLB elements. Would it not be nice if we
could combine such a collection into one composite element? Well, we can, by
creating our own BSP Extension Element.

Let us first look at an example application that could benefit from a redesign with
composite elements in mind. This example shows the typical process of navigat-
ing back and forth inside a simple form. Normally, this can be done by using the
<htmlb:button> element, with the new previous and next designs. Let us
assume that we would like to place two navigation buttons at the bottom of each

page.

..body comes here...

Wage in-1 ||Page In+1 -¥

@ Done | } - ‘ i‘} Local intranet

Figure 111 Composite Element Example

{%@extension name="htmlb" prefix="htmlb"%»>
{%@extension name="phtmlb" prefix="phtmlb"%>
<htmlb:content design="design2003">
<htmlb:page>

Writing a Composite Element

231

ann

<htmlb:form
...body comes here...
{phtmlb:horizontalDivider hasRule = "TRUE"
separationfeight = "LARGE" />
(phtmlb:matrix width = "100%" >
{phtmlb:matrixCell hAlign = "RIGHT" />

<htmlb:button text "Page In-1"
design = "PREVIOUS"
onClick = "pageIn-1.bsp" /7
<htmlb:button text = YPage Intl"
design = "NEXT"
onClick = "pagelntl.bsp" /7

{/phtmlb:matrix>
{/htmlb:form>
{/htmlb:page>
{/htmlb:content

The goal is to replace this entire navigation rendering with one simple element.
The expected final code on each BSP page would then be:

(h@extension name="htmlb" prefix="htmlb"%>
{(Y@extension name="ybook" prefix="ybook"%>
¢htmlb:content design="design2003">

<htmlb:page?

<htmlb:form

...body comes here...
{ybook:pager prev = "Page In-1" next = "Page Intl" />

</htmlb:form>

¢/htmlb:page>
¢/htmlb:content?

We want one element that takes a previous and/or next attribute with the text to

display. As we are slightly lazy in this example, we assume that pages are named
exactly the same as the descriptive text, except that they are without spaces, and

terminated with our typical .bsp extension.

The definition in the workbench, transaction SESO, of the new BSP element is
quickly done. 1t has only two string attributes. Once this BSP element has been
defined and activated, the above example BSP page will actually compile and run.
It will just not yet render any output.

Creating vour own BSP Extension Element

85P Element Ipager Active

Previous/Next Navigation

Shaort Description

Element Handler Class

¥YCL_BSP_BOOK_EXTENSION PAGER

Generated Basls Class

ZCLG_YROOK PAGER

Elernant: content
OData
@ Blank

Attribute 3 B ITypIng ... 1Associated Type
mext |30}t Tyee BisTRING
prev OO O]t Tyee @j$TRING

Further options
"PAGE DOME" is not returned at end of BSP elernent

Figure 11.2 BSP Element Properties and Attributes

11.2.2 Processing Other BSP Elements

Now that we have defined our new {ybook:pager> element and already written
the test program, it is time to complete the code for the composite element itself.
Before processing other elements, it is important to understand how elements are

processed on BSP pages. It is only possible to use existing BSP elements within
our new element in this way.

A BSP element is written on a page using an XML format. As a first step, the BSP
compiler must map the XML name onto a specific handler class. This class name
can be seen in the workbench, when looking at the BSP element. The compiler
generates code to create a new temporary variable to hold the reference to the
handler class (data: statement), and then to create an instance of this BSP ele-
ment-handler class. Next, the compiler generates the source code to initialize
each attribute with its specified value. Finally, the BSP element is pushed onto a
stack, which contains all elements that are currently in process, and the do_at_
beginning method is called.

DATA: %_e123 TYPE REF TO CL_XYZ_FLEMENT.
CREATE OBJECT %_e123.
%_e123-2 Al = Vi'. f
<xyz.element Al = "Vi"> push(%_e123).
%_e123-=DO_AT_BEGINNING().
DO
body of element .body of elemert ..
LWHILE %_e123-20D0_[TERATION().

<hyZ element> % 8122-500_AT_END()

pop(%_e123)

Figure 1.3 Element Processing Flow

Writing a Composite Element

233

In the simplest case, the element has no body or is defined as empty. In this case,
the do_at_end method is called directly afterwards. If the element has a body, it
is processed between the two method calls. It is also possible for the BSP element
to request that the body be skipped, for example if you have an inactive tabstrip
body. In the most extreme case, the BSP element can request that it reiterates
over its body, which results in the body being processed as long as the do_ite-
ration method requests that this be done.

In principle, it is difficult to know the exact code required to process each specific
BSP element. It can also happen that, the BSP element is changed over time, and
then has a different execution sequence.

You can break down the element-processing parts into the following phases.

p Each BSP element is first instantiated, and then its attributes are set correctly.
This coding is very specific for the BSP element and will be different for each
one.

» Thereafter, preamble coding is required to get the element onto the stack and
process the do_at_beginning method call. This generic code is the same for
each element.

» The body is processed. The body depends completeiy on the element being
used. It can contain more BSP elements, or even raw HTML code can be ren-
dered.

» More coding is required either to complete the processing of the BSP element,
or to set it up correctly for a new iteration.

Specifically the fact that a BSP element can iterate over its body implies that some
form of loop will be required. In addition, framework coding is required before
and after the body to ensure correct processing. In order to encompass all these
aspects, the following processing model was designed:

. user written factory and attribute initialization code ...
WHILE m_page_context->element_process(the _element)
= CO_ELEMENT_CONTINUE.
. body of element ...
ENDWHILE.

This approach leaves the programmer the freedom to initialize the specific BSP
element correctly. Thereafter, only one WHILE construct is required to process any
BSP element in any of its variations. The element_process method will be called
as many times as required to ensure that the BSP element is processed correctly.

234 Creating your own BSP Extension Element

Important Do not attempt to process BSP elements any other way! Such an

attempt will fail, and it will not be supported by SAP. This WHILE construct is
the only correct method. ‘ e :

Let us now look at a few detailed examples of processing existing elements. For
our first example, let us assume that we have the following code on our BSP page:

<htmlb:button text = "Page In-1"
design = "PREVIQUS"
onClick = "pageln-1.bsp" />

Then the correct code to process this <htmlb:button> dynamically would be:

DATA: myBtn TYPE REF TO CL_HTMLB_BUTTON.

CREATE OBJECT myBtn.

myBtn->text = 'Page In-1"'.

myBtn->design = 'PREVIOUS'.

myBtn->onClick = 'pageln-1.bsp'.

WHILE m_page_context->element_process(element = myBtn)
= CO_ELEMENT_CONTINUE.

ENDWHILE.

The workbench must be used to find the correct class that implements this spe-
cific BSP element.

Alternatively, you can use the factory method that is automatically generated
onto all BSP elements. The benefit of the factory method is that you can double-
click on it to see the exact list of required parameters, and the ABAP language
compiler is used to enforce required attributes.

DATA: myBtn TYPE REF TO CL_HTMLB_BUTTON.
myBtn = CL_HTMLB_BUTTON=>FACTORY (text = 'Page In-1'
design = 'PREVIOUS'
onClick = 'pageIn-1l.bsp').
WHILE m_page_context->element_process(element = myBtn)
= CO_ELEMENT_ CONTINUE.
ENDWHILE.

Now let us ook at a slightly more complex example. Assume that we are using an
<htmlb:link> element that contains, as body, both an <htmlb:image> element
and normal text. The source code on a BSP page would be:

<htmlb:link id = "lnk" reference = "http://www.sap.com" >
<htmlb:image src = "logo.gif" />

Writing a Composite Element

235

236

SAP
{/htmlb:1link>

To process this sequence dynamically, the correct coding would be:

DATA: myLnk TYPE REF TO CL_HTMLB_LINK.
myLnk = CL_HTMLB_LINK=>FACTORY(id = 'Ink'
reference = 'http://www.sap.com').
WHILE mﬁpage_context—>e1ement,process(element = myLnk)
= CO_ELEMENT_CONTINUE.

DATA: mylmg TYPE REF TO CI,_HTMLB_IMAGE.
nyTmg = CL_HTMLB_IMAGE=>FACTORY (src = 'logo.gif' J.
WHILE m_page_context»>e1ement_process(

element = mylmg) = CO_ELEMENT_CONTINUE.
ENDWHILE.

DATA: out TYPE REF TO IF_BSP_WRITER.
out = m_page context->get outl).
out->print_string('SAP').

ENDWHILE.

The WHILE loop to process the <htmlb: image> Is placed inside the WHILE loop of
the <htmlb:1ink. This reflects the fact that the image is part of the body of the
link. In addition, text or raw HTML can be rendered as body of an element being
processed. This is done by obtaining a reference to the active writer at the top of
the stack and writing the relevant text.

Do not attempt to cache this writer reference. In all cases, always do the get_out
call again after any element_process call. It is always possible for any new ele-
ment on the stack to also push an additional writer onto the stack. The get_out

call always returns the active writer.

In later support packages, there is a helper method called print_string that
should be inherited from the super class CL._BSP_ELEMENT. This method already
contains the logic to correctly retrieve the writer reference, allowing you to sim-
plify your coding. In the example above, you could replace the text output with
the following single line of code.

print_string("SAP').

Often, while writing the code to process a BSP element dynamically, you get
weird error messages from the compiler. For example, the code snippet below
produced the error "Field WHILE unknown."

Creating your own BSP Extension Element

* <htmlb:image src = "logo.gif" />
myImg->src = "logo.gif".
WHILE ...

The reason for this is very subtle. Inside BSP elements, strings are written usin
XML syntax with double quotes. Typically, code is cut-and-pasted from BSP pa, e{i
directly into an ABAP class for the processing sequence. However, the doub%e—
quote character in ABAP starts a comment sequence that extends uplto the end of
the line. So, in the above source, the ABAP compiler will see myImg->src =
WHILE.

The correct coding is:

* <htmlb:image src = "logo.gif" />
mylImg->sre = 'logo.gif'.
WHILE ...

11.2.3 Writing the Composite BSP Element

We already defined a test page that shows us the required rendering. Further-
more, we defined a new BSP element. As this will be an empty BSP element, we
redefine only the do_at_beginning method and paste the code from the'test
page into this method. The code changes become straightforward, given the
examples above.

Below is an extract of the code.

METHOD if_bsp_element~do_at_beginning.
{phtmlb:horizontalDivider/>
* {phtmlb:matrix width = "100%" >
DATA: phtmlb_matrix TYPE REF TO cl_phtmlb matrix.
phtmlb_matrix = cl_phtmlb_matrix=>factory(
width = '100%").

WHILE m_page_context*>element_process (

element = phtmlb_matrix) = co_element_continue.

* <{phtmlb:matrixCell hAlign = "RIGHT" />
phtmlb_matrix->mc_halign = 'RIGHT'.
phtmlb_matrix->do_set_data(

element_name = 'matrixCell"’).

. prev button ...
gpace between two buttons
me->PRINT_STRING(' ').
. next button ...

Writing a Composite Element

237

* (/phtmlb:matrix’
ENDWHILE.
* Set return code to dome (empty element)

rc = co_element_done.
ENDMETHOD .

Notice the use of a WHILE statement around the code that represents the body of
the <phtmlb:matrix>. Another important fact: When a very small piece of raw
HTML is required, we obtain the active writer at the moment that we require it.

We have not yet explained the do_set_data call.

11.2.4 Handling of Inner Data BSP Elements

Often we will find constructs where child BSP elements are used to feed informa-
tion into the parent BSP element for later rendering. A typical example is

<htmlb:breadCrumb>.

¢htmlb:breadCrumb id = "myBreadCrumb0">
<htmlb:breadCrumbItem key="k1l" value="textl" />
(himlb:breadCrumbItem key="k2" value="text2" />
<htmlb:breadCrumbItem key="k3" value="text3" /7
{/htmlb:breadCrumb>

Each item has only stub code for finding the parent and supplying the configured

parameters:

METHOD if bsp_element~do_at_beginning .
DATA: breadcrumb TYPE REF TO ¢l _htmlb_breadcrumb.
breadcrumb 7= get_class_named_parent(
"CL_HTMLB_BREADCRUMB').
breaderumb->append item(
key = key
value = value).
rc = co_element_done.
ENDMETHOD .

However, for each item on the BSP page, code must be generated to instantiate a
new <htmlb:breadCrumbItem>, setits attributes, and then to process the ele-
ment. This is very high overhead for simply adding additional configuration infor-
mation to the parent item. To improve the performance for this typical usage pat-

tern, a new BSP element of type Data was created.

Effectively, the name of the parent handler class is specified for the new BSP ele-
ment. The BSP library generator will then place all the attributes of the data ele-

238 Creating your own BSP Extension Element

ment onto the parent element, using the camel-case abbreviation of the name as
key to prefix the attributes. For example, for <phtmlb:matrixCell), the camel-
case abbreviation will be mc_. The <{phtmlb:matrixCell> has at least two
attributes: col and row. For these defined attributes, new attributes mc_col and
me_row are generated on the handler class of the parent.

BSP Element

1mau:ixCell | Active

Short Description Matyix LayoLt Cell R
CL_PHTHLB_MATRIX | '

Generated Basis Class |

Elernent Handler Class

Element: content -
®Data ’

Figure 1.4 DATA BSP Element Type

When the {phtmlb:matrixCell> is used on a BSP page, the BSP compiler keeps
a list of the surrounding BSP elements. it sees that {phtmlb:matrixCell> isa
data element attached to the class ¢1_phtmlb_matrix. As aresult, the following
code is generated:

% matrix_6->mc_col = 1.

%_matrix_6->mc_row = 2.

% matrix_6->DO_SET_DATA(element_name = 'matrixCell"').

The %_matrix_6 is the outer instance of type <{phtmlb:matrix>. The attributes
are set on the parent class, and the DO_SET_DATA call is placed, giving the name
of the actual data element being processed. This way, data can be moved into the
parent element with better performance.

11.3 A Deeper Look at BSP Extensions Events

11.3.1 Introduction to BSP Extension Events

HTML/HTTP does not support the concept of server events. At the lowest level,
the only building block that is available is forms in HTML, which can be submitted
to a server. When a form is submitted, all input fields—including hidden input
fields—are transported to the server. Therefore, event-handling in the browser is
reduced to setting up specific predefined input fields, usually type="hidden",
with values that reflect the event to be sent to the server, and then submitting the
form.

A Deeper Look at BSP Extensions Events

239

L ——

240

When using the HTMLB family of rendering libraries, it is very seldom that any
raw HTML is required. The rendering libraries already have sufficiently extensive
sets of controls. However, once some HTML is required, you are immediately
faced with a few perplexing problems. One is the question of transporting events
from the browser to the server.

<htmlb:form id="myform" >
{input type="hidden" name="s event_id" value ="TEST"/>
{SCRIPT language="JavaScript">
function myEventHandler{(event_id) |
document.myform.s;event_id.value = event_id;
document .myform. submit {); !
</SCRIPT>
<{button id="Test"
onclick="myEventHandler(‘button_clicked');">
Submit! </button>

Event = <%= server_event_id %>

{/htmlb:form>

Listing 111 Triggering a "Server Event" via the HTML form submit

The HTMLB library comes with its own event-handling system, which also
includes a large piece of JavaScript code. If native HTML code, such as the code
listing above, is added on a page that bypasses the HTMLB event system, the
HTALB library could be negatively affected.

One typical example is the <xhtmlb :protectDoubleSubmit> element. Thisitem
hooks into the HTMLB event system in the browser and will display a wait mes-
sage once an event is sent to the server. Therefore, it is helpful for other library
writers, and for people writing native HTML, to use the HTMLB event system for

their event handling as well.

11.3.2 Rendering Events

During rendering, each element might require one or more events. This is usually
done by wiring the HTML onClick attribute with some JavaScript code that will
handle the event. This specific, required JavaScript code is obtained by a call to
the method ¢1_htmlb_manager=>render_event_call.

This method will return a sequence of JavaScript code, which consists of one or
more calls to the different JavaScript functions that are available for event han-
dling in the browser. The output of this method is for internal use only. This out-
put has been improved a number of times. Do not try to concatenate this Java-

Creating your own BSP Extension Element

Script output together directly, as this will cause problems if the underlying
event-handling code is modified.

Rendering Phase:

<htmlb:button id="myBtn" onClick="button_clicked"/>
. CL_HTMLE_BUTTON
event = CL_HTMLB_MANAGER=D>RENDER EVENT CALL{...).
. render onclick="htmlbSubmitLib{...)"

In the above examples, the JavaScript function htm1bSubmitLib is shown. How-
ever, the exact call that will be generated depends on a number of factors, for
example whether a client-side event is also involved, or whether the event is
listed in a predefined dictionary. Consider the output of the RENDER_EVENT_CALL
method as a black box.

In the browser, once a control event is triggered, the JavaScript code in the
onClick handler is executed. This code calls the defined JavaScript code, which
packs the relevant event information into hidden input fields and then submits
the form:

In Browser:

1. User clicks on button
2. onclick is triggered, calls htmlbSubmitLib(...)
3. Sets up a number of input fields with correct values

4. Calls form. submit () ;

RENDER_EVENT_CALL Method

The render_event_call can only be used within a BSP element. One of the
checks that this method does is to see if it is used within an HTMLB form. This is
verified by checking the processing stack of all BSP elements, looking for an
<htmlb:form> element. This method has a relatively complex interface that is
discussed below in detail.

Parameter Name Description

bsp_element IF_BSP_ELEMENT This is the actual element that is rendering the event. From
this interface, the library name, the element name and the
ID will be used for event-rendering. The first two values are
generated into the base class of the element. The ID string
must be set by the element.

Table 114 Parameters of Method RENDER_EVENT_CALL

A Deeper Look at BSP Extensions Events

241

242

Parameter Name

event_type STRING

server_event STRING

client_event STRING

client_event;inlined XFELD
Default SPACE

event_defined STRING
Default 'null’

param count I

param_string STRING

param_1 ... _9 STRING

Description

This string indicates what type of event was fired by the ele-
ment. Typically, a button could fire a click event, a pager
could fire page up or down events, and a table could fire a
row-select or header-click event. This string has no further
meaning for the HTMLB event system, and is transported
transparently.

This string is defined by the user of the element for the
event. A typical example would be to write <htmlb:butten
onClick="myHandler"/>. This string can contain informa-
tion to help the user to handle the event correctly. This
string has no further meaning for the HTMLB event system,
and is transported transparently.

“This string fefiects the typical onClientClick attribute used

on many elements. It must contain valid JavaScript code that
will be executed in the browser. This string is not returned to
the server. At a minimum, one of the server or client events
must be specified. Otherwise, no event-handling code will
be generated.

Initially, it was up to the control to render out a JavaScript
function that had a predefined name containing the client_
event code. However, during HTML-parsing, small Javas-
cript functions cause a high overhead for the HTML-render-
ing. Thus, the inline flag leaves the rendering of the JavaS-
cript code to the HTMLB manager class. It only creates a Jav-
aScript function if this event should actually be triggered.
We highly recommend that you set the value always to "X".

Many events require a minimal string tc contain additional
information for the event. instead of using additional param-
eters, you can use this one string for carrying the informa-
tion. This string has no further meaning for the HTMLB
event system, and is transported transparently.

Number of parameters that will be transported in this event.
This value must be set correctly for the render_event_call
method.

A comma-separated string of parameters (strangely starting
with a commal). This list of parameters is copied verbatim
into the generated event handling function. It is also possi-
ble to imbed the names of Javascript variables in the event -
parameter string with this format, which is then automati-
cally used during the event-handling.

An alternative option is to specify the param_string string
as single parameters from param_1 to param 9. The parame-
ters are copied together during the rendering of the event. If
the parameters are supplied individually, each parameter is
considered to be a constant string, and will be rendered
with quotes.

Table 113 Parameters of Method RENDER_EVENT_CALL (cont.)

Creating your own BSP Extension Element

Parameter Name Description

return_value STRING

to keep event- bubbling in mind. One typical instance

occurs when an anchor is used to render a control. If the .

onclick does not return false, the <a href> will be triggered

as well. By default, all JavaScript contains a "return falge"

as the last instruction. This parameter can be either true or

false to set the value to be returned, or blank to prevent the

rendering of a return value. This is unfortunately a very com-
plex aspect of HTML rendering; when in doubt, leave the
default value. '

Table 111 Parameters of Method RENDER _EVENT_CALL (cont.)

11.3.2 Handling Incoming Events

On the server, the event-handling system will look at the incoming HTTP request.
If it detects form fields with well-known names, for example all HTMLB element-
event input fields having a prefix htmlbevt_, it will signal an HTMLB event. The
runtime then unpacks the relevant fields into an event object.

On Server:

event = CL_HTMLB_MANAGER=>GET_EVENT EX(request)

» ... examines HTTP request for fields matching htmlbevt *

» ... creates event object c1_htmlb_button, unpacks fields

This action of unpacking the relevant fields into an event object is done by the
class ¢1_htmlb_manager. It will map the event onto the correct class, which is by
default the same class used for rendering the BSP element. It instantiates a new
copy of this class and then does a query for the 1f_htmlb_data interface.

The method event_initialized will be called with all the standard attributes of
an HTMLB event. The values are restored onto the event attributes defined on the
interface if_htmlb_data. The last call will be to event_set_parameters with
all additional parameters that were available in the incoming HTTP request. These
are also restored into the class attributes.

11.3.4 Rendering an Event via the <bsp:htmlbEvent> Element

It is useful to understand the way to directly interact with the CL_HTMLB_MANA-
GER=>RENDER_EVENT_CALL method if you are going to create your own custom

BSP elements. This method call can be included in the rendering code of your
ABAP class.

A Deeper Look at BSP Extensions Events

'I<e§3p fn mind that the actual génerétea ‘)a‘va;Scrip')tJ is “pzl‘ac;ed
inside an HTML onclick sequence. In HTML, itis importaht .

243

244

What if you simply want to render an event in-line in your BSP page and attach it
to some standard HTML or another BSP Element? For this task, SAP provides the
<bsp:htmlbEvent> element. This element can either return the event JlavaScript
code for later use, or it can generate a JavaScript function that, when called, will
fire an event back to the server.

For example, the control can be used as:
<bep:htmlbEvent name="fireMyEvent" pl="a" p2="b" />
It will write into the output stream the following:

{scripty function fireMyEvent(a,b) {...} {/script>

This function can now be called directly from HTML or JavaScript:

{button onclick="return fireMyEvent ('myButton'. 123)">
myButton</button

With this design, it is actually possible to use the HTMLB event system, without
even knowing what is rendered out. The ¢bep:htmlbEvent> element renders
out a wrapper function that can be called directly, and it even allows additional
parameters to be transported.

Another approach is to request that the <bsp ‘htmibEvent? element return the
JavaScript code for direct use. By flagging an attribute on the element as a refer-
ence attribute, it will get a reference to a local variable, and then can write back
the information. In the example below, event_code will be updated by the
(bsp:htmlbEvent> element with the final generated JavaScript code, and the
code can now be used directly intine when writing HTML.

<% DATA: event_code TYPE string. %>

¢bsp:htmlbEvent event_defined="myBtn2"
event_code="<%=event_code%>" />

{button onclick = "<%=event,_code%>">myButton2</button>

11.4 Event Handling in Composite Elements

Earlier in this chapter, we built a composite element, but you may have noticed
that the example did not fire any events and was not tied into the HTMLB event
manager. Now that we have studied the HTMLB event manager in detail, we are
ready to return the earlier example and improve it by changing the fired
¢htmlb:button) events into real native events from this element. In addition,
we will add support for a data interface.

Creating your own BSP Extension Element

11.4.1 Extending the Design of the Composite Element

As the names of all IDs and events used in the previous example were hard coded,
it was not possible to use two pagers on the same HTML page. For example, this
could be interesting in scenarios where a split screen showing two logical inde-
pendent sequences is used, and can be paged separately. Thus, we need to begin
our enhancements by adding an 1D attribute

In addition, one never knew what the current page was. The pager only handled
the previous and next pages. We will also add a current attribute, which is the
name of the current page. This will also be rendered left-aligned on screen.

Last, we are adding an onPage attribute to allow us to configure the event han-
dler that must be called on return. Note that we will have both pagePrevious
and pageNext events. The onPage is just a string that is the user's handie for the
event. Although in most elements we define an onX per event, it is not required.
Using one such onX string for a number of events is perfectly acceptable.

BSP Element lpagerZ lActNe

Attt]

Shart Desctiptian

[Previous/Next Navigation with Events)
[¥c1_B3P_BOOK_EXTEMSION PAGERZJ

z X |
[zcig YEOOR PAGER2 |

Element Handler Class

Generated Basls Class

"Elerment; content — L
OData attribute R D ICa [Bi {Typing me Mssocia,,, Description

| @ s current |]1[J|[0{CJiL TYPE @ STRING T
; 1d [] [0/0%1 TveE B STRING | Eement D ©
F;U.Vthel' e et OO0 Or TreE ASTRIAG ;

| [21"PAGE DONE" is not retirme errage (CIEVEICIR Tore B

| 7 h prev 1010|000 Tyee StsTRING

Figure 11.5 BSP Element Properties and Attributes

As Figure 11.5 demonstrates, we have created a new element for these enhance-
ments so as to keep the older example for reference. But it is also possible simply
to change the original code.

11.4.2 Using the Composite Element

Before we start looking under the hood at the code that will be needed to com-
plete the work, let us first use the new element. This will give us a good idea of
what must be supported. The test program will be similar to that used previously.
We only have to set additional attributes for the element.

Event Handling in Composite Elements 245

246

For each page, we define the following source code:

<htmlb:content design:"design2003"><htmlb:page)(htmlb:form>
...body comes here...

{ybook:pager2 id = "any id string>"
prev = "lname of previous page>"
current = "<name of this page>"
next = "{name of next page>"
onPage = "<name of event handler>" />

</htmlb:form></htmlb:page></himlb:content?

For the onInputProcessing code, we would now like to use code that is similar
to that of the HTMLB library:

DATA: event TYPE REF TO if_htmlb_data.

event = cl_htmlb_manaper=>get_event_ex(request).

IF event IS NOT INITIAL AND event-Yevent_id = 'myPager’.
navigation->goto_page(event-Yevent_defined).

ENDIF.

In addition, the element should support minimal data retrieval, where it is possi-
ble to query the previous, current, and next pages. The typical code for the data
call is:

DATA: pager TYPE REF TO ycl_bsp_book_extension_pager?2.
pager ?= cl_htmlb_manager=>get data(request = request
name = 'ybook:pager2’
id = 'myPager').
* use here pager-dcurrent, pager-’next, pager-’prev

Notice that for the get_data call it is important to also supply the library and ele-
ment name. The HTMLB manager has no other help available to determine the
correct handler class. The library name is not that of the prefix used in the layout,
but the original name under which the library was created. This allows the HTMLB
manager to again determine the correct handling class.

We see from the above coding that we wish to achieve a new pager element that
will work transparently with the HTMLB manager. Any consumer of our new ele-
ment should not be able to see a difference between it and any other standard
SAP-delivered element.

11.4.3 Use of IDs

The first significant aspect is the handling of the element ID. Once we allow the
option that the same element can be used multiple times on the same page, each
must have a unigue 1D. First, the element was given a new required 1D attribute.

Creating your own BSP Extension Element

The pager element itself does not really do any rendering. Primarily, it uses two
<htmlb:button> elements. Each of these buttons requires an ID. This at first was
solved by just hard coding the tD string.

htmlb_button = cl_htmlb_button=>factory(
id =
)

'ybook_pager_next'

With the new approach, we would like to have IDs that are unique and indepen-
dent of the usage count. This goal can be achieved by using the ID of the element
as the basis for creating new 1Ds. All new IDs will typically be of the form <id>_
_Ssub stringy.

This is such a common pattern when building composite elements that the fac-
tory methods were extended to handle the concept of an id, plus a postfix
string that must be attached.

hitmlb_button = cl htmlb_button=>factory(
id = id
id_postfix = '__Previous'

).

htmlb_button = cl_htmlb_button=>factory(
id = id
id postfix =

).

' _ Next'

The factory method will concatenate the 1d and 1d _postfix strings together to
create the new ID for the specific button.

11.4.4 Integrating into the HTMLB Manager

The HTMLB manager interacts with the element-handler class via the 1£_htmlb_
data interface. The interface has four methods used for the data and event han-
dling.

Method Description

RESTORE_FROM_REQUEST This method is called by the HTMLB manager to restore view state
from the incoming request. This is always triggered by the get_

data calf.

EVENT_INITIALIZE The get_event_ex call will result in a call to this interface, with the

event data already decoded. The code has to fill the event_*
attributes of the if_htmlb_data interface.

Table 11.2 Methods of Interface IF_HTMLB_DATA

Event Handling in Composite Elements

247

Method Description

EVENT_SET PARAMETERS Called directly after event_Initialize to set the additional event
parameters pl to p9.

If the HTMLB manager is used to dispatch the event and the target
handler has also implemented at least the if_htmlb_event inter-
face, then this method will be called with the handler object to dis-
patch the event using a typed method call.

EVENT_DISPATCH

Table 11.2 Methods of Interface \F_HTMLB_DATA (cont.)

When implementing these methods, the biggest problem is the interaction
between data and events. For example, assume that we have an <htmlb:group?
element and that the minimize button was pressed. Using only the get_data call,
the view state would actually indicate that the group container is still maximized.
After restoring the previous view state, you therefore must check whether the
incoming event must be applied onto the data. Similarly, if only the get_event_
ex call is used. it is usually practical that the rest of the view state data is also
restored, so that no additional get_data call is required.

For this reason, we always implement the event_iniatilize code to also call
the restore from_request method, thereby simulating a get data call. The
restore from_request code uses the event_id as aflagto determine whether
it is called from the event-handling code, in which case it continues to restore
data, or whether it is triggered from a get_data call, in which case it will use an
HTMLB manager call to apply an event if required.

VMETHOD if htmlb_data~event_initialize.
* Tnitialize event_* parameters
me-»if htmlb_data~event * = ...
* Restore all data from the request
me*>iffhtmlb,dataNrestoreifrom;request(
request = p_request
id if htmlb_data~event_id).
...now apply event onto restored data...

ENDMETHOD.

I

METHOD if_htmlb_data~restore_from request.
* Uge event_id as flag to check whether we also have an
* event. Let it do work.
IF me->if htmlb_data~event_id I5 INITIAL AND
CL_HTMLB_MANAGER:> CHECK_AND_INITIALISE_EVENT (
instance = me

request = request

248 Creating your own BSP Extension Element

event_id expected = id

class_name = m_class_name
) IS NOT INITIAL.
RETURN. " means an event found and restored
* (recursively called here)
ENDIF.
...restore values from request...
ENDMETHOCD.

11.4.5 Data-Handling

We require the pager to be able to restore the values of the previous, current, and
next pages. We must keep in mind that any control on the page can trigger an
event to the server, and thus it is not always possible to retrieve this information
from the event data.

The best technique for storing the view state within an HTML page is to use hid-
den input fields. This information is not rendered and will be returned to the
server when the form is submitted.

The following code is used within the do_at_beginning method to render the
view state into the response, so that it will be returned to the server on the next
request:

DATA: html TYPE STRING.

CONCATENATE
“{input type="hidden" name="" id *__valPrev"
value="" prev Tt
“{input type="hidden" name="" id ‘__valCurrent"
value="" current ~'">°
“{input type="hidden" name="" id *_ valNext"
value="" next LN
INTO html.

print_string{ html).

Notice the use of the ID with sub strings to create new names for each hidden
input field. The values are taken from the current element attributes.

To restore the values, the code below is used in the restore from request
method:)

me->id = 4id.
CONCATENATE me-»>id *_valPrev® INTO name.

me->prev = request-rget_form _field(name).

Event Handling in Composite Elements

249

250

CONCATENATE me->id *_valCurrent’ INTO name.
me->current = request~>get_form_field(name).

CONCATENATE me->id °_valNext™ INTO name.
me-onext = request->get_form_fie1d(name).

Notice again the use of the 1D to compute the actual names of the form fields that
hold the data in the incoming HTTP request.

11.4.6 Event-Handling

Event-handling is slightly more complex. The pager element uses two
¢htmlb:button) elements. As such, when one of these buttons is pressed, a
HTMLE button-clicked event is returned to the server. What we actually want is
to present a pager event.

The problem is that the HTMLB manager has the class ¢1_htmlb_button defined
as handler class for the button-click. We want our new pager class defined as the
handler for these events. For this, the HTMLB manager supports an escape mech-
anism. Usually events are encoded in the HTML in the form:

htmlb:button:click:null

But, it is also possible to add an additional handler classes onto this string, using

“::" as separator sequences.
htmlb:button::lick:null::<handler~class>::<event7defined>

This means that even although a button-click event is received, the newly speci-
fied handler class must be called to decode the event. As it is not possible to con-
figure these escape strings when processing another element, the HTMLB man-
ager will also accept these escape sequences when they are attached to the event-

server name, onX strings.

DATA: htmlb_button TYPE REF TO cl_htmlb button.
htmlb_button = cl_htmlb_button=>factory(

id = id

id_postfix = '__pagePrevious’
text = prev

design = 'PREVIOUS').

CONCATENATE onPage ': :YCL_BSP_BOOK;EXTEI\‘SION_PAGERQ: ot
prev '.bsp’
INTO htmlb_button->onclick.

WHILE m#pagefcontext->element_process(htmlb_button)
= co_element_continue.

ENDWHILE.

Creating your own BSP Extension Etement

In the previous example we have hard-coded the class name. This approach is
simple but can lead to problems if you rename your handler class. If you want to
use the element handler as the event handler, it is best to retrieve the class name
dynamically using the CLG (base) class.

CONCATENATE onPage '::
prev '.bsp'
INTC htmlb_butten-Jonclick.

' me-?m_class name ';::'

Instead of just writing onClick = onPage, we are now adding our YCL_BSP_
BOOK_EXTENSION_PAGER2 class into the escape string to function as the handler
for this specific button-click event. We use our event-defined string to carry the
name of the previous page. With this small change, our handler class will always
be called when one of the buttons is pressed.

For an incoming event, the event_initialize method will be called with the
information about the button click. First, we set up all the event_* attributes.
Afterwards, we would like to map a button-click event onto a pager pagePre-
vious or pageNext event.

Our first step Is to set the new event name to the name of this BSP element
(pager2). As a next step, the ID has to be sct correctly. Remember that the initial
D was post-fixed with a constant string __{direction>. Therefore, we split the
string at "__" to get the original ID again and the event type, which was effec-
tively encoded as a sub string in the 1D.

METHOD if _htmlb_data~event_initialize .
* Copy those parameters which we keep verbatim
if_htmlb_data~event_ id

if_htmlb_data~event_type

if htmlb data~event_class

= p_event_id.
= p_event_type.
= p_event_class.
if_htmlb_data~event_name = p_evert_name.
if_htmlb_data~event_server_name =

p_event server_name.
if _htmlb_data~event_defined

i

p_event_defined.
if_htmlb_data~event_intercept_depth =
p_event_intercept depth.
The pager uses two <htmlb:button> elements. Massage the
evant to be pager cvent.
Event name will be 'button', should be our 'pager2'.
Event Id will be <id>_ pageNext or <id>_ pagePrevious

Event Type will be click from the tutton. The actual value

Event Handling in Composite Elements

251

* we want, was already encoded into the ID before.
if htmlb_data~event_name = me-)m_name.
SPLIT if htmlb_data~event_id AT '__'
INTO if_htmlb_data~event_id
if htmlb_data~event type.
* Regtore view state from the request
if_htmlb_data~restore_from_request(request = p_request
id = if htmlb_data~event_id).
ENDMETHOD .

With the above changes, events are now presented as pager? events, as shown in
Figure 11.6

...body comes here..

Data-ID myPager b

Event-Class vCL_BSP_BOOK_EXTENSION_PAGER2
Event-iD ;nyF‘ager I i
Event-Narng pager2 - i
Event-Type nagePrevious] z
[Event-Semer Name handlePaging
Event-Defined lboois;compnsite_in!ro.BSP - i

B
4. book_composite_irra

book_composite_averview ;

Figure 11.6 Intercepted Events

252 Creating your own BSP Extension Element

12 Additional BSP Extensions

Although a Web AS is delivered with nearly 200 BSP extension ele-
ments, there are a few that stand out as being unique in function or
application. In this chapter, we will examine some of these more spe-
cialized elements.

12.1 Business Text Framework

We begin our examination of these special-purpose BSP elements with the exten-
sion library called Business Text Framework (BTF). This extension exposes a text
editor that represents a considerable improvement over the old SAPscript tech-
nology or plain-text editors.

Unlike SAP's previous versions of text editors, this new editor is not based upon
any proprietary internal format. This new editor is actually an easy-to-use WYSI-
WYG (What you see is what you get) HTML-based editor. Therefore, the docu-
ments produced by this editor are especially simple to integrate into BSP or other
Web-based applications. Such integration makes an excellent foundation for cre-
ating HTML-based emails.

SAP has two implementations of this editor. One is for the use in traditional Dyn-
pro screens via the Control Framework Technology. This editor is accessed via
ABAP class CL_BTF_EDITOR. SAP also has exposed this same editor technology to
BSP pages via the BSP extension BTF, BSP element editor.

Before we even get into this section on the BTF editor, the reader should we
aware that the implementation of the BTF editor is really only fully functional in
the Internet Explorer browser. In other browsers that BSP supports, a simple text
editor exposing the raw HTML tags is displayed instead of the user-friendly WYSI-
WYG editor. The reason for this is that the BTF editor uses proprietary features of
Internet Explorer.

In short, if you are concerned about cross-browser support, then you are proba-
bly going to have to skip the BTF editor. However, if you know you have an inter-
nally facing application that only needs to support Internet Explorer, then learning
about the BTF editor is well worth your time.

12.11 SAP Example

Besides the examples put forth in this text, SAP delivers an exampie BSP applica-
tion named BTE_EXT_DEMO. This example, although limited in scope, does provide

Additional BSP Extensions

253

acA

the basics of loading a document into and retrieving a docu ment from the editor.
Because the editor gencrates HTML code, the example application also demon-
strates how easily the resulting text can be displayed inline in a BSP application.

12.1.2 BTF Functionality

Before we get involved with any code, let us first have a look at the BTF editor in
action and discuss some of its advantages and hidden features.

(((((\
= e=Y N R E
[TimesNewRoman@f ﬁ BZU Tgly

Please add new training 1oge on sne training FRELA T84 at sign on time !
Polish: 1632%55KAS2ZZ Thai: 07997wMB) Chinese: AR Bt 8]

e items

sdfasdfsadffsdf W[

Figure 124 BTF Example

A
H
4
Russgian: ¢manka ;
{
it
14
3

BTF Toolbar

Going through the user interface icons, you get an idea of the basic functionality
of the BTF editor. The first button (which can be hidden by an attribute) allows
the user to swilch back and forth between the WYSIWYG editor and a raw HTML

code editor. This is a nice feature to expose in case you have users who aren't
scared off by HTML.

Next, we have a Print icon. This allows us to print the contents of the BTF editor
using the user's PC. This means that the list of printers users will have to choose
from, will be the ones installed on their dient machines, not your SAP server
printers. It is possible to use the BTF editor in display-only mode, just so you can
expose this print functionality.

Next come the expected Cut, Copy, and Paste functions. Because this is a HTML
editor, the ability to paste in elements from other richly formatted Jocations is
quite powerful. You can even copy and then paste in links to images from other
Web-based sources.

This is followed by a Find and Replace feature for mass editing. For the last icons

on the first bar we have an Upload and Download function. This is again a nice
feature that you wouldn't necessarily expect in a Web-based HTML editor.

The second row gives us the tools we will need to control the text formatting and
alignment. We have basic text formatting, such as Font, Size, Bold, ltalics,
Underline, Text Color, and Background Color.

Additional BSP Extensions

Next up, we have a set of buttons that allow us Lo set the Text Justification (left
centered, right, and full). Finally, we have four buttons for setting up lists. The ﬂrst'
two turn on either Numbered or Bulleted lists. The last two buttons r-nove the
text indentation Left or Right.

Content Example

A look at the content the example contains also tells a story of the BTF editor's
capabilities.

You can see the effects that altering the text size, color, font, and other formatting
options has on the output. You can also see in the middle of the editor that there

is a link to a Web image. This was done by pasting in the image from the original
source.

Finally, we come to what is one of the most important aspects of the BTF editor.
The BTF editor supports the editing of Unicode documents, even if your backend
SAP system js not Unicode.

As you can see from the example, we have a mixture of languages from a variety
of codepages. The system this example was built on is neither MDAMP? nor Uni-
code, yet we have no problem processing and storing this data.

How s all this possible? The BTF editor expects to receive and return its docu-
ment data via a binary string. This allows your back-end SAP system to store the
Unicode document without any character corruption regardless of the codepage
the system runs under. Of course Unicode isn't your only option. You can also set
the document content to any single codepage. We will look at the coding for the
use of Unicode in detail in this example.

12.1.3 Database Storage

We will start by looking at how the example application stores the content that is
generated within the BTF editor. As stated earlier, the BTF cditor expects its data
to be received and returned as a binary string. Therefore the simplest way to store
the data is by writing the data into the database as a binary string.

1 The Unicode Standard is the universal character encoding standard used for representation of
text for computer processing. The Unicode Standard provides the capacity to encode all of
the characters used for the written languages of the world. To keep character-coding simple
and efficient, the Unicode Standard assigns each character 4 unique numeric value and name
http://www.unicode.org. l

2 MDMP: an SAP Specific technology that predates Unicode. MDMP (Multiple Display Multi-
p}e Processing) allows for the processing of multiple codepages within a single system
instance and database, however only one codepage can be processed at a time.

Business Text Framework 25§

Luckily this is now a possibility as of Web AS 6.x. We can have strings and binary
strings of undetermined length stored as database fields. Figures 12.2 and 12.3
demonstrate what this table layout can look like.

/ Transp. Table YBTF_TEXT Active
Short Text BTF Text Storage - Exarmple —l

e

T Folo chedk

Cioncyl Gty s]

[@l@ﬁa :M}‘ Srch Help J l Pradefined Type |

I Field _ |Keylinki [Data element - |Data Type |Length [Decim_|Short Text
MANDT 1 SYMANDT CIRT 3
v

i

b d v

aRf3 System, Client Number from Logon '
- s 1 i
D vl YY BIF TEXT ID HUMC - vl 10 0BTF Text Storage - Key (ImgmqriT_exLM%

0BTF Text Content - Storage Bxample

J £ Arbutes ;" Delvery and Mantenance
\

mexr O} O fvy_BTF TEXT REWSTRING| @

Figure 12.2 Example Database Table for String BTF Content

Data element YY BTF TEXT Active

Short Text BTF Text Content - Storage Bxample

| “Farihar Crmracteriies Y Feld (bl]

@Noleﬁg’d‘l reshicﬁon)) - i

@ Predefined Type - Data Type |RAWSTRING |Byte String of Varible Length

LT - pllabiee bt
| . length | DecmalPhces - | h[r

@ Elementary Type
O Domain

Figure 12.3 Binary String Data Element

12.1.4 BSP Extension Element

The BSP extension element for the BTF editor has only a handful of fairly simple
attributes. The content of the document itself is the most important attribute. For
this attribute, you must pass an instance of a class that implements the interface
IF_BTF_DOCUMENT.

Name Description

id Unique indentification for the BSP element

(mandatory)

document The pointer to the BTF Document Object itself. This object must
(mandatory) implement the TF_BTF_DOCUMENT interface. This is how the content

within the BTF editor gets passed to the extension element.

Table 121 BSP Element Editor Attributes

256 Additional BSP Extensions

Name Description

disabled This attribute sets the BTF editor into Edit or Display only mode.

Allowed values are FALSE (default value) and TRUE.

width This attribute sets the display width of the BTF editor

height This attribute sets the display height of the BTF editor

onClientInsertImage This attribute sets a client-side event handler, which you are responsi-
ble for coding in JavaScript, that will be called whenever the Insert
Image button is clicked. The button will not be shown in the editor
uniess an event handler is specified here.

onClientInsertLink This attribute sets a client-side event handler, which you are responsi-

ble for coding in JavaScript. The event handler will be called when-
ever the Insert Link button is clicked. The button will ot be shown in
the editor unless an event handler is specified here.

sourceView This attribute controls whether the BTF Document is displayed in the

editor in WYSIWYG mode or raw HTML Source. The possible values
are FALSE (default value) and TRUE.

Table 121 BSP Element Editor Attributes (cont.)

12.4.5 BTF Editor in the Page Layout

Inclusion of the {btf:editor) extension into a BSP page layout is simple. In the
following example, the document object comes from the BSP application class.
Although this element-attribute value could Just as easily have come from a
model class or page attribute, you should note that none of the <btf:editor)
attributes support Model View Binding. Be careful with the document attribute
however. If the document attribute contains a null pointer, you will get a short
dump for passing an invalid object reference.

Also please notice that in order to properly support the <btf:editor> element,
the default value for encodingType of the <htmlb:form> element must be set to
multipart/form-data. This is done so that the <btf:editor> element can
support the upload of content from the client.

{%@page language="abap" %>

{(%@extension name="htmlb" prefix="htmlb" %>

{%@extension name="btf" prefix="btf" %>

<htmlb:content design="design2003" >
<htmlb:page title="Sample BTF editor Page " >

<htmlb:form id = "myFormId"
method = "post"
encodingType = "multipart/form-data” >
<btf:editor id = "btfl"
Business Text Framework
S

257

document = "<%= application->btf_document %o
height = "100px"
width = "400px" />

<{htmlb:button id = "Submit"

onClick = "Submit"
text " ¢OTRY Submit</OTR> " />
{/htmlb:form>
{/htmlb:page>
{/htmlb:content>

Listing 124 BTF Page Layout Example

121.6 Preparing the BTF Document

In the following section of code, we will prepare a BTF document and either set
an initial message into this document or the one we Joaded from the database
earlier. You can trigger this logic in the DO_REQUEST method of a controller class
if you have a MVC application. In a non-MVC page, you would most likely want
to do this in the onInitialization event handler.

We start our processing by getting a pointer to the BTF itself. Then we create a
BTF document class instance if we don't already have one.

sxxshef ig type ref to if btf.
if btf is initial.
btf = cl btf=>get_referencel).
endif.
#x++ptf document is type ref to if btf document
if btf_document is initial.
btf document = btf-Yereate_document(sy-langu).

endif.

Listing 12.2 BTF Initialization Example

12.1.7 Retrieving BTF Content on Input

Now we are ready to look at the process for getting the edited content back out
of the BTF editor. For every server event, regardless of what the event does, you
need to capture the data that is returned by the BTF control. This is necessary fgr
you to have the content to send back out via the BTF element as the lfiyout is
rebuilt. Even inside a stateful BSP application, you must treat the BTF editor and

its document content as though it is stateless.

2z8 Additional BSP Extensions

For Model View Controller based application in this example, we perform this
action in the DO_HANDLE_DATA method of the controller class. In a non-MvC
application this same logic could be applied in an OnInputProcessing routine.

We will start the processing by getting a pointer to a BTF editor (class CL_BTF_
BSP_EDITOR) by requesting one from the special event handler class for BSP BTF
(CL_BTF_BSP_MANAGER).

****Cast a pointer to my application classg
data: appl type ref to ycl es bsp appl_main.
appl 7= application.
****Read data from editor:
data: editor type ref to cl_btf bsp_editor.
editor ?= cl_btf bsp_manager=>get data(request = request
name = 'editor"
id = 'btfl").

Listing 12.3 BTF Editor Pointer Retrieval Example

In the next code sample, we first will make sure that a valid editor pointer was
passed back. Only an active BTF editor should be processed. Next, we will ask the
BTF editor to give back its content, supplying the binary string, language, and
encoding. Use a test condition to see if you have an encoding returned. If you do,
then you know you have a valid document in the editor class.

If you pass all of these checks, you can then pass the document from the BTF Edi-
tor into the document class and store it there.

if editor is not initial.
data: 1_encode type string.
data: 1_lang type spras.
editor->document->get_content(importing text = appl->text
encoding = 1_encode
language = 1 _lang).
if 1_encode is not initial.
appl->btf_document = editor->document.
endif.
endif.

Listing 12.4 Extract the Document Content From the Editor Example

You might experience slight irritation with the HTML that the BTF editor creates,
as it inserts a XMP tag into the HTML code. This tag tends to mess up the display
of the generated HTML under certain circumstances. One solution to this might

Business Text Framework

259

be to go back and strip out all occurrences of this tag after the content is

retrieved.

The editor returns its content in a Unicode binary string. 5o first you need to con-
vert this Unicode binary string into a Unicode character string. The SAP function
module SCP_TRANSLATE_CHARS provides one possible way of doing this. You can
then do a replace all occurrences of toremove the offending tag. Finally,
you turn the Unicode string back into a Unicode binary string, also with the func-
tion module SCP_TRANSLATE_CHARS. This forms a nice example of how you can
manipulate the content generated by the BTF editor within ABAP.

12.2 Internet Graphics Service

Eventually most developers will encounter a business requirement for some sort
of analytical application that requires a graphical presentation. In other develop-
ment environments, you might be forced to look to a third-party tool to support
such requirements. Luckily, SAP delivers a tool in the Web AS that supports the
easy generation of complex graphs and charts. This tool is called the Internet
Graphics Service (1GS).

The I1GS is not a new tool, nor is it specific to BSP. The IGS has been around for a
few years and already has integration points with the Enterprise Portal, classic
ABAP Dynpro and the Internet Transaction Server (ITS). It is available on the
Server Tools disc or via download from the SAP Service Marketpiace. In Web AS
6.40 the 1GS is now available as an integrated kernel component.

The 1GS only takes a few minutes to install. The software then listens on HTTP
and/or RFC ports. It accepts the input data and formatting via Unicode XML
streams. It then returns your graphic as a binary data stream.

12.2.1 1GS Setup and Administration

Before beginning any coding in BSP, it would be wise to make sure that your Web
AS has a proper IGS installation connected to it.

The first place to check is transaction SM59 (RFC Destination Maintenance). There
should be a RFC destination set up under type TCP/IP Connections called IGS_
REC_DEST. SAP requires that you use this name. Some older SAP GUI applications
are hard-coded to only use this destination name. A simple test connection on this
RFC destination should confirm that you have a correct 1G5 installation.

If you need to do more than verify that the IGS is installed correctly and want a
full administration tool, look at the ABAP program GRAPHICS_IGS_ADMIN. This

260 Additional BSP Extensions

tool gives you full view into the health and state of your IGS application. You can
also track statistics on its use from there.

SAP IGS Administration

‘f:mn&mﬁon | H Status HE@ ” Dump List | <‘

SAP Internet Graphics Service

LOGFILES: I HUX [P (E3791)]

P (32]

Copyright (C) SAP AG 1993-2002

Figure 12.4 1GS Administration Program

12.2.2 SAP Examples

In addition to the administration application, SAP also delivers several example
and test applications that all begin with the name GRAPHICS_IGS*. If you need to

study IGS examples for use in BSP, have a look at the BSP applications GRAPH_
BSP_TEST, GRAPH_TUT_CHART, and GRAPH_TUT_JNET.

12.2.3 1GS BSP Extension

Once you have established that the 1GS is connected to your system and func-

tioning properly, it is time to look at it in the context of BSP. For that we have a
single BSP extension called graphics.

This extension has 13 elements that allow for a wide range of functionality. You
might want a simple bar chart or graph with hard-coded values. However, these
elements also allow for interactive charts with a complex number of different
series of data all supplied dynamically via XML.

For the purpose of this example, we will focus on a single element of this exten-
sion call <graphics:chart>. This main element exposes the majority of the basic
charting and graphing functionality that you would want to work with. Even as
we look at the attributes of this element, it becomes apparent that this element
controls the overall look and feel of the generated graphic.

Internet Graphics Service

261

262

Name Description

id Unigue indentification for the 1GS chart element)

charttype The overall graphical type of the chart. Depending upon the release
you are on, there are about 25-27 options here. Some exampfes are
columns, bars, area, pie, etc.

dimension Allows you to choose between 2D, 2.5D, and 3D look for the result-

font_familiy

format
height

igs_rfc_destination

ing chart.

This attribute specifies the default font that will be used for texts in
the generated graphic. If not specified, Arial will be used.

The graphical format of the resulting image (JPG, GIF, Bitmap, etc).
Height specified in number of pixels for the generated image.

This attribute allows you to specify the RFC destination that will be
used to communicate with the 1GS. It does default to the destination
named IGS_RFC_DEST.

language The language used during image generation.

onclick Name of the server side event that will be raised if the user clicks on
the image. This event will return the series and the data point that
were selected, allowing for simple image interactivity.

style This attribute allows you to specify style sheet information that over-

transparent_color

width

rides the default presentation of the generated image.

The attribute that allows you to mark a color as transparent in the
generated image. It should be specified as a RGB string. Example:

RGB(255,64,25)

width specified in number of pixels for the generated image.

Table 12.2 BSP Element <graphics:chart> Attributes

12.2.4 Chart Data

if you study the attributes of the {graphics:chart> element, you might notice
something is missing: a way to get actual data into 1GS to use as a basis for image
generation. So far, all we have seen are attributes that affect the overall look and

feel of the generated image.

This is where some of the other elements in the graphics extension come into
play. Elements such as (graphics:data> and (graphics:nativexml> can be
imbedded between the chart-begin and chart-end tags in order to pass data to
the 1GS. The structuring of multiple imbedded BSP extension elements is a little
different from the way that most other standard extensions work.

Looking at the following simple example, we can see this interaction between the
clernents. In this case, the data for image generation will be passed via native XML

Additional BSP Extensions

in line in the BSP page. The raw XML data has b
' een removed ;
purposes. for demonstration

{graphics:chart width="300" height="300" format="Jpg" >
{graphics:data>
{graphics:nativexml>
Raw XML
{/graphics:nativexml>
{/graphics:data>
{/graphics:chart>

Listing 12.5 Chart with nativexm! inner element
So, now we know how to format the BSP parts of the equation. To produce a fin-

ished image, we will need to study the way that the IGS expects its XML data
steamn formatted. For this we will look at the example image in Figure 12.5

80

63

TR U

40

20

TS SURTI |

K s m - T =t)
egory Category .

1 Category 2 3 Categeory 4 Category 5
i

Oseries 1 Elseries 2 !

Figure 12.5 1GS Sample Image

This example is helpful because in its simplicity it represents the three major ele-
ments of the XML stream structure for the 1GS. These three elements are catego-
ries, series, and data points.

lnAthis bar chart example, you can see that one or more categories define the x
axis of the chart. We then have one or more series that correspond to individual
bars within each category. This is where we can build useful comparisons
between two objects within the same category. Finally, data points represent the
value of an individual series within the given category. Therefore in our example
chart, the data point value for category 1, series 1 is 42. i

The raw XML to build this simple example looks like the example below. Note
that there is no well-defined connection between the categories and series.
Everything is simply processed in the order received and aligned as it is input.

Internet Graphics Service 263

2K

<{7xml version="1.0" encoding="uti-8"7>
<SimpleChartData>
{Categories>
{C>Category 1</C>

{C>Category 5</C7
{/Categories”
{Series>

<5>42</8>

{8>5</8>
{/Series”
{Series>

3>10</82

<8>50</8>
{/Series>
</SimpleChartData’

42.2.5 Chart Model Classes

We have seen how to build the XML to pass to the 1GS for generating images, but
<o far all the XML content has had to be built inline in the BSP page or view. This
approach is really only appropriate for the simplest of charts. Following good
design practices, it quickly becomes apparent that cluttering up the presentation
layer with a lot of XML coding just is not a good idea.

Luckily there is another, cleaner approach to passing data to the 1GS. Looking
closer at the <graphics:data> element, you can see that there are two
attributes that can be used to pass the XML data to the 1GS rather than embed-
ding it in the BSP page.

The first attribute is uz 1. To use this attribute, simply supply a URL that will return
the required XML stream when called via HTTP. This could be effective if the data
you want to process is already available via XML on another system.

