
Dominik Ofenloch and Roland Schwaiger

Getting Started with
Web Dynpro ABAP™

Bonn � Boston

311 Book.indb 3 10/7/09 12:13:45 PM

http://www.sap-press.com

Dominik Ofenloch and Roland Schwaiger

Getting Started with
Web Dynpro ABAPTM

· · ~ ® ~ . .
Galileo Press

Bonn • Boston

Contents at a Glance

1 Introduction .. 19

2 Web Dynpro Architecture ... 33

3 Developing Web Dynpro Applications 103

4 Dynamic Web Dynpro Applications 239

5 Web Dynpro Standard Components 279

6 Input Help and Semantic Help 323

7 Configuration, Customizing, and Personalization 377

8 Practical Tips and Hints .. 397

9 Web Dynpro in the Enhancement Framework 447

A Appendix ... 457

B The Authors ... 461

311 Book.indb 5 10/7/09 12:13:45 PM

www.sap-press.com

7

Contents

Preface ... 13

1 Introduction ... 19

1.1 Model View Controller ... 20
1.1.1 Model .. 21
1.1.2 View .. 22
1.1.3 Controller ... 22
1.1.4 MVC Interaction Example 22

1.2 Evolution of SAP User Interfaces 23
1.2.1 Console .. 24
1.2.2 Dynpros ... 25
1.2.3 Business Server Pages 27
1.2.4 Web Dynpro .. 30

1.3 Summary .. 31

2 Web Dynpro Architecture .. 33

2.1 Components and Applications 34
2.1.1 Example: Library ... 35
2.1.2 Web Dynpro Explorer 36

2.2 View ... 40
2.2.1 Views ... 40
2.2.2 Windows and Plugs .. 49

2.3 Controllers .. 64
2.3.1 Hook Methods’ Flow Sequence 69
2.3.2 Usage and Visibility of Controllers 73
2.3.3 Actions and Events ... 77
2.3.4 Assistance Class .. 80

2.4 Context ... 81
2.4.1 Structure of a Context 82
2.4.2 Data Binding .. 85
2.4.3 Mapping .. 95
2.4.4 Supply Functions .. 99

311 Book.indb 7 10/7/09 12:13:45 PM

www.sap-press.com

8

Contents

2.4.5 Controlling the Visibility of UI Elements
via the Context ... 101

2.5 Summary .. 102

3 Developing Web Dynpro Applications 103

3.1 Context Programming ... 104
3.1.1 Changing Attribute Values of an Element 110
3.1.2 Reading Attribute Values of One or More

Elements .. 117
3.1.3 Creating Context Elements 123
3.1.4 Removing Context Elements 137

3.2 Layouts and Containers ... 138
3.2.1 Containers .. 139
3.2.2 Layouts .. 141
3.2.3 Example ... 151

3.3 Using Important View Elements 153
3.3.1 TextView .. 154
3.3.2 InputField and Label .. 157
3.3.3 Button .. 161
3.3.4 TabStrip .. 166
3.3.5 Tree .. 170
3.3.6 Table .. 184
3.3.7 FileUp/Download ... 200

3.4 Messages and Internationalization 208
3.4.1 Texts from the ABAP Dictionary 209
3.4.2 Texts from the Online Text Repository 210
3.4.3 Texts from the Assistance Class 213
3.4.4 Messages ... 217

3.5 Summary .. 236

4 Dynamic Web Dynpro Applications 239

4.1 Advantages and Disadvantages of Dynamic
Programming .. 241

4.2 Types of Dynamic Changes .. 242
4.3 Adjusting Context at Runtime 243

4.3.1 Determining a Description Object
(Meta Information) for a Context Node 246

311 Book.indb 8 10/7/09 12:13:45 PM

www.sap-press.com

9

Contents

4.3.2 Creating and Adding Context Nodes 247
4.3.3 Creating and Adding Context Attributes

Individually .. 251
4.3.4 Creating and Adding Context Attributes in

Bundles .. 253
4.3.5 Other Methods for Dynamic Context

Manipulation ... 255
4.3.6 Conclusion ... 259

4.4 Adjusting the User Interface at Runtime 260
4.4.1 Adding a View Element to a Container 261
4.4.2 Assigning Actions to View Element Events 274
4.4.3 Conclusion ... 277

4.5 Summary .. 277

5 Web Dynpro Standard Components 279

5.1 Multi-Component Architectures 280
5.1.1 Component Usages .. 281
5.1.2 Cross-Component Mapping 293
5.1.3 Component Interfaces 300

5.2 SAP List Viewer .. 301
5.2.1 Integrating ALV .. 303
5.2.2 ALV Configuration Model 305
5.2.3 Methods and Events of the Interface Controller ... 308
5.2.4 Changes to the Column Set 312
5.2.5 Changing the Toolbar 316

5.3 POWER List .. 318
5.3.1 Example: Defining Custom Queries 318
5.3.2 Additional Information 322

5.4 Summary .. 322

6 Input Help and Semantic Help 323

6.1 Implementing Selection Options 324
6.1.1 DropDown ... 325
6.1.2 RadioButton ... 330
6.1.3 CheckBox ... 333
6.1.4 CheckBoxGroup ... 334

311 Book.indb 9 10/7/09 12:13:45 PM

www.sap-press.com

10

Contents

6.1.5 ItemListBox .. 335
6.1.6 TriStateCheckBox .. 337

6.2 Input Help .. 338
6.2.1 Input Help Mode: Deactivated 340
6.2.2 Input Help Mode: Automatic 340
6.2.3 Dictionary Search Help 344
6.2.4 Object Value Selector 344
6.2.5 Input Help Mode: Freely Programmed 357

6.3 SELECT-OPTIONS ... 357
6.4 Semantic Help .. 363

6.4.1 Help Texts with Tooltips 364
6.4.2 Explanation Texts ... 364
6.4.3 ABAP Dictionary Help 366
6.4.4 Explanations ... 367
6.4.5 Knowledge Warehouse Documents 370

6.5 Summary .. 375

7 Configuration, Customizing, and Personalization 377

7.1 Configuration .. 379
7.1.1 Implicit Configuration 380
7.1.2 Explicit Configuration 386

7.2 Personalization and Customizing 390
7.3 URL Parameters and Application Parameters 393

7.3.1 URL Parameters .. 393
7.3.2 Application Parameters 394

7.4 Summary .. 394

8 Practical Tips and Hints ... 397

8.1 Performance and Memory Optimization 398
8.1.1 Optimal System Configuration 400
8.1.2 Checklists for Developing High-Performing

Web Dynpro Applications 403
8.1.3 Performance Tools .. 405
8.1.4 On-Demand Instancing of Views and

Components .. 411
8.1.5 Delta Rendering ... 416

8.2 Debugging Web Dynpro Applications 422

311 Book.indb 10 10/7/09 12:13:46 PM

www.sap-press.com

11

Contents

8.3 Popup Windows ... 426
8.3.1 Creating Popup Windows 427
8.3.2 Standard Button Actions 431

8.4 Context Change Log .. 433
8.5 Hotkeys .. 435
8.6 Context Menus ... 437

8.6.1 Standard Context Menu 438
8.6.2 Developing Custom Context Menus 440

8.7 Summary .. 444

9 Web Dynpro in the Enhancement Framework 447

9.1 Enhancements in Web Dynpro 448
9.1.1 Web Dynpro Enhancements in Detail 450
9.1.2 Exercise: Additional Search Field 453

9.2 Summary .. 456

Appendices .. 457

A Appendix ... 457
A.1 Recommended Reading .. 457
A.2 Naming Conventions .. 458

B The Authors ... 461

Index ... 463

311 Book.indb 11 10/7/09 12:13:46 PM

www.sap-press.com

Preface

We know from experience with training courses, projects, and our day
to-day work that considerable demand exists for a simple, well-founded
treatment of the topic of Web Dynpro ABAP. Experienced ABAP devel
opers find Web Dynpro technology easy to learn and appreciate its sim
plicity. However, for developers to be able to effectively implement the
full scope of this technology, they need a good understanding of the
various aspects of Web Dynpro. Providing this understanding is the goal
of this book. It will introduce you to Web Dynpro technology one step
at a time, using several practical examples that you will be able to apply
to your own projects.

This book covers everything from architecture to the main UI elements
and standard components to the questions that Web Dynpro beginners
typically have and that arise in practical work. It covers the most impor
tant basic functions and special features of Web Dynpro ABAP and the
relevant development environment. The book's structure lets you learn
about the basic concepts first, which you will then apply using practical
exercises. The exercises consist of step-by-step instructions (indicated by
the pen icon) accompanied by screenshots and sample code. Each chap
ter concludes with a summary so you will get a chance to revisit what
you have learned.

This book aims to give developers who already have some ABAP knowl
edge an easy introduction to component-based Ul development and a
solid basis for developing complex applications on the basis of Web Dyn
pro ABAP. After reading th is book, you will understand the archi tecture
of the Web Dynpro framework, be familiar with the relevant develop
ment tools, and be able to independently create business-critical Web
Dynpro applications.

This book is divided into nine chapters. The first three cover the basics
of Web Dynpro technology. The next five give you insight into advanced
Web Dynpro concepts, with a particular focus on the practical applica-

Target groups

Structure of the
book

Preface

tion of lhe exercises. The ninlh and final chapter describes how to extend
Web Dynpro Uls.

The following is a detailed overview of lhe contents of each chapter:

... Chapter 1, Introduction, covers the basic aspects of modern user
interface technologies and describes how SAP user interfaces are
developed. The Model View Controller architecture pattern, which
was first introduced decades ago. is still an important factor in this
context. After describing lhe basics, this chapter looks a t the historical
development of SAP UI technologies, which have progressed rapidly
in recent years .

... Chapter 2, Web Dynpro Architecture, covers - on a less technical
level - the architecture of Web Dynpro applications. This chapter
describes the basic components of Web Dynpro user interfaces: com
ponents, applications, views, controllers , and context. Short, simple
exercises are used to gradually guide you to a point at which you can
program Web Dynpro applications .

... Chapter 3, Developing Web Dynpro Applications. teaches you how
to implement the knowledge you gained in Chapters 1 and 2 by devel
oping a Web Dynpro application. You will also obtain a deeper under
standing of the following: programming contexts, view layouts, and
containers; using important UJ elements, tables, input help. and mes
sages; and internationalization. In this chapter. it is our intent to give
you a good understanding of the procedure used to develop Web
Dynpro applications and, at the same time, provide you with a wide
range of examples and techniques lhat will make it easier for you to
use Web Dynpro in practice .

.,. Chapter 4, Dynamic Web Dynpro Applications, discusses applications
that differ from the applications discussed up until now. These were
based on requirements and information fully known during the devel
opment period. However, it can happen that information becomes
available only during the development period - information that
influences lhe structure of the controller contexts, the view layouts,
and the assignment of actions to view elements. Dynamic program
ming provides the tools that are required to make changes during
development.

14

"' Chapter 5, Web Dynpro Standard Components, discusses multi -com
ponent architectures and standard components. By dividing a com
plex UI architecture across several Web Dynpro components, you can
structure your Uls semantically. M ulti-component architectures also
simplify team-based development work considerably, thanks in part
to a number of standard components provided by SAP. This chapter
covers the most important standard components.

"' Chapter 6, Input Helps and Semantic Helps, describes the input helps
in a Web Dynpro application, which support the user in a number of
ways. For example, they enhance usability, speed up the pace of work,
reduce input errors on the part of the user, and reduce the workload
of hotline staff. Web Dynpro offers a wide range of options for the
implementation of input helps. These options can be divided into two
main sub-categories: selection options and input helps. This chapter
contains an extensive, example-based treatment of the technical
aspects to help you understand this topic in greater depth, and it also
describes the various technical alternatives for providing the user
with various kinds of content-based help, from short help texts to
deta iled documentation.

"' Chapter7, Configuration, Customizing, and Personalization, addresses
the fact that, in practice, it is sometimes necessary to adapt existing
Web Dynpro applications - whether they are standard SAP applica
tions or custom applications - to individual requirements. This chap
ter covers the available options in all three areas, ranging from the
requirements of customizing functiona li ty on an enterprise-wide level
to industry-specific requirements to user-specific changes to the inter
face or the navigation. These requirements are fulfilled using configu
ration, Customizing, and personalization.

"' Chapter 8, Practical Tips and Hints, shows you how to optimize the
performance of your Web Dynpro applications. This chapter also
introduces the new Web Dynpro debugger, the Web Dynpro change
log. and hotkeys for a range of actions. It also explains how to use
context menus.

"' Chapter 9, Web Dynpro in the Enhancement Framework, will be veq
helpful if you want to adapt a Web Dynpro application that exists in
a different namespace. The Enhancement Framework enables you to

15

Preface

Preface

quickly and easily adapt third-party Web Dynpro architectures to
your own requirements. For example, exit methods are used to adapt
Web Dynpro controllers.

System This book was written for SAP NetWeaver 7.01 with Support Package 3.
requirements However, if you do not have access to this system, do no t panic. Aside

from some newer technologies such as hotkeys and delta rendering, the
topics covered in this book are also valid for older versions of Web Dyn
pro, especially the basic concepts that are the subject of Chapters 1 to 4.

SAP provides an ABAP trial version (previously known as a sneak preview)
that allows you to test ABAP technology. This trial version is available
for both Windows and linux, although the two vers ions are different. It
is very easy to use the trial version. Proceed as follows:

1. Open the Download area of the SAP Developer Network
(https://www.sdn.sap.com/irj/scn/nw-downloads) .

2. Open the trial version of your choice (if you are using linux, note that
Web Dynpro ABAP is available in version 2004s only) .

3. Start the download process and follow the installation instructions.

Acknowledgments Bringing a book like this to fruition requires many months of hard toil.
Many pages of this book were completed in the evening and night hours
after a full day's work. Others were written over more cold autumn
and winter weekends than we care to remember. The reliable and ever
available support of our editor, Stefan Proksch, was a great help from day
one of the writing process. We would also like to thank the Web Dynpro
development team for their hard work.

I, Dominik Ofenloch, would particularly like to thank my proofreaders,
Stefanie Mayer and Thomas Rosch, for their commitment and thei r posi
tive feedback. They were my valued advisers in the writing process and
a great support at all times. My thanks also go to Karin Voss in ALV Basis
development for her editing work. Finally, I want to thank my partner,
Elisa Castenholz, for her patience and unfailing ability to motivate me to
keep writing. Without her support, I would never have had the courage
to commit myself to such a time-consuming project.

There is not enough space for me, Roland Schwaiger, to thank everyone
who deserves thanks. Let me thus extend a collective thank you to every-

16

one who is close to me for their professional and personal support in
every aspect of my life. However, there are a few people whom I cannot
fail to thank by name. Heartfelt thanks go to my parents, Margot and
Wolfgang Schwaiger, who guided me and my brothers, Wolfgang, Mar
tin, and Christian, through the stormy seas of life. In thei r da ily efforts,
they demonstrated to us one of the most important principles oflife. and
continue to do so to this day: to va lue production over consumption.
Lastly, I must mention my dear wife Ursula, who is a constant source
of support and strength to me and our precious children, Elisa, Marie,
and Nico. Without them, I would not have been able to contribute to
this book. Thank you for everything and for being the wonderful people
you are!

Dominik Ofenloch and Roland Schwaiger

Preface

Web Dynpro technology has become established in the SAP world
as the standard for new user inteifaces and this chapter explains
the basic principles behind the development of Web Dynpro user
inteifaces. It also describes how SAP user inteifaces evolved over
the years, right up to the development of Web Dynpro.

1 Introduction

Web-based user interfaces have undergone rapid technological advance
ment in recent years. Roughly ten years ago, at the beginning of the
Internet boom, web pages consisted largely of static content and there
were only a small number of scripts ava ilab le that enabled knowledge
able and experienced Internet users to program the first dynamic web
fu nctions such as guest books.

Today's websites have very little in common with those of ten years
ago. Today, easy-to-use content management systems such as Joomla
have become Internet standards and asynchronous JavaScript and XML
(AJAX) technology has heralded the next generation of dynamic web
pages.

In the past, it was difficult to predict the implications of all of these SAP and web

developments. Today's market, especially regard ing SAP, requires web- based appl ications

based applications that can be opened directly in any web browser with-
out complicated installation or maintenance. To fu lfi ll this requirement,
SAP initially adapted the former dynpro user interfaces (Uls) (see Section
1.2.2, Dynpros) so that they could be displayed in web browsers using
Internet Transaction Server (ITS). However, this was only an interim
solution because the two technologies were too different and several
compromises had to be made. SAP then developed business server pages
(BSP), a technology that was specifically tailored to the Internet; how·
ever, this technology was also not mature enough to establish itself as
the successor to the original dynpros.

1 I Introduction

With the introduction of Web Dynpro in 2005, SAP was finally able to
offer a comprehensive and easy-to-program technology that fulfilled the
description of a worthy successor to dynpro in the application area.

Topics Discussed

This chapter discusses the following topics:

• Developing web technologies
• Significance and structure of the Model View Controller (MVC) architec

ture pattern
• Evolution of Ul technologies in the SAP world, including the console, dyn

pro, ITS, BSP, and Web Dynpro

1.1 Model View Controller

Before we take a detailed look at SAP Uls and Web Dynpro technology,
it is important that you understand the basics of modern Ul design,
including Web Dynpro. Today, architecture patterns play an increasingly
central role in Ul design, describing the basic structure of applications. In
the SAP environment, for example, the three-tier archi tecture is the best
known of these patterns. It describes how the data layer (the database) ,
the application layer (the application server), and the presentation layer
(the cl ient) are separated.

Origins of MVC The Model View Controller (MVC) architecture pattern has become an indis
pensable part ofUI design. The MVC is a pattern for separating the user
interface (the view) from the program control element (the controller)
and the underlying data model. MVC has its origins in 1979, when the
Norwegian software developer Trygve Reenskaug first implemented it in
a programming language called Small talk. Figure 1.1 illustrates the basic
access principle of the MVC pattern .

User Interface
(View) • .. Program Control

Element
(Controller)

Data Model
(Model)

Figure 1.1 Simplified Representation of the MVC Architecture Pattern

20

Model View Controller I 1.1

Applications that are modularized in accordance with the MVC pat
tern have clearer code, which makes it easier for programmers to reuse
individua l components. The Uls of such applications can the refore be
changed -and their usability improved- without the need to change the
program control or the data model. Also, any number of applications and
any kind of application can access the same UJ. MVC modularization also
enables the programmers involved in a development project to special
ize. For example, a programmer who specializes in Ul development does
not require any knowledge of the data model; he only needs to know
about the program control interfaces.

Section 1.1.1 (Model), Section 1.1.2 (View), and Section 1.1.3 (Control
ler) describe the classes of the MVC architecture pattern and where they
fit in to the three-tier architecture. Section 1.1 .4. MVC Interaction Exam
ple, describes how the MVC layers interact with each other.

1.1.1 Mode l

In the MVC architecture pattern , the model represents the persistent data
layer. For th is purpose, it provides both the view layer and the contro ller
layer with interfaces for data retrieval and data processing while remain
ing invisible to both the controller and the view.

Normally, the application logic, the business logic, or both are located
in the model. An application can be based on one model, or several
models, which are dynamica lly selected by the contro ller at runtime.
For example, Figure 1.2 shows an example in which every view has its
own model. The controller uses either model X or model Y, depending
on whether view A or view B is being displayed.

View A .--
Model X

Controller ,_
! View B • ... Model Y

User

Figure 1.2 Example of the Structure of an MVC Scheme

21

MVC
modularization

Where the model
fits into the MVC
pattern

1 I Introduction

The model is unaware of both the calling view and the calling controller.
The entire process of communication with the two other layers is han
dled by the methods and interfaces provided by the model. The model
accesses the actual (raw) data using a backend service, which is usually
a database.

1.1. 2 View

A view is used to represent data in a UJ. Every view is designed to display
specific data or screen content. For example, one view might display
the login area of an application, while another might show a table of
overdue orders. Therefore, an application consists of several differently
structured views.

Examples of views Views contain various UI elements such as buttons, input fields, and
tables but no data or control logic. Therefore, you would not be able to
navigate from the first view to the second view using only a login view
and a "welcome" view, for example - you would also need a controller.
The controller processes the data the user enters into the login view, as
well as the actions that follow such as a click on the login button.

1.1.3 Controller

The controller is primarily responsible for program control and view man
agement. It processes all input and reacts appropriately to th is input
by sending messages to the model or deciding which view should be
displayed. However, as you now know, the controller does not contain
any application logic or business logic; this logic is contained only in the
model.

As with the model layer and the view layer, an application may contain
one or several controllers, which can be interchanged as required at
runtime. The next section describes this process in greater detail and
provides an example.

1.1.4 MVC Interaction Example

The diagram in Figure 1.3 illustrates the sample application described
in Section 1.1 .2, View. After the application is started, the user sees the

22

Evolution of SAP User Interfaces I 1.2

login view, which becomes the welcome view after the user enters his
data and clicks on the login button. The processes that are triggered by
these actions are hidden from the user.

User View

Login View

1~1 ""'==' =ll, --,-,Ill ..
PasswOf'd II Login

Welcome View

I Hello XYZ

last Login... I.

Internal
View

• • • •
l ogin Controller II .. Welcome Controller

Model I
Figure 1.3 Login w ith Two Views and Controllers

Internally, the application is started and the login controller is loaded. Process cycle

The login controller then creates the login view and sends it back to the
cl ient for display. The user enters his data and clicks on the login but·
ton. This action is sent back to the login controller. The login controller
creates the model and compares the input data with the user database.
If the login is successful, the welcome controller is created and opened.
This process cycle is then repeated in a similar manner, and the user is
passed on from controller to controller within the application.

This is just an example of the possible interactions within the MVC arc hi·
tecture pattern. A centra l controller or a distributed model are other
options, and several other combinations are also possible.

1.2 Evolution of SAP User Interfaces

As you know from the first paragraphs of this chapter, theM VC architec
ture pattern was not always a standard in the UI area. Instead, the first
SAP Uls were based on console technology; consoles were the standard
for Uls for a relatively long time.

SAP Uls are based on technology that is always changing, and chang·
ing quickly. For example, in recent years, two innovations developed in

23

1 I Introduction

Properties of
consoles

parallel: BSP and Web Dynpro. The latter has been available since 2005
for both Java and ABAP applica tions.

The following sections give you a comprehensive overview of the evolu
tion of UJ technologies developed by SAP over the years, as illustrated
on a timeline in Figure 1.4. The ITS is included in the timeline for the
sake of completeness, but it is not covered in this book.

1 I~:~Pc
web •

~
BSP (2001)

.0 ..
~

ITS (1995)

-::> as of Release 4.3: Oynpro <.:>
C1.
<(Console
Vl

1973: 1981: 1992: 2003:
SAP R/1 SAP R/2 SAP R/3 SAP NetWeaver

1975 1980 1985 1990 1995 2000 2005 2010

Figure 1.4 Evolution of SAP User Interfaces

1.2.1 Console

Until the late 1980s, SAP programs were based on console technology. The
main feature of consoles was a direct terminal connection to mainframe
servers. Because their application logic is implemented in servers rather
than in the client, consoles are known as "zero clients."

Both SAP R/1 and SAP R/2 were fully written in Assembler and based
on consoles. Consoles were controlled via the keyboard only; thus, users
had to learn several key combinations and transaction codes. Modern
developments such as the mouse and menus were still unknown.

Only after more advanced versions of SAP R/2 came onto the market at
the end of the 1980s were consoles rendered obsolete by dynpro tech
nology. The main features of dynpros were greater ease of use and a
client-side presentation layer.

24

Evolution of SAP User Interfaces I 1.2

Due to lhe strict client-server architecture and very limited uses. SAP
consoles do not offer any advantages and are rarely used in today's
environments.

1.2 . 2 Dynpros

As mentioned earlier, dynpros were introduced as lhe successor to con
sole technology at the end of the 1980s. with SAP R/2 (release 4.3). The
term "dynpro" is short for "dynamic program." Dynpros are displayed
in the SAP GUI and they are still the most important UI technology in
the SAP world today. Therefore, although most new SAP applications are
developed exclusively in Web Dynpro, the Web Dynpro ABAP develop
ment tools - collectively known as the ABAP Workbench - are based
enti rely on dynpro technology. Unlike many modern UI technologies,
dynpros do not use the object-oriented approach to software program
ming. Instead, they consist of two subcomponents:

~ Screen definition
The screen defin ition describes lhe structure and layout of screen ele
ments in the dynpro. A wide range of screen definitions is available,
including text fields. input and output fields . checkboxes. radio but
tons, subscreens, and table controls for table display. In most cases,
programmers program the screen defin ition using the Screen Painter.
However, in a few special applications, the screen definition is dynam
ically generated at program runtime.

~ Flow logic
The dynpro flow logic describes the two process blocks process before
output (PBO) and process after input (PAl). These blocks are run sequen
tially in the dynpro either before or after a user action (see Figure
1.5):

~ The PBO block is run at initialization and before each dynpro is
updated. The relevant modules for loading and fo rmatting the data
to be displayed are opened in th is block. For example, the descrip
tive text for an input field is loaded in the PBO block. The resu lts
are then transferred to the user's client using identically-named
global variables, where they are displayed on the screen by lhe pre
sentation application- lhe SAP GUJ- in the form of a dynpro.

25

1 I Introduction

,.. The PAl block is started after each user action in the dynpro. A user
action could be a change to a date or a mouse click. The PAl block
then loads the relevant modules for processing the input.

Process
Before Output

Dynpro t

PBO Modules

ABAP Program

Dynpro
No. 100

Global
Data Declarations

Process
After Input

t
PAl Modules

Figure 1.5 Flow logic of Dynpro Number 100

The two main elements of the interaction process between dynpros are
the calling logic and the data transport. Dynpros within a program have
a unique identification number and it has become establ ished practice
at SAP to use number 100 for the welcome dynpro in applications. The
ABAP statement CALL SCREEN 100 starts the PBO flow logic and loads the
dynpro, and the statement SET SCREEN <dynno> can be used to navigate
between dynpros. You can thus create any sequence of dynpros , like in
the example shown in Figure 1.6.

Program Call

Dynpro Dynpro Dynpro
No. 100 No. 110 No. 120

Dynpro
No. 210

... ABAP Program

CALL SCREEN 210 .
...

Figure 1.6 Interaction Between Dynpros

26

Evolution of SAP User Interfaces I 1.2

The data transport between dynpros uses global variables that can be
used by all the dynpros in a program.

Dynpro has become an established and mature technology. It is still
the fastest SAP UI and offers the best ease of use. However, its struc
tures are very inflexible compared to modern programming techniques.
For example, unlike modern programming environments, dynpro does
not allow for event-based control. One exception to this is the SAP List
Viewer (also known as the ASAP List Viewer fALV]) , which includes
event-based control and is used to display complex tables in dynpros.
However, despite some disadvantages. the most advanced dynpros are
still the main SAP technology used for facilitating interaction between
the user and the SAP system.

1.2.3 Business Server Pages

Until 2001, the SAP ITS- which was first released in 1995 - was the
only Internet connection solution available in SAP R/3. The ITS was an
external system with only limited functionality and was not integrated
into the SAP sys tem. BSP technology was developed to overcome these
disadvantages.

BSP. released with SAP Web Application Server (Web AS) 6.10 in July
2001, was the first Internet connection solution to be fu lly integrated
into the SAP system landscape. BSPs allowed SAP programmers to gen
erate HTML pages for web-based applications directly in the application
server. Generally speaking, BSPs are similar to Java Server Pages (JSPs)

from Sun Microsystems.

Example of a Simple Dynamic BSP Appl ication

Listing 1.1 shows the code for a very simple BSP application and gives
you an initial idea of how BSPs are structured:

<%@page language=··abap .. %>
<HTML>

<HEAD>
<TITLE>Hel lo World Appli cat i on<ITITLE>

(/HEAD>
<BODY>

27

Assessment of
Web Dynpro
technology

1 I Introduction

<%DO 5 TIMES . %>
<FONT size•<%•sy·index %>>Hello Wor ld !
<IFONT>

<% ENDOO . %>
<!BODY>

<!HTML>

List ing 1.1 Server-Side Scripting with BSP

In this HTML code, ABAP statements are enclosed in <% ... %> tags. @page

1 anguage=·· a bap ·· in the first line sets the server-side scripting language
to ABAP (JavaScript could also be used). The code contained in the DO n
TIMES statement is executed n times; the loop counter system variable
sy · index increments by 1 at each execution.

At runtime, the server interprets this BSP page. generates the relevant
HTML code, and sends this code to the calling browser. In the browser,
the sentence "Hello World!" appears five times in succession, with
increasing text size (see Figure 1.7).

H.Uo Wodi!
HeUoWodd!
HeDo World!
Hello World!
Hello World!

Figure 1.7 "Hello World " wi th BSP

BSPs and the MVC Patte rn

Layer separation, as defined in the MVC architecture pattern, has been sup·
ported in BSPs only since Web AS 6.20. This layer separation is achieved
by deriving model and controller classes from abstract superclasses.
These superclasses are called CL_BSP _~100EL and CL_BSP _CONTROLLER2:

,. The controller is derived from CL_BSP _CDNTROLLER2. The inheritance
concept enables any number of main controllers and sub-controllers
to be created with ease. The controller can use the interface class to
create any number of views at runtime and to control both the ir inter·
action and the data flow between the layers. To do this, it can also
access the methods of the model.

28

Evolution of SAP User Interfaces I 1.2

"' The model is derived from the CL_BSP _MOOEL class; thus. it already
contains several important basic classes for database communication.
It accesses the Data Dictionary. among other things. and converts
input on the basis of the relevant data type.

Note

As of Web AS 6.20, BSPs contain two controller classes to ensure downward
compatibility: CL_BSP _CON TROLLER2 and CL_BSP _CONTROLLER. The former
is a fully modernized version of the latter.

However, BSP MVC applications can still be combined with the classic
UI programming model in any way. without layer separation. Figure 1.8
illustrates the difference between the two UI programming models.

BSP Application .. .

... based on the classic model ... based on the MVC pattern

Model

I Attributes II Methods I
Applicatiorn_c_la_ss __ ,

1
Attributes N Methods

BSP Page 1 Controller

I Ty,.s II Attributts I
BSP Page 1

[Page Attributes _j

Figure 1.8 Classic Ul Design vs. MVC-Based Design

The view of a BSP application consists of HTML files that contain ABAP
code and that are stored on the server. Access can be gained to the library
of HTML modules for the BSP extension HTMLB from within these BSP
pages. HTMLB is a collection of common screen elements such as input
fields and tables. The existence of page attributes with the same names
makes it possible for data to be transferred between the view and the
controller.

With the release of BSPs. SAP brought to market the first technology to
be optimized exclusively for web browsers; ITS, the previous internet
connection technology, could only emulate dynpros in web browsers.

29

Structure of SSP
views

Assessment of BSP
technology

1 I Introduction

However. because BSP programming is done at a very basic level, it
requires a lot of time and advanced HTML knowledge as compared to
modern Web Dynpro technology.

1.2 .4 Web Dynpro

Within the framework of the SAP NetWeaver strategy, Web Dynpro is
the official UI technology for SAP applications. It can be programmed
in both Java and ABAP. Web Dynpro has been available on the SAP Java
platform since the first release of SAP NetWeaver in 2004; the ABAP ver
sion was released at the end of 2005.

Naming Convention

The Web Dynpro version t hat is based on ABAP is often abbreviated to WD4A
or WDA (Web Dynpro for ABAP). Because this book deals exclusively w ith
Web Dynpro ABAP, we will continue to use the general term, Web Dynpro.

Benefits of Web All that is needed to use both BSP applications and Web Dynpro applica
Dynpro over BSP tions is a web browser. Web Dynpro applications offer several benefits

over BSPs:

... Web Dynpro is based on a metadata model. The Web Dynpro frame
work provides the application developer with a fixed set of UI ele
ments. The metadata describes the layout and properties of these Ul
elements for every Web Dynpro UI. The entire process of communi
cation between the application and the Web Dynpro framework takes
place in ABAP only, and at fixed points. With Web Dynpro, applica
tion developers do not need any knowledge of HTML or JavaScript to
develop web-based Uls. Also, thanks to the strict separation of appl i
cation logic and display technology. developers can create Uls with
out any technical knowledge of the underlying display technology.
This also makes it possible for developers to adapt complex applica
tions to new display technology by simply changing the client-specific
Web Dynpro implementation .

... The Web Dynpro component model makes it easy for Web Dynpro
Uls to be reused - Web Dynpro components are used to structure Uls.
Chapter 2. Web Dynpro Architecture, discusses these components in
detail. Thanks to the component model. Web Dynpro is considerably

30

more powerful than BSP technology and SAP already provides devel
opers with a range of reusable Web Dynpro standard components.

~ Like the SAP GUI-based dynpros, Web Dynpro provides an automatic
connection to the input helps of Data Dictionary objects.

~ The rigorous encapsulation of the Web Dynpro framework and the
application logic means that Web Dynpro offers a high level of invest
ment protection. The encapsulation of the UI technology ensures that
it will be easy to adapt Web Dynpro applications to future display
technologies, such as smart clients.

Summary I 1.3

You now have an initial impression of the benefits of Web Dynpro and A look ahead

you will see them in the exercises and chapters to come.

1.3 Summary

In this chapter, we gave you a brief overview of the development ofUis,
with particular regard to SAP technologies.

The underlying architecture of Web Dynpro applications is explained in
detail in Chapter 2, Web Dynpro Architecture.

Since its first release in 2005, the Web Dynpro framework has
evolved substantially. The current release, for example, contains a
considerably extended set of UJ elements, while existing elements
have been optimized. However. there is one thing that has not
changed - the architecture of the Web Dynpro framework. Based
on intuitive examples, this chapter provides a detailed description
of this architecture.

2 Web Dynpro Architecture

Now that you have some insight into the history and development of user
interfaces from reading Chapter 1, Introduction, this chapter describes
the basic architecture of applications in Web Dynpro ABAP. In contrast
to BSP, Web Dynpro applications are not based on the imperative but on
the declarative programming model. Consequently, user interfaces and
their relationships are not programmed (as in the imperative model);
rather, they are constructed in a graphical editor. The editor saves the
information obtained through the user interface declaratively as meta
data. In principle, this metadata allows you to generate source code in
any programming language; however, currently only ABAP and Java for
Web Dynpro are supported.

Firmly defined exit points within the source code allow developers to
implement their own source code at certain points in the application.
Subsequently. the compiler translates all of the information into an exe
cutable application. Figure 2.1 shows the Web Dynpro programming
model.

-+1 Metadata Generated Code
~ "' c: Web 2 - 0

Generator ~
.Q ·-

Dynpro ·o. "' -r- - "' E :J -~
Editor v-

Own Code 0
"' 0. u X 0.
W<(

Figure 2.1 Web Dynpro Programming Model

33

Web Dynpro
programming
model

2 I Web Dynpro Architecture

Web Dynpro
clients

Reusing
components

The use of the declarative model greatly facilitates using Web Dynpro on
separate clients. As a result, you need to implement only one in terface
for the respective cl ient technology in the SAP NetWeaver Application
Server to obtain Web Dynpro support. The current Web Dynpro ABAP
release only supports HTML. As of release 7.01, Lightspeed-Rendering
will be included and thus represent a Web Dynpro AJAX client.

Both Web Dynpro Java and Web Dynpro ABAP are based on the same
architecture. The following sections provide a detailed description of this
architecture using Web Dynpro ABAP as a reference for the examples.

Topics Discussed

The fo llowing topics are discussed in this chapter:

• The design and structure of Web Dynpro components, windows, views,
and applications

• Views, Ul elements, and their properties

• Navigating between different views using w indows and plugs

• Different types of controllers and their interaction

• Hook methods

• Assistance classes

• Context programming: data binding, mapping, and supply functions

2 .1 Components and Applications

Components represent the central Web Dy npro building blocks. They
combine logically rela ted Web Dynpro objects and processes into groups.
Components primarily include controllers, windows, views, and Web
Dynpro applications, which will all be described in th is chapter. Simply
speaking, from the poin t of view of the MVC architecture pattern, com
ponents consist of a set of views and controllers.

Components are reusable, which means that they can be used by other
components and addressed through their interfaces. Their lifecycle
depends heavily on the lifecycle of the ir callers. For example, if a compo·
nent is generated by another component, its lifecycle ends when the new
component is no longer referenced, or when it is manually deleted.

34

Components and Applications I 2.1

You should make sure not to mistake components in Web Dynpro for
Web Dynpro applications. Web Dynpro applications represent entry
points in components. Put simply, a Web Dynpro application consists
merely of a server address that can be called from your web browser
and is linked internally with the view of the respective component that
should be called. Therefore, a Web Dynpro application has nothing in
common with the usual meaning of the term application.

You cannot execute a component without an application. However, its
interfaces enable other components to integrate a component into appli
cations. Consequently, a Web Dynpro component can have zero, one, or
any number of Web Dynpro applications.

2.1.1 Example: Library

The library example shown in Figure 2.2 displays the interaction between
components and applications. A librarian can use a web browser to
launch the Web Dynpro application Admi ni strati on, which is loaded for
display by the Search view of the Admi ni strati on component. When
ever necessary, the component interface then enables Administration to
access data and views of the Books component; for instance, to display
the books borrowed by a specific customer. The Books component, on
the other hand, cannot be accessed directly because it does not contain
an application as an entry point. However, the views and data provided
by Books can be accessed by any number of other components.

Web Browser Web Browser
Address: http://mylibrary.com/
webdynpro/sap/administration

Address: http://myLibrary.com/
webdynprolsapllibrary

\ Application: Administration)

"
\ Application: Main Progr~

View: Search View: Details View : Book list View: ... View: .. .

I Se~uch Fields I I Personal Data I
II .. I Search Result I I Account Status I

Title I I 000 I ~II I
... I

orrower I I ... I I . .. I B

Component: Administration Com ponent: Books Cmpt.: XYZ

Figure 2.2 Web Dynpro Applications (Simplified Display)

35

Web Dynpro
applications

2 I Web Dynpro Architecture

Your own first Web Now that you have acquired basic knowledge about Web Dynpro com
Dynpro application ponents and applications, the following sections will introduce you to

the Web Dynpro development environment, and you wil l create your
first "Hello World" component. In this context, you will get to know the

Web Dynpro programming model step by step. both in theory and in
its practical use.

[P]

Starting the
Web Dynpro
development
environment

Creating the
component

Initially, your component will contain only one application and one view
with the text "Hello World." Later in this chapter. the component will

be gradually extended by input fields, buttons, and a second view to
display the data that has been entered. This exercise does not involve
the graphical design of the views or details for the individual objects of

the framework. These details will be described in great detail in later
chapters so that at this stage, you can fully concentrate on creating your
component.

2 .1.2 Web Dynpro Explorer

The Web Dynpro development environment- the Web Dynpro Explorer

is fully integrated in the ASAP Workbench (Transaction SE80).

1. Start the ASAP Workbench. You will find the WEB DYNPRO EXPLORER

under the WEB DvNPRO COMP./INTF entry in the object list selection
of the Repository Browser.

Figure 2.3 displays a screenshot of the Web Dynpro Explorer contain

ing the Web Dynpro component you will create in this chapter. The
Web Dynpro Explorer contains all the tools needed for Web Dynpro
developments. In the bottom left-hand area of the screen, you can see

an object tree that lists all objects contained in the component such as
views and applications. The right-hand pane of the window displays

the respective object details.

2. Create a new Web Dynpro component. To do so, you should enter the

name of the new component - zwoc_o2_HELLO_WORLD- into the input
field below the object list selection and press the I Enter I key.

Components and Applications I 2.1

@' Web Oynpro Component fdrl Qoto 1.1;tilites Enylronmenl System Jjelp

Web Dynpro Explorer: Display Component

~ "* <t> ~' <a ® oo . ..;. •9• a o o

oes:cri(l.tion

Crtiillid BY

Usl Changed By
ro:::~~ Crt\illtd On
fo Changed On

j 18. 18 28881

fie ,ne081
Package /$TKP j

Jweb DmPfo Comp./lntf. :::::J
~~02_HELlO.WORLO

used Web D',Tlpro Components

componen1 use component Otseripllon ofComponef'lt

COMPONENTCONmROLLER
• tO Component Interface

• ~Views
• II:) Windows
.- ~ Web Oynpro AIIPUcatlons ' .

Figure 2.3 Web Dynpro Explorer- First Component

3. A dialog box appears, asking you whether you want to create the new
component that does not yet exist. Confirm this query with YES.

4. A second dialog box displays, in which you can enter details for the
new Web Dynpro component. Enter a description for the new com
ponent, as shown in Figure 2.4.

@Web Dynpro Component I Create Interface x

Name
Description

Type

Jz 82.HELLO_WORLD

[M'fflrst Hello World Component

® Web Oynpro Component

0 Web Oynpro Component Interface

Window Name !w.HELLO_WORLD J
ViowName .b!JELLO_WORLD :J

Figure 2.4 Creating the First Web Dynpro Component

37

• •
•

q

2 I Web Dynpro Architecture

5. Next, select the WEB 0YNPRO COMPONENT type; the WEB 0YNPRO COM
PONENT INTERFACE type will be discussed in geater detail in Chapter
5, Section 5.1 .3, ComponenL Interfaces. Then, enter w_HELLO_WORLD in
the WINDOW NAME field and V_HELLO_WORLO in the VIEW NAME field .
The meanings and functions of views and windows wi ll be described
later in this chapter.

6. Click on the green checkmark to confirm your entries.

7. Depending on the system configuration and namespace of your new
component, you may have to confirm the creation of the component
in a subsequent step. In the final step, you will be asked about the
package assignment for your new component (see Figure 2.5). If you
do not want to transport the component, you should click on LOCAL
OBJECT. After this, you will be returned to the newly created compo
nent in the Web Dy npro Explorer.

I Web Dynpro Comp./lntf. ::::J
lz_02_HELLO_WORLD I ""' l ~eJ

4= 1·11'* 1· 11~~~~~~~~
Object Name ' Description ·------• ~-l_02_HELLO_WORLD My first Hello Wortd Component

·-:---~·co;;i.:>oNENi'cciNi'Ro i:i:ER·-·· .. ------·. ·--------· ··-·-···--···-----·-··· ·-
• ~ Componenttnterface

. ~INTERFACECONTROLLER
~ li!1;l Interface Views

• ~Views
- · E::) V HELLO WORLD

• \OWindows
. I:] W HELLO WORLD

Figure 2.5 Package Assignment for the New Web Dynpro Component

Structure of a Web 8. The object list on the left of your screen now displays the objects that
Dynpro component are created by default, along with the Web Dy npro component (see

Figure 2.6):

.. Component controller
Every Web Dynpro component has exactly one component con
troller. The component controller contains attributes, methods,
events, and a context. Section 2 .4, Context, describes the context

Components and Applications I 2.1

in greater detail. Within the component, the component controller
is available to all objec ts and is therefore of essential importance .

... Views
Views contain the vis ible part of Web Dynpro components. Conse
quently, they consist primarily of UI elements. Additionally, the
view controller allows for responding to user actions .

... Windows
A Web Dynpro component has at least one window. Windows
integrate views and enable you to navigate between them. We will
discuss windows in greater detail later in this chapter.

... Component interface
Each Web Dynpro component contains one instance of the compo
nent interface that enables the design of cross-component Web
Dynpro architectures.

I Web Oynpro Comp. / lnlf. :=J
lz__o2_HELLO_WORLD [... 1~]

~ J,.Jio+ I•IJ @:)~I ~11!1 1 ..)~ I~
Object Name ' Description

~-------··-··------··------·------····-----····-----······------·--··------····
• ~ Z-~~~~?-WORLI? ___________ ~~yfir~!_l:!ello Y.Y_~!Id C~'!!pone~~

· ~ COMPONENTCONTROLLER

• cO Component Interface
0 ~ INTERFACECONTROLLER
~ ~ Interface Views

1-
• lj;I Views

0 Ej V_HELLO_WORLD

• i!:J Windows
0 Cl W_HELLO_WORLD

Figure 2.6 Object List of the New Web Dynpro Component

9. At this stage, you should play around and click through the compo
nent to familiarize yourself with the Web Dynpro Explorer and the
different objects. For example, by double-clicking on the component
name, you can view or edi t the components used or integrated by
your component. That being said, you will not need these options in
this chapter because you are working with a new and rather simple
component.

39

2 I Web Dynpro Architecture

You have now created your first Web Dynpro component. Theoretically,
you could activate it at this point; however, there are still two things
missing for you to be able to use the component:

,. First, the Hello World text is missing in the view. The following sec
tion provides a detailed description on how to use views.

,. Second, you need an application as an entry point into the Web Dyn
pro component. The application will be integrated into the compo
nent after the view has been completed.

2.2 View

This section provides a deta iled description of the view and the Web
Dynpro elements related to it. For this purpose, we will take a closer
look at views, windows, and plugs. As mentioned earl ier, windows are
on a higher hierarchy level than views. and contain plugs that enable the
navigation between different views. The following section describes how
you can create views and the user interface.

2.2.1 Views

Structure of a view A view contains the actual input and control elements such as text input
fields. buttons. and tables that are displayed in the browser at runtime.
In Web Dynpro, all of these elements are referred to as VI elements. It is
possible that some UI elements consist of other Ul elements that form
the structure of a hierarchical tree of UJ elements.

The UI element Group , shown in Figure 2.7 (located directly under the
view root), is an example of such a hierarchical tree because it contains
labels and input fields for describing and displaying data. Within the
web browser, the UI elements contained in a Group are surrounded by
a colored frame. Ul elements that contain other UI elements are a lso
referred to as container elements.

40

"' 0 ROOTUIELEIIIENTCONTAJNER
"" 0 GROUP _1

T CAPT10N_1
lili) TEXT
r CAARIO_I.A9EL._1
llaCARRIO_INPUTfiEL0_1
% CONNID_LA8EL_1
llil, CONNID_INPUTFIEL0_1
r fLDATE_lABEL.J
'la FLDATE_INPUTFIELD _I
r PRICE_I.A9EL._1
'la PRICE_INPUTFIELD _1

-

Figure 2.7 Example of a Ul Group at Design Time

Container Elements in Practice

In addition to the Group element, you will frequently use the Ul elements
TransparentContainer and ViewContainer in your daily work:

.. Similar to the Group element, transparent containers allow for an easy ar
rangement of Ul elements within a view. However, in contrast to the Group
element, transparent containers do not display in the user interface .

.. View containers enable you to integrate views in defined portions of other
views. This allows you to compile your Uls flexibly from multiple views. It
also enables the simultaneous display of multiple views. Using view con
tainers requires knowledge of developing Web Dynpro windows, which is
described in Section 2.2.2, Windows and Plugs.

In this hierarchical structure, the position of the Ul elements is not fixed
in the Ul. For example, percentage specifications such as "Width: 1 00%"
can easily cause elements to shift into a different position. In contrast
to trad itional dynpros, the arrangement of Ul elements is flexib le and
changes according to the amount of space available in the web browser
window. Developers who want to customize the layout can choose from
four different layout types, some of which are commonly used in the
Java world: Flo1•Layout, Rowlayout , Gridlayout, and 1·1atrixlayout.
These layout types are described in much detail in Chapter 3, Develop·
ing Web Dynpro Applications.

There are two different ways to create Ul elements in views:

.. Declaratively, using the View Editor at design time

.. Dynamically, within coding of the view

41

View I 2 .2

Layouts in
Web Dynpro

2 I Web Dynpro Architecture

If necessary, you can also combine both methods with each other in one
view. Although it is much easier for a developer to create and main tain
UI elements using the View Editor, dynamically created UI elements pro·
vide a higher degree of flexibility regarding the design of views.

Note

Don't worry! Most of the time- and also in this book- you will create your
views declaratively using the View Editor.

Actions As is required by the MVC architecture, views do not contain any appli·
cation logic (provided they are properly programmed). However, some
Ul elements such as buttons can respond to user actions and trigger
what are called actions. When an action is triggered, the respective view
controller executes an event handler method that is assigned to the action.
This method could then initiate the navigation to a subsequent view, for
instance.

[0]

Creating the first
view

Creating the First View

You will now create a second view for the Hello World component. This
view will be used at a la ter stage to display the entries in the first view.

1. Right-click on the component and select CREATE • VIEW from the con·
text menu (see Figure 2.8).

• ll:J Windows

· L] W_H~

Description

.Q.reate •
cnange

Qisplay •

Cteate/Change Configuration

.Q.heck •

Acljvate _ _;

C2JlY ...

Rename ...

Qelete

Whtre-used List

Qther Functions •

Figure 2.8 Creating a New Web Dynpro View

Web O"tnpro component (Interface)

VIew
Wmdow~
.Q.ustom Controller

aeiVIte Call

Mime Object

Wib Oynpro Application
•

2. Enter the name of the view in the dialog box that appears. Enter v_
RESULT, as shown in Figure 2.9, and provide a description. Confirm
your entries by clicking on the green checkmark in the bottom right
hand corner.

@' Crea1e V•ew x

Component
View

Oes~ription

lz_oz_HELLO_WORLO

Jv_RESULT

[!e<ond View

Figure 2.9 Entering View Information

1

3. After that, the system takes you to the editor of the new view. At this
stage, the newly created view does not yet display in the obj ect list of
the component. To include it in the list, cl ick on the SAvE button in
the ASAP Workbench toolbar. Navigate back to the first view.

By default, the LAYOUT tab of the view editor is selected when you dis
play Web Dynpro views (see Figure 2.10). This tab allows you to design
your views at design time using a WYSIWYG editor.

IV_HEllO_WORLD tnaeM .,..,..,....,..... / A Properties Layout Inbound Plug~ Ou'lbound Plugs Contex! Ar!rlbutes At .. ons Methods I

,
action . .-...
'
or.,nc
~-ion

Figure 2 .10 Layout Tab of the View Editor

ROOTU!ELEMENTCONTAINeR

Js ..]
Properties m ansparenteontaineo
10 ROOTUJElEMENTCONTA

Lavout FIO'WUYOvt II
ac-cesslbUif)'Oesc ..LJ
tOnle,)JMenueetta tnherit Q

conte>SMenutd
d.efaui!BtJttontd D : 81'\8bttcS Rl
ModleHoU<eys 0
Might CJ
tst.ayouiContaine Rl
labt ledl}f

StrOIIIDQ"''GO none

~ toolllp
vlslbtt VISible
Lim!.ll tflowLavooO
WI'81PPino Rl

43

View I 2.2

Structure of the
view editor

2 I Web Dynpro Architecture

The layout editor is divided into three main areas:

Layout tab .. The area on the left contains a too/bar with a library of all ava ilable
Web Dynpro UI elements. These elements are categorized by multiple
tabs according to their usage or degree of complexity. You can drag
and drop individual elements from the tabs to the FAVORITES tab.
Favorites enable you to quickly access the UI elements you need
most.

1> The central area represents the view designer; which displays the view
at design time. You can drag and drop the UI elements from the tool
bar into the designer, where you can change their position and arrange
them according to your requirements.

1> The area on the right consists of two subareas:

.. The upper subarea displays a hierarchy of the statically defined UI
elements of the view. The starting point of a view is always the UJ
element ROOTU I ELEMENTCONTAI NER, which is predefined by Web
Dynpro in each v iew. Right-cl icking your mouse enables you to
insert, edit, or delete UI elements in the hierarchy via a context
menu .

.. The lower subarea displays the properties of the UI element that is
currently selected in the hierarchy. Depending on the type of UI
element that is selected in the hierarchy, the set of properties avail
able to you can differ.

Properties tab In addition to the LAYOUT tab. the view editor contains the PROPERTI ES

tab. This tab allows you to enter a description for the view as well as to
determine its lifecycle. The default li fecycle is set to FRAMEWORK CON

TROLLED. In this case, a view exists until you leave the Web Dynpro
component. In contrast, if you set the lifecycle to WHEN VISIBLE, a view
exists only as long as it is disp layed on screen. The lifecycle of views is
essential regarding memory and performance optimization. You can find
a more detailed description of the lifecycle of views in Chapter 5, Section
5.1, Multi-Component Architectures.

Add ing new Ul Let us now complete the Hello World component:
elements

1. To do so, return to the LAYOUT tab and insert a TextView UI element
into the V_HELLO_I~ORLO view. Depending on your personal preferenc-

44

es, you can integrate the element into your UI in two di fferent ways.

as shown in Figure 2.11:

.,.. Drag the TextVi e11 Ul element from the TEXT tab on the view editor

toolbar into the v iew editor. When you do so, Web Dynpro auto·

matically assigns a unique ID to the new element.

1> Right-click on the ROOTUI ELEMENTCONTAINER element in the element

hierarchy and select INSE RT ElEME NT. Enter TV_HELLO_WORLD as the

element name in the dialog box that opens and select Text Vi e1• as

the element type.

Properties Layout Inbound Plu;s 0\Jtbou Alltmutes Atbons Mettlods

I Favorlt~s

T IJI

0 1J

Iii<, T

Insertion of new
Ul Elements

Figure 2.11 Add ing New Ul Elements

Performance Hint

ROOTIJ!ElEIIIENTCONT!l!NER

lnttrl Ettment

~'tate con~tint~orm
Qi$DIWVI Eltmttlt oocumtn!

(' .,. ChildEltmert· from Roo!

Context Menu

In your daily work, you will generally insert only one container element
such as Group under the root of a view- the ROOTUIELEt-IENTCONTA I NER.
Because- from a technical point of view- the view root is also a container, it
makes sense to use Group directly as the root of the view. This way you can
avoid using a redundant container element.

To do so, right-click on the ROOTU IE LEMENTCONTA I NER element and select
SwAP RooT ELEMENT. Select your preferred alternative root element type from
the dialog box that opens. The SwAP RooT ELEM ENT function is on ly available
for selection if the view does not contain any elements.

By replacing the root element with a more specific element you can reduce
the number of nesting levels of the user interface. This affects both the
amount of data transferred to the client and the time required for rendering
the frontend.

45

View I 2.2

2 I Web Dynpro Architecture

Properties of Ul

elements
2. Let us now take a look at the properties of Ul elements. To do so,

select the new Tex tView element from the element hierarchy in the
top right-hand area of your screen. As you can see in Figure 2.12, the
properties area of UI elements is divided into two sections: one for
the actual element properties (and the ir events, if available for the
respective type) and one for the layout data of the element. Chapter 3,
Developing Web Dynpro Applications, provides a detailed overview
of the layout types avai lable in Web Dynpro.

Property) llalue

teCQQ~tU~~ (Ie)(fy'iew)
!Bind ...

ID fV_HELLO_WORLO

contextMenu9eh3't'to Inherit Gl
contextMenuld
design standard ID

--

enabled 0 -
Mllgn auto Gl
1ayou1 native ill
semantic: Color standard ID
texl

textOJrec:tlon Inherit Gl
tooltip

v;sible Visible ID
width

-

wtapplng 0
L~UI QS!!Ii! (F!OWOi!l3l
ceiiOesign padless ID
¥Gutter None ill

Figure 2 .12 Properties of the TV_HELLO_WORLD Text View

Depending on the UI element you use, the sets of available UI ele
ment properties may differ substantially. However, there are a few
default properties that are available for almost all UI elements. These
include, first and foremost, the ENABLED property for enabling and
disabling UI elements, and the VISIBLE property, which allows you to
control the visibility of UI elements.

The most important properties of the TextV iew element are TEXT,

TOOLTIP, and DESIGN. Because the TEXT property for the Tex tVieY~ Ul
element is a mandatory field that has not yet been filled out, the
respective input field is highlighted in red. The DESIGN property
enables you to customize the appearance of the text according to your

requirements. To do so, you can choose from a set of predefined
designs stored in a central stylesheet.

View I 2.2

3. You should now design the TextVi ew element as per your personal Design options
preferences. When doing so, you should try out the different design
options. For example, if you want to enlarge the size of the text, you
can use HEADER!. Additionally, you should attach the Hello World text
to the element and select an appealing design.

Creat ing a Web Dynpro Application

What you still need at this point is a Web Dynpro application to be able
to test your development.

1. Similar to creating views, you can create a Web Dynpro application
by right-clicking on the component root. Then, select CREATE • WEB
DYNPRO APPLICATION from the context menu (see Figure 2.13).

I(ID
Description

[

Creating
Web Dynpro
applications

Interface
!:;.reate

c nange

Qlsptay

• web Dynpro Component (Interface)

Vjew

• Interface Views
..,. Views _ _ _ _ .<--C.:..r•_•t_ei_Ch_a_ng.:..e_c_o_nfi.:.rgu_r_ati_on_--1·

V_HELLO_WORLD !:;.heck •

A<t]vate

C21'\'-..

Rename ...

Figure 2.13 Creating Web Dynpro Applications

:t!lndow

.Q.ustom Controller

_aer<lce Call

!llime Objeet

WJ!b DynproAI)plicaUon

2. The dialog box that appears specifies the component name as the
name of the application. This name will later become part of the URL.
As shown in Figure 2.14, you should now enter z_he 11 o_wor1 d as the
name of the application and a description for the development. Then,
confirm your entries.

47

•

2 I Web Dynpro Architecture

Parameters in
applications

~llc&tlon

Description
ft_heiiO_WOM
[r.tt firs t Het;-:loi:w:::.,;:;,•"'w~e'b ~>tnJUO ApptiutiO~-.,...---,

Figure 2.14 Entering the Web Dynpro Application Name

3. The system then displays a tab on which you can specify the prop
erties of the application (see Figure 2.15). The properties have been
filled automatically with default values from the component: the
COMPONENT field contains the name of the current component; the
INTER FACE VIEW contains the name of the only window available at
this stage; and the PLUG NAME field has been assigned the only plug
tha t is currently available from the component (see Section 2.2.2,
Windows and Plugs).

APPUtation z_neuo_wortd] Now

~Proptft'lts """J. PatametetS

Oe-scnD!ion Jtl'f ftlst Hello World Web ()ynpro Application

Component [z_02_HELLO_WORLO

rntatfaceVlew ~llO_VORLD
Plug Namo jOEF AUt! ::J
Hectp Unk
Handling of Messages

® Show Mesuge component on Demand
O ANtays Ol'l)lay Message Component

MmlnltlriiltNe Oatlil

Created Et)' r OFENLOCH

L&$1 ch&lnged by

Package
Language
URL

Created on

Cl'l-anged on

Figure 2.15 Properties of the New Web Dynpro Application

J

1.?101

4. The PARAMETERS tab allows you to define import parameters. When
starting the application, users can append these parameters to the
URL and evaluate them as import parameters in the window. You
can also set static parameter va lues on the PARAMETERS tab. The third
option you have is to combine the two methods. In this case, the

static parameters remain valid as long as they are not overwritten by
the URL parameters.

View I 2.2

5. Save the application and activate the component. To do so, select the Activating the

Ac nvATE item from the context menu. component

6. After the activation, you have completed the development of your
first Web Dynpro component. Congratulations!

You should now test the component. To do so, right-click on the appli
cation and select the TEST item from the context menu. Alternatively,
you can also copy the URL from the application's properties. As shown
in Figure 2.16, your own Web Dynpro application opens in a browser
window.

P·

~ott~!~:) ... PaQ$ • J Tools •
»

Hello World

Figure 2.16 Hello World in Web Dynpro

You now know how to create views and how to position Ul elements
in views. Moreover, creating Web Dynpro applications should no lon
ger be a problem for you. However, so far the component only uses the
V_HELLO_l40RLO view. The second view- V_RESUL T - is still empty and
unused. Therefore, the following section describes how you can navigate
between different views of the sample component using two buttons.

2.2 .2 Windows and Plugs

Now that you have a sound basic understanding of views, the following
sections describe the concept of windows and plugs used in the Web Dyn
pro framework. Although the MVC architecture pattern contains only
views. Web Dynpro provides an additional feature - the window. Web
Dynpro windows group all views to be displayed into a relevant context
and enable navigation between individual views.

49

Testing t he fi rst
Web Dynpro
application

Windows in the
Web Dynpro
framework

2 I Web Dynpro Architecture

Example of using
windows

Navigating
between views

A web browser can only display a view if the view is embedded in a
window. Each window uses one or more logically related views. You
can only disp lay one window, including one embedded view, at a time;
however, it is possible to display additional views by creating view hier
archies. To create view hierarchies, you must use vi ewConta i ner UI ele
ments that are embedded in their respective parent views. Chapter 3
provides more details about this top ic.

Figure 2.17 shows the embedding of views in windows on the basis of
the W_HELLO_WORLD window of the component. This window was created
together with the zwoc_02_HELLO_WORLD component and the v_HELLO_

WORLD view (see Figure 2.4). At that stage, the v_HELLO_WORLD view was
automatically integrated into the window. Therefore, you were ab le to
test the view without any additional preparatory work or additional
knowledge about the window by simply creating the application.

Component ZWDC_02_HELLO_WORLD

Window W_HEllO_WORLD Window ...

View View L View J V_HELLO_WORLD V_RESULT ...

Figure 2.17 Example of Embedding Views in Windows

As shown in Figure 2.17, the V_RESULT view, which was also created at
that time, has not been embedded in the window yet. This scenario is
described in the following section. Note that the component could con
tain many other windows in addition to the W_HELLO_WORLD window.

Aside from the basic structure of views and windows, you should also
know how to enable navigation between individual views within a win
dow. To navigate and interact with each other, views require entry and
exit points which are referred to as inbound and outbound plugs in Web
Dynpro. The link between an inbound plug and an outbound plug is
called a navigation link. The creation of navigation links in a window
enables you to navigate between the individual views of that window.

50

You can define outbound and inbound plugs both in views and in win
dows. The plugs you define in views can only be used to navigate within
the respective Web Dynpro component. On the other hand, the plugs
you define in windows provide additional navigation options (via three
plug types each). These are discussed in greater detail in the following
sections.

View I 2.2

Figure 2.18 illustrates the concept of plugs. The figure is based on a com- Example of a

ponent to which you are later (in the practical section) going to add two navigation

buttons, both used for navigating be tween the views. For this purpose,
the views V_HELLO_fJORLD and v_RESULT will be extended by one button
each, as well as by a related outbound and inbound plug. The ICHELLO_

\WRLO window contains the views V_HELLO_HORLO and V_RESULT.

Window: W_HELLO_WORLD

View:
V_HELLO_WORLD

to_result View:
from_hw V_RESULT I I I) > I Button: Next

from_

I <. to hw I Button: Back I I - >
• I) Outbound Plug > I Inbound Plug e Navigation Link

Figure 2.18 Navigating Between Views

After you have launched the application, the V_HELLO_WORLD view dis
plays by default. Within the \CHELLO_WORLO window, the to_resul t

outbound plug was linked with the from_hw inbound plug (from Hello
World). When you click on the NEXT button, the to_resul t outbound
plug is triggered for navigation to the v_RESULT view. Users can return
to the initial view by clicking on the BACK button in the V_RESUL T view.
Of course, the related to_hw and from_resul t plugs must first be linked
with each other in the window for this to happen.

2 I Web Dynpro Architecture

Should I define an Outbound Plug in the View or in the Window?

You can define outbound and inbound plugs both in views and in windows.
Depending on the intended use of the plug, you should follow the definition
recommendations below:

• View
You should define an outbound plug in the view if you want to call the
target view only from within the source view. An example of this is the
navigation from a simple to a complex search screen and back. This type of
plug is referred to as a local plug.

• Window
You should define a plug in the window if you want to call the target view
from different locations. It usually makes sense to define an outbound plug
in the window if you want to carry out complex navigation operations such
as the navigation to a complex view that contains many subviews. Addi
tionally, you can include plugs that are defined within a window into the
interface of the component, wh ich enables you to reuse the plug in other
components. This type of plug is referred to as a global plug.

Details of the Window Editor

[g) Let us now return to the system and take a closer look at the details of

the window editor:

1. To do so, click on the W_HELLO_WORLO window in the object list of the

component on the left.

Window tab 2. The WINDOW tab displays the structure of the window. You can dis

play the views embedded in the window by expanding the W_HELLO_

I~ORLO node. As shown in Figure 2.19 , th e w indow should use only

the V_HELLO_WORLO view at this stage.

52

In add ition to the views. you can also see all plugs that have been

defined in th e views and windows. You will use the d rag-and-drop

meth od later on to link th e outbound plugs with the inbound plugs.

The yellow background color of the view within the hierarchy, as well

as the check mark next to the DEFAULT property of the view, indicate

that the V_HELLO_WORLO displays by default when you open the win

dow.

