

SAP PRESS is a joint initiative of SAP and Rheinwerk Publishing. The know-
how offered by SAP specialists combined with the expertise of Rheinwerk
Publishing offers the reader expert books in the field. SAP PRESS features
first-hand information and expert advice, and provides useful skills for
professional decision-making.

SAP PRESS offers a variety of books on technical and business-related
topics for the SAP user. For further information, please visit our website:
www.sap-press.com.

Brian O’Neill
Getting Started with ABAP
2015, 452 pages, paperback
ISBN 978-1-4932-1242-2

Paul Hardy
ABAP to the Future
2015, 727 pages, hardcover
ISBN 978-1-4932-1161-6

Puneet Asthana, David Haslam
ABAP 7.4 Certification Guide—SAP Certified Development Associate 
(3rd edition)
2015, 663 pages, paperback
ISBN 978-1-4932-1212-5

Schneider, Westenberger, Gahm
ABAP Development for SAP HANA
2013, 609 pages, hardcover 
ISBN 978-1-59229-859-4

James Wood and Joseph Rupert
Object-Oriented Programming with
ABAP® Objects
Bonn Boston

g
te
at
d

d
ri-
al
Dear Reader,

Did you pick up this book in the hopes of learning object-oriented programmin
from experts in the field? Individuals who teach like they were born to it, and wri
so well that their editor has very little to do? Well, then I am pleased to tell you th
you are in good hands; James Wood and Joseph Rupert are all those things an
more.

In this second edition of Object-Oriented Programming with ABAP these esteeme
authors leave no stone unturned as they work to educate readers on object-o
ented programming and ABAP objects. From basic concepts, to advanced practic
n,
d

th
ke
se
examples, it has never been easier to understand object cleanup and initializatio
inheritance, polymorphism, encapsulation, and more. I am sure you will fin
immense value between the pages of this comprehensive book.

What did you think of the second edition of Object-Oriented Programming wi
ABAP? Your comments and suggestions are the most useful tools to help us ma
our books the best they can be. Please feel free to contact me and share any prai
or criticism you may have.

Thank you for purchasing a book from SAP PRESS!
Hareem Shafi
Editor, SAP PRESS
Rheinwerk Publishing
Boston, MA

hareems@rheinwerk-publishing.com
www.sap-press.com

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed
to accept and adhere to the copyrights. You are entitled to use this e-book for
personal purposes. You may print and copy it, too, but also only for personal use.
Sharing an electronic or printed copy with others, however, is not permitted, neither
as a whole nor in parts. Of course, making them available on the Internet or in a
company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section
Legal Notes.

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy:

Imprint

This e-book is a publication many contributed to, specifically:

Editor Hareem Shafi
Acquisitions Editor Kelly Grace Weaver
Copyeditor Julie McNamee
Cover Design Graham Geary
Photo Credit Shutterstock.com/168845210/ © wiktord
Production E-Book Kelly O’Callaghan
Typesetting E-Book III-satz, Husby (Germany)

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Wood, James, 1978- author.

Object-oriented programming with ABAP Objects / James Wood, Joe Rupert. -- 2nd edition.

pages cm

Includes index.

ISBN 978-1-59229-993-5 (print : alk. paper) -- ISBN 1-59229-993-8 (print : alk. paper)

-- ISBN 978-1-59229-994-2 (ebook) -- ISBN 978-1-59229-995-9 (print and ebook : alk. paper) 1.

Object-oriented

programming (Computer science) 2. ABAP/4 (Computer program language) I. Rupert, Joe, author.

II. Title.

QA76.64.W666 2015

005.1’17--dc23

2015030305

ISBN 978-1-59229-993-5 (print)
ISBN 978-1-59229-994-2 (e-book)
ISBN 978-1-59229-995-9 (print and e-book)

© 2016 by Rheinwerk Publishing, Inc., Boston (MA)
2nd edition 2016

Contents

Introduction ... 15

PART I Introduction

1 Introduction to Object-Oriented Programming 23

1.1 The Need for a Better Abstraction ... 23
1.1.1 The Evolution of Programming Languages 24
1.1.2 Moving Towards Objects .. 25

1.2 Classes and Objects ... 26
1.2.1 What Are Objects? ... 26
1.2.2 Introducing Classes .. 27
1.2.3 Defining a Class’s Interface ... 29

1.3 Establishing Boundaries ... 30
1.3.1 An Introduction to Encapsulation and 

Implementation Hiding .. 31
1.3.2 Understanding Visibility Sections 33

1.4 Reuse .. 34
1.4.1 Composition .. 34
1.4.2 Inheritance ... 34
1.4.3 Polymorphism .. 36

1.5 Object Management .. 38
1.6 UML Tutorial: Class Diagram Basics ... 38

1.6.1 What are Class Diagrams? .. 39
1.6.2 Classes ... 41
1.6.3 Attributes ... 41
1.6.4 Operations ... 42
1.6.5 Associations ... 43
1.6.6 Notes ... 44

1.7 Summary ... 45

2 Getting Started with Objects ... 47

2.1 Defining Classes .. 47
2.1.1 Creating a Class .. 48
2.1.2 Component Declarations .. 49
2.1.3 Implementing Methods .. 57
7

Contents
2.2 Working with Objects .. 59
2.2.1 Object References .. 59
2.2.2 Creating Objects ... 60
2.2.3 Object Reference Assignments ... 60
2.2.4 Accessing Instance Components 64
2.2.5 Accessing Class Components .. 67
2.2.6 Working with Events .. 68
2.2.7 Working with Functional Methods 73
2.2.8 Chaining Method Calls Together 76

2.3 Building your First Object-Oriented Program 78
2.3.1 Creating the Report Program .. 79
2.3.2 Adding in the Local Class Definition 82

2.4 Working with Global Classes .. 84
2.4.1 Understanding the Class Pool Concept 85
2.4.2 Getting Started with the Class Builder Tool 85
2.4.3 Creating Global Classes .. 86
2.4.4 Using the Form-Based Editor .. 88
2.4.5 Using the Source Code Editor ... 96

2.5 Developing Classes Using the ABAP Development Tools 
in Eclipse ... 97
2.5.1 What is Eclipse? ... 97
2.5.2 Setting Up the AIE Environment 98
2.5.3 Working with the AIE Class Editor Tools 104
2.5.4 Where to Go to Find More Information about AIE 113

2.6 New Syntax Features in Release 7.40 ... 114
2.7 UML Tutorial: Object Diagrams ... 117
2.8 Summary ... 119

3 Encapsulation and Implementation Hiding 121

3.1 Lessons Learned from Procedural Programming 121
3.1.1 Decomposing the Functional Decomposition Process 122
3.1.2 Case Study: A Procedural Code Library in ABAP 125
3.1.3 Moving Toward Objects ... 130

3.2 Data Abstraction with Classes .. 131
3.3 Defining Component Visibilities ... 133

3.3.1 Working with Visibility Sections 133
3.3.2 Understanding the Friend Concept 137

3.4 Designing by Contract ... 139
3.5 UML Tutorial: Sequence Diagrams ... 140
3.6 Summary ... 142
8

Contents
4 Object Initialization and Cleanup ... 143

4.1 Understanding the Object Creation Process 143
4.2 Working with Constructors .. 148

4.2.1 Defining Constructors ... 148
4.2.2 Understanding How Constructors Work 149
4.2.3 Class Constructors .. 151

4.3 Object-Creational Patterns .. 152
4.3.1 Controlling the Instantiation Context 152
4.3.2 Implementing the Singleton Pattern 154
4.3.3 Working with Factory Methods .. 156

4.4 Garbage Collection .. 157
4.5 Tuning Performance .. 159

4.5.1 Design Considerations .. 159
4.5.2 Lazy Initialization ... 159
4.5.3 Reusing Objects ... 161
4.5.4 Making Use of Class Attributes ... 161

4.6 UML Tutorial: State Machine Diagrams ... 161
4.7 Summary ... 163

5 Inheritance and Composition .. 165

5.1 Generalization and Specialization .. 166
5.1.1 Inheritance Defined .. 166
5.1.2 Defining Inheritance Relationships in ABAP Objects 167
5.1.3 Working with Subclasses .. 173
5.1.4 Inheritance as a Living Relationship 173

5.2 Inheriting Components .. 175
5.2.1 Designing the Inheritance Interface 176
5.2.2 Visibility of Instance Components in Subclasses 178
5.2.3 Visibility of Class Components in Subclasses 179
5.2.4 Redefining Methods ... 179
5.2.5 Instance Constructors ... 182
5.2.6 Class Constructors .. 183

5.3 The Abstract and Final Keywords ... 183
5.3.1 Abstract Classes and Methods .. 183
5.3.2 Final Classes ... 188
5.3.3 Final Methods .. 189

5.4 Inheritance vs. Composition .. 191
5.5 Working with ABAP Refactoring Tools ... 194
9

Contents
5.6 UML Tutorial: Advanced Class Diagrams .. 198
5.6.1 Generalizations ... 198
5.6.2 Dependencies and Composition 198
5.6.3 Abstract Classes and Methods .. 199

5.7 Summary ... 201

6 Polymorphism ... 203

6.1 Object Reference Assignments Revisited .. 204
6.1.1 Static and Dynamic Types ... 205
6.1.2 Casting ... 207

6.2 Dynamic Method Call Binding ... 210
6.3 Interfaces .. 212

6.3.1 Interface Inheritance vs. Implementation Inheritance 213
6.3.2 Defining Interfaces ... 214
6.3.3 Implementing Interfaces ... 218
6.3.4 Working with Interfaces ... 221
6.3.5 Nesting Interfaces .. 224
6.3.6 When to Use Interfaces .. 227

6.4 UML Tutorial: Advanced Class Diagrams Part II 229
6.4.1 Interfaces ... 229
6.4.2 Providing and Required Relationships with Interfaces 230
6.4.3 Static Attributes and Methods .. 231

6.5 Summary ... 232

7 Component-Based Design Concepts .. 233

7.1 Understanding the SAP Component Model 233
7.2 The Package Concept .. 236

7.2.1 Why Do We Need Packages? ... 237
7.2.2 Introducing Packages ... 238
7.2.3 Creating Packages Using the Package Builder 240
7.2.4 Embedding Packages .. 248
7.2.5 Defining Package Interfaces .. 250
7.2.6 Creating Use Accesses .. 253
7.2.7 Performing Package Checks .. 254
7.2.8 Restriction of Client Packages ... 256

7.3 Package Design Concepts .. 258
7.4 UML Tutorial: Package Diagrams ... 260
7.5 Summary ... 262
10

Contents
8 Error Handling with Exception Classes 263

8.1 Lessons Learned from Prior Approaches ... 263
8.1.1 Lesson 1: Exception Handling Logic Gets in the Way 264
8.1.2 Lesson 2: Exception Handling Requires Varying 

Amounts of Data .. 265
8.1.3 Lesson 3: The Need for Transparency 265

8.2 The Class-Based Exception Handling Concept 266
8.3 Creating Exception Classes ... 268

8.3.1 Understanding Exception Class Types 268
8.3.2 Local Exception Classes .. 270
8.3.3 Global Exception Classes .. 270
8.3.4 Defining Exception Texts .. 273
8.3.5 Mapping Exception Texts to Message Classes 274

8.4 Dealing with Exceptions .. 275
8.4.1 Handling Exceptions ... 275
8.4.2 Cleaning Up the Mess .. 280

8.5 Raising and Forwarding Exceptions .. 281
8.5.1 System-Driven Exceptions .. 282
8.5.2 Raising Exceptions Programmatically 282
8.5.3 Propagating Exceptions .. 287
8.5.4 Resumable Exceptions .. 290

8.6 UML Tutorial: Activity Diagrams .. 294
8.7 Summary ... 297

9 Unit Tests with ABAP Unit .. 299

9.1 ABAP Unit Overview ... 300
9.1.1 Unit Testing Terminology ... 300
9.1.2 Understanding How ABAP Unit Works 301
9.1.3 ABAP Unit and Production Code 301

9.2 Creating Unit Test Classes .. 301
9.2.1 Unit Test Naming Conventions ... 302
9.2.2 Test Attributes ... 303
9.2.3 Test Methods ... 304
9.2.4 Managing Fixtures .. 305
9.2.5 Test Class Generation Wizard ... 306
9.2.6 Global Test Classes ... 307

9.3 Assertions in ABAP Unit .. 307
9.3.1 Creating and Evaluating Custom Constraints 308
9.3.2 Applying Multiple Constraints .. 309
11

Contents
9.4 Managing Dependencies ... 310
9.4.1 Dependency Injection .. 311
9.4.2 Private Dependency Injection ... 311
9.4.3 Partially Implemented Interfaces 312
9.4.4 Other Sources of Information ... 312

9.5 Case Study: Creating a Unit Test in ABAP Unit 313
9.6 Executing Unit Tests .. 316

9.6.1 Integration with the ABAP Workbench 316
9.6.2 Creating Favorites in the ABAP Unit Test Browser 317
9.6.3 Integration with the Code Inspector 318

9.7 Evaluating Unit Test Results ... 319
9.8 Moving Towards Test-Driven Development 321
9.9 Behavior-Driven Development ... 322
9.10 UML Tutorial: Use Case Diagrams .. 323

9.10.1 Use Case Terminology .. 323
9.10.2 An Example Use Case ... 324
9.10.3 The Use Case Diagram .. 326
9.10.4 Use Cases for Requirements Verification 327
9.10.5 Use Cases and Testing .. 327

9.11 Summary ... 328

PART II Case Studies

10 ABAP Object Services .. 331

10.1 Introduction .. 331
10.1.1 Understanding Object-Relational Mapping (ORM) 

Concepts .. 332
10.1.2 Services Overview .. 333

10.2 Working with the Persistence Service .. 335
10.2.1 Introducing Persistent Classes .. 335
10.2.2 Mapping Persistent Classes ... 340
10.2.3 Working with Persistent Objects 352

10.3 Querying Persistent Objects with the Query Service 357
10.3.1 Technical Overview .. 358
10.3.2 Building Query Expressions .. 359

10.4 Modeling Complex Entity Relationships ... 362
10.4.1 Performing Reverse Lookups .. 362
10.4.2 Navigating N-to-M Relationships 364

10.5 Transaction Handling with the Transaction Service 369
10.5.1 Technical Overview .. 369
12

Contents
10.5.2 Processing Transactions .. 370
10.5.3 Influencing the Transaction Lifecycle 374

10.6 UML Tutorial: Communication Diagrams 375
10.7 Summary ... 377

11 Business Object Development with the BOPF 379

11.1 What is the BOPF? .. 379
11.2 Anatomy of a Business Object ... 382

11.2.1 Nodes .. 383
11.2.2 Actions ... 387
11.2.3 Determinations .. 389
11.2.4 Validations ... 391
11.2.5 Associations ... 392
11.2.6 Queries .. 396

11.3 Working with the BOPF Client API .. 397
11.3.1 API Overview ... 397
11.3.2 Creating BO Instances and Node Rows 401
11.3.3 Searching for BO Instances ... 404
11.3.4 Updating and Deleting BO Node Rows 405
11.3.5 Executing Actions ... 406
11.3.6 Working with the Transaction Manager 407

11.4 Where to Go From Here .. 408
11.4.1 Looking at the Big Picture .. 409
11.4.2 Building and Enhancing BOs ... 410
11.4.3 Finding BOPF-Related Resources 410

11.5 UML Tutorial: Advanced Sequence Diagrams 411
11.5.1 Creating and Deleting Objects .. 412
11.5.2 Depicting Control Logic with Interaction Frames 412

11.6 Summary ... 413

12 Working with the SAP List Viewer ... 415

12.1 What is the SAP List Viewer? ... 415
12.2 Introducing the ALV Object Model .. 418
12.3 Developing a Reporting Framework on top of ALV 421

12.3.1 Step 1: Identifying the Key Classes and Interfaces 422
12.3.2 Step 2: Integrating the Framework into an 

ABAP Report Program .. 424
12.3.3 Step 3: Creating Custom Report Feeder Classes 425
13

Contents
12.4 UML Tutorial: Advanced Activity Diagrams 430
12.5 Summary ... 432

13 Where to Go From Here .. 433

13.1 Object-Oriented Analysis and Design .. 433
13.2 Design Patterns ... 434
13.3 Reading and Writing ABAP Objects Code 435
13.4 Summary ... 436

Appendices.. 437

A Installing the Eclipse IDE .. 439
A.1 Installing the Java SDK .. 439
A.2 Installing Eclipse .. 440
A.3 Installing the ABAP Development Tools ... 442
A.4 Where to Go to Find Help ... 445

B Debugging Objects .. 447
B.1 Understanding Debugger Types ... 447
B.2 Debugging Objects Using the Classic Debugger 447

B.2.1 Displaying and Editing Attributes 447
B.2.2 Tracing Through Methods .. 449
B.2.3 Displaying Events and Event Handler Methods 450
B.2.4 Viewing Reference Assignments for an Object 451
B.2.5 Troubleshooting Class-Based Exceptions 452

B.3 Debugging Objects Using the New Debugger 455
C Bibliography ... 459
D The Authors ... 461

Index... 463

Service Pages .. I
Legal Notes .. II
14

1

Introduction

In the seven-plus years since the first edition of this book was published we’ve
seen a lot of changes in the world of ABAP Objects. These changes are represen-
tative of the maturation of ABAP Objects as a language and its continued adoption
by developers in the SAP landscape. So, while the core concepts of object-ori-
ented programming (OOP) never really change, we felt the time was right to take
a fresh look at OOP with ABAP Objects.

Our goal with this revised and expanded edition of the book remains consistent
with the first edition: to teach you how to think about writing ABAP-based soft-
ware from an object-oriented perspective. While it takes a fair amount of time
and effort to embrace this way of thinking, we believe that you’ll find the invest-
ment to be worthwhile from both a personal and professional standpoint.

Target Group and Prerequisites

This book is intended for ABAP developers that have some basic experience writ-
ing ABAP programs. Though most of the concepts are presented with lots of back-
ground information for developers new to OOP, this book should not be con-
fused as a comprehensive introduction to ABAP. If you haven’t worked with
ABAP before it’s probably a good idea to look for a training course or perhaps
read through introductory titles such as Getting Started with ABAP (SAP PRESS,
2015); Discover ABAP, 2nd Edition (SAP PRESS, 2012); or ABAP Basics, 2nd Edition
(SAP PRESS, 2011). Aside from that, no prior OOP experience, etc. is expected.

System-wise, we think that you’ll find that the majority of the tools/features
described in this book are supported on most any AS ABAP system. Indeed, since
the object-oriented extensions to ABAP (i.e., the Objects part of ABAP Objects)
were made available in SAP R/3 4.6C in 1999, it’s pretty rare to find a system that
doesn’t support object-oriented ABAP these days. Still, we will point out release-
specific features/additions where appropriate.
15

Introduction
Structure of the Book

As we put this book together, we endeavored to strike a balance between theoret-
ical concepts on one hand and practical examples demonstrating the use of ABAP
Objects in real-live scenarios on the other. This approach led us to split the book
into two parts:

� In Part I, we introduce you to core OOP concepts and the ABAP Objects func-
tionality/syntax that corresponds with these concepts.

� Then, in Part II, we build on these concepts by presenting case studies that
demonstrate how ABAP Objects is used in practical development scenarios.

Despite this logical breakdown, we think that you’ll find that we let code do
much of the talking throughout the book so that you don’t feel like you’re reading
a college textbook on OOP.

Finally, at the end of each chapter, we’ve included brief tutorials on the Unified
Modeling Language (UML). These tutorials show you how to describe your OO
designs using a graphical notation that’s commonly used throughout the software
industry.

Here’s an overview of what we’ll be covering in the book:

Part I: Introduction

In this part of the book, we introduce basic concepts of OOP in general and ABAP
Objects in particular.

� Chapter 1: Introduction to Object-Oriented Programming
In this chapter, we set the stage for the rest of book by introducing you to
object-oriented programming and its basic concepts.

� Chapter 2: Getting Started with Objects
In Chapter 2 we start getting our hands dirty with classes in ABAP Objects. We
spend lots of time exploring ABAP Objects syntax for defining classes, meth-
ods, and so on. Along the way we introduce the core development tools we’ll
be using to develop classes throughout the book: the classic ABAP Workbench
and the newer Eclipse-based workbench.

� Chapter 3: Encapsulation and Implementation Hiding
Though inheritance usually steals all the headlines when it comes to OOP, it
could be argued that encapsulation is the most important aspect of OOP. In this
16 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Structure of the Book
chapter, we review encapsulation concepts by comparing and contrasting the
OO-based development approach with the procedural approach. We also intro-
duce the important topic of component visibilities in this chapter.

� Chapter 4: Object Initialization and Cleanup
In Chapter 4 we explore the lifecycle of objects from the point they’re created
to the point they’re removed by the garbage collector process of the ABAP Run-
time Environment. Along the way we’ll learn about constructor methods and
other ways of influencing the object lifecycle.

� Chapter 5: Inheritance and Composition
This chapter looks at two common ways of achieving code reuse in OOP: inher-
itance and composition. Here, we’ll discover that these techniques, when cou-
pled with encapsulation techniques introduced in Chapter 3, allow us to
expand our code libraries in dimensions we never thought possible.

� Chapter 6: Polymorphism
We learn how to take advantage of inheritance relationships to build solutions
which rely on interchangeable parts in Chapter 6. Along the way, we also intro-
duce another key OO concept: interfaces.

� Chapter 7: Component-Based Design Concepts
After spending the previous chapters looking at classes underneath the micro-
scope, this chapter broadens the focus a bit by showing you how the ABAP
Package Concept can be used to organize class libraries into coarse-grained
development components.

� Chapter 8: Error Handling with Exception Classes
This chapter explains how to deal with exception situations using the ABAP
class-based exception handling concept.

� Chapter 9: Unit Tests with ABAP Unit
Chapter 9 concludes the introductory part of the book by showing you how to
develop automated unit tests using the ABAP Unit test framework. These tests
help you ensure that your classes deliver on the functionality specified in their
API contracts.

Part II: Case Studies

In this part of the book, we’ll attempt to reinforce the core concepts learned in
Part 1 by looking at some practical examples which demonstrate the use of ABAP
Objects and OOP in the real world. These case studies are by no means compre-
17

Introduction
hensive. Instead, we purposefully selected a few scenarios which really help to
drive home key concepts.

� Chapter 10: ABAP Object Services
In this chapter, we show you how to work with ABAP Object Services, a frame-
work that SAP provides to build persistent classes. Besides demonstrating a
more OO-based approach to persistence, this case study also allows us to exam-
ine how SAP is applying OO design concepts to build out an extensible frame-
work that blends standard functionality with customer enhancements.

� Chapter 11: Business Object Development with the BOPF
Chapter 11 introduces SAP’s Business Object Processing Framework (BOPF).
Here, we get to see basic OO principles applied on a macro scale towards the
development of reusable business objects. Internally, there are lots of OO-
related concepts on display—both within the business objects themselves and
in the generic API used to interface with the business objects.

� Chapter 12: Working with the SAP List Viewer
We look at ways of building ABAP report programs which are fully object-ori-
ented based on common design patterns such as the model-view-controller
(MVC) pattern in Chapter 12. Here, we build on the OO-based ALV object
model to create a reporting framework which provides an excellent demonstra-
tion for the use of interfaces and polymorphism in practice.

� Chapter 13: Where to Go From Here
In this final chapter, we take stock of what we’ve learned and look at some
additional materials you can use to take your OO skills to the next level.

Appendices

� Appendix A: Installing the Eclipse IDE
This appendix provides detailed instructions for how to install the Eclipse IDE
and corresponding ABAP plug-ins for developers that are new to Eclipse.

� Appendix B: Debugging Objects
In this appendix, we demonstrate ABAP Objects-related features in the ABAP
Debugger tool, showing you how to debug object-oriented programs.
18 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Source Code and Examples
Conventions

This book contains many examples demonstrating syntax, functionality, and so
forth. Therefore, to distinguish these sections, we use a monospaced font similar
to the one used by many integrated development environments (IDEs) to
improve code readability:

CLASS lcl_test DEFINITION.
PUBLIC SECTION.

...
ENDCLASS.

As new syntax is introduced, we’ll highlight the syntax using a bold listing font as
demonstrated in the excerpt above with the highlighted PUBLIC SECTION state-
ment. The use of the ellipsis indicates that irrelevant portions of the code were
omitted for brevity’s sake.

Source Code and Examples

As noted earlier, this book includes a great many code examples which demon-
strate the use of ABAP Objects in different settings. Though many of these exam-
ples are small and self-contained, we have included all of the more involved
examples in a source code bundle that can be downloaded from the book’s com-
panion site. Most of the code is presented in text-based mode so that you can eas-
ily paste it into your preferred ABAP editor tool and test it out for yourself. For
everything else, we’ve provided detailed instructions which describe how to
install/test the relevant development objects.

For the most part, you should be able to try these examples out in any available
ABAP system by simply creating the objects in your local development package (i.e.,
the $TMP package). However, if you don’t have access to an ABAP system, then you
can obtain access to one by logging onto the SAP store online at https://
store.sap.com. Here, if you perform a search on the term “SCN”, you’ll see a search
result list come up which contains various AS ABAP trial systems that you can either
download locally or install to the cloud using SAP’s Cloud Appliance Library (CAL).
In the latter case, you can roll out an instance in a matter of minutes by linking the
CAL with your Amazon Web Services (AWS) account. You can find lots of tutorials
on how to do this on the SAP Community Network online at https://scn.sap.com.
19

Introduction
Acknowledgments

Putting a book like this together is no simple feat, and it requires the help and
support of lots of important individuals behind the scenes. Throughout the writ-
ing process, we were blessed to have the support of two fantastic editors at Rhe-
inwerk Publishing who guided us along our way: Kelly Grace Weaver and
Hareem Shafi. We can’t thank you enough for the support—we simply couldn’t
have done it without you.

James would also like to thank another set of unsung heroes in this process: his
wife Andrea, and kids Andersen, Paige, Parker and Xander. They’ve been amaz-
ingly patient with me as I’ve burned the midnight oil putting this book together.
I would call them my muse, but alas, I don’t think they would appreciate me
drawing such nerdy inspiration from them. If only ABAP were cooler in the
minds of children…

Joe would like to thank his wonderful and supporting family: his wife Jennifer
and his lovely daughters Amelia and Lillian.
20 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

 PART I

Introduction

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

This chapter provides an overview of object-oriented programming from a
conceptual point of view. The concepts described in this chapter lay the
foundation for the remainder of the book.

1 Introduction to Object-Oriented
Programming

Object-oriented programming (OOP) is a programming paradigm in which devel-
opers approach program design by modeling solutions in terms of a series of
objects that simulate real-world entities from the problem domain. This shift in
design philosophy helps us achieve program designs which more closely resem-
ble the world around them. As a result, object-oriented designs tend to be easier
to understand, maintain, and extend. The purpose of this chapter is to introduce
you to the basic concepts you’ll need to understand in order to effectively design
and develop object-oriented programs. These concepts generally apply to most
modern OOP languages such as C++, Java, and, of course, ABAP Objects. This
chapter will also begin an introduction to the Unified Modeling Language (UML),
which is the de facto object modeling language used in the software industry
today.

1.1 The Need for a Better Abstraction

In the field of software engineering, few topics incite more controversy than
object-oriented programming. Loyalists defend the merits of OOP with near reli-
gious fervor, while detractors often roll their eyes at the very thought of it. If
you’re reading this book, it’s likely that you find yourself somewhere in the mid-
dle of this seemingly endless debate. And if that’s the case, probably the most
pressing questions on your mind include the following:

� Why should I bother learning OOP?

� Is OOP really better than procedural programming or other methodologies?

� What is it about OOP that makes it so special?
23

Introduction to Object-Oriented Programming1
In the sections and chapters to follow, we will attempt to answer these questions
by demonstrating how OOP sets itself apart from other programming methodol-
ogies by providing a better and more intuitive form of abstraction.

1.1.1 The Evolution of Programming Languages

The quality of a language (spoken or otherwise) is generally measured by its effec-
tiveness in expressing complex thoughts and ideas. If we evaluate programming
languages using this criterion, we can easily chart the progression from low-level
programming languages such as assembly language to higher-level procedural
programming languages such as C (and to some extent ABAP). As programming
languages evolve, they become easier to read and write with. Of course, this begs
the question: what makes a programming language more expressive?

Though there are many schools of thought here (hence the vast number of pro-
gramming languages in circulation today), each of the approaches taken over the
years shares a common goal: to improve the quality and nature of the abstrac-
tion(s) that developers have to work with. If we can improve on that, then devel-
oper productivity should undoubtedly increase as well.

To put this into perspective, let’s briefly consider the innovations that the C pro-
gramming language brought to the table back in the days when assembly lan-
guage programming reigned supreme. In those days, programmers were imple-
menting their designs by twiddling bits of data, manipulating various CPU
registers, and so on. With the advent of C, the developer’s palette expanded to
include:

� Variables with meaningful names and intuitive data types (e.g. integers and
strings of characters)

� Conditional statements that made it possible to encode program logic using
statements that more closely resembled spoken language.

� Callable functions that allowed developers to break down complex problems
into modules that were easier to understand individually.

With these new abstractions in hand, developers were freed from worrying so
much about low-level technical details and could focus more on program logic
issues.
24 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Need for a Better Abstraction 1.1
Despite these early innovations, by the time the 1960s rolled around language
researchers had begun to observe a fundamental truth: The abstractions provided
by programming languages up to that point still required developers to think
about their solutions “in terms of the structure of the computer rather than the
structure of the problem they’re trying to solve,” as Bruce Eckel states in Thinking
in C++. This is to say that solutions in code bore little resemblance to the problem
domain from which they were conceived. For the purposes of this book, we’ll
refer to this phenomenon as semantic dissonance.

The upshot of this trend is that a tremendous burden was placed on developers to
ensure that software requirements were accurately translated into program code.
And, if one of those requirements got lost in the translation or the developer
made a mistake somewhere along the way? Well, let’s just say that it was going to
be a rough couple of days for that developer.

1.1.2 Moving Towards Objects

Around the time software researchers began to wrap their heads around the
semantic dissonance problem, several influential language designers took a col-
lective step back and began contemplating what the most ideal type of abstraction
would be. Think of it this way: If you could choose any kind of element to model
your program designs, what would you ask for? Would you stop at abstract data
types (ADTs) and functions/subroutines? What if instead someone offered you a
series of magical objects that look and behave like the entities you interact with in
the real world?

While the latter approach may sound too good to be true, it turns out that conjur-
ing up such objects in programs is actually achievable if we begin to think about
our program designs just a little bit differently. We’ll have an opportunity to
explore this thought process in depth beginning in Section 1.2, but before we
segue into more practical matters, let’s take a moment to understand the why in
OOP.

At the end of the day, OOP is all about bridging the gap between whatever prob-
lem domain we’re working with and the solution space where our program code
lives and operates. The goal is to model our code in such a way that it resembles
(or simulates) the problem space we’re working in (e.g. purchasing, accounting,
and so on). In his book, Thinking in C++, Bruce Eckel summarizes the benefits of
25

Introduction to Object-Oriented Programming1
this approach: “Casting the solution in the same terms as the problem is tremen-
dously beneficial because you don’t need a lot of intermediate models to get from
a description of the problem to the description of the solution.”

Once you begin to see the world through OO glasses, you open yourself up to all
kinds of new and exciting possibilities. For example, with objects, it’s easier to
achieve reuse because you’re dealing with self-contained entities that have
defined responsibilities as opposed to a scattering of data structures and subrou-
tines. This will all become clearer as we progress through the book, but for now,
we would simply ask that you open your mind to the possibility of a system over-
run by lots of tiny little objects.

1.2 Classes and Objects

Students learning pure object-oriented languages like Java are often taught that
“everything is an object”. While this is not necessarily the case in a hybrid lan-
guage like ABAP Objects (where it’s still possible to use procedural constructs),
it’s still a good way to start thinking about how to design programs using an
object-oriented approach. Of course, it helps if you know what an object is. In
this section, we’ll attempt to unravel the mysteries surrounding objects and also
consider a closely related concept in OOP: classes.

1.2.1 What Are Objects?

From a technical perspective, an object is a special kind of variable that has dis-
tinct characteristics and behaviors. The characteristics (or attributes) of an object
are used to describe the state of an object. For example a Car object might have
attributes to capture information such as the color of the car, its make and model,
or even its current driving speed. Behaviors (or methods) represent the actions
performed by an object. In our Car example, there might be methods that can be
used to drive, turn, and stop the car, for instance.

With all this in mind, our initial definition of an object would read something
like this: “An object is a variable that combines data and behaviors together in a
self-contained package.” However, if we were to leave off here, our definition
would be rather limiting. In his book, Design Patterns Explained: A New Perspec-
tive on Object-Oriented Design, 2nd Edition, Alan Shalloway emphasizes that
26 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Classes and Objects 1.2
objects make it possible to “...package data and functionality together by con-
cept, so you can represent an appropriate problem-space idea rather than being
forced to use the idioms of the underlying machine.” This distinction, though
subtle, is important in getting us where we really want to go with OOP: to create
autonomous entities with defined roles and responsibilities that are able to
think and act for themselves.

1.2.2 Introducing Classes

Now that you have a sense for what objects are, you might be wondering how
objects are defined in the first place. Unlike other variable types that you might
be accustomed to working with, this process requires a fair amount of thought.
Since an object, by definition, can literally refer to most anything (i.e. a person,
place, thing, or idea), we first need to figure out the types of objects we need in
order to model our problem domain. For example, if we are building a financial
accounting solution, we would probably need objects to represent accounts, led-
gers, and so on.

Sometimes this analysis process is intuitive; other times not so much. In these lat-
ter cases, we must collect our thoughts using an ordered and methodical process.
One fairly typical approach for initiating this process is to identify all of the nouns
used to describe various aspects of the problem domain. Then, from here, we can
further organize the objects by examining their roles and responsibilities as well
as their relationships to other objects. Early OOP researchers observed that the
nature of this analysis process bore a number of similarities to the classification
techniques used by biologists to identify, categorize and understand the relation-
ships between plants and animals. Consequently, the term class was used to
describe these abstract data types and over the years the name has stuck.

In practical terms, we can think of a class as being rather like a specialized type
declaration. This is to say that a class declaration defines the type of an object. As
an ABAP developer accustomed to working with structures and internal tables,
this typing concept should feel fairly intuitive. For example, in Listing 1.1, you
can see how we’ve defined a structure variable called LS_PERSON in terms of a cus-
tom type we’ve declared called TY_PERSON. This custom type declaration tells the
ABAP compiler what the LS_PERSON structure will look like at runtime (i.e. what
component fields the structure will have).
27

Introduction to Object-Oriented Programming1
TYPES: BEGIN OF ty_person,
first_name TYPE string,
last_name TYPE string,

END OF ty_person.

DATA ls_person TYPE ty_person.

Listing 1.1 Declaring a Custom Structure Data Type

With class type declarations, we’re essentially trying to accomplish the same
thing; the only difference is that we’re declaring a class of objects as opposed to a
structure or internal table. For example, in Listing 1.2, you can see how we’ve
defined a custom class type called LCL_PERSON. We’ll have an opportunity to
unpack the syntax of this in Chapter 2, but for now, notice the similarities
between this class type declaration and the TY_PERSON type declaration from List-
ing 1.1. This is not by accident since classes are, in many respects, just another
form of abstract data type (ADT).

CLASS lcl_person DEFINITION.
PRIVATE SECTION.
DATA mv_first_name TYPE string.
DATA mv_last_name TYPE string.

ENDCLASS.

DATA lo_person TYPE REF TO lcl_person.

Listing 1.2 Declaring a Custom Class Type

When we look at class type declarations in this light, we can begin to appreciate
the relationship between classes and objects. Conceptually speaking, it’s appro-
priate to think of classes as being like templates (or blueprints) that an OO runtime
environment can use to figure out how to create object instances at runtime.
Therefore, the relationship between an object and a class is normally described as
“an object is an instance of a class,” in OOP lingo.

This relationship is illustrated from a runtime perspective in Figure 1.1. Here, we
can see how an arbitrary number of instances of our LCL_PERSON class might be
created (or instantiated) at runtime. Each created object instance is unique and
independent in its own right (i.e. it has its own memory space). For example,
notice how each object instance contains its own values for the FIRST_NAME and
LAST_NAME attributes. If we were to change the FIRST_NAME attribute for the first
object instance, the other object instances would be unaffected because they’re
28 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Classes and Objects 1.2
independent entities. Indeed, the only thing that these objects really have in com-
mon is their shared definition class.

Figure 1.1 Relationship Between Classes and Objects

If all this seems confusing, don’t worry; we’ll delve into some hands-on examples
in Chapter 2 that should make the relationship between classes and objects much
clearer.

1.2.3 Defining a Class’s Interface

In the previous section, we highlighted some of the similarities between class
types and other ADTs such as structures or internal tables. While this analogy is
useful in understanding how objects are defined conceptually, it begins to break
down when we approach the specification of a class’s methods. Methods, which
are conceptually similar to subroutines or functions in procedural programming,
define the interaction points that make it possible to communicate with object
instances at runtime. In more formal terms, methods are said to make up a class’s
interface.

To illustrate the idea of a class’s interface, consider the revised LCL_PERSON class
type declaration shown in Listing 1.3.

LCL_PERSON

first_name
last_name

talk()
walk()

First Name: Dirk
Last Name: Nowitzki
First Name: Dirk
Last Name: Nowitzki

First Name: Shawn
Last Name: Marion

First Name: Jose
Last Name: Calderon

Person Object Person Object Person Object
29

Introduction to Object-Oriented Programming1
CLASS lcl_person DEFINITION.
PUBLIC SECTION.
METHODS:

talk,
walk.

PRIVATE SECTION.
DATA mv_first_name TYPE string.
DATA mv_last_name TYPE string.

ENDCLASS.

CLASS lcl_person IMPLEMENTATION.
METHOD talk.
WRITE: / 'Hello'.

ENDMETHOD.

METHOD walk.
...

ENDMETHOD.
ENDCLASS.

Listing 1.3 Declaring a Class with Methods

With the addition of methods such as talk() and walk(), instances of the LCL_
PERSON class all of a sudden take on quite a bit more personality. In effect, we can
use these methods to (programmatically) tell our objects what to do. For example,
we can tell a person instance to talk by calling the talk() method or to walk
around by invoking the walk() method. Such behaviors transform objects from
inanimate data structures to living, breathing entities that are self-aware and, to a
certain extent, autonomous. Plus, with their attribute data in context, objects
inherently know who they are, what their current state is, and what sort of oper-
ations they can perform.

1.3 Establishing Boundaries

A fundamental principle of OOP is that objects should rarely exist in isolation.
Indeed, if we think of our object-oriented programs as simulations of some real-
world problem domain, then it’s only natural that there would be some division
of labor among the classes/objects that make up the solution architecture. This
design approach calls for a series of smaller, more granular classes that specialize
in solving a particular piece of the problem as opposed to a handful of “God
objects” that are overburdened with many (unrelated) tasks. These smaller, more
30 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Establishing Boundaries 1.3
focused classes are said to have high cohesion in the sense that each of the class’s
operations are closely related in some intuitive way.

While having such collaboration among objects in a program design is definitely
a good thing, it does require that we define some boundaries up front. In this sec-
tion, we’ll learn a bit about how such boundaries are established within classes
and why they’re important.

1.3.1 An Introduction to Encapsulation and Implementation Hiding

Before we look at the mechanics of boundary definitions within classes, let’s
briefly take a step back and think about why such boundaries are needed in the
first place. After all, this sort of thing is rarely (if ever) a concern in other pro-
gramming paradigms (such as procedural programming).

To illustrate the importance of boundaries in software design, let’s explore an
analogy from the world of manufacturing. Here, consider a real-world device
(object) that most people are experienced in using: a smart phone. This object,
much like software objects, has distinct attributes (e.g. form factor and memory
size) and behaviors (making/receiving phone calls, sending an e-mail, and so
forth). It also has an interface that consumers can interact with. For example, to
send a text message, a user simply taps on the appropriate messaging icon and
then uses the built-in keyboard to type out their message. With various input ges-
tures, users can tell their smart phone what to do and it will obey their every com-
mand.

Design-wise, one of the marvels about smart phones is that, despite of all the
wonderful and complex tasks they perform, they’re pretty intuitive and easy to
use. This begs the question: how is it possible that something so complex could
be that easy to use? The answer lies in a technique so obvious you may not have
even realized it had a name: encapsulation.

As the name suggests, the term encapsulation refers to a design approach in which
selected elements of an object are hidden together inside of an enclosure (or cap-
sule) that’s shielded from the outside world. From a manufacturing standpoint,
the goal of this technique is simplification. Everything that consumers don’t need
to know about in a product (object) design is superfluous and gets in the way, so
we may as well hide it from them. It’s not that the components in question aren’t
important; it’s just that the consumer doesn’t need to know about them in order
31

Introduction to Object-Oriented Programming1
to use the object. In fact, the less the consumer has to know about the internal
workings of a particular object, the shorter the learning curve will be in figuring
out how the object works.

Figure 1.2 Encapsulation of Data and Behavior Inside a Class

Aside from de-cluttering an object’s interface, there are several other important
benefits to be gained by employing encapsulation techniques in our class/object
designs:

� From an implementation perspective, encapsulation allows us to hide tender
parts of the implementation which are volatile and sensitive to change. In the
long run, this approach gives us more flexibility in responding to changes in
requirements since we can clearly pinpoint and isolate specific pieces of func-
tionality within the system.

� Simplifying the interface promotes loose coupling between components. This is
to say that it cuts out all of the extraneous wiring required to connect a pair of
objects/components. This in turn makes it easier to use (and reuse) our objects
in different contexts.

� It allows us to modify the implementation behind the scenes without impacting
consumers. Getting back to our smart phone analogy, consider the possibility
that a smart phone manufacturer might decide to replace its existing processor
with a smaller, faster chip in a new product revision. To the consumer, this
design change is completely transparent since it doesn’t change how they inter-
act with the phone (aside from maybe making it faster and more responsive).

Similarly, with objects, we can achieve the same thing by changing the imple-
mentation code hidden behind the class interface. Here, for example, we might

Attributes

Methods

Class
32 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Establishing Boundaries 1.3
decide to speed up a database lookup by utilizing a stored procedure in SAP
HANA instead of a normal SQL SELECT statement. To the consumer, nothing
has really changed here so long as we continue to uphold our end of the bargain
by passing back the data they’re expecting.

We’ll have an opportunity to expand on these concepts in much more detail in
Chapter 3. For now though, the main take-away from all this is that it makes good
sense to draw up clear boundaries between the various collaborating objects in
our object-oriented designs.

Of course, in order to enforce such boundaries, we’re going to need some support
from the programming language and its corresponding runtime environment.

1.3.2 Understanding Visibility Sections

In order to clearly define the interface of our classes, there has to be a way for us
to differentiate between those elements that we want to share with the public and
those that we wish to maintain privately. Most object-oriented languages handle
this by grouping selected elements into one of three distinct visibility sections:

� Public Section
Components that we define within this section (e.g. attributes, methods, etc.)
can be accessed from any context. The elements in this section make up the
class’s external interface.

� Private Section
Components defined in this section are completely shut off and hidden from
the outside world. Class consumers cannot access these components in any
way. Their sole purpose for being there is to facilitate the inner workings of the
class (e.g. helper methods, internal data, and so forth).

� Protected Section
Components defined in this section are visible only to the superclass and its
subclasses. To the outside world, it would seem that these components were
defined within the private section of the class. This section will come into play
when we discuss inheritance in Chapter 5.

Once we organize our components into these various visibility sections, we can
rest assured that the runtime environment will make sure that our boundaries are
enforced. In Chapter 3, we’ll look at ways of exploiting this functionality to
improve the robustness of our designs.
33

Introduction to Object-Oriented Programming1
1.4 Reuse

One of the most compelling reasons for adopting an object-oriented approach to
program design is the significant capability for reusing code. Of course, while it is
easy to allow yourself to become dazzled by promises of huge productivity gains,
it’s important to keep things in perspective. Learning how to develop reusable
classes takes time and experience. The following subsections describe some basic
techniques for reusing classes. We’ll then circle back and cover these topics at
length in Chapters 5 and 6.

1.4.1 Composition

The easiest way to reuse a class is to simply create an instance of it and start call-
ing its methods. Such instances can be created in isolation, or as attributes of new
classes that we may decide to build. This latter usage type is often referred to as
composition, where new classes are composed from existing classes. These classes
are aggregates, using existing classes as building blocks (think LEGO® sets) for
constructing arbitrarily complex assemblies. Designs based on composition are
easy to understand and highly flexible. Since member objects can be hidden just
like any other attribute, it’s easy to change the way we utilize these objects both
at design time and at run time.

1.4.2 Inheritance

Another way to reuse a class is through inheritance. The concept of inheritance is
an extension of the classification metaphor used to describe the nature of classes
and their relationships. Here, we’re interested in defining specialization relation-
ships between families of related classes. These relationships begin to reveal
themselves as an object-oriented design matures.

The idea of inheritance is best explained by an example. Let’s imagine that you’re
working on an object-oriented design for a banking system. Initially, you come
up with a series of classes including one to represent a bank account. After study-
ing the requirements further, you discover that there are certain peculiarities
unique to checking and savings accounts. At this point, you’re faced with a
dilemma. On one hand, you could copy the code you have put together for the
account into new checking and savings account classes. However, this seems
34 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Reuse 1.4
wasteful since this would introduce a lot of redundant code. Another option
would be to use inheritance to describe this specialization relationship. In this
case, you still create new checking and savings account classes, but you create
them as subclasses derived from the original account class (which is the parent or
superclass). The checking and savings account subclasses are said to inherit the
attributes and behaviors (and indeed the type) of the account superclass (see Fig-
ure 1.3). Now, the relevant changes can be made to each of the subclasses inde-
pendently without having to reinvent the wheel.

Figure 1.3 Understanding Inheritance Relationships

It’s important to understand that inheritance describes a relationship; it’s not just
a fancy term for “copying-and-pasting” one piece of code into another. Initially, a
subclass looks like a clone of the superclass. However, over time, a subclass can be
extended to add new attributes and methods as needed. Additionally, changes to
the superclass are automatically applied to the subclass (although we’ll see excep-
tions to this rule in Chapter 5). In general, it’s possible to create class hierarchies
with arbitrarily deep inheritance relationships.

The connection between a subclass and its parent is often described using the “is-
a” relationship. Looking at the example above, a checking account is an account,
etc. The “is-a” relationship is a simple way of saying that the subclass and super-
class share the same type. As you may recall from our discussion in Section 1.2.3,
a class’s type describes how you can communicate with objects of that class.
Therefore, since objects of a superclass and subclass share the same type, it is pos-
sible to communicate with both of them in the exact same way. Polymorphism
exploits this capability, allowing for code reuse in multiple dimensions.

Account

Checking
Account

Savings
Account

Superclass

Subclasses
35

Introduction to Object-Oriented Programming1
1.4.3 Polymorphism

The definition of an inheritance relationship implies that a subclass is inheriting
both the type and the implementation of its superclass. In the subclass, however, it
is possible to redefine a method’s implementation to further specialize certain
behavior. Redefining a method does not change the interface of the method (i.e.,
the way it’s called) in any way. Rather, it simply redefines the behavior of the
method to suit the needs/requirements of the subclass.

To the runtime environment, all these class-specific object references look the
same. In its eyes, the requirements for calling a particular method on a subclass
instance are no different than the requirements to call the same method on the
superclass. As programmers, we can take advantage of this relationship to make
our designs more flexible.

To put this phenomenon into perspective, let’s consider an example. Figure 1.4
depicts an Employee class hierarchy that might be used to model the types of
employees managed within an HR system. In this scenario, the Employee superclass
is used to describe the basic characteristics and behaviors of all types of employees.
The three specialized subclasses (HourlyEmployee, CommissionEmployee, and Sala-
riedEmployee) are extensions of the Employee superclass used to represent employ-
ees paid by the hour, employees working on commission, and salaried employees,
respectively.

Figure 1.4 An Employee Class Hierarchy

Employee

HourlyEmployee CommissionEmployee SalariedEmployee

+ calculateWage()
+ printPaycheck()

+ caclulateWage() + calculateWage() + calculateWage()
36 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Reuse 1.4
Also, for the purposes of our example, let’s assume that the calculateWage()
method has been redefined in each of the subclasses to properly calculate the
employee’s wage based on the actual employee type.

Now, let’s imagine that the company wants to use this Employee class hierarchy to
enhance their accounts payable (AP) system to automate the creation of monthly
paychecks. Listing 1.4 shows an example of the pseudo code for an enhancement
such as this.

Get Employees
For Each Employee

Call calculateWage() to calculate the employee’s wages
Call printPaycheck() to print the employee’s paycheck

End For

Listing 1.4 Pseudocode for Generic Payroll Run Algorithm

Looking closely at the logic contained in Listing 1.4, we can see that there’s no
real distinction between employee types in the main loop that drives the payment
run. This isn’t simply a casual omission of detail in the pseudo code. Rather, we’re
purposefully utilizing the “is-a” relationship between Employee class types to
build a generic algorithm that’s able to process payments for any kind of Employee
type. In formal terms, we’re exploiting a core object-oriented language feature
called polymorphism.

The term polymorphism can be translated from its Greek origins as many forms.
In the example above, each subclass represents a different form (or type) of
Employee. However, since the subclasses take part in an inheritance relationship
with the Employee superclass, each subclass is an Employee. Consequently, since
both the superclass and subclass share the same public interface, any method that
can be called on the superclass can also be called on the subclass. Our fictitious AP
system is taking advantage of this feature by defining its interface to work with
generic Employee instances. At runtime, the actual object instances being pro-
cessed could be of type Employee or any of its subclasses. The runtime system
takes care of making sure that the proper method implementation is called
behind the scenes. This is another example of how an object is smart enough to
know how to do its job.

In Chapter 6, we’ll look at ways of utilizing polymorphism to build more intelli-
gent and flexible designs.
37

Introduction to Object-Oriented Programming1
1.5 Object Management

At this point, we’ve hit on the 3 major pillars of OOP: encapsulation, inheri-
tance, and polymorphism. However, before we wrap up this introductory chap-
ter, we should briefly touch on another topic that’s of similar importance: object
management.

As we learned in Section 1.2, objects are specialized variables that are defined in
terms of a class type. The class type defines a blueprint which provides the run-
time environment with the information it needs to build object instances. Of
course, such object instances aren’t created automatically. After all, how’s the
runtime environment supposed to know how many object instances we might
need at runtime. Because of the abstract nature of the types we’re working with,
it’s up to us as developers to explicitly tell the runtime environment when and
where we want object instances to be created.

Somewhere in between the point when we request that an object instance be cre-
ated and the point where we actually get our hands on the allocated object refer-
ence, the runtime environment provides us with a mechanism for initializing the
object. Here, we can define specialized callback methods called constructors
within our classes that the runtime environment will invoke as instances of a class
are being allocated. The constructor’s job is to make sure that the object is initial-
ized in a consistent state before it’s used. That way, it’s ready to perform its req-
uisite tasks when called upon.

We’ll investigate the details of object management from a development perspec-
tive in Chapter 4. There, we’ll also learn a few tricks for improving performance
and influencing the object creation process.

1.6 UML Tutorial: Class Diagram Basics

As we’ve seen, object-oriented software development places a considerable
amount of emphasis on design. Before we start coding, it’s imperative that we
have all of our ducks lined up in a row. In particular, we really need to figure out
what kind of objects we’ll need as well as how those objects will interact with one
another at runtime.
38 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Class Diagram Basics 1.6
Object-Oriented Analysis and Design (OOAD) is a software development methodol-
ogy used to analyze system requirements and formulate a system design from an
object-oriented perspective. OOAD practitioners often use graphical modelling
techniques to communicate their designs more effectively.

The Unified Modeling Language (UML) contains a set of graphical notations for
building diagrams that depict various aspects of the system model. The UML is
used extensively throughout the software development industry, so it’s import-
ant that you understand how to use UML diagrams to express and interpret
object-oriented designs.

Throughout the remainder of this book, we’ll examine the usage types of various
UML diagrams at the end of each chapter. Our discussions will be based on ver-
sion 2.0 of the UML standard. We’ll begin our introduction to the UML by first
looking at the class diagram. For now, we will try to keep it simple, reinforcing
the concepts covered in this introductory chapter. In Chapters 5 and 6, more
advanced features of class diagrams will be considered.

Note

The UML standard is maintained by the Object Management Group (OMG). For more
information on the OMG, check out their website at http://www.uml.org.

1.6.1 What are Class Diagrams?

Class diagrams are used to illustrate the static architecture of an object-oriented
system. Here, we can depict the various classes used in the system, as well as
their relationships. Figure 1.5 shows a simple class diagram that describes a
scaled-down model of a sales order system used to process orders for an e-com-
merce website. Here, we can observe the basic class types that will make up our
sales order system (i.e. the rectangular boxes), their elements, and their relation-
ships to other classes. As simple as this may seem, it’s surprising how much
information one can glean just by visualizing the key players in an object-ori-
ented design.

In the upcoming sections, we’ll explore specific elements of the UML class dia-
gram in more detail.
39

Introduction to Object-Oriented Programming1
Figure 1.5 An Example UML Class Diagram

Order

- number: Integer {readOnly}
- creationDate: Date
- totalAmt: Money

+ create()
+ generateReceipt()
+ complete()

OrderItem

- id: Integer {readOnly}
- qty: Integer

+ getSubtotal(): Money

Customer

- id: String {readOnly}
- firstName: String
- lastName: String

+ getCreditRating () {query}

Address

- id: Integer {readOnly}
- street: String
- city: String
- region: String
- country: String

Product

+ getPrice(): Money
+ getShippingCost(in PostalCode: String): Money

- id: String {readOnly}
- description: String
- weight: Float

Class

Association

Attributes

Methods

1 1

1

1

1

*

*

*

address

orderItems
40 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Class Diagram Basics 1.6
1.6.2 Classes

The diagram in Figure 1.5 contains five classes: Order, OrderItem, Product, Cus-
tomer, and Address. As you can see, classes are represented in class diagrams as
rectangular boxes partitioned into three sections (as shown in Figure 1.6):

� The top (shaded) section contains the class name as well as some other optional
modifiers that we’ll cover in Chapters 5 and 6.

� The optional middle section contains some of the more prominent attributes
defined by the class

� The bottom section contains relevant operations (or methods) of the class

Figure 1.6 Understanding UML Class Notation

As you read through this description, did you notice how we used the terms some,
optional, and so forth? This is because the UML class diagram notation does not
require you to specify every element defined within a class. Instead, the goal is to
really hit on the key elements that are needed to convey the point of the class.
Here, too much detail really can be a bad thing since it clutters up the diagram
and makes it difficult to visualize the system at a glance.

The point is to not get too carried away with the details as this can complicate the
model to the point that the diagram is unreadable. Some developers new to UML
fall into this trap, worrying that there isn’t enough information in their class dia-
gram to start writing code. If you find yourself in this position, remember that the
UML provides a multitude of diagrams that can be used to express the various
aspects of your design; class diagrams only tell one part of the story.

1.6.3 Attributes

Attributes can be specified on the class diagram using the syntax shown in List-
ing 1.5.

Customer

- id: String {readOnly}
- firstName: String
- lastName: String

+ getCreditRating() {query}
41

Introduction to Object-Oriented Programming1
visibility name: type-expression = initial-value
{property-string}

Listing 1.5 Attribute Notation for a UML Class Diagram

Technically speaking, we’re only required to provide the name when specifying
an attribute in a class diagram. However, the other syntax elements shown in List-
ing 1.5 can be used to provide some additional information about the attribute:

� The visibility part of an attribute definition describes the accessibility of the
attribute from an external perspective. Possible values for visibility include
‘+’ for public attributes, ‘-’ for private attributes, and ‘#’ for protected attri-
butes.

� The type-expression is used to describe the attribute’s type. The UML defines
some standard types such as integer or string, but you can also specify custom
types here as well. The type-expresssion expression can also be used to
express the cardinality of an attribute (e.g. for an internal table), and the initial
value of the attribute (if one is assigned).

� The property-string expression is an optional element that can be used to
describe certain additional properties for an attribute. For example, in the
OrderItem class from Figure 1.5, the id attribute has the readOnly property
assigned to indicate that an item’s ID number never changes. Values for these
properties can be defined at the discretion of the person designing the class dia-
gram. The primary purpose here is to provide additional details that are helpful
to the developer responsible for actually implementing the class using a specific
programming language.

1.6.4 Operations

Operations can be expressed using the syntax shown in Listing 1.6.

visibility name(parameter-list) : return-type
{property-string}

Listing 1.6 Operation Notation in a UML Class Diagram

For brevity’s sake, developers will often just specify the name of an operation
when creating a class diagram. The remaining optional syntactical elements from
Listing 1.6 are typically used strategically to emphasize a certain aspect of the
operation:
42 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Class Diagram Basics 1.6
� The visibility of an operation defines its accessibility. Possible values include
‘+’ for public operations, ‘-’ for private operations, and ‘#’ for protected oper-
ations.

� The parameter-list in parenthesis can be used to specify a comma-separated
list of parameters for the operation. Each parameter is of the form kind name :
type = default-value. Here, kind signifies the type of parameter. Valid values
include “in” for inbound parameters passed by value, “out” for outbound
parameters passed by value, and “inout” for inbound parameters passed by ref-
erence. The name token symbolizes the parameter name. Each parameter can
optionally have a type associated with it using the type token. The type can be
a generic type, or a type specific to a particular programming language. Finally,
you can specify an initial value for the parameter using the default-value
expression.

� The return-type element is used to specify the data type of values returned by
functional operations.

� The optional property-string indicates certain properties assigned to an oper-
ation. An example of this would be the {query} property string assigned to the
getCreditRating() operation of class Customer. Such operations are read-only
operations that do not alter the state of the object. Applying these property
strings can give hints to aid the developer in implementing the class in a par-
ticular programming language.

An example of the syntax described in Listing 1.6 is given in Listing 1.7. This
example declares a public operation called getShippingCost() that receives a sin-
gle inbound parameter called postalCode (which is of type String). The operation
returns a value of type Money to represent the derived shipping cost.

+ getShippingCost(in postalCode: String) : Money

Listing 1.7 An Example of an Operation Definition

1.6.5 Associations

The lines drawn between classes in a class diagram represent a type of association.
You can think of an association as another way to specify an attribute for a class.

For example, the directed line drawn between the Customer and Address classes
in Figure 1.5 describes an attribute of type Address for class Customer. The arrow
in the association between classes Customer and Address indicates that instances
43

Introduction to Object-Oriented Programming1
of class Address can be reached through an attribute defined in class Customer. If
the association line had contained arrows pointing in both directions, then the
association would have been bidirectional. In this case, an attribute of type Cus-
tomer would also have been defined for class Address, making it possible to nav-
igate between attributes in both directions.

The numbers affixed to each endpoint represents the cardinality of the associa-
tion from the perspective of the nearby class (see Table 1.1). For example, in Fig-
ure 1.5, the association between classes Order and OrderItem denotes a one-to-
many relationship between an order and its items. In this case, an order can con-
tain zero or more items and any given item can exist for exactly one order.

At this point, you might be wondering why you would need to build an associa-
tion when you could just use a simple attribute instead. Generally speaking, there
is no hard-and-fast rule for using one approach instead of the other. However, a
good rule of thumb is to use an association whenever you are using composition
to reuse a class inside of another class. This illustrates the composition relation-
ship more clearly, and makes it easier to rework the diagram as you experiment
with your class model.

1.6.6 Notes

We can add comments to our UML diagrams using notes. Notes are represented
using an element that resembles a sticky note that has been dog-eared in the top
right-hand corner (see Figure 1.7). These notes can be used in any kind of UML
diagram to include comments related to a particular element (linked via a dashed
line) or to the diagram as a whole. Notes are often used to help clarify a certain
requirement that’s too difficult to express using standard UML notation.

Cardinality Description

0..1 Zero or one instances of a class

1 Exactly one instance of a class

* Zero or more instances of a class

m..n A range of instances with lower/upper bounds (e.g. 2..4)

Table 1.1 UML Cardinality Notation
44 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Summary 1.7
Figure 1.7 UML Note Notation

1.7 Summary

In this chapter, we learned that a class is a type of blueprint that describes how to
create object instances. Classes combine attributes and methods together to
model real-world phenomena in a software setting. Rules and constraints for
these models are enforced using visibility sections which control how attributes
and methods within the class are accessed. We also considered some of the basic
reuse capabilities associated with classes.

This chapter covered a lot of ground very quickly. So if you are finding yourself a
little lost, don’t worry, we’ll have much more to say about each of these topics in
the coming chapters. This begins in Chapter 2 where we’ll start to unpack the
ABAP Objects syntax used to define and interact with classes/objects.

A UML Note...
45

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

This chapter introduces you to some basic ABAP Objects syntax and the
relevant development tools that you’ll need to start building object-ori-
ented programs in ABAP.

2 Getting Started with Objects

Object-oriented programming, like many abstract concepts, is perhaps best learned
by example. Therefore, now that we’ve gotten some of the basic definitions out of
the way in Chapter 1, we’re ready to turn our attention towards more practical
matters and begin looking at some basic syntax and sample code using ABAP
Objects.

Because the primary unit of development for object-oriented programs is the
class, we’ll spend quite a bit of time in this chapter exploring the syntax used to
define classes and their internal components. Then, once we come up to speed
with basic syntax rules, we’ll take a look at the tools used to define and maintain
classes. Finally, we’ll wrap up our discussion by exploring some new syntax fea-
tures introduced with Release 7.40 of AS ABAP.

2.1 Defining Classes

Classes in ABAP Objects are declared using the CLASS statement block. This state-
ment block is a wrapper of sorts, grouping all relevant class component declara-
tions into two distinct sections:

� Declaration Section
This section is used to specify all of the components defined within the class
including attributes, methods, and events.

� Implementation Section
This section is used to provide implementations (i.e. the source code) for the
methods defined within the declaration section.
47

Getting Started with Objects2
In the following subsections, we’ll unpack the syntax used to build out these sec-
tions and fully specify our class types. For the purposes of this introductory sec-
tion, our focus will be on defining local classes (i.e. classes that are defined within
ABAP report programs, function group includes, and so on). However, in Section
2.4, we’ll learn that this same syntax applies to the definition of global class types
as well. The primary difference in the case of global classes is that we have a form-
based editor in the Class Builder tool which spares us from typing out some of the
declaration syntax longhand.

2.1.1 Creating a Class

To define a new class type, we must declare it within a CLASS...DEFINI-
TION...ENDCLASS statement block as shown in Listing 2.1. This statement block
makes up the aforementioned declaration section of the ABAP class definition. As
we noted earlier, this section is used to declare the primary components that
make up a class, such as attributes, methods, etc.

CLASS {class_name} DEFINITION [class_options].
PUBLIC SECTION.
[components]

PROTECTED SECTION.
[components]

PRIVATE SECTION.
[components]

ENDCLASS.

Listing 2.1 ABAP Class Declaration Section Syntax

Looking closely at Listing 2.1, we can see that the components of a class defini-
tion are organized into three distinct visibility sections: the PUBLIC SECTION, the
PROTECTED SECTION, and the PRIVATE SECTION. Each of these visibility sections is
optional, so it’s up to us as developers to determine which components go
where—a subject that we’ll consider at length in Chapter 3.

Naming Conventions

Besides the definition of the components that makeup the class’s interface, the
next most important task in defining a class is coming up with a good and mean-
ingful name for it. As trivial as it may sound, this task is often harder than it looks.
Part of the challenge stems from the fact that ABAP only gives us 30 characters to
work with. From here, we must come up with a meaningful name that fits within
the confines of the syntax shown in Listing 2.2.
48 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Classes 2.1
[{Namespace}|{Prefix}]CL_{Meaningful_Name}

Listing 2.2 ABAP Class Naming Convention

Listing 2.3 shows how this class naming syntax is applied to the various class
types that may exist within an ABAP Repository. We’ll see many more examples
of this naming convention at work as we progress through the book.

LCL_LOCAL_CLASS "Local Customer Class
ZCL_GLOBAL_CLASS "Global Customer Class
CL_ABAP_MATCHER "SAP-Standard Class (no namespace)
/BOWDK/CL_STRING_UTILS "3rd-Party Class w/Namespace Prefix

Listing 2.3 Class Naming Examples

2.1.2 Component Declarations

As we’ve seen, the structure and makeup of a class is determined by its compo-
nent definitions. Therefore, in this section, we’ll spend some time learning about
the different component types that we can define within a class. Before we get
started though, we first need to understand how components are grouped from a
scoping perspective. Within a class declaration, we can distinguish between two
different types of components:

� Instance Components
Instance components, as the name suggests, are components that define the state
and behavior of individual object instances. For example, an Employee class might
have an instance attribute called id that uniquely identifies an employee within
a company. Each instance of class Employee maintains its own copy of the id attri-
bute, which has a distinct value. Instance methods operate on these instance attri-
butes to manipulate the object’s state and perform instance-specific tasks.

� Class Components
Class components on the other hand are defined at the class level. This is to say
that class components are shared across all object instances. Such components
can come in handy in situations where we want to share data or expose utility
functions on a wider scale. For example, in our Employee class scenario, we
might use a class attribute called next_id to keep track of the next available
employee ID number. This value could be used as a primitive number range
object to assign the id instance attribute for newly-created Employee objects.

In practice, most of the classes we define will contain few class components.
After all, it’s hard to establish identity at the object level if all the data/function-
49

Getting Started with Objects2
ality resides in global class components. However, in some situations, we’ll see
that class components can really come in handy when dealing with complex
object creation scenarios, finding a home for utility functions, and so forth.

Static Components

Class components are sometimes referred to as static components since they are stati-
cally defined and maintained at the class level. This is especially the case in other OO
languages such as Java or C#.

Internal Namespaces

Regardless of where we decide to define our components, it’s important to bear in mind
that all component names within an ABAP Objects class belong to the same internal
namespace. This means that, for example, it’s not possible to define an attribute and a
method using the same name – even if they belong to different visibility sections. In the
sections that follow, we’ll learn that the adoption of good naming conventions makes it
easy to avoid such naming collisions.

Attributes

As we learned in Chapter 1, attributes are basically just variables that are defined
internally within a class/object. From a definition standpoint, attributes are
essentially defined in the same way that variables are defined in other ABAP pro-
gramming modules. The primary difference in the case of classes is that we have
some different contexts to contend with.

To put these contexts into perspective, consider the LCL_CUSTOMER sample class
contained in Listing 2.4. Within this class definition, we’ve defined three differ-
ent types of attributes:

� Instance Attributes
To define the properties that are unique to a particular customer instance,
we’ve created several instance attributes such as mv_id, mv_customer_type, mv_
name, and ms_address. As you can see in Listing 2.4, these instance attributes
are defined using the familiar DATA keyword. Here, we can choose from any
valid ABAP data type including structure types, table types, reference types, or
even other class types.

� Class Attributes
The sv_next_id attribute is an example of a class attribute. As you can see, the
50 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Classes 2.1
only real difference syntax-wise between class attributes and instance attri-
butes is the use of the CLASS-DATA keyword in lieu of the typical DATA keyword.

� Constants
In the PUBLIC SECTION of our customer class, we’ve also defined several con-
stants to represent the different customer types modelled in our class: CO_PER-
SON_TYPE for individuals, CO_ORG_TYPE for organizations, and CO_GROUP_TYPE
for customer groups. These constants are defined just like any other constant
using the CONSTANTS keyword. However, in the case of class constants, what
we’re really talking about is a specialized case of a class/static attribute (one that
can’t be modified at runtime).

CLASS lcl_customer DEFINITION.
PUBLIC SECTION.

CONSTANTS: CO_PERSON_TYPE TYPE c VALUE '1',
CO_ORG_TYPE TYPE c VALUE '2',
CO_GROUP_TYPE TYPE c VALUE '3'.

PRIVATE SECTION.
DATA: mv_id TYPE i,

mv_customer_type TYPE c,
mv_name TYPE string,
ms_address TYPE adrc.

CLASS-DATA: sv_next_id TYPE i.
ENDCLASS.

Listing 2.4 Declaring Attributes Within a Class

Though the ABAP compiler will generally allow you to define attributes with
whatever name you prefer, we strongly recommend that you adopt a naming
convention which makes it easier to identify the scope of a given attribute. Table
2.1 describes the naming convention that will be used within this book.

Attribute Type Naming Convention Description

Instance Attri-
butes

M{Type}_{Meaningful_
Name}

Examples:

mv_id

ms_address

mt_contacts

Here, the ‘M’ implies that we’re defining a
member variable. The {Type} designator
helps us more easily determine whether
or not we’re dealing with elementary
variables (V), structures (S), internal tables
(T), and so on.

Aside from these scoping details, the rest
of the instance attribute name is freeform
and should be defined in such a way that
it conveys meaning.

Table 2.1 Naming Convention for Defining Attributes
51

Getting Started with Objects2
Methods

Methods are defined using either the METHODS statement for instance methods or
the CLASS-METHODS statement for class methods. The syntax for both statement
types is given in the syntax diagram contained in Listing 2.5. Here, we can see
that a method definition consists of a method name, an optional parameter list,
and an optional set of exceptions that might occur. For the purpose of this intro-
ductory section, we’ll focus on the first two parts of a method definition. We’ll
have an opportunity to circle back and cover exceptions in Chapter 8.

{CLASS-}METHODS {method_name}
[IMPORTING parameters]
[EXPORTING parameters]
[CHANGING parameters]
[RETURNING VALUE(parameter)]
[{RAISING}|{EXCEPTIONS}...].

Listing 2.5 Method Definition Syntax

As you can see in Listing 2.5, the first thing we specify in a method definition is
the method’s name. Since methods define the behavior of classes, it’s important
that we come up with meaningful names that intuitively describe the method’s
purpose. Normally, it makes sense to prefix a method name with a strong action
verb that describes the type of operation being performed. The sample class con-
tained in Listing 2.6 provides some examples of this convention.

CLASS lcl_date DEFINITION.
PUBLIC SECTION.
METHODS:

add IMPORTING iv_days TYPE i,

Class (Static)
Attributes

S{Type}_{Meaningful_
Name}

Examples:

sv_next_id

This convention is almost identical to
instance attributes. However instead of
the ‘M’ for member variable, static attri-
butes are prefixed with an ‘S’ to imply
that the attribute belongs to the static
context.

Constants CO_{MEANINGFUL_NAME} Constants are typically defined in all caps
using the ‘CO_’ prefix.

Attribute Type Naming Convention Description

Table 2.1 Naming Convention for Defining Attributes
52 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Classes 2.1
subtract IMPORTING iv_days TYPE i,
get_day_of_week RETURNING VALUE(rv_day) TYPE string,
...

ENDCLASS.

Listing 2.6 Defining Meaningful Names for Methods

After we come up with meaningful names for our methods, our next objective is
to determine what sort of parameters (if any) the methods will need to perform
their tasks. Looking at the syntax diagram from Listing 2.5, we can see that there
are four different types of parameters that can be defined within a method’s
parameter list. Table 2.2 describes each of these parameter types in detail.

To distinguish between the various parameter types within a method definition,
method parameters are normally prefixed according to the convention described
in Table 2.3. Here, the {Type} designator is once again used to differentiate
between elementary data types (V), structure types (S), table types (T) and so on.

Parameter Type Description

Importing Importing parameters define the input parameters for a method. The
values of an importing parameter cannot be modified inside the
method implementation.

Exporting Exporting parameters represent the output parameters a method.

Changing Changing parameters are input/output parameters that allow us to
update or modify data within a method.

Returning Returning parameters are used to define functional methods. We’ll
learn more about this parameter type when we look at functional
methods in Section 2.2.7.

Table 2.2 Parameter Types for Method Definitions

Parameter Type Naming Convention

Importing I{Type}_{Parameter_Name}

Exporting E{Type}_{Parameter_Name}

Changing C{Type}_{Parameter_Name}

Returning R{Type}_{Parameter_Name}

Table 2.3 Method Parameter Naming Conventions
53

Getting Started with Objects2
Regardless of the parameter’s type, the syntax for declaring a parameter p1 is
given by the syntax diagram contained in Listing 2.7. As you can see, this syntax
provides us with a number of configuration options for defining a parameter:

� The optional VALUE addition allows us to specify that a parameter will be passed
by value instead of by reference. For more details on this concept, check out the
sidebar entitled Pass-by-Value vs. Pass-by-Reference.

� The TYPE addition is used to specify the parameter’s data type. The addition is
used in this context in the exact same way it’s used to define normal variables
or form parameters.

� The OPTIONAL addition can be used to mark a parameter as optional. Such
parameters can be omitted during method calls on the consumer side.

� The DEFAULT addition can be used to specify a default value for a given param-
eter (which makes the parameter optional from a consumer perspective). This
value can be overridden by the caller of the method as desired.

{ p1 | VALUE(p1)} TYPE type [OPTIONAL | {DEFAULT def1}]

Listing 2.7 Formal Parameter Declaration Syntax

Pass-by-Value vs. Pass-by-Reference

At runtime, whenever a method that contains parameters is invoked, the calling pro-
gram will pass parameters by matching up actual parameters (e.g. local variables in the
calling program, literal values, etc.) in the method call with the formal parameters
declared in the method signature (see Figure 2.1). Here, parameters are passed in one
of two ways: by reference (default behavior) or by value.

Pass-by-value semantics is enabled via the aforementioned VALUE addition. Perfor-
mance-wise, pass-by-value implies that a copy of an actual parameter is created and
passed to the method for consumption. As a result, changes made to value parameters
inside the method only affect the copy; the contents of the variable used as the actual
parameter are not disturbed in any way. This behavior is illustrated at the top of Figure
2.1 with the mapping of parameter a. Here, whenever the method is invoked, a copy of
variable x is made and assigned to parameter a. As you might expect, this kind of oper-
ation can become rather expensive when dealing with large data objects.

Reference parameters on the other hand contain a reference (or pointer) to the actual
parameter used in the method call. Therefore, changes made to reference parameters
are reflected in the calling program. In Figure 2.1, this is illustrated in the mapping of
parameter b. Here, if we were to change the value of parameter b inside the method,
the change would be reflected in variable y in the calling program.
54 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Classes 2.1
Figure 2.1 Mapping Actual Parameters to Formal Parameters

Since this behavior can potentially cause dangerous side-effects, ABAP allows us to lock
down reference parameters for editing inside methods by defining them as importing
parameters. So, if we were to define parameter b as an importing parameter, the com-
piler would complain if we were to try to modify its contents within the method body.
In effect, importing parameters allow us to attain all the performance benefits of refer-
ence passing without the dangerous side-effects.

Collectively, a method’s name and parameter list make up the method’s signature.
From the perspective of class consumers, method signatures determine the exact
requirements for calling a particular method: which parameters to pass, the data
types of the parameters being exchanged, and so on. As method designers, it’s
important that we get these details right so that our methods are intuitive and
easy to use. To that end, here are some design points to consider when defining
method signatures:

� In general, we should try to keep the number of parameters being passed to/
from methods to the bare minimum. Here, we should assume that an object
already has most of the information it needs (via its instance attributes) to per-
form a particular task, so only a handful of parameters should ever be required
when defining a method.

� Methods should be defined to perform one task. Therefore, we should avoid
defining methods such as copyDataAndWashCat().

x

y

a

b

Actual
Parameters

Formal
Parameters

Calling Program Method

Value

Reference
55

Getting Started with Objects2
� When performing generic operations where specific data types don’t matter,
it’s a good idea to incorporate the use of generic ABAP types so that the meth-
ods can be (re)used in a variety of contexts. For a list of available generic types,
search on the term Generic ABAP Types in the ABAP Keyword Documentation.

Events

Besides the more common attributes and methods that you see in most OO lan-
guages, ABAP Objects also allows us to define events that model certain types of
occurrences within an object’s lifecycle. Here, once again, we can distinguish
between instance events that occur within a specific object instance and class
events that are defined at the class level.

Listing 2.8 contains the basic syntax used to define instance events and class events.
The parameters defined for an event are used to pass additional information about
the event to interested event handler methods. Since this is a one-way data
exchange, we’re only allowed to defined exporting parameters in an event defini-
tion. Here, the syntax is pretty much identical to the syntax used to define exporting
parameters in methods. The only twist in this case is that event parameters must be
passed by value. Aside from the formally defined exporting parameters in an event
definition, the system also supplies an implicit parameter called sender that con-
tains a reference to the sending object (i.e. the object that raised the event).

EVENTS evt [EXPORTING parameters].
CLASS-EVENTS evt [EXPORTING parameters].

Listing 2.8 Event Declaration Syntax

Types

Custom data types can be defined within a class using the ABAP TYPES state-
ment. These types are defined at the class level, and are therefore not specific to
any object instance. We can use these custom types to define local variables
within methods, method parameter types, etc. It’s also possible to declare the
use of global type pools defined within the ABAP Dictionary using the TYPE-
POOLS statement.

The definition of class LCL_PERSON in Listing 2.9 provides an example that
demonstrates how types can be declared and used in a class definition. Here,
we’ve defined a custom structure type called TY_NAME that’s being used to define
56 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Classes 2.1
the person’s ms_name attribute. The use of the TY_ prefix in this case is by conven-
tion: class-defined types are normally defined using the naming convention TY_
{Type_Name}.

CLASS lcl_person DEFINITION.
PRIVATE SECTION.

TYPES: BEGIN OF ty_name,
first_name TYPE char40,
middle_initial TYPE char1,
last_name TYPE char40,

END OF ty_name.
TYPE-POOLS: szadr. "Business Address Services

DATA: ms_name TYPE ty_name,
ms_address TYPE szadr_addr1_complete.

ENDCLASS.

Listing 2.9 Defining and Working with Class-Level Types

Looking closely at Listing 2.9, we can also see how type groups from the ABAP
Dictionary are declared using the TYPE-POOLS statement. In this case, the class has
declared the use of the SZADR type group from the SAP Business Address Services
package. Once this declaration is in place, we can use types such as the SZADR_
ADDR1_COMPLETE type in attribute definitions, method signatures, etc.

2.1.3 Implementing Methods

Anytime we define methods within the declaration section of a class, we need to
follow up and provide implementations for them in the implementation section.
Such implementations are provided using METHOD...ENDMETHOD statement blocks
that are nested inside of a CLASS...IMPLEMENTATION...ENDCLASS statement block
as shown in Listing 2.10.

CLASS lcl_date DEFINITION.
...

ENDCLASS.

CLASS lcl_date IMPLEMENTATION.
METHOD add.
mv_date = mv_date + iv_days.

ENDMETHOD.

METHOD subtract.
mv_date = mv_date - iv_days.

ENDMETHOD.
57

Getting Started with Objects2
METHOD get_day_of_week.
"Implementation goes here..

ENDMETHOD.
ENDCLASS.

Listing 2.10 Providing Implementations for Methods

As you can see in Listing 2.10, method implementations allow us to jump right
into the code. Here, there’s no need to provide any further details about the
method context since we’ve already defined its signature in the declaration sec-
tion. Within the method processing block, we can implement the behavior of the
class using regular ABAP statements in much the same way that we would imple-
ment subroutines and function modules from the procedural world. We’ll see
many examples of this in the sections to follow.