The more likely attribute to be used is the model one. This attribute requires a ref-
erence to any ABAP class that implements the interface [F_GRAPH_DATA MODEL.
with this approach you can encapsulate all your data retrieval, manipulation, and
conversion to XML into its own class.

The IF_GRAPH_DATA MODEL interface has a single method that must be imple-
mented called GET_DATA _XML. This method returns your XML to the calling 1GS
classes as a binary string.

Additional BSP Extensions

If we.taJ.<e the simple example chart from earlier, we can now create that same
XML inside a class with the following coding. The code has been trimmed to dem-

onstrate specifically how to create each type of element (category, series, and
data pointjand then convert to XML. |

DATA: ixml TYPE REF TO if ixml,
document TYPE REF TO i ixml_document,
root TYPE REF TO if ixml element.
DATA: s TYPE string.
DATA: categories TYPE REF TO if :xml_element.
DATA: series]l TYPE REF TQ if ixml element.

DATA: streamfactory TYPE KEF TO if_ixml_stream factory,
ostream TYPE REF TO if_ixml_ostream.
ixml = cl_ixml=dcreate().
document = ixml->create_document().
root =
document->create_element(name = 'SimpleChartData')

document->append_child{ new child = root). h
categories = document->create_simple_element (

name = 'Categories'

parent = root).
document->create_simple_element (

parent = categories

name = 'C’

value = 'Category 1').

aQ 3 =
Seriesl = document->create_simple_element(
parent = root

neme = 'Series').
document->create_simple element(

parent = seriesl

name = 'S’

value = '42').

streamfactory = ixml-Jcreate_stream factory().
ostream = streamfactory-’create_ostream xstring(xml)
document->render(ostream = ostream recursive = 'X')

Internet Graphics Service 26§

12.2.6 1GS Customizing

So far we have a nice-looking chart in this example, but it is rather plain. The
<graphics:chart> element had some basic formatting options that can be
applied to the entire image, but more fine granular customizing is oft.en necessary.
Once again the 1GS solution provides an opportunity to control the image gener-

ation to a considerable degree.

The same way that you can pass the raw data to the 1GS via XML, you also c.an
pass customizing settings. This XML can be added inline like in the following

example.

<graphics:custom><graphics:natjvexml>
<rxml version="1.0" encoding="utf-8"?>
<SAPChartCustomizing version="1.0">
{GlobalSettings>
{Defaults>
(FontFamily>Arial Unicode MS</FontFamily?
{/Defaults>
¢/GlobalSettings>

{/SAPChartCustomizing”
</graphics:nativexml></graphics: custom”
Also, just like the {graphics:data> element, the <graphics:custom> has the
model and url attributes. The model is set up to accepta class that impfements
1% GRAPE_CUSTOM_MODEL interface. In the end, you can generate your XML for
the customizing just as we just did for the data.

On the other hand, there are potentially thousands of options that can be set. The
IGS allows you to customize look-and-feel down to the individual data po.int
level. A developer would easily be overwhelmed by the complexity of generatmg
this XML without a nice visual chart-design tool. Luckily, SAP delivers several dif-

ferent versions of just such a tool.

The first tool option is a standalone chart-designer executable program availa.b\e
as a free download from SAP Developer Network. This tools starts off with a sim-
ple wizard that walks you through the most common customization oPtions. Then
it opens up a complete editor that allows the full range of customization options.
From Figure 12.6, you can see that we have taken our simple little chart example
and made some drastic changes to its visual design.

266 Additional BSP Extensions

*
BSP BOOK
Fun with K5S Charting

T

80

@ o Textures
B &1 B Data Categories
1| = 88 pata series
& %G series1
- Ana!'ysis Functian:
T Label1/L
o Wabdy2
R Labelt/3
© ¢ XY Labelt/a
' ®Y {abel1f5

60-] R i
N

i
l
FunchonType Gaussian Distnhu@ﬂ
204

L
. | dormticCastion _j’
0 S — 1&*&{1@

Vertical

(Caption
CrawinBackgound |[]
[AveragaPariod 2 =i
’ 4 4 7 st I
Categoryl Category2 Category3 Category4 Calegonys

ExendToEdge =
Honzental Months

[JSeries2 (J Seriest

Figure 12.6 |GS Standalone Chart Designer

If you are on Release 6.40, there is another option in the form of a chart designer
implemented in ABAP. This program name is GRAPHICS_GUI_CE_DFEMO. However
both the standalone tool and the ABAP tool require a recent patch level of the
6.20 or 6.40 SAP GUI because that is where the chart designer ActiveX control
actually gets installed.

12.2.7 Image Click Event Handling

Now that our example has a custom look-and-feel to it, we are ready to enhance
it further by adding interactivity. Graphs and charts are great ways of presenting
summarized data to a user; but if you really want to give your users a powerful
analytical tool, you should consider giving them the option to drill into the details
behind the graphical summary.

Earlier in the discussion of the attributes of the <graphics:chart> element, we
saw that there was an attribute called onClick. In order for the IGS to generate
server-side events when the user clicks on an area in the graphic, all you must do
is supply the name of the event you want it to raise through this attribute.

Catching and processing the event is quite easy as well. In your event handler, you
will just want to cast the event data into an object of type CL_GRAPH_CHART EXT.
You can query this object to access the series and data point that the user clicked
on.

Internet Graphics Service

267

DATA: event_data TYPE REF TO if htmlb_data.
DATA: chartl TYPE REF TO c¢l_graph_chart ext.
event_data = cl_htmlb_manager=>get_event_ex(
runtime->server-yrequest).

IF event data IS NOT INITIAL AND

event _data-’event_id = *chartl’.

chartl ?= event_data.

geries = chartl->clicked_series.

point = chartl->clicked point.
ENDIE.

12.2.8 Image Conversion

Our discussion of the IGS has so far focused on the dynamic generation of images
as charts and graphs. The 1GS possesses another piece of functionality that should
be of interest during BSP development: a built-in image converter that you can

interact with via an ABAP class.

Let us say, for instance, that you have images that you want to inclgde ina BSP
application. The images are delivered to you as bitmaps. You could sit down W.Ith
a desktop image converter and change the file format on the images to something
a little more bandwidth-friendly. As a developer, though, you surely have better
things to do with your time then convert a bunch of images.

The 1GS can do the job for you on the fly. SAP delivers a sample program called
GRAPHTCS. TGS_TMGCONV_DEMO that shows how you can convert from a TIF, JPG,
or Bitmap to a GIF image.

12.3 BSP Library

Tucked away in the BSP extensions library is an unimposing little extension with
the name of bsp. This extension provides a series of helpful utilities that do not
really have a home of theit own but that offer some of the most powerful func-

tionality you will find.

12.3.1 findAndReplace Element

The first element we will look at is <bsp: findAndReplace>. This amazingly pow-
erful element gives the developer the freedom to alter the raw rendering stream
of a BSP page. This means that you not only have access to the JavaScripF and
HTML produced by other BSP extensions, but you also have the opportunity to
alter this rendered code.

268 Additional BSP Extensions

Obviously any such technique that allows low-level interaction with already ren-
dered code comes with a warning. If you change the rendered output of other
SAP elements, you are responsible for the consequences. The code you are
changing could be different based upon which browser the end-user has. This
code is obviously subject to change from release to release and even across sup-
port packages.

In the end, this element can lead to dangerous programming hacks that could
break at any minute. However, to solve a problem, you sometimes need just this
kind of access to the low-level system.

In the following very simple example, you can see how this element is used to
convert bold HTML tags to italics.

{bsp:findAndReplace find1="<{b>" replacel="{i>"
Find2="" replace2="<{/id>">
<htmlb:textView text="
original text{/b>"/>
{/bsp:findAndReplace>

12.3.2 htmlbEvent Element

One of the powerful benefits to using BSP is the ease with which events can be
handled with server-side coding and thus by the ABAP programming language.
Many of the SAP-delivered BSP elements already contain the code necessary to
trigger these server-side events. However, if you ever wanted to code your own
event trigger, the <bgp:htmlbEvent> element is how you could do it.

This element will generate the client-side JavaScript function that is necessary for

triggering a server event and passing parameters from the front end to the server
during this event.

The best way to learn about this element is to study a simple example. Let us say
for instance that you want to implement value help for an input field. The stan-
dard HTMLB input field only has a client-side event for anValueHelp. In our fic-
tional situation, we really decide that we want a server event instead of a client
event. This is exactly where <bsp :htmlbEvent> come to the rescue.

The following code from a BSP page will generate the necessary JavaScript to fire
a server-event onValueHelp request.

<{bgp:htmlbEvent onClick = "gpecialEvent™"
id = "gpecialEvent"
name = "bspEventTrigger"

return_value = "TRUE" />

BSP Library 269

<htmlb:inputField id = "EventTest"
value = (Y%= valuel %"
onValueHelp = "bspEventTrigger ()
"TRUE"/>

!

Al
»

i

showHelp
Event Name: <%= event_name %’
With the following little bit of event-handling code, you can catch your custom
server-side event and even query-parameter values for the CL_BSP_HTMLB_EVENT

class.

DATA: event_data TYPE REF TO if htmlb_data.
DATA: htmlb_event TYPE REF TO cl_bsp_htmlb_event.

event_data = cl_htmlb_manager=>get_event_ex(
runtime-Yserver->request).
IF event data IS NOT INITIAL AND
event_data->event_id = ‘specialEvent‘.
htmlb_event ?7= event_data.
event_name = htmlb_event-»onclick.

ENDIF.

12.3.3 Portal Integration

BSP technology is designed for easy integration into the SAP Enterprise Portal.
The bulk of this integration is activated by simply setting a check mark on the
properties tab of the BSP application.

Initial BSP
Application Class -

Theme

[Stateful

Figure 12.7 Activate Portal integration

This magical little checkbox puts your application under the state-management
control of the portal. It also allows your application to inherit the theme (look-
and-feel) from the portal. That is quite a lot of functionality for just one click of

the mouse.

But once you are ready to create an application that truly interacts with the portal,
you will want to have a look at a few of the extension elements that SAP supplies.

270 Additional BSP Extensions

Portal Eventing

The first element is the <bsp:portalEvent>. This element allows your applica-
tion to subscribe to a portal event via the Enterprise Portal Client Framework, or
EPCF. The EPCF is a component of the Enterprise Portal written in JavaScript and
Java applets that allow for inter-iView communication and eventing. The supplied
BSP element simply allows your application to hook into this portal JavaScript by
supplying the namespace and name of the event you wish to subscribe to.

These portal events can then be trapped and responded to by BSP server-side
event handlers. The HTMLB event manager will return details about the Portal
event. The key here is to look for any event name called portalEvent.

DATA: event TYPE REF TO if htmlb data.
event = cl_htmlb_manager=>get_event_ ex(

runtime->server->request).
IF event IS BOUND.

IF event-’event_name EQ 'portalEvent'.
eventfdataobject = event-Jevent_server_name.
event _sourceid = event-’event_defined.

SPLIT event-’event_id AT ':'

INTO event_namespace event_name.
ENDIF.

ENDIF.

SAP does not supply a BSP extension element for raising a portal event since this
would not make sense. All you really need is the JavaScript function that exposes
this functionality from the portal. All the necessary JavaScript functions are ren-
dered out by the method CL_HTTP_EXT_BSP_HTMLB->EVENTS_JS and included
in your application automatically.

This means that all you will have to code is the call to the JavaScript function por -
talFireEvent. This call to a JavaScript function can be added to any existing BSP
extension element that supports an onClientClick attribute.

For instance, you might create an <htmlb:button> and in the onClientClick
attribute place the call to the required JavaScript function. Keep in mind that this
JavaScript executes from the client browser not the SAP server. Therefore, any
data that you wish to pass along to the event must be accessed via JavaScript and
the browser.

This example code demonstrates the possibility of raising a portal event from BSP
through the press of an <htmlb:button. It also shows how to pass data from an
<htmlb:inputField> into the event.

BSP Library 271

272

<htmlb:inputField id = "bookTitle"
value = "BSP for Fun and Profit" />
<htmlb:button id = "fireBuyBook"
text = "Buy Boock"
onClientClick = “portalFireEvent(‘myBooksEvents',
’fireBuy‘fdocument.getElementById(‘bookTitle').
value):" />

Portal Navigation

If you choose to create an iView using B5P that must control navigation to sepa-
rate content within the portal, whether that addition content is BSP or not, you
can do this through another set of BSP-extension elements. The elements
{bsp:portalNavigationAbsolute?, <bsp:portalNavigationRelative),
and <bsp:portalNavigationToObject> expose the critical navigation APis of
the EPCR.

<bsp:portalNavigationAbsolute> requires that you specify the full path
name of the component that you are calling using the attribute navigationTar-

get.

The attribute navigationMode has three possible values SHOW_INPLACE, SHOW_
EXTERNAL, and SHOW_EXTERNAL_PORTAL with SHOW_INPLACE being the default
value. SHOW TNPLACE's actual outcome depends upon the setting in the Portal
WorkProtect feature. Depending upon the value of the dirty indicator in the Work-
Protect, the new content is either opened in a new window or on the current por-
tal desktop. SHOW_EXTERNAL always opens the target in a new window that has
no Portal header or navigation bar. SHOW_EXTERNAL PORTAL does just the oppo-
site. It opens the target in a new window, but with the Portal header and naviga-

tion bar.
The attribute windowFeatures allows you to control the look-and-feel of the
new window if the content is to be opened that way. This attribute should receive

its values via a comma-separated list with no blank, The syntax of these values
should match that of the JavaScript method wincow. open.

With the attribute windowName, you can specify a window title if the content is to

be opened in a new window.

The attribute historyMode has three possible values: ALLOW_DUPLICATIONS, NO_
DUPLICATTIONS, and NO_HISTORY. The value NO_HISTORY is the default value.

Additional BSP Extensions

The attribute targetTitle will set the title for the page title bar. However, if the

navigation target is sent through an integrator, the title will then be the integrator
tile.

Both the businessParameters and the launcherParameters attributes allow
you to specify URL parameters for the navigation target. These Name/Value pairs
will simply be appended to the end of the navigationTarget URL.

With the element <bsp:portalNavigationlelative>, you can specify a navi-
gation target relative to the location of the current navigation node. This element
supports the same basic attributes as the absolute navigation element. It does
have three addition attributes used to determine the absolute navigation path
from the relative one.

The baseURL attribute specifies your starting point—in other words, the current
node URL. The levelsUp attribute allows you to specify the number of hierarchy
levels to step up through. This attribute only accepts integers. Finally, we have the
pathlist attribute. In this attribute you can supply all the names of the children
nodes relative to the node that you want to navigate to.

Object-based navigation, using the element (bsp:portalNavigationTo-
Object?, takes a completely different approach from that of the other navigation
elements we have already looked at. This element allows for navigation based
upon the business object in your back-end system. These business bbjects must
be exposed to the portal via iView implementers. With this functionality, you are
not required to know the technical URL for your navigation target, just some
identifying metadata about it.

The attribute system allows you to specify a system alias that has been pre-con-
figured in the portal. This will be the business-application system that houses the
business object you wish to call.

The objectType attribute specifies the business object name that you need to
navigate to. If your business object has more than one method that can be exe-
cuted, you can pick the one you want with the operation attribute.

The objectValue attribute represents any data that needs to be sent to the nav-
igation target. The objectValue and the businessParameters attribute will be
added to the navigation target as URL parameters.

BSP Library 273

13 MVC—Model View Controller

As you begin to develop large BSP applications, you may find you need
a better organizational structure for the application components than
simple BSP pages can provide. The Model View Controller design
approach is the answer to that problem.

13.1 MVC Design Paradigm

Model View Controller (MVC) is not a specific technology, nor is it unique to the
SAP, ABAP, or the BSP environments. MVC is a design pattern or paradigm that,
like so many modern programming techniques and technologies, originated from
the Smalltalk programming language.

The core concept of MVC is the separation and encapsulation of the three major
components of an application. The model component represents all application
data and the logic necessary to retrieve or manipulate that data. The view is the
visual representation of this data, generally regarded as the user-interface layer.
Finally the controller houses the logic that affects the program flow. It is respon-
sible for responding to events and user input and for dispatching the resulting
changes to the view or the model.

Not only does MVC offer a clean organizational structure, but by separating the
sections logically it creates better maintenance opportunities. Because the layers
of MVC are separated the way they are, you can make changes to the user inter-
face without having to touch or see the coding of your business logic. Of course
the opposite is true as well, in that alterations to the business logic can be iso-
lated. Theoretically, this should also reduce the amount of testing needed as
changes are made.

So far nothing discussed about MVC is specific to Web development, Both the
traditional Microsoft Foundation Classes and the Java Swing Library are based
upon MVC. However, the difficulties of managing large modern Web applications
have pushed MVC into the spotlight and made the design pattern nearly synony-
mous with Web development. Some of the more popular Web development
frameworks outside of the SAP environment, such as JavaServer Faces, Jakarta
Struts, and Ruby on Rails, heavily support MVC.

13.2 Application Structure

The BSP implementation of MVC relies heavily upon the concepts of ABAP object
orientation. if you have never taken the time to get really comfortable with some

MVC—Model View Controller

275

of the more advanced topics of ABAP OO, such as inheritance and polymorphism,
now is the time to do so. MVC is likely to push your OO skills to a whole new

level.

The model implementation is so decoupled from the rest of the MVC framework
within BSP that you do not even see the model objects within the navigation tree
of the ABAP Workbench. Within a BSP application node in the navigation tree,
only controllers, views, pages with flow logic, and multipurpose Internet mail
extensions (MIMEs) are displayed. As you become serious about MVC BSP devel-
opment, you find yourself switching the view that you use within the Workbench
Navigator from BSP application to package.

Grouping a BSP application and all its implementing classes together into one
package is the only way to get the complete view to all the objects within the
workbench navigator. In Figure 13.1, you can see that by working at the package
level we have quick access to and visibility of the underlying controller classes, the
application class, the model class, and all the inherent BSP application compo-

nents.
Package g

ZE_BC640_00_U18

IDascrptir

* . 640 Delta Training = Unit 18 BSP MYC (Mode

b (] 7CL BCa40_00_U18_BSP_CTRL CINT Controller Class for ze_bc640_00_ex2)
-b "] ZCL _BCS40_00_U18 BSP_CTRL_DEF - - Controfler Class for'ze_bc640_00_ex2 . - it
b [JzZOL_BC640_00_U1B_BSP_EX2 BCG40: 640 Dela Training: BSP Application Clas;
| ZCL_BCGHO_OO_UIB_ESP_; H 6‘}0 Deta Training: Model Class for BSP i
Vasp by C - o] it
< (3 BSP Applications
Y. (Jze_bc640_00_ex2
~ (] Controfler

T BC640; 640 Dekta Traiing BSP MVC Application

client_info.do BCG40: 640 Defm Training: BSP Ex2. MVC - Clie &
default.do BC640: 640 Delta Training: 8SP Ex. 2: Defaul FL

< views i
D default.bsp BCG40: 640 Deta Training: BSP Ex. 2: Default Vi
dev_client.bsp BC540: 640 Del Training: BSP Ex.2: MVC - De
nat_dev.bsp _ 8_5640: 40 DEE_TEining: asp Ex.Z; ﬂy_c; fjlg_{

Figure 131 Package View of an Entire MVC BSP Application

13.2.1 Model

The model object is represented directly by a single ABAP Class that inherits from
CL_BSP_MODEL. The ABAP workbench and the BSP design tools do not really have
aspects specific to the model object. To create a model, you create a class in the
workbench just as you would any other class, setting the inheritance from CL_
BSP_MODEL manually.

276 MVC—Model View Controller

For now, we will keep our example very simple. We will use our model class as
our container for our business data and logic. Later, we will look at the more
advanced techniques possible with MVC, such as the model binding and get-
ter/setter methods.

We start our example by creating a normal ABAP class that inherits from CL_BSP_
MODEL. We will then expose our business data directly from the model class by
creating public instance attributes. For this example we will have two attributes.
The first is an internal table called TSFLIGHT with all fields from the database table
SFLIGHT. This attribute will be displayed later in an <htmlb:tableView>. The
second attribute, called CARRID, will be used later in an <htmlb:dropDownList-
Rox> to narrow the selection of data from SFLIGHT.

1sFLI6RT [nstancdpublid [frype
CARRID Instancepubli [J Type

SFLIGHT TRBL 5 [SFLIGHT Internal Gable]
5_CRRR._ID 2 !Axrltne Code

.
i

¢
¥

Figure 13.2 Model Class Attributes

While in our model, we will add one public instance method called READ_
SFLIGHT that will select the data from the database with the selection criteria of
CARRID.

METHOD read_sflight.
SELECT * FROM sflight
INTO TABLE isflight
WHERE carrid = carrid.
ENDMETHOD .

13.2.2 Controller

The controller is represented in BSP as two separate entities. First, you have the
controller object that is part of your BSP application. The controller object con-
tains the attributes of the controller, such as stateful/stateless, caching, compres-
sion, HTTPS, etc. This is also the only object within MVC that is addressable via
URL. it is this controller object, and its name that for navigation is the equal to the
standard BSP page.

Controller book_rmve.do

[Simple MYC Bxample
[YCL_BSP_CTRI, BOOK_SIMPTE

Description

Controller Class

Figure 13.3 Controller Object

Application Structure

The controller object definition also lists the name of a controller class, however,
This ABAP class is actually the heart of the controller logic. This is where all the
ABAP code for implementing the many controller responsibilities will reside. Cre-
ating this class is a little simpler than creating your model was. You can just type
in the name you want to give the class in the controller object screen. When you
double click on the class name or save the controller, a class with the proper

inheritance will be generated for you.

Controllers should inherit from the class CL_BSP_CONTROLLER2. This is the inher-
ited class that will be used by default in the automatic generation of controller

classes.

You may find after a little time developing MVC that you are writing a lot of the
same code within your controller. Different development groups will often come
up with their own internal standards and ways of doing such tasks as event han-
dling or model initialization. This is the perfect opportunity to use the OO struc-
ture of MVC to its maximum. Do not be afraid to create your own framework of
controlier classes that inherit from CL_BSP_CONTROLLERZ. You can easily change
the generated inheritance on the controller class to use any such controller frame-
work you like, as long as CL,_BSP_CONTROLLERZ is in the inheritance hierarchy.

Controller Methods

At first, you might be overwhelmed by the sheer number of inherited methods
and attributes within your new controller class. Do not worry. Many of these
methods are internal to the processing of the controller. There are also a few
methods supplied to help with your processing of code.

Let us instead focus on some of the methods that address the flow logic of the
controller. There are several methods whose purpose corresponds to the event
handlers of your traditional BSP page. These methods are delivered empty
through inheritance, but with the correct interfaces. The MVC runtime will call
the correct method for the event at hand. Your job is to redefine the methods for
the events that you want to add coding for.

Redefinition is done via the ABAP Class Builder. You must select the inherited
method you wish to add coding to and then hit the redefinition icon.

So. how do these controller methods match up to the event handlers thatyou are
probably already familiar with from BSP pages? The OnCreate and OnInitiali-
»ation event handlers have direct replacements in the form of methods DO_INIT
and DO_INITATTRIBUTES respectively.

278 MVC—Model View Controller

Class Interface {¥ct,_BsP_cTrr,_BOOK_SIMPLE Implemented / Active
F:Pammetersl’% Exceptionsn—[iil I@lﬂi—" = §

Analyze TLevel Jvisi JM_ [Description S i
[<IF_BSP_DISPATCHER> |] Redefinert
Z SR =] — = = = = o H

Figure 13.4 Redefinition of Controller Methods

The OnRequest, OnInputProcessing, OnLayout, and OnManipulation page
event handlers all map more or less onto the single controller method ng
REQUEST. This controller method, DO_REQUEST, is very important because it ;
responsible for the main flow of input and output. Let us look at the followin
sample controller DO_REQUEST method to demonstrate this. °

data: view type ref to if bsp_page.
dispatch_input().

if is_navigation_requested() is not initial.

return.
endif.
view = create_view(view_name = 'book mvc_simple.htm')

call_view(view).

The processing starts with a call to the controller method dispatch_input. This
internal method triggers all the input processing. It is responsible fo:peArfor.ming
any input-data binding and triggering of input events. It also calls three more con-
troller methods that can be redefined to add code to the input processing.

The first method that it will call is the DO_HANDLE_DATA. This method is charged
with retrieving data from the input event. If left with its default coding, it will

automatically map all input form fields into their corresponding model attributes
{this is the input part of model binding).

More complex operations also can be performed here. Perhaps you also have
input elements that do not support model binding, and you want to retrieve their
values as well. The fact that this method has an input parameter, FORM_FIELDS
that is an internal table of input form fields, makes this process very simp_!e. How—'
ever if you redefine this method and you also want to support data binding as
well, remember to include the call to the super-class in your redefined code.

super->do_handle_data{ form_ fields = form_fields

global_messages = global_messages).

The n.ext method called is DO_HANDLE_EVENT. This is the method that you can
redefine in order to program event handling. To help you with your event-han-

Application Structure

279

280

dling coding, this method already has input parameters such as HTMLB_EVENT_EX
of type 1F_HTMLB_DATA, which has the details about the incoming event. This
saves the developer from having to code to get this information, as he or she
would have to do in the classic BSP page event handler.

The final method is DO_FINISH.INPUT. This method is mainly used when you
have a set of nested controllers. The controller handling the current event can set
the GLOBAL_EVENT attribute during the DO_HANDLE EVENT method. This
GLOBAL_EVENT will then be passed into any sub-controllers so that they can react
to this event as well.

Getting back to the processing in the DO_REQUEST method, we can see that after
we return from the inner call to DISPATCH_INPUT; there is a check to see if navi-
gation was requested within the event handling. If a navigation redirection was
already set, there is no reason to continue with the navigation logic within this

controller.

Assuming that we do continue with the navigation logic, you can see that the
controller initializes an instance of the view that it will navigate to and performs
the navigation with the CALL_VIEW method. This example was a rather simple 1:1
controller to view relationship. However, in complex real world applications, you
often have multiple views that can be called from asingle controller. For instance,
you might have different views depending whether you are in create, change, or
display mode in your application.

Model Lifetime

So far we have seen how the controller is responsible for the flow of logic and
data from input to output. However, the controller has another major mission. It
is responsible for the model object's instantiation and lifetime.

After the controller creates one or more model instances, it keeps track of them
internally as attributes. Because of the way the model instances are tracked and
used automatically during controller input processing, MVC is generally used only
in stateful applications. This way the model instance is retained within the con-
troller class through the lifetime of the application. This does not mean that state-
less MVC is not possible within BSP. Stateless MVC simply requires some special
technigues to restore any model instances at the correct point in time. Later in
this chapter, we will look at these techniques. For now, we will keep with our sim-

ple example that is stateful.

This listing of models is kept in the protected attribute M_MODELS. There are public
methods, SET_MODEL, CREATE_MODEL, DELETE_MODEL, and GET_MODEL, of the
controller that allow for manipulation of this list of models.

MVC—Model View Controller

o b

For this example, we will want easy access to the mode| instance within the con-
troller logic as well. The model references in the M_MODELS attribute are stored as
references to the super-class CL_BSP_MODEL. In order to work with our specific
model implementation, we must be able to cast the reference into our exaci class
type. Therefore we will create a single private attribute called MODEL of TYPE REF
TO YCL_BSP_MODEL_BOOK_SIMPLE that will be easily available for this castin
operation. This action of casting between generic and specific object implemen%
tations is referred to as polymorphism.

For the creation of the model instance we now will redefine the coding of the
controller method DO_INIT. Remember that this method corresponds to our

OnCreate event handler in BSP page processing. Therefore, it is only called once
for a stateful application.

We will accomplish several things with the logic given below. With the single call
to CREATE_MODEL, we manage to create the instance of our model class. We also
place a reference to this instance into our M_MODELS attribute under the ID "AAS"
We can use this id to refer to this exact instance in calls to the other controller's.
method manipulation. Finally, we also place a reference into our model attribute
for easy access to the specific implementation of this single model.

METHOD do_init.
IF model IS INITIAL.
model ?= create_model{ model id = 'MS'

class_name = 'YCL BSP_MODEL_BOOK_SIMPLE').
ENDIF.

ENDMETHOD .

Eventing

Although the process of responding to events within the controller is relatively
unchanged from the same processing in BSP page event handlers, it is interesting
to study how we can use some of the additional functionality within the control-
ler to save ourselves time.

The main difference within the controller is that that we do not have to make the
call to CL_HTMLB_MANAGER=>GET_EVENT EX. One of the attributes passed into
DO_HANDLE_EVENT is an object of type if_htmlb_data. For more details on this
object and how to use it for HTMLB eventing, see Section 9.2.

For this simple example, we need to respond to the input event on the drop
down list box and load the new corresponding data.

Application Structure

281

METHOD do_handle_event.
CHECK event IS NOT INITIAL.
IF htmlb_event_ex-Yevent_name =
htmlb_events=>dropdownlistbox
AND htmlb_event _ex->event type =
htmlb_events=>dropdbownlistbox_select.
model->read sflight().
ENDIF.
ENDMETHOD.

Subcontrollers and Components

For large, complex applications even breaking your application into a single con-
troller with multiple views really is not enough granularity. For these applications
you can create components—a nesting of a single high level controller and one or
more subcontrollers.

It is important to note that the very powerful and important DISPATCH_INPUT
method only needs to be called from within the DO_REQUEST method of the high-
est level controller. The MVC framework coding will make sure that the corre-
sponding methods in all the subcontrollers will be called correctly. This simple
approach allows for nesting of event handlers within the controller hierarchy.

This nesting of controllers can be created using two different methods. The first
approach is to create the sub controller with ABAP coding from within the highest
level controller. This is done with a call to the controller method CREATE_CONT-

ROLLER.

In this example we will create a subcontroller and send it our current model
instance to be its model as well.

DATA: model TYPE REF TO zcl_bsp m_doc_srch list.
DATA: docdetails TYPE REF TO cl_bsp_controllerZ.
model 7= create_model(
class_name = 'zcl_bsp_m doc_srch_list’
model _id = 'ml').
docdetails ?= create_controller(

controller_name = 'docdetails.do’
controller_id = 'dd').
docdetails->set_model(model_id = 'ml’

model_instance = model).

The other way to create a subcontroller is from the view coding.

282 MVC—Model View Controller

Similar to the way a controller keeps a listing of all methods under its influence, a
listing is made of all subcontrollers. We can do this using the special BSP exten-
sion element <bsp:call>. This approach is particularly useful when creating tab-
strips. It seems logical to use subcontrollers to represent the inner content of each
tab. This also allows you greater dynamic flexibility for your tab content and
enables you to separate the event handling of each tab.

<{phtmlb:containerTabStrip id = "TabStripUpdatel"
selectedIndex = "<%= model->SELECTED_tab %>" >

{phtmlb:containerTabStripltem id = "T1"
title = "Basic Data" >
{phtmlb:containerContentItem />
<{bsp:call url = "header_form.do"

comp_id = "hd" />
{/phtmlb:containerContentItem>
{/phtmlb:containerTabStripIltem)

{phtmlb:containerTabStripltem id = Ty
title = "Materials" >
{phtmlb:containerContentItem >
<bsp:call url = "materials_form.do"
comp_id = "mt" />

{/phtmlb:containerContentItem>
{/phtmlb:containerTabStripltem>
{/phtmlb:containerTabStrip>

Subcontrollers can also be dynamically activated and deactivated so that process-
ing does not have to pass through them unnecessarily. This is an efficient way to
handle hidden or out-of-scope subcontrollers. The controller method
CONTRCLLER_SET_ACTIVE allows for this control.

The following code would deactivate the subcontroller that we created in the first
example.

controller_set_active(controller_ id = 'dd!
active = 0).
13.2.3 View

Of the three parts that make up Model View Controller, the view is probably the
area where developers accustomed to BSP pages will feel the most at home.

The view is very much like the BSP page. Working with the presentation logic is
exactly the same in the view as from the page. The main difference you will notice

Application Structure 283

284

is the lack of interface for coding any event handlers. Of course all of this logic is
replaced by the methods within the controller that we have already discussed.

Another important aspect to keep in mind is that the view is not an object than

can be addressed via a URL. Views are constructs that have no meaning to the cli-
ent browser. Only the controller can be addressed by the client browser.

However, views can still have attributes similar to the page attributes. All of these

attributes must be mapped in via the controller. The most common attribute to fill
on a view is a reference to the model class. This model attribute is necessary to
have within the view for model binding. Let us change the coding of the control-
ler in our example to pass in the model instance through an attribute to our view.

view = create_view(view_name = 'hook_mve_simple.htm').
view-yset_attribute(name = 'MYMODEL'

value = model).

call view(view).

13.3 Model Binding

Model binding is an important benefit, yet a part of MVC that many people often
overtook. Model binding reduces the amount and complexity of the coding in
your typical application; thereby lowering the cost of development and mainte-

nance.

The work done by binding is twofold. First, when you bind model attributes to
BSP extension elements, metadata about the objects is automatically read from
the binding. For instance, when you bind an attribute to an <htmlb:label>, you
do not have to supply the label text. If available, the language-specific text will be
pulled automatically from the data-dictionary definition of the attribute that the

element is bound to.

The second reason for binding is the automatic transfer of input and output values
between model attributes and elements and their form fields. No longer in input
processing do you have to map values back from the http form fields. All this logic
is performed for you by the MVC runtime and proper placement of the
DISPATCH_INPUT controller method.

Figure 13.5 shows the definition of the mymodel view attribute. This view Sy

attribute connects the model instance from the controller to the view.

{phtmlb:matriz width="100%" >
{phtnlb:matrixCell/>
¢htmlb:label for="//mymodel/carrid” />

MVC—Model View Controller

<htmlb:dropdownListBox helpValues = "//mymodel/carrid”

selection = "//mymodel/carrid®
onSelect = "Submit" />
{phtmlb:matrixCell row="+1" />
<htmlb:tableView id = "thll"
visibleRowCount = "10"
table = "//mymodel/isflight" />
</phtmlb:matrix>
Page- _ Active §
- “Properties y "Layoln
EEIEEEIEE
AttributeJTypingMeLlAssociated Type Descriptio;
(|_vmocel TYPE REF TO |YCL_ESP_MODEL_BOUK_SINPLE

Figure 13.5 MVC—View Attributes

In this example, we supply very few attributes for the <htmlb:labeld> or
<htmlb:dropdownListBox>. No text is supplied for label, nor do we have an
internal table of possible values for the drop down list box. Yet we are able to pro-
duce the application interface shown in Figure 13.6.

| Ailine | Lufthanss e
T T American Airlines T P >
g B i | Cwt,y b
ks Air Berin S, Luty et
088 | L|Ar Canada 666.00 | EUR | AM0-300
Alr France
083 | L|
Altalia EﬁEOO EUR | A310-300 280 267
088 | L|British Airesays 666.00 | EUR | A310-300 230
085 | L Continental Airlines 666.00 | EUR =8
Delta Airlines . U A310-300 280 267 3
088 | LENHE 666.00 | EUR | A310-300 280 267 ¢
08 | 1 Japen Aidines 666,
Lufthansa .00 | EUR | A310-300 B 2380 27k
088 | L|Lauda Alr €BB.00 | EUR | A310-300 280 4
085 | L] Northwest Airlines £66.00 | EUR | ; ﬂ’
Qantas Arways 3 UR | A310-300 280 | 264
088 | L|South African Alr. £666.00 | EUR | A310-300 280 ‘ 25
Singapore Airlines PP ‘ o,
088 | L| Swiss 66600 | EUR | A310-300 3
nited Airfines
TR

Figure 13.6 Model Binding Example

You. might be wondering about the strange values that were placed in the
attributes for, helpValues, etc. Instead of directly passing a reference to the
mode| attribute, we need to use a special binding string.

These strings have several different formats in order to address single attributes,
fields within structures, and fields within an internal table.

Model Binding

285

The most basic form of the binding string points to a single attribute. It consists of
the model class identifier followed by the model attribute name. The string
/ /mymocdel/carrid represents a view attribute named model that is a valid ref-
erence to your model instance. This is followed by carrid, the name of the
attribute within the model.

In complex applications, you would not want to create attributes in your class for
every field in a large structure. You can avoid this by binding to single elements
within a structure as well. For example, let us say we defined a work area called
wa_sflight as an attribute in our model class to hold one selected record from
our isflight internal table. We could bind to the carrid element of this struc-

ture with the following binding string.
//model/wa_sflight.carrid

The final variation of the binding string is the one required for processing internal
tables. Naturally, we would need a way to bind to a particular row and a particular
element within an internal table. Let us now change the binding string of our
example to point to row 5 of the isflight table, element carrid.

//model/isflight[5] .carrid

The entire possible syntax for binding strings can be represented by the following
syntax:

n)/" model name "/" attibute ["[" row "}"] [»." column !

13.34 Getter/Setter methods

Another nice advantage to using model binding is the ability to create getter and
setter methods in your model class. These methods will be automatically fired by
the MVC runtime during input and output binding and during the retrieval of
metadata.

Providing these override methods gives developers the opportunity to code their
own methods for the input and output model binding. But equally important are
the special metadata getters. They are called during the retrieval of any metadata,
such as field length and data type, as part of the MVC process. Later in Chapter
18, we will see the incredible power of MVC and custom getter/setters as we
build a BSP version of SELECT - OPTIONS.

Because these methods are called dynamically by the runtime, itis important that
their parameter interface matches what is expected. Therefore, you should always
copy your methods from the templates that SAP provides as part of the interface
IF_BSP_MODEL_SETTER_GETTZR.

286 MVC—Model View Controller

e —

The templates for metadata getters are:

» GET_M S_XVYZ for structures
» _GET_M_T_XVYZ for tables
» _GET_M_XYZ for simple attributes

The templates for getters are:

» GET_S_XYZ for structures
» _GET_T_XYZ for tables
» _GET_XYZ for simple attributes

The templates for setters are:

» _SET_S_XYZ for structures
» _SET_T_XYZ for tables
» _GET_XY7 for simple attributes

When you copy the method, you must rename it so that the naming will match
the name of the attribute you creating it for. The XYZ in each of the template
names must be replaced with the name of the attribute. Also you remove the
leading underscore. Therefore to create a metadata getter for our attribute CAR-
RID, we would copy _GET M XYZ and rename it GET_M_CARRID.

The following is a sample implementation of the model getter GET_M_CARRID. In
this example, we will override the English label text that is determined by default.
fnamore complex situation, you might even decide to use your own metadata class
that inherits from CL_BSE_METADATA_SIMPLE. You then could redefine methods
such as the GET_VALUELIST to provide your own application-specific logic.

DATA: 1 _field_ ref
1_dfies_wa

TYPE REF TO data,
TYPE dfies,

l_rtti_elem TYPE REF TO cl_abap_elemdescr.

1 _field ref = if_bsp_model binding~ge: attribute_data_ref(
attribute_path = attribute_path).
1 rzti_elem ?= cl_abap_elemdescr=>describs_by_data_ref(
1 field_ref).
1 dfies_wa = 1 rtti_elem->get_ddic_field().
IF 1 dfies_wa-langu = 'E'.
1 _dfies_wa-scrtext_m = 'Override Text'.
ENDIF.
CREATE OBJECT metadata TYPE cl_bsp _metadata_simple
EXPORTING info = 1_dfies_wa.

Mode! Binding 287

13.4 Dynamic Model Binding

We have already seen how powerful data binding can be. Besides the benefits
already put forward for using it, data binding really shines when it comes to cre-

ating dynamic Ul elements.

For an example of the power of the dynamic model binding, let us examine a si‘t—
uation that would be very difficult to reproduce in classic ABAP dynpro. We will
start with a structure that represents a reduced number of fields in a databa.se
table. We want to expose each one of these fields as individual input fields with

their own labels.

Of course we could manually design the Ul for our structure, creating each indi-
vidual element by hand. This could become time consuming depending upon the
size of the structure at question. Also every time we add or remove fields from the
structure, we have to return to the user interface and adjust it as well.

Would it not be much simpler if we could just supply the data object fo.r the
structure to the user interface and let it dynamically build all the necessary input
fields, with metadata pulled from the structure and automatic field-input
retrieval? Well, that is exactly what model binding makes possible.

We will start this example by creating a structure that is a subset of the fields in
the table SFLIGHT. For now, we will throw out MANDT and all the fields that break
down first class and business class. Our structure leaves us with about three-quar-

ters of the original fields.

Structure YBSP_SFLIGKT LITE . - = .. - |Actwve
;hor’c Text Reduced Varsion of the SFLIGHT Table

_Entry he/dheck” Y, Climtericy/quantiey fiekis 7]

= gl’@i‘\?iﬁl Predeﬁned'l’ypel . c 179

EEER
Componant RT.. Component,__!Dam Type lLengtthedm“’Short Taxt
t_}ARRIDi [1is carg Ip Jcmr - 3 S(Arlrh}l;\e CCOde - ‘
TN i .] - | onne ur .
[CONNID DJS COMN_ID NUMC i {ng t . Ny .
FLOATE 0 ‘s oa1E DATS . OFlght date” _
[i S == . - :
PRICE D i5_PRICE CTRR o115 2iAjrfare _ 1
(CURRENCY | [|5 _CURRCODE CUKY 5 alocal currency of arine
| lprameTyrE [0 s _pLawTvE crar 10 UlATrcraft Type _ B)
~§I;“.AIS}1AX ' is_SEATSMAX [INT4 1c OMaximum capacity In economy class {
seazsocc | [|5 szarsoce T 10] 0i0ccupied seats n economy cess |
H EFPEIESW Av s 7“03RR . 17 2iTotal of current bockings

Figure 13.7 Reduced SFLIGHT Structure

288 MVC—Model View Controller

§ S

From here on we will keep everything as dynamic as possible so that if we want
to extend our user interface, all we have to do is add or remove fields from this
YBSP_SFLIGHT_LITE structure. Our model class wil] have a public attribute of
type of the structure we just created. It also will have the logic to select a single
record from the database table SFLIGHT for the corresponding fields of this
attribute.

Inside of our view, we are ready to start our dynamic element creation. The first
thing we will need to do is retrieve a listing of the fields in our structure using the
ABAP Runtime Type Services or RTTS.

DATA: descriptor TYPE REF TO cl_abap_structdescr.

descriptor ?= cl‘abap_structdescr=>describe_by_data(
model->isflight).

DATA: flddescr TYPE ddfields.

flddescr = descriptor->get_ddic_field_list().

Now, we are going to be able to loop through our field listing and create a labe]
and input field for each entry. What we would like to do is just build our binding
string into a variable and give that variable to the BSp elements. However, when
working within pages or views, BSP elements do not expose separate attributes
for the bound and unbound values. Therefore, if we send a dynamic binding
string into a BSP element attribute as a variable, it will incorrectly interpret that
action. The element will assume that we are taking the value directly from the
variable instead of trying to read it as a binding string.

One might also think that completing the binding string dynamically, as in the fol-
lowing example, would also be possible.

<htmlb:label
for="//model.isflight.<%= {wa_field>-fieldname %>" />

By design the BSP runtime can not identify this example as a direct valye assign-
ment. Effectively for each attribute X that can also be bound, we have an addi-
tional _X attribute that is the binding string. If you look at for example the
<htmlb:tableView>, you find that the table attribute is a REF TO DATA, and it
Is not possible to write a binding string into this attribute.

This is the reason why we have both X and Xfor all bindable attributes. So in the
normal writing of <1ib:tag INT = "//model/..."/> already the compiler
must make a very hard decision to generate code of the form o->x = string,
where ABAP move semantics will do a string to integer conversion, or o-> x =
string, where we want to save the binding string. This is the reason why binding
strings are enforced to be static, so that compiler can do its magic. Of course,

Dynamic Model Binding 289

once you want to do dynamic binding, you must also assume the role of the com-

piler and then must know about this additional compiexity.
s, the separate X and _X

If you create the BSP element directly via the ABAP clas
For instance, in the

attributes are exposed for unbound and bound values. :
<htmlb:label> the implementing class, Cl._HTMLB_LABEL, has two attrlbutes'—
for and _for. The attribute that will expect a binding string always comes with

the underscore.

Within our view we will now generate the BSP elements directly via code much as
we did when creating a composite BSP element (see Chapter 11). We can‘then
render the BSP element using its factory method and output that element via the

{bsp:bee> element.

(% data: descriptor type ref to CL_ABAP_STRUCTDESCR.
descriptor 7= CL,ABAP_STRUCTDESCR=>describe;by_data(
model->isflight).
data: flddescr type DDFIELDS.
flddescr = descriptor*>GET_DDICAEIELD_LIST().
field-gymbols: (wa_field> like line of flddescr.
data: label type ref to cl_htmlb_label.
data: input type ref to CL_HTMLB_INPUTFIELD.
data: binding_string type string.
loop at flddescr assigning {Wa_field>.
clear label.
clear input.
concatenate '//model/isflight.’ {wa_field>-FIELDNAME
into binding string.
label 7= ¢l htmlb_label=>factory(_for = binding_string).
input ?= cl_htmlbginputfie1d=>factory(
_value = binding string Y. %>

We will use the flexibility of the <phtmlb:matrix> to support our dynamic user

interface.

<phtmlb:matrixCell row = wiin yAlign = "TOP" /O

(bep:bee bee="<{%= label %>" />

¢phtmlb:matrixCell col = whin yAlign = "TOP" />

{psp:bee bee="<%= input %" />

with only a handful of lines of code, we have generated our nine fields from our

' d
simplified SFLIGHT structure. Moreover, the same number of lines of code coul

have just as easily created 90 input fields and their labels. And the same code

290 MVC—Model View Controller

works for different structures, making it the typical type of code to integrate into
a new tag for automatic form layout!

l Airine E

| Flight Number 7

Jose

[Aviare e
J Airine Currency ,EJ

| Plane Type

| wax. capacity econ. 385

} Cocupied econ. 374

s

Figure 13.8 Dynamic Model Binding Output

13.5 Stateless MVC

SAP's implementation of MVC is designed to be used within stateful applications.
There are two inherent assumptions made that require a stateful application. The
first is the assumption that the model class itself will persist between
request/response events. If you must recreate your model instance during every
event, any data retrieval or manipulation must be repeated before the input data
binding to ensure consistency.

This is complicated by the second assumption: that the controller class instance
will also persist. The controller class contains the table of references to all of its
models and is responsible for triggering the model binding. In a stateless applica-
tion, ail models would have to be reset into the controller before binding
occurred.

These difficulties can be overcome, as can the general inefficiencies that come
from having to reread and reprocess the same data over and over.

The goal is to create a situation where our model-class instance, which should
contain all of our business data, persists without having to maintain the entire ses-
sion state. This way, we avoid the overhead of the total size of the session state,
the management of the session state, and the unnecessary re-retrieval of data
from the underlying business system. In short you end up with the benefits of
both stateless and stateful applications without the downsides of either.

13.5.1 XML Serialization of ABAP Objects

But how best can we accomplish this persistence of the model class? The first
technology we will look to is the XML serialization of ABAP Objects. The ABAP

Stateless MVC

291

292

runtime has built-in support for the conversion of data and class objects to XML.
But more important is its ability to restore object instances from these XML rep-
resentations at a later time. This technique allows any object to live on in another
form even after its in-memory representation has been destroyed.

In order for an ABAP object to support serialization, it must inherit the interface
IF_SERIALIZABLE OBJECT. The normal model-class inheritance, CL_BSP_MODEL,
does not contain this interface, so you will have to add it manually.

There are a couple of important aspects to keep in mind when serializing your
model class. The first is to remember that the constructor method is not called
when the object is restored. Also, static attributes are ignored during seriali.zation
and de-serialization. Finally, if you have inner ABAP classes declared as attributes
of your class, these can be serialized and restored along with your object. How-
must implement the TIF_

ever, for this occur; these inner classes, too,

SERIALIZABLE_OBJECT interface.

DATA: ostream TYPE string.

CALL TRANSFORMATION id
SOURCE model = model
RESULT xml ostream.

Listing 131 XML Serialization of 2 Model Instance

13.5.2 Server Cookie Storage of the XML Stream

Using this XML technique, we can convert the entire object instance to a string
and then store this string in memory, in the database, or even in the file system of

the application server.

Within the context of BSP, however, there is an even simpler approach to storing
this XML representation of your model class, namely the server cookie. Tbe the-
ory of the server cookie is very similar to that of standard browser cookies; the
main difference being that server cookies are stored in the back-end database

instead of within the client's browser.

Server cookies are tied to the BSP application that created them, as well as being
user- and session-1D specific. Keep in mind that even stateless applications will
still have a unique session {D.

Server cookies contain expiration times and are cleaned up by the scheduling of
the ABAP program RSP CLEAN _UP_SERVER_COOKIES. They also can be viewed
with the program BSP_SHOW_SERVER_COOKIES.

MVC—Model View Controller

cl_bsp_server_side_cookie=>set_server_cookie(
name = i_name

application_name = runtime->application_name
application_namespace = runtime->application_namespace
username = Sy-uname

segsgion id = runtime->session_id

data_name = i_name

data_value = ostream

expiry time_rel = '1200').

Listing 13.2 Server Cookie creation example

13.5.3 Controller Modifications to Support Serialized Models

So far, we have not had to make very many changes to the model class to support
this stateless approach. The simple inclusion of the IF_SERIALIZABLE_OBJECT
interface has been the extent of the modifications. It appears that it must fall to
the controller class to be responsible for the saving and proper restoration of the
model instance before data binding occurs.

The first thing to consider if you are going to implement this technique is how
best to reuse the logic for model-class serialization and restoration. It would be
impractical to code this over and over in each of your controller classes. Instead
you might want to create your own controller super-class that inherits from CL_
BSP_CONTROLLER2. You could then code reusable SAVE MODEL and READ MODEL
methods into your controller framework.

These methods should be designed with generic processing in mind. For example,
your SAVE_MODEL method would probably want an input parameter for the
cookie data name. You would also have an input parameter for your model class
instances. You can make your method reusable by not specifying the exact type
reference for your model class. Instead, only specify the type from the inherit-
ance, CL_BSP_MODEL. Using the OO concept of polymorphism, your more spe-
cific model instance can still be passed into this parameter and processed within.

“Method parameters [SAVE MOEEL

4= Methods ” I3 Exceptions '@ ’E'El

|Parameter Type l?_z_g_:__ o lTyping Method|Associated Type |Defauk value [Description
JI_NRME amporting ([} [Tvpe 'STRING 'model

I_MODEL Importing [T 1T2 Type Rer To (L BSP MODEL BSP: Model Basis Class |

Figure 13.9 SAVE_MODEL Method Interface

Stateless MVC 293

Once the serialization logic is written and exposed to the controller class, we are
ready to concentrate on the model's lifetime within the controller flow. Since we
want to be able maintain our ability to data bind to the model class, the orderin
which we place our code within the controller class becomes very important.

The first thing we will want to do_is attempt to restore our model instance. if we
are able to restore the model instance from the server cookie, then we need to re-
initialize it into the controller's listing of models. If, however, we are not able to
restore the model class, then we might assume that this is the first time this page
is being called for this session. Therefore we will create the model and run any

necessary model-initialization methods.

model 7= read_model().
IF model IS NOT INITIAL.
model->if_bsp_model~init(id = IBR' owner = me).
set_model(model_id = 'BB'
model_instance = model).
ELSE.
model 7= create_model{ model_id = 'BB’
class_name = 'YCLfBSP_M;BOOK,XML_EXP').
model-Yinitialize data().
ENDIF.

Once the model is restored, the controller can make the call to its internal
method DISPATCH_INPUT. it is this method that will trigger all input data binding
and event handling. If our serialization and restoration of the model class was suc-
cessful, then the inner binding and eventing methods should notice no difference
between a normal stateful model and this stateless one.

After returning from the DI SPATCH_INPUT method, we probably want to take this
opportunity to save our model instance. This will ensure that new input values
brought in through data binding or new data retrieved because of an even.t are
captured within a new snapshot of our model class. The server cookie will be
overwritten each time with the new XML representation of our model class.

Keep in mind, however, that if you directly change attribute values of your model
during any view coding, these changes will not be retained unless you forc'e
another serialization of your model class. Since your view should only contain
presentation logic, it is always a good idea to avoid such direct manipulation of

the model class.

294 MVC—Model View Controller

13.6 Building a Pattern Engine with MvC

Employee Self Services (ESS) is one of the hottest new developments in the
intranet environment. Most companies attempt to streamline processes by having
employees complete simple administrative processes directly themselves. Typical
examples are holiday scheduling, address changes, or ordering office supplies.
These processes are alf targeted at occasional use, and must be simple to use. The
typical approach is to use a fixed pattern that all ESS applications follow, so that
the casual user will be able to complete the process easily.

In order to demonstrate building a pattern engine, we would like to write an ESS
application for holiday/vacation scheduling. First, we will write a pattern engine
that does all of the generic work and handles the overall layout. Then, we will
write our small ESS application.

"Note The work presented here does not come from any SAP product. The
~words ESS and pattern engine are used here in a generic way, and do not
‘reflect any specific SAP product development work.

We would like to have the same layout for all our ESS applications, At the top
should be the title. A roadmap will be used to give an overview of all the steps to
be followed, plus the current active step. Navigation buttons must be placed at
the bottom of the page. All ESS processes will have at a minimum an introduction
page to explain how to complete the process, the actual work pages, and a save
page giving a summary of the entered data, plus a final confirmation page.

Ouerview Ertry Save Confirm

i

I

I

|
| i
<body> ‘,
|

< Previous | [Next »] [Cancet]

Figure 1310 Sample Output of the Pattern Engine

One might assume that a good approach would be to use a composite element to
handle the complete layout, wrapped around the body of the ESS application.
While BSP elements are excellent at handling rendering, they are not appropriate
for complex logic. In this case, we would have required additional data structures
to hold configuration information and extra classes to handle events.

Building a Pattern Engine with MVC

295

Using a controller has many benefits. The code for the controller is placed in a
separate class. Adding the controller into a BSP application is just one data entry.
The same controlier can then be used many times within one BSP application. As
a controller is effectively a normal ABAP class, it is possible to place all the type
declarations and event handling into this class. Furthermore, it is possible to use
the same techniques employed in composite elements, in controllers as well. In
this way, the controller can contain rendering code and is quite capable of pro-
cessing BSP elements.

For our design, we have one controller that will be the pattern engine. The pat-
tern engine is responsible for handling the complete layout, determining the cur-
rent active step, and displaying it. In addition, the pattern engine will offer a num-
ber of events, mapped onto method calis, to help the ESS application.

S —

Pattern 3 <title

ngine T —{— 1|

A niroductinn Querview Entry Save Confirm H 1
I

Vi

—» <hody>

Pattern
Engine

i
i
|
|
i

[reviws]

Pattern
Engine

Figure 1311 Application Breakdown

The ESS application will comprise a controller that inherits from the pattern
engine, a model class, and all the views that are required for rendering each step.
Because the ESS application inherits from the pattern engine, it is very easy to
complete the configuration data about the pattern and to overwrite any events of
interest. Furthermore, the ESS application will contain all the business logic.

The use of a model class is optional. It is used for the ESS application because the
model binding makes it easier to have the data from the incoming request auto-
matically returned to the model. The model class also handles the conversion
between internal and external representation. A typical example is the conversion
of a date from YYYYMMDD into any of the several display versions, such as YYYY-
MM-DD and MM/DD/YYYY.

For each step in the ESS application, one view is written. The view itself will only
contain the BSP elements that represent that actual ESS step. Everything else will
be done by the pattern engine.

296 MVC-—Model View Controller

13.6.1 The Final ESS Application

Before looking at the actual code, let us first look at what we want to achieve. This
will make the actual code much easier to understand.

Our small ESS application will have five steps. The first is an introduction page
which explains the complete process quickly. The second step will give an over-
view of the holidays that have been taken this year and list the available holidays.

|'f Holiday Booking

I al e % P T
R e S s I
Introduction Overview Ertry Save Confrm
‘ §_Holiday Booking
Ich wiinsche dir Zeit] y

Introciuction Overview Entry Sava Confirm

| | rict alie méglichen Geben.