View I 2.2

Window IV_HELLO_VORLO] Attive

~ Properties wWindow w Inbound Plugs Outbound Plugs con tall! Arlrlbutes Methods 1

Window-Struklur Description
• 0 W_HEU.O_WORLO

· It! v_Heu.o_WORLD
· 'I!' DEFAULT

.....
Properties

Property (Value
Name V_HEU.O_WORLO

Ty. Embedded View

View Use V_HEU.O_WORLO_USAOE_O

Oerautt W1
Component of View Z..Ol_HEU.O_WORLD

Figure 2.19 W_HELLO_WORLD Window prior to Restructuring

3. The PROPERTIES tab displays the administrative data of the window (see Properties tab

Figure 2.20). Here, you can also enter a description for the window.

Window V_HEUO_VORLD)Active

~~ Properbes ...,. Window Inbound Plugs Outbound Plugs Context Allributes M-ethods L.
I Description !

Created 9y lOFENLOtH Created on '26 18 208SJ

l.a$1 changed t1f CMnoedOn r 1
Help Menu Te~ I I
Help Unk I lZIID
01nlerface

DDJ -Used controuersJCompon.ents

Component Use Component Controller Description ...J
Z_02_HELLO_VORLD ~!!ii'~r.-~!IJC"ollmm:ro

•
•

• • l r • •

Figure 2.20 Properties of a Window

If you check the INTERFACE Aag, you can use the window for entering
the component via applications. In addition to this, setting this check
mark allows you to reuse the window of the component from within
other components. For this purpose. the Web Dynpro framework ere-

53

2 I Web Dynpro Architecture

ates what is called an interface view for the window. From the point
of view of the external component, the window appears to be a nor

mal view that can be integrated by the external component like its
own views through the window editor.

4. You can display interface views in the object list of the component via

COMPONENT INTERFACE • INTERFACE ViEWS. When you use an interface
view, the entire logic of the window and views remains hidden to the

external component. Chapter 5, Web Dynpro Standard Components,
provides a detailed description of how you can develop multi-compo
nent architectures.

Inbound Plugs tab 5. The INBOUND PLUGS tab displays all inbound plugs of the window in a

table. By default, the Web Dynpro framework creates a STARTUP type
inbound plug called default with each window (see Figure 2.21). A
method is created for each inbound plug in the window controller.

The following three different types of inbound plugs are available to
windows:

54

1> Startup plug
The STARTUP property declares the option for an inbound plug to
use the plug in applications and thus, to instance components. For

this reason, using startup plugs makes sense only if they are also
available to the interface of the window. When you create a Web
Dynpro application for the window, the system provides only the

plugs for the application that are marked as startup plugs.

1> Standard inbound plug
The STANDARD property declares normal inbound plugs that do not
have any specific properties and enable simple navigation between

individual views. If these plugs are integrated in the interface, they
can be called from within other components via the interface view.

In contrast to startup plugs, standard inbound plugs cannot be used
to instance Web Dynpro components via applications.

1> Resume plug
Resume plugs are described in greater detail in the following sec

tions. Furthermore, when we take a look at outbound plugs, sus
pend plugs will also be discussed.

lnbouM Plugs

r- Plug Name Interface Plug Type Oestnptlon

DEFAULT RJ Startu~ 1!
0 Standa1d 0 Stao>J•
D Resume

Figure 2.21 Inbound Plugs in the Window

6. The O UTBOUND PLUGS tab allows you to define the outbound plugs of
the window (see Figure 2.22).

Outbound Plugs

POI~!"ome rntem ce Plug ~e Oescffl)tlon

0 Stan<tard l:
0 Sf aneta us

0 Exrl
r- n Suspend

Figure 2.22 Outbound Plugs in the Window

By checking the INTERFACE flag, you can transfer an outbound plug
into the interface view of the window. You can define any number of
transfer parameters for each outbound plug. To do so, you must select
the respective outbound plug by double-clicking on it and entering
the parameters in the lower table.

Web Dynpro distinguishes between three different types of outbound
plugs:

.,. Standard outbound plugs
Standard outbound plugs are the most frequen tly used type of out
bound plug in windows. This type of plug represents the counter
part of the standard inbound plug, which triggers the navigation
between views .

.,. Exit plugs
Exit plugs are the counterpart of startup plugs, which are used to
start the application instance; however, exit plugs are less fre
quently used. They enable you to explicitly terminate a Web Dyn
pro application. Note that unlike other plugs, exit plugs do not
require a navigation link to accomplish this.

In addition to using exit plugs without any parameters, you can
define the two optional parameters ur l (type: STRING) and c l ose_

55

View I 2.2

Outbound Plugs

tab

2 I Web Dynpro Architecture

window (type: ~JOY_BOOLEAN) for an exit p lug. Then, if you fill the

cl ose_wi ndow parameter with X when triggering an exit plug, Web

Dynpro tries to close the browser window. Alternatively, you can

specify an alternative target address via the url parameter.

... Suspend and resume plugs

Suspend plugs allow you to n avigate to another independ ent Web

Dynpro app lication w ithout clos ing the running application. Call

ing a suspend plug is similar to calling an exit plug insofar as both

plugs e nable you to leave a run ning Web Dynpro ABAP appl ica

tion. However, in contrast to exit plugs. suspend plugs enable you

to return to the original application afte r you have closed the sec

o nd application. Whenever an exit plug is triggered in the second

ary Web Dynpro application, this application terminates and the

resume plug of the primary application is called.

7 . The remaining th ree tabs, CONTEXT, ATTRIBUTES, and METHODS are

part of the window controller and will be described in detail in Sec

tion 2.3, Controllers.

More Details about Windows and Views

In Web Dynpro, you can display only one window with one view at a time.
However, there are some exceptions to this rule:

1> Views with view containers
The ViewContai ner Ul element and window enable you to integrate any
number of views into another view that serves as a frame . When doing
so, you can position the view containers in any way you like between the
Ul elements with in the frame view. Using these container elements also
enables you to create view hierarchies .

.,. Windows within popups
Another way to display two windows at the same time is to use popup
windows. For example, if, within a view, you click on a link that opens a
popup, this popup displays another window at a new level. Note, how
ever, that you cannot access the lower level as long as the popup is open.
Chapter 8, Practical Ti ps and Hints, provides a detailed description of how
to create popups.

.. Integrating windows from within other components
The third option to include multi ple windows in a view consists of reusing
windows from within external components through the view interface. This
option enables you to divide your Ul architecture into components. For ex
ample, it is advisable to develop a separate component for frequently used
Uls, such as address master data. This component could then be reused
by any number of other components. However, for performance reasons,
you should not make extensive use of this method and avoid creating a
separate view for each new component. Chapter 5, Web Dynpro Standard
Components, provides a detailed description of reusing components.

Windows and Plugs

You should now try to apply your new knowledge of windows and plugs [g]
in the system . The goal of this exercise is to create a navigation between

the two views, V_HELLO_WORLO and V_RESU L T. For th is purpose, you will

insert a button as well as an inbound plug and an outbound plug to each

view. After this, you will establish a link in the window between the

plugs you created in the views.

1. Go to the LAYOUT tab of the V_HE LLO_WORLO view. Switch to change

mode.

View I 2.2

2. Insert a new button into the view. To do so, drag the Button UI ele- Adding buttons

ment from the toolbar group AcrroN into the view editor and drop it

after the existing Text view element.

Alternatively, you can create the new element via the context menu

in the element h ierarchy. To do so, right-click on the ROOTU I ELEMENT ·

CONTAINER element and select INSERT ELEMENT. Then, enter BTN_NEXT

as the e lement name and select the Button e lement type, as shown in

Figure 2.23.

@ Crea:e elemenl x

ID [BTN.NEXI

T yp Bvltt>n

Figure 2 . 23 Creating the Navigation Button

57

2 I Web Dynpro Architecture

Actions of Ul
elements

3. Select the new element in the element hierarchy. Set the DESIGN to
nex t . This adds an arrow pointing to the right to the button. Then,
enter Next as the label into the TEXT property field. This label will
then be displayed in the button within the view editor.

4. At th is stage, the creation of the button is completed. However, the
button has no function yet. If you activated the view in its current
state and started the z_hell o_world application, the system would
display the button but you would not be able to use it because you
still need a button event handler for the onAct i on event. Therefore,
you must now click on the CREATE button in the BINDING column to
define a new action for the onAct i on event (see Figure 2.24).

OOIUP

visible Visible ill
width

Events

onAttion i!l (u
La~~ut Q~ta [IQWOata}
t eiiOeslgn pad less ill
YGutter None i!l

Figure 2.24 Create New Action Button

Creating actions 5. The dialog shown in Figure 2.25 opens in a popup; this dialog enables
you to create new actions. Enter the name of the new action into the
ACTION field; in this example, the name is NAVIGATE_TO_RESULT. Then,
enter a short description for your action.

@'Create A.cbon x

Component
'Jlew

AC'tion

oeserlpllon

I z•oc _ 92 _HELL 0 _ WO RL 0

V_HELLO_WORLD

[N~VIGATE_TO_RESULT)

jNa-.igalion to ViewV_RES::::U:::L.:..T ----·-------

Select an outbound plug or enter an
oulbot.~nd plug for leaving lhe view

by selecting the pushc:b..:;utt:.:.on;;_ ___ __,,_,

Ou1boundPiuo L ___ 'a'

Figure 2.25 Creating an Action for Navigating Between Views

l

Next, finish the creation of the action. However, at th is stage you

should take the time to create the outbound plug that lets you navi

gate to the v_ RESUL T view. To do so, enter to_resu1 t into the OuT

BOUND PLUG field and confirm your entry by clicking on the green

checkmark.

6. Because you are creating the to_ result o utbound plug directly with

the action and not through the OuTBO UN D PLUGS tab. the system asks

you again whether you want to create a new outbound plug. Confirm

the prompt with YES.

7. You have now created both the action and the outbound plug. Dou

ble-check this by selecting the OUTBOUN D PLUGS tab. Also, you should

now take a brieflook at the view controller by selecting the ACTIONS

tab. Double-clicking on the action takes you to the on act i onnav i

gate_to_resu1 t() method, which has been automatically generated

into the NAVIGATE_TO_RESULT action. In th is method, the to_result

outbound plug is called via the l<d_th i s- >fi re_to_resu 1 t_p 1 g(l

statement.

Convention

Outbound plugs are called via the wd_thi s->fi re_<plug name>_plg()
method call. In thi s method call , the wd_th i s attribute represents a self
reference to the cu rrent view (comparable to the me self-reference in classes).
If transfer parameters were defined for an outbound plug, they can be trans
ferred as in normal method calls.

Caution: The outbound plug itself - and thus, the controller of the view - do
not contain any information about the destination of the triggered naviga
tion. The connection to the selected inbound plug of a subsequent view must
be established via a navigation link in the layout of the window.

Using th e outbound plug you defined, the view has now been prepared

for navigating to the subsequent view. However, before you can eventu

ally turn to the V_RESU L T view, you must first define an inbound plug for

navigating into the opposite direction; that is, toward the view.

1 . To do so, go to the INBOUN D PLUGS tab. Enter from_result in the

PLUG NAME column, as shown in Figure 2.26. Then, add a description.

The EVENT HANDLER column displays the name of the event handler

method defined for the inbound plug; we will describe this method

in greater detail in a moment.

59

View I 2 .2

[8]

Creating inbound
plugs

2 I Web Dynpro Architecture

Editi ng the
V _RESU LT view

[0]

Editing the
W_HELLO_WORLD

w indow

Figure 2 .26 Defining an Inbound Plug,

2. Go to the v_RESUL T view, which still has not been assigned a value.
There, you must perform several steps similar to those you performed
for the V_li ELLO_fiORLD view.

3. Insert a new button called BTN_BACK in the view. Enter "Back" as the
label for th is button (TEXT property). Select prev i ous fo r the DESIGN.
This will add an arrow pointing to the left on the left-hand side of the
button.

4. Next, cl ick on the CREATE button next to the on Act i on event to define
a new action called NAV IGATE_TO_Hw for the BTN_BACK button. Enter
the same values as for the NEXT button in the respective fields. Use
to_ hw as the name of the outbound plug. Confirm the creation of the
new button in the final step.

5. Then, complete editing the v_RESUL T view by adding the from_hw

inbound plug. Save the view and activate the inactive obj ects.

You should now turn your attention to the fUIEllO_WORLD window. In
this window, you must still define a navigation link to connect the v _
HELLO_WORLD view with the V_RESUL T view and another one in the oppo
site direction.

1. Switch to change mode and select the WINDOW tab. Expand the w_
HELLO_WORLD node and its sub-nodes to obtain an overview of the cur
rent structure of the window.

2. As you can see in the window structure (see Figure 2.27), at this stage,
the window contains only the V_HELLO_WORLD view and the new plugs
you defined within the view display underneath it.

60

View I 2.2

/ Properties "'Window V lnbou

Window Slr~ture
• C] W_HELLO_WORLD

• l:j V_HELLO_WORLD
. '\i!l FROM_RESULT
. it TO_RESULT

. 4Jii DEFAULT -
Figure 2.27 Window Structure after Defining the Pl ugs

3. Insert the v_ RESULT view into the window structure. To do so, righ t- Em bedding views
click on the w_HELLO_WORLD node element and select EMBED VrEW (see

Figure 2.28).

Window [w_HELLO_WORLD ---=:JA
/ Properties .. Window "" Inbound Plugs Outbou

Window Stn..:ture
• rfW~HELLO_w()RL ..:-------·---·---

I
·-;-l:l v HELLO wO: Embed l/iew !it .

· 9 FROM_ REi !;mbed Empty VIe
. ~TO_RESULT . 4Jii DEFAULT

Figure 2.28 Adding a New View to the Window Structure

Embedding Views via Drag-and-Drop

An even faster way to embed views in windows is to use drag-and-drop in
stead of the context menu. To do so, select the view to be embedded from
the object list and drag-and-drop it to the required position in the window.

4. A popup window opens in which you can select the view to be embed

ded in the window (see the top right-hand area in Figure 2.29). In
addition to the COMPONENT and WINDOW fields, which already con

tain default values, the popup window provides three other fie lds for
selecting the view to be embedded as well as its origin (see Chapter 5,

Web Dynpro Standard Components).

61

2 I Web Dynpro Architecture

Creating
navigation links

@Web Dynpro: Embed View x

Component lzwoc 02_HELLO WORLD

Window _j'IV_HELLO_WORLD

VIew to Be Embedded ?
~---------------=~

Component of View -?,?~~------~=~
Component Use ?

@Web Dynpro: Choose View or Interface Vrew (I) 2 Entnes found x

__/ Restrictions I 0 @

Component UseJcornponent JView 1 tntenace Vi ... Joescripti ...)
ZWDC_02_HELLO_WORLD V_RESULT I'-
ZWDC_02_HELLO_WORLD EMPTYVIEW '\\"

2 Entries found

Figure 2.29 Embedding Views in Windows

Position the cursor in the VIEW TO BE EMBEDDED field and open the
associated input help <I:IT)). A new popup window opens in which
you can select one of the available views. as shown in the foreground
of Figure 2.29. Select the V_RE SULT view by double-clicking on it and
close the selection d ialog by clicking on the green checkmark.

Empty Views

During the last practical exercise, you may have noticed that each Web Dyn
pro component automatically contains what is called an EMPTY VIEW. Empty
views represent a specific type of view that is automatically provided by the
Web Dynpro framework in each window.

These are used as placeholders for empty windows and empty view contain
ers. If you do not embed a view in a window, the Web Dynpro framework
integrates the empty view implicitly into that window. Empty views play an
essential role primarily in t he area of performance optimization, wh ich is why
they are discussed in greater detail in Chapter 8, Practical Tips and Hints.

5. In the final step. you need to connect the two views with each other
using a navigation link. You can do so e ither via drag-and-drop or by
right-clicking on the outbound plug and using the respective context
menu.

62

If you want to use the drag-and-drop method, click on the to_resul t
outbound plug and hold the mouse button, as shown in Figure 2.30.
Then, move the mouse cursor to the from_hw inbound plug of the v_
RESULT view and release the mouse button. A new window opens,
displaying detailed information about the new navigation link. Click
on the green checkmark to confirm the information.

Window Structure
I:J W_HELLO_WORLD
• EJ V_HELLO_WORLD

· '5" FROM_RESULT

Figure 2.30 Creating Navigation Links via Drag-and-Drop

6. Next, you should create the navigation link from the V_RESULT view to
the V_HELLO_I~ORLO view. To do so, repeat the last step, starting from
the to_hw outbound plug.

This time, however, you should try to create the navigation link via
the context menu. To do so, righ t-cl ick on the to_hw outbound plug
and select CREATE NAVIGATION LiNK. As was the case when you created
the first navigation link, the window for defining naviga tion links
opens (see Figure 2.31).

@Web Dynpro· Choose Destmat!on for N3V1gation x

Start Component

Start View

Outbound Plug

oestVlew
Embedding Posttion

Inbound Plug

[ZV11DC_02_HELLO_WORU)

JS'_RESULT

ITO_HW

lv_HELLO_WORLO

fu'_HELLO_WORLD

Figure 2.31 Defining Navigation Links

I
J
J

View I 2.2

2 I Web Dynpro Architecture

Testing the
application

Open the input help for the D EST. VI EW field and select the v_HELLO_

WORLD view as the destination. The INBOUND PLUG field was automatically
assigned the from_hw inbound plug. Then, click on the green checkmark
to confirm the entries.

You have almost made it. Activate the component and start the z_he 11 o_
wo r 1 d application. It should now open in a new window, as shown in
Figure 2.32. The NEXT and BACK buttons enable you to navigate between
the two views.

r- My f1rst Web~Oynpro-Appl•catton- Wmdows lnt~net

0 @. lltl http'//"""639-l.J:B . , X I~
,.c.

~My fh t Web·D,.....o·-·· · (.}· Iii'! · »

Hello w.,,j Next >I

r
rrr1 rr ~Loc.,;ntronet fii', 10004 • ,!i

Figure 2.32 Testing your First Navigation Application

Summary and At this point, you have completed editing the W_HELLO_WORLO window.
outlook You have learned how to create views and UI elements and how to link

views with each other via windows and plugs. This enables you to create
small Web Dynpro components.

However, you will soon reach a point at which you want to display data
from the system in the Ul or enter data into the system through the Ul.
To do so, you need controllers and contexts, which are described in the
following sections.

2.3 Controllers

In previous sections, we briefly mentioned a few Web Dynpro controllers
and even used them to a small extent. These controllers will be described
in greater detail in the following sections. Then, to consolidate your
newly acquired knowledge, you will perform a few short exercises.

Types of controllers The Web Dynpro framework distinguishes between five different types
of controllers:

~ Component controllers
Component controllers represent the global point of access within
each Web Dynpro component. They contain constructor and destruc
tor methods that are executed during the creation or deletion of a
component. Component controllers are particularly usefu l for cross
component communication and model binding. Additionally, they
can be used together with contexts- which will be described later in
this chapter- to act as a global data exchange interface between the
windows and views of a component.

~ View controllers
View controllers are only visible within their respective view, and
each view has its own controller. The main task of view controllers
consists of responding to actions triggered by the user, checking user
entries for accuracy regarding firm ly defined rules with in the control
ler, and controlling the properties of UI elements contained in the
VJCW.

~ Window controllers
In contrast to view contro llers, window contro llers are visible within
their respective windows as well as in the views contained therein.
When you start a Web Dynpro application, the respective window
controller is addressed by inbound plugs defined within the window.
Each instance of a component can only use one window at a time. To
enable views to access a window controller, the respective window
must be explici tly made known to the views.

~ Interface controllers
A component interface controller publishes methods and actions of
the component controller in the component interface. Therefore, the
methods of this controller must always be defined via the component
controller because the interface controller is actually an interface
rather than a controller in the narrow sense of the word. The respec
tive method becomes visible across different components if you set
the INTERFACE flag in the component controller.

~ Custom controllers
You can develop any number of custom controllers. They provide the
same fea tures as component controllers and are thus, specifically use
ful for exchanging data across views and windows, as well as for bind
ing models.

Controllers I 2.3

2 I Web Dynpro Architecture

Table 2.1 provides an overview of the different controller types.

Controller Actions Events Plugs Visibility

Component X Component-wide

View X X Local view

Window X Component-wide
(Local window)

Interface X X External

Custom X Component-wide

Table 2.1 Controller Features

Controller As is the case with ABAP classes, you can create separate attributes and
attributes methods for each controller. You should create attributes to store all non

VI-relevant applica tion data such as object references. (Note that for VI
relevant data, you must use contexts; see Section 2.4, Contexts).

Figure 2.33 shows the ATTRIBUTES tab of a component controller. This
tab contains a table that lists all attributes defined in the controller. To
make attributes visible to the remaining controllers within the compo
nent, you must set the check mark in the Puauc column.

Component Controller @OHPONEHICOHIROLLER I A<tivl>(re~sed)
Properties Context Mtrlbutes Evants MetnocJs

All1ibute Publle ReiTo Associated Type Description

WD_COIHEXT 0 (iJ l F _WD_CONTEXT_NODE Reference to Loeal Controller ConteXI

WD_THIS 0 (iJ IF _COI'iPONENTCONTROLLER Sei~Referenceto Local Controller Interface

0 0

Figure 2.33 Attributes in the Component Controller

Standard attributes By default, each controller contains the attributes wd_t hi s and wd_con
t ext. The wd_thi s attribute represents a self- reference to the respective
controller. This self-reference allows you to access the controller's meth
ods and attributes. The statement wd_this·>fire_to_result_plg(> is
an example of this . The wd_context attribute is a reference to the respec-

66

tive context and will be described in g reater detai l in Section 2.4, Con
texts . Moreover, view controllers and window controllers contain the

wd_comp_controller attribute by defau lt. This attribute enables you to
directly access the methods and attributes of the component controller

from a view or window, provided they have been defined as Pusuc.

Controllers I 2.3

Figure 2.34 shows the METHODS tab of the component controller. Controller methods

Depending on the controller type, Web Dynpro provides a range of stan-
dard methods that enable developers to interfere with the program flow

at a particular poin t in time. Because these methods can only be called
by the runtime at a fixed point in time, they are also referred to as hook
methods. The most important hook methods and their flow sequence are

described in Section 2.3.1, Hook Methods' Flow Sequence.

Properties

Method Method Type Interface Oesc:riptlon Event
1VODOAPPUC'-TI ONST'-TECHAN6E 'IE'thod • 0
'VDOOBEFORENAYJGATtON ~ethod • 0
1VDDDEX 1 T <etnod • 0
1VDOOINIT ~ethod • 0
'VDDOPOSTPROCESS lNG "ethod • 0

~ethod • 0
Method 0
Evenl Handler 0
Supply Funt tlon O

• 0
M thod • 0
nethod •

Figure 2.34 Method Types in the Web Dynpro Framework

Regarding the controller methods, Web Dynpro d istinguishes between Method types
three different types of methods (see Figure 2.34):

,.. Methods
These are methods in the traditional object-oriented sense. You can

create them by entering the method name in the METHOD column of
the METHODS tab. To navigate from the method list to the body of the
method, double-click on the method name. In addition to entering

the coding with in the method body, you can also define any number
of transfer parameters here.

2 I Web Dynpro Architecture

Outlook on the
exercises to follow

" Event handlers
Within the component and custom controllers, you can define events
for the purpose of cross-controller and cross-component navigation.
After an event has been triggered, the runtime automatically calls the
associated event handler in all controllers registered for the event.

You can register the respective method for available events by select·
ing the EvENT HANDLEI~ type. You can even execute events across dif
ferent components by including them in the component interface.
Section 2.3.3, Actions and Events, covers the top ic of events.

" Supply functions
Supply functions are used to automatically fill context nodes upon
request. They are described in greater detail in connection with con
texts in Section 2.4.4, Supply Functions.

Web Dynpro-Specific Characteristics of Controller Methods

Web Dynpro component methods or event handlers are called by the Web
Dynpro framework. The framework provides all Web Dynpro method pa·
rameters with data. regardless of whether the parameters are actually used.
Therefore, it does not make sense to use the following additions within con
troller methods to query the method parameter interface:

" IS REQUESTED

" IS SUPPLI ED

The exercises that will follow in this section will introduce you to con
trollers and the context in the system. For this purpose, you will extend
the exercise you started in earlier sections of this chapter. At the end of
the exercise, you will be able to enter an unlimited number of ice cream
Ravors through an input field in the V_HELLO_WORLO view and a Or opdown

Ul element in the V_RESUL T view will allow you to scroll through the
list of Ravors you entered. Furthermore, a REMOVE button will let you
remove individual flavors from the list.

In the first step, you will create a new method called add_ i cecream(J in
the component controller of the zwoc_o2_HELLO_WORLD component. You
will need this method later to save the ice cream Ravors in the context.
Proceed as follows:

68

1. Select the METHODS tab of the component controller.

2. Enter add_ icecream in a free cell of the METHOD column and make
sure that the associated METHOD ty pe Method is selected. Optionally,
you can enter a description for the method, as shown in Figure 2.35.

Method lllethoa Type Interface Oesc~ption
WOOOAPPLICATIOHSTATECHANGE Method • 0
WOOOBEFORENAVIGATION Method • 0
WOOOEX IT MethOd • 0
WOOO I HIT Method • 0
WOOOPOSTPROCESSIHG Method • 0
ADO ICECREA~ Method • 0 Addsanewicecreamlolheconlext

Figure 2.35 Creating Controller Methods

3. Double-click on the method name to go to the method body. Then,
add a new importing parameter called name of data type CHAR_LG_32,

which enables you to enter the ice cream flavor. Provide a correspond
ing short description and enter a brief commentary into the method,
as shown in Figure 2.36.

4- Method t..isl ~~ t.eethod 1• 1• 1
Method JADD_ICECRHM

OOI!OO~~I(Q]~@) ~&.]~~
Parameter L~ype J RefToJ Opt ~~ssocla1ed Type J~hort oescriplion
NAME Importing 0 0 CHAR_LG_32 lcecream

' • -
1 8 tiETifOD o.dd i<:ee z:eam .

2> l• Tluo method <ddo • ne"' •coc.coom to the context
H
4 ENl>l-tETHO.D .

Figure 2.36 Body of Method add_icecream()

This completes the creation of the new method, add_ i cecream(l , which
will be extended in the following sections and be used by the methods
of other controllers.

2.3 .1 Hook Methods' Flow Sequence

Controllers I 2.3

Depending on the type, a controller provides a range of different stan· Hook methods

dard methods that enable you to interfe re with the program flow at

2 I Web Dynpro Architecture

a particular point in time. These methods are also referred to as hook
methods. In this context, each type of controller offers a d ifferent set of
methods to interfere with the component. The sequence of individual
method calls is described in what is called the phase model. The following
paragraphs describe this model as well as the hook methods.

However, before learning about the phase model fo r hook methods, you
should be familiar wi th all of the hook methods availab le. Table 2.2 pro
vides a list of all controllers and the hook methods contained in them.

Controller

Component

W indow

View

Custom

Available Hook Methods

wddoinit() , wddoexit(),
wddobeforenavigation(), wddopostp r ocessing(),
wddoapplicationstatechange()

wddoin i t(), wddoexit(), wddoonopen<),
>Jddoonc 1 ose (>

wddoinit() , wddoexit(), wddobeforeaction(),
wddoafteracti on(),wddomod i fyview()

wddoi n it(), wddoexit()

Table 2.2 Overview of all Web Dynpro Hook Methods

wddoinit() and The wddo i nit< > and wddoex i t (J methods are contained in every con
wddoexit(J troller type and can be compared to the constructor or destructor of

objects in object-oriented programming languages.

,. '•ddoi nit(J is called every time a controller is instanced anew. For
example, you can instance auxiliary classes or set in itial values of
attributes and the context within this method.

,. In turn, the wddoexi t< > method allows you to clean up; that is, to
delete auxiliary objects and release locks when leaving the control
ler.

wddo in it(J and wddoex i t () a re two of the most important standard
methods.

Le t us now take a look at the phase model for ins tancing a compo
nent (see Figure 2.37). When a component is instanced - for example,
zwoc_o2_HELLO_WORLD -via the application, it is first and foremost the

70

wddoinit(l method of the component controller that enables you to
initialize your own attributes and objects. In a subsequent step, the sys
tem calls the wddoi nit (l method of the window. In the final step, the
views that are visible in the window are instanced.

(1) WODOINIT: Component Controller

~ (2) WDDOINIT: Window Controller

(3) WDDOINIT: View Controller

Figure 2.37 Phase Model for Component Instancing

In addition to the wddoinit() and wddoexit<) methods, the compo
nent controller contains three other hook methods:

,.. The wddoappl i cationstatechange<) method is run through every
time the state of an application changes; that is, at exactly the point at
which the application changes from running mode into suspend mode
and is then resumed via the resume plug. This method is not dis
cussed further in this book.

,.. The wddobeforenavigation(l method is used primarily for validat
ing user entries in more complex applications. If an error occurs dur
ing the validation process. the application developer can terminate
the navigation within the method.

,.. Shortly before the rendering phase of the user interface starts, the
wddopos tprocess i ng (J method allows for one last access to the com
ponent. You can use this method, for example, to carry out applica
tion-specific cleanup tasks.

Each window controller contains the two hook methods wddoonopen < l

and wddoonclose() . These methods are run through only when a win
dow is opened as a dia log window or is closed. Because the opening of
a dialog window is not linked to a navigation, no inbound plug is called
and no associated event handler method is processed at that time. There
fore, the wddoonopen < l method can optionally be used to implement
initializations of the window.

71

Controllers I 2.3

Hook methods of
the component
controller

Hook methods of
the w indow
controller

2 I Web Dynpro Architecture

Hook methods of
the view controller

Phase model of the
hook methods

Nextto wddoinit(J and wddoexit(),the wddomod i fyviel•(> method
is arguably the most important hook method. This method is called prior
to the generation of the view and allows for the dynamic modification of
the view at runtime. Accordingly, it is only available in the view control
ler. Chapter 4, Dynamic Web Dynpro Applications, provides a detailed
description of the topic of dynamic view modification.

In addition, the view provides the two methods wddobeforeact ion (J

and wddoafte raction(l . These methods allow you to interfere with
the flow sequence prior to or after the execution of view actions,
respectively.

Figure 2.38 shows the flow sequence of the respective component and
view controller methods with in a phase model. All methods of this
model are processed in the sequence shown here with each action in
the Ul. For example, for the execution of the wddobeforenavigation(l
method, it is irrelevant whether the preceding action has started a navi
gation between views. If an error occurs during the event handling pro
cess and is displayed to the user via a Web Dynpro notification, the
system blocks all navigation steps until the error is removed from the
list of messages. However, even this does not affect the flow sequence
of hook methods.

WDDOBEFOREACTION

Event Handling 1+1 Messages I
~

WDDOAFTERACTION I
~--------~~~--------~,...I WDDOBEFORENAVIGATION

Navigation and View Initialization

WDDOMODIFYVIEW I
~--------~~~--------~,...I WDDOPOSTPROCESSING

Rendering

View Controller Component Controller

Figure 2.38 Phase Model for a Roundtrip

72

Output of Messages in Web Dynpro

The Web Dynpro framework provides a tool called Message Manager for the
output of system and application messages. When this tool receives a mes
sage, it is automatically integrated into the system, either in the upper area
of the browser window or in another, specifically defined position within
the view. Chapter 3 provides a more detailed description of the Message
Manager.

Don't worry if the large number and sequence of hook methods has

confused you a little. The majority of hook methods are not particu
larly important for beginners or small applications. Furthermore, the

three methods emphasized- wddoinit(l. wddoexi t() , and wddomodi
fyv i ew< > -let you perform a large portion of the standard tasks in your

daily work.

Yet, to better understand the methods, it is advisable to take a look at

them in the debugger. To do so, you should set a breakpoint within the
hook methods of the zwoc_o2_HELLO_WORLD component and restart the

application.

2.3.2 Usage and Visibility of Controllers

Up until now. we have looked at each controller separately. Thus. you

a lready know the most important aspects of controller types and their
standard methods. The self-reference wd_ th i s . which is availab le in
every controller, enables you to access the methods and aru-ibutes of the

respective controller.

However. we have not yet dealt with another important aspect of con

troller programming - call ing methods across different controllers. For
example. it is often useful to store methods within the component or

window controller instead of the view controller. This allows you to
reuse methods from within other controllers.

Controllers I 2.3

Viewing hook
methods in the
debugger

For a Web Dynpro controller A to be able to access the methods and aru-i- Different uses of
butes of another controller B. controller B must first be made known to con- controllers

troller A. This can be done by entering a controller usage on the PROPERTIES

tab of controller A. You can then use wd_this->get_<ControllerName>_
ctr< > to obtain a reference of interface data type i g_ <Contro 11 erName>

to controller B.

73

2 I Web Dynpro Architecture

You should practice using controllers with the v_RESUL T view and the
w_HELLO_WORLD window. The goal of this exercise is to obtain a reference
to the window controller in the view controller.

1. In the window controller, create a new method called remove_

i cecream() • without parameters. You wi ll later use this method
along with a REMOVE button to delete an ice cream flavor from the list
or context, respectively.

Creating controller 2. Navigate to the PROPERTIES tab of the V_RESULT view. The controller
usages usages already entered in the view display under the general view

properties in the USED CONTROLLERS/COMPONENTS table. The usage of
the component controller is automatically entered for all views and
windows.

Web Dynpro Code
Wizard

3. Click on the CREATE icon directly above the table. A dialog appears in
which you can select from the available controller usages (see Figure
2.39). Select the window controller w_HELLO_WORLO.

D
used Controllers/Components

Component Use Component
ZWDC_02_HEllO_WORLO

Controller Description
CO"PONEHTCONTROLLER

@Componen1 Use (1) I Enbyfound X

./ Reslrlcbons]

Component UseJcomponent JView.IController JoesctiPti ...)
lWOC_02_HELLO_WORLD W_HELLO_WORLD ~

Figure 2.39 Adding Controller Usages

4. Then, go to the METHODS tab and open the ~<ddo i nit(> method. In
the following steps, you will enter the coding into this method, which
allows you to access the controller.

5. Launch the Web Dynpro Code Wizard. This wizard makes your daily
work easier because it provides patterns for a number of standard
Web Dynpro actions. To launch the wizard, either cl ick on the asso-

74

cia ted Toot BAR button (see Figure 2.40) or use the I Ctrl I + [IT] key
combination.

® G P~ Pattem

IV_RESULT

Prel1y Printer 'i l3

1 Active

Figure 2.40 launching the Web Dynpro Code Wizard

6. Select the GENERAL tab in the window that appears. This tab provides
possible options to create access to the window controller and its
methods:

.,. The METHOD CALL IN CURRENT CONTROLLER option allows you to
select the get_w_he ll o_world_ctr<) method. In th is case, the wiz
ard generates the coding for accessing the interface of the window
controller .

.,. The METHOD CALL IN USED CONTROLLER option enables you to
directly access the methods of the window controller.

Because you do not yet need the remove_ i cecream() method of the
window controller created in the first step, you should select the first
option, as shown in Figure 2.41, and exit the code wizard by cl icking
on the green checkmark.

Contex! lloenerat lL---~-------------:
® Method Call in Current Controller

Method Name [6.f:_~~W-H£L_L:.O-~ORL_~~~!~::::=:::::==:::::laJ
0 Method Call in Used Controller

Component Name
Component Use r==
Controller Name ====~=.

Figure 2.41 Web Dynpro Pattern of the Code Wizard

7. The code wizard has generated the following coding, which provides
access to the window controller:

OATA lo_w_hell o_world TYPE REF TO ig_w_hell o_world .
lo_w_hello_,<or l d = wd_this ->get_w_hello_worl d_ctr() .

75

Controllers I 2.3

2 I Web Dynpro Architecture

Adding view
attributes

Visibi lity of
controller usages

The new 1 o_w_ he 11 o_worl d attribute is currently only visible within
the •lddoin it() method. To be able to also access the attribute from
other methods of the view, you must include it in the attributes lis t of
the view controller.

8. To do so. go to the ATTRIBUTES tab and enter a new attribute called
go_ w_ he 11 o_ wor1 d with data type i g_,~_he 11 o_wor l d . Then, modify
the wddoi nit <) method in such a way that you de lete the data dec
laration and replace the lo_w_ he1lo_wor l d s tring in the second line
with ~~d_thi s- >go_hello_wor 1 d . This enables you to access the win
dow controller in all view methods via the wd_th i s - >go_he 11 o_wo r 1 d

attribute.

At this point you have successfully completed the exercise.

The component controller represents a special case regarding controller
usages. Because this controller is among the mos t freque ntly used. all
views and windows already contain a controller usage for the compo
nent controller. You can use this controller usage directly and without
any further initializations via the wd_ comp_ con t ro 11 er reference.

However, you cannot link al l controllers with each other using controller
usages. The diagram in Figure 2.42 shows the controller usages that are
allowed. For example, you cannot have external access to a view con
u·oller, whereas a view controller can access any other controller. The
bolded arrows in the figu re represent the automatically created compo
nent controller usages.

Component Contro ller

i}D OD
L-_w_ in_d_ow_ c_on_t_ro_lle_r___,l B IL-_c_u_s_to_m_c_o_n_t r_ol_le_r ___,

0 0
View Controller

Figure 2.42 Visibility of Controllers

2.3.3 Actions and Events

As described in Section 2.3.2. Usage and Visibility of Controllers. you
cannot define any controller usages for accessing view controllers. Thus,
all views are completely separated from the perspective of the remaining
controller types. For example, it is not possible to call a view method
from within a component controller. However, Web Dynpro provides
some alternatives to this scenario -events.

Controllers I 2.3

You can define events to enable cross-controller interactions between Events

components and custom controllers. These events can then be triggered
(fired) in the respective controller using the predefined fire_ <event
name> _evt (l method. After an event has been triggered, the runtime
automatically calls the associated event handler in another controller.
For this purpose, a usage of the triggering contro ller must have been
entered and an event handler defined in the other controller.

You can register any number of other controllers for an event. For exam
ple, it is possible to catch an event triggered by the component controller
both within a view and within a window. As is the case with methods,
events can transfer both mandatory and optional parameters.

You should now create a new event called SET_PROPERTIES in the compo- [8]
nent controller. You will use this event later for the property handling of
the REMOVE button in the V_RESULT view. Proceed as follows :

1. Go to the EvENTS tab of the component controller. Enter the new Defining events

SET_PROPERTI ES event into the events table, as shown in Figure 2.43.
Set the INTERFACE flag to integrate the event in the interface controller
and thereby make it visible within the entire component.

Controller

Contex1 Attributes Methods

Interface Description Event

lrj~tlPERTJ ES 0 SetVIew·Properties

0

Figure 2.43 Defining Events

77

2 I Web Dynpro Architecture

Defining event
hand lers

Registering for
events

You have now defined the event; it can be triggered at any time in the
component controller via the fi re_set_propert i es_evt() method.

However, what you still need is an event handler that reacts to the
event.

2. Therefore, you must now define an event handler in the v_RESUL T

view. To do so, go to the METHODS tab of the view and create a new
EvENT HANDLER type method called on_set_propert i es < l . This

method will be implemented at a later stage.

3. Register the new method for the component contro ller event SET_

PROPERTIES. To do so, click into the EvENT column of the event han
dler method and open the associated input help (see Figure 2.44). By

registering the event, you ensure that the event handler method will
be automatically triggered after the event has been fired in the com·
ponent controller.

ZWOC_02_HELLO_WORLO C0111PONENTC0NTROLLER SET_PROPERTlES

Figure 2.44 Registration for the SET_PROPERTIES Event

4. After opening the input help, select the SET_PROPERT I ES event by

double-clicking on it. This action w ill automatically close the popup
window. and the on_set_propert i es < l method is registered for the
SET_PROPERTJ ES event.

5. Call the event with each navigation to the V_RESULT view. To do so,

access the handl efrom_hw(l method and enter the following line:

wd_comp_controller·>f i re_set_properties_evt() .

This ensures that the button properties in the v_RESULT view w ill
already be set accurately during the instancing process.

This concludes the exercises for the time being. In the last two exercises.
you created methods and events and defined controller usages. In doing
so. you have laid the foundation for the handling of actions and contexts.
which will be part of the following sections and exercises.

Events and Inbound Plugs

For each inbound plug, an EvENT HANDLER type method is automatically cre
ated in the respective controller of the plug. This method is automatically
called during a navigation process, using the inbound plug for initializing a
view or window controller. You can use this method, for example, to load
data to be output or to prepare the output. You would use this, for example,
to show or hide view elements.

The naming convention for event handler methods of the inbound plug is
handl e<inbound plug name> .

Controllers I 2.3

Review of the
exercise

Several UI elements can trigger actions. Actions are specific events that Actions
are triggered by certain user operations in an application's interface. The
associated event handler methods then control the subsequent flow of
the application. Does this ring a bell? We already briefly touched on the
topic of actions back in Section 2.2.2, Windows and Plugs, when creating
buttons and plugs. In that section, you created the NAV I GA TE_TO_RESUL T
and NAVJGATE_TO_HW actions, as well as the outbound plugs to_resul t
and to_hl~. from within the Ul element Button.

You can create actions either from within the respective UI element or via Creating actions
the ACTIONS tab of the view controller (see Figure 2.45). For each action, an
event handler method is automatically created based on the naming con-
vention onaction<action name>. For example, the NAV IGATE_TO_RESULT
action has the event handler method onact i onnavi ga t e_to_result ().

Propenies Inbound Plugs Outbound Plugs Contex1 Attributes

Action Action Type Descrlptlon Event Handler
TO_RESULI Standard • N.,;gotion to ViewV_RESULT ONACTIONNAVIGATE_TO_RESULI

Standard

Figure 2.45 Actions Tab in the V_HELLO_WORLD View

79

2 I Web Dynpro Architecture

As is the case with other event handlers, you can also add your own
programming code to the event handler methods of actions. Double
clicking on the action takes you to the body of the respective event han
dler method.

Web Dynpro distinguishes between two types of actions:

,.. Standard actions
Standard actions are triggered only if all available data required for
executing the action is accurate. For example, if you enter a letter into
a date field, then none of the actions linked with the date field will be
triggered.

,.. Validation-independent actions
Validation-independent actions are executed irrespective of the result
of the data validation.

Tip

It is advisable to always create new actions directly from within the respec
tive Ul element. Some Ul elements even provide the option to automatically
enter additional Ul element parameters into the parameters list of the cor
responding event handler method. The I nputFi e 1 d Ul element, wh ich will
be described in Chapter 3, is an example of this . It provides an event called
onEnter. If you create the associated action directly via the Ul element, the
system automatical ly transfers two additional parameters into the method
of the action. This way, you not only obtain a context element , but also the
name of the associated Ul element.

2.3.4 Assistance Class

For each Web Dynpro component, you can create a uniquely ass igned
assistance class, which will be instanced automatically along with its asso
ciated component. The instance of the assistance class is then made avail
able to every controller of the component via the wd_assi st attribute.

The assistance class should (but does not have to) inherit from the
abstract class Cl_WD_COI·IPDNENT_ASS ISTANCE. This way, it inherits meth
ods for reading text symbols with in the inheriting class. The constructor
of the assistance class cannot have any parameters.

80

Using assistance classes is advisable in the following cases:

.,. Model binding
You can use an assistance class as an interface between the Web Dyn
pro component and the model.

.,. Text symbols
Because assis tance classes allow you to store text symbols, you can
use them as a storage location for your texts (see Chapter 3, Develop
ing Web Dynpro Applications) .

.,. Performance
In general. we recommend that you use classes to store any coding
that is not directly related to a controller or the UJ. From a perfor
mance perspective, method calls of assistance classes perform much
better than method calls of Web Dynpro controllers.

If you decide on using an assistance class, you can enter it in the ASSIS
TANCE CLAss field in the header area of the component (see Figure 2.46).

Web Oynpro Component !ZWDC_02_HEU.O_WORLO J Activelrevised

Description My fi rsl Web-Oynpro..Componenl

Assistance Cl-ass J
Created Ety !OFEHLOCH I CreatedOn !29. 11 . 29081

Last Changed ey [OFEHLOCH I Changed on J29. 11 . 29081

Ortglnal Lang. IEii] Package J$1HP I
RlActessibility Checks Active

Figure 2.46 Entering Assistance Classes

2.4 Context

At this point, you have learned about almos t all of the basic features
needed for developing Web Dynpro Uls. For example. you can create
views and windows, link them with each other using navigation links,
and work with controllers and their methods.

The only thing you still need to learn to round off this chapter on the
Web Dynpro architecture is the concept of the context. The context rep
resents the interface for data between the Uland the system. The follow
ing sections describe the basic principle and importance of the context
for Web Dynpro, both in theory and in your daily work.

81

Context I 2.4

Use cases

Defini ng assistance

classes

2 I Web Dynpro Architecture

Context and
controllers

Context at design
t ime

Comparable to
tables

The context is the central building block for storing data and for exchang
ing VI-relevant data between the browser, views, controllers, and compo
nents. Each Web Dynpro controller has exactly one context. The visibility
of each context depends on its controller. For example, the context of the
component controller is visible across the entire component, whereas a
view context is only visible within the view. Concerning the visibility of
a context, the same rules apply as for the respective controller.

2.4.1 Structure of a Context

A context is a hierarchical tree structure that consists of nodes and attri
butes. A node can have any number of children. These children exist
either as other nodes or as attributes that contain the data stored in the
context. Because attributes cannot have any children, you can compare
them to the leaves of a tree. Likewise, nodes represent a branch within
the tree structure. Figure 2.47 shows a sample context structure at design
time.

4~ Context

1-- Attribute 1

H a Node 1

Attribute 2

Attribute 3

... Node 2

T Attribute 4

Figure 2.47 Sample Context at Design Time

You can also regard contexts as an object-oriented version of internal
tables. In a context, tables are represented by nodes. Tables are based on
row structures, which in turn consist of fields. The table rows are repre
sented by elements in the context. The element contains the structure
of the row. The fields of the structure are referred to as attributes in the
element. In addition to the structure, elements also contain references to
subnodes that may exist. You can use methods to navigate through the
hierarchy of nodes and elements.

82

Context I 2.4

Each node has a number of properties that can be set in the editor; the cardinali ty

most important of these is the cardinality. It specifies how many ele-
ments of a node you can create at runtime. You can choose among the
following cardinali ties:

~ 0 .. 1
You can create either zero or one version of the node.

~ 1 .. 1

Exactly one version of the node exists.

~ 1 .. n

Any number can be avai lable; but at least one must exist.

~ 0 .. n

Any number can be available and even zero is possible.

You can use the 0 .. n cardinality, for instance. to display tables. However,
if you want to display only a single input field instead of an entire table,
you should use the 1 .. I cardinality.

At runtime, the framework generates object instances from the context Context at runtime

nodes defined at design time. During this process, each node is mapped
as an object of reference type IF _wo_CONTEXT _NODE. The attributes defined
in the context node are grouped in another object, which is referred to
as the context element. This object is based on the IF _wo_CONTE XT_ELE-

HENT type. Depending on the cardinality and number of nodes within a
context node, the same number of context elements may exist.

For example, if you set cardinality 1 .. 1 for a context node, this node
will always have exactly one child instance in the form of a context ele
ment. If, in turn, you set cardinality 0 .. n, the corresponding context
node can have either none or any number of child elements (and object
instances).

The diagram shown in Figure 2.48 provides a simple example of this sce
nario: Node 1, which exists as a node object at runtime, contains a tota l
of three child elements. The objects contain a value of Attributes 2 and
3 each. You can now use several different access methods of the node
and element- which will be further described in the following sections

2 I Web Dynpro Architecture

and chapters - to modify the data stored in the nodes and elements, as
per your requirements.

0 Context (1 .. 1)

Attribute 1

Node 1 (O .. n)

Element 1 T Attribute 2

At tribute 3

Element 2 Attribute 2 T Attribute 3

Element 3 Attribute 2 T At tribute 3

Figure 2.48 Sample Context at Runtime

Context editor At this point, we will end the theoretical discussion and take a look at the
CONTEXT tab of the V_HELLO_WORLO view (see Figure 2.49). The context
editor is divided into three areas:

~ Context at design time
The upper left-hand area of the editor displays the structure of the
context at design time. Here, the nodes and attributes of the context
are displayed in a tree structure. Each context has a root node called
CONTEXT. You can access th is root node at runtime via the wd_context

attribute.

~ Properties of the selected context object
The lower area of the context editor displays the properties of the
node or attribute you select in the upper left. One of the properties
that are displayed here is the cardinality, for example.

~ Controller usages
The upper right-hand area displays buttons for all controller usages
that have been entered previously in the controller. By clicking on
these buttons, you can view the respective external controller con
text. Figure 2.49 shows the context of the component controller. Sec
tion 2.4.3, Mapping, describes how you can use contexts across dif
ferent controllers.

~ Properties Layout V tnbound Plugs V outbound Plugs 16context V Attrlbutes Action

ID Controller Usage I
ContextV _HELLO_WORLD I~ZWDC_02_HELLO_WORLD.COiriPONENTCONTROLLER

r-:c:5 CONTEXT Context COiriPONENTCONTROLLER
. Q CONTEXT

-

: .
.

Property

{Nodes
(Value

Node Name CONTEXT

Dictionary structure
Cardinality 1..t ill
Selection 1..1 ill
Initialization Lead Selection 0
Singleton 0
Supply Function

Figure 2.49 Context Editor

2.4 .2 Data Binding

You can bind properties of UI elements to context attributes via a few
clicks of the mouse in the view editor. This process is referred to as data
binding or binding. By binding a Ul element, you can build a direct rela·
tionship between the UI element and the selected context attribute.

Depending on the type of UJ element, the properties available to you
for binding can vary substantially. Take the Input Fi e l d UI element, for
example, which is required in the following exercise. This UI element
contains the properties va 1 ue and vi s i b 1 e, among others. If you bind
the va 1 ue property to an attribute, you can create a relationship between
the Ul and the context. Then, if you change the text in the input field of
the browser, this change will be immediately reflected in the respective
context element/attribute. The context also enables you to manipulate
the Ul element in the browser. For example, if you bind the v i si b1 e

property to a context attribute of the ~J OY _BOOLEAN type, you can control
the visibility of the input field by setting the attribute value either to "X"
or " " (blank).

Context I 2.4

Context and Ul
elements at design
time

2 I Web Dynpro Architecture

Data binding of Ul
elements at

runtime

The process of binding data between UI elements and the context occurs
in the context editor at design time. At this point in time, the context has
neither node nor element instances. You must then make sure that the
bound properties of the UI element can be read in the context during
runtime. Incorrect programming can resu lt in errors and even cause the
program to terminate.

We will now go through the possible scenarios for binding the property
of a UI element to an attribute of a context node with cardinality o .. n:

,. Node does not contain any element
This is the worst case scenario. The UI element tries to read the bound
property from the node. However, since no node element exists with
the attribute, the framework will abort the application with the fo l
lowing error message:

Cannot resolve context binding of property <property name>: Node <node
name> does not contain any elements.

,. Node contains exactly one element
The Ul element can read and display the property without any prob
lem from the node or element in the context. Note, however, that the
automatic initialization of the lead selection is a prerequisite for this,
which will be described in the following sections.

,. Node contains several elements
The UI element can read and display the property without any problem
from the node or element in the context. However, because the node
contains several elements, the question is this: From which of the exist
ing elements should the bound property be read? The lead selection,
which is described in the following sections, gives us the answer.

Selection When looking at Figure 2.49, you may have noticed that you can main
tain the property SELECfiON for each context node. Here, you can choose
from the same options that are available for the cardinality. The node
property SELECTION indicates how many elements of a context node can
be selected at runtime. Therefore, this property is primarily imp011ant
for displaying tables:

,. For example, if you select SELECfiON o .. 1 for a node, at runtime, you
can select a maximum of one row in a table.

86

~ If you select 1 . . n, at least one table row is always selected. You can
then select any number of additional table rows using the I ctrl I and
I Shift I keys. A method provided by the context node returns the
selected elements.

Lead Selection

Within each node, a single element can contain the lead selection. The
lead selection represents a selected element that plays a specific role in
the interaction with UI elements. For example, the lead selection deter
mines from which of the existing context elements the UI element prop
erties bound to node attributes will be read. In other words: Which of
the available node elements should be displayed in the UI? Figure 2.50
illustrates the importance of the lead selection for the data binding of
UI elements.

Context (1 .. 1)
Attribute 1: anyValue
Node 1 (O .. n)

Element 1 -,-Attribu te 2: Value11
L Attribute 3: Value12

Element 2 -,- Attr~bute 2: Value2
L e · e

Element 3 -,-Attribute 2: Value31
L Attribute 3: Value3

View

Text Field: Value21
In ut Field: Value22

Lead
Selection

Figure 2.50 Data Transport between Context and View

You can set the lead selection in several different ways, for example by
using methods in the context or via specific UI elements. The OropOown ·
By Index UI element represents a useful example in this respect: If you
select an item from a dropdown list that is based on a context node, the
lead selection is automatically set for the selected element. In tables. it
is always the firs t selected row for which the LEAD SELECTION flag is set.
All subsequent selected elements are only assigned the SELECTION flag.
You can recognize the lead selection in tables by its stronger background
color as compared to the other selected rows.

Context I 2.4

Setting the lead
selection

2 I Web Dynpro Architecture

Automatic Initialization of the Lead Selection

Imagine the following scenario: You want to bind the content of an input
field to an attribute from a context node with cardinality 1 . . 1. This means
that the node always contains exactly one context element. However, the
input field always requires a set lead select ion to resolve the binding t o the
node. If the lead selection is not set, Web Dynpro aborts the application.

You have the following two options: You can set the lead selection manually
for the on ly existing element, or you can check the checkmark for the INITIAL
IZATION LEAD SELECTION property in the node properties. This property deter
mines whether the lead selection should be set automatically when needed,
in case it has not yet been set.

Note that the automatic initialization of the lead selection does not depend
on the selected cardinality. If a node contains more than one element , the
first element of the node is set as the lead selection.

Context Ed it or and Context

[8) It's time fo r another exercise! You will now Jearn how to use the context
editor, how to bind Ul elements, and how to read the context with in
methods. At the start of the exercise, you will create a context node for
storing a ranking of your favorite ice cream flavors in the component
controller. After that, you will design the V_HELLO_WORLO view in such a
way that you insert a new input field in the view, which allows you to
specify your favorite ice cream flavors. In a fi nal step, you will program
a method that allows you to read and then delete the values in the input
field. Follow these steps:

Creating a node 1 . Go to the CONTEXT tab of the component controller. Right-click on the
CONTEXT root and select CREATE • NODE, as shown in Figure 2.51 .

Contex1 COMPONENTCON'TROLLER

~reate ~ Nodi
&,reate Using the Wizard ., 8tlribute ~
.Q.hange ..-------'

Qisplay

Figure 2.51 Creating a New Context Node

88

2. Enter ICECREAM as the node name, and select cardinality o .. n. Make
sure that all properties are set as shown in Figure 2.52. Then, click on
the green checkmark on the left (the one without a label) to create
the node.