Syntax Restrictions

If you’re coming to ABAP Objects from a procedural background, we should point out
that there are a handful of ABAP language constructs that have been rendered obsolete/
deprecated from within the OO context. These changes came about as part of a language
cleanup effort whenever SAP first introduced object-oriented extensions to ABAP. Here,
SAP saw a golden opportunity to do some internal housekeeping and ensure that depre-
cated language elements didn’t make their way into new ABAP Objects classes.

For the most part, developers following current best practices shouldn’t notice any of
these statements as their use is generally frowned upon in any context. Still, if you’re
not sure which statements have become deprecated over the years, don’t worry; the
compiler will tell you if you get it wrong. For a thorough treatment of best practices
though, we highly recommend that you pick up a copy of Official ABAP Programming
Guidelines (SAP PRESS, 2009). The SAP Help Library also maintains a complete listing of
invalided language constructs.

Variable Scoping Rules

Before we wrap up our discussion on method implementations, we should briefly
take a moment to talk about variable scoping rules in an OO context. Unlike pro-
cedural contexts where the context is pretty cut-and-dry between global variables
and local variables, method implementations can actually get their hands on vari-
ables at several different scoping levels:

� Class attributes which essentially behave like global variables

� Local variables whose scope is limited to the method that defines them
58 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
� Instance variables that sit somewhere in the middle, defining the state of a
given object instance

With these additional options in play, it’s a good idea to be careful in qualifying
the variables so that their usage is clear. Not only does this make the code more
readable, it also prevents us from accidentally hiding instance or class attributes
behind method-local variables with the same name. As you can expect, the hiding
of instance or class attributes within a method can have some unexpected and
nasty side-effects. Fortunately, as long as you stick to the naming conventions
outlined in Section 2.1.2, this shouldn’t ever become a concern.

2.2 Working with Objects

Now that you have a feel for how classes are defined in ABAP Objects, let’s take
a look at how these classes can be utilized from a consumer standpoint. In the sec-
tions that follow, we’ll learn how to define object reference variables, create new
object instances, and put them to work in ABAP programs.

2.2.1 Object References

Before we can begin creating new object instances, we first need to define vari-
ables to hold onto these objects so that we can address them within our pro-
grams. For reasons that will be explained in Chapter 4, the ABAP runtime envi-
ronment does not allow us to have direct access to an object within our programs.
Instead, we are given indirect access to allocated objects via a special kind of vari-
able called an object reference variable.

Listing 2.11 demonstrates the syntax used to define an object reference variable.
Here, notice the use of the TYPE REF TO addition to indicate that lo_date is a ref-
erence variable. When reading this statement, we would say that lo_date is an
object reference variable that can point to objects of (class) type LCL_DATE.

DATA lo_date TYPE REF TO lcl_date.

Listing 2.11 Syntax to Define an Object Reference Variable

We can use this type of syntax to define object reference variables as instance
attributes, local variables within method implementations, local variables within
form routines, or even as global variables.
59

Getting Started with Objects2
2.2.2 Creating Objects

Once we define the appropriate object reference variable(s), we can begin creat-
ing object instances using the CREATE OBJECT statement shown in Listing 2.12.
Functionally, this statement is processed behind the scenes as follows:

1. First, the ABAP runtime environment dynamically creates a new object of type
LCL_DATE.

2. Then, after the object instance is created, control is handed off to a special
method called a constructor which provides us with the ability to initialize the
object instance before it is used. We’ll learn more about constructor methods in
Chapter 4.

3. Finally, once the object instance is initialized, the ABAP runtime environment
fills in the lo_date variable with a reference that points to the newly-created
object.

DATA lo_date TYPE REF TO lcl_date.
CREATE OBJECT lo_date.

Listing 2.12 Instantiating an Object at Runtime

From a syntax perspective, that’s all there is to instantiating objects. Anytime we
want a new object reference, we simply use the CREATE OBJECT statement to allo-
cate one on the fly. Of course, if we’re not careful in maintaining our object ref-
erence variables, these objects can become orphaned. With that in mind, the next
section focuses on the important topic of object reference assignments.

2.2.3 Object Reference Assignments

Since object reference variables are basically just a special kind of variable, they
can be used in assignment statements using the familiar equals (=) operator. Of
course, when assigning object reference variables, it’s important to remember
what we’re assigning. To put this concept into perspective, consider the assign-
ment scenario contained in Listing 2.13.

DATA lo_date1 TYPE REF TO lcl_date.
DATA lo_date2 TYPE REF TO lcl_date.

CREATE OBJECT lo_date1.
CREATE OBJECT lo_date2.

lo_date1 = lo_date2.

Listing 2.13 Understanding Object Reference Assignments
60 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
Within the code excerpt contained in Listing 2.13, we have two object reference
variables called lo_date1 and lo_date2 that point to newly-created LCL_DATE
objects. Prior to the assignment statement at the bottom of the code excerpt, the
variable assignments resemble what is being depicted in Figure 2.2. Here, notice
that the objects themselves are not stored within the object reference variables.
Instead, the object reference variables simply contain an address for where the
object exists in memory.

Figure 2.2 Understanding Object-Reference Assignments (Part 1)

The diagram contained in Figure 2.3 illustrates what things look like after the
object reference assignment is performed at the bottom of Listing 2.13. Here, we
can see that the assignment statement has copied the address of the LCL_DATE
object instance pointed to by the lo_date2 object reference into lo_date1. Now,
both lo_date1 and lo_date2 point to the same object instance (i.e. the instance at
the bottom of Figure 2.3).

Looking closely at the before and after memory snapshots contained in Figure 2.2
and Figure 2.3, we can draw several important conclusions about object refer-
ence assignments:

1. First of all, it should be fairly clear that object reference assignments only copy
the addresses of objects, and not the objects themselves. This implies that object
reference assignments are relatively inexpensive from a performance standpoint.

2. Secondly, any time we have two or more object reference variables that point
to the same object instance, changes made to the object via one object refer-

lcl_date

lcl_date

lo_date1

lo_date2
61

Getting Started with Objects2
ence variable will be reflected in the other object reference variables. This
should come as no surprise since the object reference variables all point to the
same object instance.

3. Finally, if an object instance is no longer pointed to by any live object reference
variables, the object instance becomes orphaned and no longer accessible from
a programming context. In Chapter 4, we’ll see how a special service of the
ABAP runtime environment called the garbage collector cleans up these
orphaned objects to re-coup unused memory.

Figure 2.3 Understanding Object-Reference Assignments (Part 2)

With time and a little bit of practice, these concepts should become second nature
to you. In the meantime though, we would recommend taking a methodical
approach to creating object instances and performing object reference assign-
ments. For example, consider the code excerpt contained in Listing 2.14. Here,
the intent was to create 10 date objects but, since there’s only one object refer-
ence variable, the first 9 date objects are created and then subsequently
orphaned.

DATA lo_date TYPE REF TO lcl_date.
DO 10 TIMES.

CREATE OBJECT lo_date.
ENDDO.

Listing 2.14 An Invalid Idiom for Creating a Collection of Objects

lcl_date

lcl_date

lo_date1

lo_date2

X

62 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
Listing 2.15 corrects the error from Listing 2.14 by introducing an internal table
of object references. Now, each new date object that’s gets created is stored in a
separate object reference variable within the table. As obvious as this may seem,
these are the types of issues that can occur if we aren’t careful with our object
handling.

DATA lt_dates TYPE STANDARD TABLE OF REF TO lcl_date.
FIELD-SYMBOLS <lo_date> LIKE LINE OF lt_dates.

DO 10 TIMES.
APPEND INITIAL LINE TO lt_dates ASSIGNING <lo_date>.
CREATE OBJECT <lo_date>.

ENDDO.

Listing 2.15 Defining a Collection Objects

Thinking (Object)ively

For many ABAP developers, the notion of reference variables is a foreign concept. So, if
you happen to find yourself getting tripped up by all this indirection, perhaps an anal-
ogy will help. Here, consider the relationship between a remote control and a TV set.

As you know, remote controls are small, lightweight devices that make it easy for us
control a TV set. As long as we have our remote control, we can turn on the TV, change
the channel, and control the volume as desired. However, if we were to lose the remote,
then we’d no longer be able to access the TV (at least, not without getting off the
couch). To guard against such occurrences, we could buy a universal remote to provide
us with a backup. That way, we could program the universal remote to point to the TV’s
remote frequency. Once the universal remote is programmed, we would be able to con-
trol the TV using either remote since they both effectively point to the same TV.

Relating this back to our object reference discussion, we can see that object reference
variables are rather like remote controls. As long as an object reference variable points
to a particular object instance, we can use the object reference to control the object it
points to. However, if we reassign the object reference or clear it out using the ABAP
CLEAR statement, then we can no longer use it to access the object instance. This
doesn’t mean the object is deleted any more than a TV would simultaneously explode if
a remote control is lost. What it does mean though is that we may no longer be able to
access the object if we don’t have another object reference variable on hand that hap-
pens to point to that object. This is the OO equivalent of losing all the remotes in the
couch cushions.

At the end of the day, the moral of the story here is to treat object references with care
and make sure that you’re really done with an object before blowing away its object ref-
erence variables.
63

Getting Started with Objects2
2.2.4 Accessing Instance Components

As we learned in the previous sections, object reference variables provide us with
a handle for addressing object instances. Using this handle, we can access the
instance components of an object by building compound expressions using the
object component selector operator (->) as shown in Listing 2.16. Here, we can
see that the object component selector allows us to specify which instance com-
ponent we want to access within a given object instance.

oref->attribute
oref->method()
CALL METHOD oref->method()

Listing 2.16 Working with the Object Component Selector (Part 1)

What’s the Proper Syntax for Calling a Method?

As you can see in Listing 2.16, there are actually two different ways to call methods.
These days, the direct oref->method() option is generally the preferred option as it
more closely resembles syntax used in other OO languages. The CALL METHOD statement
is still valid of course, but should be avoided as a rule. In Section 2.2.7 and Section
2.2.8, we’ll see some reasons why it’s a good idea to get into the habit of calling meth-
ods directly.

Figure 2.4 Modeling a Point Object in the Cartesian Coordinate System

To demonstrate the use of the object component selector operator, let’s take a
look at an example. Imagine that we’re modeling a 2D graphics system and want
to create an object to represent points in the Cartesian coordinate system. If

1 2 3

1

2

3

-1

-2

-3

-1-2-3

(1,2)

x

y
I

IIIII

IV
64 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
you’ve slept since your last high school geometry class, a Cartesian coordinate
system (or plane) is a two-dimensional grid that contains a horizontal x-axis and
vertical y-axis (see Figure 2.4). To plot points on the graph, all we have to do is
specify an x-coordinate and a y-coordinate. This is demonstrated in Figure 2.4
where we’ve plotted a point at (1,2).

To model our point object, we’ll create a new class called LCL_POINT as shown in
Listing 2.17. This class contains three instance components: two instance attri-
butes called mv_x and mv_y to represent the x and y coordinates, respectively, and
an instance method called get_distance() that can be used to calculate the
Euclidian distance between the current point and some other point within the
plane.

CLASS lcl_point DEFINITION.
PUBLIC SECTION.

DATA: mv_x TYPE p DECIMALS 2 "X-Coordinate
mv_y TYPE p DECIMALS 2. "Y-Coordinate

METHODS get_distance IMPORTING io_point2
TYPE REF TO lcl_point
RETURNING VALUE(rv_distance) TYPE f.

ENDCLASS.

CLASS lcl_point IMPLEMENTATION.
METHOD get_distance.

DATA: lv_dx TYPE f, "Diff. X
lv_dy TYPE f. "Diff. Y

"Calculate the Euclidean distance between the points:
lv_dx = io_point2->mv_x – me->mv_x.
lv_dy = io_point2->mv_y – me->mv_y.

rv_distance =
sqrt((lv_dx * lv_dx) + (lv_dy * lv_dy)).

ENDMETHOD.
ENDCLASS.

Listing 2.17 Working with the Object Component Selector (Part 2)

Looking closely at the implementation of the get_distance() method, we can see
that the object component selector is used to access the instance attributes of two
different objects: the io_point2 object passed to the method and the current
point object. In the latter case, we’re referring to the current point object’s
instance attributes using the me self-reference variable described in the sidebar
below.
65

Getting Started with Objects2
Where Does the “me” Self-Reference Variable Come From?

The me self-reference variable is a special instance attribute that’s implicitly defined by
the ABAP runtime environment whenever an object instance is created. As its name
implies, the me reference variable points back to its containing object. If you’ve worked
with other object-oriented languages such as Java, you can think of the me reference
variable as being equivalent to the this self-reference variable.

From a usage perspective, the me self-reference variable can be used just like any other
object reference variable. For example, in Listing 2.17 we used me to access the mv_x
and mv_y instance attributes of the LCL_POINT class. Technically speaking, we didn’t
have to use me to access these attributes. Instead, we could have simply referenced the
attributes directly and the system would have quietly resolved the reference behind the
scenes. The advantage of qualifying these references directly is that we make our inten-
tions clear to the reader.

Another place where the me reference variable is used is in situations where we want to
pass the current object instance as a parameter to another method. In this case, me pro-
vides us with a convenient mechanism for accessing the current object directly within a
method implementation.

The code excerpt contained in Listing 2.18 demonstrates how to use the object
component selector is used to access attributes and methods from outside of a
class. Here, we’re using the selector to:

� Initialize the instance attributes of a pair of point objects (lo_point_a and lo_
point_b, respectively).

� Invoke the get_distance() method to calculate the distance between the two
points.

DATA: lo_point_a TYPE REF TO lcl_point,
lo_point_b TYPE REF TO lcl_point,
lv_distance TYPE f.

"Instantiate both of the point objects:
CREATE OBJECT lo_point_a.
lo_point_a->mv_x = 1.
lo_point_a->mv_y = 1.

CREATE OBJECT lo_point_b.
lo_point_b->mv_x = 3.
lo_point_b->mv_y = 3.

"Calculate the distance & display the results:
lv_distance = lo_point_a->get_distance(lo_point_b).
66 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
WRITE: 'Distance between point a and point b is: ',
lv_distance.

Listing 2.18 Working with the Object Component Selector (Part 3)

2.2.5 Accessing Class Components

To demonstrate how to access class components, let’s enhance the LCL_POINT
class we developed in the previous section to incorporate a couple of class com-
ponents. Here, we’ll introduce a new class method called create_from_polar()
that can be used to create point objects using polar coordinates. To drive the con-
version routine, we’ve also created a constant called CO_PI to represent the value
of pi.

CLASS lcl_point DEFINITION.
PUBLIC SECTION.
CONSTANTS CO_PI TYPE f VALUE '3.14159265'.

CLASS-METHODS:
create_from_polar IMPORTING iv_r TYPE f

iv_theta TYPE p
RETURNING VALUE(ro_point)

TYPE REF TO lcl_point.
...

ENDCLASS.

CLASS lcl_point IMPLEMENTATION.
METHOD create_from_polar.
"Convert the angle measure to radians:
DATA lv_theta_rad TYPE f.
lv_theta_rad = (iv_theta * CO_PI) / 180.

"Create a new point object and calculate the
"X & Y coordinates:
CREATE OBJECT ro_point.

ro_point->mv_x = iv_r * cos(lv_theta_rad).
ro_point->mv_y = iv_r * sin(lv_theta_rad).

ENDMETHOD.
...

ENDCLASS.

Listing 2.19 Defining Class Components

Since our new create_from_polar() method is defined at the class level, we
don’t require an object reference to access it. Instead, we can access it via the
67

Getting Started with Objects2
static/class context using the class component selector operator (=>) as shown in
Listing 2.20. Here, you can see how we’re also accessing the CO_PI constant using
the same kind of syntax: {class_name}=>{class_component}.

DATA lo_point TYPE REF TO lcl_point.
DATA lv_message TYPE string.

lo_point = lcl_point=>create_from_polar(iv_r = '3.6'
iv_theta = '56.31').

lv_message =
|Coordinates: ({ lo_point->mv_x }, { lo_point->mv_y })|.

WRITE: / lv_message.
lv_message = |PI is { lcl_point=>CO_PI }|.
WRITE: / lv_message.

Listing 2.20 Working with the Class Component Selector

Looking back at Listing 2.19, you’ll notice that we didn’t qualify the use of the
CO_PI constant within the create_from_polar() method. Within the class itself,
such qualifications are optional since the class context is implicitly known.
Whether or not you choose to formally qualify such references is strictly a matter
of preference.

2.2.6 Working with Events

For developers coming into ABAP Objects with a background in other OO lan-
guages such as Java or C#, the concept of events as first-class citizens of class defi-
nitions may seem a bit foreign. However, once you see how events work, it’s
pretty easy to see how they relate to common object synchronization patterns
employed in those environments (e.g. the observer pattern, for instance).

From a conceptual perspective, events are a special kind of component that can
be used to model important milestones that might occur during an object’s lifecy-
cle. Such milestones could be unique to a particular object instance (instance
events) or to the class itself (class events). In either case, whenever a particular
milestone is reached, we can highlight the occurrence by raising an event. Inter-
ested parties (i.e. other objects) can listen for these events by registering them-
selves as event handlers. This allows the objects to be notified of the event auto-
matically by the ABAP runtime environment.

This exchange is illustrated by the diagram contained in Figure 2.5. Here, we
have a class called LCL_PUBLISHER that defines an instance event called MESSAGE_
68 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
ADDED. This event is triggered whenever the publisher receives a new message via
its add_message() instance method. On the other end of the exchange, we have
another class called LCL_SUBSCRIBER that has registered itself as a listener for the
MESSAGE_ADDED event. Now, whenever a new message arrives at the publisher,
instances of LCL_SUBSCRIBER will be notified via the on_message() event handler
method.

Figure 2.5 Understanding the Event Process Flow

Event-Related Syntax

Looking at the event process flow at Figure 2.5, you might be wondering how the
on_message() method was fired in response to the MESSAGE_ADDED event. Unlike
the methods we’ve seen thus far, the on_message() method is defined as an event
handler method. As you might expect, event handler methods are specialized
methods which register themselves as listeners for particular types of events. You
can define event handler methods within the same class that declared the event or
in a completely separate class.

lcl_publisher

Event: message_added

METHOD add_message.
 RAISE EVENT message_added...
endmethod.

lcl_subscriber

Event: message_added

METHOD on_message.
 “Respond to the event...
METHOD.

Registered as a handler
for the MESSAGE_ADDED
event.
69

Getting Started with Objects2
To declare event handler methods, we must once again enlist the aid of the METH-
ODS statement as shown in Listing 2.21. Here, the FOR EVENT...OF CLASS addition
links the method with the corresponding event it’s defined to handle. As you
would expect, the importing parameter list must match up with the exporting
parameter list defined by the event it’s listening for.

METHODS {method_name}
FOR EVENT {event} of CLASS {class_name}
[IMPORTING p1 p2 ... [sender]].

Listing 2.21 Declaring Event Handler Methods

Once an event handler method is defined, we can register it to listen for events
using the SET HANDLER statement whose syntax is shown in Listing 2.22. Here, the
handler tokens refer to event handler methods (without quotes) that are defined
within the class from which the SET HANDLER statement emanates. The remaining
additions are defined as follows:

� When registering event handler methods for instance events, we have a couple
of options for identifying the scope of the event binding:

� The optional FOR oref addition is used to bind an event handler method to
a specific object instance.

� Alternatively, we can use the ALL INSTANCES addition to bind an event han-
dler method to all object instances.

� When registering event handler methods for class events, we don’t have to spec-
ify an object context so neither the FOR oref and ALL INSTANCES additions apply.

� Finally, for both instance and class event bindings, we have the option of acti-
vating and deactivating an event registration using the ACTIVATION addition.
Here, we can activate an event handler method using the true ('X') value or
deactivate the method using the false (space) value.

SET HANDLER handler1 handler2 ... [FOR oref|{ALL INSTANCES}]
[ACTIVATION {'X'|' '}].

Listing 2.22 Registering Event Handler Methods

The final piece to the event syntax puzzle is the RAISE EVENT statement whose
syntax is shown in Listing 2.23. As you can see, the syntax here is pretty straight-
forward: we simply specify the event being raised and pass along any parameters
that event handlers will use to process the event downstream.
70 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
RAISE EVENT evt [EXPORTING p1 = a1 p2 = a2 ...].

Listing 2.23 Syntax for Raising Events

Putting It All Together

To see how all this comes together in real-life ABAP code, let’s see how we might
build the LCL_PUBLISHER and LCL_SUBSCRIBER classes depicted in Figure 2.5. The
code for the LCL_PUBLISHER class is contained in Listing 2.24. Here, you can see
how we’ve defined the message_added event using the EVENTS keyword intro-
duced in Section 2.1.2. This event is then triggered from within the add_mes-
sage() method using the RAISE EVENT statement.

CLASS lcl_publisher DEFINITION.
PUBLIC SECTION.
METHODS:

add_message IMPORTING iv_message TYPE string,
confirm_receipt IMPORTING iv_subscriber TYPE string.

EVENTS:
message_added

EXPORTING VALUE(ev_message) TYPE string.
ENDCLASS.

CLASS lcl_publisher IMPLEMENTATION.
METHOD add_message.
DATA lv_message TYPE string.
lv_message = |Publishing message: [{ iv_message }].|.
WRITE: / lv_message.

RAISE EVENT message_added
EXPORTING

ev_message = iv_message.
ENDMETHOD.

METHOD confirm_receipt.
DATA lv_message TYPE string.
lv_message = |Message processed by { iv_subscriber }.|.
WRITE: / lv_message.

ENDMETHOD.
ENDCLASS.

Listing 2.24 Defining and Raising Events

Listing 2.25 contains the definition of the LCL_SUBSCRIBER class which is listening
for messages issued from the LCL_PUBLISHER class. Here, you can see how we’ve
defined an event handler method called on_message() that will be used to process
71

Getting Started with Objects2
publication events at runtime. The event binding takes place within the con-
structor() method using the SET HANDLER statement. We’ll learn more about
constructor methods in Chapter 4, but for now simply know that this method is
invoked automatically whenever an LCL_SUBSCRIBER instance is created.

CLASS lcl_subscriber DEFINITION.
PUBLIC SECTION.
METHODS:

constructor,

on_message FOR EVENT message_added
OF lcl_publisher

IMPORTING
ev_message sender.

ENDCLASS.

CLASS lcl_subscriber IMPLEMENTATION.
METHOD constructor.
SET HANDLER on_message FOR ALL INSTANCES.

ENDMETHOD.

METHOD on_message.
DATA lv_message TYPE string.
lv_message = |Received message [{ ev_message }]|.
WRITE: / lv_message.

sender->confirm_receipt('LCL_SUBSCRIBER').
ENDMETHOD.

ENDCLASS.

Listing 2.25 Defining and Registering an Event Handler Method

With both classes in place, we can run a test by passing a message to the add_mes-
sage() method of the LCL_PUBLISHER class. This will trigger the MESSAGE_ADDED
event and allow us to see how the LCL_SUBSCRIBER class responds. Once you play
around with this and learn how to interact with the event processing loop, you’ll
find that this feature offers many interesting possibilities.

DATA lo_publisher TYPE REF TO lcl_publisher.
DATA lo_subscriber TYPE REF TO lcl_subscriber.

CREATE OBJECT lo_publisher.
CREATE OBJECT lo_subscriber.

lo_publisher->add_message('Ping...').

Listing 2.26 Testing the Event Processing Loop
72 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
2.2.7 Working with Functional Methods

As we’ve stated from the outset, one of the main goals with OOP is to develop
code that’s intuitive and easy to read. One of the ways that OO languages achieve
this is by providing a syntax that resembles the sentence structure of spoken lan-
guages. For example, if you think about a method call, you have a subject (either
an object or a class) and a verb (the method being called). With a little bit of cre-
ativity and proper naming, we can build statements that even non-technical types
can read and understand (at least conceptually).

To make our code flow even better, we can employ the use of functional methods.
As the name suggests, functional methods are used to compute a single discrete
value. The value in this approach is that we can plug in functional methods in the
operand positions of various ABAP statements to build powerful expressions.

Listing 2.27 illustrates the basic syntax used to declare functional methods. Here,
as before, we can declare IMPORTING parameters to provide inputs to the method.
The lone output of the method is provided in the form of the RETURNING value
parameter. As is the case with other parameter types, we’re generally free to
define the type of the returning parameter using the same rules that apply for
EXPORTING parameters. However, type selection does play a role in determining
whether or not a functional method can be used as an operand in selected ABAP
statements.

METHODS func_method
[IMPORTING parameters]
RETURNING VALUE(rval) TYPE type
[EXCEPTIONS...].

Listing 2.27 Functional Method Declaration Syntax

To demonstrate how functional methods are used in ABAP code, let’s take a look at
an example. In Listing 2.28, we’ve created a string tokenizer class called LCL_
STRING_TOKENIZER that can be used to parse through delimited records and make it
easy to access individual string tokens. This class defines two functional methods:

� The has_more_tokens() method is a Boolean method which can be used to
determine if there are more tokens in the sequence.

� The next_token() method provides a simple mechanism for accessing the next
token in the sequence.
73

Getting Started with Objects2
CLASS lcl_string_tokenizer DEFINITION.
PUBLIC SECTION.
METHODS:

constructor IMPORTING iv_string TYPE csequence
iv_delimiter TYPE csequence,

has_more_tokens RETURNING VALUE(rv_result) TYPE abap_bool,

next_token RETURNING VALUE(rv_token) TYPE string.

PRIVATE SECTION.
DATA mt_tokens TYPE string_table.
DATA mv_index TYPE i.

ENDCLASS.

CLASS lcl_string_tokenizer IMPLEMENTATION.
METHOD constructor.
SPLIT iv_string AT iv_delimiter INTO TABLE me->mt_tokens.

IF lines(me->mt_tokens) GT 0.
me->mv_index = 1.

ELSE.
me->mv_index = 0.

ENDIF.
ENDMETHOD.

METHOD has_more_tokens.
IF me->mv_index LE lines(me->mt_tokens).

rv_result = abap_true.
ELSE.

rv_result = abap_false.
ENDIF.

ENDMETHOD.

METHOD next_token.
READ TABLE me->mt_tokens INDEX me->mv_index INTO rv_token.
ADD 1 TO me->mv_index.

ENDMETHOD.
ENDCLASS.

Listing 2.28 Working with Functional Methods (Part 1)

The code excerpt contained in Listing 2.29 demonstrates how we can use our
string tokenizer class within regular ABAP code. Here, notice how we’re using the
has_more_rows() method as the basis of the logical expression that drives the
WHILE loop that processes the string tokens. At runtime, this method will be
invoked prior to the evaluation of the logical expression and the returned value
74 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
will be used to determine if the WHILE loop should continue. Not only does this
save us a few lines of code, it also makes the code much more intuitive.

DATA lo_tokenizer TYPE REF TO lcl_string_tokenizer.
DATA lv_token TYPE string.

CREATE OBJECT lo_tokenizer
EXPORTING
iv_string = '09/13/2005'
iv_delimiter = '/'.

WHILE lo_tokenizer->has_more_tokens() EQ abap_true.
lv_token = lo_tokenizer->next_token().
WRITE: / lv_token.

ENDWHILE.

Listing 2.29 Working with Functional Methods (Part 2)

Table 2.4 provides some further examples of places where functional methods
can be used in common ABAP expressions.

ABAP Expression Where Used

Conditional Expressions
(e.g. IF and WHILE statements)

As an operand in a logical expression.

Example:

IF oref->get_weight() GT 100.

...

ENDIF.

CASE As the operand in logical expressions.

Example:

CASE oref->get_type().

WHEN oref->get_value1().

...

ENDCASE.

LOOP AT /

DELETE /

MODIFY

As part of the logical expression in a WHERE clause.

Example:

LOOP AT itab

WHERE field EQ oref->get_val().

...

ENDLOOP.

Table 2.4 Using Functional Methods in Expressions
75

Getting Started with Objects2
New in Release 7.40: Enhancements to Functional Methods

As of Release 7.40 of the AS ABAP, the signature of functional methods has been
enhanced to support exporting and changing parameters in addition to the singular
returning parameter. Such methods can still be used inline within regular ABAP expres-
sions; the extra exporting/changing parameters simply come along for the ride.

Another helpful addition in Release 7.40 is the introduction of predicative method calls.
As the name suggests, predicative method calls are functional method calls where the
result is used as a predicate in logical expressions. To put this into perspective, consider
the way that we’re using predicative method calls to refactor the WHILE loop from List-
ing 2.29 below. Here, notice that we no longer have to compare the result of the has_
more_tokens() method using a logic expression. In this context, if the returning value
parameter of has_more_tokens() is initial, then the result is false; all non-initial values
evaluate to true. So, we can define the signature of methods using Boolean approxima-
tion types such as ABAP_BOOL or pretty much any other data type. Of course, for read-
ability’s sake, we would encourage you to define your functional methods using familiar
Boolean types wherever possible.

WHILE lo_tokenizer->has_more_tokens().
...

ENDWHILE.

Note that no syntactical changes are required in the implementation of methods such
has_more_tokens() in order to exploit this functionality. You can continue to develop
functional methods as per usual, only now you can incorporate them into functional
expressions in a more concise and readable manner.

2.2.8 Chaining Method Calls Together

Enhancement Pack 2 (EhP2) of Release 7.0 of the AS ABAP brought with it a lan-
guage feature that many OO developers had been yearning for since ABAP
Objects first came onto the scene: support for chained method calls. This little bit
of syntactic sugar makes it easy to consolidate a handful of operations into a sin-
gle line of code.

In order to understand how chained method calls work, let’s consider an exam-
ple. In Listing 2.30, we’ve created a simple string utilities class called LCL_STRING.
Within this class, we’ve defined a number of functional methods which perform
various operations on a string value: converting the string to upper case, trim-
ming of leading/trailing whitespace, and replacing characters. This is all pretty
much standard fare until we get to the part where each of these methods passes
back a copy of the me self-reference variable. This subtle addition to the code is
what makes method chaining possible.
76 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Objects 2.2
CLASS lcl_string DEFINITION.
PUBLIC SECTION.
METHODS:

constructor IMPORTING iv_string TYPE csequence,

trim RETURNING VALUE(ro_string) TYPE REF TO lcl_string,

upper RETURNING VALUE(ro_string)
TYPE REF TO lcl_string,

replace IMPORTING iv_pattern TYPE string
iv_replace TYPE string

RETURNING VALUE(ro_string)
TYPE REF TO lcl_string,

get_value RETURNING VALUE(rv_value) TYPE string.

PRIVATE SECTION.
DATA mv_string TYPE string.

ENDCLASS.

CLASS lcl_string IMPLEMENTATION.
METHOD constructor.
me->mv_string = iv_string.

ENDMETHOD.

METHOD trim.
me->mv_string =

condense(val = me->mv_string from = ``).
ro_string = me.

ENDMETHOD.

METHOD upper.
me->mv_string = to_upper(val = me->mv_string).
ro_string = me.

ENDMETHOD.

METHOD replace.
REPLACE ALL OCCURRENCES OF REGEX iv_pattern

IN me->mv_string WITH iv_replace.

ro_string = me.
ENDMETHOD.

METHOD get_value.
rv_value = me->mv_string.

ENDMETHOD.
ENDCLASS.

Listing 2.30 Working with Chained Methods (Part 1)
77

Getting Started with Objects2
The code excerpt in Listing 2.31 demonstrates how chained method calls are imple-
mented from a code perspective. Here, you can see how we’re taking an existing
string and performing multiple operations on it in one go. This starts with the call
to the trim() method. This method strips off the leading/trailing whitespace and
then passes back a copy of the me self-reference. The resultant object reference is
then used as the basis for the subsequent call to the upper() method which follows
the same kind of pattern. The call chain ultimately terminates with the call to get_
value(), at which time we receive the formatted text “PAIGE_A_PUMPKIN”.

Note

The line break between the calls to upper() and replace() was added so that the
statement would fit onto a printed page in the book. Within the ABAP Editor, this sort
of line break would result in a syntax error.

DATA lo_string TYPE REF TO lcl_string.
DATA lv_new_value TYPE string.

CREATE OBJECT lo_string
EXPORTING
iv_string = ` Paige A Pumpkin `.

lv_new_value =
lo_string->trim()->upper()->
replace(iv_pattern = `\s` iv_replace = '_')->get_value().

WRITE: / lv_new_value.

Listing 2.31 Working with Chained Methods (Part 2)

As you can see in the example above, chained method calls make it easy to string
together related operations in one condensed statement. For simple operations
like the ones demonstrated in Listing 2.31, this makes logical sense. For more
complex statements though, chained method calls are probably a bad idea. We
leave it to you as responsible developers to know when it makes sense to sacrifice
readability in order to save a few keystrokes.

2.3 Building your First Object-Oriented Program

In the previous section, we looked at several examples which demonstrated how
to work with objects. However, since these code excerpts were isolated, you
78 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Building your First Object-Oriented Program 2.3
might be wondering how all these pieces fit together in actual ABAP programs.
With that in mind, this section will demonstrate the creation of a simple report
program that utilizes a local class. As you’ll come to find out, these concepts apply
equally to the incorporation of local classes to function group definitions, module
pool programs, and so on.

2.3.1 Creating the Report Program

To get things started, let’s create the report program that will drive our demo. If
you’re new to ABAP development, this can be achieved by performing the follow-
ing steps:

1. To begin, log onto the system and open up the Object Navigator (Transaction
SE80).

2. In the object list selection box in the Repository Browser on the left-hand side
of the screen, choose the Local Objects list option (see Figure 2.6).

Figure 2.6 Selecting the Local Objects Repository View
79

Getting Started with Objects2
3. This will pull up a tree view of locally-defined development objects for your
user account as shown in Figure 2.7. To create a new report program, simply
right-click on the top-level object node (i.e. $TMP Developer shown in Figure
2.7) and select the Create � Program menu option.

Figure 2.7 Creating a Report Program (Part 1)

4. Next, you’ll be presented with the Create Program dialog box shown in Figure
2.8. At this step, you can simply specify the name of the report program (we
called our report YDATE_DEMO) and press the enter key to continue. Note that the
Create with TOP Include checkbox should not be selected in this case since
we’re just building a simple report.

Figure 2.8 Creating a Report Program (Part 2)
80 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Building your First Object-Oriented Program 2.3
5. Figure 2.9 shows the next dialog box that will be displayed during the creation
process. Here, you can provide a program title and additional attributes con-
cerning the program setup. For the purposes of our simple demonstration, you
can accept the defaults and click on the Save button to continue.

Figure 2.9 Creating a Report Program (Part 3)

6. At the next step, you’ll be asked to select a package to store the object in within
the ABAP Repository. Since this is a demo program, we’ll leave the default
$TMP package selection and click the Save button to continue. That way, the
program will only be defined locally and can’t be transported.

Figure 2.10 Creating a Report Program (Part 4)
81

Getting Started with Objects2
7. Finally, if all goes well, you should end up at an editor screen like the one
shown in Figure 2.11. From here, we can get started with our coding exercise.

Figure 2.11 Creating a Report Program (Part 5)

2.3.2 Adding in the Local Class Definition

Once the report program is created, we can begin defining our local class in one
of two ways:

� We can start keying in the class definition directly underneath the REPORT state-
ment just like we would for other type definitions.

� Or, we can create an INCLUDE program and key in the class definition over
there.

The ABAP compiler doesn’t care which option we choose, so it’s up to us to
decide how best to organize our code. For now, we’ll keep things simple and
define the class directly within the report program (see Listing 2.32). In Section
2.4, we’ll take a closer look at some logistical implications when defining classes.

REPORT ydate_demo.
CLASS lcl_date DEFINITION.

...
ENDCLASS.

CLASS lcl_date IMPLEMENTATION.
...

ENDCLASS.

Listing 2.32 Defining Local Classes within a Report Program
82 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Building your First Object-Oriented Program 2.3
Once the local class is defined, we can use access it from within the report pro-
gram in several different ways:

� We could define global object reference variables and then use those variables
to create and use objects from within report events such as START-OF-SELEC-
TION and END-OF-SELECTION.

� We could define local object reference variables within subroutines called from
within the report program and access the objects that way.

� If the class defines a “main” class method, we could simply invoke that directly
and let the class itself drive the main program logic.

Since this is a book about OO programming, we’ll tend to prefer the 3rd option as
it frees us from having to mix-and-match programming paradigms. The code
excerpt in Listing 2.33 demonstrates this approach. Here you can see how the
main program logic is driven by the main() class method which is accessed
directly within the START-OF-SELECTION event module. From here, it’s OO pro-
gramming as per usual. Figure 2.12 shows what the program output looks like. If
you want to try this out for yourself, you can download a complete version of the
program within the book’s source code bundle online.

REPORT zoopbook_date_demo.
CLASS lcl_date DEFINITION.

PUBLIC SECTION.
CLASS-METHODS:

main.
...

ENDCLASS.

CLASS lcl_date IMPLEMENTATION.
METHOD main.
DATA lo_birth_date TYPE REF TO lcl_date.
DATA lv_message TYPE string.

CREATE OBJECT lo_birth_date
EXPORTING

iv_date = '20030113'.

lv_message =
|Andersen was born on a

{ lo_birth_date->get_day_of_week() }.|.
WRITE: / lv_message.

lv_message =
83

Getting Started with Objects2
|Official birth date:
{ lo_birth_date->get_long_format() }.|.

WRITE: / lv_message.
ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.
lcl_date=>main().

Listing 2.33 Integrating Local Classes Inside Report Programs

Figure 2.12 Output of the Example Program

2.4 Working with Global Classes

As we’ve noted at several points throughout this chapter, ABAP distinguishes
between two different types of classes:

� Local Classes
These are the types of classes that we’ve looked at thus far. As we observed in
Section 2.3, these classes are defined within some other ABAP module such as
a report program, include program, etc. This implies that local classes have lim-
ited visibility within the system.

� Global Classes
Global classes on the other hand are standalone ABAP Repository artifacts that
are visible across the system. In this regard, you can think of global classes as
being on equal footing with globally-defined function modules.

From a syntax perspective, local and global classes are the same. However, as we’ll
learn in this section, the way that we go about developing global classes is a little
bit different. So with that in mind, let’s jump in and take a look at global classes.
84 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Global Classes 2.4
2.4.1 Understanding the Class Pool Concept

From a technical perspective, global classes are stored within the ABAP Reposi-
tory inside of a special repository object called a class pool. Class pools are special
ABAP program types that define a single global repository class along with related
local type definitions used to support the implementation of the class. Class pools
are similar to function groups in the sense that they cannot be executed directly.
Instead, runtime object instances are created using the familiar CREATE OBJECT
statement and then processed from there.

2.4.2 Getting Started with the Class Builder Tool

Class pools are maintained within a specialized tool in the ABAP Workbench
called the Class Builder. To access the Class Builder from within the ABAP Work-
bench, simply choose the Class / Interface list option in the object list selection
box of the Repository Browser shown in Figure 2.13.

Figure 2.13 Accessing the Class Builder from the ABAP Workbench
85

Getting Started with Objects2
Outside the ABAP Workbench, you can access the Class Builder directly using
Transaction SE24, or via the menu path shown in Figure 2.14.

Figure 2.14 Accessing the Class Builder from the SAP Easy Access Menu

Figure 2.15 shows what the initial screen of the Class Builder looks like when
accessed in standalone mode.

Figure 2.15 Initial Screen of the Class Builder Tool

2.4.3 Creating Global Classes

To create a new class pool in the Class Builder, perform the following steps:

1. From the initial screen shown in Figure 2.15, type in the name of the class you
want to create and hit the Create button. Alternatively, from within the Object
86 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Global Classes 2.4
Navigator, you can key in the class name in the input field shown in Figure
2.13 and press the Enter key.

2. In either case, you’ll end up at the Create Class dialog box shown in Figure
2.16. Here, we must fill in the following attributes:

� In the Class field, we confirm the name of the class that we’re creating. Since
this class is part of the overall ABAP Repository, we must give it a unique
name using the {Namespace}CL_ prefix as shown in Figure 2.16.

� In the Description field, we can provide a brief description of what the class
is used for, etc.

� The Inst. Generation drop-down list is used to determine the class’s instan-
tiation context. We’ll explore this concept beginning in Chapter 4.

� The Class Type radio button group allows us to specify what type of class
we’re building. For now, we’ll stick to the default Usual ABAP Class option.
The remaining class types will be described in Chapters 8, 11, and 9, respec-
tively.

� Finally, the Final checkbox allows us to determine if the class is closed off
from inheritance. We’ll explore this concept in Chapter 5.

Figure 2.16 Creating a Class Pool (Part 1)

3. Once the class definition details are established, you can proceed with the cre-
ation process by clicking on the Save button (see Figure 2.16).
87

Getting Started with Objects2
4. At this point, you’ll be prompted to choose the development package where
the class will be stored. For the purposes of our demo classes, we’ll stick with
the default $TMP local package.

5. If all goes well, you should end up at the form editor screen shown in Figure
2.17. From here, we can begin rounding out the class definition by defining
attributes, methods, and so on.

Figure 2.17 Main Editor Screen of the Class Builder Tool

2.4.4 Using the Form-Based Editor

As you can see in Figure 2.17, the default view of the Class Editor tool provides
us with a form-based view for defining various types of components. For the
most part, these forms simply provide an input mask for entering the component
declaration details described in Section 2.1.2. In the following sections, we’ll take
a look at these forms and see how they’re used to declare class components.

Defining Attributes

Attributes are defined on the Attributes tab of the Class Editor. This tab of the
Class Editor provides an entry table in which you can specify all of the various
attributes for a class (see Figure 2.18).
88 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Global Classes 2.4
Figure 2.18 Defining Attributes in the Class Editor

As you can see in Figure 2.18, the attributes table defines a number of columns
that we can use to specify attribute definitions:

� The name of an attribute is specified in the Attribute column.

� The Level column is used to define the declaration type of the attribute. Figure
2.19 contains a list of the possible declaration types available in the input value
help for this column. As you can see, global class attributes can be declared as
an Instance Attribute, a Static Attribute, or a Constant.

Figure 2.19 Setting the Declaration Type for an Attribute

� The Visibility column is used to assign the attribute to a specific visibility sec-
tion within the class (for a list of possible values, see Figure 2.20).
89

Getting Started with Objects2
Figure 2.20 Assigning the Visibility Section for an Attribute

� In the Read-Only column, we can specify that the attribute has read-only access
from outside the class.

� The Typing and Associated Type columns are used to specify the attribute’s
data type. The pick list values for the Typing field are shown in Figure 2.21.
Once this context is determined, the Associated Type column can be used to
complete the type declaration using built-in types, ABAP Dictionary types, or
even custom types/type pools defined within the class itself.

Figure 2.21 Specifying the Attribute’s Type

� The Direct Type Entry button directly to the right of the Associated Type col-
umn provides us with another option for specifying an attribute’s type. When-
ever you click on this button, you’ll be taken to a source code editor view in
which you can edit the attribute definition directly using ABAP code as
described in Section 2.1.2. Once you’ve specified the type, you can click on the
Back button to navigate back to the Attributes tab.
90 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Global Classes 2.4
� The Description column allows us to type in an optional short text description
of the attribute so that users will understand what the attribute is used for. To
improve code readability, we highly recommend that you utilize this feature.

� Finally, in the Initial Value column, we can provide a value that will be used
to initialize the attribute before it is first accessed.

Defining Methods

Methods are defined on the Methods tab in the Class Editor. Here, much like we
saw on the Attributes tab, the Class Editor provides us with an input table for
defining the methods of a class. As you can see in Figure 2.22, most of the attri-
butes here are self-explanatory. The lone exception to this is the Level field. This
field is used to determine if the method is defined at the instance level or the class
level (see Figure 2.23).

Figure 2.22 Defining Methods in the Class Editor

Figure 2.23 Setting the Declaration Type for a Method
91

Getting Started with Objects2
To define the parameters for a method, simply place your cursor on the name of
the method you wish to edit in the Method column and click on the Parameters

button in the toolbar directly above the method input table. This will open up the
Method Parameters input screen shown in Figure 2.24. From here, we can fill
in parameter details in much the same way that we define attributes on the Attri-

butes tab.

Figure 2.24 Defining Method Parameters

To edit the method’s implementation, you can either double-click on the method
name, or click on the Source Code button highlighted in Figure 2.25.

Figure 2.25 Navigating to the Method Source Code Editor
92 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Global Classes 2.4
In the source code editor, you can implement the method inside of a
METHOD...ENDMETHOD processing block within the ABAP Editor as per usual (see
Figure 2.26).

Figure 2.26 Implementing a Method in the ABAP Editor

Defining Events

Events are defined on the Events tab of the Class Editor. Here, you are provided
with an input table similar to the ones used to specify components on the Attri-

butes and Methods tabs (see Figure 2.27).

Figure 2.27 Defining Events in the Class Editor
93

Getting Started with Objects2
To declare parameters for an event, place your cursor on the name of the target
event in the Event column and click the Parameters button in the toolbar above
the input table. This will open up the Event Parameters input screen shown in
Figure 2.28. Here, you can specify the exporting parameters of the event in much
the same way that you learned how to define method parameters in the previous
section.

Figure 2.28 Defining Event Parameters

Defining Custom Data Types

Custom data types can be defined on the Types tab of the Class Editor. As you can
see in Figure 2.29, the Types tab has a similar look-and-feel to the Attributes tab
shown in Figure 2.18.

Figure 2.29 Defining Custom Types in the Class Editor
94 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Global Classes 2.4
Here, once again, we can use the Direct Type Entry button (highlighted in Figure
2.29) to jump into an ABAP editor and refine the type definition using the TYPES
statement as necessary (see Figure 2.30).

Figure 2.30 Defining Custom Types Using Direct Type Entry

Local Definitions / Implementations

Besides the various components considered thus far, class pools can also be
defined with various local types that can be used to aid in the implementation of
the global class. These local types could be used to define local variables in meth-
ods, etc. To access this section of the code, simply click on the Local Definitions/

Implementations button shown in Figure 2.31. From here, you’ll be taken to a
code-based editor in which you can define local data types and even local class
types as desired. In the latter case, you simply define the local classes using the
same syntax demonstrated in Section 2.1.

Figure 2.31 Accessing the Local Definitions Include of a Class Pool
95

Getting Started with Objects2
2.4.5 Using the Source Code Editor

Beginning with the SAP NetWeaver 7.02 release, the Class Builder also comes
with an alternative to the form-based editor: the source code-based editor. To
access this mode, simply click on the Source Code-Based button in the main tool-
bar as shown in Figure 2.32.

Figure 2.32 Accessing the Source Code-Based Editor (Part 1)

This will bring you to a normal ABAP editor screen as shown in Figure 2.33.
From here, you can work with the basic ABAP Objects syntax covered over the
course of this chapter. You can stick with this mode to write the code, or toggle
back to the form-based view by clicking on the Form-Based button highlighted in
Figure 2.33.

Figure 2.33 Accessing the Source Code-Based Editor (Part 2)
96 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
2.5 Developing Classes Using the ABAP Development Tools
in Eclipse

Up until very recently, the only way to develop classes in ABAP Objects was to
use the ABAP Workbench tools. Beginning with the SAP NetWeaver 7.03 release
though, we now have a new and exciting toolset to work with: the ABAP Develop-
ment Tools in Eclipse (AIE). In this section, we’ll take an introductory look at some
of the basic features of the AIE toolset.

2.5.1 What is Eclipse?

Before we start looking into specific features of the AIE toolset, we should first
provide a brief introduction to Eclipse. Eclipse is a flexible, Java-based integrated
development environment (IDE) that was initially developed by IBM and then
subsequently donated to the open source community in 2001. From there, the
project picked up a lot of steam as other major vendors (or “stewards”) jumped
on board and added their contributions to the project. These efforts culminated
in the launch of the Eclipse Foundation in 2004.

In and of itself, Eclipse is basically just like any other IDE: it provides functional-
ity to edit source code, organize code into projects, and so forth. What sets
Eclipse apart is its flexible plug-in system. Here, software vendors and individuals
alike can create plug-ins to extend the core functionality of the IDE in all kinds of
interesting ways. Indeed, if you look online, you can generally find plug-ins that
allow you to develop in just about any programming language imaginable using
Eclipse. With the advent of the AIE toolset, this list of programming languages
now includes ABAP.

From a strategy perspective, moving towards an Eclipse-based IDE makes a ton of
sense for SAP. Technology-wise, it’s fair to say that SAP has reached the limits of
what can be achieved using classic Dynpro technology in the ABAP Workbench.
Indeed, we daresay that you’ll be stunned by some of the Eclipse-based features
demonstrated in Section 2.5.3. These capabilities simply weren’t possible using
the old technology stack. Plus, as new developers come onto the scene, it’s in
SAP’s best interest to offer a familiar development platform that’s on par with
competing IDEs such as Microsoft’s Visual Studio, etc.
97

Getting Started with Objects2
Note

Even though we think most users will never want to go back to the ABAP Workbench
once they get their hands on AIE, we should point out that the ABAP Workbench is not
going away anytime soon. The great news for developers is that we now have more
choices to work with. We can stick with the ABAP Workbench, jump over to AIE, or tog-
gle back-and-forth. Indeed, since the two IDEs can be used simultaneously, developers
can dip their toes in the water and decide which IDE works best for them over time.

2.5.2 Setting Up the AIE Environment

Since the ABAP Development Tools (ADT) are bundled as a series of plug-ins,
they can generally be installed on top of most any recent Eclipse installation. This
could include Eclipse installations used to develop software outside of the SAP
landscape, or other SAP-based Eclipse installations such as the SAP HANA Studio.
If you’re an experienced Eclipse developer, then you can find instructions for set-
ting up the AIE plug-ins at https://tools.hana.ondemand.com/#abap. Otherwise,
check out Appendix A for step-by-step instructions that walk you through the
installation process.

Release Compatibility

At the time of this writing, AIE requires that the AS ABAP backend must be on SAP Ker-
nel 7.20 or higher and the SAP BASIS component at version 7.31 with support pack
stack 04. Though this may change over time, suffice it to say that you’re probably not
going to be able to use AIE with an old AS ABAP system running on SAP NetWeaver
7.0. For more details about the particular requirements and instructions for verifying/
establishing AIE connectivity, check out https://scn.sap.com/docs/DOC-47656.

Once you have your Eclipse installation in place, you can access the ADT by
launching the IDE and performing the following steps:

1. From the top-level File menu choose the Project… menu option as shown in
Figure 2.34.

2. This will launch the New Project wizard shown in Figure 2.35. Here, you’ll
want to expand the ABAP folder and choose the ABAP Project node. Click the
Next button to continue.
98 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
Figure 2.34 Creating an ADT Project (Part 1)

Figure 2.35 Creating an ADT Project (Part 2)

3. At the New ABAP Project dialog box shown in Figure 2.36, you choose the AS
ABAP system you want to connect to by clicking on the Browse… button. In
the Select Existing System popup, you can choose from available system con-
99

Getting Started with Objects2
nections established within the SAP logon pad. Click the OK button to confirm
your selection and click the Next button to continue.

Figure 2.36 Selecting the Target AS ABAP System to Connect To

4. At the next step, you’ll be prompted to provide logon credentials so the ADT
plug-ins can log onto the AS ABAP backend (see Figure 2.37). Click the Next

button to continue.
100 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
Figure 2.37 Authenticating with the AS ABAP Backend

3. Figure 2.38 shows the last step in the ABAP Project setup wizard. Here, you are
provided with a couple of options for tweaking the experience once the project
is created:

� In the Favorites Packages area, you can click on the Add… button to pre-
select the ABAP package(s) that you want to work with in your project. Note
that this favorites list can be created and/or amended later on if you prefer
to wait.

� In the Working Sets area, you can add the project to the set of Eclipse work-
ing sets. This is an organizational feature that’s native to the Eclipse IDE.

Once you’ve confirmed your settings, you can click on the Finish button to cre-
ate the project.

5.
101

Getting Started with Objects2
Figure 2.38 Confirming the Project Setup

6. At this point, you’ll likely be presented with the Open Associated Perspective?

prompt shown in Figure 2.39. In Eclipse, a perspective is an arrangement of
related windows and views that are used to tandem to perform a particular type
of development. In the case of AIE, we have the ABAP perspective which
groups together various ADT functions together to improve developer produc-
tivity. As you become more proficient in using Eclipse features, you can tweak
this perspective as needed and even create your own customized perspectives.
102 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
Figure 2.39 Switching to the ABAP Perspective in Eclipse

A Word on Workspaces and Projects

As you create new ABAP projects in Eclipse, there are a couple of things going on
behind the scenes that you should be aware of:

1. Eclipse stores project files in a directory on your local machine referred to as the
Eclipse workspace. You can find this directory from within Eclipse by choosing Win-

dow � Preferences in the top-level menu bar and then expanding General � Work-

space. From here, a link should be provided to find the current settings.

2. For ABAP-based projects, the files stored in the workspace are limited to project files
and metafiles. These files are used to keep track of your project settings and prefer-
ences. Source code remains within the ABAP Repository on the AS ABAP backend.
This is different than most other project types (e.g. Java projects) where the source
code is maintained locally and then checked into some kind of software revision con-
trol system such as Perforce or CVS.
103

Getting Started with Objects2
2.5.3 Working with the AIE Class Editor Tools

Once an ABAP Project is created and a connection is established within the AS
ABAP backend, we can begin creating and editing ABAP-related artifacts as shown
in Figure 2.40. Here, you can see that the editor screen within the ABAP perspec-
tive is split into four editor panes:

� On the top left-hand pane, we have the Project Explorer window which
resembles the tree-based Repository Browser that allows us to search for devel-
opment objects from within the ABAP Workbench.

� The top right-hand pane consists of a tabbed pane that contains one or more
editor views. So, for example, we can open up a class, a report, and a function
module on different tabs and toggle back-and-forth. Eclipse also supports split-
screen views so that you can perform side-by-side comparisons.

Figure 2.40 Working with the AIE Class Editor
104 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
� In the lower left-hand pane, we have the Outline view which makes it easy to
navigate directly to specific modules within the development object we happen
to be editing.

� Finally, the lower right-hand pane is generally reserved for secondary views,
properties views, and so on.

Since each of these editor panes are contained within a splitter pane, you can
shrink or expand particular panes by dragging along the separator bars with your
mouse. You can also expand/hide panes by clicking the corresponding icons in
the top right-hand corner of the pane.

Once you become acquainted with the ABAP perspective, you can begin experi-
menting with the various Eclipse-based editors by either opening up an existing
object (by double-clicking on it in the Project Explorer) or creating a new one. In
the latter case, this can be achieved using the provided context menus. Since
we’re most interested in editing ABAP classes, the steps required to create a new
class are as follows:

1. Within the desired ABAP development package, right-click on the Source

Library folder and choose the New � ABAP Class menu option (see Figure
2.41).

Figure 2.41 Creating a Global Class Using the AIE Class Editor (Part 1)
105

Getting Started with Objects2
2. This will open up the New ABAP Class dialog box shown in Figure 2.42. Here,
you must specify the class name and a brief description. From here, you can fol-
low the wizard to completion to create the new class by accepting all defaults.

Figure 2.42 Creating a Global Class Using the AIE Class Editor (Part 2)

Once a class is opened, we can begin editing it using normal ABAP Objects syn-
tax. To maximize the editor area, we recommend double-clicking on the top-level
tab for the class you’re editing. This will expand the editor area as shown in Fig-
ure 2.43. Along the top of the editor, you can access all of the familiar toolbar
functions available in the normal Class Builder tool: syntax check, save, activate,
and so on.

Within the editor itself, there are quite a number of useful features. For example,
in Figure 2.43, you can see how the editor is equipped with intelligent code com-
pletion features. These features can be accessed on demand as you’re coding by
clicking the (Ctrl)+(Space) keys.
106 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
Figure 2.43 Working with the Expanded Editor Area

Besides the normal code-completion features already available in the new source
code editor of the ABAP Workbench, AIE also taps into a powerful feature of the
Eclipse IDE: templates. As the name suggests, templates refer to pre-defined code
templates that make it easy to drop in familiar code blocks/idioms. For example,
in Figure 2.44, you can see how we’re using a template in Eclipse to build out an
ABAP CASE statement. As you’re typing familiar ABAP keywords, you can try this
out by once again clicking the (Ctrl)+(Space) keys.

Figure 2.44 Using Intelligent Code Completion Features of Eclipse (Part 1)
107

Getting Started with Objects2
Looking closely at the template being inserted in Figure 2.44, you can see how the
template code contains a number of variables that are contained within the ${}
blocks (e.g. ${variable}). As you insert a template, these variables can help further
define a code block and give you more than just a simple piece of boilerplate code.

Figure 2.45 Using Intelligent Code Completion Features of Eclipse (Part 2)

To see what templates are available, you can choose the Window � Preferences

menu option as shown in Figure 2.46. From here, select ABAP Development �
Editors � Source Code Editors � Templates to access the template editor table
shown in Figure 2.47. Here, you can view/edit existing templates or create new
ones as desired.

Figure 2.46 Working with Source Code Templates (Part 1)

While you’re in there looking at ABAP development preferences, you might want
to consider turning on another useful feature. Under the Mark Occurrences pref-
erences, there’s a checkbox called Mark occurrences of the selected element
108 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
(see Figure 2.48). If you select this checkbox and confirm your selection, you’ll
notice a subtle difference in the behavior of the editor as highlighted in Figure 2.49.
Here, whenever you put your cursor on the name of a variable or code module, the
editor will highlight all occurrences of that element with a gray background.

Figure 2.47 Working with Source Code Templates (Part 2)

Figure 2.48 Turning on the Mark Occurrences Feature
109

Getting Started with Objects2
Figure 2.49 Working with the Mark Occurrences Feature

Besides making it easy to visualize where certain elements are used in the code,
the mark occurrences feature also allows us to tap into some powerful refactoring
features built into editor. To access these features, simply highlight the code ele-
ment you want to refactor and click on the (Ctrl)+(1) key sequence (this sequence
is called the Quick Fix sequence in Eclipse). For example, in Figure 2.50, you can
see how we’re using this feature to rename the variable lt_day_names.

Selecting the Rename sequence highlighted in Figure 2.50 causes the Rename

Field dialog box shown in Figure 2.51 to open up. To rename the variable, we
simply key in the new name in the New Name field and click the Next button to
continue.
110 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
Figure 2.50 Using the Built-in Refactoring Features of the ADT (Part 1)

Figure 2.51 Using the Built-in Refactoring Features of the ADT (Part 2)
111

Getting Started with Objects2
At the end of the rename wizard, we are presented with a split-screen editor that
previews what the changes will look like if we decide to proceed. If we change
our mind, we can click on the Cancel button and the source code will be left
untouched. Otherwise, we can confirm the selection by clicking on the Finish

button.

Figure 2.52 Using the Built-in Refactoring Features of the ADT (Part 3)

Menu-based access to these features and more can be found in the Source menu
highlighted in Figure 2.53. Here, for example, we can clean up unused variables,
format portions of the code according to preferences/project standards, and
much, much more.

As you’re editing development objects using these features, keep in mind that
most of the changes being made are made in-memory. This means that the
112 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing Classes Using the ABAP Development Tools in Eclipse 2.5
changes are not synchronized with the ABAP Repository until you save and/or
activate the code. At that point, the changes are committed and available for sub-
sequent editing in Eclipse or the backend ABAP Workbench.

Figure 2.53 Accessing Other Refactoring Features

2.5.4 Where to Go to Find More Information about AIE

Realistically, the introduction to Eclipse offered in this section barely scratches
the surface of the features offered by this tool. If you’re eager to learn more about
what’s possible with AIE, we highly recommend that you tour the AIE commu-
nity page at http://scn.sap.com/community/abap/eclipse. A number of useful video
tutorials are also provided at http://scn.sap.com/docs/DOC-31815.

Finally, we’re starting to see some custom-developed Eclipse plug-ins for AIE which
are definitely worth investigating. Here, you can find plug-ins to help you generate
ABAP classes from UML diagrams, create documentation bundles, and integrate
with the popular SAPlink project used for code migration. Most of these plug-ins
are featured on the aforementioned AIE community page on the SAP Community
Network, so we’d encourage you to take a look around and see what sort of goodies
you can find.
113

Getting Started with Objects2
2.6 New Syntax Features in Release 7.40

For years, one of the primary complaints for developers coming to ABAP Objects
from other contemporary OO languages was that ABAP Objects syntax is simply
too verbose. For example, consider the code excerpts contained in Listing 2.34
and Listing 2.35. Both of these code excerpts carry out the task of instantiating a
“point” object. In Listing 2.34, you can see how the Java programming language
allows us to accomplish this in one line of code using the Java new operator.
When compared with the ABAP-based equivalent in Listing 2.35, you can see that
the several more keystrokes are involved. First, we have to declare an object ref-
erence variable, then we have to instantiate the object using the familiar CREATE
OBJECT statement. Both approaches get us to the same place, but the ABAP way
leads to early onset carpal tunnel syndrome.

Point p = new Point(2, 3);

Listing 2.34 Instantiating an Object in the Java Programming Language

DATA lo_point TYPE REF TO lcl_point.
CREATE OBJECT lo_point

EXPORTING
x = 2
y = 3.

Listing 2.35 Instantiating an Object in ABAP Objects

In an effort to make the ABAP Objects language more developer-friendly, SAP
introduced a new operator type in Release 7.40 that allows ABAP developers to
build expressions similar to those they might be accustomed to creating in other
OO languages such as Java or C#: constructor expressions.

The syntax diagram contained in Listing 2.36 demonstrates the syntax used to
create constructor expressions. In order to understand this syntax, it helps to
have a feel for the types of constructor operators that are available. Table 2.5
highlights some of the more relevant operator types offered with Release 7.40.
Here, we can see that operator types help clarify the context of a particular con-
structor expression. For example, the presence of the NEW operator type tells us
that the constructor expression is used to instantiate a data object. The rest of the
expression syntax is then used to specify the type of the object being created and
any parameters needed to carry out the instantiation process.
114 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

New Syntax Features in Release 7.40 2.6
... operator [type|#](...) ...

Listing 2.36 Syntax Diagram for Constructor Expressions

So what do real world constructor expressions look like? Well, consider the code
excerpt contained in Listing 2.37. Here, we’ve refactored the ABAP code excerpt
from Listing 2.35 using the NEW operator as well as the new inline declaration fea-
ture introduced with Release 7.40 (e.g. the DATA(variable) part). From a compi-
lation/runtime perspective, both code excerpts work exactly the same. However,
it goes without saying that the newer approach is much more concise.

DATA(lo_point) = NEW lcl_point(x = 2, y = 3).

Listing 2.37 Working with the NEW Operator

From a pure OO programming perspective, the NEW operator is perhaps the most
compelling. However, while the other operator types were not designed exclu-
sively for OO programming, they certainly make for more streamlined coding.
For instance, consider the code excerpt contained in Listing 2.38. Here, we’re
using the new syntax features in Release 7.40 to reduce the number of lines it

Operator Description

Instance Operator (NEW) This operator type is used to create/instantiate objects.
Here, the term object refers to object instances in the OO
context as well as anonymous data objects.

Value Operator (VALUE) This operator is used to construct complex values that are
used in initialization expressions, as method arguments, and
so forth.

Reference Operator (REF) This operator’s used to create data references on the fly. So,
for example, if there’s a method that expects a data refer-
ence, we can use the REF operator to create that reference
without having to use the GET_REFERENCE OF dobj
INTO... statement to copy the data reference into a helper
variable first.

Conversion/Casting Oper-
ators (CONV and CAST)

These operators are used to perform type conversions on
the fly in order to reduce the number of helper variables
needed to work with various API signatures, etc.

Conditional Operators
(COND and SWITCH)

These operators are used to streamline conditional initial-
ization statements into a single expression.

Table 2.5 Selected Constructor Operator Types Introduced with Release 7.40
115

Getting Started with Objects2
takes to build a SQL query using the object-oriented ABAP Database Connectivity
(ADBC) library. Without these features, the number of lines of code required to
implement this example would nearly double to accommodate all of the helper
variable declarations, etc.

DATA(lv_program_id) = 'R3TR'.
DATA(lv_object_type) = 'CLAS'.
DATA(lv_pattern) = 'CL_ABAP%'.

DATA(lo_stmt) = NEW cl_sql_statement().
lo_stmt->set_param(REF #(lv_program_id)).
lo_stmt->set_param(REF #(lv_object_type)).
lo_stmt->set_param(REF #(lv_pattern)).

DATA(lo_rs) =
lo_stmt->execute_query(
`SELECT obj_name, author ` &&

`FROM tadir ` &&
`WHERE mandt = ? AND pgmid = ? AND object = ? ` &&

`AND obj_name LIKE ?`).

DATA(lt_rsmd) = lo_rs->get_metadata().
DATA(lr_line_type) = lo_rs->get_struct_ref(md_tab = lt_rsmd).
DATA(lo_line_descr) = CAST cl_abap_structdescr(

cl_abap_structdescr=>describe_by_data_ref(lr_line_type)).
DATA(lo_table_descr) = CAST cl_abap_tabledescr(

cl_abap_tabledescr=>create(p_line_type = lo_line_descr)).

DATA lr_results_tab TYPE REF TO data.
CREATE DATA lr_results_tab TYPE HANDLE lo_table_descr.
lo_rs->set_param_table(lr_results_tab).
lo_rs->next_package().
lo_rs->close().

FIELD-SYMBOLS <lt_results> TYPE INDEX TABLE.
FIELD-SYMBOLS <ls_result> TYPE any.

ASSIGN lr_results_tab->* TO <lt_results>.
LOOP AT <lt_results> ASSIGNING <ls_result>.

WRITE: / <ls_result>.
ENDLOOP.

Listing 2.38 Using Constructor Expressions to Simplify an ADBC Query

At the end of the day, constructor expressions, inline declarations and the other
Release 7.40-specific functions described in this chapter are merely syntactic
sugar. If you happen to be working on a Release 7.40 system, then we think that
you’ll find these statements to be useful from a productivity perspective. How-
116 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Object Diagrams 2.7
ever, if your system is not quite there yet, don’t worry; you’re not missing out on
any core functionality. You just might want to invest in a wrist brace or two in the
meantime.

2.7 UML Tutorial: Object Diagrams

In the previous chapter, we learned how class diagrams could be used to specify
the static architecture of an object-oriented system. Most of the time, these dia-
grams are straightforward and easy to interpret. However, sometimes the rela-
tionship between certain classes is not so intuitive. In these cases, object diagrams
can be used to depict a snapshot or simulation of the actual objects created in ref-
erence to these classes at runtime. Oftentimes, just seeing an example of how the
actual objects are configured at runtime can shed some light on the nature of
complex class relationships.

Figure 2.54 illustrates a portion of a class diagram that shows the recursive aggre-
gation relationship between a bill of material (BOM) document and its compo-
nents/items. The diamond on the MaterialBOM side of the association is used to
indicate that the BOM is an aggregate, containing 0 or more items.

Figure 2.54 UML Class Diagram Showing Material BOM Aggregation

The static class diagram contained in Figure 2.54 is useful for identifying the basic
relationship between a BOM and its items, but it doesn’t really help us visualize
just how complex the relationships might be between BOMs and items at run-
time. For example, in complex engineering scenarios, it’s not uncommon for a

MaterialBOM

- material
- plant
... items

0..*
117

Getting Started with Objects2
BOM to contain items that are also complex assemblies. Depending on the nature
of what we’re building, this hierarchy can be nested arbitrarily deep.

In order to visualize what’s going on at runtime, what we really need is a diagram
to show the relationship between the actual object instances that will be created.
Within the UML, this task is performed by the object diagram.

As you can see in Figure 2.55, object diagrams depict a snapshot of object
instances and their interrelationships. Here, we can see how the BOM object for
a laptop computer explodes out into a multi-level hierarchy. If we’re developing
algorithms to process this hierarchy, it can be useful to have this view of the data
in order to visualize how we might go about traversing nodes, etc.

Figure 2.55 Object Diagram Showing BOM for a Laptop Computer

As you can see from Figure 2.55, object diagrams are very similar to class dia-
grams in many respects. However, in object diagrams, the rectangular boxes rep-
resent object instances instead of classes. Figure 2.56 shows the basic notation for

laptop: MaterialBOM

hardDrive: MaterialBOM

cpu: MaterialBOM chipset: MaterialBOM

motherboard: MaterialBOM lcd: MaterialBOM

material = “12345”
plant = “1000”
...

material = “23456”
plant = “2000”
...

material = “34567”
plant = “1000”
...

material = “45678”
plant = “3000”
...

material = “56789”
plant = “1000”
...

material = “67890”
plant = “1000”
...

item

item item

item item
118 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Summary 2.8
specifying objects in an object diagram. In the top box, you provide the name of
the object as well as the type of class the object is created in reference to. The
lower box is optional, allowing you to provide additional runtime details about
the object (i.e. its current state).

Figure 2.56 Object Instance Notation in Object Diagrams

Object diagrams can display as many objects as needed to illustrate the class/
object relationships. The diagram is considered to be a viewport into the system
at a particular point in time. Objects are created and destroyed in programs all the
time, so it’s important not to get hung up on trying to illustrate every possible
object that will be created in the system at runtime. If one diagram cannot fully
describe the relationship, additional diagrams can be used to show the progres-
sion of the object configuration as the program continues to run.

2.8 Summary

This chapter covered a lot of ground, exposing you to the basic syntax and tools
you’ll need to begin writing object-oriented programs in ABAP. However, while
we’ve given a nuts-and-bolts description of classes and objects in this chapter,
we’ve only begun to scratch the surface with regards to the potential benefits that
can be obtained by adopting an object-oriented approach in our program designs.
Therefore, in the next chapter, we’ll begin to explore some of these features by
examining the concepts of encapsulation and implementation hiding.

Object Name: Class Type

attribute = “value”
attribute = “value”
...
119

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

Classes are abstractions that are used to extend the functionality of a pro-
gramming language by introducing user-defined types. Encapsulation and
implementation hiding techniques are used to simplify the way that devel-
opers interface with these user-defined types, making object-oriented pro-
gram designs easier to understand, maintain, and enhance.

3 Encapsulation and Implementation
Hiding

One of the most obvious ways to speed up the software development process is to
leverage pre-existing code. However, while most projects strive to create reusable
source code artifacts, few actually succeed in delivering modules that can be clas-
sified as reusable. In most cases, this lack of (re)usability can be traced back to the
fact that the module(s) become too tightly coupled with their surrounding envi-
ronment. With so many “wires” getting in the way, it’s hard to pick up a module
and drop it in somewhere else. Therefore, in order to improve reusability, we
need to cut the cords and figure out ways of building autonomous components
that can think and act on their own.

In this chapter, we’ll learn how to breathe life into objects by exploring the ben-
efits of combining data and behavior together under one roof. Along the way,
we’ll explore the use of access control mechanisms and see how they can be used
to shape the interfaces of the defining classes to make them easier to modify and
reuse in other contexts.

3.1 Lessons Learned from Procedural Programming

Contrary to popular belief, many core object-oriented programming concepts are
based on similar principles rooted in the procedural programming paradigm. In
both paradigms, the basic goal is to provide developers with the tools they need
to translate requirements from the physical world into software-based solutions.
However, while both programming models share in this goal, they go about
121

Encapsulation and Implementation Hiding3
achieving it in vastly different ways. In this section, we’ll take a closer look at the
procedural approach and consider some of the limitations which ultimately
caused many language designers to move in the direction of an object-oriented
approach.

3.1.1 Decomposing the Functional Decomposition Process

Typically, procedural developers formulate their program designs using a process
called functional decomposition. The term “functional decomposition” is taken
from the world of mathematics, where mathematical functions are broken down
into a series of smaller discrete functions that are easier to understand on their
own. From a development perspective, functional decomposition refers to the
process of decomposing a complex program into a series of smaller modules (e.g.
procedures or subroutines).

One common approach for discovering these procedures is to scan through the
functional requirements and highlight all the verbs used to describe the actions a
program must take to meet its objectives. After all of the steps have been identi-
fied, they are then composed into a main program that’s responsible for making
sure that the procedures are executed in the right sequence. This process of orga-
nizing and refining the main program is sometimes called step-wise refinement.

For small to medium-sized programs, this strategy works pretty well. However, as
programs start to branch out and grow in complexity, the design tends to become
unwieldy as the main program becomes saddled with too many responsibilities.
Here, besides keeping track of all of the different procedures and making sure
that they’re processed in the right order, the main program is also normally
responsible for managing all of the data used by the various procedures. For this
reason, such programs are often referred to as “God programs”.

Note

In his book, Design Patterns Explained: A New Perspective on Object-Oriented Design,
2nd Edition, Alan Shalloway suggests that the term “God program” stems from the fact
that only God can understand these programs.

With functional decomposition, the level of abstraction is the subroutine. Within
a given subroutine definition, we can implement logic to perform a particular
task using data that’s provided from one of two places:
122 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Lessons Learned from Procedural Programming 3.1
� Parameters that are passed into the subroutine from the calling program

� Global variables which are visible from within the subroutine

Regardless of the approach we use to supply subroutines with data, the reality is
that there’s no clean way of doing this without introducing some undesirable
dependencies. For example, if we make liberal use of global variables, we open
ourselves up to the possibility of data corruption errors. Here, imagine the
impacts of switching out the call sequence of a pair of subroutines which make
changes to the same global variable(s). If subroutine b depends on subroutine a to
initialize the data and the call sequence gets flipped based on a requirements
change, it’s very likely that we’ll start seeing strange data-related errors in the
processing (see Figure 3.1).

Figure 3.1 Data Collision Errors between Subroutines and Global Variables

Conversely, replacing global variables by passing around lots of parameters places
additional burden on the main program to keep track of the parameters. Plus, we
end up cluttering up the subroutine’s parameter interface, which in turn leads to
the tight coupling problem we described earlier.

Ideally we’d like for our modules to assume more responsibilities internally so
that they are less reliant on controlling programs/modules when carrying out
their tasks. Think of it this way, if we were to compare the organization of a soft-
ware program with organizational (org) structures in an enterprise, which of the

123

234

6/3/15

INIT

ORDER_NO

CUSTOMER

CREATION_DATE

STATUS

...

A

B

NEW

CLOSED
123

Encapsulation and Implementation Hiding3
two org structures depicted in Figure 3.2 and Figure 3.3 would we want our pro-
grams to look like? In the case of the flat org structure depicted in Figure 3.2, we
have one centralized module that’s responsible for (micro)managing lots of sub-
modules. On the other hand, the tall org structure shown in Figure 3.3 is much
more balanced with higher level modules delegating responsibilities down to spe-
cialized submodules.

Figure 3.2 Example of a Flat Organizational Structure

Figure 3.3 Example of a Tall Organizational Structure

In programming, just like business, it’s important that we delegate responsibili-
ties so that our programs remain flexible. In order for that to happen, the
(sub)modules need to be smart enough to figure certain things out on their own—
and that requires data. In the sections to come, we’ll find that combining data and
behavior together within a class helps us develop modules that can attain the kind
of autonomy we’re looking for.
124 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Lessons Learned from Procedural Programming 3.1
3.1.2 Case Study: A Procedural Code Library in ABAP

To better illustrate some of the procedural programming challenges noted in Sec-
tion 3.1.1, let’s consider an example. In this section, we’ll sketch out the develop-
ment of a date utility library using ABAP function modules.

If you’ve worked with function modules before, then you know that they’re
defined within the context of a function group. In some respects, function groups
bear some similarities to classes in that you can use them to define data and behav-
iors together within a self-contained unit (called a function pool). However, this
analogy breaks down when you consider the fact that you cannot load multiple
instances of a function group inside your program. This limitation makes it difficult
for developers to work with the (global) data inside of a function group since addi-
tional logic is required to partition the data into separate work areas (or instances).

Because of this shortcoming, most function module developers tend to design their
functions as stateless modules which operate on data that’s maintained elsewhere.
In this context, the term “stateless” implies that the function modules have no rec-
ollection of prior invocations and don’t maintain any sort of internal state. As a
result, function module developers need only worry about implementing the pro-
cedural logic—keeping track of the data/sessions is someone else’s problem.

Note

Whenever you call a function module from a particular function group inside your pro-
gram, the global data from the function group is loaded into the memory of the inter-
nal session of your program. Any subsequent calls to function modules within that
function group will share the same global data allocated whenever the first function
module was called.

Blame it on the BAPIs

The stateless approach to function module development increased in popularity quite a
bit in the late 1990s/early 2000s whenever SAP started introducing BAPIs (the term
“BAPI” stands for Business Application Programming Interface). At that time, SAP rolled
out loads of function modules which promoted a stateless architecture. To call these
BAPIs, one would generally have to define a slew of (global) variables that would be
used to process BAPI calls. This is illustrated with the commonly used BAPI_USER_GET_
DETAIL used to read user details. In the function signature shown in Figure 3.4, you can
see that there’s quite a bit of data about a user that has to be maintained outside of the
function module. It’s also interesting to note that the same variables would be needed
to perform other operations on users such as create, change, and so forth.
125

Encapsulation and Implementation Hiding3
Figure 3.4 An Example of a Stateless BAPI Function

For the purposes of our date library example, we’ll build our utility functions as
stateless function modules. Within these functions, we’ll operate on a date value
represented by the SCALS_DATE structure shown in Figure 3.5. Here, though we
126 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Lessons Learned from Procedural Programming 3.1
could have just as easily used the internal ABAP date (D) type, we elected to use a
structure type so that we could clearly address the individual components of a
date (e.g. month, day, or year) without using offset semantics.

Figure 3.5 Modeling the Data Used for the Date Library

The code excerpt contained in Listing 3.1 sketches out the date API in a function
group called ZDATE_API. Here, we’ve defined a handful of utility methods that can
be used to perform date calculations, format dates according to different locales,
and so forth.

FUNCTION-pool zdate_api.
FUNCTION z_add_to_date.

* Local Interface IMPORTING VALUE (iv_days) TYPE i
* CHANGING (cs_date) TYPE scals_date
...

ENDFUNCTION.
FUNCTION z_subtract_from_date.

* Local Interface IMPORTING VALUE (iv_days) TYPE i
* CHANGING (cs_date) TYPE scals_date
...

ENDFUNCTION.
FUNCTION z_get_day_name.

* Local Interface IMPORTING VALUE (is_date) TYPE scals_date
* EXPORTING ev_day TYPE string
...

ENDFUNCTION.
FUNCTION z_get_week_of_year.

* Local Interface IMPORTING VALUE (is_date) TYPE scals_date
* EXPORTING ev_week TYPE i
...

ENDFUNCTION.
127

Encapsulation and Implementation Hiding3
FUNCTION z_format_date.
* Local Interface IMPORTING VALUE (is_date) TYPE scals_date
* VALUE (iv_format) TYPE csequence
* EXPORTING ev_formatted TYPE string
...

ENDFUNCTION.

Listing 3.1 Building a Date Utility Library Using Function Modules

Within an ABAP program, we might use functions in the ZDATE_API function
group to operate on date values being evaluated as part of a data processing rou-
tine like the contrived reporting example contained in Listing 3.2. With this kind
of scenario in mind, in the upcoming sections we’ll think about how our date API
might stand up to maintenance requests that might pop up over time. This analy-
sis will set the stage for Section 3.1.3 when we begin thinking about objects.

REPORT zsome_report.
START-OF-SELECTION.

PERFORM get_data.

FORM get_data.
DATA ls_date TYPE scals_date.
DATA lt_itab TYPE STANDARD TABLE OF ...
FIELD-SYMBOLS <ls_wa> LIKE LINE OF lt_itab.

SELECT *
INTO TABLE lt_itab ...

LOOP AT lt_itab ASSIGNING <ls_wa>.
ls_date = ...

