

WHATSAPP +255738656506

Copyright(c) 201 by Nixon Vunganai.

 All rights reserved.

Neither this document nor any part of it may be copied or reproduced in any form or by any
means or translated into another language, without the prior consent of Nixon Vunganai. The
information contained in this document is subject to change without notice.

INTRODUCTION 4

AUDIT MANAGEMENT 5

QUESTION LIST 5
Structure of List of Questions 5
Valuation Specifications 5
Priorities 6
CONTROL 6

Audit Components: Properties, Forms 6
Define Number Range Intervals for BAdI Implementation 8
Authorization Groups 8

Partner Functions 8
Audit Components: Define Residence Time 9
Digital Signature 9
Settings in User Maintenance 9
Signature Strategy 10
Define Authorization Groups 10

Define Individual Signatures 11

Define Signature Strategies 12
AUDIT DEFINITION 16
Audit Usage 16

Audit Type 16

Rating 17
Audit Trigger 17
SYSTEM ADJUSTMENT 18
Text Management 19
Coding Mask 20
Field Selection 21
Microsoft Project Interface 21
Functional Enhancements 22

Status Profile for User Status 23
Business Add-Ins (BAdIs) 23
General BAdIs 23
Activities in Audit Processing 23

Status Management for Audit Components 24
Generic Object Services for Audit Components 26
Scheduling of Background Jobs 27
BAdIs for Updating Other Systems or Individual Tables 28
Create, Change, and Delete Audit 28
Create, Change, and Delete Audit Plan 30
Create, Change, and Delete Actions 32
Create, Change, and Delete Question Lists 33
XML Generation 35
ALV Functions 36

BAdIs for Managing Individual Audit Components 37
Definition of Structure Types 37
Definition of Structure Types 37

WHATSAPP +255738656506

BAdI: Structural View for Investigations (Audit, FMEA...) 38
Definition of List Item Types 38
Define List Item Types 38
BAdI for Definition of List Item Types 39
Definition of Action Types 39
Define Action Types 39
BAdI for Definition of Action Types 40

Linkage of Objects with the Corrective Action 40
Define Display of Audit Components 41
BAdI for Functional Enhancement of Investigation Type (Audit Type,...) 43
Edit Attributes of Audit Components 43
Identification of Audit Components (Number Assignment) 45
Controlling Procedure for Audit Questions 47
Assignment of Question Lists to Audit 48
Enhancements: Customer-Defined Fields 49
Customer-Defined Fields for Audit Plan 49

Customer-Defined Fields for Audit 50
Customer-Defined Fields for Question List 50
Customer-Defined Fields for Corrective Action/Preventive Action 51
BAdIs for Audit Objects and Audit Valuations 52

Definition of an Object for Investigation (Audit,...) 52
BAdI: Calculation/Valuation of an Investigation (Audit, FMEA...) 53
BAdIs Within the Audit Application 55

Maintenance of Help Links 55

Enhancement for Search Helps 56
Definition of Text Types for Each Audit Component 57
Provide Signature for Audit 58
Display Flexibilization of "Last Associated Audit" 59
BAdI: Restriction of Partner Roles for Audit Components 61
BAdIs for Archiving 62

Archiving Object PLM_AUD: Checks for Add-On-Specific Data 62
Archiving Object PLM_AUD: Archiving of Add-On-Specific Data 62
Archiving Object PLM_QUM: Checks for Add-On-Specific Data 63
Archiving Object PLM_QUM: Archiving of Add-On-Specific Data 63

INTRODUCTION

Welcome to the fascinating world of SAP. This book helps you crack the tricks of mastering SAP HANA

Customization

WHATSAPP +255738656506

Audit Management

Implementation Guide for Audit Management.

Note: For direct access to this implementation guide, use the transaction PLMC_AUDIT.

Tables, in which Customizing settings are made, have delivery class C if a deviating delivery class is not

specifically mentioned. However, most of the tables in the settings for audit management have delivery

class G. For G tables, you should create your own entries using the standard entries as templates and then

delete the entries supplied by SAP. However, other recommendations may be made for individual tables.

The advantage of the procedure described above is that, when a release update is performed, the current,

and possibly improved, standard entries will again appear in your test client and these are then easy to

compare with the existing entries.

 Question List

In this section, you process the settings for the question list.

Questions lists are mainly used in audit management, but are also useful for other applications. Therefore,

the table may contain entries for several applications. Before you change or delete entries, you should

check to which application these entries belong.

 Structure of List of Questions

In this process step, you define the hierarchical structure of question lists and the hierarchy levels at which

valuations are performed.

Question list profiles can be subdivided over several hierarchy levels. Questions are possible for all

hierarchy levels, but valuations are only possible for the levels that you define.

Standard settings

The tables of the view cluster have delivery class G.

For your own entries, use numerical keys in the namespace 1* to 4*.

Valuation Specifications

In this process step, you define valuation profiles and the associated valuation levels.

You define for each valuation profile, whether the valuation is to be qualitative (coded) or quantitative.

- For each qualitative valuation profile, you create codes in a values set in a subordinate valuation table,

and you determine the optimum and minimum points, as well as the number of points for the codes.

On the basis of the number of points, you can assign a quantity to a qualitative valuation. You can

flag a code as a proposed value for the valuation.

- For each quantitative valuation profile, you define the scale area, the scale increments, and a valuation

proposal on a detail screen. You can flag a scale value as a proposed value for the valuation.

In the valuation profile, you can reverse the scale direction for the valuation, that is, you can define that

the least number of points or the lower end of the scale represent the optimum result.

Standard settings

The tables of the view cluster have delivery class G.

For your own entries, use keys in the namespace 1* to 4*, and A* to Z*.

Recommendation

Do not make any changes to the audit profiles once these have been used, because this could lead to error

interpretations for audits that have been completed. If necessary, replace these profiles with changed

profiles.

 Priorities

In this process step, you define priorities for objects in the question list. These priorities can, for example,

be used during the valuation of these objects.

Standard settings

This table has delivery class G.

For your own entries, use keys in the namespace 1* to 4*, and A* to Z*.

 Control

In this section, you process the settings for audit flow control.

 Audit Components: Properties, Forms

In this step, you define the properties of the following predefined audit data object types:

WHATSAPP +255738656506

- Audit plan

- Question list

- Audit

- Corrective action

You can determine the following properties for each of these data object types:

- Change documents are written

- An authorization group must be assigned to the data objects when they are created

- The data objects have an approval requirement

- Form for the printing of a data object

- Status profile with the user statuses that the data objects are to run through

- Document link via Knowledge Provider (KPro)

Standard settings

This table has delivery class G.

No specific namespace has been reserved for the user.

Recommendation

Do not make your own entries in this table. Instead, adapt the entries that were delivered with the standard

system.

Activities

Adapt Forms

SAP delivers the following forms for the individual data object types:

- Question list: PLM_QUEST

- Audit plan: PLM_AUDITLAN

- Audit: PLM_AUDIT

This form is also used for the audit report.

- Action: PLM_AUDITACTION

For the overview of the actions for an audit: PLM_AUDITACTION_L

Further notes

The forms available in the standard system also describe the interfaces for data transfer.

In Notes 432642 and 432643, you can find the current instructions for the adaption of forms (432642) and

for the settings necessary for the transfer of PDF documents via the Internet (432643).

 Define Number Range Intervals for BAdI Implementation

Use

For the elements of an FMEA and an audit, you can define that sequential external numbers are generated

automatically when an object is created. You can define different number range intervals, which you then

assign to the individual object types.