@Create Nodes x

~~~ ~ Ad~ Attribute from Strucrure II~ Additional No~e IIX J 

Figure 2.52 Properties of the New Node 

Context I 2.4 

3. This takes you back to the context editor. So far, the new node is Adding attributes 
still empty. To add attributes to the node, right-click on the node and 
select CREATE • ATTRIBUTE. 

4. The dialog shown in Figure 2.53 appears; it lets you define the prop· 
erties of the new attribute. 

Create two new attributes with the following properties: 

"' ATTRIBUTE NAME: RANKING, 'IYPE I 

"' A'ITRIBUTE NAME: NAME, 'IYPE CHAR_LG_32 

The RANKING attribute will be used to store the rankings of the respec· 
tive ice cream flavors (NAME attribute). 



2 I Web Dynpro Architecture 

[8] 

Creating an 
attribute 

@ Create AHnbute x 

AJtribute Name 

Type assignment 

Type 

Readoonty 

Default Value 

Input Help Mode 

Determined Input Help 

Type oflnpul Help 

[R.i:Ni<liis·-··-----·--·-·-·---J --- ---·--'-

l!i!'• 
I 

I 

JAul omalic 
I 

[ 

~!¥' Addllfonal AMbute J(!J 

Figure 2.53 Creating New Attributes 

At th is point, the tasks to be performed in the component controller are 
finished. You will need the IC ECREAM node at a later point in time. 

Using Contexts Accurately 

You can store any data type such as st ruct ures, tables, and objects, w ithin a 
context. However, you shou ld not use a context as an alternative storage for 
controller attributes; use it only for U 1-relevant data. 

In the next step, you should create a new attribute that allows you to 
enter ice cream flavors in the context of the V_HELLO_HORLD view. 

1. Go tO the CONTEXT tab of the V_HELLO_HORLO view. 

2. Create a new VALUE attribute with data type CHAR_LG_32, directly 
under the CONTEXT root. 

3. Then, select the lAYO UT tab. Delete the TextVi ew element TV_HE LLO_ 
WORLD. You will not need this element for the rest of this exercise. 

[8] In the following steps, you will create an element label (Label ) and an 
input field for the VALUE attribute in the view editor. You must manually 
create and maintain these two Ul elements, as well as their properties, 
in the view editor. 

90 



Web Dynpro Code Wizard 

At this point, we would like to again point out the options provided by the 
Web Dynpro Code Wizard (see Figure 2.40). This wizard enables you to gen
erate forms and tables in the view editor. To do so. you must select a context 
node after launching the wizard. You can then choose those attributes from 
the node for which you want to generate Ul elements. 

Context I 2.4 

1. Insert a new Ul element called IF _ I CECREAM of the Input Fie 1 d type creating an input 
into the v_HELLO_WORLO view. Position this element before the NEXT field 
button. 

2. Bind the U! element IF _ I CECREAM to the context attribute VALUE. To 
do so. click on the BINDING button of the VALUE property (see Figure 
2.54). Then, select the VALUE attribute by double-cl icking on it in the 
window that opens. The input field is now bound to the attribute. 

too !lip L 
value ' A' 
visible 1vlslble Ill ~ 

Figure 2.54 Data Binding to the Context 

3. Create a label for the input field. To do so, you should insert a new UI Creating a label 
element called LB_I CECREAM of the La be 1 type before the input field. 

4. Bind the label to the I F _ I CECREAM input field. To do so. select I F_ 

ICECREAM from the dropdown list of the LABELFOR property. as shown 
in Figure 2.55. 

enabled 
labeiFor 

text 

IF _ICE CREAM iD 
.----1 

Figure 2.55 Defining the Label Reference 

5. Due to the binding between the label and the input field, the label 
property r exr will be read automatically from the data element of the 
bound context attribute. Consequently. you typically do not need to 
maintain any extra text in the label. However, in our example, we 
used a generic data element. Therefore. you should now enter the 
string "my ice cream favori tes" under TEXT in the label properties. 

Adding text for the 
label 



2 I Web Dynpro Architecture 

[P] 

Creating the ADD_ 
ICECREAM action 

ADD_ICECREAM 
action 

Testing the 
application 

You have now created an input field with a label and bound it to an 
attribute of the context. In the next step, you will ensure that the VALUE 
attribute will be read and the value of the component controller method 
add_icecream( > will be transferred every time you press the I Enter I 
key. The IF _ICECREAt·1 input field should then be emptied again to allow 
for entering another ice cream flavor. 

1. To do so, create the new AOO_I CECREAI4 action for the onEnter event in 
the properties of the 1 F _I CECREAM input field. 

2. Go to the method body of the new action. The easiest way to do this 
is to double-cl ick on the action name in the UJ element. 

3. Enter the code shown in Listing 2.1 into the method. This code reads 
the ice cream flavor entered by the user and transfers it to the add_ 
i cecream( ) method in the component controller. 

OATA : lv_icecream TYPE char_lg_32 . 
* Read VALUE att r ibute from input field/context 
CALL METHOD wd_context ->get_attribute 

EXPORTING 
name - ' VALUE' 

IMPORTING 
value= lv_icecream . 

* Rank ice cream in list of favorite ice cream flavors 
wd_comp_controller->add_icecream( name= l v_icecream ) . 
* Oelete value VALUE input fie ld/attribute 
CALL METHOO wd_context- >set_attribute 

EXPORTING 
name = ' VALUE ' 
value - ". 

Listing 2.1 Reading and Emptying the VALUE Attribute 

Activate the component and test the application. It should look like the 
one shown in Figure 2.56. You can now enter any ice cream flavor in the 
input field. The I Enter I key enables you to transfer the ice cream flavor 
entered to the currently empty add_ i cecream( ) method in the compo
nent controller. The content of the input field is then deleted so that the 
next ice cream flavor can be entered. 

92 



T r r I .g """' wane• . fir< 1110'1. 

Figure 2.56 Testing the Application 

Because the add_ i cecream( ) method in the component controller is 
still empty, the ice cream flavors you enter will not yet be stored in the 
context of the component controller. In the following steps. the flavors 
should be stored in the ICECREAM context node in the sequence of their 
entry. 

1. Go to the METHODS tab of the component conu·oller and open the 
add_i cecr eam< ) method. 

2. Launch the Web Dynpro Code Wizard. The wizard enables you to 
generate the code for reading node elements, as well as for edi ting 
and adding new elements w ith a few clicks of the mouse. 

3. After launching the wizard, go to the CONTEXT tab and then select the 
APPEND option and then the I CECREAM context node. To do so, click on 
the node selection icon (see the mouse pointer in Figure 2.57) and select 
the node by double-clicking on it in the window that appears. Click on 
the green checkmark to terminate the Web Dynpro Code Wizard. 

General 

[Nodef.olltrlbute ICECREAK 

Operation on Conteld: 

Q Read 

Q set 
<!)Append 

0 As Table Operation 

Figure 2.57 Code Wizard- Appending New Elements 

93 

Context I 2.4 

Appending Code 
Wizard elements 



2 I Web Dynpro Architecture 

Analyzing the 
generated code 

Tidying up the 
code 

4. At this stage. lhe Code Wizard has generated the code for appending a 
new row structure and has inserted it in the method. You should now 
take a closer look at this code. 

After the data declaration, the get_chi 1 d_node< l method of the CON
TEXT node fills lhe 1 o_nd_i cecream reference to lhe I CECREAM node. 
Then, the call of the bi nd_structure( ) method appends the 1 s_ 
i cecream structure at the end of the node. The set_ i nit i a 1_e 1 ements 
- abap_fa 1 se parameter prevents an overwriting of existing node ele
ments and appends the structure as a new table row. 

local Types for Data Declarations within the Context 

The Web Dynpro framework creates two local data types in the controller
one for a row structure and one for a table structure -for each statically de
fined context node. You can use these data types in the respective controllers 
when entering definitions via the DATA statement. 

~ Row structure: wd_thi s- >e 1 ement_ <name_of_node> 
~ Table structure: wd_this->elements_<name_of_node> 
In addition, the framework creates a constant for each node based on the 
'•dctx_ <name_of _node> scheme. 

5. Before you can bind the 1 s_i cecream structure to the node, you must 
fill it with the ice cream flavor and ranking. For this purpose, you 
must fill the NAME field of the structure with the import parameter 
name. 

6. In the last step, you need to store the ranking of the ice cream flavor 
in a global variant called gv_ranking_counter of data type I as a com
ponent controller attribute. With each call of the method, this vari
able must be increased by one. 

7. If you want, you can tidy up the generated source code and format it 
according to your requirements. When doing so. you should also take 
a look at the methods available in the IF _wD_CONTEXT_NODE interface. 
After the cleanup, the method should look like the one shown in List
ing 2.2. 

94 

* This method adds a new ice cream flavor to the context 
DATA : lo_nd_icecream TYPE REF TO if_wd_contex t_node . 

ls_icecream TYPE wd_this·>element_icecream. 
1o_nd_icecream = wd_context·>get_child_node( 

name- wd_this·>wdctx_icecream ) . 



* Fill ICECREAM row structure 
ADO 1 to wd_this->gv_ranking_counter . 
ls_icecream-ranking = wd_this->gv_ranking_counter . 
ls_icecream -name - name . 
* Append ro1~ structure to node 
lo_nd_icecream->bind_structure( 

new_item = ls_icecream 
set_i nitia l_elements = abap_false ) . 

listing 2.2 add_icecream() Method (Component Controller) 

2.4.3 M apping 

Context I 2.4 

So far. we have treated individual contexts separately. However. Web What is mapping? 
Dynpro also allows you to share nodes and attributes across different 
contexts. This process is referred to as mapping. 

The process of mapping allows you to copy the structure of the original 
and to create a reference from the mapped context to the original. At 
runtime. the data is not copied. only referenced. Consequently. the data 
exists only once in the original context. If a controller changes mapped 
data, these changes will have an immediate effect on all other controllers 
that reference the same data. 

Why should you use mapping? Mapping allows you to share a context Why use mapping? 
across several controllers. For example, if you have two views that fre-
quently require similar data, it makes sense to store the common data in 
a controller context that can be accessed by both views. Usually, this is 
the component controller. However, you can also use the window con-
troller or a custom controller for this purpose. 

Regarding the ZWDC_02_HELLO_WORLD component, it is advisable to map Mapping examples 
the componem controller node ICECREAM to the v_RESULT view and the 
W_HELLO_HORLD window. For example, mapping the node to the v_RESULT 
view allows for the display of data that originates from the component 
controller. The window requires access to the node to provide data to 
the remove_i cecream( ) method. (You may wonder why the method is 
stored separately in the window controller and not in the component 
controller like add_i cecream< ). This is because the exercises in th is 
chapter are structured in such a way that they cover the largest possible 
number of aspects of the Web Dynpro architecture.) 

95 



2 I Web Dynpro Architecture 

Mapping by 
drag-and-drop 

To fam iliarize yourself with the mapping functionality, you should use it 
right away. For this purpose, in the next exercise, you will define a map
ping from the component controller to the window and view controllers. 
Then, you will add a Oropdown UI element through the view controller, 
which will enable you to scroll through the previously entered list of ice 
cream flavors. 

1. Select the CONTEXT tab of the window. Drag the I CECREAt•1 node from 
the window area on the right and drop it in the local window context 
(see Figure 2.58). 

This way, you have created a mapping between the component and 
the window controller. The arrow pointing to the right in the node 
indicates that the node has been mapped. 

Conte><! yt _HELLO _WORLD 

· QCONTEXT Context COMPONENTCONTROLLER 

• Q CONTEXT 

Figure 2.58 Mapping between Component Controller and Window Controller 

Deleting elements 2. Complete the remove_ i cecream( l method in the window controller. 
The method should be called from within the V_RESULT view using a 
new button, and it deletes the element containing the lead selection 
from the context node. You can then set the lead selection in the view 
via a OropOownBy Index Ul element. 

To delete the element that contains the lead selection, you can use the 
get_ 1 ead_se I ect i on ( >and remove_e I ement ( l methods of the node. 
To do so, you must first retrieve the selected element via the first of 
the two methods and then delete it by transferring to the remove_ 

e I ement ( l method. Listing 2.3 contains the complete method. 

DATA : lo_nd_icecr eam TYPE REF TO if_wd_context_node . 

l o_el_icecream TYPE REF TO if_wd_context_element . 
lo_nd_i cecream = 

wd_context->get_chi ld_node( wd_th i s-
>wdctx_ icecream ) . 



lo_el _i cecream = lo_nd_i cecream->get_ lead_selection( ) . 
1o_nd_i cecream->remove_element( 1o_el_icecream ) . 
>td_comp_con t ro 11 er- > f i re_set_pr opert i es_ev t ( ) . 

Listing 2.3 remove_icecream( J Method 

Context I 2.4 

3. Go to the CONTEXT tab of the V_RESUL T view. As was the case with the v_RESULT view 

window. you should now map the ICECREAM node to the view. 

Updating Mapped Nodes 

Imagine the following scenario: You have created a node in the component 
controller and integrated this node into the context of a view using a map
ping. Shortly thereafter, you notice that you forgot an important attribute 
when creating the original node. What can you do now? 

Add the missing attribute to the original node of the component controller. 
Then, right-click on the mapped context node. Select the UPDATE MAPPING 

item from the context menu. This way, you can ensure that all attributes of 
the original node are transferred again to the mapped node. After you have 
updated the mapping, the node in the view is up-to-date again. 

4. Change to the layout view. Insert a OropOownBy Index element called 
OOBI_RANKING after the BACK button. This UI element enables you to 
display an anribute of a context node in a dropdown list. During 
runtime, you can set the lead selection by selecting an item from the 
dropdown element. 

5. Bind the TEXTS property to the RANK! NG attribute of the I CECREAN node. 
This causes the element to display the ranking of individual ice cream 
flavors, but not the flavors themselves (NM1E attribute). In addition, 
you can select the individual rankings via the e lement. 

6. Create a new action called APPL v_coNTEXT_CHANGE for the onSel ect 

event in the dropdown element. Leave this action empty. 

When you select this action from the dropdown list to call it, the web 
browser sends a roundtrip to the application server. The application 
server. in turn. processes the resu lt and at the same time updates the 
view. If you had not implement this method, you would have needed 
an APPLY button for updating the view. 

7. Insert a Text View element called TV_NAt1E directly behind the drop
down element. Bind its TEXT property to the I CECREA1•1 node attribute 

97 

Adding a 
dropdown list 

Creating an empty 
action 



2 I Web Dynpro Architecture 

Testing the 
application 

Program 
termination 

NAr·1E. Similar to the Dropdown element, this UI element will always 
display the value of the node attribute NAME of the respective lead 
selection at run time. 

8. Finally, you should insert a button called BTN_REt10VE behind the Text 

element. This button should call the remove_i cecream< l method in 
the window controller. Add the label "Remove" to the button. Then, 
generate a new action called REMOVE from within the button and enter 
the following line in the event handler method of the action: 

l<d_th is· >go_w_he 11 o_wor 1 d ·>remove_ i cecream( l . 

This step completes the exercise. Perform a syntax check and activate 
the component. Then, test the application. Enter several of your favorite 
ice cream flavors on the first page and use the NEXT button to view the 
result. The dropdown list now allows you to browse through the rank· 
ing of ice cream flavors (see Figure 2.59). After you have selected a rank 
in the dropdown list, the text field containing the flavor is automati· 
cally updated. This is due to the lead selection. Whenever you select an 
element in the dropdown list, the lead selection is set anew and all UI 
elements bound to the node are updated on the basis of the new lead 
selection. The REMOVE button enables you to delete a selected element 
from the list or node. 

(,~ - ~· ... · 
• Bact 2 1• TRAweERRY ICE CREAr.il Remove I 

1 

2 
3 

, 

n 

Figure 2.59 Testing the Application- Selecting Ice Cream Flavors 

Watch out when deleting elements! If you delete the last element from 
the I CECREAt1 node or if you navigate directly to the second view with· 
out entering an ice cream flavor, the system will abort the process and 
display the following error message: 



The following error text was processed in the ~stem NSP: Adapter error in 
INPUT _FIELD "ROOTUIELEMENTCONTAINER_T1" of view "ZWDC_GOS_ 
USER.V_MAIN": Context binding of property VALUE cannot be resolved: Node 
V _MA1N.1.TEST does not contain any elements. 

This error message occurs whenever the property of a UJ e lement has 
been bound to a context attribute at design time and the path to the 
attribute element cannot be resolved at nmtime (empty node). Several 
options are available to resolve this error: 

~ You can make sure that the node is always filled with at least one ele
ment. To do so, you can either set the cardinality of the node to 1 .. n 

or use supply functions to automatically fill the node with data. The 
following section describes supply functions in greater detail. 

~ As a preemptive measure, you can also use the ENABLED property of 
the ReMOVE button as well as the VISIBLE property of the text field to 
prevent the program from terminating. This is described in Section 
2.4.5, Controlling the Visibility ofUI Elements via the Context. 

2.4.4 Supply Functions 

Supply functions enable you to automatically initialize context nodes 
with data. You can create a separate supply function for each node. These 
supply functions are called by the framework every time the data of their 
respective nodes is accessed at runtime, provided the nodes do not con
tain any data yet or have been invalidated in a previous step. 

Regarding the exercise in this chapter. you could use a supply function 
every time the user skips entering ice cream flavors in the first view 
and navigates directly to the second view, v_ RESUL T. At that point, the 
ICECREA~1 node is empty. However, because the TEXT property of the text 
field is bound to the node and requires an element for binding. the sup
ply function is called by the framework to fill the node. 

You will now create a supply function: 

1. Go to the CONTEXT tab of the component controller. 

2. Click on the ICECREM1 node and enter the value SUPPLY_I CECREAN in 
the SUPPLY FUNCTION field (see Figure 2.60). 

99 

Context I 2.4 

Filling nodes 
automatically with 
data 

Controlling the 
visibil ity of Ul 
elements 

Supply functions in 
the ICECR EAM 
node 

[8] 



2 I Web Dynpro Architecture 

Testing the supply 
function 

Pro1•erty jValue 
Nodes 
Node Name ICECREAIA 
lnte~ace No~e 0 
Input Element (Ext) 0 
Dictionary structure 
Cardinality o .. n ill 
Selection 0 .. 1 ill 
InitialiZation Lead Selection ~ 
Singleton 0 
Supply Function SUPPLY _ICECREAIII 

Figure 2.60 Creating a Supply Function for the ICECREAM Node 

3. Double-dick on the function to display the source code of the sup
ply fu nction method. You can find the necessary coding for binding a 
table at the end of the commentary block of the method. Remove the 
commentary characters and fill the table with one or two rows. Your 
method should then look like the one shown in Listing 2.4. 

* Data dec laration 
DATA : l t_ i cecream TYPE wd_this ->elements_icecream . 

l s_i cecream LIKE LINE OF lt_icecream . 
* Create a tabl e with two standard i ce cream f l avors 
ADO 1 to wd_this->gv_ranking_counter . 
l s_i cecream-ranki ng = wd_this->gv_ranki ng_counter . 
l s_i cecream-name - ·vani l la ice cream ·. 
APPENO l s_i cecream TO lt_i cecream . 
ADO 1 to wd_this ->gv_ranking_counter . 
l s_i cecream-ranki ng = wd_this->gv_ranki ng_counter . 
l s_i cecream-name - 'Chocolate ice cream·. 
APPEND ls_i cecream TO lt_i cecream . 
* Transfer the tabl e to ICECREAM node 
node ->bind_tabl e( 

new_ i tems 
set_i ni t i al _el ements 

= l t_icecream 
- abap_true ) . 

Listing 2.4 Supply Function SUPPLY_ICECREAM 

Activate the component and test the application. When you navigate to 
the V_RESUL T view without entering an ice cream flavor, the supply func
tion interferes and fills the ICECREAt-1 node with data. The supply function 
is not called until the rendering takes place. 

100 



2.4.5 Controlling the Visibility of Ul Elements via the Context 

Something is still missing: If you use the REMOVE button to remove the 
las t element from the I CECREA~I node, the application aborts due to the 

missing binding between the text field and the node. In th is case. even 
the supply fu nction cannot provide any help because it is only called for 

initial nodes and no t afte r the dele tion of the las t node e lement of a node 
that has already been initialized. 

Context I 2.4 

Fortunately, you can solve this problem easily. Because the text fi eld has [I ] 
no more data to display after the last element has been deleted, it can 
be in tegrated by the view and set to invis ible. In addition, the REMOVE 

button can be disabled after the deletion of the last element. The UI ele· 
ments TV_NAME and BTN_REMOVE provide the ENABLED and VISIBLE proper· 

ties for this purpose. In the following. final exercise of th is chapter, you 
will bind these elements to the context: 

1. Go to the v_RESULT view. Open the context edito r and create a new 
attribute called VIS I BlE_ANO_ENABlEO of the HOY _BOOLEAN type. 

2. Bind the VISIBLE property ofUI element TV_NAME to the VISJBLE_ANO_ 

ENABLED attribute. Then, bind the ENABLED property of element BTN_ 

REMOVE to the same attribu te. 

3. Complete the previously created event handler method on_set_prop
erties( l. This method is called every time JCECREAM is changed. 

4. As soon as the node contains at least one element, the value of the 

vIS I BLE_ANO_ENABLED attribute must be set to true. To verity thi s, you 
can use the get_el ement_count( l me thod of the node. You should 

firs t uy to program the method without looking at Listing 2.5. 

DATA : lo_nd_icecream TYPE REF TO if_wd_con text_node . 
lv_bool TYPE wdy_boolean . 

lo_nd_icecream -
wd_context->get_child_node( wd_this·>wdctx_icecream l . 

IF lo_nd_icecream->get_element_count( l > 0. 
lv_bool - abap_true . 

ENOl F. 
wd_context ->set_attribute( 

EXPORTING 
name • ' VISIBLE_AND_ENABLEO' 
value= lv_bool l . 

listing 2.5 Event Hand ler Method on_set_properties() 

101 

Binding the visible 
and enabled 
properties 



2 I Web Dynpro Architecture 

Testing the After activating the component, you can test the entire application. If 
component you delete all ice cream flavo rs from the list, the TV _NAME tex t fiel d gets 

hidden, and the REMOVE button is grayed out (see Figure 2.61). The 
BACK button enables you to retu rn to the input field and re-ente r the ice 
cream flavors. 

I• 8ocl< I I Remove I 

Figure 2.61 Testing the V _RESULT View 

At this point, there is still room for further improvement of the appli
cation. For example, the ranking of ice cream flavors by dele ting and 
inserting elements can easily become messy; also, it would be conceiv
able not to set the N EXT button to active mode until at least one flavo r 
has been entered. However, these optimization tasks exceed the scope 
of this book and are not discussed here. 

2.5 Summary 

In this chapter, you have been introduced to the basic Web Dynpro 
architecture as well as to the fu ndamental techniques of programming 
Web Dynpro user interfaces. At this point, you know almost everything 
you need to know to develop complex Uis in Web Dynpro. 

Chapter 3, Developing Web Dynpro Applications, wi ll further enhance 
this knowledge and introduce you to a large number of new UI elements. 
Moreover, the next chapter will furthe r strengthen your knowledge of 
context programming and describe how you can arrange UI elements 
using the layouts provided by Web Dynpro. 

102 



Web Dynpro applications represent the view to one or more Web 
Dynpro components for a user. In this chapter. you will/earn 
how Web Dynpro applications are developed and how you can 
put their different features to use. 

3 Developing Web Dynpro 
Applications 

In th is chapter, you will use the knowledge you have gained so far to 
develop a Web Dynpro application. You will also get deeper insight into 
programming the context into view layouts and containers, using impor
tant Ul elements, tables, input help, and messages, as well as internation
alizing texts, which is known as internationalization or 118N. 

The different top ics discussed in this chapter will be integrated step by 
step into a Web Dynpro application we will create to show you how the 
theory is applied in practice. In this chapter, we will pursue fou r goals, 
as follows: 

~ Presenting and conveying detailed information about the elements of 
Web Dynpro development 

~ Explaining the procedure for developing a Web Dynpro application 
and using the presented techniques in practical examples 

~ Providing a complete - from the perspective of an operational Web 
Dynpro application - and integrated set of examples that you can 
reuse as templates for your development proj ects 

~ Presenting additional topics such as Run Time Type Identification 
(RTTI) or service calls that will make your life easier 

The app lication we will develop in this chapter has been named class 
browser. In this application, users can enter search criteria for an ABAP 
class. If the ABAP class is found, the description and methods for the 
ASAP class are displayed, both in a tree and in a table. 

103 

Web Dynpro 
deepening and 
broadening your 
knowledge 

Example of a Web 
Dynpro application 



3 I Developing Web Dynpro Applications 

Web Dynpro 
toolbox 

[8] 

Building a context 
structure 

As you can already guess, you will need numerous techniques from the 
Web Dynpro toolbox to implement this Web Dynpro application; thus, 
we have structured the sections in this chapter accordingly. We wi ll 
begin with programming the context. You will create a Web Dynpro 
component, define a context structure, and then use the tools for design
ing and programming the view. You will also use layouts, containers, and 
a number of view elements for designing the view layout. 

Topics Discussed 

We will discuss the following topics in thi s chapter: 

• Context programming 

• layouts and containers 

• Using important view elements 

• Messages and internationalization 

3.1 Context Programming 

As you have already learned, each controller has a context in which used 
data is hierarchically stored. Context nodes and context attributes are the 
basic elements used for context structuring. In this section, we will 
discuss in more detail how to create, change, and delete data in the 
context. 

In this chapter, you will create the ZWOC_03_CLASS_BROWSER Web Dynpro 
component as a warm·up exercise and review of what you have already 
learned. The component, which you will create as a LOCAL OBJECT, will 
be buil t incrementally throughout the chapter. Call the view you ere· 
ate V_NAIN_LAYOUT and the window w_t1AI N. As ide from the Web Dyn
pro component, you will also create a Web Dynpro application called 
zwoc_o3_CLASS_BROWSER_APP. (If you have any difficulties with this task, 
you can find the information you need in Section 2.1, Components and 
Applications.) 

To program the context, you must either build context structures or 
define context nodes using ABAP Dictionary structure types. 

104 



Context Programming I 3.1 

ABAP Dictionary Structure Types 

Structure variables are provided in ABAP to combine several scalar variables 
(simple data types such as date, time, and whole number values) in one unit. 
If you need the structure variable setup (type) several times, you can create a 
structure type in the ABAP Dictionary (Transaction SE11), which you can then 
use for typing structure variables. There are three kinds of structure types in 
the ABAP Dictionary; which one you use depends on the planned area of ap
plication for the structure type: 

• ABAP Dictionary structure 
You create ABAP Dictionary structures primarily for typing variables and 
interface parameters. 

• Transparent table 
A transparent table is a database table you defi ne in t he ABAP Dictionary 
and t hen create in the database. You can use it like an ABAP Dictionary 
structure for typing purposes. 

• ABAP Dictionary view 
This is a virtual table that does not contain any data; instead, it is an appli
cation-oriented view of one or more ABAP Dictionary table(s) . 

The structure type elements are known as fields or components. 

Recall the context nodes and attributes you created individually in Sec
tion 2.4, Context. First, you created the context node and then, you indi
vidually created every context attribute required for the context node. As 
an alternative to this method, you can proceed as follows : 

1. Define a structure type in the ABAP Dictionary with the required 
structure components. 

2. Create a context node in the required controller. For the typ ing, use 
the structure type you previously created. 

Let us look at an example of the described procedure. The user should 
be offered a selection screen to search for ABAP classes and must enter 
the name of the ABAP class he wants to find. If the ABAP class is found , 
its description is displayed in the selection screen. To be able to imple
ment this requirement, you must (if you follow the described procedure) 
first create an ABAP Dictionary structure for the selection criteria in the 
ABAP Dictionary: 

105 

Building a cont ext 
st ructure with a 
st ructure type 



3 I Developing Web Dynpro Applications 

Creating a 
structure type 

Determining a data 
element 

1. Switch to the initial screen of the ABAP Dictionary using Transaction 
SE11. 

2. As described, several kinds of structure types are available. Because 
you will only use the structure type for typing the node and variables, 
choose the structure as the structure type. Select the DATA TYPE radio 
button in the ABAP Dictionary Initial Screen. 

3. Enter the structure name ZST_03_WD_CLASS_SEL_CRIT in the input 
field for the DATA lYrE radio button. The name begins with the letter 
Z and is therefore in the customer namespace. 

4. Click on the CREATE button and set the STRUCTURE radio button in the 
selection dialog box that appears. Click on the green checkmark to 

confirm your entry. 

5. In the maintenance screen for the structure, assign a short description 
such as "Class Selection Criteria" for the ABAP Dictionary structure. 

Now, create the components fo r the su·ucture. The name and description 
of an ABAP class are required as components: 

,. Name 

I> COMPONENT: NAME_CLASS 

1> COMPONENT TYPE: SEOCLSNAME 

,. Description 

1> COMPONENT: DESCR_C LASS 

I> COMPONENT TYPE: SEODESCR 

1. To determine the component types, we will analyze the initial screen 
of the Object Navigator (Transaction SE24) in this example. The input 
field for the name of an ABAP interface or ABAP class is available 
there. The semantic help for the input field appears when you place 
the cursor in the OBJ ECT TYPE input field and press the OJ] key. If you 
now click on the TECHNICAL INFORMATION button, the technical infor
mation for the input field appears. In the DATA ELEMENT display field 
of the FJELD DATA group, you will find the name of the data element 
(SEDCLSNAME) that was used for typing the input field. 

Enhancement 2. You still have to define how the ZST_03_WD_CLASS_SEL_CRIT structure 
category can be enhanced in the future. To do th is, use the ExTRAS • ENHANCE

MENT CATEGORY ... menu path. In the next selection dialog box that 

106 



Context Programming I 3.1 

appears. set the CAN BE ENHANCED (D EEP) radio button and confirm 
your entry using the CH ECKMARK button. 

3. Select the structure by pressing the Ac nvATE (I Ctrl l + 1m key com- Activating 
bination) button. The resu lt of your previous work is displayed in 
Figure 3.1. 

Dictionary: Maintain Structure 

4:> '* "f? ~~ t:8 ,(a 0 '* o"a £1 [JJ Ill Hlerarcny Display Append Structure ... 

Structure 

Snort Description 

Attributes 

r.r z"'s T;-_;>93;-;7,VD' _'-CL-;A'-ss"""'s E:-;-L-:C::;;R:;:IT;---,1 New 

J!rwo search Crass 

Predefined 

RTy ... Component type 

0 SEOCLSNAME 

J 

1 I 2 

Data Type Length Oecim ... Short Description 
CHAR 30 0 Object Typo Name 

CHAR 60 description 

Figure 3.1 ZST_03_WD_CLASS_SEL_CRIT Structure in ASAP Dictionary 

You have now created the complete ZST_03_1~D_CLASS_SEL_CRIT ABAP 
Dictionary structure and can use it in defining the context structure. 
Beforehand, however, you have to perform another exercise to consoli
date your knowledge. Create an ABAP Dictionary structure that will be 
used for typing the context node for ABAP class methods. Call the ASAP 
Dictionary structure ZST_03_WD_CLASS_METHOO. Table 3.1 contains the 
required components and their types. Do not forget to set the enhance
ment category and to activate the structure. 

Component 

NAME 

K I NO_I CON 

IS_CLASS 

IS_ IN TERFACE 

IS_REOEFINEO 

Component Type 

SEOCPONA11E 

I CONNA~1 E 

WOY_BOOLEAN 

WOY_BOOLEAN 

WOY_BOOLEAN 

Table 3.1 Components and Component Types for the ZST_03_WD_CLASS_METHOD 
ASAP Dictionary Structure 

107 



3 I Developing Web Dynpro Applications 

Defining a context 
structu re 

Everything is now ready to define the context structure in the zwoc_o3_ 
CLASS_BRmi SER Web Dynpro component. As already mentioned, you 
need a context node that can transfer the data from the selection screen 
and a node that can include the methods found for an ABAP class. 

Context node for 
the selection 

We will begin with the context node for the selection criteria. The data 
from the selection view should also be available for the component con
troller because accesses to the context that are implemented later are all 
executed by the component controller. This means that the context node 
for the selection is created in the component controller; later, access can 
be made available for other controllers using context mapping. 

1. Switch to the component controller context of the ZWDC_03_CLASS_ 

BROWSER Web Dynpro component. You will find it on the CONTEXT tab 
in the component controller. 

Creating nodes 2. Create the CLASS_SEL_CRIT context node: Selecting first the context 
menu on the context root node and then the CREATE • NODES menu 
option opens the maintenance dia log box for the context node (see 
Figure 3.2). 

' 

3. Enter the context node name CLASS_SEL_CRIT in the NODE NAME 
input field (0 ). 

. __ , 
@' C1eat.e Nodes x 

Node Name 

ln1erface Node 

lftJ)III Etemenl (Ex!) 

~ ltLASS_SEL_CR TT 

No 
No 

• 
• 

OlctionarystnJelure e ZSl_83~WO_CiASS~SEl_:-tRlf 
Cardinality 1..1 • 
Setettlon 0 . .1 • 
II'WI.Lead Seteec1ion Yes • 031a T"~Pt 
Singleton No • SEOCLStwtE (::H.\R 

Sup~ Funcwon $EOOESCB C!Wl 0 ShotS • 

• • • • 

Figure 3.2 Creating the CLASS_SEL_CRIT Context Node Using an ABAP Dictionary 
Structure 

108 



Context Programming I 3.1 

4. The next step is a new feature. In the DICTIONARY STRUCTURE input 
field, enter the name of the ABAP Dictionary structure you created for 
the selection criteria: ZS T_03_1~D_CLASS_SEL_CR IT (f)). By doing so, 
you define the structure type from which you want context attributes 
to be determined for the context node. 

5. Click on ADO AITRILlUTE FROM STRUCTURE to select the attributes you Adding attributes 
need (E)). A selection dialog box appears for the components of the 
specified structure. 

6. Select all components to change them to attributes (0 ). 

7. Finally, cl ick on the button with the green checkmark to confirm your 
selection. 

You have now created a context node with context attributes. This 
method of creating context nodes is used frequently in practice because 
context nodes created using the structure type offer advantages over con
text attributes created individually such as environment-sensitive input 
help. The result of your efforts is illustrated in Figure 3.3. 

Component Con1roller CflHPOHENTCONJROllER Active 

Properties com"'m=iiiiiO AtlribuiK Events NeiMds 

I D Controller usage 

ConlexE COMPONENTCONTROLLER 
• Q CONTEXT 

~ CLASS_SH_CRIT 
· 'tl NAME_CIASS 
· 'tl OESCR_CLASS 

Property 

~ 
Nod-e Name 
tnterf.ace Node 
Input Element (Ext) 

v .... 

CLASS_SEL.,CRIT 

r 
n 

Oktion.ary S-~ture ZST _03_WO_OLASS_SEL_CRIT 
Carellnaht,o 1 .. 1 Ia 
SeJecCion A._1 Gl 
tnllltlliZ31ion Lead SeJecwon U V 
S¥ngteton n 
Supply Funttlon 

Transfef attribules 

Figure 3.3 CLASS_SEL_CRIT Context Node with Context Attributes 

When you look at some of the properties of the CLASS_SE L_CRIT context Properties 
node, you will discover that exactly one context element is created from 

109 



3 I Developing Web Dynpro Applications 

this context node. This element is defined by the CARDINALITY 1 .. 1 (0 ). 

In addition, the Web Dynpro framework performs the INITIALIZATION 

LEAD SELECHON, because this property is selected (f)). 

These two settings ensure that a context element is available for transfer
ring the input data from the selection view still to be created. 

[g) Now, create the METHOOS context node in the component controller con
text. For th is, use all of the components from the ZST _03_wo_CLASS_ 

METHOO ASAP Dictionary structure, as described for the ZST_03_wo_ 

CLASS_SEL_CRIT ASAP Dictionary structure. Set the CARDINALITY of the 
context node to the O .. n value because no methods may be found for the 
ASAP class; thus, the 0 lower limit. However, you may also have a situa

tion where several methods are found ; thus, the n upper limit. 

Setting default 
values 

You have now created the prerequisites to get started with the discussion 
of context programming. In the following sections, you will see how you 
can create and manipulate data in the context. 

3.1.1 Changing Attribute Values of an Element 

To be able to explain how to implement access to context, we assigned 

the following task for the application: If the user starts the Web Dynpro 
application, he should be offered a defau lt va lue for an ASAP class name 
in the selection screen; for example, CL_GUI_ALV_GRIO. There are two 

options you can use here: defau lt values or programming. 

Default Value of an Attribute 

Assign the CL_GUl_ALV_GRIO value to the DEFAULT VALUE context prop
erty for the NAME_CLASS context attribute. You should be familiar w ith 

this procedure from ASAP programming whereby you can assign an ini
tial value to the variable to declare a variable using the VALUE addition 

for the DATA statement. When you assign initial values in the context 
properties of the NAME_C LASS context attribute, the result (0 ) should 

appear as shown in Figure 3.4. 

110 



Context Programming J 3.1 

· 'b OESCR_CLASS • 

Mdbute 

Attribute Name 

Type assignment 
Type 

Value 

NAME_Cl.ASS 

Type Q 
ZST_03_WO_CLASS_SEL_CRIT·NAME_CLASS 

Read-onty 
Default V-alue 
Nun varue 

0 CL_OUI_Al.V_GRIO 
0 

.., 
Input Help Mode 

formatting 
Compression 

Deactivated 

Oefaun vatue 

Figure 3.4 Setting the Default Value of a Context Attribute 

Programming 

The programming involves assigning the CL_GUI_ALV_GRID value to the 
NAME_CLASS context attribute using context programming. We will take 
a closer look at the basic procedure for this option. 

To be able to access the NAME_CLASS context attribute, you have to navi
gate through the context hierarchy. Navigation begins with the CONTEXT 

root node. From there, you navigate to the CLASS_SEL_CRIT subnode 
that contains the NAME_CLASS attribute. You then access the content of 
the context attribute using the element for the context node (see Section 
2.4, Context). Because the CARDINALITY property of the CLASS_SEL_CRIT 

context node was set to 1 .. 1, the element is ava ilable for the context 
node. If you have access to the element, you can set the va lue for the 
NAME_CLASS context attribute. 

We will use the IF _w o_CONTEXT_NOOE ABAP interface for working with 
context nodes; for example, for creating, reading, changing, and deleting 
node elements. Table 3.2 contains the most important methods from this 
interface, which we will discuss and use in this section. 

Method 

get_child_node( ) 

get_element( ) 

Description 

Determines the subnode reference 

Determines the element from the node 
collection 

Table 3-2 Selected Methods of the IF _WD_CONTEXT_NODE ABAP Interface 

111 

Navigating in the 
context hierarchy 

get_child_node() 



3 I Developing Web Dynpro Applications 

Method 

get_e1ement_count( ) 

get_static_ 
attributes_tab1e< l 

create_e1ement( ) 

bind_element< l 

bind_structure( ) 

bind_tab1e( ) 

remove_e1ement( ) 

Description 

The number of elements in the node collection 

All attributes of all elements in the form of an 
internal table 

Creates an element 

Adds a node collection element 

Creates and adds an element in the node 
collection from the structure 

Creates and adds, per entry, an element in the 
node collection from an internal table 

Removes an element from the node collection 

Table 3.2 Selected Methods of the IF _WD_CONTEXT_NODE ASAP Interface (Cont .) 

Under the controller attributes for each controller, you will find the 

wd_context attribute that is typed with this ABAP interface. The get_ 

chi 1 d_node< l ABAP interface method from this particular ASAP inter· 

face is used to determine the reference to a child node. This means 

that this ABAP interface method enables you to navigate in the context 

hierarchy. 

child_node An analysis of the interface for the method, which you can see in Figure 

3.5, shows that the chi 1 d_node returning parameter is an IF _IW_CON

TEXT _NODE type. (If you are not fam iliar w ith analyzing the interface of a 

method, you can find additional information about this in the Analyzing 

a Method Interface box.) 

lnlerface 

Methods 

Type Pa ... 0 ... Typing Melhod Assoclaled Type 

Importing 0 0 Type I 

Impor11ng 0 0 Type STR I HG 

ReiUmlng 0 0 Type Ref TO If -~D_CONTEXT_NODE 

Oefauttvalue Description 

USE_LEI\O_SELECTION Index ofConl9l<l Elemenl 

Name of LOwer· Level Node 
LOwer· Level Node 

Figure 3.5 get_child_node() Method Interface 

112 



Context Programming J 3.1 

You will also find the optional index importing parameter for determin- index 

ing the element index in the higher-level node to which the node instance 

belongs. If you do not use the i ndex importing parameter, the lead selec-

tion of the higher-level node is used for determining the element. 

Analyzing a Method Interface 

The methods for ABAP classes or ABAP interfaces have parameters known 
as formal parameters that can transfer data from the caller or return it to the 
caller (actual parameters). The parameters as a whole are referred to as the 
interface or signature of a method. The parameters are divided into groups 
(types) depending on their intended purpose: 

• Importing parameters 
You can use these parameters to transfer data to the method. 

• Exporting parameters 
You can use these parameters to return data to the caller. 

• Changing parameters 
These parameters provide a combination of importing and exporting pa
rameters. 

• Returning parameters 
The returning parameter is a value that can be returned to the caller. When 
you use thi s parameter type, you can define a functional method that can 
be called directly in expressions. 

To be able to establish the parameters a method provides and type the data 
transferred to the parameters, switch to the Class Builder (Transaction SE24), 
then to an ASAP class or interface, and then to the METHODS tab. Place the 
cursor on the required method and click on the PARAMETERS button. You will 
now get a list of formal parameters, including parameter types. 

The IF _I~O_CONTEXT _ELEf1ENT ABAP interface enables you to read, change seLattribute( J 

and set the attribute data of an e lement. Table 3.3 shows the most impor-

tant methods from this interface, which we will be discussing and using 

in this section. 

Method 

set_att r i bute< l 

set_static_ 
attr i butes( l 

Description 

Changes the value of an attribute in an element 

Changes the value of attributes using a structure 

Table 3.3 Selected Methods of the IF_WO_CONTEXT_ELEMENT ASAP Interface 

113 



3 I Developing Web Dynpro Applications 

setctx_class_ 
sel_crit() 

Method 

get_attribute( ) 

get_s t at i c_ 
att r i butes < ) 

Description 

Reads an attribute from the element 

Reads all attributes from the element 

Table 3.3 Selected Methods of the IF_ WD _CONTEXT _ELEMENT ASAP Interface (Cont.) 

The set_attr i bute< ) method is provided in this ASAP interface to be 
able to change the value of an individual context attribute. The name of 
the context attribute (name parameter) and the new value (value param
eter) must be transferred to the method for this purpose (see Figure 
3.6). 

Interface [!F_~D_COMTEXT_ELEHENT ' Implemented 1 AttNe 

Properties tnterfaces Attrlbutes MelhOds v. events Tyf)es AJia-ses 

- - - EEl Method parameters SET _A !;-~UTE 
4- Me1tlods 1116 Exceptions I ~ <.!\~liM 
Parameter Type Pa .0 ... Typing IlL Associated Type oeraun value Description 
VALUE tmportlno 0 0 Type DATA Attr1bute Value 

NAHE Importing 0 0 Type STRIIIS Web Oynpro: N-ame of Conte>ct Etement 

Figure 3.6 set_attribute( ) Method Interface 

To use an example of the methods mentioned, you will develop a method 
to set the va lue of the NAME_CLASS context attribute from the CLASS_SEL_ 

CRI T context node. Proceed as follows: 

1 . Switch to the component controller and then select the METHODS 

tab. 

2 . Create the se t ctx_class_se l_c r it( ) method with the is_va lue 

importing parameter of the ZST_03_W O_CLASS_SEL_CRIT type (see Fig
ure 3.7). 

14- IAethod USI , ... Method I+ : I 
Method SETCTl_CLASS_SEL_CRJT 

OO~m~ [Ql~~@]I~I~(OO)i!!ru 
'Parameter _]lYTle I Retlo I Opt IAssot lated Tyf)e 
IS_VALUE Importing 0 0 ZST_Ol _WD_CLASS_SEL...CRIT 

Figure 3-7 setctx_class_sel_crit( ) Method Interface 

114 



Context Programming J 3.1 

3. In th is method, you w ill implement setting the NAI~E_CLASS con
text attribute. To do this , switch to the setctx_class_sel_crit( l 

method. 

4. Open the Web Dynpro Code Wizard and select the CONTEXT tab. 
Choose the NAME_CLASS context attribute in the CLASS_SEL_CRIT con

text node in the NoDE/ ATTRIBUTE field and select the SET option in the 
OPERATION ON CONTEXT group. 

5. Click on the button with the green check mark to confirm your entry. 
Your result should correspond to Listing 3.1 (except variant 2). 

t·1ETHOO setctx_class_sel_cri t . 
* Node reference 
DATA : lo_nd_class_sel_crit TYPE REF TO 

if_wd_context_node . 
* Element reference 

lo_el_cl ass_sel_crit TYPE REF TO 
if_wd_context_el ement . 

* From <CONTEXT> to <CLASS_SEL_CRIT> .,ith lead selection 
lo_nd_class_sel_crit- .,d_context·>get_child_node( 

name - wd_this·>.,dctx_class_sel_cr it ) . 
* Element via lead selection 
lo_el_class_sel_crit 

lo_nd_class_sel_cri t · >get_element( ) . 
*No lead sel ection handling 
IF lo_el_class_sel_crit IS INITIAL . 

EXIT . 
ENOl F. 
** Variant 1 - singl e ** 
• Set attribute 
lo_el _class_sel_crit·>set_att r ibute( 

name - 'NAJo1E_CLASS ' 
value= is_va lue-name_class ) . 

•• Variant 2 - structure ** 
*lo_el _class_sel_cri t->set_static_a t tr i butes< 
* static_attributes - is_value ) . 
ENOMETHOO . 

Listing 3 .1 Determining the Element Reference of the CLASS_SEL_CRIT Node 

Web Dynpro Code 
Wizard 

What have you achieved so far? You have determined the reference to the Description 
CLASS_SEL_CRIT subnode and in this case, used the get_chil d_node< l 

11 5 



3 I Developing Web Dynpro Applications 

set_static_ 
attributes() 

method. You have also read the element reference for this context node 
using the get_el ement( ) method. If an element is not set as the lead 
selection, the method is exited using EX IT. The attribute value for the 
N AI~ E_CLASS attribute is changed using the set_a tt ri bute< l method 
from the I F _WO_CONTEXT _ELENE NT ABAP interface. 

If you have a large number of attributes, setting them individually can 
be very time-consuming and can lengthen the source code considerably. 
The set_static_a tt ributes( l method is available in the IF_WO_CON

TEXT_ELENENT ABAP interface to enable you to u·ansfer changes to the 
element reference using a single call. You can transfer a structure with 
the attribute values to this method using the stat i c_a t tributes formula 
parameter. This call was inserted into the variant 2 source code section 
in Listing 3.1. 

Call To ensure that the attributes are initialized before the selection screen is 
displayed for the first time, you must call the setctx_c 1 ass_se l_c r i t< ) 
method in the wddoin i t( ) method of the component conu·oller. 

[8] 1. To implement the call, switch to the wddoini t ( > method and start 
the Web Dynpro Code Wizard (see Figure 3.8). 

Web Dynpro 
statement 
structure 

Context 

~~i!Fod c~o.n·curre~I~]~.!:..-=.:.: ___ ._·::=J 
Method Name SETCTX_CLASS_SEL_CRI T ~ 

-==-----

Figure 3.8 Statement Structure for Calling a Method 

2. Select the GENERAL tab and choose the METHOD (ALL IN CURRENT (ON
TROLLER option. Enter the name of the setctx_class_sel_crit< J 

method or call it using the input help. Click on the button with the 
green checkmark to confirm your entry and to generate the source 
text. 

3. In the wddoini t( J method, you still have to ass ign current values 
to a structure of type ZST_03_WD_CLASS_SEL_CRIT and transfer the 

116 



Context Programming J 3.1 

structure to the setctx_c 1 a ss_se l_cri t< l method. You must per
form these steps manually. Listing 3.2 contains the fully implemented 
wddo in i t ( l method. 

METHOD wddoinit . 
DATA : ls_class_sel_crit TYPE 
wd_this·>element_class_sel_crit . 
* Set current data 
ls_class_sel_crit-name_class = ' CL_GUI _ALV_GRIO '. 
ls_class_sel_crit_descr __ class • ' ALV List Viewer · . 
* Initialize selection criteria 
wd_th is · >setctx_c 1 a ss_se l_c ri t ( 

i s_value = ls_class_sel_crit ) . 
ENDMETHOD . 

Listing 3.2 Calling the Initialization of Selection Criteria 

4. Because no views have been created for displaying data (see Chapter 
8, Section 8.2, Debugging Web Dynpro Applications), you can test 
functions using the Web Dynpro debugger. 

You are now ready to put what you have learned about changing element 
attribute values into practice. But how can you read the attribute values 
of an element? We will look at th is next. 

3.1.2 Reading Attribute Values of One or More Elements 

Web Dynpro 
debugger 

The methods for reading attribute values from an element include three Three methods 
in particular, all of which we will discuss in more detail in the following 
sections: 

~ get_attribute( l 
This method from the IF _l4D_CONTEXT _ELE~1ENT ASAP interface enables 
you to determine the value for a specific attribute. If the transferred 
attribute name is not known, a cx_wo_CONTEXT exception is thrown. 

~ get_static_attr i butes< l 
This method from the IF _WD_CONTEXT _ELEMEIH ABAP interface returns 
the values of all attributes for an element in a structure. The structure 
for transferring the name to the method may differ in terms of the stmc
ture for the formula parameter. In the method implementation, the val
ues are transferred using the MOV E- CORRESPOND lNG ASAP statement. 

117 



3 I Developing Web Dynpro Applications 

getctx_class_ 
sel_crit( ) 

• get_stat i c_a ttributes_table( l 
This method from the IF _wo_CONTEXT _NODE ABAP interface returns 
the values of all attributes of all elements in an internal table. 

As a result, there should be no further problem with developing a method 
for reading the context contents. To enhance the ZWOC_03_CLASS_BROWSER 
Web Dynpro component, you need the selection criteria values from the 
CLASS_SEL_CRIT context node. Although the values were initialized in 
the attributes. the user may have changed them - in fact. you can assume 
that they have been changed. 

get_attribute() met hod 

To encapsulate reading the context node, create the getctx_class_se l_ 
cr i t ( > method in the component controller. This method should return 
the selection criteria values as a structure. The getctx_cl ass_sel_cri t( 
l method interface consists of the ZST_03_WO_CLASS_SEL_CRIT-type rs_ 
va 1 ue returning parameter. You can use it later to execute a functional 
method call. 

(8) 1. Create the GETCTX_C LASS_SEL_CRIT method in the component 
controller. 

2. Define the method interface (see Figure 3.9): 

• PARAMETER: rs_va l ue 

• TYPE: Returni ng 

• REFTO: ZST_03_WO_CLASS_SEL_CRIT 

*' Method Ust ll oi'D Method 11 • 1• 1 
Method fGETCTX_CLASS_SEL_CRIT _l 
OOI!Qlm~ IDJ~~~~ ~!2llmll!ID 
Parameter [~• ,.--1 R~ ~~soclated 'IYP• 
RS_VALUE Returning 0 0 ZST_03_VVO_CLASS_SEL_CRtT 

Figure 3.9 getct:x_class_sel_crit() Method Interface 

3. Switch to the method implementation and individually determine the 
values for the context attributes for each context attribute. To do this, 
call the Web Dynpro Code Wizard and use the CONTEXT tab. From 
the context, choose the NAME_CLASS attribute in the CLASS_SEL_CRIT 

118 



Context Programming J 3.1 

node and set the OPERATION ON CONTEXT option lO the READ value 
(see Figure 3.10). 

Note the structure of the path for the context attribute. It consists of 
the node name, a period, and the attribute name. We wi ll need this 
structure in Chapter 4, Dynamic Web Dynpro Applications. 

fNoCieiAiiiiilUie-l cl Ass_SEL_CRIT. NAME_CLASS 

Operation on Context 

®Rea~ 

L 

Figure 3.10 Reading an Attribute Using the Web Dynpro Code Wizard 

4. Click on the button wi th the green check mark to confi rm y our entry 
and to insert the source text for reading the NAME_CLASS context 
attribute. 

5. To transfer the context att ribute value, you still have to transfer the 
rs_value-name_class structure component to the value exporting 
parameter of the get_att ribute< l method. 

This means that the context attribute reading from the lead selection is 
now fully implemented. As an exercise, you can implement the DESCR_ 
CLASS context attribute reading. Listing 3.3 contains the relevant source 
code passages for comparison with y our solution. 

**Va r iant 1: single** 
* Read NAME_CLASS attribute from element 
lo_el_c l ass_sel_crit->get_at tribute< 

EXPORTI NG 
name= ' NAME_CLASS ' 

I 11PORTI NG 
va l ue - rs_value -name_class ) . 

Listing 3.3 Read ing Values for the NAME_ CLASS and DESCR_CLASS 
Context Attributes Using the get_attribute() Method 

119 

Providing 
interfaces 



3 I Developing Web Dynpro Applications 

You will now probably wonder whether the context attributes cannot 
be read in a more compact way; for example, by reading all attribute 
va lues at once. The good news is, yes, they can. We will describe this in 
the follow ing section. 

get_static_attributes() Method 

The GET_STATIC_ATTRIBUTES( ) method from the IF _WD_CONTEXT_ELE· 

MENT ABAP in terface uses the stat i c_attri butes exporting parameter 
to return all attributes for the element to the caller in the form of a 
structure. Listing 3.4 contains the source text passage you can use as an 
alternative to the two get_attribute< l calls. 

* Variant 2 - structure* 
lo_el_class_sel_crit · >get_static_attributes< 

IMPORTING 
static_attributes • rs_va l ue ) . 

Listing 3-4 Using the get_static_attributes() Method in the getctx_class_sel_crit() 
Method of the Component Controller 

Error message If you tes t the method in the debugger, the following error message 
might be displayed in the browser: 

Attribute <attribute name> could not be found. 

This message appears if the transferred attribute name cannot be found 
when you call the get_attri bute( ) method. This could occur if the 
attribute name you transferred has a typo. You also have to use uppercase 
spelling when transferring the attribute name because, due to perfor· 
mance factors in implementing the get_at tribute< ) method, upper· 
case spelling is no t converted. 

get_static_attributes_table() Method 

So far, we have discussed reading individual attribute values and all 
attribute values of an element. The get_static_att r ibutes_ table< l 
method from the IF _I~D_CONTEXT _NODE interface at last provides us with 
the functions to read all attribute values for all elements of a context 
node. 

120 



Context Programming I 3.1 

As an example to illustrate th is, the METHODS context node should be 
read completely. The METHODS elements you will create for the reading 
should return all attributes to the caller in the form of an internal table. 
The type for this internal table is contained in the component controller 
interface. 

When you switch to the component controller attributes and double
cl ick on the IF _COMPONENTCONTROLLER reference type of the wd_thi s attri
bute, the definition of the component controller in terface displayed in 
Figure 3.11 appears. 

·~· rg =~ x ' 

:gj&~ ~ oo:~ m~ 
• 
• 1nterface 1g_coaponentcontro11er . 

• • • • • 
constants : 

•dctx_•ethods type strfng value ' nETHODS'. 
ty~~· · 

~YDO ZSI 83 ~D Cl ASS A 
£1 e• ents_lethods t ype 

standard table of Eleaent_lethods 
• 1th default key . 

• • • • • . 
endtntertace . 
interface if_coaponentcontroller . 

tntertaces : 
IG_COHPONENTCOHTROLLER . 

••••• 
al i ases: 

edct x_l ethods tor l6_COHPOHENTCOHTROLl ER- wdct x_aethods . 
a1 1as-es: 

Eleaent_aethods tor IG_COHPONENTCOHTROLLER-E lelent_lethods, 
Eleaents_nethods tor IG_CO"PONEHTCONTAOLLER-E leaents_aethods . 

• • • • • • 
end1nt erface . • 

r ZeJ.Sp1 ~'' . z. 4hon 113ZtJen 

Figure 3.11 IG_COMPONENTCONTROLLER Interface 

The name of the table type for the ~1ETHOOS context node is e l ements_ 

methods and is typed as a standard table with the row type e 1 ement_meth

ods (0 ). This, in turn , is standardized with the ZST_03_WO_CLASS_METHOO 

structure type; in other words, the structure type used for defining the 
METHODS context node. To be able to address the table type when typing 

121 

Component 
control ler interface 

Table types in t he 
component 
controller interface 



3 I Developing Web Dynpro Applications 

Web Dynpro Code 
Wizard and table 

operations 

the method interface, you m ust specify the fully qualified name; that 
is, i g_componentcontro 11 er->el ements_methods . You are now ready to 

implement the read method. 

1. Create the getctx_methods( ) component controller method. 

2. Define the rt_methods return ing parameter for the method with the 

ig_componentcontroller=>elements_methods type. Figure 3.12 dis

plays the result of typing the interface. 

0 CONTEXT _MENUS 
ROOTUIELEW.ENTCONTAINER 

Property 

erooertiu maospareoteoO!ainM 

0 10 
Layout 

Layout <GI1dlayovl1 

c:eiiPadding 
e:euSpac4no 

ROOTUIELEMENTCONTAJNER 
Orldl$YOUt ~ 

o f) 
0 

COICount 2 

stretchedHorlzontaltt 0 
Strett hedVertitally n 

Figure 3.12 Typing the Interface for getctx_methods() 

. 
@Web 0ynp1o S!<Ot&ment Structure x 

I Context,, Gener-al 

I !NOCJeJAMbute _;"ETHOOS 
Operation on Context 

® Rt3d 

O set 
Q .-.,pend 

~As Table Operation 

Figure 3.13 Reading the Context with a Table Operation 

3. You now need to implement the method again w ith the support of 

the Web Dynpro Code Wizard (see Figure 3.13): Open the wiza rd and 
choose the METHODS context node as the value for the NODE/AITRI
BUTE input field. Select the READ value for the OPERATION ON CONTEXT 

option and set the checkbox for the As TABLE OPERATION field. 

122 



Context Programming I 3.1 

4 . Click on Lhe button with the green checkmark to confirm your entries 
and to generate the source tex t (see Listing 3.5). 

METHOD getctx_methods . 
DATA lo_nd_methods TYPE REF TO i f_wd_context_node . 
* Navigate to <METHODS> node 
lo_nd_methods = wd_context- >get_child_node< 

name - ~ld_t h i s- >wdctx_met hods l . 
• Provide element attributes i n a table 
lo_nd_methods->get_static_attributes_table( 

IMPORTING 
table= rt_methods ) . 

ENDMETHOD . 

List ing 3-5 Implementing the getctx_methods() Component Controller Method 

We have now discussed in detail the options for reading data from the 
context. But where does the data come from in the context? We have 
already shown you one way: manually entered by the user. However, 
you also need to be able to place the data in the context functionally. 
This will be the topic of the next section. 

3-1.3 Creating Context Elements 

Previously, we only accessed existing elements and only read or changed 
data from attributes. But how can you create new elements for a node? 
The IF _WD_CONTEXT _NODE in terface offers three method alternatives for 
creating elements: 

~ create_element( ) 
This method in combination with bi nd_element( l enables you to 
create an element, assign it individual values or a structure, and add 
it to the node collection. 

~ bind_structure( ) 
With this method, you can create a new structure-based element com
pactly in the node collection. 

~ bi nd_tab 1 e< l 
This method allows you to use an internal tab le for creating several 
elements in the node collection. 

123 

Generating source 
text 

Creating new 
context elements 



3 I Developing Web Dynpro Applications 

All th ree alternatives enable you to decide whether the new element(s) 
replace the existing element(s) or are added to the nodes collection. To 
create a new element for a node, you must first determine the reference 
to the relevant node. Another look at Section 3.1.1, Changing Attribute 
Values of an Element, would be usefu l at this point. 

create_element() and bind_element( ) Methods 

look at the fi rst option, us ing the cre~te_element( l and bind_ele

ment( l methods to create a new element and add it to the node collec
tion (see Figure 3.14). First, you must create a new element (0 ). and set 
the element data (0 ). Next, you must add the new element to the node 
collection (E)). 

METHODS 
Element 1 

Element 2 

Element new 

create_element() 

0 
set_static_attributes( ) 

ITl-IIJ 

bind_element() 

Figure 3.14 Creating a New Element and Adding it to the Node Collection 

create_element() To create a new element, you must call the create_el ement< l method 
using the determined node reference. The Web Dynpro Code Wizard 
does not provide support for this. Instead, use object-oriented statement 
structures, which you can use as in programming with ABAP objects (see 
listing 3.6). 

** Variant 1 ** 
* Create element above node 

lo_el _method = l o_nd_methods->create_element( ) . 
* Fill element with structure 

lo_el_method->set_static_~ttributes( 

static_attr ibutes - is_method ) . 

Listing 3.6 Creating the METHODS Node Element and Fill ing it with the set_static_ 
attributes() Method 

124 



Context Programming J 3.1 

The create_element< l method is ca lled for the node where the new ele- setting element 
ment should be created. As the re turn value, it re turns a reference to an values 

I F _wo_CONTEXT _ELENENT object; in other words, a new element you still 
have to transfer to be able to set the attribute values. To set the attribute 

values of the e lement, you can either use the set_att r i bute ( l method, 
set_static_attr i butes< > method or the static_a t t r ibute_values 

parameter of the method. 

However. this element is not yet part of the node collection. The next 
task will be to add the element to the node collection (see Listing 3.7). 

• Add element to collection 
lo_nd_methods->bi nd_element( 

new_item - lo_el_method 
set_initi al_elements = abap_false ) . 

Listing 3.7 Adding the METHODS Node Element to the Node Collection 

You use the b i nd_e 1 em en t ( ) method from the IF _WO_CONTEXT _NODE bind_element() 

interface to add an element. This method contains three parameters: 

1> neo1_ i tern 

This parameter is used to transfer the element reference . 

.,. set_in itial_el ements 
This parameter is used to determine the insert mode . 

... If you assign the ASAP_ TRUE value to this parameter, this element 

replaces all existing elements in the node collection . 

.,. If you assign the ASAP _FALSE value to the parameter, the new ele

ment is added to the node collection and the existing elements are 
retained. Of course, you must look out for the cardinality of the 

con text node. 

1> index 

This parameter is used to indicate an insertion point in the node col
lection. If an index is not specified, the element is inserted at the end 

of the node collection. 

You have now seen how you can create an element and add it to the 

node collection. However, the more elongated source code seems a li t tle 
time-consuming; therefore, we will look at an implementation method 

that performs the tasks of adding a new element more efficiently. 

125 



3 I Developing Web Dynpro Applications 

bind_structure( ) Method 

The b i nd_ structure( ) method from the IF _WO_CONHXT_NOOE ABAP 
interface combines creating a new element with setting attribute values 
and adding it to the node collection (see Figure 3.15, 0 ). In this case, the 
bi nd_structure( l method provides the same parameters as the bind_ 

element< ) method. 

M ETHODS 

Element 1 

Element 2 

Element new 

Figure 3.15 Creating a New Element Using bind_structure() 

bind_structure() 

Lis ting 3.8 shows that the bind_structure( ) method is used as an alter
native to the previously discussed approach. 

** variant 2 ** 
*Append element t o collection 
lo_nd_methods·>bind_structure( 

new_item = is_methods 

set_ initia l_e l ements = abap_ false ) . 

listing 3.8 Creating a New Element Using the bind_structure() Method 

Description The bi nd_s tructure< ) method creates an individual new element in 
the node collection. If you now have to create several elements - for 
example, every row of an internal table should be stored as an element 
in the context node- you would have to call the bi nd_structure( ) 

method for each element. 

bind_ table() Method 

Yo u can, of course, create several elements more compactly using the 
bi nd_tab 1 e < ) method from the IF _wo_CONTEXT_NOOE interface (see 

126 



Context Programming J 3.1 

Figure 3 .1 6, 0 ). First. you will need to fill an internal table with data. 
Next, you will have to add the internal table data to the node collection 
as a new element. 

METHODS 

Element 1 

Element 2 

Elemente new 

EB ... EB 
00 0 

bind_table() 

Figure 3.16 Creating Elements Using the bind_ table() Method 

We will develop this example further to illustrate th is method. You will 
use this method to store data for the methods of an ASAP class in the 
METHODS context node. You will create a total of three component control
ler methods, with diffe rent focuses on development: 

~ is_class( > 
This method checks whether the name the user has ente red in the 
selection screen corresponds to the ASAP class name. This method is 
created using a service call. 

~ setctx_class_methods( l 
This method sets the data of the methods for the ASAP class in the 
t·1ETHODS context node with the bind_tabl e< >method. 

~ getmodel _class_descr ipti on( l 
This method determines a description object for an ASAP class using 
RITI, which enables ASAP class descriptions to be determined during 
runtime. Some of the information included in the description are 
methods of the ASAP class. 

127 



3 I Developing Web Dynpro Applications 

is_class () 
component 

controller method) 

The first method you will develop is the i s_cl ass( > component con
troller method. When implementing this method, which is also an exam

ple of model integration, you use already existing implementations so that 
you will have to produce as little of your own source code as possible. 

Service Call Wizard 

Description The service call wizard supports you in implementing model integrations. 

This wizard calls an existing function module or methods for an exist· 
ing ABAP class within a Web Dynpro component. You can also use this 

w izard to automatically generate all of the context elements you need in 
a controller you have selected. In this controller, the wizard also auto· 
matically creates a method that calls the function module and ensures 

that parameters are transferred. 

[ 8] Now it's your turn again. You will create the i s_c 1 ass ( > method using 
the service call wizard. Figure 3.17 shows the wizard steps you will go 
through when creating the service call. 

COfl'¥!01\el'lt 1110C_03 _ CU.SS _8R0¥S(R 
Contro!lel COfiP'OHE!ITCOitTAOLLEA 

r Web SeM(.e Pr~ 

\ 

....... 
OUulplon 

Z11!!&_8l_CLASS_&i:CVSER 

COIW'(;II( II I COli 1 RCIU (II 
I$_U.ASS 

Namt Obj~ 

S€0_(:t,JU_(l 
II!POAU~ ..,. I II,OIHIIIS 
CLSI:[Y P•ruott ... l t .. CUK(Y 

, .. UPORT UIS 
IIOT_IItll'ti f,.AtliYE 

,. ... ntte, of Mo:lhoO f\. 
COniU)(~I A#IOIJI! "' 
¢ Of'lltl« (JiO!W.-a'Wt) 

Figure 3.17 Service Call Wizard for Creating the is_ class() Component Controller 
Method 

128 



Context Programming I 3.1 

1. Start the wizard using the CREATE · SERVICE CALL context menu option 
of the Web Dynpro component in the object list. 

2. When the initial START screen with basic explanations about the wiz
ard displays, click on the CONTINUE button to go to the next screen. 

3. In the SELECT CONTROLLER (0 ) step, define where the service call is 
generated. Choose the USE EXI STENT CONTROLLER option and enter 
the COMPON£NTCONTROLL£R value for CONTROLLER. Click on CONTINUE 
to go to the next step. 

4. The SELECT SERVICE TYPE (8 ) step involves defining the reuse compo
nent type where the func tions are wrapped. The options available are 
FUNCriON MODULE, CLASS METHOD, and WE8 SERVICE PROXY. Choose 
the FUNCTION MODULE option because the functions you will reuse 
are implemented in a function module, and cl ick on CONTINUE to 
move to the next step. 

5. In the SELECT SERVICE (0 ) step, specify the name of the function mod
ule you want to be called in the service. The standard SAP function 
module for checking whether an ASAP class exists is called S£0_ 

CLASS_E X I STENCE_CHECK. Because you do not perform a remote func
tion call (RFC) cal l for the function module, you are not allowed to 
maintain the DESTINATION (target system). Click on CONTI NUE tO go 
to the next step. 

6. In the ADAPT CONTEXT (0 ) step, you must define the object type 
through which you want the interface parameters of the function 
module to be represented. Three obj ect types are available: 

I> PARAMETERS OF METHOD 

I> CONTROLLER ATTRIBUTE 

I> CONTEXT (NODE/ATTRIBUTE) 

You want to be able to call the i s_c 1 ~ s s ( l method in such a way that 
parameters are transferred to the method and results are returned to 
the caller, again through parameters. To do th is, choose the PMAME
TERS OF METHOD object type for cl skey and not_~c ti ve and cl ick on 
CONTINUE to move to the next step. 

Integrating models 
using a reuse 
component 

Integrating 
interfaces 

7. In the SPECIFY METHOD NAME (0 ) step, you ass ign the name of the Method name 
component controller method. Enter the name i s_cl ~ss in the METH-
OD input field and click on CONTINUE to go to the last step. 

129 



3 I Developing Web Dynpro Applications 

8. In the last step, GENERATE CONTROLLE R, you create the i s_c 1 ~ ss ( ) 
component controller method and SEO_CLASS_EXIS TEN CE context 
node. To do this, you must click on the FINISH button. 

Manual You have now created the is_class( J component controller method 
adj ustments for model integration using the service ca ll wizard. If you use existing 

reuse components, this wizard can save you a lot of time when creating 
methods. 

To be able to use the method for the example, you still have a few adjust
ments to make. The changes will mainly affect interface parameters typ
ings, to synchronize them with previously used types. Follow these 
steps: 

1. Delete the SEO_CLASS_Ex 1 STENCE context node. You do not need it 
because the i s_cl ass ( J method communicates through its interface, 
not through the context. 

2. Change the interface for the i s_cl ass( l method. 

3. Change the c 1 skey importing parameter type to SEOCLSNAME . which 
you used in the selection criteria. 

4. Change the no t _act i ve exporting parameter type to WOY_BOOLEAN. 

5. Insert the new ed_ex i sts exporting parameter of the WOY_BOOLEAN 
type, which lets the caller know whether the ABAP class actually 
exists. 

6. Change the implementation of the i s_cl ass< l method to take into 
account interface parameter changes. Take a look at Listing 3.9, where 
the changes to be implemented start with St~ r t manu~l change and 
end with End manu a 1 change. 

METHOD i s_class . 
* decl arat i ons for context navigation 
* decl arations for parameters 
* Start manual change 
DATA : l s_seocls key TYPE seoclskey . 
* End manua l change 
*get all involved chi ld nodes 
* ge t inpu t f rom context 
* Start manual change 
ls_seoclskey·clsname = clskey . 
ed_ex i st s = abap_false . 



* End manual change 
* the invocation - errors are always fatal !! ! 

CALL FUNCTION ' SEO_CLASS_EXISTENCE_CHECK ' 
EXPORT! NG 

clskey = ls_seoclskey "l•lanua l change 

*error handling 
CASE sy-subrc . 
* Start manual change 

WHEN 0. ''Class exists ! 
ed_exists • abap_true . 

* End manual change 
WHE N 1. 

Listing 3-9 Manual Adjustments in the is_class() Method 

Context Programming J 3.1 

You have now completed generating and implementing the i s_c 1 ass< > 

component controller method. This will be used later to check the data 
entered by the user. Because of the knowledge you have gained about 
using the service call wizard, the path is now clear for you to be able 
to in tegrate models "cleanly." This means that you separate the display 
aspects from the model aspects, as required for the model view control
ler approach (see Section 1.1, Model View Controller). 

As an additional exercise for using the service call wizard, create the Additional exercise 
new getmode l_cl ass_ information ( ) service call in the component con-
troller to determine an ASAP class description. Use the SEO_CLASS_REAO 
function module for step (9 ) from Figure 3.17. Then, map the provided 
parameters to PARAMETERS O F METHOD. After you create the getmodel_ 
class_ information< > component controller method, change the class 
exporting parameter typing to VSEOCLASS and the cl skey importing 
parameter type to SEOCLSNAME. Also delete the redundant SEO_C LASS_ 
READ context node from the component controller context. 

Use the i s_c 1 ass< > component controller method when implementing 
the method. You will use the getmode l_cl ass_ information ( ) method 
in Section 3.3.3, Button, to determine an ASAP class description. 

The i s_cl ass< > method you previously implemented checks whether 
an ASAP class exists. If a class does exist, you should create the method 
names of the ABAP class as an element in the I·IETHODS context node. This 
will be the task of the next method you will implement. Here, you will 



3 I Developing Web Dynpro Applications 

use aspects of RTTI (which you will learn about in more detail in the next 
section) and the bi nd_table( ) method. 

1. Create the setctx_cl ass_methods< > component controller method 
and define the io_c l assdescr importing reference parameter of the 
CL_ABAP _CLASSDESCR type (see Figure 3.1 8). 

1\1 
I~ Method LISt 160 MethOd )• ( ... ) 
Method rsETCTX_CLASS_METHODS I 
OO~IIRI· )~1[11)~[Ei)®]I~~~~~~UOOI 
Parameter ~~ l RetToL Opt l~sotiated Type 
IO_CLASSDESCR Importing (i) 0 CL.}\SAP _ClASSDESCR 

Figure 3.18 setctx_class_methods() Method Interface 

The C L_ABAP _CLASSDESCR ABAP class is part of RTTI and is used as a 
type for class description objects. The CL_ABAP _CLASSD ESCR ABAP 

class has the public methods instance attribute, where the method 
names for the ABAP class are stored in an internal table. 

Creating elements 2. Change the method implementation. Read the methods from the 
ir_classdescr->methods internal table row by row and store each 
method as an element in the t1ETHOOS context node. How would you 
implement this requirement? Think about this for a little while before 
tak ing a closer look at Listing 3.1 0. 

METHOD setctx_class_me thods 
* Reference to METHODS node 
DATA l o_nd_methods TYPE REF TO if_•ld_context_node . 
* Internal table to METHODS node 
DATA lt_methods TYPE wd_th i s ->elements_methods . 
* Structure of a METHODS el ement 
DATA l s_method TYPE wd_thi s->element_methods . 
*A l i ne from model da t a for methods 