Ich wiinsche dir ’

| e wnschs drrur, | S B o RV ComRT T
- | wres die meisten nicht haben: 2004-01-02 | 20040109 | & | B i ’
d ‘ i 02 | 2004-61- i e
leh winsche dir Zet, dich zu freun I = T \’ 4 caed Civaines
|- 2004-02.03 | 2004-02.03 | 1 | Britdayl

§2004-04149 | 20008423 | | 5 | Kindergarten closms I {

T
i

[Next »] [Cancel |

. 19 ’ Avaisble Holday
T
i
|
i
!

|

4 Previous] [Next » P

Figure 1312 Steps One and Two of the Sample Application

The next step will be to enter the data for the next holiday. After the data has
been verified as correct, it will be presented in read-only mode in step four, with
a confirm button. Up to this step, it's always possible to navigate back to the pre-
vious steps, or to cancel the process.

‘] Holiday Booking
I
e o <, !
{ [— 27] v :
irtroduction Overview Entry Save Contirin
| _ {
l | start Date * 2004-08-24 ol
| 1encoate: — l Holiday Booking
i Jcomment i
r —|—a—E—m o G
|] 79 T 4 5] b
| | '] " ;
ntroduction Overview Ertry Save Confmm i 1
[) Start Date 2004.06-24 — | B
© Both ctes must be specitied. | | | Ene Dete 2004-3510 R
t Joays — T :
3
i —
{ Commert [Summer broakl]
|

|
|

|
!
|
;f
j:

< Previous | [{ Canfirm | [ancel

Figure 1343 Steps Three and Four of the Sample Application

Building a Pattern Engine with MVC 297

In the last step, a final confirmation shows that the holiday has been booked.
Now the only navigation option is to press the finish button. For typical ESS appli-
cations, this exit URL will be configured to return to a small portal that contained
all the different ESS applications.

13.6.2 Writing the ESS Application

Before looking at the more complex pattern engine, let's first look at the work
required to develop the ESS application. We create a new BSP application that has
one controller and five views.

T Besaton

Ghject Name ~_ j
Pattern Engine for ESS Appliation;

v (Jy pe ess

< [controller

go.do Main Controller

= Y Views .)
confim.ktm ;.
entry.htm
introduction.htm
oyerview.htm
save.htm

Ivo oo

Figure 1314 Object Overview

Each view will have two attributes, which will be set automatically by the pattern
engine. The first will be a reference to the defined model class; the second is a ref-

erence onto the pattern engine (pe) controller.

model TYPE REF TO
pe TYPE REF TO

ycl _pe_ess_model
ycl_pe ess_controller

Given that all the data is stored in the model class, the views themselves are very
simple, and quickly written. Here is the entry view as an example. It uses the
{phtmlb:formLayout> element to quickly get the required elements on screen.
The other views are of the same complexity.

{4@extension name="phtmlb" prefix="phtmlb" %> {phtmlb:formLayout>
{phtmlb:formLayoutInputField

id = "holiday_start"

label = "Start Date"

required = "TRUE"

showHelp = "TRUE"

type = "DATE"

value = "//model/holiday_start" />
{phtmlb:formLayoutInputField

id = "holiday_end"

label = "End Date"

298 MVC—Model View Controller

required = "TRUE"
showHelp = "TRUE"

type = "DATE"

value = "//model/holiday_end" />
<{phtmlb:formLayoutInputField

id = "holiday_comment"

label = "Comment"

type = "STRING®

value = "//model/holiday_comment" />

</phtmlb:formLayout>

The model class is required to hold all relevant information. For our ESS applica-
tion, we need a table that contains a list of all holidays taken, plus a few data val-
ues for the new holiday to be booked, such as days available, start and end dates,
and comment string. Everything needed to make model binding work, is done by
the base class (c1_bsp_model). The model class is just a data holding class, as well
as the constructor to fill the holidays_taken table.

CLASS ycl_pe_ess model DEFINITION
INHERITING FROM cl_bsp_model.
PUBLIC SECTION.
TYPES: BEGIN OF t_holiday,

start TYPE d,
end TYPE d,
days TYPE i,

comment TYPE string,
END OF t_holiday.
t_holidays TYPE STANDARD TABLE OF t_holiday.
DATA holidays_taken TYPE t_holidays.

DATA holiday_start TYPE d.
DATA holiday_end TYPE d.
DATA holiday_days TYPE 1.

DATA holiday_comment TYPE string.
DATA holiday_available TYPE 1.

METHODS constructor. " fill table holidays taken ENDCLASS.

In our final step, the ESS controller is required. It contains the code necessary to
configure the pattern engine, plus the business logic to book the actual holiday.
The most important aspect is the fact that this controller will inherit from the pat-
tern engine.

Building a Pattern Engine with MV C

299

CLASS yecl pe_ess_controller DEFINITION
INHERITING FROM ycl_ess_pattern_engine.
DATA model TYPE REF TO ycl pe_ess_model.
METHODS do_init REDEFINITION.

METHODS do_handle_data ™ REDEFINITION.
METHODS pe_confirm REDEFINITION.
ENDCLASS.

The do_init method is used to create our required model class and to configure
the pat?em engine. The most interesting code is the filling of the pe_step§ table.
This table contains a list of all views in sequence. With this, the pattern engine .can
render the required roadmap to give an overview of all steps, call the correct view
for each step, and control the navigation buttons.

METHOD do_dinit.
* Create our model object

model ?= create_model(class_name =

'YCL_PF_ESS_MODEL' model_id = 'm').

* Setup Pattern Engine

pe_model = model.
pe_title = 'Holiday Booking'(001).
pe_exit url = 'http://sdn.sap.com’'.
APPEND 'Introduction'(100) TO pe_steps.
APPEND 'Overview' (101} TO pe_steps.

APPEND 'Entry'(102) TO pe_steps.
APPEND ‘Save' (103} TO pe_steps.
APPEND 'Confirm® (104) TO pe_steps.

* Tnitialize also pattern engine
super-»>do_init ().
ENDMETHOD .

Data handling is done via the model class. However, some sanity checking is
required to ensure that the entered holiday booking is actually acceptable. ‘For
this, we just overwrite the do_handle data method. Once we'see the entry view
(step three), we quickly check that the entered data range is Ya.hd' Inr cas'e of prob-
lems, an error message Is added and the flag is set to prohibit navigation to the

next step.

METHOD do_handle_data.
super*>do_hand1e_data(form_fields = form_fields

plobal messages = global messages).

200 MVC—Model View Controller

IF pe_step_current = 3. " Entry
IF model->holiday_start IS INITIAL
OR model->holiday_end IS INITIAL.
messages->add message(condition =
'start || end INITIAL'
message = 'Specify both dates'(100)).
pe_step_next_prohibited = ABAP_TRUE.
RETURN.
ENDIF.

model->holiday_days = model->holiday_end
- model->holiday_start + 1.
* do additional complex logic to for weekends ENDIF.
ENDMETHOD.

Lastly, our ESS application must book the holiday. The pattern engine maps its
own events onto methods. These methods can be overwritten where required.

We overwrite the pe_confirm method and add the logic required to book the
holiday.

METHOD pe_confirm.

*

save data

...complex steps to dump data from model onto
* database. ..

*

super->pe_confirm({ event_object = event_object).
ENDMETHOD .

Although the above section suggests a lot of work is invelved in writing the ESS
application, the truth is that once the pattern engine is done, ESS applications of
this complexity can be written in less than one hour!

Let's recap the steps needed so far.

» Create a model class with the relevant data.
> Create a controller to configure the pattern engine.
» Add validation fogic and coding for the final business logic.

» Create the relevant views.

13.6.3 Writing the Pattern Engine

Although the pattern engine is not very complex, it does involve a lot of code.
Only smalf extracts will be shown here. Most important, the pattern engine is also
a BSP controller, and as such must inherit from the class c1_bsp_controller?.

Building a Pattern Engine with My C

301

A number of configuration parameters are required for the pattern engine. These
are all declared as protected data, so that the actual ESS application can fill the
data. We need to display a title and a typical exit URL. Lastly, we require a list of
all the steps that the application contains.

A number of event methods are defined. These will be called to handle events
from the navigation buttons. It enables the ESS application to easily handle spe-
cific events via redefinition.

CLASS ycl _ess_pattern_engine DEFINITION
INHERITING FROM cl_bsp controllerZ.
PROTECTED SECTION.
DATA pe_title TYPE string.
DATA pe_exit_url TYPE string.
DATA pe_steps TYPE string_table.

METHODS pe_next IMPORTING event_object TYPE REF TO
if htmlb_data.

METHODS pe_previous IMPORTING even:_obiect TYPE REF 10
if htmlb_data.

METHODS pe_cancel IMPORTING event_object TYPE REF TO
if_htmlb_data.

METHODS pe_finished IMPORTING event_object TYPE REF TO
if _htmlb_data.

METHODS pe_confirm IMPORTING event_object TYPE REF TO
if htmlb_data.

ENDCLASS.

The most complex part of the pattern engine is the do_request method. Usually,
when writing controllers, this method will just decide the next view and call it.
However, using views to also contain the layout of the pattern engine would
make it more complex to use and reuse. In addition, these layout views would
have to be copied into the current ESS application. instead, the complete render-
ing is done by processing other BSP elements, as if we are writing a composite

element.

The actual coding is straightforward, although tedious. As if we were writing the
BSP elements on a page, they are all systematically processed. Notice that the
method of writing the code reflects exactly the same structure as the elements
would display on a page.

METHOD do_request.
*(htmlb:content?

MVC—Model View Controller

DATA: content TYPE REF TO cl_htmlb_content.
content = cl_htmlb_content=>factory(
design = 'design2003').
WHILE page_context->element_process(element = content)
= co_element_continue.

* <(htmlb:page>

DATA: page TYPE REF TO cl_htmlb_page.

page = cl_htmlb_page=>factory().

WHILE page_context->element_process(element = page)

= co_element_continue.
* <htmlb:form

* <phtmlb:containerTitle>
{phtulb:containerContentIlzem>
* {phtmlb:roadmap/>

* Actua. content, call correct view
DATA: view TYPE REF 7O if_bsp_page.
READ TAEBLE pe_steps INDEX pe_step current
INTO name.
view = create view(view _name = name).
view->set_attribute(name = 'pe' value = me).
view-J>set attribute(name = 'model'
value = pe_model).
call view(view).
{phtmlb:messageBar/>

IF messages->num_messages() > 0.

ENDIF.

* <htmlb:button/>

DATA: button TYPE REF TO cl_htmlb_button.

IF me-r>pe_step_current » 1 AND me-Jpe_step_current
< me->pe_step_max.
button = ¢l htmlb button=>factory!

id = 'sdn_pattern_engine_previous'
text = 'Previous'(001)

design = 'PREVIOQUS"'

onclick = 'PE_PREVIQUS').

WHILE page context-Jelement_process (

Building a Pattern Engine with MVC

303

element = button) =
if_bsp_element=>co_element_continue.

ENDWHILE.
ENDIF.
****Additional Button Processing
* {/phtmlb:containerContentItem>
* {/phtmlb:containerTitle>

* <{/htmlb:form>
* </htmlb:page>

* </htmlb:content>
ENDMETHOD.

The most interesting part of the above coding is the code to call the correct view,
After the roadmap has been processed, a specific view must be rendered out.
Here, the current step is used as the index into the steps table; the view is cre-
ated: the two standard attributes, controller and model are set, and the view is
rendered. Then the rest of the pattern layout is completed.

Another important part of the pattern engine is the way that events are handled.
From Chapter 9, we know that the onX event string specified by the user is trans-
ported back transparently as the event server name. We will use this string to call
a specific method to handle the event. The do_handle_event will have been
called with the correct HTMLB event. We just have to do the dynamic call to the

correct event method.

METHOD do_handle event.
IF htmlb_event_ex IS NOT INITTAL.
DATA: method TYPE STRING.
method = htmlb_event ex-Y>event_server_name.
TRANSLATE method TO UPPER CASE.
TRY.
CALL METHOD me->{(method)
EXPORTING event_object = htmlb_event_ex.
CATCH CX_ROOT.
ENDTRY.
ENDIF.
ENDMETHOD.

The event methods themselves are small, each handling the interaction of one
button. As a typical example, we will look at the code for the Next and Finished
buttons. For the next event, the current step will be incremented. For the finished
button, a navigate-to-the-exit-URL will be done. Using the exit method here
ensures that our session is also cleaned up.

304 MVC—Model View Controller

METHOD pe_next.
IF pe_step_next_prohibited = ABAP_TRUE.
RETURN.
ENDIF.
pe_step current = pe_step_current + 1.
ENDMETHOD .

METHOD pe finished.
navigation->exit(pe_exit url).
ENDMETHOD .

In the end, the use of a BSP controller enabled us to write a pattern engine that
is simple and elegant to use. With this building block, it is easy to develop similar
ESS applications within hours, all of them with the same look and feel. If the lay-
out for all ESS applications needs changing, this is done in one method only.

The placement of all rendering code within the controller, instead of a view,
makes the actual code slightly difficult to write once, but makes this pattern very
easy to use. With this approach, usage reduces to declaring a new controller with
the BSP application, which then derives from the pattern engine. No further work
is required, and this same controller can reused extensively. If the layout code was
placed in a view, then this view had to be copied into each BSP application where
the pattern engine is used. This small project shows the power of switching
between layout code that the compiler generates code for, and just hand writing
the equivalent code.

Building a Pattern Engine with MVC 305

14 Help Systems

If you are developing BSP applications as replacements for SAP GUI
business transactions, you probably will miss certain help systems, like
the F1 Field Help and F4 Value Help. In this chapter, we will look at
ways to provide similar functionality in BSP.

You should be aware in advance that this chapter is a little different from most in
this book. Because SAP does not deliver full solutions for field help or value help,
we are going to look at some solutions that you can build yourself. These should
just be considered as starting points to get your own development moving in the
right direction.

The complete source code for all solutions is available on the book CD; therefore,
not all coding is presented in line in this text. These examples use highly generic
and flexible coding that can be integrated into just about any application. By
necessity, generic coding is often complex and lengthy. We will try to hit all the
important architecture elements of the examples without spending too much
time on each line of code.

14.1 F1—Field Level Help

Long-time SAP GUI transaction users will probably automatically reach for the F1
key when they find fields in their applications that they do not understand. Some
form of context-sensitive help is a sorely missed feature in BSP.

The goal of this example is to recreate not just the context help but also the tech-
nical information about the field that is exposed in the classic dynpro.

As you develop large and complex BSP applications, especially very dynamic ones,
you will badly want some mechanism to identify what part of the code houses a
particular element.

14.1.1 The Help Ul

In the SAP GUI environment you really get all of this functionality for free, in that
no special coding is required to attach this functionality to your field. For this
example, we wanted to have a similarly non-intrusive appreach to existing cod-
ing. The addition of the field help should be easy to implement. On the other
hand, the use of this help should be intuitive even to users who have never
worked with a SAP GUI transaction.

Help Systems

307

308

G Performance Assstant EBE
il a2 EE 1 Bl ER 1 B2 R E (D
..... N

External Name of BSP Application (Upper and Lower Case} F
k& Technica Information Ak

ABSP application is an independent
created and processed using the SAH[Screen Data :

5aPLO2_APPLICATION]

Program Name

Sirnilar to a riassical transaction, a BY| — .
are yrouped togsther to a ogical unit]| Screen Number

The user interface of a BSP applicatiJ [GUI Data ~
socalled Business Semver Pages (BS|—— —
stylesheets, and so on.

Pragram Name [saPLOZ_aPPLICATION

Etatus ‘ 0z _APPLICATION |
Table Name _ [ozaprraTmr |
Field Nare |apPLEXT

#4| Data Element |UZAPPLEXT
DE Supplemerit - -E, L

Field Description for Batch Input -
" [ozaprLaTIR-aPPLEXT

Screen Field

Figure 144 Typical Context Help with Technical Information in the Classic SAP GUI

To that end, this example was designed to wrap its functionality so as to fire the
field help around the <htmlb:label> element. It will generate a hyperlink that
will open the context help in a modeless window when clicked.

We hope the resulting solution ends up being so simple to implement in your
code that all you have to do is change the name of the element from
<htmlb:label> to {yourextengion:flLabel> if you are using Model View
Binding.

tf you are not using binding or if you want to override the data element from the
binding attribute, you only need to add one attribute to the standard label
attributes to provide this data element name.

The ease with which this new element can be introduced into existing applica-
tions is especially important if we consider the amount of code that you might
want to go back and retrofit with this new functionality.

Figure 14.2 demonstrates <htmlb:labels> that have been wrapped by this
example and now have hyperlinks.

Help Systems

1
i

| Explode BOM (Level by Level) |

| Material =

| piart

‘ IAQQHE gon[|
‘

R RSO e T

Figure 14.2 Label Element with Hyperlink to Context Help

Figure 14.3 shows that when you click on the label hyperlink you get a basic
browser modeless window where there are two tabs. In the first and default tab,
there is the Data Element Help itself. The Internal ITF (SAPscript) format for the
Help has been converted to HTML for this display.

Sysfem Intormation

Definition

Alphanurneric key uniguely identifying the
material.

Figure 14.3 Context Help; Extended Definition

Notice the internal hyperlink in the example help for Material. In the converted
HTML, this link actually points to a SAPEVENT. if you have ever done any program-
ming for HTML content in the SAP GUI HTML viewer, you might remember that
this is a special event that will be caught and returned to dynpro-event processing
(see Chapter 7).

However, this SAPEVENT link is useless in the BSP context. Therefore, the BSP help
solution will have to convert this to a normal hyperlink to make it functional.
Also, most of these internal finks point to glossary entries instead of data-element
texts. Therefore, this solution will also need internal processing to support the
navigation and output of both types of help objects. Figure 14.4 shows the help
after we navigate through the Material link.

F1—Field Level Help

309

310

Euplnde BOM (LevelpyL_eq T %
1«' T T :
' l hiaterial * ;
' 3

Tpenis [] 5
' E

| 2pvlication * \: i ;[H

. [Dispiay] Logistics - General {LO) :
:) ;
The goods that are the subject of business :

activity.

i

The material can be traded, used in f

manufacture, consumed, ar produced. ;

B

5

Retail (IS-R) ;

;

< i D

i

Figure 14.4 Internal Help Navigation to a Glossary ltem

The second tab is the one that, as a developer, you are probably more interested
in. This is the tab that displays the technical information about the field in ques-
tion. In order to display the most possible information here, you will want to use
Model View Binding for the BSP extension help element we are creating. That
way it will have visibility to the hosting controller, view, model-class, mO(.jeI—
attribute, model-binding-string, and data-element types for the field in question.
Figure 14.5 shows the technical information for the Material field.

E ST

I BSP Application zem_kom_explosn

—
frege T —

S

| Caling Controller {defauk do
| Sub-Page Objsct [detautbsp

| Modet Class [ZCL_ES_BSP_M_BOM_EXPLO§
| Binding String ijmadelmatnr .
| Data element TMATNR T _-]

I No. of Characters | 000018

o i
| Sor. datatype | Character atring B it

| ~BAP type Character string ~

Figure 14.5 Help System Information

Refore we dig into the coding for the example solution, let us have a look at the
small amount of code that gets inserted into the host page to produce the screens

we have seen.

Help Systems

{zbook:flLabel for

required

i

"//model/matnr"
“TRUE" />

14.1.2 Implementing the BSP Extension Element

The solution has two major parts. The first is the BSP extension element itself. This
element will be responsible for all the rendering of the label with the surrounding
hyperlink. The second part is a BSP MVC application for displaying the extended
help in the popup modeless window. This application will be stateless and anon-
ymous so that it can be integrated with any type of hosting BSP application.

in this design, our BSP extension element will be responsible for creating the
model class that will be used later in the popup dialog. This is necessary so that
the field's runtime information can be easily passed from the hosting application
to the help-dialog one. After creating and initializing the model class, the BSP
extension element will serialize it to XML and then write it into a server cookie.
The keys for retrieving this model class later will be the only information that we
will actually pass to the dialog application via the URL.

As you might see by now, this example builds upon many of the technologies we
have introduced in past chapters. Be sure to have read Chapter 9, BSP Extensions;
Chapter 11, Writing a Composite Tag, and Chapter 13, Model View Controller,
before attempting to recreate this example.

14.1.3 BSP Element Properties

We will start our example by creating a new BSP element in an existing BSP exten-
sion. If you are creating your first extension, just make sure that it uses the CL_
HTMLB_ELEMENT class as its generated Basis class (Very Important: This is in the
extension, not the element!).

[yboak Active

Short Description

- |BSP Book Examples
Default Prefix yhook

BSP Extension Class

BSP Elernent Basis Class CL_HTHMLB_ELEMENT t

Figure 14.6 Extension Properties

For the element properties, be sure to check User Defined Validation. We will
use this later to write our own compiler check for one of the element attributes.

F1—Field Level Help

31

12

Short Destription - | ﬁ'ext Label with Built in F1 Help
Element Handler Class - [¥cL BSP ELMNT FI HELP 1BL | B
‘Generated Basis Class ZCLG_YBOOK_F1LABEL .

— 4

Element: content /
(JData
Qéw’ankw' o T
(3 8sP Elements Only)

®85P Elements and Static HTHL

CiElement Interprets Cantent tsslf

Further aptions o
¥ User-Defired Valdation
[iteration over Element Contert

Dsaripulation of Elerent Content
"PAGE DGNE" is not retunedat end of BEP efemeit

T R TR P T e

Figure 14.7 Extension Element Properties

14.1.4 BSP Element Attributes

Because we are wrapping our element around the standard SAP <htmlb: label>
element, we will want to include all the attributes of the inner element. You could
either cut and paste to bring these over from the <htmlb:label? element or just
start by copying the entire <htmlb:label> element .

The first additional attribute is dataElement. If you are not using Model View
Binding, then you will have to explicitly state the data element that you want to
use for the field-level help. This is also useful if your model field is of a generic
type and does not point to a particularly helpful data-dictionary element.

The second attribute to add is rfcDest. Now, we are going to mark this as not yet
implemented. In the future you might want to be able to read the help from
remote systems. For now, however, we will use this element to demonstrate how
you can program a compiler check to throw an error if anyone does try to use this
attribute before we have programmed for it.

14.1.5 Element Handler Class

We only have one attribute that we will add to the BSP element class. This is an
attribute that will store an instance of model class that we are creating,

The first method that we will inherit and redefine is compile_time_is_valid.
This is where we can code our compiler checks for this extension element. We
only want to check and make sure that no one uses the rfcDest attribute before
we have coded for it. Figure 1410 shows the error that this routine generates in
the editor if someone does use the rfcDest attribute.

Help Systems

Figure 14.8 Extension Element Attributes

Cass Interface

YCL_B3P_ELMNT Fl_HELP_ LBL Implemented / Active

“Tterfares . Frierd s ‘Methads 7 “Events

Pré;:gfgés !

[JFiter
'Rea__ﬁrping Iﬂ,ssaciated Type f Descrintion ’
vat| CJ [Type Re£¥CL Bsp SYsTEM 5| o [BSP System State Class |

Figure 14.9 Extension Element Handler Class Attributes

’ row | Type [0
5P Appication VES TESTLECH Page BOOR. FILELB T :
<YBOOK:fiLabel>: {attribute=rfcDest) RFC Destination attribute has] e T
not et been implemented.

Syntax error

Description

Figure 1410 Custom Syntax Error

DATA: value TYPE string.

value =

'rfeDest!').
IF value <> cl_bsp_element_data=>co_no_attribute value.

element_data->get _attribute(name =

validater->error (
'rfcDest’
msg = 'RFC Destination attribute has yet been

name =

implemented ' (c01)).
valid = validator->m_any_value_in_error.
ELSE.
valid = validator->m all values_valid.
ENDIF.

F1—Field Level Help

Attribute k.o Jca Jpi. {Typing Jassacia_|ofit vaue [oescrinfion
dateflenent (OO0 PR STRING | bverride Binding Data element for F1 Help 3
design MR E’ANDARD DW—*')—-«—'
encode OlF|CI0) medseme X fode —
\fox 7 || O[FI TenBjsTRING Tnout Feld Name
id 08|00 M TYpE)sTRING Element ID —_
ebeiTae 01| 81| O 0% reniimmais Jeoiunpeme type (SHORTMEDIMAGNG/TTTE) |
pebeledsoncrolnans |1 F1] (7]} TYmEsTRING L'Stﬂ;’ﬁhECkBD"/CDmDOBDKIDE-bownLisiaavllﬁbEt?ij‘
pemaiced =) i) TYPIQ STRING 'E‘EC{ulred Entry Field T
rfcDest OjW |00 we@smme | Motvetimplementsd
et O[] rrpdsTrons | et —
textbiraction O —
ool ity _ O8O Quckine
pidth _iomic TYRIT STRING width —
ping I, v s Dotk !

313

do_at_beginning is the next method that we will inherit and redefine. This is
the method that will control the actual rendering-code generation of the element
at runtime. This method for the most part contains the inner call to CL_HTMLB_
LABEL. This type of logic has already been covered in depth in Chapter 11.

DATA: javascript_link TYPE string.
DATA: link TYPE REF TO c¢l_htmlb_link.
CREATE OBJECT system_state.
****Model Bind?
IF me->dataelement IS INITIAL.
me->resolve_model_binding().
ELSE.
IF id IS INITIAL.
CONCATENATE for '_1' INTO id.
ENDIF.
ENDIF.
+Sorialize the System State and pass the Keys on the URL
javascript_link = me->record_system_state().
***+Tnitialize the Link Object
link ?= cl_htmlb_link=>factory(

id = me->id
onclientelick = javascript_link
target = '_Top').

WHILE m_page_context-relement_process
element = link) = co_element continue.
DATA: label TYPE REF TO cl_htmlb_label.
label 7= cl_htmlb_label=>factory(

. Rendering Logic

In addition to the inherited methods that we will be redefining in the BSP ele-
ment class, we will add two methods. The first, record system state, is
responsible for completing the model class. It then serializes it to XML and writes
the XML string into a server cookie for later consumption. Finally, the method
creates the URL with keys included for reading the server cookie that will point to
the field help BSP application.

To record the model class in the server cookie, we need a unique id in order to
avoid overlaying data from another field on the screen that might have the same
data element. If we do not have data about our model class, then we can go
ahead and just record the details according to the data element.

314 Help Systems

METHOD record_system state.
* ReturningVALUE(R_JAVASCRIPT_LINK)TYPE STRINC
DATA: data_name TYPE string.
****1f we didn't record the system state from the model,
****then our only key is the data element name.
IF system_state->rollname IS INITIAL.
system_state-’rollname = me->dataelement.
data_name = me->dataelement.
ELSE.
****System State came from the medel, therefore we will
****create a unique ID for each entry.
IF STRLEN{ me->id) GT 30.
DATA: guid_22 TYPE guid_22.
CALL FUNCTION 'GUID_CREATE'
IMPORTING ev_guid 22 = guid_22.
MOVE guid_22 TO data_name.
ELSE.
MOVE me-»>id TO data_name.
ENDIF.
ENDIF.

In this section of code, we look up some of the details about the BSP application

we are running within. We use the page-context object to find most of these
details.

****Record the system state - BSP Page and Application
system state->olapplext = me->mec_runtime->application_name.
system_state-Yo2pageext = me->mc_runtime->page_name.
DATA: page context TYPE REF TO cl bsp page context.
TRY.
page context 7= me->m_page context.
IF page_context IS NOT INITIAL.
systemﬁstate~>sub‘page = pageﬁcontext‘>m;page~name.
IF page_context->m_caller IS NOT INITIAL.
DATA: parent_ controller
TYPE REF TO cl_bsp_controller.
parent_controller 7= page context->m caller.
IF parent_controller IS NOT INITIAL.
system_state->sub_controller =

parent_controller-)controller_name.
ENDIF.

F1—Field Level Help 315

316

ENDIF.
ENDIF.

CATCH cx_sy_move_cast _error.
ENDTRY.

This next section will serialize the model object to XML and write the data into
the server cookie. Notice that we do not set any application name o:f namespace.
This allows details for the same data element to be used across applications.

DATA: ostream TYPE string,
xslt_err TYPE REF TO cx_xslt_exception.
TRY.
CALL TRANSFORMATION id SOURCE model = system_state
RESULT XML ostream.
cl_bsp_server;side_cookie=>set#server_pookie(
name = data_name

application_name = '’

application_namespace = '’
username = 'FIHELP'
data_name = data_name
data_value = ostream
expiry_time_rel = '1200').
CATCH cx_xslt_exception INTO xslt_err.

ENDTRY.

This final section will create the URL for calling the popup window, passing the

data keys in the URL.

DATA: url TYPE string, page TYPE string.

page = 'Fl_Help.do'.

DATA: params TYPE tihttpnvp.

FIELD-SYMBOLS: {wa_params» LIKE LINE OF params.

APPEND INITIAL LINE TO params ASSIGNING {wa_params’ -

{wa_params»-name = 'DOCUOBJECT'.

CONCATENATE 'DE' me->dataelement INTO {wa_params»>-value.
{ya_params>-name = 'SESSION_ID'.
{wa_params>-name = 'RFCDEST'.

{wa_params>-name = 'DATA_NAME'.
**#+xCopy over the current theme to the popup window

DATA: selection TYPE string.

gselection = mc_runtime4>get4external#theme_root().

IF selection IS INITIAL.

Help Systems

selection = 'sap_standard'.

ENDIF.
...<{wa_params? -name = 'sap-themeRoot'.
****Jge your application name here

CALL METHOD
cl_bsp_runtime=>construct bsp_url

EXPORTING in_application = 'ves_testl'
in_page = page
in_parameters = params

IMPORTING out_local_url = url.

CONCATENATE “newDialog = window.open("" url

T, "_blank", "resizable=yes,height=300,width=300");"
INTO r_javascript_link.

The second method, resolve_model binding, will be used to process a data-
binding string and tumn it into a data reference. It will determine the class and
attribute that correspond to the provided binding string. This method will also use
the Runtime Type Services (RTTS) to determine information about the model class
and details about the model attribute data type.

METHOD resolve_model_binding.
DATA: 1_for TYPE string.
DATA: model TYPE REF TO if_bsp_model binding,
metadata TYPE REF TO if_bsp metadata_ simple,
TYPE REF TO if_bsp metadata,
TYPE string.
DATA: class_name TYPE string.

metadata_base
value_path

model = m_page_context->get_model{ _for).

CALL METHOD
cl%bsp_model=>if_bsp_model_uti1~split_binding_expression
EXPORTING binding expression = _for
IMPORTING attribute_path = value_path.

CHECK value_path IS NOT INITIAL.

system_state-’model_string = for.

IF model IS NOT INITIAL.

DATA: class_desc TYPE REF TO cl_abap_typedescr.
clags_desc = cl_abap_classdescr=>describe_by_object_ref(
model).
class_name = class_desc->get_relative_name().
ENDIF.

1 _for = model->get_attribute_name(

F1—Field Level Help

217

218

attribute_path = value_path).
IF id IS INITIAL.
CONCATENATE 1_for '_1' INTO id.

ENDIF.
#x++(0at Data Reference to bound data object

DATA: 1 _data TYPE RET TO data.

1 data = model->get_attribute_dataﬁref(
attribute_path = value_path).

CHECK 1 data IS NOT INITIAL.

sxx+0at the RITI Drescriptor for this data reference
DATA: descriptor TYPE REF TO cl_abap_elemdescr.
descriptor 7% clAabap_elemdescr=>describe_by,data_ref(

1_data).

+3++Raad Data Dictionary information for this reference
DATA: flddescr TYPE dfies.
flddescr = descriptor->get_ddic4field().
me->dataelement = flddescr-rollname.

gystem_state-yrollname = me->dataelement.

ENDMETHCD .

14.1.6 BSP F1 Help Controller Method—DO_REQUEST

Inside a stateless anonymous BSP application, we will fill our F1 Help popup start-
ing with a new controiler. For this controller, we will have a fairly normal DO_
REQUEST method to control the flow of our application. As with most any high-
level controller, we will have logic to initialize our model class.

However this initialization will be different from the normal model-view-control-
ler (MVC) method. If the model is initial, which in stateless applications will
always be true, we will need to read our keys from the URL with request-rget_
form field. Then the model is restored with a call to cl_bsp_server_side_
cookie=rget_server cookie followed by the de-serialization.

14.1.7 Implementing the BSP F1 Help Application—Model

The final component in our help BSP application is the model class. This class has
all the logic to read our field help or glossary entry. It also has the logic to convert
the SAPEVENT hyperlinks. Do not forget to include the IF_SERIALIZABLE_
ORJECT interface in this class definition. This is the interface that will allow us to

convert the class instance to XML.

Help Systems

You can explore the complete togic to this class on the CD for this book. Although
not related directly to BSP, it contains the logic for reading the help or glossary
and converting the internal SAP ITF format to HTML,

14.2 Dialog Windows

In our first solution, we were able to open a new browser window with the Java-
Script call window.open. This approach actually matches the SAP GU| solution
fairly well. Users are able to minimize or move the help-off screen. You do have
the disadvantage that if you ciose the browser window with your application, the
help window still remains. ‘

However this solution really is not optimal for a Value Help solution. With the
popularity of the so-called popup blocker on the Internet, the technologies to
create floating IFrames, which are movable and resizable using JavaScript, have
also become quite popular. This design is really closer to what we are looking for
in a Value Help solution.

Thanks to the open nature of BSP, you should be able to find most any Java-
Script/DHTML example on the Internet that meets your needs and hook it into
the BSP event system. For this text we are going to take an even more drastic
approach. Web Dynpro will have just such dialog windows. SAP has already
developed the JavaScript libraries for Web Dynpro, we will just need to adapt
them for BSP. The JavaScript fibraries in question are shipped for customer use as
of Web AS 6.20 SP56 and 6.40 SP15 and can be found in the MIME repository —
/gap/be/ur/design2002/is/popup*. js.

How better to expose this Web Dynpro element than as its own BSP extension
element. We start with a rather simple header element that has the responsibility
of hooking into the event system for the dialog. It has three attributes. These
attributes are an element 1D, a server-side event D named onClick, and a client
side event JavaScript function named onClientClick.

The Web Dynpro JavaScript coding already has a hook to fire a custom JavaScript
on the Hide Dialog event. We just need to connection our events into this hook.
For this we have the following code. This allows us to create a JavaScript function
that will fire an event on the client side, the server side, or both.

data: event_script type string.
data: id type string value 'Parameterl’.
data: popup_id type string value 'Parameter2’.
event_script =
cl_htmlb_manager=>render_event_call(

bsp_element = qe

Dialog Windows

210

event_type = 1polick’
server_event = pe-yonclick
client_event = me->onclientelick
param_count =2

param_1 = id

param_2 ’ = popup_id
client_event_inlined = 'X').

As we render out the JavaScript callback function within our element processing,
we can just call the JavaScript function we just rendered.

concatenate html_out
“dgeripty?”
“function ptrOnHideModalDialog(id,popupId)‘
pe
‘if(typeof(id)=="undefined")‘
‘return true;’
“var check=true;’
*if (popupld==''1{ } else [°
event_sgcript ":}°
“return check;’
o)
“ptrDialogObi=new Object();’
“ptrDialoglbj.popupldArray=new Array();°
“{facript>”
into html_out.
me-Pprint_string(html_out).
rc = co_element_done.

We can now create individual BSP extension elements that make the call to t-he
JavaScript functions provided by SAP to initialize the different types of dlé]og win-
dows. Mostly this involves exposing customizing settings such as width and
height and concatenating them into the JavaScript function.

concatenate html_out
“geripty”
“function ° me-»clientevent ()"
e
“ptrPopup .ptrModalDialogUrl (window, "

“1Y me-vurl B
C1Y me-dtitle LT
Y pe-dstyle '

me->width ~,°

220 Help Systems

me->height *,°
ST me->id

RN
J

“{fseripty)”
into html_out.
me->print_string(html_out).

rc = co_element done.

B v Seiation — "

§ Fiigne . |
|1 sine - IR A E I L R H |
| | Flight Mumber T I arine I ‘ I [
I Larins (—— LT .
Max. no. of Ines 500
o |avtare - -) S '. f
3 - ' Query Deta | [More En
| [Airlne Currency B3 et TL s B
= - . . f?ﬂne L : =i Arine
{ Plane Tyre & T

<] Max. cepactyeson - Ainerican Airlines

i | Qé;msd acon.
{ 1ol

Air Berlin

Alr Canada

Air France

1] wax, cagacty bus »7‘,‘_‘{7
4 Altaia

4| Gesugied pus.

i | Max. copaetye st

| Deetipied 15l

Japan Airlines

Lufthensa x

Lauda Air

] cancarl

Figure 1411 Dialog Window

Figure 14.11 demonstrates the rich Ul that this dialog window functionality from
SAP provides. You have window maximizing, resizing, dragging—basically every-
thing that you would expect with any dialog window. However, this frame is not
a separate window within the browser. Therefore it shares the same system state;
if you close the browser window or navigate away from the application, it will
close as well.

Not only does this solution fit nicely into the Value Help solution, but it also dem-
onstrates how powerful the openness of BSP is. We were able to take an external
JavaScript library that was originally designed for Web Dynpro and adapt this to
BSP. You could have just as easily have integrated one of hundreds of open-source
code samples from the Internet as well.

Dialog Windows

321

322

14.3 F4—Value Help

If you have worked in the classic ABAP Dynpro world, you probably fearned to
take for granted just how powerful and easy to use s the built-in functionality for
vValue Help. It is not until you begin BSP development that you realize just how
much you miss all that functionality that you never really gave a second thought

to.

14.3.1 Value Help Requirements

Once again, we are looking in the standard functionality provided by BSP for one
possible way to fill this gap. Here are the requirements that this possible solution

would need to meet.

» First this solution must be easy to use. We want only to have to insert a BSP
extension in the source pages in order to use it. We want it to support model
binding directly. So, to start we are going to have a BSP extension that is a
wrapper around the <htmlb:inputField>.

» We wanted more than just a simple selection of data dictionary Help values
from the local Web AS System. Simple value/description pairs could already be
created easily with an <htmlb:dropDownlistBox” and data binding on the
helpvalues attribute. The solution has to be able to support more complex
value selections. An example of this is the common selection of User in reports.
Just listing User 1D or even User Name is not enough. We want to have a value
list that shows Building, Business Unit, First Name, Last Name, etc. This
means the value selection routine needs to have a powerful exit mechanism,
similar to ABAP search helps, so that each consuming application can control
the value list. It also needs to support complex search helps with one or more
inner element search helps. Furthermore, it is rather common to have a sepa-
rate Web AS for the backend data system, such as a separate R/3 system. This
means that we also need to be able to retrieve the help values from a remote
system via RFC.

» We want the Help Values display to be powerful but easy to use for the end
user. The solution should have filtering and sorting capabilities on the value list.
Therefore, the solution displays the Help Values in an {htmlb:tableView?
element.

» The user needs to be able to choose mare than one value from the help list.
That means that our new BSP element will have to be a wrapper around

<hemlb:listBox> as well as <htmlb:inputFieldd.

» The Help Values dialog needed to work in both statefu: and stateless applica-

tions.

Help Systems

14.3.2 The Solution

Much as we did with F1 Field Help, we will create a new BSpP extension element
that will be a wrapper around existing elemen ill ho

g elements. We will n ntin
t X . ok our own event into

When the user requests Value Help, this example will create a stateless. Model
View-Controller page that will be displayed in a floating IFrame dialo 'boxOTfl_
solution will include the JavaScript that allows this IFrame to be dra ged un
the window like it was a modal dialog box. gec arouns

Finally, this IFrame will write its selected values back into the source
<htmlb:iinputField? or <ktmlb:listBox>. Figure 1412 shows the most
advanced version of this solution in action. This example is a complex search hel

with several elemental helps. i

Dotetelaltieio -cording !
EﬂDownlaad

Search for bookmgsaccordln*gtt—) {ravél ;Egﬁc

. [Dste . (R
Nrevelagereyname [)
00

110

'Ag;ncy Na. :] fro
* .| Booking niimber [__——___] ITC
ClaMine- bow -
e T :
} Fligkt Murmoer (7 [In ;
- | courtry - - - il‘TO
1

I Max. no. o fes

Quefy Osta || More Entries
S e T SE—— gy oy]
[7 gency No. 5 | Backind number 34 &l (2] Flight Riumber ST ¢ourtry 2 Dete
L] B | i | :
{3 | ooogo114 | 0ooonood | &A {Hannover © om17 0E { 2001] |;
{ DU Taa e n
1@ 00000222 | 00020002 Las | Los 2ngeles | 0017 us 2004] |t
[! i ; A ¢
3 | ooogo104 (00000004 | aa ! Neumarkt 0017 i at 004] |
! 00! J | B]
N 000087 00020005 Y | Berlin foo7 DE] 2004 ;
[| oooa0107 E_DDUDLOS | &4 | Birmirgham | n017 7] P
T
3 | ooooot 11 | 00000007 I Aa TBOsiun loo17 us 2004
| @ ‘ooor17 | ooonoona Y 2 f
A, _|ooono00 | ea [Emden oot toe w0e |
{5 | ooono108 | 0o00D0OS A | Landar aotz o | 2004] ’

Figure 1412 Value Help Example

Atthe top of the Help Values dialog we have a <phtm1b:popupMenu that will be
use to select elemental search helps if we are attached to a collective search help.

F4—Value Help

23

On the right side of this area, we also have navigation controls for moving
through the result list that is displayed in an <htmlb:tableView>.

On the nextline in the user interface we have the check-mark (for OK) and Can-
cel icons. Choosing the OK icon will fire the JavaScript to copy the selected
value(s) back into the originating element. Selecting the Cancel icon, the Cancel
button at the bottom of the dialog window, or the *X" Icon in the top right corner
of the dialog window will alf close the window without copying back any values.
The final item on this line is the Download menu. This is actually another custom
BSP extension element that will download the value results as Excel, XML, or
HTML. This solution is discussed in detail in Section 16.5.

The next area shows input fields that can be used to narrow our selection.
Althoughthe value outputis displayed in an <htmlb: tableView> with sortingand
filtering turned on, we want to support more opportunities to reduce our value
results than what a single filter could accept. Finally, we have an input field called
Max. no. of lines. This input field allows you to control the maximum number of
records that are returned in the value selection. This is helpful for keeping the runt-
imes low on the initial display of a value selection with many potential results.

We should state here that recreating this solution is not a small or simple exercise.
There is a signification amount of coding involved in getting this solution up and
running in your system. The coding for the current version of this example is avail-
able on the book CD. We strongly encourage you to download and study it in
detail before attempting to recreate this example.

14.3.3 The New BSP Element

We will start the process of recreating this example by designing our new BSP ele-
ment. As we said earlier, we want to trigger the Value Help dialog from either an
<htmlb:inputField> or <htmlb:listBox>. Therefore, just as with the F1 Field
Help solution, we will want to copy all the attributes from these inner elements.

Far more interesting, however, will be the new attributes that we must add to
support the three different types of Value Help dialogs. The first type is the deter-
mination of the search help via data reference from the local system only. Of the
three approaches, this is the one that we are going to look at in detail in this text.

To support this type of dialog, we will add one attribute called dataRef of type
STRING. It must contain the name of the data dictionary field that we will use to
determine the search help.

{% data: data2 type sflight-carrid. %>
{ybook:inputHelp id = "In2"

Help Systems

value = "<%= datal %"
dataRef = "SFLIGHT-CARRID" />

Although this method is simple to use, a better approach might be to also deter-
mine the dataRef value dynamically from the data object that is being passed
into the value attribute. To do that, we really just need a static class method to
look up the help-id for us.

method read_field type.

* Input: FIELD TYPE ANY

* Returning: VALUE(DATAREF) TYPE STRING
describe field field help-id dataref.

endmethod.

Listing 141 Method READ_FIELD_TYPE of Class YCL_ABAP_UTILITIES

<% data: data2 type sflight-carrid. %>

{ybook:inputHelp id = "In2"
value = "{%= datal%>"
dataRef = "(%=

YCL_ABAP_UTILITIES=DREAD_FIELD_TYPE(data?) W /D

Listing 14.2 Modified Use of our Value Help Element

14.3.4 Input Help Controller

Because the rendering logic of the BSP extension element is really very similar to
the F1 Field Help, we will skip ahead and look instead at the application that
resides inside the Value Help dialog.

Once again, we will create the content of the dialog as a separate stateless MVC
application. Our entrance into this application will be through a controller. This
controller will be responsible for reading the keys for the value selection from the
URL and initializing the model class.

Because this is a stateless application, the instance of our model class is lost after
each request/response cycle. We couid have taken a similar approach to the F1
Field Help and serialized the model class to a server cookie. However, due to the
nature of the processing when working with the search-Help function modules
and/or BAPIs, doing this would not have provided much value. Therefore we sim-
ply recreate the model fresh for each cycle.

The most important role of the controller, however, will be choosing which of the

three logic paths we want to take based upon the attributes that were set in the
calling BSP element.

F4—Value Help

126

+x++Requested Simple Help Values
if not model?->data ref is initial.
model?2->get_helpvalues_complex().
#»*+*Requested Help Values Via an RFC Exit
olseif not model2->rfcfunction is initial.
modelZ—>get_helpvaluesﬁéxit().
elseif not model2-dobjtype is initial.
model?2->get_helpvalues_bapi().
el;zée12‘>message = 1Flement ID can not be blank'(e03) .

endif.

14.3.5 Input Help View

For the most part, the view for the Ul rendering is fairly standard. We .use a
(xhtmlb:toolbar> to lay out the first two rows of the dialog that contain the
element search help popup, the Chtmlb:tableView> navigation, and then the

buttons.

The values of the elemental search help popup menu are built dynamically using
an internal table that is filled during model processing.

¢4 if lines(model->bapishlp) » 1.
data: popupitems type phtmlb_popupmenuitemé.
field-symbols <wa_menu> like line of popupitems.
field-symbols <wa_bapishlp>
like line of model->bapishlp.
loop at model->bapishlp assigning <wa_bap%shlp>. X
append initial line to popupitems assigning {wa_menu’.
{wa menu>-text = {wa_bapishlp>-title.
(wa_menud -MENUTTEMID = {wa_bapishlp>-shlpname.

{wa menu)-enabled = 'X'. {wa_menu>-cancheck = ''.
{wa menuy-checked = ''. {ya_menu>-hasseperator = ''.
endloop. %2

{phtmlb:popupTrigger id = "shlpPop"
popupMenuld = "shlpMenu™ >
(htmlb:image src="popl.ipg" />
{/phtmlb:popupTrigger>
{phtmlb:popupMenu id = "shlpMenu"
maxVisibleTtems = "30"
items = "{%= popupitems %>" />
<% endif. %

Help Systems

Unfortunately, an {xhtmlb:toclbarButton) does not support the display of an
icon. However, in our output we wanted to emulate the classic SAP GU| Value
Help dialog with the buttons that display the green check mark and red "X." To
accomplish this, we just rendered the image directly into the text of the button.

% data image type ref to cl_htmlb_image.
data image string type string.
create object image.
image->id = ‘UserCancel?2".
image-?src = cl_bsp mimes=>sap_icon(~ICON_INCOMPLETE).
image->tooltip = *°
image string = image->IF_BSP_BEE~RENDER_TO_STRING(
page_context). %»

{xhtmlb:toolbarButton id = "UserCancel"
onClientClick = “ptrPopup.ptrHideModalDialog('CANCEL') ;"
text = "{%= image string %>" />

The internal table that we will use for the value results must be a generic type. At
design time, we have no idea what kind of structure this table will need. In the
model, we have declared this internal table as TYPE REF TO DATA. Later in the
model-processing logic, you will see the code necessary to dynamically redefine
this internal table. However, because this internal table is just a reference to a

generic data object, we must pass it to the <htmlb:tableViewd by first assigning
it to a field symbol.

(% field-symbols: <tab> type table.
assign model->idata->* to <{tab).
if <{tab> is assigned. %>

<{htmlb:tableView id = "ml users"

table = "{%= <tab)> %>"
/>
% endif. %>

The last interesting aspect of the view is the dynamic creation of the input fields.
Because the definition for the input fields varies depending upon the search-Help
we are working with, the fields' Ul coding must be dynamic as well. To simplify
this process, we will rely upon model binding to bring our values back in from the

browser on input. We will use the dynamic-binding-string approach that we
learned about in Section 13.4.

(% field-symbols: <wa_mvc> like line of model->shlp_mve.
data: input_string type string.

F4—Value Help

327

data: input? type ref to cl_htmlb_inputfield.
data: input_id type string.

data: tabix type string.

data: label type string. %

{phtmlb:formLayout labelAlignment = "LEFT"
design = "SOLID"
verticallineSeparation = "TRUE"
fieldToLabelZactor = "1.0"
customizaticnKey = "ZE0QO2" >

{% loop at model->shlp_mvc assigning {wa_mve .
move sy-tabix to tabix.
condense tabix.
create object inputl.
concatenate <wa mvcy-select_fld tabix '_low'
into input2->id.
condense input_id no-gaps.
input2->_value = <wa_mve?-bind_low.
input2->size = 15.
input?2->maxlength = 30.
label = {wa_mvc>-TITLE.
input_string = input2->IF_BSP_BEE-RENDER TO_STRING (
page_context). %

{phtmlb:formLayout_tem id0fltem = "{%= input2->id %>"

label = (%= label %" >

<%= input_string %>
{/phtmlb:formLayoutltem’

¢/phtnlb:formLayout?

There is one last thing that we will use model binding for. Remember that because
our Value Help dialog application is stateless, our model instance will be lost.
However, there is a small amount of data that we would like to retain about the
state of the model. The simple approach to accomplishing this is to just write
these items out to hidden input fields. The values will then be restored automat-

ically thanks to data binding.

(htmlb:inputField value = "//model/SHLPNAME"
visible = "FALSE" />

328 Help Systems

14.3.6 Input Help Model

The final piece to the puzzle in the Value Help example is the model class itself
We are only going to look in detail at the method, GET HELPVALUES COMPLEXl
which supplies the logic for one of the three approaches that we SupEort Once,
you understand the processing of one of the three methods, you will see ﬂ.1at the
other two amount to slight variations in processing.

The goal of this method was to have all of the functionality of the GET
HELPVALUES_BAPT, but with much less complexity in its use. This method onl;
runs locally, bul requires just a data type. From this data type we will determine
what Help values, if any, are available and process the results into the same out-
put structures as used in GET_HELPVALUES BAPI. We thus will not be requiring
any changes to the U! coding to support both methods.

We start this method hy setting a default 500 rows of returned values in case no
value was supplied for max_rows. Next, we want to validate that the data re~
attribute was supplied and passed in. Both of these fields are required and¥vali—
dated in the extension element, but it never hurts to check.

METHCD get_helpvalues_complex .

IT me-?max_rows IS INITIAL.
me->max_rows = 500.

ENDIF.

DATA: field TYPE REF TO data.

TRANSLATE me->data_ref TO UPPER CASE.

IF me->data_ref IS INITIAL.
me-Pmessage =

'Daza Type of Value Help can not be blank'(e02).

RETURN.

ENDIF.

We now will dynamically create a variable of whatever type was passed in. This
will alfow us to further validate that we have a correct data type.

DATA: error4 TYPE REF TO c¢x_sy_create_data error.
TRY. CREATE DATA field TYPE (me->data_ref).
CATCH cx_sy_create_data_error INTO errork.
me-smessage = errord-yget text().
RETURN.

ENDTRY.

Next, we will use the ABAP Runtime Type Information (RTTI) classes to further
check our data element, making sure itis a data-dictionary type. We will then also

F4—Value Help

329

use the RTTI to query for the help id attached to the object. If this help id refer-
ences a structure and a field we will need to split them in two, tebname and
fieldname, before further processing.

DATA: rtti TYPE REF TQ cl_abap_elemdescr,
fixvalues TYPE ddfixvalues,
1_help_value TYPE shsvalstrZ.
DATA: 1_typename TYPE dfies-tabname,
1_compname TYPE dfies-fieldname.
rtti 7= cl_abap_typedescr=>describe by data_ref(field).
if rtti->is_ddic_type() = abap_false.
MOVE 'lnput type not DDIC Type'(e99) TO me-’message.
RETURN.
ENDIF.
DATA: 1_helpid TYPE string.
IF me->data_ref CS '-'.
1_helpid = mc->data_ref.
ELSE.
1_helpid = rtti->help_id.
ENDIF.
CONSTANTS: component_separator TYPE c VALUE PR
SPLIT 1_helpid AT ccmponent_separator
INTD 1_typename l_compname.

In the next section, we get some help from some SAP-provided function modules.
First, we call DD_SHLP_GET_HELPMETHOD. This will return whatever search help,
complex or elemental, that is attached to our help ID.

This is another validation that there is Value Help attached to our element. If the
object returned was a complex search help, we need to expand that object out so
that we have all the details about its inner search helps as well.

it is safe to pass even an elemental search help through the function module
F4LIF_EXPAND_SEARCHHELP. It will only create an internal table with the single
record for the elemental help. This way we have a common interface to work with
through the rest of our processing.

DATA: shlp TYPE shlp_descr.
CALL FUNCTLON 'DD_SHLP_GET_HELPMETUOD'
E¥PORTING tabname
fieldname
CHANGING shlp
IF shlp-fielddescr IS INITIAL.

1l

1_typename

1_compname
shlp.

I

Help Systems

MOVE 'No Help Values Available'(e98) TO me->ressage.
RETURN.
ENDTEF.
DATA: shlps TYPE shlp_cesct.
CALL FUNCTION 'F4TF _EXPAND SEARCHHELP'
EXPORTING shlp_top = shlp
IMPORTING shlp_tab = shlps.

We next have a section to record the listing of inner-element search helps if we
have a complex search help. We remove characters that are not HTML- safe from

the search-help descriptions because we are using these descriptions in a
{phtmlb:popupMenu> later.

FIELD-SYMBOLS: <wa bapishlp> LIKE LINE OF me->bapishlp.
FIELD-SYMBOLS: <wa_shlp> LIKE LINE OF shlps.
CLEAR me->bapishlp.
IF LINES(shlps) > 1.
LOOP AT ships ASSIGNING <wa shlp>.
APPEND INTTIAL LINE TO me->bapishlp
ASSIGNING <wa_bapishlp>.
MOVE {wa_shlp>-shlpname TO <wa_bapishlp>-shlpname.
MOVE <wa_shlp>-shlptype TC {wa_bapishlp>-shlptype.
MOVE <{wa_shlp>-:intdescr-ddtext TO {wa_bapishlp>-title.
REPLACE ALL OCCURENCES OF '/
IN <wa bapishlp>-title WITH space.
ENDLOOP.
ENDIE.
tf the user has not selected a search help yet, or there is only one search help to
choose from, we will initialize to the first record. Otherwise we will read our [ist-
ing of elemental search helps to find a match to the one the user has selected.

IF me->shlpname IS INITTAL.

READ TABLE me->bapishlp ASSIGNING <wa bapishlp)
INDEX 1.

IF sy-subrc = 0.
me >shlpname = <wa_bapishlp>-shlpname.
me->shlptype = <wa bapishlp>-shlptype.
me->shlpdesc = <wa_bapishlp>-title.

ENDIF.

READ TABLE shlps INTO shlp INDEX 1.

F4—Vaiue Help

332

ELSE.

READ TABLE me->bapishlp ASSIGNING <wa_bapishlp>
WITH KEY shlpname = me->shlpname.

me-»shlptype = {wa_bapishlp>-shlptype.
me->shlpdesc = <wa_bapishlp>-title.
READ TABLE shlps INTO shlp
WITH KEY shlpname = me->shlpname.

ENDIF.

Now, we come to the processing section, where we will take an input-selection
criterion from the Ui and turn it into a valid range.

FIELD-SYMBOLS: <wa mvcy LIKE LINE OF me-»>shlp_mve.
FIELD-SYMBOLS: <wa_gel> TYPE ddshselopt.
LOOP AT me->shlp mve ASSIGNING {wa_mve.
APPEND INITIAL LINE TO shlp-selopt ASSIGNING <wa_sel>.
MOVE-CORRESPONDING <wa_mve> TO {wa_sel?.
MOVE {wa_mvcy-select_fld TO {wa_sel>-shlpfield.