Requirements

There must be an active implementation for the BAdI PLM_AUDIT_IDENTIFIER:

- BAdI implementation using your own implementation class

To be able to use automatic number assignment, a call of the static method

"GENERATE_NEW_EXTERNAL_ID" from the example implementation class

"CL_EXM_IM_PLM_AUDIT_IDENTIFIER" must be implemented in the method

"IF_EX_PLM_AUDIT_IDENTIFIER~GET_EXTERNAL_ID".

- BAdI implementation using example implementation class

"CL_EXM_IM_PLM_AUDIT_IDENTIFIER"

No other steps are required to use automatic number assignment.

Activities

1. Define the number range intervals.

2. In Customizing activity Audit Components: Properties, Forms, assign a number range interval to

the different object types.

 Authorization Groups

In this process step, you define authorization groups. These authorization groups can or must be entered in

audit components.

Requirements

If you want to use authorization groups, you must assign authorization profiles that contain the

authorization object AUDIT_AUTH to the users.

 Partner Functions

In this process step, you determine the roles that are available in the system for the partners involved in the

audit. You can display these roles using the F4 input help.

WHATSAPP +255738656506

Standard settings

This table has delivery class E.

For your own entries, use keys from the namespace 1* to 4*, and A* to Z*.

Recommendation

You should use the roles available in the standard system to ensure that you will have access to the

corresponding authorizations. If necessary, adapt the descriptions of the roles to suit your requirements.

 Audit Components: Define Residence Time

Use

In this work step, you define the residence times of the following, mandatory audit components:

- Question list

- Audit

- Audit plan

Standard settings

The table has the delivery class G.

There is no dedicated namespace reserved for the user.

Activities

Do not create any entries in this table. Process the residence times for the entries available in the standard

system.

 Digital Signature

 Settings in User Maintenance

Use

In this Customizing activity, you specify the data in the user master record of the person who is to execute

the signature. You enter the full name of the user and their time zone. When a signature is executed, the

system copies the signatory name together with the local time according to the signatory's personal time

zone to the signed document.

Note

You must enter the user data in the productive system, that is, in each system in which the digital signature

is to be available, as the settings in the user master cannot be transported.

Caution

Each user can maintain his or her address data and default values under System -> User Profile -> Own

Data. This data includes the general user settings and the SFF settings for the user. If you are working

with the digital signature, you should therefore not allow all users authorization to maintain their own

data.

Requirements

Basic Information for Digital Signature

Activities

Specify the general user settings:

1. To do this, either execute the Customizing activity or choose Tools -> Administration -> User

Maintenance in the SAP Easy Access menu.

2. Enter the user ID of the user whose data you want to maintain and choose Change.

3. Choose the Address tab and enter the user's first and last name.

4. Choose the Defaults tab and enter the user's personal time zone.

5. Choose Save.

6. If you want to use the user signature, you must also enter the SSF information in the user master

for the user who is to execute a digital signature:

a) Choose the Address tab of the user.

b) Choose the Other Communication pushbutton and double-click the SSF entry to open the dialog

box for maintaining SSF addresses.

c) Enter the SSF information for the security product used.

How the entries must be structured depends on the security product you are using. For more

information, see the document Maintaining User SSF Information in the SAP NetWeaver

documentation.

d) Choose Copy and save your entries.

 Signature Strategy

 Define Authorization Groups
Use

In this activity, you define the authorization group that can provide a specific individual signature when

executing signature strategies.

WHATSAPP +255738656506

You use user groups if individual signatures are to be executed in succession by different groups of users,

such as production operators, shift managers, and QM employees, and this process is to be implemented

with a signature strategy. This has the advantage that an individual signature is only executed when the

system has verified that the correct user group was assigned to the user for this individual signature.

You use the authorization groups to restrict the authorization for executing digital signatures in applications

as follows:

- You define different authorization groups for users with different areas of responsibility.

- In the user master record, you assign authorizations for the authorization group that corresponds to

the user's area of responsibility (authorization object C_SIGN_BGR). Depending on the application,

it may also be necessary to assign the authorizations for the C_SIGN authorization object.

- You define individual signatures that must be created by the user of a specific authorization group

and use them in the signature strategies for the relevant application.

Activities

1. Determine which user groups or which areas of responsibility must be distinguished in your company.

2. Define an authorization group for each user group.

Example

In your company, specific input values must be entered by an employee and then verified by a second

employee. Make the following settings:

- Define the authorization groups EING (entry) and VERIF (verification).

- The employees that enter data receive authorization for the EING group and the employees that check

data receive authorization for the VERIF group.

- Define two individual signatures for the relevant applications and assign the first to authorization

group EING and the second to authorization group VERIF.

Further notes

Authorization groups are valid in all areas in which the digital signature with signature strategy is used.

Therefore, before you change existing authorization groups or use them for your purposes, ensure that this

will not lead to conflicts of interest with other areas.

 Define Individual Signatures

Use

In this IMG activity, you define the digital individual signatures that must be executed by users in a specific

authorization group.

You can then use the individual signatures as substeps of a signature strategy that is executed in the relevant

application if you sign a process step or confirm an input value outside the permitted value range.

Requirements

You have defined authorization groups (see Defining Authorization Groups).

Activities

Define the individual signatures that must be executed in the relevant application when signing a process

step or for an invalid input value.

Example

In your company, invalid input values must be signed by the employee responsible for the values and must

be checked and signed by another employee. You define the following individual signatures:

- S1 with authorization group EING

- S2 with authorization group VERIF

Further notes

Individual signatures are also valid in other areas in which the digital signature is used. Therefore, before

you change existing individual signatures or use them for your purposes, ensure that this will not lead to

any conflicts of interest with other areas.

 Define Signature Strategies

Use

In this Customizing activity, you define signature strategies. To do this, make the following settings:

- Group individual signatures of different user groups into one signature process. - Define

which signature method is used when the signature process is executed.

In Customizing for the application you can then define which signature strategy is used to execute a process

step.

Requirements

You have defined individual signatures (see Define Individual Signatures).

Activities

To create a new signature strategy, execute the following activities:

A. Create new entry for the signature strategy

1. Choose New Entries.

2. Create the key, name, and signature method for the signature strategy.

3. Define whether the following options are required, possible, or disallowed:

- Comment

WHATSAPP +255738656506

Here, you can specify if the user has the option of entering a text comment when signing the

application. You have the following options: Disallowed (no comment field is provided),

Possible (comment field can be called up), and Required (signature is only possible after a

comment has been entered).

- Remark

Here, you enable the user to select a remark from a list of predefined remarks and add it to the

signature. The availability of remarks depends on the respective application. You have the

following options: Disallowed, Required, and Possible.

- Document

Here, you specify if the document to be signed should also be displayed to the signatory. You

have the following options: Disallowed, Possible, and Required.

- Verification

Here, you allow signatures that have already been executed to be verified. A check is run in the

background to determine if this document is still identical to the original document and if the

previously executed signatures have been stored correctly in the system.

Note:

These settings are overridden if you chose the setting Disallowed for these options in the transaction

SIGNO (Register Signature Objects for Digital Signature) for the application.

B. Assign individual signatures

In this step, you assign the individual signatures that can or must be executed when executing the strategy,

to the signature strategy.

You can assign the same individual signature more than once or you can assign several individual

signatures with the same authorization group. However, when executing the signature strategy, each user

in the authorization group can only execute one signature.