FIELD-SYMBOLS : <ls_mode l_method> 

LIKE LINE OF io_classdescr->methods . 
* Determine node reference for METHODS 

lo_nd_methods = wd_context->get_child_node( 
name • wd_this·>wdctx_methods ) . 

* Transform model da t a i nto node data 
IF i o_classdescr IS BOUND . 

LOOP AT io_classdescr ->methods ASSIGNING <ls_model_ 



Context Programming J 3.1 

method> . 
* Transport model data into context structure 

MOVE-CORRESPONDING <ls_model_method> TO ls_method . 
* Set icon for method type 

CASE abap_true . 
WilEN ls_method-is_class . 

1 s_method- kind_ icon = ' I CON_OO_C LASS_t·1ETHOO ' . 
WHEN ls_method - is_interface . 

ls_method-kind_icon- ' ICON_OO_INTERFACE '. 
~!HE N OTHERS . 

ls_method · kind_icon - ' ICON_OO_INST_!1ETHOO '. 
ENDCASE . 

*Append to context table 
APPEND ls_method TO lt_methods . 

ENOLOOP . 
ENOJF . 
* Append table to node 
lo_nd_methods ->bind_table( 

new_items = lt_methods 
set_initial_elements- abap_true ) . 

ENDMETHOD . 

listing 3.10 Implementing the setctx_clas.s_methods() Component Controller 
Method 

The method implementation begins by determining the reference for 
the 11 ETHOOS context node. Then, the ir_classdescr ->methods internal 
table is read row by row. The <1 s_model_method> field symbol was used 
to determine references to the entries in the internal table. The MOVE
CORRESPONO I NG statement moves the model data of the same name to 
the data structure for the context e lement. This means a method-local 
internal table is built that is then transferred to the context node using 
the bind_tabl e( >method and then creates all elements there. 

Note 

Was the task difficult to solve? Experience shows that th is is a typical type of 
task in developing Web Dynpro applications, which is why we presented it 

to you here. Implementing a method usually begins w ith reading data from a 
context. Thi s data is then used as the basis for business logic or display logic. 
After these logics are processed, the new or changed data is placed back into 
the context at the end of the method implementation. 

Implementation 
details 



3 I Developing Web Dynpro Applications 

Run Time Type Identification 

The method you will implement next will introduce you to another key 
topic of context programming, Run Time Type Identification (RTTI). RTTI 
provides the mechanisms to determine descriptions of types, including 
descriptions of ASAP classes, during runtime. This occurs in the form of 
description objects that are typed with ASAP classes from RTTI. Figure 
3.19 shows the inheritance hierarchy of RTTI ASAP classes. 

CLABAP_TYPEOESCR 

t 
I I 

I (L_A6AP_OATAOESCR I I Cl_A8AP_08JECTOESCR I 
t 

I I I I 
I CI._A8AP _EI.EMOESCR I I CL_A8AP_REFOESCR I I CL_ABAP_CLASSDESCR II CL_ABAP_INTFOESCR I 

I Cl_A8AP_COMPLEXOESCR I 
t 

I I 
I CL_A8AP_STRUCTDESCR I I CL_A8AP_TA8LEOESCR I 

CL_ABAP_ 
TYPEDESCR 

Casting 

Figure 3.19 Inheritance Hierarchy of RTII ABAP Classes 

The CL_ABAP _TYPEOESCR class is the RTTI root class, and enables descrip
tions of runtime objects such as ASAP classes to be created during run
time. One of the methods that plays an important role here is describe_ 

by_name( ) : This method returns the description object to the caller. RTTI 
is part of Run Time 1)'pe Services (RTTS), which also encompasses Run Time 

1)'pe Creation (RTTC). This, however, is not relevant for our tasks, so we 
will not discuss it in further detai l. 

The important thing to know is that the descri be_by_name( ) method 
always returns a CL_ABAP _TYPEDESCR-type object. For the user, th is means 
that a downcast must be performed on the corresponding type to be able 
to access interesting details such as the list of methods for an ABAP class. 
To do this , a subclass such as the CL_ABAP _CLASSOESCR ABAP class high
lighted in Figure 3.19 must be used. 

134 



Context Programming I 3.1 

We will shortly look more closely at using RTT! within the framework of [ /J ] 
implementing the getmode l_cl ass_descri pt ion( J component control-
ler method. This method determines the description object for an ASAP 

class based on what the user enters. You must check whether the ASAP 

class exists and also store the methods from the description object in 
the context. You will use the two previously implemented is_class< > 

and setctx_class_methods( J methods in the new getmodel_class_ 
description( l method for this purpose - a great example of reuse. 

1. Create the getmodel_class_description( J method in the COMPO
NEtHCONTROLLER. Define two exporting parameters, ed_exi sts and 
not_ac t i ve, for th is method, each with the WOY _BOOLEAN type (see 
Figure 3.20). 

II+- Method Us! (60 Method Jl• ~ J 

lltothOd J6E T HOOEL_ClASS_OESCR I PT I ON 

OO~Iiai ·l~ I (Q]~~@)I ~~100][@] 
Parameter J~o ,;-1 Rerr~ Opt ~~sociated Type 
ED_EXJSTS Exporting 0 0 WDY_BOOLEAN 

--

I ' NOT _ACTIVE Exporting 0 0 WDY_BOOLEAN 

Figure 3.20 getmodel_class_description() Method Interface 

getmodel_class_ 
description() 

2. Change the method implementation. Try to implement the method Implementation 

step by step. If you need guidance, take a look at Listing 3.11. 

~1ETHOO getmodel_class_description . 
* Exception object 
OATA : lo_exception TYPE REF TO cx_root . 
* Class description 

lo_classdescr TYPE REF TO cl_abap_classdescr . 
* Type description for class 

lo_typedescr TYPE REF TO cl _abap_typedescr . 
* Selection criteria 

lv_rs_value TYPE wd_this->element_class_sel_crit . 
*Get class name from context 
lv_rs_value = wd_thi s->getctx_class_sel _crit( J . 
*Check if class name is valid 
TRY . 

wd_this->is_class( 
EXPORT! NG 

135 



3 I Developing Web Dynpro Applications 

clskey = lv_rs_va l ue-name_class 
IMPORTING 

ed_exists = ed_ex ists 
not_active - not_active ) . 

* Determi ne RTTI descript i on 
CALL METIIOO cl_abap_typedescr- >descri be_by_name 

EXPORTING 
p_n ame = l v_rs_va l ue-name_class 

= lo_typedescr 
RECEIVING 

p_descr_ref 
EXCEPTIONS 

type_not_found = 1 
OTHERS • 2. 

* Class does not exist 
IF sy -subrc <> 0 . 

ed_exists = abap_false . 
not_active = abap_true . 

ENOl F. 
*Cast from CL_ABAP_TYPEOESCR to CL_ABAP_C LASSOESCR 

lo_classdescr ?• lo_typedescr. 
CATCH cx_root INTO lo_exception . 
* Class does not exist 

ed_exists = abap_false . 
not_active - abap_true . 

ENOTRY . 
* Store reference in attr i butes 

wd_this ->go_class_description - lo_classdescr . 
* Format data for context 

wd_this ->setctx_class_methods( 
io_classdescr = lo_classdescr ) . 

EN0~1ETHOO . 

Listing 3.11 Implementing the getmodel_class_description() Component 
Controller Method 

Description In the first step, the method should read the selection criteria from the 
context. It does not do this directly. however; instead, it uses the previ
ously implemented getctx_class_sel _crit< l method. The is_class< 
l method is then used to see if the search name corresponds to the ABAP 
class name. 

If the search is successful, the static cl_a bap_typedescr- >descri be_by _ 
name( l method is used to determine the class description. After the 



Context Programming J 3.1 

downcasting has been performed, the description object for the ABAP 
class is stored in the component contro 11 er attributes. You still have to 
define the public go_c 1 ass_descri pt i on attribute of the CL_ABAP _CLASS· 

OESCR type. The se t ctx_class_methods( >method is used at the end of 
this method to put the data in context. This completes the implementa
tions. You can now test them using the Web Dynpro debugger (see Chap
ter 8, Tips and Tricks from Practical Experience). 

We have now explained the options for creating elements in the context. 
In the next section, we round off the topic of context programming wi th 
a discussion of removing context elements. 

3.1.4 Removing Context Elements 

The remove_e 1 ement( ) method for removing elements is availab le in remove_element() 

the IF _I~ O_CONTEXT _NODE interface (see Figure 3.21). 

METHODS 

Element 1 

Element 2 

Element delete 

get_ element() 

0 

•• •• 
remove_ element() 

Figure 3.21 Removing an Element Using remove_element() 

You can use the get_e1ement( ) method to determine the element refer
ence to be deleted (0 ). The reference to the element to be removed must 
be transferred to the remove_e1 ement( ) method (8 ) by the element 

importing parameter. The has_been_removed parameter is also available 
as a ABAP _BOOL returning parameter to identify whether the element 
already existed (ABAP _TRUE) or not (ABAP _FALSE). 

This completes our introduction to context programming. In addition to 
information about removing an element, we introduced RTTI as a key 

137 



3 I Developing Web Dynpro Applications 

resource in context programming and described examples of how you 
can use it in practice. The most important method when using RTTI is 
cl _abap_typedescr=>describe_by_name( ). 

Service call wizard The service call wizard is vety useful for integrating models. You have 
seen how existing reuse components are easily reused and can be uti 
lized in the sample application. 

WYSIWYG editor 

View elements and 
Ul elements 

The next section will help you understand how to define and program 
views. Specifically, we will describe layouts and containers, as well as the 
most important view elements, in detail. 

3-2 Layouts and Containers 

In Section 2.2, View, we already discussed the basics of views and win
dows and you learned that a WYSIWYG editor (view designer), with which 
you already have some experience, is available for designing and creat
ing a view with the view editor. 

We will now build on th is knowledge by introducing you to other options 
for defin ing views. In this section, we will focus on containers and layouts 
that form the foundations for arranging view elements in a view. 

The Difference Between View Elements and Ul Elements 

You might wonder what the difference is between Ul elements and view ele
ments. The term Ul element means an independent user interface element 
that can be contained in a general container whereas the term view element 
also refers to subelements of composite user interface elements. For example, 
TabStri p is a Ul element, but the Tab subelement is a view element because 
it cannot be used independently- it can only be used for structuring a Tab· 
Stri p Ul element. We therefore cannot refer to the Tab subelement as a Ul 
element. 

containers Containers and layouts are the tools you can use to define the design for a 
view in relation to grouping and laying out a Ul element. In this context, 
containers are special ized elements for grouping Ul elements. By ass ign
ing UI elements hierarchically, you create a parent-child relationship 
between a container and the assigned Ul elements. The most important 



Layouts and Containers I 3.2 

containers are TransparentContainer with the most well-known repre
sentative being ROOTU I ELEMENTCONTA I NE R) and Vi e>~Con ta i ne rU IE 1 ement, 
which is used for composing views. 

Layouts are responsible for arranging Ul elements in a container. The dif- Layouts 
ferent layouts available are Fl ow Layout, Rowlayout , Matri xLayout , and 
Gri dl ayout. The difference in layouts lies mainly in the way elements 
are arranged, either in rows (Flow layout and Row layout) or in columns 
(Matrixlayout and Gridlayout). 

3 .2.1 Containers 

The view elements for a view are maintained in a hierarchical view 
structure. The hierarchy is based on aggregations (relationships between 
objects) such as the parent-child relationship between a Ul element con
tainer and UI elements, or the relationship between a composite UI ele
ment and its subelements (for example: the TabStri p UI element and its 
Tab subelement). 

The higher-level element in this hierarchy is a UI element container 
that is enhanced for the view or already exists such as ROOTUI ELEMENT
CONTAINER, for example (see Figure 3.22). ROOTUIELEMENTCONTAINER is 
a Transparen tContai ner type (0 ) with two children, VC_CLASS_SELEC· 
T!ON and VCCLASS_t1ETHOOS, each of the Vi ewContai nerUI Element type 
(0 ). The preview for the parent-child relationship is shown in the view 
designer (0 ). 

VicwCont• incrUIEiemcnt: 

VC_Ct.ASS_SEUCnON 

8 ViewContainerUIEiemcnt: 

VC_CLASSJMETHOOS 

· 0 CONTEXT MENUS 
• .;Mlllll#i§!i#fiA•U•Q@#i0 
A El VC_CLASS_SELECnON 
V El VC_CLASS_METHOOS 

Property 

Progenies IT@nsparenJCOotainer> 

Figure 3.22 ROOTUIELEMENTCONTAINER and ViewContainerUIEiement 

The parent-child relationship between the UI element container and Ul 
element provides a general mechanism for the hierarchical structure of 
the view. You can include any number of Ul elements and other UJ ele
ment containers in a Ul element container. 

139 

Hierarchical view 
structure 



3 I Developing Web Dynpro Applications 

Transparent 
Container 

ViewContainer 
UIEiement 

There are special UI elements such as the T~bStrip UI element that can 
be regarded as containers. However, unlike the UI element container, 
these elements can only contain special subelements. In the case of the 
TabSt r ip UI element, this is the T~b view element. 

Examples of Ul element containers are the Group, Trans pa ren tCon
t ainer . and T r~y UI elements. The most prominent representative of 
the TransparentContainer Ul element is ROOTUIELEMENTCONTAINER. An 
important property offered by the Transp~rentContainer UI element is 
SCROLLINGMODE. This property enables scroll bars to be displayed, which 
allows the user to scroll to areas that cannot be displayed all at once in 
the displayable area. 

Another particularly important UI element for designing the view is the 
ViewContainerUIElement UI element. It is used to display other views, 
similar to a subscreen area in a classic dynpro, where you can display a 
subscreen dynpro. 

UI element containers are displayed in a rectangular shape or occupy a 
rectangular area in the view. In the view designer, you may find container 
elements such as the Trans pa ren tCon ta i ner or Vi ewConta i nerU IE 1 em en t 
Ul elements in the Ul category layout. 

Layout data You can use the LAYOUT Ul element property to define how the lower
level UI elements should be assigned for container UI elements. The fol
lowing layouts are available for this purpose: 

1> Flowlayout 

" Row Layout 

1> t1atrixlayout 

" Gridlayout 

Layout data is assigned to every UI element in the container UI element. 
This layout data specifies the layout properties of the UI element such as 
the position in the grid defined by the layout, for example. 

Now you know the interrelationships between Ul element containers, 
UI elements, layouts, and layout data. In the following section, we will 
deepen your knowledge of layouts and specifically discuss how the lay
out affects the way UI elements are arranged. 

140 



Layouts and Containers I 3.2 

3.2.2 Layouts 

In this section. we will look in detail at the different layouts possible Layouts 

with Web Dynpro ABAP. We will explain the basic layout properties and 
use examples to illustrate how the layout you choose affects the way Ul 
elements are arranged. 

Flowlayout 

Fl OI< Layout is the default layout for containers. All UI elements in a con
tainer with Flow layout are displayed in a row. If the area for displaying 
UI elements is not wide enough, they are displayed in the next row. The 
wrapping is inserted during runtime. 

Figure 3.23 shows the layout properties for ROOTUIELENENTCONTAINER. 

The value of the LAYO UT property is set to Flow layout (0 ). The property 
available for the layout is called WRAPPING (0 ). The property instance 
defines whether the UI elements can be wrapped in the next row. If the 
value for the property is ABAP _FALSE (depicted by a checkbox not being 
set), the UI elements will not be wrapped. If the display area is too small, 
the elements will not be shown in a row, but scroll bars will be added. 

· 0 CONTEXT_MENUS 

• ROOTUIELEMENTCONTAINER 

pr·ooerties CiransparenJContalnerl 
10 ROOTUIELEMENTCONTAINER 

Layout 

I L•'ll!ut !F19Wlavoutl 
WTapp~ng 

flowlayout 1!1 

f) 0 

Figure 3.23 Flowlayout with Layout(Fiowlayout) 

Layout data properties for a Ul element are set in the properties for the 
UI element. Figure 3.24 displays the properties for the La be I UI element. 
The layout data properties defined by Flowlayout are CELLD ESIGN and 
vGUITER (0 ). The available properties are based on the layout selected 
in the higher-level container. 

The effects of setting layout data properties may generally be as 
follows: 

Layout 
(FiowLayout) 

Layout data 
(FiowData) 

Keeping and 
arranging spacing 



3 I Developing Web Dynpro Applications 

cell Design 
property 

" Spacing is kept between the individual UI elements and between the 
u I E 1 emen t and the grid cell 

" The Ul elements wi thin the grid are arranged horizontally and verti
cally 

" Setting the width and height of Ul elements in the grid cell 

T 0 ROOTUIELEMENTCONTAINER 

Prooertjes Q..abeD 
10 

ceiiOesign 
vOutter 

]value 

L.ASEL1 

None 

]Binding 

Figure 3.24 Layout Data (FiowData) Properties for a Ul Element 

The CELLD ESIGN property controls the Ul element spacing in a cell to the 
cell border. Figure 3.25 shows the effects of the 1 Pad, rPad, 1 rPa d, 1 r No 

Pad . and pad1 ess instances on the spacing to the cell edge: 

" I in a cell stands for the cell content spacing to the left edge of the 
cel l. 

" r stands for the spacing to the right edge of the cel l. 

" b stands for the spacing to the bottom edge of the cel l. 

" t stands for the spacing to the top edge of the cell. 

One of the reasons for specil)ring the spacing is to prevent the contents 
of successive cells from getting "j oined to one another." We recommend 
setting the CELLDESIGN property to the rPad value. 

vGutter property You can use the vGUTTER property to add more spacing to the left cell 
edge. You can also determine whether you want a vertical line (rule) to be 
shown for defining the spacing. Figure 3.26 shows the effect ofF 1 ow lay 

out and the WRAPPING property instance on the layout of the Ul element 
when the width of the browser window is changed. If the width of the 
browser window is big enough (0 ), all elements are arranged in a row. 



Layouts and Containers I 3.2 

t 

r I r 

Figure 3.25 cell Design Property Instances 

The value of the WRAPPING property controls the layout of the elements 
if the user changes the width of the browser window in such a way that 
there is not enough space available in a row for all Ul elements. 

::J .,. X 

q. ~ Q •.. . . '"e* . ~ 

lal>-n ._, _ _Ja,,,.-..1 a, 

I wrapping = ABAP_TRUE I I wrapping= ABAP _FALSE I 
Figure 3.26 Effect of FlowLayout on the Layout of Ul Elements 

143 

p • 

• 

• 



3 I Developing Web Dynpro Applications 

Row Data and 
RowH eadData 

Layout data 
properties 

If the WRAPPING property is set to ASAP _TRUE (checkbox is selected) (0 ), 

the elements that do not have enough space in the row are displayed in 
the next row. If the WRAPPING property is set to ASAP _FALSE (checkbox is 
not selected) (0 ) , the elements are displayed in a row and scroll bars are 
provided to navigate to the undisplayed Ul elements. 

Row layout 

The lower-level Ul elements for the RowLayout container inherit the lay· 
out data property. This property can have the RowHeadOata and Ro•10ata 
values: 

,. RowHeadOata ensures that this element is arranged in a new row in the 
browser window. 

,. RowOa ta adds the Ul element to the currently valid row. 

If the width of the browser window is not sufficient for displaying a Ul 
element, th is Ul element is moved to the next row. This layout may also 
be referred to as a ragged setting because the UI elements are not aligned 
in columns, as in the case ofMatrixLayout, fo r example. 

If you assign the RowHeadOa ta value to a UI element for layout data proper
ties, as you can see in Figure 3.27 (0 ), the HAUGN, ROWBACKGROUNDDESIGN, 
RowDESIGN, and vGuneR properties are ava ilable for the layout 
data (0 ). 

· !;; CONTEXUlENUS 
• [ ROOTUIELEMENTCONTAINER 

· La!iN~!I 
Proper1Y 

' ' n ohon 

10 L'BEL1 

LayouWala RowHeadData ill 

Lavout Data CRawHeadDatal 
hAiign !lJ 
rowBackgroundDesign border 1!1 
rowOeslgn rPad ill 
vGutter None 

Figure 3.27 Layout Data (RowHeadData) for a Ul Element 

144 



Layouts and Containers I 3.2 

I> HALIGN 
You use the HALIGN property to horizontally arrange Ul elements 
belonging to this row. 

I> IWWBACKG IWUNODESIGN 
You use ROWBACKGRO UN DDESJGN to set the background color for all 
cells in this row. 

I> ROWDESIGN 
You use RowDESJGN to define the spacing of the cell content to the 
cell border. 

Figure 3.28 shows an example of the changed layout for Row Layout after Description 
the width of the browser window has been changed (0 ). Here, the Ul 

elements are arranged in rows: Two Ul elements have the layout data 
property with the Ro•1HeadData value and they consequently introduce 
a new row. Figure 3.28 shows these Ul elements with RowHeadDa ta 1 
and RowHeadOata 2. The value of the ROW8ACKGROUNDDESIGN property 
for the RowHeadDa ta 1 Ul element was set to border. which resulted in 
a background color for the row. The remaining Ul elements were set to 
the RowDa ta layout data property. If the width of the browser window is 
not sufficient, the Ul elements are moved to the next row (0 ). 

~G . I~ t<t<>://1 

'i} $1 :e .. "-'"" 
::J 't X 

r.-;-. • !;ll • <!!!> • .:.l- ea.J• • 

RowHeac()eta1: ?lx==~IO~I}low0ala1.d [OJ 
RowHeac()eta 2: I IO~owDela2.1: ~•2.2: 

~ 

Figure 3.28 Effect of Row layout on the Layout of U I Elements 

Matrixlayout 

~&·1~""'"' 
'W ,6w Cc.po11"t 

A:ourottu~•pX 0 
~Oi l. 

Roloitlco«<C•2 0 
~•21. OJ 
RowoOII• 12: 0] 

Mat ri xLayou t arranges the layout of Ul elements in tables. The Matrix· Layout in tables 
Layout layout can be assigned to a container such as RODTU I ELEt1ENT 
CONTAINER, as shown in Figure 3.29 (0 ) , for example. The 
STRETCHEOHORIZONTALLY and STRETCHEOVERTICALLY properties (0 ) are 
available for MatrixLayout. 

145 



3 I Developing Web Dynpro Applications 

stretched
Horizontally and 

stretchedVertically 
propert ies 

Matrix Data and 
M atrixHeadData 

· 0 CONTEXT_I.CENUS 

ROOT\JIELEMEtll'COtll'AINER 

Property jllilluo (Binding 
Properties <Transparenteontainer) 
ID ROOTUIELEMENTCONTAINER 

Layout Matrixlayout ri1 

stretchedHorizont$lty 0 
stretchedVertle:alty 0 

Figure 3.29 Matrixlayout and Its Properties 

I> STRETCHEDHORIZONTAllY 

You use the STRETCHED HORIZONTALLY property to evenly distribute UI 
elements horizontally across the width of the container. If the content 
determines the width of the container, you must deactivate this 
option. 

I> STRETCHEDVERTICALLY 

You use STRETCHEDVERTICALLY to evenly distribute UI elements verti
cally across the height of the container. If the content determines the 
he ight of the container, you must deactivate this option. 

The lower-level UI elements fo r the container inherit the layout data 
property. This property can have the t4a t ri xHeadDa ta and Mat r i xDa ta 

va lues, as you can see from the example in Figure 3.30. 

CONTEXT_MENUS 

• 0 ROOT\JIELEMEtll'COtll'AINER 

· M'>:J#!I 

Properties CLapeo 

ID 

Layout Data 
l..ABEU 
MatrtlcHeadData Gl 

Lavout Data !MatfixHeadData> 
ceiiBackgroundOesign transparent ;I 

ceiiOesign I'Pad " 
coiSpan 1 
height 
IWign 
vAIIgn 
vGutter 
width 

beglnOI\.Ine ru 
baseline Gl 
None ~ 

Figure 3.30 Layout Data (MatrixHeadData) for a Ul Element 



Layouts and Containers I 3.2 

Setting the Mat r ixHeadData value in the layout data property causes the Effects 

row to be wrapped {0 ). Like Ro•tData , the effect of the ~l a t ri xData value 
is that the element is placed in the same row as the preceding UI ele-
ment, but in a new column. If the right-hand border of the displayable 
area has been reached, the Ul element is nevertheless placed. 

The number of columns is not defined at the beginning; it instead results 
from the maximum number of Ul elements in a row within the higher
level container. This means that the number ofUI elements per row can 
vary. 

The properties for the LAYOUT DATA (0 ) enable you to control the cell 
structure flexibly: 

~ 1WW8ACKGIWUND0ESIGN 
You use the ROWBACKGROUNDDESIGN property to set the background 
color for all cells in this row. 

~ CELLDESIGN 
You use CELLD ESIGN to define the spacing of the cell content to the cell 
border. 

~ COLSPAN 
You use COLSPAN to define the number of columns a UI element 
includes in Matrixlayout . You can use this property to position a title 
across several columns. 

~ HEIGHT 
You use HEIGHT to define the height of a cell in cascading style sheet 
(CSS) units of measurement. The units of measurement and corre
sponding descriptions are listed in Table 3.4. 

~ HALIGN, VALIGN 
You use HALIGN and vAt iGN to define the horizontal and vertical lay
out of the UI element in the cell. 

~ vGUTTER 
You use vGurrER to insert additional spacing for the left-hand cell 
border. with or without a vertical hyphen. 

~ WIDTH 
You use WIDTH to define the width of a cell in CSS units of measure
ment. The units of measurement and corresponding descriptions are 
listed in Table 3.4. 

147 



3 I Developing Web Dynpro Applications 

Unit of 
Measurement 

em 

ex 

px 

% 

Type 

relative 

relative 

absolute 

relative 

Description 

Font size 

Height of lowercase letter x in this element 
(for example, for the width of table columns) 

Pixel value. A problem may occur if you 
change the font size. 

Percentage value referring to the parent 
element. Percentage values generally do not 
work for height values. Percentage values 
do not work correctly for Scroll Con t a i ne r 
and Transparent Container with 
SCROLLINGMODE not equal to none . 

Table 3-4 CSS Units of Measurement 

Effects You can see from Figure 3.31 that the ROW8ACKGROUND0ESIGN, WIDTH, 

and HEIGHT properties are being used. 

Lavout Data (MatrixHeadDatal 
ceiiBackgroundDesign 
ceiiOesign 
coiSpan 
height 
hAiign 

vAiign 
vOutter 

width 

border 3 *t X I P · 

rPad Iii f.f • ~ • ~ . ·.~e~ - j; " 
1 f) 
1 

.dJ llttJtmo1)olo u I 

beginOILine Iii 
baseline 
None 
100px r .... ~ 

Figure 3.31 Using Layout Data Properties in Matrixlayout and Its Effects 

The border value of the ROW8ACKGROUNDDESIGN layout data property 

was used as the background co lor (0 ); therefore , the background is col

ored gray as a result. The cell height was set to lOEX with the CSS unit of 

measurement (0 ); therefore, the cell height is relative to the height of 

lower-case letter x of the font in this e lement. If this font size changes, 

the cell height will also change. A w idth of 1oorx was specified for the 

cell width; that is, the WtDTH layout data property (0 ). This absolute 

measurement ensures that the width will not change if the cell content 

changes. 



Layouts and Containers J 3.2 

Grid layout 

Gri d Layout arranges the layout ofUI elements in tables. The GridLay ou t Layout in tables 

layout can be assigned to a container such as ROOTUIELEMENTCONTAI NER 

shown in Figure 3.32 (0 ), for example. 

· 0 CONTEXr_MENUS 
ROOTUIELEMENTCONTAINER 

PrOtJenv ]value 
Properties crransparentContainer) 
10 
Layout 0 ROOTUIELEMENTCONTAlNER 

Layout <OlidLaxoun 

ceUPadding 
censpaclng 
coiCount 
stretchedHortzontatly 

stretchedVel1ically 

G~dLayoul 

o f} 
0 

2 

0 
n 

Figure 3.32 Grid layout and Its Properties 

]Binding . 

Other layout properties you have not yet seen are available for Gr id Lay

ou t (see Figure 3.32, f)): 

~ CELLPADDING 

You use the CELLPADDING property to define the cell content spacing 
for the cell, which is then applied to all Gridlayout elements (see Fig
ure 3.33, 8 ). 

~ CELLSPACING 

You use CELLSPACING to define the spacing between cells, which is 
then applied to all Gridlay ou t cells (see Figure 3.33, 0 ). 

~ COLCOUNT 

You use COLCOUNT to define the number of columns in Gri dlay ou t . 

Grid layout
properties 

Unlike other layouts, layout data for Ul elements does not exist for No layout data 

elements assigned to the container. This also means that you cannot 
determine whether an element begins a new row or is displayed in the 
row. 

149 



3 I Developing Web Dynpro Applications 

0 0 
2 

2111112 
2 

0 

0 0 

Figure 3-33 Areas of Influence of cell Padding and ceiiSpacing Layout Data Properties 

Defining rows A new line begins if all of the cells in a row are filled. When you remove 
an element, the assignment of elements to cells is recalculated. This can 
cause elements to move. If you want to remove an element, you can 
replace it with an InvisibleElement UI element. Figure 3.34shows the 
LAYOUT DATA (GRIDDATA) properties for a Ul element (0 ). 

· 0 CONTEXU4ENUS 
• 0 ROOTUIELEMENTCONTAJNER 

· Uit2:1341 
Property jValue jBindlng 

c~l:~ackgroundDesig~liiinSIWE•nl ill [r---.1 
coiSpan 1 

dragOata 
height 
hAfign 
paddingBottom 
padd!ngun 

paddingRighl 
paddingTop 

..•. 

beginOIUne ISJ 

baseline m 

Figure 3-34 Layout Data (Grid Data) for a Ul Element 



Layouts and Containers I 3 .2 

The (not yet seen by you) properties for the layout data include: 

I> PAOOINCBOTIOM 
You use PADDJNGBorroM to define the spacing of the cell content to 
the bottom edge of the cell in CSS units of measurement. 

I> PADDINGLEFT 
You use PADDING LEFT to define the spacing of the cell content to the 
left edge of the cell in CSS units of measurement. 

I> PADDINGRIGHT 
You use PADDING RIGHT to control the spacing of the cell content to the 
right edge of the cell in CSS units of measurement. 

I> PAOOINGTOP 
You use PADDJNGTOP to control the spacing of the cell content to the 
top edge of the cell in CSS units of measurement. 

In Figure 3.35, you can see that the CELLPADDING, CELLSPACING, und 
COLCOUNT layout data properties are being used. The spacing between 
the cells has a value of 20 in the CELLPADDING layout property (0 ). This 
setting ensures that a border of20 pixels is defined around every UI ele
ment displayed. The CELLSPACING layout property has a value of 50 (f)) 
and ensures that there is spacing between all cells. The COLCOUNT prop
ercy has a value of 2 (f)), which means the elements will be arranged in 
two columns. 

Grid Layout 

ceiiPadding and 
ceiiSpacing 

...., 
~~.I,.,._. 3 ., X I 

~ ~ IJ -I I'-> · .. -
la!,!OUI (Gridla!lOU!l 

ceiiPadding 20 0 
50 f) -· I • o I ceiiSpaclng 

col Count 2 €) 
stretchedHorizont 0 -· 
stretchedVe rtic a II ~ 0 t 'lr..to~-t ...... . 
Figure 3.35 Using Layout Properties in GridLayout and Its Effects 



3 I Developing Web Dynpro Applications 

V _MAIN_LAYOUT 
view 

3.2.3 Example 

It is now time to put what you have learned about the zwoc_CLASS_ 
BROWSER Web Dynpro component into practice. Yo u will design the 
V_MAI N_LAYOUT view you created earlier. which will enable you to embed 
another two views (selection and result). The challenge for you is to 
arrange these two views in one column and above each other. 

This means you will need two Vi ewConta i nerU I Element UI elements to 
let you a) display a selection view and b) show the selection result in the 
form of a result view. 

1. Switch to the LAYOUT tab of the V_I•1A I N_LAYOUT view. 

2. Assign Gr i dlayout to ROOTUIELEt1ENTCONTAINER and set the value of 
the COLCOUNT property to 1 to arrange the subsequent elements all in 
one column. Ass ign a value of 5 each for the CELLSPACJNG and CELL
PADDING properties to define spacing of five pixels between the cells 
and from the UJ element to the cell border. 

3. Enter vc_CLASS_SELECTION for the ViewContainerU IElement Ul ele
ment in the selection area (see Figure 3.36, 0 ). You can set the CELL· 
BACKGROUNDDESIGN LAYOUT DATA (GRIDDATA) property to border to 
separate the cells visually. 

- -
@ Crea:e erement x 

0 10 

Typ 

VC_CLA$S_SELECTIOH 
'vtew<:ontainerUIEiemen1 

vc_cuss_seLECTKIH 

VicwContlincrUI9cmcnt: 
VC_Cl.ASS_NETHOOS 

- -
@Create element X 

10 

Typ 

Vt_CLASS_"ETHODS 
ViewC onta1nerUIE rement 

P10M!Tif!;S mansoarearcontajnM 

Figure 3.36 Designing the V_MAIN_LAYOUT View 

4. In the result area. enter vc_CLASS_METHOOS for the Vi ewCon · 
tainerU IElement UJ element (see Figure 3.36, 8 ). After you define 



Using Important View Elements I 3.3 

1 as the number of columns, the view container will be placed in a 
new row. 

You have now defined the layout view for this Web Dynpro application 
and can move on to the next section, where we will cover using view 
elements. We will introduce and discuss properties and usage options of 
certain basic view elements. 

3-3 Using Important View Elements 

So far, we have only discussed designing views from the perspective of 
arranging areas us ing containers, for example. Now, we will bring these 
areas to life to enable the user to input/output data or interact in these 
areas. Web Dynpro provides an abundance of options for this, which we 
will now look at in more detail. 

The Ul elements provided for designing the Ul layout are divided into Categories 

categories and are displayed in the left area of the view editor (see Chap-
ter 2, Web Dynpro Architecture): 

~ The FAVORITES tab is used to store user-specific view elements. 

~ The TEXT category contains elements related primarily to texts such as 
Inputfield or Label. 

~ The ACTION category contains groups of elements that have a range of 
different actions such as Button, for example. 

~ The elements that provide different selection options such as Check · 
Box or OropOownByKey are summarized in the SELECTION category. 

~ The COMPLEX category contains view elements such as Table that are 
complex due to their structure or content. 

~ The LAYOUT catego1y contains a collection of elements such as Trans· 

parentContainer, ViewContainerUIElement, TabStrip, Group . or 
Tray . used to form the layout. 

~ The GRAPHIC category contains view elements that provide presenta· 
tion graphics and maps such as Image, for example. 

~ The INTEGRATION category contains view elements that integrate dif
ferent techniques- such as InteractiveForm, OfficeControl , and 
Fi 1 eUp 1 oad - into Web Dynpro. 

153 



3 I Developing Web Dynpro Applications 

ROOTUIELEMENT 
CONTAINER 

Position ing view 
elements 

Events and data 
binding 

ROOTUI ELEMENTCONTA!NER is the root node for designing the Ul layout. 
It is a TransparentContainer type. All other UI elements are located at 
levels below the root node. 

You can insert UI elements into a container element from UI element cat
egories by using drag-and-drop, or from the hierarchical display by using 
the INSERT ELEMENT context menu option. The properties for control
ling appearance and behavior are available for the UI elements. You can 
change the display sequence for a UI element using the context menu 
and Ur, and DowN functions . 

If the user interacts with the layout and triggers a HITP roundtrip, the 
new or changed data is placed back into the context nodes and attri
butes. The event handling processing then starts. This means that the 
event handler operates with the current data. This is similar to the Pro
cess After Input (PAl; see Chapter 1, Introduction) event period in classic 
dynpro programming, where the data from the dynpro is transported 
into the relevant target structures (communication structures) at the 
beginning of the PAl processing. 

By binding data to correspondingly typed attributes, you can manipulate 
bound properties. The Web Dynpro runtime makes the relevant types 
available. 

Tip 

To conclude this introduction and review, we would like to refer you to an 
important Web Dynpro application that will help you understand the behav
ior of view elements. As of SAP NetWeaver 7.0, the WOR_TEST_U !_ELEME NTS 
Web Dynpro application is available for testing different view elements. You 
can use this application to manipulate properties of view elements in a user
friendly interface and display the resu lts of changes. 

We will now discuss selected view elements as they relate to thei r area 
of use and the properties made ava ilable. 

154 



Using Important View Elements I 3.3 

3.3.1 TextView 

You use the TextView UI element to display texts in a view. 

~ DESIGN 
You use the DESIGN property to determine the design of the UI ele
ment. 

~ HALIGN 
You use HALJGN to align the content of the UI element horizontally. 

I> TEXT, TEXTDIRECfiON 
TEXT, a primary property, inherits the text to be displayed. You use the 
TEXTDIRECfiON property to define the text direction. 

~ WRAPPING 
You use wRAPPING to control whether the text should be wrapped if it 
is too wide for the display area. 

Tip: U I Element Documentation 

Because only the propert ies for view elements t hat are used for getting started 
w ith Web Dynpro ABAP are discussed here, we recommend that you browse 
through the Ul element documentation. You can easily do so by calling a 
view element in the view hierarchy from the DISPLAY Ul ELEMENT DocuMENT 

context menu opt ion. The relevant documentation for the view element is 
subsequently displayed. 

Example 

To fam iliarize you wi th using the TextView UI element, we will con
tinue with the class browser example (ZHDG_03_CLASS_BRO~I SER) and dis
play the text for the OESCR_CLASS context attribute from the CLASS_SEL_ 

CRIT context node in a view. You must create the new view and call it 
v_CLASS_SELECT ION . This view will be used as the selection screen in 
the Web Dynpro application, similar to a selection screen in classic ABAP 
report programming. After you have created the view and expanded the 
TextView UI element in the view, you will embed the v_CLASS_SELEC · 

liON view in the V_MAIN_LAYOUT view and be able to test the Web Dyn
pro application. 

155 

Usage and 
properties 



3 I Developing Web Dynpro Applications 

[Q] We will now explain this procedure step by step: 

1. Create the V_CLASS_SEL£CTION view and give it a description (see Sec
tion 2.2, View). 

2. Map the context of the CLASS_SEL_CRIT context node for the compo
nent controller to the local view controller context (see Section 2.4, 
Context). This will make the context node available with its context 
attributes fo r data binding in the view. 

3. Select the LAYOUT tab. Use the ~1 a t r i xLayout to arrange the selection 
screen in columns. Assign the Matri xLayout value to ROOTUI ELEMENT
CONTAINER in the LAYOUT property. 

TextView Ul 4. Now, create a TextView UI element to display the content of the 
element OESCR_CLASS attribute in the view: 

1> ID: TV_OESCR_CLASS 

I> TYPE: TextView 

5. The layout data property of the TextVi ew UI element was already 
assigned the t·latri xHeadOata value and ensures that a new row begins 
in the display. The TEXT property is still highlighted in red, which 
means that a mandatory entry has no t yet been made. 

Display the data from the context. Click on the button in the CREATE 
BINDING column, next to the input field fo r the TEXT property, to open 
the DEFINE CONTEXT BINDING dialog box. There, select the OESCR_ 
CLASS attribute from the CLASS_SEL_CRIT context node for the data 
binding, and click on the button with the green checkmark to confirm 
your entry. 

Embedding views 6. For the moment, you have completed designing the view. You now 
have to embed the view in the w_NAIN window to be able to display 
it. To do so, switch to the window and select the WINDOW tab (see 
Figure 3.37). 

7. Open the W_NA IN node and then V_MAIN_LAYOUT. Assign the V_CLASS_ 
SELECTION (8 ) view using the EMBED VIEW (0 ) context menu path in 
the VC_CLASS_SELECTION view container. This results in changing the 
structure in the window display (0 ). 



Using Important View Elements I 3 .3 

Wlndow 

!--'-Properties Window Inbound Plugs Outbound Ptugs 

~W&b~p!O fii'<Mdl'll_-----------X 

Window 

Properties Window Inbound 

Wind0'!1¥-Sttuk1ut 
• CJW_MAJN 

• EJV_MAIN_LAVOUT 

• • •• 
iii VC_CLASS_SELECTION 

• Y_CLASS_SELECTION 
'::'DeFAULT 

Outbound 

Figure 3.37 Embedding a View in a View Container 

VltwiO 8t Embtddtcl 

C<<'Y'IPOOtrrl oiVIew 

CC#I'IDOntrriVU 

8. After activating all changed and new elements. you can test the Web 
Dynpro application (see Figure 3.38). An ABAP class description will 
now be displayed for the user. 

Figure 3.38 TextView Ul Element in Action 

lnputField and Label 

The lnputFi el d Ul element enables the user to edit or display a single 
row text (input field). An I nputFi e 1 d can be used to edit all scalar data 
(simple type). The internal display automatically converts to a visual dis
play and vice versa. 

157 

Usage and 
properties 



3 I Developing Web Dynpro Applications 

Usage and 
properties 

Determining text 

If an error occurs during the conversion, the value is not reset in the con
text, but is instead kept in the data container. The next time the data is 
displayed, the input field will have a red border, with the missing value 
displayed, and an error message will be issued. The entry will only be 
checked if an HTTP roundtrip has been triggered. 

,.. LENGTH, WIDTH 
You use the LENGTH property to specifY the character length of the UI 
element. The WIDTH property overrides this property. 

,.. PASSWORDFIELD 
You use PASSWORDFJELD to replace the characters the user enters on 
the screen with asterisks(*). 

,.. REA00NLY 
You use READONLY to influence the editability of the UI element. 

,.. VALUE 
You use VALUE, a primary property, to display a character string in the 
UI element. This property must be bound to a context attribute. 

You use the Label UI element to label other UI elements- including the 
I nputF i e 1 d Ul element. This way it is always associated with another 
UI element. If the assigned UI element in the STATE property has set 
the requi red value, a red star is displayed next to the La be 1 text. This 
results in a mandatory entry field appearing. If the associated UI element 
in the ENABLED property has set the ABAP _FALSE value, the Label is also 
marked as being inactive. Properties of the UI element we have not yet 
introduced include: 

,.. LABELFOR 
The LABELFOR property is a mandatory entry field and is used to spec
ifY the associated UI element. 

,.. TEXT 
TEXT is an optional property you can use to define the display text for 
labeling. If the La be 1 UI element is associated with another UI ele
ment, you use the following procedure to determine the La be 1 texts 
(see Figure 3.39): 

.. A check is carried out to see whether there is a directly entered text 
for a La be 1 UI element. 



Using Important View Elements I 3.3 

... If so. the search for the text is terminated. 

... If not, the associated Ul element is determined using the value of 
the LABELFOR property. 

Depending on the UI element type, it has a primary property (for 
example, the VA LUE property for the InputFi el d UI element). The 
data for the primary property is bound to a context node attribute 
that uses a data element from the ABAP Dictionary for typing. The 
short text for this data element is found under the field labels and the 
search is consequently terminated. 

Does the Label have a 
text in property text? 

Figure 3-39 Determining Text for a Label 

Determme 
associated 
element 

Determine 
DE of context 
attnbute for 

After this overview, let us now take a look at using UI elements in prac
tice. We will continue with our example. 

Example 

Now, your task is to provide an input fie ld for the NAf1E_C LASS context [ 1] 
attribute of the CLASS_SEL_CRIT context node in the V_C LASS_S ELECTION 
view. You also have to define a Label UI element for InputF i el d so that 
I nputFi e 1 d is labeled and the user can identify which data should be 
entered in this fiel d. Again, you will proceed step by step to carry out 
the task: 

1. Create an lnputField UI element in the V_CLASS_SELECTION view: 

I> ID: IF _NAME_CLASS 

1> TY PE: InputField 

Determme 
short text in 
ABAP-OOIC 

2. You must change the position of lnputField in such a way that it Positioning 
appears in the first position in the row. Use the context menu of the 
1 F _NAME_C LASS UI element in the view hierarchy to move the UI ele-

159 



3 I Developing Web Dynpro Applications 

ment in the hierarchy up using the UP menu option. This will change 
the display position of the Inputfield UI element and it will be dis
played in the first position (MatrixHeadOata). 

3. The TV_OESCR_CLASS UI element also appears in the first position, but 
in the second row. All selection information should be positioned in 
a row; therefore, change the value of the layout data property for the 
TV_OESCR_CLASS UI element to ~1a t r i x0ata . This will ensure that Tex· 
tView is displayed on the right, next to Inputfield. 

4. The VAlUE property of the lnputf i eld UI element IF_NAr1E_CLASS is 
not yet bound to a context attribute. You can tell that this is the case 
by the fact that a folder with an empty circle is displayed on the 
button on the right, next to the VAlUE input field. The DEFINE CON
TEXT BINDING dialog box opens when you click on this button. Select 
the NAM E_CLASS attribute from the CLASS_SEL_CRIT node for the data 
binding and confirm your entry. 

Label 5. To define the Label for Inputfield . create a new UI element: 

~ lo: L_NAME_CLASS 

~ TYPE: La be 1 

Move the Label UI element to the first position in the UI element 
hierarchy. Adjust the values of the layout data of all UI elements in 
such a way that all Ul elements appear in one row. 

6. You still have to associate La be 1 with Input Fie 1 d. To do this, use the 
dropdown menu of the LABELFOR property and choose the IF _NAME_ 
CLASS entry. This means the field labels of the data element for Input· 
Fie 1 d will be used as the label text. You have now completed design
ing the view. 

7. After you activate all changed and new elements, you can test the 
Web Dynpro application. The result should correspond to what is 
displayed in Figure 3.40. UWIE_CLASS of the Label UI element is in 
the first position in the UI hierarchy (0 ). This means that this element 
will be displayed as the first element in the view. It is followed by 
the Inputfield UI element, IF _NAME_CLASS (8 ). Following that is the 
description, the last of the UI elements (0 ) in the row. 

160 



Using Important View Elements I 3.3 

CONTEXT _MENUS 
... ROOTUIELEMENTCONTAINER 0 

T L_NAME_CLASS --------+-, 
~IF _NAME_ CLASS ------, 

-~-' • l !!J ~«~>•IA 
<I ~ .61""''"'""' 

Figure 3.40 Displaying Label, lnputField, and TextView Ul Elements 

• 

After the user has entered the names of the ABAP class to be found, the Triggering a HTTP 

details for this ABAP class must also be found. The user therefore needs roundtrip 
to be able to trigger an HTTP roundtrip and start the search process 
through the Web Dynpro application. In the following section, we will 
discuss the option of the But ton Ul element. 

3·3·3 Button 

All elements used for actions on the interface are summarized in the 
ACfiON Ul element category. One example from this group is the But · 
ton Ul element, which represents a button in the view. By clicking on 
the button, the user can trigger an action that is then processed by an 
action handler. 

Some of the (not yet discussed) properties included in the But t on UI ele
ment are as follows: 

~ TOOLTIP 
TOOLTJP lets you display addi tional text for a Mouse Over event. 

~ IMAGESOURCE 
IMAGESOURCE allows you to define the symbolic name of the image 
you want to display from the Multipurpose Internet Mail Extensions 
(MIME) Repository, for example. You can also use Transaction ICON to 
find out the name of an icon. 

Usage and 
properties 

You also have to define an event called ONACTION for the Button UI onAction 
element. An action can be assigned to this event; when the user trig-
gers the event, the action creates a coupling to an action handler. This 
is similar to the event and event handler mechanism in ABAP objects 
programming. 



3 I Developing Web Dynpro Applications 

Example 

So far, users of the sample application can view the proposed data (which 
originates from the default va lue of the NAME_CLASS context attribute and 
initialization of the wddoi nit( ) method of the component controller) 
in the selection screen for the Web Dynpro application. They can also 
enter a new ASAP class name. However, they cannot yet start the search 
process through a triggered HTIP roundtrip. Likewise, they cannot yet 
adapt the ASAP class description to a newly entered ASAP class name. 

Your job now is to implement these requirements: 

Button 1. In the V_CLASS_SELECTJON view, create a Button UI element, which 
you will position after the IF _NAI·1E_CLASS input field: 

~ ID: BTN_CLASS_SEARCH 

~ TYPE: Button 

imageSource 2. The Button UI element is used only to get an icon as its label, pref
erably a magnifYing glass icon. To do this, use the dropdown menu 
in the IMAGESOURCE property (see Figure 3.41, 0 ), which you access 
using the input help in the input field for the property. A dialog box 
will open. On the IcoN tab, scroll to the icon called TbOeta ; 1 (0 ). 

Click on this icon to select it. The symbolic name of the icon, - 1 con/ 
TbDeta i 1, is then added to the input field for the ICONSOURCE prop
ei1y (9 ). 

Action 3. You will find the onAction event in the properties for the Bu t ton UI 
element in the EvENTS section. You can use it to assign an action to 
this event, and this action will then call an action handler that will 
implement the search for the ASAP class. Use the button to create the 
SEARCH_METHOOS action. 

Action handler 
method 

4. Switch to the source text of the on action sea rch_methods < l action 
handler and implement the check to see whether the name entered 
by the user corresponds to an ASAP class name. To do th is, use the 
is_c1ass< >method from the component controller. The easiest way 
to do this is by using the Web Dynpro Code Wizard. 

162 



Using Important View Elements I 3.3 

·~w.~c."•~.,. e~ .. l • ..,...,; :t«_t'J_tv.tl_~w ------
X 

Compc~lrMoJU ·~ 
ktll'l....,. ·-- $N>OI.I OOOH ') 

0 I~U!)II(H>H) • .:J 

Q Jbi)M .. {I .. U) -h I 
El lb()~···d•) ' "" IIJR~(I1di) 

0 
~ ·~uRp.04XtiJ • afl..-,ctP.Io:t(lt.tli} \ 
... - 1"- ~ 

i" 
10 9Tt4,..CLASS. SEMOH I" IJTN_cv.ss_SEARCH 

""""'" " WJIItl!O~ Q 

( 

ln!lttll " 
lflllt!ll " ,...,, sbndald Q i""'" $1$11cl~r(l & 

' 

~ 
' 

'-~ I"""' Q ..... ,) .,.~~ 

7 

I ..fcc~~~! @ II 
lnllffll "' 

ll'lhtlll & 

~:: 'll'lt!ble " I= '"""' " - 1-

Figure 3.41 Inserting the Symbolic Icon Name 

5. Next, determine the description for the ASAP class. To do this, use 
the getmodel _class_informa t ion< ) component controller method 
you created in the additional exercise in Section 3.1.3, Creating Con
text Elements. For illus tration purposes, Listing 3.12 shows the com
plete implementation. 

METHOD onac t'i on sea rch_me thods 
* Selection data f rom context 
DATA : lv_rs_value TYPE zst_03_wd_class_sel_crit . 
* Existence of cl ass 

ld_exists TYPE abap_bool . 
• Meta i nformat ions fo r class 

ls_c lass TYPE vseocl ass . 
* Determi ne selection criteria 
lv_rs_value = 

wd_comp_controller ·>getctx_class_sel_crit( ) . 
*Check i f search stri ng i s a class name 
TRY . 

wd_comp_controller ->is_class< 
EXPORTING 

clskey ~ l v_rs_value- name_class 



3 I Developing Web Dynpro Applications 

lt1PORT I NG 
ed_exists • ld_exists ) . 

* If class does exist 
IF ld_exists • abap_true . 

* Determine class descr iption 
wd_comp_controller->getmodel_class_information( 

EXPORTING 
clskey = lv_rs_value-name_cl ass 
modif_language • sy-langu 
version = seoc_version_active 

JHPORTJNG 
class= ls_class l . 

* Set descript i on 
lv_rs_va l ue-descr __ class = ls_class -descript . 

ELSE . '' ld_exists • abap_false 
*Hand ling , in fo text for users 

lv_rs_val ue-descr __ class = ' Class does not exist ' . 
END! F. 

* Fired by IS_CLASS . class does not exist 
CATCH cx_wd_no_handler . 
*Hand ling . in fo text for users 

lv_rs_value-descr __ class • ' Class does not ex ist '. 
ENOTRY . 
* Set values back into description 
wd_comp_cont roller->setctx_class_sel_crit( 

is_value = lv_rs_va lue ) . 
ENOMETHOO . 

listing 3.12 Implementing the onactionsearch_met hods() Method 

Reuse The action handler method is a good example of reus ing created meth
ods in controllers. Your goal should always be to define methods in such 
a way that you can reuse them as often as possible. 

With the onact i onsearch_methods ( J method, you have implemented a 
complex action handler as seen in real Web Dynpro applications. Figure 
3.42 shows the current status of the selection screen. 



Using Important View Elements I 3.3 

» 

AJ. V Ll$1. Viewer 

0 
Localiltranet r .... IOO% 

Figure 3.42 Complete Selection Screen 

Accessibility of a Web Dynpro Application 

We would like to point out that you may get the following message when 
checking the method: 

ACC: Too/tip is not set for element BTN_CLASS_SEARCH. 

To make a business application also accessible to users w ith disabilit ies who 
rely on different types of techn ical support, the Web Dynpro framework en
ables you to set up accessible applications. 

An important prerequisite for accessibility is that there is a too/tip for every 
Ul element; t his is because tooltips can be analyzed using screen reading 
programs and made accessible to visually-impaired users. You must always 
maintain the TOOLTIP property for a Ul element if: 

.. The U I element has no title 

.. A Label is not assigned to the Ul element 

.. Elements w ith a TEXT property have not set or bound this property (for 
example, a But ton has no text) 

Almost all U I elements also provide the ACCESSIBILITYDESCRIPTION property. 
You can use this property to add a substitute title if the Ul element must 
not or cannot have a visible title. Behind a label, for example, you can place 
several input fields to which you cannot assign visible ACCESSIBILITYDESCRIP· 
TION values. 

Accessibility checks are performed by default as part of the syntax checks dur
ing the design phase. Each component also contains an AcCESSIBILITY CHECKS 
ACTIVE indicator. If you deactivate this indicator, no accessibility checks from 
the development environment w ill be carried out for the corresponding com
ponent and their views during the design phase. 



3 I Developing Web Dynpro Applications 

3-3-4 TabStrip 

usage The TabSt rip UI element enables you to display a Ta bStr i p with Tab ele
ments, as you can see in Figure 3.43. 

Tab header I TabS trip I 
(selected) 

I Navigation elements I 

,?a Methods Tree IJfl Methods Table D ••I C:!I 
G ethods Tree 

ethods: T eble 

quite long text for a ta~l 

Tab I Navigation menu I (selected) 

Figure 3-43 TabStrip Ul Element with Two View Elements 

Tabstrip Users can switch between several tabs by selecting a certain tab. If the 
space in the layout for displaying defined tabs is not sufficien t, navigation 
elements are provided in the upper right area of the TabStri p UI element 
that allow you to display the next or the previous tab. You can navigate 
to a specific tab using the navigation menu. The tabs available are listed in 
this navigation menu and the checkbox for the selected tab is checked. 
When you choose an entry, the selected tab is d isplayed and set. 

The Tab view element is an individual tab within a TabStrip Ul element. 
The tab consists of a tab header, tab page (content area), and, optionally, 
a too/bar. 

Display To display the content of all tabs, the same window area is used and 
therefore shared with the other tabs. The user can select the tab to dis
play its content. You design a tab by assigning a UI element to it. 

The instances for the properties of the TabSt r ip Ul e lement have dif
ferent effects. There are no UI element properties that force data to be 
bound to the context, as you can see in Figure 3.44. 

166 



Using Important View Elements I 3.3 

. D CONTEXT_MENUS 
• 0 ROOTUIELEMENTCONTAINER 

-- TS METHODS . -
• CJ T_METH_TREE 

• D TC_METH_TREE 
Layout Data 
accessibilityDescription 

activateAccessKey 
contextMenuBehaviour 
contextManuld 

TS_METHODS 

l!tatrixHeadData im 
,---j 

• ~ TR_METHODS 
· lf:;J m_METHOD 

• T CAPTION_T_METH_TREE (Header) 

n 
Inherit im 

enabled 
height f) 
selectedTab f) 
selectionChangeBehaviour 
tabAJignment 

T_METH_TREE im '----1 
auto m 

tooltip 

v;sible 
width 

Figure 3.44 Properties for the TabStrip Ul Element 

fast m 

Visible 
100% 

,---j 

You assign the TabStr i p ID (0 ) in the usual manner when you create the TabStrip properties 
Ul element, or you can change it later. The HEIGHT property (0 ) defines 
the height in CSS value units . If you have not evaluated the SELECTED TAB 
property (0 ) in the TabSt r i p UI element or if Tab specified in SELECT-
ED TAB in the VISIBLE property has the ABAP _FALSE value. the first visible 
Tab is displayed instead when you display TabStri p for the first time. 
To choose the selected tab, you must have already created tabs for Tab· 
Strip. The WIDTH property (0 ) defines the TabStri p width in CSS value 
units. You can, of course, also bind the HEIGHT, SELECTEDTAB, and WIDTH 
properties to the context, which will be a manipulation option you can 
use during runtime. 

Tab view elements are defined for a TabSt r i p and can only be displayed Tab properties 
in combination with this tabstrip - this is why it is a view element. A 

Tab has a ca pt i on view element with a TEXT property fo r the Litle and an 
IMAGESOURCE property for an image. A t ab can have a too 1 bar that you 
can set using the INSERT TOOL6AR menu option from the context menu 
on the tab. The t ab view element can also have a subelement to display 
the tab content. This subelement could be a TransparentContainer UI 
element, where you can place any number of other UI elements. 



3 I Developing Web Dynpro Applications 

Example 

[D) In the next step, the class browser user should be offered two display 
options for the search result for ABAP class melhods. The melhods are 
displayed in table or hierarchical form . These two display options do not 
depend on each other but should be display ed in Lhe same area in the 
layout. TabStri p is the most suitable Ul element for this. 

In this example, the focus is on defining TabStrip and Tab elements, for 
which you will carry out the steps that follow. We will discuss designing 
contents later. 

1. Create the v_c LASS_METHODS view and map the context of the ~1ETHODS 
node from the component controller. 

Inbound plug 2. Define the FROM_CLASS_SELECTION inbound plug in this view. This 
plug will take over Lhe handling of the navigation transition from the 
V_CLASS_SELECT ION selection view. 

Outbound plug 3. Switch to the V_C LASS_SELECT ION view and define the TO_CLASS_~1ETH • 

Triggering 
navigation 

ODS outbound plug. This plug will be needed to trigger the navigation 
transition to the v_CLASS_METHODS resu lts view. 

4. Switch to the W_I1AIN window and embed the V_CLASS_t·1ETHODS view 
in ViewContainerUIElement - VC_CLASS_MEHIODS. 

5. Define the navigation transition from the TO_CLASS_METHODS outbound 
plug to the FROM_CLASS_SELECTION inbound plug by using drag-and
drop (see Figure 3.45). 

6. To trigger the navigation, switch to the V_CLASS_SELECTI ON view and 
switch from there to the on action sea rch_methods ( J method that 
will handle the button action. Trigger the navigation transition using 
the Web Dynpro Code Wizard (see Listing 3.13). 

VVIndow-S!ruk1ur 
• I:JW_MAJN 

• "EJ V_IMlN_LAYOVT 
• EJ YC _ Cl.ASS_METHODS 

• El V_CL.ASS.METHODS 
- · • FROM_Cl.ASS_SELECTION 

• EJ YC_Cl.ASS_SELECTION 

OescrlphOn 

I 

Jc~ctss methods 
From class selection 

_ • E] V _CLASS_SELECTION Class Selection 

• 9 TO_CLASS_METHODS TO Class methOd~ 
· , FROM CLASS SELECTION 

----: ";:' DEFAULT - -

Figure 3-45 Window Structure with Navigation Transition 

168 



Using Important View Elements I 3-3 

* Set values back into description 
wd_comp_controller·>se tctx_class_se l _crit( 

is_value = lv_rs_value ) . 
* If cl ass exists navigate to resu l t 

wd_t his·>fire_to_c l ass_methods_pl g( ) . 

Listing 3.13 Triggering Navigation Transition from V _CLASS_SELECTION View to 
V_CLASS_METHODS View 

7. You determine the ASAP class methods in the handl efrom_cl ass_ 
selection( J handler method in the V_CLASS_METHOOS view. To do 
this, switch to the handler method. Then, use the Web Dynpro Code 
Wizard to implement the call for the getmodel_cl ass_descri pti on< 
l component controller method (see Section 3.1.3, Creating Context 
Elements). The resul t should correspond to the one shown in Listing 
3.14. 

f1ETHOO handlefrom_c lass_selection . 
DATA : ld_exists TYPE abap_bool , "Does class exist? 

ld_not_active TYPE abap_bool . "Active? 
* Oetermine description object for class . store in 
* attributes of component controller and integrate 
* me t hods in context . 

wd_comp_controller·>getmodel_class_description( 
I f1PORT I NG 

ed_exists = ld_exists 
not_active - ld_not_active ) . 

ENDMETHOO . 

Listing 3.14 Handling an ABAP Class Search 

Determining an 
ABAP class 
description 

8. Switch to the V_C LASS_METHODS view layout. The user should now Creating a TabStrip 
be offered two views for the methods - one hierarchical , the other 
tabular. This is visualized using a TabStrip with two tab elements. 
Assign Matrixlayout for the ROOTUIELEMENTCONTAINER layout 
and set the s tretchedHorizontally property to ASAP _TRUE. 

9. Create the TabStri p UI element: 

1> ID: TS_METHODS 

1> TYPE: TabStri p 

I> WIDTH property: 100% 



3 I Developing Web Dynpro Applications 

creating a tab 10. Create two tab elements for TabStri p. To do this, use the INSERT TAB 
menu option from the TabStri p context menu: 

~ ID: T _t1ETH_ TREE 
The Caption Ul element for T_METH_TREE gets the Method Tree 
value in the TEXT property and ICON_TREE in the IMAGESOURCE 

property. 

~ ID: T_t1ETH_TABLE 
The Caption Ul element for T_METH_TABLE gets the Method Table 
value in the TEXT property and I CON_Ll ST in the IMAGESOURCE 

property. 

11. In T _METIIODS for the TabS tr i p Ul element, set the SELECTEDTAB prop
erty to T_~1ETH_TREE to map this tab as the first tab when you display 
this element for the first time. 

You have now created the new v_CLASS_METHOOS view and designed a 
TabS trip with two Tab elements for it, defined the navigation transition 
from the v_CLASS_SELECTION view, and implemented the handling of the 
navigation. You have also ensured that methods are determined for an 
ASAP class if the user triggers the search process using the button. Figure 
3.46 shows the v_CLASS_METHODS view designed in this way. 

~ Cklss Browser 

ObjectTypeName: [ct OUI_AL V ORID 

~ Methods Tree IHI Methods Table 

X I 

Gl - ~- P•o• • :\. 

1191 AL V List Voewer 

- I OJ~ 
p 

)) 

1111'11[~ Loc<lllntr•net [1ft 100% • 

Figure 3.46 TabStrip Ul Element of Display for Method Search Results 

170 



Using Important View Elements I 3.3 

3·3·5 Tree 

You can use the Tree Ul element to display hierarchies defined in the usage 

context; the hierarchy to be displayed is defined in the context first. Two 
options are available to describe this context structure: 

~ At the design phase, you can define a specific number of levels using 
non-recursive nodes. 

An example of non-recursive nodes is a context node for methods for an 
ASAP class with a sub node for parameters of the method. The num
ber of subnodes for the methods is defined and known. 

~ At the design phase, the number of levels with recursive nodes is not 
yet known. 

An example of a recursive node is a context node for ASAP classes with 
a subnode for inherited ASAP classes. At development time, you do 
not yet know how deep an inheritance hierarchy can reach because 
an inherited class can have inherited classes. A subnode therefore 
repeats the node structure of a supernode - this means this is a recur
sion. 

Recursion 

Recursion, a technique in mathematics, logic, and computer science (from the 
Latin " recurrere" for "run back"), refers to a function that is defined by itself. 
This means that a function is called that performs a certain task at the given 
level and is then called again for each of its sublevels, provided sublevels 
exist. 

The relevant sublevel is processed in this new call and the procedure is, in 
turn, called again for every one of the sublevels found at that (sub)level. 
This part of the processing ends if no further sublevels are encountered at a 

level. 

Non-Recursive Nodes 

The Tree Ul element is used for displaying hierarchical structures and Lead selection 

navigating. You cannot use it to select entries such as the I t emL i s tBox Ul 
element; you can only use it for working with the lead selection. Note 
that although visually this looks like a selection, performance-wise it is a 
very intensive operation. Therefore, in most scenarios it would be more 
of a hindrance to use the Tree UI element. 

171 



3 I Developing Web Dynpro Applications 

Two-tier tree Tree nodes and Tree leaves belonging to the lead selection are displayed 
highlighted in the Tree, as you can see in Figure 3.47: 

P· 

"} • !;) • Ji • • \.t. . • rp ... 

. c.~$1J) 

• (It ff!IOP'Y ..t.U..E(e p ) 

. (t ~ ~CAI'.HD~stB<fti:SlJ~ 
• 3 ,-~UOEO.JfKlP-st1~ 

Figure 3-47 Two-Tier Tree 

I> DATASOURCE 

w -

• 
· f3 1TT_PARANETE#t 
• ~ TtiT _.wETHOO 

You can bind the Tree UI element to each context node; that is, the 
uppermost context node you want to be displayed in the tree. The 
DATASOURCE property is available for this purpose (0 ). 

" TREENODEl'YPE and TREEITEMl'YPE 
You can display subnodes of this context node as nodes in the tree 
using the TreeNodeType view element. You can display context node 
subelements as leaves using the Tree I tern Type view element. 

I> DEFAULTITEMICONSOURCE and DEFAULTNODEICONSOURCE 
You use the DEFAULTITEMICONSOURCE and DEFAULTNODEICONSOURCE 
properties (0 ) to define icons for leaves and nodes that should be 
used for general display purposes. These default settings can still be 
overridden subsequently in nodes and leaves. 

I> ENABLED, ROOTVISIBLE, ROOTTEXT 
You use the ENABLED property (0 ) to specify whether the user can 
interact with the tree, nodes, and leaves. The Tree UI element can 
display a root node if the ABAP _TRUE value is set for the ROOTVISIBLE 
property (0 ). If the root is displayed, you can use the lWOTTExr prop
erty (0 ) to define the text for the root node. 

172 



Using Important View Elements I 3-3 

I> TITLE and TITLEVISIBLE 
You can use the TITLE property (0 ) to define a title fo r the Tree. Use 
the TITLEVISIBLE property (0 ) to define the visibility of the title and 
the button for collapsing nodes. As always, you can change the prop
erties during runtime using corresponding data binding. 

After the usage of the Tree UI element has been defined and custom- TreeNodeType 
ized, the subelements for Tree are created. Subelements have nodes and view element 
leaves, which we will now explain in more detail. Figure 3.48 shows a 
node definition. In this case, the TreeNodeType view element is used: 

I> DATASOURCE 
Selecting a context node as a data source defines which context attri
butes can be displayed as text or as a tooltip. For th is purpose, the 
DATASOURCE property of the TreeNodeType view element (0 ) is bound 
to the corresponding context node. 

I> EXPANDED 
The EXPANDED property (0 ) defines whether the node shown in the 
Tree is displayed open (expanded) or closed (collapsed). If the prop
erty is bound to the context, the bound attribute is evaluated for each 
context element. From an implementation point of view, this means 
that you can control whether a node is opened at the node level. This 
property interacts with the HAS(HILDREN property (0 ). 

I> HAS(HILDREN 
If ABAP _T RUE is set for HASCHILDREN, a triangle indicates to the user 
that th is node can be expanded or collapsed and that there is more 
data under this node at the next hierarchy level. The HASCHILDREN 
property is only used at runtime fo r the TreeNodeType view element 
to determine whether children exist. If ABAP _FALSE is set for the 
HASCHILDREN property, the nodes are displayed as leaves. 

I> ICONSOURCE 
You use the ICONSOuRCE property (0 ) to influence the way the node 
is displayed. In addition to the TEXT property (0 ), an icon is displayed 
to the left of the text that - depending on the node - can be omitted 
individually using data binding. If the ICoNSOURCE property is not 
evaluated, the DEFAULTNODEICONSOURCE property from the Tree UI 
element is used for evaluation purposes. 

173 



3 I Developing Web Dynpro Applications 

• HJ IS_VARIANT(244 ,0) 

· fa m_PARAAIETER 
iii! TNT _j,j;ETHOO 

TNT_WEntOO 

tntlent 

Figure 3.48 TreeNodeType View Element for a Tree 

TreeltemType Not only nodes are available for designing the hierarchy in the tree; 
leaves are as well. They are defined using the TreeltemType view ele
ment, as you can see in Figure 3.49: 

I> DATASOURCE 

like the TreeNodeType view element, the DATASOURCE property (0 ) 

defines the data source at context node level and the context attri
butes that can be used fo r data binding. 

I> ICONSOURCE and TEXT 

The ICONSOURCE (0 ) and TEXT (E)) properties behave as they do with 
the TreeNodeType view element. 

G'a MdhOd:s Tree (HI Methods T atta A MethOds 3 Pertvneters e TIT_PARMIETER 

• ~ AUTHORITY _C>«l< 
· [] TNT_METHOO 

m_PAA.AAtETER 
tOf'l~enueen~ou• tnl\eril 

• >O I_N!1;RACTI'VE(2 ,0 ) 

• .,0 ll_TOOI..B&.R_EXCLLDNG(8 .0) 

Figure 3.49 Treel temType View Element for a Tree 

174 



Using Important View Elements I 3.3 

Tree I temType e lements can never have children and are therefore always 

displayed as leaves. They are used when it has already been determined 

a t the design phase that the corresponding node does not have any chil

dren; in other words. the context node does not have any sub nodes. 

Caution 

The context hierarchy is not reflected in the layout design view. All nodes 
and leaves for the Tree are displayed directly under the Tree in the layout 
hierarchy, without taking into account hierarchy levels. 

None of the hierarchy levels defined in the context can be omitted when context and Tree 

the Tree UJ element is displayed. All nodes not directly below the con-

text root node must be non-singleton nodes because all elements in a 

tree should be displayed regardless of the lead selection. Although you 

can set the SINGLETON property for a context node at development time , 

this causes a runtime error at execution time. 

Singleton 

You can apply the SINGLETON property of a context node to use context data 
memory efficiently. This property controls how often a context node instance 
is available during runtime. If the SIN GLETON property is set to ASAP _TRU E 
(checked checkbox), only one instance exists for the affected node during 
runtime. 

Context nodes arranged directly below the context root node are always sin
gleton nodes. Subnodes of any context nodes can be customized as singleton 
or non-singleton nodes . 

If subnodes are customized as non-singleton nodes, a subnode instance is 
created for every supernode element. This means that a buffer is reserved 
for the subnode and for each supernode element . That is the bad news. The 
good news is that the context data for the subnode elements can be deter
mined, stored, and used later in any way. 

If the subnode is customized as a singleton node, exactly one subnode in 
stance is created for all supernode elements. The good news is that there 
is exactly one subnode instance for all elements of the supernode. The bad 
news is that when the supernode element changes (this is the lead selection), 
you must determine the data for the subnode elements again. (You will no 
doubt still remember the supply function you can use specifically for this 
purpose.) 

175 



3 I Developing Web Dynpro Applications 

You can also bind the Tree in such a way that the DATASOURCE for the 
Tree element binds to a structured 1 .. 1 contex t node and the e lement 

nodes for the Tree element appears below the context node. This is 
necessary for mapping directory structures, for example. With recursive 

Tree elements, you can display the recurs ion against this 1 . . 1 node. As 
a result, this context node will be skipped during rendering. 

onExpandAII The Tree UJ element provides the ONEXPANDALL event, to which you 
can assign an action. This means that in addition to the CoLLAPSE button, 

tl1e ExPAND button is also d isplayed in the tree title bar. You can imple
ment the expansion behavior in the event handler for the action. The 
EXPANDED property for the TreeNodeType view elemen t must be bound 

to a context a ttribute for this implementation. 

onAction The TreeNodeType and Tree I temType view elements contain the ONAC

TION event. If an action is ass igned to this event and the user clicks on 
an entry, an HTTP roundtrip is triggered and the assigned action handler 

is called. Figure 3.50 shows the contents of the wdeven t parameter in 
the action hand ler. 

Table {0 :2996' \Cl~SS:Cl_VD_CUSTOft_EVI 

Refemte WDEVENT 
- -

Object l O: 2996' I ClASS,Cl_WO_CUSTOH_EYENT I 

~~ a 

11 ~,., . .. Sin ... VisL. A:ltib. 

~ 0 
0 

OBJECT 

CL_WO_CUSTOK_EYENT 

NAKE 

Vat .... 

Hashed Tabl e[3x2(16) ) 
ON_ACTION 

VALUE(frefj 

·>1NT_11ETH0() 
-> ·>{0:123 ' \ClASS;Cl_VDR_CONT£XT_El EI1ENT} 

- >METHOOS.11 

Figure 3.50 Contents of wdevent Parameter During Action Handling 

wdevent You can obtain information for the ONACTION event from the in te r
nal parameters table available in the wd event object. The name of the 

Tree element to be triggered is stored in the first entry, i d (0 ), in the 
parameters table. The reference to the context element belonging to the 
selected Tree e lement is stored in the second e ntry, context_el ement 

(G ). The third piece ofinformation provided with pa th (0 ) is the con text 
node name and context element index. 



Using Important View Elements I 3.3 

In addition to the action handler being processed, the wddobeforeac- Hook methods 
t ion ( J and wddoa fteract ion( J hook methods are executed. If the 

IGNO I~ EACTION property for TreeNodeType and TreeltemType is set to 
ABAP _T RUE, the action assigned to the ONACTION property is not exe-

cuted,just like the wddobeforeaction( J and wddoafteraction( J hook 
methods are not executed. However, an HTIP roundtrip can be triggered 

by clicking on an entry in the tree because the lead selection is set for 
the integrated context node. 

You can load node and leave data in the Tree into the context in advance. Dynamic loading 

This was the approach previously taken. It can cause a heavy load on the 
server and client if a large amount of data has to be stored in memory. 

An alternative approach involves loading o nly data for a specific request 
by the user, for example, by opening a node. We can also refer to data 
loading in this context as dynamic loading. 

The ONLOADCHILDREN event is defined for the TreeNodeType Ul element 
in this case. If you assigned an action to the event, an HTIP roundtrip is 

triggered, the action handler is executed, and the wddobeforeact ion ( > 

and wddoafteraction< ) hook methods are processed. When you close 

the node, the handl ing is not executed. 

Like with the ONACTION event, the same information from the wdevent 

parameter can be accessed in the action handler; that is, id, context_ 
element and path. The dependent information is then determined for 
context_element in the action handler implementation. This can some

times be time-consuming; therefore, it would be a good idea to use a 
context attribute to record whether the data was already determined in 

a previous step. The dynamic data loading approach is particularly inter· 
esting for defining and using recursive nodes. 

Recursive Nodes 

A tree stnicture may consist of a recursive repetition of nodes for which 

the hierarchy levels are not known in advance. This means that specific 
levels can only be defined during runtime, not at development time. 

To be able to define a tree with recursive nodes, you need to create a 
suitable context definition and then define the Tree Ul element with its 

177 

Unknown hierarchy 
levels 



3 I Developing Web Dynpro Applications 

Defining a context 
structure 

Recursion nodes 

subelements. Figure 3.51 shows the context structure defin ition based 
on a simple example of determining superclasses for an ABAP class: 

,.. The first step involves creating the nodes in the context that should be 
repeated; for example, an ABAP class node (0 ) . You can set up a con
text structure containing any number of nesting levels; in other words, 
nodes with subnodes. 

,.. In the next step, you create a recursive context node for the context 
node or nodes that can be repeated. You do this using the RECURSION 

NODE (0 ) menu option from the context menu of the node that can 
be repeated. 

,.. In the CREATE RECURSION NODE window that opens next, enter a name 
for the recursion node - in this case SUPERCLASS- and click on the 
SELECT button to create a reference to the repeating node; you want to 
repeat the CLASS node. After you confirm your entries, the recursion 
node appears in the context hierarchy (E)), where its icon differs from 
the "normal" context nodes. 

SUP£ ... tlASS 

•r-------------1a. Rtt»*4NOdf 
~~ NoOi Q' 
~~~.i» vs1no 111e 'M'Uid ~111M' 