{wa_seld-sign = 'I'. "Inclusive
1F <wa_sel>-high IS NOT INITIAL.
{wa_sel>-option = 'BT'.

ELSEIF <wa_sel>-low CA '*' or
{wa_sel>-low CA '+'.
{wa_sel>-option = 'CP'.
ELSEIF <{wa sel>-low IS NOT INITIAL.
{wa_sel>-option = 'EQ'.
ENDIF.
ENDLOOP.

We are almost ready to call DD_SHLP_GET_HELPVALUE to actually perform our
value selection. However, before we do, we will take a backup copy of the selec-
tion fields. We do this so that we can return our input parameters back to the
screen with the results.

DELETE shlp-selopt WHERE low IS INITIAL.

DATA: b_shlp TYPE zes_shlp mve_tbl.

b_shlp{] = me->shlp_mvc.

DATA: fcat TYPE lve_t_fcat.

FIELD -SYMBOLS: <wa_Tcat> LIKE LINE OF fcat.

DATA: fname TYPE lvc_fname.

CLEAR me->tbl_def.

FIELD-SYMBOLS: <wa_def> LIKE LINE OF me->tbl_def.

Help Systems

DATA: 1 output TYPE TABLE OF seahlpres.
DATA: 1 _shlp LIKE shlp.

1 _shlp = shlp.

CALL FUNCTION 'DD_SHLP_GET HELPVALUES®

EXPORTING maxrows = me-)max_rows
TABLES output_values = 1_output
CHANGING shlp = 1_shlp.

CLEAR me->shlp_mvc.

DATA: new_shlp(1l) TYPE c.

DATA: tabix TYPE string.

IF b_shlp IS INITIAL. new_shlp = 'X',
ELSE. me->shlp_mvc[] = b_shlp(].
ENDIF.

We now will build a listing of all the input fields for the search help that was
returned as well. This allows us to setup the table of input fields that we will
dynamically generate in the output view.

FIELD-SYMBOLS: <wa_fields> LIKE LINE OF shlp-fielddescr.
LOOP AT shlp-fielddescr ASSIGNING <wa_fields)
WHERE fieldname NE '_HIGH'.
APPEND INITIAL LINE TO fcat ASSIGNING {wa_fecat).
APPEND INITIAL LINE TO me->tbl_def ASSICGNING <{wa_def).
{wa_fcat>-col_pos = {wa_fields>-position.
{wa_fcat>-fieldname = <wa_fields>-fieldname.
{wa_def>-columnname = {wa_fields>-fieldname.
MOVE 'X' TO <wa_def>-sort.
{wa_fcat>-datatype = 'CHAR'.
{wa_fcatd-inttype = 'C'.
{wa_fcat>-intlen
{wa_def>-title
IF new _shlp = 'X'.
APPEND INITTAL LINE TO me->shlp_mvc
ASSIGNING <{wa_mvc).
{wa_mvc>-select_fld = <wa_fields>-fieldname.
{wa_mvey-title
ENDIF.
ENDLOOP.

= {wa_fields>-leng.

= <wa_Tields>-scrtext_m.

= {wa_fieldsd-scrtext m.

We are now ready to build our internal table of input fields for the search help.
First, we have code to process multiple input values for the same item. We want
to make sure that we have at feast one input field for each item that is empty and

F4—Value Help

333

334

ready for input. This is where we will build a More Values item. Next, we build
our binding string for the low and high values in our range.

DATA: last_field TYPE string.
DATA: last_value TYPE string.
LOOP AT me->shlp_mvc ASSIGNING {wa_mvey .

MOVE sy-tabix TO tabix.

CONDENSE tabix.

IF last_field = <{wa_mve>-select fld AND
{wa_mveY-low IS INITIAL AND
last_value IS INITIAL.

DELETE me->shlp_nive.

CONTINUE.
ELSEIF last field = <wa_mve>-select fld.
{wa_mver-title = ' ...More Values' (001).
ELSE.

READ TABLE shlp-fielddescr ASSIGNING {wa_fields>
WITH KEY FIELDNAME = (wa_mver>-select _fld.
dwa_mver-zitle = {wa_fieldg>-scrtext_m.
ENDIF.
MOVE <wa_mvecy-select_fld TO Zast_field.
MOVE <wa_mvc)-low TO _ast_value.
CONCATENATE '//model/shlp_mve[' tabix
'] .low' INTO <wa_mvec?-bind_low.
CONCATENATE '//model/shlp mvcl' tabix
'] .high' INTO <wa_mvc>-bind high.
ENDLOOP.

Next we will dynamically create an internal table that has the data structure of the
returned values for the Search Help. For this example, we stayed with the CL_
ALV TABLE CREATE method for creating the internal table so that the coding will
be compatible with Web AS 6.20. If you are on Web AS 6.40, you are welcome to
replace this with calls to the RTTS.

For simplicity, after creating our dynamic internal table, we query the structure of
the internal table with a call to a static method in a helper class called YCL_ABAP_
UTILITTES . The source code for this class is also avaijlable for download with the

rest of this example.

CALL METHOD cl _alv_table_creat e=>create_dynamic_tab le
EXPORTING it_fieldcatalog = fcat
IMPORTING ep_table = me->idata

Help Systems

e_style_fname = fname.
FIELD-SYMBOLS: <tab> TYPE table,

{wa> TYPE any,

£ TYPE any.

ASSIGN me->idata->* TO <{tab).

APPEND INITIAL LINZ TO <tab>.

DATA: struct TYPE extdfiest.

FILLD- SYMBOLS <wa_desc> LIKE LINE OF slruct.

CALL METHOD ycl_abap_utilities=>get table_structure
EXPORTING itab = me->idata
RECEIVING struct = struct.

Finally, we come to the most complex part of the processing in this method. We
need to move the data from our generic search-help result structure into the
dynamic internal table. To make sure that all data is displayed properly, we will
need to look up and process any attached conversion exits for each field. To make
matters even more complex, all the data in the search-help results is returned in
a single string. Therefore, we have to dynamically parse oul this string based upon
the definition of receiving internal table.

C_EAR {tab>.
DATA: conv_exit (10} TYPE .
FIELD-SYMBOLS: <wa_values> LIKE LINE OF 1_cutput.
DATA: tadbix_tmp TYPE sytabix.
LOOP AT 1_output ASSIGNING <wa_values).
APPEND INITIAL LINE TO <tab> ASSIGNING <wa>.
****For each component (field) in the table -Output the data
LOOP AT struct ASSIGNING <wa_desc).
ASSTGN COMPONENT sy-tabix OF STRUCTURE {wa> TC {£>.
CHECK sy-subre = 0,
READ TABLE shlp-fielddescr ASSIGNING <wa_fields>
WITH KEY fieldname = <wa_descr-fieldname.
CHECK sy-subre = 0.
1F <wa_fields>-fieldname = '_HIGH'.
tabix_tmp = sy-tabix + 1.
READ TABLZ shlp-fielddescr
ASSIGNING <wa_fields> INDEX tabix_tmp.
IF sy-subre = 0.
IF <wa_fields>-convexit IS NOT INITIAL.
CLEAR conv_ecxit.
CONCATENATE '==' (wa_fields>-convexit

F4—Value Help

335

336

INTO conv_exit.
WRITE <wa_values>-stringt<wa_fields>-
offset ({wa_fields>-leng) TO <f>
USING EDIT MASK conv_exit.
ELSE.
WRITE <wa_values>-string+<wa?fie1ds>-
offset ({wa_fields>-leng) TO <f>.
ENDIF.
ENDIF.
me->key field = '_LOW'.
RETURN.
ELSE.
ENDIF.
ENDLOOP.
ENDLOOP.

We now only have to set the key field so that the JavaScript in the Ul knows what
element from the returned value list to pull out and pass back to the originating
input field.

IF me->key_field IS INITIAL.
IF 1_compname IS INITIAL.
me->key_field = 1_typename.
ELSE.
me->key_field = 1_compname.
ENDIF.
ENDIF.
ENDMETHOD.

Help Systems

15 Internationalization

In today's global economy, successful businesses rarely operate in only
one language or geographic region. With globalization comes many
technical challenges. In this chapter we will look at the tools and tech-
niques in BSP that will allow you to open your applications to a whole
new world.

15.1 Multiple Language Support

SAP software has always been known for its strong support for internationaliza-
tion. SAP's core product, R/3, is used around the world and is available in 40
country versions and 30 different languages. SAP currently has installations in 140
countries around the world.

BSP joins the rest of the ABAP toolset with its strong support for multiple lan-
guages and code pages. In this chapter, we will examine several aspects of BSP
that support internationalization. Figure 151 demonstrates how the same BSP
page can support multiple languages. This page receives much of its translated
content automatically, using the techniques we will discuss in this chapter.

Figure 151 Muilti-Language Example: English, German, Polish, Chinese

The most important aspects of supporting multiple languages require that you
only use two of the BSP development techniques already discussed in this book:
BSP Extensions and Model View Controller. As Figure 15.1 demonstrates, the
tooltip for the expand/collapse button on the <htmlb:tray> is translated into
each of the different languages, as is the calendar in the help for the input field.
However, the developer did not have to perform this translation. Because this
application reuses the SAP-delivered extension elements, SAP has already done

Internationalization

337

338

the translation for you. This is just one more reason to rely upon the extension
framework and SAP's delivered elements.

You might also notice that our ¢htmlb:label> and <htmlb:dropDownListBox>
values were all translated as well. These translations are coming directly from their
definitions in the data dictionary. SAP has supplied translations for these values as
well. However, by using Model View Binding, we do not even need logic to pull
the correct language versions of these descriptions. The data-binding logic will
perform all the language-specific selections for us.

15.2 Logon Language

When you log onto the SAP system via the traditional SAP GUI method, you must
select a language from the logon screen. This selection has two effects. First, it
sets the language that will be used for the user interface. This effect is fairly obvi-
ous and probably the only thing that most people suspect is happening when they
choose the logon language. However, the system could also be setting the correct
code page to match your logon language. This allows processing of texts in order
to be correctly stored in the database when your system is set up to work with
multiple languages. All of this occurs provided that your system is not Unicode
(see Chapter 15.3), in which case all languages are contained in a single code

page.
BSP applications running in Web AS 6.40 and higher can be configured to have
similar logon screeris, as shown in Figure 15.2, but not every application will be

configured to go through a manual logon screen. You might have configured Sin-
gle Sign-On for instance; in which case no logon screen at all would be displayed.

There are actually several different ways that BSP applications can have their
logon languages set. They are layered one on top of the other in a hierarchy of
checks. The order that they are listed in this text is the order in which the BSP

runtime processes them.

» In transaction SICF, if the service has the flag Logon Data Required set, the sys-
tem uses the language that is entered in the Anonymous Logon Data area.

» If no setting is maintained in SICF, but the HTTP request contains the language
in the HTTP header—either as a header or as a form field—this logon language
will be used. The field that the runtime is tooking for is called sap-language.
You can supply a value to this field as an SO language 1D, such as EN for
English or DE for German. If you want to test this field's abilities, simply add
the ficld to the URL string in the browser after loading a BSP application:

http://<host>/sap/be/bsp/sap/ybsp/book. htm?sap- language=DE

Internationalization

SAP NetWeaver™

SAP Wab Application Server

J client

A

I Users *

| Password +

| Language Enalist v
Chinese

by N . e Y <

Frogon|! Crange PassviT ST

Copyright 2002-2004 SAP A{

Figure 15.2 BSP Application Logon Screen

A, Hardler Ust " Brlor Pages §

Service Cptions -])
Server Group: ﬁ

Logan Procedure -
O standard
O Alternative Lagon Ordar) ;j
-) Err. Type D

T

SAP Authariz,

Sessian Timeaut: - - 003 00: 00] (HH:MV:SS)

o+ | Compression (if possble)

AR =

|- ®Logan Data Reguired -
]__ O Client Cert. (SSL) Required
| D10 _ogons '

T [Security Requrements

7 _ @standard - oY
Cient__[o00) T Qsst - e

'| Anorymous Logon Data -

]

| User

Basic ALthentication ~
. ®Stadard kY3 User

Orintemet User

. Password ramvsrns] il jtial

rLanguage DE German §)

N

Figure 15.3 Language Determination via SICF

> if itis still impossible to determine a language, the system then will jook at the
browser settings. The system selects as the logon language the first language
from the list in the browser that matches one of the installed installed lan-
guages in the SAP system. With Internet Explorer, you can set the language by
choosing Tools - Internet Options - Languages. Technically, the browser trans-
fers this value using the HTTP header field accept-language.

Logon Language

339

Some Web sites offer content in multiple languages. Youcan - ° 1
1§ chnase several languages below; they will be treated in order of
priority,

Language:
English (United States) {en-us] [Mave Lip [
Pelish [pl] —
Chinese [zh]

Thai [th]
German (Germany) [de]
Spanish (Mexico) [es-mx]

[N

|
|
i
|
i

in English (United States). -t
R Cancel
L Colars..] Fonts... J Languages... Accessibility...

(-
Menus and dialog boxes are currently displayed R

Figure 15.4 Language Setting in Internet Explorer

» If no language can be determined up to this point, the classic SAP system
mechanisms are used. The logon language is based on the user settings, in
transaction SUQ1. Finally, if nothing is maintained even here, the default lan-
guage of the SAP system is used automatically.

You might find it useful to be able to switch the logon language of your BSP appli-
cation programmatically. The easiest way to do this is to attach the sap-langu-
age header field to your URL as you navigate.

DATA: params TYPE tihttpnvp.
FIELD-SYMBOLS: <wa_params> LIKE LINE OF params.
APPEND INITIAL LINE TO params ASSIGNING {wa_params> .
{wa_params>-name = 'sap-language'.
{wa_params>-value = 'DE'.
DATA: bsp_abs url TYPE string.
CALL METHOD
cl_bsp_runtime=>construct bsp_url
EXPORTING in_application = runtime->application name
= runtime->page_name

in_ page
in_parameters = params
IMPORTING out_abs_url = bgp_abs_url.

Internationalization

currenttime = sy-uzeit.
CALL METHOD cl_http_server=>append_field url
EXPORTING name = 'sap-unique'
value = currenttime
CHANGING wurl = bsp_abs url.

navigation->exit(url).

Listing 151 Switching the Logon Language to German

fn the above listing, we have used two different techniques for appending a form
field to the URLs (c1_bsp_runtime=>construct_bsp_url and cl_http_ser-
ver=>append_field url) in order to demonstrate their use. Also note that
reloading the current application with a different logon language will require that,
in a stateful application, we get a new session. Therefore we will lose access to
any stateful data we had in memory.

That is also the reason we are attaching the sap-unique header field as well. If
our application is stateful, it may be running within a frame that uses JavaScript to
watch the URL for changes and destroy the session when no longer needed.
However by only adding a different language to the URL, this JavaScript may not
pickup the change. The addition of the sap-unique header can assist in this
determination.

15.3 Unicode

15.3.1 What is Unicode?

A brief explanation of Unicode is in order here. Computers do not understand
human language characters; they only understand numbers. A mapping table is
therefore necessary to connect characters to numbers for output to human-read-
able displays.

Ideally, there would have been one single mapping that gave every character in
every language a unique number of its own. This would have required more than
one byte per character. Years ago, when computer memory was expensive, the
overriding concern when it came to any design was the conservation of memory.
Therefore different languages were separated in code pages and numeric values
were reused from code page to code page. This allowed a single character from
most languages to be represented by only one byte. However, it introduced the
complexity that only one code page could be used at a time and consequently
limited the number of languages that could be processed together.

Unicode

341

342

With the advent of the Internet age and globally operating businesses, it is no
longer possible to work in one or just a few languages. Today's applications need
to be usable in just about any language known to man. This is where Unicode

comes into play.

Unicode uses multiple bytes per character in order to have a single code page that
holds every character from every modern language, and even some not- so-mod-
ern ones. One might think that this would solve all incompatibility problems

when it comes to characters and code pages.

Unfortunately that is not the case. There are several different implementations of
Unicode that use a different number of bytes per character, varying in use from
one to four bytes. The three major flavors are UTF-8, UTF-16, and UTF-32. UTF-
8 uses as little as 1 byte per character and as many as 4 bytes. UTF-16 uses a min-
imum of 2 bytes per character and as many as 4 bytes. Unlike UTF-8 and UTF-16,
UTF-32 uses the same number of bytes (4) for every character. This has the advan-
tage of not requiring any processing overhead for the variable byte conversion,
but the disadvantage of requiring the largest amount of memory.

To complicate matters further, when you work with Unicode you also must con-
sider the Byte Order Mark, or BOM. When you have two or more bytes repre-
senting a character, the processing program of these characters needs to know
which byte is the significant one.

Significant byte has to do with how the underlying hardware architecture stores
the bytes in memory. Big Endian means that the most significant byte is stored in
the lowest memory address. Some architectures that use this approach are
Motorola 68000 and SPARC, Little Endian means that the least significant or lit-
tlest byte is stored in the highest memory address. This method is used in Intel

%86 and DEC VAX.

Therefore, a Unicode string should begin with a special BOM that signifies what
byte order to use when processing the string. This BOM also can be used to deter-
mine the encoding as well. The following table lists the BOMs and explains what

is meant by significant byte.

Bytes Encoding Form

00 00 FE FF UTF-32, Big-Endian
FF FE QO 00 UTF-32, Little-Endian
FE FF UTF-16, Big-Endian

Table 151 Possible Values for the BOM

Internationalization

Bytes Encoding Form
FF FE UTF-16, Little-Endian
EF BB BF UTF-8

Table 154 Possible Values for the BOM {cont.)

15.3.2 Unicode in BSP

Use of a Unicode Web AS clearly solves many problems for processing in multiple
languages. If your Web AS is Unicode, it can process input or output data in any
of SAP's supported languages.

But what if you are running on a system that has not yet been converted to Uni-
code? This is, after all, the more likely situation, given that Unicode conversions
and installations for the Web AS are just now beginning to become common.
Because of the higher memory requirements for Unicode, many customers will be
putting off Unicode conversions for quite a few years.

However, there are some techniques that allow you to take advantage of Unicode
within BSP even on a non-Unicode Web AS. You should use these technigues
with caution, as their improper use could lead to data corruption.

The first technique is the use of the BTF WYSIWYG HTML editor. This BSP exten-
sion element supports the use of binary strings in Unicode format for transferring
the data to or from the editor control in the browser. The <btf:editor> element
was discussed in detail in Section 12.1.

But instead of a full blown HTML editor, tet us say you only want to display some
text strings. And, suppose these strings all come from a different code page in a
back-end Multi Display Multi Processing (MDMP) system. MDMP is the pre-Uni-
code, SAP-specific technology that allows the processing of multiple code pages
within a single system. However, MDMP has a major restriction in that only one
code page can be processed at a time. Therefore in our situation, where we want
to display descriptions from three different languages, we receive data corruption
during the output, as shown in Figure 15.5.

Test ‘ t
EN: Test - English

PL' Niezapamiétane dane zostant utracopewm l
TH: 760-60'ANg=§ 010Aa¢e05°%50"a" AaAs *|OA¢

Figure 15.5 MDMP Display Data Corruption

We can start correcting this corruption by setting the MIME type on the Proper-
ties tab of the BSP page. With the MIME type setting, we override the default

Unicode

character set for the page generated by the system and force the ICM to publish
the page as Unicode.
text/html; charset=UTF-8

This effectively sets the browser to Unicode encoding, but does nothing to the
data stream itself. Therefore, as Figure 15.6 demonstrates, we now have corrup-

tion because the text streams are not Unicode encoded.

Taolbars
: « .| v Status Bar
Test Bxplorerbar
EN: Test-| Goto »
PL: Niezap, stop Esc § Utraconewm
TH: PSR Refresh I Vdululioled

v Auto-Select

Western Eurgpean (Windows)
‘Western European (1SC)

Source

Privacy Report..,,
Script Debugger | ® Unicode (UTF-8)
Full Screen F1i More L4

» Left-To-Right Document
Right-To-Left Document g

Figure 15.6 Browser Set to Unicode, But Corruption Still Occurs

Although we have taken a step in the right direction, we obviously need to do
something to convert our individual text strings to Unicode as well. The first step
in this process will be to create an RFC destination in transaction SM59 (Figure
15.7) for each language we want to read data from. This allows us to logon to that
language and temporarily set our code page correctly to read the text string from

the database.

| Security Options o .
Trusted System .ONg P ®ves © Otagon Scresn
T/ sne @ Inactive O Active
Authorization for Destination - 1 ’ |
—
tagon — —i
Language |PL;
Client noaf
User Current User

Figure 15.7 RFC Setup per Language

Internationalization

PURAERCTAN StA.

Inside the processing of our RFC that will be called through each destination, we
will already be set to the correct code page. Therefore we can read the data from
the database without corruption. To preserve the data while passing it back to the
calling BSP page, we will convert the text stringto a binary string before returning it.

FUNCTION y e rfc lan g _testl.

""Local interface:
*" EXPORTING
" VALUE(O_XSTRING) TYPE XSTRING
DATA: dktxt TYPE dktxt.
SELECT SINGLE dktxt FROM drat INTO dktxt
WHERE dokar = 'ISS!
AND doknr = '00000000100000600000002195
AND dokvr = '00"
AND doktl = 'Q0Q’
AND langu = sy-langu.
FIELD-SYMBOLS: <f> TYPE x.
ASSIGN dktxt TO <{f> CASTING TYPE X.
MOVE <f> TO o_xstring.
ENDFUNCTION.

Once back in the processing of our 8Sp page, we have our binary string. Now we
Just need to convert that binary string into a Unicode text string. For that we will
use the SAP function module SCP_TRANSLATE_CHARS. Before converting, how-
ever, we will cross-reference the standard external name of the code pages into
the SAP internal numbers using the function module SCP_CODEPACE_BY _
EXTERNAL NAME.

METHOD translate_pl.

DATA: encoding TYPE string.

DATA: codepage TYPE cpcodepage.

encoding = 'is0-8859-2",

CALL FUNCTION 'SCP_CODEPAGE_BY EXTERNAL NAME'
EXPORTING external_name = encoding
IMPORTING sap_codepage

DATA: codepage? TYPE cpcodepage.,

= codepage.

encoding = 'utf-8°'.

CALL FUNCTION 'SCP_CODEPAGE_BY EXTERNAL_NAME'
EXPORTING external_name = encoding
IMPORTING sap_codepage = codepage?.

Unicode

345

346

DATA: xdocument_length TYPE 1.

xdocument_length = XSTRLEN(me->pl_xstring).

CALL FUNCTION 'SCP_TRANSLATE CHARS'
EXPORTING dinbuff = me->pl_xstring

inbufflg = xdocument_length

incode . = codepage

outcode = codepage?

substc_space = 'X'

substc = '00035"
IMPORTING outbuff = me-»pl_string.

ENDMETHOD .

We can now output our Unicode text string to the BSP without any further special
processing and receive the uncorrupted output as shown in Figure 15.8

<htmlb:form?
<OTR>Test<{/OTR>

IN: <%= application-’en_string %> </br>
PL: <%= application->pl_string %></br>
TH: <%= application->th_string %></br>
¢/htmlb:form

Test

EN: Test - English

PL- Niezapamigtane dane zostang utrgcone W
TH: frinudsaavinasiiintdouTaglalsuaay

s

e

e el

Figure 15.8 Normal Output Thanks to Unicode

15.4 Online Text Repository (OTR)

Through out this text you may have noticed the use of the following syntax:

<htmlb:textView text = "{OTRYHello ! </OTR>"
"HEADERL" />

design
Perhaps you were curious why text literals were quite often surrounded by the
COTR) tag. This technique is very similar to the following syntaxin standard ABAP.
write:/ 'Hello!'(001).
Both techniques have the same purpose: to expose a text-literal string to transla-

tion.

Internationalization

The term OTR actually stands for Online Text Repository. By surrounding any text
literal in your BSP application with OTR identifiers, you have in effect separated
your text from the BSP coding. Not only is the text stored separately now, but it
is stored in a language-dependent format. This means that for a single text string
you could have several different language versions.

The BSP runtime will automatically retrieve the correct language version based
upon the user's logon language. If no translated texts exist in that language, the
BSP runtime will automatically substitute with the corresponding text version
from the system language.

15.4.1 Types of OTR: Alias and Long

There are actually two different forms of OTR texts: Alias texts and Long texts.
Alias texts are those texts that are reused frequently and are less than 255 charac-
ters. These texts are stored independently of the BSP page they are used on. This
supports reuse and consistency from application to application. This also gives

you the opportunity to reuse the thousands of terms that SAP has already trans-
lated in the standard system.

These texts are formatted a little differently when used in your BSP page.

<htmlb:textView text = "= otr ($tmp/ybook_testl) %>"
design = "HEADERL" />

The downside is that you cannot display or maintain the text for your editing lan-
guage from within the BSP page itself. You must double-click on the OTR string to

even be able to view the text. This reduces the overall readability of your page
coding.

When you do double click on the OTR string, an editor window is brought up
(Figure 15.9). From here you must set the maximum length for the text across all

translations. You can also set the text for the language in which you are currently
editing your page.

OTR aliases also support the concept of contexts as well. This allows you to create
variations of your text strings for a particufar country or industry. However a sys-
tem may only have one country and one industry context value set for it. That

means that a single system cannot support both Spanish — Mexico and Spanish —
Spain.

In Figure 15.10, we see how we might use the context to create a variation on the
English greeting "Hello" that better suits our friends "down under."

Online Text Repository (OTR)

247

248

(= Change Text %

Alias [¢THp /¥BOOR_TESTL S N

Text Length ko

n1-in1of Lires

(B2 Griex |[2 Cartons |3

Figure 15.9 OTR Alias Editing

h= contests Display Al

J

Ctry Incust, ICpntextFI_,.[Tgaxt o ID,JJ\r
X Eelle ‘
lar : TG day Hate (

Figure 1540 Australian Context for Hello

The other form of OTR is called the Long Text. This OTR type has the advantage of
being able to maintain the texts directly from within the BSP page or view. How-
ever this also means that this text object is stored only with the page in question.
These objects cannot be shared across multiple pages. This makes this variant of
OTR suitable for tonger strings, entire sentences instead of single words, that are

not often used.

15.4.2 Working with OTR from ABAP Code

So far, we have looked at the OTR within the context of a BSP Page or view only.
However, OTR texts actually can be used in any ABAP coding via a few supplied
ABAP classes. This is useful for processing texts, such as error messages, within

event handling or program flow.

To make OTR programming easy with BSP, the runtime object, class CL_BSP_RUN-
TIME, has a method called GET_OTR_TEXT. This method functions very similarly to
the use of the OTR Alias in a page or view. You simply supply the OTR Alias, and
a text stream with the results will be returned. The method handles the switch to
the system language for you if the text is not available in the current logon lan-
guage. If the method cannot find the alias, an error is not raised. The method sim-

ply returns an empty string in that situation.

Internationalization

METHOD get_otr _text
IMPORTING alias TYPE string
RETURNING text TYPE string.

If you do not have easy access to the BSP Runtime object, you can also choose to
use the class CL_BSP_GET TEXT BY ALTAS. It has a single static method called
GET_TEXT. The main difference between the runtime method and this one is that
the CL_BSP_GET TEXT BY ALIAS=>GET_TEXT also has an importing parameter
that allows you to specify the language that you wish to retrieve the text for This
gives you the ability to get a text other than the one that matches your logon-
language.

METHOD get_text
IMPORTING language TYPE sylangu
alias TYPE string
RETURNING alias_text TYPE string.

15.4.3 Special Note about using OTR

There is special aspect of using OTR that should be made clear. If you create an
OTR string and then translate it into two different languages, the lengths of the
translation in two different languages often may be very different. Therefore, a
tong OTR string could have a very short translation in a different language.

However, the OTR system is so designed that it stores a length of the original text
with the string and will always return the string filled with trailing spaces. This
causes perfectly normal HTML rendering to produce some strange output. For
example a button that is suddenly much too wide.

Luckily, there is a solution for this problem. There is a page directive that will have
the BSP compiler automatically generate additional code to CONDENSE each
{OTR> sequence after it has been looked up.

<% @page language="ABAP" otrTrim="true" %>

15.5 Translation

We have so far discussed the techniques for enabling our BSP applications to sup-
port multiple languages. However, this does not do us much good if we do not
know how to translate our elements and in turn use those translations.

Translation

"0

15.5.1 OTR

Although OTR texts can be translated using the Translation Workbench, transac-
tion SE63, we do not really want to focus on the overall translation tool. The
translation workbench may be worth studying on its own if you are serious about
doing full blown translation projects. More likely, you will just want to translate a

few texts within your own pages.

This simple transiation effort can be performed directly in the ABAP Workbench.
In the Workbench, we can choose menu Goto - Translation. In the context of a
BSP page or view, we should have two options: one for OTR Long texts, and one
for OTR short texts.

}} | Cicopy al I Copy Tags I |88 sapterm |

=] Gl @]

[2 11| & Tag Pratection !t'j‘*l’ag Pratection |.£?z
¥ B]

. _
Ll ol nl-Inlofilnes [Tt co1
‘Display Other Languages l Administration Info i Where-Used List ll I Ell N 3
Concept | author | Date Changed 8y - | Date fv]L !:)
2 CTEN §THP - L . . S
< EN Hello! _ —
= @@ Halo! 7TJUNG ..23/2005 20}51:56 TJUNGV ..23/2005 20:51:56 3
~ QI ES Holat - i - -
L = QT iHola! TIUNG ..23/2005 20:53:01 TIUNG . 23/2005 20:56:17 3 L

Figure 1511 OTR Long-Text Translation Tool

The two tools do have slightly different user interfaces because of their different
focuses. The Alias editor assumes you have a single word or small phrase. There-
fore, it provides only the single-line input area for the translation.

The OTR Long Text supports larger groups of words and phrases. It is also
designed to protect HTML tags that might be included amongst the text yqu ére
translating. Further, it allows language-dependent application of bold and italics

attributes.

Figure 1513 demonstrates the translated output of our two example OTR ele-

ments in English and in Spanish.

Internationalization

(=[5) & s .
OTR Tern Changs_JObjs_[ctry & | lello

Prueba Del Libr
[~ & gTve °

Bell TN warp
B G'day Mate TIUNG WAPP AU
KID} B i R A TP
Display Other Languages | Admiristration Infy Where-Used List |f | || K4
Aliag $TMPIYBOOK_TEST1]
Package $TMP Temporary QObjects (neyer transported])

Ongmnal Language: EN

Translation Level: 1 (into all languages)

Created by: TJUNG

Created on: 08/23/12005 21:13:42

Last Changed By TJUNG

Changed On 08/23/2005 21:16:08

Object Type: WAPP Page/fController of a BSP Application
Technical Name: 3601 B494DCBESS42926B5804F 1440 ESB

Figure 1512 OTR Alias Text Translation Too!

) Iﬂ @ r;’;) 2 Search 7% Favorites @

’H-ellolr
LHeIIo

VRSV

i) Bk WR R : S search <% Favarites & :

jHolal [
rueba Del Libro
B

Figure 1543 Translation Output

15.5.2 Field Labels and Quick Info

As we use <htmlb:inputField> and <htmlb: label>, we quite often need to fill
texts from the corresponding data-dictionary fields. Reusing the translations that
already exist in the data dictionary will save you time and provide an even greater
level of consistency than just using OTR texts alone.

As we noted earlier, if you use Model View Controller, the framework will auto-
matically pull the correct language version of these kinds of texts for you.

But what if you are not using MVC? You could of course write your own custom
SQL to read the texts directly from the database tables that house these texts. But
repeating this custom logic all through out your applications is unnecessary. SAP
has provided methods of the DDIC_UTILS object for retrieving texts for both Field
Labels and Quick Info. The DDTC_UTILS object is already available in most parts of
your BSP application as an attribute of the RUNTIME object instance.

For both methods you only need to supply a reference to any data object. You can
also override the default logon language if you wish.

Translation

251

METHOD get_field label
IMPORTING data object_ref TYPE REF TC data
/ langu TYPE spras DEFUALT sy-langu
RETURNING label TYPE string.

METHOD get_quickinfo i
IMPORTING data_object_ref TYPE REF TO data
langu TYPE spras DEFUALT sy-langu

RETURNING quickinfo TYPE string.

The following simple example and Figure 15.14 demonstrates the use of these

methods.

<htmlb:form?
<% DATA: 1 _matnr TYPE matnr.
DATA: data_ref TYPE REF TO data.
GET REFERENCE OF 1_matnr INTO data_ref. %>

<htmlb:label for = "tegt"
text = w{y= runtime->ddic_utils->get_field label(
data_ref) %"
tooltip = "<%= runtime->ddic_utils->get_quickinfo(

data_ref) %" />

Materia,)
[Material :

|5aa,

LR

{/htmlb:form>

|Materi
| Materia

| Materiaf, | 4k
Materialnumraer s

Figure 1514 Automatic Field Label and Quickinfo Translation

15.6 Date Format

So far, our discussion about internationalization has focused on character strings
and translation. However, the output format of dates is also an import aspect to
consider as well. There are many different formats used around the world. Let us,
for instance, consider two of these different formats: DD.MMYYYY and
MM/DD/YYYY. In this case 01.12.2000 is a very different date than 01/12/2000.

In order to support various date formats, ABAP stores dates internally as an eight-
position character string:YYYYMMDD.

352 Internationalization

By using the BSP Extension Element <htmlb:inputField> you can avoid any
problems with the conversion from the internal to external date formats and auto-
matically use the format that the user has selected in his or her SAP user profile

<% DATA: current_date TYPE sydatum.
current_date = gy-datum.
DATA: data_ref TYPE REF TO data.
GET REFERENCE OF current date INTO data_ref. %>

<htmlb:label for = "AsString"
text = (Y= runtime—>ddic_utils->get_field_labe1(
data_ref) %"
tooltip = "<{%= runtime->ddic_utils->get_quickinfo
data_ref) %>" />
<{htmlb:inputField id = "AsString"
value = "<{%= current_ date %>"
type = "STRING" />

<htmlb:label for = "AgDate"
text = "Y%= runtime~>ddic_utilsf>get_field_label(
data_ref) %o"
tooltip = "<%= runtime->ddic_utils->get_quickinfo(
data_ref) %>" />
<htmlb:inputField id = "AgDate"
value = "{%= current_date %>"
showHelp = "TRUE"
type = "DATE" />

In this code example and in Figure 15.15, you can see how setting the type of the
<htmlb:inputField> to DATE triggers the extension to properly support various
date formats.

| Current Date (20050824 |

|Current Date |24.08.2005 [
« August 2005
TR TR ST

§Oj 2 fzé! 2728292
| Current Date (20050824

| Current Date {08/24/2005 =

[« August 2005 »

5116 17,

Figure 1515 Ditferent Date Formats for a German and English Logon User

Date Format

2w

16 Document Handling in BSP

Excel files, PDF documents, ZIP files, images: Before long you will
need to process at least one of these document types within your BSP
application. This chapter explains how to accomplish this for many
non-HTML documents.

16.1 MIME Repository

BSP applications like any Web-based application are going to have a need refer-
ence existing MIME objects. Although MIME actually stands for Multipurpose
Internet Mail Extensions, the term has come to represent any non-HTML or XML
content such as images and style sheets.

To facilitate this need, SAP delivers the MIME repository as an integrated compo-
nent of the ABAP Workbench. The MIME objects themselves are stored in the
underlying database. However, they are represented through the MIME reposi-
tory as a hierarchy of folders and items, much like the file system of a traditional
Web server. This allows MIME objects to be referenced via relative path from
within BSP applications.

{img src="../public/bsp_book/example.jpg">

BMMERepositoy . %
SaRepository Browser g
FeRepasitory Infarmation System
[BlTag Browser

G Transpart Organizer

AN GBI

Dascription

b ClwebDyrpra
bW -
LT Qe

v QOsc
) v (3178
< CJWR -
% (3 Design2012

< &3 common
O net.gf 1xl.gf L
0 cLosE.gf 1
] emptyhover.htm emptyhover.htm!
O cesize.gif -~ ’ .
> O E
un) BEIn] e 0 D!

+Business Information Warel

Figure 161 MIME Repository View in SE80

Document Handling in BSP

B

256

The MIME Repository browser, as shown in Figure 16.7, displays the complete
hierarchy of all folders and items. Solutiens other than BSP use the MIME Bepos-
itory; however a new folder is automatically created for each BSP application.

MIME objects can also be created orimported for use ina specific BSP application
without having to ever go through.the MIME Repository. These objecjcs are placed
in the automatically created folder that represents each BSP application.

e

Object Name [Description 1l

¥ L1 7€ BC_BSP_SELOP_PARAM _ BSP Developfhert to Support Sefection

" . b (3 Dictionary Objects
- b (JChass Library |
¥ CIBSP Library

g ?ZE]S—CS Cfrese . .o . ¥l pop Applcation
b yi Change Controlles
b (Jzes.s| Display _— i
s ﬂ';'v*Chedf Create
Activate Theme
- . Lpmcsamemaccrasnsr

Test I ’
Copy...
Delete

"1 Assign Theme

Other Functions v

Figure 16.2 Import MIME Objects Directly into a BSP Application

Once you have one or more MIMEs attached to a BSP application, they will sh.ow
up in the object browser along with the other components of the BSP application
(shown in Figure 16.3). From this view, you can update or display the MIME
objects as well.

All of the traditionally SAP GUI icons are also stored in the MIME repository and
ready to use in BSP applications. However it is best not to refer to the.m dnrectl.y
via their relative path. SAP may decide to change this path at some point. A.]so if
you want to support RTL (right-to-left) rendering, there are a separate set of icons
with a different MIME path.

The best approach is to use the class CL_BSP_MIMES to retrieve information about
the standard SAP Icons. There is a static method called SAP_ICON that allows-you
to retrieve the full path for an icon MIME object by supplying either thel icon
name, such as TCON_CHECKED, the ABAP icon tD, such as @01@, or the ABAP inter-
nal name, such as @5_OKAY@. The BSP application ITOO has a page called mime_
sap_icons.htnthat does an excellent job of demonstrating the use of CL_B.SP_
MIMES as well as listing all possible icons with their |Ds, internal names, icon
names, and MIME names.

Document Handling in BSP

Object Name [pescrintion] =
7 (dyes_test1 ~ 7BSP Application Béamples. © 1] e
b (3 controller o i
D 7 Views . 1||cation dass - |
D (3 Pages with Flow Logic ne o
~ (1 MIMES L Y atetu
~ &840 o2 i
Saphon. - Qb laan T 4pports Portal o,
b (I8Ce40_03 Change ‘
E gstudento Display |
Testl R = T T, A
wilad i it ith Lok’
D (3 training_uf R0 fownitiad Dowrioad with Lok
e T Conwert to BSP Upload and Replace
; 1 Delete Remiave Block
Properties Dawnload
| Ewpiration Time Client Cache .
i Other Functions 4 . ;

Figure 16.3 MIME Objects Inline in the BSP Application View

16.2 ICM File Handler

The MIME repository is great for storing and cataloging MIME objects that are
necessary for use in our BSP applications. It supports the transport mechanism
and translation. But sometimes we might need a simpler solution that does not
require objects to be uploaded in advance and stored in the system's database.

The Internet Communication Manager (ICM) allows just such access to any file
system accessible to the underlying operating system. You can map operating file

system directories into ICM URL paths using the profile parameter icm/HTTP/
file_access_<xx>.

If you have never maintained one of the system-profile parameters, now is good
time to make friends with your Basis administrator., With the following additions

to our instance profile and a quick restart of the ICM, we are now able to access
file systern directories via HTTP.

icm/HTTP/file_access 0 =
PREFIX=/doc/, DOCROOT=/usr, BROWSEDIR=2

icm/HTTP/file_access 1 =
PREFIX=/doc2/,
DOCROOT=\\server\SAPPatches\Netweaver04 , BROWSEDIR=2

In the first entry, we are just going to map to the local directory usr. We are able
to control the user's options to browser a directory via the additional parameter
BROWSEDIR. The possible values are: O - no browsing allowed, 1 - only file names

are displayed, and 2 —file names along with their size and last change date are dis-
played.

|CM File Handler

357

258

P Fle Edt View Favorites Tools inddressi tei)fchsksfdoc? [ABAPR,

Current Directory /doc2/ABAP/
Name Last modified Size

————————— — _— S— —F
- Tue, 0z Nov 2004 09:56:34 [
e Fri, 25 Jul 2005 13:40:04 ox
Baziz Plugins Fri, 29 Jul 2005 13:25:23 Ok
135640 Ved, 18 Nay 2005 12:54:09 Ok
insteoll 3Zbit.zip Tue, 02 Nov 2004 09:56:335 25k
Kernel Tue, 21 Dec 2004 14:51:51 Ok
3AP3SECULIB Tue, 02 Nov 2004 07:48:11 Ok
SPAH Update Wed, 12 Jan 2005 19:51:34¢ Ok
Support Packagez Tus, 02 Nov 2004 07:30:12 s}

Figure 16.4 ICM FILE_ACCESS browse

The second entry really shows off the power of this profile parameter. We are able
to expose a directory on a remote server via UNC paths. Of course the security on
that directory would have to be open to allow read-and-browse access. There is
also no real mechanism to apply security to the ICM URL for this file access node,
so you will want to be careful what you expose through it.

16.3 Handling Non-HTML Documents

BSP pages contain, effectively, HTML. When binary objects are requested, they
are placed in the MIME repository and referenced from there. However, it is often
necessary to handle binary objects or documents during the runtime of the pro-
gram. It is not feasible to place these runtime documents in the MIME repository.
For any change in the MIME repository, transport records are written. This is usu-
ally not possible on a production system, and is relatively slow compared to the
runtime requirements of the running BSP application.

Some real world examples are:

» For a personnel systermn, all colleagues' pictures are available in a database table
and must be displayed as part of an HTML page.

» To use an ActiveX object, like Flash or SVG plug-in, the application dynamically
generates XML data that is available for the plug-in via HTTP.

» Some internal data is converted into a PDF document that must be displayed in

the browser.

Assume we are somewhere on a BSP page and we wish to display the complete
document. A typical example: A button is pressed for a receipt, and then a PDF
document must be dispiayed.

Document Handling in BSP

A slightly more complex example is to display the new document as part of an

HTML page. This requires that the HTML page must be rendered back and then

on a second HTTP request, the document is fetched i '
' and i

. displayed in the same

The last approach is to open a new window and dic

Thel play the document in the win-

16.3.1 Test Program

Our first step is to build a small test program to have a document available to dis.
play. As we do not feel like generating PDF documents on the fly or readin

images from some database table for this simple example, we will instead 'us%
upload the test document from the client. In all cases, we assume that eithe: an

image (.jpg, .gif or .png) or some "known" document (.pd%, .doc

is specified. e

After the document is uploaded, we have it "in our hands" and must do some-

thing with it. Keep in mind that after the response is processed, our session will
be closed because this example is a stateless program.

First, we create a new BSP application and add a few page attributes:

file_length TYPE STRING
file;mime_type TYPE STRING
file_name TYPE STRING
file_content TYPE XSTRING
display_type TYPE STRING
display_url TYPE STRING

The four file_* attributes reflect the dynamic document that we “created” via an

upload. Note that the content is of type XSTRING because we are working with
binary documents.

The next step is to write the BSP application that will do the upload.

@page language="abap" %>
{%@extension name="htmlb" prefix="htmlb" %>
<htmlb:content design="design2003" >
<htmlb:page>
<htmlb:form method = "post"
encodingType = "multipart/form-data" >
<htm1b:radioButtonGroup id="display_type" >

<htmlb:radioButton id = "inline"

Handling Non-HTML Documents ama

fonl

i

id "display_type®
name = 'radioButtonGroup').
display_type = radioButtonGroup->selection.

text="Display Inline" />
¢hrmlb:radicButton id = "html"
text="Display Inside HIML Page” />
<(htmlb:radicButton :d = “window"
text="Display In New Window" />
¢/htnlb:radioButtonGroup?

Listing 16.2 OninputProcessing

The final results in the browser are shown in Figure 16.5.

{(htmlb:fileUpload id = "myUploac"”
onlUpload = "HendleUplcad" Display e
colosd._cext = "Dislay” R
size = "9o" /> o I — I Brmwse [oemay]
<hr> oo , ——
(broName = <%= file_name%? R Narne = C\Downioadibeach jpg
F MIME-Type = image/pjpeg

broMIME-Type = <%= file_mime_typeh . Canen 2101
(broLength = <%= file length%’ T .
{/htmlb:form> o1
{/htmlb:page? N o . . -« ~
¢/nrmlbicontent? . Figure 16.5 Test Application User Interface

Listing 164 Layout . R
isting y 16.3.2 Display Document Inline

| Here the <htmlb:*> BSP extension is used to create two elements on the web
. page. The first is a radio-button group to see which of the test cases to execute.
’ The next is the file-upload element. The encodingType attribute set for the
P Catmlb: form) is very important! This is absolutely required for file uploading.

With this simplest approach, we have an incoming HTTP request for an HTML
page. Instead of processing the BSP page, thus rendering out HTML code, we just
send out the dynamic document that we uploaded so that it is displayed infine.

What do we have to do? In essence, write the content that we already have avail-
able into the HTTP response, and set the correct content data. Finally, inform the

BSP runtime that the response has been completely written and that no further
processing is required.

The last and most important aspect is to retrieve the uploaded document from
the HTTP request and to fill our page attributes with the correct values. This is
done in the orIrputProcessirg event handler.

DATA: fileUpload TYPE REF TO CL_HTMLR_FILEUPLOAD.
fileUpload 1= CL_HTMLB_MANAGER=>GET_DATA(
request = request
id
rame = 'fileUplcad’).

. code previously displayed above ...
IF display_type = 'inline' AND
XSTRLEN(file_content) > 0.
DATA: response TYPLH REF TO if_http_response.

response = runtime-’server->response.

'mylUpleac’

I

file name fileUpload->file_name.

file mime type = filelUpload ->file content type.

response->set_data(file_content).

response->set_header_field(

file length = fileLpload->file_length. o homder 1o dsmcontent type
file content < fileUpload-»file content. : vate = fioemime type).
DATA: radioButtonGroup TYPE REF TO . response-rdelete_header_field(
CL_HTMLE_RADYOBUTTONGROUP. . name = if_http_header fields=>cache_control).
radioButtonGroup ?= CL_HTMLB_MANAGER=>GRT_DATA() i resporse->delete_header field(
request = request B T name = if http_header fields=Dexpires).

260 Document Handling in 8SP Handling Non-HTML Documents

LY~

response->delete header field!
name = if_http_header_fields=>pragma).
navigation->response‘complete().
RETURN.
ENDIF.

Listing 16.3 OnlnputProcessing

The IF statement checks that it is the inline test and that we actually have con-
tent available to display, The set_data () method writes the complete XSTRIN?
into the response. The “Content-Type" HTTP header field is set. This MIME type is
critical so the browser knows what is coming down the pipe.

Theoretically we also want to set the “Content-Length” HTTP header field. It is
good programming practice within our HTTP framework to never n1§r1ually set the
content length field. It is the kernel-serialize code's task to determine the éctual
serialized length. This may depend on various side effects such as compression.

One can also consider deleting the three HTTP headers “Cache«Con’Frol",
"Expires" and "Pragma’. As BSP pages are effectively HTML paigesAwrfh business
data, the BSP runtime already pre-set these HTTP headers to indicate that BSP
pages must not be cached. However, we are now reusing the HTTP response for
our binary document. We can delete these headers.

The last problem is that after the onInputProcessing method, the layout is also
processed. As a result, all output from the layout is also written into tbe response.
Consequently, the response_complete() call informs Fhe BSP runtime that the
response is completed and no further processing is required.

Figure 16.6 shows how the browser now dispiays only the returned image.

Figure 16.6 Document Display Iniine

Narument Handling in BSP

16.3.3 Display Document Inside HTML Page

Displaying the document inside the existing HTAML page is slightly more complex.
The problem is that in the response we must write HTML coding in order for the
browser to render the page. The HTML coding must reference the dynamic doc-
ument that we have available at this very moment. The question arises: Where
should we park the dynamic document until the browser has time to fetch it?
Keep in mind that once the response has been processed, the session will be
closed and we will lose everything we had in memory.

The solution is actually very simple and elegant. The 1CM supports an excellent
HTTP cache. Whenever a MIME object is retrieved from Web AS, it is also added
into the ICM cache. All other requests for the same document are served directly

from the cache and do not require a call to ABAP. These requests are processed in
the kernel.

When we have the dynamic document on-hand, we can write it into the [CM

cache. Thus, any HTTP requests for the document, actually for this specific URL,
will retrieve the document from the cache.

The first significant part of the code is to write the dynamic document directly
into the ICM cache.

code previously displayed above ...
IF display_type = 'html' AND
XSTRLEN(file_content) > 0.

DATA: cached_response TYPE REF TO if _http_response.

CREATE OBJECT cached_regponse TYPE CL_HTTP_RESPONSE
EXPORTING add_c_msg = .

cached response-?set _data(file content).

cached_response->set_header field(
name = if¥http‘headerﬁfields=>content_type
value = file_mime type).

cached response->set_status(code = 200 reason = '0K').

cached\responsev>serverﬁcacheﬁexpire;fel(
expires_rel = 180).

DATA: guid TYPE guid_32.
CALL FUNCTION 'GUID_CREATE' IMPORTING ev guid_32 = guid.
CONCATENATE runtime->application_url '/* guid

INTO display url.
cl_http_server=>server_cache_uploac(

url = display_url

Handling Non-HTML Documents

63

364

response = cached_response).
RETURN.
ENDIF.

Listing 16.4 OninputProcessing

To write the information into the ICM cache, it is necessary to create a complete
HTTP response. Keep in mind that the browser will later send an HTTP request for
this document, to which the ICM cache will return the cached HTTP response
directly.

First, we create a new HTTP response object and add a new message. The mes-
sage contains the actual buffers required to move the document from the ABAP
VM into the kernel.

The next few lines were already discussed above. We set the content into the
response and the content type. The get_status() call is required to indicate to
the browser that for the cached request-response cycle ecverything went perfectly.

The next aspect is to set the time that the dynamic document will stay in the 1CM
cache. Keep in mind that this time should be long enough for the browser to load
all URLs referenced in the HTML page. However, there is no need to leave the
document in the ICA cache for a long time. Here a value of 3 minutes (180 sec-
onds) is used. Any time interval between 1 and 5 minutes should be OK.

The more difficult problem is which URL to use. This URL serves as the "address”
of the dynamic document on the server. The browser will later fetch the docu-
ment from the server with this key.

The first idea was to use the uploaded filename as part of the URL. In this case, .

take care to replace the “:" and */* characters in the URL to make it a new valid
URL. However, such a static type of URL does not scale very well. What happens
if different people are running the same application and uploading the same
generic document, for example: "travel_expenses.xls"? Then, each new response
will overwrite the previous copy in the cache. Therefore, the recommendation is
to use some form of random number (GUID) in the URL that is generated.

We could place the generated URL anywhere in the "nameépace" of valid URLs.
However, we recommend placing the URL in the “namespace” of the current
active BSP application. You also could copy the document extension (.doc, .gif,
etc.) from the uploaded filename into the URL. However, this is not critical. It is
more important that the MIME type is set correctly in the HTTP response.

The last step is to place the document into the ICM cache.

Document Handling in BSP

With the above coding, we successfully created a new HTFP response in the ICM
cache that can be addressed under the URL stored in display_url {page
attribute of type STRING). The last step is to change the rendered HT/\/\—L coding so
that it also displays the uploaded document. For this, we just use an (iframe>
The following HTAML sequence is added in the layout, just before the end of thé
page.

code previously displayed above ...
<% IF display_type = 'html' AND
display_url IS NOT INITIAL. %>
{iframe src="<%=display_ url%>" width="100%"
height="500px">
{/iframe>
<% ENDIF. %>
{/htmlb:page>
{/htm’b:content>

Listing 16.5 Layout
Th?s is just an IF-guard to check for the specific case of displaying the document
inline, plus the <iframe> sequence to load the newly created URL.

The output is as expected. Both the data about the dynamic document and the
document itself are displayed as shown in Figure 16.7.

Fn\: mht Vew Faveites Tod | Address| [URRTTIRTE
C Display Inine

& Display Inside HTML Paga
" Display In New Window

S ——— @ FUBLATME TASTIE.
Yame = C:\Downioaditeach jpg
MIME-Type = image/njpeg
Lenath = 12101 2 gy
i

HypeTest Transfer Protocol

Figure 16.7 Document Display [nside Existing HTAL Page

There is just one smaller problem with this approach that should not be forgotten.
If the ICAA cache is too small, or flushed by someone, we will get the dreaded bro-

ken image in the browser. But this is a small risk, considering the power of this
technique. '

Handling Non-HTML Documents 365

16.3.4 Display Document in New Window

By now, most of the difficult work is complete. For the final leg of our explora_
tions, we would like to place the dynamic documentinto a new window. The big-
gest problem is just how to trigger the opening of a new window.

It is not possible to open a new ‘browser window from the server. The simplest
technique is to open the new window directly in the browser with a small Java-

Script sequence: window.open(url),

The first step is to require the dynamic document stored as a URL or\. the servelr_
All this coding is already in place. We just change the I¥-guard to include this

new case:

code previously displayed above ...

IF (display_type = 'html' OR display type = "window')
AND XSTRLEN(file_content) > O.
. code as previously displayed ...

ENDIF.

Listing 16.6 OninputProcessing

Next add the code in the layout to open the new window. This is quickiy done

with:

code previously displayed above ...
<% IF display type = 'window' AND
display_url IS NOT INITIAL. %>
{seript language="Javaseript">
window.open ("<%=display_url®%>").focus{);
{/geript>
% ENDIF. %»
{/htmlb:page>
{/htmlb:contenty

Listing 16.7 Layout

With the final results shown in Figure 16.8.

16.4 Data Manipulation

For binary documents, using XSTRINGS is always recommended. However,'there
are cases where it is worthwhile to have the data available as STRING, even if only
for debugging! Another such case occurs when the data is actual text readable—
as with XML data—and must be manipulated.

366 Document Handling in BSP

Fle Edt Vew Favaltes Tools

 Display tine
™ Display nsids HML Pags
& Display B New Wadaw

— — I

Name = C:\Downloadibeach jpg
MIME-Type = mage/pipeg
Length = 121012

Figure 16.8 Document Display Inside New Window

One technique is to use the character interface of the request/response objects.
For this, the get_cdata() and set_cdata() methods exist.

The alternative is to convert the XSTRING into a STRING. The simple sequence
string = xstring does not work. A conversion can be done in ABAP using the
following classes: CL_ABAP_CONV_IN_CE and CL_ABAP_CONV_QUT_CE.

Example coding for converting an XSTRING to a STRING is:

DATA: conv TYPE REF TO CL_ABAP_CONV_IN CE.
conv = CL_ABAP_CONV_IN_CE=>CREATE(input = Xcontent).

conv->READ(importing data = content len = len).

Another alternative for converting XSTRING to STRING is use of the function mod-
ules contained in Function Group SCMS_CONV. There are also many function mod-
ules for converting from string types to internal tables or vise versa,

16.5 Microsoft Excel Download

If your users have a R/3 background, they might be slightly disappointed by the
first reports and analytical applications that you build in BSP. Long-time SAP
application users have grown accustomed to the impressive level of Microsoft
Office integration that is delivered standard in SAP GU! transactions.

These users will especially miss the Microsoft Excel integration that is so com-
monly used, especially in the SAP ALV Grid. The ability to quickly download dis-
played data to Excel for some extensive analysis is a useful tool that your users will
appreciate in their BSP applications.

Microsoft Excel Download

367

368

In this section we will fook at how to accomplish just this feat. We will start by
studying how Excel reads its data files. We will then look at how to build a reus-
able component as a custom BSP extension element that will allow for simple
inclusion of an Excel data download into just about any BSP application.