When saving, the system specifies a counter for each assigned individual signature. The counter identifies

the assignment within the signature strategy but has no influence on the signature sequence when the

strategy is executed.

1. Select the signature strategy to which you want to assign individual signatures and choose Assign

Individual Signatures.

2. To assign new signatures, choose New Entries.

3. Enter the key for the required individual signatures.

4. Save the settings.

C. Define the signature sequence

In this step, you define the sequence in which the individual signatures in a signature strategy must be

executed.

You determine the signature sequence by selecting a predecessor for each individual signature, in a

sequence matrix.

Then you can also list the predecessors for each individual signature. However, you cannot edit the data in

the individual display.

Example:

Individual signatures S1, S2, S3, and S4 are assigned to a signature strategy. The signature

sequences are specified in the matrix, as follows:

Predecessor

Signatures

Signatures to Be Executed S1 S2 S3 S4

S1

S2 X

S3 X

S4 X X

This means:

- S1 must be executed first.

- S2 and S3 can be executed after S1.

- S4 can be executed as soon as S3 is available.

Defining signature sequences in the matrix:

1. In the Define Signature Strategy view, select the signature strategy for which you want to specify

the signature sequence.

2. Choose the Signature Sequence pushbutton.

The system displays the dialog box for the signature sequence of the signature strategy. The dialog

box shows the matrix of the individual signatures.

3. In each row, flag the direct predecessors of the individual signature listed at the start of the row.

4. Choose Enter.

If necessary, the system adds the indirect predecessors for the signatures.

5. Save the settings.

Displaying predecessors for individual signatures:

1. Select the signature strategy for which you wish to display data.

2. Choose Assign Individual Signatures.

3. Select the individual signatures for which you wish to display the predecessor.

4. In the navigation area, choose Display Predecessor.

D. Define release statuses

In this step, you define one or more alternative release statuses for a signature strategy. For each release

status, you determine a combination of individual signatures with which the signature process can be

completed.

A signature process is only complete if all the signatures belonging to a release status have been executed.

If you do not define a release status for a signature strategy, all the individual signatures in a signature

strategy must be executed in each signature process.

To define a release status, you flag the required signature combinations in the overview of possible

signature combinations.

You can then also list the individual signatures for each release status. However, you cannot edit the data

in the individual display.

Example:

WHATSAPP +255738656506

The following signature sequence is defined in a signature strategy:

Predecessor Signatures

Signatures to Be Executed S1 S2 S3 S4

S1

S2

 X S3

 X

S4 X X

In the tabular overview, select the following release statuses:

Individual Signatures Required for Release

 S1 S2 S3 S4

 X X X

 X X X

The signature strategy can be completed with either S2 and S3 or with S4.

Flagging the release status in the tabular overview:

1. Select the signature strategy for which you want to define release statuses.

2. Choose Display Release Statuses.

A table is displayed with all the possible signature combinations contained in the signature strategy.

3. Select the signature combinations that you want to use as the release statuses for the signature

strategy.

4. Choose Enter and save the settings.

Displaying individual signatures for each release status:

1. Select the signature strategy for which you wish to display data.

2. Choose Display Release Statuses.

3. Select the release status whose data you wish to display and choose Display Individual Signatures.

A list appears with the counters for the individual signatures that are assigned to the release status.

Further notes

Signature strategies also apply in other areas where digital signatures are used. Therefore, before you

change existing signature strategies or use them for your purposes, ensure that this will not lead to

conflicts of interest with other areas.

 Audit Definition

In this section, you process the settings for the audit definition.

 Audit Usage

In this process step, you define audit usages.

You can use audit management for a variety of purposes, for example, to perform quality audits or

environmental audits. In general terms, you can apply audit management to any usages involving the

valuation and appraisal of material or intangible items on the basis of a question list.

The entries in this table only serve to differentiate between audit usages. They have no controlling

functions.

Standard settings

Caution! This table is client-independent. This means that the settings you make are immediately activated

in all system clients.

This table has delivery class E.

For your own entries, use the keys 0* to 4*.

Recommendation

Do not delete the keys that are delivered in the standard version from SAP.

Reason: It is possible that the evaluation programs delivered by SAP access these keys.

 Audit Type

In this process step, you define the audit types.

You specify an audit usage (for example, quality audit) and an audit category (for example, system audit,

process audit, product audit) to provide a closer definition of the audit type. Note: The audit usages are

defined in a Customizing table. The audit categories are predefined in the system.

These specifications only serve to differentiate between audit types. They have no controlling effect.

The following fields assigned to the audit type have a controlling effect:

- Status Profile

You can supplement the predefined statuses (system statuses) that an audit runs through with user

statuses.

- Approval Requirement

WHATSAPP +255738656506

- Input Help for audit object

You can define one audit object for each audit type.

You define the audit object related to the audit type by determining a number with a short text for it. In

addition, you can assign fields (data elements or objects) from the data dictionary to the audit object.

You can determine value sets in a table for fields that are used to define the audit components.

Standard settings

The tables of the upper two levels of the view cluster have delivery class G. For your

entries, use the keys 1* to 4*, and A* to Z*.

Recommendation

Do not delete the entries delivered by SAP.

Reason: It is possible that programs delivered by SAP need to access these keys.

 Rating

In this process step, you define the ratings.

Standard settings

The tables of the view cluster have delivery class G.

For your own entries, use the keys 1* to 4*, and A* to Z*.

 Audit Trigger

In this process step, you define audit triggers.

Standard settings This

table has delivery class G.

For your own entries, use the keys 1* to 4*, and A* to Z*.

 System Adjustment

WHATSAPP +255738656506

 Text Management

Use

In this step you make settings for text processing with SAPscript.

You can define text types for the type object CGPL_TEXT, which you can assign to the individual objects

of an investigation (audit, FMEA,...) in the BAdI PLM_AUDIT_TEXT_ID.

Standard settings

Text types are already defined; you must not delete these.

These text types are assigned to the objects in the default implementation of the BAdI.

Activities

Enter new text types and assign these to the objects in your own BAdI implementation. Use the default

implementation as a copy template.

 Coding Mask

In this process step, you can define the nomenclature and the corresponding coding masks used for the

audit.

Coding masks simplify the display of complex keys (numbers) for audit components. Identifying numbers

can be made easier to read by adding separators, for example, hyphens or blank characters. In this process

step, you use masks to define how the numbers of audit components are to be structured with separators.

One mask consists of several sections that are defined individually. Each of these sections begins with a

separator.

In the audit management transaction, you can enter your identifying numbers without separators. The

system then inserts the separators based on the mask that you have defined.

Using coding masks, the system can derive the number of a new, subordinate audit component from the

number of the superordinate element.

This function is only supported for question list items and question list items for the audit.

Example

Mask definition: (0 = numeric, X = alphanumeric)

Key 1. Sec. 2. Sec. 3. Sec. 4. Section

AUD .000 /XX .00 - XXXX

Entry and formatting in audit management:

Entry: AUD47AB99ZUVB Formatting: AUD7/AB9-ZUVB

Requirements

Activities

1. First, define a key and an explanatory short text for the mask.

2. Decide whether or not you want the numbers of audit components to be automatically derived from

numbers of superior elements.

Further notes

Maintain the individual sections of the mask as follows:

a) Select New Entries.

b) Enter the key of the mask and a short text.

c) Select the position of the first section that you want to define.

d) Define a separator.

e) Define the length of the section.

f) Decide whether the section is to contain numeric or alphanumeric characters.

g) Repeat steps c) to f), until you have defined all the sections of the mask.