CALL FUNCTION 'Z_ADD_TO_DATE'
EXPORTING

iv_days = <ls_wa>-work_days
CHANGING

cs_date = ls_date.
...
CALL FUNCTION 'Z_SUBTRACT_FROM_DATE'

EXPORTING
iv_days = <ls_wa>-offset

CHANGING
cs_date = ls_date.

...
CALL FUNCTION 'Z_FORMAT_DATE'

EXPORTING
is_date = ls_date
iv_format = `MM/DD/YYYY`

IMPORTING
ev_formatted = lv_formatted.
128 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Lessons Learned from Procedural Programming 3.1
...
ENDLOOP.

ENDFORM.

Listing 3.2 Incorporating the Date API into an ABAP Report Program

Expanding the Scope of the Date API

For the first scenario, imagine that we discover a need to expand the date API to
also keep track of time. While this seems easy enough in principle, this could
prove challenging since the structure used to model the date value doesn’t con-
tain components to capture a time stamp.

Looking at the SCALS_DATE structure in the ABAP Dictionary (in Figure 3.6), we dis-
cover that this structure cannot be enhanced/appended to. Maybe we could get
away with using the unused CONTAINER field, but this wouldn’t be obvious to devel-
opers who weren’t intimately familiar with the internal workings of our date API.

Figure 3.6 Looking at the Enhancement Category of the SCALS_DATE Structure

To implement this change correctly, we’d probably have to change the signature
of our function modules to utilize a new structure. Besides requiring a fair
129

Encapsulation and Implementation Hiding3
amount of rework within the functions themselves, this also requires that we
make wholesale changes to the programs that call them.

Though you might be saying to yourself that the choice of the SCALS_DATE struc-
ture for the date API’s data model was a poor one (and you’re right to say so),
that’s really not the issue here. The point of this demonstration is to illustrate the
fact that our date API exposes way too much information about its internal repre-
sentation. Consumers of our date API shouldn’t know (or care) whether we use
the native ABAP date type (D), a structure, or something else entirely.

By exposing this kind of information in the function signatures, we’ve effectively
coded ourselves into a corner. For better or worse, we have to stick with the
design choices we’ve made and try our best to enhance around them. With state-
less modules, this is about the best we can hope for.

Dealing with External Data Corruption

For the next scenario, imagine that you receive a defect report which indicates
that the Z_FORMAT_DATE function is producing invalid output. After much investi-
gation, you determine that the invalid output isn’t a function of the logic in Z_
FORMAT_DATE, but rather due to fact that an invalid day value has been specified in
the SCALS_DATE structure’s DAY field. Here, you discover that the invalid value is
set within the calling report program which is accessing the SCALS_DATE structure
outside of the ZDATE_API function group.

Though such errors might be easy to fix once you find them, they can be difficult
to find. Since the ZDATE_API function group doesn’t technically own the data,
there’s nothing stopping other modules from overwriting and/or corrupting the
API’s data model. In a perfect world, we’d like all accesses to the date API’s data
model to go through functions in the ZDATE_API function group so that we can
isolate them and enforce the necessary validation rules (e.g. you can’t have a date
value of 20160231). However, this is something the procedural model simply can’t
guarantee. To really enforce these rules, we need some support from the under-
lying language implementation to control access.

3.1.3 Moving Toward Objects

The ZDATE_API function group introduced in Section 3.1.2 is an example of an
abstract data type (ADT). As the name suggests, ADTs are data types which pro-
130 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Data Abstraction with Classes 3.2
vide an abstraction around some entity or concept (e.g. a date). Included in this
abstraction is the data itself as well as a set of operations that can be performed on
that data.

In order for ADTs to be effective, we must keep the data and operations as close
to one another as possible. As we observed in Section 3.1.2, such cohabitation is
virtually impossible to achieve with procedural programming techniques.
Because of this divide, our date API (though admittedly contrived) was awkward
to use and quite error prone. These problems become even more pronounced as
the size and complexity of such code libraries expand.

In many ways, all of the problems we’ve considered in this section can be traced
back to one central theme: poor support for data. While it would seem obvious
that data is the foundation upon which any successful computer program runs,
the stark reality is that data takes a back seat to actions in the procedural program-
ming paradigm. As a result, procedural programs tend to decay at a much faster
pace than programs built using programming models which place a greater
emphasis on the data.

3.2 Data Abstraction with Classes

Recognizing many of the limitations outlined in Section 3.1, software researchers
developed the OOP paradigm from the ground up with a strong emphasis on data
and behavior. As you’ve already learned, classes are the vehicle that drives this
equilibrium, encapsulating data (attributes) and behavior (methods) together
inside a self-contained unit.

Encapsulation improves the organization of the code, making object-oriented
class libraries much easier to understand and use than their procedural counter-
parts. To put this into perspective, consider the clumsiness of the function mod-
ule-based date library we created in Section 3.1.2. Each time we accessed one of
the API functions, we had to pass in an externally-managed structure which con-
tained all of the date information needed to handle the request. Plus, if we
wanted to work with multiple dates, then we had to define multiple variables
and track those variables manually outside of the function group.

Let’s compare that experience with a reimagined date API built using an ABAP
Objects class. In Listing 3.3, we’ve created a class called LCL_DATE which provides
131

Encapsulation and Implementation Hiding3
the same functionality of the ZDATE_API function group. As you look over the
class definition, notice the simplification in the signature of the API methods.
Instead of passing around an SCALS_DATE structure, the date information is being
stored internally in an instance attribute called MS_DATE_INFO. Besides simplifying
the interface, this design change also allows us to get out of the business of track-
ing date information externally. Now, our date API is truly an ADT which pro-
vides a complete abstraction around a date value as opposed to a loosely associated
set of stateless function modules.

CLASS lcl_date DEFINITION.
PUBLIC SECTION.
DATA ms_date_info TYPE scals_date.
METHODS:

add IMPORTING iv_days TYPE i
RETURNING VALUE(ro_date) TYPE REF TO lcl_date,

subtract IMPORTING iv_days TYPE i
RETURNING VALUE(ro_date) TYPE REF TO lcl_date,

get_day_name RETURNING VALUE(rv_day) TYPE string,
get_week_of_year RETURNING VALUE(rv_week) TYPE i,
format IMPORTING iv_pattern TYPE csequence

RETURNING VALUE(rv_date) TYPE string.
...

ENDCLASS.

Listing 3.3 Reimagining the Date Utilities API as an ABAP Objects Class

The code excerpt contained in Listing 3.4 demonstrates how we can work with
our refactored date library. Once an LCL_DATE instance is created, we no longer
have to worry about handling the date value. Instead, we can use methods like
add() and subtract() to apply the changes in-place. From a code readability
standpoint, this is much easier to follow because the context of an operation like
add() is clearly the object referenced by lo_date.

DATA lo_date TYPE REF TO lcl_date.
DATA lv_message TYPE string.

CREATE OBJECT lo_date
EXPORTING
iv_date = '20150913'

lo_date->add(30).
lv_message = |{ lo_date->subtract(15)->format('YYYYMMDD') }|.

Listing 3.4 Working with an OO-Based API
132 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Component Visibilities 3.3
Ultimately, objects created in reference to encapsulated classes take on their
own identity, allowing developers to start thinking about their designs in more
conceptual terms (e.g. a date). Consumers of these classes don’t have to worry
about low-level implementation details; to the end user the LCL_DATE class is like
a black box which performs various date manipulations. We don’t have to sup-
ply the LCL_DATE class with lots of data/context/instructions; it intrinsically
knows how to do its job.

In the next section, we’ll learn how to round out ADTs like the LCL_DATE class by
closing off access to internal components such as the MS_DATE_INFO attribute.
This safeguard ensures that all operations on date values are mediated through
API methods which rigorously validate incoming requests to ensure that the
integrity of date values is maintained. As we’ll see, this approach offers several
important benefits.

3.3 Defining Component Visibilities

The term “encapsulation” refers to the idea of enclosing something inside of a
capsule. The verbal imagery associated with words like “capsule” implies that
we’re setting some kind of boundary between the internal components of a class
and the outside world. The purpose of this boundary is to protect (or hide) the
inner mechanisms of the object that are sensitive to change. Most of the time, the
most vulnerable parts of an object are its attributes since these define the object’s
state. However, in this book, we’ll look at ways to hide any design decisions that
are subject to change.

In this section, we’ll describe the ABAP Objects language constructs that you can
use to establish boundaries within your classes. Then, in the section that follows,
we’ll consider how to use these boundaries to build robust classes that can easily
be adapted to ever-changing functional requirements.

3.3.1 Working with Visibility Sections

ABAP Objects provides three visibility sections for controlling access to the com-
ponents defined within a class: the PUBLIC SECTION, the PROTECTED SECTION, and
the PRIVATE SECTION. Within a CLASS DEFINITION statement, all component dec-
larations must be defined within one of these three visibility sections. The code
133

Encapsulation and Implementation Hiding3
excerpt contained in Listing 3.5 demonstrates the syntax used to define compo-
nents within these sections.

CLASS lcl_visibility DEFINITION.
PUBLIC SECTION.
DATA x TYPE i.

PROTECTED SECTION.
DATA y TYPE i.

PRIVATE SECTION.
DATA z TYPE i.

ENDCLASS.

Listing 3.5 Working with Visibility Sections

As you might expect, components defined within the PUBLIC SECTION of a class
are accessible from any context in which the class itself is visible (i.e., anywhere
you can use the class type to declare an object reference variable). These compo-
nents make up the public interface of the class.

Components defined within the PRIVATE SECTION of a class are only accessible
from within the class itself. Note that this is more than just a mere suggestion; this
is something that’s strictly enforced by the ABAP compiler/runtime environment.
For example, the code excerpt contained in Listing 3.6 would produce a compila-
tion error because the z attribute of the LCL_VISIBILITY class is defined as a pri-
vate attribute. The only way to get our hands on z is through a method defined in
the LCL_VISIBILITY class.

DATA lo_visible TYPE REF TO lcl_visibility.
CREATE OBJECT lo_visible.
IF lo_visible->z GT 0.

...
ENDIF.

Listing 3.6 Attempting Access to Private Components of a Class

For now, we’ll defer a discussion on the PROTECTED SECTION until we have a
chance to cover inheritance in Chapter 5. For now, simply note that components
defined in the PROTECTED SECTION are only accessible within a class and its sub-
classes.

When working in the form-based view of the Class Builder tool, you can assign
components of global classes to visibility sections using the Visibility column
highlighted in Figure 3.7.
134 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Component Visibilities 3.3
Figure 3.7 Setting the Visibility of Components Using the Form-Based View of the
Class Builder Tool

Designing Across Multiple Dimensions

Choosing the right visibility section for a given component can be tricky, and it
requires a fair amount of thought. Here, rather than thinking about the individual
components, we need to think in terms of the class’s overall interface. If we want
to make our class simple and easy to use, then we’ll need to strip down the public
interface to just the essentials. This makes the interface less busy and therefore
easier to consume.

In general, clients of a class should be on a “need-to-know” basis. In other words,
if a client doesn’t require direct access to a component, then there’s no need for
them to even be aware of its existence. Declaring such components within the
PRIVATE SECTION of a class makes life easier for everyone: clients get to work with
a simplified interface and the owners of the class have the freedom to change/
improve the internal implementation of a class without fear of breaking existing
client code.

With this concept in mind, we’d suggest that most attributes should be defined
within the PRIVATE SECTION of a class. The primary reason for hiding attributes is
to ensure that the state of the object cannot be tampered with haphazardly. If a
client needs to update the state of an object, then they can do so through a
method defined in the PUBLIC SECTION. The advantage of this kind of indirection
135

Encapsulation and Implementation Hiding3
is that we can control the assignment of the attribute using business rules that are
defined inside the method. This eliminates a lot of the guesswork in troubleshoot-
ing data-related errors since we know that any and all changes to an attribute are
brokered through a single method. Methods that update the value of private attri-
butes are sometimes called setter (or mutator) methods. To access these values (or
formatted versions of these values), clients can invoke getter (or accessor) methods
which broker access in the other direction.

This getter/setter method approach to indirect data access is demonstrated in the
LCL_TIME class contained in Listing 3.7. Here, the state of the time object is being
represented by three private attributes called mv_hour, mv_minute, and mv_second.
Any updates to these attributes are controlled through setter methods such as
set_hour() or set_minute(). Within these methods, we’ve included logic to
ensure that the attributes remain consistent (e.g. we don’t have an hour value of
113). Clients can obtain copies of these values by calling the corresponding getter
methods (e.g. get_hour()).

CLASS lcl_time DEFINITION.
PUBLIC SECTION.
METHODS:

set_hour IMPORTING iv_hour TYPE i,
get_hour RETURNING VALUE(rv_hour) TYPE i,
set_minute IMPORTING iv_minute TYPE i,
get_minute RETURNING VALUE(rv_minute) TYPE i,
set_second IMPORTING iv_second TYPE i,
get_second RETURNING VALUE(rv_second) TYPE i.

PRIVATE SECTION.
DATA: mv_hour TYPE i,

mv_minute TYPE i,
mv_second TYPE i.

ENDCLASS.

CLASS lcl_time IMPLEMENTATION.
METHOD set_hour.
IF iv_hour BETWEEN 0 AND 23.

me->mv_hour = iv_hour.
ELSE.

"TODO: Error handling...
ENDIF.

ENDMETHOD.

METHOD get_hour.
rv_hour = me->mv_hour.
136 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Defining Component Visibilities 3.3
ENDMETHOD.
...

ENDCLASS.

Listing 3.7 Working with Getter and Setter Methods

As an alternative to the getter method approach, ABAP also allows us to define
read-only attributes within a class definition. This is achieved using the READ-ONLY
addition to the DATA keyword. The code excerpt below demonstrates how we
might refactor the LCL_TIME class from Listing 3.7 to use this feature.

CLASS lcl_time DEFINITION.
PUBLIC SECTION.
DATA: mv_hour TYPE i READ-ONLY,

mv_minute TYPE i READ-ONLY,
mv_second TYPE i READ-ONLY.

...
ENDCLASS.

Listing 3.8 Defining Read-Only Attributes in a Class

While this feature can come in handy for simple classes which are primarily used
for transferring data, we’d encourage you to use this option sparingly since it
exposes the internal implementation details of your class.

3.3.2 Understanding the Friend Concept

In the previous section, we learned that components defined within the private
and protected sections of a class are not visible outside of that class (or subclasses
in the case of protected components). However, in some cases, it might be advan-
tageous to be able to grant special access to certain classes of our choosing. Such
classes are called friends of the class that grants them access.

Listing 3.9 illustrates the syntax used to create friend relationships between a
defining class CL_SOME_CLASS and its friends: C1, C2, and so on. Here, the FRIENDS
addition is added to a CLASS DEFINITION statement to declare this relationship up
front to the ABAP compiler. As you can see, we can specify multiple friend classes
after the FRIENDS addition (not to mention interfaces, which are covered in Chap-
ter 6).

CLASS cl_some_class DEFINITION FRIENDS c1 c2 i3 i4.
...

ENDCLASS.

Listing 3.9 Defining Friendship Relationships in Classes
137

Encapsulation and Implementation Hiding3
To demonstrate how friendship relationships work between classes, consider the
example code contained in Listing 3.10. Here, we have a pair of classes called
LCL_PARENT and LCL_CHILD which have entered into a friendship relationship. The
LCL_CHILD class is taking advantage of this relationship by accessing the LCL_PAR-
ENT class’s mv_credit_card_no attribute in a method called buy_toys(). Since mv_
credit_card_no is defined as a private attribute, the only way for LCL_CHILD to
access this value is through the friendship relationship. Without this addition, the
code below would produce a syntax error.

CLASS lcl_child DEFINITION DEFERRED.
CLASS lcl_parent DEFINITION FRIENDS lcl_child.

PRIVATE SECTION.
DATA mv_credit_card_no TYPE string.

ENDCLASS.

CLASS lcl_child DEFINITION.
PUBLIC SECTION.
METHODS buy_toys.

ENDCLASS.
CLASS lcl_child IMPLEMENTATION.

METHOD buy_toys.
DATA: lo_parent TYPE REF TO lcl_parent,

lo_store TYPE REF TO lcl_toy_store.
lo_parent = ...
lo_store = ...

lo_store->checkout(lo_parent->mv_credit_card_no).
ENDMETHOD.

ENDCLASS.

Listing 3.10 Bypassing Access Control Using Friends

We can achieve the same effect for global classes maintained in the form-based
view of the Class Builder tool by plugging the target friend classes on the Friends
tab as shown in Figure 3.8.

Figure 3.8 Defining Friendship Relationships Between Global Classes
138 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Designing by Contract 3.4
As you begin working with friendship relationships, there are a couple of import-
ant things to consider. First of all, it’s important to note the direction and nature
of the friendship relationship. In Listing 3.10, class LCL_PARENT explicitly granted
friendship access to class LCL_CHILD. This relationship definition is not reflexive.
For example, it would not be possible for class LCL_PARENT to access the private
components of class LCL_CHILD without the LCL_CHILD class granting friendship
access to LCL_PARENT first. Secondly, notice that classes cannot arbitrarily declare
themselves friends of another class. For instance, it would not be possible for
class LCL_CHILD to surreptitiously declare itself a friend of class LCL_PARENT. If this
were the case, access control would be a waste of time since any class could
bypass this restriction by simply declaring themselves a friend of whatever class
they were trying to access.

The example shown in Listing 3.10 also introduced a new addition to the CLASS
DEFINITION statement that we have not seen before: the DEFERRED addition. In a
scenario like this, the DEFERRED addition used in the first CLASS DEFINITION state-
ment for LCL_CHILD is needed to instruct the compiler of the existence of the LCL_
CHILD class in the CLASS DEFINITION statement for the LCL_PARENT class. Without
this clause, the compiler would have complained that class LCL_CHILD was
unknown whenever we tried to establish the friendship relationship in the defi-
nition of class LCL_PARENT.

To Friend or Unfriend

Many purists argue that the use of friends should not be allowed in object-oriented lan-
guages since they bypass traditional access control mechanisms. Whether you agree
with this sentiment or not, we would recommend that you use friendship relationships
sparingly in your designs because it truly is rare that you would need to open up access
like this.

3.4 Designing by Contract

As we’ve learned, encapsulation and implementation hiding techniques can be
used to define very precise public interfaces for a class. These interfaces help to
form a contract between the developer of a class and users of that class. The con-
tract metaphor is taken from the business world, where customers enter into con-
tractual agreements with suppliers providing goods or services. In his book,
Object-Oriented Software Construction, Bertrand Meyer described how this con-
139

Encapsulation and Implementation Hiding3
cept could be adapted into object-oriented software designs in order to improve
the reliability of software components that are “...implementations meant to sat-
isfy well-understood specifications.”

In this context, objects are subject to a series of invariants (or constraints) that
specify the valid states for the object. To maintain these invariants, methods are
defined using preconditions (what must be true before the method is executed)
and postconditions (what must be true after the method is executed). In Chapter 8,
we’ll look at ways to deal with exceptions to these rules.

The primary goal when applying the Design by Contract approach in your software
designs is to produce components that deliver predictable results. The boundaries
set by the visibility sections ensure that loopholes are not introduced into the con-
tract. For instance, the date library that we first introduced in Section 3.1.2 had
many loopholes that made it possible to bypass the business rules implemented
inside the function module(s). The encapsulation techniques we applied in the
class-based reimplementation of this library eliminated these loopholes by encap-
sulating the date data as a private attribute that’s cut off from external tampering.

Client programmers using classes based on these principles know what to expect
from the class based on the provided public interface. Similarly, class developers
are free to change the underlying implementation so long as they continue to
honor the contract outlined in the public interface. Over time, the duel nature of
this relationship helps to increase trust as we accumulate reusable modules that
clients know will work.

3.5 UML Tutorial: Sequence Diagrams

So far, our study of the UML has been focused on diagrams that are used to
describe the static architecture of an object-oriented system. In this chapter, we
will introduce the first of several behavioral diagrams that are used to illustrate the
behavior of objects at runtime. The sequence diagram depicts a message sequence
chart between objects that are interacting inside a software system.

Figure 3.9 shows a simple sequence diagram that is used to illustrate a cash with-
drawal transaction in an ATM machine. A sequence diagram is essentially a graph
in two dimensions. The various objects involved in the interaction are aligned
along the horizontal axis. The vertical axis represents time. Sequence diagrams
140 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Sequence Diagrams 3.5
are initiated by a request message from some kind of external source. In the
example in Figure 3.9, the external source is a user interfacing with the ATM
machine. This initial message is called a found message. In object-oriented terms,
a message is analogous to a method call. Messages are sent to objects (depicted in
the familiar object boxes seen on the object diagrams described in Chapter 2). The
dashed line protruding from underneath the object box represents the object’s
lifeline.

Figure 3.9 Sequence Diagram for Withdrawing Cash from an ATM

The intersection of a message and an object’s lifeline is depicted with a thin rect-
angular box called an activation bar. The activation bar shows when an object is
active during the interaction. Objects are activated via messages (i.e. method
calls). Messages can include parameters that help clarify the operation to be per-
formed by the object. However, it’s not a good idea to try and fully specify the

withdraw(amt: money)

Found
Message

Object
Box

Activation
Bar

dispenseCash

printReceipt

Self Call

hasFunds(acct, amt)

Return

balance

getBalance

atm: ATM
serviceBroker:

ATMServiceBroker
bank: Bank

hasFunds(acct, amt)

Message with
Parameters

balance

getBalance

Lifeline

Message
141

Encapsulation and Implementation Hiding3
method interface in a sequence diagram—that’s what a class diagram is for. Here,
we only use parameters for emphasis or clarity. Synchronous method calls can
have a return message that can also have optional parameters.

In some cases, a method might need to call other local helper methods to com-
plete its task. In this case, a self call can be illustrated by drawing a circuitous
arrow to another activation bar that is stacked on top of the current activation
bar. For example, in Figure 3.9, messages dispenseCash and printReceipt are
both represented as self calls on the atm object inside method withdraw.

Sequence diagrams are very useful for explaining complex interactions where the
order of operations is difficult to follow. One of the reasons that sequence dia-
grams are so popular is that the notation is very intuitive and easy to read. To
maintain this readability, it’s important to avoid cluttering a sequence diagram
with too many interactions. In the coming chapters, we’ll look at other types of
interaction diagrams that can be used to illustrate fine-grained behavior within an
object or more involved interactions that span multiple use cases.

3.6 Summary

In this chapter, you learned about the many advantages of applying encapsulation
and implementation hiding techniques to your class designs. Encapsulating data
and behavior in classes simplifies the way that users/clients work with classes.
Hiding the implementation details of these classes strengthens the design even
further, making classes much more resistant to change and/or data corruption.
The combination of these two design techniques helps you to design intelligent
classes that are highly self-sufficient. Such classes are easy to reuse in other con-
texts since they are loosely coupled to the outside world.

In the next chapter, we’ll examine the basic lifecycle of an object. We’ll also learn
about special methods called constructors that can be used to ensure that object
instances are always created in a valid state.
142 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Some of the most elusive bugs to trap are the ones that can be traced back
to missing or invalid variable initializations. With that in mind, this
chapter takes a deep dive into the lifecycle of objects and explores tech-
niques for ensuring that objects are properly initialized before consumers
ever get their hands on them.

4 Object Initialization and Cleanup

In the previous chapter, we learned how encapsulation and implementation hid-
ing techniques can be used to protect the integrity of an object. Such objects pro-
duce consistent and reliable results, freeing developers from constantly worrying
about data correctness issues in their programs. However, all these measures are
wasted if we fail to properly initialize the object in the first place.

In this chapter, we’ll consider some techniques for ensuring that objects are
always created in a valid state. We’ll also examine the overall object lifecycle, pay-
ing particular attention to how object resources are managed by the automatic
memory management functionality of the ABAP runtime environment.

4.1 Understanding the Object Creation Process

One of the primary goals of the object-oriented design process is to identify ways
to delegate responsibilities to objects. This approach transfers complexity from
the main program into objects that are intelligent enough to handle the tasks
they’re assigned.

In order to coordinate these efforts, the main program needs to be able to create
and destroy objects on demand. While the ABAP runtime environment takes care
of most of the low-level technical details related to object allocation, there are
some costs associated with creating objects dynamically. To recognize how these
costs can affect the performance of your programs, it’s important to understand
what’s going on behind the scenes whenever you request the creation of an
object using the CREATE OBJECT statement.
143

Object Initialization and Cleanup4
To put all this into perspective, let’s consider an example of a simple ABAP report
program that needs to create objects at runtime. For the purposes of our discus-
sion, we’ll assume that this report is running in the foreground in an SAP GUI ses-
sion. However, the basic principles remain the same for background processes, etc.

As you can see in Figure 4.1, our report program is running inside of a logical
memory frame called an internal session. Conceptually, you can think of internal
sessions as being part of a call stack of sorts that gets created as programs call
other programs (e.g. using the CALL TRANSACTION or SUBMIT statements). Here, a
given internal session manages the data objects of the program that is running, as
well as the data objects of other programs (e.g. function pools, class pools, etc.)
that are being used by that program. The call stack itself is contained within a
main session that gets allocated whenever we open up the SAP GUI (or create a
new session).

Figure 4.1 Logical Memory Areas of a User Session

If we broaden our focus a bit further, we can see that main sessions are stored
within another logical memory area called a user session (also sometimes referred
to as a context). As the name suggests, user sessions contain state information
about users that are logged onto the system: basic user information, assigned
authorizations, etc. They also keep track of the program(s) a user is running along
with the data objects used by those programs.

Main Session

Internal Session 1

Internal Session 2

Internal Session ...

Main
Program

Function
Groups

Class Pools
144 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Understanding the Object Creation Process 4.1
Internally, user sessions are stored with a special section of shared memory on
the AS ABAP application server host called the roll buffer. As you can see in Figure
4.2, the roll buffer is separated from the local memory area allocated to service
work processes such as the one that’s processing our report program. Why imple-
ment such separation? Well, since the AS ABAP is a time-sharing system designed
to support multiple users, there has to be a way to swap users in and out between
tasks in order to maximize work process utilization. In SAP terms, this swap pro-
cess is referred to as a “roll-out” (when a user is evicted from a work process) and
“roll-in” (whenever a user request is assigned to a work process).

Figure 4.2 Basic Memory Structure of an AS ABAP Instance

Since roll-outs/roll-ins are happening all the time during normal operation, they
must execute swiftly to avoid system latency. This means that SAP has to keep the
user session itself small so that it can be copied quickly and easily. The upshot of
all this from an object-management perspective is that SAP can’t afford to carry
around object data within a user session. So, to get around this limitation, SAP
decided to create a layer of separation between object instances and the programs

AS ABAP Instance

Virtual Memory of the Operating System

Local MemoryShared Memory

Roll
Buffer

Paging
Buffer

Other
Buffers

...

Extended Memory

Dispatcher

WP WP WP

Heap Memory

Lo
ca

l M
em

or
y

Lo
ca

l M
em

or
y

Lo
ca

l M
em

or
y

Lo
ca

l M
em

or
y

SAP GUI Clients

WP
Internet

Communication
Manager (ICM)

Web Clients
145

Object Initialization and Cleanup4
that allocate them. This is where the object reference variables introduced in
Chapter 2 come into play.

Figure 4.3 illustrates how this separation is achieved from a memory allocation
perspective. Here, our ABAP report is operating within a work process and our
user session has been copied (rolled-in) to the roll area of the work process.

Figure 4.3 Memory Allocation of Objects

Whenever we request the creation of an object at runtime (using the CREATE
OBJECT statement), the ABAP runtime environment will carry out the allocation
request as follows:

AS ABAP Instance

Virtual Memory of the Operating System

Local MemoryShared Memoryrr

Roll
Buffff er

Paging
Buffff er

Other
Buffff ersrr

...

Extended Memory

Dispatcher

WP WP WP

Heap Memory

Lo
ca

lM
em

or
y

Lo
ca

lM
em

or
y

Lo
ca

lM
em

or
y

Lo
ca

lM
em

or
y

SAP GUI Clients

WP
Internet

Communication
Manager (ICM)MM

Web Clients

Work Process

Roll Area

Paging Area

Extended Memory

Header

...

Object

Extended Memory

WP
146 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Understanding the Object Creation Process 4.1
1. First, it looks at the class definition referenced by our object reference variable
and determines how much memory it needs to allocate an object instance of
this type.

2. Then, once it knows how much memory it needs, it will scan through the
extended memory area in order to find a chunk of memory large enough to
store the object and its data.

3. During this memory allocation process, the runtime environment will also set
aside some additional memory to create a header data structure that is used to
keep track of various administrative details about the object (see Figure 4.3).

4. Finally, once the object instance is allocated, the address of the header structure
is copied into the object reference variable the CREATE OBJECT statement is per-
formed against.

The primary consequence of this approach for dynamically generating objects is
the additional time required to allocate the proper amount of memory for an
object. As multiple programs create and destroy objects, the extended memory
area can become fragmented, making it difficult to locate a contiguous chunk of
memory large enough to hold an object. Skeptics sometimes point to these per-
formance costs as a reason for not using objects in their programs, claiming that
they can’t afford the additional overhead at runtime.

However, if you look carefully at your existing programs, you’ll likely find that
you are already using many types of dynamic data objects. For example, internal
tables are dynamic data objects that require additional memory to be dynamically
allocated as additional rows are appended to them. Most design decisions involve
some kind of trade-off, and in the case of objects, you might have to sacrifice a lit-
tle bit of performance in order to realize the many benefits of object-oriented
programming. Fortunately, SAP has optimized the performance of the ABAP run-
time environment such that these performance issues are rarely a concern. Still,
we’ll investigate some basic guidelines for tuning performance in Section 4.5.

Note

For an excellent description of dynamic data objects, check out Horst Keller’s web log
entitled “ABAP Geek 12—The Deep” at https://www.sdn.sap.com/irj/sdn/weblogs?
blog=/pub/wlg/2016.
147

https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/2016
https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/2016

Object Initialization and Cleanup4
4.2 Working with Constructors

Encapsulated objects rely on data stored in private/hidden attributes to keep track
of their internal state so that they can respond to method requests intelligently.
So, it goes without saying that it’s crucial that we ensure that an object’s attributes
are properly supplied with the data it needs to perform its duties when called
upon. Otherwise, we end up back in procedural hell where methods are stateless
and we have to go to great lengths to fetch data before we can do any useful work.

In order to avoid these kinds of situations, we need to figure out a way to guar-
antee that the attributes of an object are properly initialized before any calls are
made to methods that depend on these attributes. Of course, we could try to be
disciplined in our approach and make sure that we call all of the appropriate “set-
ter” methods before we use the object, but then we have to remember to do it
every time we instantiate an object. Here, in the best case, we have introduced a
lot of redundant code. In the worst case, we forget to call a method here and there
and therefore create an even bigger problem for ourselves. Clearly, we need a bet-
ter method for initializing objects. To take the guesswork out of this process, OO
languages such as ABAP Objects allow us to define special initializer methods
within a class definition called constructors. These specialized callback methods
are invoked automatically by the ABAP runtime environment after an object is
allocated but before control is handed back to a consumer. Therefore, they repre-
sent an ideal place for injecting the relevant logic needed to initialize an object.

4.2.1 Defining Constructors

Constructors are defined using essentially the same syntax we use to define regu-
lar instance methods (see Listing 4.1). The notable difference is that we can only
define importing parameters in the method signature. If you think about it, this
makes sense since the constructor is called by the ABAP runtime environment in
response to a CREATE OBJECT statement as opposed to the normal CALL METHOD
statement. Here, we should point out that it’s not possible to invoke constructors
directly using the CALL METHOD statement.

METHODS constructor
IMPORTING [VALUE(]i1 i2 ...[)]

TYPE type [OPTIONAL]...
EXCEPTIONS ex1 ex2.

Listing 4.1 Syntax for Defining an Instance Construtor
148 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Constructors 4.2
Constructors can be created in global classes by pressing the Constructor button
in the Class Editor as shown in Figure 4.4.

Figure 4.4 Creating Constructors for Global Classes

4.2.2 Understanding How Constructors Work

To demonstrate how constructors work, let’s consider an example based on an
account class used to model a bank account. In Listing 4.2, we’ve created a local
class called LCL_ACCOUNT that allows us to view the current balance of the account
and withdraw or deposit funds. The account details are stored in private attributes
that do not have associated “setter” methods. Instead, we’ll assume that these attri-
butes are initialized via a database lookup inside the constructor() method. This
implies that consumers must supply a valid account number whenever they create
an account object. In Chapter 8, we’ll see how class-based exceptions can be used
to enforce this rule; for now we’ll simply assume that this is the case.

CLASS lcl_account DEFINITION.
TYPE-POOLS: abap.
PUBLIC SECTION.
METHODS:

constructor IMPORTING iv_account_no
TYPE string,

get_balance RETURNING VALUE(rv_balance)
TYPE bapicurr_d,

deposit IMPORTING iv_amount
TYPE bapicurr_d,

withdrawal IMPORTING iv_amount
TYPE bapicurr_d

RETURNING VALUE(rv_result)
TYPE abap_bool.

PRIVATE SECTION.
DATA: mv_account_no TYPE string,
149

Object Initialization and Cleanup4
mv_balance TYPE bapicurr_d.
ENDCLASS.

CLASS lcl_account IMPLEMENTATION.
METHOD constructor.

* Query database tables to retrieve account details:
* SELECT FROM ...
* WHERE account_no = iv_account_no.

ENDMETHOD.

METHOD get_balance.
rv_balance = me->mv_balance.

ENDMETHOD.

METHOD deposit.
me->mv_balance = me->mv_balance + iv_amount.

ENDMETHOD.

METHOD withdrawal.
IF iv_amount LE me->mv_balance.

me->mv_balance = me->mv_balance – iv_amount.
rv_result = abap_true.

ELSE.
rv_result = abap_false.

ENDIF.
ENDMETHOD.

ENDCLASS.

Listing 4.2 Working with Constructors (Part 1)

The code excerpt in Listing 4.3 shows how we access our new constructor using
the CREATE OBJECT statement. Here, notice how the addition of the construc-
tor() method has effectively put a lock on the front door of our LCL_ACCOUNT
class. Since the mv_balance instance attribute is initialized before the object is
ever handed over to consumers, we no longer have to worry about making sure
that the account balance is up-to-date: it gets initialized internally and updates can
only occur through the deposit() and withdraw() methods that have built-in
logic to guard against overdraws, etc. We also no longer have to worry about
passing around account numbers since this detail is established up front during
the object allocation process.

DATA lo_checking TYPE REF TO lcl_account.
CREATE OBJECT lo_checking

EXPORTING
iv_account_no = '1234567890'.

"Assume the opening balance is zero:
150 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with Constructors 4.2
lo_checking->deposit('100.00').
IF lo_checking->withdraw('200.00') NE abap_true.

WRITE: / 'Insufficient funds.'.
ENDIF.
lo_checking->deposit('300.00').

Listing 4.3 Working with Constructors (Part 2)

4.2.3 Class Constructors

Most of the time, whenever we talk about constructors, we’re typically talking
about instance constructors that are used to initialize an instance of an object that
is being created. However, it’s also possible to define a class constructor for a class.
Class constructors provide a mechanism for initializing class/static attributes and
are implicitly called by the system before any accesses are made to the class inside
a program.

Note

In this sense, class constructors are functionally equivalent to static initializer blocks
from Java or C#.

Class constructors are defined using the syntax shown in Listing 4.3. As you can
see, we’re not allowed to define parameters for class constructors since they’re
implicitly called by the system.

CLASS-METHODS class_constructor.

Listing 4.4 Syntax for Defining a Class Constructor

Class constructors can be created for global classes by clicking the Class Con-

structor button on the Class Editor screen (see Figure 4.5).

Figure 4.5 Creating Class Constructors for Global Classes
151

Object Initialization and Cleanup4
From an implementation perspective, class constructors are defined just like any
other class method. Here, we can pre-allocate and initialize shared resources to
eliminate overhead and speed up the object instantiation process. We’ll observe
some practical benefits of these capabilities in Section 4.3.

Note

Since class constructors are defined at the class level, we cannot access instance com-
ponents within a class constructor since no instances of the class exist in that context.
Of course, it is possible to instantiate an object of the class within the class constructor
and then use that object reference to access instance components. We’ll see examples
of this technique in Section 4.3.

4.3 Object-Creational Patterns

Most of the classes that we’ve looked at up to this point in the book are trivial and
easy to instantiate. However, as we get into more complex designs, we may run
into situations where object instantiation becomes a bit trickier. Here, for exam-
ple, we may find that we want to constrain the number of object instances users
can create. Or, we may run into situations where there might be multiple ways to
construct an object.

In this section, we’ll look at a couple of common object-creational patterns that
you can use to deal with complex object creation requirements. These patterns
were originally documented in the classic software engineering text entitled
Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995). For an excellent ABAP-based treatment on these concepts, we highly rec-
ommend that you pick up a copy of Design Patterns in Object-Oriented ABAP, 2nd
Edition (SAP PRESS, 2009).

4.3.1 Controlling the Instantiation Context

By default, users are able to create instances of classes whenever and wherever
they like using the CREATE OBJECT statement. Sometimes though, this sort of
wide-open access is undesirable. For example, imagine that we have an object
that needs to acquire a shared resource such as an external database connection or
lock. For these types of objects, we would definitely want to control the number
of object instances that are created in order to prevent resource contention issues.
152 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Object-Creational Patterns 4.3
In order to assert this kind of control, we must modify the instantiation context at
the class definition level using the CREATE addition highlighted in Listing 4.5.
Table 4.1 describes each of the possible instantiation contexts in detail.

CLASS lcl_db_connection DEFINITION
CREATE {PUBLIC | PROTECTED | PRIVATE}.
...

ENDCLASS.

Listing 4.5 Specifying the Instantiation Context of an ABAP Objects Class

Figure 4.6 Setting the Instantiation Context for Global Classes

Instantiation Context Visibility

PUBLIC Classes with this (default) instantiation context can be instanti-
ated anywhere that the class itself is visible without restrictions.
This means that instances of the class can be created internally
via instance/class methods or externally from any normal ABAP
programming context: e.g. subroutines, functions, report pro-
grams, and so forth.

PROTECTED Instances of these classes can only be created inside methods of
the class itself and its subclasses.

PRIVATE Instances of these classes can only be created inside methods of
the class itself.

Table 4.1 Instantiation Contexts for Classes
153

Object Initialization and Cleanup4
The instantiation context can be set for global classes by opening up the Class
Builder tool and navigating to the Properties tab. Here, the instantiation context
can be set using the Instantiation drop-down list shown in Figure 4.6.

In the upcoming sections, we’ll look at a couple of widely-used creational patterns
which utilize this feature to control the way that object instances are created.

4.3.2 Implementing the Singleton Pattern

As we mentioned earlier, there may be times whenever we want to restrict the
number of object instances that are created at runtime. For example, if we were
to design a proxy class to broker database connections, we might want to design
the class in such a way that a finite number of connections are maintained in a
connection pool. Here, rather than creating a separate object instance per connec-
tion request, we would want to create a pool of objects and only provide users
with access to one of the available connection objects from the pool.

In the most extreme case, we might only want a single object instance to exist at
any one time within the system. This single object instance is referred to as a sin-
gleton. As a result, the software design pattern that describes how such objects are
created is called the singleton pattern.

To demonstrate how the singleton pattern works, let’s consider an example. Let’s
imagine that we need to build a number generator class that can be used to obtain
a unique sequential number within some arbitrary range. In order to guarantee
that the next number in the range is unique, we have to ensure from an imple-
mentation perspective:

� Only one instance of our number generator object can exist within the system
at a given time.

� All number requests must be brokered through that single object.

� The state of that single object must remain consistent. In other words, we must
keep track of the next available number in the sequence.

Note

Since SAP systems usually consist of multiple application server instances distributed
across multiple host systems, keep in mind that further synchronization measures would
be required to implement this pattern in a production setting (e.g. shared memory
objects and/or enqueue locks).
154 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Object-Creational Patterns 4.3
In Listing 4.6, we’ve created a class called LCL_NUMBER_GEN that provides an imple-
mentation of our number generator. Here, notice how we’re using the CREATE
PRIVATE addition to ensure that instances of the number generator can only be
created from within the LCL_NUMBER_GEN class. This forces clients to go through a
class method called get_instance() that contains conditional logic to ensure that
only one instance of LCL_NUMBER_GEN exists at a time. With that mechanism in
place, we can easily implement the get_next() instance method to simply return
the next number in the sequence.

CLASS lcl_number_gen DEFINITION CREATE PRIVATE.
PUBLIC SECTION.
CLASS-METHODS:

get_instance RETURNING VALUE(ro_generator)
TYPE REF TO lcl_number_gen.

METHODS:
get_next RETURNING VALUE(rv_number) TYPE i.

PRIVATE SECTION.
CLASS-DATA so_instance TYPE REF TO lcl_number_gen.

DATA mv_current_num TYPE i.

METHODS:
constructor.

ENDCLASS.

CLASS lcl_number_gen IMPLEMENTATION.
METHOD get_instance.
IF so_instance IS NOT BOUND.

CREATE OBJECT so_instance.
ENDIF.

ro_generator = so_instance.
ENDMETHOD.

METHOD constructor.
me->mv_current_num = 0.

ENDMETHOD.

METHOD get_next.
me->mv_current_sum = me->mv_current_sum + 1.
rv_number = me->mv_current_num.

ENDMETHOD.
ENDCLASS.

Listing 4.6 Implementing the Singleton Pattern
155

Object Initialization and Cleanup4
The code excerpt contained in Listing 4.7 demonstrates how to consume our sin-
gleton number generator class within ABAP code. Here, notice that the ABAP
compiler will not allow us to create instances of the number generator via the
CREATE OBJECT statement. Instead, we’re forced to go through the get_
instance() method to create/access the number range instance. Once we obtain
a reference to the current number range object, it’s pretty much business as usual
from there.

DATA lo_generator TYPE REF TO lcl_number_gen.
DATA lv_number TYPE i.

*CREATE OBJECT lo_generator. "Syntax error...
lo_generator = lcl_generator=>get_instance().

DO 5 TIMES.
lv_number = lo_generator->get_next().
WRITE: / 'Number #', lv_number.

ENDDO.

Listing 4.7 Accessing Singleton Objects from Consumer Code

4.3.3 Working with Factory Methods

Unlike other OO languages such as Java, ABAP Objects does not provide support
for overloading methods. This is to say that we can’t define multiple versions of the
same method with different parameter lists. Though this is usually not a concern
when defining normal methods, it does present us with a bit of a dilemma if we
happen to be working with objects that need to be created in lots of different ways.

To put this scenario into perspective, let’s imagine that we’re tasked with build-
ing a data transfer object (DTO) for storing information about a person. In order
to maximize the use of our person class, we’d like to make it easy to create
instances of it using all kinds of different data sources including user master
records, HR personnel records, business partner records, and so forth.

So how do we support all these different creation scenarios? Well, one option
would be to cram the various input parameters into the signature of the con-
structor() method as shown in Listing 4.8. This approach works, but is messy
and hard to follow.

CLASS lcl_person DEFINITION.
PUBLIC SECTION.
METHODS:

constructor IMPORTING iv_user_id TYPE sy-uname OPTIONAL
156 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Garbage Collection 4.4
iv_empl_no TYPE hrobjid OPTIONAL
iv_partner TYPE bu_partner OPTIONAL
...

...
PRIVATE SECTION.
DATA mv_first_name TYPE string.
DATA mv_last_name TYPE string.
DATA mv_phone_num TYPE string.
DATA mv_email TYPE string.

ENDCLASS.

Listing 4.8 Cluttering up the Constructor Method Signature

A better approach calls for the creation of factory methods which encapsulate the
various creation contexts into a series of class methods that are easy to understand
and use. This approach is demonstrated in Listing 4.9. Here, the various create_
from_...() methods assume the responsibility of creating person objects in terms
of users, employees, and so on. This makes the code more readable and provides
us with the structure for adding additional creation scenarios down the road.

CLASS lcl_person DEFINITION.
PUBLIC SECTION.
CLASS-METHODS:

create_from_user IMPORTING iv_user_id TYPE sy-uname
RETURNING VALUE(ro_person)

TYPE REF TO lcl_person,
create_from_employee IMPORTING iv_empl_no TYPE hrobjid

RETURNING VALUE(ro_person)
TYPE REF TO lcl_person,

create_from_partner IMPORTING iv_partner TYPE bu_partner
RETURNING VALUE(ro_person)

TYPE REF TO lcl_person,
...

METHODS:
constructor,
set_first_name IMPORTING iv_first_name TYPE string,
get_first_name RETURNING VALUE(rv_first_name) TYPE string,
...

...
ENDCLASS.

Listing 4.9 Working with Factory Methods

4.4 Garbage Collection

Once we’ve finished using an object in our programs, we need to make sure that
we restore its resources to the system. In early OO languages, it was the program-
157

Object Initialization and Cleanup4
mer’s responsibility to make sure that objects were properly destroyed. Fortu-
nately, the runtime environments of modern languages like ABAP Objects come
equipped with a special memory management service called a garbage collector to
take care of these housekeeping duties behind the scenes.

Figure 4.7 Deleting References to Objects Using the CLEAR Statement

The garbage collector’s job is to scan through memory and delete orphaned
object instances that no longer have any references associated with them. Much
of the time, these references are destroyed automatically whenever an object ref-

AS ABAP Instance

Virtual Memory of the Operating System

Local MemoryShared Memoryrr

Roll
Buffff er

Paging
Buffff er

Other
Buffff ersrr

...

Extended Memory

Dispatcher

WP WP WP

Heap Memory

Lo
ca

lM
em

or
y

Lo
ca

lM
em

or
y

Lo
ca

lM
em

or
y

Lo
ca

lM
em

or
y

SAP GUI Clients

WP
Internet

Communication
Manager (ICM)MM

Web Clients

Work Process

Roll Area

Paging Area

Extended Memory

Header

...

Object

Extended Memory

WP
158 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Tuning Performance 4.5
erence variable passes out of scope (i.e. when a subroutine or method termi-
nates). However, if you’re done with an object early on in a long-running routine,
it’s not a bad idea to explicitly remove the reference using the CLEAR statement
(see Figure 4.7).

4.5 Tuning Performance

The advanced memory management features of the ABAP runtime environment
provide a safe environment for creating and destroying objects. However, it’s
important to remember that these features do not provide a safeguard against
poor design decisions that consume excessive amounts of memory, etc. In this
section, we’ll provide some basic tips that you can use to avoid these performance
traps.

4.5.1 Design Considerations

Even if you don’t anticipate performance problems for a given class, it’s always a
good idea to modularize the initialization logic of the class so that you can imple-
ment performance tuning measures later without disturbing core functionality,
etc. The following list contains some basic modularization tips that you should
consider when developing your classes:

� Keep the logic inside the constructor() method to a minimum by delegating
initialization tasks to modularized private helper methods.

� If you’re using your class as a data transfer object (DTO), provide yourself with
a public reset() method that can be used to clear the values of a class’s instance
attributes.

� Avoid adding too many parameters to the constructor() method’s interface.
Instead, encapsulate the initialization process inside of a series of creational
methods as described in Section 4.3.3.

4.5.2 Lazy Initialization

Sometimes, we may be working with large composite objects that contain lots of
lower-level details that aren’t frequently used. To put this scenario into perspec-
tive, consider a SalesOrder class that contains a list of SalesOrderItem objects
that also in turn contain a list of ScheduleLine objects. Depending on the usage
159

Object Initialization and Cleanup4
scenario, we may or may not need to have all of the line item/schedule line level
detail in context in order to do our job. For example, if we’re using the SalesOr-
der class to create a sales order summary report, we probably only need to report
on the header-level data. Bringing the item-level data in only slows the report
down and consumes a lot more memory. In this case, it makes sense to delay the
initialization of the lower-level details until they’re actually needed. This tech-
nique is referred to as lazy initialization.

The code excerpt contained in Listing 4.10 demonstrates how lazy initialization
works. Here, you can see that we’re not actually fetching sales order line item
information until a consumer invokes the get_items() method. By using encap-
sulation techniques to funnel item lookup requests through the get_items()
method, we can defer the performance hit associated with fetching the line items
until we actually need them.

CLASS lcl_sales_order DEFINITION.
PUBLIC SECTION.
TYPES: ty_item_tab TYPE STANDARD TABLE OF

REF TO lcl_order_item.
METHODS:

get_items RETURNING VALUE(rt_items) TYPE ty_item_tab.

PRIVATE SECTION.
DATA ms_header TYPE ...
DATA mt_items TYPE ty_item_tab.

ENDCLASS.

CLASS lcl_sales_order IMPLEMENTATION.
METHOD get_items.
IF lines(mt_items) EQ 0.

"Build the line items table on demand...
ENDIF.

rt_items = me->mt_items.
ENDMETHOD.

ENDCLASS.

Listing 4.10 Implementing Lazy Initialization

The lazy initialization technique, though powerful, can lead to some undesired
side-effects if we’re not careful. Typically, such side-effects are the result of pri-
vate methods accessing instance attributes directly instead of going through the
appropriate getter method(s). In this case, unexpected results might occur as a
result of missing data.
160 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: State Machine Diagrams 4.6
Like most performance tuning measures, you have to weigh the benefits against
the risks. For example, for objects whose data is fetched from a relational data-
base, you might be better off taking the up-front performance hit as opposed to
sprinkling in lots of little ad hoc SQL queries in “getter” methods - it really
depends on your usage scenario.

4.5.3 Reusing Objects

The easiest way to avoid the performance hits associated with creating/destroying
objects is to simply avoid this process altogether by recycling objects. Some typi-
cal candidates for recycling include temporary objects created inside loops, as
well as objects created in utility methods. Here you may discover that you could
have created an object in a higher scope that could be reused in the loop or
method calls. In other cases you might be working with a lightweight object in a
loop that simply needs to be reinitialized based on the loop index, etc. Rather
than create a new object each time, you might be able to call a reset() method to
reuse the object, etc.

4.5.4 Making Use of Class Attributes

As you design your classes, you should think about whether or not each object
instance will require their own local copy of an attribute. If a local copy of an
object is not required for an object instance, defining the attribute as a class attri-
bute can help to avoid the creation of a lot of redundant data objects.

4.6 UML Tutorial: State Machine Diagrams

The sequence diagrams introduced in the previous chapter are good for showing
the behavior of multiple objects interacting in a particular use case. Another type
of behavioral diagram in the UML is the state machine diagram. State machine dia-
grams are useful for showing the behavior of a single object throughout its life-
time.

Figure 4.8 shows a state machine diagram for a class that could be used to repre-
sent a batch job that is created using the SAP Job Scheduler tool. Whenever a new
job object is created, it is initialized in the Scheduled status. This is depicted on
the diagram by an Initial Pseudostate node that points to the Scheduled state box.
161

Object Initialization and Cleanup4
Each of the possible statuses of a job are shown using rounded boxes called states.
Changes in state are represented with directed transition arrows. Transitions can
optionally be labelled with special transition label strings using the syntax shown
in Listing 4.11.

event(s) [guard conditions]/activity

Listing 4.11 Syntax Diagram for Defining Transition Labels

Figure 4.8 UML State Diagram for an SAP Batch Job

The event(s) portion of the transition label is used to describe the event (or
events) that would trigger a change in state for the object. If guard conditions are
included in the transition label (within the square brackets), then those condi-
tions must be true in order for the transition to occur. The activity option can be
used to specify some behavior that takes place during the transition. As an exam-
ple, let’s consider the transition between the Scheduled and Released statuses in

Initial
Pseudostate

State

Transition

Final State

Scheduled

Released

Ready

Active

Finished Cancelled

Deleted

start condition defined [job saved] / release job

start condition fulfilled

job selected / execute job

job failed

job completed

job deleted
162 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Summary 4.7
Figure 4.8. In this case, the triggering event occurs whenever a user defines a
start condition for the job in Transaction SM36. However, in order for the job to
be released in the system, it must first be saved.

If a job is deleted in the system, then the state machine (i.e. the object) will reach
its final state. This is shown via the arrow that points to the circular node with a
dot in it (see Figure 4.8).

Like many of the diagrams that we’ll see throughout this book, the state machine
diagram fulfills a distinct purpose. In this chapter, we investigated some of the
various ways that objects are created in the system. Most of the time, the lifecycle
of an object is pretty straightforward. However, for objects with complex lifecy-
cles, state machine diagrams can be very useful in showing how an object will
interact with the environment around it.

4.7 Summary

In this chapter, we learned various techniques for ensuring objects are always
properly initialized before they are used in a program. When we combine these
methods with the encapsulation techniques described in Chapter 3, we’re able to
build reliable and robust class libraries that function in a deterministic manner. In
the next chapter, we’ll investigate ways for reusing these classes in other con-
texts.
163

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

One of the more compelling features of OOP is its support for inheritance.
In this chapter, we’ll introduce this concept and also look at other ways of
achieving code reuse with classes.

5 Inheritance and Composition

As we noted in Chapter 3, one of the primary reasons it’s so difficult to achieve
code reuse is because there are usually (implicit) assumptions made along the way
which inextricably link the code to specific usage contexts. Here, while the use of
encapsulation and implementation hiding techniques can go a long way towards
preventing us from coding ourselves into a corner, there will be times when we
come to the realization that a particular class simply can’t be stretched any further.

At this point, we’ve got a major dilemma on our hands. Do we try to enhance/
rework the classes to accommodate the new requirements? Or do we cut our
losses and try to salvage as much of the code as possible by copying-and-pasting
it into a new set of classes? Realistically, neither approach is ideal:

� Enhancing/reworking the existing classes to handle the requirements threatens
the integrity of pre-existing programs since it’s quite possible that our enhance-
ments could compromise existing functionality. Indeed, even the most gifted of
code surgeons typically have a hard time pulling off a seamless transition.

� The copy-and-paste approach might be less risky initially, but ultimately
increases the cost of long-term maintenance efforts since redundant code
makes the overall code footprint bigger. Over time, we may end up finding our-
selves having to apply the same set of changes to lots of classes which unoffi-
cially share this same code line.

In this chapter, we’ll explore how the object-oriented concept of inheritance
offers a third option for adapting to changes. Here, we’ll find that by inheriting
from a class, we can effectively make a copy of that class without disturbing the
source class or introducing redundant code. As we explore this concept, we’ll
also learn about another technique called composition that provides an alternative
way to reuse classes in situations where inheritance either isn’t possible or
doesn’t make sense.
165

Inheritance and Composition5
5.1 Generalization and Specialization

One of the most difficult parts of the object-oriented design process is trying to
identify all of the classes that are needed to model a problem domain. During the
OO analysis process, we might take several passes through the requirements
before we can settle on what classes are needed, what the relationships between
those classes should look like, and how instances of those classes will interact
with one another at runtime. Depending on the problem domain, this analysis
process can become so challenging that even the most experienced object-ori-
ented developers rarely get it all right the first time. This begs the question: what
happens if we get the cut of our class model wrong?

When you think about it, there are lots of potential mistakes we can make as we
formulate our class model. For example, after several rounds of analysis, we
might discover that we’ve failed to identify several key entities. Or, perhaps
we’ve identified the entities, but defined them too generically.

To put this phenomenon into perspective, let’s imagine that we’ve been tasked
with designing a human resources (HR) system. Early on, we quite naturally iden-
tify a need for an Employee entity class, among others. However, as we dig
deeper, more requirements come out which describe specific functionalities rele-
vant for certain types of employees. At this point, we could try to incorporate a
lot of conditional logic into the Employee class to deal with the specialized cases,
but this runs contrary to the ideal that we don’t want to clutter up our classes
with too many responsibilities. On the other hand, abandoning the Employee
class altogether in favour of lots of specialized classes (e.g., HourlyEmployee) leads
to the kind of code redundancy issues we want to avoid with OOP. Fortunately,
OO languages like ABAP Objects provide a better and more natural way of deal-
ing with these kinds of specialization problems: inheritance.

5.1.1 Inheritance Defined

Using the concept of inheritance, we can extend a class in such a way that we can
reuse what’s already developed (and hopefully tested) while at the same time
expanding the class model to better fit specialized cases. The newly-created class
is called a subclass of the original class; the original class is referred to as the super-
class of the newly-created class. As the term “inheritance” suggests, subclasses
inherit components from their superclass. These relationships allow us to build
166 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Generalization and Specialization 5.1
out hierarchical inheritance trees with superclasses as parent nodes and sub-
classes as child nodes (see Figure 5.1). In Chapter 6, we’ll learn how members of
this inheritance tree can be used interchangeably, providing for some very com-
pelling generic programming options.

Figure 5.1 A Sample Class Hierarchy

The Generic OBJECT Type in ABAP Objects

Though not depicted in Figure 5.1, the root of any inheritance tree in ABAP Objects is
the predefined (empty) OBJECT class. So, even though you may not have realized it, all
of the custom classes that we’ve created thus far have implicitly inherited from this stan-
dard base class.

5.1.2 Defining Inheritance Relationships in ABAP Objects

To understand how inheritance works in ABAP Objects, let’s see how we might
go about building out a portion of the Employee class hierarchy depicted in Figure
5.1. As you can see in Listing 5.1, we’ve defined three classes: LCL_EMPLOYEE,
LCL_HOURLY_EMPLOYEE, and LCL_SALARIED_EMPLOYEE. The LCL_EMPLOYEE class is

Employee

id
firstName
lastName

+ getID()
+ getDetails()
...

EmployeeSalariedEmployeeHourlyEmployee

hourlyRate: Currency salary: Currency

+ getPaystubAmount()
...

+ getPaystubAmount()
... + getPaystubAmount()

...

baseSalary: Currency
bonusAmount: Currency
167

Inheritance and Composition5
the base class in the hierarchy, while the LCL_HOURLY_EMPLOYEE and LCL_SALA-
RIED_EMPLOYEE classes are subclasses that inherit the basic features of the LCL_
EMPLOYEE superclass.

CLASS lcl_employee DEFINITION.
PUBLIC SECTION.
DATA: mv_id TYPE pernr_d READ-ONLY, "Public for demo only!!!

mv_first_name TYPE ad_namefir,
mv_last_name TYPE ad_namelas.

METHODS:
constructor IMPORTING iv_id TYPE pernr_d

iv_first_name TYPE ad_namefir
iv_last_name TYPE ad_namelas,

get_id RETURNING VALUE(rv_id) TYPE pernr_d,

get_details RETURNING VALUE(rv_details) TYPE string.
ENDCLASS.

CLASS lcl_employee IMPLEMENTATION.
METHOD constructor.
me->mv_id = iv_id.
me->mv_first_name = iv_first_name.
me->mv_last_name = iv_last_name.

ENDMETHOD.

METHOD get_id.
rv_id = me->mv_id.

ENDMETHOD.

METHOD get_details.
rv_details =

|Employee #{ mv_id }: { mv_first_name } { mv_last_name }|.
ENDMETHOD.

ENDCLASS.

CLASS lcl_hourly_employee DEFINITION
INHERITING FROM lcl_employee.

PUBLIC SECTION.
CONSTANTS:

CO_WORK_WEEK TYPE i VALUE 40.

METHODS:
constructor IMPORTING iv_id TYPE pernr_d

iv_first_name TYPE ad_namefir
iv_last_name TYPE ad_namelas
iv_hourly_rate TYPE bapicurr_d,
168 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Generalization and Specialization 5.1
get_paystub_amount RETURNING VALUE(rv_wages)
TYPE bapicurr_d.

PRIVATE SECTION.
DATA mv_hourly_rate TYPE bapicurr_d.

ENDCLASS.

CLASS lcl_hourly_employee IMPLEMENTATION.
METHOD constructor.
super->constructor(

EXPORTING
iv_id = iv_id
iv_first_name = iv_first_name
iv_last_name = iv_last_name).

me->mv_hourly_rate = iv_hourly_rate.
ENDMETHOD.

METHOD get_paystub_amount.
rv_wages = me->mv_hourly_rate * CO_WORK_WEEK.

ENDMETHOD.
ENDCLASS.

CLASS lcl_salaried_employee DEFINITION
INHERITING FROM lcl_employee.

PUBLIC SECTION.
METHODS:

constructor IMPORTING iv_id TYPE pernr_d
iv_first_name TYPE ad_namefir
iv_last_name TYPE ad_namelas
iv_salary TYPE bapicurr_d,

get_paystub_amount RETURNING VALUE(rv_wages)
TYPE bapicurr_d.

PRIVATE SECTION.
DATA mv_salary TYPE bapicurr_d.

ENDCLASS.

CLASS lcl_salaried_employee IMPLEMENTATION.
METHOD constructor.
super->constructor(

EXPORTING
iv_id = iv_id
iv_first_name = iv_first_name
iv_last_name = iv_last_name).

me->mv_salary = iv_salary.
ENDMETHOD.
169

Inheritance and Composition5
METHOD get_paystub_amount.
rv_wages = me->mv_salary / 52.

ENDMETHOD.
ENDCLASS.

Listing 5.1 Defining an Employee Class Hierarchy in ABAP Objects

For the most part, the LCL_EMPLOYEE base class contained in Listing 5.1 looks like
most any local class we’ve considered up to this point. Where things get interest-
ing is with the definition of the LCL_HOURLY_EMPLOYEE and LCL_SALARIED_
EMPLOYEE subclasses. Here, notice how we’re using the INHERITING FROM addition
of the CLASS DEFINITION statement to define the inheritance relationship to LCL_
EMPLOYEE. With this simple inclusion, we’ve defined new subclasses that come
pre-equipped with all of the instance attributes/methods of LCL_EMPLOYEE. This
means, for example, that we could call the get_details() method on an LCL_
HOURLY_EMPLOYEE instance and the code defined in the LCL_EMPLOYEE class’s
implementation would fire automagically. Similarly, instances of LCL_SALARIED_
EMPLOYEE inherit/have access to public instance attributes such as mv_id, mv_
first_name, and mv_last_name.

Note

The new subclasses may come pre-equipped with all of the instance attributes/methods
of LCL_EMPLOYEE, but we should qualify this by saying that the subclasses only inherit
components that the LCL_EMPLOYEE class makes visible to them. We’ll expand on this
concept further in Section 5.2.

After the INHERITING FROM addition, the definition of the LCL_HOURLY_EMPLOYEE
and LCL_SALARIED_EMPLOYEE subclasses proceeds pretty much as per usual. Here,
the new components we create are unique to the subclasses; LCL_EMPLOYEE isn’t
retrofitted/altered by any of the changes we make at the subclass level.

Defining Inheritance Relationships in the Class Builder Tool

Technically speaking, the inheritance definition syntax is the same for local or
global classes. However, if you prefer to work in the form-based view of the Class
Builder, then you must configure the inheritance relationship manually. If you’re
building a new subclass from scratch, this can be achieved via the Create Class

wizard screens as shown in Figure 5.2 and Figure 5.3, respectively.

Here, the highlighted Create Inheritance button shown in Figure 5.2 reveals the
Superclass field shown in Figure 5.3. Once we plug in the appropriate superclass
170 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Generalization and Specialization 5.1
and hit the Save button, the Class Builder tool will take care of building out the
appropriate syntax.

Figure 5.2 Specifying an Inheritance Relationship in the Class Builder Tool (Part 1)

Figure 5.3 Specifying an Inheritance Relationship in the Class Builder Tool (Part 2)

If the inheritance relationship isn’t specified up front during the class creation
process, then we can always maintain it after the fact on the Properties tab of the
171

Inheritance and Composition5
Class Builder as shown in Figure 5.4. Here, there are three buttons that we can
use to adjust the inheritance relationship for the class:

� Superclass

This button is used to specify a superclass for a given subclass when there isn’t
one defined yet. Once this button is selected, you can fill in the new superclass
in the correspondingly-named field as shown in Figure 5.4.

� Undo Inheritance

This button can be used to remove an inheritance relationship from a subclass.
Note that this will remove all inherited components from the class, so be care-
ful when performing this step on classes that may have methods in place that
depend on these components.

� Change Inheritance

As the name suggests, this button can be used to change the inheritance rela-
tionship from one superclass to another. As you might expect, this can get very
tricky depending on the compatibility of the two superclasses, so we’d recom-
mend that you exercise caution when performing this change.

Figure 5.4 Specifying an Inheritance Relationship in the Class Builder Tool (Part 3)
172 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Generalization and Specialization 5.1
5.1.3 Working with Subclasses

The code excerpt contained in Listing 5.2 demonstrates how we can work with
subclass instances. As you can see, there’s no special syntax required to interface
with the subclass instances: we instantiate them using the CREATE OBJECT state-
ment and access instance attributes/methods as per usual. Behind the scenes, the
ABAP runtime environment is able to interpret incoming requests and route
them appropriately. This means that calls to get_paystub_amount() are routed to
the subclasses while calls to get_details() are routed to the superclass. To the
end user, all this sleight of hand is completely transparent.

DATA lo_hourly_emp TYPE REF TO lcl_hourly_employee.
DATA lo_salary_emp TYPE REF TO lcl_salaried_employee.

CREATE OBJECT lo_hourly_emp
EXPORTING
iv_id = '12345678'
iv_first_name = 'Andersen'
iv_last_name = 'Wood'
iv_hourly_rate = '80.00'.

CREATE OBJECT lo_salary_emp
EXPORTING
iv_id = '23456789'
iv_first_name = 'Paige'
iv_last_name = 'Wood'
iv_salary = '150000'.

IF lo_hourly_emp->get_paystub_amount() GT
lo_salary_emp->get_paystub_amount().

WRITE: / lo_hourly_emp->get_details(), `makes more money.`.
ELSE.

WRITE: / lo_salary_emp->get_details(), `makes more money.`.
ENDIF.

Listing 5.2 Working with Subclass Instances

5.1.4 Inheritance as a Living Relationship

Before we move on to more involved inheritance concepts, we should (re)empha-
size the fact that inheritance is more than just a fancy way of copying classes into
new classes. Inheritance defines a natural relationship that will likely evolve over
time. To appreciate the nature of this relationship, imagine that we’re asked to
start keeping track of employee addresses using our fictitious Employee class
model.
173

Inheritance and Composition5
Depending on when we’re asked to apply this change, it could be that our
Employee class hierarchy has expanded to include many type-specific subclasses.
However, even if that’s the case, the subclasses are not cut off from the root
Employee class. So, if we need to make a fundamental change to the way that we
model employees, we can simply add an instance attribute containing the address
information to the Employee root class and each of the subclasses will inherit this
attribute automatically.

This phenomenon is sketched out in the code excerpt contained in Listing 5.3.
Here, we’ve introduced a new class called LCL_ADDRESS which models a simple
address record. With this class in place, we then enhance the LCL_EMPLOYEE root
class originally defined in Listing 5.1 to include an instance attribute and getter/
setter methods which allow us to get our hands on this address record from an
Employee object. Finally, since the getter/setter methods were defined as part of
the public interface of LCL_EMPLOYEE, you can see how we can access this inher-
ited functionality from subclasses such as LCL_HOURLY_EMPLOYEE without having
to make any changes to the downstream classes themselves. Once we apply the
change to the base class, the (exposed) functionality is available immediately
downstream within the subclasses.

CLASS lcl_address DEFINITION.
PUBLIC SECTION:
METHODS:

as_string RETURNING VALUE(rv_value) TYPE string,
get_street1 RETURNING VALUE(rv_street) TYPE ad_street,
set_street1 IMPORTING iv_street TYPE csequence,
get_street2 RETURNING VALUE(rv_street) TYPE ad_strspp1,
set_street2 IMPORTING iv_street TYPE csequence,
get_city RETURNING VALUE(rv_city) TYPE ad_city1,
set_city IMPORTING iv_city TYPE csequence,
...

PRIVATE SECTION.
DATA: mv_street1 TYPE ad_street,

mv_street2 TYPE ad_strspp1,
mv_city TYPE ad_city1,
mv_region TYPE regio,
mv_country TYPE land1.

ENDCLASS.

CLASS lcl_address IMPLEMENTATION.
METHOD as_string.
...

ENDMETHOD.
...

ENDCLASS.
174 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Inheriting Components 5.2
CLASS lcl_employee DEFINITION.
PUBLIC SECTION.
METHODS:

...
get_address RETURNING VALUE(ro_address)

TYPE REF TO lcl_address,
set_address IMPORTING io_address TYPE REF TO lcl_address.

PRIVATE SECTION.
DATA mo_address TYPE REF TO lcl_address.

ENDCLASS.

CLASS lcl_employee IMPLEMENTATION.
...
METHOD get_address.
ro_address = me->mo_address.

ENDMETHOD.

METHOD set_address.
me->mo_address = io_address.

ENDMETHOD.
...

ENDCLASS.

DATA lo_hourly_emp TYPE REF TO lcl_hourly_employee.
DATA lo_address TYPE REF TO lcl_address.

CREATE OBJECT lo_address.
...
CREATE OBJECT lo_hourly_emp

EXPORTING ...

lo_hourly_emp->set_address(lo_address). "Inherited method
WRITE: / lo_hourly_emp->get_address()->as_string().

Listing 5.3 Understanding the Effects of Base-Level Class Refactoring

5.2 Inheriting Components

Much like inheritance in the classical sense (i.e., where you inherit property from
a friend or loved one upon their death), inheritance relationships in the OOP
space are pretty tightly regulated. Here, the creators of parent classes get to
choose which components they wish to pass down to subclasses and which com-
ponents they want to keep under wraps. This is, of course, usually for the sub-
class’s own good because inheriting too much of a good thing can oftentimes
become a bad thing.
175

Inheritance and Composition5
In this section, we’ll take an up-close look at the rules that govern inheritance
relationships. Once you wrap your head around these basic concepts, we think
you’ll find the overall inheritance definition process to be relatively straightfor-
ward and intuitive.

5.2.1 Designing the Inheritance Interface

Up to this point in the book, our discussions on the subject of component visibil-
ity have been focused on designing a class’s public and private interface from the
perspective of an external client (e.g. another class or function module). How-
ever, inheritance adds a new dimension into the mix since we now also need to
consider how to define the interface between a superclass and its subclasses.
Here, for example, we might run into situations where we want to provide access
to selected components to subclasses without having to expose the components
to the outside world via the superclass’s public interface.

To put this into perspective, let’s revisit the LCL_EMPLOYEE class hierarchy that we
introduced in Listing 5.1. There, as you may recall, we included the base-level
instance attributes (e.g. mv_id, mv_first_name and mv_last_name) for the
employee within the public interface of the LCL_EMPLOYEE class. Why? Well,
partly for demonstration purposes, but also because we wanted to provide access
to these instance attributes within subclasses such as LCL_HOURLY_EMPLOYEE. Sure,
we could have provided getter/setter methods to provide such access but even
then one could argue that this is exposing more details than we want to share
with the outside world via the LCL_EMPLOYEE class’s public interface.

To address problems like this, most modern OO languages introduce a third visi-
bility section: the protected section. Components defined within this section are
visible only to the superclass and its subclasses. To the outside world, it’s as if
these components were defined within the private section of the class.

In ABAP Objects, the protected section is defined in much the same way that pub-
lic/private sections are defined. There’s a PROTECTED SECTION statement and all of
the components defined within that section are assigned the protected level
scope. This is demonstrated in the code excerpt contained in Listing 5.4. Here,
notice how we’ve moved the instance attributes for LCL_EMPLOYEE to the pro-
tected section. With this change, we’ve effectively cut off access to these compo-
nents to the LCL_EMPOYEE class and its subclasses. Now, the only way that external
clients can get their hands on these attributes is if we purposefully expose them
via public methods, etc.
176 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Inheriting Components 5.2
CLASS lcl_employee DEFINITION.
PUBLIC SECTION.
METHODS:

constructor IMPORTING iv_id TYPE pernr_d
iv_first_name TYPE ad_namefir
iv_last_name TYPE ad_namelas,

get_id RETURNING VALUE(rv_id) TYPE pernr_d,

get_details RETURNING VALUE(rv_details) TYPE string.

PROTECTED SECTION.
DATA: mv_id TYPE pernr_d READ-ONLY,

mv_first_name TYPE ad_namefir,
mv_last_name TYPE ad_namelas.

ENDCLASS.

Listing 5.4 Moving Inherited Components to the Protected Section

Collectively, the components that we include in the protected and public sections
of a class define its inheritance interface. When defining this interface, it’s import-
ant not to get too carried away with adding components to the protected section
on the off chance that we might want to expose those components to subclasses.
Here, we recommend that you apply the encapsulation concept of least privilege
when designing your inheritance interface.

Understanding the Concept of “Least Privilege”

The concept of “least privilege” implies that if a subclass doesn’t really need to access a
component, then it shouldn’t be granted access to it. For example, imagine that you
want to make some fundamental changes to the implementation of a base-level class
that sits at the root of an inheritance tree. If the components that you want to change
are defined in the protected visibility section of the superclass, then it’s quite possible
that the changes cannot be carried out without affecting some/all of the subclasses that
may be using these components.

With that being said, the general rule of thumb would be to prefer to define sen-
sitive components in the private visibility section unless you have a compelling
reason to do otherwise. If a subclass needs to be granted access to these compo-
nents, then access can be provided in the form of getter and setter methods that
are defined in the PROTECTED SECTION of the class. This little bit of additional
work ensures that a base class remains fully encapsulated.
177

Inheritance and Composition5
5.2.2 Visibility of Instance Components in Subclasses

Subclasses inherit the instance components of all of the superclasses defined in
their inheritance tree. However, not all of these components are visible at the sub-
class level.

A useful way of understanding how these visibility rules work is to imagine that
you have a special instance attribute pointing to an instance of the superclass
inside of your subclass. You can use this reference attribute to access public com-
ponents of the superclass, but access to private components is restricted just as it
would be for any normal object reference variable.

As it turns out, this imaginary object reference metaphor is not too far off from
what’s actually implemented in subclasses behind the scenes. Subclasses contain
a special pseudo reference variable called super that contains a reference to an
instance of an object of the superclass’s type. This reference is used to access com-
ponents of a superclass inside a subclass. The primary difference between the
super pseudo reference variable and a normal reference variable is that the super
pseudo reference can also be used to access components defined in the protected
section of the superclass it points to.

The use of the super pseudo reference variable is optional (as was the case with
the me self-reference variable discussed in Chapter 2), but can be used in situa-
tions where explicit reference to superclass components is needed. Normally,
you’ll simply access the components of the superclass directly, but it’s important
to remember that the compiler is implicitly plugging in the super pseudo refer-
ence behind the scenes in order to properly address these components. If you
operate in this mindset, the visibility rules for accessing superclass components
should become second nature to you.

Inheritance Namespace Concepts

Public and protected components of classes in an inheritance tree all belong to the
same internal namespace. This implies that you cannot create a component in a subclass
using the same name that was used to define a component in a superclass. There’s no
such restriction on the naming of private components, however. For example, if you
define a private component called comp in a superclass, you can reuse this same name to
define components in subclasses without restriction.
178 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Inheriting Components 5.2
5.2.3 Visibility of Class Components in Subclasses

In addition to all of the instance-level components, subclasses also inherit all of
the class components of their superclasses. As was the case with instance compo-
nents though, only those components that are defined in the public or protected
visibility sections of a superclass are actually visible at the subclass level.

In terms of inheritance, class attributes are not associated with a single class, but
rather with the overall inheritance tree. The change in scope makes it possible to
address these class components by binding the class component selector operator
with any of the classes in the inheritance tree. This can be confusing since class
components are defined in terms of a given class, and probably don’t have a lot of
meaning outside of their defining class’s context. To avoid this kind of confusion,
we’d recommend that you always address class components by applying the class
component selector to the defining class’s name (e.g. lcl_superclass=>compo-
nent). That way, your intentions are always clear.

5.2.4 Redefining Methods

Frequently, the implementation of inherited methods needs to be changed at the
subclass level in order to support more specialized functionality. To put this con-
cept into perspective, imagine that we decide to refactor the Employee class hier-
archy by moving the definition of the get_paystub_amount() method up to the
LCL_EMPLOYEE base class level. Here, we might provide a bare bones implementa-
tion in the base class, but our real objective is to associate this behavior with all
employee types and not redundantly define the same method over and over in
the various subclasses.

Of course, this doesn’t change the fact that the calculation of the paystub amount
differs between the specific employee types. Clearly, the implementation will be
type-specific but, when you think about it, the signature of the method remains
static in any case. So, we define the method in the LCL_EMPLOYEE base class and
then redefine (or override) the implementation of the method in each of the type-
specific subclasses.

The code excerpt contained in Listing 5.5 shows how we can redefine methods
like this using ABAP Objects syntax. Here, notice how we’ve refactored the LCL_
EMPLOYEE base class to define the method get_paystub_amount(). This definition
179

Inheritance and Composition5
fully specifies the method signature which will not change. Then, at the LCL_
HOURLY_EMPLOYEE subclass level, we’re using the REDEFINITION addition to
declare our intention to redefine/re-implement the get_paystub_amount()

method to include type-specific calculation logic. Finally, within the implemen-
tation section of the LCL_HOURLY_EMPLOYEE subclass, it’s pretty much business as
usual as we’re free to redefine the logic of the get_paystub_amount() method in
any way we see fit.

CLASS lcl_employee DEFINITION.
PUBLIC SECTION.
METHODS:

...
get_paystub_amount RETURNING VALUE(rv_wages)

TYPE bapicurr_d.
...

ENDCLASS.

CLASS lcl_employee IMPLEMENTATION.
...
METHOD get_paystub_amount.
"Empty for now...

ENDMETHOD.
ENDCLASS.

CLASS lcl_hourly_employee DEFINITION
INHERITING FROM lcl_employee.

PUBLIC SECTION.
...
get_paystub_amount REDEFINITION.

ENDCLASS.

CLASS lcl_hourly_employee IMPLEMENTATION.
...
METHOD get_paystub_amount.
rv_wages = me->mv_hourly_rate * CO_WORK_WEEK.

ENDMETHOD.
ENDCLASS.

Listing 5.5 Redefining Methods in Subclasses

We can achieve the same thing for global classes maintained in the form-based
view of the Class Builder by selecting the target method and clicking on the Rede-

fine button as shown in Figure 5.5.
180 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Inheriting Components 5.2
Figure 5.5 Redefining Methods in the Class Builder Tool

Misleading Terminology

Even though the REDEFINITION addition sounds like it might change the definition of a
method, we should once again emphasize that it has absolutely no effect on the defini-
tion of a method’s signature. This implies that we can’t add/remove parameters to the
method, change its visibility section assignment, and so on. In Chapter 6, we’ll learn
that there’s a very important reason why this interface must remain intact, but for now,
the main take-away is that we can only use the REDEFINITION addition to change a
method’s implementation in a subclass.

Reusing the Superclass Implementation

Whenever we redefine methods using the REDEFINITION addition, we’re effec-
tively choosing to abandon the superclass’s implementation in favor of our own
custom one. While this is clearly what we want, there may be times when we
merely want to tweak the implementation of the superclass, not replace it alto-
gether. In these situations, we can use the super pseudo reference within the
redefined method to invoke the superclass implementation and then adjust the
output as needed.

This technique is demonstrated in the code excerpt contained in Listing 5.6.
Here, we’ve defined a simple estimating class and a subclass which redefines its
get_estimate() method. In the subclass implementation, we’re delegating most
of the heavy lifting to the superclass and then adjusting the estimate by 10% after
181

Inheritance and Composition5
the fact. If the get_estimate() method defined importing parameters, we could
have also influenced the behavior by adjusting the parameter values on the fly
before handing them off to the superclass implementation.

CLASS lcl_estimator DEFINITION.
PUBLIC SECTION.
METHODS:

get_estimate RETURNING VALUE(rv_estimate) TYPE f.
ENDCLASS.