16.5.1 Excel Files

Before we get into the actual techniques for delivering Excel content from the BSP
application through the browser and onto the client machine; we should first
examine the way we want to format our data in ABAP so that it will be readable

by Excel.

For this step we have several possible solutions. We could try to emulate the pro-
prietary Office format. Even assuming you could find documentation on how
Microsoft's internal format works, there is no guarantee of capability across the
different releases of Office. In the end, this solution is needlessly complex.

A more viable option would be to use XML. While this seems like a logical choice
because of XML's open nature, there are downsides. Not every version of
Microsoft Office supports XML files. Also, due to the structure of the XML file
needed to represent an Excel spreadsheet, the resulting XML file would be large
and complex. This solution definitely adds to the amount of bandwidth needed to

move the files to the client.

A third solution, and the one we will look at here in more detail, is the use of tab-
delimited text files. Although this is not actually an open-standards-based
approach, many applications have functionality to read tab-delimited text files
due to their very simple structure. This simplicity also adds to the ease with which
we can implement this solution within ABAP. This solution is also very commonly
used in data downloads within the traditional SAP GUI R/3 environments. Finally,
the size of the resulting dataset is usually quite reasonable, having very little over-
head. There is one major drawback to this solution: we can only transfer the data
itself, not any formatting information. If you need to retain any special formatting,
such as fonts, macros, or calculations; you will want to fook at the XML solution.

There are several different ways that you can convert your data from the internal
ABAP formats into a tab-delimited string. The following is a simple code sample
where we use control character definitions from the SAP class CL_ABAP_CHAR_

UTILITIES.

DATA: 1_string TYPE string.
LOOP AT itab INTO wa.
CONCATENATE 1_string wa-partner
wa-adr_kind wa-addrnumber

Document Handling in BSP

cl_abap_char_utilities=dcr_1f
INTO 1_string SEPARATED RY

cl_abap_char_utilities=>horizontal tab.
ENDLOQP. -

This is obviously a simple example that requires specific knowledge of the data
structure from which it originates. Later, we will see a code technique that works

(rj{%/_r;a;mically with internal tables by querying their structure definition through the
I

16.5.2 Excel Unicode Text File

Once we have our data in a tab-delimited string, we need to decide what type of
text format we want to use. Traditionally, ABAP programs would normally accept
the use of regular text files. In the Internet environment, however we shourd
consider the use of Unicode tab-delimited text files. | ’

There are two situations in which using a Unicode tab-delimited text file has def-
inite advantages over the use of regular text files in avoiding data corruption. The
first situation occurs when your SAP Web AS system is running as Unicode h.‘you
download data from this Unicode system, you run a high risk that the dz;ta will

not be read correctly by Excel unless you properly inform Excel that this file is
Unicode.

The next situation can occur even in a non-Unicode Web AS system. If you are
downloading Excel content to a client machine that has a different-code age
than the one your Web AS system is running on, data corruption will occuf for
any characters that are not common between the two code pages.

The image in Figure 16.9 demonstrates how data can be displayed correctly inline

in the BSP application, but on the same computer it becomes corrupted once it is
saved as a plain text file.

16.5.3 Unicode Formats and Endians with Excel

For general and detailed definitions of Unicode, Endians, and Byte Order Marks
(BOMs), please see Section 15.4. For working with Unicode and Excel, the first
thing we have to understand is what kind of Unicode file Excel war;ts Excel
expécts a UTF-16 encoded file with a BOM of Little Endian, the nativ.e X86
Endian. Evidently all the Microsoft Office tools use UTF-16 when saving files in
their primary format.

1 The SAP Runtime Type Information. This is a series of ABAP Classes that allow you to query

the structure and type information for objects and object references.

Microsoft Excel Download

369

370

i Wiateril Description - Polsh & 1 Transiteroted Melerla Descrintion 3

H—
KIESZEN NA LIST PAKCWY KIESZEN NA LIST PAKOWY J E

,1 ¥4 Reply with Chak

Dot - windaw £

318 |3 2z imef
- - ‘ﬁcj K?TOWNIK KARTONOW?Y L-750 é
A R B C

T O ARTONGWY 720
KIESZE? NAUSTPAKOWY 1

KOPCOWMALUTOWNLTAS |

ms

Figure 16.9 Plain Text File Data Corruption

If you want to verify this information, just open Excel and save a spreadsheet as
Unicode text. This creates a tab-delimited text file in Unicode format. Then open
the file in a Hex editor. You should see the UTF-16le, Little Endian, Byte Order
Mark - FF FE - right at the beginning of the file.

o .
{|oa]asion]7sloo[e3[00

22|[78]00]74]00|20{00 45 D063
el Py s e e
33||oojes5|00| 73|00 74|00/ 0D100

A [rr 72 1 00|62 |00ls3 00]s3]00/6F 00]54]00;55

L

Figure 1610 Unicode Text File Byte Order Mark as Seen from a Hex Editor

16.5.4 Conversion to Binary String

Earlier in this chapter, we assembled our ABAP data into a single string object.
This string object will be encoded in whatever code page your Web AS system is
currently running in. The next step to take will be to convert this string to a binary
string. The conversion process gives us the opportunity to convert our character
encoding from the internal Web AS code page to our needed UTF-16. Also by
converting to a binary string, we will preserve the character encoding in our
string. This allows us to have our string in UTF-16 even if our Web AS is not run-

ning the Unicode Kernel.

To accomptish this conversion, we will call the SAP-provided function module
SCMS_STRING_TO_XSTRING.

DATA: 1_xstring TYPE xstring.
CALL FUNCTION 'SCMS_STRING_TO_XSTRING'

EXPORTING text = 1_string
mimetype = app_type
IMPORTING buffer = 1_zstring.

Document Handling in BSP

For this conversion to work, we must specify the character encoding that we want
to use for the binary string. We do this through the mimetype parameter of the

function call. The following is the value that we want to set for our conversion to
UTF-16 Little Endian.

app_type = 'APPLICATION/MSEXCEL; charset=utf-16le’ .

For reference, the SAP internal Code page numbers are 4102 for UTF-16be
4103 for UTF-16le, and 4110 for UTF-8. These can be found in table TCPOOA:
or by calling function module: SCP_CODEPAGE_BY EXTERNAL_NAME.

16.5.5 Addition of the Byte Order Aark

That was actually quite easy. Now we have our output formatted as Unicode Text
Tab Delimited — UTF-16, Little Endian; we just need to add the BOM to the begin-
ning of the binary string.

CONCATENATE cl_abap_char_utilities=>byte_order mark_little
1 _xstring INTO 1 _xstring IN BYTE MODE.

Once again, we have taken advantage of the functionality that SAP has provided
in the form of the helper class for character manipulation: CL_ABAP_CHAR_UTI -

LITIES. This class already has the BOMs for UTF-8, UTF-16be, and UTF-16le
defined for you.

16.6 Pushing the Excel Content back through the
browser

Now that you have your data reformatted in the way you want it and available as

a binary string, you are ready to begin pushing this content back to your user
though their browser.

16.6.1 Push Using the Current RESPONSE Object

There are two different options for doing this. The first one we will look at has the
advantage of only requiring ABAP code in your event handler. However, in this
approach we use the current response and navigation objects to deliver the
content back to the user. While being the simpler of the two options to imple-

ment, this approach can complicate further event-processing that you want to
take place within this same event.

The first thing we will want to do in the coding is to clear some header fields from
the response object. These header fields can cause caching problems with some
browsers when downloading files.

Pushing the Excel Content back through the browser

371

372

* gome Browsers have caching problems when loading Excel
response->delete_header field(

name = if_httpAheader*fie1ds=>cache_control).
response->delete_header field(

name = if_http_header_fields=Dexpires).
responseOdelete;headerAfieid (

name = if_http_header_fields=>pragma).

The next section of code sets a header field in the response object that will
inform the process that we are sending it a file. This should cause the browser to
trigger a SAVE/OPEN Option. You can also see that we can use this header field
to propose a filename for our content.

response>>set_header_field(
name = 'content-disposition’
value = 'attachment; f{lename=excel_example.xls').

In the final section of code, we set our binary string as the main data of the
response object, which also requires us to tell the response object how large
the data object is. We then need to tell the navigation object that the response
is complete so that further unnecessary processing can be avoided.

1_len = XSTRLEN(l_xstring).
response->set_data(data = 1_xstring
length = 1_len).

navigation->response_complete().

16.6.2 Push Using a Cached Response

This second approach is slightly more complicated to implement, but results in
Cleaner interaction with the BSP framework. In this approach, we will place our
content into a cached response object. We will then place this cached object
directly into the ICM and generate a URL that references this cached object. The
URL will be placed within a hidden IFrame in our layout, thereby having the same
effect for the user without the messy interaction with the main response and

navigation objects.

Like our first example, nearly all the code takes place in an input event handler.
As we saw in Section 16.3.3, we will create a new cached response object to

work with instead of the main response object.

Next we will set our binary string content into this new cached response object.

cachedfresponsef>set_data(1 _xstring).

Document Handling in BSP

Since this is a new response object, we do not need to delete the header field as
we did in the previous example. However, we do need to set header fields for the
content type and the content disposition.

cached_response->set_header field(

name = if_http_header fields=>content_type
value = 'APPLICATION/XLS; charset=utf-16le’).

cached_response->set_header field(
name = 'Content-Disposition’

value = 'attachment; filename=excel example.xls').
Next, we want to set a good status code into the cached response object.
cached_response->set_status(code = 200 reason = 'OK').

We are going to be placing this cached response object directly into the ICM's
server cache. We only need it to be there long enough to finish building the page
and allow the IFrame object on the client to request this content. Therefore, we
will set a reasonably short time, 60 seconds, to avoid consuming resources in the
ICM Cache unnecessarily.

cached_response->server_cache_expire_rel(
expires_rel = 60).

Before we insert this object into the server cache, we need to make sure that we
have a completely Unique URL. The best way to do this is to simply generate a
GUID and attach that to the end of our application URL.

DATA: guid TYPE guid_32.
DATA: url TYPE string.
CALL FUNCTION 'GUID_CREATE'
IMPORTING ev_guid 32 = guid.
CONCATENATE runtime->application_url ‘/' guid INTO url.

Finally we will insert our cached Response into the server cache with the newly
generated unique URL.

cl_http_server=rgerver_cache_upload(
url = url
response = cached_response).

Somehow you are going to want to impart persistence to this URL so that it is
available in the processing of your layout. In this example, we are going to assume
that we have a stateful application and that during the event processing we cop-
ied the generated URL for our cached Response into an attribute in the applica-
tion class.

Pushing the Excel Content back through the browser 373

Therefore once we reach the processing of our layout, we can do a simple test to
see if there is a value in this URL application-class attribute. If so, we will generate
an ITrame to trigger the browser to fetch the cached content. We create an
I%rame that is only 1 pixel by 1 pixel. That way we have an area that effectively
does not take up any space in the rendered output.

<% IF application->display_url IS NOT INITIAL.
MOVE application->display_url TO ur’_string. %>
Ciframe src="<%= apnlication->display_url %"
width="1px" height="1px">
{/iframe>
{% ENDIF. %>

16.7 BSP Extension Element for Excel Download

So far, we have examined the logic necessary to convert an ABAP internal table to
a Unicode tab-delimited text file ready for Excel consumption. We also have seen
the coding necessary to pass this content back to the front-end client.

As you can see, a considerable amount of coding is involved in the overall pro-
cess. It seems unwise to repeat this coding in each application that requires this
functionality. Would it not be better if this functionality was available as a simple,

reusable BSP extension element?

That is exactly what we are going to do next. We are going to use the techniques
introduced in Chapter 11 to create this reusable element ourselves as a BSP

extension element.

16.7.1 The Download Element User Interface

Our download element only needs a very simple user interface. This example is
actually going to allow for the download of data in several different formatg Ohce
we complete coding for downloading one data object type, it becomes qu‘lt‘e sim-
ple to extend that to other useful data types. To start off with in addition lo
Microsoft Excel, we will also offer pure XML and HTML download options.

For our only Ul element that the user will interact with, we will reuse the SAP pro-
vided <phtmlb:popupMenu>. This menu will give the user the opportunity to
choose their download format.

374 Document Handling in BSP

I Sesd Dowrloadto Excel
— Download as XL
Sed| Download as ATHL

5
4

Figure 1641 User Interface for the Download Cxtension

16.7.2 The Element Properties and Attributes

Following the instructions from Chapter ‘11, we will begin by creating a new ele-
ment in our BSP extension. This element will be named downloadTab eExcel.
Our handler class for this element will be called YCI,_BSP_ELMNT DWN TBI,
EXCEL.

Next, we need to create the element's attributes. None of the elements are
required, and all of them should be marked as supporting dynamic values. The
text attribute should be marked as bindable.

Element Attribute Description

¢isabled The disabled attribute gets passed through to the inner
<prtmlb:popupMenu>. This attribute allows you to disable the elements

on the popup menu. For instance, you might use this if your table you
are going to download is currently empty.

¢igplay_url When this element generates the download content, it places it into the
ICA\ cache. It then generates a temporary URL to this entry in the cache,
Finally, it passes this URL back out of the event handler. The element
then expects to receive this URL again on the Layout build (see Section
16.3.3). ' R oo ’

The BSP Element will then render this URL into a 1 pixel TFrame. All this
allows for the download prompt to come up over the current page with-
out disrupting the logic flow, All that the developers who are using this
element need to know s that they must pravide a variable that can be
accessed both in the event handler and in the page or view.

id Unique identification for an instance of this element. If the consumer
does not specify an ID, the element will generate one later in processing.

onDownload This attribute gives the calling program‘an option to specify its own event
name for the erDownload event. This is helpful if you are going to place
more than one instance of this element within one page. If the user does
not specify a name for the event, it will later default a name of DOWNT.OAD.

text } This attribute exists so the user can specify the text he or she wants to

appear on the popup trigger. If nothing is specified, the element will
defauit in the value Download later.

Table 161 Attributes of Element downloadTableExcel

BSP Extension Element for Excel Download 375

376

16.7.3 Compile Time and Runtime Checks

Both a compile time and runtime syntax check can be programmed within the
element. The methods for these checks should be inherited into our element han-
dier class, YCL_BSP_ELMNT DWN_TBL_FEXCEL. If you want the compiler to call
these methods, you must also select the User Defined Validation option in the
element properties. You can implement these syntax checks by redefining the
inherited methods.

This element is relatively simple. At compile time, the only check we need to per-
form is to make sure that the disabled flag has a valid Boolean flag.

validator->to_boolean{ name = 'disabled').

valid = validator-»>m_all_values valid.

Listing 16.8 Compile Time Syntax Check

The runtime check has a little more going on than the compile time-check did.
First, the element needs to make sure that we are within an <htmlb:content>
element and that this is DESIGN2003. The element needs DESIGN2003 because
internally it is going to contain a PHTMLB element, which only supports this latest
design. Next, it will generate an id if one was not supplied. Then it validates the
text and dizabled attributes.

data: content type ref to ¢l _htmlb_content.
content 7= me7>get_c1ass_named_parent(
class_name = 'CL_HTMLB_CONTENT').
IF content->design <2
¢l htmlb_content=>co_design_2003.
me->raise_error(msg =
'Supported for DESIGN2003 only.'(002)).
ENDIF.
IF me-»>id IS INITIAL.
content-»>m_button_id_counter =
content-ym button_id_counter + 1.
me->id = content->m_button_id counter.
CONDENSE me->1d NO-GAPS.
CONCATENATE 'z download_ ' me->id INTO me->id.
ENDIF.
me->text = m_validator->bindable_to_string(
name = 'text' value = me->text
binding_path = me->_text
page_context = m_page context).

Document Handling in BSP

me->disabled = m_validator->to_boolean(

name = 'Digabled' value = me->disabled).

Listing 16.9 Runtime Syntax Check

16.7.4 Rendering Logic

Just as we did for our syntax checks, we have a method that we must redefine in
order to program our rendering logic. This method is called DO_AT BEGINNING.

This method is going to render several other SAP elements inside itself
(<phtmlb:popupTrigger>, <htmlb:image>, <htmlb:textViewd, and
<phtmlb:popupMenu>). For all of these, it is going to use the id of itself for the
inner element IDs. It will then tack on the 1d_postfix to create a unique id for
each of the inner elements.

This method also provides the code that is necessary to redirect the onSelect
event of the {phtmlb:popupMenu? into our event. We will have more code later
to complete this event redirection. It then concatenates this class name (me->m_
class_name) into the inner element's event handler. The BSP runtime then
knows to send this event to our element handler class for processing.

Finally, the element has all the code it needs to render the standard HTML
TFrame element. The code sample is abbreviated in text, but the complete source
is available on the accompanying CD.

METHOD if_bsp_element~do_at_beginning .
DATA: id_temp TYPE string.
DATA: menu_id TYPE string.
IF me->ondownload IS INITIAL.
me->ondownload = 'DOWNLOAD'.
ENDIF.
DATA popup_trigger TYPE REF TO cl_phtmlb_popuptrigger.
CONCATENATE me-»id '_ popupMenu' INTO menu_id.
popup_trigger ?= cl phtmlb_popuptrigger=>factory(

id = me->id
id_postfix = '_popupTrigger'
isinteractive = 'true'
popupmenuid = menu_id).

WHILE m_page context-yelement_process(

element = popup_trigger) = co_element_continue.

****Build the Download Image
DATA: image TYPE REF TO cl_htmlb_image.
Image Element Processing

BSP Extension Element for Excel Download 377

****Build the Text Label
DATA: label TYPE REF TO cl_htmlb_textview.
. Text Element Processing
ENDWHILE. "End Popup Render

****Create the Popup Menu itself
DATA: popupitems TYPE phtmlb_popupmenuitems.
DATA popup_menu TYPE REF TO cl_phtmlb_popupmenu.
FIELD-SYMBOLS {wa_menu> LIKE LINE OF popupitems.

****Fxcel Download Item
APPEND INITIAL LINE TO popupitems ASSIGNING {wa_menu? .

{wa_menu>-cancheck = ''. <wa_menu>-checked = ''.
IF me->disabled = 'TRUE'.
{wa_menud-enabled = ''. ELSE. <wa_menu»-enabled = 'X'.
ENDIF.
{wa_menu?>-hasseperator = ''.
{wa_menud-text = 'Download to Excel'(d02).

****¥ML Download Item

{wa_menu>-text = 'Download as XML'(d03).
****HTML Download Item

{wa_menu>-text = 'Download as HTML'(d04).
popup_menu ?= cl_phtmlb_popupmenu=>factory(id = me->id
id_postfix = '__popuplenu'’
firstlevelvisible = 'FALSE'
firstvisibleitemindex = '1'
maxvisibleitems = '7'
items = popupitems).
CONCATENATE me-Yondownload '::' me->m_class_name
'::DownloadChoosen’
INTO popup_menu->onselect.
WHILE mﬁpagefcontext*>element~process(
element = popup_menu) = co_element_continue.

ENDWHILE.

****Get Link URL if it exists
DATA html TYPE string.
IF display_url IS NOT INITIAL.
CONCATENATE “<iframe src="" display_url

378 Document Handling in BSP

*" owidth="1px" height="1lpx"><{/iframe>" INTO html.
me->print_string{ html).
ENDIF.
rc = co_element_done.
ENDMETHOD .

Listing 16.10 Rendering Logic

16.7.5 Trapping Events

Now we come to the coding that will allow for the trapping of incoming events to
this element. We have four methods inherited from the interface IF_HTMLE_
DATA. Once again, we will use the redefinition action to insert our own coding
here.

This special logic is used to redirect the events of the <{phtmlb:popupMenu>
object into our own events in this element. This is quite useful because we can
hide the fact that we have inner elements in this element. This also simplifies the
event handling for the consumer of this new element. This technique was dis-
cussed in detail in Chapter 9.

METHOD if_htmlb_data~restore_from request.

IF me->if_htmlb_data~event_id IS INITIAL AND
cl_htmlb_manager=>check and_initialise_event(
ingtance = me request = request

event_id _expected = id class_name = m_class_name
) IS NOT INITIAL.
RETURN. " means an event found and restored
ENDIF.
me->id = id.
ENDMETHOD .

Listing 1611 Restore from Request

METHOD if_htmlb_data~event_initialize

me->if_htmlb_data~event_id = p_event_id.

me->if htmlb_data~event_type = p_event_type.
me->if htmlb_data~event_class = p_event_class.
me->if htmlb data~event_ name = p_event_name.

me->if htmlb_data~event_server_name =
p_event_server_name.

me->if htmlb_data~event_defined

me->ifﬁhtmlb;dataNeventﬁjnterceptidepth

I

p_event_defined.

p_event_intercept_depth.

BSP Extension Element for Excel Download 379

380

me->if _htmlo_data~event name = me->m_name.
SPLIT me-»if htmlb_data~event_id AT '__'
INTO me-»if_htmlb_data~event_id
me >if_atmlb_data~svent_type.

* restorc view state from the request

nme-Yif_htmlb_data~restore_from request(

reqiiest = p_request id = me »>2f _htmlb_data~evenl_id).

ENDMETHOD .

Listing 1612 Event Initlalize
METHOD if_htmlb_data~event_sct_parameters.

*++xTake parameters from the original event anc map them

IF p_param_count » 1.

me-yselacted _stzing = p_param_1.
me->selected id = p_param_l.
me-r>selected_text = p_param_2.
ENDIF.
ENDMETHOD .

Listing 1643 Event-Set Parameters

=***No coding necessary

Listing 1614 Event Dispatch

16.7.6 Calling the Element from a Page Layout

Before we look at the code for the ovent handler, let us first examine the use of
this element. The following is how it looks once inserted into the typical page or
view:

<ybep:downloadTableExcel id = "DOWNLOAD"

disabled n(%= model->download_disabled %»"
display_url = "<%= application->display url %" /2

b

Listing 1615 Page Layout

In this example, an 1D is specified but not an event name because we only have
one instance of this element in the application. The disabled tlag comes from a
model class. This example might actually test for an empty table and set this flag
in the controller's DO_REQUEST method. Finally, the display_url variable comes

from the stateful application class.

Document Handling in BSP

o i

16.7.7 Event Handler

Now we are ready to look at the code in the controller’s DO_YANDLE_EVENT
method. You will see that the controller gets a pointer to both the application and
model classes in this method so that critical data is easy to access.

The processing looks for the event_id and calls the event handler method for the
element. Because the event handling is not overly complex, you can simply code
the event handlerlogic into the same class that was used for the BSP element/ele-
ment handler class. You will see in some of SAP's delivered elements that they
create separate classes for this functionality.

In this instance, model->xref is the internal table that has the data that is to be
downloaded. Only a reference to the table is passed into the event handler. Also
we have used an <htmlb:tableView) iterator class to manipulate the structure
of our internal table when we displayed it on the screen. If you would like to have
this same manipulation done when you download the data, you can pass a refer-
ence to the iterator object as well.

DATA: model TYPE REF TO ycl bsp _model example.
DATA: appl TYPE REF TO ycl bsp_appl _example.
appl 7= application. mode! ?= appl->model.
DATA itab TYPE REF TO data.
GET REFERENCE OF model->xref INTO itab.
DATA iterator TYPE REF TO ycl_iterator_test.
CREATE OBJECT iterator.
appl->display_url =
ycl _bsp_elmnt_dwn_tbl excel=>handle_event(
htmlb_event_ex = htmlb_event ex

rurtine = runtime
iterator = itarator
itab = itab).

Listing 1616 Do-Handle Event

Finally, we reach the event handler code of our element. In this example, the
event handler is implemented as a static method of the main element class itself.
This is done to simplify the understanding and maintenance of the code.

The main event handler is going to expect a few parameters. Naturally it wants a
pointer to the data it is going to download (parameter itab}. Next it wants a copy
of the ATMLB_EVENT EX structure so it can determine what {phtmlb:popup-
Menu» item was selected. Next it needs a reference to the runtime object so that
it can use the applicetion_name and application_url in its processing.

BSP Extension Element for Excel Download

381

Finally it has an optional parameter, in case the consumer wants to specify the
filename for the download. Otherwise the processing will generate a filename
using the application_name. Another way to allow for the formatting of the
table data before download, you can pass in a reference to an <htmlb:table-
View) iterator or a column-definition table. All the method returns is the URL to
the cached download content.

Parameter name Direction Type Description

Internal data table that
will be downloaded

itab Importing Type Ref to DATA

htmlb_event_ex Importing Type Ref to IF_HTMLB DATA HTMLB event data

runtime Importing ~ Type Ref to IF_BSE_RUNTIME The BSP runtime object “
i_filename importing ~ Type STRING Download file name
iterator Importing ~ Type Ref to IF_HTMLB_ Iterator for output for-
TABLEVIEW_ITERATOR matting
col_def Importing ~ Type TABLEVIEWCONTROLTAB Table view column defini-
tions
url Returning Type STRING URL for the downloading

of cached content

Table 16.2 Parameters for Main Event Handlers

In the coding you will see that processing branches the logic, depending upon
what type of download the user requested. It then builds a filename.

METHOD handle_event

DATA: app_type TYPE string, 1_string TYPE string,

1_xstring TYPE xstring, extension TYPE string.

DATA: error TYPE REF TO cx_root.

DATA: 1_col_def TYPE tableviewcontroltab.

IF col def IS INITIAL AND iterator IS NOT INITTAL.
DATA: p_overwrites TYPE tableviewoverwritetab.
iterator->get_column_definitions(

EXPORTING p_tableview_id 'DOWNLOAD*
CHANGING p_column_definitions = 1_col_def
p_overwrites = p_overwrites).

ELSEIF col_def IS NOT INITIAL.

1 col_def = col_def.

ENDIF.

TRY.

i

Document Handling in BSP

DATA: ipopup TYPE REF TO cl_es_bsp_elmnt_dwn_tbl_excl.
ipopup ?= htmlb_event_ex.
IF ipopup->selected_id CS 'Iteml'.

app_type = 'APPLICATION/XLS; charset=utf-16le’.

1 _xstring =
yel_es_bsp_elmnt_dwn_tbl_excl=>process_x1ls_download (
itab = itab
i col_def = 1_col_def).
extension = '.xls'.

ELSEIF ipopup-r’selected_id CS 'Item2'.
. xml processing
ELSEIF ipopup-’selected_id cs 'Item3'.
. html processing
ENDTF.
DATA: value TYPE string.
IF i_filename IS NOT INITIAL.
CONCATENATE 'attachment; filename='
i_filename extension INTO value.
ELSE.
CONCATENATE 'attachment; filename='
runtime->application_name extension
INTO value.
ENDIF.

The next small block of code below will handle any errors that we might encoun-
ter during the conversion of the content to Excel, XML, or HTML. Basically it
catches all errors using the high-levef exception handler class cx_root.

To support this error handling, this example creates a generic exception handler
class called YCL_SERTALIZABLE_ERROR. This class includes the IF_
SERIALIZABLE_OBJECT interface. That way, the element can take any error infor-
mation and serialize it to XML. It then returns this erroneous XML to the user in
the download instead of the content they expected. Not a great solution, but far
better than just producing a short dump. This also allows the element to return
error information to the user without having to disrupt the hosting layout's user
interface.

method constructor .
me->short_text = error->get_text().
me->long text = error->get_longtext().
call method error->get source_position

importing program name = me->program

BSP Extension Element for Excel Download

383

include name = me->include
source_line = me->gource_line.
me->kernel_errid = error->kernel_errid.

endmethod.

Listing 1647 YCL_SERIALIZABLE_ERROR Constructor Coding

As we continue looking at the coding of the event-handler method, we can see
how the error handling is resolved. We see how we finish the event handler by
placing the content into the ICM cache with a generated unique URL and then
passing this URL back to the calling program.

CATCH cx_root INTO error.
DATA: xml_err TYPE REF TO ycl_serializable error.
CREATE OBJECT xml_err EXPORTING error = error.
DATA: g_ixml TYPE REF TO if ixml,
g stream factory
TYPE REF TO if ixml_stream_factory,
g_encoding TYPE REF TO if_ixml_encoding.
CONSTANTS encoding TYPE string VALUE 'UTF-8'.
DATA resstream TYPE REF TO if_ixml_ostream.
g ixml = cl ixml=dcreate().
g_stream factory = g_ixml‘>creategstream~factory().
g_encoding = g_ixml-)create_encoding(
character _set = encoding byte_order = 0).
resstream = g;streamffactory->create#ostream_xstring(

1 _xstring).

resstream-yset_encoding(encoding = g_encoding).
CALL TRANSFORMATION id

SOURCE error = xml_err result xzml resstream.
app_type = "APPLICATION/XML; charset=UTF-8'.
value = 'attachment; filename=Error.xml'.

ENDTRY.

DATA: cached_response TYPE REF TO if http_response.
CREATE OBJECT cached_response TYPE cl_http_response
EXPORTING add_c_msg = 1.
cached_response->set_data(1l_xstring).
cached_response->set_header_field(
name = if_http_header_fields=>content type
value = app_type).

384 Document Handling in BSP

cached_response->set_header_field(

name = 'Content-Disposition'’

value = value).
cached_response->set_status(code = 200 reason = '0K').
cached_response->server_cache_expire_rel(

expires_rel = 60).
DATA: guid TYPE guid 32.
CALL FUNCTION 'GUID_CREATE' IMPORTING ev_guid 32 = guid.
CONCATENATE runtime->application_url '/' guid INTO url,.
cl_http_server=>server_cache_upload{ url = url

response = cached_response).

ENDMETHOD .

Listing 1648 Continuation of the Event Handler Method

16.7.8 Get Structure Definition

In order to support the methods that will convert our ABAP internal table to the
different output types, the element handler has a static method that will deter-
mine the definition of the input internal table that is going to be downloaded.
Much of the processing of this method was borrowed from the standard SAP cod-
ing of the <htmlb:tableView> class. After all, it has been said that good pro-
grammers write good code, but great programmers reuse the good programmers'
good code.

This method has the following interface:

Parameter name Direction Type ’ Description

Internal data tabfe that
will be downlcaded

itab Importing Type Ref to DATA

struct Returning Type EXTDFIEST Data dictionary struc-

ture definition

Table 16.3 Interface of Static Element Handler Method

Basically this method is going to use the ABAP descriptor classes to determine the
structure of the internal table that is being worked with. Due to the size of the
code listing for this method and the fact that it is only marginally related to BSP;
we have not included the source code in this text. It is however available, along
with this entire solution, on the CD for this book.

BSP Extension Element for Excel Download

385

386

16.7.9 Process Excel Download

This routine begins by concatenating the individual data elements of our down-
loaded together, separated by
ties=>horizontal_tab and cl_abap_char_utilities=yer_1f

internal table cl_abap_char_utili-

That means that this coding is responsible for the output format of all the possible
intrinsic ABAP data types. Luckily, SAP has once again done most of the work for
us. The routine just reuses the very useful TO_STRING method of the IF_BSP_
PAGE object. The method then completes the conversion by transforming the
string into UTF-16 as discussed earlier in this chapter.

This method does use functionality of the RTTS that was first introduced in Web
AS 6.40 in order to dynamically build the new internal table that represents the
modified structure of the iterator. There is a slightly more complex version of this
method that does not use the RTTS and that is provided, along with all the source
code for the book, on the accompanying CD.

DATA: r_string TYPE string.
DATA: lapp_type TYPE char30, str TYPE string.
DATA: 1 col_def TYPE tableviewcontroltab.
1 _col defl] = i_col def([].
****Sot the application Type - character set for conversion
*#**Fycel Requires UTF-16 with Little Endian
lapp_type = 'text/unicode; charset=utf-lple'.
FIELD-SYMBOLS: <{tab> TYPE table, <wa> TYPE ANY,
{wa2> TYPE ANY, <f> TYPE ANY.

***+*Got Reference to our Internal Table
ASSIGN itab->* TO {tab>.
****Read the Table Structure
DATA: struct TYPE extdfiest.
DATA: struct2 TYPE extdfiest.
FIELD-SYMBOLS: <wa_struct> LIKE LINE OF struct.
FIELD-SYMBOLS <wa_desc> LIKE LINE OF struct.
CALL METHOD

ycl_es _bsp_elmnt dwn_tbl_excl=>get_table_structure

EXPORTING itab = itab

RECEIVING struct = struct.
****Adjust the internal table and structure definitions
***+for [terators and Table View Column Definitions
IF 1_col_def IS NOT INITIAL.

FIELD-SYMBOLS: <wa_col> LIKE LINE OF 1 _col_def.

Document Handling in BSP

LOOP AT 1 _col_def ASSIGNING <wa_col>.
READ TABLE struct ASSIGNING <wa_struct)>
WITH KEY fieldname = <wa_col)>-columnname.
IF sy-subrc = 0.
IF <wa_col>-title IS NOT INITIAL.
{wa_structy-coltitle = <{wa_cold>-title.
ENDIF.
APPEND <wa_struct> TO structl.
ENDIF.
ENDLOOP.
struet[] = struct2[].
FREE struct2.
DATA: comp_tab TYPE
cl abap_structdescr=>component_table.
FIELD-SYMBOLS: <wa_comp> LIKE LINE OF comp_tab.
LOOP AT struct ASSIGNING <wa_struct).
APPEND INITIAL LINE TO comp_tab ASSIGNING <{wa_comp).
IF <wa_struct”>-rollname IS INITIAL.
{wa_comp>-type 7=
cl_abap_typedescr=>describe_by_name({ 'STRINGVAR').
ELSE.
{wa_comp>-type 7=
cl_abap_typedescr=>describe_by name(

{wa_struct>-rollname).

ENDIF.
{wa_comp>-name = <{wa_structy>-fieldname.
ENDLOOP.
DATA: struct_type TYPE REF TO cl_abap_structdescr,
table_type TYPE REF TO cl_abap_tabledescr.

struct_type = cl_abap_structdescr=vcreate(comp_tab).
table_type = cl_abap tabledescr=>create(
p_line_type = struct_type
p_table_kind = cl_abap_tabledescr=>tablekind_std).
DATA: dref TYPE REF TO data.
CREATE DATA dref TYPE HANDLE table_type.
FIELD-SYMBOLS <table> TYPE STANDARD TABLE.
ASSIGN dref->* TO <{table>.
LOOP AT <tab> ASSIGNING <wa>.
APPEND INITIAL LINE TO <table> ASSIGNING <wa2>.
MOVE- CORRESPONDING <wa> TO <wa2>.

BSP Extension Element for Excel Download 387

ENDLOOP.
UNASSICN <{tab>.
! ASSIGN dref->* TO <tab>.
‘ ENDTE .
****Populate the Column Headers
LOOP AT struct ASSIGNING {wa_descr.
CONCATENATE r_string <wa_descr-coltitle
cl;abap_char_utilities=>horizontalftab
INTO r_string.
ENDLOOP.
CONCATENATE r_string cl_abap_char_utilities:>crflf
INTO r_string.
DATA: output TYPE string, s(256) TYPE c.
DATA: 1_page TYPE REF TO cl_bsp_page base.
CREATE OBJECT 1_page.
x*+*xx],00p through the Data Table
LOOP AT <tab> ASSIGNING <{wa».
****For each component (field) in the table -Output the data
LOOP AT struct ASSIGNING <wa_desc?.
ASSTGN COMPONENT sy-tabix OF STRUCTURE {wa> TO <£7.
CHECK sy-subre = 0.
IF <{wa_desc> IS ASSIGNED
AND <wa_desc>-convexit IS NOT INITTAL.
++**Process any output conversion routines
CONCATENATE 'CONVERSION_EXIT_' {wa_desc>-convexit
'_QUTPUT' INTO str.
CALL FUNCTION str
EXPORTING input = E>
IMPORTING output s.
ELSE.
s+++se the BSP Page to_string Meth. to output any data type
s = 1_page->if_bsp_page~to_string(value = EY).
ENDIF.
CONCATENATE r_string s
cl/abap_charfutilities:>horizontal_tab
INTO r_string.

I

ENDLOOP.
CONCATENATE r_string cl_sbap_char_utilities=dcr_lf
INTO r_string.

ENDLOOP .

388 Document Handling in BSP

****Convert the string to Binary string (UTF-16le)
CALL FUNCTION 'SCMS_STRING_TO_XSTRING'

EXPORTING text = r_string
mimetype = lapp_type
IMPORTING buffer = r_xstring.

****Add the UTF-16 Little Endian Byte Crder Mark
CONCATENATE cl_sbap char_utilities=>byte_order_mark little
r_xstring INTO r_xstring IN BYTE MODE.

Listing 1619 Process Excel Download

16.8 Alternatives to the MIME Repository

The SAP MIME Repository is really designed to hold development objects.
Because of this, there is much overhead in its management of objects. The perfor-
mance for uploading or reading many files or very large files is not optimal. Also
the dependence upon the transport system for MIME objects, often removes flex-
ibility that is needed when working with a large number of dynamic objects.

So what are some of the alternatives to using the MIME Repository? First you
could simply store you binary content in a custom database table. This would
remove the dependency upon the transport system and might improve perfor-
mance. However this could require you to make extensive changes to your appli-
cations to read the content and present it to the users.

16.8.14 ICM File Handler

A better approach might be to take advantage of the ICM file handler functional-
ity discussed in Section 16.2. By setting up a file handler to local disk storage, you
now have an easy to manage and access approach that still is easy to reference
from within BSP and takes advantage of the ICM caching functionality.

You could take this approach one step further and even create a BSP application
for managing the objects within these file handler locations. This way users could
maintain the objects, without needing Operating System access to the place they
are stored.

Figure 16.12 demonstrates one such sample application. it allows you to choose
the file handler you wish to manage. The drop down list of possible file handiers
is read directly from the {CM configuration profile.

On the left hand side of the screen, we have the directory/file listing. This is our
navigation area as well. On the right side, we display the currently selected object
in an IFrame. The user has the ability to delete or update the current document.

Alternatives to the MIME Repository

389

390

l Dasic Selection

, 11CM Fite Hancter [fosp, misgest[v
i

]jl File Detall - ” f]

| current Fie bsp_megestATI11028 ng

[Bowse..) [Tplosd Updeta fo Documet ; [Deiste Dooument

| srecorytiing

| currert Owectory BSP_mages

1574
IR
28582

Taa

Figure 1612 Sample File Handler Maintenance Program

Although a simple example, this might serve as a starting point for something
more specific. Perhaps you might decide to add SAP authorization checks on the
file handler or directories within the file handler. The complete source code for
the sample application is contained within the code samples on the enclosed CD.

16.8.2 SAP Content and Cache Server

A third approach might be to take advantage of the SAP Content and Cache Serv-
ers. The SAP Content and Cache Servers are an extension of the R/3 Document
Management System. They allow for the easy distribution and access of docu-
ments across diverse geographies.

Let us consider for a moment a corporation that has operations in North America
and Europe. Their centralized R/3 and Web AS systems reside in Europe. There-
fore users in North America access BSP applications across the Wide Area Net-
work from a cata center in Europe.

This works fine for the BSP pages them selves, but for large MIME objects this is
inefficient.

In this situation, both North America and Europe would have a Content and
Cache Server. The index of all documents would still reside in the European R/3
system, as well as the BSP application itself. However the MIME objects could be
cached and referenced from the North American Cache Server.

Document Handling in BSP

PRV - -y

Two problems arise from this situation however. First, we do rot want the appli-
cation to have to be aware of the complexities of the underlying Cache Servers.
You want the number and locations of the Cache servers to be dynamic.

The second problem involves the users passing around shortcuts to the docu-
ment. Users will often cut and paste short cuts from such websites into Emails and
other documents. If the URL to the document contains the direct address of the
cache server for that user, this URL may break over time with the reorganization
of cache servers. Also if the page was generated by a North American users but a
European user accesses the URL, they will inefficiently directed to the North
American cache Server.

To enhance this solution, you might consider creating your own ICF Service Han-
dler. This way you could create URLs that are independent of Content/Cache
server being used. The URLs instead would point to your custom Service Handler
providing only the DMS document keys.

ICF Cbject [ContSexv) Service (Active)

Descripticrn in |EN English 2
LCgtent Server Interface via R{3 Document Infa Recards

N

R _

- Berice Data 4008 rror Pages.

Handler fist (in execution arder).

'_ };';'[;]J::

Figure 1613 Custom ICF Service Handler for the SAP Content/Cache Server

| |1 [zct Es mTe mxT sty pim

This service handler could then lookup the DMS details about the document in
question using a BAP| Call, BAPI_DOCUMENT GETDETAILZ.

The service handler then uses the Client IP address, details from the DMS system,
configuration about the Cache Servers stored in table sdokstca, and a call to the
function module SCMS_URL_GENERATE to build a URL and to trigger a HTTP redi-
rect to the best possible location to retrieve the file.

The complete source code to the described example, alone with all source code
samples for this book, is available on the accompanying CD.

Alternatives to the MIME Repository 391

392

16.9 ZIP Tool

SAP has delivered GZip-based compression in the Web AS for some time now.
GZip compression is used automatically by the ICM when acting as an HTTP
server, if configured to do so.

In more recent support package levels for Web AS 620 and standard in Web AS
6.40, SAP provides a series of ABAP classes that allow for the compression and
decompression of text and binary data steams. These classes are: CL_ABAP_GZTP,
CL_ABAP GZIP_BINARY STEAM, CL_ABAP_GZIP_ TEXT STEAM, CL_ABAP_UNGZIP_
BINARY_STEAM, and CL_ARAP_UNGZIP_TEXT_ STEAM

These classes allow you to compress and decompress one data stream, but you
are still responsible for storing the results. This means that you can compress data
and store it in a database table, but they do not have functionality for creating
true stand-alone ZIP files that can be opened by PC based applications.

The following example works with a binary sting that is stored in a database table.
This string represents the content of a BTF editor (see Section 12.1). The code
example uses CL._ABAP_GZIP to compress and decompress the data stream as itis
read from and written to the database table.

DATA: 1_text TYPE xstring.
DATA: desc_text TYPE string.
SELECT SINGLE text FROM ybtf text
INTO 1_text WHERE id = me->id. c
CALL METHOD cl_abap_gzip=>decompress_binary
EXPORTING gzip_in = 1_text
IMPORTING raw_out = desc_text.

Listing 16.20 Read and Decompress

DATA: btf_wa TYPE xstring.
CALL METHOD cl abap_gzip=>compress_binary

EXPORTING raw_in = input_text
IMPORTING gzip_out = btf_wa-text.
MOVE me->id TO btf_wa-id.

MODIFY ybtf_text FROM btf_wa.

Listing 16.21 Write and Compress
The compression classes in ABAP are very useful for saving database size; however
they lack the full functionality for integration with the client or other applications.

For this we would want a class that could create a properly formatted ZIP file with
multiple inner contents and CRC logic.

Document Handling in BSP

RITOREES. SR

Web AS 6.40 SP13 delivers the class CI,_ABAP ZIP to do just that. You can add
one or many text or binary objects to a compression steam that in turn can be
downloaded to a file or send back through a BSP response stream.

In this next example, we will retrieve multiple documents from an SAP Content
Server. We will ZIP all of these documents together and return them as a single
ZIP file using the cached response technique that we looked at earlier in this
chapter.

DATA: zip TYPE REF TO cl_abap_zip.
CREATE OBJECT zip.

DATA: absolute_uri(2000) TYPE c.

DATA: response_body TYPE TABLE OF x_table.
DATA: response_headers TYPE TABLE OF c_table.
DATA: content TYPE xstring.

LOOP AT doc_details ASSIGNING <wa_doc>.
CLEAR absolute_uri.
CLEAR response_body.
absolute _uri = <wa_dor>-url?.
CALL FUNCTION 'HTTP2_GET'
EXPORTING absolute_uri = absolute uri
TABLES response_entity_body = response body
regponse_headers = response_headers
EXCEPTIONS OTHERS = 1.
IF sy-subrc NE 0.
message =
'Unable to retrieve content for ZIP inclusion' (ez2).
EXIT.
ENDIF.
CLEAR content.
CALL FUNCTION 'SCMS_BINARY_TO_XSTRING'

EXPORTING input_length = '999559999"
IMPORTING buffer = content
TABLES binary_tab = response_body.

zip->add(name = <wa_doc>-filename content = content).
ENDLOOP.

DATA: zip_results TYPE xstring.

zip_results = zip-J>save().

****Create the cached response object

DATA: cached_response TYPE REF TOQ if_http_response.
CREATE OBJECT cached_response TYPE ¢l _http_response

ZIP Tool

393

EXPORTING add_c_msg = 1.
cached_response->set_data(zip_results).
cached response->set_header_field(
name = if_http_header_fields=>content_type
value = 'APPLICATION/ZIP').
****Set the filename into the response header

cached_response->set_header_field(

name = 'Content-Disposition'
value = 'attachment; filename=download.zip').
cached response->set_status(code = 200 reason = 'OK').

cached_response-Yserver_cache_expire_rel(
expires_rel = 60).

****Create a unique URL for the object

DATA: guid TYPE guid 32.

CALL FUNCTION 'GUID_CREATE'

IMPORTING ev_guid_32 = guid.

CONCATENATE runtime->application_url '/' guid
INTO dir_url.

c1_http‘server=>server_cache_upload(url = dir_url

response = cached_response).
RETURN.

This example is slightly extreme, but it demonstrates retrieving the files for com-
pression and download from an external content server. However, the ZIP
approach works just as well with files that were stored in the MIME repository or
files that we have stored on disk and read via an ICM handler.

394 Document Handling in BSP

17 Customization

Although SAP has spent considerable time and money designing pro-
fessional themes for BSP applications, there may be valid business rea-
sons for creating pages with your own unique look and feel. In this
chapter, we will focus on the technologies and techniques that make
this level of customization possible.

171 Customization Overview

At some point, you are likely to be asked to customize the look and feel of your
BSP pages. For example, a corporate color scheme or special font must be applied
to your application.

You could always just create your own CSS files to alter the ook and feel of your
application. This would mean either not using the BSP extension elements or try-
ing to attach new style tags to the generated HTML using a mechanism like the
<bsp:findAndReplace> element. Both of these approaches are less than opti-
mal, so for the purposes of this text we will assume that you wish to continue to
work within the standard extension framework.

If you are lucky enough to always run your BSP application within a recent version
of the SAP Enterprise Portal, you should have no problem at all. As discussed in
Section 9.1.5, BSP applications that use the BSP extension framework get their
look and feel from a set of designs. However BSP applications also support portal
integration. That means that they will automatically inherit the theme that the
portal is currently running without any changes to the BSP application. This allows
you to use all the theme editing capabilities within the Enterprise Portal. How-
ever, let us assume that you do not have the Enterprise Portal, or that you need
your application to be available with or without the portal.

17.2 Export—Modify—Import

The first approach that we might take is to create our own design themes. If you
are using DESIGN2003, the <htmlb:content? element allows you to specify one
of several themes that SAP delivers. You can use BSP Application SBSPEXT_HTML3B
to view samples of the different BSP extension elements under the various stan-
dard themes.

It is a fairly simple process to copy and then modify one of these delivered
themes. SAP delivers a standard ABAP program, BSP_UPDATE_MIMEREPOS, to

Customization

395

396

export and import objects from the MIME Repository. This program can work
with a single MIME element, a single folder, or a folder and all of its sub-folders.

Let us say that we want to export the theme TRADESHOW as our staring point.
We would just need to supply its MIME path (/SAP/Public/BC/UR/
Design2002/themes/sap_tradeshow) to BSP_UPDATE_MIMEREPOS.

Update the MIME Repository based on frontend data £

Resnurces
MIME Repository path

¥sap/eC/BSP/SAP yhsn_hook

Irnport/Expart .~
O Export to disk
@ Import from disk

" [create with different LOIOs

{ Ontions
® Process whale structure
O Process flat structure

QO Process indivdual fle only

Figure 171 Theme Export Settings

You might be slightly confused by the use of the name DESIGN2002 within the
path for the theme considering themes can only be used in DESIGN2003. As it
turns out, the original project to create the Unified Renderer (the technology that
packages all controls and all themes into a central technology that can be reused
over all SAP platforms) was an off shoot from the DESIGN2002 project. Later the
Unified Renderer, and its concept of themes, was ready to be integrated back into
BSP. By this point however, DESIGN2002 had already shipped to customers and
could not be changed. Therefore DESIGN2003 was born. Although within the
terminology of BSP, we have the new DESIGN2003, the underlying code and
paths could not change from their references to DESIGN2002.

You now have a copy of all the MIME objects that make up the TRADESHOW
theme on your PC, and you are ready to edit in your favorite CSS or graphic edit-
ing tool.

After you make whatever changes you need, you use the same program to import
the MIME objects back into SAP as a different theme. It is important to be careful
not to overwrite SAP's delivered themes.

The path you then supply to BSP_UPDATE_MIMEREPOS will then be /SAP/BC/
BSP/SAP/ybsp_book. Remember from reading Section 16.1 that a BSP applica-

Customization

RECHAEPRAT F

tion will automatically create a folder in the MIME Repository when it is created.
Therefore we are using a MIME folder that to hold our new theme that corre-
sponds to an existing BSP application.

We can now use our new theme in a BSP application by changing the themeRoot
value of the <htmlb:content> element.

<htmlb:content design = "DESIGN2003"
themeRoot = "/SAP/BC/BSP/SAP/ybsp_book" >

There is a major disadvantage to using this approach, however. As SAP makes
changes to the low-level rendering libraries, the developers often are forced to
make changes to the structure and content of the underlying MIMEs. This means
that it is very possible that every support package that you apply to your system
will break your copied themes. In reality, you must re-copy the theme and re-
apply your modifications after each support-package application.

17.3 NetWeaver Theme Editor

The idea of exporting and working with all the individual files is a little over-
whelming. What we really need is a theme editor that understands the structure
of the objects within SAP's themes and simplifies the process of updating them
but without the reliance on the Enterprise Portal. Even if customers have the
Enterprise Portal implemented, they may not have the version that has the theme
editor (EP 6.0 running on at least Web AS 6.40 SP9).

To meet this need, SAP now has available a standalone version of the theme edi-
tor that runs within the NetWeaver Developer Studio. You can download the
theme editor and the theme packages from SAP Developer Network (SDN). This
is also where you must go to get support on the tool, because it is not officially
supported through SAP's Online Support System (OSS).

This tool is heavily promoted as a solution for Web Dynpro. A standalone Web
Dynpro application really has the same issue when it comes to themes that BSP
has. Using the MIME import approach from the previous section, we can edit the
themes in the standalone tool and then import them for use in BSP with BSP_
UPDATE_MIMEREPOS.

As Figure 17.2 demonstrates, the theme editor is quite full featured. You have the
listing of all the Ul elements that are available for modification. Then you have
your preview pane. Finally, you have a properties window with allowed values
and color selectors built in.

The standafone theme editor does have the drawback of being very dependent
upon matching the support package level of your Web AS. Just as when editing

NetWeaver Theme Editor

397

398

the raw MIMEs, you must make sure that the starting theme package and the
release of the theme editor match exactly the release of the Web AS you are going
to import the files into.

e Search Project Run
IF-HBE2 a3 @G R T4 & < = - 1
ﬁ [Themes Editor Prajects x H _1welcome e
= Elements E' H
2 @3 ThemesEditor " n g
= é\nba\ Styles Contert Area Standard Positive Criticat Negative
R a oo
sap_standard % T::uv Standard Standard Standard Standard
~ [sap_tradeshow 2 (= Complex Elements Emnphasized Enphasized Emphasized Emphasized
» 5 Date Navigator Small Smal Sm Small
[} Groups Reference Reference Retarence Reference
.[i#l] tavout Controls . - - .
= | jrbor Heading 1 Heading 1 Heading 1 Heading 1
* -5 Meru Bar Heading2 HeadingZ Heading2 Heading2
X3 paginatar Heading 3 Heading 3 leading 3 Heading 3
: % g"’“e’”;‘jm‘”e" Heading 4 Heading 4 Heading 3 Heading 4
op-up Menu
-e= Progress Indicator
: * au Road Map
' -[E] Tables
£ Tabstrip
<= Toolbar
fi Tree
; £ Trays
52 outline x 3 Smple Elements
[n outine s nat avaleble. . -boo PageBreadCrump 1
+) Buttons
7% Labels and Fietds Porameter [value __Ia
Links Scomman

EFF2

E lsts Al bl T
7] Message Ber s

5, Popup Menu Trgger
{4 Scrollbar
% (5 Testsuteoneals

#303047

Color of Right and Bottom Inside Barder #306898
Color of Right and Batzom Outside Bor,.. #E8F1F8
Color of StroliBar Track #EBFIFD
Color of Scroll Box and Scroll Arrows #DDEAFS
Calor of Upper ard Left Inside Border #EGFLFB

&4 LR ITT T T g EhGenerats v gBRefresh [External Previsw

Figure 17.2 NetWeaver Standalone Theme Editor

17.4 ALFS—ABAP Look-and-Feel Servicer

So far, we have looked at two approaches for generating new themes for BSP
applications. The first approach of directly modifying the underlying CSS files
requires considerable effort. The second approach brings in the standalone theme
editor to make the situation a bit easier. However if you only want to make a few
simple adjustments, you might be overwhelmed by the sheer number of individ-
ual settings in this tool. In short, the power that it contains to tweak every detail
of the theme might be overkill for some projects.

It might take many hours to change from any predefined SAP theme to a new cor-
porate theme with either of these two previous approaches. In order to bridge
that gap, SAP developed a quick-and-dirty look-and-feel service for the ABAP
stack that alfows us to have a new color scheme up and running in three minutes.
The new scheme will probably not be a perfect match for anyone responsible for

Customization

corporate branding. However, for a presentation or a project smaller than a com-
plete re-branding, this tool fits the bill.

17.4.1 ALFS Tool Scape

The quick-and-dirty here refers in no way to the quality of the programming, or to
the quality of the algorithm it uses. Some of the brightest minds at SAP worked
diligently to put this solution together. Instead, the phrase reflects more on the
scope of the solution and the constraints that are imposed by the implementation
route that was chosen. This work was not done as part of any SAP development
plan, but is more the result of having some fun over a series of lunch hours. As the
tool was deemed to have value for a large group of people, the official decision
was made to ship it.

Originally, this tool was developed on the Web AS, as SAP had many require-
ments from consultants who wanted to enhance their presentations at customers
and did not have the space on their laptops to also run an Enterprise Portal instal-
lation. As they usually have already a mini-Web AS running, SAP decided to reuse
this infrastructure.

Please note: This tool has a number of constraints. The use of the tool implies the
acceptance of these limitations. Support for the tool will be provided via OSS on
queue BC-BSP on a best-¢effort basis only. This means SAP will do everything pos-
sible to keep it running smoothly, but there are no guarantees that it will be sup-
ported indefinitely. Also, because ALFS is built upon the concept of themes, it will
only work with BSP applications using DESIGN2003.

17-4.2 What is ALFS?

Figure 17.3 shows the same BSP application with different predefined themes.
These themes were defined using ALFS to quickly show the effects of applying a
new theme to a BSP application,

Figure 17.4 shows the complete theme editor. Effectively, you define five new
colors from which the complete theme is then generated. If the corporate brand-
ing colors are already defined, then just plug them into the editor and press the
preview button.

The editor generates new CSS files on the fly, as well as hundreds of new GIF
images in exactly the right colors. Two interesting ideas flowed into this theme
editor. The first is that a few basic colors are sufficient to specify the complete
theme. The second is that it is possible, even with ABAP, to generate all the MIME
objects on the fly as they are requested without a noticeable speed hit.