WHATSAPP +255738656506

 Field Selection

In this process step, you change the field selection.

You can change the properties of the modifiable fields within the constraints pre-defined by SAP. Such

changes to modifiable fields can be made dependent on the influencing fields.

The field selection is valid for a specific program and a specific screen group. For each program used in

audit management, there is a corresponding maintenance function for the field selection. You can find the

name of the program responsible for a screen using the F1 field help or using the status display in the

system.

 Microsoft Project Interface

In this process step, you define the assignment of the fields for the transfer of audit plans and audits to

Microsoft Project.

You can use the Microsoft Project interface to transfer just audit plans or audit plans including the directly

assigned audits to Microsoft Project. You can continue to process the audit components in Microsoft

Project.

Within Microsoft Project, you can then create (as tasks) and process additional audits.

Activities

You need to define for the individual fields whether the field contents are to be exported or imported or

both.

1. Check the field assignments proposed by the system.

2. To change an assignment, choose a different field in the Microsoft Project field column.

Further notes

For each field, the field type is defined as a text, date, or number field. Ensure that the field types in audit

management and in Microsoft Project correspond to one another.

 Functional Enhancements

In this process step you receive the instructions for the use of program interfaces for functional

enhancements, so-called Business Add Ins (BAdI).

You can find additional information regarding this technology in the documentation for transactions SE1

or SE19.

The following BAdIs exist in the system:

- BAdIs for updating another system (for example, R/3 Enterprise) or own table

- PLM_AUDIT_AUO_UPDATE

 Create, change, and delete audit

- PLM_AUDIT_AUP_UPDATE

Create, change, and delete audit plan

- PLM_AUDIT_COR_UPDATE

Create, change, and delete action

- PLM_AUDIT_QUN_UPDATE

Create, change, and delete question list

- General BAdIs (for example, authorizations, status management)

- PLM_AUDIT_AUTH_CHECK

Activities in audit processing

- PLM_AUDIT_STATUS

Status management for audit components

- PLM_AUDIT_GOS

Generic object services for audit components

- BAdIs for the manipulation of individual audit components (question list , plan, ...)

- PLM_AUDIT_APPEARANCE

Determine format of audit components

- PLM_AUDIT_ATTRIBUTES

Process attributes of audit components

- PLM_AUDIT_IDENTIFIER

Identification of audit components (number assignment)

- BAdIs especially for audits (audit object, audit valuation)

- PLM_AUDIT_OBJECT

Definition/formatting of audit object

- PLM_AUDIT_CALCULATE

Valuation of an audit (key figure calculation)

- BAdIs within the audit application

- PLM_AUDIT_HELP_LINKS

Maintenance of help links

WHATSAPP +255738656506

Standard settings

SAP delivers default implementations for the following BAdIs:

- PLM_AUDIT_AUTH_CHECK

- PLM_AUDIT_GOS

- PLM_AUDIT_HELP_LINKS

Recommendation

If object references are transferred with the BAdI interface methods, you should not delete or initialize

these.

Only access public components in read mode.

Further notes

We will develop additional BAdIs in the future. You will be able to find these

new BAdIs in the transactions SE1 and SE19 by searching for PLM_AUDIT*.

 Status Profile for User Status

Use

You can use this activity to adjust the general status management to suit your requirements.

Activities

Proceed as described in the documentation for the activity Define Status Profile for User Status

.

Then assign the status profiles to the audit components or, in the case of the audit component "audit", to

the audit type.

The status profile maintained in the audit type takes precedence over the status profile maintained for the

audit component "audit".

 Business Add-Ins (BAdIs)

 General BAdIs

 Activities in Audit Processing

Description

This BAdI contains the method "SET_AUTHORITY_ACTIVITIES". It is used to choose the possible

activities for a user in audit processing.

You can find technical details about this method in the interface documentation

IF_EX_PLM_AUDIT_AUTH_CHECK.

Example

- If activity "310" is assigned to a user, this user can evaluate the audit.

- If the activity "3214" is not assigned to a user, this user cannot confirm the audit.

Standard settings

In the transaction for definition of the BAdI "PLM_AUDIT_AUTH_CHECK", you can find the default

coding delivered by SAP and the proposed activities.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

 Status Management for Audit Components

Use

WHATSAPP +255738656506

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI to change various functions within status management in audit management.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods:

- Check Whether Execution of Transaction Is Allowed

- Reading of Data for the Display

- Reading of Permissible Changes

- Determines Whether Master Data Changes are Allowed for Comp.

- Determines Whether a Component Can Be Used

 Generic Object Services for Audit Components

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

This BAdI enables you to use the various functions of generic object services for audit management.

The following objects are linked to the generic object services:

- Question list

- Question list item

- Audit plan

- Audit

- Audit question/reply list

- Audit corrective action

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

WHATSAPP +255738656506

When the application program is executed, the system carries out the code in the method you wrote.

Example

See also:

Methods

 Select the Services of Generic Object Services

##

########

 Scheduling of Background Jobs

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI to transfer job information that is required for background processing.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods

- GET_JOBLIST

 BAdIs for Updating Other Systems or Individual Tables

 Create, Change, and Delete Audit

Use

This Business Add-In is used in the Audit Management component (CA-AUD).

You can use this BAdI to enter all changes to an audit (create, change, delete) and the associated audit

objects. You can then use it to replicate the changes in another system.

You can process changes at the following points in time:

- AT_SAVE

The user has called the function 'Save' in the dialog. At this point in time, you can implement another

check of the data to be saved. If errors are found during this check, this information can be returned.

The data is not saved, and the user is informed.

- BEFORE_UPDATE

The call is performed immediately before the data is transferred to the update. No messages can be

output at this point. The save cannot be stopped.

- IN_UPDATE

The call takes place in the update. No messages can be output at this point.

Requirements

Standard settings This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

WHATSAPP +255738656506

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

The following methods are available:

- Create Audit When Saving

- Create Audit Before Update Task Is Called

- Create Audit in Update Task

- Create Audit Question When Saving

- Create Audit Question Before Update Task Is Called

- Create Audit Question in Update Task

- Create Audit Object When Saving

- Create Audit Object Before Update Task Is Called

- Create Audit Object in Update Task

- Change Audit When Saving

- Change Audit Before Update Task Is Called

- Change Audit in Update Task

- Change Audit Question When Saving

- Change Audit Question Before Update Task Is Called

- Change Audit Question in Update Task

- Change Audit Object When Saving

- Change Audit Object Before Update Task Is Called

- Change Audit Object in Update Task

- Delete Audit When Saving

- Delete Audit Before Update Task Is Called

- Delete Audit in Update Task

- Delete Audit Question When Saving

- Delete Audit Question Before update Task Is Called

- Delete Audit Question in Update Task

- Delete Audit Object When Saving

Note

This method is currently not in use. If necessary, use the methods

DELETE_OBJECT_BEFORE_UPDATE, DELETE_OBJECT_IN_UPDATE, or another

method called at the AT_SAVE point in time.

- Delete Audit Object Before Update Task Is Called

- Delete Audit Object in Update Task

 Create, Change, and Delete Audit Plan

Use

This Business Add-In is used in the Audit Management component (CA-AUD).

You can use this BAdI or the corresponding methods to record all changes to an audit plan

(create, change, display). You can then use it to replicate the changes in another system.