CLASS lcl_estimator IMPLEMENTATION.
METHOD get_estimate.
rv_estimate = ...

ENDMETHOD.
ENDCLASS.

CLASS lcl_conservative_estimator DEFINITION
INHERITING FROM lcl_estimator.

PUBLIC SECTION.
METHODS:
get_estimate REDEFINITION.

ENDCLASS.

CLASS lcl_conservative_estimator IMPLEMENTATION.
METHOD get_estimate.
rv_estimate = super->get_estimate().
rv_estimate = rv_estimate + (rv_estimate * '0.10').

ENDMETHOD.
ENDCLASS.

Listing 5.6 Invoking the Superclass’s Implementation of a Redefined Method

5.2.5 Instance Constructors

Unlike regular instance components such as attributes or methods, constructors
are not inherited. If you think about it, this makes sense since each class only
knows how to initialize objects of its own type.

Despite the fact that constructor methods exist independently in each class within
an inheritance hierarchy, the signature of the constructor() method in sub-
classes needs to remain relatively stable. Here, while it’s perfectly acceptable to
add new type-specific parameters to the signature of the method, we’ll want to
leave the pre-existing parameter interface intact. This is because constructor
methods in subclasses are required to call the constructor of their superclass
within the implementation of the constructor() method.
182 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Abstract and Final Keywords 5.3
We saw an example of this with the LCL_EMPLOYEE class hierarchy defined in List-
ing 5.1. Here, you can see how type-specific subclasses such as LCL_HOURLY_
EMPLOYEE expand the interface of the constructor() method to include additional
parameters as needed. The rest of the parameters are passed onto the superclass’s
constructor via the call to super->constructor() to facilitate the initialization of
the base-level employee instance. Then, after that initialization is complete, the
subclass’s constructor method logic kicks in to complete the initialization of the
type-specific employee instance.

5.2.6 Class Constructors

Each subclass is also allowed to define its own unique class constructor. This con-
structor gets called right before the class is addressed in a program for the first
time. However, before it’s executed, the ABAP runtime environment will work its
way up the inheritance tree to make sure that the class constructor has been called
for each superclass in the inheritance hierarchy. These class constructor calls are
guaranteed to occur in the proper order.

For example, let’s imagine that you have a class hierarchy with four classes A, B, C,
and D. When a program tries to access class D for the first time, the runtime envi-
ronment will first check to see if the class constructors have been called for classes
A, B, and C. If the class constructor has already been called for class A, but not for
B and C, then the order of class constructor calls will be B, C, and D. This ensures
that the class attributes of a superclass are always properly initialized before a
subclass is loaded into context.

5.3 The Abstract and Final Keywords

As we’ve observed, inheritance adds a dimension to our class design which forces
us to take a hard look at where we should define certain components within a class
hierarchy. As we come to these decisions, it’s important to be able to lock the hier-
archy down such that these design choices are honored in subclasses. In this sec-
tion, we’ll look at a couple of keywords that make this possible in ABAP Objects.

5.3.1 Abstract Classes and Methods

In Section 5.2.4, we told you how there was some potential value in moving the
get_paystub_amount() up the Employee class hierarchy to the LCL_EMPLOYEE root
183

Inheritance and Composition5
class. Though we’ll explore the details of this in Chapter 6, this refactoring job
does identify an important point: the higher we make our way up the inheritance
tree, the more generic things become. Indeed, when we get to the LCL_EMPLOYEE
root class, things are so generic that there’s not really a reasonable implementa-
tion to provide for the get_paystub_amount() method. That’s why we ended up
leaving the implementation empty in Listing 5.5.

While this approach might seem harmless enough, it can actually be quite danger-
ous in practice. For example, imagine that we neglected to redefine the get_pay-
stub_amount() method in type-specific subclasses such as LCL_HOURLY_EMPLOYEE.
If this were to happen, all calls to this method on type-specific employee
instances at runtime would be routed to the implementation in the LCL_EMPLOYEE
superclass which does nothing.

Rather than leave all this to chance, ABAP Objects allows us to identify these gaps
in a class definition using the ABSTRACT keyword. Using this keyword, we can
explicitly delegate undefined features to subclasses.

To understand how this works, let’s once again refactor the LCL_EMPLOYEE class
from Listing 5.5 by redefining the get_paystub_amount() method as abstract. As
you can see in Listing 5.7, this minor change was carried out by strategically plug-
ging in the ABSTRACT keyword in two places within the class definition:

� First, we included the ABSTRACT keyword in the overall CLASS DEFINITION state-
ment. This is necessary for any class which will contain one or more abstract
methods. We’ll learn more about what this means in just a moment.

� Next, we added the ABSTRACT keyword to the definition of the get_paystub_
amount() method.

Aside from these two syntactical changes, the only other notable change is to the
implementation section of the LCL_EMPLOYEE class. Here, notice that we’ve no lon-
ger included an empty implementation of the get_paystub_amount() method.
This is not an accidental omission in the source code. Whenever we declare a
method as abstract, we can no longer provide an implementation for it in the
class that defines it. Instead, the implementation must come from subclasses such
as LCL_HOURLY_EMPLOYEE which, as you can see in Listing 5.7, redefine the method
as per usual.

CLASS lcl_employee DEFINITION ABSTRACT.
PUBLIC SECTION.
METHODS:
184 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Abstract and Final Keywords 5.3
...
get_paystub_amount ABSTRACT RETURNING VALUE(rv_wages)

TYPE bapicurr_d.
...

ENDCLASS.

CLASS lcl_employee IMPLEMENTATION.
...

ENDCLASS.

CLASS lcl_hourly_employee DEFINITION
INHERITING FROM lcl_employee.

PUBLIC SECTION.
...
get_paystub_amount REDEFINITION.

ENDCLASS.

CLASS lcl_hourly_employee IMPLEMENTATION.
...
METHOD get_paystub_amount.
rv_wages = me->mv_hourly_rate * CO_WORK_WEEK.

ENDMETHOD.
ENDCLASS.

Listing 5.7 Defining Abstract Classes and Methods

For global classes maintained in the form-based view of the Class Builder tool,
you can define abstract methods by performing the following steps:

1. First, highlight the target method on the Methods tab of the form-based view
as shown in Figure 5.6 and click on the highlighted Detail View button.

Figure 5.6 Defining an Abstract Method in the Class Builder Tool (Part 1)
185

Inheritance and Composition5
2. Then, in the Change Method dialog box, click on the Abstract checkbox to
declare the method as abstract. This will open up the Information dialog box
shown in Figure 5.7 advising that the implementation of the method will be
deleted.

Figure 5.7 Defining an Abstract Method in the Class Builder Tool (Part 2)

3. Finally, after confirming the information message, click on the Change button
to complete the assignment. At this point, the Class Builder will implicitly
change the instantiation context to abstract, indicating that the class itself is now
abstract. You can view and/or set this context directly on the Properties tab as
shown in Figure 5.8.
186 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Abstract and Final Keywords 5.3
Figure 5.8 Defining an Abstract Method in the Class Builder Tool (Part 3)

While these abstract declarations might seem rather cosmetic, we should point
out that the use of the ABSTRACT keyword has some pretty significant effects on
the way these classes are utilized at runtime. For example, by declaring the get_
paystub_amount() method as abstract in Listing 5.7, we’re implying that the LCL_
EMPLOYEE class is incomplete from an implementation perspective. While LCL_
EMPLOYEE can (and does) define many other fully-implemented methods, there are
certain elements of its design that are abstract in nature. Therefore, by extension,
we say that LCL_EMPLOYEE is an abstract class.

Because their implementation is incomplete, abstract classes like LCL_EMPLOYEE
cannot be instantiated on their own. Instead, their purpose is to provide a com-
mon template that makes it easier to implement specialized subclasses. For
instance, by stubbing out core behaviors such as the get_paystub_amount()
method in the abstract LCL_EMPLOYEE superclass, we’ve more accurately provided
a template for what an employee should look like—regardless of type.
187

Inheritance and Composition5
5.3.2 Final Classes

As we build out our class inheritance trees, we may sometimes reach a point
where a class shouldn’t be extended any further. In these situations, we can use
the FINAL keyword to lock the class down such that it can no longer be inherited.

The code excerpt contained in Listing 5.8 shows how the FINAL keyword is being
used to finalize a class called LCL_PASSWORD_UTILS. Here, we simply add the FINAL
keyword to the CLASS DEFINITION statement. Once this designator is set, it’s no
longer possible to inherit from LCL_PASSWORD_UTILS. Indeed, if you paste this
code excerpt into the ABAP editor and try to activate it, you’ll receive a syntax
error indicating that class LCL_PASSWORD_UTILS may not have any subclasses.

CLASS lcl_password_utils DEFINITION FINAL.
PUBLIC SECTION.
METHODS:

is_valid_password RETURNING VALUE(rv_valid) TYPE abap_bool,
...

ENDCLASS.

CLASS lcl_password_utils IMPLEMENTATION.
METHOD is_valid_password.
...

ENDMETHOD.
ENDCLASS.

CLASS lcl_malware DEFINITION "<== Syntax error
INHERITING FROM lcl_password_utils.

PUBLIC SECTION.
METHODS:

is_valid_password REDEFINITION.
ENDCLASS.

CLASS lcl_malware IMPLEMENTATION.
METHOD is_valid_password.
"Try to bypass core behavior through inheritance...
rv_valid = abap_true.

ENDMETHOD.
ENDCLASS.

Listing 5.8 Marking a Class as Final

We can achieve the same effect for global classes maintained in the form-based
view of the Class Builder tool by selecting the Final checkbox on the Properties

tab as shown in Figure 5.9.
188 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Abstract and Final Keywords 5.3
Figure 5.9 Setting the Final Indicator on a Global Class in the Class Builder

Though you don’t see the Final indicator used as much with custom classes
developed at customer sites, it’s very common to see SAP and their partners apply
this flag in order to prevent customers from making further changes to their stan-
dard-delivered content.

5.3.3 Final Methods

Sometimes, we may find ourselves in situations where we want to lock down cer-
tain methods of a class for inheritance without locking down the entire class. To
accommodate these kinds of scenarios, ABAP Objects also allows us to apply the
FINAL keyword to individual method definitions.

This approach is demonstrated in Listing 5.9. Here, you can see how we’ve re-
opened the LCL_PASSWORD_UTILS class for inheritance, but kept the is_valid_
password() method locked down.
189

Inheritance and Composition5
CLASS lcl_password_utils DEFINITION.
PUBLIC SECTION.
METHODS:

is_valid_password FINAL RETURNING VALUE(rv_valid)
TYPE abap_bool,

...
ENDCLASS.

CLASS lcl_password_utils IMPLEMENTATION.
METHOD is_valid_password.
...

ENDMETHOD.
ENDCLASS.

CLASS lcl_malware DEFINITION "<== This is now allowed
INHERITING FROM lcl_password_utils.

PUBLIC SECTION.
METHODS:

is_valid_password REDEFINITION. "<== But this isn't
ENDCLASS.

CLASS lcl_malware IMPLEMENTATION.
METHOD is_valid_password.
"Try to bypass core behavior through inheritance...
rv_valid = abap_true.

ENDMETHOD.
ENDCLASS.

Listing 5.9 Marking Individual Methods as Final

You can achieve the same effect for methods maintained in the form-based view
of the Class Builder tool by selecting the target method, clicking on the Detail

View button, and checking the Final checkbox as shown in Figure 5.10. Be sure
to click the Change button to confirm your changes.
190 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Inheritance vs. Composition 5.4
Figure 5.10 Setting the Final Indicator for a Method Using the Form-Based View of the Class
Builder Tool

5.4 Inheritance vs. Composition

With all the hype surrounding inheritance, novice OO developers sometimes
assume that if they’re not using inheritance extensively that they must be doing
something wrong. Here, it’s important to realize that while inheritance is power-
ful, it’s not always the best solution for reusing code from existing classes.
Indeed, one of the worst mistakes you can make is to try to stretch classes to fit
into some sort of contrived inheritance relationship.
191

Inheritance and Composition5
Whenever you’re thinking of defining a new class in terms of some pre-existing
class, the first question you should ask yourself whether or not the relationship
between the subclass and superclass fits into the “is-a” relationship mold. To illus-
trate this, let’s consider an inheritance tree for various types of orders (see Figure
5.11). At each level of the tree, you should be able to apply the “is-a” relationship
between a subclass and its superclass and it should make sense. For example, a
SalesOrder is an Order, a CashOrder is a SalesOrder, and so on.

Figure 5.11 Inheritance Tree for Order Types

Most of the time, the application of the “is-a” test should make inheritance rela-
tionships between classes pretty obvious. For example, if we try to extend the
Order class in Figure 5.11 to define a Delivery subclass, the “is-a” relationship
wouldn’t make sense because a Delivery is not an Order.

While the “is-a” test should be intuitive enough even for novice developers, it’s
not uncommon to encounter situations where developers have tried to stretch
inheritance relationships like this in an effort to leverage classes that have useful
features or similarities to the ones they are trying to implement. Whenever you
find yourself stuck trying to figure out ways to define an inheritance relationship
between two classes, it’s a good idea to take a step back and think about the rela-
tionship between the classes from a logical perspective. If you think about it, a
Delivery is not an Order, but an Order does have one or more Deliveries associ-
ated with it. This “has-a” association is commonly referred to as a composition
relationship.

Order

Contract SalesOrder SchedulingAgmt

CashOrder RushOrder
192 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Inheritance vs. Composition 5.4
The term composition is basically just a fancy word used in OO circles to describe
the reuse of existing functionality in classes by integrating objects of those classes
as attributes in your new class. You can use these attributes in the same way that
you use ordinary attributes based on elementary types, structures, etc.

The code excerpt contained in Listing 5.10 demonstrates how the composition
technique is used to model the “has-a” relationship between a delivery class
called LCL_DELIVERY and an order class called LCL_ORDER. As you can see, we’re
not really doing anything special here syntax-wise. Instead, we’re just incorporat-
ing functionality from the LCL_DELIVERY class into LCL_ORDER so that we don’t
have to reinvent the wheel.

CLASS lcl_delivery DEFINITION.
PUBLIC SECTION.

METHODS:
constructor,
get_delivery_date RETURNING value(rv_date)

TYPE sydatum.

PRIVATE SECTION.
DATA: mv_delivery_date TYPE sydatum.

ENDCLASS.

CLASS lcl_delivery IMPLEMENTATION.
METHOD constructor.

mv_delivery_date = sy-datum.
ENDMETHOD.

METHOD get_delivery_date.
rv_date = mv_delivery_date.

ENDMETHOD.
ENDCLASS.

CLASS lcl_order DEFINITION.
PUBLIC SECTION.

METHODS:
constructor IMPORTING iv_id TYPE i,
release,
track.

PRIVATE SECTION.
DATA: mv_id TYPE i,

mo_delivery TYPE REF TO lcl_delivery.
ENDCLASS.

CLASS lcl_order IMPLEMENTATION.
193

Inheritance and Composition5
METHOD constructor.
mv_id = iv_id.

ENDMETHOD.

METHOD release.
"Create an outbound delivery for the order...
CREATE OBJECT mo_delivery.
...

ENDMETHOD.

METHOD track.
DATA lv_message TYPE string.
lv_message =

|Order #{ me->mv_id } was shipped on | &&
|{ mo_delivery->get_delivery_date DATE = user}|.

WRITE: / lv_message.
ENDMETHOD.

ENDCLASS.

Listing 5.10 Reusing Classes using the Composition Technique

In many respects, composition is rather like building with LEGO® building
blocks: we’re just stacking classes together to build sub-assemblies that are more
powerful than the sum of their parts. Sometimes, the easiest way to achieve code
reuse is to simply reuse the classes directly. Indeed, unless the inheritance rela-
tionship is obvious, we generally favor the use of composition over inheritance in
day-to-day development because it ends up providing us with more flexibility. In
the next chapter, we’ll shed some further light on this choice as we show you how
inheritance brings along some unwanted baggage that can clutter up the design if
we’re not careful.

5.5 Working with ABAP Refactoring Tools

As we’ve seen, inheritance provides a natural way for extending classes to adapt
to changing functional requirements. Of course, while this all sounds good on
paper, there will be times when we discover that modelling an inheritance rela-
tionship may require more than just creating a subclass or two. Indeed, depend-
ing on when we discover the relationship(s), we might end up having to modify
other classes in the inheritance hierarchy to make the relationships work.

We’ve seen a couple of instances of this throughout this chapter as the LCL_
EMPLOYEEclass hierarchy has evolved. For example, in Section 5.2.4, we decided
194 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with ABAP Refactoring Tools 5.5
to move the get_paystub_amount() out of type-specific subclasses such as LCL_
HOURLY_EMPLOYEE and into the LCL_EMPLOYEE root class since this is an operation
that exists for any employee type. While this may seem like a simple cut-and-
paste code modification, structural changes like this are normally described using
a more official term in OO circles: refactoring.

What is Refactoring?

In his famous book Refactoring: Improving the Design of Existing Code, Martin Fowler
describes refactoring as a process whereby selective code modifications are applied to
improve the underlying structure of a system without affecting its external behavior.
While many would argue that you should never touch code that’s not “broken”, propo-
nents of refactoring refute this claim by pointing out that small structural improvements
actually extend the lifespan of the code.

In Refactoring to Patterns, Joshua Kerievsky puts it this way: “By continuously improv-
ing the design of code, we make it easier and easier to work with. This is in sharp con-
trast to what typically happens: little refactoring and a great deal of attention paid to
expediently adding new features. If you get into the hygienic habit of refactoring con-
tinuously, you’ll find that it is easier to extend and maintain code”. If you’ve ever
stumbled across shared ABAP modules such as BAdI implementation classes or function
modules that have lots of different cross-cutting functions cobbled together, then you
probably have some appreciation for just how messy code can become if it isn’t cleaned
up periodically.

While we won’t attempt to sell you on the merits of refactoring in this book, we
would simply offer that Fowler’s Refactoring describes a series of refactorings (or
patterns) that can guide you in making good design decisions whenever you need
to alter the structure of your classes. Though these refactorings can be performed
manually using cut-and-paste style code changes, it turns out the Class Builder
tool offers a much better alternative: the Refactoring Assistant.

The Refactoring Assistant tool can be used to automatically perform some of the
most common refactorings. Besides saving you some keystrokes, the automation
of this process helps to ensure that you don’t accidentally make a mistake by
missing a manual step or two along the way.

You can start the Refactoring Assistant tool from within the form-based view of
the Class Builder by selecting Utilities � Refactoring � Refactoring Assistant in
the top-level menu bar. This will open up the Refactoring Assistant dialog box
shown in Figure 5.12.
195

Inheritance and Composition5
Figure 5.12 Working with the Refactoring Assistant Tool

Within the Refactoring Assistant, we can implement various move refactorings
by simply dragging-and-dropping components from one class onto another. For
example, Figure 5.13 shows how we’re implementing the move method refactor-
ing described in Section 5.2.4 to move the get_paystub_amount() method up to
the ZCL_EMPLOYEE base class level. After we drop the method onto ZCL_EMPLOYEE,
we simply hit the Save button and the Refactoring Assistant will take care of mak-
ing all the necessary changes. From here, all that’s left to do is activate the
changes in the respective classes.

Figure 5.13 Performing a Move Method Refactoring Using the Refactoring Assistant

In addition to the more class-specific refactorings provided via the ABAP Work-
bench-based Refactoring Assistant, the ABAP Development Tools for Eclipse pro-
vide automated support for lots of useful refactoring patterns for renaming vari-
ables and methods, extracting methods, and so forth. Many of these patterns are
provided via the contextual Quick Fix features described in Section 2.5.3. Others
are included in the contextual source code features accessible via the Source

menu shown in Figure 5.14.
196 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with ABAP Refactoring Tools 5.5
Figure 5.14 Accessing Refactoring Patterns in the ABAP Development Tools

Over time, it’s likely that we’ll see the Eclipse-based refactoring feature list grow
to eclipse (no pun intended) that of the ABAP-based Refactoring Assistant.
Indeed, Eclipse has long included many useful refactoring tools for other sup-
ported languages such as Java that it’s only a matter of time before these make
their way into the ABAP world. For up-to-date information on new features in the
ABAP Development Tools, we’d encourage you to visit the ABAP in Eclipse com-
munity page at http://scn.sap.com/community/abap/eclipse.
197

Inheritance and Composition5
5.6 UML Tutorial: Advanced Class Diagrams

In Chapter 1, we introduced some of the basic elements of a class diagram, show-
ing you how to model rudimentary classes along with their attributes and behav-
iors. In this chapter and the next one, we’ll expand our discussion of class dia-
grams to incorporate some of the more advanced concepts that we’ve covered in
the past several chapters.

5.6.1 Generalizations

Most of the time, our discussions on inheritance tend to focus on specializations
at the subclass level. However, if we look up the inheritance tree, we see that
superclasses become more generalized as we make our way upwards towards the
top of the tree. Perhaps this is why the creators of the UML decided to describe
the notation used to depict inheritance relationships between classes in a class
diagram as a generalization relationship.

Figure 5.15 shows a basic class diagram that depicts a superclass called Account
along with two subclasses (CheckingAccount and SavingsAccount). Notice that
each subclass has a connector drawn upward towards their superclass. The trian-
gle at the top of the association identifies the relationship between the two classes
as a generalization.

Figure 5.15 UML Class Diagram Notation for Generalizations

5.6.2 Dependencies and Composition

In Section 5.4, we described the concept of composition in terms of a “has-a” rela-
tionship between two classes. Up until now, the only way we’ve had to represent
this kind of relationship is via a UML association. However, an association depicts

Account

CheckingAccount SavingsAccount

Generalization
198 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Advanced Class Diagrams 5.6
a fairly loose relationship between two classes. In the case of composition, the
terms of the relationship between the classes are much more pronounced. To
model these relationships, the UML provides us with dependency associations.

Dependency associations are depicted using directed lines with an arrow pointing
towards the class that the source class depends on. Figure 5.16 shows how depen-
dencies are depicted using the notation. Here, we can follow the direction of the
association to determine that the Order class is dependent on the Delivery class.

Figure 5.16 Defining a Dependency Relationship Between Classes

The UML also provides a specific notation for depicting composition relation-
ships. In Figure 5.17, we’ve used this notation to show that an instance of class
Address can be embedded inside either class Customer or class Vendor, but not
both. This notation also implies that any instances of class Address will be deleted
whenever the instance of the composing Customer or Vendor class is deleted.

Figure 5.17 Defining Composition Relationships in Class Diagrams

Because the UML interpretation of composition relationships is a bit more
detailed than the common view of composition applied in practice, most devel-
opers prefer to model these relationships using dependencies since this leaves
more flexibility to the implementer regarding how the actual relationships are
realized from a code perspective.

5.6.3 Abstract Classes and Methods

Figure 5.18 shows the UML notation for depicting abstract classes and methods.
As you can see, the only requirement here is to italicize the class or method name
to indicate that the class or method is to be defined as abstract. However, since

Order Delivery

Customer Address Vendor
* *
199

Inheritance and Composition5
the italics are sometimes hard to read, you’ll sometimes see developers tag
abstract classes using the non-normative << abstract >> keyword as shown in
Figure 5.19.

Figure 5.18 Defining Abstract Classes and Methods

Figure 5.19 Non-Normative Form for Defining Abstract Classes

Employee

HourlyEmployee CommissionEmployee SalariedEmployee

+ getId()
+ getName()
+ getDetails()
+ getPaystubAmount()

+ getPaystubAmount() + getPaystubAmount() + getPaystubAmount()

<< abstract >>
Employee

HourlyEmployee CommissionEmployee SalariedEmployee

+ getId()
+ getName()
+ getDetails()
+ getPaystubAmount()

+ getPaystubAmount() + getPaystubAmount() + getPaystubAmount()
200 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Summary 5.7
5.7 Summary

In this chapter, you’ve learned how inheritance and composition techniques can
be used to quickly and safely reuse the implementations of existing classes. In this
chapter, we concentrated our focus on inheriting a class’s implementation. How-
ever, there’s another dimension of the inheritance relationship that we have not
yet considered. In the next chapter, we’ll see how type inheritance can be used to
further exploit inheritance relationships in order to make our designs even more
flexible.
201

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

The term polymorphism literally means “many forms”. From an object-
oriented perspective, polymorphism works in concert with inheritance to
make it possible for various types within an inheritance tree to be used
interchangeably. In this chapter, we’ll learn how to harness this power to
create highly flexible program designs using ABAP Objects.

6 Polymorphism

In the previous chapter, we learned how to define inheritance relationships
between related classes. From there you will recall that the basic litmus test we
used to identify these relationships was to ask ourselves whether or not a given
class was a more specific type of a particular superclass. For example, a Dog is a
specific type of Mammal. So, instead of creating a standalone Dog class, it makes
sense to define the Dog class as a subclass of Mammal so that it can inherit selected
features from Mammal.

When we look at inheritance in this light, it’s easy to see its obvious benefits in
terms of code reuse. However, as it turns out, there’s another (and arguably more
important) dimension of the “is-a” relationship that we haven’t yet considered.

Since the classes in an inheritance tree share a common public interface, it’s tech-
nically possible for a given subclass to respond to any request (i.e., method call)
directed at its superclass. This aspect of the inheritance relationship is referred to
as interface inheritance. When we combine interface inheritance with the ability
for subclasses to redefine/override the implementation of their inherited meth-
ods, we end up in a situation where clients no longer have to worry about the
types of objects they’re interfacing with: they simply issue requests (method calls)
and let the objects themselves figure out how to process the requests in type-spe-
cific ways. In other words, types within an inheritance tree become interchange-
able from a client perspective.

In this chapter, we’ll see how we can exploit this functionality to simplify our OO
designs and improve flexibility. Along the way, we’ll also introduce you to
another powerful tool in the OO developer’s toolkit: interfaces.
203

Polymorphism6
6.1 Object Reference Assignments Revisited

In Chapter 2, we learned how to use the assignment operator (=) to perform
assignments between object reference variables. As you may recall, object refer-
ence assignments copy the pointer stored in the source object reference variable
into the target object reference variable. After the assignment is complete, both
object reference variables point to the same object instance.

Though we sort of glossed over the details at the time, there’s an important rule
that we must follow when making object reference assignments: the assignments
must be made using compatible types. For example, an assignment between an
object reference variable pointing to a Material class and an object reference
variable pointing to a Customer class doesn’t make sense because these two types
are not compatible with one another. This is demonstrated in the code excerpt
contained in Listing 6.1.

DATA lo_material TYPE REF TO lcl_material.
DATA lo_customer TYPE REF TO lcl_customer.
CREATE OBJECT lo_material.
lo_customer = lo_material. "<== Syntax error

Listing 6.1 Type Compatibility Issues with Object Reference Assignments

Strictly speaking, two variables are only compatible if they share the same type.
In spite of this though, we routinely make assignments between variables hav-
ing incompatible types (e.g. between built-in types such as an integer and a
floating point number). Such types are said to be convertible in the sense that
there exists some kind of conversion rule that tells the ABAP runtime environ-
ment how to convert the contents of the source variable into a format compati-
ble with the target variable.

In the case of object reference assignments, conversions don’t make sense
because an object reference stores a pointer to an object and not the object
itself. Therefore, in order for an object reference variable to point at an object
that has a different type it must be enhanced with additional type information
that provides visibility to the components of the actual object that it points to. In
this section, we’ll learn how to achieve this and perform object reference assign-
ments between families of related types. Understanding how these assignments
work is a prerequisite for learning how to implement generic designs using
polymorphism.
204 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Object Reference Assignments Revisited 6.1
6.1.1 Static and Dynamic Types

Up until now, the object reference assignment examples that we’ve considered
have been between object reference variables that share the same static type. The
static type of an object reference variable is the class type (or interface type as
we’ll learn in Section 6.3) used to define the object reference variable. For exam-
ple, the lo_oref object reference variable depicted in Listing 6.2 has the class
type LCL_SOME_CLASS.

DATA lo_oref TYPE REF TO lcl_some_class.

Listing 6.2 Determining the Static Type of an Object Reference Variable

Frequently, we may want to perform assignments between object reference vari-
ables that do not share the same static type. For example, since instances of a
superclass and its subclasses are intended to be interchangeable, it should be pos-
sible to perform an assignment between object reference variables whose static
types are part of the same inheritance tree. The code excerpt contained in Listing
6.3 provides an example of the kind of assignment we might want to perform
between related types.

CLASS lcl_parent DEFINITION.
PUBLIC SECTION.

METHODS: a,
b.

ENDCLASS.

CLASS lcl_parent IMPLEMENTATION.
METHOD a.

WRITE: / 'In method a.'.
ENDMETHOD.

METHOD b.
WRITE: / 'In method b.'.

ENDMETHOD.
ENDCLASS.

CLASS lcl_child DEFINITION
INHERITING FROM lcl_parent.

PUBLIC SECTION.
METHODS: c.

ENDCLASS.

CLASS lcl_child IMPLEMENTATION.
METHOD c.

WRITE: / 'In method c.'.
205

Polymorphism6
ENDMETHOD.
ENDCLASS.

DATA: lo_parent TYPE REF TO lcl_parent,
lo_child TYPE REF TO lcl_child.

CREATE OBJECT lo_parent.
CREATE OBJECT lo_child.
lo_parent = lo_child.

Listing 6.3 Performing a Cast with an Object Reference Assignment

To understand how an object reference assignment like the one depicted in List-
ing 6.3 works, we need to revisit the remote control/TV set metaphor we first
introduced in Chapter 2. There, we noted that object reference variables are like
remote controls which can be used to interface with object instances of a particu-
lar type. By default, object reference variables, like remote controls, are only able
to communicate with a specific type of object.

Now, imagine that you decide to purchase a universal remote to replace the
default remote that came with the TV. In this case, even though the static type of
the universal remote is more generic than the one provided by the manufacturer,
it’s still compatible with the public interface provided by the TV (i.e., it supports
common operations such as Turn On, Adjust Volume, and so forth). However,
before you can use the universal remote with the TV, it must be programmed with
information about the actual TV model it’s interfacing with. Similarly, object ref-
erence variables that are (re)assigned to point to objects that have a different
static type must be (re)programmed with dynamic type information at runtime.

The dynamic type of an object reference variable refers to the class type of the
actual object instance pointed to by the reference variable. In the example given
in Listing 6.3, the statement CREATE OBJECT lo_parent instantiates an object of
type LCL_PARENT and assigns a pointer to that object to the lo_parent object ref-
erence variable. At this point, the static and dynamic type of the lo_parent refer-
ence variable is the same. However, when we perform the assignment statement
lo_parent = lo_child, the dynamic type of the lo_parent reference is changed
by the ABAP runtime environment to point to the LCL_CHILD class type. This
information is crucial for the ABAP runtime environment to be able to interact
with the compatible components of the LCL_CHILD object instance that’s now
being pointed to by the lo_parent reference variable.
206 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Object Reference Assignments Revisited 6.1
It’s worth mentioning that we cannot arbitrarily set the dynamic type of an object
reference to just any class type. In other words, these kinds of assignments don’t
make sense without some kind of an inheritance relationship between the source
and target object reference variables. In Section 6.1.2, we’ll explore the rules that
determine how these assignments work.

6.1.2 Casting

If the static type of the source and target object reference variables is not the same
in an assignment operation, a special operation called a cast must occur in order
for the assignment to work. A cast operation is allowed whenever the static type
of the target object reference is the same as or more general than the dynamic
type of the source object reference. There are two different types of cast opera-
tions: a narrowing cast and a widening cast.

Narrowing Casts

A narrowing cast occurs in an object reference assignment statement whenever
the static type of a target object reference variable is more generic than the static
type of the source object reference variable. Here, since we’re moving upwards
in the inheritance tree, these narrowing casts are also sometimes referred to as
up casts.

The assignment statement from Listing 6.3 provided an example of a narrowing
cast between the reference variables lo_parent and lo_child. We refer to this
type of assignment as a narrowing cast because the class type LCL_PARENT is
more general than LCL_CHILD, effectively narrowing the scope of the components
that can be accessed in the LCL_CHILD object to those defined in the LCL_PARENT
superclass.

This reduction in scope prevents the target object reference variable (i.e., LO_PAR-
ENT) from accessing components that are not defined in its static type definition.
For example, the method call that is commented out in Listing 6.4 would cause a
syntax error since method c() is not defined in class LCL_PARENT. Of course, this
reduction in scope does not imply that the object itself is changed or truncated in
some way. The LCL_CHILD object instance in Listing 6.4 is still a full-fledged object
of type LCL_CHILD, it’s just that the lo_parent object reference variable doesn’t
have visibility to the components defined in LCL_CHILD.
207

Polymorphism6
DATA: lo_parent TYPE REF TO lcl_parent,
lo_child TYPE REF TO lcl_child.

CREATE OBJECT lo_parent.
CREATE OBJECT lo_child.
lo_parent = lo_child.
lo_parent->c(). "Syntax Error!

Listing 6.4 Attempting to Call a Method That’s Out of Scope

In addition to normal object reference assignments, it’s also possible to perform
narrowing casts using inline syntax. For example, if we know that we want to
perform an up cast up front during the object instantiation process, then we can
carry out the narrowing cast using the TYPE addition of the CREATE OBJECT state-
ment. This syntax is demonstrated in Listing 6.5. Here, the CREATE OBJECT state-
ment is creating an object of type LCL_CHILD and then performing a narrowing
cast as it assigns a pointer to the object back to the lo_parent object reference.

DATA lo_parent TYPE REF TO lcl_parent.
CREATE OBJECT lo_parent TYPE lcl_child.

Listing 6.5 Performing a Narrowing Cast During Object Creation

Beginning with Release 7.40 of the AS ABAP, we also have the option of perform-
ing up casts using the new CAST operator. The code excerpt contained in Listing
6.6 demonstrates how this syntax can be used to implement the same casting sce-
nario that we demonstrated in Listing 6.4. Here, we simply plug in the static type
of the source object reference and the CAST operator takes care of the rest.

DATA(lo_child) = NEW lcl_child().
DATA(lo_parent) = CAST lcl_parent(lo_child).

Listing 6.6 Performing an Up Cast Using the CAST Operator

Widening Casts

In cases where the static type of the target object reference variable is more spe-
cific than the static type of the source object reference variable, a widening cast
has to be applied in order for the assignment statement to pass muster with the
ABAP compiler. Widening casts allow us to take control of the assignment pro-
cess by telling the compiler that we know what we’re doing when we’re perform-
ing an assignment between object references that have different static types.

Of course, this delegation doesn’t mean that a validity check never takes place; it
just means that the check is deferred until runtime when the dynamic type of the
208 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Object Reference Assignments Revisited 6.1
source object reference is known. Here, as we stated before, the static type of the
target object reference must be the same as or more general than the dynamic
type of the source object reference - otherwise, an exception will occur. In Chap-
ter 8, we’ll look at how to recover from these types of exceptions a bit more
gracefully. Nevertheless, we strongly recommend that you use widening casts
carefully as they can be somewhat confusing (and indeed, dangerous).

Because of the dangerous nature of widening casts, the ABAP language specifica-
tion requires that we formally declare our intent to perform a widening cast by
using a special assignment operator called the casting operator. As of Release 7.40
of the AS ABAP, there are actually two casting operators that we can use for per-
forming widening casts: the legacy casting operator (?=) and the aforementioned
new CAST operator.

The code excerpt contained in Listing 6.7 shows how to perform a widening cast
using the legacy casting operator. This contrived example performs an up cast to
copy an object reference of type LCL_CHILD into an object reference variable with
static type LCL_PARENT. Then, we assign the object reference back to the lo_child
object reference variable using a widening cast. During all of this shuffling, the
LCL_CHILD object created via the CREATE OBJECT remained intact, so after the wid-
ening cast, we can access the object via the lo_child object reference variable as
per usual.

DATA: lo_parent TYPE REF TO lcl_parent,
lo_child TYPE REF TO lcl_child.

CREATE OBJECT lo_child.
lo_parent = lo_child.
* lo_child = lo_parent. "<== Syntax Error
lo_child ?= lo_parent.

Listing 6.7 Performing Widening Casts Using the Legacy Casting Operator

The code excerpt contained in Listing 6.8 shows how we can achieve the same
effect using the new CAST operator introduced with Release 7.40 of the AS ABAP.
Here, notice how the usage is pretty much the same whether we’re performing an
up cast or a down cast. This approach improves readability by keeping the syntax
consistent for any type of cast operation.

DATA(lo_child) = NEW lcl_child().
DATA(lo_parent) = CAST lcl_parent(lo_child).
lo_child = CAST lcl_child(lo_parent).

Listing 6.8 Performing a Down Cast Using the CAST Operator
209

Polymorphism6
6.2 Dynamic Method Call Binding

Now that you have a better idea of how to use casting operations to perform
assignments between related class types, we’re ready to start examining how
polymorphism really works. Here, everything starts with an OO language’s abil-
ity to support dynamic method call binding.

In order to understand how dynamic method call binding works, let’s consider an
example. The report program ZPOLYTEST included in Listing 6.9 contains an
abstract class called LCL_ANIMAL, a pair of subclasses called LCL_CAT and LCL_DOG,
and a test driver class called LCL_SEE_AND_SAY. The LCL_SEE_AND_SAY class is mod-
eled loosely after the “See-n-Say®” educational toys manufactured by Mattel, Inc.
Here, we want to build a simulation in which the LCL_SEE_AND_SAY class can play
the sounds made by many different animals.

REPORT zpolytest.
CLASS lcl_animal DEFINITION ABSTRACT.

PUBLIC SECTION.
METHODS:

get_type ABSTRACT RETURNING VALUE(rv_type) TYPE string,
speak ABSTRACT RETURNING VALUE(rv_message) TYPE string.

ENDCLASS.

CLASS lcl_cat DEFINITION
INHERITING FROM lcl_animal.

PUBLIC SECTION.
METHODS: get_type REDEFINITION,

speak REDEFINITION.
ENDCLASS.

CLASS lcl_cat IMPLEMENTATION.
METHOD get_type.
rv_type = 'Cat'.

ENDMETHOD.

METHOD speak.
rv_message = 'Meow'.

ENDMETHOD.
ENDCLASS.

CLASS lcl_dog DEFINITION
INHERITING FROM lcl_animal.

PUBLIC SECTION.
METHODS: get_type REDEFINITION,

speak REDEFINITION.
210 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Dynamic Method Call Binding 6.2
ENDCLASS.

CLASS lcl_dog IMPLEMENTATION.
METHOD get_type.
rv_type = 'Dog'.

ENDMETHOD.

METHOD speak.
rv_message = 'Bark'.

ENDMETHOD.
ENDCLASS.

CLASS lcl_see_and_say DEFINITION.
PUBLIC SECTION.
CLASS-METHODS:

play IMPORTING io_animal
TYPE REF TO lcl_animal.

ENDCLASS.

CLASS lcl_see_and_say IMPLEMENTATION.
METHOD play.
DATA(lv_message) =

|The { io_animal->get_type() } | &&
|says "{ io_animal->speak() }".|.

WRITE: / lv_message.
ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.
DATA(lo_cat) = NEW lcl_cat().
DATA(lo_dog) = NEW lcl_dog().

lcl_see_and_say=>play(lo_cat).
lcl_see_and_say=>play(lo_dog).

Listing 6.9 Dynamic Binding with Method Calls

Looking at the sample code contained in Listing 6.9, you can see how the various
classes are implemented and the inheritance relationships are formed between
the abstract LCL_ANIMAL base class and the animal-specific subclasses. Where
things start to get interesting is in the definition of the LCL_SEE_AND_SEE class.
Here, if you look closely at the signature of method play(), you can see that it
receives an importing parameter of type LCL_ANIMAL. However, in the START-OF-
SELECTION event of program ZPOLYTEST, notice how we’re calling this method
with object reference parameters of type LCL_CAT and LCL_DOG. In this case, the
211

Polymorphism6
ABAP runtime environment is performing an implicit narrowing cast during the
assignment of the importing parameter io_animal.

Within the play() method, the logic is purposefully generic. From the perspec-
tive of the LCL_SEE_AND_SAY class, it doesn’t really matter what the dynamic type
of the io_animal parameter is because any LCL_ANIMAL object is guaranteed to
provide implementation for methods get_type() and speak(). So, the play()
method calls these methods on the io_animal parameter and the requests are
routed to the type-specific subclasses. This subtle feature makes it possible for the
code inside the play() method to be implemented 100% generically.

The driving force behind all this is dynamic method call binding. Here, the
dynamic type information associated with an object reference variable allows the
ABAP runtime environment to dynamically bind a method call with the imple-
mentation defined in the static type of the object instance pointed to by the object
reference variable. This is crucial since the io_animal parameter points to an
abstract type that could never be instantiated on its own. The implementation
must come from a concrete subclass such as LCL_CAT or LCL_DOG.

Dynamic binding provides for tremendous flexibility in designs. In the simple
example from Listing 6.9, we only considered an implementation for a cat and a
dog. In the future though, we may decide to implement subclasses for lots of
other types of animals such as a horse, a cow, a pig, etc. However, since the LCL_
SEE_AND_SAY class works with the generic LCL_ANIMAL type, we can integrate these
new types into the “See-n-Say” service quite seamlessly. Such designs are said to
be extensible in the sense that we can easily introduce new functionality by simply
creating a new subclass and plugging it in at runtime.

6.3 Interfaces

Throughout this book, we’ve used the term interface quite a bit to describe the
various interaction points between classes and their clients. For example, a
method’s signature defines an interface that’s used by clients wishing to call that
method. From an object-oriented perspective, you can think of an interface as a
type of protocol that defines rules for communicating with objects.

This protocol analogy should be familiar since we interact with many types of
protocols every day. For instance, the HyperText Transfer Protocol (HTTP) defines
212 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
the rules that web clients (i.e., browsers such as Mozilla Firefox or Google
Chrome) and web servers must adhere to in order to be able to reliably publish
and retrieve content on the World Wide Web. These rules make it possible for
web browsers to request web pages from many different types of web server
implementations (e.g. Microsoft IIS, Apache, etc.) without having to worry about
how these servers are implemented. Similarly, we’ve seen how polymorphism
can be used to dynamically bind many different types of implementations to a
single interface.

As OO theory evolved, many language designers began to see the value in being
able to define an interface independently from any particular class. Such interfaces
do not have an implementation associated with them and therefore cannot be
instantiated on their own. While this may seem like a stretch at first, suffice it to
say that we can do a lot of interesting things with interfaces. In this section, we’ll
look at how interfaces can be used expand a class’s scope into multiple dimensions.

6.3.1 Interface Inheritance vs. Implementation Inheritance

Some object-oriented languages support a multiple inheritance model, allowing
you to define several inheritance relationships within a given class. As you may
have guessed by now, ABAP Objects only supports a single inheritance model. This
is a design decision that has been employed by many modern object-oriented lan-
guages in an effort to avoid some of the ambiguity that can arise with complex
inheritance hierarchies.

To illustrate some of the potential problems associated with a multiple inheri-
tance model, let’s consider an example. The class diagram in Figure 6.1 depicts a
diamond-shaped class hierarchy. In this case, let’s imagine that classes B and C
have both redefined method someMethod() from class A. If class D does not rede-
fine method someMethod(), from which implementation does it inherit: B or C?
This problem is known as the diamond problem.

A single-inheritance model avoids these kinds of vagaries since a subclass always
inherits from a single superclass. However, interfaces can enhance this model by
providing a way to extend the type of a class without having to bring along all of
the implementation baggage associated with multiple inheritance. In Section
6.3.4, we’ll see how the implementation of an interface allows a class to be used
polymorphically wherever a reference of that interface type is used.
213

Polymorphism6
Figure 6.1 Example of the Diamond Problem with Multiple Inheritance

6.3.2 Defining Interfaces

The syntax required to define an interface is very similar to the syntax that is used
in the declaration part of a class definition. Listing 6.10 shows an example of how
to define a local interface called LIF_IFACE. Notice that none of the interface com-
ponents have been defined within a visibility section. This is because all compo-
nents of an interface are implicitly defined within the public visibility section. If
you think about it, this makes sense because the purpose of an interface is to
expand the public interface of implementing classes.

INTERFACE lif_iface.
DATA a TYPE string.
METHODS: m.
EVENTS: e.

ENDINTERFACE.

Listing 6.10 Syntax for Defining a Local Interface

+ someMethod

A

+ someMethod

A

+ someMethod

B

+ someMethod

C

214 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
Most of the time, interfaces are used to add additional methods to the public
interface of a class. However, you can technically define all of the same types of
components that you can define for classes in an interface: attributes, methods,
events, types, and so on.

Just like classes, interfaces can be defined as local objects and global ABAP Repos-
itory objects. In the latter case, we can create/edit interfaces using the familiar
Class Builder tool. To illustrate how this works, let’s create a new global interface
called ZIF_COMPARABLE that can be used to specify an arbitrary ordering for imple-
menting classes. Here, the steps are as follows:

1. From within the ABAP Workbench, select the appropriate package, right-click,
and select the Create � Class Library � Interface menu option (see Figure 6.2).

Figure 6.2 Creating a Global Interface (Part 1)
215

Polymorphism6
2. This will open up the Create Interface dialog box shown in Figure 6.3. Here,
we simply enter a name for the interface and a brief description. The name of
the interface should be defined according to the convention {namespace}IF_
{meaningful_name}. In the example given, we have ZIF_COMPARABLE which is
being defined in the customer Z namespace.

Figure 6.3 Creating a Global Interface (Part 2)

3. After we fill out the details in the Create Interface dialog box shown in Figure
6.3, we can click on the Save button to create the interface. At this point, we’ll
be prompted with the familiar Create Object Directory Entry dialog box
shown in Figure 6.4.

Figure 6.4 Creating a Global Interface (Part 3)

4. Finally, after confirming the Repository/transport details, the interface will be
created and opened up in the Class Builder tool as shown in Figure 6.5. Here,
just like classes, we can edit interfaces in the form-based view or the source
code-based view.
216 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
Figure 6.5 Editing a Global Interface in the Class Builder Tool

Within the ZIF_COMPARABLE interface, we’ve defined a single method called com-
pare_to() which can be used to compare two objects to determine their relative
ordering. Figure 6.6 shows the signature of this method. As you can see, it defines
two parameters:

� IO_OBJECT

This importing parameter represents the object that’s being compared with the
host object (i.e., the object that drives the comparison). Here, notice that we’ve
defined the type of this parameter using the generic OBJECT type. This will
allow us to compare any type of object using this interface.

� RV_RESULT

This returning parameter specifies the ordering of the two objects as an integer
value. The resulting value will be a negative integer, zero, or a positive integer
depending on whether or not the host object is less than, equal to, or greater
than the object passed via io_object parameter.

Figure 6.6 Building out the ZIF_COMPARABLE Interface
217

Polymorphism6
Listing 6.11 shows the source code generated for the ZIF_COMPARABLE interface.
Since interfaces don’t contain any sort of implementation, that’s all there is to our
ZIF_COMPARABLE interface. In Section 6.3.3 and Section 6.3.4, we’ll see how this
interface is used to build a container class which collects a series of related objects
together and provides value-add operations such as sorting.

interface ZIF_COMPARABLE
public .

methods COMPARE_TO
importing

!IO_OBJECT type ref to OBJECT
returning

value(RV_RESULT) type I .
endinterface.

Listing 6.11 Source Code for Interface ZIF_COMPARABLE

6.3.3 Implementing Interfaces

Interfaces are not all that interesting until we start implementing them in classes.
Within a class definition, we can implement an interface using the INTERFACES
keyword. Here, we can specify one or more interfaces that we want to implement
in a comma-separated list. Logically, this has a similar effect to adding the INHER-
ITING FROM addition to the CLASS DEFINITION statement: the components from
the selected interfaces will be inherited in the implementing class.

To demonstrate how interface implementation works, let’s consider a brief exam-
ple. Listing 6.12 shows how a local class called LCL_IMPLEMENTER is implementing
an interface called LIF_IFACE. As you can see, implementing the LIF_IFACE inter-
face in LCL_IMPLEMENTER requires that we provide implementation for the meth-
ods defined in LIF_IFACE: m1() and m2().

INTERFACE lif_iface.
METHODS: m1,

m2.
ENDINTERFACE.

CLASS lcl_implementer DEFINITION.
PUBLIC SECTION.
INTERFACES: lif_iface.

ENDCLASS.

CLASS lcl_implementer IMPLEMENTATION.
METHOD lif_iface~m1.
...
218 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
ENDMETHOD.

METHOD lif_iface~m2.
...

ENDMETHOD.
ENDCLASS.

Listing 6.12 Implementing an Interface in a Class Definition

Looking closely at the implementation of the LCL_IMPLEMENTER class, you can see
that the inherited methods are qualified with a prefix of the source interface (LIF_
IFACE) and the tilde character (~). The “~” between the interface name and the
interface component name is called the interface component selector operator. This
qualification makes the inheritance relationship(s) clear in cases where a class
might implement multiple interfaces which happen to have components that
share the same name.

When working with the form-based view of the Class Builder tool, we can imple-
ment interfaces by simply plugging in the interface name(s) on the Interfaces tab
as shown in Figure 6.7. Behind the scenes, the Class Builder will automatically
add the inherited components to the class definition and stub out the implemen-
tation section.

Figure 6.7 Implementing an Interface Using the Form-Based View of the Class Builder Tool

Now that you have a better understanding of the nuts-and-bolts of implementing
interfaces, let’s turn our attention back to the implementation of our ZIF_COMPA-
RABLE interface which we’ve been working on in this section. As you can see in
Figure 6.7, we’ve implemented this interface in the ZCL_EMPLOYEE entity object
that we developed in Chapter 5. The intent here is to provide a means of compar-
ing employee objects so that we can sort them.
219

Polymorphism6
The code excerpt contained in Listing 6.13 provides a demonstration of how we
might implement the compare_to() method for our ZCL_EMPLOYEE class. Here, we
chose to define the sort ordering in terms of the employee’s ID value, but we
could have just as easily defined the order in terms of the employee’s last name,
etc. As you can see in the code, the actual comparison is pretty straightforward.
The only trick to make this work is in implementing the widening cast on the
generic io_object parameter. By performing a down cast on the object, we’re
able to address its components (e.g. the get_id()method) in the evaluation logic.

method ZIF_COMPARABLE~COMPARE_TO.
"Perform a widening cast on the comparison object
"so that we can access its components during the
"comparison process:
DATA(lo_employee) = CAST zcl_employee(io_object).

"Compare the two employees based on their ID number:
IF me->get_id() > lo_employee->get_id().
rv_result = 1.

ELSEIF me->get_id() < lo_employee->get_id().
rv_result = -1.

ELSE.
rv_result = 0.

ENDIF.
endmethod.

Listing 6.13 Implementing the compare_to() Method

Ultimately, implementing an interface is rather like inheriting from an abstract
class: the interface defines the structure of the components and the implementing
class must fill in the implementation. Within the methods themselves, there’s
nothing really special going on—just regular ABAP Objects code as per usual.

New in Release 7.40—The DEFAULT Addition

Over the years, one of the pain points of working with interfaces in ABAP Objects
is that you have to provide an implementation for every method defined by the
interface in the implementing class. While purists would no doubt argue that this
is proper, it does make our job as developers a bit tedious at times.

To address this phenomenon, SAP introduced a new addition to the METHODS
statement in Release 7.40 which can be used to specify whether or not a given
method must be implemented by an implementing class. The code excerpt con-
tained in Listing 6.14 shows how this addition works.
220 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
INTERFACE lif_big_interface.
METHODS:
important_method DEFAULT FAIL,
optional_method DEFAULT IGNORE.

...
ENDINTERFACE.

Listing 6.14 Working with the DEFAULT Addition

In the code excerpt contained in Listing 6.14 we have an interface called LIF_
BIG_INTERFACE which defines a pair of methods called important_method() and
optional_method(), respectively. In the case of important_method(), we want to
ensure that any implementing class does provide an implementation for this
method. With the DEFAULT FAIL addition, the behavior works as it would under
normal circumstances.

In the case of optional_method(), the DEFAULT IGNORE addition makes it possible
for implementing classes to skip over the implementation of this method if
desired. At runtime, if a polymorphic call is made to this method, we won’t see a
runtime error. Instead, the ABAP runtime environment will silently skip over the
method as if the call never took place.

The use of the DEFAULT addition is optional, supporting complete backwards com-
patibility with previously-defined interfaces. Whether you choose to use it to
define your interfaces is up to you, but it can simplify the implementation process
in certain cases.

6.3.4 Working with Interfaces

At this point, we don’t have a lot to show for all the hard work we put into defin-
ing and implementing the ZIF_COMPARABLE interface. However, this doesn’t mean
that interfaces are a waste of time—we just have to learn how to harness their
capabilities in our designs. In this section, we’ll look at a practical example which
uses the ZIF_COMPARABLE interface to create a generic collection class that aggre-
gates/organizes a set of related object instances.

At first blush, you might think that creating a custom collection class is a waste of
time since ABAP already defines a built-in container for object instances with inter-
nal tables. Here, we can create collections of object instances using syntax like that
contained within Listing 6.15. However, while internal tables like lt_employees
provide a convenient mechanism for storing and looping through object refer-
221

Polymorphism6
ences, there are certain things they can’t do. For example, this internal table has no
idea how to sort the employee records it contains. A custom collection class on the
other hand can be enhanced to include this kind of expanded functionality. This is
where the ZIF_COMPARABLE interface begins to show its value.

DATA lt_employees TYPE STANDARD TABLE OF REF TO zcl_employee.

Listing 6.15 Defining an Internal Table with an Object-Based Line Type

If we build our collection class to accept objects that implement the ZIF_COMPARA-
BLE interface, then we have everything we need to build out a generic sort func-
tion within the collection. However, before we get into the nuts and bolts of this,
let’s first take a look at the basic design of our custom collection class. For our first
pass at this, we’ll create a new class called ZCL_COLLECTION which defines three
methods whose names are pretty self-explanatory: add_element() adds an ele-
ment to the collection, remove_element() removes an element from the collec-
tion, and sort() performs an in-place sorting on the elements. As you can see in
the method signatures as well as the mt_elements internal table attribute which
stores the elements internally, all element references are defined in terms of the
generic OBJECT type. This design choice allows us to store any type of object
within our collection.

CLASS zcl_collection DEFINITION.
PUBLIC SECTION.
TYPE-POOLS abap.

METHODS:
add_element IMPORTING io_element TYPE REF TO object,
remove_element IMPORTING io_element TYPE REF TO object

RETURNING VALUE(rv_result) TYPE abap_bool,
sort.

PRIVATE SECTION.
DATA mt_elements TYPE STANDARD TABLE OF REF TO object.

ENDCLASS.

Listing 6.16 Defining the Shell of the ZCL_COLLECTION Class

With this basic framework in place, we can now turn our attention to the sort()
method’s implementation. Listing 6.17 contains an implementation based on the
familiar Insertion Sort algorithm. This simple (though somewhat inefficient) algo-
rithm operates in similar fashion to the way you might sort a hand of playing
cards. Assuming the cards are in unsorted order and lying face down on the table,
you begin sorting by picking up cards one-by-one and inserting them into the
222 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
proper position within your hand (i.e., based on the value of the card). When
applied to the sorting of collection elements, the Insertion Sort algorithm gets the
ordering from the compare_to() method of the ZIF_COMPARABLE interface.

method SORT.
DATA: lo_key TYPE REF TO object,

lo_element TYPE REF TO object,
lo_compare TYPE REF TO zif_comparable,
lo_temp TYPE REF TO object,
lv_i TYPE i,
lv_j TYPE i VALUE 2,
lv_index TYPE i.

"Sort the collection elements using the Insertion Sort
"algorithm:
LOOP AT me->mt_elements INTO lo_key FROM 2.
lv_i = lv_j - 1.
READ TABLE me->mt_elements INDEX lv_i INTO lo_element.
lo_compare ?= lo_element.

WHILE lv_i GT 0 AND
lo_compare->compare_to(lo_key) EQ

zif_comparable=>co_greater_than.
READ TABLE me->mt_elements INDEX lv_i INTO lo_temp.
lv_index = lv_i + 1.
MODIFY me->mt_elements FROM lo_temp INDEX lv_index.

lv_i = lv_i - 1.
READ TABLE me->mt_elements INDEX lv_i INTO lo_element.
lo_compare ?= lo_element.

ENDWHILE.

lv_index = lv_i + 1.
MODIFY me->mt_elements FROM lo_key INDEX lv_index.
lv_j = lv_j + 1.

ENDLOOP.
endmethod.

Listing 6.17 Implementing a Generic Sort Algorithm in the ZCL_COLLECTION Class

Looking closely at the implementation of the sort() method in Listing 6.17, you
can see that we never refer to any particular type of element class within the sort-
ing logic. Instead, we use a widening cast on the element objects in order to ref-
erence them as ZIF_COMPARABLE instances. The target of this widening cast is an
interface reference variable called lo_compare whose static type is defined as ZIF_
COMPARABLE. This interface reference variable allows us to address the object in
223

Polymorphism6
exactly the same way we use object reference variables to address object compo-
nents: via the familiar instance selector operator (->). This is evidenced by the call
to the compare_to() method which drives the sorting logic.

Since the logic in the sort() method is focused on the implementation of the
ZIF_COMPARABLE interface, the only requirement for incorporating element classes
into the collection is that the element class implements the ZIF_COMPARABLE inter-
face. How that element class chooses to implement the comparison logic is com-
pletely irrelevant to the ZCL_COLLECTION class; it just assumes the element classes
know what they’re doing.

Note

The ZIF_COMPARABLE implementation validation is enforced in the add_element()
method using features that we haven’t yet covered in this book. You can find detailed
information about the approach we’re taking here in the ZCL_COLLECTION class con-
tained within the book’s online source code bundle.

Though we could have achieved similar results using regular class-based inheri-
tance, such a design approach would have limited the usefulness of the collection
because it would have restricted us from being able to incorporate element
classes that already have inheritance relationships in place. For example, since the
ZCL_HOURLY_EMPLOYEE class introduced in Chapter 5 already inherits from ZCL_
EMPLOYEE, it couldn’t also inherit from an abstract class such as ZCL_COMPARABLE.
However, since we can implement as many interfaces as we want in an ABAP
Objects class, it’s a trivial matter to incorporate the ZIF_COMPARABLE interface to
extend a class to make it comparable.

6.3.5 Nesting Interfaces

So far, we’ve only considered simple, elementary interfaces. However, it’s possi-
ble to nest interfaces inside of a compound or nested interface. Interfaces embed-
ded inside of a nested interface are called component interfaces. Listing 6.18 shows
an example of the syntax used to nest the component interface LIF_COMPONENT
inside of the nested interface LIF_NESTED. As you can see, interfaces are them-
selves nested using the familiar INTERFACES statement.

INTERFACE lif_component.
METHODS: c1,

c2.
224 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
ENDINTERFACE.

INTERFACE lif_nested.
INTERFACES: lif_component.
METHODS: n1,

n2.
ENDINTERFACE.

Listing 6.18 A Nested Interface Example

We can achieve the same effect for Repository-based interfaces in the form-based
view of the Class Builder tool by plugging in the component interface(s) in the
Includes column of the Interfaces tab as shown in Figure 6.8.

Each of the component interfaces within a nested interface exists at the same
level. So, if a given component interface happens to be nested more than once,
there will only be a single set of the components defined within that component
interface inside the nested interface.

Figure 6.8 Nesting Interfaces in the Form-Based View of the Class Builder

By default, components of component interfaces are not directly visible within
the nested interface. To make these components visible via the public interface,
we must define alias names for the components. Listing 6.19 shows how the
ALIASES statement is being used in the LIF_NESTED interface definition to define
aliases for a pair of methods inherited from the LIF_COMPONENT component inter-
face. With this promotion, the class LCL_NESTED_IMPL is now able to address/
implement the nested methods provided via the LIF_COMPONENT interface even
though it only formally implements the overarching LIF_NESTED interface.

INTERFACE lif_component.
METHODS: c1,

c2.
225

Polymorphism6
ENDINTERFACE.

INTERFACE lif_nested.
INTERFACES: lif_component.
ALIASES: c1 FOR lif_component~c1,

c2 FOR lif_component~c2.
METHODS: n1,

n2.
ENDINTERFACE.

CLASS lcl_nested_impl DEFINITION.
PUBLIC SECTION.
INTERFACES: lif_nested.

ENDCLASS.

CLASS lcl_nested_impl IMPLEMENTATION.
METHOD lif_nested~n1.
ENDMETHOD.

METHOD lif_nested~n2.
ENDMETHOD.

METHOD lif_nested~c1.
ENDMETHOD.

METHOD lif_nested~c2.
ENDMETHOD.

ENDCLASS.

Listing 6.19 Working with Alias Names

Much like we observed in Section 6.1.2, we can also perform casts in assignments
between interface reference variables. For example, Listing 6.20 shows an exam-
ple of how we can perform a narrowing cast between interface reference vari-
ables defined using the static types LIF_COMPONENT and LIF_NESTED introduced in
the code excerpts contained in Listing 6.18 and Listing 6.19. In this case, the nar-
rowing cast is allowed because LIF_COMPONENT is a component interface of LIF_
NESTED.

DATA: lo_component TYPE REF TO lif_component,
lo_nested TYPE REF TO lif_nested.

CREATE OBJECT lo_nested TYPE lcl_nested_impl.
lo_component = lo_nested.
lo_component->c1().

Listing 6.20 Performing Narrowing Casts Using Interface References
226 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Interfaces 6.3
6.3.6 When to Use Interfaces

Since interfaces are expressions of pure design, it can be difficult at times to figure
out when and where to employ them in your own designs. Rest assured you’re
not alone in this: OO enthusiasts have been debating this point for quite some
time. On one side of the argument, you have those who advocate widespread use
of interfaces. Indeed, in the introductory title The Java Programming Language,
4th Edition, the authors assert that “every major class in an application should be
an implementation of some interfaces that captures the contract of that class.”
The other side of the debate takes a softer stance, preferring to use interfaces
more on an as-needed basis (e.g. to implement multiple inheritance).

While we won’t attempt to persuade you one way or another in this debate, we
would be remiss if we didn’t at least highlight a couple of the more common
design scenarios where you might want to consider the use of interfaces. Over
time, we think you’ll find that these design choices will become second nature,
but it helps early on to examine these scenarios up close.

Interfaces vs. Abstract Classes

Since abstract classes are basically interfaces with a bit of reusable implementa-
tion content in tow, it’s only natural for developers to tend to gravitate towards
the use of abstract classes over interfaces. From an implementation perspective,
there’s no doubt about it: abstract classes are definitely easier to work with. Nev-
ertheless, there are times when the extra effort associated with going the interface
route definitely pays off.

Since ABAP Objects doesn’t support multiple inheritance, the only way we can
utilize abstract classes is by directly inheriting from them. This works well when
we’re clearly dealing with main types such as Employee, SalesOrder, or Delivery,
but what about secondary types like the Comparable type we considered in Sec-
tion 6.3? For certain class types, the “is-a” relationship might apply to multiple
types, not just the main type.

To illustrate this concept further, let’s look at a fairly typical example of interface
usage in ABAP Objects: SAP Business Workflow. In Business Workflow, the pro-
cessing logic behind workflow tasks can be defined using the instance methods of
ABAP Objects classes. In order for the workflow engine to be able to communi-
cate with these objects, there’s a requirement that these workflow classes imple-
227

Polymorphism6
ment the SAP standard IF_WORKFLOW interface which defines callback methods the
workflow engine can use to load objects, etc. Though SAP could have opted to
define this functionality in an abstract class (e.g. CL_WORKFLOW), such a design
choice would have limited developers from plugging in just any old ABAP Objects
class into workflow scenarios since such classes might already inherit from some
other base class. On the other hand, adding an implementation of the IF_WORK-
FLOW interface on top of an existing class is relatively easy and doesn’t disturb any
of the existing functionality.

In general, we’d recommend that you model any sort of secondary type using
interfaces. You can usually identify these secondary types by considering whether
they represent a core concept in the object model, or cross-cutting concepts
which are more secondary in nature. For example, when we implemented the
ZIF_COMPARABLE interface in the ZCL_EMPLOYEE in Section 6.3.3, we didn’t change
the main concept of employee types; we just said that these employee types are
also comparable. You can think of this as an “is also” relationship.

Using Interfaces to Hide Implementation Details

As we learned in Section 6.3.4, clients can use interface reference variables to
address object instances polymorphically. While this may not seem all that inter-
esting at first, it turns out that there are lots of interesting things we can do with
this capability.

One common way that developers exploit this feature is by creating factories
which clients can use to obtain instances of objects that implement a particular
interface. If you’ve ever worked with the iXML library for XML parsing in ABAP,
you’ve seen an example of this design pattern in practice. The code excerpt con-
tained in Listing 6.21 demonstrates how the CL_IXML factory class is used to
obtain access to the iXML library. As you can see, on the client side we deal exclu-
sively with the interfaces defined by the iXML library: IF_IXML, IF_IXML_DOCU-
MENT, and so forth. Such interfaces define the core functionality of the iXML
library in abstract terms.

DATA lo_ixml TYPE REF TO if_ixml.
DATA lo_document TYPE REF TO if_ixml_document.
lo_ixml = cl_ixml=>create().
lo_document = lo_ixml->create_document().
...

Listing 6.21 The Factory Pattern Applied to the SAP iXML Library
228 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Advanced Class Diagrams Part II 6.4
The reason SAP went to the trouble of creating all of these interfaces was to pro-
vide an abstraction around a delicate XML parsing library that’s built on top of
kernel modules (i.e., modules written using C/C++ native code in lieu of ABAP).
By defining the API in terms of interfaces, SAP is able to shield customers from
the underlying implementation details. As a result, if SAP decided to scrap the
kernel module approach and re-write the library, they could easily do so and sim-
ply plug in the new concrete classes at runtime via the create() factory method
of class CL_IXML.

While customers might be less likely to encounter direct requirements like this in
practice, we’d encourage you to think about how the use of interfaces might
improve the flexibility of APIs you decide to develop in-house. As we progress
further in the book, we’ll encounter several other examples of this to give you a
better sense of the benefits of this kind of design pattern.

6.4 UML Tutorial: Advanced Class Diagrams Part II

In this section, we’ll complete our coverage of UML class diagrams by introducing
the notation for working with interfaces and their components.

6.4.1 Interfaces

The notation for defining interfaces in a UML class diagram is almost identical to
the one used to define classes. The only difference is the addition of the << inter-
face >> tag in the top name section of the interface notation (see Figure 6.9).

Figure 6.9 Notation for Defining Interfaces

The relationship between a nested interface and its component interfaces is
shown using the same generalization notation used to depict inheritance relation-
ships. For example, in Figure 6.10, the Nested interface is inheriting the compo-
nents from interface Component.

<< interface >>
Comparable

+ compareTo(o: Object): Integer
229

Polymorphism6
Figure 6.10 Notation for Defining Nested Interfaces

6.4.2 Providing and Required Relationships with Interfaces

Figure 6.11 shows the two kinds of relationships that a class can have with an
interface. The dashed line between class Employee and interface Comparable indi-
cates that class Employee provides (or implements) the Comparable interface. Notice
how the notation for this relationship is similar to the one we’ve seen for general-
ization relationships. In this case, the interface Comparable represents one kind of
generalization for class Employee. Implicitly, this tells us that we can substitute
instances of class Employee in places where the interface Comparable is used. The
dashed arrow between class Collection and interface Comparable represents a
dependency, indicating that class Collection requires the Comparable interface in
some way. As we witnessed in Section 6.3.4, this dependency exists in method
sort(), which performs comparisons between collection elements using the com-
pareTo() method defined in interface Comparable.

<< interface >>
Component

<< interface >>
Nested
230 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Advanced Class Diagrams Part II 6.4
Figure 6.11 Defining Providing and Required Relationships

6.4.3 Static Attributes and Methods

Whether we’re defining them at the class level or the interface level, we can iden-
tify static components within a class diagram by simply underlining them. Figure
6.12 illustrates this notation for a standard utilities class provided by SAP called
CL_ABAP_CHAR_UTILITIES.

Collection

+ compareTo(o: Object) : Integer
+ add()
+ remove()
+ sort()
...

<< interface >>
Comparable

+ compareTo(o: Object) : Integer

Employee

+ compareTo(o: Object) : Integer
...

Requires
Interface

Provides
Interface
231

Polymorphism6
Figure 6.12 Defining Static Attributes and Methods

6.5 Summary

This chapter concludes our basic introduction to object-oriented programming.
In many ways, the powerful designs that we learned to implement in this chapter
represent part of the big payoff for all of the hard work that goes into designing
families of abstract data types. As we progress further throughout the book, we’ll
see many more examples that demonstrate how the three main pillars of OOP
(encapsulation, inheritance, and polymorphism) allow us to implement designs
that can stand up to any changes that may come along over time. In the world of
business software, such flexibility is vital for keeping pace with ever-changing
business requirements.

In the next chapter, we’ll look at ways to take these abstractions to the next level
as we consider how to organize our class libraries into high-level software com-
ponents using the SAP package concept.

CL_ABAP_CHAR_UTILITIES

+ newline
+ cr_lf
+ form_feed
+ backspace
...

+ endian_to_number_format()
+ number_format_to_edian()
...
232 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

A component-based approach to software design breaks a system down
into a series of logical components that communicate using well-defined
interfaces. When designed properly, these components become reusable
software assets that can be mixed and matched to rapidly adapt to ever-
changing business processes. In this chapter, we’ll look at ways to imple-
ment component-based designs in ABAP.

7 Component-Based Design Concepts

Now that you’ve learned the basic principles of object-oriented software develop-
ment, we can begin to broaden our focus by looking at ways of organizing class
libraries and their related resources into reusable software components. This pro-
cess begins with the assignment of classes to modular software units called pack-
ages. Packages bring structure to the ABAP development process, transforming
fine-grained code libraries into more coarse-grained development components.

In this chapter, you’ll learn how to create and work with packages. You’ll also see
how packages fit into the overall SAP component-based software logistics model.
Collectively, these concepts will help you keep your software catalog organized as
class libraries evolve over time.

7.1 Understanding the SAP Component Model

To understand how to effectively implement component-based software designs
in an ABAP development environment, it’s helpful to spend a little bit of time
reviewing the component model that SAP uses to manage their own software
logistics. As you can see in Figure 7.1, SAP assembles its software products using
high-level software units called software components. Software components are
comprised of a series of packages which organize the development objects that
provide the actual implementation part of the system (e.g., classes, function
groups, ABAP Dictionary objects, etc.).
233

Component-Based Design Concepts7
Figure 7.1 The SAP Component Model for ABAP Software Logistics

Each of the component model elements depicted in Figure 7.1 exist in versions.
To put this into perspective, let’s consider the architecture of one of the more
well-known products in the SAP landscape: SAP ERP. At the time of this writing,
most SAP customers are running version 6 of this product, with various enhance-
ment packages and support packages installed on top of it. Underneath the hood,
an SAP ERP product installation consists of a series of installed software compo-
nents which also exist in versions: SAP_APPL, SAP_HR, and so forth. You can see
which software component versions are installed on any SAP Business Suite sys-
tem by selecting System � Status in the top-level menu bar and clicking on the
Component Information button as shown in Figure 7.2.

Software Component Versioning Concepts

Looking closely at Figure 7.2, you can see that there are multiple dimensions to a soft-
ware component’s version:

� Release Number

� Support Package (SP) Level

� Support Package Patch (SPP) Level

Product

Software
Component

Package

Development
Objects

n

n

n

1

1

1

234 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Understanding the SAP Component Model 7.1
This versioning scheme is consistent with the major, minor, build, revision scheme
you’ve probably seen in other software products. With such a large customer base, SAP
needs to be able to issue periodic support packs which bundle together a series of fixes
for a particular software component version. Such changes are meant to be of the break/
fix variety and shouldn’t disturb day-to-day activities within the enterprise. Support
pack patches are similar to hot fixes where SAP issues a patch to correct a reported
product defect.

Figure 7.2 Browsing the Installed Software Components in an SAP System

If we dissect a particular software component version, we’ll find a series of ABAP
development objects which are organized into packages. Since each of these
development objects exist in versions, we can think of a software component ver-
sion as a snapshot of related development objects which were bundled together
235

Component-Based Design Concepts7
to create an installation unit. Such software components are then logically
grouped together into a product version.

From a logistics perspective, adopting a layered approach to system design offers
many advantages. First of all, it helps organize the software into logical pieces
that are encapsulated and therefore easier to work with. This is particularly
important for large organizations like SAP which employ development teams
working on interrelated projects around the globe. Secondly, it promotes the
reuse of common components in other systems. Within the SAP Business Suite,
we see many examples of this with foundational components such as the SAP_
BASIS and SAP_ABA components being reused across SAP Business Suite solutions
such as SAP Customer Relationship Management (SAP CRM), SAP Supply Chain
Management (SAP SCM), and so on. Finally, it makes the software more extensi-
ble because defined dependencies between components make it easier to deter-
mine how to integrate new or revised components into the system.

In the sections to follow, we’ll see how these concepts can also be applied on a
smaller scale to custom ABAP development performed at customer sites. Here,
even though the goal may not be to produce a commercial product, the need for
component-based encapsulation applies just the same.

7.2 The Package Concept

Prior to Release 6.10 of the SAP Web Application Server (today called the AS
ABAP), all development objects within the ABAP Repository were grouped
together into logical containers called development classes. Development classes
(which are in no way related to classes in the OO paradigm) provided a simple
way for organizing related development objects by functional area. In Release
6.10, SAP replaced development classes with packages and the so-called package
concept.

At the time, the introduction of the package concept was not met with much fan-
fare because most developers mistakenly assumed that the term “package” was
just a new name given to development classes. However, as we’ll learn in this sec-
tion, the package concept brings much more to the table than just a folder-like
organizational structure. When used properly, the package concept allows devel-
opers to organize development objects into coarse-grained and reusable develop-
ment components.
236 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
7.2.1 Why Do We Need Packages?

Throughout this book, we’ve seen how the OO development approach lends
itself towards the creation of lots of small, individualized classes, interfaces, and
related artifacts. This is a far cry from the old days of ABAP where the main units
of development were large, monolithic ABAP report programs, classic Dynpro-
based module pool programs, and the occasional subroutine pool or function
group.

While such decomposition is undoubtedly a good thing, there is a natural side-
effect: modern ABAP development projects produce lots of custom development
objects that we must account for. So much so that it’s no longer realistic to think
that we can organize objects using specialized naming conventions or functional
area-specific development classes/packages (e.g., ZFI for financial accounting-
related artifacts, ZHR for human resources, and so forth).

This phenomenon is brought into sharp relief when you consider the number of
artifacts generated in say a Web Dynpro ABAP (WDA) application. Here, in even
the simplest of application scenarios, we might produce upwards of 25-30 custom
objects when you consider the WDA-related artifacts themselves, ABAP Dictio-
nary objects, helper classes, and so forth. If we multiply that number by the num-
ber of custom applications we might build in a particular functional area (e.g.,
logistics), it’s plain to see how a given package can fill up in a hurry. For develop-
ers unfamiliar with the history of the development objects contained within these
packages, it can be very difficult to figure out what goes with what after the fact.
Even if we try to re-organize such large packages into smaller sub-packages, this
approach eventually breaks down too because it fails to address the main prob-
lem: the development objects within a package require boundaries.

In many ways, these logistical problems are not unlike the ones we observed in
Chapter 3 when we looked at encapsulation concepts. For example, if we com-
pare the organization of development objects into development classes/packages
with the functional decomposition process used to break large, monolithic pro-
grams into subroutines/procedures, we can see that neither process really estab-
lishes any sort of boundaries. Whenever we build applications and libraries, we
definitely want to group related development objects together, but we also want
to be able to restrict access to objects which are part of the underlying implemen-
tation and subject to change. Packages allow us to achieve both of these objec-
tives. We’ll see how this works in the sections to come.
237

Component-Based Design Concepts7
7.2.2 Introducing Packages

Within the Package Concept, there are three types of packages we can use to
organize development objects: structure packages, main packages, and develop-
ment packages. These package types and their interrelationships are depicted in
Figure 7.3. We’ll describe each of these package types in detail in the following
subsections.

Figure 7.3 Structure of the ABAP Package Hierarchy

Structure Packages

Structure packages, as the name suggests, are used to provide structure around
lower-level packages within the hierarchy. Within the Package Concept, structure
packages are closely aligned with the encapsulating software component (refer
back to Figure 7.1). For example, the structure package ABA encapsulates all of the

Structure
Package

Main
Package

Development
Package

Development
Objects

n

n

n

n

1

1
1

1

Development
Package

Development
Objects

n

n

1

238 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
packages/development objects contained within the SAP_ABA software compo-
nent. Though this is the typical use case, we should point out that structure pack-
ages can generally be used any time you want to organize a large scale develop-
ment effort. For customers who aren’t interested in re-selling software
components, this might imply the use of structure packages to organize develop-
ment objects by functional area (having the same general positioning as the devel-
opment classes of old).

Regardless of how they’re used, it’s important to bear in mind that structure pack-
ages are not extensible in the sense that you can’t embed development objects
directly beneath them. Instead, we can only embed other packages within a given
structure package.

Main Packages

Underneath structure packages, we can further organize our development into
high-level modules called main packages. Main packages are typically used to
group development objects by function. Development objects embedded inside a
main package are logically related in some way. Often, a main package is used to
group together modules related to the development of complex applications.
However, main packages, just like structure packages, cannot have development
objects embedded directly beneath them (refer to Figure 7.3).

Development Packages

At the bottom of the package hierarchy, we have development packages. It’s at this
level that we can begin embedding ABAP development objects (e.g., classes, func-
tion groups, ABAP Dictionary objects, and so forth). Such assignments occur
within the ABAP Workbench tools whenever new development objects are cre-
ated. This is highlighted in Figure 7.4 where you can see that a package assign-
ment is a required attribute in the Create Object Directory Entry screen.

Within the package concept, development packages are used to organize develop-
ment objects that are closely related to one another. For example, if we were to
use ABAP Objects classes to model some business object (e.g. a material) then it
would probably make sense to bundle these classes, their related ABAP Dictio-
nary objects, and so on within the same development package.
239

Component-Based Design Concepts7
Figure 7.4 Assigning ABAP Repository Objects to Packages

Ultimately, the goal in defining development packages is to maintain a reasonable
level of cohesion with the underlying development objects. There’s no restriction
on the number of development packages that we can create within the system, so
developers shouldn’t be afraid to create as many of these packages as they need to
keep things organized.

Over time, these package assignments may change as the software architecture
evolves, and that’s OK. At the end of the day, we want to make it easy for devel-
opers to find development objects without having to consult naming convention
guides and the like. If we get the right cut for our development packages, the pro-
cess of locating development objects should be rather intuitive.

7.2.3 Creating Packages Using the Package Builder

Packages can be maintained in one of two places: directly within the ABAP Work-
bench (Transaction SE80) or in the standalone Package Builder transaction (Trans-
action SE21). Figure 7.5 shows the initial screen of the Package Builder with the
familiar Create, Change, and Display functions. Once you get past this initial
screen of the Package Builder, the look-and-feel is largely the same in both trans-
actions. As such, most developers will prefer to work within the ABAP Work-
bench directly due to its handy context-sensitive features.
240 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
Figure 7.5 Package Builder Transaction: Initial Screen

Within the ABAP Workbench, you can create a new package by performing the
following steps:

1. On the left-hand side of the screen, select the Repository Browser view if it’s
not selected already. From here, select the Package option in the object list as
shown in Figure 7.6.