ALFS—ABAP Look-and-Feel Service

399

400

|[5aP tietvicavar agap Thome Edior (e ExcapUon | {Tngger Extepton] [Troer Rabox] (Ho Dofta Update --> Full Update}

; fpomes -) |1 Opportunities =0
*|precetned mQeam vl = - - — g T o o
: " = Select] Craste { Save | Dolete] [Pont] Send | Aun I;_g}
provew ! o Lol 3 12
= are) g

{theme Roat izom
‘ Freviow

trardiraind
I L i |

o s o sl i
] (Rafss Exsepian] [THgaer Excoptue] [Triager Rabax] [No Beks Updato -—» Full Upiate

: 1_‘[SAP HetWemer ABAP Themo Editor
! Themes N
Theme [| Opportunities
| Tempiato [Predetined | aroon 554 e
. Branding C| |JPrevew
[Pemary | thema Rooljsappublefochs
| >
}secondaey | | Previow | + i L i 2
I 5 i 1! box | { o Delta Ugdata > Full Updais
Zsoloction @ ! SAP HietWeave 1 ABAP Thme Edtor frint] Raiss txéphon] Triqger Exceptian] [Trigger Rabox | { o o N
Hprmery ﬁ Thomo | | Thamies N I
: i s e o || OPDOPLUNIGES :
Vsecondary | {jreppina | ! |Prooaiies |Bisnva I pporiunities e _ —
: kgraung * — 35| + Select] Crasta] Save] Delate] TFrintl Send] Run Fiter} | . AR,
ooren| Brending g o= oo i | D No. Dare Arfere Corr. Planz Bookng tatal
ilappteaion 1 | prmary 1 Treme Root e |
Fant " | i
j || Secondary i Hh 0017 11/17/2004 422.94 USD 747-400 192,124.98
§ 4] 3 3,148.41
s JSE]EH[D“ - 7 A 0017 12/15/2008 422,94 USD 747-30D 193,148 ¢
Py Theme 1 AA 0017 01/12/2008 42294 USD 747-400 192,556 44
S : i "
Prenpuds {Stesmine | 5 aa 0017 02/09/2085 42234 USD 741400 191,164 .08
T . 195,622 64
Branding Calor 1] Aa 0e17 03/09/2005 42204 USD 747-400 S
Prmary (735218 | [|- &) Zoaa 0017 04/06/2005 422,94 VSO 747-400 192,420,
ey [RTDRTEE | - . :
Isnw»” [(JAEZA. stvsToam , Gosks , Products , Valustion ; Cometitors y Seles pssistan: |
v 5
‘|S:‘mm“ cug“ 520) . Datn Bovkinn Hame of she Passonger
[lprmary [£0AA T . Da
Secordary [F563050 7
:IB k - d“c | O aa 0017 11/17/2004 DO0000L Jean Scmmer
; |:cwf:\"m'ﬁ | 1 oaa 9017 11/17/2004 00000C02 Andraas Eichbaum
on
4% - - 7 Aa 0017 11/17/2004 00000003 Christoph Dumbach
ont

Figure 17.3 The Effects of ALFS on a BSP Application

SAP HetWeaver ABAP Theme Editar

Themes

| Predefined | Bisaue
[Freview [Isapioibspisapf05ientrypoint Hm

f Theme Roct [fsappuniicic ur e dign20024hemes ~eaif
Preview

T

Theme
| Tempiste Steamling

Branding Color
|Primary [#3E2D08_|
I} Secondary @F
Selection Color
l Primayy @t{
| Secondary @]
Background Color
| I Application m
Font

IFom Family | Arial, sans-serit v
i e . _— U

E=

Figure 17.4 The Complete ALFS Theme Editor

ALFS even parses and patches each GIF file that is used within the theme during

the usual load process.

Customization

17.4.3 How Does Customization Normally Work?

The normal full process for customizing a theme s to use the tools provided by
the Enterprise Portal. These tools provide the complete freedom to change all dif-
ferent aspects of the theme. This might be important for corporate branding pur-
poses, but even getting an initial theme running is a lot of work. For exam ple, the
typical steps include all GIF images, over 300 per theme, being loaded into a bit-
map editor individually to set their colors correctly. Even a first version can take
hours to get up and running.

What the theme editor in the Enterprise Portal does is store all customer settings
as metadata, rather than store them directly in the CSS files. Thereafter, in a gen-
eration step, the actual required CSS files are created. This is important for han-
dling upgrades.

When SAP ships new rendering classes, the information required for the CSS files
are also shipped only in metadata form. This is mixed with the old theme settings,
and new CsS files then are generated at runtime.

Therefore the first requirement of ALFS was to have a solution that would survive
a new service pack.

To work around this constraint, ALFS generates new themes on the fly. They are
never stored in any database, but only cached on both the server and browser.
After an upgrade, the BSP runtime will load the CSS files with a new version num-
ber. This bypasses the cache, causing the CSS files to be loaded and patched
again. This implies that ALFS does not store any generated theme in the MIME
Repository.

The goal of ALFS was never to replace the theme editor already available in the
Enterprise Portal. This approach attempts only a quick approximation of the
results, which should be sufficient for showing an application to a customer in
nearly the correct color scheme. If fine-tuning of a theme is required, this must
still be done with the usual theme editor.

17.4.4 A New Theme from Five Colors

The heart of ALFS is its simplicity. Instead of asking the user to configure and edit
all colors, it only wants to have one color—for example, blue for SAP. Just give
ALFS the base color, and it will do the rest.

In the end, it turns out that five colors are required and sufficient: one back-
ground color, two branding colors, and two selection colors.

ALFS—ABAP Look-and-Feel Service

401

402

What the BSP development team did was to manually analyze all style classes for
all SAP base themes. From this, they grouped relevant classes together and deter-
mined heuristics of how the colors are used in the base themes. Specifically, they
calculated the distance of a specific color from the base color of the theme. Then,
given the five new colors, they apply the same distance to the base colors to have
the data for the new theme. Distance is just a calculation of how much the color
shifted in RGB space from the original source color.

The other important aspect is the template theme from which the new theme
should be generated. SAP today ships five standard themes. Each theme is differ-
ent in metrics such as padding, font sizes, and margins as well as different in the

spectrum of colors used.

The distances between the different colors and the base color is an important
aspect of the theme used as the template. For example, typically the high-con-
trast themes group colors more closely together at twe extremes, achieving the
required contrast on screen. Today, SAP sets as the default theme Tradeshow, and
we recommend using this as the template in most cases.

17.4.5 Integration into Web AS

As we said earlier, the biggest constraint on the design for ALFS was that the new
theme must be able to survive an upgrade. The first approach that was taken was
to update all CSS and GlF files, and store them in the MIME Repository. However,
this takes a very long til{ne to generate, and had the side effect that ALFS had to
patch resources that might not even be needed. The bigger problem was that it
had no hooks to update the MIME Repository after a new service pack was

applied.

The route that the BSP development team ended up taking was to write a new
HTTP handler. This handler will intercept all requests to MIME objects. Once it
detects that a customized object is required, the handler will load the MIME
object, patch it, and then send it out to the browser. Typically, the time it takes to
load a MIME object far exceeds the time required to quickly patch the colors in

memory.

As a last step, the MIMEs are cached for seven days in both the server and
browser caches. This works because the BSP runtime was changed in later service
packs to load all MIMEs with a version number. Once a new service pack is
installed; the version number changes and the MIMEs will be loaded anew. With
the caching, the performance of this patch on-the-fly solution is blazing fast.

When using ALFS and this HTTP handler on lower service-pack levels, it is recom-
mended to reduce the cache time back to one hour. This might negatively impact

Customization

overall performance. Only with Web AS 6.20 SP54 and 6.40 SP13 will the caching
automatically be updated to seven days.

The first problem the BSP development team had was where to store the new
color information required. Initial approaches always placed this basic color data
in the database. However with the browser caching seven days, once a color was
changed the browser would not know, nor would it request, the update files until
at the end of the seven days. After some deliberation, the BSP development team,
taking into account that five colors is only 30 bytes, decided to add this informa-
tion directly into the URL,

For example, for the Bisque theme shown in Figure 17.3, the theme root was set
to:

/sap/public/be/ur/design2002/ themes/
“’alfleOOO202FFE4C43B2DIB7D674EDAA5 20565656

Here, ALFS has encoded inside the URL the template to use (one byte), the font
family to use (one byte with a lookup table) and then the 30 bytes for the five col-
ors.

The big win in this approach was that any minor change in the theme resulted in
a change of the generated URL. This effectively implied new objects that were not
already in the cache. Thus, the complete theme again is loaded on the fly.

The other benefit was that it was now possible to have hundreds of themes active
in parallel, without writing them into the MIME Repository. This was especially
important when testing to find the right color combination. All the different tests
with minor color changes have different URLs, thus keeping the cache content
consistent for each test run and allowing you to quickly compare the different
themes.

However, this solution does add about 50 bytes per roundtrip to the complete
rendered overhead. The BSP development team did experiment with using a
base64 encoding on the color values to reduce the overhead by about 20 bytes,
but it was not worth the effort.

Looking at this solution in slightly more detail, we see that DESIGN2003 MIME
resources are loaded via the path /sap/public/bc/ur/design2002/themes/
sap_tradeshow/. ... On this path there is already one HTTP handler installed.
What was done was to write a new HTTP handler that is chained into this path.
The new handler is called first. It looks at the incoming URL to search for its sig-
nature ~alfs~. If the signature is found, the correct MIME is loaded, patched
(with the color information from the URL), and the response is written (with
caching). All other systems requesting the same resource will be served from the

ALFS—ABAP Look-and-Feel Service

403

404

ICM cache, thus making the patch work a one-off process. Should the URL not
contain the correct signature, the handler will just signal that it did not handle the
incoming HTTP request, and the usual MIME repository handler will then be
scheduled.

17.4.6 The Source Code: AMaking It Work

By now, you should be really excited about ALFS and ready to digin and try it out.
ALFS is officially shipped with Web AS 6.20 SP54, 6.40 5P13, and 7.00 SPO3.

However, if you are not at those service-package levels yet, you are not out of
luck. 0SS Note 850851, "ALFS: ABAP (Quick and Dirty) Look and Feel Service,”
has the complete source code. A ZIP file with the source code is attached to the
note. This can be manually installed on any Web AS system.

No Note assisted corrections are provided for this solution, so manual application

of the code will be required.

To instalt the code, create a new class and add the interface IF_HTTP_EXTENSION.
Paste the following code into the HANDLE_REQUEST method:

METHOD if_http_extension~handle_request.
TRY.

server->transactional = if_http_server=>co_enabled.

if_http_extension~flow_rc =
if_http_extension=>co_flow_ok_others mand.

IF server->request->get_header_field(
if_http_header fields_sap=>path_info) ¢S '~alfg~'.
1cl_alfs=>handle_request(server).
if_http_extension~flow_rc =

if http_extension=>co_flow_ok.
ENDIF.
CATCH cx_root.
ENDTRY.
ENDMETHOD.

All that this code does is quickly check for the ALFS signature. Once it is found, all
further processing is done in local classes. Observe the setting of the flow_rc
variable to signal whether the HTTP request has been handled or not.

In the next step, edit both the definition and implementation sections of this
class. Paste the complete source from the OSS note into the corresponding sec-
tions. Save and activate the class. Keep in mind that the supplied code is slightly
different between Web AS 6.20 and 6.40.

Customization

As the final step, start transaction SICF. Find the node /sap/public/be/ur and
edit it. Add the new handler class to the list of handler classes,

aP,:,._l.:‘;,‘:;E_AIEDCreateIChange 3 Service
b @ option R]
~ & public py ICE Pathi fdefauit_hostfsap/public/be/
v @b Bal ICFObjert |ur Service (Active)

Icons I pescription
icons_rtl RT]
D @its In
ur ur|
b wehdynpr Wi
b & workflow B
> @hsp B
icf_check e -
b @ icf_nfo 1cH Handler hjt (in execution arder):
@ icrnan ER| 5 [
®info Sy ZCL_HTTP_EXT_ALFS
!'IjYSSDCnﬂ Se CL_HTTP_EXT WEEDAY FUBLIC

in [EN English l‘aﬂ
Unified Rendering

R

Figure 17.5 Editing the Service Node to Add the New Handler Class

If you are manually applying this change to a Web AS 6.20, the ICF node is deac-
tivated after the change and must be activated again.

17.4.7 ALFS Theme Editor in Detail

Now that you have ALFS installed in your system, you are ready to start using it.
The editor can be started with the URL:

/sap/public/be/ur/design2002/themes/~alfs~editor

Now you just decide which template theme to start from, pick one font, and set
the required five colors. Press the Preview button to see the new theme in action.

The most important output is the theme root that is displayed. This string can
later be integrated in a number of ways into one BSP application.

The simplest way, at least for testing, is to use the sap-themeRoot URL parame-
ter. It is very important, though, to note that the string must be URL-encoded (*/"
— "%2f").

http://<host>:{port>/sap/be/bsp/sap/it05/entrypoint. . htm?sap-
themeRoot=%2fsap%2fpublic%2fbe%2fur%2fdesign2002%2fthemes%2f
~alfs~1000202FFE4C4A3B2D1B7D674EDAA520565656

The alternative technique would be to set the theme root directly on the
<htmlb:content> tag. This has the benefit that it is always formatted correctly as
far as URL encoding is concerned and does not require external configuration
data, which is more difficult to manage.

ALFS—ABAP Look-and-Feel Service

405

406

<htmlb:content design="DESICNZ003"
themeRoot="/sap/public/bc/ur/design2002/themes/~alfs
~1000202FFE4C43B2D1B7D674EDAAS20565656™>

17.5 Configure a Theme Root

All three approaches for altering the theme of a BSP application require changing
the theme-root attribute. We have seen that you can alter the theme root either
through the sap-themeRoot URL parameter or as an attribute of the element
<htmlb:content>. Both of these methods require applying changes of some sort
to each BSP application that you wish to have the new theme. This is less than
optimal if you want to implement your new theme across many BSP applications.

In Web AS 6.20 SP50 and 6.40 SP12, SAP delivers a solution that attempts to
solve this problem. They have created a configuration table called BSPTHEMEROOT.
If no theme root is supplied by the URL parameter or in the <htmlb:content>
element, the BSP runtime will check this configuration table before applying the
standard theme.

Since there is no standard table maintenance for BSPTHEMERQOT delivered, you
will have to use transaction SE16 to maintain it or create your own maintenance

view,

The following are the fields in BSPTHEMEROOT and the effects that they have on

processing.

» SORT_KEY: In this field you must supply an unique key. Entries are processed in
order by sorting on this field.

» URL: This is a string that will be matched against the URL to determine what
theme to use. You can wildcard this match with the character *. Through the
use of aliases that can be setup in transaction SICF, it is possible to have more
than one theme for the same application. The matching process is always case
insensitve.

» THEMEROOT: The new theme to use. You can supply one of the SAP predefined
themes by name; for example sap_tradeshow. You can also specify a URL to
the themeRoot on your local Web AS or on a remote one.

17.6 Theme Root White List

Regardless of the method used to set the theme root, the fact that the theme root
supports remote URLs poses a potential security risk. Imagine if someone was
able to supply a bogus theme root to your application. This would not be very dif-
ficult to accomplish especially considering that the theme root can be set via a

Customization

URL parameter. In this situation a malicious theme root URL on a remote server
could be designed to open your application to a Cross Sjte Scripting attack.

To protect their customers, SAP has developed a white |ist solution in the HTTP
framework as of Web AS 6.20 SP54, 6.40 SP14 and 7.00 5P3. This white list gives
the customer the capability to create patterns that will be checked against exter-
nal URLs before been used in generated HTML code.

Similar to the BSPTHEMEROOT table, the white list is delivered as a configuration
table, HTTP_WHITELIST, which has no table maintenance. 50, once again, you
can either use SE16 to maintain it or create your own maintenance view.

SAP delivers the white-list table empty. If there are no entries in the white- list
table, all checking is disabled. Therefore, it would be advisable to at least setup an
entry that checks that the request is coming from any server within your corpo-
rate domain.

For the purpose of the processing of the white list, we will break a typical URL
request into the following parts:

protocol://host.domain.extension:port/url

The following are the fields in ETTP_WHITELIST and the effects that they have on
processing.

» ENTRY_TYPE: This field lets you identify what type of URL matching you want
to check against. For instance you might mark an entry as BSP Theme Match-
ing.

» HOST: Value to be checked against the host+domain+extension portion of the
URL as described above. If this entry is left blank then no check is performed.
The entry can be wildcarded with the * character.

» PROTOCOL: Protocol, generally HTTP or HTTPS, to be verified. Leave this field
empty if you do not want to check against the protocol.

» PORT: Port number in digits only that you want to check. Once again simply
leave this field blank if you do not want to check against the port. Keep in mind
that even if a port is not specified in a URL, it still has one. For HTTP the stan-
dard defined port is 80, for HTTPS it is 443.

» URL: This is the check against the remainder of the entire URL specification
after the protocol+host+domain+extension+port. The wildcard * is accepted
here as well.

Itis important to distinguish between leaving an entry blank and using the wild-
card. In the case of protocol if you left the entry blank, all protocols would pass
the check. Therefore the protocol might be HTTP, HTTPS, or FILE. That last proto-

Theme Root White List

407

408

cal in the list might be a bit suspicious. Therefore in this case, to be safe it would
be better to use the wildcard with an entry HTTP*. That way we allow both HTTP
and HTTPS.

17.7 Error Pages

So far, all of our customization options are centered on changing the look and feel
of BSP applications via the use of themes. There are two other types of BSP pages
that have special opportunities for customization. The first of these two types is
BSP Error Pages.

17.74 Historical BSP Error Pages

SAP introduced the concept of BSP error pages so that, inside each application,
you could designate one or more pages or views to act as error pages. These pages
were marked with a special icon in the Workbench object viewer. On the rest of
your pages or views, you could then designate which error page would be respon-
sible for it. This relationship can be seen in Figure 17.6

e S T DT .

Page book_old_error htm 3

- Tavour Y Pverirander - Pags Attboted &

| Error Handling i
1s Errar Page i
Al assigned Error Page |

B hook_oid_errarhitm -
' od_snor_crestarhtm

B haok_old_error_creator.htm
| Caydun)y Evant Fander

- s

= Eur Handling
4 Ols Error Page
4 assigned Error Page

|pook_old_srror htm

Figure 17.6 Classic Error Pages

The BSP runtime places a TRY/CATCH check around every call to a page, view or
controller. If an exception occurs within the processing of the inner object, the
BSP runtime will catch it and then pass control to the configured error page.

The main problem with this approach is that the error page itself is another BSP
page. Therefore, this error page has been started within the error environment of
the original page. The error page has no knowledge of what may or may not
already have been written out by the original page into the HTTP response object.

Also, the BSP element stack could be in a questionable state. If the original page
_has already created an <htmlb:content> element, the error page can not create

Customization

another element because you can only have one instance on the stack. On the
other hand, the original page may have produced an error before reaching or
while processing the <htmlb:content> element. Now the error page is respon-
sible for creating an <htmlb:content? element itself. In the worst-case situation,
the error page itself might produce an error while processing the output from the
original error.

Because of these complexities, SAP has discontinued support for the BSP error
page as of Web AS 6.20 SP48 and 6.40 SP11. As of these releases, any configura-
tion for the error-page options will simply be ignored by the BSP runtime.

17.7-2 Error Pages—New Approach

Although SAP has stopped support for the old BSP error pages solution, the com-
pany has not left customers without a method for creating custom error pages. As
of the same support package levels that disable the old approach, SAP also deliv-
ers a new method for producing custom error pages.

Now when an exception occurs, control exits the BSP framework completely,
allowing the exception to pass all the way up to the ICF (Internet Communication
Framework). Inside the ICF there is the BSP class that integrates into ICF, CL._
HTTP_EXT BSF, which is now responsible for catching exceptions from BSP appli-
cations and producing a generic error page. The rendering routine in this class that
is mostly likely used to produce this generic error page is REPORT_ERROR_HTML.

In order to test this new exception-handling techniique, we will create a BSP page
that purposely has a runtime error. We will simply use the programmer's worst
enemy—divide by zero!

<htmlb:content design="design2003" >
<htmlb:page title=" " >
<htmlb:form
<% data: results type i.
results =1/ 0. %

{/htmlb:form>
{/htmlb:page>
{/htmlb:content’

The amount and type of information on this generic error page is quite impres-
sive. It contains most all the information anyone could want to begin diagnosing
a problem. SAP understands that many customers are going to want to customize
this error page, so they deliver a table where you can configure an alternative
class and method to be called in the error condition.

Error Pages

409

410

Business Server Page (BSP) error

What happened?

Caliing the BSP page was terminated due ko an error,

| SAP Note
= The following error text was processed in the system: .
An exception with the type C%_5¥_ZERODIVIDE ocevrred, but was neither handled locally, nor declared in a RAISING dause

|
i
[SE—

‘Exception Class < . -

"Error Name

:Program i

iInclude

"ABAP Class
:Analyze

i

490 ' o

}Line

ELong text . { au tried to divide by zero during the operation /"

Errar bype: Exception
Your SAP Business Server Pages Team

Figure 17.7 Generic Error Page Produced by REPORT_ERROR_HTML

This way each customer can create their own REPORT_ERROR method. The only
requirement is that the signature (exception type ref to cx root and ser-
ver type ref to if http_server) of the customer method matches that of
REPORT_ERROR from CL_HTTP EXT_BSP. Also, the method must be defined as
STATIC and PUBLIC.

The configuration table, BSPERRHANDLER, is maintained in transaction SE16. Dur-
ing maintenance, we can use wildcards (*) in the URL to set custom error handlers
for entire sets of BSP applications. Creating aliases in transaction SICF even allows
us to have multiple error pages for the same application.

Figure 17.8 shows the entry for setting up a custom error handler for a single BSP

application.

Table BSPERRHANDLER Insert 3
Res;aL| o i it et H” i V e ‘
MBHOT 088 E
SCRT KEY boor H
URL */YES_TESTL/*

ERR CLASS ¥CL_B5P_EXCEPTIONS
ERR METHOD _ [REFORT_ERROR_HTHL |

Figure 17.8 BSPERRHANDLER Table Maintenance

Customization

In Figure 179, we see the results from a sample handler class, CL_BSP_
ERRHANDLER_SAMPLE, which SAP delivers. It creates an error page with a very dif-
ferent look and feel than the standard one.

Error 500: Internal Server Error

T

il An exception with the typs Cx_SY_2ERODIVIDE occurred, but was neither handled locally, nor declared in a
il RAISING clause

1f you need Narther help, contact our Webmaster

Figure 177.9 CL_BSP_ERRHANDLER_SAMPLE Output

You could copy the sample class and use it as your starting point. However, the
generic output from CL_HTTP_EXT_BSP actually has a lot more detail and is
already nicely formatted. If all you want to do is add some company specific con-
tact information, you might consider copying the REPORT_ERROR_HTML method
from this class as your starting point instead.

‘Long text _ L

B) *I You tried to divide by zero during the:;

ation 'l F

Error bype: Exception
Your SAP Business Server Pages Team
If you feel vou need additional suppart For this prablem, please call 001-800-555-5555

Figure 1740 Slightly Modified Output from the CL_HTTP_EXT_BSP Class

Keep in mind that as you implement the coding of these error pages that you are
not inside the BSP framework. That means that you cannot rely on the BSP Exten-
sions. You have to build your own style sheets and raw HTML directly into the
response object. This is just one more reason why you might want to start with
CL_HTTP_EXT_BSP.

To achieve our modification of adding the support phone number in Figure 17.10,
we only had to add the following to the coding of our error method.

concatenate “<tr>’ &
“lrd>t &
“<{p class="note">" "#EC NOTEXT
'Business Server Page (BSP) Fehler'(011)
" "’

Error Pages

a1

412

strexception
Kp> &
“<p>* "iEC NOTEXT
"Ihr SAP Business Server Pages Team'(012)
prt &
“py
'If you feel you need additional support _
for thig problem, please call 001-800-555-5555"'(c01)
K/pd>t &
ed> &
>t &
“{/table>” &
“<{/body>" &
“</html> "#EC NOTEXT
into html.
gerver->response-yappend_cdata(html).

17.8 Logon Application

The other special type of page that can be customized is on the opposite end of
the spectrum from error pages. This is the use of a web based logon page, instead
of the default browser popup for name and password. Such a web based logon
page enables supporting of additional features such as a password change
sequence, and also enables the support of displaying more information (from
SMO2, typically maintenance information, etc).

Starting in Web AS 6.40, SAP delivers a new, highly customizable logon page. You
will find this referred to in the documentation as the System Logon. This should
not be confused with the 6.20 BSP application SYSTEM and its Logon.htm page.
The customization of this new logon page begins within transaction SICF.

In 6.20, BSP applications could choose to use the SYSTEM logon application. The
use of this older logon method should be replaced with the System Logon on
Web AS 6.40 and higher. The new System Logon has significant enhancements
and is not tied to the BSP framework. As an example, both Web Dynpro ABAP
and the integrated ITS use the new System Logon.

If you go into maintenance mode on an individual service and then navigate to
the Error Pages tab, you should see several options for Logon Errors. In Web AS
6.20, you could use the Redirect to URL approach and send the user to a BSP
application called SYSTEM. This approach was nice and somewhat customizable,
but has no where near the functional of the new System Logon approach.

Customization

O Bxplicit Response Time

| Documentation- |

Header %) (55 I

Body: | .

ORedirect to URL Status: D
[|
#'WJo Form Fields CyFatn Flds (Text Form) .),

23 Farmn Fields (Basebd)

@ Systern Logan

Figure 1711 Service Node Maintenance

[n order to use the new functionality, you must choose System Logon option. You
then can hit the Settings button to begin the customization fun.

I@System Logan Confiquration .

Settings Selection 1
Ouse Global Settings .
@ Define Service-Soecific Settings

| Systern Logon Settings /

Selact Display .~ -Defalt - . : &
System 1D Cliant : ‘E g
Client Larguage - =]

Language . L

[Logan Layolft and Procedure
® SAP Implernantatian

Systemn messages
[“lLogon and System Infarmation

Tmpl, NETWEAVER NetWEl|
Actions During Logon 7 SAP Motiv [SAP_STANDARD S4P Stre: 2]

[ICheck for Mulitple Logon
[INo Toggle to HTTPS O User-Spearific :
[C1Do Mot Display Warrings Class]7 o ‘J «
¥l Suppart Accessibifity i

Figure 1712 System Logon Configuration

Figure 1712 demonstrates the many customization options that are possible with
a simple dialog. Right away, you might notice that for each service node you have

Logon Application

413

the ability to reuse a global set of settings or define service-specific settings. With
the use of aliases, you could in theory have a different set of logon screens for the
same application. This is very useful if you need to support separate internal and
external views of an application.

With the many options, you might decide not to display the input of client and
language and instead default to fixed values. This also might be useful in an exter-
nally facing application where the term "client” would be meaningless to your
users.

One option you should note is the No Toggle to HTTPS option. It is advisable to
use HTTPS to encrypt the user name and password. By default, the System Logon
daes not care if your application is started with HTTPS or HTTP. If the logon screen
is configured, it will switch to HTTPS during the redirect. Following the successful
logon, the application will be started with the originally requested protocol.
Therefore it is not advisable to check the option No Toggle to HTTPS.

Now we come to the section where we can adjust the look and feel of the system
logon page. In the Logon Layout and Procedure section of the customization,
you will see that we have the choice of three different templates. To add to this
we also have the choice of one of the standard SAP themes.

Gl
lami:
fuers:

Trasswara

JELES

WES APPLICATION SERVER

Slcedca] [Chatm Paszweed]

SAP NetWeavar®
SAP ®ob Application Sorver
1 m

fuser: -

Tpesswara

Jeranee

Figure 1713 System Logon Templates: Normal, IDES, and NetWeaver

But if you are the type of person who thinks that three templates with five themes
each, along with numerous other configuration options just is not enough cus-
tomization, then you will still be quite happy with the System Logon. The very last
option in the dialog is User-Specific Class. That is right: You have the ability to
create your own logon class inheriting from the SAP class CL_ICF_SYSTEM_
LOGIN. Actually, each of the three templates are all separate classes and available

414 Customization

as starting points: CL_ICF_BASIC_LOGIN, CL_ICF?,IDES_LOGIN, and CL_ICF_
NWO4_LOGIN. SAP also sends along an example customized logon class, CL_I1CF_
EXAMPLEO1_LOGIN.

You will find that the coding in these classes is very similar to the ABAP program-
ming for BSP extension-element handler classes. Using inheritance, you have the
freedom to redefine most any of the rendering methods and either make small
changes or go crazy and create an all-new interface.

In the following example we have redefined the method RENDER. We are going to
replace the copyright section with our own little text. A comment must be made
about the way the coding works in general within the System Logon. The System
Logon application was designed and implemented to work directly against the
Unified Rendering library; thus the use of UR in the class names such as clur_*
and ifur_*.

Although you have to use these classes within a custom System Logon rendering
class, they are not technically released for customer use. This means there is not
any documentation on their use. You will probably notice that their structure is
very close to that of the underlying classes of the HTMLB libraries. Therefore, the
only other concern to deal with is the fact that SAP does not guarantee that it will
not change the interfaces to these classes in the future. However the risk of mas-
sive changes to these classes in the future is very slight and should not necessarily
deter you from creating a custom System Logon rendering class.

lr_gridlayoutcell = clur_d2 facto ry=>gridlayoutcell(

halign = ifur_d2=)cellhalign_left
valign = ifur_d2=>cellvalign_bottom
paddingtop = '10px'

paddingbottom = '10px!'

paddingleft = '15px!').

lr_gridlayoutrow->cells_add(1r_gridlayoutcell).
lr_textview = clur_d2_factory=>textview(

text = 'BSP Book Example System Logon'
tooltip = 'BSP Book Example System Logon'
design = ifurfﬁd2=>textviewdesign_headerl

wrapping = abap_false).
lr_gridlayoutcell->content = 1r textview.

These changes produce the new logon screen seen in Figure 17.14.

Logon Application

415

416

SAP NetWeaver

SAP Web Appiication Server.

| cliert * 0o %
Jusers * L
[Password+]

j Language

[Accessihilty

BSP Book Example System Logon

Figure 1714 Customized System Logon Class

Customization

18 Skilled in the Art

Until now, we have been studying a great deal of foundation technol-
ogy. Now it is time to learn how we can put this technology to good
use in the form of some real-life BSP example applications.

Now that you have spent some time learning the advanced technologies within
BSP, such as Model View Controller and Pattern Engines, you will begin to see
how you can apply these technologies to meet unique and difficult programming
tasks.

In this chapter, we will challenge ourselves to think outside of the box and begin to
apply many of the technologies and techniques introduced in previous chapters.

18.1 Field History

In Section 9.6, we discussed the fact that the implementation of <htmlb:form>
combined with the dynamic nature of element ids causes the browser's field his-
tory or auto-complete functionality to be disabled in BSP.

Although the technical reasons this functionality is missing make perfectly good
sense, that does not change the fact that users really miss it. The question
becomes: Why not create our own server side field history?

We have a Ul element that would fit nicely. The <{phtmlb:comboBox> has an
attribute called behavior. If this attribute is set to FREETEXT, you essentially get
an input field that allows free-text input. But you also get a drop-down list box
attached to this input field. We can use the drop-down list box to store the field
history. Users can then browse back through the last 20 or so entries they have
made on this field using the drop-down list box and selectively reuse one of the
old values.

This means that when a user manually types in a new value, we will need to trap
that value and store it somewhere, as well as update that value into the history
drop-down list box.

18.14 Working with <phtmlb:comboBox>

Before jumping into the coding solution for this example, it is important to note
a small problem with the {phtmlb:comboBox> when using behavior = FREE-
TEXT and Model View Binding. Apparently, the raw HTML generated by the
{phtmlb:comboBox> in FREETEXT mode creates two separate elements. By
default, model-binding logic can only restore values from one HTML form field.

Skilled in the Art 447

o

| Meterial Dog. | [590000146720050003 I~ :

| Storsce unt | 500001467200500 :

— 500000145720050002 3

M 5000001 46720050001 []
test input

o
e {1234
m 500000123120040001

The table does not! 45456448 &
———| 8688 :

Figure 181 Custom Field History Using a <phtmlb:comboBox>

One quick call to the friendly SAP BSP support desk, and we have a simple solu-
tion: You just need to implement a small bit of JavaScript that will sync the values
between these two elements before input. This script does interact with the
underlying rendered HTML and therefore might be broken by a future support
package. This should be considered a possible sample solution to the problem
that might require some adjustment based upon your particular support package

level.

In the following example, please note that the element ids are hard-coded. They
correspond to the ¢phtmlb:comboBox> |D of DDLB. Also you must take into
account the controller id, which is s2.

{phtmlb:comboBox id = "DDLB"
selection = "//model/matdoc_sel .material doc"
table = //model/matdoc_hist"
behavior = "FREETEXT"
onSelect = "show _DDLB"
onClientSelect = "getMyNewKey ()"
nameOfKeyColumn = "key"
nameOfvalueColumn = "value"
width = 150" />

(seript defer language="JavaScript">
function setMyNewKey () (
var sList=sapUrMapi TtemListBox_ getList(
"g2 DDLB-1b",document);
var sListArray=sList.5plit("|I");
var sListTable=new Object;
for(var i=0;i<sListArray.lenght;it+){
var sListItem=sListArrayl[i).split("]|"):
if (typeof sListItem[1]!="undefined")
sListTable[sListItem[l]}=sListItem[O];

|
!

Skilled in the Art

var value=sapUrMapi_ComboBox_getSelectedValue("s2 DDLB");

document.getElementById('s2 DDLBKey').value=valte;

for(var key in sListTable){

if(value==sListTablel[key]){
var o=sapUrMapi_ComboBox_getObject ("s2_DDLB");
o.txt.setAttribute("k", key):
o.txt.setAttribute("ks", key);
document.getElementById('s2 DDLBKey').value=
key;break;

)

J

{/gscript>

18.1.2 Processing the Field History

As you can see from the <{phtmlb:comboBox> code sample in the previous sec-
tion, we are going to have an internal table in our model class to house the history
values. This table, matdoc_hist, just needs to be defined as the typical drop-
down list box key/value pair. You might consider using the table type SHSVALTAB
or TIHTTPNVP for its definition.

In order to keep the data in this history table persistent, we will create a database
table. This table will be designed to be generic enough to hold input history for
almost any type of field. We want to store input history specific to a user and a
particular field. We also want to store the timestamp for the last time that value
was used. This gives us something to use when determining which value should
come off the list once it is full. It also allows us to sort our history according to
most recently used values.

ZES_BSP_FLDHST |Active

[Field input History for BSP Input Fields |

Transp. Table
Short Text

Enitry haipicheck Y CrancyJauantity Fieids 3

7 Atrbutes Delvery and Manterance i

it E"EEIDI @@Ej@ ‘,ﬁl Srch Help I Uredeﬁned Tyre | 1/5 ;
]Field {Ke‘yllniti“ Data slement Data T [Length [Decim”]short Taxt l
—il || & lsomanoT CLNT 3 0R/3 System, Client Humber from Logon :
[DHAME Fi ¥ srumam CHAR 12] 0554P System, User Logon Name
FIELD P! @ Freionas CHAR 30 0Field Name :
[TSTAME (M ¥ TDEsTANe " bEc 15] ojuTc Time Stamp in Short Farm (YYYYMMDth:
valle [0 O sHvawee b cHAR | 132 oField contents, min,fmax, value ;

Figure 18.2 Field Input History Database Table Definition

Field History

419

Now we need a generic routine that will sync the values between this database
table and our internal table for a given field. For easy reusability, we will create
this as a static method of a utility class.

This method will have two importing and cne changing parameters. The changing
parameter C_HIST is for the history table itself. It is defined as SHSVALTAB. The
first importing parameter is NEW_VALUE type CSEQUENCE. This is where the new
input value is passed in. Declaring this parameter as CSEQUENCE gives us the free-
dom to supply this value via any text-type field, character, or string. The final
importing parameter is FIELD. This is how we specify the field name under which
we want to store this history. By using a consistent fieldname here, we can share
input help across multiple input fields in the user interface.

METHOD update_bsp_field_hist.

NEW_VALUE TYPE CSEQUENCE
*Importing FIELD TYPE FIELDNAME
*Changing I_HIST TYPE SHSVALTAB
CHECK new_value IS NOT INITIAL.

*Importing
Field Name

fn this first section of code, we will remove the new value from the history table
if it is already in there. This allows us to re-insert it later with a new timestamp.
This way it moves to the top of the stack.

READ TABLE c_hist TRANSPORTING NO FIELDS
WITH KEY key = new_value.
IF sy-subrec = 0.
DATA: 1_value TYPE shvalue_d.
1 _value = new_value.
DELETE FROM zes bsp fldhst
WHERE uname = sy-uname
AND field = field
AND value = 1_value.
ENDIF.

The next section has the logic to pop the oldest entry off the stack if we have
exceeded our maximum history size of 20 entries.

DATA: icount TYPE i.
SELECT COUNT(*) FROM zes_bsp_fldhst INTO icount
WHERE uname = sy-uname
AND field = field.
IF icount 2= 20.
DATA: old_tstamp TYPE timestamp.

Skilled in the Art

SELECT MIN(tstamp) FROM zes_bsp_fldhst INTO old_tstamp
WHERE uname = sy-uname
AND field = field.
DELETE FROM zes_bsp_fldhst
WHERE uname = sy-uname
AND field = field
AND tstamp = old_tstamp.
ENDIF.

This final section of code will record the new value into the history database table.
It will then rebuild the history internal table.

DATA: inew TYPE zes_bsp fldhst.
inew-uname = gy-uname.
inew-field = field.
inew-value = new_value.
GET TIME STAMP FIELD inew-tstamp.
INSERT zes_bsp_fldhst FROM inew.
CLEAR i_hist.
DATA: ihist TYPE TABLE OF zes_bsp_fldhst.
FIELD-SYMBOLS: <waﬁstring> LIKE LINE OF ihist,
{wa_hist> LIKE LINE OF i_hist.
SELECT * FROM zes_bsp fldhst INTO table ihist
WHERE uname = sy-uname
AND field = field
ORDER BY tstamp DESCENDING.
LOOP AT ihist ASSIGNING <wa_string>.
APPEND INITIAL LINE TO i_hist ASSIGNING {wa_hist>.
{wa_hist>-key
{wa_hist>-value = {wa_string>-value.
ENDLOOP.
ENDMETHOD .

= {wa_string>-value.

All that is left now is to put the pieces together and make sure that we process the
field history on an input event for our {phtmlb:comboBox>. For this, we will use
the DO_HANDLE_DATA method of our controller class.

We will directly query the <phtmlb:comboBox> and use the current value to
update the field history.

DATA: combobox TYPE REF TO cl_phtmlb_combobox.
combobox ?= cl_htmlb_manager=>get_data(
request = request

Field History

I

name 'phtmlb:comboBox'
id 's2_DDLB').
IF combobox IS NOT INITIAL.
CALL METHOD ycl_abap_utilities=>update_bsp_field hist
EXPORTING new value = combobox->value
field 'MATDOC'
CHANGING i_hist = model->matdoc_hist.
ENDIF.

il

18.2 Server-Side Printing

it is generally accepted that printing from the browsers ieaves something to be
desired. Printing usually brings about alignment problems, such as text running
off the side of the page, or loss of background graphics. Consider also that a good
user interface often hides many elements or only allows for a small number of
records in a table to be displayed at a time, thereby making a good printout from

the browser nearly impossible.

There are many possible solutions. You might decide to open a separate page with
dedicated rendering better suited to a print layout. You could also consider third-
party solutions that will re-render the output to PDF.

But why not instead leverage the server side print infrastructure that is already in
place in any ABAP based SAP solution? The purpase of this example was to come
up with a reusable approach that would allow you to take an internal table that
was being used as the source of an <htmlb:tableView> and output it using ALV
Grid. That way, we could take advantage of all the rich printing and formatting
that ABAP programmers had come to rely on in classical dynpro development.

This example is implemented as a static class method that will process an internal
table and, using the ALV Grid List output mode, force the results to the print
spooler. We have used the new Web AS 6.40 ALV object model. However, since
the ALV classes are mostly wrappers around the ALV control or reuse function
modules, it should be easy to back port this solution to Web AS 6.20.

Naturally, though, we did not want just to output the entire internal table. You
often have extra fields used in internal processing that you do not display in the
output. We also may have changed the column headers. To support these situa-
tions, the static method will also apply a table-view iterator or column-definition
table to the data before processing it in the ALV Grid.

As if this was not enough, you probably will soon realize that you need a reusable
printer dialog. You need a way for users to choose which printer they want and
set other printer settings such as Print Immediately or Delete after Output. Luck-

Skilled in the Art

ily it is not too difficult to take what we know about custorn BSP extensions
(Chapter 11) and dialog windows (Chapter 14) and build a new BSP extension
element that will provide the Ul elements for querying the printer,
copies, etc. during server-side printing.

number of

18.2.1 PRINT Method Interface

We will start with the coding for the static method that performs the output. First
we need to have a look at the interface of this method.

CLASS-METHODS print

IMPORTING
itab TYPE REF TO data
iterator TYPE REF TO
if_htmlb_tableview iterator OPTIONAL
col_def TYPE tableviewcontroltab OPTIONAL
print_options TYPE sfpprip
messages TYPE REF TO cl_bsp_messages.

We have flve importing parameters. The first is a reference to the data table we
want to process. By declaring this as a TYPE REF TO DATA, we can receive and
process an internal table of any flat structure. Next, we have two optional param-
eters: the iterator and the column-definition table. Neither are critical to the
overall process, but if we want control over what columns are output or what col-
umn headers are used we will want to use one of them. The column definitions
table has priority over the iterator.

Next, we have a structure in which we will pass in our printer parameters. This
example used type SFPPRIP because that is what the printer dialog expects. The

printer dialog was originally designed for the output of Adobe Print Forms, so this
is the structure for Adobe Formes.

If you are not on Web AS 6.40, you might not have this structure. Most of the
fields are the same as the SmartForms or List processing options structure, but the
names might be different. Later, you will see that we map these values to the list
options. If you are not on 6.40, or if you are not going to use the example printer
dialog, you might want to go ahead and defining a different importing structure.

Finally, we have a reference to the messages object so that any processing errors
can be passed back out to the calling routine. Using the CL._BSP_MESSAGES object
is not required; you could just as easily pass an error string in and out of the
method.

Server-Side Printing 423

424

18.2.2 PRINT Method Coding

We start our processing by getting a usable handle to our internal table reference.
You then can see some variables we will use later: a reference to the ALV Grid
class and the variables for list-print output. If you did not want to pass in
SFPPRIP, you might want to just fill a structure of type PRI_PARAMS and pass it in
instead.

METHOD print.
FIELD-SYMBOLS: <{tab> TYPE table.
ASSIGN itab->* TO <tab>.
DATA: table TYPE REF TC cl_salv table.
DATA: print_parameters TYPE pri_params,
valid flag(l) TYPE c.

Next, we need to map the input print options structure into the one needed for
list processing. You riever want to attempt to fill PRI_PARAMS yourself. You should
always use the function module GET_PRINT_PARAMETERS.

CA4LL FUNCTION 'GET_PRINT_PARAMETERS'

IMPORTING out_parameters = print_parameters

Even though we are inside BSP processing, we can still force list output directly to
the print spool with the printer options our user selected. To do this, we just need
a call to NEW-PAGE.

NEW-PAGE PRINT ON PARAMETERS primt_parameters
NO DIALOG.

Next, we will create our instance of ALY and get a pointer to the columns object.
You will see that while the processing is very different from that used by the pre-
6.40 ALV Grid, it has been streamlined.

DATA: salv_msg TYPE REF TO cx_salv_msg.
DATA: error_string TYPE string.
TRY.
cl_salv_table=>factory(
EXPORTING list displey = abap_true
TMPORTING r_salv_table = teble
CHANGING t_table = {tab>).
CATCH cx_salv_msg INTO salv_msg.
messages-radd_message_from_excepticn(
condition = 'print'

Skilled in the Art

exception = salv_msg).
RETURN.
ENDTRY.
DATA: columns TYPE REF TC cl salv_columrs_table
columns = table->get_columns().

columns >set_optimize(abap_true).

Ifthe caller of this method has supplied an iterator or table--column definition, we
need to apply it here by altering the columns object of ALV. For pre-6.40 ’this
would be the same as generating a field catalog and manipulating it.

DATA: 1 _col def TYPE tableviewcontroltah.
DATA: iterator_error TYPE REF TC
cx‘sy_dyn_call_illegal_method.

IF col_def IS INITIAL AND iterator IS NOT INITLAL.
DATA: p_overwrites TYPE tableviewoverwritetal,
TRY.

iterator*>get_column‘definitions(
EXPORTING p_tableview_id = "itab!
CHANGING p_column_definitions = 1 _col def

p_overwrites = p_overwrites).

yn_call _illegal method INTO iterator _error.
messages->add_message‘from‘exception(

CATCH cx sy_d

cordition = 'print!
exceptior = iterator error).
RETURN.
ENDTRY.

ELSEIF col_def IS NOT INITIAL.
1_col def = col def.
ENDIF.
IF 1_col _def IS NOT INITIAL.
DATA: scrtext_1 TYPE sertext .,
scrtext_m TYPE scrtext m,
scrtext s TYPE scrtext e,
tooltip TYPE lve tip.
DATA: col TY?E salv_t column_ref.
FIELD-SYMBOLS: <wa_col> LIKF LINE OF col,
{wa_col_def> LIKE LINE OF 1_col_def.
col = columns->get(). ’
LOOP AT col ASSIGNING <wa _cold.
READ TABLE 1_col_def ASSTGNING {wa_col_defy

Server-Side Printing 425

426

WITH KEY columnname = <{wa_col>-columnname.
IF sy-subrc = 0.
dwa_col>-r_column->set_visible(abap_true).
IF <wa_col_def>-title IS NOT INITIAL.
scrtext_1 = {wa_col def>-title.

{wa_col>-r_column->set_short text(scrtext_s).
ENDIF.
ELSE.
{wa_col>-r_column->set_visible(abap_false).
ENDIF.
ENDLOQOOQOP.
ENDIF.

Finally, we close out the processing by forcing the ALV to produce its output and
then closing the list processing.

table->display().
NEW-PAGE PRINT OFF.

messages-radd_message? (

condition = 'print'
message = 'Print Qutput is complete' (i01)
messagetype = 'I').

ENDMETHOD .

18.2.3 Printer Dialog

The coding supplied here is not so much a complete solution as a starting point.
You have the structure and rendering of the Ul element in order to save time in
case you want to implement something similar. You could just render these ele-
ments in line in an existing application. In that case you could just about use all
the coding as is.

You might want instead to open this dialog in another window. For this, you
might use the modal window using the floating IFrame solution from Section
14.2. This keeps the browser from treating the area as another window, so that
instead it can share the model class that contains the results directly via a stateful
application. For this reason you will find a small block of JavaScript code toward
the end of the element processing.

DATA: javascript_close TYPE string.
CONCATENATE me->id '_Close' INTO javascript_close.
DATA: closedialog TYPE REF TO

Skilled in the Art

ycl_bsp_elmnt_close_dialog.

closedialog 7= ycl bsp_elmnt_close_dialog=>factory(
clientevent = javascript_close).

WHILE m_page_context-relement_process(

element = closedialog) = co_element_continue.
ENDWHILE.
CONCATENATE javascript_close '();' INTO javascript_close.
DATA: button TYPE REF TO cl_htmlb_button.
button ?= cl_htmlb_button=>factory(

id = me->id

id_postfix = '__PrintBtn'

onclientclick = javascript_close

text = 'Print'(p0l)).

Listing 184 Printer Dialog—Close Hook

[OutsitDevice | 56 - KEG GO Feirway ﬂ

I Spool Request E

| tame [| |
|Text [

| suthorizabon |] 1

I Spoot Control

il I Humber of Copies i 3

| Print immediately | tia_of copes

| Delote atter Outod [1
| Hew spool request [I Caver Fage Settings £

| final] [sop coverpace [-DoNatPrint)

J Spcolretertiorpd | _0]Day(s) | Reciplert :ji ‘

| Starage Mate] ~ | Department [

Prirt
{cancel]

Figure 18.3 Printer Dialog User Interface

E;LincerDialog IACtiVe

_Jca J5i_Jryping me_[assaciated o [pescription

Attrbute R D |Ca |Bi
arclode [}‘\@ Ci¥a TreE ElfSFPDUTARE Form Processing: Optians far Archiving =

| jdefsulcParens T CIFh v @jsFeerIp Formpracesswng: Print Parameters
id FIF{C/ 0L wee BRI Element ID

Figure 18.4 Printer Dialog Element Attributes

Server-Side Printing 427

Most likely you can ignore this section of code that hooks the JavaScript function
into the close button, since it is specific to the dialog window processing. Or per-
haps this is where you can put your own logic to close your processing area.

IF _defaultparams IS NOT INITIAL.
CONCATENATE _defaultparams 1.DEST\ INTO binding.
CLEAR text.
ELSE.
text = ycliabap/utilities=>read#field#desc(
defaultparams-dest).
CLEAR binding.
ENDIF.
CLEAR fllabel.
fllabel 7= yclibsp_elmnt_fl_help_lb1:>factory(

id = me->id
id_postfix = '_DestLbl!'
for = 'defaultparams.dest’

text = text
_for = binding).
WHILE m_page context->element_process(element = fllabel)
= co_element_continue.
ENDWHILE.
CLEAR ddlb_values.
SELECT padest pamsg FROM tsp03 INTO TABLE ddlb_values.
LOOP AT ddlb_values ASSIGNING <wa_ddlb>.
CALL FUNCTION 'CONVERSION EXIT_SPDEV_OUTPUT'
EXPORTING input = <wa_ddlb>-key
IMPORTING output = <{wa_ddlb>-key.
CONCATENATE <wa_dd1lb>-key <wa_dd1b>-value
INTO <wa_ddlb>-value SEPARATED BY ~ - °
ENDLCOP.
SORT ddlb_values BY value.
GET REFERENGE OF ddlb_values INTO itab.

CLEAR ddlb.

dd1lb 7= cl_htmlb_dropdownlistbox=>factory(
id = me->1id
id_postfix = '_DestDDLB'
_selection = binding

selection = defaultparams-dest
nameofkeycolumn = 'KEY'
nameofvaluecolumn = 'VALUE'

428 Skilled in the Art

table = itab).
WHILE m page context->element process(element = ddlb)

= co_element_continue.
ENDWHILE.

Listing 18.2 Printer Dialog—Rendering Example

You might also notice that we use the context-help label from Section 14.1. You
probably are beginning to see how these solutions can layer one on top of the
other to provide even more value.

If you do not want to implement this custom extension as well, just adjust the
calls to yel_bsp_elmnt_f1_help 1bl with ¢l htmlb_label. We also have a
routine called ycl_abap utilities=>read_field_desc. We use this routine
in case you did not take advantage of data binding. This static method will look up
the language-dependent descriptions from the data dictionary. It is not terribly
impressive, but it is a nice little space saver.

METHOD read_field desc
*Importing FIELD TYPE ANY
*Returning VALUE(DESC) TYPE SCRTEXT M Medium 1bl
DATA: el _desc TYPE REF TO cl_abap_elemdescr,
isddic TYPE abap_bool,
field_d TYPE dfies.
TRY.
el _desc 7= cl_abap‘typedescr=>describeﬁby_data(field).
isddic = el_desc->is_ddic_type().
CHECK isddic = abap_true.
field_d = el_desc->get_ddic_field().
degsc = field_d-scrtext_m.
CATCH cx_root.
ENDTRY.
ENDMETHOD.

18.3 Select-Options/Parameters

If you are a long-time ABAP programmer but have never done much program-
ming outside this area, you might not realize just what a luxury Select-Options
and Parameters provide.

Without hardly any effort on the programmer's part, they are able to generate
powerful Ul elements for performing data selection. That single element allows
for multiple ranges of input criteria, wild card values, negative and positive selec-
tions, greater than/less than evaluations, etc.

Select-Options/Parameters

429

430

As you might imagine, recreating or adapting this solution to BSP was a bit of a
challenge. The goal was to create a solution that was flexible and easy to integrate
into existing BSP applications, yet still produced ABAP RANGES for back-end data

selection.

While this solution needed to keep back-end compatibility to ABAP RANGES, it
also needed to change the Ul to adapf to the Web environment. We kept many
of the icons used in the SAP GUI. On the other hand, the SAP GUI approach uses
many dialog windows to manipulate the Select-Options. Although dialog win-
dows can technically be used within BSP, they complicate the programming task
considerably. Instead, this solution takes the route of rendering additional fields

inline when needed.

18.3.1 Ul Design

As you can see from Figure 18.5, there are three different display levels to each
Select-Option. The Date Select-Option shows the default fully collapsed ele-
ment. We have the selection options icon—the red, yellow and blue flower—
which expands the display to the second level.

; | 2irine 2 Jto] @
|]:(\Se\ect specified values VJ [Gremer or Equal »= value in fisid LOWY yj]
== I
DO T Ito
] L4 Jto
| = 0l I
e G P —
2 O e | I3
| Flictt pumbes S [oo lto
fode Nl Io
atore G el e 5

Figure 18.5 Select-Options Ul Example

This level, as shown in the Flight Number selection, renders additional fields to
choose positive or negative selection options. These options are sensitive to the
value already placed in the Select-Option. Therefore, if your value contains a
wildcard character, you will see the extra Contains Pattern/Not Contains Pattern

criteria.

The fully expanded level, shown in the field Airline, provides an area to input mul-
tiple ranges. The Ut will always generate five empty input areas. If you fill those
up, you can press on any of the red arrows to generate another set of five empty

Skilled in the Art

inputs. The yellow arrow on the far right side collapses and expands the additional
selections area.

Finally, all elements have a trash-can icon in order to quickly clear out all input
values and criteria.
18.3.2 Solution Structure

In order to study the architecture for this solution, we will begin at the end. We
start by looking at the coding that must be placed in the view in order to house
the Select-Option area.

<bsp:call url = "gelop.do"
comp_id = "SOC" >
{bsp:parameter name = "MODEL"

value = "<{%= model %>" />
{/bsp:call>

You might have expected to see a BSP extension element used here. However we
can see from the Ul that we will need a lot of event handling for the elements
inside the Select-Option area. Rather than put the burden on the calling pro-
gram to even to have to dispatch these events, would it not be better to com-
pletely encapsulate them as well?

Therefore, we take the approach that we studied in Section 13.6. Similar to the
pattern engine that was built in that section, we will place the entire Ul rendering
and event handling within a reusable controller class. An application merely has
to define a controller object and then hook it into this reusable controller class in
order to have access to the 1,000 or so lines of ABAP code that control the U] ren-
dering and event handling.

The controller class is fixed in its coding and interface. It was never intended to be
inherited or redefined; in fact, we have marked it as FINAL to protect it from any
such attempts. However, we still need a flexible way of defining our Selact-
Options. For this we have created a model class that is intentionally designed to
be inheritabie.

We are able to create a generic model class that has all the basic methods neces-
sary for initializing, building and retrieving a set of Select-Options. It is this
generic class that the controller will reference and work with. We then have the
freedom to inherit this model and provide more specific implementations of the
generic methods through redefinition.

The model will have two ways of building the Select-Options. First there is a
method that can be redefined and allows for a completely customized list of

Select-Options/Parameters

431

Select-Options. The other choice is to supply the name of a data-dictionary
structure. The model will then use this structure as the definition of the listing of
Select-Options; pulling details for each field from the data dictionary.

IF sy-subrc NE O.

ENDIF.
R CONCATENATE '//model/values[' tabix '].°
18.3.3 Select-Option Controller Class Attributes R N INTO binding master

Our controller class begins with three public attributes that can be set via the
<bsp:parametery call in our view, These three attributes function as the settings
that will choose the path that the controller will take.

CONCATENATE binding_master 'LOW' INTO binding_string.
CLEAR input.
input 7= ycl_bsp_elmnt_input_help_v2=>factory(

model TYPE REF TO ycl_bsp_m selop_param . id = <{wa_fields>-id
model_class TYPE seoclsname) v id_postfix = '_Inputlow'
dd_structure TYPE tabnamel6 : ,:7 - dataref = {wa_fields>-dataref
We have two options for supplying the model to be used. First the view could —velue = binding string).

WHILE page_context->element process{ element = input)

= if_bsp_element=>co_element_continue.
ENDWHILE.

pass in an already created instance of a model class. This model object needs to be
of our generic Select-Options model type or it needs to inherit from that type.