You can process changes at the following points in time:

- AT_SAVE

The user has called the function Save in the dialog. At this point in time, you can implement another

check of the data to be saved. If errors are found during this check, this information can be returned.

The data is not saved, and the user is informed.

- BEFORE_UPDATE

The call is performed immediately before the data is updated by the system. No messages can be

output at this point. The save cannot be stopped.

- IN_UPDATE

The call takes place during the update. No messages can be output at this point.

Standard settings

This Business Add-In is not active in the standard system.

WHATSAPP +255738656506

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

Description

See also:

Methods:

- Create plan when saving

- Create plan before update task is called

- Create plan in update task

- Change plan when saving

- Change plan before update task is called

- Change plan in update task

- Delete plan when saving

- Delete plan before update task is called

- Delete plan in update task

############################

 Create, Change, and Delete Actions

Use

You can use this Business Add-In (BAdI) or the corresponding methods to enter all changes to a

corrective/preventive action (create, change, delete). You can then use it to replicate the changes in another

system.

You can process changes at the following points in time:

- AT_SAVE

The user has called the function Save in the dialog. At this point in time, you can implement still

implement a check of the data to be saved. If errors are found during this check, this information can

be returned. The data is not saved and the user is informed.

- BEFORE_UPDATE

The call is performed immediately before the data is updated. No messages can be output at this point.

The save cannot be stopped.

- IN_UPDATE

The call takes place during the update process. No messages can be output at this point.

Standard settings

This BAdI is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

WHATSAPP +255738656506

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

See also:

Methods

- Create Action When Saving

- Create Action Before Update Task Is Called

- Create Action in Update Task

- Change Action When Saving

- Change Action Before Update Task Is Called

- Change Action in Update Task

- Delete Action When Saving

- Delete Action Before Update Task Is Called

- Delete Action in Update Task

 Create, Change, and Delete Question Lists

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI or the corresponding methods to record all changes made to a question list and the

related items (create, change, delete). can then use it to replicate the changes in another system.

You can process changes at the following points in time:

- AT_SAVE

The user has called the function Save in the dialog. At this point in time, you can implement another

check of the data to be saved. If errors are found during this check, this information can be returned.

The data is not saved, and the user is informed.

- BEFORE_UPDATE

The call is performed immediately before the data is transferred to the update. No messages can be

output at this point. The save cannot be stopped.

- IN_UPDATE

The call takes place in the update. No messages can be output at this point.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods:

- Create Header When Saving

- Create Header Before Update Task Is Called

- Create Header in Update Task

- Create Item When Saving

- Create Item Before Update Task Is Called

- Create Item in Update Task

- Change Header When Saving

- Change Header Before Update Task Is Called

- Change Header in Update Task

- Change Item When Saving

- Change Item Before Update Task Is Called

WHATSAPP +255738656506

- Change Item in Update Task

- Delete Header When Saving

- Delete Header Before Update Task Is Called

- Delete Header in Update Task

- Delete Item When Saving

- Delete Item Before Update Task Is Called

- Delete Item in Update Task

 XML Generation

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

This BAdI can be used to change the way in which the audit confirmation is displayed in HTML format.

It can also be used to control the generation of the XML file when importing and exporting audit

components.

Standard settings

The Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

Description

See also:

Methods:

- Add Data to Audit XML

- Determine XSLT File Name for Survey Generation

- Change XML File During Export - Change XML File During Import

 ALV Functions

Description

You can use this BAdI to change different functions within the ALV Grid Control.

The following enhancements are supported:

- ADOPT_LAYOUT

You can use this method to adapt the layout of the ALV Grid Control to suit your requirements.

- ADOPT_TOOLBAR_EXCLUDING

You can use this method to adapt the inactive functions of the ALV Grid Control to suit your

requirements.

- CHANGE_FIELDCATALOG

You can use this method to change one individual line of the field catalog. However, this method

is only called if you requested the change using the method

IS_FIELDCAT_CHANGE_REQUESTED.

- CHANGE_GRAPHICS

You can use this method to change the formatting properties of the ALV graphic connection.

For example, you can name the X-axis or specify a title.

WHATSAPP +255738656506

- CHANGE_HYPERLINKS

You can use this method to change the hyperlink function of the ALV Grid Control.

- CHANGE_OUTTAB

You can use this method to change one individual line of the output table. However, this method

is only called if you requested the change using the method

IS_OUTTAb_CHANGE_REQUESTED.

- DETERMINE_SAVE_MODE

You can use this method to determine the save mode of the ALV Layout.

- IS_FIELDCAT_CHANGE_REQUESTED

You can use this method to request that changes be made to individual lines in the field catalog.

- IS_OUTTAB_CHANGE_REQUESTED

You can use this method to request that changes be made to individual lines in the output table.

- ON_BUTTON_CLICK

This method is called when a pushbutton that was added using the method ON_TOOLBAR is

chosen.

- ON_CONTEXT_MENU_REQUEST

This method is called when you request the context menu. Additional functions can be added in

the context menu.

- ON_MENU_BUTTON

This method is called when a menu button that was added using the method ON_TOOLBAR is

chosen.

- ON_TOOLBAR

This method is called when formatting the toolbar. Additional functions can be added.

- ON_USER_COMMAND

You can use this method to handle a user-defined function code.

Note

You can find additional information about the ALV Grid Control in the corresponding documentation in

the SAP List Viewer (component BC-SRV-ALV).

 BAdIs for Managing Individual Audit Components

 Definition of Structure Types
 Definition of Structure Types

Use

In this activity, you create structure types. For these structure types, you can create implementations for

the BAdI BADI_PLM_AUDIT_STRUCTURE.

You can specify the structure type when you define the investigation type (audit type, FMEA type, and so

on).

 BAdI: Structural View for Investigations (Audit, FMEA...)

Use

This Business Add-In (BAdI) is used in the Audit Management component and other derived

components, such as Failure Mode and Effects Analysis (FMEA).

You can use this BAdI to display investigations (audits, FMEA, and so on) and linked objects

hierarchically. To do this, you open the Hierarchy Display view in the cockpit.

Requirements

You have stored a structure type for the investigation type (audit type, FMEA type, and so on).

Standard settings

The BAdI is filter-dependent and not designed for multiple use.

To fulfil your own requirements, define a new structure type and create an implementation for

BADI_PLM_AUDIT_STRUCTURE.

In the standard system, the BAdI implementation PLM_AUDIT_STRUCTURE_00 is activated. This

implementation allows you to display the history of the same investigation object for an investigation.

Activities

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

This BAdI uses the interface IF_EX_PLM_AUDIT_STRUCTURE.

For more information, display the interface in the Class Builder.

 Definition of List Item Types

 Define List Item Types

Use

In this activity, you create list item types. You can create implementations for the BAdI

BADI_PLM_AUDIT_LIST_ITEM_TYPES for these list item types.

When you define the hierarchy profile, you can use the list item types defined here.

WHATSAPP +255738656506

 BAdI for Definition of List Item Types

Use

This Business Add-In (BAdI) is used in the Audit Management component and other derived

components, such as the Failure Mode and Effects Analysis (FMEA).

You can use this BAdI to change the interface and the attributes for a list item type that is used in an

investigation (audit, FMEA, and so on). You can assign list item types to the items of hierarchy profiles.

Standard settings

The BAdI is filter-dependent and not designed for multiple use.

In the standard system, the implementations of the list item types supplied by SAP are activated. There is

no default code. In the implementation, you can change the screens and the functions for the list items or

audit questions.