Figure 7.6 Creating a New Package (Part 1)
241

Component-Based Design Concepts7
2. Next, in the input field directly beneath the object list box, enter the name of
your new package (e.g., ZPKGDEMO) and press the (Enter) key. This will open up
the Create Package dialog box shown in Figure 7.7. In this case, we want to
click on the Yes button to proceed with the creation of the new package.

Figure 7.7 Creating a New Package (Part 2)

3. At the Create Package screen shown in Figure 7.8, we must specify the basic
attributes for our new package. We’ll explore the purpose of these attributes
momentarily. In any case, once the attributes are set, we can click on the button
with the green checkbox on it to continue.

Figure 7.8 Creating a New Package (Part 3)

4. Finally, after assigning the package to a transport request, we’ll end up with an
empty package in the object list as shown in Figure 7.9. To edit this package,
242 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
we can simply double-click on it just like any other object in the ABAP Work-
bench.

Figure 7.9 Creating a New Package (Part 4)

Now that you know how packages are created within the ABAP Workbench, let’s
examine some of the various attributes that make up a package definition
(Table 7.1). These attributes correspond with the ones entered on the input
screen shown in Figure 7.8.

Attribute Name Description

Short Description This attribute is used to provide a short text
description for the package and its intended use.

Application Component This attribute is used to align a package within
an application component in the SAP Applica-
tion Hierarchy. We’ll explore the benefits of this
assignment a little bit later on in this section.

Table 7.1 Attributes of Packages
243

Component-Based Design Concepts7
Software Component This attribute is used to assign the package to a
software component (refer back to Figure 7.1 to
visualize this relationship).

Transport Layer This attribute is used to link a package (and by
extension its embedded development objects)
with a transport layer definition in the SAP
Change and Transport System (CTS). If you’re not
familiar with the CTS, suffice it to say that a
transport layer definition defines the transport
path which guides changes through the land-
scape (e.g., from development to QA to pro-
duction).

Superpackage This attribute is used to embed a given package
underneath an existing one. We’ll explore this
concept further in Section 7.2.4. Here, we’ll
also find that the ABAP Workbench will implic-
itly fill this attribute out for us whenever we
create sub-packages using the contextual flyout
menus.

Package Type As the name suggests, this attribute is used to
define the package type. Here, we can choose
between structure packages, main packages, or
development packages (see Figure 7.8).

Package Encapsulated This Boolean attribute was added in the SAP
NetWeaver 7.3x release. Whenever this flag is
set, the ABAP development tools enforce strict
encapsulation within the package. This implies
that ABAP clients cannot address development
objects within the package unless the objects
are exposed via the package’s interface. In
object-oriented terms, this setting introduces
the concept of visibility sections within a pack-
age definition. We’ll explore this idea in further
detail in Section 7.2.5 and Section 7.2.6,
respectively.

Attribute Name Description

Table 7.1 Attributes of Packages (Cont.)
244 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
Aligning Packages with the SAP Application Hierarchy

If you’ve worked around SAP software very long, then you’ve probably encoun-
tered the SAP Support Portal (available online at https://support.sap.com). Among
other things, this portal provides customers with links to download SAP software
products, search for notes/knowledge base articles, and report product defects.
Though the portal is designed to make it easy for customers to search for relevant
items, it certainly helps to understand how the SAP software catalog is organized.
Otherwise, it can feel like you’re searching for a needle in a haystack.

Internally, SAP organizes its software catalog into logical application components
which are in turn organized into a hierarchy called the SAP Application Hierarchy.
Using this hierarchy, we can quickly narrow down the scope of our search to
components within a particular application area. For example, when searching
for SAP Notes related to purchase orders, we could plug in the MM-PUR-PO appli-
cation area as shown in Figure 7.10 and Figure 7.11. Here, we’re narrowing
down the search to Materials Management application area first, then the Purchas-
ing application area, and then specifically Purchase Orders. Of course, if you don’t
know the target area(s) offhand, you can also use wildcards (e.g., the asterisk “*”
character) to broaden the scope of your selection.

Figure 7.10 Searching for SAP Notes by Application Area (Part 1)
245

Component-Based Design Concepts7
Figure 7.11 Searching for SAP Notes by Application Area (Part 2)

So what does all this have to do with packages? Well, since package definitions
contain an application component attribute, we can technically align them with
the SAP Application Hierarchy as well. This allows users to search for develop-
ment objects by application area in a couple of different ways:

1. Within the Repository Browser perspective of the ABAP Workbench, we can
search for particular types of development objects (e.g. classes) within a partic-
ular application component (or set of application components if we use the “*”
246 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
wildcard operator on the end of the search expression). This is demonstrated in
the screen capture shown in Figure 7.12. Here, we’re searching for custom
employee classes created within the CA-HR application area (or subareas). Using
this approach, we don’t really have to guess at the naming convention of the
classes, which package they might reside in, etc. Instead, we just look for
classes in their logical application area and whittle down the list from there.

Figure 7.12 Searching for Development Objects by Application Area

2. If a more hierarchical search method is preferred, users can search for relevant
development packages using the Application Hierarchy transaction (Transac-
tion SE81). Here, the SAP application hierarchy is arranged in tree-like form,
allowing users to drill into generic application areas and discover more specific
sub-areas. Figure 7.13 demonstrates how we might use this transaction to pin-
point custom packages within the HR area. From here, we can double-click on
the package names (e.g. ZEMPLOYEE_MODEL) and recursively search for the target
development objects.
247

Component-Based Design Concepts7
Figure 7.13 Searching within the Application Hierarchy

As you can see, this search capability is quite powerful and far superior to simply
relying solely on naming conventions to identify objects. This is particularly the
case for developers coming in off the street who need to orient themselves within
a new customer landscape. Here, while a developer might not be familiar with
naming conventions or object history, they should at least be able to navigate
around within the application hierarchy and narrow down the scope of their
search to objects within a particular application area.

7.2.4 Embedding Packages

In order to build out package hierarchies like the one shown in Figure 7.3, we
must have a way to embed a package within another package. This can be achieved
in several different ways:
248 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
� If we know the name of the superpackage we want to embed a new package in
up front, we can specify its name in the Superpackage attribute shown in Fig-
ure 7.8 (see Section 7.2.3 for a refresher on the package creation process).

� Otherwise, we can embed a package after it’s initially created by opening up
the superpackage in the Package Builder tool and navigating to the Subpack-

ages tab shown in Figure 7.14. From here, we can embed the subpackage by
clicking on the Add existing package button and filling in the subpackage
name in the Enter Package dialog box that pops up. As soon as we click on the
Continue button, the subpackage will be added to the subpackage table con-
tained within the Subpackages tab.

Figure 7.14 Embedding a Package in the Package Builder Transaction

� Another option is to create the subpackage directly within the Subpackages tab
of the superpackage by clicking on the Create button (see Figure 7.14). This
will bring up the familiar Create Package dialog box we reviewed in Section
7.2.3 with the superpackage pre-filled in.

� Finally, we can create subpackages directly within the ABAP Workbench by
selecting the superpackage in the Repository Browser view and then right-click-
ing on the package name and choosing the Create � Packages � Package con-
text menu option shown in Figure 7.15. This also brings up the familiar Create

Package dialog box we reviewed in Section 7.2.3 with the superpackage pre-
filled in.
249

Component-Based Design Concepts7
Figure 7.15 Creating a Subpackage in the ABAP Workbench

7.2.5 Defining Package Interfaces

Typically, we’ll want to build our packages/components like black boxes and hide
as much of the internal development object details as we can. This approach is
partly meant to keep developers from getting their hands on internal objects that
are subject to change, but more focused on highlighting the objects that we do
want to share with clients. By adding these selected development objects to a
package’s interface, we can make it easier for external clients to understand how
a library works without having to comb through each of the individual develop-
ment objects.

To understand how this works, it’s helpful to first see how package interfaces are
created within the Package Builder. Here, the steps are relatively straightforward:

1. Within the Package Builder transaction, navigate to the Package Interfaces tab
and click on the Create button. This will open up the Create Package Inter-

face dialog box shown in Figure 7.16.
250 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
Figure 7.16 Creating a Package Interface (Part 1)

2. Within the Package Interface dialog box, we must provide a name for the pack-
age interface and a brief description. Since the package interface is defined as a
separate object in the ABAP Repository, it’s important that it be given the
appropriate namespace prefix. Aside from that, we mainly want to ensure that
we provide a name which conveys meaning. Click on the Continue button to
finish creating the package interface.

After the package interface is initially created, we can double-click on it to open
up the Change Package Interface view of the Package Builder tool shown in Fig-
ure 7.17. Here, our focus will be mostly on adding/removing elements to the
package interface on the Visible Elements tab. From this tab page, we can use the
toolbar buttons to maintain content (e.g. the Add Element and Remove Element

buttons) or we can use the drag-and-drop capabilities of the ABAP Workbench to
drag over relevant objects from the object list (as demonstrated in Figure 7.17).
Both approaches get us to the same place, though the drag-and-drop approach is
generally faster and easier to work with.

In the case of nested package hierarchies, we can promote development objects
from subpackages into the package interface of superpackages so that we can roll
up related sub-objects into higher-level package interfaces. Here, the embedded
objects get added to the From Subpackages folder shown in Figure 7.18. As is the
case with regular development objects, we can use the toolbar buttons (e.g. the
Add Package Interface button) or the drag-and-drop capabilities of the ABAP
Workbench to add these sub-objects to the package interface (see Figure 7.18).
251

Component-Based Design Concepts7
Figure 7.17 Adding Development Objects to a Package Interface

Figure 7.18 Exposing Objects of a Subpackage in the Package Interface of its Superpackage
252 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
When adding development objects to the package interface, we’ll once again
want to apply the least privilege principle described in Chapter 5. This is to say
that we’ll only want to add the minimum set of development objects outside
packages will need to carry out their work. This approach, combined with the cli-
ent restriction concept we’ll explore in Section 7.2.6, allows us to very neatly lock
down a package and ensure that only selected development objects are exposed.
From a design perspective, this gives us the flexibility to change or remove inter-
nal development objects without having to worry about what kind of problems
this might cause for other programs.

7.2.6 Creating Use Accesses

Frequently, development objects in one package depend on development objects
defined in another package. Prior to the release of the Package Concept, such
dependencies could be created at whim by developers without any restrictions
whatsoever. From a logistics perspective, this was highly problematic since it was
next to impossible to prevent developers from using development objects that
they really shouldn’t be using for one reason or another.

With the Package Concept, we can avoid this problem by creating explicit use
accesses between packages. This can be achieved by performing the following
steps:

1. First, we need to open up the package that contains the development object(s)
that intend to use objects defined in another package in the Package Builder
tool.

2. To create the use access, we need to navigate to the Use Accesses tab shown in
Figure 7.19. Here, we can click on the Create button to create a new use access.

3. In the Create Use Access dialog box, we specify the package interface which
exposes the object(s) we want to leverage and choose an appropriate error
severity. Normally, you’ll want to select the default “No response” value here.

4. Finally, once the properties are set, we can click on the Continue button to for-
mally create the use access.

Once a use access is in place, the system now has information which tells it which
packages plan on leveraging the publicly-exposed objects of other packages. In
the next section, we’ll see how this information can be used to enforce best prac-
tices on ABAP development projects.
253

Component-Based Design Concepts7
Figure 7.19 Creating Use Accesses in Packages

7.2.7 Performing Package Checks

By default, the package interfaces and use accesses we create serve little purpose
other than to formally document a package’s public interface and the way we
intend for it to be used. While this is helpful up to a point, the real value of going
to all this trouble is to be able to enforce best practices in the development pro-
cess. Just as visibility sections lock down access to the components of ABAP
Objects classes, we would like for package interfaces to be able to restrict access
to internal development objects contained within packages.

To enable this kind of functionality, we must turn on the package check using the
instructions provided with SAP Note #648898. Whenever this check is turned on,
any unsolicited accesses to development objects between packages will result in a
package check error.

To demonstrate how this works, imagine that we’ve created a package hierarchy
to contain development objects related to the SAP standard Environment, Health,
and Safety (EH&S) module. Among other things, our extensions to the EH&S mod-
ule will include incident-related objects which have touch points to HR employee
objects (employees might be involved in an incident record, for example). So,
rather than reinventing the wheel, we want to leverage the ZCL_EMPLOYEE entity
254 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
class we introduced in Chapter 5 in a utilities class called ZCL_PERSON_PROXY that’s
used to search for involved persons.

With the package check turned on though, we can’t just arbitrarily access ZCL_
EMPLOYEE from within our EH&S package hierarchy. That’s because access to our
employee package hierarchy is locked down to just include those elements we’ve
purposefully exposed via the package interface(s). So, if we perform a package
check on our ZCL_PERSON_PROXY class (by selecting the Class � Check � Package

Check menu option in the Class Builder tool), we end up seeing an error report
like the one shown in Figure 7.20. This error clearly tells us that we must create
a use access for the ZCL_EMPLOYEE class before we can use it in our EH&S package.

Figure 7.20 Viewing the Results of a Package Check

A Word of Caution

The extended package check is a system-wide setting which has can have widespread
impacts if not configured carefully. For customers that have been violating these kinds
of principles for years, the amount of effort required to clean up the custom packages/
development objects might outweigh the benefits of turning on this check. This doesn’t
mean the check shouldn’t be turned on, but we would strongly recommend that the
development team work very closely with the Basis administrators to make sure that
everyone’s on the same page before proceeding. You can find further details concerning
the impacts in SAP Note #648898.
255

Component-Based Design Concepts7
To correct the package check error, we must go into the EH&S package hierarchy
and define the relevant use accesses (see Figure 7.21). Once these use accesses are
in place, the package check errors go away and everything is right again in the
world.

Figure 7.21 Adding Use Accesses to the HR API From the EH&S Package Hierarchy

In addition to manual package checks performed within the ABAP Workbench,
package checks can also be triggered implicitly via the Extended Program Check
tool (Transaction SLIN) and also via the CTS system during the transport release
process. These checks are put into place to ensure that developers comply with
best practices and declare their package dependencies up front. By doing so,
development organizations can maintain clear visibility of dependencies and
more quickly determine the impacts of migrating code libraries to other SAP Busi-
ness Suite systems, assessing upgrade issues, and so forth.

7.2.8 Restriction of Client Packages

The use accesses we considered in Section 7.2.6 allow client packages to declare
which provider packages they intend on using internally. Sometimes, we might
want to go in the other direction and formally declare within the provider pack-
age which client packages we want to provide access to. While such tight coupling
256 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Package Concept 7.2
is somewhat rare, there will be times whenever it makes sense to lock access
down to a handful of related packages.

Since use accesses are defined in terms of package interfaces, we must restrict
access to client packages at this level. Here, the steps are as follows:

1. First, we first need to open up the target package interface and navigate to the
Properties tab. Here, in the General Properties section, we can restrict access
from client packages by checking the Enable Restriction of Client Packages

checkbox as shown in Figure 7.22.

Figure 7.22 Restricting Access to Client Packages (Part 1)

2. As soon as we click on that checkbox, no client packages will be able to access
the selected package—even if they have a defined use access. To enable access
from client packages, we have to navigate over to the Restriction of Client
Packages tab and plug in the packages we want to provide explicit access to
(see Figure 7.23). Here, in addition to specifying the package itself, we also
have a couple of checkboxes that we can utilize to further specify the nature of
the relationship:

� Point-to-Point Access

If this checkbox is selected, access is only granted to the target package; none
of the package’s superpackages receive implicit access.
257

Component-Based Design Concepts7
� Include Subpackages

When this checkbox is selected, access is implicitly granted to the selected
package’s subpackages. This setting can come in handy whenever access is
being provided to a super/main package whose subpackages are generally
unknown to the provider package. In this way, access is inherited at the sub-
package level and we don’t have to constantly adjust the client package
accesses within the provider package.

Figure 7.23 Restricting Access to Client Packages (Part 2)

7.3 Package Design Concepts

As we’ve learned over the course of this chapter, the Package Concept is quite flex-
ible. While such flexibility is obviously a good thing, it does make it a bit difficult to
formulate a standards guide which determines when to use structured/main pack-
ages, how deep to define a package hierarchy, and so on. The answers to these ques-
tions really does depend on context, and as a result, are subject to change.

Rather than trying to place unnecessary restrictions around the package design
process, we tend to let basic design principles guide our decision making. In his
book UML Distilled, Third Edition, Martin Fowler identifies three basic principles
that you can use to help you design your package architectures:

� The Common Closure Principle states that development objects within the same
package should be changed for the same reasons. This basically re-affirms our
goal of maintaining cohesiveness in software modules (whether they be pack-
ages, classes, or something else).

� The Common Reuse Principle suggests that development objects within a pack-
age should all be reused together.
258 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Package Design Concepts 7.3
� The Static Dependencies Principle advises you to consider how stable your pack-
age is if there are many dependencies flowing into it. For example, if ten pack-
ages are dependent on a single package, it’s important for the interface(s) of
that package to remain stable in order to avoid widespread rippling effects
whenever a change occurs. Here, it’s often useful to define the package inter-
face in terms of interfaces and abstract classes as they provide the flexibility
that’s needed to adapt to changes.

Note

Mr. Fowler credits Robert Cecil Martin’s The Principles, Patterns, and Practices of Agile
Software Development when describing these principles.

Stick to these principles and we think that you’ll remain on track. Also, bear in
mind that you’re not locked into a particular design if you eventually find that it’s
not working for your project. Package relationships, just like classes, sometimes
require refactoring. Fortunately, the ABAP Workbench makes it easy for you to
reassign a development object to another package: just right-click on the target
object and select the Additional Functions � Change Package Assignment

menu option as shown in Figure 7.24.

Figure 7.24 Changing the Package Assignment of Development Objects
259

Component-Based Design Concepts7
7.4 UML Tutorial: Package Diagrams

The component design process can become quite involved, being heavily influ-
enced by the subjective whims of developers that often have conflicting design
goals. Typically, this process evolves over several iterations that gradually reshape
the model to reflect the system that’s being implemented. The UML supports the
documentation of this design process with the package diagram. A package dia-
gram allows you to group related classes and interfaces (and indeed, other devel-
opment objects) into higher-level units called packages. It should be noted here
that the overlap between the term “package” in the UML and the ABAP packages
is purely coincidental. Generally speaking, a UML package is a logical concept
that could be implemented in many different ways by various programming lan-
guages. However, as you’ll see, the ABAP package concept does happen to align
very closely with the UML package construct.

Figure 7.25 Package Diagram for a Web Dynpro ABAP Application

WDA
Framework

Customer UI Travel Agent
UI

Travel Reservation
Model

Travel Reservation
Dictionary
260 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Package Diagrams 7.4
Figure 7.25 shows an example of a package diagram for a simple online travel res-
ervation application built using the Web Dynpro ABAP web application develop-
ment framework. Each of the folder-shaped icons in the diagram is intended to
depict individual packages within the application architecture. The dotted lines
between packages depict dependencies between the packages. The direction of the
line indicates the direction of the dependency. For example the Customer UI and
Travel Agent UI packages both depend on the WDA Framework and Travel Res-
ervation Model packages. Similarly, objects within the Travel Reservation

Model package depend on ABAP Dictionary objects defined within the Travel
Reservation Dictionary package.

We could have used the formal ABAP package names in this diagram, but as you
can see in Figure 7.26, this is optional in the UML. Like many diagrams in the
UML, there are not a lot of restrictions in terms of the notation for a package dia-
gram. For example, the package diagram in Figure 7.26 expands the basic nota-
tion to depict a few of the classes embedded within packages P1 and P2. The famil-
iar “+” and “-” visibility tokens indicate whether or not the classes belong to the
public or private interface of the package.

Figure 7.26 Including Classes in Package Diagrams

P1

P2

- A + B

- C
261

Component-Based Design Concepts7
In the example shown in Figure 7.26, class B has been added to the package inter-
face of package P1. This addition helps us better visualize the nature of the depen-
dency between packages P1 and P2, perhaps showing us that class C is dependent
upon the publicly-exposed class B.

Package diagrams are very useful in illustrating a system design in terms of its
constituent components. If you find that the package diagram for your system
looks like a plate of spaghetti, then it’s likely that your packages are not well
encapsulated and you probably need to refactor your package hierarchy. Conse-
quently, updating your package diagrams periodically is a good way to gauge the
effectiveness of your component designs over time.

7.5 Summary

In this chapter, we learned how to perform component-based software develop-
ment in ABAP. Here, we learned how to apply the Package Concept to encapsu-
late related development objects together into logical software units with defined
interfaces/dependencies. While this requires a little bit of work up front, we
think that you’ll find it very useful in keeping the software catalog clean and easy
to manage. Plus, it aligns quite nicely with our end goal of improving the level of
abstraction that want to deal with when building custom software.

In the next chapter, we’ll take a look at the ABAP class-based exception handling
concept and see how it’s used to encapsulate exception scenarios and isolate
exception handling logic from the normal program flow.
262 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Software programs operate in an environment based on rules. However,
as the saying goes, there’s an exception to every rule. In this chapter, we’ll
explore ways of dealing with exception cases in ABAP programs using the
class-based exception handling concept.

8 Error Handling with Exception Classes

No matter how hard we may try to improve the quality of our code, there’s sim-
ply no way to avoid every type of error that might occur during the execution of
an application. Indeed, some errors are accidentally introduced by programmers
trying too hard to make their applications error-proof. Here, for instance, the
error handling logic obscures the main purpose of the program flow, making the
code harder to understand and maintain, and thus more susceptible to errors.

Generally speaking, error-handling logic is a cross-cutting concern that becomes
tangled within the normal flow of the core application logic. Ideally, we’d like to
be able to de-tangle error-handling logic from the main program flow so that
these two orthogonal concerns can be managed separately. In this chapter, we
will learn how to apply the ABAP class-based exception handling concept to achieve
this kind of separation of concerns.

8.1 Lessons Learned from Prior Approaches

Prior to Release 6.10 of the SAP Web AS, there was not a comprehensive strategy
for dealing with exceptions within the ABAP Objects language. Consequently,
developers were forced to improvise, weaving custom exception-handling code
into their normal program logic. Here, while developers did the best they could
with what they had available to them at the time, the resultant solutions were less
than optimal. In this section, we’ll consider some of the lessons learned from
these early approaches to exception handling in ABAP.
263

Error Handling with Exception Classes8
8.1.1 Lesson 1: Exception Handling Logic Gets in the Way

Without built-in language support for exception handling, developers were left to
build out their exception handling logic using regular procedural code. While this
works in principle, what we usually find is that the exception logic ends up get-
ting in the way of the main program logic. To put this problem into perspective,
consider the code excerpt contained in Listing 8.1. Here, you can see how error-
handling logic has been added to a procedural report program that’s calling a
series of subroutines to perform various tasks. In a contrived example such as
this, it’s not too hard to follow what the program is doing. Still, notice that per-
centage-wise there are many more lines of code devoted to dealing with excep-
tions than the actual program logic. In larger production programs the problem
becomes even more pronounced.

DATA lv_retcode TYPE sy-subrc.
PERFORM sub1 CHANGING lv_retcode.
IF lv_retcode NE 0.

"Error handling logic...
ENDIF.

PERFORM sub2 CHANGING lv_retcode.
CASE lv_retcode.

WHEN 0.
"Operation was successful...

WHEN 1.
"Error handling logic...

WHEN 2.
"Error handling logic...

WHEN OTHERS.
"Error handling logic...

ENDCASE.

PERFORM sub3 CHANGING lv_retcode.
IF lv_retcode NE 0.

"Yet more error handling logic...
ENDIF.

Listing 8.1 Handling Exceptions Using a Manual Approach

Ideally, we’d like to decouple the normal processing logic from the exception
logic so that the two separate concerns remain separate. This makes the code eas-
ier to read and trace through. We’ll explore ways of achieving this throughout
this chapter.
264 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Lessons Learned from Prior Approaches 8.1
8.1.2 Lesson 2: Exception Handling Requires Varying Amounts
of Data

Looking at the code excerpt contained in Listing 8.1, we can see how the various
subroutines are passing back a return code value which signifies whether or not
an exception occurred. In this contrived example, that’s probably all the informa-
tion we need to deal with the error. However, in many cases, we need much more
than just a simple return code; we may also require context about the source of
the error, messages which explain what went wrong, and so forth.

Though we could conceivably add this data as exporting parameters to the sub-
routine/function/method signature, doing so clutters up the interface quite a bit.
This problem is compounded by the fact that different developers may bundle up
these exception parameters in different ways. For example, most BAPI function
modules return an error message table that has the line type BAPIRET2. Internally,
these BAPIs frequently call other standard function modules or subroutines that
do not maintain message table parameters of this type. Consequently, additional
code has to be written in the BAPI function to translate between the various mes-
sage table types. In Section 8.3, we’ll see how to develop exception classes that
encapsulate these details much more efficiently.

8.1.3 Lesson 3: The Need for Transparency

Another problem with ad-hoc exception handling strategies is the fact that it can
be very difficult to identify the types of errors that might occur within a given
module without digging into the code. For instance, considering the subroutines
contained in Listing 8.1, how would a client know what kind of errors might
occur when these are called? Is sub1 dependent on some resource (e.g., a connec-
tion to an external SAP HANA database) that might not be available whenever it’s
called? What happens if sub2 attempts to divide by zero?

From a design perspective, we’d like for the interface of our modules to be more
explicit about the types of errors that can occur within them. After all, excep-
tions are part of the API contract for a module, too. To some degree, certain pre-
vious concepts provide support for this requirement. For example, you can cre-
ate named exceptions for methods and function modules using the EXCEPTIONS
addition. However, these exceptions are essentially static error codes that have
been assigned some semantic meaning inside the method/function module. The
meaning of these exceptions tends to become obscured outside of the scope of
265

Error Handling with Exception Classes8
the defining module, especially when new exceptions are added into the mix.
Recognizing this, SAP decided to implement a new class-based concept for deal-
ing with exceptions that could be used consistently in all ABAP contexts (i.e.
programs, processing blocks, etc.). We’ll learn more about this concept begin-
ning in Section 8.2.

8.2 The Class-Based Exception Handling Concept

As the name suggests, the class-based exception handling concept uses a special
types of ABAP Objects class called an exception class to encapsulate exception sit-
uations that may occur within a program. These classes are integrated into a
framework that makes it easier for you to separate the exception-handling aspects
of a program from the core functional aspects of the program. This framework is
orchestrated by the TRY control structure whose form is given in Listing 8.2.

DATA lo_ex TYPE REF TO cx_exception_type.
DATA lo_root TYPE REF TO cx_root.
TRY.

"Main programming logic goes here...
CATCH cx_exception_type INTO lo_ex.

"Exception handler block
lo_ex->...

CATCH cx_root INTO lo_root.
"Exception handler block
lo_root->...

CLEANUP.
"Optional cleanup block

ENDTRY.

Listing 8.2 Basic Form of the TRY…ENDTRY Control Structure

The TRY statement separates the normal application flow from the exception-han-
dling flow(s) by creating separate execution/processing blocks. The TRY block con-
tains the normal application code that may trigger various types of exceptions
along the way. These exceptions are handled by special exception handler blocks
called CATCH blocks that contain code that is used to recover from a particular
exception situation in some application-specific kind of way. After an exception is
dealt with, you also have the option of adding a special CLEANUP block to do any
sort of cleanup work that might need to be done before the TRY statement returns
control to the normal program flow. This basic flow of a TRY statement is depicted
in the diagram shown in Figure 8.1.
266 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

The Class-Based Exception Handling Concept 8.2
Figure 8.1 Flow Diagram for TRY Control Statement

In the upcoming sections, we’ll see how all this plays out within various ABAP
programming contexts.

Note

While the class-based exception handling concept does naturally utilize object-oriented
concepts, we should point out that this does not preclude its use in procedural contexts,
too. This is to say that class-based exceptions can be incorporated into subroutines,
function modules, and even event blocks (e.g. the START-OF-SELECTION event in ABAP
report programs).

Main Processing Exception Handling

Statement 1

Statement 2

Statement ...

Start of
TRY Block...

Start of
TRY Block...

Exception
Handler
Block

Exception
Handler
Block

Cleanup

[Caught
Exception?]

[Caught
Exception?]

[Else]

[Else]
267

Error Handling with Exception Classes8
8.3 Creating Exception Classes

Before we begin looking at how exception classes are used to handle exceptions,
it’s helpful to first take a moment to understand how these classesare defined.
Therefore, in this section, we’ll explore the anatomy of exception classes and also
show you how to build your own custom exception classes.

8.3.1 Understanding Exception Class Types

At the end of the day, exception classes are basically just like any other ABAP
Objects class. This is to say that exception classes have attributes and methods,
are maintained in the Class Builder tool, and so on. However, unlike regular
ABAP Objects classes which are descended from the generic OBJECT type, excep-
tion classes descend from one of the three abstract classes defined underneath the
abstract CX_ROOT exception class depicted in Figure 8.2. Aside from this up-front
constraint though, it’s pretty much object-oriented ABAP as per usual.

Figure 8.2 Class Diagram for CX_ROOT Inheritance Tree

<< interface >>
IF_MESSAGE

+ get_text() : string
+get_longtest() : string

CX_ROOT

+ constructor()
+ get_source_position()
+ if_message~get_text()
+ if_message~get_longtext ()

<< interface >>
IF_SERIALIZABLE OBJECT

CX_STATIC_CHECK CX_DYNAMIC_CHECK CX_NO_CHECK
268 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Creating Exception Classes 8.3
In Section 8.3.2 and Section 8.3.3, we’ll find that it’s a pretty straightforward
exercise to create custom exception types by subclassing one of the three abstract
base types depicted at the bottom of the exception class hierarchy shown in Fig-
ure 8.2. For the most part, the biggest challenge here is in determining which
base type to inherit from. Table 8.1 highlights the differences between these
types so that you have a better sense for which type to use in particular circum-
stances.

Exception Class Usage Type

CX_STATIC_CHECK Exceptions of this type are used to represent checked error con-
ditions that may occur within the logic of an application pro-
gram. Such exceptions must either be explicitly declared in a
procedure’s interface using the RAISING addition or handled
locally within a TRY statement. If an exception of this type is not
properly handled, the compiler will issue a warning during the
syntax check.

CX_DYNAMIC_CHECK Exceptions of this type are used to represent unchecked error
conditions that likely stem from errors in the program logic. For
example, the standard exception class CX_SY_ZERODIVIDE is
used to represent a situation where a division operation was
attempted with a divisor whose value is 0.

Realistically speaking, this kind of error should not happen, and
if it does, it might not be possible to recover from it gracefully.
Moreover, since a mathematics-intensive program could pro-
duce this kind of error in almost every statement, it’s not practi-
cal to handle all of the possible exceptions that might occur.
Therefore, exceptions of this type do not have to be explicitly
handled and are not subject to static syntax checks at compila-
tion time. Of course, failure to properly handle such an excep-
tion will ultimately result in a runtime error.

CX_NO_CHECK Exceptions of this type are similar to ones deriving from CX_
DYNAMIC_CHECK. The primary difference is that these kinds of
exceptions are automatically forwarded if they are not explicitly
handled locally in a TRY statement. In other words, the RAISING
clause of a method, subroutine, etc. implicitly contains the CX_
NO_CHECK addition in its signature, so it is not possible to add
additional subordinate classes of this type to the signature of a
procedure.

Table 8.1 Base-Level Exception Types in ABAP
269

Error Handling with Exception Classes8
Though there are many different schools of thought concerning the creation of
exception types, we recommend that you define most of your custom exception
types in terms of the CX_STATIC_CHECK superclass. Using this approach, you
improve the readability/documentation of your code by explicitly calling out the
types of exceptions that can be raised from within your module(s).

8.3.2 Local Exception Classes

Now that you have a sense for how exception classes are defined, let’s take a look
at what it takes to create a local exception class. Like any local class types, local
exception types are non-reusable types that are unique to a particular application
(i.e. a report).

As you can see in Listing 8.3, the syntax used to create a local exception type mir-
rors that of any local class definition which inherits from some base class type.
This minimal syntax is all that’s required to create the custom local exception
type; the base-level functionality is inherited from CX_STATIC_CHECK in this case.
Though it’s technically possible to expand the definition of the subtype, SAP rec-
ommends that you do not define additional methods and/or redefine inherited
methods in local exception classes.

CLASS lcx_local_excpetion DEFINITION
INHERITING FROM cx_static_check.

ENDCLASS.

Listing 8.3 Defining a Local Exception Class

Looking at the class definition in Listing 8.3, you can see that the naming conven-
tion for local class types is LCX_{some_meaningful_name}. In this case, the LCX pre-
fix is used to distinguish between local exception classes and regular local classes
whose name starts with the LCL prefix.

8.3.3 Global Exception Classes

Most of the time, whenever we define exception classes, we’ll prefer to create
them globally in the ABAP Repository so that we can reuse them in other con-
texts. Global exception classes, like other global class types, are defined using the
Class Builder tool, which adjusts to the Exception Builder perspective whenever
you’re editing an exception class.
270 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Creating Exception Classes 8.3
As you can see in Figure 8.3, the Create Class dialog box looks a bit different
whenever the Exception Class type is selected. Here, you enter a name for the
exception class, the superclass (which must be defined as one of the three base
exception class types CX_STATIC_CHECK, CX_DYNAMIC_CHECK, or CX_NO_CHECK or a
subclass of those types), as well as some familiar fields that have been used to
define other global classes. The With Message Class checkbox is used to include
support for the integration of messages defined within a message class (i.e. in
Transaction SE91). We will discuss this option in further detail in Section 8.3.4.

Figure 8.3 Creating Global Exception Classes in the Class Builder

Exception classes must be named according to the convention <namespace>CX_
{meaningful_name}. So, for example, when defining an exception class in the
default customer namespace, the name would start with the prefix “YCX_” or
“ZCX_”.

Once an exception type is created, you can edit it using the Exception Builder per-
spective just as you would any normal global class type. For example, in Figure
8.4, you can see how all the same tab pages are provided when editing exception
classes. With that being said, there are a couple of notable nuances to be aware of
when editing exception class types:
271

Error Handling with Exception Classes8
� The auto-generated constructor() method cannot be edited like the construc-
tor() methods of regular class types. This is by design since SAP wishes to
guarantee that the constructor of any exception type contains a consistent
interface that makes it possible to create new instances using the RAISE EXCEP-
TION statement.

� Any public attribute defined on the Attributes tab will be dynamically added
as an importing parameter to the auto-generated constructor() method. The
implementation of the constructor() method will also be adjusted to ensure
that the importing parameter value is mapped to the corresponding instance
attribute at runtime.

Figure 8.4 Editing an Exception Class Using the Exception Builder

Unlike local exception types which SAP recommends to keep pretty basic, there’s
nothing stopping us from expanding on global exception classes to better encap-
sulate specific exception conditions. Here, for example, we can define additional
instance attributes to capture more details about the error condition as well as
helper methods to lookup these details and generate formatted output messages.
While the details will vary from exception class to exception class, the main take-
away from this is that you shouldn’t be afraid to flex your new-found OOP skills
towards the creation of exception class hierarchies and frameworks which make
it easier to deal with exceptions. After all, what’s the point of doing this object-
oriented if we don’t take advantage of OO techniques in the code?
272 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Creating Exception Classes 8.3
8.3.4 Defining Exception Texts

Ideally, whenever an exception occurs, we’d like to be able to recover from it
gracefully using logic defined within an exception handler block. Unfortunately,
this is not always possible. Indeed, unexpected exception situations often require
human intervention of some kind. Sometimes, this intervention comes in the
form of an error message displayed on a screen; other times, a message is written
to an error log. In either case, we need to be able to produce meaningful error
messages in order for someone to be able to investigate the problem. The Excep-
tion Builder tool supports you in this endeavor by allowing you to configure
exception texts for global classes.

Exception texts are maintained on the Texts tab of the Exception Builder (see Fig-
ure 8.5). However, behind the scenes, the actual text is stored in the Online Text
Repository (OTR). The OTR is a central storage repository for texts that are defined
within the AS ABAP. Like most reusable texts, OTR texts are translatable, making
them ideally suited for implementing internationalized messages.

Figure 8.5 Defining Exception Texts in the Exception Builder

Within the Exception Builder, each exception text is defined using a unique
exception text ID (i.e. ZCX_CUSTOMER_NOT_FOUND in Figure 8.5). The exception text
ID correlates to a constant attribute with the same name that has the data type
SOTR_CONC. These constant attributes belong to the same namespace as normal
attributes, so it’s a good idea to use the standard naming convention for constants
(i.e., the CO_ prefix) when defining exception text IDs in the Exception Builder. If
you look carefully, you’ll notice that each constant attribute defined in relation to
an exception text ID is initialized with a hexadecimal string value. This value is
the globally unique key of the corresponding text object in the OTR.
273

Error Handling with Exception Classes8
You can define text parameters in your exception texts by surrounding elemen-
tary attribute names between ampersands. For example, the exception text READ_
ERROR from exception class CX_SY_FILE_IO shown in Figure 8.6 contains three
text parameters: FILENAME, ERRORCODE, and ERRORTEXT. At runtime, whenever an
exception of this type is raised, the correspondingly named instance attributes
will be used to generate the READ_ERROR text whenever the get_text() method is
called. This approach naturally helps to produce message texts that are more
meaningful to the end user.

Figure 8.6 Defining Parameterized Texts

8.3.5 Mapping Exception Texts to Message Classes

Beginning with Release 7.00 of the AS ABAP, we now have the option of mapping
exception texts to messages defined within messages classes. This functionality is
enabled up front during the exception class creation process with the selection of
the With Message Class checkbox (see Figure 8.3). Alternatively, you can add in
this support after the fact for existing exception types by manually implementing
the IF_T100_MESSAGE interface, though you may have to forcefully remove any
pre-existing texts in the class to get this to work.

Once this functionality is turned on, we can maintain texts on the Texts tab by
mapping an exception text to a message number in a message class. Such message
classes are maintained outside of the Class Builder using the ABAP Workbench
(Transaction SE80) or Message Maintenance (Transaction SE91). As you can see
in Figure 8.7, the mapping process is pretty straightforward: we simply select a
message class and message number and the text will be brought into context. If
the message in question happens to define attributes, we can also map those attri-
butes to instance attributes from the exception class.
274 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Dealing with Exceptions 8.4
Figure 8.7 Mapping Exception Texts to Messages from Message Classes

The primary benefit for using the message mapping option with your exception
classes is that you can leverage a pre-existing message base that is being main-
tained across the development landscape. Such messages can be maintained with
long text and translated into other languages using the familiar tools provided
with the Message Maintenance transaction.

8.4 Dealing with Exceptions

Whenever an ABAP program is executed, there are two different types of excep-
tions that can occur: exceptions that are raised explicitly using the RAISE EXCEP-
TION statement and exceptions that are raised implicitly by the ABAP runtime envi-
ronment. In either case, we want to try to react to these exceptions and recover as
gracefully as possible. With that in mind, in this section we’ll consider how to use
the TRY statement to trap exception conditions in ABAP programs.

8.4.1 Handling Exceptions

As we learned in Section 8.2, exceptions within the class-based exception han-
dling concept are handled using CATCH blocks. These CATCH blocks are designed to
275

Error Handling with Exception Classes8
handle exceptions of a particular type (or, as we’ll learn, a family of related types).
The exception type is defined in terms of an exception class that’s part of an
inheritance hierarchy based on the generic CX_ROOT superclass.

So how does this work? Well, let’s imagine that a particular type of exception is
raised at runtime. Whenever this exception is triggered, the ABAP runtime envi-
ronment will look to see if the statement that triggered the exception is part of a
TRY block. If it is, then it will look for a CATCH block which defines an exception
type that matches that of the triggered exception. If no match is found, then the
exception will be propagated up the call stack until a valid exception handler is
found. Of course, if no valid handler is found after the call stack is completely
unwound, then a runtime exception is triggered and the program abends/short
dumps.

To put all this into perspective, let’s consider some example code which triggers
a class cast exception at runtime. In Listing 8.4, we’ve created a simple class hier-
archy with a parent class called LCL_PARENT and a child class called LCL_CHILD.
Within the main program logic, we create an instance of LCL_PARENT and then
attempt to copy this reference into an object reference variable of type LCL_CHILD.
At runtime, the ABAP runtime environment will detect the illegal widening cast
and raise an exception of type CX_SY_MOVE_CAST_ERROR. From here, several things
happen in short order:

1. First, the ABAP runtime environment implicitly creates an instance of the CX_
SY_MOVE_CAST_ERROR class and fills it with pertinent information about the
exception condition.

2. Next, a check is made to determine if there’s an appropriate CATCH block which
can handle the error.

3. Finally, since we did have our illegal cast wrapped up in a TRY statement with
a corresponding CATCH block, control is immediately transferred to this CATCH
block and a reference to the dynamically-generated exception object from the
first item on this list is passed to the lx_cast_error variable defined within the
INTO addition.

CLASS lcl_parent DEFINITION.
PUBLIC SECTION.
METHODS: a, b.

ENDCLASS.
276 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Dealing with Exceptions 8.4
CLASS lcl_parent IMPLEMENTATION.
METHOD a.
ENDMETHOD.

METHOD b.
ENDMETHOD.

ENDCLASS.

CLASS lcl_child DEFINITION INHERITING FROM lcl_parent.
PUBLIC SECTION.
METHODS: c.

ENDCLASS.

CLASS lcl_child IMPLEMENTATION.
METHOD c.
ENDMETHOD.

ENDCLASS.

DATA: lo_parent TYPE REF TO lcl_parent,
lo_child TYPE REF TO lcl_child,
lx_cast_error TYPE REF TO cx_sy_move_cast_error,
lv_program_name TYPE syrepid,
lv_include_name TYPE syrepid,
lv_line_number TYPE I,
lv_text TYPE string,
lv_long_text TYPE string.

"Attempt a widening case where the dynamic type of the source
"object reference is not compatible with the static type of the
"target object reference:
TRY.

CREATE OBJECT lo_parent.
lo_child ?= lo_parent.

CATCH cx_sy_move_cast_error INTO lx_cast_error.
"Retrieve information about the exception condition:
lx_cast_error->get_source_position(
IMPORTING

program_name = lv_program_name
include_name = lv_include_name
source_line = lv_line_number).

lv_text = lx_cast_error->get_text().
lv_long_text = lx_cast_error->get_longtext().
...

ENDTRY.

Listing 8.4 Handling a Casting Exception Using the TRY Statement
277

Error Handling with Exception Classes8
As you can see in Listing 8.4, the CX_SY_MOVE_CAST_ERROR instance contains quite
a bit of useful information about the nature of the exception and its origins. Nat-
urally, the type of information carried within a given exception class will vary
depending on the exception type. However, since all exception classes descend
from the CX_ROOT superclass, every exception class is guaranteed to provide the
get_text() and get_longtext() methods of the implemented IF_MESSAGE inter-
face.

How Do I Know Which Exceptions to Catch?

Looking at the code excerpt contained in Listing 8.4, you might be wondering how we
knew to catch the CX_SY_MOVE_CAST_ERROR exception type when performing our cast
operation. Though some of this knowledge comes from experience working with the
class-based exception handling concept, there are a couple of basic rules of thumb you
can consider as you get started.

For exceptions that are triggered implicitly by the ABAP runtime environment, you can
discover which exceptions are triggered for a particular statement when by looking at
the ABAP Keyword Documentation. For example, if you were typing out the code con-
tained in Listing 8.4 and wanted to know what would happen if a widening cast failed,
you could put your cursor on the ?= operator and hit the (F1) key to launch the ABAP
Keyword Documentation. Within this context-sensitive documentation, there will be a
section entitled Exceptions in which you can discover the types of catchable exceptions
triggered by the ABAP runtime environment.

For all other exception class types, we must look within the code to figure out which
exception types might be triggered. While this may seem like a daunting task, it’s actu-
ally not as bad as it sounds provided that the code in question is developed using best
practices. We’ll take a closer look at all this in Section 8.5 when we learn how exception
types are added to method signatures.

Handling Multiple Exceptions within a Single TRY Block

Technically speaking, we can include as many CATCH blocks as we want inside of
a TRY block. So, for example, if we had a logical unit of work where there could be
several different types of exceptions triggered, we might build our TRY block in
similar fashion to the code excerpt contained in Listing 8.5. Here, if any of the
statements within the TRY block raised an exception of type CX_XSLT_ABAP_CALL_
ERROR, CX_XSLT_FORMAT_ERROR, or CX_XSLT_RUNTIME_ERROR, the ABAP runtime
environment would kick in as per usual and scan through the CATCH blocks until
an appropriate handler was found.
278 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Dealing with Exceptions 8.4
TRY.
oref->method1().
oref->method2().
oref->method3().

CATCH cx_xslt_abap_call_error.
...

CATCH cx_xslt_format_error.
...

CATCH cx_xslt_runtime_error.
...

ENDTRY.

Listing 8.5 Handling Multiple Exception Types within a TRY Block

Implementing Generic CATCH Blocks

As you can see in Listing 8.5, we can get pretty granular with our exception han-
dling, defining a CATCH block for any type of exception that might be triggered.
Sometimes though, such granularity is overkill. For instance, in the code excerpt
contained in Listing 8.5, each of the exception types that we’re keying on are
defined as subclasses of a superclass called CX_TRANSFORMATION_ERROR. Depending
on the scenario, we may not care why a transformation failed, we just want to
know an exception occurred so that we can deal with it in a generic kind of way.
In these situations, we can refactor the TRY block to look something like the code
excerpt contained in Listing 8.6.

TRY.
CALL TRANSFORMATION xsl_test...

CATCH cx_transformation_error.
...

ENDTRY.

Listing 8.6 Implementing Generic CATCH Blocks

Whenever we set up CATCH blocks like the one shown in Listing 8.6, we’re basi-
cally informing the ABAP runtime environment that we want to handle excep-
tions of type CX_TRANSFORMATION_ERROR and any exception types that are defined
as a descendant of CX_TRANSFORMATION_ERROR. Note that we use the term “descen-
dant” rather than “child” here because we can traverse far down the exception
class hierarchy if we need to.

Bear in mind that the declaration of a generic CATCH block like the one shown in
Listing 8.6 doesn’t preclude us from also defining a selected number of specific
exception blocks which have a higher precedence than the generic one. To under-
279

Error Handling with Exception Classes8
stand how this works, consider the code excerpt contained in Listing 8.7. Here,
whenever the CALL TRANSFORMATION statement is executed, there could be a num-
ber of exception types triggered. While we want to handle most of these excep-
tion types in a generic way, there could be one or two types that we want to han-
dle differently. For instance, if an ABAP call from within the XSLT transformation
fails, we might want to handle that differently from everything else. To achieve
this separation, we simply define the more specific exception handlers before we
define the more generic exception handler(s). That way, whenever an exception
is triggered, the ABAP runtime environment will work its way through the CATCH
blocks until it finds the most accurate match.

TRY.
CALL TRANSFORMATION xsl_test...

CATCH cx_xslt_abap_call_error.
...

CATCH cx_transformation_error.
...

ENDTRY.

Listing 8.7 Picking and Choosing Specific Exception Types to Listen For

Note

When defining generic CATCH blocks like the ones demonstrated in Listing 8.7, it’s
important to note that generic exception types must be declared after any CATCH blocks
that define exception handlers for subordinate classes. If you think about it, this makes
sense as the more specific exception handlers would never be reached since the system
would first find a matching exception handler for the superordinate class. Still, if all of
this seems confusing, don’t worry; the compiler will tell you where you’ve gone wrong.

Before we move on from this topic, we should warn that while generic CATCH
blocks are highly useful, it’s important not to get too carried away such that you
start ignoring exceptions or throwing away useful information. There’s a balance
that must be struck here, so you really have to think from a defensive program-
ming perspective how far you need to go to reasonably handle the types of excep-
tions that might crop up.

8.4.2 Cleaning Up the Mess

After we’ve recovered from an exception situation in a CATCH block, we may need
to perform some additional cleanup tasks before we hand control back over to the
280 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Raising and Forwarding Exceptions 8.5
normal program flow. For example, consider a program where you’re writing
some data to an output file. Inside a TRY block, you open up a file and start writing
records to it. However, at some point an I/O exception occurs and processing
halts in the TRY block before you get a chance to close the file. In this case, you can
use the optional CLEANUP block to close the file since this block is guaranteed to be
called by the ABAP runtime environment before the TRY statement is exited. A
simplified example of this scenario is shown in Listing 8.8.

TRY.
OPEN DATASET lv_file FOR OUTPUT IN TEXT MODE

ENCODING DEFAULT.

LOOP AT lt_extract INTO ls_record.
TRANSFER ls_record TO lv_file.

ENDLOOP.

CLOSE DATASET lv_file.
CATCH cx_sy_file_io.

"Process I/O errors here...
CLEANUP.

"Make sure that the file gets closed:
CLOSE DATASET lv_file.

ENDTRY.

Listing 8.8 Recovering from an Exception Using the CLEANUP Block

Note that the CLEANUP block in a TRY statement is guaranteed to be called when-
ever an exception occurs regardless of whether or not the system can actually
locate a suitable exception handler in that TRY statement. Prior to exiting, the
CLEANUP block is executed to cleanup any local resources used within the context
of the current TRY statement. As such, it’s highly recommended that you only use
the CLEANUP block for its intended purpose. We should also mention that you’re
not allowed to execute statements that are used to alter the control flow of a pro-
gram such as RETURN, STOP, etc.

8.5 Raising and Forwarding Exceptions

As we noted in Section 8.4, exceptions can be raised either implicitly by the ABAP
runtime environment or explicitly using the RAISE EXCEPTION statement. In this
section, we’ll take a closer look at these two different exception types and see
how they’re propagated to exception handlers.
281

8 Error Handling with Exception Classes
8.5.1 System-Driven Exceptions

As we observed in the code examples contained in Section 8.3, there are a num-
ber of ABAP statements that may trigger an exception at runtime. For example, if
an attempt to write to a file fails via the TRANSFER statement, the ABAP runtime
environment will automatically raise an exception of type CX_SY_FILE_IO. Simi-
larly, a division operation which attempts to divide by zero will raise an excep-
tion of type CX_SY_ZERODIVIDE.

Conceptually speaking, system-driving exceptions such as CX_SY_FILE_IO are clas-
sified as unchecked exceptions because they’re not checked by the ABAP compiler
at compile time. If you think about it, this makes sense since the ABAP compiler
has no way of knowing if an I/O error might occur at runtime. From a develop-
ment perspective, the main take-away from this is that we can’t rely on the com-
piler to warn us that we might have a logic error, etc. Instead, we must follow
best practices with regards to defensive programming and make sure we handle
these exceptions on our own. Also, if you’re new to the class-based exception
handling concept, we’d highly recommend reading through the ABAP Keyword
Documentation and make sure that you’re familiar with the types of exceptions
that particular statements might trigger.

8.5.2 Raising Exceptions Programmatically

While system-driven exceptions may occur from time to time, the majority of
exceptions that we have to deal with are explicitly triggered from ABAP code
using the RAISE EXCEPTION statement. Here, the focus is on dealing with applica-
tion-level logic errors that might occur.

To illustrate how this works, let’s imagine that you’re tasked with building an API
to lookup customer details such as a customer’s credit rating. The input to this
method is the customer’s ID number; the output is the customer’s credit score. A
first cut of this method is provided in Listing 8.9. Here, the first step is to lookup
the customer master record using the ID number provided via the importing IV_
CUSTOMER_ID parameter. However, look at what happens whenever the provided
customer ID is invalid. Since it’s not possible for the method logic to continue
without a valid customer number, a dummy credit rating (i.e. -1) is returned to
the caller. Here, it’s the responsibility of the caller to introspect the value and
determine whether or not the credit rating was valid.
282 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Raising and Forwarding Exceptions 8.5
CLASS lcl_customer DEFINITION.
PUBLIC SECTION.

CLASS-METHODS:
get_credit_rating IMPORTING iv_customer_id

TYPE kunnr
RETURNING VALUE(rv_rating)

TYPE i.
ENDCLASS.

CLASS lcl_customer IMPLEMENTATION.
METHOD get_credit_rating.

"Read the customer master record from the database:
SELECT ...

FROM but000
WHERE partner EQ iv_customer_id.

IF sy-subrc NE 0.
rv_rating = -1.
RETURN.

ENDIF.
...

ENDMETHOD.
ENDCLASS.

Listing 8.9 Handling Errors in Application Logic (Part 1)

As you can see in Listing 8.9, the exception handling approach taken is concep-
tually similar to the anti-pattern related to return code passing we observed in
Section 8.1.2. Here, we’re effectively re-purposing the RV_RATING parameter as a
return code of sorts to inform the user of an error. Of course, we could have also
defined discrete exporting parameters to carry exception details separately, but
the main problem still persists—we need a better mechanism of raising a red
flag and making sure that the caller reacts appropriately. This is where the RAISE
EXCEPTION statement comes into play. With the RAISE EXCEPTION statement, we
can communicate these situations explicitly by raising particular types of excep-
tions.

The basic syntax for the RAISE EXCEPTION statement is given in Listing 8.10. One
on hand, the RAISE EXCEPTION statement behaves similarly to the CREATE OBJECT
statement in that it creates an instance of whatever exception type we specify
using the TYPE addition (e.g., CX_EXCEPTION_TYPE). Here, much like the CREATE
OBJECT statement, you have the option of specifying exporting parameters that
are passed into the constructor of the exception object. On the other hand, the
283

Error Handling with Exception Classes8
RAISE EXCEPTION statement also behaves like a control statement in the sense that
it interrupts the normal program flow by causing the ABAP runtime environment
to begin unwinding the call stack in search of an appropriate CATCH block to han-
dle the exception.

RAISE EXCEPTION TYPE cx_exception_type
[EXPORTING

f1 = a1
f2 = a2
...].

Listing 8.10 Basic Syntax of the RAISE EXCEPTION Statement

Now that we know how to raise exceptions, let’s see how we could go back and
rework the get_credit_rating() method from Listing 8.9 to include support for
class-based exceptions. In Listing 8.11, we start by defining a simple exception
class called LCX_CUSTOMER_NOT_FOUND. Then, after the introduction of the new
exception class, the next major change you’ll notice in the refactored code con-
tained in Listing 8.11 is the amendment to the signature of the get_credit_rat-
ing() method. Here, we’re using the RAISING addition to identify the exception
type(s) that might be raised during this processing of this method. Though this is
an optional addition to the code, it definitely improves the readability of the get_
credit_rating() method.

CLASS lcx_customer_not_found DEFINITION
INHERITING FROM cx_static_check.

ENDCLASS.

CLASS lcl_customer DEFINITION.
PUBLIC SECTION.

CLASS-METHODS:
get_credit_rating

IMPORTING iv_customer_id TYPE kunnr
RETURNING VALUE(rv_rating) TYPE i

RAISING lcx_customer_not_found.
ENDCLASS.

CLASS lcl_customer IMPLEMENTATION.
METHOD get_credit_rating.

"Read the customer master record from the database:
SELECT ...

FROM knb1
WHERE kunnr EQ iv_customer_id.
284 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Raising and Forwarding Exceptions 8.5
IF sy-subrc NE 0.
RAISE EXCEPTION TYPE lcx_customer_not_found.

ENDIF.
...

ENDMETHOD.
ENDCLASS.

Listing 8.11 Handling Errors in Application Logic (Part 2)

Within the method implementation itself, you can see how we’re using the RAISE
EXCEPTION statement to raise the exception whenever the lookup on the customer
master data fails. As soon as we raise this exception, the method processing will
halt and the exception will begin bubbling up the call stack until an appropriate
exception handler is found. This forces clients to deal with the exception head on
as demonstrated in the sample code contained in Listing 8.12.

DATA: lv_customer TYPE kunnr VALUE '1234567890',
lv_credit_rating TYPE i.
lo_customer_error TYPE REF TO lcx_customer_not_found.

TRY.
lv_credit_rating =
lcl_customer=>get_credit_rating(lv_customer).

CATCH lcx_customer_not_found INTO lo_customer_error.
"Handle the error in an application-specific way:
MESSAGE lo_customer_error TYPE 'E'.

ENDTRY.

Listing 8.12 Handling Application-Specific Exception Types

Looking closely at the CATCH block in Listing 8.12, you can see how we’re using a
special variant of the MESSAGE statement to output the exception message. When-
ever this statement is evaluated at runtime, the ABAP Runtime Environment will
silently invoke the if_message~get_text() method to fetch the exception text
and display it on the screen. For certain types of applications, this makes it very
easy to relay error messages on to end users.

Raising Exceptions in the New COND and SWITCH Statements

In Release 7.40, SAP introduced a pair of constructor operators that can be used to
evaluate logical conditions within the context of an initialization operation: COND
and SWITCH. Though semantically similar to the more generalized conditional IF
and CASE statements, the usage context for the COND and SWITCH statements is lim-
ited to introducing conditional logic in variable assignment expressions.
285

Error Handling with Exception Classes8
Depending on the type of assignment(s) we’re performing it could be that the
input data being evaluated doesn’t match any particular pattern. In this case, we
may not be able to reasonably initialize the target variable and therefore need to
raise an exception. Whenever this occurs, we can raise an exception using the
overloaded THROW statement.

The code excerpt contained in Listing 8.13 demonstrates how this syntax works
for the COND statement. Here, we’re evaluating a date value which provided in
plain text format and trying to convert it to an internal ABAP date type. In this
contrived example, we only support two input formats for the date: YYYYMMDD or
MM/DD/YYYY. If the date value doesn’t match up with this format, then an excep-
tion of type LCX_INVALID_DATE_FORMAT is raised using the THROW statement.
Though we’re not passing any parameters into the exception class’s constructor
method, we could have done so by entering the parameters within the parenthe-
sis after the exception class name in the expression in the same way we would do
so using the NEW operator reviewed in Chapter 2.

CLASS lcx_invalid_date_format DEFINITION
INHERITING FROM cx_no_check.

ENDCLASS.

DATA(lv_raw_date) = `06/02/2015`.
DATA(lv_date) =

COND d(WHEN cl_abap_matcher=>matches(
pattern = `\d{8}`

text = lv_raw_date) EQ abap_true
THEN lv_raw_date

WHEN cl_abap_matcher=>matches(
pattern = `\d{2}[/.-]\d{2}[/.-]\d{4}`

text = lv_raw_date) EQ abap_true
THEN
lv_raw_date+6(4) && lv_raw_date(2) &&

lv_raw_date+3(2)
ELSE

THROW lcx_invalid_date_format()).

Listing 8.13 Raising an Exception in a COND Statement Using the THROW Command

The code excerpt contained in Listing 8.14 shows how we can achieve similar
results using the SWITCH statement. Since the syntax is largely the same in both
cases, we won’t re-hash the syntactical particulars of this statement here.

CLASS lcx_language_unknown DEFINITION
INHERITING FROM cx_no_check.

ENDCLASS.
286 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Raising and Forwarding Exceptions 8.5
DATA(lv_message) =
SWITCH string(sy-langu
WHEN 'E'

THEN `Welcome to ABAP Objects`
WHEN 'S'

THEN `Bienvenido a Objetos ABAP`
WHEN 'D'

THEN `Willkommen in ABAP Objects`
ELSE

THROW lcx_language_unknown()).

Listing 8.14 Raising an Exception in a SWITCH Statement Using the THROW Command

8.5.3 Propagating Exceptions

Looking back on the customer credit rating check scenario introduced in Section
8.5.2 (and Listing 8.11), it’s plain to see that there’s really not much the get_cred-
it_rating() method can do if the provided customer ID is invalid. Therefore,
rather than swallowing up the exception or terminating silently in the background,
the method explicitly raises an exception using the RAISE EXCEPTION statement.
This exception is meant to propagate up the call stack so that the caller(s) can deal
with it. Here, notice that we refer to callers in plural since the immediate caller(s)
may also find that they too are unable to deal with the exception.

To put this into perspective, consider the LCL_CUSTOMER_REPORT class contained in
Listing 8.15. This contrived class might be used to generate a customer output
report leveraging features defined in the LCL_CUSTOMER utilities class we created
earlier in this chapter. If you drill through the code, you’ll find that the method
which performs the majority of the heavy lifting –process_customer() – may
encounter the LCX_CUSTOMER_NOT_FOUND exception defined in Listing 8.11. When-
ever this occurs, there’s really no point in continuing with the processing of the
customer, so the method forwards it up the call stack using a hybrid form of the
RAISE EXCEPTION statement. For all of the other exception types that might occur,
it’s assumed that the method is able to handle these internally, so we’re using a
generic catch block for CX_ROOT to swallow these up and prevent them from prop-
agating back to the caller.

CLASS lcl_customer_report DEFINITION.
PUBLIC SECTION.
CLASS-METHODS:

execute.

PRIVATE SECTION.
TYPES: BEGIN OF ty_customer,
287

Error Handling with Exception Classes8
kunnr TYPE kunnr,
...

END OF ty_customer.
DATA mt_customers TYPE STANDARD TABLE OF ty_customer.

METHODS:
read_customer_data,
process_customers,
process_customer IMPORTING is_customer TYPE ty_customer

RAISING lcx_customer_not_found.
ENDCLASS.

CLASS lcl_customer_report IMPLEMENTATION.
METHOD execute.
DATA lo_report TYPE REF TO lcl_customer_report.
CREATE OBJECT lo_report.

lo_report->read_customer_data().

lo_report->process_customers().
ENDMETHOD.

METHOD read_customer_data.
...

ENDMETHOD.

METHOD process_customers.
FIELD-SYMBOLS <ls_customer> LIKE LINE OF me->mt_customers.
DATA lx_root TYPE REF TO cx_root.

LOOP AT me->mt_customers ASSIGNING <ls_customer>.
TRY.

process_customer(<ls_customer>).
CATCH cx_root INTO lx_root.

MESSAGE lx_root TYPE 'E'.
ENDTRY.

ENDLOOP.
ENDMETHOD.

METHOD process_customer.
DATA lx_customer_error TYPE REF TO lcx_customer_not_found.

TRY.
"Fetch the customer's credit rating:
IF lcl_customer=>get_credit_rating(is_customer-kunnr)

GT 550.
...

ENDIF.

"Perform other options which might raise
"different exceptions that we want to handle internally...

CATCH lcx_customer_not_found INTO lx_customer_error.
288 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Raising and Forwarding Exceptions 8.5
"Forward the exception on to the caller:
RAISE EXCEPTION lx_customer_error.

CATCH cx_root.
"Handle the error locally...

ENDTRY.
ENDMETHOD.

ENDCLASS.

Listing 8.15 Propagating Exceptions Using the RAISE EXCEPTION Statement

Any time we propagate exceptions from a method, it’s usually a good idea to
declare our intentions up front by including the target exception types in the
RAISING clause of the method definition. Though we’ve seen some examples of
this already, Listing 8.16 illustrates the syntax more clearly. Here, you can see
that a given method can define many exception types as part of its signature.

METHOD some_method RAISING cx_ex1 cx_ex2 ...

Listing 8.16 Basic Syntax of the RAISING Addition

In practice, we probably want to keep the total number of exceptions within the
RAISING clause to a handful of types. Indeed, if you’re finding yourself defining
more than a few exception types within a method’s signature, it’s a safe bet that
your method is doing way too much and lacks cohesion.

For global classes maintained in the form-based view of the Class Builder tool, we
can add exceptions to a method signature by selecting the method on the Meth-

ods tab and clicking on the Exception button highlighted in Figure 8.8.

Figure 8.8 Adding Exceptions to the Signature of Methods in a Global Class (Part 1)
289

Error Handling with Exception Classes8
This brings up the editor page shown in Figure 8.9. From here, we can add the
necessary global exception types to the signature by simply filling in the excep-
tion class names in the Exception column.

Figure 8.9 Adding Exceptions to the Signature of Methods in a Global Class (Part 2)

8.5.4 Resumable Exceptions

Beginning with Release 7.02 of the AS ABAP, SAP expanded the class-based
exception handling concept to include support for resumable exceptions. As the
name suggests, resumable exceptions are exceptions that can (usually) be dealt
with cleanly enough that we can allow the program flow to resume after we clean
up the mess in a CATCH block.

To demonstrate how this works, let’s consider an example. In Listing 8.17, we’ve
developed a simple report program which contains a couple of local test classes
that are used to upload documents to some specialized document store. Though
database agnostic, our document upload service is highly optimized for the SAP
HANA database, making use of native features such as stored procedures. Within
the code, checks are made to determine if the SAP HANA database is available
(e.g. by reading the value of the built-in cl_db_sys=>is_in_memory_db attribute).
If SAP HANA isn’t available, then a resumable exception is raised to allow clients
to determine if they want to continue on without SAP HANA or cease processing.
Though admittedly contrived, this example gives us a useful demonstration of the
syntax required to implement such a scenario.

REPORT zresumable_test.
CLASS lcx_doc_service_error DEFINITION
290 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Raising and Forwarding Exceptions 8.5
INHERITING FROM cx_static_check.
ENDCLASS.

CLASS lcl_persistence_service DEFINITION.
PUBLIC SECTION.
METHODS:

insert_document IMPORTING iv_file_name TYPE string
iv_mime_type TYPE string
iv_payload TYPE xstring

RAISING RESUMABLE(cx_sy_sql_error).
...

ENDCLASS.

CLASS lcl_persistence_service IMPLEMENTATION.
METHOD insert_document.
IF cl_db_sys=>is_in_memory_db EQ abap_true.

"Call stored procedure to insert the document using AMDP...
ELSE.

RAISE RESUMABLE EXCEPTION TYPE cx_sy_sql_error
EXPORTING

sqlcode = 900
sqlmsg = `SAP HANA is not available. ` &&

`Will process through OpenSQL instead.`.
ENDIF.

"Insert the document using OpenSQL instead...
...

ENDMETHOD.
ENDCLASS.

CLASS lcl_document_service DEFINITION.
PUBLIC SECTION.
METHODS:

constructor,
upload_document IMPORTING iv_file_name TYPE string

iv_mime_type TYPE string
iv_payload TYPE xstring

RAISING lcx_doc_service_error.

PRIVATE SECTION.
DATA mv_session_id TYPE guid_16.
DATA mo_persistence TYPE REF TO lcl_persistence_service.

METHODS:
log IMPORTING iv_message TYPE csequence.

ENDCLASS.

CLASS lcl_document_service IMPLEMENTATION.
METHOD constructor.
TRY.
291

Error Handling with Exception Classes8
me->mv_session_id =
cl_system_uuid=>create_uuid_x16_static().

me->mo_persistence = NEW lcl_persistence_service().
CATCH cx_uuid_error.
ENDTRY.

ENDMETHOD.

METHOD upload_document.
DATA lx_sql_error TYPE REF TO cx_sy_sql_error.
TRY.

mo_persistence->insert_document(
iv_file_name = iv_file_name
iv_mime_type = iv_mime_type
iv_payload = iv_payload).

log(|File "{ iv_file_name }" was uploaded.|).
CATCH BEFORE UNWIND cx_sy_sql_error INTO lx_sql_error.

"Test the nature of the exception to determine
"if we should resume or abort:
IF lx_sql_error->sqlcode EQ 900.

log(lx_sql_error->sqlmsg).
RESUME.

ELSE.
RAISE EXCEPTION TYPE lcx_doc_service_error

EXPORTING
previous = lx_sql_error.

ENDIF.
ENDTRY.

ENDMETHOD.

METHOD log.
WRITE: / iv_message.

ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
DATA(lo_doc_service) = NEW lcl_document_service().
lo_doc_service->upload_document(

EXPORTING
iv_file_name = 'Test.txt'
iv_mime_type = 'text/plain'
iv_payload = CONV xstring(`This is a test.`)).

Listing 8.17 Working with Resumable Exceptions

Looking over the example code contained in Listing 8.17, we can see several new
syntax elements on display that make this flow work:

� Within the definition section of the LCL_PERSISTENCE_SERVICE class, notice
how the signature of the insert_document() method includes the RAISING
292 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Raising and Forwarding Exceptions 8.5
RESUMABLE(cx_sy_sql_error) addition. This addition declares that the insert_
document() method may raise a resumable exception of type CX_SY_SQL_ERROR.

� Next, in the insert_document() method itself, we have a condition check on
the cl_db_sys=>is_in_memory_db attribute to determine if the AS ABAP is run-
ning on top of the SAP HANA database. If not, an exception of type CX_SY_SQL_
ERROR is raised using the RAISE RESUMABLE EXCEPTION statement. Here, the
RESUMABLE addition tells the ABAP runtime environment that we may want to
resume processing after this exception.

� In the calling upload_document() method of class LCL_DOCUMENT_SERVICE,
we’ve wrapped the call to insert_document() inside of a TRY statement. Here,
notice how we’re using the BEFORE UNWIND addition of the CATCH statement to
inform the ABAP runtime environment that we want to hang onto the process-
ing context from which the exception was raised so that we can essentially pick
up where things left off after we deal with the exception.

� Finally, within the CATCH block, you can see how we’re assessing the nature of
the error and determining if we should resume. In the case of a SAP HANA
unavailable error, we use the RESUME statement to let the processing continue
on to the failover section of the persistence service where we use regular Open-
SQL to store the uploaded document.

Figure 8.10 contains a UML sequence diagram which illustrates the exception
flow. As you can see, most of the magic happens between the point that we raise
the resumable exception and the corresponding CATCH block decides to resume
processing with the RESUME statement. After flow is resumed, the insert_docu-
ment() method picks up right where it left off (with its local variables intact) and
proceed on with the failover logic.

In summary, resumable exceptions provide a clean mechanism for trapping error
conditions, recovering from them, and moving on as if the exception hadn’t hap-
pened in the first place. This functionality can come in handy whenever we
encounter situations where we need to build failover logic into our programs.
With resumable exceptions, we can capture the exception conditions in an excep-
tion object, pass the information on to a CATCH block, and let the CATCH block
determine whether or not we wish to proceed. This is preferable to having lots of
IF statements scattered throughout the code to assess these conditions and
(redundantly) react to them.
293

Error Handling with Exception Classes8
Figure 8.10 UML Sequence Diagram Showing Resumable Exception Flow

8.6 UML Tutorial: Activity Diagrams

The UML activity diagram is a behavioral diagram used to depict the high-level
flow within a block of code. As such, activity diagrams share certain similarities
with flow charts used in the procedural world. However, as you’ll soon learn,
there are certain things we can do with activity diagrams that we cannot do with
flowcharts.

Figure 8.11 shows an example of an activity diagram that’s being used to depict
the flow of a simple ABAP extract program. The flow begins at the initial node

new

new

try

alt

ZRESUMABLE_TEST

LCL_DOCUMENT_SERVICE

LCL_PERSISTENCE_SERVICE

ZCL_AMDP_PROXY

[SAP HANA DB Available?]

insert_doc_sproc()

insert_via_sql()

upload_document()

insert_document()

[Catch SQL Exception]

Raised as a
resumable

exception...
294 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Activity Diagrams 8.6
action and proceeds to the very first action called Receive Query Parameters.
Notice that the action names we have used here are fairly generic. For example, in
the ABAP extract program, the Receive Query Parameters action would encom-
pass the generation of a selection screen and the entry of selection parameters by
a user. You can trace the control flow of an activity diagram by following the
directed edges between actions. Eventually, the program flow proceeds all the
way down to the activity final action (see Figure 8.11).

One significant addition to activity diagrams in the UML 2.0 standard was the
specification of protected nodes and handler blocks. As you can see in Figure 8.11,
the action Extract Data from Database is a protected node that might trigger an
exception (i.e. Selection Failed). If no data is found in the database for the given
selection criteria, control is transferred to the Display Error Message handler
block.

It’s also possible to group together multiple actions inside of a protected node.
For example, all of the file I/O actions in Figure 8.11 were grouped together in a
protected node that reacts to file I/O exceptions. Here, notice that flow from each
handler block leads into a diamond-shaped node called a merge. Merges provide
a convenient way of channeling multiple input flows into a common output flow.

Looking at the Write Record to File action in Figure 8.11, you’ll notice that its
boundary is depicted using a dotted line in lieu of the solid line used with all of
the other normal actions. This dotted line marks an expansion region in the activity
diagram. In the flow, the Write Record to File expansion region (along with the
inputting tokens shown as small pins along the top of the action) represents a
loop that takes the extract records from the database lookup and iteratively writes
them to the extract file. This kind of notation is much more elegant than the typ-
ical use of conditionals in flowcharts to determine if there are more records to
process, etc.

One of the beauties of activity diagrams is that they’re extremely easy to read,
oftentimes requiring little to no translation for non-technical members of the
team. Consequently, they are an excellent communication tool for describing
and refining a program flow with functional team members. Typically, once the
process flow within an activity diagram is agreed upon, the design can be put in
more technical terms in the form of interaction diagrams such as a sequence dia-
gram, etc.
295

Error Handling with Exception Classes8
Figure 8.11 Example of a UML Activity Diagram

Receive Query
Parameters

Extract Data
from Database

Open Extract
File

Close Extract
File

Action

Protected
Node

Initial
Node

Display Error
Message

Edge

Display File I/O
Error Message

Handler
Block

Merge

Activity
Final

File I/O
Exception

Write Record
to File
296 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Summary 8.7
8.7 Summary

In this chapter, we were able to observe how the class-based exception handling
concept greatly simplifies the process of dealing with errors that may occur
within an application. The definition of a common framework for dealing with
exceptions is essential for the development of reusable components since it pro-
vides a consistent model for relaying exceptions to users/clients.

In the next chapter we’ll take a look at ABAP Unit and see how a test-driven
approach to development can significantly improve the quality of your ABAP
code.
297

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

ABAP Unit is a framework that assists developers in verifying outcomes
and validating the results of paths throughout their code. In this chapter,
we’ll learn more about this framework and how it can be leveraged to
facilitate the promotion of defect-free applications.

9 Unit Tests with ABAP Unit

An admirable objective for any ABAP developer would be to always write ele-
gant, agile, and defect-free code. This lofty goal could prove to be more difficult
than it seems if one were to rely solely on informal testing processes. Fortu-
nately there are tools available that enable developers to improve the overall
quality of their code while also allowing for confidence in any future refactoring
efforts. An example of such a development tool is a robust automated unit test-
ing framework.

A unit testing framework such as ABAP Unit allows a developer to write individ-
ual unit tests that target and verify the intended behavior of a specific “unit” of
code. A code unit could be defined as the smallest testable part of an application
but, more commonly, it’s a method or function of a larger code container such
as a class. If this seems a bit narrow in scope, ABAP Unit allows for organizing of
unit tests into groups in order to adjust the extent of what is being tested. Each
group may then be incorporated into a test run and set to run manually or auto-
matically at specific points throughout the software development lifecycle to
ensure that changes in code did not introduce any defects or software regres-
sions.

One of the main goals of every unit test is to confirm that your individual mod-
ules are fulfilling the terms of their API contracts. Verifying this behavior early on
helps to eliminate the tedious module-level bugs that prohibit integration and
functional tests from running smoothly. In this chapter, you’ll learn how the
ABAP Unit test tool can support you in the process of developing and executing
unit tests.
299

Unit Tests with ABAP Unit9
9.1 ABAP Unit Overview

In 1998 Kent Beck designed the first incarnation of a unit testing framework that
could be used to provide some of the common elements necessary for building
and running automated unit tests. The framework, created for the Smalltalk lan-
guage, was called SUnit. Since that time, this same testing model (colloquially
known as xUnit these days) has been adapted to create testing frameworks for
other languages such as Java (JUnit), .NET (NUnit), and with the SAP NetWeaver
2004 release, ABAP Objects. The SAP implementation of the xUnit test frame-
work is called ABAP Unit. In this section, we’ll introduce the basic concepts of
ABAP Unit and review how it works.

9.1.1 Unit Testing Terminology

To understand how to use ABAP Unit, it’s important to define some of the basic
terms that are used throughout the framework (see Table 9.1). These terms (and
concepts they represent) are largely based on concepts outlined in the core xUnit
framework.

Term Description

Test Class A test class defines an environment for running multiple related unit tests
(implemented as test methods)

Test Method Test methods are special instance methods of a test class that can be
invoked to produce test results. In the xUnit framework, a test method
represents a single unit test.

Fixture A fixture defines an environment for running unit tests in the proper con-
text. Fixtures are configured in special callback methods defined within a
test class. You can insert code in these methods to obtain and clean up
the resources (e.g., object instances, file handles, etc.) that are used
within the unit test methods.

Test Task A test task groups test classes together, allowing their methods to be exe-
cuted together in a single test run.

Test Run A test run controls the execution of a test task. Test runs produce test
results that can be viewed in the ABAP Unit result display.

Assertion Inside a test method, individual logical tests are made to assess the cor-
rectness of a particular piece of functionality. These logical tests that ver-
ify conditions via a true/false proposition are known as assertions.

Table 9.1 Basic ABAP Unit Terminology
300 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Creating Unit Test Classes 9.2
9.1.2 Understanding How ABAP Unit Works

The ABAP Unit test framework is tightly integrated into the ABAP Workbench,
making it very easy to set up and execute tests for a given ABAP program. The
tests themselves are written in ABAP and are nothing more than local classes. This
means that no additional language or interface skills are required to begin work-
ing with the ABAP Unit framework.

Each unit test class contains fixtures to help set up and tear down objects and
resources necessary for executing each test. The runtime environment will search
for a special method called setup() in the test class and, if the method exists, the
runtime environment will call it before it calls any test method to ensure that the
tests are set up properly. After the tests are complete, a teardown() method is
called in similar fashion if it exists. The actual tests are performed by parameter-
less instance methods contained within the unit test class that verify results with
utility methods from the class CL_AUNIT_ASSERT.

The outcomes of the various tests are shown in the ABAP Unit Results Display.
The details shown in the ABAP Unit Results Display provide information about
what went wrong, and where. The details are context-sensitive, allowing you to
navigate within the ABAP Workbench to the source of the problem.

9.1.3 ABAP Unit and Production Code

The goal of the ABAP Unit framework is to allow for tests to be crafted and exe-
cuted in order to ensure code performs as expected. These tests are expected to
run throughout the development lifecycle to ensure that defects or software
regressions are not introduced when code is promoted or transported to a pro-
duction environment. In a live environment, tests could potentially cause prob-
lems if allowed to execute and, for this reason, ABAP does not generate byte code
for ABAP Unit tests in production systems. This ensures that the test are not exe-
cutable in these business critical environments and your test code cannot pose a
potential strain or cause adverse side-effects.

9.2 Creating Unit Test Classes

For the most part, you define and implement test classes in the same way that you
would build a regular ABAP Objects class. However, test classes and test methods
301

Unit Tests with ABAP Unit9
must be defined using the FOR TESTING addition as shown in Listing 9.1. This
addition effectively divides an application into two separate parts: test code and
production code so that ABAP understands which code should not be generated
in production systems as mentioned in Section 9.1.3.

CLASS ltc_my_test_class DEFINITION
FOR TESTING.

[Risk Level {Critical|Dangerous|Harmless}]
[Duration {Short|Medium|Long}]
[...]
ENDCLASS.

Listing 9.1 Basic Form of ABAP Unit Test Classes

The following subsections contain a review of the pieces that you will need to
assemble in order to create a unit test class along with a discussion of naming con-
ventions and an introduction to the Test Class Generation Wizard that is available
to help bootstrap your unit test development.

9.2.1 Unit Test Naming Conventions

Just as careful consideration of class, method and variable names is important in
ABAP development, it should also be relevant in unit test construction. One import-
ant reason for this outside the scope of readability and maintenance is the fact that,
if a unit test fails, the class and method names will appear in the failure message. If
the class and method name provide adequate information on what is being tested,
developers will be able to better identify and resolve problems with the code.