~M~f ~'A&ion NOOf ~

Q~tplty
8tMrnt

Qtlt!t
. w

Conte:d V_SUPER_CLASSES
? Q CONTEXT

• Gil CLASS
til SUPER_CLASS
'b NAME_CLASS

• 'b HAS_SUPER_CLASS

Figure 3.51 Context Definition for a Tree with a Recursive Node

After you have defined the context structure, you can create the Tree UI
element. Figure 3.52 shows the tree definition with subelements, the
data binding to the context, and the result:

dataSource ,.. The DATASOURCE property (0) is used to define the context node to be
repeated as the data source for the Tr ee UI element and TreeNodeType

Using Important View Elements I 3.3

view element. This means that node attributes and sub nodes from the
context are available for UI element properties.

~ You can use the HAS(HILDREN property of the TreeNodeType UI ele- TreeNodeType

ment to display whether the node is displayed as a leaf or node. You
have defined the value for this property using data binding (G). You
will see how to determine or assign this value at runtime. The node
text is also defined by data binding to an attribute for the repetition
node (0). The relevant defini tions and bindings have now been per-
formed .

~ Data is stored in the context at runtime -depending on which node onloadChildren

the user opens. The ONLOADCHILDREN (0) event is available for map-
ping the reaction to a node being opened.

ROOTVlELCMEtiTCOHT .AJNEA
• 0 TC.SVPER_CLASSES

• ill TR_SVPER_CI...MSES
• 1)3 TNT_SVPER_CWSES

TR_~PER-.CLASSES

Ma1!1l!Heauoau Ia
tntwnr m

,.. 0 TC_S~R.CLASS£S
• ~ TR_SUPER.CWSES

1/. TPIT_SUP'ER_C~SH

TNT. SVPER. CLASSES
k'll'le.il ..

CL_GUI_ALV _GRID IBI
• Super Classes

T G CL_GUI_ALV_GRI)

T Qi CL_GUI_ALV _GRID_BASE

T G> CL_GUI_CONTROL

T Q) CL_GUI_OBJECT

• ~ OBJECT

Context V _SUPER_ CLASSES

1---t·:j~CONTEXT
r.1l SUPER_CLASS

Figure 3.52 Tree Ul Element with Recursive Context Node

Listing 3.15 shows the implementation of action handling for the
ONLOAD(HILDREN event.

179

3 I Developing Web Dynpro Applications

METHOD onactionload_children .
* Name of superclass for current class
DATA : ld_name_superclass TYPE string .
* RTTI class description

lo_classdescr TYPE REF TO cl_abap_c lassdescr .
• Node reference to superclass

lo_nd_superclass TYPE REf TO if_wd_context_node .
* Data structure for class element

ls_class TYPE wd_this ->element_class .
• Data structure for superclass element

ls_superclass TYPE wd_this->element_class .
* Determine data of selected element for the class
context_element ->get_static_attribut es(

IMPORTI NG
static_attribut es- ls_class) .

*Check i f data for superclass has been read
CHECK ls_class · superc lass_read - abap_false .
* Determine data for superclass
TRY.
* Get descr ipt ion obj ect for cl ass via RTT I

I o_classdescr ?- cl_abap_typedescr=>descr i be_by_name(
ls_class name_c lass) .

* Read descri pti on obj ect for superclas s
CALL METHOD lo_classdescr- >ge t_super_class_type

RECEIVI NG
p_descr_ref - lo_cl assdescr

EXCEPTIONS
super_class_not_found = 1
OTHERS - 2.

* If no superclass exists
IF sy -subrc <> 0.

• Class does not have a superclass
ls_class-has_super_class - abap_fa l se .

* But superclass was read
ls_class super_class_read = abap_true .

* Set data for the class
context_element->set_static_att ributes(

EXPORTING
static_attributes - ls_class) .

* Done
EX IT .

180

Using Important View Elements I 3.3

ENOl F.
* Determine name of superclass

ld_name_superclass = lo_classdescr ·>get_relative_name<) .
* Determine subnodes for current class context node

lo_nd_supercl ass = context _element·>get_child_node<
' SUPER_CLASS ') .

* Collect da ta for element
* Name of superc l ass

ls_superclass ·name_class - ld_name_superclass .
* Assume that superclass also has a superclass

ls_superclass·has_super_class- abap_true .
* Create new element for superc l ass . that is . subnode

lo_nd_superc l ass ·>bind_structure(ls_superclass) .
* Set data for cl ass
* You have found superclass for class

ls_class· has_super_class = abap_true .
* You have read the data for superclass

ls_class · super_class_read - abap_true .
* Set data for cl ass in cont ext

context_e l ement· >set_static_attributes(
EXPORTING

static_attributes - ls_class) .
CATCH ex_ roo t .
* Class does not have superc l ass

ls_class· has_super_class - abap_false .
* Superclass was not read

ls_class · super_class_read - abap_false .
* Set data for cl ass

context_e l ement· >set_static_attributes(
EXPORTING

static_attributes - l s_class) .
ENOTRY .

ENDt1ETHOO .

Listing 3.15 Action Handler for Opening a Recursive Node

The main implementation approach involves first checking whether the Description

ABAP superclass data has already been read for the current ABAP class.
This information is contained in the SUPERCLASS_REAO context attribu te.
If the data has already been read, you do not need to determine it again
and you can exit the method.

3 I Developing Web Dynpro Applications

Copying context
nodes

You then implement the business logic; this means the RTTI description
object was determined for the current ABAP class whose name you know
from the context element attributes (contex t_element parameter), and
the RTTI description object for the ABAP superclass was consequently
defined (get_ super _cl ass_ ty pe(l method). As a result, you can use
this reference to determine the superclass name (get_rel ati ve_name(

l method).

If the ABAP superclass is found , a new context subnode must be created
for this ABAP class. This is done using the following statement:

lo_nd_superclass - context_element·>get_child_node(' SUPER_
CLASS ') .

This means a new subnode is created for the entry the user selected,
represented by the context_element parameter. The node to which the
recursion node points is structurally copied at runtime. The copy process
also relates to the recursion node and is triggered by the get_ch i 1 d_

node(l method. After you have determined the data for the superclass,
you can store it in the new node for the ABAP superclass. This completes
the action handler implementation.

This implementation can be difficult; therefore, we recommend that you
review our explanations carefully before putting them into practice. You
will next implement a simple example of using a non-recursive Tree Ul

element.

Example

[I] You will use the ZWD_03_CLASS_BROWSER Web Dynpro component again
when implementing this practical example. You previously stored the
ABAP class methods found from the selection view in the METHODS con
text node created in one of the previous examples. You are now going to
display the context node contents using a Tree UI element. This will also
involve mapping individual methods as Tree 1 temType view elements; in
other words, as leaves in the tree.

182

Using Important View Elements I 3.3

1. Switch to the V_CLASS_11 ETHOOS view layout.

2. Add a Transpa rent Contai ner UI element to the T_METH_TREE tab with Designing tabs
11atr i xlayout. You may need this UI element to display scrollbars if
there are too many entries in the tree. Enter 400PX as the value for
the HEIGHT property and set the SCROLUNGMODE property tO auto.
In the LAYOUT section, set the STRETCHEDHORIZONTALLY property to
ASAP _TRUE to ensure the Tree UI element stretches across the entire
width of the displayable area.

3. Insert a Tree UI element into TransparentConta i ner with the ID
TR_~I ETHOOS . Bind the DATASOURCE property for the tree to the METHODS
context node. This defines the data source for the Tree I temType view
element still to be defined.

4. Assign the I CON_OO_METHOD value to the DEFAULTITEMICONSOURCE and
DEFAULTNODEICONSOURCE properties. Store the "Methods" value for
the ROOTTEXT property and set the ROOTVISIBLE property to ASAP _TRU E.
For the TITLE property it makes sense to describe the class, which you
can determine through context mapping from the CLASS_SEL_CRIT
component controller context node. Bind the DESCR_CLASS attribute
for the CLA SS_SEL_CRIT node to the TITLE property. You must set the
TITLE VISIBLE property to vis i b 1 e so that the title can be displayed.

5. Use the INSERT NODE TYPE context menu option to insen the
TreeltemType·type T !T_~I E THOO for the TR_M ETHOOS Tree UI element.

6. Bind the DATASOU ilCE property tO the METHODS context node for TIT_
I·IETHOD of the Tree I temType UI element. Bind the TEXT property to the
NA~I E attribute of the METHODS context node.

You have now completed defining the data. After you activate all inac
tive elements, you can test the Web Dynpro application. After you have
performed the example successfully, the display for your Web Dynpro
application should look like the one shown in Figure 3.53.

Use a hierarchical table instead of a Tree if you want to display a tree
structure that is suitable for entry purposes and also enables you to
scroll. We will discuss the Table UI element for this in more detail in the
following section.

Inserting
TreeltemType

Alternative to a
tree

3 I Developing Web Dynpro Applications

~Class Browser - Wtndows Internet E>cplorer

:::J •tXI § 0 · ,~ ,//
<ll 'Sl 6a.ss &owse< ., • !ill • ~ • d e* . ,

~TypeNt~me: @la.[:.~ou;!:..AL~V'J.OOD~===:Jifg! Al V li$1 V.ewer

ALV LJst VIewer ITIJ •

• ~ F .CACHEI>..f'ROP"GET.JEXT_PROP

• f F .CACHEI>.PROP-SEEKJRST_PR()P

• 12\ AI \I ~T VIA IN= •
- --

llllll~Localroanet (+ .. 1()0'>/o • H.

Figure 3-53 Tree Display for ABAP Class Methods

3.3.6 Table

Usage In this section, we will explain the basic properties of a complex Ul ele
ment that you can use flexibly: the Tab l e Ul element. You use this Ul
element to display data two-dimensionally in table cells arranged in rows
and columns. Figure 3.54 shows an example of a simple table.

Table structure A table has an optional header that can consist of a text and an image.
Under the header, you can insert an optional too/bar where you can call
user-specific functions. Data rows are displayed in columns in the detail
area of the table. Individual columns have optional headers to which you
can assign an image.

The user has the option of selecting no data rows, individual data rows,
or several data rows through the selection column. The user can also use
a scroll bar to change the content of the displayable area. When the user
scrolls th rough the tab le, a tooltip is shown indicating which data row
area will be displayed after the user releases the mouse button (table
scrolling).

Using Important View Elements I 3.3

Table Caption Table Column Caption

/J --· / Vistity " ~~ Method Nalfl8

~ F _ORAGOROP-<>NOETFl.AVOR .,_ D P
@ ABC_ANAL Ysa5 Privete D I Data Row r-+ " ACTIVATE_OISPI.AY _PROTOCOl. .,_ D
@ ACTIVATE_REPREP _MERFACf .,_ :::!

" ADO_EO_F'LAO -· D

" ADO_B()IJ'LAOS -· D

" ADO.CACHE.,PROP Protected GO
@ ALV _EXPORT_'v'IA_FE Protected r;a ~

I Selection Column I Data Column Scroll Bar

Figure 3.54 Simple Table

Like the Tree Ul element, the Table Ul element belongs to composite UJ

elements. Composite UI elements are disp layed hierarch ically in the view
designer (see Figure 3.55).

Table UI-Eiement

·~ TableColumn
• TABLE 14ND ICON

UI-Eiement · I[) TABLE.CE.I4ND.ICON
• 0 TABLE_NAME

· 0 TABLE_CE_NAME_EDITOR Cell Ed itor
0 T TABLE_NAME.HEAOER IHeadetl

• 0 TABLE_VISIBILITY
· 5!1 TABLE_CE_ViSIBILITY Caption UI-Eiement
0 T TABLE.ViSIBILITY.HEADER IHeade~

• 0 TABLE_IS_INHERITED (TableColumn Caption)
0 1i! TABLE_CE_IS_INHERITEO
0 T TABLE.IS_INHERITED.HEADER (Header!

0 T C. TABLE

T
Caption VI-Element

(Table Caption)

Figure 3·55 View Element Hierarchy for a Table

Composite U I
element

3 I Developing Web Dynpro Applications

View element
hierarchy for a

table

Methods for
creating tables

The highest element in the h ierarchy is the T~b 1 e Ul element. As a lower
level element, it can have a Capt i on view element for displaying a tab le

header. The Tab1 e Ul e lement also contains other composite view e le
ments such as Tab1eCo 1 umn view elements, for example. These Tab1 e
Co 1 umn view elements have, as subelements, an optiona l Caption that is

responsible fo r d isplaying the column header, and a cell editor. The term

cell editor represents several UJ elements you can use for displaying cell
contents. Which cell edi tor you choose will depend on the type of infor
mation you want to display; for example. text (TextV i ew Ul element), a
selection list (DropDown ByKey UJ element), or image information (Image

Ul e lement). The issue of input read iness can also influence which Ul
elements you choose.

There are th ree methods you can use to create a table, two of which
you carry out during development time; the third is carried out during

runtime:

,.. Manually

With th is method, you defi ne the table and all of its subelements
manually in the view des igner.

,.. Web Dynpro Code Wizard
With th is method, you create the table using the Web Dynpro Code

Wizard (TABLE template). Here, you bind the data by selecting a con
text node in the wizard. The columns are created in accordance with

the attributes.

,.. Method

Using the public static c 1_wd_dyn~mi c_too 1 =>cre~te_t ab 1 e_from_
node() method, you can create a simple table dynamically; in other

words, so that it can be created during runtime.

In Chapter 4, Dynamic Web Dynpro Application, we will discuss in more

detail how to create a table dynamically. Next, we will take a closer look
at creating a table manually.

Cardinality Before you can begin creating a table manually, you must define an ade
quately customized node in the context, an example of which is shown

in Figure 3.56. By "adequately.'' we mean that the CARDINALITY property
(0) has the instance 0 .. n or 1 . . n. As already mentioned. this property
controls the number of possible elements for a node. As a resu lt, every

e lement corresponds to a data row in the table to be displayed.

186

Using Important View Elements I 3 .3

The SELECTION property (f)) is another customization fo r the context Selection

node we have not used yet. This property has the same instances as the
CARDINALITY pro percy (0 . . 1, 1 . . 1, 0 . . n and 1 .. n) and controls how
many entries the user can and must select in the table.

The lead selection determines the row the user selects because the rei- Selecting rows

evant data row for this is highlighted in the table. This is especially true
if the INITIALIZATION LEAD SELECI'ION (E)) was set. However, the user can

also use the I Shift I or I Ctrl I keys and click on different data rows to
select them. The selection the user makes will be displayed in one or
more highlighted row(s).

Conteid COMPONENTCONTROLLER
~ Q CONTEXT

~ ~ CLASS_SEI._CRIT
~ 1!1 METHODS

Property

Nodes
METHODS

0
Node Name
Interface Node
Input Element (Eid.)
Dictionary structure

Cardinali~
Selection

0
ZST_03_WO_CLASS_METHOD

Initialization ead Selection C)
Singleton
SupptyFunction

Figure 3.56 Context Node Customizations for the Table

attributes

After you have configured and checked the context settings, you can ere- Table

ate the table in the view designer. You do this the same way as with other
UI elements: In the view designer, you create a new Tab 1 e UI element
using the context menu of a container element. The result of the Ul ele-
ment you create is shown in Figure 3.57.

~ The Table UI element (0) you inserted from the context menu (you
can also transfer it from the COMPLEX category by using drag-and
drop) is generated wi th the Caption tab le header (6). The header is
optional and you can remove it. If you do use it, you can define a
header text (TEXT property) and a header image (IMAG EFlRST and
IMAGESOURCE properties).

3 I Developing Web Dynpro Applications

,. A quick look at the properties of the Tab 1 e UI element shows that
multiple setting options and properties are available for this Ul ele
ment. We will explain the most basic ones. The main property you
must set to let Tab 1 e know which context node contains the data to
be displayed is OATASOURCE (0). Here, data binding is used to create
the reference to the context node.

ConCifX! v _ CLASS.JoiETHOOS
• O eoNTm

• CJ T_METH_TASLE

0
· T T9L._HEAOER_ME-rHOOS 8

Property Valle Binding
Proo~>!tiea ITab!ll)

10 TBL_METHODS
accesSibi!II)OesertJCIOfl
1) Clivat&Aec.tssKey
conte):tt.tenu9ehaYiour "'llerrl

• ..

lnlllaiiU1ionLe;)d Sele(Oon

TromsteJ atCrlbutes

WETI-iOOS
ZST_03_WO_CLASS_METHOO ®
o .. n

" tonteldtttenuld

ctataSouru 0
dHign

V _ClASS _METHODS.IItETHOOS
Standard Q

Singleton
S!$PI)' f UIWIIOtl
YiP91ng P alh Z®C_ro_Cl.ASS_SROYYSER.<

Figure 3-57 Creating a Table Ul Element

Properties This defines the data basis for the table. Other selected properties you
can set for the Table UI element are shown in Figure 3.58. We will dis
cuss them in detail in the following list:

"' DESIGN
The DESIGN property (0) controls how the data area for the table is
displayed; for example, whether it is displayed with alternating row
colors (a 1 terna t i ng value) or without grid lines. The a 1 tern at i ng

instance is only effective if the REAOONLY property has the ASAP _FALSE
value.

"' VISIBLEROWCOUNT
The VISI BLERowCOUNT property (0) controls how many rows are dis
played for the user in the table. This is why the height of the data area
is defined in rows.

"' OISPLAYEMPTYROWS
The OISPLAYEMPTYRows property (0) has the following functions:

,. The ABAP _TRUE value ensures that a fixed number of rows is always
displayed, even if the number of rows with content is smaller than
the value specified in the VISIBLEROWCOUNT (0) property.

188

Using Important View Elements I 3.3

"' The ABAP _FALSE value ensures that only rows with content are dis·
played, regardless of the value stored in the VISIBLERowCou NT (0)

property. This can cause the height of the data area in the table to
be reduced.

Property JVatue JBinding
Pr!:U~~rtiU (!i~li}

10 TBL_ .. ETHOOS
~ccessibi1i1y0escriplion

attiVateAt.c essKey 0
contextMenuBehavlour Inherit Ill · I

contextMenuld
datasource V_CLASS_METHOOS.METHOOS

~ design 0 $1ancfard Q
displayEmptyRows f) "
empt(TabteTot 8 There are no metnods 8\'ailable
enabled P1

· I

auto
auto

lirS!AduaiROW 0 Visible
firsMsibteRow 0
firsMsibteSctottaO ot
llxe<ll'obtelayout • 1 ~

8 tO

footeMslbte 0
grfdMode both "
Figure 3.58 Selected Properties for the Table Ul Element

Figure 3.59 shows the interaction of these different properties.

design = alternating design = standard
d isplayEmptyRows = True d isplayEmptyRows = False
read Only = True read Only = True
vis ibleRowCount =1 0 visibleRowCount =1 0

, Methods t Methods

~ - $ Name

TOOI.8Aft.f•t<X,.Y F JIESSAOE-<)ET .,LONOTEXT

TRANSFER.JCOOE,.L VC _TO _sus F _hESSAGE--GET_TEXT
TRANSfER_FCOOE_SUS_TO_LVC OONSTRUCTOR
I.NIX_c:a..tMNS GET .,LONOTEXT
l.t\ftG!SffR_CA.OEO_PROPERTY

~f!A_CAOEO_w_MOPERTV

lFO.&.TEJROHT'EtO

GET_SOURCE_POSITION

GET_TEXT

URI.._ COPY_ TO _CL.FeO.AJi()

WNN_ALV _CN.L

Figure 3.59 Interaction of Table Ul Element Properties

0

0
0

Vi

Ill
ill

ill

3 I Developing Web Dynpro Applications

I> EMPTYTABLETEXT
The EMPTYTABLETEXT property (0) defines the text that will be dis
played if there is no data to display.

I> WIDTH
The WIDTH property {0) controls the table width. The table is at least
as wide as this specification, but adjusts itself so that the content fits
into the table. We therefore recommend that you only specify a table
width if you are using percentage column widths.

I> FIXEDTABLELAYOUT
The FIXEOTABLELAYOUT property (0) has the following functions:

.. For the ABAP _TRUE value, it defines that the width specified for each
column in the table is fixed and that content that is too large for
these columns will be truncated on the right-hand side. This speci
fication results from the widths set for individual columns .

.. For the ABAP _FALSE value, it defines that a column width is exactly
the size that was specified for it. If there is not enough room, the
column width corresponds to the width of the widest cell editor.

I> ROWSSELECTABLE
The ROWSELECTABLE property (0) requires binding data to a context
attribute for each WDY _BOOLEAN context node element, and has the fol
lowing functions:

.. For the ABAP _TRUE value, it defines that the user can select a row.
The interaction with the selection column for this row is enabled
for this purpose .

.. For the ABAP _FALSE value, it defines that the user cannot select a
specific row and cannot interact with the selection column.

I> SELECTIONMOOE
The SELECTIONMODE property (0) controls how many data rows the
user can select in the table. This property is directly related to the
SELECTION context node property, which is connected through the
Ta bl e property for DATASOURCE, as you can see in Figure 3.60. If the
0 .. 1 instance is stored in the SELECTION context property, multiple
selections cannot be defined in the SELECTIONMODE UI property.

Using Important View Elements I 3-3

The SELEcrroNMODE property requires further attention. The user can
select an individual row (auto, single, singleNoLead) or a number of
rows (auto, multi , multi No lead) using the left mouse button or the key
board and selection column.

Handling
selectionMode

I selectionMode= multi I I selectionMode=multiNolead I

-F -~-~T_rect _f'AO#

F _CAOEO~ftST.J«(tt

F _CACMO~SVJ"t(;P

F .OU.JWNN«..,PAlA~..,EXEQJfE)fOOE

F .W.JMWtf!C_QAtA.w()H_tEN_NCU.

F .OU~.]>At.r.,o()H_VAi.lf:

·~
·~
·~· F~lfl.AVOR

"""'""'

•

Figure 3.60 Effects of selectionMode Property for Table Ul Element

-F .CACHW Jf'IO/i'-GET ,JEXl_PftO!i)

F.CACHUI~SW<JMTJ'f'IJP

F _CACHED JfiOPo$El ~
r _00.]1VNAMC_OA TA-<lNJYI;QJTI!~

r .rAJ..PVtW«:.PATA-Of4.J«!N,PXIE

The lead selection generally changes based on what the user chooses,
except for the si ng leNoLead and mul tiNolead instances. In these cases,
although the selection is adjusted, the lead selection does not change.

In the case of mu 1 t i and auto settings (0 . . n or 1 .. n cardinality), the user
handles the SELEcrroNMODE property as follows:

~ If the user ho lds down the I Shift I key and at the same time cl icks the
left mouse button to select a row (I Shirt I + click), all rows from the
lead selection to the selected row are included and highlighted in the
selection (area selection). The lead selection is highlighted with a dif
ferent color intensity. If another selection had already been made, it
is deleted.

~ If the user holds down the I Ctrl I key and at the same time clicks the
left mouse button to select a row <I Ctrl I + click), the new row is
included in the selection (individual selection) in addition to the exist
ing selection. The lead selection is highlighted with a d ifferent color
intensity.

As an alternative to clicking on the mouse, the user can also use the key
board (I Shift I + I space barD or (I Ctrl I + I space barD and arrow keys to
navigate among the table rows. Table 3.5 contains a list of SELEcrro N-

•

3 I Developing Web Dynpro Applications

MoDE instances; in this table, LL stands for the lower limit of the SELEC
TION context node property and UL for the upper limi t.

Value Selection Selection
Lower Limit Upper

auto

single

multi

LL
(SELECTION)

LL
(SELECTION)

LL
(SELECTION)

none o

singleNolead LL

multi Nolead

(SELECTION)

LL
(SELECTION)

Limit

UL
(SELECTION)

1

UL
(SELECTION)

0

1

UL
(SELECTION)

Table 3.5 Effects of the selectionMode Property

Triggers
HTIP
Roundtrip

Yes

Yes

Yes

No

No

No

Sets
Lead
Selection

Yes

Yes

Yes

No

No

No

get_selected_ The 1 F _WD_CONTEXT_NODE node interface makes the get_se 1 ected_e 1 e ·
elements(> ments(>method available to re turn the selected elements to an internal

table. When the method is called, the user can determine whether the
lead selection element - if selected - should appear in the resu lts.

onLeadSelection If an action is still assigned to the ONLEADSELECTION event of the Tab 1 e
ur element, the wddobeforeact i on() and wddoafteraction() methods
and action handler are still executed, in addition to the lead selection
being changed.

The data is displayed in rows and columns in the table. To display data,
the Tab 1 e UI element needs at least one Tab 1 eCo 1 umn view element that
is bound to one of the attribu tes for the table context node. For this,
every attribute with a scalar type can be used.

A Tabl eCol umn view element must be inserted hie rarchically under the
Tab 1 e UJ element for every column to be output (see Figure 3.61).

Using Important View Elements I 3.3

Proper1)1

• 0 TBL_METHODS
• TBLC_NAAIE)Columns)
· 0 lV_NAME
· T TBLC_HEADER_NAI\IE (Heade~

T TBL_HEADER_IAETHODS)Header)

Value Binding
Properties q ab!eCo!ymn>

ID TBLC_NAME

None Q
Visible oa l---1

Figure 3.61 TableColumn View Element

You can create Tab 1 eCo 1 umn easily in the view designer using the con

text menu for the Table UI element. The INSE RT TABLE COLUMN menu

option takes care of creating TableColumn and an optional Caption col

umn header. Typical steps after creating a column include changing the

Io for Ta bleColumn and Caption. You can assign a text and an image to

the Caption.

The SORTSTATE property is especially worth mentioning (see Figure 3.61 ,

0). This property describes how a column is sorted. For this purpose,

an action needs to be stored for the ONSORT Table Ul element. In this

case. an icon illustrating the sort direction is displayed for the user in

the column. The sorting must be programmed and is not performed

automatically.

Sorting Table Content

The way content is sorted in the Tab 1 e Ul element depends on the underly
ing Support Package in SAP NetWeaver Application Server 7.0.

Through Support Package Stack (SPS) 12, you must program sorting as fol
lows:

.. Determine the column and sort direction: You usually do this in the event
handler method for the ONSORT event using the col and direct i on pa
rameters .

.. Transport the context node content in an internal table (if _wd_context_
node=>get_stati c_at tributes_tab1e()) .

.. Determine possible selected rows and the lead selection (i f _wd_con
tex t_node=>get_se l ec t ed_element s(1).

193

Creating
TableColumn

sortS tate

3 I Developing Web Dynpro Applications

• Sort the internal table (SORT).

• Place the sorted table back in the context node and delet e the old data
(if _wd_context_node=>bi nd_tab 1 e(l).

• Select t he relevant rows again and reset the lead selection (i f _wd_con ·
text_node=>set_se l ected(l . lead_selection(l).

The sorting algorithm has been simplified considerably as of SAP NetWeaver
Application Server 7.0 SPS 13 and higher. A service method is available for
carrying out the sorting.

• You determine the reference for the affected Table Ul element: The best
way to do this is in the wddomod i fyvi ew(l view hook method using the
following call :

• <TABLE_REF>- VIEW·>GET_ELEMENT(Id- <ld>l

• You determine the service object through the Ul element reference us
ing the <table_ref>·>_method_handler attribute and downcasting on
a <table_servi ce> help reference of the IF _WD_TABLE_t·1ETHOD_HNDL
type.

• You store the <tabl e_service> service object help reference in the view
attributes (<go_tabl e_service>) for later sorting actions.

• You must perform the sorting in the event handler method for the ON·

SORT event for the table. You do this using the service object reference
(wd_this·><go_table_serv i ce>·>apply_ sorting()) .

Cell editor A cell editor is responsible for displaying data in a column. This cell edi·
tor, in turn, is a subelement of the TableColumn view element. The cell
editor type depends on the specific requirement to be fulfilled by the col·
umn: Should the user be able to change the data? How should the user
interact with the data? How should the data be displayed for the user?

Figure 3.62 shows the steps fo r mapping context attribu tes to UI e le
ments in the table.

• Creating a cell editor
You use the context menu of the TableCol umn view element to create
a cell editor. When you use the INSERT CELL EDITOR menu option. the
known window for creating view elements opens, containing a sub·
set of view elements you can use as cell editors. In general, you can
use the TextView UI element (0) to display text and the Image UI ele
ment (0) to d isplay images.

194

Using Important View Elements I 3.3

Figure 3.62 Cell Editors and Column Headers in the Table Ul Element

"' Properties
After you have defined the cell editor, you must b ind the data from
the context to the cell editor using data binding. You can do this for

the TextVi ew UI element using the TEXT property. In the usual man
ner, bind the Ul property to an attribute for the context node you
defined as a data source for the table.

"' Table header
As already mentioned, the header is optional. A table header was not
defined for Tab 1 eCo 1 umn, which has the I mage UI element(()) as a cell
editor. You can tell tha t this is so because no text or icon is displayed

above the column.

"' Determining text
A header (0) that is also displayed was defined for TBLC_NAI1E (0) of

the Tab1 eCo1umn v iew e lement. The header con tent was ei ther stored
explicitly in the TEXT property of the Capti on view element or by the
reference to the TextV i e1• UI element (0). The reference results

because Caption is assigned to the same Tab 1 eCo 1 umn as Text v i ew.

If a data element from the ASAP Dictionary types the context attri
bute for TextView, the field labels can be transferred from this da ta

element. You must repeat the manual defin ition of the table columns
for all required context node attributes needed for display.

195

3 I Developing Web Dynpro Applications

Creating a table

Context node as a
data source

Example

As you can see, creating a table manually is pretty time-consuming. The
Web Dynpro framework developers must have thought the same thing,

which is why they made a template available in the Web Dynpro Code
Wizard (I Ctrl I + [ill).

For the sample application, we will now look more closely at the way
the wizard works:

1. Switch to the v_CLASS_METHOOS view layout. Open the Ta bSt r ip

called TS_NETHOOS and below this, the Tab called T_METH_TABLE. In
this Tab . you will create a Tab 1 e UI element for displaying ABAP class

methods.

2. Click on the WEB DYNPRO CODE WIZARD button or use the I Ctrl I + ITIJ
key combination to create the table automatically. The TEMPLATE GAL

LERY opens, where you will find the TABLE entry.

3. By double-cl icking on the TABLE entry, you open the definition win
dow where you define the data binding, column definitions, and cell
editors for the table to be created. Figure 3.63 shows the definition

window for the table with the defined context attributes.

4. Click on the CONTEXT button (0) and select the 1·1EHIOOS context node
from the context. Selecting the context node defines the data source
for the table and provides the number of context attributes (0) of the

context node as candidates for possible columns. The context path for
the context node is displayed in the Co NTEXT NODE field .

~

@Create Conte:t1 Smd1ng for Table "TASL~ x

ContOl<INOUe "'V-~C~H~SS:;:.-":;;E~IH~OO~S~. n~EI~HO~O~S ====--:" ,.... ContOl<l 0
Standard Cell Edi1o8 TexMew •

Standard Property e lelCl •

NAME GJ •
• • •

ltS_REOEFINEO CheckBox GJ ~ chec-ked GJ
• • •

Image ill ~ sour·ee

m~~ ~ ~~

I KIND_ICON

Figure 3.63 Table Definition with the Web Dynpro Code Wizard

Using Important View Elements I 3.3

5. The STANDARD CELL EDITOR field (f.)) Jets you define a default cell edi
tor for all attributes, whereby the cell editor (UI element) property to
which the anribute content should be bound can be defined using the
STANDARD PROPERTY input field (0). If desired, you can then individu
ally override the settings for each particular attribute.

6. The list of attributes {0) represents the possible candidates for table Selecting column
columns. You use the BINDING (0) column to select the attributes rei- attributes
evant for you as columns. For this example, choose the NAt1E, Is_
REDEFINED and KIND_! CON anributes to define a table with these three
columns.

7. The way the columns are displayed depends on the cell editor you Defining a cell
choose (0). editor

.. Text output should also be used for the first NAME table column of
the method. You can therefore keep the Tex t View STANDARD CELL
EDITOR with the TEXT standard property.

• The second table column, I S_REDEF I NED, represents a Boolean value,
which can be output as text. However, the display as a CheckBox is
more compact and visually more familiar for the user. Select the
CheckBox cell editor in the CELL EDITOR OF TABLE COLUMN column
(0). This selection changes the property in the NAME OF PROPERTY
TO BE BOUND column (0) to CHECKED, thereby defining the data
binding on this property.

Use an I mage cell editor for displaying the KIND_I CON column; this
will change the property name to souRCE.

8. You have now completed defining a cell editor and can transfer your
defin ition by clicking on the button with the green checkmark. The
result of the definition steps you took are shown on the left in Figure
3.64.

9. After you automatically created the table with its subelements, partly
non-descriptive IDs are generated for the view elements. We recom
mend that you adj ust these IDs because under some circumstances in
dynamic programming, UJ elements can be accessed specifically. This
was already done for this example.

197

Adjusting IDs
manually

3 I Developing Web Dynpro Applications

.,.. 0 TBL_CLASS_METHODS
.,.. LJ TBLC_METHOD_NAME

· 0 TBLCE_METHOD_NAME
· T TBLCH_METHOD_NAME

.,.. 0 TBLC_METHOD_IS_REDEFINED

!iii! TBLCE_METHOD_IS_REDEFJIED

T

!9 TBLCE_METHOD_KIND_ICON

T TBLCH_METHOD_KIND_ICON

fi!. --~. ~ :._
F_CAOEO}~"·(l(J_~T-PROP (!; -
f" _CNJEOJ'ffO"-Sf9(fRSt.}ftOP 0 (t 0
f' _CAO'IfOJ'fiQP-SfT..I'fiOP 0 (t
r' j)UJWKAM:J)AfA·~ 0 (J
f' _(MJ:/'IIW<J>ATA~~..}fiJOie Q () •

It\ ~
3 F .,CN;Je.ffft:/NJEl.)EXT.fROf>

(t F .. c.t.CKOJ'f'JOP-SWU'ftSlJ'ROI'

<.t f -~ftQP-Sff,Jfft*
(t F .. OO.,PvtU.MCj)AfA·C»i~

(t F .. W.PYHioMC.JIAlA~jf('.(Jf

-·
0
0
0
0 '-

Figure 3.64 Moving TableColumn View Elements

Changing the 10. We will now discuss moving columns. After you create the table,
column sequence the columns appear in the same sequence as the sequence specified

in the defini tion (0) where you were not able to change it. To do
this retroactively, swi tch to the UI hierarchy of the Tab 1 e and move
a column to the position you want by using drag·and·drop. In this
example, the Tab 1 eco 1 urnn called TBLC_11ETHOD_K I ND_I CON and its
subelemenLS will be moved to the first position; therefore, drag the
TBL(_~1ETHOD_KIND_ICON column to the TBL(_~1ETHOD_NAt·1E column
(0). This places TBLC_METHOD_K I ND_I CON into the first position and
TBLC_t•1ETHOD_NAt1E in to the second position. See (0) for the result
of this move.

11. You can also still set the input readiness for checkboxes to ABAP _

FALSE and change the BOOLEAN header on your own text.

sorting columns 12. As an example of using events for a table, this mechanism is used as
of SAP NetWeaver Application Server SPS 13 to implement column
sorting. We already described the main process in the Sorting Table
Content box.

13. Switch to the list of view attributes. Here, you must create an object
reference for the service object to be able to call the sorting later
through this object. Call the attribute go_ tb1 _c1ass_me thods, and
type it as an IF -~ID_TABLE_METHOD_HNDL obj ect reference (RefTo).

Using Important View Elements I 3.3

14. Next, switch to the methods list for the V_CLASS_I-IETHODS view and
then to the wddomod i fyvi ew(> method, and implement this method
as shown in Listing 3.16. In Chapter 4, Dynamic Web Dynpro Appli
cations, we will analyze in detail the programming for the wddomod
i fyvi ew() method. At th is point, we will only discuss the essential
points:

.. You determine the reference to the Tab 1 e UI element through the
view reference using the get_element() method. Make sure to
spell the name (I D) of the Table UI element correctly because a
runtime error will occur if the Web Dynpro framework cannot
find the UI element .

.,. You determine the service object reference through the Ul refer
ence and store it in the go_tbl_cl ass_methods view attribute.

METHOD 1•ddomodi fyvi ew .
* Reference to UI element Table
DATA lo_l•d_table TYPE REF TO cl _wd_table .
* Is the method called for the first time?
CHECK fi r st_time = abap_true .
* Determine reference to UI element Table
lo_wd_table ?= viel•·>get_element(

' TBL_CLASS_METHODS ') .
* Determine service object handler
wd_this·>go_tbl_class_methods ?=

lo_wd_table·>_method_handler .
ENDMETHOD .

listing 3.16 Determining the Service Object Reference for Sorting a Table

15. After you have completed implementing the column sorting. switch
to the v_CLASS_METHODS view layout and then to the events for the
TBL_CLASS_t1ETHDDS table.

16. Create the SORT _METHODS action for the ONSORT event (see Figure
3.65). By setting the TRANSFER UT EVENT PARAMETERS option, you
also generate UI event parameters in the handler method interface.
This is not necessary for this implementation but is relevant fo r the
second sorting option.

199

Using the onSort
event

3 I Developing Web Dynpro Applications

Implementing
sorting

Component lzwoc_o3_CL~S(.BROWSER

Vlew IY_CLASS_hETHOOS I
Attlon ~OR T_NETHOOS
Description fsort methods

ri()Tra_ri!~r Ul .§:!!nl Pa~="I.iJ.ters -===]

Figure 3.65 Creating the SORT_METHODS Action for the onSort Event of the Table
Ul Element

17. Forward navigate to switch from the action to the handler method
where you will implement sorting. This is easy to do, as you can
see from Listing 3.17: Use the service object refe rence to call the
apply_sorting(J method, which sorts the contents of the column
the user selected.

METHOD onactionsort_methods

*Apply sorting
wd_thi s- >go_tb l_c 1 as s_methods- >app ly_sort i ng (l .

EN011ETHOO .

Listing 3-17 Sorting the Column the User Selected

Testing You have now completed implementing the sorting and can test the
Web Dynpro application. When sorting a column, you will notice that
the sort direction is displayed on the upper right of the column header
(see Figure 3.66).

3-3-7 FileUp/Download

In Web Dynpro applications, users frequently need information that was
disp layed in the client (for example, a list) to be loaded onto the cl ient
as a file for file sharing purposes. Functions for uploading fi les are also
needed to be able to store files on the server. The two Fi 1 eOownload and
Fi 1 eUp 1 oad UI elements from the INTEGRATION UI category are available
in Web Dynpro for th is purpose.

200

Using Important View Elements I 3.3

(~ Cla~s Browser - W1ndows Jntem~t Ewplorer

0@· ll!lttto:/1 ::J '• X IGooo~c
0 $1 ~a.. , (.it • !ill • • i • ,.

Ot>joctTy!leNoot,.; r.:jCL:'"_':::ou~_-::AL~vJ:O:CRI>=----,jgl:l AL V List V-

I» lrCetf(IICO ~.

~ "'"-""""'
~ OET _\'.NlOW _PROPERTY

· rcdetned d

~t§" OK'*«<* I
4'e HOST .FRAAE 0
~ l>_tf_POSITION 0
@ F _CAQ£D_PRO~_NEXl_PROP

Figure 3.66 Sorting a Table Column

FileDownload

You use the Fi leOownlo~d Ul element to download data from the server to usage
the client. Figure 3.67 shows the definition aspects for this UI element.

The data format of the download content specified using the MIMETYPE Properties
property (0) is defined by the MIME (Multipurpose Internet Mail Ex ten·
sions) type.

MIME Types

MIME is an Internet standard for describing the content type of a message.
The official MIME standards are provided by the Internet Engineering Task
Force (IETF).

MIME messages can contain texts, images, audio fi les, videos, and applica
tion-specific data. Table 3.6 shows some examples.

Type/Subtype

text/plain

appl ication/vnd .ms-excel

Table 3.6 Examples for MIME types

Extension

txt

xis

Explanation

Simple Textfile

MS-Excel Data

You can refer to a list of valid MIME types in t he SDOKFEXT table in t he SAP

system.

201

3 I Developing Web Dynpro Applications

ContextV_CL.ASS_METHODS
• QCONTEXT

> II! METHODS
> lli:} CL.ASS_SEL_CRtT

111 FD_IAETHODS
· 'tl FD_DATA_METHODS

~ FD_METHODS

Node Name FD_IIIETHODS

Prooerttes (ftleQo't1Tlloa(S)
Dictionary structure
Cardinality 0 .. 1

tD FD_t.IETHODS
Selection 0 .. 1

Layout Data lllalrh<HeadData ill
Initialization Lead Selection

activateAccessKey
~--~~~~---.--;

data and target

imageSource, text ,
and data

Function SUPPLY_FD_METHOOS

ContextV_CL.ASS_METHODS
• QCONTEXT

> Iii:} METHODS
> li!J CL.ASS_SEL_CRtT

Name
assignment

Read· only
Default Value
Null Value

Input Help Mode

Determined Input Help
oflnpul Help

FD_DATA_METHDDS
Type 1!1
XSTRtNO

Automatic

0

[)

Figure 3.67 Definition of Fi leDownload Ul Element

The DATA property (8) of the Fi 1 eDown 1 oad UI element determines the
data source in the view context. The TARGET property (()) defines the
target window ID in the browser. Either the user defines the value for
this property or it has a special _b 1 ank instance that ensures an external,
unnamed window is opened.

Data for a File0own 1oad UI element is accessed when the user clicks on
the displayed link. The IMAGESOURCE (see Figure 3.67, 0) and TEXT prop
erties (0) define the link display. This access procedure requires binding
the DATA property for the Fi 1 eDown1oad Ul element to a context node
that meets the followi ng criteria:

202

Using Important View Elements I 3 .3

"' The node has a supply function.

"' The node only has one atLribute with the XSTR I NG type.

This ensures that the supply function is only called when the user
requests the data. To avoid unnecessary data in the context, the Fi 1 e ·
Down 1 oad node is invalidated after the download. However, this only
happens if the node was not provided before the download. This way,
no data will be lost.

In Listing 3.18, you can see the implementation for creating the content
for the context attribute. in this listing, the CL_ABAP_CONV_OUT_CE ASAP

class - an important service class in this context - is used for converting
the data.

METHOD supply_fd_methods
* Reference to context node for download
DATA : ls_fd_methods TYPE wd_thi s·>element_fd_methods .
* Export converter reference

lo_converter TYPE REF TO cl _abap_conv_out_ce .
* Exception reference

lo_root TYPE REF TO cx_root .
*All methods from context node

lt_methods TYPE wd_t his·>elements_methods .
* One method from context

ls_method LIKE LINE OF l t_methods .
*Auxilia ry string , prepare for XSTRING conversion

ld_method_string TY PE string.
* Determine me thods f rom cont ext
l t_methods- wd_comp_contro ll er·>getctx_methods() .
* Conversion
TRY .
* Instance converter

lo_converter = cl_abap_conv_out_ce=>create() .
* Formatting logic for expor t data

LOOP AT lt_methods INTO ls_method .
CONCATENATE

ld_method_string
cl_abap_char_uti l ities- >cr_l f
ls_me thod·name INTO ld_method_stri ng .

ENDLOOP.
* Execute conversion

lo_converter·>convert(

203

3 I Developing Web Dynpro Applications

EX PORT! NG
data • ld_method_string

I t1PORTI NG
buffer • ls_fd_methods · fd_data_methods) .

CATCH cx_root INTO lo_root .
* Determine exception text

ld_method_string = lo_root·>get_text<) .
* Execute conversion for except ion text

lo_converter·>convert(
EXPORT! NG

data - ld_method_string
lt1PORTING

buffer · ls_fd_methods ·fd_data_methods) .
ENOTRY .

* Place result in context node
node·>bind_structure(

new_item = ls_fd_methods
set_initial_elements • abap_true) .

ENOMETHOO .

listing 3.18 Example of a Supply Function for Filling the Context Attribute for the
FileDownload Ul Element

Data conversion The data for the methods is read from the context. The data converter
is then instantiated using the static cl_abap_conv_out_ce=>create< J

method. A text concatenation (CONCATENATE) sets up the 1 d_method_
string string variable as the conversion input.

However, there is a restriction with this: only the method names are
concatenated to a string, separated by carriage return and line f eed (c 1_
abap_char_utilities· >cr_lf). This ensures that a new row is output.
The convert(> instance method for the conversion object copies the
string transformation to an XSTRI NG·type text that is then bound to the
context.

Browser display After you click on the corresponding Ul element, the relevant URL is
generated for this data stream and the result is displayed in a browser
window. The kind of display depends on the MIME type that is specified
in more detail using the MJMETYPE property (see Figure 3.67, 0).

204

Using Important View Elements I 3.3

Whether you have an individual file or several files. you have the same behavior
disp lay and save options. You define these using the BEHAVIOR property
(0):

~ The a 11 owSave instance defines that a SAVE dialog box appears. If the
user saves the data as a file, the value of the FILENAME property (0) is
used as the file name.

~ The open I np 1 ace instance opens the data in the browser depending
on the MIME type and its associated program. The auto instance lets
the browser decide how the data will be opened. The browser behav
ior is based on the file type A dialog box for displaying or saving the
fi le.

Figure 3.68 shows an example of how displays differ depending on the
MIME type:

~ In the first case, the value used for the BEHAVIOR property is auto, for
MIMETYPE it is text/pla in. and for TARGET it is _bl ank. These value
instances ensure that the attribute content in the context node is dis
played as text in a new browser window.

~ In the second case, the value used for the BEHAVIOR property is open
I np 1 ace, for MIMETYPE it is app 1 i cat i on/vnd . mx · exce 1, and for TAR
GET it is _b 1 an k. These value instances ensure that the attribute con
tent in the context node is displayed in a new browser window using
the Microsoft Excel plug-in. The name of the Excel sheet where the
content is displayed is derived from the FILENAME property.

behavior = auto behavior = openlnplace
mimeType =text/plain mimeType = application/vnd.msexcel
target blank .Ill target = _ blank

X IlL"""" .:.1 .. ,. X r-
~ .. ~ I II·} · •

,_,_~ - '~·""'' .!J ., ,.

\1 ;;;, If .J ["l' · !J· •
en - ,.

IF CACHED PROP~Gl:T ln:XT PROP -4 - - - -)

Ir_CAC8ED_PROP~tEK_fiRT_PROP

Ir_CACHED_PROP~S~T.P~OP
IF_GUI_DYNAftiC_DATA~ON_EXECUTE_NODE

tr CUI DYNAftlC DATA~ON NEV NODI
~ ,. • l"crt~-"""•• ft"-.... 1'.wl'o.J -11.1 I~

~loc.IW:•nt +~ 10()'110. • ,f

A 6 • I
2 IF .. CACHEO.,PAOP-(;ET_NEXT .. PAOP ~

3 If _CACHED .. PROP-SEEK_.fiAST .. PROP
4 If _CACHED .. PROP-SET .. PROP

' If .. GUI .. DYWMIC .. MTA--ON .. EXECUTE _NODE
6 IF GUI DYNAMIC DATA-ON HEW NODE
7 IF: Gt . .(OYNAMIC :DATA-ON: V.aJ..UE

•lfl It~ • "-~~~';ds /.,'""a _1 41 I
r r ~

Figure 3.68 Different Data Displays Based on the MIME Type

205

3 I Developing Web Dynpro Applications

Alternatives An alternative to the Fi leOownl oad Ul element is the static attach_fi 1 e_
to_response< l method of the CL_WO_RUNT1~1 E_SERV ICES ABAP class for
the fi le export. This method lets you attach any number of fi les to a
response. The method parameters listed in Table 3.7 are available for
this purpose.

Name

i_filename

i_content

i_mime_type

i_i n_new_
wi ndow

i_inplace

Description

File name

File content as XSTRI NG

MIME type in normal Web format

Boolean parameter that specifies whether
the file should be displayed in a new
window (default is ABAP _FALSE)

Boolean parameter that specifies whether
the file replaces the content of the current
window (default is ABAP _FALSE). If this
parameter is ASAP _FALSE, a SAVE As dialog
box is displayed.

Optional

X

X

Table 3.7 Formal Parameters for the cl_wd_run time_services=>attach_file_to_
response{) Method

Note that you cannot use the ; _; np 1 ace parameter if you want to display
several files at the same time in the current window. In this case, all files
are displayed in a new window.

FileUpload

usage You use the Fi 1 eUp 1 oad Ul element to upload files from the client to the
server. The interface element is displayed with an InputField Ul ele
ment where the directory path and fi le name are displayed, and a But·
ton for browsing for files (see Figure 3.69). By clicking on the BROWSE
button, the search dialog box from the browser opens to enable you to
browse for a file. After you have selected a file, the absolute path appears
in the input field.

206

Using Important View Elements I 3 .3

• T_UPLOAD_BUTTON __ ,

•

Name FU_NETHOO_COOE

1..1

I~~::!:; .. l.ead Sele<llon 1..1 17
r

Figure 3.69 FileUpload Ul Element

Ill
Iii

Property

Properties !FileUploadl

10

Layout Data

activateAtcessKey

co ntextM e nu Be hav;our

tex10irection
toonip

visible

width

O TV_SIZE

FU_METH_COOE

MatrixHeadOata ill
n

Inherit ill

Inherit

Visible

Because of browser restrictions. on which Web Dynpro ABAP has no data, fileName and

effect, clicking on a Fi 1 eup 1 oad Ul element may cause the previously mime Type

specified fi le path (0) , name (0), and type (0) to disappear. With newer
browser versions, you therefore cannot enter the file name in the input
field again. The field always remains empty.

There is no event in the properties for the Fi 1 eUp 1 oad Ul element to No event

which you can assign an action for uploading files. We generally rec-
ommend that you use a dedicated screen or dialog box for the upload
because an upload is triggered for every user interaction that requires an
HTTP roundtrip - even scrolling through a table, for example - and this
may be irritating to the user.

Read the context data to check whether data was uploaded for every
action. Then, delete the data directly from the context. Otherwise, the

207

3 I Developing Web Dynpro Applications

file is kept in memory until the context is removed or a new upload is
triggered.

Although we have not worked on an explicit example for the upload and
download options, we will leave it up to your creativity to develop your
own area of application for Ul elements for the sample application.

3-4 Messages and Internationalization

The internationalization (118N) of Web Dynpro applications re lates to
the featu re of displaying texts in a specific target language, generally the
logon language of the user. Texts can be displayed for the user in many
different ways, for example as Label s, as a selection option in a Drop

Down . or as messages.

Internationalization involves defining each language-relevant literal in
the Web Dynpro application in such a way that it can be translated. The
user logon defines the logon language used and therefore the language
that will be used for displaying data.

lnternationaliza- We have not yet discussed defining translation-relevant texts, but we
t ion techniques have already come across a few areas where they would have been rel

evant - table titles, for example. Different techniques are available for
defining translatable texts:

,. Online Text Repository (OTR)

,. Text symbols in ABAP classes

,. Texts in the ABAP Dictionary

Issuing messages These texts are displayed for the user in the UI or as messages. Even
more options are available as message sources for outputting messages:

,. Messages from the TlOO table

,. Assistance class for the Web Dynpro application

,. Messages from exception classes

In this section, we will the refore look at options for internationalizing
texts . We will begin with the ASAP Dictionary, then discuss OTR, and
also look more closely a t using the assistance class. Our second focus

208

Messages and Internationalization I 3.4

aside from texts will be on outputting messages to the user and you will
learn basic techniques and uses.

3.4.1 Texts from the ABAP Dictionary

You can define texts for data elements in the ABAP Dictionary. They are Field labels
called field labels and have four different lengths: SHORT, MEDIUM, LONG,
and HEADING. Figure 3.70 shows the field labels for the SEOCLSNAME data
element.

Data element

Snon Description

fSEOCLSNAnE l.a.t1!ve
fObject Type Name

~ Attributes li'O'ata Type J.t Further Characteristics ~"F ield Label 1

Short

Medium

long

Heading

Length

'19]
'15]
~
fJe1

Field Label
1
ObjectType I

10bjecffypeName

Classllnterface
10bject Type Name

Figure 3.70 Field Labels for a Data Element

)

You can translate text symbols into the required target languages using
Transaction SE63.

When you create view elements such as Label , Cap t ion . and Table·
Co 1 umn, a reference to another view element is created that allows you
to enter or display data. For example, through the LABELFOR property,
the Label UI element can create a reference to an InputEl ement Ul
element.

Through data binding. this other view element has a reference to a con
text attribute. If this has been typed with an ABAP Dictionary data ele
ment, the Medium field label is used as the label text. For this example,
this means that the Medium field label is used as the label value.

In addition to this (from the perspective of Label , Caption . and Table ·
Co 1 umn) indirect use of data element texts, you can also reference data
elements directly. Do this using the button in the CREATE BINDING ...
column, next to the property for a view element. You already know this

209

Using field labels
in t he Ul

Explicitly defining
a data element

3 I Developing Web Dynpro Applications

RITI classes and
Cl_TEXT_

IDE NTIFIE R

button from defining data binding on context nodes or context attri
butes. When you click on the button, the context view opens. Instead of
selecting a node or an attribute (as we did before), select the ODIC BIND
ING TO/FROM button. This enables you to define the data element name
explicitly and choose the relevant text length, thereby defining the text
selection. You remove the definition by clicking on the ODIC BINDING
TO/ FROM button again.