To use your own implementation, first create a list item type and then an implementation.

Activities

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

This BAdI uses the interface IF_EX_PLM_AUDIT_LIST_ITEM_TYPE.

For more information, display the interface in the Class Builder.

 Definition of Action Types

 Define Action Types

Use

In this activity, you create action types. You can create implementations for the BAdI

BADI_PLM_AUDIT_ACTION_TYPE for these action types. With your own implementation of the BAdI

you can create actions of the appropriate type.

 BAdI for Definition of Action Types

Use

This Business Add-In (BAdI) is used in the Audit Management component and other derived

components, such as Failure Mode and Effects Analysis (FMEA).

You can use this BAdI to influence the interface and behaviour of action types. You can control the use of

action types using the BAdI BADI_PLM_AUDIT_ACTION_TYPE.

Standard settings

The BAdI is filter-dependent and not designed for multiple use.

In the standard system, the implementations of the action types supplied by SAP are activated. There is no

default code. In the implementation, you can change the screens and functions of the action.

To use your own implementation, first create an action type and then an implementation for it.

Activities

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

This BAdI uses the interface IF_EX_PLM_AUDIT_ACTION_TYPE.

For more information, display the interface in the Class Builder.

 Linkage of Objects with the Corrective Action

Use

This Business Add-In (BAdI) is used in the Audit Management (CA-AUD) component and in other derived

components such as the Failure Mode and Effects Analysis (FMEA).

You can use this BAdI to create objects for a corrective action via the cockpit. The objects you create in

this way are displayed under the corrective action in the tree structure.

For more information on the individual methods, see the documentation of the interface methods.

Standard settings

This Business Add-In is not active in the standard system.

Activities

WHATSAPP +255738656506

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation

Short Text field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

The quality notification is being connected using the sample code.

To display the sample code, choose Goto --> Sample Code --> Display.

See also:

Methods:

 Request Menu with Assignment Functions

Generate Objects

 Request for Display Characteristics

 Request for Context Menu Functions

 Transfer Interface Function Code for Execution

######################################

 Define Display of Audit Components

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

For the display of audit components, the data is converted from an internal to an external format. This

conversion takes place before each output. The converted data can be, for example, displayed on the

screen or printed. The formatting is initially performed by SAP, but you can change it to suit your

requirements.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods

- Process Interface Structure of Question List Header

- Process Interface Structure of Question List Item

- Process Interface Structure of Audit Plan

- Process Interface Structure of Audit

- Process Interface Structure of Question List for Audit

- Process Interface Structure of Corrective/Preventive Actions

WHATSAPP +255738656506

- Process Interface Structure of Audit Object

- Process Interface Structure of the Partner Assignment

##

##############################

 BAdI for Functional Enhancement of Investigation Type (Audit Type,...)

Use

This Business Add-In (BAdI) is used in the Audit Management component and other derived

components, such as Failure Mode and Effects Analysis (FMEA).

You can use this BAdI to define additional menu functions for an investigation (audit, FMEA, and so on)

and its processing.

Standard settings

The BAdI is filter-dependent and not designed for multiple use.

You can create one implementation per investigation type.

In the standard system, BAdI implementations for some investigation types supplied by SAP are activated.

There is no default code. Additional menu functions were included in the implementations.

Activities

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

This BAdI uses the interface IF_EX_PLM_AUDIT_TYPE.

For more information, display the interface in the Class Builder.

 Edit Attributes of Audit Components

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI to change attributes of audit components at different points in time.

You can:

1. Define additional criteria for the semantic correctness of the audit components.

2. Change the attributes when creating new components.

3. Perform additional activities when new components are created by copying existing components.

1.)

Whenever a change is made to an audit component, a check is performed to see whether or not the

change is allowed. If you wish to extend this check, use this enhancement and transfer the results of

your check in a return table as messages. These messages are later output in the log. If defect or

cancellation messages were transferred, the relevant component cannot be saved. Current data and

the data that has just been saved are available for the check.

2.)

When a new component is being created the attributes, for example, grouping, can be changed. Be

careful when changing attributes.

3.)

When you are copying components, it is possible to make additional changes to the attributes. The

relevant template is available for this.

Note that when you are copying, you need to first call up the

CHANGE_xxx_AT_CREATION method and then the CHANGE_xxx_ON_COPY method.

Be careful when changing attributes.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

4. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

5. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

6. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

7. Save your entries and assign the Add-In to a package.

8. To edit a method, double-click its name.

9. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

10. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

WHATSAPP +255738656506

11. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods

- Check of the Attributes of the Question List Header

- Check of the Attributes of the Question List Item

- Check of the Attributes of the Audit Plan

- Check of the Attributes of the Audit

- Check of the Attributes of the Question List for the Audit

- Check of the Attributes of the Corrective/Preventive Action

- Change Attributes of Question List Header When Creating

- Change Attributes of Question List Item When Creating

- Change Attributes of Audit Plan When Creating

- Change Attributes of Audit When Creating

- Change Attributes of Question List for Audit When Creating

- Change Attributes of Corrective/Preventive Action When Creating

- Change Attributes of Question List Header When Copying

- Change Attributes of Question List Item When Copying

- Change Attributes of Audit Plan When Copying

- Change Attributes of Audit When Copying

- Change Attributes of Question List for Audit When Copying

- Change Attributes of Corrective/Preventive Action When Copying

 Identification of Audit Components (Number Assignment)

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI to influence the following functions within Audit Management:

- Internal number assignment

- Description and identification of audit components within the navigation structure

- Change options for the key of an audit component

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods:

- Preassign Key When Creating Audit Component

- Define Display of Audit Component in Navigation Structure

- Can Key Be Changed ('0' -> Not Changeable)

Interfaces

IF_EX_PLM_AUDIT_IDENTIFIER.

WHATSAPP +255738656506

 Controlling Procedure for Audit Questions

Use

This Business Add-Inn (BAdI) is used in the Audit Management (CA-AUD) component.

You can use this BAdI to change audit questions automatically depending on other data (audits, audit

questions). In particular, you can use it to set the relevance or execute the valuation of the audit question.

Standard settings

The implementations supplied by SAP are available for use.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

You can use the implementations supplied by SAP as sample code.

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods:

Returns Start Time of Procedure

Returns Whether Procedure Can Be Used

Change Audit Question

 Assignment of Question Lists to Audit

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI to influence the assignment of question lists to the audit, or the creation of an audit

question using a template of a question list item.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

WHATSAPP +255738656506

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods

- Changing the Attributes of the Audit Question List Item

- Check whether a question list can be assigned to the audit

- Check whether the question list can be assigned to the audit

 Enhancements: Customer-Defined Fields

 Customer-Defined Fields for Audit Plan
Use

This Business Add-In (BAdI) is used in the Audit Management component.

You can use this BAdI to add your own fields to the tab page for basic data or to your own tab page in the

audit plan, without making any modifications.

Standard settings

The Business Add-In is not active in the standard system.

Activities

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

Interface

IF_EX_PLM_AUO_CUSTOM_FIELDS

Methods

Delivery of Dialog Data for Audit Plan

Set Dialog Data for Audit Plan

Conversion of Dialog Data into Database Format

Conversion of Database Data into External Dialog Structure

Check of Dialog Data for Audit Plan

 Set Name for Customer-Defined Tab Page

 Customer-Defined Fields for Audit

Use

This Business Add-In (BAdI) is used in the Audit Management component.