The other option is to request that the controller class creates the model instance
for you. To do this, you specify the name of the model class in the attribute
MODEL_CLASS. The controller will then place this instance into the attribute
MODEL, The same rules apply in that the model class name specified must be the

Once again, we continue to reuse custom elements that were created earlier, such
as the Help Values element from Section 14.3, providing more and more value
with each layer.

generic Select-Options model or it must inherit from it. I | The only other code section of particular importance within the controller class

comes at the very beginning of the processing in DO_REQUEST. This is the section

: 18.3.4 Select-Option Controller Class Coding that initializes the model object and hooks into the initialization of the Select -
A ' Options.

Once again, all the source code for all solutions can be found on the book CD.
N There is far too much coding in the controlier class to list it all within this text. - IF model IS initial.

T . it of th dingis Ul dering logic like that we h lread IF model class IS INITIAL.
i n cli e already seen
e vast majority of the coding is Ul rendering iogi e tha ave Y model class = 'YCL BSP M _SELOP PARAN' .

many times within this book. We will use certain internal tables from the model : N ENDIF .
class that define the Select-Options and their listings of values to loop through
and generate Ul elements. We will use the technique of dynamic model binding
introduced in Section 13.4. The following is a small excerpt of the Ul coding.

model ?= create_model(model id = 'SO'
class_name = model_class).
model->initialize_selection_screen{).

LOOP AT model->fields ASSIGNING <wa_fields> : IF dd_structure IS NOT INITIAL.
WHERE group = <wa_group>-group.] model->initialize fields_from_ dd{ dd_structure }.
3 tabix = sy-tabix. R ENDIF.
CONDENSE tabix. ‘ ELSE.
LEAR label. IF get_model('SO') IS INITIAL.
CLEAR binding master. set_model(model_id = 'SO' model_instance = model).
ENDIF.

READ TABLE model->values ASSIGNING <wa_values>
WITH KEY id = <wa_fields>-id. ENDIF.

Skilled in the Art
432 illed in the Select-Options/Parameters 433

434

You can see the multiple options within the initialization of our controller. If the
model instance is not supplied, we must create it. The consumer of the controller
might have specified a model class. If not, we will simply use the default one.

Once the model is created, we will call the base method to initialize it,
initialize_selection_screen. If this was an inherited model class, the
initialize selection_screen method may have been redefined to supply a
custom set of Select-Options. On the other hand, perhaps the consumer is
going to supply the definition of the Select-Options via a data dictionary struc-
ture. In that case, they will have passed the name of that structure in through the
attribute DD_STRUCTURE, and we will now process it using the method

initialize_fields from_dd.

The other option is that the caller of this controller already would have created an
instance of the model object. This allows complete control to initialize the model
class with whatever custom methods are necessary. The controller now is only
responsible for making sure the model instance is properly registered to the con-
troller in the MVC framework so that the data binding will work correctly.

18.3.5 Select-Option Model Class Attributes

The heart of the Select-Option definition is really spread across three different
internal tables all exposed as public attributes of the model class.

Structure ZES_BSD_SEL_GROUPS | Active
Short Text BSP Select Options/Parameters Graups

S rancarauantity Reide 21,

‘Entry helpjcheck

[r@"‘@jﬁ—jﬁl PredeAﬁned ;i'\’pe ,

Compong_ IRT. |Co_ {Data Type]Length Decim,__!short Text _
[CHAR 20 0Graup
m] STRING 0 biTitle
rooLTIE | 3 STRING g T)?Quick Info B
‘ wom | [STRING o owith |

Figure 18.6 Select-Options Groups

The first internal table is the listing of groups.'We have the ability to define mul-
tiple groups of Select-Options. Each group will be rendered out into its own

<htmlb:tray».

The next internal table, FIELDS, has the definition of each Select-Option. This
is where you can set the type of Select-Option: drop-down list box, checkbox,

date, basic help, and BAP! help.

Skilled in the Art

Structure [eE5_BS?_sw1L_riELDs | active
Short Text ESP Select Options/Parameter Fields j
. Entry helpjcheck 1-_;itgifency/qu‘aﬁtity"ﬂeléi.éf 3
BT 2] predeficed Type | 1/2
[Component RT .. Cornpone“,lData Ty Len,_,fD Short Text k
[oy O e | 2 ogar —
D) STRING o] oFiel I R
RancE | [pooiEan FHAR | 1] 0Boglean Vanable (=True, —~Faks, Space:
iTEXT O STRING | I “
[DATAREF 0 STRING
DATA_ELEMENT o IsTRING
0D IGATIRY [] BoolEay CHAR | 1
| s oois [J BOOLEAN CHAR 1| bBodlean variable (X=True, -=Fabs, Space:
‘ A5 CHECKBOX Im} LBDDLE%M_}EV}JIAR - | ll Dboalean Varlable (X=True, -=False, Space
lAS_DATE 7 ‘Booreaw ’CHER | lLU Baolean Variable (X=True, -=False, Spaces
’) DISABLED o sTRING B 0Disabiled (Output Only) j
BASIC HELP 13 BEIEAIT “CHAR i 1 0Booiean Varlable (X=True, -;FIe,’Sgpaceg
| |- INCLIDE Clzessse sl =0 | of 0BoP Selection Options/Paramaters Felds -
[BAPT HELE O pooeay fcmar | 1] 0Foclean varable (4-Trus, = Ise, Space
' RICDEST | L) Reopmst cman | 2] ologicsl Destination (Speciied n Function
|| | jomorree 0 lsTRING | 0| 0BOR Objact Type -
OBINAME 0] ; | ol 0BOR Object Marme
e 51 L T i —
| |paran 7‘—ﬁ1—_*j§ﬁm | o 8BAPI Methed Parameter T
hamous =l BTRING | 0| OMax Number of rows B ‘
kYRR | [| STRING | 0] 0iey Fisld in the Retuming data
MORE f l':_] EUULEM JCHAR;J_I D.Eoolealyiable (X=True, -=False, Space!

Figure 18.7 Select-Options Fields

You choose whether this element is rendered as a Select-Option ora Parame-
ter based upon the value of the field RANGE. Finally, the DATAREF field must con-
tain a valid reference to a data-dictionary element. We will use this reference for
data binding and to create the dynamic element within the ABAP RANGE.

The final internal table, VALUES, will contain the Input values for each Select-
Option. This is the internal table that we will actually bind to. Notice, however,
that the LOW and HIGH fields must be defined genericaily, as simple strings.
Because this internal table must be a public attribute in order to bind to it, we
needed to keep its definition static. Later, you will see how we will use custom
Cetter and Setter methods to keep referencing the specific data type as defined in
the internal table FIELDS for our data binding.

Select-Options/Parameters

435

436

Structure
Short Text

ZES_BSP_SEL VALUES . |Actve
BSP Selection OptionsfParameters Valus Ranges .~ - |

EEEE Bl corerrry

Compo, |RT.]Component AData Ty, 1L iD _ |Short Text

D}] STRING | 0 OField 1D i
ISIGH [[] RALDB_SIGH [CHAR 1| "0BIGH field in creation of SELECT OF
0pTION | [] RALDB_OPTI CHAR 2| OORTICM field in structure of SELECE
lLow O STRING | 0} O{From’ value ' 1
HIGH O STRING. | 0] 0To' value :

EXPD | [BOOLEAN CHAR | 1 oBaglean Variable (X=True, —False, :

Figure 18.8 Select-Options Values

18.3.6 Select-Option Model Class Coding

The main method that we will want to consider for filling the Select-Options
definition table FIELDS is INITIALIZE_FIELDS_FROM_DD. This method will pop-
ulate the Select-Options definitions via a data-dictionary structure. However, it
also offers a coding example in case you want to build your own custom Select-

Options.

Our processing begins by getting the definition of the input structure and making
sure that it is a data-dictionary type.

METHOD initialize_fields_from_dd
*ImportingI STRUCTTYPE TARNAME16
CLEAR: fields, groups, values.
DATA: descriptor TYPE REF TO cl_abap_structdescr.
descriptor ?= cl_abap_structdescr=>describe_by_name(
i_struct).
DATA: flddescr TYPE ddfields.
flddescr = descriptor->get_ddic field list().
IF flddescr IS INITIAL. RETURN. ENDIF.
FIELD-SYMBOLS: <wa_def> LIKE LINE OF flddescr,
{wa_field> LIKE LINE OF me->fields,
{wa_group> LIKE LINE OF me->groups.

Next, we have some processing to get the description of the structure to use in
the title and tooltip of the group.

DATA: rel name TYPE string.
DATA: str_desc TYPE string.
DATA: 1.dd071 TYPE ddo071.

Skilled in the Art

rel_name = descriptor->get_relative_name().
SELECT SINGLE ddtext FROM dd02t INTO str_desec
WHERE tabname
AND ddlanguage = sy-langu

AND as4local = 'A'.

= rel_name

IF str_desc IS INITIAL.
str_desc = rel name.
ENDIF.
APPEND INITTAL LINE TO me->groups ASSIGNING <wa _group>.
{wa_group>-group = '1000"'.
{wa_group>-title = str_desc.
CONCATENATE rel name str_desc INTO {wa_group>-tooltip
SEPARATED BY °

{wa_groupy-width = '100%"

We are going to look at each field contained in the structure and create an entry
in Select-Options internal table.

LOOP AT flddescr ASSIGNING <wa_def)
WHERE fieldname NE 'MANDT'.
APPEND INITIAL LINE TO me->fields ASSIGNING <wa_field>.
{wa_field>-group = '1000".
{wa_field>-id = {wa_def)>-fieldname.
{wa_field>-text = Cya_def>-sertext_m.
{wa_field>-data_element = {wa_def>-rollname.
{wa_field>-range = abap_true.
CONCATENATE <wa_def>-tabname {wa_def>-fieldname INTO

{wa_field>-dataref SEPARATED BY '-'.

Depending upon the metadata about the field that was retrieved from the Runt-
ime Type Identification (RTTI), we will decide what kind of Select-Option we
want. If the field is a DATE data type, we will naturally use the date selection. if the
field has simple domain values, we will use the drop-down list box. Otherwise, if
the field has F4 help attached to it we will use the basic help rendering. This will
produce a field with the pop up help selection described in Section 14.3.

IF <wa_def>-inttype = 'D',
{wa_field>-as_date = abap_true.

ELSEIF <wa_def>-valexi = abap_true.
SELECT SINGLE * FROM dd071 INTO 1_ddo71
WHERE domname = <wa_def)-domname.

IF 1_dd071-domvalue_h IS INITIAL.

Select-Options/Parameters

437

438

{wa_field>-as_ddlb = abap_true.
ELSE.
{wa_field>-basic_help = abap_false.
ENDIF. '
ELSEIF {wa_def>-fiavailabl = abap_false.
CLEAR <wa_field>-basic_help.
ELSE.
{wa_field>-basic_help = abap_true.
ENDIF.
ENDLOOP.
ENDMETHOD.

After we have created our Select-Options, the next thing we need to be con-
cerned with is the data binding for their values. We saw earlier how we are using
simple string fields for the LOW and HIGH values of the Select-Options. How-
ever for binding to work correctly, we really need to reflect the true data type of
the underlying field.

By writing our own methods we can control the binding processing and make
sure that the proper conversion exits are being fired. For a detailed discussion on
custom GETTER/SETTERS, please see Section 13.3.

We will look at the custom SETTER method to get an idea of the processing
required. This routine will be fired when data binding brings data in from the
browser. It will be responsible for properly restoring it back into the correspond-
ing ABAP data field.

We begin processing by using the model attribute path to get a grip on the corre-
sponding ABAP data field.

METHOD set_t_values.
ATTRIBUTE_PATH
INDEX
COMPONENT
VALUE(VALUE)

Attribute Path
Table Index
Table Column
Value Assigned

TYPE STRING
TYPE I

TYPE STRING
TYPE STRING

*Importing
*Importing
*Importing
*Importing

DATA: 1 _attr_ref TYPE REF TO data,
1 field_ref TYPE REF TO data.

CALL METHOD if;bsp_model_utilNdisassemblefpath
EXPORTING path = agttribute_path
IMPORTING

FIELD-SYMBOLS: <1_attribute> TYPE ANY.

name = 1_name.

Skilled in the Art

ASSIGN me-> (1l _name) TO <1_attribute).
GET REFERENCE OF <1_attribute> INTO 1 _attr_ref.
1_field_ref = if bsp_model_util~get_attribute_as ref(

attribute_ref = 1_attr_ref
index = index
component = component).

ASSIGN 1_field_ref->* TO <1_comp>.

We next need to split up the attribute path so that we can get the binding field
name we are dealing with. We only need special logic for the binding of the Low
and HIGH fields.

FIELD-SYMBOLS: <o_data> TYPE ANY,
{n_data> TYPE ANY,
{1_comp> TYPE ANY.
junk TYPE string,
rest TYPE string,
t_index(10) TYPE c.
SPLIT attribute_path AT '[' INTO junk rest.
SPLIT rest AT ']' INTO t_index junk.
DATA: field TYPE REF TO data.
DATA: t_string TYPE string.
IF junk CS '.sign' OR junk CS '.option'.
{1_comp?> = value.
RETURN.
ELSE.

DATA:

If we are processing LOW or HIGH fields, we will now dynamically create a field
with the data type matching the underlying data base element for that Select-
Option.

FIELD-SYMBOLS: <wa_values> LIKE LINE OF me->values,
{wa_fields> LIKE LINE OF me->fields.
READ TABLE me->values INDEX t_index
ASSIGNING <wa_values>.
IF sy-subre = 0.
READ TABLE me->fields ASSIGNING <wa_fields>
WITH KEY id = <wa_values>-id.
IF sy-subre = 0.
TRANSLATE <wa_fields>-dataref TO UPPER CASE.
IF <wa_fields>-dataref IS INITIAL.
RETURN.
ENDIF.

Select-Options/Parameters

439

440

TRY.
CREATE DATA field TYPE ({wa fields>-dataref).
CATCH cx_sy_create_data_error.
EXIT.
ENDTRY.
ASSIGN field->* TO <n’data>.
MOVE <1_comp> TO <n_data>.
ENDIF.
ENDIF.

Now that we have a reference to a field with our specific data type, we can use
that to process the input value.

TRY.
if_bsp;model_uti1~convert_from‘string(
data_ref = field
value = value
attribute_path = attribute_path
use_bsp_exceptions = abap_true
no_conversion_exit = 0).
. Exceptions
ENDTRY.

IF <{n_data> IS INITIAL.

CLEAR <1_comp>.
ELSE.

MOVE <n_data> TO <l_comp>.
ENDIF.

The last problem we will want to look at is how to return an ABAP RANGE table
out of the model class. We have two methods for this. The first, GET_GENERIC_
RANGE_TABLE, returns a fixed table of type RSELOPTION. This table type uses
generic CHARACTER 45 fields for the LOW and HIGH values. This method is very
easy to implement and works fine, especially if you need to pass the range back
across an RFC connection.

However, if you want to generate a RANCE that accurately represents the underly-

ing data type, you will need the slightly more complex rendering logic of GET_

SPECIFIC_RANGE TABLE. For this second method, we use functionality of the
Runtime Type Services (RTTS) that is only available in Web AS 6.40 and higher.

We will start our processing by dynamically creating a field with the data defini-
tion of the value in question.

Skilled in the Art

METHOD get_specific_range table.
*Importing I_ID TYPE STRING
VALUE (RANCE) TYPE REF TO DATA
DATAREF TYPE STRING
FIELD-SYMBOLS: {wa_values> LIKE LINE OF me->values,
{wa_fields> LIKE LINE OF me->fields.
READ TABLE me->values WITH KEY id = i_id
TRANSPORTING NO FIELDS.
IF sy-subre NE 0.
RETURN.
ELSE.
READ TABLE me->fields ASSIGNING {wa_fields)
WITH KEY id = i_id.
IF sy-subrc NE O.
RETURN.
ELSE.
DATA: field TYPE REF TO DATA.
IF <{wa_fields>-dataref IS INITIAL.
RETURN.
ENDIF.
TRANSLATE <wa_fields>-dataref TO UPPER CASE.
dataref = <{wa_fields>-dataref.
TRY.
CREATE DATA field TYPE ({wa_fields>-dataref).
CATCH cx_sy_create_data_error.
EXIT.
ENDTRY.
ENDIF.
ENDIF.

*Exporting
*Exporting

We will use the RTTI to generate a starting point structure like RSDSSELOPT. We
will then replace the data type for the LOW and EIGH fields with one generated by
our new data field.

DATA: g range type TYPE REF TO cl_abap_structdescr,
comp_tab TYPE cl_abap_structdescr=>component_table,
rtti TYPE REF TO ¢l abap_elemdescr.
g range_type 7=

cl_abap_typedescr=>describe by_name('RSDSSELOPT').
FIELD-SYMBOLS: <wa_comp> LIKE LINE OF comp_tab.
comp_tab = g_range_type->get_components().

Sefect-Options/Parameters

reei 7= cl_abap#typedescr=>de5cribeﬁby#data_ref(field).
LOOP AT comp_tab ASSIGNING <{wa_comp>.
IF <wa_compy-name = 'LOW' OR <{wa_comp>-name = "HIGH'.
{wa_comp>-type ?= rtti.
ENDIF.
ENDLOOP.

Now we can use the RTTS to create a new internal table with the override struc-

ture.

DATA: range_type TYPE REF TO cl_abap_structdescr,
range_tabletype TYPE REF TO cl_abap_tabledescr.

range_ftype = ¢1l_abap_structdescr=>create(comp_tab).

range_tabletype = ¢1_abap_tabledescr=ycreatel(

p_line_type = range_type
p_table kind = ¢l_abap_tabledescr=>tablekind std).

FIELD-SYMBOLS <table> TYPE STANDARD TABLE.
CREATE DATA range TYPE HANDLE range_tabletype.
ASSIGN range->* TO <{table>.

Finally, we assign the values from our generic Select-Options value internal

table to the more specific RANGE table.

FIELD-SYMBOLS: <wa_value> LIKE LINE OF me->values,
{wa_range> TYPE ANY,
{field> TYPE ANY.

LOOP AT me->values ASSIGNING <wa_value> WHERE id = i_id.
APPEND INITIAL LINE TO <table> ASSIGNING {wa_range>.
ASSIGN COMPONENT 1 OF STRUCTURE {wa_range> TO {field>.
{field> = <wa_value>-sign.

ENDLOOP.
18.3.7 Recreating Transaction SE16

To demonstrate the power and flexibility of these new Select-Options, let us
try and use them in an extremely dynamic application. What better solution than
trying to recreate SE16 (the generic table query transaction) as a BSP application.

When you use SE16 inside the SAP GUI, the system is actually dynamically gen-
erating and storing entire programs. That means that if you run SE16 for SFLIGHT
and for SBOCK, there are two different programs behind the scenes.

Skilled in the Art

I Table Selection . [¥
' | Table Name * [SFLIGHT ,Eecute Options (& Dewnlaad

l User Options D
Jutax. ro_ot hits * 500
[Display Text Descrigtions
Flight "
) airfire & [Io [[2 H A
[Fligrt bumber & lto 0000 > M
| pate & s Ito v &
| svae R —:: R =
T Y D — o=
| Plane Tvpe & &)} fto r;> il

Max, capacty ecc .

‘| ax, capacty econ & 0 o E‘ » &
] cecupied ecan. & 0 Ito [¢ o
L1 & I W o8
| e, capacity bus, & i Jto 0 =
| Qccugied bus & 3] Jto 0 =‘.>] ’
| 1z, capacity 15t & 0 Jto m = & E
| Qccupied 151 S] Ito 0 >3 I

l Selection Results - 403 Record(s)

TR T R P e T ———
Ct $510 5 1 No. ‘,j, Date S5 Rirfare T ,J_C{»I[r,;; Plane @ Capacily n ecgngrp;i’cia“say’v‘f‘ Ogcupied econemy <

2 . :

088 | AL | 0017 [114702004 | 42284 [USD | 747400 | 285 H
088 | A4 | 0017 | 12/15/2004 42294 | UsD 747—4DD‘J 35 !
1lgss 'aa | ooz | o1ngnous | 42084 lusp | 74ren | - Py e e

Figure 18.9 Select-Options Example—SE16 Recreated in BSP

Instead we will use the dynamic power of BSP to generate the Ul at runtime
depending upon what table the user selects,

Using the INITIALIZE_FTELDS_FROM_DD method, we are able to regenerate our
Select-Options easily as users choose a new table to query. We will output our
data using an <htmlb:tableView>. So that the structure of the table is adjusta-
ble, we will simply define an attribute as TYPE REF TO DATA.

This does mean that we are going to need a single dynamic routine that will rede-
fine the output data table and generate a SQL command that uses our Select-
Option RANGES. For this, we will dynamically generate a class at runtime.

We will start our processing by dynamically redefining our output data table.

DATA itabl TYPE TABLE OF string.
DATA prog TYPE string.
DATA class TYPE string.

Select-Options/Parameters

443

444

DATA code_string TYPE string.

CLEAR me->itab.

CREATE DATA me->itab TYPE TABLE OF (me->ddstructure).

FIELD-SYMBOLS: <wa_fields> LIKE LINE OF me->fields,
{wa_values) LIKE LINE OF me-»>values.

Before we dive into the code that builds the dynamic class, let us first have a look
at the resulting code that will be executed. It really only needs to define the
ranges and then perform a SQL statement. We could code the SQL statement
dynamically without the need for the generated class, however the key here is the
variable number of ranges that need to be defined for the where condition.

In this example generated code we are reading from SFLIGHT with asingle where
condition of airline carrier id (CARRID) is equal to AA and Flight Number (CONNID)

is equal to 0017

PROGRANM.
CLASS main DEFINITION.
PUBLIC SECTION.
CLASS-METHODS meth
IMPORTING
itab TYPE REF TO data
values TYPE zes_bsp_sel values_tbl
fields TYPE zes_bsp_sel fields_tbl.
ENDCLASS. "main DEFINITION
CLASS main IMPLEMENTATION.
METHOD meth.
FIELD-SYMROLS <{table> TYPE ANY TABLE.
ASSIGN itab->* TO <table>.
FIELD-SYMBOLS: <wa_value> LIKE LINE OF values.
FIELD-SYMBOLS: <wa_field> LIKE LINE OF fields.
DATA carrid TYPE RANGE OF sflight-carrid.
FIELD-SYMBOLS {wa_carrid> LIKE LINE OF carrid.
READ TABLE fields ASSIGNING <{wa_field>
WITH KEY id = 'CARRID'.
LOOP AT values ASSIGNING <wa_value>
WHERE id = <wa_field>-id.
APPEND INITIAL LINE TO carrid ASSIGNING {wa_carrid>.
MOVE - CORRESPONDING <wa_value> TO <{wa_carrid>.
ENDLOOP.
DATA connid TYPE RANGE OF sflight-connid.
FIELD-SYMBOLS <wa_connid> LIKE LINE OF connid.

Skilled in the Art

READ TABLE fields ASSIGNING <wa_field)
WITH KEY id = 'CONNID'.
LOOP AT values ASSICNING <wa_valued
WHERE id = <wa_field>-id.
APPEND INITIAL LINE TO connid ASSIGNING {wa_connid).
MOVE-CORRESPONDING {wa_value> TO <{wa_connid).
ENDLOOP.
SELECT * FROM sflight INTO TABLE <table>
UP TO 500 ROWS
WHERE carrid IN carrid
AND connid IN connid.
ENDMETHOD . "meth
ENDCLASS. "main IMPLEMENTATION

Next we will study the code for creating our dynamic class by inserting the source
code into an internal table. As you can see we are going to pass our model
Select-Options VALUES and FIELDS internal table into our dynamic class.

APPEND “PROGRAM.® TO itabl.
APPEND “CLASS main DEFINITION.® TO itabl.
APPEND ° PUBLIC SECTION.® TO itabl.
APPEND ° CLASS-METHODS meth ° TO itabl.
APPEND ° IMPORTING ° TO itabl.
APPEND ~ itab TYPE REF TO DATA ° TO itabl.
APPEND values TYPE ZES_BSP_SEL_VALUES_TBL °
TO itabl. B
APPEND ° fields TYPE ZES_BSP_SEL FIELDS TRL.®
TO itabl. B
APPEND “ENDCLASS.® TO itabl.
APPEND “CLASS main IMPLEMENTATION.® TO itabl.
APPEND ~ METHOD meth." TO itabl.

APPEND ° FIELD-SYMBOLS <table> TYPE ANY TARLE.®
TO itabl.

APPEND ° ASSIGN itab->* TO <table>.> TO itabl.

APPEND ° FIELD-SYMBOLS: <wa_value> LIKE LINE OF values.’
TO itabl.

APPEND ° FIELD-SYMBOLS: {wa_field> LIKE LINE OF fields.®
TO itabl.

We now will loop through our listing of Select-Options with input values in our
model. For each record, we find we will generate corresponding data definition
entries and population logic in our dynamic class.

Select-Options/Parameters

445

446

LOOP AT me->fields ASSIGNING <{wa_fields>.
READ TABLE me->values TRANSPORTING NO FIELDS
WITH KEY id = {wa_fields>-id.
CHECK sy-subrc = 0.
CONCATENATE ‘“data °
{wa_fields>-dataref °
APPEND code string TO itabl.
CONCATENATE ‘FIELD-SYMBOLS <wa_" <{wa_fields>-id A
* LIKE LINE OF ° <wa_fields>-id ~.°
INTO code_string.
APPEND code_string TO itabl.
CONCATENATE “READ TABLE fields ASSIGNING {wa_field> °
*WITH KEY id = '°
{wa_fields>-id " '." INTO code_string.
APPEND code_gtring TO itabl.
APPEND “LOOP AT values ASSIGNING <wa_value>
‘WHERE id = <wa_Tfield>-id.> TO itabl.
CONCATENATE “APPEND INITIAL LINE TO °
{wa_fields>-1d * ASSIGNING <wa "
{wa_fields>-id *»." INTO code_string.
APPEND code_string TO itabl.
CONCATENATE “MOVE-CORRESPONDING <wa_value> TO {wa "
{wa_fields>-id 7.~ INTIO code_string.
APPEND code_string TO itabl.
APPEND “ENDLOOP.> TO itabl.
ENDLOOP.

{wa_fields>-id > TYPE RANGE OF
INTO code_string.

Using the same process we will dynamically generate our SQL statement.

DATA: s_max _records TYPE string.
MOVE me->max_records TO s_max_records.
CONCATENATE ‘SELECT * FROM ° me->ddstructure
* INTO TABLE <table> °
Up TO °
INTO code_string.
APPEND code_string TO itabl.
DATA: first_pass TYPE boolean VALUE abap true.
LOOP AT me->fields ASSIGNING <wa_fields>.
READ TABLE me->values TRANSPORTING NO FIELDS
WITH KEY id = {wa_fields>-id.
CHECK sy-subrc = 0.

s max_records ~ ROWS °

Skilled in the Art

IF first_pass = abap_true.

first_pass = abap_false.

MOVE ~ WHERE ° TO code_string.
ELSE.

MOVE * AND ° to code_string.
ENDIF.

CONCATENATE code_string <wa_fields>-id
IN ° <wa_fields>-id INTO code_string.

APPEND code_string TO itabl.
ENDLOOP.
MOVE °." TO code_string.
APPEND code_string TO itabl.
APPEND ° ENDMETHOD."
APPEND “ENDCLASS."

TO itabl.
TO itabl.

We finish our processing by generating our dynamic class. We then can prepare
the model internal tables for passing to the dynamic-class method. Finally, we are
able to call our dynamic-model method.

GENERATE SUBROUTINE POOL itabl NAME prog.
CONCATENATE *\PROGRAM=" prog “\CLASS=MAIN' INTO class.
DATA: ptab TYPE abap parmbind_tab,
ptab_line TYPE abap_parmbind.
ptab_line-name = 'ITABR'.
ptab_line-kind = c¢l_abap_objectdescr=>exporting.
GET REFERENCE QF itab INTO ptab_line-value.
INSERT ptab_line INTO TABLE ptab.

CALL METHOD (class)=>meth
PARAMETER - TABLE ptab.

Select-Options/Parameters

447

19 Breaking Out of the Mold

Eventually, all programmers encounter development requirements
that will push them to break the rules. In this chapter, we will focus
on solutions that—while useful—certainly push the boundaries of
traditional BSP development.

19.1 Interactive Excel

Downloading data to Excel is a critical functionality, but relatively well known.
Eventually everyone gets a business requirement for greater interactivity. Users
who are accustomed to full interactive Excel in their applications will expect it in
BSP applications as well.

Perhaps you have to integrate existing Excel spreadsheets into your application.
You might have extensive macros or complex formatting. Therefore recreating this
functionality in some other tool is often just not reasonable.

Luckily there is a solution provided by Microsoft that integrates quite well into
BSP. It is called Office Web Components (OWC). This is basically an ActiveX inter-
face to the Microsoft Office Suite. If you have Office XP or higher installed, then
you should have the necessary control. However, a read-only version of the con-
trol can also be downloaded from Microsoft's website.

] Available bourd ettachmerts: | SAP EFX}
BlolsbRAISH-U-BEIYBHO
B A e [¢ [0 [e [F [A
| BE&P BOOK Example
[Z [Please enter new values here: 100
L3 122 [
4) 1322
5 '
2] i
% | =
3
El - B IR A
10 . C)
11 ‘ |
i §ob
s i i
: 13 f
‘ 14 -
i 15 3
15 B e i
E X N\ sheets b
;““ ;
9 = H

Figure 191 OWC Inside a BSP Application

Breaking Out of the Mold 449

450

Calling this ActiveX control from BSP is really very simple, even though there is no
SAP standard function for this solution. We will simply use the open power of BSP
that allows us to include any standard HTML content. The following is all the code
that it takes to instantiate the OWC control in a BSP application.

{OBJECT id=myexcel .
style='LEFT:0px; WIDTH:593px;TOP:0px;HEIGHT:377px"
height=377 width=593
classid='clsid:0002E551-0000-0000-C000-000000000046"
name=myexcel VIEWASTEXT>
{PARAM NAME='DataType' VALUE='XMLDATA'>
{PARAM NAME='XMLData' VALUE='<%= model->my_out_xml %>'>
<{/OBJECT>

In this example, you can see that there are some simple parameters for setting the
position and size of the control. There are many more parameters that affect the
use of this control. However, this text will concentrate instead on getting data in
and out of this control. If you wish to further explore other options on this con-
trol, they are well documented in Microsoft's online repository.

We are going to use the XML capabilities of Excel to pass data in and out of the
control. If you have an existing template or spreadsheet that you want to start
with, you can simply save it as XML to get a starting XML stream. The data in this
stream is what we use to pass into the OWC control in the example (model->my_

out_xml).

Getting the data back out of OWC and into our application can be another story
altogether. Even if your BSP application is stateful, the Excel control is not. For
any event that would trigger a round trip to the server, all the data in the Excel
control must be retrieved and re-sent with that request/respanse cycle.

The only way to pull the current state of the Office control is with JavaScript. Many
other examples have some sort of trigger, such as a button, that allows the data in
the Excel control to update the back-end system. However, to emulate the kind of
functionality your users might be used to from working with standard SAP GUI
transactions, this control might need to be embedded inside rather complex appli-
cations. Add to this the architecture of the delivered BSP extensions, where so
many of the elements can trigger server events. 1t simply is not very practical to
have to hook aJavaScript function into each of those abjects. That would also make
reusability and maintenance of the view that hosted this control very difficult.

The better solution is to hook a piece of JavaScript into the event handlers of the
Office control itself. This will allow you to trap the SheetChange event which
gives you access to the office control content after every cell change.

Breaking Out of the Mold

Then, you can use JavaScript to copy this content into a hidden input field. You
can even go as far as to make this hidden input field an <htmlb:inputField>
with model binding. That way your Excel content is copied directly back into our
model class at any server event.

The following small amount of code accomplishes what has just been described
Notice that in this example we have JavaScript code that will run within the.
browser. This example also follows the Madel View Controller principle. There-
fore, if this JavaScript code is going to work correctly, you must remember to con-
catenate the controller’s component ID onto the front of the fieldname of our
hidden Input Field.

<htmlb:inputField id = "sendinfo_bnd"
visible = n n
value = "//model/sendinfo_bnd" />

{(script language='javascript"’ for='myexcel’
event='SheetChange(Sh, Target)'>
document.update.<{%= controller->component_id
%>_sendinfo_bnd.value =
document.update.myexcel .XMLData:
{/script

19.2 RSS Feeds

RSS is an acronym that can stand for really simple syndication, RDF site summary,
orrich-site summary. Whatever term one uses, RSS—an XML format for syndicat-
ing Web content—is undeniably important to the modern Internet. So much
information is available on the Internet that the most important tools are those
that help people shift through the madness to find gems. RSS is an important
technology that fills just such a role.

RSS, at its heart, is built on top of established technologies such as HTTP and
XML. Luckily, these technologies are readily available within the ABAP/BSP world
as well. We will take a look at two different approaches for working with RSS
within BSP. First we will look at how to create a BSP page that consumes an exter-
nal RSS feed and presents its content to the user. In the second example, we will
use BSP to host an RSS feed.

19.2.1 Consuming an RSS Feed

Whenever one thinks of HTTP in the context of BSP, one pictures the browser

starting the HTTP request, and that the server returns an HTTP response. How-
ever, in the Web AS it is also possible to play the role of a browser and to effec-

RSS Feeds

451

452

tively make outgoing HTTP calls. For a detailed example of this process, have a
look at program RSHTTPO1.

It is precisely this role of HTTP client that our system will be using to call to an
external system and ask for its RSS XML. We will use this example program to
open a connection to the SAP Developer Network (SDN) website and request the
RSS feed for all recent BSP Weblogs.

19.2.2 HTTP Client

For this example, we decided to use the minimum number of lines of code. No
error handling is done. If the exceptions are not mapped onto sy-subrc during
the method calls, they will just be raised and the BSP program will be terminated.
This is acceptable for our example.

DATA: url TYPE STRING,
http_client TYPE REF TO IF_HTTP_CLIENT,
re TYPE I,
content TYPE STRING.

url = 'http://weblogs.sdn.sap.com/pub/q/weblog rss_topic?
x-topic=24&x-ver=1.0".

cl_http_client=>create by url(

EXPORTING url = url

IMPORTING client = http client).
http_client->send().
http_client->receive().
http_client->response->get_status(IMPORTING code = rc).
content = http_client->response->get_cdata().

http_client->close().

These few lines are sufficient to pull the RSS data from SDN. The first line creates
a new client using a complete URL that already contains the protocol to use
("http:"), plus destination system and port (implicitly port 80) and the requested
URL. Once we have the HTTP client instance, we send the request and receive the
answer. It is very important to include the close method call, to ensure that the
resources held by the HTTP client are released.

When using the HTTP client, there are a number of interesting additional aspects
to consider:

» Setting headers such as Accept-Encoding and User-Agent in the request.

» Setting the HTTP protocol and version to use and the method GET or POST.

Breaking Out of the Mold

» Setting up of authentication information for the remote site, possibly also
proxy authentication information. Proxy setup can be maintained from trans-
action SICF.

» Looking at the re (return code) and taking additional action. Interesting values
would be re=200 (OK), re=302 (Redirect), re=401 (Authentication Required)
and rc=500 (Server Error).

19.2.3 XML

Once the RSS data has been retrieved, the next step is to parse this into an XML
document. One could consider using normal string operations to extract the
interesting data, but it does not have the same elegance. Instead, we will take full
advantage of the power of the ABAP XML APL.

TYPE-POOLS: ixml.

DATA: ixml TYPE REF TO if_ixml,
streamFactory TYPE REF TO if ixml stream factory,
istream TYPE REF TO if_dixml_istream,
parser TYPE REF TO if_ixml parser,
document TYPE REF TO if_ixml document.

IF content CS '<{!DOCTYPE' AND content C§ ']>!
DATA dummy type string.
SPLIT content AT '<IDOCTYPE' INTO dummy content.
SPLIT content AT ']>' INTO dummy centent.
ENDIF.
ixml = cl_ixml=dcreate().
streamFactory = ixml->create_stream_factory().
istream = streamFactory->create_istream cstring(
content).
document = ixml->create_document().
parser = ixml->create parser(
stream factory = streamFactory
istream = iStream
document = document).
parser->set_normalizing().
parser->set_validating(
mode = if_ixml_parser=>co_no_validaticn).
parser-r’parse().

The only unusual code from above is the handling of the DOCTYPE. The content
returned from SDN is formatted in such a way that the ABAP XML parser has prob-
lems with it. Therefore, a small modification was made to eliminate the section.

RSS Feeds

454

Later for the display of the Weblogs, we would like to extract relevant <item>
sequences from the RSS feed into an internal table. Let us define the table to use.

TYPES: BEGIN OF t_blog,

title TYPE string,
link TYPE string,
description TYPE string,
creator TYPE string,
date TYPE string,

END OF t blog,

t_blogs TYPE TABLE COF t_blog.
DATA: blogs type t_blogs.
FIELD-SYMBOLS: <blog> type t_blog.

With this, everything is in place to iterate over the XML document, gather all
{item> nodes, and extract the relevant bits and pieces.

DATA: collection TYPE REF TO if_ixml_ncde_collection,

node TYPE REF TO if_ixml_ncde,
element TYPE REF TO if ixml element,
index TYPE 1i.

collection = document->get elements_by_tag name(
name = 'item').

WHILE index < collection->get length().

APPEND INITIAL LINE TO blogs ASSIGNING <{blog>.

node = collection->get_item(index).

element 7= node->query_interface(ixml_iid_element).

index = index + 1.
node = element->find from_name(name = 'title').
{blog>-title = node->get_value().

. repeat above two line sequence for all info
required

ENDWHILE.

The main part of the code just loops over the collection of {item> nodes. For
each node, we look under it five times to find sub-nodes with specific names. We
are interested in the title, link, description, creator and date sub-nodes. All the
data is accumulated into an internal table.

19.2.4 BSP Output

The final part of the puzzle is to display the output. One technique could be to
use an <htmlb:tableView). Another could be to transform the table into raw

Breaking Out of the Mold

HTML. However, let us have some fun and use a <phtmlb:formattedText> ele-
ment.

The {phtmlb:formattedText> element accepts as input an XML string that con-
tains markup sequences, similar to those of HTML. As a first step, just loop over
the internal table with acquired data and generate the XML string.

DATA: formattedText TYPE string.
formattedText = 'CROOT><H1>BSP Weblogs<{/H1>'.
LOOP AT blogs ASSIGNING <blog>.
CONCATENATE formattedText
'<p>' '<LINK href="' <blog>-link '">'
<{blogr>-title '</LINK>'
* by <I>" <blog>-creator </I> on ° <blog>-date ° --
<{blog>-description '</P>' INTO formattedText.
ENDLOOP.
CONCATENATE formattedText '</RO0T>' INTO formattedText.

Notice the use of *~ sequences in the CONCATENATE command to preserve trail-
ing spaces in the strings. The <ROOT> elements are required to make this a valid
XML document.

The display of results is now very easy.

{%@page language="abap"%>
prefix="htmlb"%>
(h@extension name="phtmlb" prefix="phtmlb"%>
<htmlb:content design="desgign2003">
<htmlb:page>
<htmlb:form?
{phtmlb:formattedText text = "<{%=formattedText%>" />
{/htmlb:form>
{/htmib:page>
{/htmlb:content>

{%@extension name="htmlb"

BSF Weblogs

Using ECL (Engineering Client 3D Viewer) viewer in BSP application by Ourairg) Athavan Raja on 2005-09-14 -- This
blog shoves how to get the functionlty of CL_GUI_ECL_3DVIEWER (endineering drawing viewwer) in BSP apglications.

Die Mensch-Maschine by Eddy De Clercgon 2005-09-13 -- We've charged our battery and now sve've full of energy . itve're |
hack, but not as you know it. Am | a man or & machine? Let's find o, <STRONG=Gregor Wolf found some slip ups and did
some carrections and improvements on the code. Many thanks for this.

Figure 19.2 RSS Consumption — Final Qutput

RSS Feeds

455

B

456

19.2.5 XSLT

Looking at the final program, it is clear that the XML code required to parse the
RSS data feed and extract the relevant data, is nearly 70% of the entire applica-
tion. XML definitely has a highly granular AP

However, we have XML as input (the RSS data), and we want XML as output, the
formatted text. For this, the perfect tool of choice is Extensible Stylesheet Lan-
guage Transformations (XSLT).

All it takes is these few lines of magic to replace all of the XML parsing and iterator
code.

{zsl:transform version="1.0"
xmlns:xsl="http://www.w3.org/1999/%SL/Transform”
xmlns:rss="http://purl.org/rss/1.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
exclude-result-prefixes="rss dc">

{xsl:output methed="html"/>
<xsl:template match="/">
{ROOT>
<H1>BSP Weblogs</HL>
{xgl:for-each select="*/rss:item">
<P>
(LINK href="https://weblogs.sdn.sap.com{rss:1ink}">
(B> <{xsl:value-of select="rss:title"
disable-output-escaping="yes"/> <{/B>
{/LINK
by <I> <xsl:value-of select="dc:creator"/> </I>
on <xsl:value-of select="substring(dc:date,1,10)"/>
-- <xsl:value-of select="rgs:description”
digable-output-escaping="yes"/>
P>
{/xsl:for-each>
{/ROOT>
{/xsl:template>

{/xsl:transform>

In the BSP page, all of the XML coding is replaced with this short call sequence to
produce the same output as the original coding.

DATA: formattedText TYPE string.
CALL TRANSFORMATION Y_BSP_BOOK_SDN_RSS_TO_FTEXT

Breaking Out of the Mold

SOURCE XML content
RESULT XML formattedText.

19.2.6 Creating an RSS Feed

You will probably be happy to note that creating an RSS feed from BSP is consid-
erably simpler than consuming one. We quite often assume that a BSP "page" is
delivering content as HTML Text. However there are actually many formats that
can be delivered by BSP. By simply setting the MIME type on the Page or View
Properties tab, we can force our content to be interpreted as XML.

| “iaact Bt Handier . Pags Attrbutes

Description

Mime Tyne text/xmi
 Carnpression None
w/0 Seript Code

Figure 19.3 BSP Page Set to the XML MIME Type

We can then build the content of the XML document in the Page Layout just like
we would on an HTML page.

{?7xml version="1.0"7>
{rdf:RDF xmlns="http://purl.org/rss/1.0/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-nsi#" >
{channel rdf:about="<%= url %>">

{/rdf:RDF>

By studying the documented XML format for RSS, you can easily build your own
feeds. You still have the ability to loop through and cut in dynamic ABAP ele-
ments.

You can image the possibilities that exposing your system via RSS brings. Users
can now subscribe to the data events and alerts that interest them and are critical
to their jobs. You might, for instance, create an RSS feed for all new purchase
requisitions over a certain monetary value. Using a commercial RSS Reader, users
can monitor and receive alerts when new data is ready for review.

Another example, for which the sample source code is available on the book CD,
would be to expose ABAP short dumps via a RSS feed. System administrators
could subscribe to such a feed and receive notification within seconds of the
dump occurring. You could even take this example further and link into trans-

RSS Feeds 457

458

action ST22 to display the details, using the ITS or by building a custom BSP appli-
cation to display the dump.

Fle Tools Help

Adiress: Mg //MyServer.com/sap/be/bspdsap/ybook/dumps.ami

£33 Subscribed Feeds {1/484! Tyie : | Dele ¥ | Author | Subject

2 40J Imported from feedrq |\ XSSOl 1N [TAB_LLEGAL SIGN .., 94572005 1551 Pl
2) Netflie (01455 PN oA S EXCERTION 09/15/R005 2555
& L SAP SystemDumps || 2 cACLFUNCTION_CONELICT TYP... 51402005 &
o] ABAP Dumps: O () SAPSGL_ARRAY_INSERT_DUPRE... 9714/2005 5,02 PM
% igﬁs g::‘;z‘ Z £ LOAD_PROGRAM_LOST 09/14/720... 97(472075 5:02 PM
’@ ABAP Dumps: P [a SAPSGL_ARRAY_INSERT_DUPRE... 9/414/2005 502 PM
@ ABAP Dumps: P a LOAD_PROGRAM_LOST 0814/20 91472005 11:58 AM
=500 (144105} {£) PERFORM_NOT_FOUND 0811 4/200... 91412005 .01 AM
@ LOAD _PROCGRAM_LOST89M13720.. 94372005 11:23 aAM
{2) COMPUTE_BCD_OVERFLOW/0SM . 81372005 10:23 AN
9 LOAD_PROGRA_LOST 0942/20... 942/20057.25PM
() CALL_FUNCTION_CONFLICT_TYP.., 81212005 2:25 PM
(7 RAISE_EXCEPTION 091272005 10.... 9A2/2005 14:24 AM
i) SAPSQL_ARRAY_INSERT_DUPRE... 92/2005 9:23 AM

LD mmmiw ain symanen nmmans nas s

09f15f2005 Program to Ountput an ABAP Dump - For Converting t

Exception condition "CHTL_ERROR' raised. i

What happened?

The current ABAP/4 progran encountered an unexpected
situation. '

What can you do? £

Hote the actions and input that paused the error.
Inform your SAP system administratox. . i
You can print out this message hy choosing "Print', Transaction §
allews you to display and manage termination messages, including |
them beyond their nmormal deletion date. N .

Figure 19.4 RSS Feed for ABAP Short Dumps

19.3 Mini-Portal

This section of the book is not intended to discourage you from using or exploring
the SAP Enterprise Portal. It is an excellent tool that just about any SAP customer
could benefit from using. However, there are situations where you need some of
the functionality of a common portal framework, such as personalization and nav-
igation, but your company is not in a position to implement the fulf Enterprise
Portal.

[n this situation, you may very well look to BSP to fill that gap. We are gaing to
look at two such mini-portals. As you will see, the power, flexibility and openness
of BSP is mare than enough to build such a tool.

19.3.1 Mini-Portal Example 1—Common Page Header

In the first example we have a refatively simple common header implemented as
custom BSP Extension Element. This element provides a common branding and
personalization interface with a minimal impact to the appfication that hosts it.

Breaking Out of the Mold

Welcome,
Thomas Jung

oy

Tradeshow |1 et ac

| Language -
: —— T IO
First Neme N] , Family Neme 3
Eméil Address |

Submi |

Figure 19.5 Mini-Portal Example 1—Common Header

It can be inserted within its own HTML frame in an application. It then only
requires the following small amount of coding.

(%@page language="abap" %>
(%@extension name="htmlb" prefix="htmlb" %>
(%@extension name="YROOK" prefix="YROOK" %>
<htmlb:content design = "design2003"
labelDesignBar = "light"
<htmlb:document)
<htmlb:documentHead)
<{/htmlb:documentHead)
<htmlb:documentBody>
<htmlb:form action = "Index Frames.htm"
target = "_parent" >
CYBOOK:pageHeaderDesign2003 NumberOfParentsg = "2"
CustomLogo = "logo_netweaver,gif®
RFCDest = "REMOTE_SYS" />
<{/htmlb:form>
</htmlb:documentBody>
<{/htmlb:document)
{/htmlb:content)

In this interface, we provide the means to set basic personalization across all BSP
applications. The user can switch his or her logon language and DESIGN2003
theme, and activate the accessibility features. These settings are changed by

reloading the current application and passing the new values via their URL param-
eters.

IF htmlb_event->server_event EQ 'HandleLangSubmit'.
COMCATENATE url '?sap-language=' s_spras
INTG url.
currenttime = sy-uzeit.
CALL METHOD cl_http_server=>append_field_url
EXPORTING name = 'sap-unique’

Mini-Portal

459

460

value = currenttime
CHANGING wurl = url.
navigation-vexit(url).
ENDIF.

The link to User Settings will launch the SAP GUI transaction SU3 using the ITS.
This allows users to change their address, communication settings, and system
defaults such as decimal notation and date format.

Finally, this header also provides information about what system you are con-
nected to. In the Sys area, we display the system ID that you are currently con-
nected to. If the user clicks on this area, he or she will receive a popup window
that contains more details that might be useful when troubleshooting.

SAP System Information

SAP System ID: BSP
Hast: MyHost
User: TIUNG

tittp: {{MyHost, comfsapfbc/bspisa| Application: yes_testl
|] SAP lagon lanquage: EN
b | # Search S Favarites { patahase system: MSSQL
R g Operating system: Windaws NT - T
G0 O Bea -t] sap Release: 640 foni |zonERco .
3 -3! """‘;J* Time zone: ESTNO ot o
‘heme | Tradeshow 3 -
| [‘ Family Name . 4
I d

Figure 19.6 Mini-Portal Example 1—Common Header—System Information

19.3.2 Mini-Portal Example 2—Portal with Navigation

Our first example provides a nice common header for each application. However
this is not a high-level framework. It also does nothing to support navigation
between different applications. It has the disadvantage of needing to be inserted,
although with very little effort, into each application.

A mare encompassing approach would be to build a framework page in BSP that
can host inner pages inside of HTML IFrames. Figure 19.7 demonstrates just such
a framework.

However this example goes just a little bit further. it actually uses the flexibility of
BSP to share very similar stylesheets and JavaScript with the Enterprise Portal.
Therefore, the look and feel of the page along with the two-tier navigation bar
really comes right from the Enterprise Portal. The framework, navigation area, and
even the elements you see on the home page all are built in BSP.

Breaking Out of the Mold

4 SAPDEVELOPERNETWORK i

Current Weather Conditiol

; = I Hews . = :'W

[Tadiay - s going to be & wonderful day! ‘

Heesoie

Palo Alto, CA

& 57 °F
Cloudy
Feels Like: 57 F

\ |
|
Rumidity: 72 % ’
|
|

Wind: 6mph

Enterciylap (ap
i

Weather daca provided by
Last Updated: 00r142005 10:16:.

Figure 19.7 Mini-Portal Example 2—Portal with Navigation

Further taking advantage of the SAP Unified Framework for rendering; the news
and weather areas, built using <htmlb:tray>, look just like normal EP IViews.
We are even able to support personalization through the standard BSP elements.

Looking at the coding of the framework page we can see that mostly we are just
interacting with the JavaScript functions necessary to build the Ul for the naviga-
tion menu.

gNavIree = new NavNode("Top", "Top", 0, 0, 0, O,
new NavNode ("#", "<OTR>Corporate S$ites</OTR>", 0, 0, 0, O,
new NavNode("portal home.htm", "BSP <OTR>Home</OTR>",

0, 0, 0, 0),
new NavNode ("http://www.sap.com/", "<OTR>Home</QOTR>",
0, 0, 0, 0),

new NavNode ("#", "SAP Team", 0. 0, 0, 0

s ’

new NavNode ("http://help.sap.com", "<OTR>Help</OTR>",

0. 0, 0, 0),

new NavNode ("/sap/bc/bsp/sap/¥Y_DOC_SEARCH/main.do?
sap-themeRoot=<%= themeRoot%>&themeRoot=<{%= themeRoot%>",
"{0TR>Document Search<{/OTR>", 0, 0, 0, 0)
)
Vs

The inner content itself is then hosted within an IFrame. JavaScript functions are
fired on the window-resize event to make sure that the inner content continues
to fill the content IFrame area.

Mini-Portal

461

462

(IFRAME frameBorder="0" id="iViewFrameId" name="iViewFrameld"
src="content_sap.html?themeRoot=<%= themeRoot%>&applUrl=
Ch= applUrl%>&s=<%= script%»" style="WIDTH:100%;"
fullPage="true"><{/IFRAME>
{SCRIPT>
iViewFrameId.window.onerror = stopError
</SCRIPT>
{SCRIPT>
if(isIE){
window.attachEvent ("onresize", SetTLNSize);
window.attachEvent ("onresize",adjustFullPagelViews);
window.attachEvent ("onload",adjustFullPagelViews);
} elsel
window.addEventListener ("resize",SetTLNSize,false);
window.addEventListener ("resize",adjustFullPageIViews,
false);
window.addEventListener ("load", adjustFullPagelViews,
false); |
{/SCRIPT>

The navigation menu sets the URL for the inner content via a call to the BSP Page
CONTENT_SAP.HTML. This is the BSP Page that is hosted within the framework
page's IFrame. It in turn hosts the actual content URL within its own inner IFrame.

<% data applUrl type string.
applUrl = request->get_form_field('applUrl’).
IF applUrl IS initial.
applUrl = 'portal_home.htm'.
ELSE.
themeRoot = cl_http_utility=>escape_url(
unescaped = themeRoot }.
ENDIF.
CONCATENATE applUrl '?sap-themeRoot=' themeRoot
INTO applUrl.
DATA accessibility TYPE string.
accessibility = runtime- >WITH ACCESSIBILITY().
IF accessibility IS NOT initial.
CONCATENATE applUrl '&sap-accessibility=X'
INTO applUrl.
ENDIE.
DATA is_rtl TYPE string.
is_rtl = runtime->with_right to_left().

Breaking Out of the Mold

IF is_rtl IS NOT dinitial.
CONCATENATE applUrl '&sap-rtl=X' INTO applUrl.
ENDIF. %>
{IFRAME frameBorder="0" id="iViewFrameContentId"
name="iViewFrameContentId" src="<%= applUrl%>"
style="WIDTH:100%;height:100%"></IFRAME>

Listing 1914 CONTENT_SAP.HTML

This structure of IFrames allows for the ability to host external content inside our
BSP mini-portal as well. Figure 19.8 shows three such examples. We have another
BSP Application, a page from the Internet, and Microsoft Outlook Web Access for
reading email all hosted within our BSP mini-portal. None of these other applica-
tions were designed for or modified in any way in order to be hosted.

Figure 19.8 Mini-Portal Example 2 —Hosting External Content

But hosting full applications within the content area of our mini-portal page is not
really enough. We want to be able to arrange multiple smaller elements, com-
monly referred to as [Views within the SAP Enterprise Portal, together in one area.
We may even want to support personalization for the layout of these [Views.

This can be done as well using 8SP and [Frames. Our sample start page had two
areas: one that displayed the current weather and one for news. The weather sec-
tion of this page is actually a separate BSP application hosted in place using an
IFrame. We lay out the individual elements within the BSP page using a
{phtmlb:matrix>.

{%@page language="abap" %>
{%@extension name="htmlb" prefix="htmlb" %>

Mini-Portal

463

TR TR

G e K ks PP e

464

{%@extension name="phtmlb" prefix="phtmlb" %>
<htmlb:content design="design2003" >
<htmlb:page title="Main Home Page " >
<htmlb:form?>
{phtmlb:matrix cellWidths = "30%,70%"
height - = "100%" >
{phtmlb:matrixCell vAlign="TOP" />
{IFRAME frameBorder="0" id="iViewWeatherFrame"
name="iViewWeatherFrame"

=

grc="../zes_weather/weather.do"
style="WIDTH:100%;HEIGHT:250px" ><{/IFRAME>
{phtmlb:matrixCell vAlign="TOP" />

<htmlb:tray id = "News"
width = "100%"
title = "News" >

<htmlb:trayBody>
<htmlb:textView wrapping="TRUE" >
Today - It is going to be a wonderful day!
{/htmlb:textView?
{/htmlb:trayBody>
{/htmlb:tray>
{/phtmlb:matrixz>
<{/htmlb:form>
{/htmlb:page>
<{/htmlb:content»

19.3.3 Portal within the SAP GUI

Although many companies look to a portal as an option to replace the SAP GUI
on user's desktops; there still remains considerable demand to have users work
directly within the SAP GUI fat-client environment. This is not meant to be a dis-
cussion on the pros and cons of using the SAP GUI client; instead, we want to
look at how you might embed your BSP mini-portal within the SAP GUI start
transaction.

Unfortunately, SAP does not offer an exit mechanism to insert custom content
within this area of the main start transaction. In order to insert our page, we will
need to make a small modification to the delivered SAP program. Remember that
SAP does not recommend or support modifications to its code. If you implement
these modifications, you are on your own.