Access classes on ABAP Dictionary definitions are another option for
using texts from the ABAP Dictionary. For example, RTTI provides classes
to determine texts for DDIC definitions. Another class you can use for
reading DDIC texts is CL_ TEXT _ IDENTIFIER.

3.4.2 Texts from the Online Text Repository

om short texts The Online Text Repository (OTR) is a central storage area for texts that is
independent of the Web Dynpro framework. To be able to use your own
short texts (a lso called alias texts) in a Web Dynpro application, you must
create them. To do this, you use the OTR browser.

Online Text Repository

The OTR is a central storage area for texts and provides services for editing
and managing these texts.

It differentiates between short texts up to 255 characters long and texts of
any length. Each text is stored only once per package. General, frequently
occurring texts are included in the OTR basic vocabulary and can be used
across all packages.

Internally, the texts are identified by unique numbers. A number indicates a
concept that not only includes other spell ings for the text (such as abbrevia
tions and length variations), but also its translations and possibly its localiza
tion-specific (specific to industry, country, or customer) instances.

If you are in the display or edit area of a controller, view, or window,
you will find this browser in the menu under the Goro • ONLINE TEXT
REPOSITORY BROWSER option. If you are in display mode, only the OTR
contents are displayed, without the option to create new OTR alias
texts.

210

Messages and Internationalization I 3.4

Alias texts are grouped by packages in the OTR browser (see Figure 3.71).
The standard package for texts is SOTR_VOCABULARY _BAS I C (0) which con
ta ins commonly used texts provided by SAP. If you need your own texts,
you must create your own OTR alias texts. The functions for this are avail
able in the application tool bar (0). When doing so, you must specifY the
ALIAS NAME (Q) for the OTR alias text. It consists of the package where the
text is stored, and an identifier. For example, the abstract text has been
defined under the HMP 1 ABSTRACT alias name in the HMP package (f)).

Patkagetrexs
~ CJm:l'i1f)

· (!') abslratl
There are no methods available

• el SOTR_ VOCABUI.AAY _BASIC
(!') ABAP Quel'f

(!')Yes

Figure 3.71 OTR Browser

AliasName O
•

STMPIABSTRACT •
$TMPINODATA

SOTR_ VOCABUI.AA'

Other functions the OTR browser provides include searching for texts
that have already been created, translating texts , and the where-used list
of texts. You can use Transaction SOTR_EDIT as an alternative for creat
ing OTR alias texts.

If you are in a view element definition, you can a lso create OTR alias
texts directly by forward navigating out of a view element property (see
Figure 3.72).

The display text for a La be 1 UJ element is defined using the TEXT prop
erty (0). Here, you can e ither access already defined OTR alias texts
using the input help, or you can create new texts. To create an OTR
alias text, enter a name for the text that must correspond to the generic
$0TR : <package> I <a 1 i as> name structure. The name in this example is
$0TR: HMP INAMECLASS. When you press the I Enter- I key, an intermediate
dialog box for confirming whether you want to create the OTR alias text
(f)) opens. Click on YEs to confirm that you do.

211

Setting up the
browser

Forward navigation

Creating OTR alias
texts by forward
navigating

3 I Developing Web Dynpro Applications

•

· !iii, IF .J'IAME_CLASS
.e~ BTN_CLASS_SEARCH

· 0 lV.OESCR_CLASS

t._NAME.CLASS
Oal> M~IIIXHtacJO~t:.a

Jnhertl

S13nd31CI

Ill
iii

Iii

------------------@'Web Dynpro Expfarer Change View for ZWOC _03_ Cl.ASS_BROWSER X

The alias name $TMPJNAMEClASS does nol e»il. Oo
you want to create a new trod?

20

enabled IJI

VIsible

Maintaining an
OTR al ias text

Read access to
Online Text

Repository with
t he CL_WD_

UTiliTIES ASAP
class

1,Co 11 1 ·ltl1 or1 lines

Figure 3.72 Creating an OTR Alias Text by Forward Navigating

The window for creating the OTR alias text then opens. The alias text
name has already been transferred from the properties. The text length
is calculated from the entry in the text editor but you can also manu
ally change it; for example, it can be changed to have more characters
available for translations. Because you have entered the text for the OTR
alias text (8) , click on CHECKMARK (0) to confirm your entry. You have
now completed the creation process, and can use the new OTR alias text
anywhere in your Web Dynpro application.

You can also access OTR alias texts through an implementation. To do
th is, use the get_otr _text_by_a1 ias() method from the CL_WO_UTILI ·

TIES ABAP class to access text according to language using the OTR alias.
An example of this is shown in Listing 3.19.

DATA : 1d_otr_a1ias_text TYPE str i ng .
1 d_ot r _a 1 i as_tex t - cl_l~d_ut i 1 i t i es- >get_otr _text_by_a 1 i as<

a l ias = ' $TMP/NAMECLASS '
language - sy- l angu) .

listing 3.19 Implementing Read Access to an OTR Alias Text

212

Messages and Internationalization I 3.4

OTR is a central medium to define reusable and translatable texts for
Web Dynpro applications.

3.4.3 Texts from the Assistance Class

You know from programming executable programs and module pools that Assistance class

text symbols summarized in a text pool can be defined for these programs.
This technique is not immediately available for Web Dynpro components
and Web Dynpro appl ications; however, a mechanism was created using
an ASAP class (the assistance class that was already the subject of Chapter
2, Web Dynpro Architecture) to define text symbols and be able to use
them in a Web Dynpro component. Let us look at an example of th is:

1. Switch to the editing area of the ZWOC_03_CLASS_BROWSER Web Dyn- [8]
pro component and then change to the properties of the Web Dynpro
component.

2. Create the assistance class, calling it ZCL_03_A_CLASS_BROWSER.

3. Navigate to the assistance class. When you switch to the class meth
ods, you see the inherited i f _wd_componen t_a s sis tance-get_tex t ()

method that wi ll enable texts to be read.

4. You can now define texts by selecting the GOTO • TEXT ELEMENTS
menu option. Assign a three-digit ID for a text and then the text that
can be translated into a target language when you select the GOTO •
TRANSLATION menu option.

Figure 3. 73 shows an example of the text definition:

.. Assign a three-digit ID (0) fo r the text. This ID must not contain
any spaces. You will use it later to determine the text symbol.

.. Create the text (0). It can contain placeholders that can be replaced
when y ou call the get_ text() method. You can specifY a maxi
mum of four placeholders called &PARAl& to &PARA4& that are writ
ten in uppercase spelling and limited by & .

.,. The defined length (0) results from what you enter and is calcu
lated .

.. You can define the maximum length (0). It must at least corre
spond to the defined length and can contain a maximum of 132
characters. You will generally change the maximum length; other-

Creating a text
element

3 I Developing Web Dynpro Applications

Creating constants
for a text element

Class

wise, as a result of the defined length, too few characters may be
available for translating into a targe t language.

ZCL_03_~_Cl~SS_BROWSER active I revised

.../Textsimbols 1~....====================!

dLen mL ...

T01 There eXists no ASAP class ror the provided name &PARAt & 56 56
l-- ==-

Figure 3.73 Creating a Text Symbol

5. Use the BACK button (ITIJ key) to switch to the assistance class defi
nition. On the ATTRIBUTES tab, you can define constants that have
the text symbol ID as a value. By creating constants, you can create
descriptive IDs for text symbols that, as a result of the name, are more
meaningful than the three-digit IDs (see Figure 3.74):

.. Give the constant for the text symbol {0) a meaningful name .

.. The reference type to be used for this type of constant is WOR_ TEXT_
KE Y (0) .

.. The INITIAL VALUE for the constant {0) corresponds to the three
digit ID for the text symbol from the definition.

Class Interface fZCL_63_A_CLASS_BROWSER)Implemented /Inactive (revised)

Interfaces friends Attributes Methods Events Aliases

Figure 3-74 Defining Constants for Text Symbols in an Assistance Class

Activating 6. All of the relevant definitions have now been configured for the text
in the assistance class. After you activate the assistance class and all
dependent objects, you can use it in the Web Dynpro component.

214

Messages and Internationalization I 3.4

Due to the assistance class being assigned to the Web Dynpro compo
nent, the Web Dynpro framework automatically creates the wd_assis t
attribute for accessing the assistance class in all controllers of the Web
Dynpro component.

We will now discuss accessing the previously defined text element in Example of

the assistance class. In the Web Dynpro component example, the user improvement

can enter a text for an ABAP class for which he can then determine the
ABAP class methods by clicking on the use BTN_CLASS_SEARCH button.
The onactionsearch_methods() method in the V_C LASS_SELECTION view
was defined as an action handler. If an ASAP class is not found , a text is
issued for the user in the TV_DESCR_CLASS UI element for TextView. List-
ing 3.20 shows an extract of the current implementation.

* Selection data from context
DATA : lv_rs_value TYPE zst_03_wd_class_sel_crit .
* Handling . info text for users
lv_rs_value·descr_class = 'Cl ass does not exist '.
* Set values back into descr i pt i on
l<d_comp_cont ro 11 er · >setctx_c l ass_se l_cri t<

is_va lue = lv_rs_value) .

listing 3.20 Extract of Action Handling for ABAP Class Search

The following statement sets the information text for the user - in
German:

lv_rs_value·beschr_klasse- ' Klasse existiert nicht '.

If the user is logged on in English and cannot speak German, this will
present a problem when using the Web Dynpro application.

To overcome this shoncoming, you use the assistance class to determine
the texts for a specific target language and then make the assignment.
We have already discussed how to define the text you want to be output.
Now, we will look at reading the text. The Web Dynpro Code Wizard
provides support for determining defined texts from the assistance class
(see Figure 3.75).

215

Neglecting of
language

Web Dynpro Code
Wizard

3 I Developing Web Dynpro Applications

I

~·

@'Web Oynpro Statement Structure x

Conteld Oeneral --,

•• •
@ Told Symboi.A.tcoss

Variable Name _ft1 d_ t ext_assT stance

Told Symbol u T91

•••

Figure 3·75 Reading a Text Symbol from the Assistance Class Using
the Web Dynpro Code Wizard

1. After you have placed the cursor in the appropriate place in the
source text, call the Web Dynpro Code Wizard <I Ctrl I + IILJ key
combination).

Text symbol access 2. Switch to the GEN ERAL tab and select the TEXT SYMBOL ACCESS option.

Generating source
text

The get_text(J method from the assistance class returns a string
value as the result. You can save this value in an already defined meth
od variable or create a new variable. In this example, use the already
defined l d_text_ass is tance (0) variable. In the TEXT SYMBOL input
fie ld (0), you define the text symbol you want to read. Input help is
available for the text symbols defined in the assistance class.

3. After you have made your entries, confirm them to generate the
source code. Listing 3.21 shows the produced source text.

11ETH00 onactionsearch_methods .
* Select i on data from context

DATA : lv_rs_value TYPE zst_03_wd_class_sel_crit .
* Texts from assistance class

ld_text_assistance TYPE string .
** Var i ant 1 **
* Created by Web Oynpro Code Wizard and left unchanged
*ld_text_assistance =

*wd_assist->if_wd_component_assistance-get_text(' TOl ' J.
** Var i ant 2 **
*Created by Web Oynpro Code Wizard and enhanced manually

ld_text_assis t ance =

wd_assist->if_wd_component_assistance-get_text(
key - wd_assist ->c_no_cl ass

216

Messages and Internationalization I 3.4

paral = lv_rs_value·name_class) .
*Assign text from assistance class
lv_rs_value-descr_class = ld_text_assistance .
ENOMETHOO .

Listing 3.21 Determining Text Using the Assistance Class

In the Variant 1 section in Listing 3.21 you see the get_text(l method

call as it was created by the Web Dynpro Code Wizard. The ld_text_
assistance variable was specified to transfer the return value of the
method. The TOl text li teral transfers the ID for the text to the method.

The p laceholder is not replaced in the text because no value for the
placeholder is transferred to the method. You would have to use alter

native options to do this when using this call variant; for example, by
sending a message to the user.

Variant 2 contains a second call variant that has resulted from manual
changes to the created source text. The literal text was replaced by the
descriptive wd_ass is t ->c_no_cl ass constant. The replacement value for

the placeholder in the text e lement was also transferred to the para 1
importing parameter. This replaces the placeholder with the value of the
actual parameter, lv_rs_val ue·name_cl ass .

3.4.4 Messages

Using the ~1 ESSAGE statement to notify users in ABAP programs should

be nothing new to you:

MESSAGE E041(00) WITH 'CX_ROOT' .
* Could not repair class pool for class &1

You should be familiar with the cal l syntax; however. we will neverthe·

less repeat it in an example to discuss using messages in Web Dynpro
components .

.,. Message type
A message is initiated by the MESSAGE statement. One addition is the
message type, whose functions include specifying how. where, and

when the message is displayed, and the effect the message will have
on the runtime behavior of the program. Values available for themes·
sage type include E for e rror or I for information.

217

Automatically
generated source
code

Manually adjusted
source code

ABAP MESSAGE
statement

3 I Developing Web Dynpro Applications

Message area

Standard message
area

.. Message number and message class
The three-digit message number specifies which message should be

read from the Tl OO table. For this, you still have to specifY the message
class from which the message texts are determined. The message num

ber with in a message class is unique. Preferably use Transaction SE91

(message maintenance) to determine a list of all messages in a mes

sage class.

.. Placeholder
If the message text has placeholders of which a maximum of four can
be defined in the short text and four in the long text, you must specifY
the replacement values for the 11ESSAGE statement with the w ITH addi

tion.

After this brief discussion, we will look at how to map the described

aspects of the MESSAGE statement in Web Dynpro components.

Message Area

You need a message area to be able to display messages. Two options are

available for this in Web Dynpro development.

The first option involves using a predefined message area. This is known

as the standard message area and can be used as shown in Figure 3.76.
The standard message area is shown in the page header, and the message
text is displayed (0).

0 There existS no AfW! class lor the proyded nome CL GlJ ALY OBI

0
ClossNome: la..OO.JI,l.V.GRI I~ ALV List v.ewer'

Figure 3.76 Standard Message Area

Display You can determine whether you want the message area to always be

shown or to only be shown as required. To implement th is setting, you
must switch to the PROPERTIES of the corresponding Web Dynpro appli

cation, as you can see in Figure 3.77.

218

Messages and Internationalization I 3.4

Appllcalion ZWde_03_class_browser_app) saved

_/Properties Parameters

Description Class Browser

Component [zwoc_93_CLASS=BROWSER I
Interface View rw: MAIN I

Plug Name roEFAULT l
Help Menu TeXI '
Help Link I
Handling of Messages

(.)ShO\o·totes age "'omponen1 on Demand

r)AJ tt'r'S Display r.cessage Component

Fig ure 3.77 Message Area Display

In the HANDLIN G OF M ESSAGES property group, you can specity whether
you want the message area to only be shown as required or to always be
displayed. If you choose the SHOW M ESSAGE COMPON ENT ON D EMAND

option, when a message is issued, the displayed view elements move
downward by the amount of space required for this. If there is no mes
sage to issue, the message area is not displayed and the view elements
will be displayed according to the layout definition.

A second option for displaying the message area is to use the 11essageArea

Ul element. Using it means you can issue the messages anywhere in the
layout. If you use this UI element, you must ensure (particularly when
reusing Web Dynpro components) that you only use it once per win
dow in the entire Web Dynpro application; otherwise, runtime errors
will occur.

Regardless of whether you use the first or second option for displaying
the message area, you can influence the appearance of the message area.
To do this, you must customize the message area in a suitable place - for
example, in the "ddo i nit() method of a window. Figure 3.78 shows an
example of the results of customizing the message area.

Message Area U I
element

Customizing the
message area

3 I Developing Web Dynpro Applications

I Without message area customizing

0 There exists no AJ!JAP class tc:.- the Q!OVicted name CL GUI Al V GRI

With message area customizing

0Hl§:r§; exists no ABAP eta§§ for ttl§; m~~d nam§ Q. Q!J Al V QRI 9 1 Messoge I Show list I

Figure 3.78 Result of Customizing the Message Area

Note

The design for message area messages has changed with SAP NetWeaver 7.0
SPS 11. However, you can switch back to the old design by customizing the
message area.

Effects of Without customizing, the message area is displayed with a white back-
customizing ground and a list of all messages. With customizing, the message area can

have different appearances and functions. In the example from Figure
3.78, only the first message is displayed, with additional information
about how many messages there are. The SHow LiST button is also made
available to display the list of messages.

Listing 3.22 shows the source text for customizing the message area.

METHOD set_message_area .
• API of window controller
DATA : l_api_mycomp TYPE REF TO if_wd_window_controller .
• Message Area

l_wd_message_area TYPE REF TO if_wd_message_area .
• Determine window API
l_api_mycomp ?= •td_this->wd_get_api (>.
• Determine message area
l_wd_message_area = l_api_mycomp->get_message_area< >.
* Set message area attributes
l_wd_message_area->set_display_attributes(
"Display current messages only

i_for_all_instances abap_false
''Simultaneous l y visible messages with expanded log

i_msg_lines_visible • ' 3 '

220

Messages and Internationalization I 3.4

''Message area can toggle between text line and l ist
i_use_toggle_area - abap_true

··sets attributes for all message area instances
i_show_onl y_current - abap_false) .

ENDMETHDD .

List ing 3.22 Customizing the Message Area

The message area customizing in the set_message_area (> window
controller method was encapsulated to be able to call it easily in the
wddoi nit() method of the window controller.

To be able to customize the message area, you must first determine the
reference to the window API. The API provides the get_message_a rea ()
access method for determining the reference to the message area. The
appearance and functions of the message area are controlled by supply
ing interface parameters of the set_display_attributes() methods for
the message area reference. Table 3.8 contains a list of what the param
eters mean.

Parameter

i_use_toggle_
area

i_msg_li nes_
vis i ble

i_show_only_
current

Value

SPACE

X

0

greater
than 0

X

SPACE

Effect

Shows new message area design (default).

Shows o ld message area design.

All messages are displayed (defau lt).

Only x messages can be displayed and the

remaining messages can be accessed by
scroll ing.

A message log is not d isplayed if the !_USE_
TOGGLE_AREA parameter has the X value.

If the I_USE_TOGGLE_AREA parameter has

the X value, a link to show the message log
is displayed.

Table 3.8 set_display_attributes() Method Parameters

Message Manager

Encapsulating
customizing

The Message Manager is available to let you send messages to the user. Tasks

You can obtain it from the current controller API. The Message Manager

221

3 I Developing Web Dynpro Applications

[B]
Defining a global
attribute for the

Message Manager

is the central object for managing and handling messages and provides
methods to retrieve texts from different sources and place them in the
message area with the relevant translation.

To work efficiently with the Message Manager in the Web Dynpro com
ponent, we recommend that you determine the reference to the Message
Manager in an initialization step and store this reference in such a way
that all controllers can access it. The reference type made available by the
Web Dynpro runtime is 1 F _HO_M ESSAGE_MANAGER. If a message has to be
issued in a controller, this globally available reference is used, and the
corresponding method is called using the Message Manager reference.
Let us look at an example of this.

1. Switch to the component controller of the Web Dynpro component.

2. In preparation of determining the reference to the Message Manager,
create the global go_mm attribute of the 1 F _wo_MESSAGE_~1ANAGER refer
ence type in the Component Controller (see Figure 3.79).

Component Controller 1CONPONENICONIROLLER I Attiv8(revised)

Context Events Methods

Attribute Public Re1To Associated Type Description
WO_CONIEXI f' PJ IF _WO_CONTEXT_NOOE Reference to Local Controller Conteld

WO_THIS fJ PJ IF _COHPONENTCONTROLLER Se~·Reference to LocatControllerlnterlace

WO_ASS I Sl ZCL_93_A_CLASS_BROWSER Reference to the Instance of Assistance Class

Message manager

Figure 3·79 M essage Manager Reference

By creating the Message Manager reference as a global attribute in the
component controller, you ensure that all other controllers in the
Web Dynpro component can access this reference. This is because all
controllers in the Web Dynpro component have access to the compo
nent controller.

222

Messages and Internationalization I 3-4

3. Next, you have to de termine the reference to the Message Manag
er. This access is encapsulated in the get_message_manager() com
ponent controller method to enable it to be subsequently called in
the wddoi ni nt<) method of the component controller. Listing 3.23
shows how the reference to the Message Manager is determined.

~IETHOD get_message_manager .

* Reference component controller API

DATA l o_api_controller TYPE REF TO if_wd_controller .
* Determine component controller API

lo_api _cont r oller ?= wd_this·>wd_get_api() .
* Determine Message Manager

wd_this->go_mm =

1 o_api _contro 11 er ->get_message_manager() .

ENOMETHOD .

Listing 3.23 Determining the Message Manager Reference

The get_message_manager(> component controller method encapsu
lates determining the Message Manager reference. In the first step,
the component controller API is determined using the wd_get_apl ()

method. The API reference is used to call the get_message_manager (>

method, which returns the reference to the Message Manager. You
store th is reference in the previously de fi ned global go_mm attribute,
making it available to other controllers.

4. You s till have to call the get_message_manager< > component con
troller method in the wddol nIt() component controller method. By
do ing so, you ensure that the global go_mm attribute is a llocated a valid
reference and can be used by other controllers.

The next s tep involves actually using the Message Manager. However,
before you get to that, we wi ll explain the different text sources theMes
sage Manager may issue.

Message Categories

Determining t he
Message Manager
reference

Integrating
determining the
Message Manager

The texts for issuing messages can come from differen t tex t sources such Text sources

as the assistance class TlOO message table, or ABAP 00 exception objects.
These sources (or message categories) are disp layed in Figure 3.80.

223

3 I Developing Web Dynpro Applications

IF_ WD _MESSAGE_
MANAGER

<<interface>>
IF_WD_MESSAGE_MANAGER

Figure 3.80 Message Categories

Because the Message Manager implements the IF _wO_MESSAGL1·1ANAGER

interface, methods for issuing messages are available that can use texts
from different sources. These sources are split into categories we will
now describe in detail:

,. Texts
The Texts category enables you to use any texts. For example, texts
can be short texts from the OTR, text symbols from the assistance
class, or texts from the ABAP Dictionary. We have already discussed
the options for accessing these texts .

... T100

Texts are saved according to language and grouped in message classes
in the noo table. For each message, you can create a long text that
provides the user with additional information about the message. You
can use placeholders in the message and long text to merge informa
tion into the texts during runtime.

,. Exceptions
Exceptions are a part of the exception mechanism in ABAP Objects
and are defined using ABAP classes. Exception classes are created in
the Class Builder (Transaction SE24) and are derived from the CX_ROOT

ABAP class. These exceptions are triggered by the RAISE EXCEPTION

TYPE <exception c 1 ass> ABAP statement. When an exception is trig·
gered, it can define which exception text in the exception object
should be used.

224

Messages and Internationalization I 3.4

Exceptions that occur must be handled. meaning the exception must
be responded to accordingly. The statement sequence shown in List
ing 3.24 is available in ABAP for handling exceptions.

DATA: LO_EXCEPTION TYPE REF TO <exception class> .
TRY .
*Cri t i cal area i n which an exception can occur .
* for example the call of a method that triggers an
* exception
CATCH <exception class> INTO LO_EXCEPTJON .
*Hand li ng occurs here . for example message output
* through the Message Manager
ENOTRY .

Listing 3.24 Exception Handling for Exceptions

The interesting thing about messages being issued is that when excep
tions occur, you can save the exception objects in object reference vari
ables. The following segment is relevant for this:

CATCH <exception class> INTO LO_EXCEPTION .

Because the exception object can be addressed using the object refer
ence, the Message Manager can determine and issue the text from the
exception object.

The Message Manager methods for the TEXT and T10o categories provide
parameters that enable you to replace placeholders with values in texts.
The methods for all categories allow you to create a reference from the
message to a Ul element to let the user know the reason for the message.
This linking of the message with a Ul element also supports the naviga
tion from the message to the Ul element. The Ul element and its content
are highlighted in a relevant color.

Issuing Messages

The Web Dynpro Code Wizard supports you in issuing a message. After
you have placed the cursor in the relevant place in the source text, call
the Web Dynpro Code Wizard. Then, choose the GENERATE MESSAGE
option (see Figure 3.81).

225

Access to
exception objects

Placeholders and
linking

3 I Developing Web Dynpro Applications

~·

@'Web Oynpro Statement Structure x

Context General I

-ii, '
Message Manager IIF ~D

Method

-o
'

• • •

I
Figure 3.81 Generating a Message Using the Web Dynpro Code Wizard

The IF _WO_MESSAGE_MANAGER interface is displayed in the MESSAGE MAN

AGER field (0) for information purposes only. All Message Manager
methods are provided in the METHOD field through input help (0). You
can choose the relevant method depending on the application. Next, we
will show you examples of applications based on message categories.

Text category To send a message from the TEXT category, you must first determine the
message text. This text may have placeholders you will have to replace.
You must also decide whether you need to link the message to a UI
element.

Listing 3.25 contains the call for the report_at tri bute_error _message< J

Message Manager method to issue a message with a reference to a UI
element.

* Selection data from context
DATA : lv_rs_value TYPE zst_03_wd_class_sel_crit .
* Texts f rom assistance class

ld_text_assistance TYPE string .
* Determine element

lo_nd_class_sel_crit TYPE REF TO if_wd_context_node .
lo_el_class_sel_crit TYPE REF TO i f_wd_context_element .

* From <CONTEXT> to <CLASS_SEL_CRIT> via lead selection
lo_nd_class_sel_crit - wd_context->get_child_node(

name= wd_this->wdctx_class_sel_cri t I .
* get element via lead sel ection
l o_el_class_sel_crit =

lo_nd_class_sel_rit · >ge t_element(J.
* Determine text from assistance cl ass

226

Messages and Internationalization I 3 .4

ld_text_~ss i stance =

wd_assist·>if_wd_component_assistance-get_text(
key= vld_assis t->c_no_class
par~! - l v_rs_va lue-name_c lass) .

* Cre~te message
wd_comp_contro l ler·>go_mm·>report_attribute_error_message(

message_text = ld_text_assistance
element
at tribute_name

= lo_el_cl~ss_se l _crit

• ' NAME_CLASS ') .

Listing 3.25 Issuing a Message for the Text Category

To issue the message, a message text is first determined using the assis
tance class, and the placeholder is replaced with the user input va lue in
the selection view. If an ABAP class for the user entry is not found in the
repository, the repor t_att r ibute_error _message(>Message Manager
method sends the error message to the user.

In addition to the message text, the reference to the context node ele
ment and the name of the context attribute to which the UI element is
linked with the incorrect entry are transferred to the method. As a resu lt,
the error message can provide a link to the Ul element so that the user
can branch more eas ily to his entry to correct it. The UI element is also
highlighted in color.

The method also provides the params parameter to which you can trans
fer an internal table with placeholder names and replacement values.
This means the placeholders in the message text can be exchanged with
replacement values during runtime.

You must declare and populate an internal WDR_NANE_VALUE_LIST table
type for th is and transfer it to the method. Listing 3.26 shows the param
eter table variant.

*With paramet er table
DATA : lt_params TYPE wdr_name_value_list .

ls_param LIKE LINE OF lt_params .
* Created by Web Dynpro Code Wizard ~nd enhanced manu~lly
ld_text_assistance -

wd_a s si s t- > i f _l<d_component_ass is tance-get_tex t (
key- vld_ass ist->c_no_class) .

* Fill parameters
ls_param-name - ' PARA!& '.

227

Text and
placeholders

Replacing
placeholders with
a parameter table

3 I Developing Web Dynpro Applications

ls_param-value = 'Manual entry '.
APPEND ls_param TO lt_params .
* Create message
wd_comp_controller ->go_mm ->report_attribute_error_message(

message_text
element
attribute_name
params

= ld_text_assistance
- lo_el_class_sel _krit
= ' NAME_CLASS '
= lt_params) .

listing 3.26 Issuing a Message for the Text Category with a Parameter Table

Parameter table First, declare the internal table for the parameters with reference to
the WOR_NAME_VALUE_LIST table type and a work structure to set up the
parameter table content. The parameter table has two columns: name
and va 1 ue. The name column contains the name of the parameter to be
replaced in Lhe message text. The placeholder name in th is example is
¶ 1&. The closing & is required due to placeholders being replaced
through the get_ text< l method of the assistance class.

For placeholders, you generally only need the opening &, as you will
already know from messages from the T!OO table. To replace the ¶l&
placeholder in Lhe report_a t tri bute_error _message (> method now,
the name of the placeholder to be exchanged is para 1&. The va 1 ue col
umn contains the replacement text.

The parameter table populated row by row (meaning placeholder by
placeholder) is then transferred to the Message Manager method. Figure
3.82 shows the message to Lhe user if an ABAP class is not found in Lhe
reposito ry.

0 Ther~ ex§!s no ABAP cl~s fQ! tb§ Qrst:x:ided name manual inQut

0 There exists no A8AP class for tbe proyided oome lviM!.!At INPt,!T

Class Name; CL GUI AL V GFOOI _ug] AL V List Vie'

0 There exists no ABAP class for the

G'a- provided name MANUAL I\IPUT l::& ~e long text f

There exists no NJAP class for the
II provided name manual input

•

Figure 3.82 Text Category Message Issued by the report_attribute_error_message()
Message Manager Method

228

Messages and Internationalization I 3.4

An ASAP class could not be found in the repos itory for the name the user
entered, which is why the message was issued. The message is issued in
the message area in the window header area and provides a link to easily
navigate to the UI element to correct the ABAP class name entered. Table
3.9 contains additional methods assigned to the TExT category.

Method Name

report_success < l

report_warning()

report_message(l

report_attribute_message()

report_error_message()

report_fatal _error_message< l

report_attribute_error_message()

report_el ement_error_message()

Parameter
Table

+

+

+

+

+

+

+

+

Linking with a
Ul Element

+

+

+

Table 3.9 Message Manager Methods for the Text Category

Three Message Manager methods are available for issuing texts from the T100 category

noo table. You must at least transfer the message number. message class,
and message type to all three methods.

Like TEXT messages. noo message texts may also contain placeholders
that are subsequently replaced with values tl1at are transferred to meth
ods. Table 3.10 shows a summary of methods for issuing messages based
on Table TlOO.

Method Name Parameter
Table

report_tlOO_message() +

report_attribute_tlOO_
message< l

report_e l ement_t!OO_
message()

+

+

Table 3.10 Message Manager Methods for T100 Category

linl<ing with a
Ul Element

+

+

229

3 I Developing Web Dynpro Applications

Tranferring
message

information

In Listing 3.27, you can see that two methods from th is category are
used. Note the different method parameters provided.

• Message structure
DATA: ls_msg TYPE symsg ,

lo_element TYPE REF TO i f_wd_context_element .
* lssue message
* 041 • Could not repair class pool for class &1
wd_comp_controller->go_mm->report_tlOO_message<

msgid - ·oo ·
msgno = ' 041 '
msgty = ' E'
p1 - ' CX_ROOT ') .

*Fill message structure
ls_msg -msgid - ·oo · .
ls_msg-msgno = ' 041 '.
ls_msg -msgty- ' E'.

ls_msg-msgvl = ·cx_ROOT '.
* Issue message
wd_comp_controller->go_mm->report_attribute_tlOO_message<

msg - ls_msg
element - lo_e lement
attribute_name = ' NAME_CLASS ') .

listing 3.27 Issuing a Message for the T1 00 Category

The main difference in using both methods is in the message informa
tion transferred. The report_tlOO_message{ > method provides indi
vidual parameters for the message class, message number, message type,
and a maximum of four parameters for placeholder replacements.

In contrast, the report_attr ibute_t100_message{ > method expects a
SYMSG-type structure to transfer the message information. The structure
fields correspond to the report_tlOO_message< > method parameters.

Exceptions You can use the exception text in the exception object to issue messages.
category In this case, you cannot replace placeholders with specific values. Table

3.11 contains the methods fo r the ExcEPTIONS category.

230

Method Name

report_exception< >

report_fa t al_exception()

report_at t ribute_exception()

report_element_except ion()

Parameter
Table

Table 3.11 Message Manager Methods for T100 Category

Messages and Internationalization I 3 .4

Linking with
a Ul Element

+

+

In Listing 3.28, you can see that the repor t_e 1 ement_except ion (> Link to element
method is used. The diffe rence to the Message Manager methods we
have discussed so far is tha t messages are linked wi th view elements.

• Exception object
DATA : lo_exception TYPE REF TO cx_root .
* Select attributes

lt_at t ributes TYPE string_table .
*One att ri bute

ls_attribut LIKE LINE OF lt_attributes .
TRY .
• Check if search string is a class name

wd_comp_cont rolle r ->is_class<
EXPORTING

clskey = lv_rs_value·name_cl ass
I 11PORTI NG

ed_exists = ld_exists) .
*Fired by IS_CLASS . class does not exist
CATCH cx_>~d_no_handler INTO lo_exception .
• Fill attr i bute table

ls_attribut- ' NAME_C LASS '.
APPEND ls_attribut TO lt_attributes .

• Message >~ i th reference to output
wd_comp_cont roller->go_mm->report_element _exception<

message_object
element
att r ibutes

ENDTRY .

- lo_exception
- lo_el_class_sel_crit
= lt_attributes) .

Listing 3.28 Issuing a Message for the Exceptions Category

3 I Developing Web Dynpro Applications

Defining the color
highlighting

wddobeforeaction()
hook method

Applying the
mandatory entry

field check

The report_e 1 ement_except i on< > method is called in the CA TCH section
of the TRY statement. The caught exception object and reference to the
context element are transferred to this method. A table with attributes
from the context node belonging to the context element is also trans
ferred. This attribute table controls which UI elements are highlighted
in color if the message is displayed. If no attributes are transferred to
the method, all UI elements linked to a context attribute for the element
are highlighted.

Now that we have discussed the different message categories using
examples, we will next explain the navigation behavior when messages
are called.

Messages and Navigation Behavior

Messages are generally issued as a reaction to checks. In the previous
examples we showed you, the Message Manager was also used to send
the user a message after an exception occurred in the action handler
method. You could ask yourself a few questions at this stage:

.. Is it inefficient for the same checks to be run in different action han
dler methods? Is there an efficient way to summarize checks?

.. When a message is issued, you sometimes need to cancel the program
processing and instruct the user to make a new entry. How do you do
this?

Look at the answers provided for these questions in the Web Dynpro
framework. We will discuss the first question about an effici ent check
first.

The 1~ddobeforeact ion (> hook method provides an al ternative period
for performing checks for each view. You activate th is method before
you call one of the action handler methods. If a window contains several
views, all wddobeforeact ion< > methods are activated before one of the
action handler methods of the views involved is called.

Let us take a look at an option for using the wddobeforeaction< >
method. We want to check whether the user has made all of the entries
for mandatory entry fields. Because the Web Dynpro framework does

232

Messages and Internationalization I 3-4

not provide any direct support for this, you must explicitly implement
th is check. To do th is, proceed as follows:

1. To show the user that a specific field is a mandatory entry field, you state property
must set the value for the STATE property to required in the UJ ele-
ment properties. As a resu lt, a red asterisk appears in front of the Ul
element, indica ting that the subsequent Ul element is a mandatory
entry field. However, th is is only a display option without functional
features. You must create these features manually.

2. To do this, switch to the wddobeforeact ion< l method of the view Check
and use the CL_~JD_DYNAt4 IC_TOOL ABAP class to perform the check on
mandatory entry fields . Listing 3.29 gives an example of implement-
ing the wddobeforeact ion<) method in relation to mandatory entry
fie lds.

METHOD wddobeforeaction
*AP I of view controller
DATA l o_api_controller TYPE REF TO if_wd_view_control l er .
* Re ference to action

lo_action TY PE REF TO if_wd_act i on.
* Determine API of view
lo_api_controller = wd_this·>wd_get_api() .
* Determine current action
lo_action = l o_api_control ler·>get_current_action() .
* Evaluate action
IF lo_ac tion IS BOUND .

CASE l o_action·>name .
WHEN ' SEARCH_METHODS '.

cl_wd_dynamic_tool=>check_mandatory_at t r_on_view(
EXPORTING

ENDCASE .
ENOJF .
ENDMETHOD .

view_controller = lo_ap i_controller) .

Listing 3-29 Implementing the wddobeforeaction() Method in a Mandatory Entry
Field Check

3. The API for the current view is determined first to es tablish the current
action. This is provided by the get_current_action(>API method.
The name public instance attribute for the action contains the name of
the action that will subsequently be analyzed by a CASE statement.

233

check_mandatory_
attr_on_view()

3 I Developing Web Dynpro Applications

Canceling
navigation

4. In th is example, additional checks are only to be performed for the
SEARCH_METHOD action. If the use r has actually triggered the methods

search, the check_mandato ry_attr _on_ view< l method from the CL_
wo_DYNAM IC_TOOL class will be used to execute the check for all man

datory entry fields. Figure 3.83 shows the check result for an empty
entry field:

~ By setting the value for the STATE property to requi red in the UI

element propeities, the red asterisk appears in front of the input
field for the class name (0).

~ If the user does not enter a value in the input field and starts the
search, the mandatory entry field check finds the missing entry at

the wddobeforeaction() point and sends the message to the user
(0). At the same time, possible navigation to another view is pre
vented, and the other processing actions are cancelled.

8 Complete al rewired entry fields e
Closs Nome: * ' !...._======------,119J AI. V List Viewer

Figure 3-83 Message for Empty Mandatory Entry

Now, let us look at the question about navigation behavior in Web Dyn
pro. As you saw in the previous example, the mandatory enuy fields

check resu lted in the processing being canceled and an error message
being issued. Here, the action type an action has is one of the determin

ing factors. You can set ACTION TYPES for every action on the ACTIONS tab
in a view. The standard (as the default value) and va l idation-indepen
den t values are available for th is. You must look at the effect of the action

type in combination with the message type, especially error messages.

Types of error Error messages in Web Dynpro can affect the phase model process flow.
messages We differentiate between two error message types in th is context:

~ Error messages with a context reference
These messages affect the phase model process flow. If an error mes
sage with a context reference is issued, standard actions will not be
executed. Any possible pending navigation and the wddomod i fyvi ew()

234

Messages and Internationalization I 3.4

method will not be executed either. However, val idat ion- indepen
dent actions are executed if error messages are issued. In addition,
navigation to this type of action is subsequently made and the wddo
mod i fy vi e1<<) method is executed.

,. Error messages without a context reference
Just like warnings and success messages, these messages do not affect
the phase model process flow.

The cancel _navi gat ion parameter is available for all Message Man
ager methods for issuing messages. You can use it to cancel navigation.
Another parameter is i s_val idat i on_i ndependent , which is available for
all methods with a context reference.

Additional Information About Messages

We generally differentiate between two message types in Web Dynpro:

,. Standard messages
These messages are deleted before an action is executed by the Web
Dynpro tun time and therefore have to be created again as required in
each HTTP roundtrip.

,. Permanent messages
These messages are not automatically deleted before an action is exe
cuted. You can define the lifecycle of a permanent message by specifY
ing a scope. Possible scopes include: CoMPONENT, CoNTROLLER, and
CONTEXT ELEMENT. If you want a message to be permanent, you must
identity it as i s_permanent when you generate it.

cancel_navigation
and is_ validation_
independent
parameters

Message types

The Message Manager provides other useful methods. Some of these are Other methods
summarized in Table 3.12.

Method Name

i s_empty <)

cl ear_messages()

remove_message()

get_messages<)

Description

Checks whether there are messages.

Deletes all existing messages.

Removes a message.

Reads all messages from the Message Manager.

Table 3.12 Selected Message Manager Methods

235

3 I Developing Web Dynpro Applications

3-5 Summary

In this chapter, you developed your first major Web Dynpro application
(Figure 3.84).

~Class ill'owser

I~ ALV List Viewer

kierlaoe Camp.

C.6.LL_METHOO

CAll_toETHOO _RESULT _GUI_ OBJECT

Cfll _IJISPLA Y

CflljD_N_POSITION_RANGe

CHANGE_DATA.JROM_L'ISIDE

-

Local W:ranet

Figure 3.84 The Created Web Dynpro Application

A. redefn!d d
D
D
D
D

=

D El

E
[>I

lOOC'/<o •

You have learned about many different areas in the course of developing
the Web Dynpro application:

,.. Context programming showed you how you can read data from the
context, store data in the context, and manipulate and delete this
data. The IF _WD_CONTEXT_NODE and IF _WD_CONTEXT_ELEMENT ASAP
interfaces were extremely important for this purpose. Some of the
things for which you used context programming included transfer
ring the user entry in the object type name (ASAP class name) and
providing search results in the context so that they could then be dis
played in a tree or table.

,.. The sections about layouts, containers. and UI elements showed you
how you can arrange and group data for display. You used different
layouts to create appealing views that enable the user to enter data

efficiently. You also learned about UI elements as complex as tabs ,
trees, and tables in the available display options.

• Language-dependent messages to the user are a must for every profes
sional Web Dynpro application. You integrated these messages into
your Web Dynpro application with reference to the various message
sources, thereby also influencing the navigation behavior of your
Web Dynpro application.

In Chapter 4, Dynamic Web Dynpro Applications, you wil l learn about
options for dynamically programming Web Dynpro applications.

237

Summary I 3.5

How can you respond to information that is not yet known dur
ing development and integrate it into Web Dynpro components?
Read this chapter to learn the basic options for programming
Web Dynpro applications dynamicalry.

4 Dynamic Web Dynpro Applications

Previously developed Web Dynpro applications supported require
ments and information that were fully known during the development
phase; however, this does not always have to be the case. Information
that will affect the controller context structure, view layouts, and the
assignment of actions to view elements may only be available during
runtime.

For example, let us assume you want to display a TabStri p with one
Tab each for implemented ASAP interfaces of the ASAP class in the
Class Browser Web Dynpro application from Chapter 3, Developing
Web Dynpro Applications (see Figure 4.1). An ASAP class the user
is looking for (0) may not implement any ASAP interfaces or (8)

may implement one or several ASAP interfaces. Information about
the number of ASAP in terfaces is only ava ilable at runtime and deter
mines the context structure because the data for the ASAP interface
or interfaces must be stored there. The view structure is also affected
in this case because a Tab has to be displayed for each ASAP interface
(0) . If methods are defined for the ASAP interface, they are mapped
in a table with a column for the name (0) and a table will only be dis
played if methods actually exist.

239

Integrating
information during
runtime

4 I Dynamic Web Dynpro Applications

§ €) · lru t-tto:ll

~ jJ :eJ Oy"""c Class s,.,..,.,

Nome.,., Klasse: • ~r.;;a::-_~'!!,!::-_-:Al~V-:-_ORil=:------rldJ [gl AL v Ust Vlowe' 0
[ffiF _CAO<ED_PROP. IJ'BF _OLIJ)YNAMICJ)ATA 8

0 lrtertace COmp.

GH .)IEXT _PROP

SffK_fRST _PROP

SET ..PROP

1111\Jloc<lli't'....t

Figure 4.1 Sample Application for Dynamic Programming

We will be covering several topics in this chapter. First, we will dis
cuss the advantages and disadvantages of dynamic programming. Then,
after looking at the options provided by dynamic programming, we will
describe in detail how to adjust the context structure during runtime.
Next, we will explain in depth the techniques for creating and custom
izing context nodes and context attributes.

Another focus area will be adjusting the user interface during runtime.
You will Jearn the necessary basics to generate user interfaces dynami
cally with containers, layouts, and view elements. We will also show you
how to assign action handlers to UI elements dynamically.

Topics Discussed

We will discuss the following topics in t his chapter:

• Types of dynamic changes

• Adjusting the context at runtime

• Adjusting the user interface at runtime

240

Advantages and Disadvantages of Dynamic Programming I 4 .1

4.1 Advantages and Disadvantages
of Dynamic Programming

The procedure we previously used for defining context was to define it
in the development phase and specifY or statically define the property
values for a view element through data binding to the context attributes
or nodes. With data binding. changing the context attribute contents
can in fluence view element properties such as the visibil ity of a view
element (see Figure 4.2) .

• TV_OESCR_CLASS
Contexl V _CLASS_ SE I.E COON
• Q CONTEXT

> CI.ASS_SEI._CRIT Propel1iu ITexfV!aw)
10 TV_OESCR_ClASS
Layout Data
con~exncenuBel\aviour rnneri1
eon:.,Menuld Static

VISIBLE
assionment Type

I$YOVI Data WOOI_VISIBIUTY

semantlcCoiOf Bind· 0

••• 2

textOifectton 0 AUtomatic
Input Help WOUI_YISIBILilY

Defining context
during the
development
phase

ofrnputHelp Fixed values for domains

Figure 4.2 Statically Defining View Element Properties vs. Data Binding

In general , you should always try to influence view element properties
through data binding rather than through dynamic programming and
make use of th is fu nction as much as possible. The reasons for this are
as follows:

.,. Dynamic programming is complex .

.,. Dynamic programming generates extensive source code .

.,. Dynamically programmed applications are more difficult to maintain
than statically programmed applications .

.,. Dynamically programmed applications are sometimes slower than
statically programmed applications. This is a factor that often plays a
role, especially when implementing the wddomodi f yv i ew() method.

Reasons against
using dynamic
programming

4 I Dynamic Web Dynpro Applications

Reasons in favor of
dynamic

programming

Previously used
procedure in
Web Dynpro
development

Types of dynamic
changes

You should not use dynamic programming to manipulate statically
defined values of view element properties. Instead, use dynamic pro
gramming under the following circumstances:

,.. If the data structure is only known during runtime

,.. If generic applications have to be developed

,.. If the structure for views is generic

In the next section, you will learn about the options available to you if
you have taken these recommendations into account and then still have
to use dynamic programming.

4.2 Types of Dynamic Changes

Before we discuss the different types of dynamic changes, we will briefly
review the previously used procedure for defining the context structure
and views during development:

1. Create a context node in a controller.

2. Set the properties of this new context node.

3. Structure the new context node by creating context attributes for the
context node and/or subnodes.

4. Set the properties of the new context attributes.

5. Perform the context mapping for the relevant context nodes.

6. Define a view layout using view elements.

7. Define the data binding of the view element properties to the context
nodes and attributes.

8. Define or use actions and their action handlers for view element
events and assign the actions to the events.

Different types of dynamic changes are avai lable in Web Dynpro that
allow you to carry out each of these steps dynamically. The explanations
we wi ll provide focus on the following most important basic options:

,.. Dynamic context manipulation
You can create, change, and de lete context nodes and context attri
butes when manipulating context dynamically.

Adjusting Context at Runtime I 4-3

"' Dynamic layout manipulation
You can create, change, and delete view elements when structuring
the layout during runtime.

"' Dynamically assigning actions to view elements
You can also bind events against existing actions or manipulate the
parameter mapping of event parameters.

We will discuss these different types of dynamic adjustments in detail
in the sections tha t follow. We will use numerous examples to help you
understand how to use these dynamic programming options.

4.3 Adjusting Context at Runtime

To illustrate manipulating context at runtime, we wil l use the class sample application

browser from Chapter 3, Developing Web Dynpro Applications. We will
remodel it here as a dynamic class browser.

As mentioned previously, you can determine whether and how many
ABAP interfaces are implemented by an ABAP class only at runtime. If an
ABAP interface is not implemented, no context structures are required
for ABAP interface data. If an individual ABAP interface is implemented,
or if several ABAP interfaces are implemented, you will need context
structures whose property values may have different characteristics.

We will examine this in detail in the examples. Figure 4.3 shows the
context su·ucture to be created.

ROOT

<Interface 1 >

Name

Is_ Inherited

Name

<Interface 2>

Figure 4-3 Context Structure for the Dynamic Class Browser

243

4 I Dynamic Web Dynpro Applications

Creating context
dynamically

Procedure for
changing context

dynamically

One context node is created under the context root for every interface
found. The node name called <Interface 1>, <Interface 2>, and so
on, corresponds to the ABAP interface name. This context node has two
attributes:

11> NA~IE

This attribute includes the ABAP interface name.

11> IS_! NHERITED

This attribute indicates whether the ABAP interface was inherited
from a superclass.

If the ABAP interface has methods, the METHODS subnode is created under
the <Inter face i> interface node. This context node only has the NAME
attribute. For this reason, it has the names of all of the methods for the
ABAP interface.

You may have different reasons for dynamically manipulating context
nodes. For example, one reason might be that the number of nodes in
generic components is unknown at development time. Even if the con
text nodes are known, you may only be able to determine a node struc
ture during runtime.

The procedure for dynamically changing the context is easy to
describe:

1. The context root node is always available and cannot be changed or
deleted.

2. Determine the reference to the context node under which you want
to create a node or change its structure.

3. Use the reference to the context node to determine the description
object (alternative names are meta information object or information
object) for the context node.

4. Use the description object to extend the new context node or change
the structure of an existing context node.

The following sections will describe the outlined procedure to manipu
late context during runtime. However, before we proceed with more
explanations, you will copy the existing Web Dynpro component:

244

Adjusting Context at Runtime I 4.3

1. Copy the ZI~DG_03_CLASS_BROWSER Web Dynpro component to the
new ZWDC_04_CLASS_BROI~SER Web Dynpro component.

2. Create the new v_CLASS_INTF view and embed the view in the W_MAIN

window in the VC_CLASS_M ETHODS view container. You can delete the
other views in the view container (see Figure 4.4).

Wmdow Structure
• C]W_MAIN

• EJ V_~IAIN_LAYOUT
• EJ VC_CLASS_METHOOS

• EJ V_CLASS_INTF
· "=' FROt<i_CLASS_SELECTION

• EJ VC_CLASS_SELECTION
• EJ V_CLASS_SELECllON

• 9 TO_CLASS_INTF
,. FROM_CLASS_SELECTION

· 9 TO_CLASS_METHOOS
'<;;' DEFAULT

Description

Class interfaces
From class selection

Class selection
To class interfaces

To class methods

Figure 4.4 Window Structure for the Web Dynpro Application of the Dynamic Class
Browser

3. Define a navigation transition from the v_CLASS_SELECTION view to
the V_CLASS_I NTF view. (Do not forget to define the plugs before
hand.) You should implement the transition handling in the same way
as for the V_CLASS_11ETHODS view.

4. Switch to the onactionsearch_methods() method of the V_CLASS_

SELECTION view and implement the method for the transition to the
v_CLASS_INTF view, as shown in Listing 4.1 .

You still have to create the public i s_new_sea rch component control- IS_NEW_SEARCH

ler attribute and type it using I~DY _BOOLEAN. Subsequently, it will
always be set when the user triggers a new search. You will use this
attribute later to fi nd out whether you have to create the view layout
again.

*A new search is performed

wd_comp_contro 11 er • >i s_new_sea rch - abap_true .
* If the class exis t s . navigate to t he result
wd_this->fire_to_class_intf_plg() .

ENDMETHOD .

Listing 4.1 Transition from the Selection Screen to the View for the
ABAP Interfaces

245

4 I Dynamic Web Dynpro Applications

Testing 5. Create a Web Dynpro application. activate all inactive elements of the
ZWOC_04_CLASS_ BROWSER Web Dynpro component, and test the Web
Dynpro application.

Determining the
description object

Determining the
description object

After you have triggered the search, you see nothing - this is how it
should be. The missing visualization still has to be added. You have now
completed the preparations and can focus on dynamically changing the
context. The fi rst step toward dynamically programming context involves
determining the description object for a context node.

4.3.1 Determining a Description Object (Meta Information)
for a Context Node

All context nodes to be created dynamically need a higher-level context
node. The ever-present context node that cannot be deleted or changed
is the con text root node.

You can use the root node or other existing nodes to create a subnode.
To do this, you need to determine the description object of the context
node for which you want to create a subnode. You can easily do this
using the reference to the context node. When you have determined the
reference to the context node (using the wd_context controlle r attribu te
in the root node example), use this node reference to call the get_node_
info(> method and ge t the description object for the context node.

We will look at the procedure by way of an example where you will cre
ate the crea t ectx_i nt erfaces() method. In th is method, you will per
form all of the implementations for dynamically changing the context.

The listings we will show you will result in the createctx_ interfaces()
method being fully implemented. The beginning and end of a control
structure or loop may be distributed across different listings; however,
do not worry about this .

1. Switch to the V_CLASS_I NTF view and select the METHODS tab.

2. Create the createctx_interfaces() method and implement the
description object determination of the context root node, as shown
in Listing 4.2:

" Define the 1 o_nd_ i nfo_root object reference variable for the IF_

~IO_CONTEXT_NOOE_ I NFO description object.

Adjusting Context at Runtime I 4.3

... Due to the wd_context attribute, the reference to the context root
node is already available and does not have to be determined
explicitly. If you need a subnode reference to the context root
node, use the wd_context 0 >get_ch i 1 d_node<) method .

... Call wd_context 0 >get_node_ info< l to determine the description
object for the context root node, which you store in the 1 o_nd_
i nfo_root reference variable.

METHOD creat ec t x_interfaces
* Root node description node
DATA : 1o_nd_info_root TYPE REF TO

if_wd_context_node_in fo .
* Determine information object for root node
1o_nd_info_root = wd_contexto>get_node_info() .

listing 4-2 Determining the Description Object for the Context Root Node

You will now have the description object for a context node. Having
determined the information object for the node. you can now create
subnodes in the context.

4.3.2 Creating and Adding Context Nodes

r F _WD_CONTEXT _NODE_ INFO, the ASAP interface you learned about when
determining a node information object, includes the add_nel<_ch i 1 d_
node< > method for creating a new context node, which creates a hierar
chy one level lower. We will use this method in this example to define a
context node for every ASAP interface found (see Figure 4.5).

ROOT

<Interface 1 >

<Interface 2>

Figure 4.5 Creating Context Nodes for each ABAP Interface

247

add_new_child_
node()

4 I Dynamic Web Dynpro Applications

ASAP class- The global go_class_desc r iption attribute is stored in the component
description object controller, which you can access using the wd_comp_cont ro 11 er refer

ence. This attribute has an internal table with the implemented ABAP
interfaces of the ABAP class. The add_new_chil d_node(l method is used
to create a context node for every interface (see Listing 4.3).

Creating a context
node for each

ASAP interface

* The name of t he interface from the class RTTI object
DATA : ls_interface LIKE LINE OF
wd_comp_controller->go_class_description ->interfaces .
* For converting the interface name type to text

ld_intf_name TYPE string .
* The information object of the interface node

lo_nd_info_i ntf TYPE REF TO if_,~d_context_node_info .

* If interfaces exist for the searched for class .
* a node is created for each interface
LOOP AT

wd_comp_control l er->go_class_description->interfaces
INTO ls_interface .

Option 1: Create context node and attributes individually
* Convert name type to string

ld_intf_name = ls_interface-name .
* Create new child node

lo_nd_info_i ntf = lo_nd_info_root·>add_new_chi l d_node(
name
is_mandatory
i s_multi pl e
is_mandatory_selection
is_multipl e_selection
is_singleton
is_initia l ize_lead_selection

* static_element _type

* static_element_rtti
* attributes

is_stati c

Listing 4-3 Creating a Context Node

- ld_intf_name
- abap_true
= abap_false
- abap_true
= abap_false
- abap_true
= abap_true

-
=

=

- abap_fal se J .

A context node is created directly below the context root node for every
entry in the internal interfaces table. The 1 o_nd_ i nf o_root description
object of the context root node previously determined can be used to
call the add_ne•t_chi 1 d_node(J method to create a subnode for the con
text root node. Calling the method results in a description object being

Adjusting Context at Runtime I 4-3

returned for the newly created context node with properties that are set
using the method parameters.

Figure 4.6 shows the relationship between the method parameters and
context node properties. This figure is shown for illustration purposes
because this context node is created at runtime and is not displayed in
the context structure.

Importance of
add_new_child_
node() method
parameters

Coni ext V _KL.ASSENJI'ITF _2

•
•
•

static_element_rtti
attributes
is_static
).

• Q CONTEXT •
I!J l"ll'RFACE I

•

= abap_false

Figure 4.6 Defining Property Values for a Context Node Using the add_new_child_
node() Method

You can use the following importing parameters when calling the add_
new_chi 1 d_node< > method:

" name = node ID
The context nodes in this example have the same names as the inter
faces.

" ls_mandatory, is_mul tiple =cardinality
i s_mandatory stands for the cardinality's lower limit, where ABAP _

TRUE corresponds to 1 and ABAP_FALSE corresponds to 0. is_multi ple
stands for the cardinali ty's upper limit, w here ABAP _TRUE corresponds
to n and ABAP _FALSE corresponds to l.

" is_mandatory_selection, i s_multlple_selection =selection
The selections correspond to those of the cardinality.

" I s_singleton =singleton
The singleton property for a context node is set to the ABAP _TRUE

default setting in the example because the new ASAP interface con
text node is created directly under the root node.

249

4 I Dynamic Web Dynpro Applications

Defining attributes
with a flat

structure type

.,. is_ i nit i a 1 i ze_1 ead_se 1 ect ion ~ lead selection initialization
In the example, the lead selection is se t to the ABAP _TRUE default set
ting .

.,. i s_ s tat i c ~ can the node be deleted at runtime?
This very important property for dynamic programming controls
whether the node can be deleted during runtime:

.,. The node can be deleted if the value for the parameter is set to
ABAP _FALSE.

.,. The node cannot be deleted if the ABAP _T RUE value is set.

The node will have to be dele ted at a later stage if the user runs a new
search. fo r example; the refore, the ASAP _FALSE value will be trans
ferred for the parameter.

.,. static_element_type, static_element_rtt i and attributes

The static_e1ement_type, static_e1ement_ rtti . and attributes

parameters are used for transferring information to context node
attributes. In the following sections, we will show you how you can
use these parameters.

The new subnode was created at runtime by calling the add_new_chi 1d_

node(J method. The question is now: How can you define attributes?
This can be done in several ways.

The easiest way is to use a flat structure type from the ABAP Dictionary
(structure, transparent table, or view) and specifically transfer it to the
stati c_e1ement_ type interface parameter. In this case, all structure fields
become context node attributes (see Figure 4.7).

lo _ nd _info _i ntf= lo _ nd _info_ root 4 >add_ new_ c;hild _node(ASAP-Dictionary name = 'INTERFACE_1'
is_ mandatory = abap_twe
is_multiple • abap_false
is_mandatory_sele<tlon • abap_false
is_multiple_selection • abap_false
is_initialize_lead_selection = abap_true
. . I •

stattc_t ement_t w
attributes
is_st.ttic

).

•
•
=
• abap_jalse

Figure 4.7 Using the static_ element_ type Formal Parameter for Defining Attributes

Adjusting Context at Runtime I 4.3

However, individual attributes that are not necessarily part of a structure
type often have to be added during runtime, or types from an ABAP
Dictionary type group have to be used. We will discuss both of these
scenarios in the following section.

4.3.3 Creating and Adding Context Attributes Individually

If you created a context node with a ODIC structure in the design phase,
or if you want to define general node attributes, you can create these
attributes dynamically (see Figure 4.8).

WOR_CONTEXT_ATTRIBUTE_INFO
Type_N.ame Value_Help_Mode • 'NAME' 'AilAP_IHTFNAME' '0'

<Interface 1>

NAME

WDR_CONTEXT_ATTRIBUTE_INFO
Type N.amc • IS_INHERITED

'IS_INHERJTED' 'ABAP_BOOL' '0'

Figure 4.8 Dynamically Creating Individual Attributes Using the add_attribute()
Method

Creating attributes
ind ividually

For this purpose, the IF _wo_CONTEXT_NOOE_ I NFO ABAP interface contains add_attribute(>

the add_attri bute<) method. However, a WOR_CONTEX T_ATTRIBUTE_INFO
structure must first be filled for this and transferred to the method. List-
ing 4.4 shows how the method is used.

• Context node attributes
OATA : ls_attribute TYPE wdr_contex t_attribute_in fo .
• Create context attribute for interface con t ext node
• Attribute for inter face name
ls_attribute · name - ' NAME '.
1 s_attr i bute· type_name = · ABAP _INTFNAroiE ·.
ls_attribute · val ue_help_mode- ·o·.
• Add attribute fo r name
lo_nd_info_intf·>add_attribute(

attribute_in fo- l s_attribute) .
* Attribute for inheriting the interface
ls_attribute · name - ' IS_INHERITEO'.

4 I Dynamic Web Dynpro Applications

l s_attribute-type_name = ' ABAP_BOOL '.
ls_attribute-val ue_help_mode • ·o·.
* Add att r ibute for inher itance
l o_nd_info_intf ->add_attribute(

attribute_info = ls_at t ri bute) .

Listing 4 -4 Defining Attributes for a Context Node Using an Individual Definition

In addition to other fields, the ~IOR_CONTEXT _A TTRI BUTE_I NFO structure
contains the following:

1> name

This is the attribute name.

1> type_name

This is the field type name. Both ABAP Dictionary types and types
from a ty pe group can be used here. This a lso represents a fundamen
tal difference to defining the context during development. In the

development phase, you cannot use any types from type groups for
typing attributes. This can only be done in dynamic programming.

,.. value_help_mode

This is the value help mode. The o value is set because the value help

will be found automatically. You can determine possible field values
easily using the ASAP Dictionary. Forward navigate from the WOR_
CONTEXT_ATTRIBUTE_IN FO structure to the interesting data elements

first. and then navigate to the domains. The fixed values for the

domains show you the possible field values.

Alternative Options for Determining Values: Constants for View
Element Properties

Alternatively, you can use constants in the implementi ng view element classes
(details about ABAP classes follow in Section 4.4, Adjusting the User Inter
face at Runtime). For example, the TabStri p Ul element is implemented by
the C L_WO_ T ABSTR I P class. Constants containing property values are defined
in this class. These constants fol low the E_ <property> name structure (E
stands for enumeration).

In the Class Builder (Transaction SE24), you will find the E_ VISIBLE constant
on the ATTRIBUTES tab in the Cl_WO_TABSTRIP ABAP class. This constant is
defined as a structure with the blank, none. and visible fields . One of
these constant fields- for example, none - can be addressed as follows in
the programming:

252

Adjusting Context at Runtime I 4.3

cl_wd_tabs tr ip•>e_vis i ble· none .

The preferred option in programming is to use constants rather than absolute
values because constant names do not depend on absolute values and will
therefore not be affected by changes to absolute values.

After values have been collected and set for an attribute, the filled struc·
ture is transferred to the add_att r i bu t e(l method and consequently.
the attribute is defined. The structure must be filled and the method
called for every attribute. Two attributes are created for the context node
in this example: The ABAP interface name and an is_ i nherited Boolean
value that specifies whether the interface was inherited from a super·
class. If there are now a large number of attributes, the source code may
be quite long.

4·3·4 Creating and Adding Context Attributes in Bundles

Transferring a filled
structure

The add_new_chi 1 d_node(J method provides the attr i butes parameter attributes
to transfer an internal table with attribute descriptions. This option is
similar to the option for creating an attribute individually in that you
must fill a IWR_CONTEXT_ATTR I BUTE_IN FO description structure for each
attribute to be created, as you can see in Figure 4.9.

WDR_CONTEXT_ATTR_INFO_MAP ROOT

Name- Typt N .. me Valur H~p Modt .. <Interface 1>

'NAME' 'A8AP_INUNAME' '0' NAME
'IS_INHER.ITEO' 'A8AP_800l' ·o·

Figure 4·9 Dynamically Creating Attributes Using the Attributes Formal Parameter

In this case, the description structures are collected in an internal HDR_ Attribute table
CONTEXT_ATTR_INFO_I·1AP table and then transferred to the at t ributes
parameter. Another difference to creating attributes individually is that
the internal table must be filled with attribute information before the
method for creating the context node is called. Let us now look at this

253

4 I Dynamic Web Dynpro Applications

oplion as an alternative to the previous example. The implementation
option using the attribute table is shown in Listing 4.5.

• Context node attributes
DATA : ls_attribute TYPE wdr_context_attribute_info .
• Table of context node attributes

lt_attributes TYPE wdr_context_attr_info_map .
** Option 2: Create nodes and attributes using a table **
*Attribute for interface name
ls_attri bute·name- ' NAt1E '.
ls_attribute·type_name = ' ABAP_INTFNAt1E '.
ls_attribute·value_help_mode = ·o·.
INSERT ls_attr ibute INTO TABLE lt_attributes .
*Attribute for inheriting the i nterface
ls_attribute · name - ' IS_INHERJTEO ' .
ls_attribute·type_name = ' ABAP_BOOL '.
ls_attribute·value_help_mode- ·o· .
INSERT ls_attribute INTO TABLE l t_attributes .
* Create node for interface
ld_intf_name = ls_interface·name .
lo_nd_info_intf = lo_nd_info_root·>add_new_child_node(

name - ld_intf_name
is_mandatory = abap_t rue
is_multiple - abap_false
is_manda tory_select ion = abap_true
is_multiple_selection - abap_false
is_singleton = abap_true
is_initialize_lead_selection
attributes
is_static

- abap_true
= lt_attributes
= abap_fa lse) .