You can use this BAdI to add your own fields to the tab page for basic data, to the tab page for the result,

or to your own tab page in the audit, without making any modifications.

Standard settings

The Business Add-In is not active in the standard system.

Activities

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

Interface

IF_EX_PLM_AUO_CUSTOM_FIELDS

Methods

Delivery of Dialog Data for Audit

Set Dialog Data for Audit

Conversion of Dialog Data into Database Format

Conversion of Database Data into External Dialog Structure

Check of Dialog Data for Audit

Set Name for Customer-Defined Tab Page

 Customer-Defined Fields for Question List

Use

This Business Add-In (BAdI) is used in the Audit Management component.

You can use this BAdI to add your own fields to the tab page for basic data or to your own tab page in the

question list, without making any modifications.

Standard settings

The Business Add-In is not active in the standard system.

Activities

WHATSAPP +255738656506

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

Interface

IF_EX_PLM_QUN_CUSTOM_FIELDS

Methods

Delivery of Dialog Data for Question List

Set Dialog Data for Question List

Conversion of Dialog Data into Database Format

Conversion of Database Data into External Dialog Structure

Check of Dialog Data for Question List

Set Name for Customer-Defined Tab Page

 Customer-Defined Fields for Corrective Action/Preventive Action

Use

This Business Add-In (BAdI) is used in the Audit Management component.

You can use this BAdI to add your own fields to the tab page for basic data or to your own tab page in the

corrective/preventive action, without making any modifications.

Standard settings

The Business Add-In is not active in the standard system.

Activities

For information about implementing BAdIs as part of the Enhancement Concept, see SAP Library for SAP

NetWeaver under BAdIs - Embedding in the Enhancement Framework.

See also

Interface

IF_EX_PLM_AUO_CUSTOM_FIELDS

Methods

Delivery of Dialog Data for Corrective/Preventive Action

Set Dialog Data for Corrective Action/Preventive Action

Conversion of Dialog Data into Database Format

Conversion of Database Data into External Dialog Structure

Check of Dialog Data for Corrective Action/Preventive Action

Set Name for Customer-Defined Tab Page

 BAdIs for Audit Objects and Audit Valuations

 Definition of an Object for Investigation (Audit,...)

Use

This Business Add-In Business Add-In(BAdI) is used in the Audit Management, Failure Mode and

Effects Analysis (FMEA) and other components.

This BAdI contains the methods for checking, selecting and displaying the object for an investigation,

depending on the investigation type. In Audit Management, we use the terms Audit Objects and Audit

Types. The information below relates specifically to use in Audit Management but the description applies

to investigations in general.

Since it is not possible to plan all possible audit objects in a standard software, and external data may have

to be accessed, the audit object is connected using this interface. As a result, you can create your own

implementations (in addition to those supplied by SAP) without having to make modifications.

Within this interface, you can access the detailed information about the audit object that was defined in

Customizing for the audit type.

A filter type must be specified when this BAdI is implemented. This filter type is assigned in

the field Input Values for Audit Object (BAdI) (technical field name PLMV_AUDIT_TYPE-FILTER)

in Customizing for the audit type.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

WHATSAPP +255738656506

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

Audit type: External product audit of product 4711 for the vendor IDES.

The audit object "Product 4711 for vendor IDES" is described by the two attributes Product (attribute type

01) and Vendor (attribute type 02). You define the associated data elements for the entry fields in

Customizing. During the BAdI implementation, the system then accesses the data for the business partner

and the product master record that exists in the system.

Audit type: Internal system audit in development AREA1 according to ISO 9000.

The audit object is described by the two attributes QM System and Area. The auditor therefore sees two

entry fields for the audit object with those field labels that were defined in Customizing for the audit type.

You define the input values for the possible QM systems in a separate value table in Customizing for the

audit type. No value table exists for the individual areas in the system yet. During BAdI implementation,

you access an external system.

To display sample code, choose Goto -> Sample Code -> Display.

Recommendation

The implementation must be in line with the Customizing entries for the audit type. The technical properties

of the entry fields are defined in Customizing. This allows you to cover different audit types during an

implementation.

Further notes

You can find technical details about the individual methods in the interface documentation for the interface:

IF_EX_PLM_AUDIT_OBJECT.

Methods

- Consistency Check of Audit Object (->Error Log)

- Input Help Using F4 for the Audit Object

- Display Audit Object (Table) in the Audit Overview

- Read Description of Audit Object

- Display of the Audit Object

- Conversion of User Entries to Internal Data Format

 BAdI: Calculation/Valuation of an Investigation (Audit, FMEA...)

Use

This Business Add-In is used in the Audit Management component and in derived components such as the

Failure Mode and Effects Analysis (FMEA).

This BAdI contains the methods for the calculating and valuating the audit question list and the audit as a

whole, or the general valuation of an investigation.

When implementing this BAdI, you must specify a filter type before the implementation of the methods

can take place. This filter type corresponds to the field Procedure in the question list, in the audit question

list, and in the audit, or in the investigation and its list items.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later.

If you want to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Interface

IF_EX_PLM_AUDIT_CALCULATE.

Methods

- Calculation of Audit Question List

- Calculation of the Audit

- Read Various Settings

WHATSAPP +255738656506

- Display of Valuation Information

- Check Whether Valuation Information Can Be Displayed

 BAdIs Within the Audit Application

 Maintenance of Help Links

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI to implement enhancements within Audit Management (transaction code

PLMD_AUDIT).

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them

in a dialog box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods

 Getting the URL for Initial Screen

 Object-Specific Processing of Help Request

##

 Enhancement for Search Helps

Use

This Business Add-In (BAdI) is used in the Audit Management (CA-AUD) component.

You can use this BAdI to change the input help (F4 help) values for a number of fields.

Standard settings

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

WHATSAPP +255738656506

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display the sample code, choose Goto--> Sample Code --> Display.

See also:

Methods

- Read Values for Grouping

- Read Values for 'Search Field'

-

 Definition of Text Types for Each Audit Component

Use

This Business Add-In (BAdI) is used in the Audit Management (CA-AUD) component.

You use this BAdI to set long text processing for the different audit components.

Requirements

The method GET_TEXT_IDS is only relevant outside of a CRM system.

If you are working in a CRM system, you edit the activity Define Text Objects and Text Types in the

Implementation Guide (IMG) instead of the method GET_TEXT_IDS. The text types used in audit

management are defined using the text object CGPL_TEXT in the CRM standard system.

Standard settings

The following text types are supplied in the standard system:

Text determination procedure/Object types Description

AQN Audit Management: Audit question

AUO Audit Management: Audit

AUP Audit Management: Audit plan

COR Audit Management: Corrective actions

QUE Audit Management: Question

QUN Audit Management: Question lists

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name

of your implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Copy the standard implementation and change the text types for each audit component.

Example

To display the sample code, choose Goto --> Sample Code --> Display.

See also:

Method:

Edit Text Type

 Returns the Text IDs for the XML Transfer of Questions

 Returns the Text IDs for the XML Transfer of Audit Questions

 Provide Signature for Audit

Use

This Business Add-In is used in the Audit Management (CA-AUD) component.

You can use this BAdI to influence the signing of an audit. For example, it is possible to perform a digital

signature.

Standard settings

This Business Add-In is not active in the standard system.

WHATSAPP +255738656506

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for

the implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

To display sample code, choose Goto -> Sample Code -> Display.