Although there are no binding naming conventions, SAP provides suggestions on
ABAP Unit test class prefixes (Table 9.2).

It’s ultimately up to the developer to write clean, understandable and organized
unit tests. Many unit test naming strategies have been adopted throughout the

Suggested Prefix Type of Class

LTC_ Local ABAP Unit test class

LTD_ Local test double.

LTH_ Local test utilities class.

Table 9.2 SAP Suggested ABAP Unit Test Class Prefixes
302 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Creating Unit Test Classes 9.2
development community across varied technologies. These strategies were cre-
ated in order to allow for unit test names to express specific requirements, iden-
tify the targeted unit of work (methods, functions, class or combinations therein)
and state the expected results. If there are not already naming conventions in
place for your unit test methods, there are many online resources that you may
explore to find a convention that suits your needs.

9.2.2 Test Attributes

When defining a test class, you must specify a couple of attributes that are used by
the ABAP runtime environment during the execution of a test. These attributes
are defined as statements in systems with release 7.02 or higher (see Listing 9.1
above) and as special pseudo comments in older systems (Listing 9.2). The two test
attributes are the risk level and the execution duration of ABAP Unit tests and are
added after the CLASS … FOR TESTING statement.

CLASS … FOR TESTING.
"#AU Risk_Level Critical|Dangerous|Harmless
“#AU Duration Short|Medium|Long

Listing 9.2 Test Attributes in Systems with Earlier Release than 7.02

The RISK LEVEL attribute describes the effects that a test could have on the sys-
tem. It’s possible that test methods may invoke functionality that could make
changes to system settings and/or the database. The three risk level values that
may be assigned are CRITICAL, DANGEROUS and HARMLESS, with HARMLESS meaning
that the test would not make changes to persistent data or impact the system in
any negative way (see Table 9.3). Although there are two other choices outside of
harmless, every test should be written with the objective of being “harmless” to
the environment within which it’s executed. Leveraging the dependency injec-
tion techniques described above, developers can prevent any unwanted conse-
quences from running a unit test.

Risk Level Potential Side Effects

CRITICAL Could alter system settings, customizing and so on.

DANGEROUS Could change records in the database.

HARMLESS No side effects; the test is innocuous

Table 9.3 Risk Level Attribute Values
303

Unit Tests with ABAP Unit9
Test classes that introduce any risk over that of HARMLESS can be restricted for exe-
cution based on client customizing settings (defined in the Implementation Guide
[IMG] or in Transaction SAUNIT_CLIENT_SETUP). This way, for example, you can
protect a golden client from test side effects that could impact other project efforts.

The DURATION attribute specifies the expected execution duration of a test class.
This attribute helps the ABAP runtime environment to know when a test has run
too long (perhaps due to an error in the test code such as an infinite loop). The
possible values of this attribute are SHORT , MEDIUM and LONG, and they have default
values of 1 minute, 5 minutes, and an hour, respectively. These default values can
also be adjusted in Transaction SAUNIT_CLIENT_SETUP.

The objective to keep in mind when writing unit tests is to keep your tests quick
and lean. A test that has a noticeable duration, that greater than a few seconds,
should be flagged for examination of both the test(s) and the target class under
test for a potential refactoring effort. As you build up your unit test arsenal, you
have to be confident that the lot of them could be executed at any time. If these
tests are HARMLESS and have a SHORT duration, you can confidently make changes
in the code and execute unit tests in order to ensure that no regressions or defects
were introduced.

9.2.3 Test Methods

Test methods are defined as parameterless instance methods in a test class. The
signature of these methods also requires the FOR TESTING addition (see Listing
9.3).

CLASS ltc_my_test_class DEFINITION FOR TESTING
RISK LEVEL HARMLESS
DURATION SHORT
FINAL.
PRIVATE SECTION.

METHODS:
test_method1 FOR TESTING.
test_method2 FOR TESTING.

Listing 9.3 Defining Test Methods

Each test method in a test class corresponds to a single unit test. As described pre-
viously, a test method should concentrate on testing a single software unit (e.g., a
method, a function module, etc.) rather than testing an entire application. It’s
304 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Creating Unit Test Classes 9.2
important to keep unit tests granular so that we can focus in closely on potential
bugs that might creep into various parts of the program. Most of the time, the
implementation of a test method will simply consist of a single call to a module of
the program under test followed by a status check using utility methods defined
in class CL_ABAP_UNIT_ASSERT.

If you look closely at the code in Listing 9.3, you’ll notice that the test methods
have been defined in the private section of the test class. This is by design because
test classes implicitly share a friendship relationship with the test driver of the
ABAP runtime environment. Consequently, you should prefer to define your test
methods in the private or protected (if it’s inherited) sections of your test class.

9.2.4 Managing Fixtures

Test classes group related test methods (i.e., unit tests) together into a logical unit.
In these classes, you can also define special fixture methods that help set up and
teardown unit tests. These methods have predefined names that are automatically
recognized by the ABAP runtime environment. Each method is defined in the pri-
vate section of the class and has no parameters. Table 9.4 describes the various
types of fixture methods that are supported by the ABAP Unit framework.

Fixture methods are an excellent place for defining common initialization code
that is relevant for all of the test methods in a test class. In particular, the instance
methods setup() and teardown() provide a useful hook for implementing code
that ensures that each test is executed independently using the proper runtime
configuration.

Method Name Usage Type

setup() This instance method is called prior to the invocation of every
test method in the test class.

teardown() This instance method is called after every invocation of a test
method in the test class.

class_setup() This class method is called once before any test methods are
called in the test class.

class_teardown() This class method is invoked after all of the test methods in the
test class have been called.

Table 9.4 Fixture Methods and Their Usages
305

Unit Tests with ABAP Unit9
9.2.5 Test Class Generation Wizard

You can generate unit test classes for global classes using the test class generation
tool provided with the Class Builder. To access this generation tool, put the cursor
on the name of the object you with to create a unit test class for and select the
menu path Utilities � Test Classes � Generate or display the context menu and
select Create � Generate Test Class. This will launch the ABAP Test Class Gener-
ation Wizard as shown in Figure 9.1 below. Here, you are presented with options
for specifying the unit test class attributes, generating fixtures, test methods, and
so on. This is a way to quickly bootstrap a unit test class but you will obviously
still be responsible in building setup and teardown operations along with imple-
menting all of your unit test methods and assertions therein.

Figure 9.1 The Test Class Generation Tool

Once complete, you may access the generated test class by selecting Goto � Local

Test Classes in the menu path of the Class Editor screen of the Class Builder. The
306 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Assertions in ABAP Unit 9.3
test class will also be available by drilling down to the Local Classes folder under
the object for which the class was associated with from within the Object Naviga-
tor (Transaction SE80).

9.2.6 Global Test Classes

Often times there is a need to design reusable pieces of logic that will be poten-
tially be leveraged by many local unit test classes. These global test classes could
take the form of a service or helper class to facilitate unit test creation or act as a
parent to a unit test class in order to reuse logic by inheritance.

To create a service class, the only rules are that a service class must still contain the
FOR TESTING option and will not implement any fixtures or unit test methods.
This service class is essentially a standard ABAP class that needs to be associated
with ABAP Unit.

A parent unit test class is created as an ABSTRACT class, also contains the FOR TEST-
ING option and implements at least one fixture or test method. Local test classes
may now inherit from this parent unit test class and reuse its logic while still
maintaining their local relationship to the code they were intended to test. If a
parent unit test class is not declared as ABSTRACT, then ABAP Unit will report a
warning. For more information, please consult the online help documentation for
ABAP Test and Analysis Tools: Correct Use of Global Test Classes (http://
help.sap.com).

9.3 Assertions in ABAP Unit

An assertion can be defined as a verification of a condition using a true/false
proposition. This condition is evaluated by code that is encapsulated within what
ABAP Unit refers to as a constraint. The CL_ABAP_UNIT_ASSERT class contains many
methods to test constraints and these methods should cover most of your needs
when verifying outcomes within unit tests (see Table 9.5 for some examples of
those methods). All of these methods expect a piece of data to be verified that is
actually returned from the code that is under test (the act parameter). The
assert_equals() also requires an expected piece of data (the exp parameter)
which is used in a comparison against that data passed into the act parameter
(Listing 9.4).
307

Unit Tests with ABAP Unit9
cl_abap_unit_assert=>assert_equals(
EXPORTING
act = lv_actual
exp = lv_expected
msg = 'Unit Test Test Failed').

Listing 9.4 Assertion Example

As expected, when all assertions within a test method evaluate true, the unit test
has successfully passed and, based on the tested condition(s), the code path is
functioning as expected. If any assertion fails in a unit test, that unit test will not
pass and an error will occur in the ABAP Unit Results Display when executing
the test. The severity level and any text passed into the msg optional import
parameters of the assertion will show under the Alerts and Messages panel in
the upper-right portion of the screen (see Section 9.7).

9.3.1 Creating and Evaluating Custom Constraints

If there’s ever a need to evaluate a condition outside the scope of the methods
present within CL_ABAP_UNIT_ASSERT, ABAP Unit allow for custom constraints by
creating a class that implements the IF_CONSTRAINT interface (Listing 9.5). This
custom constraint class must, in turn, implement two methods defined by IF_

Method Name Description

assert_equals() The two objects being evaluated must have a comparable type.
This assertion will return true if the objects are equal and may be
enhanced to perform complex comparisons by creating a class
that implements IF_AUNIT_OBJECT (logic for comparison
resides in the equal_to() method) and passing that class as the
argument of the exp parameter of assert_equals() .

assert_bound() Returns true if the reference of a reference variable has the
ABAP property of IS BOUND.

assert_initial() Returns true if an object has the ABAP property of IS INITIAL .

assert_subrc() Returns true if a specific value is returned from SY-SUBRC.

assert_that() Evaluates a specific conditions and is used in testing custom
constraints (described below). The exp parameter expects an
instance of a class that implements IF_CONSTRAINT.

fail() Forces the test to fail.

Table 9.5 Examples of Some of the Methods of CL_ABAP_UNIT_ASSERT
308 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Assertions in ABAP Unit 9.3
CONSTRAINT. These are the is_valid() method which contains the evaluation
logic of the constraint and returns a Boolean result on whether the condition was
met and the get_description() method which returns a message describing the
test results. To utilize the user-defined constraint within unit tests, the assert_
that() method of CL_ABAP_UNIT_ASSERT may be invoked and the custom con-
straint’s methods may be passed in as the exp parameter. Any necessary parame-
ters of your custom constraint must be passed in via the constructor of the class
and set as attributes.

CLASS ltc_my_constraint DEFINITION.
PUBLIC SECTION.

INTERFACES if_constraint.
ENDCLASS.

Listing 9.5 Defining A Custom Constraint

9.3.2 Applying Multiple Constraints

If a more complex assertion is ever required, the CL_AUNIT_CONSTRAINTS class of
ABAP Unit allows for multiple custom constraints to be combined via logical
operators (AND, OR, NOT, XOR, etc.). These logical operators are represented as static
methods of the CL_AUNIT_CONSTRAINTS class and return instances of objects that
implement the IF_CONSTRAINT interface. The resulting combined constraint
joined by this logical operator may, in turn, be passed to the exp parameter of the
assert_that() method of CL_ABAP_UNIT_ASSERT (Listing 9.6).

DATA:
" lo_first_constraint and lo_second_constraint implement
" IF_CONSTRAINT interface
lo_first_constraint TYPE REF TO zltc_first_constraint,
lo_second_constraint TYPE REF TO zltc_second_constraint,
lo_compound_constraint TYPE REF TO if_constraint,
lo_actual_results TYPE REF TO data.

* Create instances of both custom constraints
CREATE OBJECT lo_first_constraint.
CREATE OBJECT lo_second_constraint.

* Make call to code under test to retrieve actual results
...

* Combine constraints using static method of cl_aunit_constraints
lo_compound_constraint = cl_aunit_constraints=>and(

c1 = lo_first_constraint
309

Unit Tests with ABAP Unit9
c2 = lo_second_constraint).

* Utilize compound constraint in assertion
cl_abap_unit_assert=>assert_that(

act = lo_actual_results " Data to check from code under test
exp = lo_compound_constraint).

Listing 9.6 Combining Custom Constraints with CL_AUNIT_CONSTRAINTS

To leverage CL_AUNIT_CONSTRAINT, create an instance of each custom constraint,
passing any required parameters via the class constructors (see Listing 9.6). A call
can then be made to the required logical operator static method of CL_AUNIT_CON-
STRAINT using your custom constraint objects as parameters. The static method
will return a new instance of an object that implements IF_CONSTRAINT. This new
instance will allow for a check against both custom constraints and evaluate those
constraints based on the logical operation used to join them. The result is a class
that can be used as the exp parameter of the assert_that() method of CL_ABAP_
UNIT_ASSERT.

Multiple Assertions in a Unit Test

There are differing opinions on the number of assertions that should be present within
each unit test or unit test method. One idea is that each test method should contain
only one assertion in order to keep the code clean and easy to understand. There’s no
doubt that the number of assertions should be minimized and one assert per unit test is
a good guideline to follow.

However, an alternative view is to restrict your unit tests to evaluate a single concept. If
you’re testing two independent outcomes, then two tests are necessary but, if you’re
testing a single concept that requires multiple assertions to cover specific dimensions of
the outcome, a single test method or unit test will suffice.

9.4 Managing Dependencies

One of the positive side effects to adopting a unit testing framework and writing
tests against ABAP objects is that these objects will require a break from outside
dependencies in order to be properly tested. Database operations, function mod-
ule calls, authorization checks and other services will need to be abstracted and
encapsulated into specialized ABAP objects and set up to be “injectable” into
ABAP classes.
310 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Managing Dependencies 9.4
The exercise described above is something known as dependency injection. In
the following sections, we will briefly review some options on how to resolve
dependencies in code and allow for more modularized, testable ABAP objects.

9.4.1 Dependency Injection

Dependency injection comes in many forms (see “Methods of Dependency Injec-
tion” below) and allows for encapsulated ABAP objects and services to be set for
any dependent class. The goal is to allow for better software design and, in the
context of ABAP Unit, to better isolate a “unit” of code by allowing for test dou-
bles to be injected in place of normal production objects during unit testing.

These test doubles can take the form of a test stub or mocked object (among oth-
ers), are usually simplified versions of their production counterparts and are set
to return predictable data so that only the code under test may be targeted and
evaluated properly. This helps to ensure that each test is now independent and
repeatable in any environment. This is crucial for any unit test to be valid.

For more information on resolving dependencies and using test doubles or
mocked objects in ABAP, please see ABAP to the Future (SAP PRESS, 2015).

Methods of Dependency Injection

The following is a list of standard techniques to decouple your object oriented applica-
tion code from encapsulated services and other dependencies. Comparison of these
methods is beyond the scope of this book but more information is available through the
SAP online help documentation for Managing Dependencies in ABAP Unit Testing
(http://help.sap.com) or other online resources.

� Constructor Injection: Needed ABAP objects or dependencies are passed as param-
eters to the class constructor.

� Setter Injection: This requires that the ABAP object provides setter method(s) for
each dependency.

� Interface Injection: An interface defines the injection method or the setter methods
of the class dependencies.

9.4.2 Private Dependency Injection

Another dependency injection method available in ABAP is private dependency
injection, a technique that is better suited at substituting dependencies while writ-
ing unit tests in ABAP Unit. By associating a test class as a FRIEND to a class under
311

Unit Tests with ABAP Unit9
test, the test class will have access to private and protected attributes of the class
under test so that dependencies may be injected. This allows for breaking of
dependencies but still protects the class under test from any outside manipula-
tion. In order for this method to work properly, dependencies in the class under
test must be resolved or set in methods outside of those that leverage them. In
other words, the class constructor() would establish these dependencies and set
them to private or protected attributes so that other methods of the class may use
these objects in their logic.

You can find more information about private dependency injection in the SAP
online help documentation for ABAP Test and Analysis Tools (http://help.sap.com).
Sample code is provided to give an example of how one would implement this
form of dependency injection.

9.4.3 Partially Implemented Interfaces

Release 7.40 added an improvement that removes the requirement of test classes
to have to completely implement an inherited interface. Using the PARTIALLY
IMPLEMENTED addition, you can now create classes that act as test doubles and only
need to implement the pieces of the interface that the code under test requires
(Listing 9.7). This removes that hassle of having to implement the entire contract
that an interface presents or forcing you to add the pragma ##needed to each
empty method implementation. Again, this method of implementing an interface
in a class can only be utilized in test classes.

CLASS ltd_test_double DEFINITION
FOR TESTING.
INTERFACES if_interface PARTIALLY IMPLEMENTED.

ENDCLASS.

Listing 9.7 Basic Form of a Partially Implemented Interface

9.4.4 Other Sources of Information

This may all seem a bit overwhelming for the uninitiated. It would also require a
substantial refactoring effort to reshape legacy code that was not crafted with
dependency encapsulation and injection in mind. The purpose of this section was
to review some important software patterns that will aid in unit testing. It’s not
required that you completely understand all the techniques discussed above right
away. These are complicated topics that go beyond the scope of this book. The
312 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Case Study: Creating a Unit Test in ABAP Unit 9.5
good news is that there are many wonderful sources of information on topics
such as dependency injection, software design patterns and SOLID design princi-
pals online and within other publications. See the Recommended Reading section at
the end of this chapter for some of those sources.

SOLID Design Principals

S.O.L.I.D. is a mnemonic acronym for the first five object-oriented design (OOD) prin-
ciples by Robert C. Martin (also known as Uncle Bob).

� S (Single-Responsibility Principle): A class should have only a single responsibility.

� O (Open-Closed Principle): Objects or entities should be open for extension, but
closed for modification.

� L (Liskov Substitution Principle): Objects in a program should be replaceable with
instances of their subtypes without altering the correctness of that program.

� I (Interface Segregation Principle): Many client-specific interfaces are better than one
general-purpose interface.

� D (Dependency Inversion Principle): One should depend on abstractions and not
upon concretions. Dependency Injection, covered in Section 9.4, is an example of
this principle.

� See: http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

9.5 Case Study: Creating a Unit Test in ABAP Unit

Now that you have a basic understanding of how to create unit test classes, let’s
consider an example. The simple calculator class ZCL_SIMPLE_CALCULATOR in List-
ing 9.8 contains basic arithmetic operations in the form of methods. Accompany-
ing this class is an ABAP Unit test class named ZLTC_SIMPLE_CALCULATOR_TEST
with unit tests to cover one addition and subtraction condition along with testing
whether the CX_SY_ZERODIVIDE exception is properly thrown by the divide()
method when the divisor parameter is set to zero. The setup() fixture method
within the unit test class instantiates and initializes the ZCL_SIMPLE_CALCULATOR
object which is then used by each test method. The teardown then performs some
clean up once every unit test has executed.

The MethodName_StateUnderTest_ExpectedBehavior naming convention was adopted
for each of the unit tests outlined in Listing 9.8 but, as described in Section 9.2.1,
other viable strategies have been made available by the development community.
313

Unit Tests with ABAP Unit9
* Class Under Test
CLASS zcl_simple_calculator DEFINITION

PUBLIC
FINAL
CREATE PUBLIC.
PUBLIC SECTION.
TYPES:

ty_quotient type p LENGTH 7 DECIMALS 4 .
METHODS add

IMPORTING
iv_first_addend TYPE int1
iv_second_addend TYPE int1

RETURNING
VALUE(rv_sum) TYPE int2.

METHODS subtract
IMPORTING

iv_minuend TYPE int1
iv_subtrahend TYPE int1

RETURNING
VALUE(rv_difference) TYPE int1.

METHODS multiply
IMPORTING

iv_first_factor TYPE int1
iv_second_factor TYPE int1

RETURNING
VALUE(rv_product) TYPE int4.

METHODS divide
IMPORTING

iv_dividend TYPE int1
iv_divisor TYPE int1

RETURNING
VALUE(rv_quotient) TYPE ty_quotient

RAISING
cx_sy_zerodivide.

ENDCLASS.

CLASS zcl_simple_calculator IMPLEMENTATION.
METHOD add.
rv_sum = iv_first_addend + iv_second_addend.

ENDMETHOD.
METHOD divide.
rv_quotient = iv_dividend / iv_divisor.

ENDMETHOD.
METHOD multiply.
rv_product = iv_first_factor * iv_second_factor.

ENDMETHOD.
METHOD subtract.
rv_difference = iv_minuend - iv_subtrahend.
314 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Case Study: Creating a Unit Test in ABAP Unit 9.5
ENDMETHOD.
ENDCLASS.

* Unit Test Class
CLASS zltc_simple_calculator_test definition FOR TESTING

DURATION SHORT
RISK LEVEL HARMLESS.
PRIVATE SECTION.
DATA mo_calculator TYPE REF TO zcl_simple_calculator.
METHODS setup.
METHODS add_2plus2_sum4 FOR TESTING.
METHODS subtract_6minus2_dif4 FOR TESTING.
METHODS divide_zerodivisor_exception FOR TESTING.
METHODS teardown.

ENDCLASS.

CLASS ZLTC_SIMPLE_CALCULATOR_TEST IMPLEMENTATION.
METHOD setup.
CREATE OBJECT mo_calculator.

ENDMETHOD.

METHOD add_2plus2_sum4.
DATA lv_expected TYPE int2 VALUE 4.
DATA lv_sum TYPE int2.
lv_sum = mo_calculator->add(

EXPORTING
iv_first_addend = 2
iv_second_addend = 2).

cl_abap_unit_assert=>assert_equals(
EXPORTING

act = lv_sum
exp = lv_expected
msg = 'Calculator Addition Test Failed').

ENDMETHOD.

METHOD subtract_6minus2_dif4.
DATA lv_expected TYPE int2 VALUE 4.
DATA lv_difference TYPE int2.
lv_difference = mo_calculator->subtract(

EXPORTING
iv_minuend = 6
iv_subtrahend = 2).

cl_abap_unit_assert=>assert_equals(
EXPORTING

act = lv_difference
exp = lv_expected
msg = 'Calculator Subtraction Test Failed').

ENDMETHOD.
315

Unit Tests with ABAP Unit9
METHOD divide_zerodivisor_exception.
TRY.

mo_calculator->divide(
EXPORTING

iv_dividend = 5
iv_divisor = 0).

cl_abap_unit_assert=>fail(
msg = 'CX_SY_ZERODIVIDE was not raised').

CATCH cx_sy_zerodivide.
ENDTRY.

ENDMETHOD.

METHOD teardown.
CLEAR mo_calculator.

ENDMETHOD.
ENDCLASS.

Listing 9.8 A Simple Unit Test Example

Since CL_ABAP_UNIT_ASSERT has not defined an assertion method to cover excep-
tions, the divide_zerodivisor_exception() method in the unit test class in List-
ing 9.8 had to be implemented in an atypical manner. The method wraps a forced
exception in a TRY block and sets the unit test to failed (via the fail() method of
the CL_ABAP_UNIT_ASSERT class) if the exception is not thrown and caught (which
would skip the fail method call entirely and skip to the CATCH statement).

9.6 Executing Unit Tests

After you’ve created your unit tests in ABAP Unit, you can run them in several
different ways. In the following subsections, we will look at options for perform-
ing unit tests individually using the ABAP Workbench and in batch via the ABAP
Unit Test Browser or Code Inspector Tool.

9.6.1 Integration with the ABAP Workbench

As we stated previously, the ABAP Unit test tool is tightly integrated into the
ABAP Workbench. Therefore, it’s easy to start test runs using standard menu
options. For example, to initiate a test run for the ZLTC_SIMPLE_CALCULATOR_TEST
test class defined in Listing 9.8, follow the context menu path of the ZLTC_SIM-
PLE_CALCULATOR <Object> � Execute � Unit Tests. Upon execution, a window sim-
ilar to what is seen in Figure 9.2 would display the results of the test run.
316 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Executing Unit Tests 9.6
Figure 9.2 Executing The Simple Calculator Unit Tests

There’s no predefined sequence in which the test methods are executed; after all,
they are meant to be run independently. If the test(s) succeed, then a success mes-
sage will appear in the status bar at the bottom of the screen. However, if there
are errors in the unit test, then the ABAP Unit interface will be displayed. We’ll
look at the results of a test run with errors in Section 9.7.

9.6.2 Creating Favorites in the ABAP Unit Test Browser

The ABAP Unit Test Browser is integrated into the ABAP Workbench and, before you
will be able to make use of it, you will need to select Utilities � Settings… from the
main menu path and select the Workbench (General) tab. On that tab, ensure that
the ABAP Unit Test Browser option is checked under Browser Selection.

With this browser enabled, unit tests may be grouped together into favorites and
run as a whole or individually. First select ABAP Unit Browser from the naviga-
tion menu on the left and make sure that Favorite is the value selected within the
Choose Selection Criteria field. You may now create a new favorite by clicking
on the Create Favorite button and assigning it a name and title (Figure 9.3).

Once the favorite group is created, unit tests may be added by switching to edit
mode and clicking on the Add Elements button from the top navigation of the
right-hand panel. You will be presented with a search screen to locate any objects
and their associated unit tests to add to your favorite group. If you wish to control
the way these favorites are executed, you may open up the Show/Edit Options as
shown in Figure 9.4. This allows you to restrict unit test runs by the risk level and
duration of each test along with potentially displaying code coverage information
(see Section 9.7).
317

Unit Tests with ABAP Unit9
Figure 9.3 Creating A New ABAP Unit Browser Favorite (Group)

Figure 9.4 Show/Edit Options for an ABAP Unit Browser Favorite

9.6.3 Integration with the Code Inspector

You can also integrate ABAP Unit tests inside the Code Inspector tool (Transaction
SCI). This tool is used to perform additional static checks for ABAP Repository
objects. Examples of these checks include the verification of naming conventions
for variables, the proper use of ABAP statements, and so on. Although the config-
318 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Evaluating Unit Test Results 9.7
uration and use of this tool is outside of the scope of this book, it is a very useful
tool for implementing additional quality assurance steps in the development
cycle. The integration of ABAP Unit inside the Code Inspector allows developers
to automate the creation of the deliverables typically required by formal code
reviews (i.e., proof of adherence to project coding standards and positive unit test
results), speeding up the overall development process.

9.7 Evaluating Unit Test Results

Although unlikely, changes could be made to the ZCL_SIMPLE_CALCULATOR class
(Listing 9.8) that would cause a method to return incorrect outcomes. If unit tests
were present to cover these outcomes and their expected results, we would see
something like Figure 9.5 in the ABAP Unit Results Display when executing our
unit tests against the simple calculator class.

Figure 9.5 When A Unit Test Fails

ABAP Unit would indicate a problem by showing an error status for the failed
test. The top-right Alerts and Messages panel would also display the severity
level and any message (both optional import parameters of methods of the CL_
ABAP_UNIT_ASSERT class) associated with the assertion(s) that failed. All of the unit
tests created in this chapter did not pass in a severity level as a parameter so the
default of CRITICAL was set. The bottom-right panel displays an analysis of the
test with the expected and actual results (in this case) of the assertion(s) along
with a stack trace. If the test task had been larger, there could have been more
errors generated from other test methods. Therefore, the stack information pro-
vided in the bottom-right pane can be very useful in determining where a partic-
ular assertion failed. As you would expect, clicking on any line within the stack
trace allows the user to dig into the test code to begin diagnosing why a unit test
is failing.
319

Unit Tests with ABAP Unit9
Code Coverage

As more unit tests are written to cover specific code paths and outcomes, the
degree of the application’s code which is being tested by coded unit tests, or code
coverage, increases. There are tools available that interpret and visualize this cov-
erage which helps identify areas of an application that are lacking in unit tests or
may not have any unit test coverage at all. Using this information, a developer is
better able to target code for future unit testing development efforts.

One thing to understand about code coverage is that it’s not an indication of the
quality of the unit tests covering the application code. There’s always the poten-
tial that a poorly written unit test gives the illusion that specific lines of code are
less prone to software regressions. A unit test could even be created without an
assertion and, thus, not test any condition of a unit of code but still contribute to
the overall code coverage of that application.

While it would be optimal to achieve 100% code coverage across an application,
a focus on writing quality unit tests that address the many outcomes of a unit of
code may be more prudent. Since a program can have many more potential out-
comes than lines of code, some code may require full coverage many times over.
In other words, the goal in writing unit tests should not just be about attaining a
specific percent in coverage but should be more about careful consideration of
outcomes or results that should be tested when designing software units.

Your tests are just as important as any other code and should promote confidence
when faced with a refactoring effort. If your code coverage is high but bugs still
make their way to production or you are hesitant to refactor, then your unit test
quality is not being held in high enough regard.

Figure 9.6 Simple Calculator Code Coverage Example
320 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Moving Towards Test-Driven Development 9.8
In AS ABAP Release 7.31 and greater, you can visualize code coverage by navigat-
ing to the ABAP Workbench (Transaction SE80) and following the context menu
path of <Object> � Execute � Execute Tests With � Coverage. Under the Cover-

age Metrics tab (see Figure 9.6) you can view the degree of code coverage by
branch, procedure and statement along with the option to drill down into code
coverage by statement by double clicking on any of the methods of ZCL_SIMPLE_
CALCULATOR class.

9.8 Moving Towards Test-Driven Development

An advanced technique for developing unit tests involves writing a test before any
new functionality or improvement is crafted. This software design technique is
known as test-driven development (TDD) and allows for a unit test to “drive” devel-
opment in small increments. TDD requires a developer to first write a failing unit
test targeting a specific outcome in an automated testing environment such as ABAP
Unit. When the test is complete the developer proceeds to write the minimal
amount of code to make that unit test pass. This process of red (writing a small fail-
ing test) to green (writing the minimal functional code to make the test pass) to
refactor (improve the design of the code while making sure that all tests continue to
pass) is repeated over and over again until a new piece of functionality is complete.

Although the full-blown use of TDD (and indeed the extreme programming meth-
odology from which it came) may be too controversial for your particular devel-
opment team, the value of quality automated unit tests cannot be underesti-
mated. It’s imperative that you define your ABAP Unit tests as quickly as possible
so that you can incorporate them into your normal development process. These
tests will help keep you on target by providing immediate feedback whenever
your individual modules begin to deviate from the terms of their API contracts.
Unit tests will also shed light on areas of your design that need some work. For
example, if you find that a given module is difficult to test, there’s likely some-
thing wrong with it.

Finally, unit tests should inspire you with the confidence to take “risks” in your
development. For instance, in Chapter 5, we discussed the concept of refactoring
to improve the design of some existing code. Without unit testing, you might be
hesitant to perform certain refactorings for fear of breaking some unforeseen
dependent code. Similarly, you might also be cautious about implementing
321

Unit Tests with ABAP Unit9
enhancements for the same reasons. However, with unit tests, you can apply the
changes and know immediately whether or not you broke something in the sys-
tem without having to conduct a full-scale regression test.

9.9 Behavior-Driven Development

The behavior-driven development (BDD) software development process is similar to
that of test-driven development described above but has a focus on incorporating
the domain (or business) experts along with the software developers when devel-
oping and writing unit tests. The following is a brief introduction to the topic of
BDD. For more detailed information on behavior-driven development, see Intro-
ducing BDD by Dan North at http://dannorth.net/introducing-bdd/.

The goal in BDD is to adopt a more natural language in both unit test method
naming and acceptance test definitions so all parties involved in development can
understand intent and expected behavior. Unit test method names are generally
written based on the outcomes that should occur (e.g.: return_new_object_
instance() where the word should is implied or commented in ABAP due to the
30 character length restriction for method names). This naming convention helps
in the understanding of what is being tested and the expected results (or what we
should see as returned data in some cases).

In BDD, the following template is used to define the functional acceptance test
scenarios and act as a guide in the creation of unit tests:

� Given some initial context (unit test setup),

� When an event occurs (calling the code under test),

� Then ensure some outcome(s) (a unit test assertion).

The idea here is to allow for mapping (as described above) of these scenario frag-
ments to actual code. This more natural way of describing a test scenario helps all
parties verify that the unit tests are meeting specifications and facilitates collabo-
rative efforts in software development.

Recommended Reading

� ABAP Unit (Release 7.4): http://help.sap.com

� Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin (Pren-
tice Hall, 2009)
322 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Use Case Diagrams 9.10
� ABAP to the Future by Paul Hardy (SAP PRESS, 2015).

� Principles of Object Oriented Design: http://www.butunclebob.com/ArticleS.Uncle-
Bob.PrinciplesOfOod

� Head First Design Patterns by Freeman et al. (O’Reilly Media, 2004)

9.10 UML Tutorial: Use Case Diagrams

Even if you haven’t spent much time working with the UML before, it’s likely
that you may have heard the term use case used in various contexts at one time or
another. Use cases are an important part of the UML standard, though ironically,
the UML specification has very little to say about how to go about actually defin-
ing one. Instead, it focuses on the use case diagram, which only tells us a very
small part of the story.

In Writing Effective Use Cases, Alistair Cockburn defines a use case as something
that “...captures a contract between the stakeholders of a system about its behav-
ior.” In other words, you can think of a use case as a method for capturing the
functional requirements of a system or module. A use case is fairly succinct,
describing a single interaction scenario between a requesting user or system
(referred to as an actor) and the system under discussion. Each use case defines a
main success scenario that defines how an actor can achieve their goal. At each step
within the main success scenario, it’s highly possible that something might occur
to cause the flow of the use case to deviate. These deviation scenarios are referred
to as extensions. Separating these extension scenarios from the main success sce-
nario makes the use case much easier to read.

Use case development is a collaborative process that requires a lot of communica-
tion within a project team. Most of the time, this process is driven heavily by
business analysts that may not be familiar with the UML. Therefore, use case sce-
narios are often best represented in text form. We’ll see an example of this form
in Section 9.10.2.

9.10.1 Use Case Terminology

Before we proceed with the development of an example use case, it is important
to understand some basic terminology. Table 9.6 provides a description of some
of the most common terms used in use case parlance.
323

Unit Tests with ABAP Unit9
9.10.2 An Example Use Case

As we stated previously, there are no hard-and-fast rules for defining use cases.
The use case example shown in Table 9.7 highlights some of the more common
elements used when defining use case documents.

Term Description

Actor A user or system that interacts with the system under discus-
sion. From the perspective of the system under discussion, an
actor is defined in terms the role(s) it plays in the system.

Primary Actor The primary actor is the actor that initiates the use case sce-
nario.

Scope The scope describes the system under discussion.

Preconditions Preconditions describe what must be true before the use case
can begin. For example, a precondition of a web application
might be that the user has been properly authenticated. In this
case, the precondition simplifies the prose in the use case sce-
nario since we don’t have to include steps to verify that a user
is authenticated before executing a given step, etc.

Guarantees A guarantee describes the invariants maintained by the system
throughout a use case scenario. For example, a use case sce-
nario describing a transfer of funds between two accounts in a
banking system would have guarantees that ensure that both
the source and target account are debited/credited correctly,
etc.

Main Success Scenario The primary scenario of the use case that describes how an
actor will reach their goal. You can think of this scenario as the
“sunny day” scenario for the use case.

Extension Scenarios Extension scenarios are scenarios that describe alternative
behavior within the main success scenario.

Table 9.6 Some Basic Use Case Terms

Use Case: Student Registering for a Training Class Online

Primary Actor Student

Scope Online Course Registration website

Preconditions Student has logged onto course website

Table 9.7 An Example Use Case Document
324 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Use Case Diagrams 9.10
Ideally, if we’ve done our job right, the use case in Table 9.7 should be very easy
to follow. Here, we’ve documented a use case for registering for a training class
online. Initially, we define the primary actor, the system under discussion, and
some basic preconditions for executing the use case. Next, we proceed into the
main success scenario, which is defined as a sequence of numbered steps. As you
can see, each step is described using action words that are direct and to the point.
To keep things succinct, you can reference other use cases by simply underlining
a particular bit of action text. This is demonstrated in the first step where we
defer a detailed discussion to the course catalog search to a separate use case. The
use case in Table 9.7 also contains a couple of extension scenarios. These excep-
tion scenarios describe what happens whenever the class is full or if the provided
payment details are invalid.

Main Success Scenario

1. Student browses the course catalog and selects the course he wants to attend.

2. Student clicks a button to register for the class.

3. Student fills in basic contact information (i.e., name, email, etc.).

4. Student fills in payment information (e.g., credit card, etc.).

5. Student submits the registration request.

6. System verifies that seats are available.

7. System verifies payment information, authorizing the purchase.

8. System displays success confirmation on the screen.

9. System sends a follow-up email confirming the registration.

Extensions

6a. No seats are available � System displays message
indicating class is full

� Returns to main success
scenario at Step 1.

7a. Payment information is valid � Student can select
another form of payment
or cancel the process.

Use Case: Student Registering for a Training Class Online

Table 9.7 An Example Use Case Document (Cont.)
325

Unit Tests with ABAP Unit9
Keep in mind that the example shown in Table 9.7 is just one way of document-
ing a use case. Generally speaking, a use case is good so long as it accurately
describes an interaction with the system. When you read a use case document,
you should be able to quickly ascertain the who, the what, the when, the where,
and the why of a particular interaction within the system. When it comes to use
case documentation, less is more.

9.10.3 The Use Case Diagram

Figure 9.7 shows an example of a use case diagram for the use case outlined in
Table 9.7. As you can see, the graphical notation for use cases in the UML is fairly
simple, basically showing the relationships between actors and use cases. The use
cases are drawn within a rectangular box that represents the boundaries of the
system. Internally, use cases can define include relationships to depict their
dependencies on other use cases.

Figure 9.7 A Use Case Diagram Example

In his book UML Distilled, 3rd Edition, Martin Fowler suggests that one way to look
at use case diagrams is as a type of graphical table of contents for a set of use case
documents. For example, the use case diagram in Figure 9.7 shows a high-level

Register for a
Class

Process a
Payment

<< include >>

<< include >>

Primary
Actor

Student

Credit Card
Authorization Service

Actor

Use
Case

System
Boundary

Register for a
Class
326 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Use Case Diagrams 9.10
overview of the course registration system, its use cases, and the relevant actors
interacting with those use cases. For more information about any particular use
case, we must consult detailed use case documentation such as that shown in
Table 9.7.

9.10.4 Use Cases for Requirements Verification

Use cases are an excellent method for capturing functional requirements. Unfor-
tunately, they are not widely used in SAP projects. Consequently, as an ABAP
developer, you might be asking yourself why you should care about use cases.
After all, most of the time the documentation of functional requirements falls
under the purview of the business analysts working on a project.

Typically, in most waterfall methodologies employed on SAP projects, developers
do not enter into the software development process until a functional specifica-
tion is written. Here, developers are often expected to simply read through the
functional specification and start the design process. However, before proceeding
too far down this path, the smart developer will want to check back with the busi-
ness analysts to make sure that their interpretation of the requirements is consis-
tent with the vision of the business analysts so that nothing is lost in the transla-
tion of the functional requirements.

Use cases can be a very effective tool for documenting such interpretations.
Moreover, by spending just a little bit of extra time documenting use cases, devel-
opers can make life much easier for themselves and others by distilling the
requirements into a form that’s straightforward and easy to interpret. This docu-
mentation becomes a vital part of a technical design document, saving future
developers from having to try to interpret a complex functional design from
scratch.

9.10.5 Use Cases and Testing

Use cases can also come in handy when you are ready to start developing unit or
functional tests. Generally speaking, each action step in a main success or exten-
sion scenario probably represents a unit of work that should be tested inde-
pendently. At the very least, it should give you an excellent start for narrowing
down your test scenarios. When compared with the alternative of trying to comb
through a large functional specification document in search of test scenarios, you
can really see where the effort of documenting use cases is justified.
327

Unit Tests with ABAP Unit9
9.11 Summary

Unit tests are the last quality assurance checkpoint a development object must
pass through before it is turned over to the wider project community. Conse-
quently, it’s important that you get them right so you can deliver quality develop-
ment objects. The design of automated unit tests using the ABAP Unit testing
framework simplifies this endeavor by facilitating the creation of robust test cases
that produce repeatable results.

In the next chapter, we will shift gears and begin looking at some of the more typ-
ical places where ABAP Objects classes are used in common development efforts
within an SAP project.
328 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

 PART II

Case Studies

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

One of the great things about the Open SQL interface is that it makes it
very easy to incorporate ABAP data objects such as structures and inter-
nal tables into routine database operations. Sadly, this ease of use doesn’t
extend to object instances—at least, not at the ABAP language level. In
this chapter though, we’ll see that there is an alternative to manual
object-relational persistence as we explore the capabilities of the ABAP
Object Services framework.

10 ABAP Object Services

For our first hands-on lesson, we’ll be exploring the use of an ABAP Objects-
based framework that has flown under the radar for many ABAP developers:
ABAP Object Services. Besides offering developers a pure OO-based approach for
implementing persistence, ABAP Object Services also presents us with an oppor-
tunity to see how core object-oriented concepts such as inheritance, polymor-
phism, and designing to interfaces are applied in real-world development frame-
works.

As you follow along through this demonstration, we would invite you to spend
some time understanding how all the pieces fit together within the ABAP Object
Services framework. Even if you don’t have any intentions of ever using this
framework, simply grasping its main concepts will go a long way toward prepar-
ing you for advanced OO designs.

10.1 Introduction

As we learned in Chapter 4, object instances have a relatively short lifespan, exist-
ing within an internal program session from the time they’re created (using the
CREATE OBJECT statement) to the time they’re garbage collected. For many types
of objects, this sort of transient behavior is precisely what we want. On the other
hand, if we’re dealing with objects that model business entities, it’s very likely
331

ABAP Object Services10
that we might want to store the data contained within those objects in the data-
base so that we can retrieve it later on.

Since most ABAP developers are very comfortable working with SQL, it may not
seem like a big deal to create a few methods to synchronize object data with a
series of relational database tables and vice versa. However, this is definitely one
of those areas where the devil is in the details.

In object-oriented circles, this phenomenon is described as the object-relational
impedance mismatch. Here, the implication is that the relational data model gets
in the way (or impedes) what we’re trying to accomplish using object-oriented
designs.

While we can’t avoid such complications altogether, we can delegate the more
tedious aspects of this exchange to a separate application layer that implements
object-relational mapping (ORM) on our behalf. This is fundamentally what the
ABAP Object Services framework brings to the table. In the sections that follow,
we’ll see how this framework makes it possible for us to implement persistence
requirements without ever writing a single line of SQL.

10.1.1 Understanding Object-Relational Mapping (ORM) Concepts

As the name suggests, ORM tools are designed for one main purpose: to handle
the synchronization of data stored in objects with relational database tables.
Here, object instances and database rows become equivalent representations of
the same data such that operations performed on an object are automatically
reflected in the database and vice versa. This relationship is demonstrated in Fig-
ure 10.1 for a series of Book objects.

From a development perspective, the advantage of using an ORM tool over per-
forming such translations by hand is that developers don’t have to cross over
from the OO world into the procedural world of SQL and relational databases.
Besides saving time, this technique also makes the code much more flexible and
readable.
332 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Introduction 10.1
Figure 10.1 Understanding the ORM Translation Process

10.1.2 Services Overview

At this point, we’ve established that ABAP Object Services is a framework that
allows us to implement object-relational persistence. To achieve this require-
ment, the framework defines three core services:

� Persistence Service
As you would expect, this service is at the core of the framework, implement-
ing the low-level technical details/plumbing needed to synchronize object
instances with relational database tables. We’ll learn more about this service in
Section 10.2.

<< Persistent Class >>
1: Book

- Id: 1
- title: ABAP Performance Tuning
- public
... << Persistent Class >>

2: Book

- Id: 2
- title: Next Generation ABAP...
- report
...

- Id: 3
- title: Design Patterns in OO-ABAP
- reportedOn: 2009-11-28
...

<< Persistent Class >>
3: Book

ID TITLE ...PUB_DATE

1

2

3

ABAP Performance Tuning 2009-06-28 ...

...

...

2010-12-28

2009-11-28

Next Generation ABAP Development

Design Patterns in OO-ABAP
333

ABAP Object Services10
Figure 10.2 Understanding the Positioning of ABAP Object Services

� Query Service
The Query Service provides us with an object-oriented API that we can use to
search for object instances within the database. Using this service, we can con-
struct complex queries using the same kind of criteria that we would incorpo-
rate into a SQL SELECT statement. We’ll learn more about these capabilities in
Section 10.3.

ABAP Program

Persistence Service
Query Service

Transaction Service

Undo Service,
System Service, ...

ABAP Runtime Environment

Managed
Objects

Managed
Objects

Managed
Objects

System Database
334 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
� Transaction Service
If you’ve worked with database transactions and SAP logical units of work
(LUWs) before, then you know that it can be very difficult to implement trans-
actional requirements without having to get your hands dirty using a lot of pro-
cedural constructs. The Transaction Service allows us to skip over all that and
stick with a pure OO approach. We’ll see how this works in Section 10.5.

Figure 10.2 illustrates how these core services are positioned from an architec-
tural perspective. Here, we can see how ABAP programs interface with the ser-
vices layer to synchronize persistent objects with the database. As we progress
throughout this chapter, we’ll refer back to this diagram periodically to demon-
strate how the various framework elements fit together.

10.2 Working with the Persistence Service

Now that you have a sense for how the Persistence Service is positioned from an
ABAP development perspective, we’re ready to start peeling back the layers to see
how to utilize this service from a practical standpoint. Therefore, in this section,
we’ll see what it takes to create persistent classes and incorporate them into our
ABAP programs.

10.2.1 Introducing Persistent Classes

Despite its sophistication, the Persistence Service is not able to store just any old
object instance in the database. The reason for this makes sense when you think
about it: normal object instances simply don’t contain enough details for the Per-
sistence Service to know where to store them, how to map their attributes to table
columns, and so on. While different ORM tools go about solving this problem in
different ways, SAP’s approach was to create a distinct class type that’s managed
differently from normal ABAP Objects classes inside the Class Builder tool. These
classes are referred to as persistent classes.

In order to understand the makeup of persistent classes, it’s useful to look at one
up close. So, with that being said, let’s see what it takes to create a persistent class.
The steps required here are as follows:

1. To begin, launch the class creation wizard within the ABAP Workbench (Trans-
action SE80). This will open up the Create Class dialog box shown in Figure
335

ABAP Object Services10
10.3. Here, we proceed with the creation of a new class as per usual. However,
in the Class Type panel, we need to select the Persistent Class radio button as
opposed to the default Usual ABAP Class option.

Figure 10.3 Creating a Persistent Class via the ABAP Workbench

2. After the attributes are set in the Create Class dialog box, we can create the
persistent class by clicking on the Save button.

3. Once the persistent class is initially created, we’ll find that the Class Builder has
taken the liberty of automatically implementing the IF_OS_STATE interface
within the persistent class. Aside from this pre-built functionality though, the
class itself is basically empty until we define a persistence mapping. For now,
we’ll simply activate the shell class by clicking on the Activate button.

4. During the activation process, we’re presented with the Activate Persistent

Classes prompt shown in Figure 10.4. Here, we’re asked to choose whether or
not we want to activate the persistent class’s class actor. For now, simply
choose the Yes option.

After the dust settles on the persistent class creation process, we can observe that
the Class Builder has also taken the liberty of creating a couple of other classes for
us. This is demonstrated in Figure 10.5 where, in addition to the ZCL_BOOK per-
sistent class, we also have ZCA_BOOK and ZCB_BOOK. The additional classes define
the persistent class's class actor/agent. At runtime, these agent classes run inter-
ference between persistent objects and the ABAP Object Services layer (refer back
to Figure 10.2 for an illustration of this relationship).
336 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
Figure 10.4 Activating the Persistent Class/Class Actor

Figure 10.5 Understanding the Relationship between a Persistent Class and its Agent Classes
337

ABAP Object Services10
In just a moment, we’ll delve into the mechanics of the class agent/persistent class
relationship and see how this plays out in ABAP code. However, before we go
there, we should point out another setting that the Class Builder automatically
sets for persistent classes: the instantiation context. If you look closely at Figure
10.6, you can see that the instantiation context for persistent classes is automati-
cally assigned the Protected value. As we learned in Chapter 4, this means that
we cannot instantiate instances of our persistent class directly (e.g. using the CRE-
ATE OBJECT statement). Instead, we’ll have to work with the class agent to obtain
persistent object instances from the ABAP Object Services layer.

Figure 10.6 Instantiation Context of Persistent Classes

In order to comprehend the relationship between a persistent class and its class
agent(s), consider the UML class diagram contained in Figure 10.7. This diagram
illustrates the relationship(s) between a persistent class called CL_PERSISTENT and
its agent classes: CA_PERSISTENT and CB_PERSISTENT.

As you can see in Figure 10.7, there’s actually a little more to the persistent class
hierarchy besides the persistent class and its agent classes. Using the UML class
diagram as a guide, let’s consider some of the more prominent relationships
within this hierarchy:

� As we noted earlier, all persistent classes implement the IF_OS_STATE interface.
This interface defines callback methods which allow a persistent class to
respond to important lifecycle events. For example, the init() method can be
used to initialize a persistent object after it’s instantiated by the framework.
338 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
Figure 10.7 UML Class Diagram of a Persistent Class

� Next, we have the generated agent classes which are used to manage instances
of the persistent class at runtime: CA_PERSISTENT and CB_PERSISTENT. The rea-
son SAP decided to define two agent classes is so that developers would be able
to selectively enhance an agent class without disturbing the base-level per-
sistence logic generated by the Class Builder tool. At design time, this plays out
as follows:

� The persistence logic that’s generated by the Class Builder tool is written to
the abstract CB_PERSISTENT class. This logic is protected against tampering
by the Class Builder tool which prevents developers from editing the
abstract class.

<< interface >>
IF_OS_FACTORY

<< abstract >>
CL_OS_CA_COMMON

create_persistent()
refresh_persistent()
delete_persistent()
release()
...

<< abstract >>
CB_PERSISTENT

+ create_persistent()
+ get_persistent()
+ delete_persistent()
...

<< interface >>
IF_SO_STATE

init()
get()
set()
invalidate()
handle_expression()

CL_PERSISTENT

constructor()
+ get_attribute()
+ set_attribute()

<< interface >>
IF_OS_CA_PERSISTENCY

get_persistent_by_oid()
get_persistent_by_key()
...

<< interface >>
IF_OS_CA_INSTANCE

get_status()
...

attribute

CA_PERSISTENT

+ class_constructor()
- constructor()
...

+ agent

Generated
Agent
Classes

1

*

<< friend of >>
339

ABAP Object Services10
� The concrete CA_PERSISTENT class inherits the functionality of the abstract
CB_PERSISTENT class. From here, we can tweak the agent class further as
needed by selectively overriding methods. Such tweaks can be used to
improve performance or perhaps expand the scope of the persistence (e.g. to
sources other than the system database).

� The instrumentation methods of the class agent(s) are defined in the IF_OS_CA_
INSTANCE, IF_OS_FACTORY, and IF_OS_CA_PERSISTENCY interfaces. These inter-
faces are implemented by the abstract CL_OS_CA_COMMON class that all agent
classes inherit from. This implies that they’re available for consumption from
within the concrete ZCA_PERSISTENT agent class as shown in Figure 10.7. We’ll
get to know some of the more prominent methods defined by these interfaces
in Section 10.2.3.

� Whenever the CL_PERSISTENT class was created, the abstract CB_PERSISTENT
class is defined implicitly as a friend. This allows the CB_PERSISTENT class to
access private attributes/methods of the persistent class as needed at runtime –
one of the rare times whenever you see the friend concept applied in practice.

While the complexity of the class hierarchy shown in Figure 10.7 may seem over-
whelming at first, rest assured that most of the intricacies of the class relationships
are abstracted within the Persistence Service itself. For our part, we need only
understand how persistent classes are created in the Class Builder tool and how to
use the corresponding class agent to manage instances of them at runtime. We’ll see
examples of the latter in Section 10.2.3. In the meantime though, let’s take a look at
how to map persistent classes to database tables using the Class Builder tool.

10.2.2 Mapping Persistent Classes

In order for the Persistence Service to be able to manage persistent objects on our
behalf, we need to provide it with some basic information: where we’d like the
persistent objects to be stored, how to match up instance attributes with table col-
umns, and so forth. Within the Class Builder, we can specify these mapping
details using a tool designed specifically for persistent classes: the Mapping Assis-
tant. In this section, we’ll learn how to use this tool to define our data models.

Mapping Concepts Overview

In order to understand the mapping concepts used within the Persistence Service,
it’s helpful to see how such mappings are defined within the system. This approach
340 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
will offer us some visual insight into how the concepts are applied within the Map-
ping Assistant tool. So, without further ado, let’s start by launching the Mapping
Assistant for the ZCL_BOOK entity class introduced in Section 10.2.1. Within the
Class Builder tool, this can be achieved by opening the class in edit mode and click-
ing on the Persistence button in the editor toolbar (see Figure 10.8).

Figure 10.8 Opening the Mapping Assistant Within the Class Builder

This will open up the Add table/structure dialog box shown in Figure 10.9.
Within this dialog box, we must select an ABAP Dictionary object that we’ll be
mapping to. Here, we generally have three different dictionary object types to
choose from:

� Single-Table Mapping
Most of the time, our objective is to perform a one-to-one mapping between a
persistent class and an ABAP Dictionary table or view. So, in these cases, we
can simply plug in the target table/view and begin mapping from there.

� Multiple-Table Mapping
Occasionally, a persistent class/object might provide an abstraction on top of
several related tables. Though we could encapsulate this in a view, the Mapping
Assistant also allows us to map multiple tables onto a single persistent class pro-
vided that the tables share the exact same primary key. At runtime, the Per-
sistence Service is smart enough to connect the relevant attributes used in the
mapping with their associated tables so that the object data is correctly distrib-
uted across each of the tables.

� Structure Mappings
If the data we’re trying to map doesn’t fit into one of the other two categories,
then the third option would be to model the data the way we want it in an
341

ABAP Object Services10
ABAP Dictionary structure and then base our persistent class mapping off of
that. The downside to this approach is that we can’t rely on the Persistence Ser-
vice to take care of persistence since there’s no physical table/view to bind to.
Instead, we have to write the persistence logic ourselves within the persistent
class methods. We’ll see an example of this in our book data model a little bit
later on.

Figure 10.9 Selecting the Source for the Data Mapping

Note

The ABAP Dictionary object(s) that we try to map must exist before we leverage them in
the Mapping Assistant tool; the Mapping Assistant is not equipped to generate such
objects automatically.

Once we select the target dictionary type, the Mapping Assistant tool will be
divided into two panels. In the top panel, we have the class/attribute mappings.
The bottom panel contains the source dictionary object and its component fields.
From here, our objective is simple: we need to figure out how to map component
fields from the source dictionary object to persistent class attributes.

Logically, the mapping process starts with the mapping of the source entity’s pri-
mary key field(s). In order to support the various kinds of data models developers
might encounter during this process, SAP supports the three different mapping
types described in Table 10.1. These mapping types provide us with the flexibil-
ity to tap into pre-existing relational data models, hybrid data models, or even
brand new data models that are built from the ground up.
342 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
Figure 10.10 Defining the Persistence Mapping for a Simple Entity Type

Mapping Type Description

By Business Key This mapping type is normally used whenever we want to map pre-
existing ABAP Dictionary tables which use semantic (or natural) pri-
mary keys. As the name suggests, a semantic key is a key which
makes intuitive sense to the user.

An example of a business key would be the PARTNER key field defined
within the BUT000 business partner master table. The PARTNER field
defines the business partner’s ID, something that most users would
immediately identify as a natural key for business partner records.

Note that a business key can be comprised of multiple columns. For
example, the BUT020 business partner address table has a composite
key of PARTNER + ADDRNUMBER, where the ADDRNUMBER field rep-
resents the address number linked to the business partner.

By Instance-
GUID

This mapping type is typically used whenever we’re defining a per-
sistence model from scratch. Here, we may find that it makes sense to
define the primary key for certain entity types in terms of a system-
generated globally unique identifier (or GUID) in situations there’s not
an obvious business key.

Table 10.1 Persistence Mapping Types
343

ABAP Object Services10
Once we identify the primary keys, the rest of the attributes usually map pretty
easily. Indeed, in the next section, we’ll find that the Mapping Assistant is usually
smart enough to map these attributes automatically.

Defining Basic Mappings

In order to demonstrate how to map various types of entities using the Mapping
Assistant tool, let’s consider a database schema that might be defined for an
online bookstore application.

Note

This data model is included with the book’s source code bundle, so you don’t have to
recreate the tables in the ABAP Dictionary. Plus, we’ve included a sample program
called ZOOPBOOK_BOOK_MODEL_LOADER that can be used to pre-fill the data model with
some sample data to test with.

For example, imagine that we’re creating a data model for a phone
directory application. Here, we might define a Person entity and a
ContactNumber entity to model the relationship between a person
in the directory and their various contact numbers. In the case of the
ContactNumber entity, there’s no real obvious business key because
phone numbers change all the time.

So, rather than defining an arbitrary sequential ID field that we have
to supply using a number range of some kind, the preferred approach
is to define a technical GUID using the OS_GUID type that will be
automatically assigned and managed by the Persistence Service.

By Instance-
GUID and
Business Key

This mapping type combines both techniques so that we get the best
of both worlds. Here, the mapped table has a semantic primary key as
well as a non-key field of type OS_GUID that is defined as part of a
unique secondary index in the table.

The combination of these keys makes it possible to access persistent
object instances by business keys or instance GUIDs depending on
the usage scenario. Internally though, the Persistence Service will
address such persistent objects using their instance GUIDs.

Mapping Type Description

Table 10.1 Persistence Mapping Types (Cont.)
344 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
The entity-relationship (E-R) diagram contained in Figure 10.11 highlights some
of the primary entities that might exist within this schema. Here, we can observe
the following:

� The books maintained in the bookstore inventory are contained in the ZTCA_
BOOKS table. This table uses the book’s ISBN number as a business key.

� Publishers are contained in the ZTCA_PUBLISHERS table. A given publisher may
publish many books (but a book can only be published by a single publisher).

� Books can have one or more authors. These authors are stored in the ZTCA_
AUTHORS table. Since a particular author may write many books, there’s a many-
to-many relationship between books and authors. Therefore, our database
schema introduces an association table which links the two entities: ZTCA_
BOOKAUTHORS.

Figure 10.11 E-R Diagram for the Book Data Model

At the end of the day, our goal with ORM is to translate relational data models
like the one shown in Figure 10.11 into a persistent class models like the one
shown in Figure 10.12. Since we already know how to create persistent classes,
our focus in this section will be on entity/attribute mapping.

ZTCA_AUTHORS

PK
PK

PK
PK

MANDT
AUTHOR_ID

FIRST_NAME
LAST_NAME

ZTCA_PUBLISHERS

MANDT
PUBLISHER_ID

PUBLISHER_NAME
REGION
COUNTRY

PK
PK

ZTCA_BOOKAUTHORS

MANDT
GUID

ISBN
AUTHOR_CLASS
AUTHOR_REF

PK
PK

ZTCA_BOOKS

MANDT
ISBN

TITLE
PUBLISHER_CLASS
PUBLISHER_REF
PUBLICATION_DATE

Publishes
345

ABAP Object Services10
Figure 10.12 Persistent Class Representation of the Book Data Model

As we (briefly) observed in the previous section, persistence mappings are carried
out using the Mapping Assistant tool built into the Class Builder. Once we deter-
mine the source table/view/structure that we want to map from, we can begin
mapping individual attributes by selecting from the list of fields in the lower half
of the screen as shown in Figure 10.13. This will load the field into the attribute
editor form contained in the middle of the screen. Here, working from left-to-
right, top-to-bottom, we can map a field from the source table/structure to a per-
sistent class attribute by specifying the following properties:

� Name
This property is used to specify the persistent attribute’s name.

� Description
This property contains the attribute’s short text description.

ZCL_AUTHOR

+ get_author_id()
+ get_first_name()
+ set_first_name()
+ get_last_name()
+ set_last_name()

ZCL_BOOK_AUTHOR

+ get_guid()
+ get_isbn()
+ get_isbn()
+ get_author()
+ set_author()

ZCL_PUBLISHER

+ get_publisher_id()
+ get_publisher_name()
+ set_publisher_name()
+ get_region()
+ set_region()
+ get_country()
+ set_country()

ZCL_BOOK

+ get_isbn()
+ get_title()
+ set_title()
+ get_publisher()
+ set_publisher()
+ get_publication_date()
+ set_publication_date()
+ get_authors()
+ add_author()
+ remove_author()

Association
class

1

*

*

*

346 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
� Visibility
Here, we can specify the visibility of the attribute (e.g. PUBLIC, PROTECTED, or
PRIVATE).

� Accessibility
This property can be used to determine if the attribute is changeable from out-
side the class. If we set this property to read-only, then only a getter method
will be exposed in the public interface. Otherwise, both a setter and getter
method will be generated.

� Assignment Type
This property allows us to specify the type of field/attribute being mapped.
Table 10.2 describes the different assignment type options in further detail.

� Type
This property allows us to specify the attribute’s type. Though this is normally
auto-filled in terms of the source field’s type, this property will be used to
define complex attributes which map object references.

Figure 10.13 Mapping Persistent Attributes Using the Mapping Assistant Tool
347

ABAP Object Services10
After we specify an attribute’s properties, we can add it to the persistent class
definition by clicking on the button with the up arrow icon on it as shown in Fig-
ure 10.13. Then, once all of the source table/structure fields are mapped, we can
save our changes by clicking on the Save button and then click the Back button to
return to the normal Class Builder view.

Figure 10.14 Viewing the Generated Methods of a Persistent Class

Assignment Type Meaning

Business Key This assignment type is auto-derived by the Mapping Assistant for
the primary key fields of an ABAP Dictionary table that has a
semantic primary key. This assignment type cannot be overwritten.

GUID This assignment type is auto-derived by the Mapping Assistant for
the primary key field of an ABAP Dictionary table that uses an
instance GUID as its primary key. This assignment type cannot be
overwritten.

Class Identifier /
Object Reference

These two assignment types are used to uniquely identify an object
reference. We’ll learn how this works in the next section.

Value Attribute This is the default assignment type for non-key attributes.

Table 10.2 Persistent Attribute Assignment Types
348 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
Figure 10.14 shows the finished product for the ZCL_PUBLISHER class defined in
our persistent class model. Here, notice that the public interface of the class has
been enhanced to include a number of getter/setter methods which correspond
with the mapped persistence attributes. These methods are used at runtime to
read/write the attributes as needed.

For simple entities like the ZCL_PUBLISHER entity, we can navigate through the
mapping process pretty quickly, accepting all the default values proposed by the
Mapping Assistant. However, matters are a bit more complicated for entities that
maintain relationships with other entities. In the next section, we’ll learn how to
model these relationships.

Modeling Simple Entity Relationships

Looking at the persistent class model diagram contained in Figure 10.12, we can
see that several of the entities are associated with one another in various ways.
For example, the ZCL_BOOK class defines an association to the ZCL_PUBLISHER class
in order to model the relationship between a book and its publisher. Similarly,
the association between the ZCL_BOOK and ZCL_AUTHOR entities allows us to model
the relationship between a book and its authors (and also an author and the books
they write).

What’s the significance of all this from an ORM perspective? Well, if we remem-
ber that our goal is to build a pure OO-based data model, then we need to figure
out a way for consumers of our data model to navigate these relationships with-
out having to write a lot of procedural SQL code. Indeed, in an ideal world, we’d
like for users to be able to traverse these relationships using method calls. Though
we could certainly build out such methods by hand, it turns out that the Mapping
Assistant is able to generate this logic automatically in most cases.

To demonstrate how this works, let’s take a closer look at the mapping of the ZCL_
BOOK class. As you can see in Figure 10.15, the ISBN primary key field and the
TITLE/ PUBLICATION_DATE value fields map pretty cleanly. This leaves us with the
PUBLISHER_CLASS and PUBLISHER_REF fields, both of which are defined using the
OS_GUID data type in the ZTCA_BOOKS table. Collectively, the PUBLISHER_CLASS and
PUBLISHER_REF fields are meant to uniquely identify an instance of the ZCL_PUB-
LISHER entity. Here, the PUBLISHER_CLASS field is used to store an identifier for
the target persistent class (i.e. ZCL_PUBLISHER) and the PUBLISHER_REF field is used
to store the primary key of the target publisher record.
349

ABAP Object Services10
Figure 10.15 Mapping an Object Attribute (Part 1)

To merge these fields into a single persistence attribute, all we have to do is map
both fields using the same attribute name (e.g. PUBLISHER). This approach is
demonstrated in Figure 10.16 and Figure 10.17, respectively.

Figure 10.16 Mapping an Object Attribute (Part 2)
350 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
Figure 10.17 Mapping an Object Attribute (Part 3)

As you can see, we’ve mapped both fields to a persistent attribute called PUB-
LISHER and set the attribute’s type as ZCL_PUBLISHER. After the persistent class is
regenerated, we can see that the getter/setter methods for this attribute are
defined in terms of the persistent class type (see Figure 10.18).

Figure 10.18 Mapping an Object Attribute (Part 4)

Defining the PUBLISHER attribute this way means that we can bind an instance of
the ZCL_PUBLISHER class by simply passing that instance as a parameter to the
ZCL_BOOK class’s set_publisher() method. Similarly, we can use the get_pub-
lisher() method to lookup a book’s publisher and then use the getter methods
351

ABAP Object Services10
of the ZCL_PUBLISHER class to find out more about that particular publisher. To
the consumer of our persistent data model, all this is achieved using OO program-
ming techniques as per usual.

In Section 10.4, we’ll take a look at some entity relationship types which are too
complex for the Mapping Assistant to handle on its own. In the meantime, we
need to spend some time learning how to interface with persistent objects from
an API perspective.

10.2.3 Working with Persistent Objects

Having seen how persistent classes are designed and configured in the previous
sections, let’s now switch gears and see how we can get our hands dirty with per-
sistent objects from a consumer perspective. Here, we’ll demonstrate how to use
the class agent API to perform basic CRUD (Create, Read, Update, and Delete) oper-
ations against persistent objects.

Understanding the Class Agent API

As we noted in Section 10.2.1, the instantiation context for persistent classes is
set as Protected. This means that clients can’t directly create instances of per-
sistent classes using the familiar CREATE OBJECT statement. Instead, clients have to
go through the persistent class’s class agent in order to obtain these instances.
From a client’s perspective, this layer of indirection raises a couple of questions:

1. How can clients get their hands on a persistent class’s class agent?

2. Once a client gets its hands on a class agent reference, how is the class agent
used to interact with persistent objects?

The answer to the first question is fairly straightforward. Looking closely at the
UML class diagram contained in Figure 10.7, we can see that a persistent class’s
agent class (e.g. CA_PERSISTENT) defines a public class attribute called AGENT which
exposes this reference. This is to say that class agents are defined as singletons.

With the class agent instance in hand, clients can begin interfacing with persistent
objects using the public instance methods of the agent class. For the most part, we
think you’ll find that the names of these methods are fairly intuitive. For exam-
ple, if we want to create an instance of a persistent class, we use the create_per-
sistent() method. Similarly, we can use the get_persistent() and delete_per-
sistent() methods to fetch and delete said instances after they’re created.
352 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
The complete set of methods provided by the class agent include methods
defined by the core Persistence Service interfaces (e.g. IF_OS_FACTORY, IF_OS_CA_
SERVICE, IF_OS_CA_PERSISTENCY, and IF_OS_CA_INSTANCE) as well as agent-spe-
cific methods which are generated by the Mapping Assistant tool based on the
persistent class mapping definitions. We’ll explore some of the more prominent
methods available here in the upcoming sections. A complete list of methods and
their usage scenarios is provided in the SAP NetWeaver Library documentation
available online at http://help.sap.com in the section entitled Components of the
Persistence Service.

Creating Persistent Object Instances

Knowing what you now know about the relationship between a persistent object
and its class agent, let’s see how we can use the class agent to create a persistent
object instance. Here, rather than speaking in general terms, we’ll look at what it
takes to create an author instance in our fictitious bookstore data model. As you
can see in the code excerpt contained in Listing 10.1, this operation is accom-
plished using the create_persistent() method that’s generated for the author’s
class agent (i.e. class ZCA_AGENT).

DATA lo_author TYPE REF TO zcl_author.
DATA lx_os_ex TYPE REF TO cx_os_object_existing.

TRY.
lo_author =
zca_author=>agent->create_persistent(

i_first_name = 'Paige'
i_last_name = 'Wood').

COMMIT WORK.
CATCH cx_os_object_existing INTO lx_os_ex.

"TODO: Error handling goes here...
ENDTRY.

Listing 10.1 Creating a Persistent Object Using the Class Agent API

Looking closely at the code excerpt contained in Listing 10.1, you can see that we
were actually able to pass in all of the author details in one go via the call to cre-
ate_persistent(). One notable omission in this parameter list is the key of the
author entity (i.e. the AUTHOR_ID field). Since the ZCL_AUTHOR class is mapped
using the “By Instance-GUID” mapping type, the Persistence Service will take care
of allocating this key on our behalf behind the scenes. The other parameters are
353

ABAP Object Services10
optional and are merely provided as a matter of convenience. If we wanted to, we
could also omit the first/last name parameters and fill in the attributes after the
fact using the appropriate setter methods of the ZCL_AUTHOR class.

Enhancing the Signature of Persistent Object Creation Methods

Looking at the call to create_persistent() in Listing 10.1, you might be wondering
where the I_FIRST_NAME and I_LAST_NAME parameters came from. These parameters
are cre-ated behind the scenes by the Mapping Assistant as it goes through the process
of gen-erating the persistent class’s agent class methods.

You can control this behavior within the Mapping Assistant tool by clicking on the Gen-

erator Settings button and toggling the Minimum Interface for Methods CREATE_
PERSISTENT and CREATE_TRANSIENT checkbox field as shown in Figure 10.19. By turn-
ing this checkbox off for the ZCL_AUTHOR class, we’ve effectively given the Mapping
Assistant the green light to enhance the signature of the create_persistent()
method to include the optional I_FIRST_NAME and I_LAST_NAME parameters. Alterna-
tively, if we turn the checkbox on, the method signature will be stripped down to just
the essentials (e.g. the primary key in the case of business key mappings).

Figure 10.19 Configuring the Signature of the CREATE_PERSISTENT() Method

After the call to create_persistent(), a persistent object instance will be created
as expected, but at this point, it exist only in memory. In order to persist the
record, we must follow this method call with the familiar COMMIT WORK statement.
This will cause the Persistence Service to convert the in-memory record into a
record in the ZTCA_AUTHORS table as shown in Figure 10.20.
354 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the Persistence Service 10.2
Figure 10.20 Viewing the Persistent Object Instance in the Database

Reading Persistent Object Instances

If a persistent class is defined using the “By Business Key” mapping type, then we
can use the generated get_persistent() method to fetch persistent object
instances of that class from the database. Listing 10.2 demonstrate this approach
for the ZCL_BOOK persistent class. Here, you can see how we’re looking up a book
by its ISBN number. Once we have an instance of the persistent object in hand,
we can query its attributes using the getter methods created by the Mapping
Assistant (e.g. the get_title() method demonstrated in Listing 10.2).

DATA lo_book TYPE REF TO zcl_book.
DATA lv_title TYPE zbook_title.
DATA lx_obj_not_found TYPE REF TO cx_os_object_not_found.

TRY.
lo_book =
zca_book=>agent->get_persistent('9781592294169').

lv_title = lo_book->get_title().
WRITE: / 'Title is:', lv_title.

CATCH cx_os_object_not_found INTO lx_obj_not_found.
"TODO: Exception handling goes here...

ENDTRY.

Listing 10.2 Reading Persistent Objects Using the Class Agent API

As you browse through the sample code contained in Listing 10.2, you might be
wondering how to read object instances whose persistent classes don’t use the
“By Business Key” mapping type. Since it’s very unlikely that you would happen
to know the GUID of such objects, lookups using a method like get_per-
sistent() don’t really make sense. Instead, the normal use case is to fetch such
objects using a query of some kind. We’ll learn how to implement such queries in
Section 10.3.
355

ABAP Object Services10
Updating Persistent Objects

As we’ve noted throughout this section, persistent object instances are obtained
indirectly via the class agent of the corresponding persistent class. Though this
indirection may seem like a nuisance at first, there is a major benefit to this
approach: by brokering all object instance requests through the class agent, SAP
ensures that any time we get our hands on a persistent object, it’s a live instance
that’s ready to be manipulated. In other words, if we want to update a persistent
object, all we have to do is load the instance and start calling its setter methods.

This approach is demonstrated in the code excerpt contained in Listing 10.3. In
this example, we’re updating a book record’s publisher reference by calling the
set_publisher() method defined in the ZCL_BOOK persistent class. Here, notice
how we’re passing an instance of the ZCL_PUBLISHER class to set_publisher().
Internally, the Persistence Service will unpack this request and apply the results
to the PUBLISHER_CLASS and PUBLISHER_REF fields of table ZTCA_BOOKS.

DATA lo_publisher TYPE REF TO zcl_publisher.
DATA lo_book TYPE REF TO zcl_book.
DATA lx_os_ex TYPE REF TO cx_os_object_existing.
DATA lx_obj_not_found TYPE REF TO cx_os_object_not_found.

TRY.
lo_publisher =
zca_publisher=>agent->create_persistent().

lo_publisher->set_publisher_name('SAP Press').
lo_publisher->set_region('MA').
lo_publisher->set_country('US').

lo_book =
zca_book=>agent->get_persistent('9781592294169').

lo_book->set_publisher(lo_publisher).

COMMIT WORK.
CATCH cx_os_object_existing INTO lx_os_ex.

"TODO: Error Handling goes here...
CATCH cx_os_object_not_found INTO lx_obj_not_found.

"TODO: Error Handling goes here...
ENDTRY.

Listing 10.3 Updating Persistent Objects Using the Class Agent API

Looking closely at the code excerpt contained in Listing 10.3, you can see that
we’re once again issuing the COMMIT WORK statement to commit our changes to the
356 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Querying Persistent Objects with the Query Service 10.3
database. Without this statement, all of the updates applied via the setter method
calls would be lost.

Deleting Persistent Objects

In order to delete a persistent object instance, we must call the delete_per-
sistent() method defined in the IF_OS_FACTORY interface that’s implemented by
a persistent class’s class agent. This method is demonstrated in Listing 10.4. Here,
we simply lookup the target persistent object and pass it to the delete_per-
sistent() method. Then, as is the case for any permanent change, we issue the
COMMIT WORK statement to commit the changes.

DATA lo_book TYPE REF TO zcl_book.
DATA lx_os_ex TYPE REF TO cx_os_object_existing.
DATA lx_obj_not_found TYPE REF TO cx_os_object_not_found.

TRY.
lo_book =
zca_book=>agent->get_persistent('9781592294169').

zca_book=>agent->if_os_factory~delete_persistent(lo_book).
COMMIT WORK.

CATCH cx_os_object_existing INTO lx_os_ex.
"TODO: Error Handling goes here...

CATCH cx_os_object_not_found INTO lx_obj_not_found.
"TODO: Error Handling goes here...

ENDTRY.

Listing 10.4 Deleting Persistent Objects Using the Class Agent API

10.3 Querying Persistent Objects with the Query Service

In the previous section, we learned how the class agent API allows us to perform
basic CRUD operations on individual persistent objects. However, you may have
noticed that the API isn’t necessarily optimized for bulk operations. For example,
what if we want to apply updates to all books that were published on or before a
given date? Or, what if we don’t happen to know the primary key of an object
instance?

In the SQL world, these types of queries are executed using the familiar SELECT
statement. Here, we can build various logical expressions using the WHERE clause
to refine the selection and pull back the records we want to work with. Within
the context of ABAP Object Services, such queries are built and executed via the
357

ABAP Object Services10
Query Service. In this section, we’ll take a look at how this service can be used to
fetch persistent object instances.

10.3.1 Technical Overview

From a client’s perspective, the Query Service API is fairly concise, consisting of
two main interfaces: IF_OS_QUERY_MANAGER and IF_OS_QUERY, respectively. The
relationships between these interfaces and the CL_OS_SYSTEM class that grants us
access to the Query Service are illustrated in the UML class diagram contained in
Figure 10.21.

Figure 10.21 UML Class Diagram for Query Service API

Following the class diagram contained in Figure 10.21, we can see that basic call
sequence for interfacing with the Query Service is as follows:

CL_OS_SYSTEM

+ get_query_manager()
...

<< interface >>
IF_OS_QUERY_MANAGER

+ create_query()

<< interface >>
IF_OS_QUERY

+ parse()
+ set_filtering_expr()
+ set_ordering_expr()
+ set_parameters_expr()
+ get_expr_factory()

<< interface >>
IF_OS_CA_PERSISTENCY

+ get_persistent_by_query()
...

<< Agent Class >>
CA_PERSISTENCY

+ get_persistent_by_query()
...

CL_PERSISTENT

+ get_{attribute}()
+ set_{attribute}()
...
358 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Querying Persistent Objects with the Query Service 10.3
1. First, we call the static get_query_manager() method of class CL_OS_SYSTEM to
obtain an object reference that implements the IF_OS_QUERY_MANAGER interface.

2. Next, we use the query manager instance to create a query by calling the cre-
ate_query() method of the IF_OS_QUERY_MANAGER interface. Here, several
optional parameters are provided to pre-define the query up front. We can
choose to specify the query details here or at a later step using the instance
methods defined by the IF_OS_QUERY interface.

3. Once the query object is created, we can use it to lookup persistent objects by
calling the generic get_persistent_by_query() method that the target per-
sistent class’s class actor inherits from the IF_OS_CA_PERSISTENCY interface.
This method will return a table containing all the persistent object references
found by the query.

4. Finally, we can manipulate the objects returned by the query just as we would
any normal persistent object using the class agent API.

For the most part, queries really are that simple. Of course, formulating the query
conditions themselves can be a little tricky. Therefore, in the next section, we’ll
spend some time looking at how to build query expressions.

10.3.2 Building Query Expressions

To a large extent, query expressions within the Query Service are constructed in
much the same way that we would construct the WHERE clause in an SQL SELECT
statement. Indeed, as you can see in Table 10.3, most of the operators used to
build query expressions are identical to the ones we have available via Open SQL.
These standard operators are then supplemented with some Query Service-spe-
cific operators used to evaluate persistent object relationships.

Operator / Expression Description

Relational Operators

(=, <>, <, <=, >, >=)

As is the case with Open SQL, we can use the familiar SQL
relational operators to build logical expressions, etc.

Examples:

name = 'Xander'

count >= 100

Table 10.3 Elements Used to Build Filter Conditions in the Query Service
359

ABAP Object Services10
Collectively, the operators/expressions described in Table 10.3 are used to build
one long filter condition string that we pass into the create_query() method of
the IF_OS_QUERY_MANAGER interface. This approach is demonstrated in the code
excerpt contained in Listing 10.5. Here, we’re looking for any book records
where the title contains the term “ABAP” and the publication date is greater than
or equal to January 1st, 2010. If we wanted to be even more specific, we could
continue expanding the lv_filter string to include the appropriate filter condi-
tions, but you get the idea.

Pattern Searches This type of expression can be used to implement fuzzy
search logic based on text patterns.

Examples:

fname LIKE 'And%'

lname NOT LIKE '%Wood%'

Logical Operators

(AND, OR, NOT)

These logical operators can be used to build complex expres-
sions based on Boolean logic conditions.