Listing 4·5 Defining Context Node Attributes Using the Attribute Table

The way the parameters are supplied is identical to the first option
although the attributes parameter is used here. Furthermore, a method
does not need to be called separately to define an attribute. However,
using this option does not mean you have exhausted every alternative.
You can also use an RTII description object.

static_element_rtti The add_new_ch i 1 d_node () method provides the stat i c_el ement_rt t i
parameter to which an RTII structure description object can be trans·
ferred- in other words, an object that describes a structure and encapsu·
lates this description. Look at Listing 4.6 as an example of this option.

254

Adjusting Context at Runtime I 4-3

* RTTI descri ption object for structure
DATA : lo_intf_rtti TYPE REF TO cl_abap_structdescr .
** Option 3: Creating nodes . RTTI **
• Generate RTTI description object for structure
lo_intf_rtt i ?= cl_abap_typedescr=>descri be_by_name(

' ABAP _I NTFDESCR ') .
* Create nodes for interface
ld_intf_name = ls_inter face-name .
lo_nd_info_intf- l o_nd_info_root->add_new_ch i ld_node(

name
i s_manda tory
is_mult i pl e
is_mandatory_selection
is_multiple_selection
is_singl eton

= ld_intf_name
- abap_true
= abap_ false
- abap_true
= abap_false
- abap_true

is_initial i ze_lead_selection = abap_true
static_element rtti
is_static

= lo_intf_rtt i
- abap_fal se) .

Listing 4.6 Defining Context Node Attributes Using an RTII Description Object

The RTTI description object in th is example is created by calling the pub·
lie static method cl_abap_typedescra)descri be_by_name(). The actual
parameter type will determine which description object type - on which
casting can be performed - is returned.

In th is example, the ABAP _ I NTFDESCR structure type defined in the ABAP
type group is transferred to the descri be_by_name(l method. Due to
the ABAP _l NTFOESCR ty pe, a Cl_ABAP _STRUCTDESCR description object is
delivered, which can then be transferred to the stat i c_e 1 ement_rt t i
parameter of the add_new_ch i 1 d_node() method.

You have now learned about all of the options for defin ing attributes for
a context node. However, the context requires an additional change in
th is example: For every ABAP in terface context node, a subnode must be
created in the context for existing ABAP interface methods.

4-3-5 Other Methods for Dynamic Context Manipulation

Creating an RTII
description object

In this example, a context node with two attributes has already been creating subnodes
created for each ABAP interface for an ABAP class. We now also want

255

4 I Dynamic Web Dynpro Applications

to store the possibly defined interface-methods in the context for the
ABAP interfaces, to be able to display them to the user. This means that
if methods exist for the interface, we must set up a sub node under every
interface context node (see Figure 4.10).

ROOT

WDR_CONTEXT_ATTR_INFO_MAP

Name Type N.amr V.tlue Help Mode ... <Interface 2>

'NAM£' 'SEOCPONAME · '0'

Figure 4.10 Dynamically Creating the METHODS Node with the NAME Attribute

The 1 o_ i nt f _object_rtt i RTTI description object for the ASAP inter
face determines whe ther methods are defined for the ABAP interface.
The in ternal methods table in the RTTI description object is used for this
purpose. If methods are defined, the name attribute is transferred to the
add_new_ch i 1 d_node<) method using the attribute table. Listing 4. 7
contains the implementa tion for creating the METHODS context node with
the NAME attribute.

* The reference to the interface node
DATA : lo_nd_intf TYPE REF TO if_wd_context_node .
* The RTTI descript ion object for an interface

lo_intf_object_rtti TYPE REF TO cl_abap_i nt fdesc r.
* The reference to the context node

lo_nd_int erface_methods
TYPE REF TO if_wd_context_node .

* Table of cont ext node attributes
lt_attributes TYPE wdr_context_att r_info_map .

* Put data in the genera ted interface node
* First . determi ne the reference to the node
lo_nd_intf - wd_context ->get_child_node(

name= ld_int f_name) .

Adjusting Context at Runtime I 4-3

* Bind the data to the node
lo_nd_intf·>bind_structure(ls_interface) .
* If methods exist for the interface . displ ay them
* Determine the description object for the interface
lo_intf_object _rtti ?= cl_abap_typedescr=>describe_by_name(

ld_intf_name) .
• If the interface has methods
IF LINES< lo_intf_object_rtti·>methods) > 0.
• Attribute for the name of interface methods

ls_attr i bute·name = ' NAME ' .
ls_attribute · type_name • ' SEOCPDNAME '.
ls_attr i bute·value_help_mode = ·o·.
CLEAR lt_attributes .
INSERT ls_attribute INTO TABLE lt_attributes .

* Create nodes for interface methods
lo_nd_info_intf·>add_new_child_node<

name = ' METHODS '
is_mandatory • abap_true
is_mu l t i pl e = abap_true
is_mandatory_selection • abap_fa l se
is_mult i ple_selection = abap_fa l se
is_singl eton • abap_true
is_init i al i ze_lead_selection = abap_true
attributes • lt_attr i butes
is_stat ic ~ abap_false) .

* Store the method names in the context node
* Determine nodes for methods

lo_nd_interface_methods = lo_nd_intf·>get_chi l d_node(
'1·1ETHODS ' J .

• Put the methods in the node
lo_nd_interface_methods · >bind_table(

lo_intf_object_rtti·>methods) .
END! F.

ENDLOOP .
ENDMETHOD .

Listing 4.7 Defining the METHODS Subnode for the Context Node Interface

We will now discuss the relevant parts of the implementation:

~ At the beginning. an element is created for the interface context node. storing data in the
The reference to the interface context node is determined first; then, context
the element is created using the bi nd_structure() method.

257

4 I Dynamic Web Dynpro Applications

Filling an attribute 1> The attribute table contains exactly one attribute. the name of the
table method in the interface. The SEOCPONAME data element was used for

the typing because fie ld labels that are available as column headers
are also defined for this data element.

Storing data in the .. If the sub node has been defined for the methods, the data for the
context node still has to be set. After the reference to the node for the inter

face methods has been determined with the get_chi 1 d_node< l
method, the bi nd_lable(l method can be used to create the table of
interface methods - which are used as elements - in the NETHOOS con
text node.

The createctx_i nterfaces(l method has now been implemented. The
method is best called at the end of the hand 1 efrom_cl ass_se 1 ect ion()
method to structure the context for the search result.

What you have to keep in mind here, however, is that with every posi
tive search result, a node is created in the context for each interface for
the many different ASAP classes. This is a waste of resources. and run
time errors may occur if a context node had already been created for an
in terface.

Deleting context This means that the existing context nodes in the context must be deleted
nodes before new context nodes can be created. The IF _WD_CONTEXT_NOOE_I NFO

interface provides additional methods to do this, which we will describe
by way of an example.

(8) 1. Switch to the V_CLASS_INTF view and select the METHODS tab.

2. Create the del etectx_i nterfaces(l method and implement the
deletion of all context nodes (see Listing 4.8).

METHOO deletectx_interfaces .
• Node in formation of root node
DATA : lo_nd_info_root TYPE REF TO

if_wd_context_node_info .
*The child nodes of t he root node

lt_nodes TYPE wdr_context_child_info_map .
*One child node of the root node

ls_node LIKE LINE OF lt_nodes .
• Determining the node description of t he roo t node
lo_nd_info_root- wd_context·>get_node_info() .
* Determining all child nodes of the root node

Adjusting Context at Runtime I 4-3

lt_nodes = lo_nd_i nfo_root·>get_child_n odes<) .
*Delete all child nodes of the root node
LOOP AT lt_nodes INTO ls_node .

l o_nd_info_root · >remove_child_node(
name= ls_node-name) .

ENOLOOP .
ENOMETHOD .

Listing 4.8 Deleting Context Nodes

In this example, the wd_context- >get_node_ info() method determines Process flow

the information object for the context root node. This information object
can be used with the get_ch i l d_nodes() method to determine all con-
text child nodes.

Call the remove_ch i 1 d_node() method of the supernode information
object for each of these context child nodes and transfer the context sub
node name. This removes all context nodes and their subnodes from the
context. The del etectx_i nterfaces<) method should be called before
the context is created.

4.3.6 Conclusion

In th is section, you learned about the key importance of the 1 F _~IO_CON
TEXT _NODE_ INFO interface. The most important methods provided by the
I F _I~O_CONTEXT _NODE_! NFO interface are listed in Table 4.1 .

After now having defined the context structure and stored the data from
the search results in the context, you can turn your attention to the
visualization.

Method

add_new_child_node()

add_attribute()

get_attr ibutes()

get_attr ibute()

Description

Creates a new node one hierarchy level
lower.

Creates an attribute for a node.

Returns the meta data of a ll attributes for a
node .

Returns the meta data of one attribute for a
node.

Table 4.1 Selected IF_WD_CONTEXT_NODE_INFO Interface Methods

259

Context node
information

4 I Dynamic Web Dynpro Applications

Method

get_chi 1 d_nodes<)

get_chi l d_node()

get_pa rent()

remove_at tribute()

remove_chi l d_nodes()

remove_chi l d_node<)

Description

Returns the meta data of all ch ild nodes for
a node.

Returns the meta data of one child node for
a node.

Returns the meta data of a higher-level node
for a node.

Deletes a node attribute.

Deletes all child nodes for a node.

Deletes one child node for a node.

Table 4-1 Selected IF_WD_CONTEXT_NODE_INFO Interface Methods (Cont.)

4.4 Adjusting the User Interface at Runtime

A final warning In principle, dynamically manipulating the layout Qust like dynamically
manipulating the context) should only be done if a Web Dynpro compo
nent cannot be created in a declarative way at development time.

wddomodifyviewO If you need to do th is, you must make the changes to a view layout
structure in the >~ddomodi fyvi ew< > method or in a method called in
it. Only in this method can the view element hierarchy be accessed by
the view parameter reference. Another particularly important parameter
is fi rst_time. This parameter contains information about whether the
wddomodi fyvi ew<) method is executed for the first time during the life
cycle of the view controller. This controls whether the view layout has
already been created dynamically.

View structure in
the example

If the view has to be created several times while the Web Dynpro appli
cation is being executed, you must define a separate parameter that indi
cates whether the view layout has to be created again. The view layout
structure for this example is as shown in Figure 4.11.

Each dynamically generated context node for an ASAP interface stands
for a Tab view element in a TabStri p UI element. The Tab name, imple
mented as a Caption view element, is derived from the NAt1E attribute
of the interface context node. A TransparentConta i ner UI element that

260

Adjusting the User Interface at Runtime I 4.4

includes a Table UI e lement for the ABAP interface methods is placed
within the Tab view element. However, the Table UI element is only

generated if the t1ETHOOS context node actually exists. The table only has
one TableCol umn view element for the method names.

Dynamically generated
context structure

ROOT

Target layout structure
(to be generated dynamically)

ROOTUIELEMENTCONTAINER

<Interface 2> --il-.j...-.;
TAB 2

Figure 4.11 View Layout to be Dynamically Generated

4.4.1 Adding a View Element to a Container

You will now change the basic structure of the v iew layout. You must
perform the following steps if you want to add a new view element to
a view container:

"' You must determine the view element type.

"' You must create a reference to the container element where you want
to add the new view element. The view· >ge t_root_e 1 em en t (l .

method is available for access ing ROOTU IE LEMENTCONTAI NER.

"' You must specil)r the area in the container layout where you want to
put the new element. For this purpose, you must create relevant lay
out data for the newly created Ul e lement.

Class Hierarchy for View Elements

There are many different view elements you can use for defining a view.

These view elements are represented by ABAP classes and you must have

261

4 I Dynamic Web Dynpro Applications

Basic class for view
elements

knowledge of ABAP classes for dynamic programming. The ABAP classes
are arranged in an inheritance hierarchy.

The simplified inheritance hierarchy for selected view elements is dis
played in Figure 4.12. Don't panic: Although many ASAP classes are
displayed, the structure is not complicated. The view elements used in
this example have a gray background.

I CL_WOR_VIEW_ELEM ENT -- -~
«INTERFACE»

/F_WD_VIEW_ELEMENT

f I CL_WO_VIEW_ELEM ENT I

I CL_WO_TAB CL_WD_LAYOUT I
I CL_WD_LAYOUT_DATA y CL_WO_MATRIX_LAYOUT I

t I -l CL_WO_UIELEMENT I I CL_WO_MATRIX_ OATA

t H CL_WO_UIELEMENT_CONTAINER J I CL_WO_MATRIX_HEAD_DATA I

I CL_WO_TABLE I CL_WD_SCROLL_CONTAINER I
I CL_WO_TABSTRIP f
I CL_WO_CAPTION I

I CL_WO_TRANSPARENT_CONTAINER l
I

Figure 4.12 Inheritance Hierarchy for Selected View Elements

The CL_WDR_V I nt_EL£11£NT class is the basis for all view elements. This
class may also be referred to as the highest or most general class in the
inheritance hierarchy. One of the attributes contained in the class is a
public String attribute called i d. You will have frequently seen this i d in
the view element properties in the view designer, where you will have
assigned the name, or even this i d, as a view element name. The Cl_WDR_

vI EW_ElEMENT class also implements the IF _wo_v I EW_ELEMENT in terface,
which- due to inheritance- is available for all subclasses.

By defining inheritance at the next level, which is represented by the
CL_WO_VI EW_ELEMENT class, the id attribute is also available for this class.
This passing on of attributes is a basic inheritance property.

262

Adjusting the User Interface at Runtime I 4.4

Two of the subclasses that appear under the CL_wo_v 1 E\C ELEMENT class
in the inheritance hierarchy are the CL_~ID_U I ELEME NT and CL_WD_TAB

classes. The CU4D_TAB class ends an inheritance branch and is the Tab

subelement of the composite TabStri p UI element. This UI element is
represented by the CL_WD_TABSTRI P class, which is a subclass of the CL_

HO_Ul ELEMENT class.

You can view the fu ll inheritance hierarchy in the Class Builder
(Transaction SE24). By displaying the object list for an ABAP class
<I Ct r l I + I Shift I + [£§] key combination), you can navigate th rough the
inheritance hierarchy of the SuPERCLASSES and SuBCLASSES directories.

When you access the Class Builder, select the name of an ABAP class that
represents a view element (see Figure 4.13, 0) . If they exist, folders for
SUPERCLASSES (0) and SUBCLASSES (0) will appear in the object list. The
subclasses for the CL_WD_LAYOUT_DATA ABAP class are d isplayed in the
figure. One of them is the CL_WO_MATRI X_OATA ASAP class. This, in turn,
has the CL_WO_MATRI X_HEAO_OATA subclass.

Browser

•
• Ll Subcl'osses •

• Lll.i<- ''"' ~ cv.v_u"'"
• L) CL_WO_ORIO_OATA

• L) CI._WD_MATRil<_OATA

• C) Superclasses
.... G Subclasses

• L) CI._WO_MATRix_HEAO_OATA

• Ll Attnbute
• L) MelhOdS
• Ll Evenls
• Ll Types
• Ll Macros

• L) CL_WD_MELTINO_OROUP _DATA

•
Figure 4.13 Analyzing the Inheritance Hierarchy
for View Elements

Inheritance
hierarchy in the
Class Builder

Superclasses and
subclasses

4 I Dynamic Web Dynpro Applications

wddomodifyview() Method

Now that you have some basic knowledge about view and UI elements ,
we can discuss the different areas of use and defining aspects of view
elements in detail. The listings we will show you will result in the 1-1ddo •

modifyview< l method being fully implemented.

(Q) 1. Switch to the V_CLASS_INTF view and select the METHODS tab.

ROOTUIELEMENT
CONTAINER

2. Switch to the source text of the wddomodi fyview() method. All other
implementations are made in this method.

3. Implemem access to the ROOTUIELEMENTCONTAI NER element to set up
the layout hierarchy. The v i ew method parameter returns the get_

element(l or get_root_element(l access methods to enable you to
determine the description object (see Listing 4.9).

1·1ETH00 wddomod i fyvi e•t .
* The reference to the view root node

DATA : l o_ui_root TYPE REF TO if_wd_v i ew_element ,

* The cast view root node reference
lo_container TY PE REF TO cl_wd_u i element_container .

* Determine the root reference

** Opt i on 1 **
* lo_u i _root = view·>get_element(
* id • ' ROOTUIELEI·IENTCONTAINER ') .

** Opt i on 2 **
1 o_ ui _root • vi e1• • >get_root_e 1 ement () .

* Perform down cast on container

lo_container ?c lo_ui_root .

listing 4·9 Determin ing the ROOTUIELEMENTCONTAINER Description Object

" Define the IF _wo_v I EW_ELEMENT ·type 1 o_u i _root object reference.
This reference variable contains the reference returned by the
view·>get_elemen t< l or vie•,·>get_root_element(l method.

" As you saw in Figure 4.12, the IF _wO_V!EICELE~1ENT interface
appears in the highest position in the inheritance hierarchy. How·
ever, because you have to access the special ROOTU I ELHIENTCON ·

TAl NER properties, you need to cast this interface reference to a
Cl_WO_UIELE~IENT_CONTAINER reference. To do this, you need to
define the second object reference of type CL_wo_u I ELEt1ENT_CON ·

TAINER, lo_container.

Adjusting the User Interface at Runtime I 4 .4

... You can choose between two options to dete rmine the description
object for ROOTUI ELH1ENTCONTAINER: view · >get_element() and
view· >get_root_e 1 ement <) . Regardless of the option on which
you decide, you must then cas t the reference to be able to access
the special ROOTU IE LEMENTCONT A I NER properties.

Properties and Layout

After you have determined the description object for ROOTU I ELEt·1ENTCON·

TAINER. you use it to begin setting the properties and layout for ROOTU ·

IELEt4ENTCONTAINER (see Listing 4.10).

• If the method is c~lled for the first time

IF first_time- abap_true .

• Set Matrixlayout

cl_wd_matrix_layout->new_matr i x_layout(

container= l o_container) .

• Set width to 100 %
lo_container->set_width< value= ' 100% ') .

END! F.

listing 4 .10 Customizing ROOTUIELEMENTCONTAINER

You should only set the layout and properties for ROOTUIELEMENTCON

TA!NER when you start the Web Dynpro application. These settings will
subsequently remain unchanged. The f irs t_t i me method parameter
provides the answer to the ques tion of whether the wddomodifyview()

method is executed the first time. This has the ABAP _TRUE value if the
method is being processed for the first time; otherwise, it has the ABAP _

FALSE value. You use the parameter in the implementation and thereby
ensure that the layout and properties are only changed once.

first_t ime
import ing
parameter

Each container has a layout assigned to it. You will use t·1atri xlayout for Creating a layout

ROOTU I ELE~I ENTCONTA I NER. The static cl_wd_ma t ri x_l ayout=>new_ma t r i x_

1 ayout(l method is available for this. The way you use this method is
worth mentioning because it expects the reference to the container as
an actual parameter. Furthermore, you can specify for all of the view ele-
ments that a public static new_<view element>() method wi ll always be
available to create a class runtime object.

4 I Dynamic Web Dynpro Applications

SET and GET
methods for

properties

Public set_ <property>< l methods are provided to set properties for a
view element description object. The ROOTU IE LEMENTCONTAI NER width
in this example is set to 100% by the set_olidth(J method (see Figure
4.14).

The properties and layout for ROOTU I ELEMENTCONTAI NER are now set to
the necessary values and you can begin creating view elements.

Dynamically generated
layout structure

D ROOTUIELEMENTCONTAIN ER
Layout: Matrixlayout
width: 100%

Figure 4.14 Result of Changing Properties for ROOTUIELEMENTCONTAINER

Creating a TabS trip View Elements

One of the requi rements of the application is to create a Tab view ele
ment for every ABAP interface. However, the Tab view element needs
a higher-level TabStri p UI element. This is created in the next step (see

listing 4.11).

* The Tabstrip reference
DATA : lo_tabstrip TYPE REF TO cl_wd_tabstrip .
* Was a new search run?
CHECK wd_comp_controller->is_ne.,_search • ABAP_TRUE .
*Allocate variable
wd_comp_controller ->is_new_search • ABAP_FALSE .
* Delete tabstrip and all other elements
lo_container->remove_a ll_children() .
* Structure of tabstr ip with a t ab for each interface
* Check whether the description of the searched class and
* at least one interface exists
IF wd_comp_controller->go_class_description IS BOUNO
AND ll NES(

wd_comp_controller->go_class_description->interfaces
) > 0 .

* Create tabstr i p
lo_tabstrip • cl_wd_tabstrip•>new_tabstrip(

id = ' TS_I NTERFACES ' l .

266

Adjusting the User Interface at Runtime I 4 -4

* Set l ayout data on Matr i xHeadData
cl_wd_ma trix_head_da ta•>new_matrix_head_data(

element= l o_tabstrip) .
• Add to view hierarchy

lo_container·>add_child< the_child = lo_tabstrip l .

Listing 4.11 Generating the TabS trip Ul Element

As already mentioned, generating the layout at runtime is time-consum
ing. You can counteract view elements being generated unnecessarily
by performing a check that detects whether a new search is being per
formed. The public i s_new_sea rch component controller attribute is set
to ABAP _TRUE in the action handler method of the search in the v_CLASS_
SELECTION view (see listing 4.1). If i s_new_search has ABAP _TRUE as its
value, the generation of the view layout is resumed and it is assigned
the ABAP _FALSE value. If i s_new_search has the ABAP _FALSE value, the
generation of the view layout is skipped.

Before the generation of the view layout begins, you must remove
already existing view elements and set certain properties for RDDTU IE LE ·
MENTCONTAINER. You can use the remove_all_chi ldren() method of the
ROOTUI EL EI~ENTCONTAI NE R description object to remove all view elements
from the view hierarchy. This sets the ground for restarting a full genera
tion of the view hierarchy.

A check is first run to see whether a valid description object exists for an
ABAP class and whether this ABAP class implements ABAP interfaces. If
not, you should not create any view elements. To set up the TabStrip Ul
element, you call the static cl_wd_tabs tri p•>nel<_tabs trip(l method
and transfer the TabSt r i p id to the id importing parameter.

Setting l ayout Data

The TabSt r ip Ul element should be placed as the first element in the
ROOTUIELEME NTCONTAI NER layout. The relevant layout data is ass igned to
TabStr i p for this purpose. Calling the cl_wd_matrix_head_data=>nel<_
matrix_head_data (l method ensures that the relevant layout data is
ass igned.

Optimizing
performance

Creat ing layout
data

4 I Dynamic Web Dynpro Applications

Extending tab view
elements

Extending Ul Subelements

The settings for TabStri p have now been implemented and you can
assign it to ROOTUIELEMENTCONTAI NER. To do th is, call the add_chi ld<)
method using the description object for ROOTUI ELEMEIHCONTAINER, which
will enable you to extend the view element. Figure 4.1 5 shows the resu lt
after you have added TabStri p to the view layout.

Dynamically generated
layout structure

ROOTUIELEMENTCONTAIN ER
Layout: MatrixLayout
width: 100%

TabStrip
ld: TS_INTERFACES
Layout Data:MatrixHeadData

Figure 4.15 Added TabS trip in the View Layout

You will now create a Tab view element for every ABAP interface context
node. Listing 4.12 shows the implementation for this.

* Description object fo r the context roo t node
DATA : lo_nd_info_root TYPE REF TO if_wd_context_node_info .
*All child nodes of the root node

lt_nodes TYPE wdr_context_chi ld_info_map .
* One child node

ls_node LIKE LINE OF lt_nodes .
* The tab reference

lo_tab TYPE REF TO cl_wd_tab .
* Create a tab for each interface
* Description i nformat ion of context root node
lo_nd_info_roo t • wd_context·>get_node_info() .
*All child nodes of roo t node
l t_nodes - lo_nd_·info_roo t · >get_ch i ld_nodes<) .
* Each child node= Interface= Tab
LOOP AT lt_nodes INTO ls_node .
* Create new tab per interface context node

lo_tab = cl _wd_tab=>new_tab(
id - ls_node · name
view= view) .

268

Adjusting the User Interface at Runtime I 4.4

* Extend t~b in T~bStrip
lo_tabstrip·>add_tab(the_tab- lo_tab) .

Listing 4.12 Generating the Tab View Element

You determine the number of ASAP interface context nodes using the

get_chi ld_nodes() method of the description object for the context

root node. A T~b is created for each node; that is. for each ASAP interface.

The name of the method for creating the tab is cl_wd_tab· >new_tab() .

The new T~b is assigned to T~bStrip using the ~dd_tab() method. The

result is displayed in Figure 4.16.

Dynamically generated
layout structure

ROOTUIELEMENTCONTAINER
Layout: Matrixlayout
width: 100%

TabStrip
ld : TS_INTERFACES
Layout Data:MatrixHeadData

Tab
I d: <Interface i>

Figure 4.16 Added Tab in the View Layout

You will need a Caption Ul element and TransparentCont~iner for the

Tab content for the Tab view e lement. You create them as shown in List

ing 4.1 3.

* The tab capt i on refe rence
DATA : lo_tab_caption TYPE REF TO cl_wd_caption .
* The TransparentCont~iner reference

lo_transparent_container TYPE REF TO
c l _•td_t ranspa rent_conta i ner .

* The data bi nding path f or the tab caption
ld_tab_caption_binding TYPE string .

* The reference to the interface context node
lo_nd_i ntf_methods TYPE REF TO if_wd_context_node ,

* The d~t~ bi ndi ng path to the interf~ce method subnode
ld_intf_methods TYPE string .

Creating a tab and
assigning it to
TabS trip

Extending Caption
and Transparent
Container

4 I Dynamic Web Dynpro Applications

* The data binding path for the tab caption
CONCATENATE

ls_node-name ·. NAME' INTO
caption with

ld_tab_caption_binding .
data binding * Generate the

lo_tab_caption = c l_,~d_capt i on=>new_capt ion<
* text - ls_node-name "Alternat i ve - static

bind_text = ld_tab_caption_binding) .
* Add caption to tab
lo_tab->set_header< the_header- lo_tab_caption) .
* Read methods and display table for interface
* Set the path for the interface method context node
CLEAR ld_intf_methods .
CONCATENATE

ls_node-name ·. METHODS ' INTO ld_intf_methods .
* Determine the reference to the interface context node
TRY .

lo_nd_intf_methods = wd_context->path_get_node(
ld_intf_methods >.

CATCH cx_root .
CLEAR lo_nd_intf_methods .

ENOTRY .
* Could a reference be determined?
IF lo_nd_intf_methods IS BOUND .
* Set the capt ion icon because methods we re found

1 o_tab_capt ion- >set_image_source (· I CON_ll ST · J .
* Create TransparentContainer as content for tab

lo_transparent_container -
cl_wd_transparent_container=>new_transparent_container(

view- view) .
• Set Mat r ixLayout for TransparentContainer

cl_wd_matrix_layout• >new_matr i x_l ayout(
container = lo_transparent_container) .

* Add TransparentContainer to tab
lo_tab ->set_content(

the_content = lo_transparent_container) .

Listing 4.13 Generating the Caption and TransparentContainer Ul Elements

It is worth mentioning at this point that the bind_ text parameter is used
when the static cl_wd_caption=>new_caption(J method is called. This
parameter can be used to define the data binding from the UI property
to the context attribute. The path for the context attribute is determined

270

Adjusting the User Interface at Runtime I 4-4

based on the <node n~me> . < ~tt r i bute n~me> syntax. As an alternative,
you can also transfer a static text to the method using the text param

eter. The C~ption Ul element is also transferred to the T~b view element
using the set_header (> method.

The next implementation step involves determining the METHODS sub
node for the ABAP interface context node. This can be done using the

wd_context->p~th_get_node(l method. The path for the node is trans
ferred to this method as a string parameter. The path in this case must

be created according to the <node name> . <node name> syntax. If a node
cannot be found for the specified path, an object-o riented exception will
be thrown, which will be handled with a TRY . CATCH . ENOTRY . block

in the program.

If the 11ETHOOS node has been found in the context, the title of the Tab

v iew element should already signifY to the user that methods exist for
this interface. You indicate this by using an icon in the Tab title. You use
the lo_tab_caption · >set_image_source< J method to set this icon in

the C~pt ion Ul e lement.

A Tab view element can only include one subelement. If you want to dis
play several view elements in the tab, you can do this by using a Trans
parentContai ner UI element assigned to the Tab. You create this in the

next step using the public static cl_wd_transparent_cont~iner=>new_
transp~rent_cont~iner< > method. You also set the layout to M~trix·
Layout for the container. To end, you assign TransparentContai ner to

the T~b with the lo_t~b->set_content<) method. The result of the
discussed implementation steps is shown in Figure 4 .17.

If you do not specify an i d when creating a view e lement using the
new_<vievl element>() method, the Web Dynpro framework automati

cally generates one. In the figure, the automatic i d generation is indi
cated by the text lo: Aur o.

The only thing left to do now is to generate the table for display ing the
ABAP interface method names. If you think back to Chapter 3, Section
3.4, Messages and Internationalization, where we discussed the Tab 1 e

UI element, you will remember how time-consuming it was to create a
table manually. The Web Dynpro code wizard is available for the static

definition and can be used to create tables.

271

Determining a
context node using

a path

4 I Dynamic Web Dynpro Applications

CL_WD_
DYNAMIC_ TOOL

service class

Dynamicall y generated
layout structure

ROOTUIELEMENTCONTAINER
Layout: Matrix Layout
width: 100%

TabStrip
ld: TS_INTERFACES
Layout Data:MatrixHeadData

ld: <Interface i>

Caption
ld: Auto
text: <Interface i>.NAME
[imageSource: ICON_LIST)

TransparentContainer
ld: Auto
Layout: MatrixLayout

Figure 4 .17 Added Caption and the TransparentContainer in the View Layout

Dynamically Generating a Table

The CL_I~ D_OYNAM I C_ TOOL service class is available for dynamic pro
gramming. It provides the create_tab 1 e_f rom_node(> method to gen

erate the composite Tab1 e UI element with the relevant subelements.
Here, to generate the table, you only have to call the cl _~<d_dynami c_
too1 - >crea te_tab 1 e_from_node(J method and supply method param

eters (see Listing 4.14).

* The table 10
DATA : ld_table_id TYPE string .
* The table reference

lo_table TYPE REF TO cl_wd_table .
* Create table in TransparentConta iner
* Generate the table name
CONCA lENA TE

ls_node -name ·_METHODS ' INTO ld_table_id .
* Create the table dynamically
1o_table - c1_wd_dynami c_t oo1 • >create_tab1e_from_node(

ui _parent = lo_transparent_container

272

Adjusting the User Interface at Runtime I 4.4

table_ id
node

END IF .
ENDLDOP .

END! F.

ENDMETHOD .

= 1 d_ tab 1 e_ i d

- lo_nd_intf_methods J .

Listing 4.14 Generating the Table Ul Element

The id of the Table UI element is generated first and transferred to the
c l _wd_dynami c_tool - >create_ table_ from_node(J method. In addition,
the reference to the Transpa rentConta i ner is transferred to the table as
a UI parent of the Table UI element, and the f iETHODS context node is
transferred as a data and defin ition source. The table is now generated.
The result of this addition is shown in Figure 4.18.

Dynamically generated
layout structure

ROOTUIELEMENTCONTAINER
Layout : MatrixLayout
width: 100%

TabStrip
ld: TS_INTERFACES
Layout Data:MatrixHeadData

ld: <Interface i>

Caption
ld: Auto
text : < Interface i>.NAME
[imageSource: ICON_LIST)

TransparentContainer
ld: Auto
Layout: MatrixLayout

Table
ld: <Interface i>_METHODS
dataSource: <Interface i>.METHODS

Figure 4.18 Added Table Ul Element in the View Layout

273

create_table_from
node()

4 I Dynamic Web Dynpro Appl ications

Event, action, and
action hand ler

on_ <event> class
attribute

wdevent importing
parameter

Retemt.e VOEVENT

This completes the dynamic programming or contexts and views. How
ever, we still have one type of dynamic change left to discuss: Assigning
existing actions to view element events.

4.4.2 Assigning Actions to View Element Events

Some view elements can trigger events in cl ients, as is the case with the
TabSt r ip UI element when you select a Tab. The Web Dynpro compo
nent can respond to these types of events with an assigned action and its
associated action handler method. We have already used this mechanism
several times but actions were always assigned during the development
phase. However, actions can also be assigned to events during runtime,
whereas actions and action handlers cannot be generated dynamically
during runtime.

Every view element you can use to trigger an event in a client has a cor
responding on_ <event> class attribute. When the new_ <view e 1 emen t>

method creates a view element dynamically, the on_<event> method
parameter can specify the action name. The set_on_ <event> also exists
to assign an action to an existing view element.

All action handlers have a wdevent parameter that is filled by the Web
Dynpro runtime if an event is triggered in a client. In Figure 4.19, you
can see that the content of the wdevent parameter is displayed in the
ABAP Debugger.

Tables Table Conlents

Obltt1 (0 : 131 1 · \CLASS:Cl _VO_CUSTO"_EYENT ~
Table (0:1311 '\CLASS=tl_VO_CUSTOK_EYi

Viow 0

VaL . Val. COM TEXT _£LEKENT · > • > (0: 1 ni t 1al}
TAB ·>IF_GUI_OYH~K IC_OATA

4 OLO_TAB ·>IF _CACHED_PROP

Figure 4.19 Attributes and PARAMETERS Table of the WDEVENT Object

274

Adjusting the User Interface at Runtime I 4.4

To be able to view the object content in the ASAP Debugger. you set a
breakpoint in the action handler method. By triggering an event in a cl i
ent, the action handling is activated and the ASAP Debugger is started.
In the debugger, select the OBJEcrs tab and enter the wdevent value in
the REFERNCE input fie ld on the INOIV.DISP!AY subtab. The object attri
butes are displayed after you confirm your entry by pressing the I Enter I
key. You get the content of the in ternal parameters table by double
clicking the parameters attribute.

The wdevent ->name attribute contains the event name. The internal wde

ven t- >parameters table contains additional information about the view
element. The table has two columns: name and va 1 ue. The i d of the view
element that has triggered the event is always available as an entry in
the table. Additional name/value pairs may exist, depending on the view
element type.

In this example, the Web Dynpro component should respond to the user
selecting a Tab and follow-up actions should be triggered to determine
additional information for an interface.

1. Select the ACTIONS tab in the ZIWC_04_CLASS_BROWSER Web Dynpro
component.

2. On th is tab, create the se 1 ect_tab action with the standard action
type. By creating the action, the onact i onselect_tab() action han
dler method is automatically created.

3. Double-dick the name of the action. This will take you to the imple
mentation of the action handler method. Implement the method as
shown in Listing 4.15:

11> The wdeven t->name attribute contains the name of the event in the
client. In this example for TabStrip, this is ON_SELECT .

.,. The wdevent object provides auxiliary methods to determine the
contents of the parameters table. The get_string< >method was
used to read the entries.

METHOD onactionselect_tab .

• Old tab
DATA : 1d_old_ tab TYPE str i ng .
• New Tab

1d_ne•,_ tab TYPE str i ng ,

275

Handling a tab
selection

[I]

Creat ing an action

Implementing the
action handler

4 I Dynamic Web Dynpro Applicat ions

* The TabStrip 10
ld_id TYPE string ,

* The message to be issued
ld_message TYPE string .

* Checks to see whether the action handler is triggered by
* The ON_SELECT event
IF wdevent->name = ' ON_SELECT '.
* Determining the PARAMETERS parameter using GET_STRING()

ld_old_tab- wdevent->get_string(name- ' OLD_TAB ') .
ld_nel•_tab = wdevent->get_string(name= ' TAB ') .
ld_i d - wdevent ->get_string(name - ' ID ') .

* Generating t he message
CONCATENATE

' You have switchedfrom tab ' ld_old_tab
' to tab ' ld_new_tab
' in TabStrip ' ld_id INTO ld_message separated by space .

* Issue message using the message manager
wd_comp_controller->go_mm->report_success<

message_text = ld_message) .
ENDJF .
ENOMETHOO .

Listing 4-15 Handling the ON_SELECT Event

wddomodifyview() 4. Switch to the implementation of the wddo -modi fyview() method and
navigate to the generation point of the TabStri p Ul element.

5. Assign the SELECT _TAB value to the on_se 1 ect formal parameter of the
new_ tabs trip(l method; that means, with the name of the action
you previously defined and implemented (see Listing 4.16).

* Create TabStr ip
lo_ta bstrip- cl_wd_tabstrip->new_tabstrip(

id = ' TS_INTERFACES '
on_select- ' SELECT_TAB ') .

Listing 4.16 Assigning the SELECT_ TAB Action to the
select Event of the TabStrip Ul Element

6. Activate all inactive objects and test the ZWDC_04_CLASS_BROWSER_APP
Web Dynpro application. Your resu lt should correspond to the one
shown in Figure 4 .1.

4-4-3 Conclusion

In this section. you have learned about the key importa nce of Cl_

WD_<view e l ement> ABAP classes. Th e most important melhods of these

classes are listed in Table 4.2.

Method

All view elements

get_<property>()

set_<property>()

bind_<proper ty>()

bound_<property>()

set_on_ <event> (>

get_on_<event>()

•

get_chil d (>

get_chi 1 dren()

remove_chi ld()

remove_al l_children()

add_chil d ()

Description

Returns the property value.

Sets the property to the transferred value.

Binds the property value to a context
attribute/node.

Returns the context attri bute/node to
which the property is bound.

Binds the action to the on<event>
property.

Returns the name of the action bound to
the on<event> property .

Returns the subelement.

Returns all subelements.

Removes a subelement.

Removes all subelements.

Adds an element.

Table 4.2 Selected Methods of the CL_WD_<view element> ASAP classes

4-5 Summary

The dynamic programming of Web Dynpro applications is used to inte

grate information determined during runtime into the structure of lhe
Web Dynpro application. Some of the available dynamic programming

options a re summarized here:

277

Summary I 4-5

Important
methods

4 I Dynamic Web Dynpro Applications

~ You can create, change, and delete context nodes and context attri
butes when manipulating context dynamically. It is important to
determine the meta information fo r a node for which you want a sub
node to be dy namically generated or for which you want the proper
ties changed. The get_node_ info(J method called using the node
reference returns this 1 F _wo_CONTEXT_NOOE_l NFO obj ect description.

~ You can create, change, and delete view elements when changing the
layout during runtime. CL_WD_ <view e 1 emen t> ASAP classes instanti
ated in the 1•ddomodi fyv iew< l method or in a method called there are
key factors for th is.

~ You can bind events against existing actions or manipulate the param
eter mapping of event parameters. Note that actions and action han
dler methods are not generated during runtime. Only existing actions
can be used.

Chapter 5, Web Dynpro Standard Components, discusses using several
Web Dynpro components for a Web Dynpro application. This means that
we will be moving our focus to aspects of reuse.

The Model View Controller architecture pattern allows for appli
cations to be based on any number of models, views, and control
lers. You can create complex Web Dynpro architectures by bind
ing and reusing existing Web Dynpro components.

5 Web Dynpro Standard Components

In the previous chapters, we have been looking only at small , self-con
tained Web Dynpro components. For example, in Chapter 2, Web Dyn
pro Architecture, you created a component with one window and two
views. This type of development with only one Web Dynpro component
may be sufficient for smaller projects. However, you will quickly reach
its limits when you work in a team of developers.

Therefore, it is often useful to create mul tiple, semantically related Web
Dynpro components. Section 5.1 , Multi-Component Archi tectures,
describes how you can reuse Web Dynpro components. Based on sim
ple examples, you will learn step by step how to embed external com
ponents into your own component, how to call methods of an external
controller, and how to map context nodes across different components.

After you have been introduced to the basic principles of developing
multi-component applications, the subsequent sections will cover stan
dard components. SAP provides a small set of useful reusable compo
nents and the following list provides an overview of the most important
standard components available:

~ SAP List Viewer
The ALV table used also in the dynpro environment enables you to
display complex tables in Web Dynpro.

~ Personal Object Work Entity Repository (POWER) list
The POWER list provides a useful framework that is based on the ALV
and allows for creating and storing queries.

279

Multi -component
architectures

Standard
components

5 I Web Dynpro Standard Components

"' Select Options
These are the SELECT OPTIONS used also in the dynpro environment.

"' Other components
In addition, other small components exist such as the object value
selector component for developing input helps. Both the object value
selector component and the SE LECT OPTIONS component are discussed
in detail in Chapter 6, Input Helps and Semantic Helps.

Topics Discussed

This chapter discusses the following topics:

"' Usage scenarios for reusable components
"' Examples of reusable components
"' Defining and instancing component usages
"' Using the interface controller
"' Normal and external mapping
"' Using and configuring the SAP list Viewer
"' POWER list and Easy-POWL

5.1 Multi-Component Architectures

Web Dynpro components are reusable building blocks that can be com
bined into complex applications with rather little effort. This chapter
describes the basic principles of programming cross-component architec
tures. For this purpose, this section covers the following aspects:

"' Reusing components through controller usages

"' Accessing the controller of an external component

"' Mapping the context across different components

Sample Before we enter into our discussion of the technical details of imple
components menting components, we will give you a few suggestions and ideas con

cerning the division of components into semantic blocks:

"' Address management component
The address component is the classic component among the reusable
Web Dynpro components. Because addresses are required at several

280

Multi-Component Architectures I 5.1

points within an application landscape. there is an obvious need for

developing an address component.

~ Business partner component

Whethe r for customers, suppliers , or partners, it is often usefu l to
develop a central component for business partners. Potential particu

larities of individual business partner roles can be implemented in the
business partner component

~ Frame/tool bar component
To reduce the amount of maintenance work and to standardize the

user interface in more complex applications, it is advisable to create a
kind of frame component containing fundamental generic blocks of
your applications such as a toolbar, general settings, and so on. You

can then use th is component as a bas ic structure for all other user
interfaces of your components. The exercise in the next section will

guide you through the process of creating this type of frame compo
nent.

Performance Tip

Multi-component architectures provide a range of options. However, you
should always try to establish a sound mixtu re between the number of com
ponents and the advantages of storing a Ul in a separate, new component. At
runtime, the process of instancing a component entails both longer runtimes
and increased memory requirements.

5.1.1 Component Usages

To be able to use an external component within another component, the component usages

external component must be made known to tl1e using component. For
th is, you must first enter a component usage for the external component

into the using component. Component usages can be entered in the
header area of the using component and consist of a combination of a
usage and a component name. The usage name must be unique because

the external component will be accessed through this usage. After you
have defined a component usage. you can access the interface controller
objects of the external component.

Figure 5.1 illustrates a sample component usage taken from the exercise sample usage
in this section. In this exercise, you will create two new components,

281

5 I Web Dynpro Standard Components

Communication
between

components

ZWOC_05_MA IN and ZWOC_05_NAT IONS. The NATIONS component usage
allows you to integrate the window of the ZWDC_05_NAT IONS component
in to the main component (note that the window will be referred to as
an interface view from here on). You can access the interface view. con
text, methods, and events of the integrated component via the interface
controller.

ZWDC_05_MAIN ZWDC_05_NATIONS

Component Usage Component Interface

ZWOC_OS_NATIO~ .. - Interface Views
NATIONS -Context

-Methods
. -Events

Figure 5.1 Defining Component Usages

In the first part of the exercise, you will create the components, zwoc_os_
MAIN and zwoc_os_NATIONS. In this context. the main component serves
as a frame for the remaining components of the chapter. The nations
component will be used to display the database table, T005T. This system
table contains a list of all countries/nations maintained in the system in
the available languages.

Based on these two components and the nations text table (TOOS T), you
will learn about the basic principles of multi-component architectures.
For this , you will create a method that determines the output language
for the nations table in the nations component. Then, you will practice
establishing a cross-component mapping between the nations table and
both components.

Multiple Instances of a Component

You can define any number of component usages for an external component.
As a result , the same number of instances of the external component can be
instanced at runtime. This allows you, for example, to simultaneously display
an interface view (window) of a generic component multiple times in one
view.

282

Multi-Component Architectures I 5 .1

We wi ll now begin with the exercise. In the fi rst part, you wi ll create the [p]
two components zwoc_os_MAIN and zwoc_os_NATIONS and connect them
with each other:

1 . Create a new component called zwoc_os_MAIN. Assign the names w_

~1AIN and v_MAIN to the window and view, respectively.

2. Go to the v_t1A IN view. later in the exercise, the view will be used as Creating a

a frame for all other UI elements and views. Therefore, it makes sense PageHeader

to define a header for th is view. To do so, the PageHeader UI element
is the best solution. Insert this element into the view and enter the
following value into the TITLE property: Chapter 5: Country list.

3. Add a tabstrip (UI element TabStrip) under the PageHeader in the Creating a tab

view. Create a tab. To do so. right-click on the tabstrip and select
INSERT TAB from the context menu. Select the CAPTION on the new tab
and enter "Form view" as the TEXT property.

4. Insert a new view container into the tabs trip. To do so, right-cl ick on
the tab and select ADD ELEMENT r o TAB from the context menu. Then,
select the ViewContainer type in the dialog box that opens. Yo ur view
should now look like the one shown in Figure 5.2.

~Layout 'It< inbound Plugs Outbound Plugs it< Conlext A!lrlbutes Actions Methods

0 0 CONTEXT_MENUS

Chapter 5: Country list • 0 ROOTUIELEMENTCONTAINER

11•-C - · ~ PAOEHEADER

l
• 0 TABSTRIP

• CJTAB
ViewContaineft.llflement: VC_FORM EJ VC_FORM

T CAPTION (Header(

Figure 5.2 V _MAIN after Completion

5. Create a new application. You can copy the system defau lt value,
zwdc_OS_ma in for this. Save the application and activate and test the
component. Figure 5.3 shows the resu lt of th is test.

6. Next, create the second component, ZWOC_ OS_NATIONS. Assign
the names W_NATIONS and V_NATIONS to the window and view,
respectively.

Testing the
application

5 I Web Dynpro Standard Components

Chapter 5: Country list
Form vrti'N L

100% ..

Figure 5.3 Current Status of the Exercise

Creating the 7. Then, go to the component controller within the new component.
T005T node Select the CoNTEXT tab and create the T005T node. Define it as an

interface node. You will need tl1 is property at a later stage for the
purpose of cross-component mapping. Use the TOOST ABAP DJCnON·
ARY STRUCTURE and CARDINALITY 0 . . n. Leave all other default settings
unchanged and finish your entries by cl icking on ADD ATIRJBUTE
FROM STRUCTURE.

8. In tlle window that opens, you can now select individual components
from the structure and copy tllem into tlle context node. Select all
fie lds except for the ~lANDT field and cl ick on the button with the green
checkmark to complete this step.

Supply function 9. Create a supply function for the T005T node. Assign tlle name sup
P 1 y_t005t to it and enter the code shown in Listing 5.1 into the sup
ply function.

DATA lt_t005t TYPE wd_this->elements_t005t .
SE LECT * FROM t005t IN TO TABLE lt_t005t

WHERE spras = 'E .
ORDER BY 1 and l .

* Bind interna l table t o context node
node->bind_table(

new_i terns
set_initi al _e lements = abap_t rue) .

listing 5.1 Supply Function supply_t005t()

Mapping 10. Define a mapping between the respective contexts of the compo
nent controller and the v_NATIONS view for the T005T node. You will

Multi-Component Architectures I 5.1

need th is mapping to be able to display the data of the node in the
view.

11. Display the attributes LAND!, LANDX50, and NATI050 of the T005T
node in the view:

~ Select the DropOownBylndex Ul element for the LANOl attribute.
Bind the TEXT property of the Ul element to the node attribute
LAND!. Create an empty action for updating the display after an
element has been selected in the dropdown list. By creating an
empty event handler, you can make sure that the Ul is updated
every time a user selects an element.

~ Use a Text View for the other two UI elements and bind the TEXT
property of either UJ element to the node attributes LANDX50 and
NAT!050.

~ Finally. add the TextVi ew labels using the Ul element La be 1. Then,
bind the LAilELFOR property of these labels to the respective Tex
tVie1• element. Overwrite the label that was automatically used
by the LAND X 50 attribute with the text "Country."

Your view should now look like the one shown in Figure 5.4. The
layout used was the Matrixlayout. To allow the dropdown list to
extend the width of the label, its CoLSPAN property was assigned the
value 2.

I< Layout -..:< Inbound Plugs ld Oulbound Plugs I« Conlext I<' Attributes

0 0 CONTEXT_MENUS

I H • 0 ROOTUIELEMENTCONTAINE~

Coun!Jy. V _NATIONS.TOOST LANOXSO
· E!J ODBI_LANOI
0 :r LB_LANDX50

Nationality: V _NATIONS.TOOST NATIOSO
0 0 TV_LANDX50
0 :r L8_NATI050
0 0 TV _NAT1050

Figure 5.4 V _NATIONS after Completion

Creating a form in
the view

12. Activate the component. Because this component will later be used Activating
exclusively through a component usage, you do not need an appli-
cation for it.

5 I Web Dynpro Standard Components

Going through the exercise so far has refreshed existing knowledge for
you. In the next part of the exercise, you will learn how to connect

the zwoc_05_MA!N and zwoc_05_NATIONS components using a component

usage:

Entering 1. Return to component zwoc_05_f1AI N. Select the root in the object list
component usages of the component and enter the NATIONS component usage for Web

Dynpro component ZWOC_OS_NATIONS on the USED COMPONENTS tab.

Integrating a
window

2. After you have confirmed your entry by pressing the I Enter I key, the
CoMPONENT UsAGES node displays in the object list of the component.

By entering the usage, you get access to the windows and all interface
controller objects of the external component. Figure 5.5 shows the
exercise with the entered usage of the nations component.

• ~ Component Interface
~ ~Views
~ 1!:1 Windows
... -~ Component usages

· <::. NATIONS

Figure 5.5 Entering Component Usages

Implemented interfaces

use Component
ZWDC_05_NATIONS

3. Modify the w_MA!N window. Then, open the v_MAIN node and right·
click on the view container integrated in the v _t1A IN view. Select

EMBED VIEW. This opens the dialog for embedding views, which you
already used in Chapter 2. Web Dynpro Architecture. Open the input
help and select the W_NA T IONS interface view (window) from the list,

as shown in Figure 5.6.

It makes no difference in a window whether the integrated object is a
local view or an external window, also referred to as an interface

v iew. However, if you integrate an interface view, you can only access
the plugs of the view that are integrated in the interface. In this case,

the internal structure of the window that originates from the external
component remains hidden.

286

Multi-Component Architectures I 5.1

ZWOC_OS_MAIN V_MAIN
ZWOC_OS_MAIN EMPT"'\\1EW

NATIONS ZWOC_OS_NATIONS W_NATIONS

Figure 5.6 Embedding the W_NATIONS Window

4. Activate the ZWDC_OS_MAI N component and test the application. Select
a country identifier from the dropdown list to disp lay the name of the
associated country and the respective nationality (see Figure 5.7).

r- https:/ fpwdf&394.wdf.sap.corp:44376/sapjbcjw~bdynpro/sap/zwdc

@ · l!iJ lttP<:IIPw<f :.:Jl ~ c.. . '• X IGoo9<
<Ji <Sl ~lttP<:IIowdf6394.wcf.so ...

Chapter 5 : Country list
Form ...sew

Figure 5.7 Testing the Multi-Component Application

"

E
l"< tOO% • /f.

You have now developed your first multi-component architecture. The
zwoc_os_NATIDNS component is reused by the n JDC_OS_MAIN component.
However, at this stage, the two components are self-sufficient and there
are no controller interfaces between them. Therefore, it would theoreti
cally be no problem to operate the nations component by simply creat
ing an application without the main component.

However, you need powerful interfaces when developing complex archi
tectures. Therefore, the following sections describe step by step how you
can use the interface controller of a component on the basis of real-life
examples.

Testing t he
application

Comment on the
exercise

5 I Web Dynpro Standard Components

Instancing Components

Automatic In the previous exercise, the embedded component was automatically
Instancing instanced by the window. A window instances a view or interface view

every time this view:

... Is integrated in a view container of a previously instanced view and
has been defined as a standard view .

.,. Is addressed via a plug.

In the previous exercise, the w_NATIONS interface view in the VC_FORM

view container was defined as a standard view (see Figure 5.8). Therefore,
you did not need to bother with instancing the external component.

~~dow Struci\Jre
• ~W_MAIN •...

• LE! v tAAJN
• EjVC_FORM

- • E! W _NATIONS
· ~DEFAULT

..._ • "';;t DEFAULT

Figure 5.8 Window Structure of W_MAIN

Manual instancing However, certain scenarios require you to instance a used component
manually. This can happen, for example, if you want to prepare a com
ponent for the output of data while its interface view has not yet been
instanced by the window. In that case, you can manually instance the
component upfront.

In general, you instance an external component manually from within
any controller of the us ing component. However, you should note that
to be able to do so, you must first copy the component usage that has
been entered in the properties of the component into the respective
controller. The subsequent instancing process can be divided in to the
following two steps:

1. The wd_this·>wd_cpuse_<component usage> (l method enables you
to obtain a reference to the respective component usage. The type of
this component usage is always I F _WD_CO~IPONENT _USAGE, irrespective
of the name of the external component.

288

Multi-Component Architectures I 5.1

This interface provides methods for managing the external compo
nent. For example, you can use the methods create_component(l
and de 1 ete_component (l to instance the relevant component and
delete it after using it.

2. You must then instance the external component via the crea t e_com
ponent (l method. Before you can do so, you must use the has_
act i ve_component < l method to check whether the component has
al ready been instanced. If so, another instancing process would cause
the application to abort.

In the following exercise,you will instance the nations component man- [8]
ually in the l<ddoinit(l method of the component controller of the
using component. In the subsequent section, this will enable you to
access the interface controller of the nations component.

1. Go to the PROPERTIES tab of the component controller of the main Entering the
component. Cl ick on the CREATE CONTROLLER USAGE button located component usage
directly above the USED CONTROLLERS/COMPONENTS table.

2. This opens a dialog box with a list of available component usages. As
shown in Figure 5.9, select the ZWDC_OS_NATIONS component by dou
ble-clicking on it. After you have selected this component. the com
ponent usage is entered in the table of used controllers/components.

D
used ControtterSIComponents

Component use Component Controller Description

@'Component Use (1) 3 Entnes found x

• •

Restrictions

NATIONS

NATIONS

.zwoc_os_MAJN w_MAJN

.ZWOC 05_NATIONS)',

.ZWOC_05_NATIONS li<)feRFACECONTROLLER

Figure 5·9 Component Controller- Creating a Component Usage

5 I Web Dynpro Standard Components

Instancing a
component

manually

3. The nations component can now be instanced from within the com
ponent controller. Open the wddoinit(J method and instance the
nations component. The easiest way to do this is to use the Code Wiz
ard. Thus, launch the Code Wizard and select the GENERAL tab. Click
on IN STANTIATE USED COMPONENT and enter NATimiS in the associ
ated input field (see Figure 5.10). Click on the button with the green
checkmark to terminate the Code Wizard.

@Web Oynpro Statement Structure x

./ Contexl ~General J
I 0 Mell\od Catlin Current Controller

Melllod Name ;-:...:..:....:..:.._;__ _____ ___,

0 Melllod Catlin used Controller
Component Name ,..:....:__.:_:_ ______ ___,

Component Use

Controller Name

Method Name L
® lns1antlate Used Component

Component use [H"AT iiliis·:::::====·--·----:::::]o]

Figure 5.10 Instancing the Nations Component

4. At this stage, the wizard has generated the coding needed for instanc
ing the component (see Listing 5.2). Carry out a syntax check and
activate the component.
DATA lo_cmp_usage TY PE REF TO i f_wd_component_usage .
lo_cmp_usage- wd_this->wd_cpuse_nations() .
IF lo_cmp_usage->has_a ct ive_component(J IS INITIAL .

lo_cmp_usage- >create_component() .
ENOl F.

Listing 5.2 Manual Instancing of the Nations Component

Using the Interface Controllers

So far, we have described how you can manually instance components.
After the instancing process is finished, you can access the external com
ponent via the respective interface controller. For example, you can reg
ister for external events or call methods of the external component.

290

Multi-Component Architectures I 5.1

Registering for external events is pretty easy. The only th ing you need to External events

do is enter a usage for the external component in the properties of the

relevant controller; you already did that in the previous exercise. Then,

when you define a new event handler, the list of available events will

a lso contain the objects of the external component.

The process of calling an external method, on the other hand, is slightly External methods

different. Similar to local controller usages, you must obtain a refer-

ence to the interface controller first. This reference will then allow you

to access the methods of the external component. You can obtain the

interface controller of the external component using the l<d_th i s- >wd_

cpi fc_<component usage>< l method. This method returns the interface

controller of the IWCI_<component usage> type.

Controller Interfaces in Web Dynpro

Web Dynpro provides up to three different interfaces for each controller. The
following list is intended to help you categorize these interfaces and keep
track of them:

~ IF_<controller name>
This interface is only visible within the respective controller and can be
used for programming purposes within the controller. The wd_th i s self
reference, which is contained in every control ler, is always based on this
data type.

~ IG_<controller name>
You can use this interface for the purpose of cross-controller programming
within a component. Note that concerning usage and visibility, the same
ru les described in Chapter 2, Web Dynpro Architecture, apply. Accord
ingly, this interface is not available for views, for example. The wd_ th is
>get_<cont roller name>_ctr() enables you to obtain a reference to
the external controller.

~ IWC I_<component name>
This interface can be used only for cross-component programming and rep
resents a portion of the interface controller. Because you can only integrate
component controller methods in the interface controller, the interface
represents a kind of subset of the component controller. The wd_th is
>wd_cpi fc_<controll er usage>_ctr() enables you to obtain a refer
ence to the external interface controller.

5 I Web Dynpro Standard Components

Exercise In the following exercise, you will create the set_ 1 anguage (l method
in the nations component and call that method from within the main
controller via the interface controller. This new method will allow you
to set the output language for the list of countries.

Preparing the 1. Open the ATTRIBUTES tab in the component controller of the nations
nations component component. Enter the gv_spras attribute with data type SPRAS into

the table.

Entering the
interface controller

usage

2. Go to the METHODS tab and create the set_language(l method.
Define the method as an INTERFACE METHOD (see Figure 5.11).

~SET _LANGUAGE Hethod ~ RJ seuanouaoe
Hethod ~ 0

Figure 5.11 seUanguage() Method

3. Open the method body and create an import parameter called i v
spras with data type SPRAS. Enter the value of import parameter i v_
spra s (wd_thi s- >gv_spra s c i v_spra s .) into the controller attribute
gv_spras.

4. Modify supply function supply_t005t(l . Replace the WHERE condi
tion in the SELECT statement with the new condition f/HERE spras
= wd_this·>gv_spras. Carry out a syntax check and activate the
component.

5. Return to the component controller of the main component. Select
the PROPERTIES tab and enter a component usage of the interface con
troller of the nations component (see Figure 5.9). The UsED CoNTROL
LERS/COMPONENTS table on the PROPERTIES tab should then appear, as
shown in Figure 5.12.

Used Controllers/Components

Component Use Component Controller Description
NATIONS ZWDC_95_NATIDNS
NATIONS ZWDC_05_NATIONS I~TERFACECONTROLLER

Figure 5.12 Component Usage of Nations Component

292

Multi-Component Architectures I 5.1

6. Open the component controller method, wddoi nit< l . After instanc
ing the component, you want to call the set_l anguage< l method
of the nations component using the method discussed just now and
the parameter i v_spras = · E · (for English). For this, you first need a
reference to the interface controller of the nations component. Then,
you can call the method via the interface controller in the external
component. Listing 5.3 shows the coding for this method call.

DATA lo_nations TY PE REF TO ziwci_.,dc_05_nations .
lo_nations = l<d_this->wd_cpifc_nations() .
lo_nations ->set_language(iv_spras - ' E' l.

Listing 5.3 Calling the External set_language() Method

7. Carry out a syntax check and activate the component. Then, test the
component. Go ahead and play around a little. For example, you can
change the iv_spras parameter to sy-langu to bind the output lan
guage to the logon language.

In this section, you have learned how to use external events and meth
ods via the interface controller. The following section describes the
remaining aspect of developing multi-component architectures - cross
component mapping.

5.1.2 Cross-Component Mapping

You already learned about the options of cross-controller mapping in
Chapter 2, Section 2.4.3, Mapping. In addition to cross-controller map
ping, Web Dynpro also provides the option of cross-component map
ping. This kind of mapping allows you to exchange data that is stored in
context nodes across the boundaries of separate controllers. Cross-com
ponent mapping can be carried out at any time after you have defined the
component usage for the interface nodes of an external component.

Cross-component mapping distinguishes between simple and external
context mapping. Whereas simple mapping involves the flow of data
from the context of the external component to the context of the using
component, in external mapping, the data flows in the opposite direc
tion. At this point, the term dataflow refers only to the primary node,
which is responsible for calling supply functions, for example.

293

Calling t he
external
component

Simple and
external mapping

5 I Web Dynpro Standard Components

The two exercises in this section will provide you with the det.ails of the
simple and external context mapping processes. For this purpose, the
TOOST node created earlier will be integrated in the component inter·
face. Then, you will define a mapping between the main and nations
components and display data from the nations component in the main
component. In the external mapping exercise, you will then reverse the
flow of data.

Simple Mapping

With simple context mapping, the primary node is located in the external
component. If the external component contains a supply function, this
function provides the mapped node in the using component with data.
For simple mapping to function properly, both nodes must be based on
the same structure.

Figure 5.13 shows a simple mapping based on the example t.aken from
the next exercise. In this exercise, you will define a mapping for node
TOOST from the nations component to the main component. In this sce
nario, the nodes will continue to be provided with data from the nations
component via tl1e supply function. In the final part of the exercise, you
will integrate a text field for the display of data from the TOOST node of
the nations component into the main component.

ZWDC_05_M AI N

ROOT
T005T

Figure 5.13 Simple Mapping

ZWDC_05_NATIONS

Flagging as 1. Open the CoNTEXT tab of the component controller of component
interface node ZWOC_05_NATIONS. Mark the T005T node. Activate the checkmark next

tO the INTERFACE NODE property (see Figure 5.14). The INTERFACE

NODE property is available only for nodes of the component control
ler; by setting this property, you ensure that the node is integrated
into the component interface.

294

Multi-Component Architectures I 5.1

Property

Nodes
Node Name
Interface Node
Input Element (Ext.)

jValue

T005T

Figure 5.14 Defining an Interface Node

2. Go to the component controller of the main component and select Defining a
the CONTEXT tab. The external context of the nations component mapping
should now display on the right. Drag the context node TOOST from
the external component and drop it into the local context (see Figure
5.15). When you do this, the sys tem automatically creates a copy of
the external node.

COMPONENTCONTROl.LER
CONTEXT

'b l»>OI
'b l»>OX
'b NATIO
'b l»>OXSO
'b NATIOSO

Figure 5.15 Creating a Cross-Component Mapping

3. Go to the v_~1AIN view and copy the mapping of the TOOST node from
the component controller into the context of the v_MA IN view.

Note

In the previous two steps of the exercise, you defined a mapping from the
interface controller of the external component to the component controller
and from there to the V_MAIN view in the main component. Theoretically, you
could also enter a component usage in the view to create a direct mapping
between the external context and the V_MAIN view. However, you will need
the detour via the component controller in the external mapping exercise.

4. Select the LAYOUT tab and right-dick on the PageHeader element in
the element hierarchy. Select INSERT AREA. The PageHeader then pro
vides a header (PAGEHEADERAREA) you can use to insert additional UI
elements.

295

Mappi ng between
controller and view

Adding the header
area

5 I Web Dynpro Standard Components

Testing the
application

5. Insert a new TextView element into the PAGEHEAOERAREA and bind the
TEXT property of the UI element to the node attribute LANDX50. The
view should appear, as shown in Figure 5.1 6.

lr-Chapter 5: Country list
V ~ JOOST l.N«))(SQ I
~·~·L--------------------.