Description

See also:

Methods

Signing of Audit

Display of Signatures

 Display Flexibilization of "Last Associated Audit"

Use

This Business Add-In (BAdI) is used in the Audit Management (CA-Audit) component.

The BAdI runs when you choose the pushbutton Last Audit.

Requirements

This Business Add-In is not active in the standard system.

Activities

After you call the IMG activity, the system displays a dialog box where you enter a name for the

implementation.

If implementations of this Business Add-In have already been created, the system displays them in a dialog

box. You then choose one of them by choosing Create, and continue as follows:

1. In the dialog box, enter a name for the implementation of the Add-In and choose Create. The system

displays the initial screen for creating Business Add-In implementations.

2. On this screen, enter a short description for you implementation in the Implementation Short Text

field.

3. If you choose the Interface tab, you will notice that the system has filled in the Name of the

Implementing Class field automatically, by assigning a class name based on the name of your

implementation.

4. Save your entries and assign the Add-In to a package.

5. To edit a method, double-click its name.

6. Enter your implementation code between the method <Interface Name>~<Name of

Method>. and endmethod. statements.

7. Save and activate your code. Navigate back to the Change Implementation screen.

Note: You can also create an implementation for an Add-In and not activate it until later. If you want

to do this, do not carry out the following step:

8. Choose Activate.

When the application program is executed, the system carries out the code in the method you wrote.

Example

The following process has been implemented in the sample code:

You want to select a specific audit from all the relevant audits.

To display sample code, choose Goto -> Sample Code -> Display.

See also:

Methods

- SELECTION_CRITERIONS

- CHOOSE_LAST_AUDIT

WHATSAPP +255738656506

 BAdI: Restriction of Partner Roles for Audit Components

Use

This Business Add-In (BAdI) is used in the Audit Management (CA-AUD) component and in other derived

components, such as Failure Mode and Effects Analysis (FMEA).

You can use this BAdI to restrict the partner roles that can be used for the individual object types.

Standard settings

For more information about the standard settings (filters, single or multiple use), see the Enhancement Spot

Element Definitions tab in the BAdI Builder (transaction SE1).

BAdI Implementations

PLM_AUD_ROLES_RSTR_DEF

The default implementation is intended for use in conjunction with the Restrict Roles indicator in the

Customizing activity Cross-Application Components -> Audit Management -> Control -> Audit

Components: Properties, Forms.

The default implementation for the BAdI is implemented via the class

CL_IM_PLM_AUD_ROLES_RSTR_DEF (Class Documentation).

With the default implementation of the BAdI, you can restrict the roles for an audit type or an FMEA type:

- You set the Restrict Roles indicator for an audit or an FMEA in Customizing under Cross-

Application Components -> Audit Management -> Control -> Audit Components:
Properties, Forms or under Quality Management -> Quality Planning -> Failure Mode and

Effects Analysis (FMEA) -> Control Data -> Data Objects: Properties, Forms.

- In Customizing, you specify the permitted roles for an audit type or FMEA type under Cross-

Application Components -> Audit Management -> Audit Definition ->

Audit Type in the Settings for Role folder for an audit, or under Quality Management -> Quality

Planning -> Failure Mode and Effects Analysis (FMEA) -> FMEA Definition -> FMEA Types

in the Settings for Roles folder for an FMEA.

- If you then change existing audits or FMEAs whose roles deviate from the specified roles, the system

issues a warning.

- If you specify differing partner roles when you create audits and FMEAs, the system displays an

error message.

If you want to restrict the partner roles for audit plans, corrective and preventive actions, and question lists,

you must create your own customer-specific implementation of the BAdI.

Activities

Additional Information

BAdI method documentation

- GET_VALID_ROLES_FOR_ASSESSMENT

- GET_VALID_ROLES_FOR_QUEST_LIST

- GET_VALID_ROLES_FOR_ACTION

- GET_VALID_ROLES_FOR_AUDIT_PLAN

For more information about implementing BAdIs as part of the Enhancement Framework, see SAP Library

for SAP NetWeaver Platform on SAP Help Portal at http://help.sap.com/nw_platform. Choose a release

and then Application Help. In SAP Library, choose SAP NetWeaver Library: Function-Oriented View -

> Application Server -> Application Server ABAP -> Application Development on AS ABAP ->
ABAP Customer Development -> Enhancement Framework.

 BAdIs for Archiving

 Archiving Object PLM_AUD: Checks for Add-On-Specific Data

Use

The Business Add-In (BAdI) ARC_PLM_AUD_CHECK is used in the Audit Management (CA-AUD)

component the program PLM_AUDIT_ARC_AUD_CHECK (preprocessing program for archiving

movement data related to audit management). It also allows additional checks of archivability criteria via

the method Check Archivability of Transaction Data (CHECK).

For more information on how to implement the BAdI methods, see SAP Note 673030.

Requirements

None.

Standard settings

The Business Add-In can be implemented more than once.

 Archiving Object PLM_AUD: Archiving of Add-On-Specific Data

Use

The Business Add-In (BAdI) ARC_PLM_AUD_WRITE is used in the Audit Management (CA-AUD)

component, in the methods WRITE_ADDONS and DELETE_ADDONS of the class

CL_PLM_AUDIT_COMP_ARCHIVING.

These methods are called by the programs PLM_AUDIT_ARC_AUD_WRITE (write program for

archiving of movement data in Audit Management) and PLM_AUDIT_ARC_AUD_DELETE (deletion

program for archiving of movement data in Audit Management) via the methods WRITE and DELETE of

the same classes. The methods allow you to write additional data to the archive and to delete this data from

the database.

The BAdI has the following methods:

- Deletes Additional Data from Database (DELETE)

- Reads Additional Data from Database(PREPARE_WRITE)

WHATSAPP +255738656506

- Writes Additional Data to Archive (WRITE)

For more information about the implementation of the BAdI methods, see SAP Note 673030.

Requirements

None.

Standard settings

The Business Add-In can be implemented more than once.

 Archiving Object PLM_QUM: Checks for Add-On-Specific Data

Use

The Business Add-In (BAdI) ARC_PLM_QUM_CHECK is used in the Audit Management (CA-AUD)

component in the program PLM_AUDIT_ARC_QUM_CHECK (preprocessing program for archiving

master data in Audit Management) and allows you to perform additional checks of your own archivability

criteria via the method Check Archivability of Master Data(CHECK).

For more information on the implementation of the BAdI methods, see SAP Note 673030.

Requirements

None.

Standard settings

The Business Add-In can be implemented more than once.

 Archiving Object PLM_QUM: Archiving of Add-On-Specific Data

Use

The Business Add-In (BAdI) ARC_PLM_QUM_WRITE is used in the Audit Management (CA-AUD)

component, in the methods WRITE_ADDONS and DELETE_ADDONS of class

CL_PLM_AUDIT_COMP_ARCHIVING.

These methods are called by the programs PLM_AUDIT_ARC_QUM_WRITE (write program for

archiving of master data in Audit Management) and PLM_AUDIT_ARC_QUM_DELETE (deletion

program for archiving of master data in Audit Management) via the methods WRITE and DELETE of

the same class. The methods allow you to write additional data to the archive and to delete this data from

the database.

The BAdI has the following methods:

Deletes Additional Data from Database (DELETE)

Reads Additional Data from Database (PREPARE_WRITE)

Writes Additional Data to Archive (WRITE)

For more information on the implementation of BAdI methods, see SAP Note 673030.

Requirements

None.

Standard settings

The Business Add-In can be implemented more than once.