Example:

fname = 'Paige' AND

lname = 'Wood'

Null Checks

IS [NOT] NULL

Whenever we’re dealing with complex relationships
between persistent classes, the IS NULL expression can be
used to build join expressions based on the presence (or
absence) of object references.

Example:

Publisher IS NULL

Object Reference Equality

EQUALSREF

The EQUALSREF operator can be used to compare object ref-
erences in much the same way that the equality (=) operator
is used to evaluate the equality of elementary types. Here,
the operand on the left-hand side of the expression is the
object reference attribute in the target persistent class, and
the operand on the right-hand side of the expression is an
object reference that we want to compare against.

Example:

publisher EQUALSREF par1

Operator / Expression Description

Table 10.3 Elements Used to Build Filter Conditions in the Query Service (Cont.)
360 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Querying Persistent Objects with the Query Service 10.3
DATA: lo_query_mgr TYPE REF TO if_os_query_manager,
lv_filter TYPE string,
lo_query TYPE REF TO if_os_query,
lo_agent TYPE REF TO if_os_ca_persistency,
lt_books TYPE osreftab,
lo_record TYPE REF TO object,
lo_book TYPE REF TO zcl_book,
lv_title TYPE string.

lo_query_mgr = cl_os_system=>get_query_manager().
lv_filter =

|PUBLICATION_DATE >= '20100101' AND TITLE LIKE '%ABAP%'|.
lo_query =

lo_query_mgr->create_query(
i_filter = lv_filter).

lo_agent = zca_book=>agent.
lt_books =

lo_agent->get_persistent_by_query(i_query = lo_query).

LOOP AT lt_books INTO lo_record.
lo_book ?= lo_record.
lv_title = lo_book->get_title().
WRITE: / lv_title.

ENDLOOP.

Listing 10.5 Working with the Query Service

As you can see in Listing 10.5, the result set returned from the get_persistent_
by_query() method is a generic object table of type OSREFTAB. In order to access
the persistent objects contained within, we must downcast the generic OBJECT
references into the appropriate persistent class type using the familiar ?= opera-
tor. Once we perform the downcast, it’s business as usual from a Persistence Ser-
vice/Class Agent API perspective.

Besides specifying filter conditions in a query, the Query Service also allows us to
define sorting criteria for the result set that’s returned to us. Here, we can sort the
results table by attributes in much the same way that we would specify an ORDER
BY clause in an SQL SELECT statement. For example, in Listing 10.6, you can see
how we re-worked our book query to sort the results by the PUBLICATION_DATE
attribute in ascending order.

DATA: lo_query_mgr TYPE REF TO if_os_query_manager,
lv_filter TYPE string,
lv_sort TYPE string,
...
361

ABAP Object Services10
lo_query_mgr = cl_os_system=>get_query_manager().
lv_filter =

|PUBLICATION_DATE >= '20100101' AND TITLE LIKE '%ABAP%'|.
lv_sort = |PUBLICATION_DATE ASCENDING|.
lo_query =

lo_query_mgr->create_query(
i_filter = lv_filter
i_ordering = lv_sort).

...

Listing 10.6 Specifying Sort Conditions in a Query

Hopefully this section has provided you with a basic understanding of how to
construct and execute queries using the Query Service. Realistically, there are so
many features provided with this service that we can’t reasonably cover them all
in a book like this. However, if you’re interested in finding more information
about the capabilities of the Query Service, please check out the ABAP Object Ser-
vices documentation available online in the SAP Help Portal for your particular
SAP NetWeaver release.

10.4 Modeling Complex Entity Relationships

In Section 10.2.2, we observed how easy it is to model simple 1-to-1 relation-
ships like a book-to-publisher relationship using the Mapping Assistant tool.
However, you might be wondering how we deal with more complex relation-
ships such as the 1-to-many relationship between a book and its contributing
authors or the relationship between a publisher and the books they publish. Rest
assured that it’s definitely possible to model such relationships in persistent
classes; we just have to work at it a bit more. This section will show you what’s
involved from a development perspective.

10.4.1 Performing Reverse Lookups

As our first case study, let’s see what it would take to produce a list of books pub-
lished by a particular publisher. In this scenario, our challenge lies in the fact that
publisher entities don’t maintain foreign keys to the books they publish. There-
fore, we can’t define the relationship within the ZCL_PUBLISHER class using the
graphical Mapping Assistant tool.
362 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Modeling Complex Entity Relationships 10.4
The alternative is to utilize the Query Service to perform a reverse lookup for
book objects whose publisher matches the publisher object driving the selection.
This approach is demonstrated in the LIST_BOOKS() method that we defined in
the ZCL_PUBLISHER class. As you can see in Listing 10.7, this custom method is
designed to return a table of ZCL_BOOK objects where the publisher matches the
driving ZCL_PUBLISHER instance. Here, we’re using the EQUALSREF operator to
define the relationship. Behind the scenes, the Query Service will unpack the
source/target object references and use a SQL query to match up the keys.

CLASS zcl_publisher...
method LIST_BOOKS. "RETURNING VALUE(rt_books) TYPE zttca_books

DATA: lo_query_mgr TYPE REF TO if_os_query_manager,
lo_query TYPE REF TO if_os_query,
lo_book_agent TYPE REF TO if_os_ca_persistency,
lv_filter TYPE string,
lt_parameters TYPE osdreftab,
ls_parameter LIKE LINE OF lt_parameters,
lt_results TYPE osreftab,
lo_result TYPE REF TO object,
lo_book TYPE REF TO zcl_book.

"Perform a query to find all books matching this
"publisher instance:
lo_query_mgr = cl_os_system=>get_query_manager().
lo_book_agent = zca_book=>agent.

lv_filter = |publisher EQUALSREF par1|.

lo_query =
lo_query_mgr->create_query(i_filter = lv_filter).

GET REFERENCE OF me INTO ls_parameter.
APPEND ls_parameter TO lt_parameters.

lt_results =
lo_book_agent->get_persistent_by_query(

i_query = lo_query
i_parameter_tab = lt_parameters).

"Copy over the results:
LOOP AT lt_results INTO lo_result.
lo_book ?= lo_result.
APPEND lo_book TO rt_books.

ENDLOOP.
endmethod.
ENDCLASS.

Listing 10.7 Performing a Reverse Lookup Using the Query Service
363

ABAP Object Services10
As you can see in Listing 10.7, the code contained within the LIST_BOOKS()
method is rather unremarkable. The important thing to note though is that we
can enhance persistent classes with helper methods where needed. And, with the
Query Service, we don’t necessarily have to write SQL to traverse these complex
relationships. Oftentimes, we can write a simple query and connect the dots from
there.

10.4.2 Navigating N-to-M Relationships

Looking back at the E-R diagram for our fictitious book data model in Figure
10.11, you can see that in order to model the complex many-to-many relation-
ship between books and the authors that write them, we had to introduce an
association table called ZTCA_BOOKAUTHORS. This table is basically a cross-reference
table whose sole purpose is to link books with authors.

In the relational paradigm, we can use association tables like ZTCA_BOOKAUTHORS as
the glue for a SQL JOIN statement that links book records with their correspond-
ing author records. To achieve the same results in an object-based model, we
employ to use the tried-and-true composition technique.

This starts with the creation of a persistence mapping on top of the ZTCA_BOOKAU-
THORS table. As you can see in Figure 10.22, this table is mapped to the ZCL_BOOK_
AUTHOR class using the GUID assignment type with two value attributes: ISBN to
link the mapped book and AUTHOR to link to the mapped author instance.

Figure 10.22 Defining the Persistence Mapping for ZTCA_BOOKAUTHORS

With the ZCL_BOOK_AUTHOR persistent class in place, we can begin linking books to
authors using the ZCL_BOOK_AUTHOR class’s agent. Though this works in principle,
it’s not exactly what we want from an API perspective. Ideally, we want to be able
to add/remove/display the authors associated with a particular book directly via
364 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Modeling Complex Entity Relationships 10.4
the book instance. For instance, when defining a new book, it would be conve-
nient to call a method like add_author() to create the linkage since this is more
intuitive to the client than having to go through a (technical) construct like the
ZCL_BOOK_AUTHOR association class. Indeed, in an ideal world, the details of this
association would be encapsulated from the outside world (e.g. via package inter-
faces). The desired end result is illustrated in the enhanced class diagram for the
ZCL_BOOK class contained in Figure 10.23.

Figure 10.23 Enhanced Class Diagram for the ZCL_BOOK Persistent Class

With the UML class diagram contained in Figure 10.23 as our guide, let’s walk
through the elements we need/want to add to the ZCL_BOOK class in order to
directly access the book-to-author relationship from book instances:

1. First, you can see how we’ve defined two instance attributes called BOOK_
AUTHORS and AUTHORS which contain ZCL_BOOK_AUTHOR and ZCL_AUTHOR objects,
respectively. These internal table attributes are used to keep track of author
assignments within a ZCL_BOOK instance. Here, note that the BOOK_AUTHORS attri-
bute (and corresponding getter/setter methods) as not exposed as part of the
ZCL_BOOK class’s public interface. Again, our goal is to shield clients from the
intricacies of this complex relationship, so it makes good sense to hide it in the
private section of the class.

2. In order to pre-fill the BOOK_AUTHORS and AUTHORS attributes such that a ZCL_
BOOK instance is always consistent, we need to override the init() method
that’s inherited from the IF_OS_STATE interface. In just a moment, we’ll see
how to use the Query Service to fetch these instances at runtime.

<< Persistent Class >>
ZCL_BOOK

- book_authors[] : ZCL_BOOK_AUTHOR
+ authors[] : ZCL_BOOK {readOnly}

+ if_os~init()
- get_book_authors()
- set_book_authors()
+ get_authors()
+ add_author(ZCL_AUTHOR)
+ remove_author(ZCL_AUTHOR)
...
365

ABAP Object Services10
3. Lastly, we have the add_author() and remove_author() methods which are
used to add and remove contributing authors from a book record, respectively.

Listing 10.8 shows how we’re initializing the BOOK_AUTHORS and AUTHORS instance
attributes in the ZCL_BOOK class using the if_os_state~init()method. Since the
Persistence Service calls this method immediately after loading the attributes of
the book persistent object, it represents the ideal place to pre-fill the authors who
collaborated on the book. From an implementation perspective, all we really have
to do here is use the Query Service to lookup ZCL_BOOK_AUTHOR instances match-
ing the book’s ISBN attribute and store any found object references internally in
the BOOK_AUTHORS and AUTHORS instance attributes. Once this operation is com-
plete, our book instance is fully loaded and ready for business.

method IF_OS_STATE~INIT.
DATA: lo_query_mgr TYPE REF TO if_os_query_manager,

lo_query TYPE REF TO if_os_query,
lo_agent TYPE REF TO if_os_ca_persistency,
lt_book_authors TYPE osreftab,
lo_result TYPE REF TO object,
lo_book_author TYPE REF TO zcl_book_author,
lo_author TYPE REF TO zcl_author.

"Run a query to find all of the matching book authors:
lo_query_mgr = cl_os_system=>get_query_manager().
lo_query =
lo_query_mgr->create_query(i_filter = 'ISBN = PAR1').

lo_agent = zca_book_author=>agent.
lt_book_authors =
lo_agent->get_persistent_by_query(

i_query = lo_query
i_par1 = me->isbn).

"Copy the results into the AUTHORS attribute:
LOOP AT lt_book_authors INTO lo_result.
lo_book_author ?= lo_result.
APPEND lo_book_author TO me->book_authors.

lo_author = lo_book_author->get_author().
APPEND lo_author TO me->authors.

ENDLOOP.
endmethod.

Listing 10.8 Pre-filling the Authors of a Book Using the INIT() Method
366 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Modeling Complex Entity Relationships 10.4
With everything pre-configured, the implementation details for the add_author()
method are fairly straightforward. Here, we simply pair the incoming author
object with the book object’s ISBN attribute, create a ZCL_BOOK_AUTHOR instance,
and cache the results. As you can see in Listing 10.9 though, we first need to
check to make sure that the author’s not already associated with the book. This
task is accomplished by looking up the author’s GUID value using the get_oid_
by_ref() method. With this value in hand, we can compare the GUID of the new
author instance with those currently stored in the AUTHORS cache.

method ADD_AUTHOR.
DATA: lo_author_agent TYPE REF TO if_os_ca_service,

lv_author_guid TYPE os_guid,
lo_temp_author TYPE REF TO zcl_author,
lv_temp_guid TYPE os_guid,
lo_book_author TYPE REF TO zcl_book_author.

"Determine the GUID of the new author object:
lo_author_agent = zca_author=>agent.
lv_author_guid =
lo_author_agent->get_oid_by_ref(io_author).

"Check to see if the author is already assigned
"to the book:
LOOP AT me->book_authors INTO lo_book_author.
lo_temp_author = lo_book_author->get_author().
lv_temp_guid =

lo_author_agent->get_oid_by_ref(lo_temp_author).

IF lv_author_guid EQ lv_temp_guid.
RAISE EXCEPTION TYPE cx_os_object_existing

EXPORTING
object = lo_book_author.

ENDIF.
ENDLOOP.

"If not, go ahead and assign it:
lo_book_author =
zca_book_author=>agent->create_persistent().

lo_book_author->set_isbn(me->isbn).
lo_book_author->set_author(io_author).

"Cache the results:
APPEND io_author TO me->authors.
APPEND lo_book_author TO me->book_authors.

endmethod.

Listing 10.9 Adding an Author to a Book Instance
367

10 ABAP Object Services
For the most part, the remove_author() method simply reverses the steps we
carry out in the add_author() method, removing the selected author instance
from both the Persistence Service cache as well as the internal object cache
defined by the ZCL_BOOK class (Listing 10.10). In both cases, it’s worth noting
that none of the changes are committed directly within the methods (e.g.
with a COMMIT WORK statement). This is not an omission; rather, it’s a design
choice which allows our API to be incorporated into batch operations as
needed. To get a sense for how this works, we’re recommend that you check
out the ZOOPBOOK_BOOK_MODEL_ LOADER program that’s included in the book’s
source code bundle for this chapter.

method REMOVE_AUTHOR.DATA: lo_author_agent TYPE REF TO if_os_ca_service,
lv_author_guid TYPE os_guid,
lo_book_author TYPE REF TO zcl_book_author,
lo_author TYPE REF TO zcl_author,
lv_temp_guid TYPE os_guid,
lo_assoc_agent TYPE REF TO if_os_factory.

"Determine the GUID of the target author object:
lo_author_agent = zca_author=>agent.
lv_author_guid =
lo_author_agent->get_oid_by_ref(io_author).

"Check to see if the author is already assigned to
"the book:
LOOP AT me->book_authors INTO lo_book_author.
lo_author = lo_book_author->get_author().
lv_temp_guid =

lo_author_agent->get_oid_by_ref(lo_author).

"If it is, remove it:
IF lv_author_guid EQ lv_temp_guid.

"First from the database layer:
lo_assoc_agent = zca_book_author=>agent.
lo_assoc_agent->delete_persistent(lo_book_author).

"And then from the cache:
DELETE me->book_authors.

LOOP AT me->authors INTO lo_author.
lv_temp_guid =

lo_author_agent->get_oid_by_ref(lo_author).
IF lv_temp_guid EQ lv_author_guid.

DELETE me->authors.
ENDIF.

ENDLOOP.
368 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Transaction Handling with the Transaction Service 10.5
ENDIF.
ENDLOOP.

endmethod.

Listing 10.10 Removing an Author from a Book Instance

10.5 Transaction Handling with the Transaction Service

With all of the abstraction layers provided by the Persistence Service, it can be
easy to lose sight of the fact that the operations we perform using the class agent
API, etc. result in SQL commands being issued to the underlying system database.
Though this is of course the point with ORM tools, it’s important to ensure that
the updates we trigger are processed safely and reliably within transactions. In
this section, we’ll see how the Transaction Service makes it possible for us to
achieve this while remaining in a purely OO context.

10.5.1 Technical Overview

So what is the Transaction Service you might ask? Well, in essence, it’s an exten-
sion of the ABAP Object Services framework which provides an abstraction
around the SAP transaction concept. Behind the scenes, the Transaction Service
works in conjunction with the Persistence Service to enroll changes to persistent
objects in an SAP Logical Unit of Work (LUW) so that a series of related operations
can be committed or rolled back as a single unit/transaction.

Though we could technically achieve all this using elements of the SAP transac-
tion concept (e.g. update function modules and/or subroutines), it’s much more
convenient to be able to utilize the features of the Transaction Service so that we
don’t have to mix-and-match OO programming with procedural constructs.

The UML class diagram contained in Figure 10.24 highlights the main elements
of the Transaction Service. At the core of this is the IF_OS_TRANSACTION interface
which encapsulates individual transactions. Here, we’re provided with methods
to start/stop transactions, rollback transactions, and so on. A detailed method-by-
method description of this interface is provided in the SAP Help Library docu-
mentation available online at http://help.sap.com in the section entitled Compo-
nents of the Transaction Service.
369

ABAP Object Services10
Figure 10.24 UML Class Diagram of Transaction Service Components

10.5.2 Processing Transactions

From a client’s perspective, the Transaction Service is very easy to consume. To
process updates to persistent objects inside of a transaction, the order of opera-
tions is as follows:

1. First, we initialize the Transaction Service by calling the static init_and_set_
modes() method of class CL_OS_SYSTEM. This method accepts two parameters
which are used to specify the mode of the Transaction Service:

� I_EXTERNAL_COMMIT

This Boolean parameter determines whether or not the transaction commit
happens externally or internally. In the former (default) case, we must fol-
low a transaction commit with a COMMIT WORK statement to persist the
changes. If we set the parameter to false, then we can process the transaction
exclusively through the Transaction Service – which is usually what we want.

� I_UPDATE_MODE

This parameter allows us to determine the update mode of the transaction.
As you read through the online help documentation, you can see that the
parameter options here correspond with options utilized within the SAP
transaction concept (e.g. direct updates vs. updates via the asynchronous
update task).

CL_OS_SYSTEM

+ init_and_set_models()
+ get_transaction_manager()
...

<< interface >>
IF_OS_TRANSACTION_MANAGER

+ create_transaction()
+ get_top_transaction()
+ get_current_transaction()

<< interface >>
IF_OS_TRANSACTION

+ set_mode_update()
+ start()
+ end()
+ end_and_chain()
+ undo()
+ undo_and_chain()
+ set_mode_undo_relevant()
+ get_status()
+ get_modes()
+ register_check_agent()

+ SAVE_REQUESTED
+ SAVE_PREPARED
+ FINISHED

Framework
Events
370 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Transaction Handling with the Transaction Service 10.5
2. After the Transaction Service is initialized, the next step is to obtain a transac-
tion manager instance which will be used to manage transactions. This is
achieved by calling the static get_transaction_manager() method of class CL_
OS_SYSTEM. This method will return an object of type IF_OS_TRANSACTION_MAN-
AGER (see Figure 10.24).

3. To create the actual transaction, we call the create_transaction() instance
method on the transaction manager retrieved from the second step. This
method will return an object of type IF_OS_TRANSACTION.

4. Before we start the transaction, we have the option of registering event han-
dlers to listen for the framework events shown in Figure 10.24. These callback
methods are frequently useful for preparing for or reacting to key transaction
processing milestone events.

5. To start the transaction, we then call the start() method defined by the IF_OS_
TRANSACTION interface.

6. Once we have a live transaction running, we can begin performing updates to
persistent objects as per usual.

7. Finally, we complete the transaction by calling either the end() method or the
end_and_chain() method on the transaction instance. In the latter case, the
transaction is committed and a new transaction is started in the same context.
Alternatively, if we determine that something’s gone awry, we can roll back the
transaction by calling the undo() method.

To see how all this plays out in code, consider the ZTRANS_DEMO report program
contained in Listing 10.11. Here, we’re using the Transaction Service to group
together the updates required to define a new book instance in our book data
model. As you can see, aside from a bit of initial setup, the Transaction Service
does a good job of getting out of our way and allowing us to work with persistent
objects as per usual.

REPORT ztrans_demo.
CLASS lcl_loader DEFINITION.

PUBLIC SECTION.
CLASS-METHODS:

class_constructor,
execute.

METHODS:
handle_save_requested FOR EVENT save_requested

OF if_os_transaction,
handle_save_prepared FOR EVENT save_prepared
371

ABAP Object Services10
OF if_os_transaction,
handle_finished FOR EVENT finished

OF if_os_transaction
IMPORTING status.

ENDCLASS.

CLASS lcl_loader IMPLEMENTATION.
METHOD class_constructor.
"Initialize the Transaction Service:
CALL METHOD cl_os_system=>init_and_set_modes

EXPORTING
i_external_commit = oscon_false
i_update_mode = oscon_dmode_update_task.

ENDMETHOD.

METHOD execute.
DATA: lo_loader TYPE REF TO lcl_loader,

lo_txn_mgr TYPE REF TO if_os_transaction_manager,
lo_txn TYPE REF TO if_os_transaction,
lo_author1 TYPE REF TO zcl_author,
lo_author2 TYPE REF TO zcl_author,
lo_publisher TYPE REF TO zcl_publisher,
lo_book TYPE REF TO zcl_book.

"Initialization:
CREATE OBJECT lo_loader.
lo_txn_mgr =

cl_os_system=>get_transaction_manager().
lo_txn = lo_txn_mgr->create_transaction().

SET HANDLER lo_loader->handle_save_requested
FOR lo_txn.

SET HANDLER lo_loader->handle_save_prepared
FOR lo_txn.

SET HANDLER lo_loader->handle_finished
FOR lo_txn.

TRY.
"Start the transaction:
lo_txn->start().

"Create a publisher instance:
lo_publisher =

zca_publisher=>agent->create_persistent(
i_country = 'US'
i_publisher_name = 'SAP Press, Inc.'
i_region = 'MA').

"Create a couple of authors:
lo_author1 =

zca_author=>agent->create_persistent(
372 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Transaction Handling with the Transaction Service 10.5
i_first_name = 'Horst'
i_last_name = 'Keller').

lo_author2 =
zca_author=>agent->create_persistent(

i_first_name = 'Sascha'
i_last_name = 'Krüger').

"Create a book:
lo_book =

zca_book=>agent->create _persistent(
i_isbn = '9781592290796'
i_publication_date = '20070315'
i_publisher = lo_publisher
i_title =

'ABAP Objects: ABAP Programming in NetWeaver').

"Assign authors to the book:
lo_book->add_author(lo_author1).
lo_book->add_author(lo_author2).

"Commit the transaction:
lo_txn->end().

CATCH cx_root.
ENDTRY.

ENDMETHOD.

METHOD handle_save_requested.
WRITE: /

'Save requested, perform any last-minute updates...'.
ENDMETHOD.

METHOD handle_save_prepared.
WRITE: /

'Save prepared, COMMIT WORK happens next...'.
ENDMETHOD.

METHOD handle_finished.
IF status EQ OSCON_TSTATUS_FIN_SUCCESS.

WRITE: / 'Transaction processed successfully.'.
ENDIF.

ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
lcl_loader=>execute().

Listing 10.11 Processing Persistent Object Updates in a Transaction
373

ABAP Object Services10
10.5.3 Influencing the Transaction Lifecycle

By the time we decide to end/commit a transaction, each of the persistent objects
enrolled in the transaction should be in a consistent state. However, it never hurts
to have an additional checkpoint to ensure that each of the objects involved in the
transaction are in a consistent state. That’s why the Transaction Service allows us
to register check agents with transactions so that a consistency check will be car-
ried out before the transaction is committed. Within this check agent, we have
the power to veto the transaction if something has gone awry.

From a technical perspective, a check agent is an object instance that implements
the IF_OS_CHECK interface. This interface defines a single Boolean callback method
called is_consistent() that gets called right before a transaction is committed.
Here, we get to decide whether or not we want to pass or fail the transaction.

To demonstrate how this works, consider the code excerpt contained in Listing
10.12. Here, we’ve implemented the IF_OS_CHECK interface in our ZCL_BOOK class
so that we can perform consistency checks for books before they’re committed.
In larger data models, we might want to externalize this functionality into a ser-
vice manager or some such in order to enforce integrity checks on a more macro
level, but you get the idea.

CLASS zcl_book...
METHOD if_os_check~is_consistent.
"Make sure a book instance has at least one author
"before saving:
IF lines(me->authors) GT 0.

result = abap_true.
ELSE.

result = abap_false.
ENDIF.

ENDMETHOD.
ENDCLASS.

Listing 10.12 Implementing the IS_CONSISTENT() Method

The code excerpt contained in Listing 10.13 shows how we can incorporate our
check agent into the transaction used to manage the book creation process. As
you can see, the check agent registration occurs via a call to the register_check_
agent() method defined by the IF_OS_TRANSACTION interface.

CLASS lcl_loader...
...
METHOD execute.
374 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Communication Diagrams 10.6
...
TRY.

"Start the transaction:
lo_txn->start().
...
"Create a book:
lo_book = ...

"Register the check agent:
lo_txn->register_check_agent(lo_book).

"Commit the transaction:
lo_txn->end().

CATCH cx_root.
ENDTRY.

ENDMETHOD.
...

ENDLCASS.

Listing 10.13 Registering a Check Agent in a Transaction

10.6 UML Tutorial: Communication Diagrams

One of the most difficult stages of the Object-Oriented Analysis and Design
(OOAD) process is the point at which we begin to try to assign roles and respon-
sibilities to the classes identified during the structural analysis phase. At this point
in the process, all that we have to work with are high-level behavioural diagrams
(e.g. activity diagrams, use cases, etc.) as well as some class and object diagrams
that describe the classes we have modelled. Certainly, associations in class dia-
grams help us to understand the relationships between these classes, but they
aren’t very useful in describing the behavior of a system in terms of these classes.

Frequently, this kind of detailed behavior is captured in a sequence diagram as we
saw in Chapter 3. Sequence diagrams are an example of an interaction diagram.
Interaction diagrams emphasize the flow of data and control between objects
interacting in a system. In this section, we will look at another type of interaction
diagram in the UML called the communication diagram.

Communication diagrams (formerly known as collaboration diagrams in UML
1.x), blend elements from class, object, sequence, and use case diagrams together
in the graph notation shown in Figure 10.25. This communication diagram
depicts the same Withdraw Cash interaction that we considered in Chapter 3
375

ABAP Object Services10
when we looked at sequence diagrams. As you can see, there are a lot of similar-
ities between both of these diagrams. Indeed, whether you use one notation or
the other is mainly a matter of preference. However, many developers like to use
communication diagrams to whiteboard their ideas since they are generally easier
to sketch than sequence diagrams. In fact, one way to develop communication
diagrams is to begin overlaying an object diagram with messages.

Figure 10.25 Example UML Communication Diagram

One challenge of working with communication diagrams is the nested decimal
numbering scheme shown in Figure 10.25. For this reason, it‘s important that
you keep a communication diagram small so that the message numbers don’t
become too nested and hard to read.

Perhaps the most valuable aspect of a communication diagram is the fact that it
keeps static associations in focus as you begin to develop the interactions
between classes. This visualization is important since it helps you to keep your
architectural vision intact as you begin to connect the dots between your classes
at runtime.

atm serviceBroker

bank

Association

ObjectMessages

Self-Call

1.2: dispenseCash()
1.3: printReceipt()

1: withdraw()

1.1: hasFunds()
1.3.1: getBalance()

1.1.1: hasFunds()
1.3.1.1: getBalance()
376 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Summary 10.7
10.7 Summary

This concludes our whirlwind introduction to the ABAP Object Services frame-
work. Whether you intend to utilize this framework in your day-to-day develop-
ment tasks or not, we hope that you’ve found this exploratory journey to be
worthwhile. Indeed, perhaps nowhere else in an ABAP system will you find so
many object-oriented concepts on display. From inheritance and polymorphism,
to designing to interfaces and even friendship relationships, there really is a little
bit of everything. So, if nothing else, you can at least pick up on some design tech-
niques that you can incorporate into your own OO-based frameworks.

In the next chapter, we’ll take a look at another ABAP-based framework that
makes heavy use of OO concepts: the Business Object Processing Framework
(BOPF). Here, we’ll learn how to build large-scale business objects that can be
used to achieve component-based application designs.
377

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

Up till now, we’ve looked at techniques for encapsulating business logic on
a micro scale, focusing our attention on handful of classes at a time. In
this chapter, we’ll broaden our scope and look at ways of encapsulating
business logic within coarse-grained reusable business objects.

11 Business Object Development
with the BOPF

In many ways, enterprise software development resembles one big game of chess
in that the pieces are constantly in motion. Objectives change, processes evolve,
and the only way for IT departments to keep pace is to have a good set of flexible
business objects that can be molded, adapted and mixed and matched to develop
business solutions. Here, business objects are rather like LEGO® blocks that can
be stacked on top of one another to construct new solutions.

Knowing what you now know about object-oriented design, you probably
already have lots of ideas for creating new business objects and implementing
component-based architectures. However, while it’s certainly possible to build
such solutions from scratch, it turns out that SAP provides a very powerful frame-
work which makes this process a whole lot easier: the Business Object Processing
Framework (BOPF). In this chapter, we’ll get to know the BOPF and see how it can
be used in tandem with your new-found object-oriented skills to build powerful
business solutions.

11.1 What is the BOPF?

If you haven’t heard of the BOPF before, then a brief introduction is in order. As
the name suggests, the BOPF is a framework for working with business objects
(BOs). This framework was designed from the ground up to manage the entire
lifecycle of BO development, saving you from having the reinvent the wheel each
time you need to develop a new BO.
379

Business Object Development with the BOPF11
At a high-level, we can organize the services and functionality of the BOPF into
two basic categories:

� Design Time
At design time, the BOPF provides a series of workbench tools that are used to
model and construct BOs. Here, graphical editor screens and wizards are fur-
nished to guide developers through the various stages of the BO development
process.

� Runtime
At runtime, the BOPF provides a runtime framework which manages business
object instances. Here, there’s built-in functionality for automatic persistence,
transaction and lifecycle management, caching, and much, much more.

The block diagram in Figure 11.1 illustrates how these pieces fit together within
an application.

Figure 11.1 FMC Block Diagram Depicting High-Level BOPF Architecture

R

R

Consumer Layer
(UI Frameworks, SAP Gateway,

Generic Consumers, etc.)

Transaction Layer

BOPF Runtine Layer

Persistence Layer
(Buffer / Database)

BO Model Database
380 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

What is the BOPF? 11.1
As you can see in Figure 11.1, BOPF application design calls for a layered approach
to development:

� Consumer Layer
At the consumer layer, clients can utilize the BOPF’s object-oriented API to
interface with BOs. Because this API is generic, it’s very easy to develop univer-
sal consumer frameworks that sit on top of the BOPF. A couple of the more
notable consumer frameworks at the time of this writing include the FPM-
BOPF Integration (FBI) and Gateway-BOPF Integration (GBI) frameworks which
integrate the BOPF with the Floorplan Manager (FPM) and SAP Gateway tool-
sets, respectively. These integration frameworks make it very easy to develop
UI-centric applications using the FPM and SAPUI5 UI frameworks.

� Transaction Layer
Client sessions are managed through a centralized transaction layer which han-
dles low-level transaction handling details such as object locking and commit
handling.

� BOPF Runtime Layer
The core of the BOPF functionality exists within the BOPF runtime which is
implemented via a series of standard-delivered classes provided by SAP. This
layer contains all of the functionality needed to instantiate BOs, handle lifecycle
events, and respond to client-level interactions.

� Persistence Layer
As you might expect, the persistence layer provides the low-level functionality
needed to persist BO instances to the database. Here, services are provided to
implement performance optimizations such as buffering and caching. Over
time, SAP continues to deliver innovations in this layer in order to improve
performance and expand the overall feature set.

Though it’s hard to really wrap your head around these concepts without seeing
how all this plays out from a technical point-of-view, the major take-away for
now is that the BOPF introduces consistency and predictability into the BO devel-
opment process. With the BOPF, everything has its place and the framework
makes it rather difficult for developers to stray too far off the beaten path.

Besides improving the quality of the components being developed, such stan-
dardization also leads to interesting innovations as patterns emerge. We’ll see
some examples of this over the course of this chapter. For now though, let’s turn
our attention to the inner workings of BOPF BOs.
381

Business Object Development with the BOPF11
11.2 Anatomy of a Business Object

In the help documentation for the SAP BOPF Enhancement Workbench SAP says
BOs within the BOPF are “a representation of a type of uniquely identifiable busi-
ness entity described by a structural model and an internal process model.” This
is to say that BOPF BOs:

� Have a structured component model.

� Have a well-defined process model which governs the BO lifecycle, behaviors,
and so on.

In this regard, the BOPF BO concept is similar to other popular component models
in the enterprise software space such as Enterprise JavaBeans (EJBs) in the Java
world and COM+ in the Microsoft.NET world. Closer to home, the BOPF shares
some similarities with previous ABAP-based business object frameworks like the
Business Object Layer (BOL)/Generic Interaction Layer (GenIL) frameworks.

In just a moment, we’ll delve into the various types of elements you can create
when modeling BOPF BOs. However, before we go there, let’s first take a
moment to understand how business entities are modeled within the BOPF.
Here, it’s helpful to have a visual frame of reference to work with. So, with that in
mind, consider the /BOBF/DEMO_SALES_ORDER demo BO shown in Figure 11.2.
You can review the setup of this BO in your own local system using Transaction
/BOBF/CONF_UI.

Figure 11.2 Understanding the Node Hierarchy Concept of BOPF BOs
382 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Anatomy of a Business Object 11.2
As you can see in Figure 11.2, the basic modeling unit for BOPF BOs is the node.
Within a BO, nodes are organized into a hierarchical node structure that mirrors
the structure of elements in an XML document. This is to say that there are
defined parent-child relationships which give the BO its structure. For instance,
in the /BOBF/DEMO_SALES_ORDER BO, data is organized under the top-level ROOT
node. Underneath the ROOT node, a node hierarchy is built off of child nodes such
as ITEM, ROOT_TEXT, and so on. This process of nesting child nodes continues until
all aspects of the business entity in question are properly modeled.

In the sections that follow, we’ll investigate how we can use node hierarchies like
the one shown in Figure 11.2 to model the various aspects of real world business
entities.

11.2.1 Nodes

So at this point, we know that BOPF BOs are organized hierarchically into nodes.
However, since the term “node” is rather generic, you’re probably wondering
what a node is exactly. The answer’s complicated by the fact that the term takes
on different meanings depending on the context:

� Design Time
At design time, nodes are used to model the data and behavior of an individual
aspect of a business object. For instance, in the sample /BOBF/DEMO_SALES_
ORDER BO the ITEM node defines all aspects of a sales order line item: data,
behaviors, linkages to other sales order-related entities, and so on.

� Runtime
At runtime, nodes are containers (think internal tables) which group together
object-like instances called node rows. Depending on the design-time definition
of a node, we can perform operations on individual node rows or the node col-
lection as a whole. The diagram contained in Figure 11.3 illustrates what an
instance of the /BOBF/DEMO_SALES_ORDER BO might look like from a runtime
perspective.

As you can see in Figure 11.3, each node/node row within a BO instance defines
one or more attributes. For example, the ITEM node defines attributes such as
ITEM_NO, AMOUNT, and so on. Collectively, these attributes describe the various
aspects of sales order line item that we want to capture in our model.
383

Business Object Development with the BOPF11
Figure 11.3 Snapshot of a /BOBF/DEMO_SALES_ORDER Instance at Runtime

Node and Attribute Types

From a data modeling perspective, nodes and node attributes are organized into
two distinct categories: persistent nodes/attributes and transient nodes/attri-
butes. As the name suggests, persistent nodes/attributes are persisted to the sys-
tem database. From a developer perspective, we needn’t worry about how this
persistence takes place; this will be handled automatically on our behalf by the
BOPF runtime environment. The important point to remember from a modeling
perspective is that persistent nodes and their corresponding attributes are
mapped to database tables and should therefore adhere to good normalization
practices.

Transient nodes/attributes represent elements of the data model that are looked
up and/or calculated on the fly. For example, let’s say that we wanted to include
within our data model details about the sales staff member who recorded the
order. In an ERP system like SAP, basic employee details for this staff member
are likely already recorded in the HR database. So, rather than redundantly store
such data within the context of the sales order BO, it makes sense to read the
data from the HR system on the fly at runtime. Not only does this eliminate data
redundancy, it also ensures that the data remains fresh over time.

ITEM

ROOT

1

2
ITEM_NO

AMOUNT
ITEM_NO

AMOUNT

ITEM_TEXT

1
...

..

..

...

Node Rows

1

ROOT_TEXT

...
384 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Anatomy of a Business Object 11.2
Depending on the usage scenario, we can establish such lookups at the node
level or the attribute level. In our HR lookup scenario, it would make sense to
pull the data into a separate transient node. On the other hand, if we’re only
looking up a handful of fields, we might just want to make those fields transient
attributes. For example, in the ITEM node of the there’s a persistent attribute
called PRODUCT_ID which contains a foreign key to a product object maintained
elsewhere. If we wanted to pull in the product description into our model, we
wouldn’t want to redundantly store that description in a persistent attribute.
Instead, we’d want to perform an ad hoc lookup for the product description on
demand and copy the value into a transient attribute. A similar approach would
be used for calculated values such as the overall value of the sales order (which
is calculated by summing up the AMOUNT attribute for each of the node rows
within the ITEM node).

Understanding the Node Data Model

Figure 11.4 illustrates the data model of a BOPF node in further detail. Here, we
find that there are several attributes that must be configured to build out the data
model:

� Whenever a node is initially created, we must specify at the outset whether or
not the node will be classified as persistent or transient. If the latter is selected,
the Transient Node checkbox will be checked.

� Within the Data Model section, node attributes are defined as follows:

� The Data Structure field points to an ABAP Dictionary structure which
contains all of the persistent attributes defined within the node.

� The (optional) Transient Structure field points to an ABAP Dictionary struc-
ture which contains all of the transient attributes defined within the node.

� In Section 11.3, we’ll find that the BOPF client API doesn’t really distinguish
between persistent and transient attributes. As a result, the API works with
the combined structure type specified in the Combined Structure field. This
combined structure collects persistent and transient attributes in a singular
structure.

� The Combined Table Type field defines a table type whose line type is
defined in terms of the combined structure type. This table type is used in
API calls which pull back multiple node rows at a time.
385

Business Object Development with the BOPF11
� Lastly, in the Data Access section, we can see the transparent dictionary table
where persistent node data is stored in the Database Table field. These auto-
generated tables will be defined in terms of the persistent attribute structure
contained in the Data Structure field. The key for any such table is an auto-
generated UUID field called DB_KEY. For sub-nodes, there will also be a foreign
key field called PARENT_KEY which can be used to traverse from the child node
to its parent. Though such relationships are normally navigated using a node
element called an association, the presence of this field can be used to imple-
ment SQL-based lookups of node data as needed.

Figure 11.4 Understanding the Node Data Model

Putting it all Together

Before we move on, let’s briefly summarize what we’ve learned in this section. So
far, we know that BOs within the BOPF are organized into a node structure/hier-
archy. Each node within this hierarchy is meant to model a particular aspect of a
386 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Anatomy of a Business Object 11.2
business entity. At the node level, we can fill out this model by defining per-
sistent and/or transient attributes as we see fit.

When you think about it, this node-based modeling process is not unlike the one
we use to build object models in a pure OO context. Indeed, in many respects, it’s
appropriate to think of a node definition as being rather like a class definition.
Taking this a step further, we can think of BOs as being like composite classes in
that they group together nodes and sub-nodes via associations.

If we get the node/data model right up front, the remaining elements required to
accurately model a business entity should follow quite naturally. With that being
said, let’s peel back another layer of the BOPF component model and being look-
ing at node elements. These elements allow us to weave in behavioral aspects into
nodes so that they can become more than simple data structures.

11.2.2 Actions

If we think of nodes as being like classes, then it follows that we should be able to
define operations/methods within a node to encapsulate node-specific behaviors.
Within the BOPF node, such operations are called actions.

Though conceptually similar to methods in a pure OO context, the scope of the
operations carried out with BOPF actions tends to be much larger than the aver-
age instance method in an OO class. This is because most attribute level updates
are brokered through standard API methods defined by the BOPF core frame-
work. As a result, you won’t see lots of getter and setter methods in BOPF node
definitions. Instead, BOPF actions are utilized more for encapsulating larger-scale
business operations together in a callable package.

To put this idea into perspective, consider the DELIVER action defined in the ROOT
node of the /BOBF/DEMO_SALES_ORDER sample BO shown in Figure 11.5. As the
name suggests, this action is used to trigger the delivery of one or more sales
orders. Internally, this processing will result in the update of pertinent node attri-
butes (e.g. the DELIVERY_STATUS attribute) as well as other downstream updates.
In a real-world scenario, this action might also trigger a chain of BOPF action calls
between the sales order BO, delivery BOs, and so on. To the outside world
though, the complexities of this task flow are abstracted behind an action with an
obvious purpose—to process the delivery of a sales order.

Though there’s nothing stopping us from defining lots of fine-grained actions
within a node, it’s important to remember that while BOs bear many similarities
387

Business Object Development with the BOPF11
to classes, the interface cut is different. With BOs, the goal is to develop a model
that closely resembles a business entity. Therefore the individual nodes and the
actions they define should be defined in higher-level terms. That doesn’t mean
that the technical layers don’t exist, it’s just that we want to insulate clients from
these details as much as we can.

Shifting away from the conceptual side of things, let’s take a closer look at an
action definition from a technical perspective. Looking at the DELIVER action
shown in Figure 11.5, we can see that there are several attributes that contribute
to the design of an action’s signature. Some of the more notable attributes here
include:

� Node
This attribute is used to bind the action with its corresponding node. While
such a designation might seem obvious within the graphical design time tools,
this specification is needed by the BOPF runtime to facilitate action processing
at runtime.

� Action Cardinality
This attribute is used to identify the number of node row instances expected to
be processed by the action. Most of the time, we’ll choose between the Single
Node Instance and Multiple Node Instances options depending on whether
or not we plan to perform bulk operations. The other option is the Static
Action option which effectively models the action as a static action. This
option would make sense if we wanted to define utility actions and the like.

� Class/Interface
In this attribute, we must plug in an ABAP Objects class that defines the action
logic. This class must implement the /BOBF/IF_FRW_ACTION interface. Here, the
actual ABAP implementation code goes into the execute() method which
comes pre-configured with contextual information that can be used to deter-
mine the node row(s) that are to be processed, etc.

� Parameter Structure
This optional attribute can be used to expand the signature of a BOPF action
to include input/output parameters as needed. All of the fields are encapsu-
lated inside of an ABAP Dictionary structure which is defined outside of the
BOPF. At runtime, this parameter structure is passed by reference to the
action implementation class so that attributes can be read and updated where
appropriate.
388 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Anatomy of a Business Object 11.2
Figure 11.5 Defining an Action in the BOPF

In many respects, the attributes used to define an action are similar to the ones
used to define a method of an ABAP Objects class in the form-based view of the
Class Builder tool. Once the basic signature is defined, the rest of the focus is on
the underlying action implementation class which is implemented using regular
ABAP Objects code.

11.2.3 Determinations

During the lifecycle of a business object instance, there will be key milestone
events that we may need to react to. For example, if data changes in one node, the
update could have a cascading effect on other related nodes. Or, right before a BO
instance is saved, there might be some last-second housekeeping that we need to
take care of to ensure that the instance is persisted correctly. For these situations,
and others, the BOPF object model provides us with determinations.

In the help documentation for the SAP BOPF Enhancement Workbench, SAP
defines a determination as “an element assigned to a business object node that
describes the internal changing logic on the business object. Like a database trig-
ger, a determination is automatically executed by the BOPF as soon as the BOPF
triggering condition is fulfilled.”

The internal changing logic referenced in this definition is realized in the form of
an ABAP Objects class which implements the /BOBF/IF_FRW_DETERMINATION inter-
face. Whenever determinations are defined, these implementation classes are
389

Business Object Development with the BOPF11
basically registered to run whenever specific triggering conditions are met. Table
11.1 shows the types of triggering conditions (or patterns) supported by the
BOPF object model at the time of this writing.

Aside from selecting the appropriate determination pattern, the process for defin-
ing a determination is pretty straightforward. As you can see in Figure 11.6, a
determination definition mainly consists of a determination name, the appropri-
ate pattern (or category as it’s sometimes called), and an implementation class. As
noted earlier, the implementation class is a regular ABAP Objects class that imple-
ments the /BOBF/IF_FRW_DETERMINATION interface.

Triggering Condition/Pattern Description

Derive Dependent Data
Immediately After Modification

This pattern is used to perform cascading updates
whenever a node instance is created/updated/
deleted. Some possible scenarios where this pattern
would apply include:

� Setting default values for attributes of newly-cre-
ated node rows.

� Updating related attributes and/or sub-nodes
whenever node attributes change.

� Applying state transition rules to ensure that the
object remains in a consistent state.

Derive Dependent Data Before
Saving

This pattern is used to interject some custom logic
right before a node instance is saved. Here, we might
apply last-minute updates to a node row (e.g. updat-
ing date/time audit fields) or fire events which trigger
downstream processing outside of the BOPF.

Fill Transient Attributes of Per-
sistent Nodes

Determinations following this pattern are used to
perform lookups/calculations of transient attributes
defined within a node. This pattern can also be used
to set runtime properties on BOPF nodes as needed.

Derive Instances of Transient
Nodes

This pattern is used in cases where we need to allo-
cate transient nodes on demand. Determinations fol-
lowing this pattern will be launched during the
retrieve operation to build the requested transient
node instances on the fly.

Table 11.1 Determination Patterns within the BOPF Object Model
390 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Anatomy of a Business Object 11.2
Figure 11.6 Defining a Determination in the BOPF

11.2.4 Validations

In Section 11.3, we’ll learn that updates to nodes/attributes are carried out via a
generic OO-based API. Here, a client is generally free to pass in whatever data
they like—even if the data is incorrect. Thinking back on our encapsulation dis-
cussions from Chapter 3, you might naturally assume that this is a violation of
basic encapsulation rules. However, as it turns out, there’s a method to the
BOPF’s madness here.

Rather than encoding validation rules into individual setter methods and the like,
the BOPF allows us to group business validation rules together in separate node
elements called validations. Within these validations, we can enforce our consis-
tency checks and ensure that the integrity of BO nodes and the BO as a whole
remains intact. At specific milestone events (e.g. right before a BO instance is
saved), the BOPF runtime automatically trigger these validations and ensure that
any invalid data updates are prevented from slipping through the cracks. As such,
validations represent the last line of defense for BO nodes.

In Figure 11.7, you can see an example of a validation called CHECK_ITEM within
the /BOBF/DEMO_SALES_ORDER BO. This validation performs a consistency check to
ensure that ITEM node instances remain consistent. As you can see in the screen-
shot, a validation definition consists of three main attributes:

� Validation Name
This attribute defines the validation name, which is an identifier maintained
391

Business Object Development with the BOPF11
internally within the BOPF. Since validations are not callable objects, the name
has little meaning outside of the BOPF framework from a runtime perspective.

� Validation Category
Here, we can choose between one of two options. The default Consistency

Check option classifies the validation as an entity used to perform consistency
checks before a node instance is saved, etc. The Action Check option can be
used as a means to ensure that a node instance is ready to have an action per-
formed against it.

� Class/Interface
This attribute defines the validation implementation class, which is a plain
ABAP Objects class that implements the /BOBF/IF_FRW_VALIDATION interface.
Within this validation class, we can perform the relevant checks and report any
errors that might crop up using the EO_MESSAGE and ET_FAILED_KEY exporting
parameters.

Figure 11.7 Defining a Validation in the BOPF

11.2.5 Associations

When processing BOs, we must be able to navigate through the nodes that make
up the BO’s node hierarchy. While this may seem like a given, the implementa-
tion details are more complex than you might think when you consider the fact
that the BOPF runtime has to navigate through these relationships by evaluating
node rows that are cached in shared memory. For this task, the BOPF runtime
needs to know how to relate a pair of nodes with one another. Within the object
model, these relationships are specified in the form of associations.
392 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Anatomy of a Business Object 11.2
Figure 11.8 illustrates what an association definition looks like in the /BOBF/
CONF_UI transaction. This particular association defines the relationship
between the sales order’s ROOT node and the ITEM child node. As you can see in
the Association Settings section, the types of details specified here include the
source/target nodes in the relationship, the cardinality of the relationship, and
the resolving node. Naturally, the details will vary here depending on the types of
nodes that are being associated with one another. Associations like the ITEM asso-
ciation shown in Figure 11.8 are defined automatically by the BOPF design time
tools as we create new BOs. In general, there are three types of associations that
will be created automatically by the BOPF design time tools:

� Simple associations from a given node to each of its child nodes. These associ-
ations will have a name which corresponds with the name of the child node.

� Associations from a child node to its parent node. These associations will go by
the name TO_PARENT.

� Associations from a child node to the root node. These associations will go by
the name TO_ROOT.

Figure 11.8 Defining an Association in the BOPF
393

Business Object Development with the BOPF11
Aside from these standard-delivered associations, we also have the option of cre-
ating custom associations which simplify node traversal. For example, consider
the ROOT_TEXT_IN_LOGON_LANG association shown in Figure 11.9. This association
basically serves the same purpose as the default ROOT_TEXT association, linking the
ROOT node with its child ROOT_TEXT node. The difference in this case though is that
the list of node rows returned by the association is filtered by the user’s logon
language. In essence, this is a convenience association which saves clients from
having to parse through ROOT_TEXT rows in order to find the instance matching
the user’s logon language.

In order to implement custom associations like the ROOT_TEXT_IN_LOGON_LANG
association shown in Figure 11.9, we must specify the filter criteria in one of two
ways:

� If the join conditions are relatively static in nature, then we can define them
graphically on the Association Binding tab shown in Figure 11.9.

� Otherwise, we have to specify the join/filter conditions in an association class
which implements the /BOBF/IF_FRW_ASSOCIATION interface. This class is then
plugged into the Association Class field in the Implementation section
shown in Figure 11.9 (e.g. the /BOBF/CL_DEMO_C_LANGUAGE1 class).

Figure 11.9 Example of a Custom Association
394 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Anatomy of a Business Object 11.2
Figure 11.10 Example of an XBO Association

Before we wrap this section on associations, we should point out that the BOPF
also allows us to define associations between nodes of different BOs as needed.
An example of this is the CUSTOMER_ROOT association shown in Figure 11.10. This
association allows us to traverse from the sales order ROOT node to the ROOT node
of the /BOBF/DEMO_CUSTOMER BO. From a configuration perspective, cross-busi-
ness object (XBO) associations are defined as follows:

1. First, the ROOT node of the linked BO must be mapped as a child node of the
source node (e.g. the ROOT node of the /BOBF/DEMO_SALES_ORDER BO in this
case). As you can see in Figure 11.11, the node type is Business Object Repre-

sentation Node. This type allows us to model a transient node which points to
the ROOT node of the associated BO.

2. Once the BO representation node is in place, we can define the XBO association
by mapping the source node to the delegate node as shown in Figure 11.10. In
this case, the association category is Cross Business Object Association. Oth-
erwise, it’s pretty much business as usual.

XBO associations like the CUSTOMER_ROOT association represent one of the primary
ways that we can achieve reuse within the BOPF. Here, rather than redundantly
define customer details within the /BOBF/DEMO_SALES_ORDER BO, it makes sense to
simply link the two BO instances together and create a composite. Over time, as
the BO library expands, productivity will increase since developers won’t con-
stantly be re-building/re-applying business logic in new contexts.
395

Business Object Development with the BOPF11
Figure 11.11 Example of an XBO Representation Node Definition

11.2.6 Queries

The last BO node element that we’ll be looking at is queries. As you would expect,
queries allow us to encapsulate node/BO lookup logic in callable modules that cli-
ents can use to search for BO instances. Within the BOPF object model, there are
two different types of queries that can be defined:

� Node Attribute Queries
These types of queries are modeled queries whose logic is defined within the
BOPF runtime. No custom coding is required to implement this type of query.

� Custom Queries
Custom queries are used to handle complex query requirements which exceed
the capabilities of the canned node attribute queries. The query logic is encap-
sulated in a custom ABAP Objects class that implements the /BOBF/IF_FRW_
QUERY interface.

Figure 11.12 demonstrates the definition of a query within the /BOBF/CONF_UI
transaction. As you can see, the attributes required to define a query are pretty
straightforward. For modeled queries, we don’t really have to specify anything as
the BOPF framework will implement all of the necessary details for us. For imple-
mented queries, the primary attribute we must specify is the query class.
396 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the BOPF Client API 11.3
Figure 11.12 Defining a Query in the BOPF

Within a query implementation class, we can invoke other (modeled) queries or
dynamically generate SQL code to lookup the relevant entries. The results of the
query are passed back via an exporting parameter called ET_KEY which, as you’d
expect, contains the keys of the node rows that we find during the course of the
query execution. In Section 11.3, we’ll learn how to use these keys in BOPF client
API calls to fetch and update BOs as needed.

11.3 Working with the BOPF Client API

Now that you’re familiar with the makeup of BOPF BOs, let’s see how we can cre-
ate instances of these BOs and manipulate them from within ABAP programs.
Here, we’ll find that SAP has provided us with a rich and flexible object-oriented
API that’s fairly easy to work with once you get the hang of it.

11.3.1 API Overview

For the most part, the BOPF API can be distilled down to three main object types
(see the UML class diagram contained in Figure 11.13):

� /BOBF/IF_TRA_SERVICE_MANAGER
This interface defines the core API methods needed to interface with BO node
elements. Here, methods are provided to execute queries, traverse through
node hierarchies, execute actions, perform node updates, and more.
397

Business Object Development with the BOPF11
� /BOBF/IF_TRA_TRANSACTION_MGR
This interface provides a façade around BOPF transaction managers which are
used to manage transactions. Such transactions could contain a single step (i.e.
updates to a single node row) or multiple steps (e.g. adding/updating multiple
node rows, calling actions, and so on). During the course of the transaction pro-
cessing, we can use the interface methods to commit and/or rollback the cur-
rent transaction as needed.

� /BOBF/IF_FRW_CONFIGURATION
This interface provides us with access to the BOPF configuration store where all
of the design-time BO configuration metadata is stored. We can use the API
methods defined by this interface to introspect BOs and determine node data
types, etc. This information can be used in conjunction with the ABAP Runtime
Type Services (RTTS) API to build generic BO processing logic as needed.

Figure 11.13 Main Elements of the BOPF Client API

/BOBF/CL_TRA_TRANS_MGR_FACTORY

+ get_transaction_manager()
...

/BOBF/IF_TRA_TRANSACTION_MGR

+ cleanup()
+ save()
+ get_transactional_changes()
...

/BOBF/IF_TRA_SERVICE_MANAGER

+ retrieve()
+ retrieve_by_association()
+ modify()
+ query()
+ do_action()
+ check_action()
+ check_consistency()
+ check_and_determine()
...

/BOBF/CL_TRA_SERV_MGR_FACTORY

+ get_service_manager(
 IV_BO_KEY: /BOBF/OBM_BO_KEY)
...

/BOBF/CL_FRW_FACTORY

+ get_configuration(
 IV_BO_KEY: /BOBF/OBM_BO_KEY)
+ get_new_key()
...

/BOBF/IF_FRW_CONFIGURATION

+ get_bo()
+ get_node()
+ get_...()
+ query_...()
...
398 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the BOPF Client API 11.3
As you can see in Figure 11.13, the internals of the BOPF runtime environment
are abstracted away behind the three main interfaces described above. In order to
get our hands on objects that implement these interfaces at runtime, we must go
through the factory classes highlighted in Figure 11.13. Then, once we have our
hands on these instances, we’re basically off and running.

BO Keys and Constants Interfaces

Looking closely at the signature of the factory methods of the /BOBF/CL_TRA_
SERV_MGR_FACTORY and /BOBF/CL_FRW_FACTORY classes shown in Figure 11.13,
you’ll notice that these methods expect to receive a BO key. What is this BO key?
Well, it’s basically a key that’s used to lookup BO metadata from the BOPF con-
figuration store. The BOPF service manager and configuration managers need to
have this information in context in order to understand how to respond to
requests such as “perform this action” or “tell me the data type associated with
this particular node”. From this, we can glean an important truth about BOPF ser-
vice managers and configuration managers: if we’re going to be working with
multiple BOs, we’ll need separate service/configuration manager instances for
each BO type that we’re working with.

Since BO keys are auto-generated by the BOPF design-time configuration tools,
you’re not expected to simply know the BO key offhand. Instead, each BO has a
generated constants interface associated with it that makes it easy to address the
BO key as well as various BO node elements. For a given BO type, you can find
the constants interface in the /BOBF/CONF_UI transaction by double-clicking on
the BO and looking in the Constants Interface field in the Business Object Set-

tings panel of the default Business Object tab (see Figure 11.14).

Within the /BOBF/CONF_UI transaction, the Constants Interface field is con-
text-sensitive, so you can double-click on it to open up the interface in the Class
Builder tool. Figure 11.15 shows what the constants interface looks like for a
given BO. Here, you can see the target BO key field exposed via the SC_BO_KEY
constant. In addition to the key, you can see that there are quite a few other con-
stants provided to address defined actions, queries, associations, and so forth.
These constants are constantly being updated to reflect the current state of the
BO. So, for example, if a new query is created in a BO node, the SC_QUERY con-
stant would be updated accordingly. In the upcoming sections, we’ll see how
these other constants are used in API calls.
399

Business Object Development with the BOPF11
Figure 11.14 Accessing the Constants Interface for a BO (Part 1)

Figure 11.15 Accessing the Constants Interface for a BO (Part 2)
400 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the BOPF Client API 11.3
Bootstrapping the API

Having reviewed the basic architecture of the BOPF API, let’s now take a look at
what it takes to bootstrap the API using ABAP code. For the purposes of this
demonstration, we’ll be working with the /BOBF/DEMO_SALES_ORDER BO which is
generally available in most SAP Business Suite systems. In Listing 11.1, you can
see how we’re preparing to work with this BO using the factory classes illustrated
in Figure 11.13. Though there’s a fair amount of work going on behind the
scenes, the client-side API calls themselves are very straightforward.

DATA lo_svc_mngr TYPE REF TO /bobf/if_tra_service_manager.
DATA lo_txn_mngr TYPE REF TO /bobf/if_tra_transaction_mgr.
DATA lo_conf_mngr TYPE REF TO /bobf/if_frw_configuration.

TRY.
lo_txn_mngr =
/bobf/cl_tra_trans_mgr_factory=>get_transaction_manager().

lo_svc_mngr =
/bobf/cl_tra_serv_mgr_factory=>get_service_manager(

/BOBF/IF_DEMO_SALES_ORDER_C=>SC_BO_KEY).

lo_conf_mngr =
/bobf/cl_frw_factory=>get_configuration(

/BOBF/IF_DEMO_SALES_ORDER_C=>SC_BO_KEY).
CATCH /bobf/cx_frw.

"TODO: Error handling...
ENDTRY.

Listing 11.1 Bootstrapping the BOPF API

In the upcoming sections, we’ll start putting the API to work in performing basic
CRUD operations on the /BOBF/DEMO_SALES_ORDER BO.

Note

You can find a fully developed version of this demonstration in the book’s source code
bundle.

11.3.2 Creating BO Instances and Node Rows

Much like the persistent objects we reviewed in Chapter 10, BOPF BOs are man-
aged objects that must be created using the BOPF service manager. Here, most of
the heavy lifting is carried out by the modify() method of the /BOBF/IF_TRA_SER-
VICE_MANAGER interface. This method receives as its input an internal table called
401

Business Object Development with the BOPF11
IT_MODIFICATION that contains the nodes that we want to create. Create the right
nodes, and you create a BO instance.

The code excerpt contained in Listing 11.2 demonstrates how we can use the
modify() method to create an instance of the /BOBF/DEMO_SALES_ORDER BO.

Note

You can find a complete implementation of this code in the book’s code bundle.

As you can see, the node creation process basically consists of creating a data ref-
erence, filling in the node data, and then adding the node as a record in the afore-
mentioned IT_MODIFICATION table. Once this table is filled out, we can call the
modify() method to apply the changes. Internally, the BOPF will process the
request and carry out any validations/determinations configured to ensure that
the integrity of the BO instance remains intact.

DATA lo_svc_mngr TYPE REF TO /bobf/if_tra_service_manager.
DATA lr_s_root TYPE REF TO /bobf/s_demo_sales_order_hdr_k.
DATA lr_s_root_text TYPE REF TO /bobf/s_demo_short_text_k.

DATA lt_mod TYPE /bobf/t_frw_modification.
FIELD-SYMBOLS <ls_mod> LIKE LINE OF lt_mod.
DATA lo_message TYPE REF TO /bobf/if_frw_message.
DATA lo_change TYPE REF TO /bobf/if_tra_change.

TRY.
"Initialize the service manager:
lo_svc_mngr =
/bobf/cl_tra_serv_mgr_factory=>get_service_manager(

/BOBF/IF_DEMO_SALES_ORDER_C=>SC_BO_KEY).

"Create the order ROOT node:
CREATE DATA lr_s_root.
lr_s_root->key = /bobf/cl_frw_factory=>get_new_key().
lr_s_root->order_id = '1234567890'.
...
lr_s_root->sales_org = 'AMER'.
lr_s_root->amount = '250.00'.
lr_s_root->amount_curr = 'USD'.

APPEND INITIAL LINE TO lt_mod ASSIGNING <ls_mod>.
<ls_mod>-node = /bobf/if_demo_sales_order_c=>sc_node-root.
<ls_mod>-change_mode = /bobf/if_frw_c=>sc_modify_create.
<ls_mod>-key = lr_s_root->key.
<ls_mod>-data = lr_s_root.
402 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the BOPF Client API 11.3
"Create the order description:
CREATE DATA lr_s_root_text.
lr_s_root_text->key = /bobf/cl_frw_factory=>get_new_key().
lr_s_root_text->language = sy-langu.
lr_s_root_text->text = |Order # { lr_s_root->order_id }|.

APPEND INITIAL LINE TO lt_mod ASSIGNING <ls_mod>.
<ls_mod>-node = /bobf/if_demo_sales_order_c=>sc_node-root_text.
<ls_mod>-change_mode = /bobf/if_frw_c=>sc_modify_create.
<ls_mod>-source_node =
/bobf/if_demo_sales_order_c=>sc_node-root.

<ls_mod>-association =
/bobf/if_demo_sales_order_c=>sc_association-root-root_text.

<ls_mod>-source_key = lr_s_root->key.
<ls_mod>-key = lr_s_root_text->key.
<ls_mod>-data = lr_s_root_text.

"Apply the changes:
lo_svc_mngr->modify(
EXPORTING

it_modification = lt_mod
IMPORTING

eo_change = lo_change
eo_message = lo_message).

"Check the results:
IF lo_message IS BOUND AND lo_message->check() EQ abap_true.
"TODO: Error handling...

ENDIF.
CATCH /bobf/cx_frw.

"TODO: Error handling...
ENDTRY.

Listing 11.2 Creating a Sales Order Instance Using the BOPF API

After the modify() method is finished, we can check the results using the follow-
ing exporting parameters from the method signature:

� EO_CHANGE

This object reference parameter provides us with a handle that we can use to
query the status of the updates and check for any failures that might have
occurred. For more details about the types of operations you can perform,
check out the documentation for interface /BOBF/IF_TRA_CHANGE.

� EO_MESSAGE

This object reference contains any human-readable messages generated during
the update process. This includes messages issued from validations or determi-
403

Business Object Development with the BOPF11
nations defined against the nodes being created. For more information about
how to consume these messages, check out the documentation for interface
/BOBF/IF_FRW_MESSAGE.

Assuming the modification process goes off without a hitch, the code excerpt con-
tained in Listing 11.2 will generate a new sales order BO instance. However, it’s
worth noting that this instance only exists in shared memory. To persist this
instance to the database, we must commit the in-flight transaction using the BOPF
transaction manager. We’ll see how to accomplish this in Section 11.3.6.

11.3.3 Searching for BO Instances

As we learned in Section 11.2.1, BOPF node rows are keyed by a UUID field
called KEY. Though it’s certainly efficient to access such rows by their key, many
times we may not know the key offhand. In these situations, we can utilize BOPF
queries to locate the node rows that we want to operate on.

The code excerpt contained in Listing 11.3 demonstrates how to utilize a BOPF
query called SELECT_BY_ELEMENTS to search for a sales order instance using its ID.
Using this same query, we could have searched for sales orders based on the sold-
to customer, delivery status, and so on. We simply have to specify the search cri-
teria by filling in a table of type /BOBF/T_FRW_QUERY_SELPARAM. This table type has
a similar look and feel to ABAP range tables.

DATA lo_svc_mngr TYPE REF TO /bobf/if_tra_service_manager.
DATA lt_params TYPE /bobf/t_frw_query_selparam.
FIELD-SYMBOLS <ls_param> LIKE LINE OF lt_params.
DATA lt_key TYPE /bobf/t_frw_key.
FIELD-SYMBOLS <ls_key> LIKE LINE OF lt_key.
DATA lt_root TYPE /bobf/t_demo_sales_order_hdr_k.

APPEND INITIAL LINE TO lt_params ASSIGNING <ls_param>.
<ls_param>-attribute_name = 'ORDER_ID'.
<ls_param>-sign = 'I'.
<ls_param>-option = 'EQ'.
<ls_param>-low = '1234567890'.

lo_svc_mngr->query(
EXPORTING
iv_query_key =

/bobf/if_demo_sales_order_c=>sc_query-root-select_by_elements
it_selection_parameters = lt_params
iv_fill_data = abap_true

IMPORTING
404 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the BOPF Client API 11.3
et_data = lt_root
et_key = lt_key).

READ TABLE lt_root...

Listing 11.3 Searching for BO Instances Using BOPF Queries

As you can see in Listing 11.3, there are two output parameters defined by the
query() method:

� ET_DATA

If the IV_FILL_DATA Boolean input parameter is set to true, then the actual node
row data for any found rows will be returned via the ET_DATA exporting param-
eter.

� ET_KEY

This table parameter passes back the keys of any found node row matching the
selection criteria.

So, depending on our use case, we can either fetch the keys of records that match
some selection criteria, or we can retrieve the actual node row data. In the next
section, we’ll see how we can do productive things with this data once we
retrieve it using the BOPF service manager.

11.3.4 Updating and Deleting BO Node Rows

Once we get our hands on BO node rows, the process of applying updates to
these nodes is almost identical to the one we used to create the node rows in the
first place (refer back to Section 11.3.2). This is demonstrated in the code excerpt
contained in Listing 11.4. Here, we’re updating the sales order ROOT node by
adjusting the overall amount. Then, we tell the BOPF we want to apply the update
by mapping the appropriate value in the CHANGE_MODE attribute highlighted in
Listing 11.4. Had we wanted to delete this node row, we would have assigned the
value /BOBF/IF_FRW_C=>SC_MODIFY_DELETE. In either case, the BOPF uses the
CHANGE_MODE attribute in conjunction with the rest of the data contained in the
modification table to identify the target node row (via the KEY attribute) and pro-
cess the update.

DATA lo_svc_mngr TYPE REF TO /bobf/if_tra_service_manager.
DATA lr_s_root TYPE REF TO /bobf/s_demo_sales_order_hdr_k.
DATA lt_mod TYPE /bobf/t_frw_modification.
FIELD-SYMBOLS <ls_mod> LIKE LINE OF lt_mod.
405

Business Object Development with the BOPF11
DATA lo_message TYPE REF TO /bobf/if_frw_message.

...
READ TABLE lt_root INDEX 1 REFERENCE INTO lr_s_root.
IF sy-subrc EQ 0.

lr_s_root->amount = lr_s_root->amount + '20.00'.

APPEND INITIAL LINE TO lt_mod ASSIGNING <ls_mod>.
<ls_mod>-node = /bobf/if_demo_sales_order_c=>sc_node-root.
<ls_mod>-change_mode = /bobf/if_frw_c=>sc_modify_update.

<ls_mod>-key = lr_s_root->key.
<ls_mod>-data = lr_s_root.

APPEND 'AMOUNT' TO <ls_mod>-changed_fields.
ENDIF.

IF lines(lt_mod) GT 0.
lo_svc_mngr->modify(
EXPORTING

it_modification = lt_mod
IMPORTING

eo_message = lo_message).

"TODO: Error handling...
ENDIF.

Listing 11.4 Updating BO Node Rows Using the BOPF API

As is the case with the creation operation, all of the updates/deletes we perform
using the modify() method are merely staged in shared memory until we either
commit the transaction or roll it back. When building UI applications, this feature
comes in quite handy since it makes it easy to manage long-running stateful ses-
sions with users.

11.3.5 Executing Actions

In order to invoke a BOPF action, we simply need to call the do_action() method
of the /BOBF/IF_TRA_SERVICE_MANAGER interface. This is demonstrated in the code
excerpt contained in Listing 11.5. Here, we’re calling the DELIVER action defined
for the ROOT node of the /BOBF/DEMO_SALES_ORDER BO. In order to invoke this
action, we simply need to pass in the action key, the key(s) of the node rows we
want to process, and optionally a parameter structure.
406 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Working with the BOPF Client API 11.3
DATA lo_svc_mngr TYPE REF TO /bobf/if_tra_service_manager.
DATA lt_key TYPE /bobf/t_frw_key.
FIELD-SYMBOLS <ls_key> LIKE LINE OF lt_key.
DATA lo_message TYPE REF TO /bobf/if_frw_message.
DATA lt_failed_key TYPE /bobf/t_frw_key.

"Call the DELIVER action:
lo_svc_mngr->do_action(

EXPORTING
iv_act_key =

/bobf/if_demo_sales_order_c=>sc_action-root-deliver
it_key = lt_key

IMPORTING
eo_message = lo_message
et_failed_key = lt_failed_key).

"Check the results:
IF lines(et_failed_key) GT 0.

"TODO: Error handling...
ENDIF.

Listing 11.5 Calling an Action Using the BOPF API

If any errors occur during the action processing, the corresponding node row
keys will be added to the ET_FAILED_KEY exporting parameter. We can use this
information in conjunction with the EO_MESSAGE exporting parameter to deter-
mine what might have gone wrong with the action call.

11.3.6 Working with the Transaction Manager

As we noted previously, all updates that we perform via the BOPF service man-
ager are staged in shared memory. To commit these changes, we must invoke the
save() method of the BOPF transaction manager. The code excerpt contained in
Listing 11.6 demonstrates how this works.

DATA lo_txn_mngr TYPE REF TO /bobf/if_tra_transaction_mgr.
DATA lo_svc_mngr TYPE REF TO /bobf/if_tra_service_manager.
DATA lo_message TYPE REF TO /bobf/if_frw_message.
DATA lv_rejected TYPE boole_d.

TRY.
"Initialize the BOPF API:
lo_txn_mngr =
/bobf/cl_tra_trans_mgr_factory=>get_transaction_manager().

lo_svc_mngr =
407

Business Object Development with the BOPF11
/bobf/cl_tra_serv_mgr_factory=>get_service_manager(
/BOBF/IF_DEMO_SALES_ORDER_C=>SC_BO_KEY).

"Perform various updates using the BOPF service manager:
...

"Commit the changes:
lo_txn_mngr->save(
IMPORTING

eo_message = lo_message
ev_rejected = lv_rejected).

IF lv_rejected EQ abap_true.
"TODO: Error handling...

ENDIF.
CATCH /bobf/cx_frw.

"TODO: Error handling...
ENDTRY.

Listing 11.6 Working with the BOPF Transaction Manager

As you can see in Listing 11.6, the transaction manager mostly sits off to the
side while we’re performing our basic updates. It’s certainly keeping track of
things behind-the-scenes but, from an API perspective, we don’t really notice
it. It only really comes into play whenever we determine we either need to
commit or roll-back a set of changes. For commits, we call the save() method;
for rollbacks, the cleanup() method. Note that in either case, we don’t have to
chase the call with a COMMIT WORK statement—this is handled implicitly within
the BOPF internal framework layer.

If a save/commit request is rejected, the EV_REJECTED flag will be set to
true. Assuming that’s the case, we can use the EO_MESSAGE exporting
parameter to determine what went wrong. Most of the time, the messages
contained in this parameter will be generated via consistency checks/validations
performed within the BOPF nodes staged for updates. This last-minute check
ensures that nothing slips through the cracks.

11.4 Where to Go From Here

Now that you have a general sense for what the BOPF is all about, let’s take
a moment to digest what we’ve learned and see how it relates to OO-based
devel-opment in ABAP.
408 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Where to Go From Here 11.4
11.4.1 Looking at the Big Picture

Thinking back on the code excerpts demonstrated in Section 11.3, you might be
inclined to think that BOPF development is rather tedious. While this is true to a
point, it’s worth pointing out that the BOPF is rarely consumed directly as we
demonstrated in this chapter. Instead, BOPF BOs are normally consumed through
higher-level frameworks which abstract away the more wearisome aspects of the
API. These frameworks make it easy to consume BOs using SAP Gateway/OData
services, through Web Dynpro ABAP (WDA) UI applications based on Floorplan
Manager (FPM), and so forth.

Since this book is focused on OOP concepts, we’re not so concerned with the spe-
cifics of any one-off consumption framework. Instead, our focus is on reusable
API designs. When you think about the BOPF API design, it’s completely generic.
Whether we’re dealing with a sales order BO, or a business partner BO, or a cus-
tom BO or our choosing, the API call sequence remains the same. We simply sup-
ply the API with a BO key and we’re up and running. So, what can we take away
from all this? Well, in terms of API design, we can see that the BOPF certainly
employs many of the best practices described throughout this book:

� Encapsulation
The core business logic for a BOPF BO is encapsulated within its internal node
elements (e.g. as actions, determinations, and validations). This is encapsula-
tion on a macro scale, encompassing every aspect of a particular BO/entity.

� Designing to Interfaces
Looking at the UML class diagram depicting the BOPF API in Figure 11.13, you
can see that clients work with generic interfaces which provide a consistent
interface for working with BOPF BOs. Indeed, with a little bit of up-front RTTI/
introspection development, we can build agents that can consume/interact
with any BO type.

� Cohesiveness
Because of its strong object model, BOPF BOs tend to have very high cohesion.
This is to say that node elements focus on implementing modeling the business
logic and not on how they might be consumed via clients and/or UIs.

� Introspection/Discoverability
Using the /BOBF/IF_FRW_CONFIGURATION interface, clients can discover any
aspect of a given BO using just its key. This, combined with the ABAP RTTI API,
makes it possible for clients to dynamically consume BO data or adapt it for use
in data binding protocols.
409

Business Object Development with the BOPF11
At the end of the day, we’re still employing OO concepts; it’s just that with the
BOPF we’re doing it on a larger scale. Since our primary objective is to build a
better abstraction, we can think of the BOPF as a means of applying our OO-based
artifacts towards the development of reusable BOs/entities.

11.4.2 Building and Enhancing BOs

At the time of this writing, SAP has already built several applications on top of the
BOPF, and several more are on the way. Over time, developers will find that the
BOPF repository will continue to grow with a wider set of reusable BOs. In addi-
tion to the standard offering, we also have the opportunity to create and model
our own BOs. Assuming your SAP system has the appropriate patch level (see the
sidebar below), you can create new BOs using the Business Object Builder provided
via Transaction BOB. This transaction provides a WYSIWYG editor for modeling
BOs and defining nodes/node elements. The implementation code is maintained
using the Class Builder as per usual.

Note

The BOPF framework as a whole was opened up for general-purpose use with the
release of the SAP Business Suite EhP 5, SP 11 (and EhP 6, SP 5). You can find more
information about this release via SAP Note 1760610.

Besides creating new BOs, we also have the option of enhancing/extending exist-
ing BO types. This can be achieved using the BOPF Enhancement Workbench pro-
vided via Transaction /BOBF/CUST_UI. Here, we enhance an extensible BO by
creating an enhancement BO which effectively inherits its node hierarchy from
the parent. From here, we can define new custom nodes or add custom node ele-
ments to existing nodes. For more information about the features provided here,
we highly recommend that you spend some time reading over the BOPF
Enhancement Workbench help documentation.

11.4.3 Finding BOPF-Related Resources

These days, there are a lot of useful resources out there related to the BOPF. For
the most part, these resources are consolidated on the BOPF Application Frame-
work community page on the SAP SCN. You can access this page via the URL
http://scn.sap.com/community/abap/bopf.
410 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Advanced Sequence Diagrams 11.5
11.5 UML Tutorial: Advanced Sequence Diagrams

In this section, we’ll look at some advanced features of UML sequence diagrams.
As a frame of reference for this discussion, we’ve revised the sequence diagram
example from Chapter 3 in Figure 11.16 to include some of the more advanced
features that will be discussed in the upcoming subsections.

Figure 11.16 Sequence Diagram for Withdrawing Cash from an ATM

alt

atm : ATM
serviceBroker :

ATMServiceBroker
bank : Bank

withdraw(amt: money)
hasFunds (acct , amt)

hasFunds (acct , amt)

printReceipt

receipt :
Receipt

new

getBalance
getBalance

print

[Sufficient Funds]

dispenseCash

[else]
displayError

Object
Creation

Object
Deletion

Interaction
Frame

Guards

Operator
411

Business Object Development with the BOPF11
11.5.1 Creating and Deleting Objects

Within a given activation, it’s not uncommon for a method to need to dynami-
cally create another object in order to carry out a particular task. As you can see
in Figure 11.16, the creation of an object is initiated by a special new message. The
message name is actually optional, but the general convention is to name the mes-
sage new. Here, notice that the object box for the receipt object is aligned with
the creation message. This notation helps to clarify the fact that the object did not
exist whenever the interaction began. Once an object is created, you can send
messages to it just like any of the other objects in the sequence diagram.

If the created object is a temporary object (e.g. a local variable inside a method,
etc.), then you can depict the deletion of the object by terminating the object life-
line with an X (see Figure 11.16). It’s also possible for one object to explicitly
delete another object by mapping a message from the requesting object to an X
on the target object’s lifeline.

11.5.2 Depicting Control Logic with Interaction Frames

As a rule, you typically do not want to depict a lot of control logic in a sequence
diagram. However, it‘s sometimes helpful to include some high-level logic so that
the interaction between the objects is more clear. In UML 2.0, this control flow is
depicted using interaction frames.

An interaction frame partitions off a portion of the sequence diagram inside of a
rectangular boundary. The functionality depicted in an interaction frame is
described by an operator that is listed in the upper left-hand corner of the frame.
For example, the sequence diagram in Figure 11.16 shows an interaction frame
that is using the alt operator. The alt operator is used to depict conditional logic
such as an IF...ELSE or CASE statement. The branches of this conditional logic are
divided by a horizontal dashed line. Furthermore, each branch of the logic also
contains a conditional expression called a guard. As you would expect, guards
control whether or not the control flows to a particular branch of the conditional
logic. For instance, in the sequence diagram shown in Figure 11.16, the atm
object will only dispense cash if there are sufficient funds in the account. Other-
wise, an error message will be displayed on the console.

Table 11.2 describes some of the basic operators that can be used with interaction
frames. Again, we want to stress the fact that interaction frames should be used
412 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Summary 11.6
very sparingly. If you need to depict more complex logic, consider using an activ-
ity diagram or even some basic pseudocode.

11.6 Summary

This concludes our introduction to the BOPF. Whether or not you plan to utilize
the BOPF in your own custom developments, we hope that you’ll have found this
introduction useful in that it shows you how OO concepts can be applied on a
wider scale within a reusable framework. This is an important concept to con-
sider as your OO designs mature beyond a handful of classes. As designs increase
in scope, it’s useful to have a framework like the BOPF to organize development
objects and provide an abstraction around common tasks such as transaction han-
dling, persistence, and so on.