Breaking Out of the Mold

=4 T . - R
I» Keou Edi Favortes Extras_System Hel : EEL:)

Ehi THECEE DRR B0a8 R G0
SAP Easy Access
D Bl o e TR B T 8 P T2
b OFaentes T e
‘19 &5 4P marnu
b CJolfce
b 3 Cross-Appieation Companents

0 (I tnformation Systems
b (3 Took

[Docurreneton |

}j SAP DEVELQPER NETWORK

1

|1 Today- Tz govnato bo 3 veorertat o

Palo Alto, CA

57 °F
i Cloudy
{ i Feels Like: 57 F
i | Humldiy: 72 %
Wind: mph ‘
Erieiciim D ‘
 eather date provided by T

Figure 19.9 Mini-Portal Example 2—Running Within the SAP GUI Start Transaction

The main-menu application is SAPLSMTR_NAVIGATION. The first modification will
be in the form control createimagecontrol in include LSMTR_
NAVIGATIONE17. We will replace the current call to WB_BITMAP_SHOW, which dis-
plays the static image, with the code to host our BSP mini-portal application
within an HTML control.

*{ REPLACE
*\ call function 'WB_BITMAP_SHOW'

CREATE OBJECT html_control
EXPORTING parent = image_cont
EXCEPTIONS others = 1.
html_control->enable_sapsso(enabled = 'x').
DATA: zz_url TYPE string.
DATA: zz_url2(255) TYPE c.
CALL METHOD cl_bsp_runtime=>construct_bsp_url
EXPORTING in application = 'Z_PORTAL'
in_page = 'default_SAP.htm'
IMPORTING out_abs_url = zz_url.
MOVE zz url TO zz_url2.
CALL, METHOD html_control->show_ url

EXPORTING wurl = zz_url2
EXCEPTIONS others = 1.
*} REPLACE

The only other small modification that must be made is to declare the definition
of our html_control instance in the top Include, LSMTR_NAVIGATIONTOP.

Mini-Portal 465

DATA: image_control TYPE REF TO cl_gui_picture,

*{ INSERT
html_control TYPE REF TO cl_gui_html_viewer,
*) INSERT

custom_container TYPE REF TO cl_gui_custom_container.

19.3.4 Current Weather Display

You might have noticed the current weather window from our second mini-portal
example. This application has several interesting aspects and is worth looking at in
greater detail.

First, this application was originally posted to SDN by Prakash Singh as a Java
application. Right from the start, we can see that converting this application from
Java to ABAP/BSP is a relatively simple process. Looking at the complete source
code for each solution, one might even make the case that the implementation
within ABAP/BSP is simpler.

The other interesting aspect is the technology that sits behind this technology. In
both the Java and BSP versions, an HTTP client call is made to Weather.com, in
much the same way as was done in the RSS consumer example earlier this chap-
ter. If you have any problems making the HTTP client connection to Weather.com
because of the handling of the default port, please read OS5 Note 858970.

Weather.com then returns an XML stream as the body of the response. Using an
XSLT script, the XML from Weather.com is transformed into HTTP. Even the exact
same XSLT script can be used from both Java and ABAP!

METHOD call_webservice.

DATA: url TYPE string.

DATA: t_url TYPE string.

DATA: client TYPE REF TO if_http_client.
DATA: x_xml TYPE xstring.

CONCATENATE “http://xocap.weather.com/weather/local/"
i_key “7cc=*&prod=xoap&par="

zcl_es_shared_mem_weather_ com=»>partner_num

Shkey="
zcl_es_shared_mem_weather com=>license_key
“&unit=" i_unit INTO url.

CONDENSE url NO-GAPS.

CALL METHOD cl_http _client=Dcreate by_url

EXPORTING url = url

466 Breaking Out of the Mold

[P S

IMPORTING client = client
EXCEPTIONS others = 1.
client->send().
CALL METHOD client->receive
EXCEPTIONS others = 4.
e_xml = client->response->get_data().
DATA: xslt_err TYPE REF TO cx_xslt_exception,
s TYPE string.
TRY.
CALL TRANSFORMATION zes_weather
SOURCE xml e xml
RESULT xml e _html.
CATCH cx_xslt exception INTO xslt_err.
TF NOT xslt_err IS INITIAL.
s = xslt_err->get_text().
ENDIF.
ENDTRY.
ENDMETHOD .

The rendering of the output from the XML to HTML transformation is quite sim-
ple.

<htmlb:tray id = "WeatherTray"
onkEdit = "Personalize"
width = "100%"
title = "{OTR>Current Weather Conditions</QTR>" >
{phtmlb:matrix cellWidths = "100%"
width = "100%" >

{phtmlb:matrixCell hAlign="CENTER" />
{%= controller->model->html %>

{phtmlb:matrixCell hAlign = "CENTER"

row = "+l />
<htmlb:textView design="LABELSMALL" >
{0TR>Last Updated: </OTR>
{%= controller->model->s_time %>
{/htmlb:textView>
{/phtmlb:matrix>
{/htmlb:tray>

At this point we will diverge from the original Java example and include some
additional features. First it would be nice to allow the user to set some customiz-
ing settings, such as location for which to display weather and whether to display

Mini-Portal

467

468

temperature in Celsius or Fahrenheit. This is especially useful when running inside
a portal where users expect a certain measure of personalization.

I Customize Weather Settings =1

I —
| Locstion Ke SAP Labs Palo &fo i
| untt of measure | €

S ST

Figure 1910 Weather Example—Personalization

We already activated the personalization event in the surrounding <htmlb:tray>
when we first rendered it.

<htmlb:tray id = "WeatherTray"
onEdit = "Personalize"
width = "100%"
title = "<{OTR>Current Weather Conditions</OTR>" >

When the onEdit event is triggered, we will just navigate to a different controller.

IF htmlb_event_ex IS NOT INITIAL
AND htmlb_event_ex->event_name = phtmlb_events=>popupmenu
AND htmlb_event_ex->event_type =
phtmlb_events=>popupmenu_select.
navigation->goto_page('customizing.do').
ENDIF.

We are going to store the user's personalization in a simple browser cookie.
Therefore, as we load the customizing controller we need to read any previous
settings from that cookie before we display the view.

*****Regtore Default Settings from the Browser Cookie
CALL METHOD i_runtime->server->request->get cookie
EXPORTING name = 'WeatherSettings'
IMPORTING value = l_settings.

Likewise, when the user wishes to return from the customizing screen, we need
to record his or her new settings back into the browser cookie.

IF htmlb_event_ex IS NOT INITIAL

AND htmlb_event_ex->event_name = htmlb_events=>button

AND htmlb_event_ex->event_type = htmlb_events=>button_click.
DATA: 1_settings TYPE string.
CONCATENATE me->unit me->key INTO 1_settings.

Breaking Out of the Mold

CALL METHOD i_runtime->server->response->set cookie
EXPORTING name = 'WeatherSettings'
path = '/¢*
value = 1_settings.
navigation->goto_page('weather.do').
ENDIF.

Our second major change has to do with the HTTP call to Weather.com. We really
do not want to have to make the call, request the XML and then convert it every
time any user accesses this page. There should be a mechanism to cache the
returned data.

You could take several approaches to this caching. You might decide to write the
information into the database or store it as a server cookie. However, for maxi-
mum performance, this example will take advantage of the new Web AS 6.40
shared-memory classes. Shared-memory classes allow for copy-free reading of
memory in a cross-process pool. That means that all users can read from the single
shared-memory area allowing for caching across user sessions.

In our processing, we will need to attach to our shared-memory class and then
attempt to read from it.

DATA: area TYPE REF TO zcl_es_area_weather com.
TRY.

area = zcl_es_area weather_com=>attach_for read().
CATCH cx_shm_no_active_version.

WAIT UP TO 1 SECONDS.

area = zcl_es_area_weather_com=>attach_for_read().
ENDTRY.
FIELD-SYMBOLS: <{wa_cache> LIKE LINE OF area->root-Yicache.
DATA: 1 _cache LIKE LINE OF area->root-yicache.
READ TABLE area->root->icache ASSIGNING <wa_ cached

WITH KEY w_key = i_key unit = i_unit.

If we found a record, we need to make sure it is not too old. If the record is older

than 15 minutes, we want to ignore it and request new information from
Weather.com.

e_html = <wa_cache>-html.

e _timestamp = <wa_cache>-tstamp.
DATA: 1_tstmp TYPE timestamp.
GET TIME STAMP FIFLD 1 tstmp.
DATA: 1_secs TYPE tzntstmpl.

Mini-Portal

469

470

1_secs = cliabap_tstmp=>subtract(
tetmpl = 1_tstmp
tstmp2 = {wa_cache>-tstamp).

if we were able to find a valid record, then we have our HTML output, and we can
proceed with processing. Otherwise, we need to request the data from
Weather.com, convert it from XML to HTML and then store it away in our shared-
memory class.

METHOD update_cache.
DATA: area TYPE REF TO zcl_es_area_weather_com,
root TYPE REF TO zcl es_shared_mem_weather_com.
****00t a pointer to the Shared Area
TRY.
area = zcl_es_area_weather_com=>attach for update().
CATCH cx_shm_no_active_version.
WAIT UP TO 1 SECONDS.
area = zcl _es_area weather_com=vattach_for_update(J.
ENDTRY .
****Get a pointer to the Root
root ?= area-rget_root().
IF root IS INITIAL.
****Create an instance of our root
CREATE OBJECT root AREA HANDLE area.
ENDIF.
****Delete any old records
DELETE root->icache WHERE w_key = i_key
AND unit = i_unit.
****(Create new records
FIELD-SYMBOLS: <wa_cache> LIKE LINE OF root-»>icache.
APPEND INITIAL LINE TO root->icache ASSIGNING <wa_cache>.
{wa_cache>-w_key = 1_key.

{wa_cache>-unit = i_unit.
{wa_cache>-html = i_html.
{wa_cache>-xml = i_xml.

GET TIME STAMP FIELD <wa_cache>-tstamp.
r_timegtamp = {wa_cachey-tstamp.

**s*xg8at the root back into the Area
area-vget_root(root).

****Commit and detatch
area->detach_commit().

ENDMETHOD .

Breaking Out of the Mold

[EPSR

20 Closing

We have taken a journey through the world of BSp development. We have shared
tips and tricks and insider information for those who may have always wanted to
know what made BSP tick.

As you set out on your own to put what you have learned to good use, you are
not alone. Remember all the code samples and examples from this book are avail-
able on the CD for this book. BSP also has a strong presence on the SAP Devel-
oper's Network. This book would not likely exist without the start that it got
within SDN.

Whenever you have a question about BSP or anything you read about in this
book, a great place to go would be SDN. You can find unigue code samples, over
200 weblogs, and a BSP forum with over 2,000 questions and 12,000 individual
postings. Chances are very good that you will find somecne on the BSP forum just
about any day of the year that can help you out. Whether your answer comes
from Raja, Craig, Maximilian, Rainer, Thomas R., Eddy or any of the other fre-
quent contributors, you can be sure you are in good hands.

Closing g71

B el

A Appendix—BSP Utility Cilasses

There are many classes that can play important roles during BSP
development. Unfortunately, many of these are not documented to
their fullest potential. In this appendix, we list many of the more
useful classes and briefly describe their uses.

This appendix offers a collection of many of the useful classes related to BSP
development. It should not be treated as a replacement for online help. It is
merely a starting point for further research.

IF_BSP_RUNTIME

This class represents the BSP runtime itself, so naturally there are many useful
methods in it. Most are instance methods, but it is not too difficult to get a refer-
ence to the runtime object from MVC, Pages, or BSP Extensions.

CONSTRUCT_BSP_URL: This is a static method for building the full URL given the
BSP application name (and other optional parameters).

GET_OTR_TEXT: Have you ever wanted to read a particular OTR text programmat-
ically? This is the method for doing that. Give it the alias and it wiil return the text
string back to you. Details on OTR can be found in Chapter 15.

WITH_ACCESSIBILITY and SET_ACCESSIBILITY: These methods allow you read
the status of or set the accessibility flag. This attribute can also be set via URL
parameter: sap-accessibility. The accessibility flag only expresses the wish for
accessibility support. The application itself must contain the additional rendering
logic to handle this case. If the HTMLB libraries are used, accessibility is handled
correctly for the relevant rendered HTML.

WITH_RIGHT TO_LEFT: This is similar to the WITH_ACCESSIBILITY method,
except that it returns the current status of the right-to-left status. This flag (RTL) is
the special setting for languages that read from right to left (such as Hebrew and
Arabic). This flag only has meaning for the HTMLB rendering library. If you have
hand-coded HTML on the page, you have to test this flag and add your own addi-

tional support.
GET_URL: This method returns the URL for the current page.

GET DOMAIN_RELAX_SCRIPT: Have you ever had to include the domain-relaxa-
tion script in your page? This is the method that will write that script into the page

Appendix—BSP Utility Classes

473

for you. Most often you see it included directly in a page or View just like the fol-
lowing:

<%= runtime->GET_DOMAIN_RELAX_SCRIPT() %>

GET URL_SAME_SESSION, GET_URL_STATELESS, and GET_URL_NEW_SESSION:
These methods generate URLs for BSP applications that either will run in the same
session as the current application, either statelessly or statefully but in a new ses-
sion. The difference between these three methods only makes sense when the
session id is transported via URL. This is true if the application is called with the
parameter sap-syscmd=nocookie, or if it is called from the portal.

CL_BSP_UTILITY

All the methods in this class are public and static and obviously designed to be

reusable utilities.

CREATE,_REWRITE_URL: This method will recreate the input URL adding in a list of
URI parameters. Most developers will probably find CL_BSP_RUNTIME, method
CONSTRUCT_BSP_URL more useful.

DOWNLOAD: This method has all the coding you need to download a binary string
or content from an internal table into a HTTP response object. We have seen this
same coding used in examples to download Excel files. By using this method, you
could avoid having to set all the response header fields yourself. The following
simple little example from an OnInitialization event of the BSP page shows
the downloading of records from SFLIGHT as Unicode tab-delimited.

DATA: flights TYPE flighttab,
flight LIKE LINE OF flights,
output TYPE string,
app_type TYPE string,
1_xstring TYPE xstring.
CONSTANTS :
crlf TYPE string VALUE
c1Vabap_char*utilities=>cr_lf,
tab TYPE string VALUE
cl_abap‘char_utilities=>horizontalvtab.
SELECT * FROM sflight INTO TABLE flights UP TO 20 ROWS.
LOOP AT flights INTO flight.

CONCATENATE output flight-carrid tab ...

crlf INTO output.
ENDLOOP.

474 Appendix—BSP Utility Classes

app_type = 'APPLICATION/MSEXCEL;charset=utf-lgle’
CALL FUNCTION 'SCMS_STRING_TO_XSTRING'
EXPORTING text = output
mimetype = 'APPLICATION/MSEXCEL:charset=utf-16le’
IMPORTING buffer = 1 _xstring.
* Add the Byte Order Mark - UTF-16 Little Endian
CONCATENATE c¢l_abap_char_utilities=>byte_order mark little
1 xstring INTO 1l_xstring IN BYTE MODE.
CALL METHOD cl bsp utility=>download
EXPORTING object_s = 1_xstring
content_type = app_type
content_disposition = 'attachment;filename=webforms.xls’
response = regponse

navigation = navigation.
CHANGE_URL: This method merges a full and a relative URL.

original URL = '/a/b/c.htm’
relative URL t../d/e.htm'
results "/a/d/e.htm'

il

INSTANTIATE _DATA and INSTANTIATE SIMPLE_DATA: These methods are used
to take a HTTP form field and create an ABAP data object to hold the correspond-

ing data. These methods are better left to their higher- level consumers (CL_BSP_

MODEL, CL_HTMLB_EVENT_ TABLEVIEW, and CL_HTMLB_MANAGER). But if you want
a nice example of how they work, have a look at CL_HTMLB_MANAGER, method
GET_SIMPLE_DATA.

SERIALIZE_DATA: This method is the opposite of the two we just looked at. It
takes an ABAP data object and writes it into a HTML form field. Its best example
can be found in CL_BSP_NAVIGATION, method SET PARAMETER.

MAKE_STRING: This method takes any of ABAP's various data types and turns it
into an output string. It has very similar functionality to the page->to_string()
method. The main difference is that MAKE_STRING throws exceptions instead of
issuing page messages (1f_bsp_page~messages->add_message).

GET_TAGLIBS: This method will scan BSP source code and report back on BSP
Extension Libraries being used. This method is probably nothing more than a curi-
osity to the average BSP developer. This would probably only be useful if you are
interested in dynamically generating BSP pages via CL_BSP_API_GENERATE.

Appendix—BSP Utility Classes

475

e

i

2 e

el s

DATE_TO_STRING _HTTP: This method will take an ABAP timestamp and convert it
to the HTTP header format. The use of this method comes right from the method
SET_BROWSER_CACHE.

DATA: ts TYPE timestamp,

tz TYPE timezone VALUE 'UTC’
GET TIME STAMP FIELD ts.
tg = cl_abap_tstmp=>add(tstmp = ts secs = max_age).
CONVERT TIME STAMP ts TIME ZONE tz

INTO DATE 1 _date TIME 1 _uzeit.

time rel(8) = 1_date.
time_rel+8(6) = 1_uzeit.
exp_value = cl_bsp,utility=>date‘togstringghttp(time_rel).

CREATE_ PUBLTC_URL: Give this method a BSP application and page name, and it
will create a full URL for it. This method also adds the current language as a URI

parameter.

SET_BROWSER_CACHE: This method allows you to set the expiration for the
browser cache. You can see an example in CL_BSP_CONTEXT, method SET_

CACHING.

UPLOAD: This method is the opposite of the earlier DOWNLOAD method. In this case,
however, you could always use the (htmlb:fileUpload> and the CL_HTMLB_
MANAGER=>GET_DATA to read the content. However this method would be useful
if you were not using the HTMLB libraries.

ENCODE_STRING: This very helpful utility allows you to encode a string for use
(RAW, URL, HTML, WML, or JavaScript) inside other elements. in the following
example, we take an OTR string that happened to contain an apostrophe (test
encoding: it's a nice day) and encoded it for safe use in JavaScript.

{script>
(% data: otr_string type string.
otr string = page-»OTR_TRIM('$TMP/mytext'). %>
alert ("= cl bsp_utility=>encode_string(in = otr_string
encoding = if_bsp_writer=rco_javascript Y. %"

{/scripty

CL_HTTP_UTILITY

CL_HTTP UTILITY is another helpful utility class to use with all public static
methods. As we go through it, you will see that many of the methods are very
similar to those in CL_BSP_UTITLITY. It is heavily focused on encoding, decod-

476 Appendix—BSP Utility Classes

ing, and escaping strings. If you look at the coding, most of these methods are just
wrappers for kernel calls (for faster performance).

DECODE_BASEG64 and ENCODE_BASE64: As their names imply, these two methods
decode/encode a string to Base64. There is an example of SAP's use of both
methods in the class CL. BSP_VHELP_CONTROLLER.

ESCAPE_HTML, ESCAPE_URL, and ESCAPE_WML: These methods provide the same
functionality as CL_BSP_UTILITY=>ENCODE_STRING. In fact if you look at the
coding of ENCODE_STRING, it just has calls to these methods. However you might
prefer the ENCODE_STRING method because it is more concise and also has the
JavaScript encoding, which we do not have in this class.

UNESCAPE_URL: It is logical that if you have methods to escape a sequence, you
also should have a method to undo that escaping. That is the role this method

plays.
STRING_TO_FIELDS and FIELDS_TO_STRING: These methods are used to put
field information into the URL. If you want to decode a BSP URL, you can always

use the ABAP Program BSP_DECODE_URL. It is the perfect example of how to use
these methods.

REWRITE_URL: This method is used to take input form fields and write them into
the URL. This method, combined with FIELDS_TO_STRING, is what SAP uses to
encode fields like client, logon language, etc. and put them into the URL.

CL_HTMLB_MANAGER

This is a very important class when working with events in BSP extension libraries.
See Chapters 9 and 11 for more details on the use of this class.

CL_HTTP_SERVER

For the most part, we are only interested in the static methods within this class.
This class represents the HTTP server itself. You will find this object as one of many
public attributes in a controller class. These static methods have many uses. Once
again we can find many redundant functions between this cfass and the ones we
have already seen.

APPEND_FIELD_URL: This is a very helpful method that allows you to set or
change any of SAP’s special URL attributes, such as sap-language, sap-theme,
etc. These attributes are listed in Section 4.4.

CALL METHOD cl_http server=>append_field url
EXPORTING name = 'sap-language’

value = g gpras

Appendix—BSP Utility Classes

477

CHANGING url = url.

navigation-vexit(url).

GET_LOCATION and GET LOCATION_EXCEPTION: These two methods return
information, such as host name and port, for a given protocol.

GET_LOCATTION_EXCEPTION will make a lookup in the HTTPURLLOC table to see
how URLs should be generated in cases where external proxies are in use. For a
detailed description of this relatively new development, see SAP Note 871004,
"Use of HTTPURLLOC Table for Generating SE80 URLs". GET_LOCATION is the rec-
ommended method to use. It will first look up exception information, and, if
none is available, return the current system information for URL generation.

Note We recommend that you never explicitly supply a 'protoc’ol as in param- 3
eter, but to rather accept the returned protocol. This also allows the code to
work correctly in cases where orily HTTPS is configured, -or in scenarios where:j
HTTPS in used from the browser to the proxy and HTTP is used from the proxy
to the server (and an HTTPS URL is then required for the browser). - R

CREATE_ABS_URL and CREATE_REL_URL: These two methods are useful when
assembling absolute or relative URLs. Perhaps you only know the path you want
to link to, but you need an absolute URL. That is where CREATE_ABS_URL comes
in. It accepts PROTOCOL, HOST, PORT, PATH, and QUERYSTRING as input parame-
ters. These are all optional parameters, so the method can fill in the protocol,
host, and port for you.

CL_BSP_SERVICES

This class has many static public methods. Most of the methods here provide data
dictionary services, such as labels and help values. These methods are especially
useful, though, because they work off a direct data reference.

GET_FIELD_LABEL and GET_QUICKINFO: These methods read the label or quick
info for a given data reference from the data dictionary. The quick info will return
the 60-character short text description of a field. The GET_FIELD_LABEL will ana-
lyze the size to give either the small, medium, or large label from the data dictio-

nary.

DATA: mandtl TYPE symandt.

DATA: labell TYPE string.

DATA: data_ref TYPE REF TO data.

GET REFERENCE OF mandtl INTO data_ref.

CALL METHOD cl_bsp_services=>get_field_label

478 Appendix—BSP Utility Classes

EXPORTING data_object_ref = data_ref
RECEIVING label = labell.
WRITE:/ labell.

GET_SIMPLE_HELPVALUES and GET_SIMPLE_HELPVALUES?2: These methods are
similar to the first two in that they import a data-object reference. However, these
methods return a set of help values. These methods are great for returning a small
set of configuration codes for a data dictionary field. The main difference between
the two is that HELVALUES? returns the key, value, and maximum value. BELPVA -
LUES only returns the key and value. In the example below, we dynamically get
field values for a field (described via just the field name).

DATA: DATA REF TYPE string.

data_ref = 'SYMANDT'.

DATA: field TYPE REF TO data.

DATA: helpl TYPE SHSVALTAB.

CREATE DATA field TYPE (me->data_ref).

CALL METHOD cl bsp services=>if bsp_services~get_simple_helpvalues
EXPORTING data_object_ref = field
CHANGING helpvalue tab = helpl.

GET_HISTORY IDand GET_LOCAL_HISTORY ID: Both of these methods are used
to generate history ids. They fetch the ABAP parameter id that is attached to a
field in the data dictionary. it is then formatted as such: sap .mat for field MATNR.

GET_DAY_COLLECTION and GET_MONTH_COLLECTION: These are nice little utility
methods for returning the abbreviations and names of the days of the week and
months respectively.

GET_TABL_INFO: This method, given a data reference to an internal table, will
return the structural information about it. The functions of this method are also
provided by the Runtime Type Services (RTTS) classes.

CL_BSP_APPLICATION

If you declare an application class for your BSP application, you are going to want
to implement the IF_BSP_APPLICATION interface and thereby inherit the func-
tionality of the CL_BSP_APPLICATION class. Most of the methods are very
straightforward and allow your BSP application to query information about itself
at runtime.

GET_APPLICATION NAME, GET_APPLICATION_NAMESPACE, GET APPLICATION_
START_PAGE, GET_APPLICATION_THEME and GET_APPLICATION_URL: These
methods allow you to read application settings at runtime.

Appendix— BSP Utility Classes

479

480

GET_REQUEST, GET_RESPONSE and GET_RUNTIME: These methods give you point-
ers to the corresponding objects (Request — IF_HTTP_REQUEST, Response — IF_
HTTP_RESPONSE, and the BSP runtime — IF_BSP_RUNTIME).

GET_TIMEOUT and SET_TIMEQUT: For stateful applications, this allows you to read
or set the timeout measured in seconds.

IS_STATEFUL and SET_STATEFUL: These methods will query whether your appli-
cation is running statefully or dynamically switch its stateful status.

IF_HTTP_REQUEST

This is the class that represents the request data object coming from the HTTP cli-
ent. Most of the important methods in this class are going to involve reading from
this request object.

IF_HTTP_RESPONSE

The counterpart to the HTTP request object, this class represents the HTTP
response object. Most often we work with the response object when we want to
set certain header fields (most common when downloading data; see CL_BSP_
UTTLITY=>DOWNLOAD). Note that both the RESPONSE and REQUEST objects have
methods for manipulating cookies at the client side.

IF_BSP_NAVIGATION
Just like its name suggests, this class represents the navigation object. It is con-
cerned with navigation from page to page and application to application. Most of
the methods are self-explanatory. You have methods such as EXIT, GOTO_PAGE,
NEXT_PACE, SET_PARAMETER, and RESPONSE_COMPLETE.

CL_BSP_PAGE

This class represents the page object itself. As you look through the methods in
this class, most of which are inherited from IF_BSP_PAGE, you will see that many
of them are duplicates of those within CL_BSP_APPLICATION.

GET_APPLICATION_NAME, GET_APPLICATION NAMESPACE, GET_APPLICATION_
START_PAGE, GET_APPLICATION _THEME and GET_APPLICATION_URL: These
methods allow you to read application settings at runtime.

GET_REQUEST, GET_RESPONSE and GET_RUNTIME: These methods give you point-
ers to the corresponding objects (Request — IF_HTTP_REQUEST, Response — IF_
HTTP_RESPONSE, and the BSP runtime - IF_BSP_RUNTIME).

Appendix —BSP Utility Classes

OTR_TRIM: This is another method that will read OTR texts. It is similar to CL_
BSP_RUNTIME=>GET_OTR_TEXT.

GET_PAGE_NAME and GET_PAGE_URL: These methods read the name or URL of a
page at runtime.

TO_STRING: This nice little method will take a field of any data type and write it
out as a string. This is especially useful for outputting dates, times, currency
amounts, etc.

CL_BCS

Although not unique to BSP, sending emails is a normal requested activity that
many BSP developers encounter. The Business Communication Service (BCS)
classes provide a simple method for sending emails from ABAP,

CL_BSP_SERVER_SIDE_COOKIE

This is the class that provides the interface to the server-side cookie mechanism
with BSP. Section 13.5 contains an example of the use of this class to store a
mode!-class state from a stateless application.

IF_MR_API

Sometime people would like to access data from or write data to the MIME
Repository. For this there is an excellent AP| called IF_MR_APT that can be instan-
tiated via the class CL_MIME_REPOSITORY_API. This avoids having to interact
directly with LOIOs.

CL_HTTP_EXT_BASE_HANDLER

This class provides an excellent starting point for creating your own HTTP handler
classes. For more detalls, see Chapter 3.

IF_HTTP_HEADER_FIELDS and IF_HTTP_FORAM_FIELDS

I¥_HTTP_HEADER_FIELDS/IF _HTTP_HEADER FIELDS SAP and IF_HTTP_FORM_
FIELDS/IF_HTTP_FORM FIELDS_SAP contain constant strings of all header/form
fields that you regularly use. The use of constants from this interface prevents typ-
ing mistakes like "Content_Disposition" (that should have been spelled with a
hyphen). Typical examples:

request-rget header field(if_http_header_ fields=dhost).
response-’set_header_field(

= 1if_http_header_fields=>content_type
value = 'text/html').

name

Appendix—BSP Utility Classes

481

B The Authors

Brian McKellar is Development Architect for BSP and Web
Dynpro ABAP at SAP in Walldorf. The past five years he has
2} worked on the development of first BSP, and slowly moved
-4 over to Web Dynpro. He knows the complete BSP runtime
% better than the back of his hand, having worked on the
development of large parts of it. Also, from handling prob-
lem tickets of years, there is not a problem within the BSP
field which he has not seen at least once. Brian is also very
§ active in SDN, and regularly contributes with technical
weblogs on BSP.

" Thomas Jung is an applications developer for the Kimball
Electronics Group. He has been involved in SAP implemen-
_ tations at Kimball as an ABAP Developer since 1996. He has
done some work in the Microsoft world with VB and .NET
Development, but his first love remains as always: ABAP.

For the past several years, Tom has been involved in the use
of BSP Development at Kimball and more recently the
introduction of ABAP Web Services for critical interfaces.
Tom also holds the Chair position for the Web Technologies
Special Interest Group within ASUG (Americas' SAP Users' Group). In 2004 and
2005, Tom won the award for overall top contributor to SDN.

This book was born of the Business Server
WSAP DEVELOPER NETWORK Pages (BSP) community on the SAP Devel-
’ oper Network (SDN). SDN is where ABAP,
Java, .NET, and other cutting-edge technologies converge, forming the premier
technical resource and collaboration channel for SAP developers, consultants,
integrators, and business analysts. Authors Thomas Jung and Brian McKellar, both
longtime SDN members and contributors, met on SDN. As virtual collaborators
(Thomas and Brian have never met, or even spoken to one another), the two
authors used content and ideas originally published in their respective SDN blogs
as the foundation of this excellent book. Advanced BSP Programming is a testi-
mony to the strength and innovative spirit of the SDN community. Be a part of it
at http.//sdn.sap.com.

The Authors

483

Sty

Index

<bee:html> 214
<bsp:bee> 205, 290
<bsp:call> 283
<bsp:findAndReplace> 268, 395
<bsp:htmlbEvent> 243, 269
<bsp:parameter> 432
<bsp:portalEvent> 271
<bsp:portalNavigationAbsolute> 272
<bsp:portalNavigation Relative> 272,
273
<bsp:portalNavigationToObject> 272,
273
<bsp:root> 214
<btf.editor> 257, 343
<graphics:chart> 261, 262, 266
<graphics:custom> 266
<graphics:data> 262, 264, 266
<graphics:nativexml> 262
<htmlb:breadCrumb> 238
<htmlb:button> 202, 231, 244
<htmlb:content> 174, 395, 408
<htmlb:document> 178
<htmlb:documentBody> 178
<htmlb:documentHead> 178
<htmlb:dropDownListBox> 175, 223,
322,338
<htmib:fileUpload> 180
<htmlb:form> 179, 197, 241, 360
<htmlb:gridLayout> 194, 200
<htmib:gridLayoutCell> 195
<htmib:group> 248
<htmlb:headinclude> 178
<htmlb:image> 206
<html!biinputField> 206, 322, 323, 351,
353
<htmlb:inputField> as BEE 208
<htmlb:label> 308, 312, 338, 351
<htmib:listBox> 323
<htmlb:page> 177
<htmlb:tableView> 187, 205, 206, 215,
322, 422, 443
<htmlb:tableViewColumn> 189
<htmib:tabieViewColumns> 189
<htmlb:textView> 223
<htmlb:tray> 337, 434, 461, 468

<htmlb:tree> 192
<htmlb:treeNode> 192
<phtmlb:comboBox> 417, 419
<phtmib:containerContentitem> 199
<phtmlb:containerTabStrip> 197
<phtmlb:containerTabStripitem> 199
<phtmib:formattedText> 455
<phtmlb:formLayout> 200, 298
<phtmlb:formlLayoutCheckBox> 202
<phtmlb:formlLayoutDropDown-
ListBox> 202
<phtmlb:formLayoutinputField> 202
<phtmlb:formLayoutitem> 202
<phtmib:formLayoutTextEdit> 202
<phtmlb:formLayoutX> 202
<phtmlb:matrix> 194, 200, 290, 463
<phtmlb:matrixCell> 195, 239
<phtmlb:popupMenu> 198, 323, 331,
374
<xhtmlb:buttonGroup> 180, 182, 185
<xhtmlb:pager> 191
<xhtmlb:protectDoubleSubmit> 196,
240
<xhtmlb:toolbar> 326
<xhtmib:toolbarButton> 327
1x1 URL 127

A

ABAP Class Builder 278

ABAP Kernel 15

ABAP Look-and-Feel Service, ALFS
398

ABAP Workbench 15, 25

ABAP XML APl 453

Accept, HTTP request header 35

Accept-Encoding, HTTP request
header 36

Accept-Language, HTTP request
header 36

accessibility flag 473

ActiveX 358, 449

Adobe Forms 423

ALFS 398
integration to Web AS 402
source code 404

Index

485

486

alias handling 74

alias texts 347

ALV Grid 187, 367, 422, 424

ALV Grid Field Catalog 217

anonymous service 108

applets 133

authentication 97, 137
anonymous service 108
basic 98, 113
form-based 109
logon application 1M
SSO 114

Authorization, HTTP request header
36

B
Base64 100, 477
basic authentication 98
cancelled 100
de-authentication 113
BEE 205, 253
creating own 227
element content 230
error handling 215
for Excel download 374
help function 31
HTML 209
table 2m
user-defined validation 228
XML 212
Big Endian 342
binary string 370, 474
breakpoint 29
browser cache, expiration 476
browser rendering time 157
BSP Application Event 144
BSP element
composite 231
inner data 238
processing 233
processing flow 233
writing a composite 237
BSP Element Expressions 205
BSP Extension Element
help function 31
BSP Extension Framework 227
BSP extensions 16, 167, 253
designs 172

Index

element 186
extension framework 168
library 268
technology 168
using 168
BSP extensions event 239
BSP library 268
BSPs, interaction with SAP GUI 144
BTF 253,343
BTF content 258
BTF document 258
BTF editor 253
BSP extension element 256
database storage 255
functionality 254
toolbar 254
Unicode 255
Business Communication Service
(BCS) 481
Business Server Pages (BSP) 15
Business Text Framework (BTF) 253
Byte Order Mark (BOM) 342, 369, 371

C

category, 1GS 263

certificate
de-authentication 114
digital 105

chart data 262

chart designer 267

chart model class 264

checkbox 48

CL_BCS 481

CL_BSP_APPLICATION 479

CL_BSP_ELEMENT 227

CL_BSP_PAGE 480

CL_BSP_RUNTIME 474

CL_BSP_SERVER_SIDE_COOKIE 481

CL_BSP_SERVICES 478

CL_BSP_UTILITY 474

CL_HTMLB_MANAGER 477

CL_HTTP_EXT_BASE_HANDLER 481

CL_HTTP_SERVER 477

CL_HTTP_UTILITY 476

CLASSIC 172

compiler 27

component 282

s i

SN P

composite element 231
event handling 244
using 245
composition 231
Connection, HTTP request header 36
Content-Length, HTTP response
header 38
Content-Type, HTTP response header
38
Control Framework 253
controller 277
eventing 281
methods 278
model lifetime 280
medifications 293
sub- 282
cookie 54
basic authentication 102
SSO 102
5502 91
Cookie, HTTP request header 36
credentials g7
CSS file 395
customization 395

D
data manipulation 366
data point, I1GS 263
data-handling 249
date format 352
DDIC_UTILS 351
de-authentication 113
debugger 29
DEC VAX 342
decode_url 83
design pattern 275
DESIGN2002 172
DESIGN2003 172
development environment 25
DIAG protocol 136
digital certificates 105
dirty indicator 272
document handling 355
display in new window 366
display inline 361
display inside HTML 363
Excel 368
non-HTML 358

download 49
dropdown list box 48
Dynpro 133, 187, 253, 288, 322

E
element class 312
element ID 246
Employee Self Services (ESS) 295
Enterprise Core Component 5.00 16
Enterprise Portal Client Framework
(EPCF) 27
error handling 72
error pages 408
event
handling in composite elements 244
handling incoming 243
handling manually 181
rendering 240
rendering via <bsp
htmlbEvent> 243
event dispatching 180
IF_HTMLB_EVENTS 183
onClick 185
event-handling 250
image click 267
eventing 281
Excel 355, 474
interactive 449
Excel download 367
Excel Unicode text file 369
Extensibie Stylesheet Language Trans-
formations (XSLT) 456
extension framework 168

F
F1help 307
controller method 318
model 318
4 help 322
field help 307
field history 417, 419
field label 351
Flash 358
flow logic 16
form-based authentication 109, 11
FQDN 89
browser requirements g1
Fully Qualified Domain Names 89

Index

487

488

G

GET 43
GET_COLUMN_DEFINITIONS 218
get_cookie 57

getter method 286

GUID 364

GZip 392

H

HANDLE_REQUEST 72, 86

handler class 70

help Ul 307

Host, HTTP request header 36

HTML 31
mapping onto HTTP 46

HTML BEE 209

HTML forms 41

HTML Viewer 133, 142, 309

HTMLEB 26, 168, 172, 174
event system 180

HTMLB event manager 244, 271

HTMLB event system 240

HTMLB manager 247, 250

HTTP 21, 31, 97
Header/Body Separator 37
redirect 58
request 34
request body 37
request headers 35
request status line 35
response 34
response body 39
response headers 38
response status line 37
return codes 37
structure 32

HTTP cache 363

HTTP form field 475

HTTP handier 67

HTTP proxy 32

HTTP server 477

HTTP trace tool 153

|
|CF tree 67

|CM File Handler 357, 389
|D 246

Index

IF_BSP_APPLICATION_EVENTS g,
123
|F_BSP_BEE 205
|F_BSP_ELEMENT 227
|F_BSP_MODEL_SETTER_GETTER 286
|F_BSP_NAVIGATION 480
IF_BSP_RUNTIME 473
IF_HTMLB_DATA 182
IF_HTMLB_EVENTS 183
|[F_HTTP_EXTENSION 69, 86
|F_HTTP_FORM_FIELDS 481
IF_HTTP_HEADER_FIELDS 72, 481
IF_HTTP_HEADER_FIELDS_SAP 72
[F_HTTP_REQUEST 40, 480
IF_HTTP_RESPONSE 40, 480
|F_HTTP_SERVER 119
IF_MR_AP! 481
I[F_PHTMLB_EVENTS 184
[F_XHTMLB_EVENTS 184
|Frame 323, 426
|GS 260
BSP extension 261
chart data 262
chart designer 267
customizing 266
image 355
image click 267
image conversion 268
images 69
input field 46
input help 325
Intel X86 342
internationalization 337
Internet Communication Framework
(ICF) 24, 67, 97, 156, 409
Internet Communication Manager
(ICM) 21, 97, 115, 152, 357
Configuration 91
Internet Graphics Service (1G5) 260
Internet mail extensions (MEs) 276
Internet Transaction Server (ITS) 260
invalid URL 64

J
Java applets 133
JavaScript libraries 319

il

L

List processing 423

Little Endian 342, 369, 371

load testing 161

toad-balancing 115

logon application 110, 412

logon errors 412

logon language 338
switch 341

long texts 347

M
mangling 83
Microsoft Office 449
Microsoft Qutlook Web Access 463
MIME objects
direct import 356
inline 357
MIME repository 30, 355, 481
alternatives 389
MIME repository browser 356
MIME type setting 343
Mini-Portal 458, 460
within SAP GUI 464
missing resource 62
model 276
lifetime 280
serialized 293
model binding 284
dynamic 288
model view binding 308
Model View Controller (MVC) 16, 184,
275, 417
Motorola 68000 342
Multi Display Multi Processing
(MDMP) 343
multiple language support 337
MVC 275, 417
application structure 275
controller 277
model 276
pattern engine 295, 301
stateless 291
view 283
mySAP ERP 2005 16
MYSAPSSO2 110, 114, 151
MYSAPSSO2 cookie 102

N

namespace mapping 92
network latency ‘54
non-secure warnings 63

o

Office integration 367

Office Web Components (OWC) 449

onClick 182

onHeaderClick 188

oninputProcessing 124, 181

Online Text Repository (OTR) 346,
473, 476, 481

OWC control 450

P
Parameters 429
pattern engine 295, 301, 417
PDF 355, 358, 422
pending timeout 128
performance 65, 151
browser rendering time 157
runtime analysis 159
server processing time 155
SQL trace 165
statistical record 157
test 152
personalization 468
PHTMLB 16, 26, 172
pictures 358
ping 154
portal eventing 271
portal integration 270
portal navigation 272
POST 43
printing 422
dialog 426
PRINT method coding 424
PRINT method interface 423
processing timeout 121
PTHMLB 173

Q
Quick Info 351
quick sizing 153

Index

489

4950

R

R/3 337

R/3 Document Management System
390

R/3 Enterprise 16

radio button 48

RDF site summary (RSS) 451

rdisp/no_statistic 156

rdisp/plugin_auto_logout 129

redirect 58

Referer, HTTP request header 37

relative URL 63

RENDER_CELL_START 222

render_event_call 241

RENDER_ROW_START 220

Repository Browser 169

resource caching 60

restart 123

RFC destination maintenance 260

right to left (RTL) rendering 176, 473

RSHTTPO1 452

RSS feed 451

RSSTATISTIC 156

runtime 28

runtime analysis 159

Runtime Type information (RTTI) 329,
437

Runtime Type Services (RTTS) 289, 317,
440, 479

S

SAP Content and Cache Server 390

SAP Enterprise Portal 174, 270, 395,
458

SAP GUI 133, 464
interaction with BSPs 144

SAP GUI event 147

SAP GUJ session 115

SAP Internet Transaction Server (ITS)
15

SAP NetWeaver 16

SAP Unified Framework 461

SAPEVENT 144

sap-language 338

SAPMHTTFP 157

SAPscript 253, 309

Select-Options 429

series, |GS 263

Index

server cookie storage 292

server processing time 155

server runtime measurement 156

Server, HTTP response header 38

server-side printing 422

session 138

session ID 116

session identification 115

session management 115
browser-based 125

session timeout 118
in browser 120

set_cookie 56

setter method 286

shared-memory class 469

Single Sign-On (5SO) 91, 102, 110, 137,
151, 338
de-authentication 114

small loader page 143

Smalltatk 275

SmartForms 423

SPARC 342

SQL trace 165

SS0O2 cookie 91

statistical record 157

stress testing 161

subcontroller 282

SVG 358

system logon 412

sy-uname 105

T
Table BEE 211
table query handler 78
table view iterator 215, 217, 422
Tag Browser 169
TCP/IP 21, 115, 136
testing 152, 161
text editor 253
Theme Editor 397
theme export 396
theme root 406

white list 406
timeout 118

pending 128
timestamp 476
transaction

DWDM 133

oo B o b sl 6 s o

R

-

RZ11 118
SE16 406, 410, 442
SE30 159
SE38 156
SE63 350
SE80 25,166, 232, 355
SICF 24, 74, 108, 118, 129, 159, 338,
405, 410
SMo4 15, 124
SM30 105, 204
SM5E9 260, 344
SMICM 23, 121
ST22 38, 458
STRUST 105
SUo1 340
SU3 460
translation 349
Translation Workbench 350
Transport Management System (TMS)
15
troubleshooting 62

u
Unicode 255, 338, 341, 369, 474
and Excel 369
in BSP 343
Unified Renderer 174, 396
upload 49
URL 83
1x1 127
detach in browser 149
URL escaping 95

URL mangling 83, 161

URL mapping 68

URL parameter 93

URL syntax 71

User-Agent, HTTP request header 37
UTF-X 342, 369, 371

utility classes 473

Vv

value help 307, 322
view 283

Visual Composer 174

w

weather display 466

Web Application Stress Tool 161, 162
Web Dynpro 174, 319

Web Dynpro ABAP 16

Window Open Behavior 139
WorkProtect 272

X

X.509 certificate 105
XHTMLB 26, 172, 173
XML BEE 212

XML serialization 291
XMLGROUP 31
XSLT 8o

z

ZIP 355
ZIP tool 392

Index

491

	Contents

	Introduction
	Target Audience
	On What Releases Can You Use BSP?
	BSP vs. Web Dynpro ABAP
	Aclmowledgements

	1 What is BSP?

	1.1 Internet Communication Manager
	1.2 Internet Communication Framework

	1.3
 BSP Development Environment
	1.4 HTMLB
 Rendering Family
	1.5 BSP Compiler
	1.6 BSP Runtime
	1.7 BSP Debugger
	1.8 MIME Repository
	1.9 Summary

	2 HTTP and HTML
	2.1 Viewing the HTTP Traffic
	2.2 Structure of HTTP
	2.2.1 The HTTP Request Status Line
	2.2.2 HTTP Request Headers
	2.2.3 HlTP Header/Body Separator
	2.2.4 HlTP Request Body
	2.2.5 The HlTP Response Status Line
	2.2.6 HTTP Response Headers
	2.2.7 HTTP Response Body

	2.3
 Server Objects for HTTP Request and Response
	2.4 HTML Forms and Data Handling
	2.5 Mapping of HTML onto HTIP Requests
	2.5.1 Input Fields
	2.5.2 Checkboxes, Radio Buttons and Dropdown List Boxes
	2.5.3 File Upload and Download

	2.6 Cookies
	2.7 HTTP Redirects
	2.8 Handling of HTML Resources in HTTP
	2.9 Troubleshooting Examples
	2.9.1 Missing Resource
	2.9.2 Non-Secure Warnings
	2.9.3 Relative URLs That Become Invalid
	2.9-4 Estimating Performance

	3 HTTP Handler
	3.1 URL Handling in the leF Tree
	3.2 URL Mapping
	3.3 Sample Handler for Reading Images
	3-3.1 URL Syntax
	3.3.2 Handler Coding

	3.4 Alias Handling
	3.5 Handler Example-Table Query
	3.5.1 Table Query Handler Implementation

	4 URLs in BSP

	4.1 URL Mangling
	4.1.1 What is URL Mangling?
	4.1.2 How is URL Mangling Done?
	4.1.3 Attempting to Hide the URL Mangling

	4.2
 Fully Qualified Domain Names
	4.2.1 Motivation for FQDN
	4.2.2 ICM Configuration
	4.2.3 Browser Requirements

	4.3 Namespace Mapping
	4.4 URL Parameters
	4.5 URL Escaping

	5 Authentication
	5.1 Basic Authentication
	5.2 Single Sign-On
	5.3 Digital Certificates
	5.4 Anonymous Services
	5.5 Form-Based Authentication
	5.6 Implementing a Simple Logon Application
	5.7 De-Authentication

	6 Session Management
	6.1 Session Identification
	6.2 Session Timeout
	6.2.1 Catching and Handling a Session Timeout
	6.2.2 Session Timeout in Browser

	6.3 Confusion with Processing Timeout
	6.4 Catching and Handling a Restart after Timeout
	6.5 Session Management from the Browser
	6.6 Warning the User of a Pending Timeout
	6.7 Summary

	7 Using BSP
 Applications in SAP GUI
	7.1 Using a BSP Application in a Dynpro
	7.2 Pitfalls when Using BSP Applications withSAP GUI
	7.2.1 Communication Path
	7.2 .2 The Second Authentication
	7.2.3 The Second Session
	7.2.4 Window Open Behavior
	7.2.5 Effects of SAP's New Visual Design
	7.2.6 Loading HTML Pages Directly

	7.3 Interaction between SAP GUI and BSPApplications
	7.3.1 BSP Application Event to SAP CUI
	7.3.2 SAP GUI
 Event to BSP Application

	7.4 Starting a New Browser Outside the SAP GUI

	8 Performance Measurements
	8.1 Test Applications
	8.2 Quick Sizing with HTTP Trace Tool
	8.3 Network
 Latency
	8.4 Server Processing Time
	8.5 Browser Rendering Time
	8.6 Determining Hotspots
	8.7 Load Testing
	8.8 SQL Traces

	9 BSP Extensions
	9.1 Extension Overview
	9.1.1 Extension Technology
	9.1.2 Using SSP Extensions
	9.1.3 Finding Details about the Extensions
	9.1.4 Available Extensions
	9.1.5 Extensions Designs
	9.1.6 High Level Elements

	9.2 HTMLB Event System
	9.2.1 Event Dispatching
	9.2.2 Manually Handling Events

	9.3
 Common Extension Elements
	9.3.1 <htmlb:tableView>
	9.3.2 <htmlb:tree>
	9.3.3 <phtmlb:matrix>
	9.3.4 <xhtmlb:protectDoubleSubmit>
	9.3.5 <phtmlb:containerTabStrip>
	9.3.6 <phtmlb:formLayout>

	10 BSP
 Element Expressions and Iterators
	10.1 BSP Element Expressions
	10.1.1 What is a BEE?
	10.1.2 N=1, Using Any BSP Element as BEE
	10.1.3 HTML BEE
	10.1.4 Table BEE
	10.1.5 XML BEE

	10.2 Table View Iterators
	10.2.1 What is a Table View Iterator?
	10.2.2 Method GET_COLUMN_DEFINITIONS
	10.2.3 Method RENDER_ROW_START
	10.2.4 Method RENDER_CELL_START
	10.2.5 Finished Output

	11 Creating your own BSP ExtensionElement
	11.1 Creating a BSP Extension Element
	11.1.1 Extension Framework Hierarchy
	11.1.2 User-Defined Validation
	11.1.3 Element Content

	11.2 Writing a Composite Element
	11.2.1 Designing a New Composite Element
	11.2.2 Processing Other SSP Elements
	11.2.3 Writing the Composite asp Element
	11.2.4 Handling of Inner Data SSP Elements

	11.3 A Deeper Loole at BSP Extensions Events
	11.3.1 Introduction to SSP Extension Events
	11.3.2 Rendering Events
	11.3.3 Handling Incoming Events
	11.3.4 Rendering an Event via the <bsp:htmlbEvent> Element

	11.4 Event Handling in Composite Elements
	11.4.1 Extending the Design of the Composite Element
	11.4.2 Using the Composite Element
	11.4.3 Use of IDs
	11.4.4 Integrating into the HTMLB Manager

	11.4.5 Data-Handling
	11.4.6 Event-Handling

	12 Additional SSP Extensions
	12.1 Business Text Framework
	12.1.1 SAP Example
	12.1.2 BTF Functionality
	12.1.3 Database Storage
	12.1.4 BSP Extension Element
	12.1.5
 BlF Editor in the Page Layout
	12.1.6 Preparing the BTF Document
	12.1.7 Retrieving BTF Content on Input

	12.2 Internet Graphics Service
	12.2.1 IGS Setup and Administration
	12.2.2 SAP Examples
	12.2.3 IGS BSP Extension
	12.2.4 Chart Data
	12.2.5 Chart Model Classes
	12.2.6 IGS customizing
	12.2.7 Image Click Event Handling
	12.2.8 Image Conversion

	12.3 BSP
 Library
	12.3.1 findAndReplace Element
	12.3.2 htmlbEvent Element
	12.3.3 Portal Integration

	13 MVC
- Model View Controller
	13.1 MVC Design Paradigm
	13.2 Application Structure
	13.2.1 Model
	13.2.2 Controller
	13.2.3 View
	13.3 Model Binding
	13.3.1 Getter/Setter methods
	13.4 Dynamic Model Binding
	13.5 Stateless MVC
	13.5.1 XML Serialization of ABAP Objects
	13.5.2 Server Cookie storage of the XML stream
	13.5.3 Controller Modifications to Support Serialized Models
	13.6 Building a Pattern Engine with MVC
	13.6.1 The Final ESS Application
	13.6.2 Writing the ESS Application
	13.6.3 Writing the Pattern Engine

	14 Help Systems
	14.1 F1-Field Level Help
	14.1.1 The Help UI
	14.1.2 Implementing the BSP
 Extension Element
	14.1.3 BSP
 Element Properties
	14.1.4 BSP Element Attributes
	14.1.5 Element Handler Class
	14.1.6 BSP F1 Help Controller Method=
DO_REQUEST
	14.1.7 Implementing the BSP F1 Help Application=
Model

	14.2 Dialog Windows
	14.3
 F4-Value Help
	14.3.1 Value Help Requirements
	14.3.2 The Solution
	14.3.3 The New BSP Element
	14.3.4
 Input Help Controller
	14.3.5 Input Help View
	14.3.6 Input Help Model

	15 Internationalization
	15.1 Multiple Language Support
	15.2 Logon Language
	15.3
 Unicode
	15.3.1 What is Unicode?
	15.3.2 Unicode in BSP

	15.4
 Online Text Repository (OTR)
	15.4.1
 Types of OTR: Alias and Long
	15.4.2 Working with OTR from ABAP
 Code
	15.4.3
 Special Note about using OTR

	15.5 Translation
	15.5.1 OTR
	15.5.2
 Field Labels and Quick Info

	15.6 Date Format

	16 Document Handling in SSP
	16.1 MIME Repository
	16.2 lCM
 File Handler
	16.3 Handling Non-HTML Documents
	16.3.1
 Test Program
	16.3.2 Display Document Inline
	16.3.3
 Display Document Inside HTML Page
	16.3.4 Display Document in New Window

	16.4 Data Manipulation
	16.5 Microsoft Excel Download
	16.5.1 Excel Files
	16.5.2 Excel Unicode Text File
	16.5.3 Unicode Formats and Endians with Excel
	16.5.4 Conversion to Binary String
	16.5.5 Addition of the Byte Order Marie

	16.6 Pushing the Excel Content bade through the browser

	16.6.1 Push Using the Current RESPONSE Object
	16.6.2 Push Using a Cached Response

	16.7 BSP
 Extension Element for Excel Download
	16.7.1 The Download Element User Interface
	16.7.2 The Element Properties and Attributes
	16.7.3 Compile Time and Runtime Checks
	16.7.4 Rendering Logic
	16.7.5 Trapping Events
	16.7.6 Calling the Element from a Page Layout
	16.7.7 Event Handler
	16.7.8 Get Structure Definition
	16.7.9 Process Excel Download

	16.8 Alternatives to the MIME Repository
	16.8.1 leM File Handler
	16.8.2 SAP Content and Cache Server

	16.9 ZIP Tool

	17 Customization
	17.1 Customization Overview
	17.2 Export-Modify-Import
	17.3 NetWeaver Theme Editor
	17.4 ALFS-ABAP Look-and-Feel Service
	17.4.1 ALFS Tool Scope
	17.4.2 What is ALFS?
	17.4.3
 How Does Customization Normally Work?
	17.4.4
 A New Theme from Five Colors
	17.4.5 Integration into Web AS
	17.4.6 The Source Code: Making It Work
	17.4.7 ALFS Theme Editor in Detail

	17.5 Configure a Theme Root
	17.6 Theme Root White List
	17.7 Error Pages
	17.7.1 Historical SSP Error Pages
	17.7.2 Error Pages-New Approach

	17.8 Logon Application

	18 Skilled in the Art
	18.1 Field History
	18.1.1 Working with <phtmlb:comboBox>
	18.1.2 Processing the Field History

	18.2 Server-Side Printing
	18.2.1 PRINT Method Interface
	18.2.2 PRINT Method Coding
	18.2.3 Printer Dialog

	18.3 Select-Options/Parameters
	18.3.1 UI Design
	18.3.2 Solution Structure
	18.3.3 Select-Option Controller Class Attributes
	18.3.4 Select-Option Controller Class Coding
	18.3.5 Select-Option Model Class Attributes
	18.3.6 Select-Option Model Class Coding
	18.3.7 Recreating Transaction SE16

	19 Breaking Out of the Mold
	19.1 Interactive Excel
	19.2 RSS Feeds
	19.2.1
 Consuming an RSS Feed
	19.2.2 HTTP Client
	19.2.3 XML
	19.2.4 BSP Output
	19.2.5 XSLT
	19.2.6 Creating an RSS Feed

	19.3 Mini-Portal
	19.3.1 Mini-Portal Example 1-Common Page Header
	19.3.2 Mini-Portal Example 2-Portal with Navigation
	19.3.3 Portal within the SAP GUI

	19.3.4 Current Weather Display

	20 Closing