In the next chapter, we’ll take a look at report development using the popular
SAP List Viewer (ALV) framework. With this framework as a baseline, we’ll
develop our own report development framework which makes it easy for any
ABAP developer to come along and build reports without any pre-existing ALV
knowledge.

Operator Usage Type

alt Used to depict conditional logic such as an IF...ELSE or CASE statement.

opt Used to depict an optional piece of logic such as a basic IF statement.

par Used to depict parallel behavior. In this case, each fragment in the interac-
tion frame runs in parallel.

loop Used to depict various types of looping structures (i.e. LOOP, DO, etc.).

ref Used to reference an interaction defined on another sequence diagram.

sd Used to surround an embedded sequence diagram within the current
sequence diagram.

Table 11.2 Interaction Frame Operators
413

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

This chapter explores the OO-based enhancements added to the SAP List
Viewer framework used to build interactive reports in ABAP. Here, we’ll
see how core OO concepts are applied to interface with the SAP standard
components and build a flexible reporting framework on top of them.

12 Working with the SAP List Viewer

In the early days of ABAP Objects, the use of OO extensions was pretty much lim-
ited to a handful of specialized use cases. While customers were free to create
their own classes and really embrace the OO mindset, SAP wasn’t exactly leading
the charge by delivering lots of OO-based content. However, in recent years, this
trend has changed quite a bit.

Nowadays, SAP best practices call for the development of any new content to be
based on OO concepts. So, whether you’re building UIs with Web Dynpro for
ABAP (WDA) or the Floorplan Manager (FPM) framework, interfacing with busi-
ness objects, or creating enhancements, classes are at the heart of most everything.

In this chapter, we’ll look at one area in particular where an OO-based approach
has greatly simplified the implementation effort: interactive reporting with the
SAP List Viewer (ALV). Here, we’ll learn how SAP’s ALV Object Model allows ABAP
developers to greatly reduce the amount of code it takes to create an interactive
report. Once you get the hang of the ALV Object Model, we’ll see how we can
expand on this foundation to create our own reporting framework which makes
it possible for ABAP developers who don’t know anything about ALV to quickly
create a fully-functional report.

12.1 What is the SAP List Viewer?

Even though ALV technology has been around for a while, many readers may not
be familiar with it so a brief introduction is in order. This introduction will also
be of some interest to more experienced ABAP developers who may not realize
all of the recent changes applied to the SAP List Viewer.
415

Working with the SAP List Viewer12
SAP List Viewer = ABAP List Viewer = ALV

Many ABAP developers may know the SAP List Viewer framework by a different name:
the ABAP List Viewer (ALV). For many years, ALV was the catch-all term used to describe
the functionality we now know as the SAP List Viewer. In recent years, SAP decided to
re-brand the framework as SAP List Viewer in order to more broadly encompass ALV-
based functionality that was ported to Web Dynpro ABAP and Web Dynpro Java. For
the purposes of this book, we’ll use the ALV abbreviation as this is consistent with SAP
help documentation, etc.

As the name suggests, ALV is a framework that can be used to build lists. Here,
we’re talking about reports that contain a list/table of items such as a list of cus-
tomers who have overdue payments, a list of materials based on some set of char-
acteristics, and so forth. Such reports can be very fancy with lots of bells and
whistles or just a straight dump of data from some ABAP Dictionary table(s). As a
generic framework, we can use ALV to produce lists from most any kind of struc-
tured data source imaginable.

Figure 12.1 contains an example of a simple flight listing created using the ALV
table control. Here, you can see how the flight records are displayed in a 2D table
which resembles a Microsoft Excel worksheet. Other ALV controls allow you to
output the data in hierarchical fashion as trees or tree tables.

Figure 12.1 An Example SAP List Viewer Report
416 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

What is the SAP List Viewer? 12.1
As you can see in Figure 12.1, ALV controls includes a host of toolbar functions
which allow end users to sort the data, filter it, export it to desktop applications,
and so on. These functions are implemented within the framework itself; there’s
no special coding required to enable this functionality. Internally, these function
requests are primarily handled on the client side via SAP standard ActiveX/Jav-
aBean controls and the SAP Control Framework. While the internals of all this is
abstracted within the overall framework, the main take-away from this is that the
functions are very responsive since the user doesn’t have to wait on lengthy
server roundtrips which exchange lots of data back and forth.

ALV: A Brief History

Over the years, the ALV programming model has seen many changes. To a large
extent, these changes have had less to do with changes to the base-level function-
ality of the underlying ALV controls and more to do with the way ABAP develop-
ers prefer to interface with them.

All along, the ALV framework has been based on a series of client-side controls
(e.g. ActiveX controls) which are loaded and managed from an ABAP context
using the SAP Control Framework. Included in all this are a series of low-level
ABAP Objects classes which provide a thin layer of abstraction on top of the cli-
ent-side controls: CL_GUI_ALV_GRID and so on. While it’s technically possible to
interface directly with these classes, doing so requires some fairly specialized
knowledge about classic Dynpro programming and the internal workings of ALV.

Recognizing this complexity, SAP has introduced several programming models
over the years to provide developers with an abstraction that’s easy to work
with. This started with the REUSE* function modules which made it possible for
procedural programmers to build ALV reports without having to put on their
OOP hats. Included in this function suite was the REUSE_ALV_LIST_DISPLAY func-
tion used to create a simple tabular list and REUSE_ALV_HIERSEQ_LIST to build
tree tables.

For years, ABAP developers have leveraged the REUSE* function modules to cre-
ate ALV reports. Indeed, even now it’s quite common to see new reports being
built on this legacy programming model. While these modules still work,
they’re really starting to show their age. In particular, there are several pain
points worth mentioning:
417

Working with the SAP List Viewer12
1. The REUSE* function modules are stateless function modules which don’t pro-
vide developers with a handle for addressing the ALV control after the report
is generated. This is fine for simple static reports, but problematic for complex
interactive reports.

2. The interface of the REUSE* function modules is incredibly cluttered and can be
overwhelming for new developers trying to figure out how to use these mod-
ules.

3. As an extension of the previous point, the function modules typically require
you to specify much more than just the report data to bootstrap the report.
Though enhanced recently, these modules generally require the manual cre-
ation of field catalogs and other settings which call for lots of redundant boil-
erplate code.

Historically, developers have gotten around these issues by creating “template”
reports which other developers copy-and-paste to create a new report. However,
beginning with Release 7.00 of the AS ABAP, SAP presented developers with a
new OO-based programming model that encapsulates the basic functionality
defined with these templates into easy-to-use classes: the ALV object model. In the
next section, we’ll learn about the ALV object model and see how it can be used
to build interactive reports.

12.2 Introducing the ALV Object Model

If you’ve ever worked with the REUSE* function modules described in Section
12.1, then you can probably attest to the fact that there’s lots of boiler plate code
required to create a new report. With the ALV object model, all the same param-
eters are available, but encapsulated into smaller classes which are rather opinion-
ated. Here, the term “opinionated” implies that the individual classes of the ALV
object model are smart enough to specify default values on our behalf if we just
want the report to exhibit common/standard behavior in a certain area.

For example, if we know we want to display all of the columns in an internal table
in the list output, we don’t have to pass the ALV object model a field catalog.
Instead, we can let the ALV object model derive this field catalog internally by
introspecting the internal table type definition using the ABAP Run Time Type Ser-
418 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Introducing the ALV Object Model 12.2
vices (RTTS) framework. Indeed, if all we want to do is create a report to display
the contents of an internal table, we can use the ALV object model to get this
done in less than 10 lines of ABAP code as demonstrated by the simple report
contained in Listing 12.1.

REPORT zalvreport.
DATA gt_outtab TYPE STANDARD TABLE OF sflight.
DATA go_alv_table TYPE REF TO cl_salv_table.

START-OF-SELECTION.
SELECT * FROM sflight INTO TABLE gt_outtab.

cl_salv_table=>factory(
IMPORTING

r_salv_table = go_alv_table
CHANGING

t_table = gt_outtab).

go_alv_table->display().

Listing 12.1 A Simple Report Using the ALV Object Model

As you can see in Listing 12.1, the ALV object model makes it absurdly easy to
create a simple ALV report. In this simple example, we produce the output in
three easy steps:

1. First, we build an internal table using regular ABAP code (e.g. using the SELECT
statement).

2. Then, we use the factory() method of class CL_SALV_TABLE to create an
instance of the ALV table control, binding the control with the table we built in
the first step.

3. Finally, we use the CL_SALV_TABLE instance’s display() method to display the
list control on the screen.

For more sophisticated reports, the model is generally the same only we include
some additional formatting logic in between steps two and three. For this, we call
on the various getter methods of the ALV control we’re dealing with: CL_SALV_
TABLE for two-dimensional tables and CL_SALV_HIERSEQ_TABLE for tree-tables. The
class diagram contained in Figure 12.2 illustrates the relationships between the
core classes of the ALV object model.
419

Working with the SAP List Viewer12
Figure 12.2 Class Diagram for ALV Object Model

As you can see in Figure 12.2, the getter methods in CL_SALV_TABLE and CL_SALV_
HIERSEQ_TABLE return instances of classes that encapsulate specific aspects of the
ALV output. For example, if we want to adjust the sort conditions of the output,
we can call on the get_sorts() method of either class to get an instance of type
CL_SALV_SORTS. Using the methods defined in CL_SALV_SORTS, we can add/

CL _SALV _...

...
CL _SALV _COLUMNS_TABLE

+ get()
+ get_column ()
+ add_column ()
+ get_columns _count ()
...

CL _SALV _FILTERS

+ add_filter ()
+ clear ()
+ get_filter ()
+ remove _filter ()
...

CL _SALV _SORTS

+ add_sort ()
+ clear ()
+ get_sort ()
+ remove _sort ()
...

CL _SALV _...

...
CL _SALV _COLUMNS_HIERSEQ

+ get()
+ get_column ()
+ add_column ()
+ get_columns _count ()
...

CL _SALV _FILTERS

+ add_filter ()
+ clear ()
+ get_filter ()
+ remove _filter ()
...

CL _SALV _SORTS

+ add_sort ()
+ clear ()
+ get_sort ()
+ remove _sort ()
...

CL_SALV_MODEL_BASE

+ get_top_of_list()
+ set_top_of_list()
+ get_screen_status()
+ set_screen_status()
...
+ close_screen

CL_SALV_MODEL_LIST

+ get_layout()
+ get_display_settings()
+ get_functional_settings()
+ get_print()
...

CL_SALV_TABLE

+ factory ()
+ display()
+ refresh()
+ set_data()
...
+ get_functions()
+ get_sorts()
+ get_selections()
+ get_events()
+ get_filters()
+ get_columns()
...

CL_SALV_HIERSEQ_TABLE

+ factory()
+ display()
+ refresh()
+ set_data()
...
+ get_functions()
+ get_sorts()
+ get_events()
+ get_filters()
+ get_columns()
+ get_level_count()
...
420 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing a Reporting Framework on top of ALV 12.3
remove sorting conditions, query the existing conditions, and so forth. The same
general principles work for adjusting filter conditions, columns in the list layout,
etc.

Finding the ALV Object Model Documentation

To find a comprehensive treatment of all the available classes and their methods, we
would encourage you to look at the class documentation in the Class Builder tool as
well as the online help documentation available at http://help.sap.com. From the land-
ing page, click on Technology � SAP NetWeaver Platform � {Your Current NetWeaver

Release} � Function-Oriented View � {Your Language} to navigate to the SAP
NetWeaver Library documentation. From here, click on UI Technologies in SAP

NetWeaver � SAP GUI � SAP GUI Technology � SAP List Viewer (ALV).

12.3 Developing a Reporting Framework on top of ALV

Historically, one of the hardest parts about working with classic Dynpro/SAP GUI
technology is that it doesn’t lend itself very well to pattern-oriented UI develop-
ment using the model-view-controller (MVC) design pattern. This doesn’t mean
that it’s impossible to achieve MVC when building ALV reports; it just means that
we have to work at it a little bit more.

What that in mind, in this section, we’ll attempt to build a framework which
places some boundaries around the ALV report creation process and helps facili-
tate a clear separation of concerns between ALV-related output generation, data
selection, and event handling. For the purposes of this demonstration, we’ll focus
on building reports using the CL_SALV_TABLE control, though we could have just
as easily built a framework around the CL_SALV_HIERSEQ_TABLE.

Besides offering some utility for ALV report generation, the development of this
framework will also allow us to exercise our OO minds and consider how con-
cepts like encapsulation, designing to interfaces, and polymorphism can be
applied in practical use case scenarios. So, without further ado, let’s get started.

What is MVC?

MVC is a software design pattern which emphasizes a separation of concerns between
the user interface (view) and the business/data model that’s being edited in the view.
This separation is desirable because the two layers tend to evolve differently over time:
421

Working with the SAP List Viewer12
� UI technology tends to change quite rapidly—so much so that a new UI application
is almost outdated from the day it goes live. To put this into perspective, consider
how many new UI technologies we’ve seen in the SAP world in the last 10-12 years:
Business Server Pages (BSPs), Web Dynpro ABAP (WDA) and now the HTML5-based
SAPUI5 framework.

� On the other hand, the business logic/data model behind a UI application may
change in more subtle ways as new processes are rolled out, enhancements are
made, and so forth.

Ideally, we’d like to keep these two layers separate so that they can vary independently.
For example, if we want to switch from a WDA-based UI to an SAPUI5-based UI, we
should be able to do this without affecting the underlying business model. In effect,
we’re just putting a different face on the application. Similarly, the view shouldn’t be
impacted by changes to the implementation of the business model. For example, if a
company decides to refactor the data model to take advantages of new technology
innovations provided by SAP HANA, the view really shouldn’t be impacted by this.
Again, this is another example of “design-by-contract” in action.

To achieve this separation, we must set up boundaries between the view and model lay-
ers and let an intermediary (the controller) broker the data exchange behind the scenes.
This keeps the UI application architecture flexible and easy to reuse as technology/
requirements change.

Whether we’re developing in cutting edge UI technology or classic Dynpro and ALV,
the strategy remains the same—we want to maintain a clear separation of concerns with
our UI designs.

12.3.1 Step 1: Identifying the Key Classes and Interfaces

As we observed in Section 12.2, the ALV object model does a good job of encap-
sulating view-level concerns such as rendering the ALV list, etc. So, rather than
reinventing the wheel, our framework will leverage the ALV object model as-is to
handle view-level concerns. With that foundation in place, our focus will be on
building out the controller and model layers—keeping in mind that we’re going
to want to eventually integrate them into an ABAP report program.

The UML class diagram contained in Figure 12.3 identifies the classes/interfaces
that we’ve introduced with our custom reporting framework. Moving from left-
to-right, we can identify these types as follows:

� ZCL_ALV_REPORT_CONTROLLER

This class provides the base-level controller for the framework, providing inte-
gration between the ABAP report program, the ALV table control, and a report
feeder class.
422 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing a Reporting Framework on top of ALV 12.3
� ZIF_ALV_REPORT_FEEDER

This interface provides the basic blueprint for the aforementioned report
feeder class. Here, we’re drawing inspiration from SAP’s Floorplan Manager
(FPM) and Personal Object Worklist (POWL) frameworks which have similar
constructs in place to provide instance-specific extensions of the controller that
facilitate simplified integration with the model layer.

� ZCL_ALV_TABLE_EVENT

This class encapsulates all of the various types of events that might be fired by
the CL_SALV_TABLE control (e.g., double-clicking on a cell, clicking on a toolbar
function, or printing out the top of the page). By encapsulating these events
centrally, we can define a single event handler method in the feeder class called
process_event() in which consumers of the framework can quickly build up
eventing scenarios. It also allows us to abstract the event registration process
which is normally required when working with the ALV object model.

� ZCL_ALV_RPT_PARAMETERS

This class encapsulates the various parameters passed by the CL_SALV_TABLE
control whenever an event is fired. Consumers can access this object instance
(which is automatically provisioned by the ZCL_ALV_REPORT_CONTROLLER class)
via the ZCL_ALV_TABLE_EVENT object reference passed into the process_event()
method of the feeder class.

Figure 12.3 Class Diagram Depicting the Classes/Interfaces that Make Up the Reporting Framework

ZCL_ALV_REPORT_CONTROLLER

ZCL_ALV_REPORT_CONTROLLER

+ launch_report()
+ get_params_from_selscreen()
- execute()
+ on_top_of_page()
+ on_end_of_page()
+ on_before_salv_function()
+ on_after_salv_function()
+ on_added_function()
+ on_double_click()
+ on_link_click

<< interface >>
ZIF_ALV_REPORT_FEEDER

+ initialize()
+ get_definition()
+ set_alv_table_ref()
+ get_data()
+ process_before_output()
+ process_event()

+ factory()
+ display()
...

ZLC_ALV_TABLE_EVENT

+ get_event_parameters()

ZCL_ALV_RPT_PARAMETERS

+ get_value()
+ set_value()
+ delete_value()
+ get_keys()

<< delegates to >>

<< manages >>

<<
 p

ro
vid

es
 ac

ce
ss

 to
 >

>

<< uses >>
423

Working with the SAP List Viewer12
12.3.2 Step 2: Integrating the Framework into an ABAP Report
Program

Now that you have a sense for the key classes/interfaces that make up the frame-
work, let’s take a look at how we can incorporate these elements into a functional
report program. To guide us through this process, we’ll re-create the simple
flights report we created in Listing 12.1.

The code excerpt contained in Listing 12.2 shows how we’re integrating the ZCL_
ALV_REPORT_CONTROLLER class into an ABAP report program. As you can see,
there’s not much code required to bootstrap the framework. We basically just
need to collect any selection screen parameters we’d like to pass on to the model
layer and then call the static launch_report() method of the ZCL_ALV_REPORT_
CONTROLLER class to start the report processing.

REPORT zflights_report.
TABLES: sflight.
SELECT-OPTIONS:

s_carrid FOR sflight-carrid,
s_connid FOR sflight-connid,
s_fldate FOR sflight-fldate.

DATA gt_params TYPE
zif_alv_report_feeder=>ty_selection_param_tab.

AT SELECTION-SCREEN.
zcl_alv_report_controller=>get_params_from_selscreen(
EXPORTING

iv_program_name = sy-repid
iv_screen_number = sy-dynnr

IMPORTING
et_parameters = gt_params).

START-OF-SELECTION.
zcl_alv_report_controller=>launch_report(
EXPORTING

iv_feeder_class = 'ZCL_FLIGHT_FEEDER'
it_selection_params = gt_params).

Listing 12.2 Recreating the Flights Report Using the Custom Framework

Looking closely at the code excerpt contained in Listing 12.2, you can see how
the first parameter we’re passing to the launch_report() method is the name of
our custom feeder class. We’ll learn how to build out this feeder class in Section
12.3.3, but for now, just note that this is how we’re injecting custom report logic
into the framework.
424 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing a Reporting Framework on top of ALV 12.3
Aside from the feeder class, we’re also passing a parameter list to the optional IT_
SELECTION_PARAMS parameter of the launch_report() method. Since parameters/
select-options in ABAP are treated like global variables within the defining report
program, we wanted to capture these values in a format that’s easier to exchange
from an OO context. This logic is encapsulated in the get_params_from_
selscreen() utility method provided with the ZCL_ALV_REPORT_CONTROLLER class.

After we bundle up the selection screen parameters and identify the feeder class,
we can effectively transfer control from the ABAP report program to the frame-
work. This frees us from having to worry about the impedance mismatch
between ABAP event-based reports on one hand and the OO-based framework on
the other.

12.3.3 Step 3: Creating Custom Report Feeder Classes

With the basic framework in place, all that’s left is to build out the report-specific
logic in the custom feeder classes. For this, we create a regular ABAP Objects class
that implements the ZIF_ALV_REPORT_FEEDER interface.

For simple reports, there are generally two main methods in the ZIF_ALV_REPORT_
FEEDER interface that we need to provide a concrete implementation for:

� get_definition()

In this method, we need to generate a descriptor object which informs the
framework about the type of data we plan on representing via the report. Here,
we must use the CL_ABAP_TABLEDESCR class of the ABAP RTTS API to describe
the internal table type that we’ll be returning via the get_data() method.

� get_data()

In this method, we implement the integration logic required to fetch report
data from the underlying model layer. For simple reports, this could be as sim-
ple as a SELECT statement, but normally we’d prefer to delegate to a more
sophisticated business objects layer (e.g., the BOPF, for instance).

By simply implementing these two methods, we have enough functionality in
place to produce a working report like the one shown in Figure 12.1. The code
excerpt contained in Listing 12.3 demonstrates how we might implement the
default reporting logic in the ZCL_FLIGHT_FEEDER class. As you can see, the hard-
est part of all this is parsing the selection screen parameters into ABAP range
tables—everything else is basic ABAP without any specialized ALV knowledge
required.
425

Working with the SAP List Viewer12
CLASS zcl_flight_feeder DEFINITION.
PUBLIC SECTION.
INTERFACES zif_alv_report_feeder.
TYPES ty_flights_tab TYPE STANDARD TABLE OF slfight.

PRIVATE SECTION.
DATA mr_t_data TYPE REF TO data.

ENDCLASS.

CLASS zcl_flight_feeder IMPLEMENTATION.
METHOD zif_alv_report_feeder~get_definition.
DATA lt_flights TYPE zcl_flight_feeder=>ty_flights_tab.
eo_field_catalog ?=

cl_abap_tabledescr=>describe_by_data(lt_flights).
ENDMETHOD.

METHOD zif_alv_report_feeder~get_data.
DATA: BEGIN OF ls_search,

carrid TYPE RANGE OF sflight-carrid,
connid TYPE RANGE OF sflight-connid,
fldate TYPE RANGE OF sflight-fldate,

END OF ls_search.
FIELD-SYMBOLS <ls_param> LIKE LINE OF it_selection_params.
FIELD-SYMBOLS <ls_temp> TYPE any.
TYPES ty_flights_tab TYPE STANDARD TABLE OF sflight.
FIELD-SYMBOLS <lt_data> TYPE ty_flights_tab.

GET REFERENCE OF ct_data INTO me->mr_t_data.
ASSIGN me->mr_t_data->* TO <lt_data>.

LOOP AT it_selection_params ASSIGNING <ls_param>.
CASE <ls_param>-attribute_name.

WHEN 'S_CARRID'.
APPEND INITIAL LINE TO ls_search-carrid

ASSIGNING <ls_temp>.
MOVE-CORRESPONDING <ls_param> TO <ls_temp>.

WHEN 'S_CONNID'.
APPEND INITIAL LINE TO ls_search-connid

ASSIGNING <ls_temp>.
MOVE-CORRESPONDING <ls_param> TO <ls_temp>.

WHEN 'S_FLDATE'.
APPEND INITIAL LINE TO ls_search-fldate

ASSIGNING <ls_temp>.
MOVE-CORRESPONDING <ls_param> TO <ls_temp>.

ENDCASE.
ENDLOOP.

"Search the flights database:
426 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing a Reporting Framework on top of ALV 12.3
SELECT *
INTO TABLE <lt_data>
FROM sflight
WHERE carrid IN ls_search-carrid

AND connid IN ls_search-connid
AND fldate IN ls_search-fldate.

ENDMETHOD.
...

ENDCLASS.

Listing 12.3 Implementing the Flights Report Feeder Class

With this foundation in place, we can begin splicing in more advanced function-
ality into our feeder class. In the upcoming subsections, we’ll demonstrate how
this works.

Adjusting Output Properties on the ALV List

By default, the ZCL_ALV_REPORT_CONTROLLER class will apply various defaults to
make sure the ALV object model is instantiated properly. Here, it will optimize
the column layout, make sure that the default toolbar functions are enabled, etc.
While this is enough to bootstrap the framework, there may be times that we
want to tweak the output further. In these situations, we can leverage the pro-
cess_before_output() method of the feeder class to apply any last-minute for-
matting additions.

Figure 12.4 Signature of the process_before_output() Method
427

Working with the SAP List Viewer12
To demonstrate how this works, let’s imagine that we want to sort the flight list
in descending order based on the flight date. Under normal circumstances, these
conditions would be defined in the ABAP report layer by calling the CL_SALV_
TABLE class’s get_sorts() method and then manipulating the returned CL_SALV_
SORTS instance to build the sort conditions. As you can see in Figure 12.4, the
framework provides us with a shortcut here by automatically passing the sorts
handle as a parameter (IO_SORTS). Of course, we’re not limited to just sorting
here, we also have IO_FILTERS to define filters, IO_COLUMNS to adjust the column
layout, and so forth.

The code excerpt contained in Listing 12.4 illustrates how we can implement the
sort condition. At runtime, the ZCL_ALV_REPORT_CONTROLLER class will invoke the
process_before_output() method polymorphically right before the report is dis-
played. So, we can use this method to implement any and all tweaks to the ALV
output before the list is rendered.

CLASS zcl_flight_feeder IMPLEMENTATION.
...
METHOD zif_alv_report_feeder~process_before_output.
"Sort by flight date in descending order:
io_sorts->add_sort(columnname = 'FLDATE'

sequence = IF_SALV_C_SORT=>SORT_DOWN).
ENDMETHOD.

ENDCLASS.

Listing 12.4 Defining Sort Conditions in the Feeder Class

Handling Events

Normally, event handling in the ALV object model requires several steps:

1. First, we have to define/identify an event handler class and implement separate
event handler methods for each event we want to listen for.

2. Next, we have to call the CL_SALV_TABLE class’s get_event() method to obtain
an object reference of type CL_SALV_EVENTS_TABLE.

3. Finally, we have to register the event handler methods with the CL_SALV_
EVENTS_TABLE instance using the ABAP SET HANDLER statement we reviewed in
Chapter 2.

Within our reporting framework, we abstract this event wiring in the base-level
controller class ZCL_ALV_REPORT_CONTROLLER. Here, you can see how we’re per-
forming the steps above in method register_event_handlers(). At runtime,
428 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Developing a Reporting Framework on top of ALV 12.3
whenever an event is fired from the ALV control, the registered event handler
methods in the controller class wrap up the event in an instance of class ZCL_ALV_
TABLE_EVENT and pass it to the feeder class via a polymorphic call to the process_
event() method.

Within the process event method, we can determine the type of event triggered
by comparing the public mv_event_id attribute against the various constants
defined in the CO_EVENT_TYPE constant. For example, the code excerpt contained
in Listing 12.5 shows how we’re sorting out event handling logic for using a sim-
ple ABAP CASE statement. Here, we’re reacting to the ALV table control’s double-
click event by determining the selected table row and opening up transaction BC_
GLOBAL_SBOOK_CREA so that a user can create a flight booking in reference to an
available flight. Though the code’s pretty straightforward, notice how we’re using
the get_event_parameters() method of the ZCL_ALV_TABLE_EVENT class to fetch
the table row index which was originally passed via the standard event definition.

CLASS zcl_flight_feeder IMPLEMENTATION.
...
METHOD zif_alv_report_feeder~process_event.
FIELD-SYMBOLS <lt_data> TYPE ty_flights_tab.
FIELD-SYMBOLS <ls_data> TYPE sflight.
DATA lv_row TYPE sy-tabix.

CASE io_event->mv_event_id.
WHEN zcl_alv_table_event=>co_event_type-double_click.

"Read the selected flight record:
IF me->mr_t_data IS BOUND.

ASSIGN me->mr_t_data->* TO <lt_data>.
io_event->get_event_parameters()->get_value(

EXPORTING
iv_key = 'ROW'

IMPORTING
ev_value = lv_row).

READ TABLE <lt_data> INDEX lv_row ASSIGNING <ls_data>.
IF sy-subrc NE 0.

RETURN.
ENDIF.

ELSE.
RETURN.

ENDIF.

"Open up a transaction to create a flight booking:
SET PARAMETER ID 'CAR' FIELD <ls_data>-carrid.
SET PARAMETER ID 'CON' FIELD <ls_data>-connid.
SET PARAMETER ID 'DAY' FIELD <ls_data>-fldate.
429

Working with the SAP List Viewer12
CALL TRANSACTION 'BC_GLOBAL_SBOOK_CREA'.
ENDCASE.

ENDMETHOD.
ENDCLASS.

Listing 12.5 Defining Event Handler Logic in the Feeder Class

12.4 UML Tutorial: Advanced Activity Diagrams

In Chapter 8, we learned how to model basic process flows using activity dia-
grams. In this section, we ‘ll expand upon these basic capabilities and look at
some of the more advanced flow control elements provided for activity diagrams
in the UML 2 standard.

The activity diagram shown in Figure 12.5 depicts an employee leave request
workflow process. To effectively trace this process across all of the relevant par-
ties/systems, we chose to split the diagram into rectangular swim lanes called par-
titions. Partitions can be labelled to depict a class, a person/role, a system, an
organization, etc. The basic idea here is to show who does what in the process
flow. In this case, an Employee initiates the workflow process by creating a leave
request. Looking closely at the Create Leave Request action, you’ll notice that
there’s a little “fork-like” icon on the left-hand side of the action icon. This nota-
tion indicates that the Create Leave Request action is actually a sub-activity
whose details are described in another activity diagram.

Tracing the flow in Figure 12.5, you‘ll notice that once the leave request is cre-
ated, the next action is to submit the request to a workflow engine. This submis-
sion process is depicted using a special action type called a signal. The use of sig-
nals here helps to signify the fact that the workflow process receives the request
from an external process. Signals can also be used to depict other complex syn-
chronous and asynchronous messaging scenarios.

Once the leave request is received by the workflow engine, it’s forwarded to the
employee’s supervisor (via e-mail, for instance). At this point in time, the work-
flow process is in a holding pattern as it waits on a couple of potential outcomes.
This holding pattern is depicted using a fork element. Here, one of two things can
happen. Ideally, the supervisor will receive the request (again via a signal action),
process it, and send a response back to the workflow engine. However, if the
supervisor hasn’t responded within 24 hours, the process should terminate. This
24 hour watch period is depicted using a time signal (i.e. the “bow-tie” icon
430 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

UML Tutorial: Advanced Activity Diagrams 12.4
shown in Figure 12.5). In either case, the process comes together again in a join
element. From here, an e-mail response message (favorable or otherwise) is for-
warded back to the initiating employee and the process terminates as per usual.

Figure 12.5 A More Advanced UML Activity Diagram

Employee Workflow Engine Supervisor

Submit
Request

Receive
Request

Notify Supervisor
of Request

Receive
Request

Send
Response

Send E -Mail
Response

Receive
Response

Complete
Request

[Approved]

Create
Leave

Request

Wait 24
Hours

[Rejected]

Fork

Join

Time
Signal

Send
Signal

Receive
Signal

Decision

Sub
Activity
Diagram
431

Working with the SAP List Viewer12
Another element of the activity diagram that we’ve not yet considered is the dia-
mond-shaped decision node shown in Figure 12.5. This node looks just like the
merge node described in Chapter 8. However, in this case, there’s one input and
multiple outputs as opposed to multiple inputs and a single output. Each of the
outputs of a decision node are marked with a special guard text (e.g. [Approved]
or [Rejected]) that describes the condition(s) in which that particular output
path is selected. As you might expect, decision nodes are very good for depicting
an IF/ELSE or CASE statement in a flow.

In many ways, even the advanced elements described in this section barely
scratch the surface with regards to the types of things you can model using activ-
ity diagrams. To learn more about activity diagrams, we highly recommend Mar-
tin Fowler’s UML Distilled, Third Edition.

12.5 Summary

In this chapter, we were able to demonstrate how to use the SAP List Viewer
framework to build a custom reporting framework using OO-based concepts.
Here, we were able to accomplish quite a bit using a handful of strategically posi-
tioned classes and interfaces, but that’s really just the beginning. Over time, it’s
likely that this framework might evolve to include built-in model integration,
families of feeder classes that pre-define reusable logic, and so forth. The sky’s
really the limit here—it just takes a proper foundation to get things started.

In the next chapter, we’ll reflect on many of these concepts and look ahead to
next steps in your OO journey.
432 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

In this chapter, we look at additional topics/resources that you can use to
further hone your skills and master OO development concepts.

13 Where to Go From Here

In many respects, OOP can be distilled down into a handful of basic elements/
concepts:

� The creation of abstract data types based on classes/interfaces

� Encapsulation

� Inheritance

� Polymorphism

Though it takes a little while wrap your head around these concepts such that you
“think” in object-oriented terms, once you get the hang of it, you’re well on your
way to becoming a master. In this chapter, we’ll look at some further topics/
resources that you can utilize to move in this direction.

13.1 Object-Oriented Analysis and Design

As we’ve seen over the course of this book, the mechanics of OOP in a language
like ABAP Objects are fairly easy to grasp once you understand basic syntax ele-
ments. After you get past this initial learning curve, reading and understanding
how existing classes work should be fairly straightforward. However, learning to
see the world around you using OO lenses takes some time.

For practical advice here, we’d encourage you to look at some of the many great
resources out there related to the topic of object-oriented analysis and design
(OOAD). Most resources in this space are largely language-agnostic, focusing
more on pure design concepts rather than implementation details specific to Java,
C++, or ABAP Objects. Some recommended titles here include:
433

Where to Go From Here13
� Head First Object-Oriented Analysis and Design: A Brain Friendly Guide to OOA&
D (O’Reilly Media, 2006)

� Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-
Wesley, 2003)

Within these books (and others like them), you’ll find some practical advice for
learning how to think in OO terms and ask the right questions during the require-
ments gathering process to make sure you don’t end up on the wrong track
during the design process.

13.2 Design Patterns

In the mid-1990s, a group of software engineers got together and published a clas-
sic title that really changed the way that developers thought about writing OO soft-
ware: Design Patterns: Elements of Reusable Object-Oriented Software. This book
drew inspiration from another classic title from the world of architectural design:
Christopher Alexander’s A Pattern Language. In A Pattern Language, Alexander
says that patterns describe “a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the
same way twice.”

By putting together a collection of reusable patterns, the authors of Design Pat-
terns (colloquially referred to as the “Gang of Four”) established a set of best prac-
tices which demonstrated how classes/interfaces could be used to implement
solutions to common problems that might crop up during the design phase of a
project. Here, rather than reinventing the wheel, developers were able to consult
a patterns catalog which prescribed solutions which were generally more thor-
ough than something they might come up with on their own.

In the 20+ years that have passed since the class Design Patterns title was first pub-
lished, we’ve seen many resources come along to supplement the patterns cata-
log, simplify pattern explanations, or even provide language-specific cookbooks
which make it easier to relate pattern concepts to developers who work exclu-
sively in a particular language. Some recommended titles in this area include:

� Pattern Hatching: Design Patterns Applied (Addison-Wesley, 1998)

� Design Patterns Explained: A New Perspective on Object-Oriented Design, 2nd Edi-
tion (Addison Wesley, 2004)
434 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Reading and Writing ABAP Objects Code 13.3
� Head First Design Patterns (O’Reilly Media, 2004)

� Refactoring to Patterns (Addison-Wesley, 2004)

� Patterns of Enterprise Application Architecture (Addison-Wesley, 2002)

� Design Patterns in Object-Oriented ABAP (SAP PRESS, 2009)

If you’re a new OO developer interested in learning how to apply the concepts
you’ve learned in this book, we’d highly encourage you to check out these
resources (or others) and work through some of the more common patterns.
Once you get to this stage in your development process, the only way you get bet-
ter is through experience, and you can save yourself a lot of heartache if you try
to acquire this experience through the lessons learned by those who’ve already
been where you are in the journey.

13.3 Reading and Writing ABAP Objects Code

In addition to academic-style learning, we’d strongly encourage you to read
through as much ABAP Objects code as you can get your hands on – good or bad.
These days, SAP provides a lot of OO-based libraries which you can use to come
up with ideas and strategies. This is one step in the growth process that you can’t
really skip over—there are simply no substitutes for experience. Much like learn-
ing foreign languages, immersion is by far the most effective way to learn.

Note that this immersion process also extends to day-to-day development. ABAP
Objects can generally be used for any kind of development task. Whether you’re
building a report program as demonstrated in Chapter 12, creating UIs with Web
Dynpro ABAP (WDA), building workflows, or implementing enhancements,
classes can (and should) be at the center of everything you do.

This is about more than just writing ABAP Objects classes for the sake of it. Even
the simplest of tasks, which might seem easier to implement using quick-and-
dirty procedural techniques, can usually benefit from an OO-based approach. For
example, imagine an enhancement requirement which starts off with a simple
enhancement implementation that defines some business rules. Over time, this
enhancement implementation swells into many lines of code which become dif-
ficult to maintain. Plus, the same logic ends up getting replicated over to other
enhancement implementations.
435

Where to Go From Here13
The moral of this story is this: what starts off as something simple often grows
into something large and unmanageable if you don’t stick to the core principles of
encapsulation. The old adage of “find what varies and encapsulate it” applies
whether we’re talking about a small user exit or a complete UI application. Taking
the extra time to identify the appropriate classes and define appropriate roles and
responsibilities can make all the difference in the long run.

The more you do this, the easier the OO growth process will be. Plus, you’ll find
that many of these scenarios present you with excellent learning opportunities
which really reinforce core concepts.

13.4 Summary

This concludes our exploration of OO development using ABAP Objects. We
hope that you’ve enjoyed this book and that you feel empowered to get out there
and apply what you’ve learned. The future of ABAP remains bright, and there are
ample opportunities out there for developers who understand how to work with
object-oriented ABAP.
436 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Appendices

A Installing the Eclipse IDE .. 439

B Debugging Objects ... 447

C Bibliography .. 459

D The Authors ... 461
437

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

A Installing the Eclipse IDE

Installing the ABAP Development Tools for Eclipse (ADT) is not too difficult once
you understand the various steps involved. In this appendix, we’ll walk through
these steps and show you how to install the ADT on your local machine.

A.1 Installing the Java SDK

The Eclipse environment runs on top of the Java Runtime Environment (JRE), a vir-
tual machine which can run Java code on top of most any OS environment: Micro-
soft Windows, Mac OS, Linux, and so forth. Though you can technically run
Eclipse using the standalone JRE, we recommend that you install the complete
Java SDK as this contains features that can come in handy for some of the other
SAP-related plug-ins you might wish to install alongside your Eclipse installation.

Figure A.1 Downloading and Installing the Java SE SDK
439

Installing the Eclipse IDEA
The Java SDK can be downloaded from the Oracle Technology Network online at
http://www.oracle.com/technetwork/java/javase/downloads/index.html. From here,
you can click on the Download button highlighted in Figure A.1.

From here, you’ll be routed to a Downloads page where you can download the
setup executable for your particular OS/environment. The installation process
takes moments and is straightforward to complete.

A.2 Installing Eclipse

Once the Java SDK is in place, you can proceed with the installation of the Eclipse
IDE itself. To find the appropriate installation package, browse to https://
tools.hana.ondemand.com/#abap and find the recommended distribution which is
compatible with the latest innovation of the ABAP development tools. Figure A.2
shows how you can locate the recommended version to install.

Figure A.2 Downloading the Eclipse IDE (Part 1)
440 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Installing Eclipse A.2
Once you find the appropriate installation for your environment, follow the
hyperlink to the Eclipse downloads page as shown in Figure A.3. From here, you
can download either the Eclipse IDE for Java Developers or the Eclipse IDE for
Java EE Developers. Both installations work just fine for ABAP-related develop-
ment, so you can’t go wrong with either installation. The Java EE edition just con-
tains more plug-ins for Java EE development and therefore can also be used to
develop custom applications for the SAP HANA Cloud Platform, etc.

Figure A.3 Downloading the Eclipse IDE (Part 2)

After you download Eclipse, you can install it by simply unpacking the ZIP
archive into a directory on your local machine. From here, you can launch Eclipse
the first time by running the Eclipse executable from the root directory of the
program installation folder.

Tip

For a variety of reasons, we recommend that you avoid unpacking the Eclipse installa-
tion folder too deep within your folder structure. Since some of the Java-related artifacts
have long folder/file names, some plug-ins have problems if the Eclipse installation is
buried underneath too many folders.

The first time Eclipse runs, it will prompt you to select a workspace folder where
projects and related metadata are stored (see Figure A.4). Here, we suggest that
you pick a directory path that you’ll remember (and keep backed up). While you
can of course change this selection after the fact, it’s much easier to get it right up
front.
441

Installing the Eclipse IDEA
Figure A.4 Determining the Eclipse Workspace Folder

A.3 Installing the ABAP Development Tools

With the Eclipse installation in place, all that’s left is to install the ADT plug-ins. This
can be achieved within the Eclipse IDE itself by performing the following steps:

1. First, select the Help � Install New Software… menu option as shown in Fig-
ure A.5.

Figure A.5 Installing the ABAP Development Tools (Part 1)
442 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Installing the ABAP Development Tools A.3
2. This will open up the Install dialog box shown in Figure A.6. Here, we must
configure a software site which points to the ADT-related plug-ins. You can find
the relevant software site for your particular Eclipse distribution via the SAP
Development Tools for Eclipse home page available online at https://
tools.hana.ondemand.com/#abap (see Figure A.2). Once you identify this URL,
plug it into the Location field, give the installation repository a name, and click
the OK button.

Figure A.6 Installing the ABAP Development Tools (Part 2)

3. At this point, Eclipse will connect to the software site and find a list of provided
installation items. As you can see in Figure A.7, the ADT-related plug-ins are
included in this list, among other things. Here, you can select as many of the
items as you like (they’re compatible with one another) and then proceed
through the rest of the wizard steps to complete the installation.
443

Installing the Eclipse IDEA
Figure A.7 Installing the ABAP Development Tools (Part 3)

4. Finally, after the plug-ins are downloaded and installed, you’ll be prompted to
re-start Eclipse. Go ahead and do so to complete the installation.

Assuming the installation runs smoothly, Eclipse will re-start and the Welcome
page will be updated to include various ABAP-related links. You can click on these
links to view tutorials, find supporting documentation, and more (Figure A.8).
444 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Where to Go to Find Help A.4
Figure A.8 Verifying the ADT Installation

A.4 Where to Go to Find Help

If the installation process fails for some reason, you can find links to forums and
supporting documentation online at https://tools.hana.ondemand.com/#abap.
445

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

B Debugging Objects

As you begin working with objects in your programs, it’s useful to be able to step
interactively through a program to see the values assigned to various attributes,
and trace through the program logic. In this appendix, we’ll learn how to use the
ABAP Debugger tool to perform these tasks. Here, we’ll assume that you have
some familiarity for debugging programs using the ABAP Debugger tool. If you
haven’t used the debugger before, we recommend that you read through the
online help documentation since we won’t be covering basic concepts here.

B.1 Understanding Debugger Types

Prior to Release 6.40 of the SAP Web AS, there was only one type of debugger
tool available to developers. However, over time, certain limitations in this tool
prompted SAP to implement a new debugger tool using a different and more flex-
ible architecture. While the details of the differences between these two debugger
types is beyond the scope of this book, we’ve separated our discussion of debug-
ging objects into two sections so that you’ll understand how to use both tools to
debug objects.

B.2 Debugging Objects Using the Classic Debugger

For the most part, you’ll find that dealing with objects in a debugger session is
quite similar to working with normal data objects, procedures, etc. Nevertheless,
there are elements of the debugging process that are unique to objects. Therefore,
in this section, we’ll highlight some of these particular concepts.

B.2.1 Displaying and Editing Attributes

Within a debugger session, you can inspect an object reference by performing the
following steps:

1. If you’re not already in the Fields display mode, select this display mode by
clicking on the corresponding button underneath the application toolbar.
447

Debugging ObjectsB
2. Select the object reference variable that points to the object you wish to inspect
by double-clicking on the reference variable name in the ABAP program code
display. Alternatively, you can enter the reference variable name in the Field

Names section and press the (Enter) key (see Figure B.1).

Figure B.1 Selecting an Object Reference Variable for Display

3. As you can see in Figure B.1, the Field Contents display for an object refer-
ence variable only shows the internal object ID of the object pointed to by the
object reference variable. To view the values of the attributes in this object, you
448 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Debugging Objects Using the Classic Debugger B.2
must double-click on the object ID. This will open up the Object display mode
view shown in Figure B.2.

Figure B.2 Displaying the Attributes of an Object/Class

Once you’re in the Object display mode, you can edit individual primitive attri-
butes by double-clicking their name in the Attributes/Interfaces column. Simi-
larly, you can edit complex types by drilling into structures, internal tables, and
indeed embedded objects.

You also have the option of filtering the display to specific types of attributes. For
example, in Figure B.2, notice how we’re displaying both the static and instance
attributes for an object of type ZCL_FLIGHT_FEEDER. We can also filter attributes
based on visibility section assignment (e.g. Public, Private, or Protected). Finally,
if the class of the object in question implements an interface, you can filter the
attribute list to just those fields defined within the interface.

B.2.2 Tracing Through Methods

The process of tracing method logic is no different than tracing through a subrou-
tine or function module. Prior to a method invocation, you can select the Single
449

Debugging ObjectsB
Step button to debug the method’s implementation code. Inside the method, you
can continue to step into or step over individual lines of code as per usual. Simi-
larly, if you wish to exit from the method and resume debugging after the method
call, you can select the Return button. Of course, if you wish to step over the
method implementation entirely, you can select the Execute button to execute
the method.

One thing that we should point out is the fact that constructor methods do not
behave in the same way as normal methods in the debugger. If you step into the
CREATE OBJECT statement, the debugger will begin tracing through the construc-
tor method. This is not the case, however, with class constructors. Here, you must
explicitly set a breakpoint in order to debug the class constructor logic.

B.2.3 Displaying Events and Event Handler Methods

To display the registered events for an object/class, you open up the Object dis-
play mode in the debugger. Here, you can click on the Events button to switch
from object mode to events mode (see Figure B.3).

Figure B.3 Displaying the Registered Events for an Object (Part 1)
450 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Debugging Objects Using the Classic Debugger B.2
This view will show you all of the events defined for the object/class as well as
any registered handling objects for the events. You can navigate to the objects
shown in the Handling Object column to set breakpoints in the event handler
methods to debug event handling scenarios. This can be sometimes useful in
frameworks where you’re not real clear where event handlers are registered, etc.

Figure B.4 Displaying the Registered Events for an Object (Part 2)

B.2.4 Viewing Reference Assignments for an Object

Sometimes, you may encounter situations where an object is manipulated in
ways that you didn’t expect. Here, it’s possible that more than one reference to
the object exists. You can identify the set of references to an object by selecting
Goto � System � Find Reference in the menu area. This menu option will open up
a dialog box showing you all of the references to the object in question in the sys-
tem (see Figure B.5).
451

Debugging ObjectsB
Figure B.5 Showing the Reference Assignments for an Object

B.2.5 Troubleshooting Class-Based Exceptions

Whenever an exception is triggered by a statement during a debugging session,
the ABAP debugger will trace the exception propagation process back to the
exception handler block that captures the exception—assuming there was one.
Oftentimes, you’ll encounter debugging scenarios where a developer chose not to
capture the exception situation in an exception object. This information can be
crucial for debugging complex exception situations. Therefore, you can modify
the debugger session settings to dynamically generate an exception object that
you can use to troubleshoot an error. To configure this setting, select the Settings

display mode and click on the Always Create Exception Object checkbox (see
Figure B.6).
452 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Debugging Objects Using the Classic Debugger B.2
Figure B.6 Turning on the Automatic Creation of Exception Objects

After the exception is triggered, the cursor will be placed at the beginning of the
CATCH block defined to handle the exception. If this CATCH block is not defined
using the INTO addition, then you can display the exception object by clicking on
the Display Exception Object button (see Figure B.7). Otherwise, you can dou-
ble-click on the exception object reference just as you would for any normal
object reference variable.
453

Debugging ObjectsB
Figure B.7 Displaying an Exception Object (Part 1)

The exception object is displayed in the Object display mode just like any other
object type. Here, you can trace the exception chain via the PREVIOUS attribute in
addition to any custom attributes that further define the exception situation (see
Figure B.8).
454 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Debugging Objects Using the New Debugger B.3
Figure B.8 Displaying an Exception Object (Part 2)

B.3 Debugging Objects Using the New Debugger

In most respects, the process of debugging objects in the New ABAP Debugger is
quite similar to the process of debugging objects in the Classic ABAP Debugger.
The primary difference is in the layout of the Object display area. Context-sensi-
tive access to this view is provided in all of the various variable display sections
within the debugger window. For example, by double-clicking the object ID in
the Value column shown in Figure B.9, we were taken to the Object display
shown in Figure B.10.
455

Debugging ObjectsB
Figure B.9 Basic Layout of the New ABAP Debugger

Figure B.10 Viewing Objects in the New ABAP Debugger
456 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Debugging Objects Using the New Debugger B.3
As you can see in Figure B.10, the Object display in the New ABAP Debugger is
much more streamlined. Here, by default, you can see the attributes of the object/
class in question arranged hierarchically according to the inheritance hierarchy.
You can turn this feature off by selecting the Superclasses On/Off button
directly above the attribute display. Events and their registered event handler
methods are displayed using the Events button. References to the object in ques-
tion can be viewed using the Display References button.

In addition to all of the standard features carried over from the classic debugger,
the new debugger also provides a function to display the inheritance hierarchy of
a given object at runtime. This function can be accessed by clicking on the Dis-

play Inheritance Hierarchy button. Figure B.11 shows the Inheritance Rela-

tionship view for an object of type CL_SALV_TABLE.

Figure B.11 Showing the Inheritance Hierarchy of an Object
457

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

C Bibliography

Alexander, Christopher. A Pattern Language (Oxford University Press, 1977)

Arnold, Ken, James Goslin, and David Holmes. The Java Programming Language,
4th Edition (Addison-Wesley Professional, 2006)

Cockburn, Alistair. Writing Effective Use Cases (Addison-Wesley Professional,
2000)

Eckel, Bruce. Thinking in C++, 2nd Edition (Prentice Hall, 2000)

Fowler, Martin. Refactoring: Improving the Design of Existing Code (Addison-Wes-
ley Professional, 1999)

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, 3rd Edition (Addison-Wesley Professional, 2003)

Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software (Addison-Wesley Professional, 1994)

Kerievsky, Joshua. Refactoring to Patterns (Addison-Wesley Professional, 2004)

Meyer, Bertrand. Object-Oriented Software Construction, 2nd Edition (Prentice Hall,
1997)

Shalloway, Alan. Design Patterns Explained: A New Perspective on Object-Oriented
Design, 2nd Edition (Addison-Wesley Professional, 2004)
459

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

D The Authors

James Wood is the founder and principal consultant of
Bowdark Consulting, Inc., an SAP consulting firm specializ-
ing in custom development and training. James is also an
SAP Mentor and the author of several best-selling SAP-
related titles.

Before starting Bowdark in 2006, James was a consultant at
SAP America, Inc. and IBM Corporation where was
involved in many large-scale SAP implementations. To learn
more about James and the book, please check out http://
www.bowdark.com.

Joe Rupert is a senior technical consultant at Bowdark Con-
sulting, Inc. Before joining Bowdark, Joe worked for several
health care technology companies building complex search
engines for querying biomedical research, patient lab and
clinical data.
461

© 2017 by Rheinwerk Publishing Inc., Boston (MA)

Index

A

ABAP development tools, 98
installation, 98

ABAP development tools for Eclipse
refactoring tools, 196

ABAP development tools in Eclipse � AIE
ABAP list viewer � ALV
ABAP object services, 331

introduction, 331
persistence service, 333
query service, 334
services overview, 333
transaction service, 335

ABAP refactoring tools, 194
ABAP runtime type services

RTTS, 398
ABAP unit

ABAP unit browser, 316–317
ABAP unit results display, 301, 308, 319
applying multiple constraints, 309
assertion, 300, 308
CL_ABAP_UNIT_ASSERT, 305, 307–310,

316, 319
CL_AUNIT_CONSTRAINT, 310
code coverage, 320
code inspector, 318
creating favorites (unit test groups), 317
duration, 304
evaluating unit test results, 319
executing unit tests, 316
FOR TESTING, 302–304, 307, 312, 315
global test classes, 307
IF_CONSTRAINT, 308–310
local test classes, 306
risk level, 303
test class generation wizard, 302, 306
unit test attributes, 303
unit test fixtures, 301, 305
unit test methods, 304
unit test naming conventions, 302

Abstract
keyword, 183
methods, 183

Abstract classes, 183
as a template, 187

Abstract data type
ADT, 130

AIE, 97
class editor tools, 104
reference materials, 113
release compatibility, 98

ALV
report example, 416
reuse function library, 417

ALV Object Model
ALV, 415
overview, 418

Attributes, 26, 50
class attributes, 50
constants, 51
instance attributes, 50
naming convention, 51

B

Behavior-driven development, 322
BOPF

action example, 406
actions, 387
associations, 392
BO organization, 382
bootstrapping the client API, 401
business object concept, 379
client API, 397
configuration service, 398
constants interface concept, 399
creating BO instances, 401
determinations, 389
introduction, 379
persistence layer, 381
queries, 396
query example, 404
related resources, 410
service manager interface, 397
transaction manager interface, 398
transaction manager usage, 407
463

Index
BOPF (Cont.)
updating BO instances, 405
validations, 391

BOPF business object
nodes, 383

Business application programming interface
BAPI, 125

Business object layer
BOL, 382

Business object processing framework
BOPF, 379

Business server pages
BSPs, 422

C

CALL METHOD statement, 64
CAST operator, 209
Casting, 207

casting operator (?=), 209
dynamic types, 206
narrowing cast, 207
narrowing cast example, 207
widening cast, 208

CATCH statement, 266
best practices for using, 278

Class Builder
defining inheritance relationships, 170
exception builder view, 270
form-based editor, 88
local definitions / implementations, 95
mapping assistant tool, 340
source code editor, 96
transaction SE24, 85

Class components
accessing, 67

CLASS DEFINITION statement
DEFERRED addition, 139

Class diagram
example, 39

Class elements
attributes, 26
methods, 26

Class interface, 29
Class pools, 85
CLASS statement

INHERITING FROM addition, 169

Class-based exception handling concept, 263
exception classes, 266
prior approaches, 263
resumable exceptions, 290
the TRY control structure, 266

Classes, 26
attributes, 50
class attributes, 50
class components, 49
comparison with type declarations, 27
component declarations, 49
constants, 51
declaration section, 47
declaring types, 56
defining a local class, 82
defining in ABAP, 47–48
encapsulation, 131
events, 56
global classes, 84
implementation section, 47
instance attributes, 50
instance components, 49
introduction, 27
methods, 52
naming conventions, 48
template analogy, 28
visibility sections, 33

Classes and objects
relationship, 28

Classic debugger tool, 447
CLEANUP statement, 266

usage example, 281
Common closure principle, 258
Common reuse principle, 258
Composition, 34, 165

defined, 193
the ‘has-a’ relationship, 192

COND statement, 285
Constructor expressions, 115

conditional operators, 115
conversion/casting operators, 115
instance operator, 115
reference operator, 115
value operator, 115

Constructors, 38
class constructor syntax, 151
defining class constructors in global classes,

151
464 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Index
Constructors (Cont.)
defining class constructors in local classes, 151
defining instance constructors in global

classes, 149
defining instance constructors in local classes,

148
guaranteed initialization, 148
instance constructor behavior example, 149

CREATE OBJECT statement, 60

D

Data objects
dynamic data objects, 147
dynamic type, 206

Data transfer object
DTO, 156

Debugging objects
always create exception object option, 452

Dependency injection, 311, 313
partially implemented interfaces, 312
private dependency injection, 311

Design patterns, 434
reference materials, 434

Design-by-contract, 139
invariants, 140
postconditions, 140
preconditions, 140

Development classes, 236
Development packages, 239
Dynamic method call binding, 210
Dynamic object allocation

performance costs, 143

E

Eclipse, 97
history, 97
templates, 107

Encapsulation, 31, 121
purpose, 133
the 'least privilege' concept, 177

Events, 56
declaration syntax, 56
event handler methods, 69
example, 71

Events (Cont.)
registering event handler methods, 70
relevant abap syntax, 69
usage scenario, 68

Exception classes, 263
constructor method, 272
CX_DYNAMIC_CHECK, 269
CX_NO_CHECK, 269
CX_STATIC_CHECK, 269
defining exception texts, 273
global exception class example, 271
global exception classes, 270
mapping exception texts to message classes,

274
types, 268

Exception handling
message table parameters, 265

Exception texts, 273
as constants, 273
text parameters, 274

Exceptions
exception classes with message classes, 271
non-classed-based exceptions, 265
the exception builder tool, 270
the RAISE EXCEPTION statement, 283

Extended program check
transaction SLIN, 256

F

Factory pattern
defined, 156

Final classes, 188
Final keyword, 183
Final methods, 189
Floorplan manager

FPM, 423
FPM-BOPF integration

FBI, 381
Friend concept, 137
Function group, 125
Function modules, 125
Functional decomposition, 122
Functional methods

changes in release 7.40, 76
usage example, 73
usage in ABAP expressions, 75
465

Index
G

Garbage collection, 157
behavior of the CLEAR statement, 159

Garbage collector, 62
Gateway-BOPF integration

GBI, 381
Generic ABAP types, 56
Generic interaction layer

genIL, 382
Generic OBJECT type, 167
Global classes, 84

creating in the class builder tool, 86

I

Implementation hiding, 31, 121
hiding data, 135
setter methods, 136

Inheritance, 34, 165
'is-a' vs. 'has-a' relationship, 192
ABAP syntax, 167
as a relationship, 35
class component scope, 179
class constructor behavior example, 183
component namespace, 178
defined, 166
example, 167
generalization and specialization, 166
instance constructors, 182
interface, 176
multiple inheritance, 213
multiple inheritance 'diamond problem', 213
redefining methods, 179
relationship behavior, 173
rules, 175
single inheritance, 213
superclass vs. subclass, 166
the super pseudoreference, 178
vs. 'copy-and-paste' approach, 173
vs. composition, 191

Instance components
accessing, 64

Instantiation context
defining, 152

Interaction frame, 412
common operators, 412
example, 412
guards, 412
notation, 412
operator, 412

Interface, 212
DEFAULT addition, 220
defining a local interface, 214
defining components, 215
generic definition, 212
implementing an interface in a local class, 218
inheritance, 203
INTERFACES keyword, 218
public visibility section, 214
reference variables, 223
scope, 214
syntax, 214
vs. abstract classes, 227

L

Lazy initialization, 159
Local exception classes, 270

M

Main packages, 239
Message classes, 274
Methods, 26, 52

chained method calls, 76
defining parameters, 53
definition syntax, 52
EXCEPTIONS addition, 265
functional methods, 73
implementing, 57
method call syntax, 64
overloading, 156
parameter types, 53
pass-by-value vs. pass-by-reference, 54
signature, 55
Syntax Restrictions, 58
variable scoping rules, 58

Model-view-controller � MVC
MVC

Overview, 421
466 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Index
N

Naming conventions
class naming example, 49

Narrowing casts
implicit casts for importing parameters, 212

Nested interface
component interface, 224
defining component interfaces in local inter-

faces, 224
INTERFACES statement, 224

New debugger tool, 447
displaying inheritance hierarchy, 457
layout, 455
release, 447

O

Object component selector operator, 64
Object management, 38
Object reference assignments, 204

compatible types, 204
remote control analogy, 206

Object reference variable, 59
assignments, 60
static vs. dynamic types, 205
the super pseudoreference variable, 178

Object-creational patterns, 152
Object-oriented analysis and design � OOAD
Object-oriented programming � OOP
Object-relational mapping

illustration, 333
ORM, 332

Objects, 26, 59
creating instances with CREATE OBJECT, 60
defined, 26
dynamic allocation, 143
header data, 147
identity, 133
initialization and cleanup, 143
object lifecycle, 143

OOAD
delegating Responsibilities to objects, 143
domain modeling, 166
reference materials, 433

OOP
introduction, 23
why learn OOP, 23

P

Package builder, 240
Package concept, 236

package checks, 254
package design concepts, 258
restriction of client packages, 256
use accesses, 253

Package interfaces
creating, 250

Package types
development packages, 238
main packages, 238
structure packages, 238

Packages
attributes, 243
benefits, 237
creating new packages, 240
embedding subpackages, 248
introduction, 238
package interfaces, 250

Performance tuning, 159
Persistence service, 335

accessing class agents, 352
persistent classes, 335

Persistent classes
advanced modeling concepts, 362
class agent, 338
defining one-to-one mappings, 344
how to create, 335
mapping concepts, 340
mapping types, 341
modeling entity relationships, 349
modeling n-to-m relationships, 364
modeling reverse lookups, 362

Persistent objects, 352
creating a new instance, 353
deleting, 357
reading an instance by key, 355
updating, 356

Personal object worklist
POWL, 423
467

Index
Polymorphism, 36, 203
example, 37
extensibility, 212
flexibility, 212

Procedural programming
case study, 125
lessons learned, 121

Programming languages
assembly language, 24
C, 24
evolution, 24

Q

Query service
architecture, 358
complex query example, 360
overview, 357
query expressions, 359
usage overview, 358

R

RAISE EXCEPTION statement, 282
behavior, 283
syntax, 283
usage example, 284

Refactoring
definition, 195

Refactoring assistant, 195
Release 7.40

new syntax features, 114
Resumable exceptions, 290
RESUME statement, 293

S

SAP application hierarchy, 245
application components, 245

SAP component model, 233
SAP control framework, 417
SAP gateway, 381
SAP list viewer

ALV, 415
overview, 415

SAP support portal, 245
SAP Web AS

ABAP runtime environment, 143
performance optimizations of the ABAP run-

time environment, 147
Semantic dissonance, 25
Singleton pattern

defined, 154
Software components, 233
SOLID design principals, 313
Standard classes

/BOBF/CL_FRW_FACTORY, 399
/BOBF/CL_TRA_SERV_MGR_FACTORY, 399
CL_GUI_ALV_GRID, 417
CL_OS_SYSTEM, 358
CL_SALV_HIERSEQ_TABLE, 419
CL_SALV_TABLE, 419

Standard interfaces
/BOBF/IF_FRW_ACTION, 388
/BOBF/IF_FRW_ASSOCIATION, 394
/BOBF/IF_FRW_CONFIGURATION, 398
/BOBF/IF_FRW_DETERMINATION, 389
/BOBF/IF_FRW_QUERY, 396
/BOBF/IF_FRW_VALIDATION, 392
/BOBF/IF_TRA_SERVICE_MANAGER, 397
/BOBF/IF_TRA_TRANSACTION_MGR, 398
IF_MESSAGE, 278
IF_OS_CA_INSTANCE, 340
IF_OS_CA_PERSISTENCY, 340
IF_OS_CHECK, 374
IF_OS_FACTORY, 340
IF_OS_QUERY, 358
IF_OS_QUERY_MANAGER, 358
IF_OS_STATE, 336
IF_OS_TRANSACTION, 369

Static dependencies principle, 259
Step-wise refinement, 122
Structure packages, 238
Subclasses, 173
SWITCH statement, 285

T

Test-driven development, 321
Transaction service

check agents, 374
influencing the transaction lifecycle, 374
468 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

Index
Transaction service (Cont.)
overview, 369
usage example, 370

TRY Statement
Generic CATCH blocks, 279

TRY statement, 276
CATCH block, 266, 276
CLEANUP block, 266
defined, 266
syntax, 266

Types, 56
using in classes, 56

U

UML
activity diagram, 294, 430
advanced class diagrams, 198
advanced sequence diagrams, 411
Class Diagram, 38
communication diagrams, 375
object diagrams, 117
package diagrams, 260
sequence diagrams, 140
state machine diagrams, 161

UML activity diagram
action, 295
activity final node, 295
decision node guards, 432
decision nodes, 432
example, 294
expansion region, 295
handler blocks, 295
initial node, 294
joins, 431
merge node, 295
notation, 294
partitions, 430
protected nodes, 295
signals, 430
sub-activities, 430
time signal, 430

UML class diagram
abstract class example, 199
composition example, 199
composition notation, 199

UML class diagram (Cont.)
depicting nested and component interfaces,

229
generalization notation for interfaces, 229
non-normative notation for abstract classes,

200
UML communication diagram

interaction diagrams, 375
notation, 375
numbering scheme, 376
relationship to collaboration diagrams, 375
relationship to object diagram, 376

UML diagrams
behavioral diagrams, 140
interaction diagrams, 142

UML package diagram
defining visibility of components, 261
dependency example, 261
dependency notation, 261
example, 261
notation, 261
packages, 260
relaxed notation, 261

UML sequence diagram
'new' message, 412
deleting an object lifeline, 412
found message, 141
messages, 141
notation, 140
object activation bar, 141
object lifelines, 141
self call, 142

UML state machine diagram
final state, 163
initial pseudostate, 161
notation, 161
states, 162
transitions, 162

UML use case diagram
example, 326
usage, 326

Unified Modeling Language, 23
unit test, 299
Use cases, 323

actor, 323–324
extension scenarios, 324
extensions, 323
469

Index
Use cases (Cont.)
guarantees, 324
main success scenario, 323–324
preconditions, 324
primary actor, 324
scope, 324

V

Visibility sections, 33, 133
private section, 133
protected section, 176
public section, 133

W

Web Dynpro ABAP, 422
Widening casts

compiler checks, 208

X

xUnit, 300

Z

ZIF_COMPARABLE interface, 215
470 © 2017 by Rheinwerk Publishing Inc., Boston (MA)

i

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do
recommend it. If you think there is room for improvement, please get in touch with
the editor of the book: Hareem Shafi (hareems@rheinwerk-publishing.com). We
welcome every suggestion for improvement but, of course, also any praise!

You can also share your reading experience via Twitter, Facebook, or email.

Supplements

Supplements (sample code, exercise materials, lists, and so on) are provided in
your online library and on the web catalog page for this book. You can directly
navigate to this page using the following link: http://www.sap-press.com/3597.
Should we learn about typos that alter the meaning or content errors, we will
provide a list with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP
PRESS, please feel free to contact our reader service: support@rheinwerk-publishing.
com.

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand information
on our current publishing program. Here, you can also easily order all of our books
and e-books. Information on Rheinwerk Publishing Inc. and additional contact
options can also be found at http://www.sap-press.com.

mailto:hareems%40rheinwerk-publishing.com?subject=
http://www.sap-press.com/3597
mailto:support%40rheinwerk-publishing.com?subject=
mailto:support%40rheinwerk-publishing.com?subject=
%20http://www.sap-press.com
http://www.sap-press.com
http://www.sap-press.com

ii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation
rights are reserved by the author and Rheinwerk Publishing; in particular the right
of reproduction and the right of distribution, be it in printed or electronic form.

© 2016 by Rheinwerk Publishing, Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you
may print the e-book for personal use or copy it as long as you store this copy on
a device that is solely and personally used by yourself. You are not entitled to any
other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third
parties. Furthermore, it is not permitted to distribute the e-book on the Internet,
in intranets, or in any other way or make it available to third parties. Any public
exhibition, other publication, or any reproduction of the e-book beyond personal
use are expressly prohibited. The aforementioned does not only apply to the e-book
in its entirety but also to parts thereof (e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark
may not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy. If you, dear reader, are not this person, you are violating
the copyright. So please refrain from using this e-book and inform us about this
violation. A brief email to info@rheinwerk-publishing.com is sufficient. Thank you!

mailto:info%40rheinwerk-publishing.com?subject=

iii

Trademarks

The common names, trade names, descriptions of goods, and so on used in this
publication may be trademarks without special identification and subject to legal
regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo,
mySAP, mySAP.com, SAP Business Suite, SAP NetWeaver, SAP R/3, SAP R/2, SAP
B2B, SAPtronic, SAPscript, SAP BW, SAP CRM, SAP EarlyWatch, SAP ArchiveLink,
SAP HANA, SAP GUI, SAP Business Workflow, SAP Business Engineer, SAP Business
Navigator, SAP Business Framework, SAP Business Information Warehouse, SAP
interenterprise solutions, SAP APO, AcceleratedSAP, InterSAP, SAPoffice, SAPfind,
SAPfile, SAPtime, SAPmail, SAP-access, SAP-EDI, R/3 Retail, Accelerated HR, Acceler-
ated HiTech, Accelerated Consumer Products, ABAP, ABAP/4, ALE/WEB, Alloy, BAPI,
Business Framework, BW Explorer, Duet, Enjoy-SAP, mySAP.com e-business platform,
mySAP Enterprise Portals, RIVA, SAPPHIRE, TeamSAP, Webflow, and SAP PRESS are
registered or unregistered trademarks of SAP SE, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs,
neither the publisher nor the author, editor, or translator assume any legal respon-
sibility or any liability for possible errors and their consequences.

	Introduction
	Part I: Introduction
	1 Introduction to Object-Oriented Programming
	1.1 The Need for a Better Abstraction
	1.1.1 The Evolution of Programming Languages
	1.1.2 Moving Towards Objects

	1.2 Classes and Objects
	1.2.1 What Are Objects?
	1.2.2 Introducing Classes
	1.2.3 Defining a Class’s Interface

	1.3 Establishing Boundaries
	1.3.1 An Introduction to Encapsulation and Implementation Hiding
	1.3.2 Understanding Visibility Sections

	1.4 Reuse
	1.4.1 Composition
	1.4.2 Inheritance
	1.4.3 Polymorphism

	1.5 Object Management
	1.6 UML Tutorial: Class Diagram Basics
	1.6.1 What are Class Diagrams?
	1.6.2 Classes
	1.6.3 Attributes
	1.6.4 Operations
	1.6.5 Associations
	1.6.6 Notes

	1.7 Summary

	2 Getting Started with Objects
	2.1 Defining Classes
	2.1.1 Creating a Class
	2.1.2 Component Declarations
	2.1.3 Implementing Methods

	2.2 Working with Objects
	2.2.1 Object References
	2.2.2 Creating Objects
	2.2.3 Object Reference Assignments
	2.2.4 Accessing Instance Components
	2.2.5 Accessing Class Components
	2.2.6 Working with Events
	2.2.7 Working with Functional Methods
	2.2.8 Chaining Method Calls Together

	2.3 Building your First Object-Oriented Program
	2.3.1 Creating the Report Program
	2.3.2 Adding in the Local Class Definition

	2.4 Working with Global Classes
	2.4.1 Understanding the Class Pool Concept
	2.4.2 Getting Started with the Class Builder Tool
	2.4.3 Creating Global Classes
	2.4.4 Using the Form-Based Editor
	2.4.5 Using the Source Code Editor

	2.5 Developing Classes Using the ABAP Development Tools in Eclipse
	2.5.1 What is Eclipse?
	2.5.2 Setting Up the AIE Environment
	2.5.3 Working with the AIE Class Editor Tools
	2.5.4 Where to Go to Find More Information about AIE

	2.6 New Syntax Features in Release 7.40
	2.7 UML Tutorial: Object Diagrams
	2.8 Summary

	3 Encapsulation and Implementation Hiding
	3.1 Lessons Learned from Procedural Programming
	3.1.1 Decomposing the Functional Decomposition Process
	3.1.2 Case Study: A Procedural Code Library in ABAP
	3.1.3 Moving Toward Objects

	3.2 Data Abstraction with Classes
	3.3 Defining Component Visibilities
	3.3.1 Working with Visibility Sections
	3.3.2 Understanding the Friend Concept

	3.4 Designing by Contract
	3.5 UML Tutorial: Sequence Diagrams
	3.6 Summary

	4 Object Initialization and Cleanup
	4.1 Understanding the Object Creation Process
	4.2 Working with Constructors
	4.2.1 Defining Constructors
	4.2.2 Understanding How Constructors Work
	4.2.3 Class Constructors

	4.3 Object-Creational Patterns
	4.3.1 Controlling the Instantiation Context
	4.3.2 Implementing the Singleton Pattern
	4.3.3 Working with Factory Methods

	4.4 Garbage Collection
	4.5 Tuning Performance
	4.5.1 Design Considerations
	4.5.2 Lazy Initialization
	4.5.3 Reusing Objects
	4.5.4 Making Use of Class Attributes

	4.6 UML Tutorial: State Machine Diagrams
	4.7 Summary

	5 Inheritance and Composition
	5.1 Generalization and Specialization
	5.1.1 Inheritance Defined
	5.1.2 Defining Inheritance Relationships in ABAP Objects
	5.1.3 Working with Subclasses
	5.1.4 Inheritance as a Living Relationship

	5.2 Inheriting Components
	5.2.1 Designing the Inheritance Interface
	5.2.2 Visibility of Instance Components in Subclasses
	5.2.3 Visibility of Class Components in Subclasses
	5.2.4 Redefining Methods
	5.2.5 Instance Constructors
	5.2.6 Class Constructors

	5.3 The Abstract and Final Keywords
	5.3.1 Abstract Classes and Methods
	5.3.2 Final Classes
	5.3.3 Final Methods

	5.4 Inheritance vs. Composition
	5.5 Working with ABAP Refactoring Tools
	5.6 UML Tutorial: Advanced Class Diagrams
	5.6.1 Generalizations
	5.6.2 Dependencies and Composition
	5.6.3 Abstract Classes and Methods

	5.7 Summary

	6 Polymorphism
	6.1 Object Reference Assignments Revisited
	6.1.1 Static and Dynamic Types
	6.1.2 Casting

	6.2 Dynamic Method Call Binding
	6.3 Interfaces
	6.3.1 Interface Inheritance vs. Implementation Inheritance
	6.3.2 Defining Interfaces
	6.3.3 Implementing Interfaces
	6.3.4 Working with Interfaces
	6.3.5 Nesting Interfaces
	6.3.6 When to Use Interfaces

	6.4 UML Tutorial: Advanced Class Diagrams Part II
	6.4.1 Interfaces
	6.4.2 Providing and Required Relationships with Interfaces
	6.4.3 Static Attributes and Methods

	6.5 Summary

	7 Component-Based Design Concepts
	7.1 Understanding the SAP Component Model
	7.2 The Package Concept
	7.2.1 Why Do We Need Packages?
	7.2.2 Introducing Packages
	7.2.3 Creating Packages Using the Package Builder
	7.2.4 Embedding Packages
	7.2.5 Defining Package Interfaces
	7.2.6 Creating Use Accesses
	7.2.7 Performing Package Checks
	7.2.8 Restriction of Client Packages

	7.3 Package Design Concepts
	7.4 UML Tutorial: Package Diagrams
	7.5 Summary

	8 Error Handling with Exception Classes
	8.1 Lessons Learned from Prior Approaches
	8.1.1 Lesson 1: Exception Handling Logic Gets in the Way
	8.1.2 Lesson 2: Exception Handling Requires Varying Amounts of Data
	8.1.3 Lesson 3: The Need for Transparency

	8.2 The Class-Based Exception Handling Concept
	8.3 Creating Exception Classes
	8.3.1 Understanding Exception Class Types
	8.3.2 Local Exception Classes
	8.3.3 Global Exception Classes
	8.3.4 Defining Exception Texts
	8.3.5 Mapping Exception Texts to Message Classes

	8.4 Dealing with Exceptions
	8.4.1 Handling Exceptions
	8.4.2 Cleaning Up the Mess

	8.5 Raising and Forwarding Exceptions
	8.5.1 System-Driven Exceptions
	8.5.2 Raising Exceptions Programmatically
	8.5.3 Propagating Exceptions
	8.5.4 Resumable Exceptions

	8.6 UML Tutorial: Activity Diagrams
	8.7 Summary

	9 Unit Tests with ABAP Unit
	9.1 ABAP Unit Overview
	9.1.1 Unit Testing Terminology
	9.1.2 Understanding How ABAP Unit Works
	9.1.3 ABAP Unit and Production Code

	9.2 Creating Unit Test Classes
	9.2.1 Unit Test Naming Conventions
	9.2.2 Test Attributes
	9.2.3 Test Methods
	9.2.4 Managing Fixtures
	9.2.5 Test Class Generation Wizard
	9.2.6 Global Test Classes

	9.3 Assertions in ABAP Unit
	9.3.1 Creating and Evaluating Custom Constraints
	9.3.2 Applying Multiple Constraints

	9.4 Managing Dependencies
	9.4.1 Dependency Injection
	9.4.2 Private Dependency Injection
	9.4.3 Partially Implemented Interfaces
	9.4.4 Other Sources of Information

	9.5 Case Study: Creating a Unit Test in ABAP Unit
	9.6 Executing Unit Tests
	9.6.1 Integration with the ABAP Workbench
	9.6.2 Creating Favorites in the ABAP Unit Test Browser
	9.6.3 Integration with the Code Inspector

	9.7 Evaluating Unit Test Results
	9.8 Moving Towards Test-Driven Development
	9.9 Behavior-Driven Development
	9.10 UML Tutorial: Use Case Diagrams
	9.10.1 Use Case Terminology
	9.10.2 An Example Use Case
	9.10.3 The Use Case Diagram
	9.10.4 Use Cases for Requirements Verification
	9.10.5 Use Cases and Testing

	9.11 Summary

	Part II: Case Studies
	10 ABAP Object Services
	10.1 Introduction
	10.1.1 Understanding Object-Relational Mapping (ORM) Concepts
	10.1.2 Services Overview

	10.2 Working with the Persistence Service
	10.2.1 Introducing Persistent Classes
	10.2.2 Mapping Persistent Classes
	10.2.3 Working with Persistent Objects

	10.3 Querying Persistent Objects with the Query Service
	10.3.1 Technical Overview
	10.3.2 Building Query Expressions

	10.4 Modeling Complex Entity Relationships
	10.4.1 Performing Reverse Lookups
	10.4.2 Navigating N-to-M Relationships

	10.5 Transaction Handling with the Transaction Service
	10.5.1 Technical Overview
	10.5.2 Processing Transactions
	10.5.3 Influencing the Transaction Lifecycle

	10.6 UML Tutorial: Communication Diagrams
	10.7 Summary

	11 Business Object Development with the BOPF
	11.1 What is the BOPF?
	11.2 Anatomy of a Business Object
	11.2.1 Nodes
	11.2.2 Actions
	11.2.3 Determinations
	11.2.4 Validations
	11.2.5 Associations
	11.2.6 Queries

	11.3 Working with the BOPF Client API
	11.3.1 API Overview
	11.3.2 Creating BO Instances and Node Rows
	11.3.3 Searching for BO Instances
	11.3.4 Updating and Deleting BO Node Rows
	11.3.5 Executing Actions
	11.3.6 Working with the Transaction Manager

	11.4 Where to Go From Here
	11.4.1 Looking at the Big Picture
	11.4.2 Building and Enhancing BOs
	11.4.3 Finding BOPF-Related Resources

	11.5 UML Tutorial: Advanced Sequence Diagrams
	11.5.1 Creating and Deleting Objects
	11.5.2 Depicting Control Logic with Interaction Frames

	11.6 Summary

	12 Working with the SAP List Viewer
	12.1 What is the SAP List Viewer?
	12.2 Introducing the ALV Object Model
	12.3 Developing a Reporting Framework on top of ALV
	12.3.1 Step 1: Identifying the Key Classes and Interfaces
	12.3.2 Step 2: Integrating the Framework into an ABAP Report Program
	12.3.3 Step 3: Creating Custom Report Feeder Classes

	12.4 UML Tutorial: Advanced Activity Diagrams
	12.5 Summary

	13 Where to Go From Here
	13.1 Object-Oriented Analysis and Design
	13.2 Design Patterns
	13.3 Reading and Writing ABAP Objects Code
	13.4 Summary

	A: Installing the Eclipse IDE
	B: Debugging Objects
	C: Bibliography
	D: The Authors
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