[or.ewConceine,rtJE~nt: vc_FORM

:-15 ~OOT\JIELEMENTCONTNNER
• ~PAGE HEADER

• ~ PAGEHEADERAREA
,__ ___ .-=!. 0 TV _LN<OX$0

·~TABSTRIP
• DTAB

· EJ VC. fORM
· T CAPnON IHeade~

Figure 5.1 6 V_MAIN after Adding the Textview Element

6. Activate the inactive objects and test the application. The header area
of the main component now displays the country currently selected
in the li st. For this, the data is retrieved from the TOO ST node of the
nations component. Figure 5.17 shows the final application.

r- http-s://pwdf6394.wdf.sap.corp:44376/s.ap/bcjwebdyopro/sapjzwdc

0 @. li)http"// ::1 '0 c ... ~, X IG<>o<lle

~ ~tttps://pwcf6394.W<f.sa.. . • Iii'! • <i • @ Pooe •

Chapter 5: Country list

F«m~

~----------------------~
(us j.i
I.Md: USA
Netionelly: American

r
l w, 1 00"4 .. #.

Figure 5.17 Testing the Simple Context Mapping

External Mapping

Compared to simple mapping. in an external mapping scenario, the data
flows in the opposite direction. Thus, the local node of the using com
ponent acts as the primary node instead of the external node. The pri
mary node can be filled with data in the using component using a sup
ply function.

Multi-Component Architectures I 5.1

In addition. you should take note of certain specific aspects of external
mapping. For example, you do not need to type the node of the using
component that you want to map externally. If you leave it untyped. the
node will receive its en tire typing through the context node for which
you will define a mapping to the external node. However, note also
that if you create a node in this way. you can only program dynamically
against it in the associated controller because its structure is unknown at
design time (see Chapter 4, Dynamic Web Dynpro Applications).

Simple vs. External Mapping

In principle, there is not a big difference between simple and external map
ping. Therefore, in many cases, you can achieve the required resu lt via both
external and simple mapping, provided you modify the design of t he applica
tion in question accordingly .

.. If your architecture provides for a central data exchange component, it is
advisable to map the external nodes to the nodes of the using components
using the simple mapping method .

.. However, if you intend to use a generic component for displaying data
from a local component, the external mapping method is often the better
choice. In that case, you can leave the node of the external component
untyped.

In the end, the kind of mapping you use is your decision.

In the following exercise, you will change the previously defined simple
mapping from node T005T into an external mapping. For this, you will
define the T005T node in the nations component to be mapped exter
nally and copy the supply function into the main component. Figure
5.18 illustrates the data flow in an external mapping scenario; also. take
a moment to compare Figure 5.18 with Figure 5.13.

ZWDC_05_MAIN
ZWDC_05_NATIONS
ROOT
T005T

Figure 5.18 External Mapping

297

Specifics of
external mapping

5 I Web Dynpro Standard Components

Activating the
external mapping

Deleting the
simple mapping

Navigation to the
component usage

1. Open the component controller in the zwoc_os_NATIONS component.
Select the CONTEXT tab and open the property dialog of the T005T

node. Activate external mapping by selecting the INPUT ELEMENT
(ExT.) property (see Figure 5.19).

Property
Nodes

Node Name
Interface Node
Input Element (Ext)
Dictionary structure

JValue

T005T

I Rl
T005T '\}

Figure 5.19 Activating External Mapping

2. Copy the content of supply function supp 1 y_ t005t< l to the clipboard
and remove the supply function entry from the node properties.

3. Leave the nations component and go to the component controller of
the main component. Selea the CONTEXT tab. Right-click on the T005T

node and select DELETE MAPPI NG from the context menu to delete the
simple mapping you defined in the previous exercise.

4. Create a supply function for the T005T node. Navigate to the body
of the supply function and paste the coding of the previous supply
function from the cl ipboard. Adapt the SELECT statement to the main
component by replacing l•d_this->gv_sprcs in the 1m£R£ condition
with T .

5. Open the properties of the ZWOC_05_t~AIN component. Delete the com
ponent usage of the nations component and re-enter it from scratch
into the table. This way, you update the interface property of the com
ponent usage. Without this update, the nations component would
continue to be regarded as a component with normal mapping (not
with external mapping).

6. Navigate to the component usage of the nations component. In con
trast to simple mapping, you cannot define external mapping on the
CoNTEXT tab; instead, you define it in the interface controller of the
component usage. Therefore, follow the path, COMPONENT USAGES •
NATIONS and select CONTROLLER_USAGE (see Figure 5.20).

Multi-Component Architectures I 5.1

Contex1

Q uethod Call in Current Controller
Method Name ,------------,

0 Method Call in Used Controller
Component Name ,------------,

Component Use

Controller Name

Method Name

® Instantiate used Component
ComponentUse fN~TJONS.----·----· -lCJI

!: .. ·-----------·- ·-··---·---··--------

Figure 5.20 Opening the Component Usage

7. Define the external mapping for node T005T between the local com
ponent controller and the interface controller of the external com
ponent. To do this , you must first enter a component usage for the

local component controller. For this, click on the CR EATE CONTROllER

USAGE icon on the PROPERTIES tab. Select the local component control
ler and close the dialog box.

8. Then, go to the CONTEXT tab and create the external mapping. Drag

the local node T005T from the right-hand area of your screen and drop
it on the interface controller on the left (see Figure 5.21).

Con!extiNTERFACECONTROLLER l<t!1ZWDC_OS_MAIN.COMPONENTC{)NTROLLER

• 0 CONTEXT Context COMPONENTCONTROLLER

1-

• 00 TOOST • 0 CONTeXT
+':--,j'b~Si7Pi;i1RASF.------~· iii ®rooST 1\.
· 'b Wl01 • 'b SPRAS"i

'b WIOX 'b L.AN01
'b NATIO 'b L.ANOX
'b WIOXSO 'b NATIO
'b NATIOSO 'b L.ANOXSO

'b NATIOSO

Figure 5.21 Creating an External Mapping

9. Activate the components and test the application. The application
should behave in the same way as during the previous test. How

ever, in contrast to the previous exercise, you are now using external
mapping.

299

Creating t he
external mapping

Testing the
application

5 I Web Dynpro Standard Components

Component
interfaces

Creating and
implementing

component
interfaces

Note

You cannot creat e both simple and external mapping for the same controller
usage. This would entail a cyclical mapping, which inevitably causes errors
during runtime.

In this section, you learned about the most important aspects and the
variations of cross-component mapping. The following section briefly
discusses another important aspect of developing multi-component
archi tectures- the use of Web Dynpro component interfaces.

5.1.3 Component Interfaces

Imagine the following scenario: You are part of a team of developers
who are developing a complex Web Dynpro architecture, and you want
each individual team member to develop a s ingle component. Every
time a component has been completely deve loped, it should be inte
grated into the architecture of existing components that have already
been finished.

During the development phase, you quickly realize that each developer
on your team has a different understanding of the concept of interfaces.
This can result in a proliferation of different types of interfaces among
individual components, which is increasingly difficult to undo as the
project continues. When you reach this point, you should consider stan
dardizing your component interfaces.

You can compare Web Dynpro component interfaces to normal ABAP

class interfaces. For example, as is the case in ABP Objects, you can also
define interface methods for component interfaces in Web Dynpro. By
implementing an inte1face in a component, you can extend that compo
nent by the methods and other objects defined in the interface. Thus, in
addition to methods, you can define events, context nodes, and interface
views in the component interface.

To create a component interface, you must enter the name of the inter
face to be created in the input field below the object list selection and
press I Enter 1. Then, select WEB DYNPRO CoMPONENT INTERFACE in the

300

SAP list Viewer I 5 .2

dialog box that opens. After you have created the interface, you can use
it in any number of components. To do so, go to the properties of your
component and enter the interface into the table on the IMPLEMENTED

INTERFACES tab (see Figure 5.22).

Web Oynpro Component (zwoc_os_MAJN 1 Atllve

Description

Assistance Class -
Created By [OFENLOCH I Created On 1 21111 2999]

Last Changed By ~NLOCH I Changed On rosi2312999J

Original Lang. [DE) Package r$tNP 1
lt.)Accesstbtltty Checks Active

~used Components lfimptemented interfaces l

Used Web Oynpro Components

Component Use Component Description of Component

Figure 5.22 Implementing Component Interfaces

Because th is book is intended for Web Dynpro beginners, an extensive
description of component interfaces would go beyond its scope. How
ever. they are an integral part of the Web Dynpro framework and must
not be left out. Therefore. you have been made aware of th is topic in
th is section and have learned about the basic principles you need fo r
continued self-study.

5.2 SAP list Viewer

You already learned about developing and using tables in Web Dynpro
back in Chapter 3, Developing Web Dynpro Applications. In addition
to those rather simple tables , Web Dynpro also provides the SAP List
Viewer (ALV), which you may know from the classic dynpro environ
ment. This is a very fl exible and powerful tool for displaying lists and
table-like structures.

301

5 I Web Dynpro Standard Components

Appearance of
ALV tables

Features

Implementing
ALV tables

Note

As of release 4.6C, the ABAP list Viewer {ALV) was renamed to SAP list
Viewer. However, its short name, ALV, is stil l commonly used among develop
ers, as well as in all t echnical SAP list Viewer objects.

From the point of view of the user, a default ALV output consists of a
tool bar and an output table. Several additional dialog boxes enable users
to enter settings related to the display of columns, the extended sorting
function, aggregation, and other functions such as the print output. Fig
ure 5.23 shows an ALV table that is bound to the TOOST node.

View (Standard View] (•) l'fint Version)) Export •) Fillet Sethngs - N-y Long...,. Notlclno~y •
Peraguoy Ptwagyayen Paraguay Perog..oyon r Qeta,. Qat&ri Qoter Qatari

R- French Reunion french

R...- R\Mnanien R"""'nie Rumonien
I= -

Rvssien Fed. Ruoslen Russian fedet'Edion Rus.len
p r-

Rwen(IO Rwondan Rwen<le Rwonden

Figure 5.23 Node T005T Displayed in ALV Table

From a technical point of view, a Web Dynpro ALV table consists of the
UI element Table. which is wrapped by a component This is why many
properties of the Ta b 1 e element are supported such as different cell edi
tors, background colors, and dimensions. Moreover, the ALV component
provides the following additional options, among others:

,. Sorting, filtering, and calculation of column values

,. Showing/hiding of columns via the column set

,. Definition and saving of settings; for instance, to the column set, as a
view and by the user

,. Usage of a toolbar with standard ALV functions. such as Excel export
and any other buttons

In Web Dynpro, a fundamental difference exists between the implemen
tation phase of ALV tables and that of simple tables. For example, when
implementing simple tab les, you can access the UI elements of those
tables in the view designer, whereas the implementation of ALV tables

302

SAP l ist Viewer I 5.2

in the view designer allows you only to use a view container to integrate
the ALV component. Consequently. you only have the ALV component
interface available to configure ALV tables.

Based on practical examples, the following sections describe how you
can implement ALV tables. For this, you will integrate an ALV compo
nent in the main component to display the T005T node as a table. The
subsequent sections will cover the extended configuration of ALV tables.
Among other things. you will learn how to manipulate table columns
and how to program the ALV toolbar in theory and practice.

5.2.1 Integrating ALV

Integrating ALV tables in components is a simple matter. To do so, you
must perform the following steps:

1. Define a component usage for ALV component SALV_WO_TABLE.

2. Create an external mapping between the local node to be displayed
and the DATA node in the ALV component; alternatively, you can also
do this dynamical ly at runtime (see the following exercise).

3. Integrate a view container for displaying the ALV table in the required
position, and then integrate the ALV interface view TABLE in the local
window in the view container.

In the following exercise, you will in tegrate an ALV component in the
main component to display the TOOST node as a table.

1. Enter a component usage for the ALV component in the main com
ponent. To do this. go to the properties of component zwoc_os_t·IA 1 N.
Enter a component usage called ALV_T005T for ALV component SALV_
wo_ TABLE into the table.

A look ahead and
exercise

2. Integrate the ALV table in v_t1A IN. To do so, open the V_MAIN view and Preparing v_MAIN
insert a new tab (INSERT TAB) under the TABSTRIP Ul element. Select
CAPTION_! on the new tab, and enter the text "ALV table" for the TEXT
property.

Then, add a view container to the Tab. To do so. right·click on the tab
and select INSERT ELEMENT IN TAB. The view should now appear as
shown in Figure 5.24.

303

5 I Web Dynpro Standard Components

Enhancing the
window

Creating an
external mapping

~LayoU1 --,, "'bound Plugs Outtlound ~uos ConteJCI Attributes AtMns MeltlOds

Chapter 5: Country list
v _MAN lOI H !..A!'() XSO

I / '""""'Mw'l AlVt$ble

View<:ont1inertmement: VC ,...f<lftM

I
· 0 COt<TEXT.)IENVS
• 0 ROOTUIELEMENTCONTNNER

I' ~ PAGEHEADER
• t:J T ASSTRIP

• D TAS
• CJ TAB_1

-

-

-
I · El 'ICfi.V

· T CAPn ON_ . .:_I .~::IH::ta:::de:!..~ ---,::::::::!t:J

Figure 5.24 V_MAIN after Integrating the ALVTable

3. Integrate the ALV interface view TABLE in the W_MAIN window. Open
the v _MA 1 N node and right-click on the view container you created for
the ALV table. Select EMBED VIEW and open the input help in the cor
responding dia log box that appears. Select the TABLE interface view of
the ALV_TOOST component usage from the list.

In addition to the TABLE interface view, the ALV component provides
two more interface views: SERV ICE and CONTROL_ VIEW. You can use the
SERVICE interface view to change the position of the settings dialog.
which allows users to make changes to the column display, sorting,
fi lte rs, and so on, and which normally displays above the table.

4. Finally, you must create an external mapping between the local node
T005T and the ALV component. For this, the ALV component pro
vides the DATA node. Open the path COMPONENT USAGE • ALV_T OOST •
INTERFACECONTROLLER_USAGE in the component object list and enter a
component usage for the component controller into the table. Then,
go to the CONTEXT tab and drag the TOOST node from the right onto
the DATA node in the ALV component.

Dynamic Mapping

In the current exercise, you have bound the DATA node of the ALV compo
nent statically to the local TO OST node using external mapping. However, in
your daily work, you will see that static mapping is often rather inflexible or
that it cannot meet specific requirements.

Therefore, the ALV component also allows you to modify the data source
of the component dynamically at runtime. To modify or set the data source,
you can use the se t_dat a () method of the interface controller of the ALV
component. The described method provides the r _node_da ta parameter of
the IF _WD_CONTEXT _NODE type for this.

SAP list Viewer I 5 .2

5. At th is stage, the ALV table has been completely integrated into the

main component. Activate the component and go to the ALV TABLE
tab to test the application. Here, the ALV table containing the data
of the T005T node displays instead of the view container (see Figure
5.25).

FOI'mv\ew .I AI.Vt- L

Testing the AlV
table

View I!Stonaara VJO;.I I· I Print v ers~on II Elq)ort , I f•ler Settt~gs

Language Qy Name NationMty long 1"18tfle Nationality Cl. • ~
a• NF Norlol: Islands Norlol< Islands Norfolk lslancts from the Norfolk lst!llnds 001

EN NO Nigeria f\19etian Nigerie ~ian 001

EN " -agua -·guan Nicaragua Nceraguan 001

EN Nl. Ne1herland$ OUch Netherltlnds OUch 001 ~
EN NO Norway Norwegian Norway Norwegian : b EN NP {Nepal Nepalese Nepol Nepalese

Figure 5.25 Testing the ALV Table

This exercise was based on several assumptions that do not often occur
in real life. For example, in the table, the ALV component simply dis

plays all fields of the table struc ture ofTOOST. The column names are also
copied automatically from the data elements of the structure. However,

because in your daily work you will often want to display only a portion
of the fields of a structure and because the field names can be mislead
ing, the following sections describe how you can configure ALV tables

and their table columns.

5.2.2 ALV Configuration Model

The configuration model represents the core of the ALV component. It is
based on an object with the type CL_SALV_WO_CONFIG_TABLE. Each ALV
component contains exactly one configuration model. This model enables

you to configure every single detail of an ALV table, from the table header
to its individual columns. The follow ing list provides an overview of the
areas that can be configured in the configuration model:

~ Table settings
These settings primarily include output settings such as two-dimen

sional tab les or characteristics hiera rchies, and d isplay color schemes,
table headers, and so on.

5 I Web Dynpro Standard Components

Fetching the
configuration

model

[8]

~ Field settings
Fields describe the data that is used in the ALV output. The name of a
fie ld corresponds to the name of an attribute in a context node. Thus,
each context attribute has a field representative of the same name in
the configuration model. The relevant field settings allow you to sort,
filter, and aggregate data.

~ Column settings
At runtime, each table column is represented by a column object.
Among other th ings, this object allows you to configure the column
header, the column sequence, and the column editor (text field, input
field, dropdown list, and so on).

~ Settings for standard ALV functions
ALV provides a number of standard functions, such as the sort and
filter functions, as well as the export function to Excel. You can show
and hide these fu nctions according to your requirements via specific
methods of the configuration model.

~ Settings for application-specific functions
You can store custom buttons in the toolbar of an ALV table, which
will allow you to respond to events triggered via the interface contro l
ler.

The get_mode l < > interface controller method enables you to obtain a
reference of type CL_SALV_HO_CONFIG_TABLE to the respective configura
tion model of an ALV component. After you have done this, you can use
the methods of the object to configure the ALV table according to your
requirements. At this stage, you should take a look at the methods avail
able in the configuration model.

In the following exercise, you will obtain a reference to the configuration
model and store this reference as an attribute in the component contro l
ler of the main component. This exercise is rather short and is intended
to prepare you for the subsequent exercise.

306

SAP l ist Viewer I 5.2

1. Create a reference variable to the ALV configuration model in the com
ponent controller. To do th is, select the ATTRIBUTES tab in the compo
nent controller of the zwoc_05_t1A 1 N component. Enter the attribute
go_al v_t005t with reference type CL_SALV_WD_CONFIG_TABLE into the
attribute table. Define the attribute as PUBLIC.

2. Then, instance the ALV component. For th is, select the PROPERTIES tab Instancing the ALV

and enter a component usage for the interface controller of the ALV

component. Then, go to the METHODS tab and open the wddoini t(J

method. Instance the ALV component manually and get a reference to
the interface controller of this component. Your coding should now
appear as shown in Listing 5.4.

DATA: lo_cmp_usage_alv TYPE REF TO i f_wd_component_usage .
lo_ifc_alv_t005t TYPE REF TO htci _salv_lvd_table .

* Instance ALV component
l o_cmp_usage_a lv- wd_this ·>wd_cpuse_alv_t005t() .
IF lo_cmp_usage_alv· >has_active_componen t(J IS INITIAL .

lo_cmp_usage_alv · >create_component() .
ENOIF .
*Get interface controll er
lo_ifc_alv_t005t = wd_this·>wd_cp i fc_alv_t005t< J .

listing S-4 tnstancing the Al V Component

3. Get the configuration model and store a reference to it in the go_al v_
t005 t attribute. For this , you must add the following line at the end
of the method:

wd_this·>go_alv_t005t - lo_ifc_alv_t005t·>get_model() .

Carry out a syntax check and activate the component.

You just obtained a reference to the configuration model of the ALV com
ponent. The following sections and exercise will require you to use this
reference fo r the configuration of the ALV table.

Irrespective of the exercises, Table 5.1 provides a list of the most impor
tant general methods of the configuration model, which can be used for
customizing ALV tables.

307

Fetching the
configurat ion
model

Important
methods of the
configurat ion
model

5 I Web Dynpro Standard Components

Method

if_salv_wd_table_
settings-create_header{)

if_salv_wd_table_settings-set_
edi t _mode { l

if_salv_wd_table_settings-set_
fixed_table_layout< l

if_salv_wd_table_sett ings-set_
read_on 1 y < l

if_sa lv_wd_table_sett ings-set_
vis i ble_ row_count{ l

if_salv_wd_table_sett ings-set_
width{)

Description

Creates an object for the table t itle.
This object allows you to design a
table header.

Defines whether the mass data
mode is enabled or disabled. If it is
enabled, the end of the ALV output
contains a page with empty rows,
ready for the input of data.

Defines that the width of the ALV
output does not depend on the
width of the column content .

Defines whether the ALV output is
read-only or can be edited.

Defines the height of the ALV
output in table rows.

Defines the width of the ALV
output.

Table 5.1 General Configuration Model Methods

5.2.3 Methods and Events of the Interface Controller

In Section 5.2.2, ALV Configuration Model. the get_model (l method

enabled you to take a first look at the interface controller of the ALV

component. In addi tion to this method, the ALV component contains

several other methods and events that enable communication w ith th e

using components. While the greater part of the ALV component meth

ods serves to configure th e table, events are used for interaction pur

poses. They notifY the using component about user actions such as the

modification of the lead se lection, for example.

The following sections describe the most important methods and events

of the ALV component. The n ext section begins with the major even ts

of the ALV; the subsequent section deals w ith the most important meth

ods of the ALV component. This part of the chapter does not contain an

exercise but you will need th is information later on in the book.

308

SAP l ist Viewer I 5.2

Events of the ALV Component

Table 5.2 provides a list o f the most important events of the ALV
component:

Event

ON_CLICK

ON_OATA_
CHECK

ON_FUNCTION

ON_LEAO_
SELECT

Description

This event is t riggered when the user clicks on a button or
Li nkToAction in an ALV table cell.

This event is t riggered when data is checked in an editable
ALV table after the data has been modified.

This event is t riggered when the user selects a custom
button in the tool bar (see Section 5.2.5, Changing the
Tool bar) .

This event is t riggered when the user changes the lead
selection in the table.

Table 5 .2 Events of the AlV Component

ON_SElECT Event

Whereas the ON_ LEAO_SELECT event is triggered only when the lead selec
tion changes, SAP NetWeaver 7.0 EhP 2 and later versions also provide the
ON_SELECT event, which is activated when the lead selection or any other
selection changes. In the configuration model of the ALV component, you
can define which of the two events you want to have triggered. (This can be
activated in the configuration model of the ALV component .)

Each of the events listed in Table 5.2 contains the importing parameter R_PARAM
r _par am with interface class type IF _SA LV_W O_ TABLE_ <event name> (with- parameter

o ut the ON_ p refix of the event). The in terfaces provide detailed informa-

t ion about the respective event.

For example, the data type of the event handler parameter is IF _SALV_

WO_TABLE_LEAO_SELECT for the ON_LEAO_SELECT event. The interface con
tains the index and o 1 d_ index attribu tes, which a re filled with the index

value of the new and old lead selection. If a user changes the lead selec
tion, you can read the index value in the event handler via r _param

>i ndex.

309

5 I Web Dynpro Standard Components

get_model() vs.

get_model_

extended()

Benefits of get_
model_ extended()

set_ data{) Method

The options provided by the set_da ta () methods were already men
tioned in Section 5.2.1 , Integrating ALV. This method allows you to
bind an ALV component dynamically to any context node. For this, the
method provides the r _node_da ta parameter of the IF _140_CONTEXT_NODE

type.

get_model_extended{) Method

By default, the ALV component transfers all attributes of a context node
into the column set of the ALV table. If the node is based on a dictionary
structure, then the ALV component even transfers all fields of the struc
ture into the column set.

However, it frequently happens that you only want to transfer a portion
of the node attributes into the column set of the ALV table. This is the
case. for example, if the attribute is a technical attribute that does not
provide added value to the user.

At this point, you should take another look at Figure 5.25. On the far left
of the screen, you can see the technical column LANGUAGE (SPRAS attri
bute), whereas the C LI ENT column appears on the far right. These are two
typical examples of columns that are usually not relevant to users.

When using the get_mode 1 (l interface controller method. which you
saw earlier, the configuration model automatically transfers all attributes
of the node into the column set of the table. However, if you use the
get_mode1_extended< >method instead of get_mocte1 () , the import
ing parameter s_pa ram-defau1 t_co 1 umns enables you to decide whether
you want to have all node attributes transferred automatically into the
column set.

But what is the benefit of get_mode1 _extended(l if this method does
not automatically transfer the node attributes into the column set? The
answer is quite simple: It allows you to achieve better system perfor
mance. For example, the instancing of unused columns that are deleted
after the instancing process takes time and requires storage space. This
does not much matter if only a small number of columns is affected but
if it affects between five and ten technical columns or more, you should
start using the get_mode1_extended(l method.

SAP list Viewer I 5 .2

data_ check{) Method/Event

In contrast to normal Web Dynpro tables, in ALV tables the data is not
displayed directly from within the context of the own component but
from within a separate context in the ALV component. The ALV com
ponent constantly synchronizes the data between its own context and
the table context used in the view. Figure 5.26 illustrates this data check
process on the basis of Table T005T.

Program Z_06_SELECT_OPTIONS

~

Class/Interface ZCL_03 '

Figure 5.26 Data Check of the ALV Component

IO ZCL_06'

This synchronization process, which can be compared to the process of
mapping different nodes, usually occurs without you noticing it. For
example, the transport of data from the ALV component context to the
view context is carried out au tomatically. The transport of data in the
opposite d irection, from the table context to the component's own con
text, is carried out via the data_check() method. During the data check
process. the accuracy of the data is checked for the first time (data type
and format, etc.). Therefore, it only makes sense to manually call data_

check< > if the table is in change mode.

Depending on the settings in the configuration model. the data_check(>

method is called automatically by the ALV component every time you
press the I Enter I key in a table cell, or when you click on the CHECK

button in the toolbar of the ALV table. In addition, you can start the
data_check(l meth od manually at any time. This can be necessary. for
example, if a user trigge rs the automatic da ta check and you want to
make sure that the component's own contex t node contains the current
dataset of the table context.

After the data check has been completed, the ON_OATA_CHECK event pro
vides information about the changes that have been carried out in the
context. For this, the attri butes of the r _pa ram parameter with data type

311

Context of ALV
tables

Data
synchronizat ion via
data_check()

Calling t ime of
data_ check()

ON_DATA_CHECK
event

5 I Web Dynpro Standard Components

IF _SALV_I40_TABLE_OATA_CHECK create a table with a list of all changes
carried out in the component's own context.

5.2.4 Changes to the Column Set

Now that you have learned about the most important events and meth
ods of the ALV component, you should return to more practical topics.
Therefore, the following sections will describe how you can add, delete,
and modify columns in ALV tables and how you can manipulate their
arrangement.

Deleting Columns

The if_sa1v_wd_co1umn_settings-de1ete_co1umn() method of the
configuration model allows you to delete individual columns from ALV
tables. Columns to be deleted are transferred with the I o parameter.

[6] In the following exercise, you will create a new method for the configu
ration of the ALV table. Then, you will delete the short text columns
LANDX and NATIO, as well as the client column in the method, from the
column set.

1. Open the ZWOC_05_~1Al N component and create the i ni t_a 1 v_t005t ()
method in the component controller. Go to the body ofwddoinit()
and call the new method at the end (1<d_this->init_a1v_t005t< >).

Deleting a column 2. Double-click on the method name to navigate to the new method and
delete the MANDT . column. To do this, enter the following line in the
method:

wd_this->go_a1v_t005t·>if_sa 1v_wd_co1umn_settings-de1ete_

Testing the
application

co 1 umn (i d - · t1ANOT') .
Then, delete the LANDX and NATIO columns.

3. Activate the component and test the application. The ALV table
should no longer contain the last column for the client. The column
set (SETTINGS • COLUMN SELECTION) of the table no longer contains
this column.

SAP l ist Viewer I 5 .2

Configuring Columns

Changes to ALV table columns can be implemented very easily. For

example, you can get a column object of type CL_SALV_wo_COLUMN by

calling the if_salv_wd_column_settings-get_col wnn(l method. This

column object allows you to configure the column per your require

ments. Table 5.3 provides an overview of selected methods for column

configuration.

Method

set_wi dth (l

set_visible()

set_pos it ion()

get_header()

Description

Defines the column width.

Shows or hides the column.

Defines the posi tion of the column in the ALV

output.

Returns the object of the column header.

Table 5.3 list of Selected Methods for Column Configuration

To be ab le to change a co lumn header, you must obtain a column header

object of type CL_SALV_WO_COLUMN_HEAOER by us ing the get_ header()

method. After you have done this, you can use the set_text< l method

to change the column header.

DDIC Binding of Column Headers

For table columns that are based on DDIC objects, the ALV component au
tomatically uses the header stored in the DDIC. You can use the set_prop_
dd i c_bi nd i ng_f i e 1 d() method to bind the column headerto other DDIC
field labels as well (short , medium, long).

If you want to be able to set the column header of a column with DDIC bind
ing manually via the set_ text() method, you must first release its DDIC
binding.

Changing a column
header

In the following exercise. you will learn how to work with columns and [I]
column headers. In the first step, you will ensure that the SPRAS and

LANOXSO columns are hidden by default (note that you are not going to

delete them). Then, you will use your own values to overwrite the head-

ers of columns that are based on LANOX and LANOXSO.

5 I Web Dynpro Standard Components

1. Activate change mode and open the init_alv_t005t(l in the com
ponent controller of the main component.

Hiding columns 2. Hide the SPRAS column. To do this, get the associated column object
from the configuration model and call the set_visible() method
in this object. To hide the column, you must fill the va 1 ue import
ing parameter with a value of type CL_WD_ABSTR_TABLE_COLU~1N->T_
VISIBLE. To do so, you must use the constant cl_wd_uielement=>
e_ vi s i b 1 e ·none.

Changing the
ODIC column

header binding

3. Currently, the column header of the LANDX50 attribute contains the
text "Long description." To change the label to "Country," use the
get_header< l method to obtain the column header object from the
column and release the DDIC binding of the column header by calling
the set_prop_ddic_binding_field(l method. Then, use the set_
text< l method to change the header to "Country." Listing 5.5 con
tains the solution to th is exercise.

DATA: lo_column TYPE REF TO cl_salv_wd_column .
lo_column_header TYPE REF TO cl_salv_wd_column_header .

* Get SPRAS column
wd_thi s · >go_a 1 v_t005t · >if _sa 1 v_l<d_co 1 umn_set t i ngs
get_column(

EXPORTING
id = "SPRAS "

RECEIVING
value= lo_column) .

* Hide SPRAS column in column set
l o_column·>set_visible< cl_wd_uiel ement=>
e_visible·none) .
* Get LANDX50 column
wd_thi s · >go_a 1 v _t005t · > i f _sa 1 v _l<d_co 1 umn_set t i ngs
get_column(

EXPORTING
id - "LANDX50 '

RECEIVING
value - lo_column) .

* Get column header from LANDX50
l o_column_header = lo_column·>get_header() .
* Re l ease OD IC binding
l o_column_header·>set_prop_ddic_binding_field(

property - if _sa 1 v_~ld_c_ddi c_bi ndi ng- >bi nd_prop_tex t

SAP list Viewer I 5.2

v~lue = if_s~lv_wd_c_dd ic_binding=>ddic_bind_none) .
*Change the column title of LANOX50

lo_column_header->set_text< ' Land ') .

Listing 5-5 Changing Table Columns

4. Carry out a syntax check and activate the component. Then, test the
application. The ALV table should now appear. as shown in Figure
5.27.

View !!standard Viewj (· , vemon 11-· I Filter Settings

Cty CO<ri<y Nail00$11y 8 -
Ukraile ll:ralnian lJA

1-
00 Uganda Ugandan

"" A11'leficen Milar OUiying Islands American

us USA American

uv Ur1.9JIIIY lku~an

UZ . J Uzb8:istan .I Uzbel;istani
=
~~

Figure 5.27 ALV Table After Table Column Change

If you chose to use the get_model_extended(l method and need to
create all columns explicitly, you can do so via the if _sa 1 v_wd_co 1 umn_
settings-create_col umn(J method of the configuration model. After
you have called this method. you will obtain a column object that you
can configure like any other column.

Finally, you should also know how to replace the cell editor of columns.
The ALV component provides a large number of cell edi tors such as sim
ple input fields, checkboxes, and dropdown lists. You can change a cell
editor by call ing the set_cell_edi tor< J for the column object. Then,
you must transfer a cell editor object of type CL_SALV_WO_UIE_<edi tor
type> to the method. Listing 5.6 shows how you can replace the cell
editor of column LAN OX 50 by enhancing it with the coding from Listing
5.5.

DATA : lo_input_field TYPE REF TO cl_salv_.,d_uie_input_fie ld .
• Create an input field of type cell editor
CREATE OBJECT lo_input_field

EXPORTJ NG
value_fieldname = ' LANOX50 '.

*Change the cell editor of column LANOX50 to input field

Testing the
application

Creating columns

Changing the cell
editor

5 I Web Dynpro Standard Components

l o_column->set_ce ll_editor (lo_ input_ field) .
* Deactivate read-only mode of the ALV table

wd_this->go_alv_t005t->if_salv_wd_table_settings-set_read_onl y(
abap_false) .

Listing 5.6 Changing the Cell Editor of a Column

5.2.5 Changing the Toolbar

Standard functions By default, ALV tables contain a toolbar, which provides a set of stan
dard functions such as the export of data to Excel. You can enable and
disable these standard fu nctions according to your requirements via the
configuration model.

Custom functions In addition, the configuration model allows you to integrate any number
of custom functions into the tool bar. Functions can be mapped through
simple buttons, links, or even input fields, among other things. If, for
example, a user clicks on a custom button, this button triggers the ON_

FUNCTION event of the ALV component, and in doing so, notifies the user
about the execution of the associated tool bar function.

You can create a new function by calling the configuration model method
i f_salv_wd_function_settings-create_function() . This method
returns an object of the CL_SALV_WO_ FUNCTION class. However, the func
tion does not yet have an editor, which you mus t assign to it via the
set_edi tor () method.

All edi tors are based on the class CL_SALV_WD_FE<editor type>. If the
user clicks on the toolbar button now, the ALV component triggers the
ON_FUNCTI ON event.

[8] In the following exercise, you will create a new function with a button.

1. Activate change mode and open the i ni t_alv_t005t() in the com
ponent controlle r of the main component.

2. Create a new function with the 11Y _BUTTON lo at the end of the
method.

Creating a button 3. Then, generate a button object from within the CL_SALV_WO_ FE_BUT

TON class and use the button as an editor for the function. Use the

SAP l ist Viewer I 5.2

set_text(l method of the button to label it with the text "My But
ton." Listing 5.7 contains the solution.

DATA: 1o_function TYPE REF TO c1_sa1v_wd_function .
1o_button TYPE REF TO c1 _sa1v_wd_fe_button .

* Create a new button
CREATE OBJECT 1o_button .
1o_button ->set_text("My Button ·).
* Create MY_BUTTON function
1o_function -

•ld_th is- >go_a 1 v_t005 t- >if _sa 1 v _.,d_func t ion_ sett i ngs
create_function(

id • "MY_BUTTON ") .
*Use a button as ed i tor
1o_function ·>set_editor(1o_button) .

listing 5.7 Creating Functions

4. Create an on_funct ion< l method wi th type EvENT HANDLER in the
component controller. Regis ter this method for the ON_FUNCT I ON event
of the ALV component. Within this method, you can query the lo of
the function by reading r _pa ram· >i d and responding to it.

5. Carry out a syntax check and activate the component. Then. test the
application. The ALV table now contains a button called MY BurroN,
as shown in Figure 5.28. When you click on this button. the on_func·
t ion (J event handler method is called in the main component.

View !!standard Viewj , ... l"'r.tVemon ll fxport •l I ~a.ton I fit« Settngs

Cty Court<y Natlona~y 8
r- 00 Equotoriol GUne& ECf,ltl!orial OYinean

OR G<eece Or eel<

OS South Oeorgis end the Sol.rthern Sandwich lslancls So..th George -
OT Quat..- Ouatemslan

ou Guam Americsn -
<NV G\fta.Bisseu Guinean A

Figure 5.28 ALV Table with My Button

In this section, you learned how to integrate ALV tables in your compo
nen t and how to configure these tables according to your requirements.
For example, you can now show and hide columns, change the associ
ated column header, and create your own functions or buttons. The basic

Creating an event
handler

Testing the
application

5 I Web Dynpro Standard Components

ALV knowledge you have acquired so fa r is the ideal preparation for you
to effortlessly delve into other areas of the ALV component.

5-3 POWER List

The Personal Object Work Entity Repository List, generally known as POWER
lise and previously referred to as POWL (Personal Objects Worklist), repre·
sents a comprehensive and flexible Web Dynpro framework for manag
ing queries with results lists that are based on any kind of data. You can
create the queries either in the Customizing section of the POWER list or
directly from with in the POWER list. The data is transferred fo r display
in a POWER list via interfaces that are implemented in the system.

Examples of use You can use the POWER list for searching any data and for d isplaying
data in a table. For example, you could use it to list all sales orders that
exist in a system. Transactional users can use different pre-defined que
ries to view open orders in the system, orders that are currently to be
picked, or closed orde rs. In addition, transactional users can create cus
tom queries with more sophisticated search criteria for the sales orders .

The following sections describe the functions of the POWER list in the
system so that you can identify potential ways of using them in your
own projects. (Note that we deliberately avoided covering the technical
details of the POWER list framewo rk.)

5.3.1 Example: Defining Custom Queries

Readers who have already participated in an SAP training will be famil·
iar with the SAP flight data model and the SF LIGHT database tab le. This
tab le contains fl ight connections, including departure times, airfares, and
aircraft types. The following example uses the SFLI GH T table for demon
strating the usage options of the POWER list. For this, SAP provides the
demo component POWL_EASY _DEMO.

After you have started the powl _easy_demo sample application of the
POWL_EASY _DEMO component, an empty POWER list appears, as shown in
Figure 5.29. Wi th a little bit of customizing, you can also easily display
previously defined queries.

»

Query Maintenance

Define New Query Personaize

Figure 5.29 Empty POWER list

Click on DmNE NEw QuERY to create a new query. A roadmap opens
that consists of three steps to define the query. In the first step, you must
select an object type. The object type indicates on which data source -
that is, on which feeder class- the new query should be based. The avail
able object types are stored in the Customizing section of the POWER
list. In our example, as shown in Figure 5.30, we selected the only avail
able object ty pe, EASY-POWL DEMO. This type is based on a query of the
SFL I GHT database table.

"Qo<Sl ~ Easy-90WI. Demo I 1 ~ • ~ • Q · @ Paoe • .1 Tool$..
»

Define New Query ,L

I+ ~ 0 3 ~-~
Seleet Object Type Malrtail CA:erla Flmh

Sdetl OO)jecl Type: [E!sy.PQM. o. ... H
Select an existing query ef • terrPete; []::J

G: PreviOUs II Ne>rt •ll C«leel I

~ rrrrll(qLocaliOOanet I ""- too% • d

Figure 5.30 Selecting an Object Type

Click on NExT to configure the search criteria of the query. The avail
able criteria can be stored in the Customizing section of the POWER
list. Figure 5.31 shows the criteria maintenance for object ty pe EASY
POWL DEMO. Here, you can configure AIRLINE, CONNECTION NUMBER,
and FLIGHT DATE. Click on CALCULATED DATA to maintain rolling date
horizons fo r date fields (for example, the next three days).

POWER list I 5.3

Step 1 -
define query

Step 2-
maintain search
criteria

5 I Web Dynpro Standard Components

Step 3 -
finish query

Main view of the
POWER list

I I (.} . 1.11 • IIi . I') POQe • J Tools • »

Oefine Hew Query IL
--------'.

1+---1 1 t------1 2 t------1 3 -1
Select Object Type Maintain Criteri-a Fllish

AlrUne: 0 I LH lljJ To I fdl (?

l!ll ~
lm 9

CclMeCticn,""" 0 :=1 =~l!l~l To :=1 =~:,
Flgt-< 001~ 0 I lltii To Cl ===Ei
I Preview I Crlerio Per§OM!jzahon

L• Pr<Mous II_, iJ I c"""" I

pone rrrrrrf\1 Loc•li\t<onet
Figure 5.31 Defin ing Custom Queries

r
I "' uJo"4 • u.

In the fi nal step, you can enter a description for the new query and also
categorize it. Figure 5.32 shows the almost completed LUFTHANSA query,
which should be integrated in the newly created MY FAVORITES category.
Click on FINISH to save the new custom query.

Oef'lne Hew Query

1+-- 1 f-------1
Select Obtect Type Mei"iein Qleria Finish

fnler Ouety Description: • .,ILu"'ft'-'""""''"'"--------..J
Acttvote Query, (;?)

~~M~.~~~~~~~---·~·~Io~.=.,~.~~~c~ .. ~~~y l

•
rrrrrri\ILoc•lroonet [lit I 00"4 • H.

Figure 5.32 Finishing the Query

Next, the system returns you to the main area of the POWER list, where
the upper area now displays the list of available queries (see Figure 5.33).
Currently only one item is available because you defined only one query.
The lower area displays the results table of the POWER list. This is a fully
functional ALV table. You can now configure additional POWER-list-spe-

320

cific settings between the list of available queries and the ALV table. For
example, you can retroactively change the search criteria of the query or
modifY the layout of the POWER list.

Acttue Quertet:

My feuoritc.s lufthens& (@

My favorite• • Lufthansa

I Pop!.!) after Action I Fjj;er
' Setlings

8 Ai'lile F19i Number Dele Airfare AHne Currency Plane Type •
~

LH 400 28D2.1995 899.00 DEM A319
1--

LH 45< 17.11 .1995 1.499.00 DEM A319

LH 455 0600.1995 1D90.00 lJS() A319

LH 455 31.12.1996 1.919.00 DEM OC.10..10

LH 21.0S.1997 sss.oo DEM A319 • ~~
-·~ [!]

Last Refresh 24.85.2G09 15:14>58 Cfl Refre.sb j!d

rrrrrrl\ILcxa1 Wronet

Figure 5.33 Lufthansa Flights Displayed in a POWER list

POWL vs. Easy-POWL

The sample application used here is based on what is called the Easy-POWL.
The Easy-POWL is a POWER list extended by additional Customizing for the
table columns and toolbar buttons. It facilitates the maintenance and pro
gramming of queries considerably. Therefore. it is advisable to always use the
Easy-POWL when you want to use the POWER list.

POWER list I 5.3

Finally, you should be aware of the following important aspect: POWER Updating the data
lists are based on queries that can be executed at firmly defined points in
time. Thus, they always indicate the status of the data source at a specific
point in time. You can trigger an update of a query at any time by click-
ing on REFRESH below the table on the right.

321

5 I Web Dynpro Standard Components

Technial details

POWER list

Technical details
Easy-POWL

5.3.2 Additional Information

The POWER list is based on the POWL_U LCO~IP component, and all admin

istration of the POWER lis t takes place via Customizing. The most impor
tant transactions for implementing the POWER list are POWL_ TYPE.
POWL_QUERY, POWL_CAT, as well as the two transactions POWL_

TYPER and POWL_QUERYR. To create a database query, you must inte
grate the 1 F _POWL_FEEDER interface into your implemented classes. This

interface enables all communication between your application and the
POWER list.

If you want to use Easy-POWL, you can integrate the POWL_EASY compo
nent instead of POWL_U LCOt1P into your components. Easy-POWL pro
vides Transaction POWL_EASY, which allows for configuring table col

umns and tool bar buttons. The IF _POWL_EASY _FEEDER interface enables
your applications to communicate with Easy-POWL.

You can find additional information about us ing and implementing
POWER lists in the SAP Developer Network (http.//www.sdn.sap.com) .

5-4 Summary

This chapter has comprehensively covered the topic of multi-compo
nent architectures and standard components. You should now be able to

establish a network between your components using component usages.
Moreover, you have learned about the SALV_WO_TABL£ component, which

enables you to display nodes in tables.

Chapter 6, Input Helps and Semantic Helps, will describe input helps

and semantic he lps, along w ith the different options that are ava ilable
to implement input helps. Other important aspects discussed in this
chapter include the Object Value Selector (OVS) and SELECT · OPTIONS

components.

322

Input help for a Web Dynpro application is crucially important
for accepting and reducing incorrect entries made by the user.
Web Dynpro provides a broad range of input help. This chapter
therefore deals with implementing available input help concepts
and semantic help in Web Dynpro.

6 Input Help and Semantic Help

Input help in a Web Dynpro application has many different effects for a Usage

user. It improves user-friendliness, increases operating speed, decreases
input errors made by the user, and reduces hotline support costs. Web
Dynpro provides a broad range of options for implementing input help,
grouped into two large categories:

"' Selection options
Selection options provide the user with a predefined number of select·
able values. This number of values may originate from the ABAP Dic
tionary or may be created by the developer at runtime. The user can
only choose from this predefined set of values. The range of values is
generally very low.

"' Input help
Input help, in contrast, represents complex selection methods. The
number of values is significantly higher than for selection options.
For this reason, a multilevel selection procedure is also used. The
most well-known help in the input help category is search help.

When choosing values, under certain circumstances, the user must be semantic help

supported by help texts and additional information. Web Dynpro pro-
vides many different technical options to offer the user support in the
form of content, ranging from brief help texts to detailed documenta·
tion texts. We will introduce these different semantic help options in this
chapter.

323

6 J Input Help and Semantic Help

We will use examples to present our explanations on the different
options. Our first focus will be on implementing selection options. This
will involve discussing known dropdowns, radio buttons, checkboxes,
list boxes, and the less well-known TriStateCheckBox element. For the
input help, we will show you how to set the input help mode to be
used when working with context attributes. We will also explain which
technical tools you will need for implementing a mode. We will pay par
ticular attention to the Object Value Selector and Select Option, which are
both provided by reusable Web Dynpro components. We will end this
chapter by discussing the use of semantic help for providing additional
information while using the Web Dynpro application.

You can use the dynamic class browser (the Web Dynpro component
from Chapter 3, Developing Web Dynpro Applications) for the practical
exercises.

Topics Discussed

We will discuss the following topics in this chapter:

• Selection options

• Input help

• SELECT -OPTIONS
• Semantic help

6.1 Implementing Selection Options

Ul elements In this section, we will present the options available in Web Dynpro
applications for providing the user with a set of values and being able to

display them. We will describe the following UI elements:

• DropDownBylndex/ DropDownByKey

• RadioButton/ RadioButtonGroupBylndex/ RadioButtonGroupByKey

• CheckBox

• CheckBoxGroup

• ItemListBox

• TriSta teCheckBox

324

Implementing Selection Options I 6.1

6.1.1 DropDown

OropOown UI elements are r.he first category to make predefined selection 1 from n

options available to users. They offer a list of values from which one
entry can be selected. This type of selection is known as 1 from n because
one entry must be selected from a set of values. This also means that in
any situation, one of the entries is selected.

A OropDo•m list consists of r.he following graphical components: a text
field, a button, and a selection list. An already selected list entry is dis·
played in r.he text field. The list of all possible values is displayed when
the user clicks on r.he button.

Two versions of OropDo,•n selection options are available, as follows:

~ DropDownBylndex

~ OropDownByKey

These two options do not differ in the way they are displayed but in the
way they are integrated into the context.

DropDown·
By Index,
DropDownByKey

In r.he case ofr.he OropOOI•nBylndex UI element, the UI element is bound DropDownBylndex

to a context attribu te in a context node containing a number of ele·
ments (n cardinality upper limit). The elements define the entries in the
OropOown list. The selected element corresponds to r.he lead selection of
the node and the lead selection changes when r.he user selects an entry.
We already defined ice cream flavors in this manner in Chapter 2, Web
Dynpro Architecture. Therefore, we have kept the descriptions in this
chapter brief.

onSelect event

One more comment: select ing a value does not necessarily resu lt in an HTTP
roundt ri p. This happens on ly if an act ion was defined for the ONSELECT event.
The data stored in the context does not change when the user selects a
value.

Selection list values are determined for the OropDo•mByKey UI element DropDownByKey

using attribute information in r.he node information; you have already

325

6 J Input Help and Semantic Help

DropDownByKey
with domain fixed

values

Including a new
attribute in t he

context node

seen th is in Chapter 4, Dynamic Web Dynpro Applications. The node
information you can determine fo r a node describes this node. This
description contains all of the information specified when the context
node was defined. This naturally also includes attribute information.

The list of values can be generated in two ways:

.,. Domain fixed values

... Implementation

If the attribute was typed using a reference to an ASAP Dictionary
data element with domains, the texts for the domain fixed values are
displayed.

The following example shows you how you can use the DropDownByKey
UI element to arrange selection options. The user can choose the visibil
ity of ASAP class methods. A suitable data element for this is SEOEXPOSE,
which references the SEOEXPOSE domain with fixed values of o (Private).
1 (Protected). and 2 (Public).

The context requirement to be able to use the DropDownByKey UJ element
is an attribute with an ASAP Dictionary reference to a data element that
references a domain with fixed values. This means that you have to cre
ate an attribute for a context node; for example, CLASS_SEL_CRIT. This is
typed with the ZST_03_WD_CLASS_SEL_CRIT ASAP Dictionary structure.
To learn how to add an attribute to an ASAP Dictionary structure and
copy new additions into the context of the Web Dynpro component. you
will now change a structure:

1. Add the SEOEXPOSE- type VISIBILITY_METHOD to the ZST_03_WO_CLASS_
SEL_CRIT structure. Use the ASAP Dictionary (Transaction SE11) to do
this. Do not forget to activate the structure.

2. Switch to the component controller of the zwoc_03_CLASS_BROWSER
Web Dynpro component and include the new component from the
structure as an attribute in the CLASS_SEL_CRIT context node. In the
context node properties. a button for inserting new attributes from
the structure is available on the right-hand side, next to the input field

326

Implementing Selection Options I 6.1

for the DICT'IONARY STRUCT'URE property (see Figure 6.1, 0). Click on
this button to display the dialog box fo r selecting components.

Component Conlr*r COIIPQflUITCOifTROLL(R ln.(M(r""st<l;l

f>fOpel'llet COtllt:CI AD'Itlulet evenrs: Mrt~~OCis

(Q COIWOIIfUUJQt

C~COWPONENTCONTR<lt.LER

RTy ... companent Type Data Type
SEOCLSNAME CHAR
SEOPESCR CHAR

NocltName SEOEXPOSE
lnttr1.ltt f40<It

Input arne,. (&1)

Dirtonarr slrutture
CMOin .. uty
Stle«<on

1 1

01
ln"'Mi:allon LUO Stltdlofl .,
Slnglokln ..,

Figure 6.1 Changing an ABAP Dictionary Structure and Copying the Change to the
Context

3. Copy the VISIBILITY_METHOO component. Select the component row
to do this and click on the button with the green checkmark to con
firm your entry. This makes the VISIBILITY_METHOO attribute avail
able in the CLASS_SEL_CRIT node for further use (0).

4. Update the mapping for the CLASS_SEL_CRIT context node in the Updating mappi ng
v_CLASS_SELECTION view so that the new attribute can also be used
there.

5. Switch to the LAYOUT tab for the V_CLASS_SELECTION view. You can
display the selection options by creating a OropOownByKey UI ele
ment. Call this new Ul element DDBK_VIS_~IETH . Bind the SELECT'EDKEY
property to the VISIBILITY_t1ETH00 attribute of the CLASS_SEL_CRIT
node, as you can see in Figure 6.2 (0). Also, set the ~latri xData value
for the LAYOUT DATA property (0). This makes the texts for domain
fixed values available as seleclion options.

327

Creating the
DropDownByKey
Ul element

6 I Input Help and Semantic Help

· r LS_VIS_MElli
~ OOBK_VIS_METH

Property jvalue JBinding

Prooe!ljes CQroopoymByt<ey'J
ID DOBK_VIS_METH

Layout Data t.tatrW)ata iD

setectedKey V_CLASS_SELECTIO fill
state Normatltem ill
textOirectlon lnherl1 ill
toottlp
visible None iii
width

Figure 6 .2 Label and DropDownByKey Ul Element

Testing 6 . Activate all changed objects and test the Web Dynpro application.

Implementation for
DropDownByKey

get_child_node()

Your result should correspond to the one shown in Figure 6.3.

(; Cl~~ Orow~er - Wmdows Internet [Mploter

~ @' • Jl!l l"<to:/1

-a- ~Class,......,.

El
"" 100% • "'-

Figure 6 .3 Expanded DropDownByKey Ul Element

When using this technique, you mus t make sure that selecting a value
in the DropDo•m list only resu lts in an HTIP roundtrip if an action was
bound to the ONSELEcr event. Unlike DropDownBylndex, the lead selec~
tion does not change when you select a value. The element data stored
in the attribute is overwritten by the key value relating to the selection.

As already mentioned, selection list va lues can also be generated by
implementation during run time. Listing 6.1 shows the implementation
for this option:

"' The first step involves determining the reference to the context node
containing the attribute for which the set of values should be set.

328

Implementing Selection Options I 6.1

"' The get_node_info() method then determines the information node get_node_info(J
using the context node reference from the previous step.

"' The values to be displayed are compiled in an internal table with the
WOR_CONHXT_ATTR_VALUE row type. In this example, the internal 1 t_
va 1 ue_set table was defined using TYPE TABLE OF WOR_CONTEXT_ATTR_
VALUE and then populated row by row with the required values.

"' Finally, the attribute values are set with the set_attribute_val ue_
set (l method using the node information reference. When the
method is called, the name of the attribute and of the internal table
must be transferred.

~IETHOO setctx_view_meth .
* Reference to the node
DATA : lo_nd_class_se l_crit TYPE REF TO

if_wd_context_node .
* Reference to the node information

lo_nd_class_sel_crit_info TYPE REF TO
if_wd_context_node_info,

* Values to the selection option as an internal table
lt_value_set TYPE TABLE OF wdr_context_attr_value .

* work structure
ls_value_set LJKE LINE OF l t_value_set .

* Navigate to <CLASS_SEL_CRIT> via lead selection
lo_nd_class_sel_crit = wd_context->get_child_node(

name= wd_this->wdctx_class_sel_crit) .
* Retrieve the information for the node
lo_nd_class_sel_crit_info =

lo_nd_class_sel_crit->get_node_info() .
* Set the value
*All
ls_value_set-value = ' 3'.
ls_va l ue_set-text - 'Al l ·.
APPEND ls_value_set TO lt_value_set .

* Set the value set in the description object
lo_nd_class_sel_crit_info->set_attribute_value_set(

name • 'VlSJBJLITY_METHOO '
value_set = lt_value_set) .

ENO~IE THOO .

Listing 6.1 Defining Sets of Values for an Attribute Through an Implementation

329

set_attribute_
value_set()

6 I Input Help and Semantic Help

The result of the implementation is shown in Figure 6.4. Note that we
used the same attribute as before but in this case, the info rmation object

for setting values was used.

<II ~ ~Closs Brows ...

Ol>jectTypeNarne: Ja. GUI__AL V GRID • •
l\leiOOdktlct

Method \'isibiiHy:

Instance- and Class MethOds

Private ~

AI ,_/

Private

Protected

1'\lble

»

I jgJ AL V Llsl VIewer

~ ~

joooe r-r-r-r \I toea intranet
c

fit;. IOO% • ,i

Figure 6 .4 Expanded DropDownByKey Ul Element with Dynamic Values

6.1.2 RadioButton

Usage A Radi oBut ton UI element represents a UI element with two statuses

that can be displayed using a set button or an empty button. An example
of a group of RadioButton e lements is shown in Figure 6.5. To group
the elements visually, a Group UI element was used into which four

Radi oButton UI elemems were placed.

The grouping of these Rad i oBu t ton elements is the resu lt of data bind

ing on the con text attribute used before , fo r which the SELECTEDKEY
RadioBut ton property was used (8). You set the RadioButton if the

SELECTED KEY property value contains the value of the key belonging to
th is selection button. which was defined using the KEYToS ELECT (0). The
TEXT property determines the text for the RadioButton (0).

330

Implementing Select ion Options I 6 .1

• O~_VI$_114ETHOO_R9

T CAPTION (Header!
0 RB_VlS_ALL

Group

Visibiliey Of MethOd (RBG)

Matro:HeadOata ttl
f" AI r. Privete r Pr«eded (' N:>tc

enabled
e:q,lan-etlon

1~:::~~~·<1 0
setectedKey f)
s.tate e

3

Data
"'

Contellt V _CLASS _SELECTION
• QCONTEXT

• I&) CIASS_SEL.,CRIT
.. ~ METHOO_t<INO

• 'b VM.UE
· 'b TEXT
'b NAME_CIASS

lte><1Direction rnherf1 e l----1 Binding
'-----"-t.!:::::±.l

Visible "

Figure 6.5 Group of RadioButton Elements

A maximum of only one element can be selected (1jrom n) from a group
of Radi oButton elements. Unlike the RadioButtonGroupBylndex and
RadioButtonGroupByKey UI elements, where RadioButton elements are
arranged in rows and columns, you can place individual Radi oButton ele·
ments anywhere in the layout. Figure 6.5 shows that the ALL Radi oButton

is displayed in the first row and the three other radio buttons are dis·
played in the second row.

The Radi oButtonGroupBy Index UI element represents a set of Rad i oButton

elements in rows and columns. Radi oButton UI elements are arranged
in one column in Figure 6.6. This is controlled by the COLCOUNT prop·
erty (0).

The user can choose exactly one element from this set of Radi oBut ton

elements. Through data binding, the TEXTS property of the UJ element
(8) is bound to an attribute in a node containing a cardinality with n as
its upper limit. A RadioButton is displayed for eve1y node element for
Radi oButtonGroupBy Index. The lead selection of the context node is used
in context programming to determine the selected Rad i oBut ton.

331

Layout of
RadioButton
elements

Rad ioButton
GroupBylndex

6 Input Help and Semantic Help

• 0 O_KINO_MElHOO
T CAPTION_KINO_MEn..OO
• RBGI_KINO_II"ETHOO

Value
Proogdjes (Radjo8uUooGroyp£ModeX)

Binding

Group
Visillil~ ol Method (R8)

r ..
Kind ol Method

I()

LayOut Data

.atees.sibl111y()e&e-rlption

at!NaiWtenKey

r. hstanc:e. ancJ Chss Meti'IOds

.t---------~--~--------------~~~rn~~~s
RBGI.ft'IO.ME RadioButtonGroupBylndex ro.,......,...
MalrixHt.adOa1a

tOICOunl 0
eontextMenuSihaviOUI'
eonte~CtMemJid

&ntlblid

1

0 readOnfV
setettionChangeBeha~our auto

iil .----1' Normal nem ttl slate ..,..
te):%()Jrection
aooltip
visible

width

V_CLASS_SEL_MULT

lnh:erll Ia >----1
Visible

Data
Binding

Contexl V _CLASS_ SELECTION
• QcoNm<T

• lil:) Ct.ASS. S€l_CRIT
• (i) METHOO_KINO

· 'b VALUE

' • TEXT
'b NAME. ClASS
'b OESCR.CUISS
'b VISI81U1Y_METHOO

Figure 6.6 Using RadioButtonGroupBylndex Ul Elements

RadioButton
GroupByKey

As you can see in Figure 6.7, the SELECfEDKEY property for a RadioBut·

tonGroupByKey UI element is bound to a context attribute (0) containing
a set of values, for example, domain values from the ABAP Dictiona1y.

T CAPOON_VIS_METH_RBO
~ f RBGK_ VIS III.ETHOO

10

L$YOUI Osta

aceessibilltfl)u-crlptlon

RBOI<_VIS_METHOD

RowHe3dOt~l81 ill

actft'iteAtetuKey fl
COICount 0 4

conteo:d:MenuBehariour Inherit
contextMenutd
enabled
readOnry

selectedKey

s1ate
tex10ireclion
IOOltip

q

RadioButtonG '• ,.,,..... ondO..• .. + ..
(" Nitw~ee Mtthelds

(' O!ISS Meii'IOIH

Yi•ibility ot Method (MG)

Data
Binding

(' M r. Prt.'tlte (' Protected (' Nlk

Contelct V _ ClASS_SELECTION

• 0 CONTEXT
• lliJ CUISS.SEl_CRIT

• G) METHOD _f<JNO
· 'b VALVE

· 'b TEXT
'b NAME.CUISS

Figure 6.7 Using RadioButtonGroupByKey Ul Elements

332

Implementing Selection Options I 6.1

For a RadioButtonGroupByKey, a RadioButton corresponding to the
layout defined in the COLCOUNT property (0) is then displayed for
every individual key. If a RadioButton is selected, the relevant value is
returned to the context attribute and can be determined using context
programming.

6.1.3 CheckBox

You use a CheckBox Ul element to implement the concept of an individ·
ual on/off switch in the form of a checkbox. A CheckBox enables the user
to select a Boolean value, whereby the set CheckBox represents the ABAP _

TRUE value and the unset CheckBox represents the ABAP _FALSE value. The
CHECKED property is used for binding data to a context attribute (see
Figure 6.8, 0).

T CAPTION_C:9 !Header) Group
~ CB_VIS_PUBUC

CS .. VIS .. PUBUC
I...,OV1 Oala MatrixHeadOala ii

lnhen1 ill

0
Normal Item at '---)
Publte 1

lnhertl m ,__.-I
Visible m ,__.-I

Figure 6.8 Group of CheckBox Elements

Data
Binding

Context V _CLASS _SELECTION

• Q CONlCXT
' ii£l CV.SS_SEL..CRIT

The UI element consists of a graphic with relevant text that you can Text and graph ic

determine using the TEXT property (0). A check mark in the graphic indi·
cates that the option was selected and the value set to ABAP _TRUE. The
selection made by the use r is stored in the bound context attribute.
which you type using the ~lOY _BOOLEAN type, for example.

333

6 I Input Help and Semantic Help

6.1.4 CheckBoxGroup

m from n The CheckBoxGroup UI element enables the user to select an element from
a set of predefined alternatives by ticking a checkbox. This is referred
to as an m from n selection. The CheckBoxGroup UI element arranges the
individual CheckBox elements in one or more columns in a table (see Figure
6.9).

T CAPOON_ceo (Heade-11
: CBG_KIN[;_METHOD

Prooertjes CCbed<8ox(trouo)

10 CBO_KIND_METHOD
Layout Data MaiTixHudOata iD

G

Visibility ot Method (C8)

~1\dc ~Protected OPriv~e

Visibility ol Method (CDG)

ondO.S.-

at(essitlitity()e seriplion

aetrva:eAce>es~
eotCoum
tOf'lt€0SMenuBeha-.iour Inherit

n
.---1

CheckBoxGrou

en!lblt4
reiU:iOnly
s-tate
texiS f)
taxtDhectlon
tooltJp

•• TEXT

VISible

Figure 6.9 Using CheckBoxGroup Ul Elements

A node with the n cardinality upper limit must be made available for
a CheckBoxGroup. One of the context node attributes bound using the
TEXTS property (0) returns the texts for the CheckBox elements. You
can standardize the attribute with any simple data type such as Stri ng,

i nt, and so on. You can define the layout of the checkboxes using the
COLCOUNT property. It controls how many checkboxes are displayed per
row.

You can choose from two options to set a CheckBox in a CheckBoxGroup.

The first option uses the reference to the context node; the second the
reference to a context element.

set_selected() " You use the set_se 1 ec t ed< l method from the I F _HO_CONTE XT_NODE

interface to influence the status of CheckBox elements in the group

334

Implementing Selection Options I 6 .1

through the context node reference. An example of this method is
shown in Listing 6.2.

* Node reference
DATA lo_nd_<node> TYPE REF TO if_wd_context_node .

* Determine node reference
lo_nd_<node> =

wd_context->path_get_node(path = <path>) .
* Delete the selection using the lead selection

lo_nd_<node>->set_selected(
flag • ABAP_FALSE

index = if _,.d_context_node=>USE_LEAD_SELECTI ON >.
* Set the selection using the index
lo_nd_<node>->set_selected(

flag • ABAP_TRUE

index = 2 >.

Listing 6 .2 Setting a CheckBox Using the Node Reference

You determine the context node refe rence using the path_get_node< >
method. The CheckBox belonging to the lead selection is deselected
the first time the set_sel ected(> method is called. The second time
the set_se 1 ected < > method is called, the element on index position
2 is marked as selected. This results in a se t CheckBox being dis
played.

"' To set the status of a CheckBox using an element refe rence, you use the set_selected(>

set_se 1 ected< > method of the IF _IW_CONTEXT_ELEMENT interface for
the relevant context e lement.

There are also two options ava ilable for read ing selected CheckBox Reading t he

elements: the get_selected_elements() method of the IF_WD_CON · selection status

TEXT_NODE interface - th is method is used on node references - and the
i s_se 1 ected (> method of the IF _WD_CONTEXT_E LEt1ENT in terface - this
method is used for the element reference.

6.1.5 ltemlistBox

The I teml is tBox Ul element is similar to the classic G UI concept of
a selection list with s ingle and multiple selection (l ist box; see Figure
6.10).

335

6 J Input Help and Semantic Help

A list of text entries is displayed in a box of a fixed size (VISIBLEITEMS

property, 0) through which you can also scroll , if required. For the val
ues. one column (TEXT property. 0), [WO columns (DESCil iPTIVETExT prop
erty). and perhaps also a column for icons (ICONSOURCE property. 0) are
displayed before the value column.

Behavior In the case of a single selection (MULTIPtESELECTION property set to ABAP _

FALSE, 8), the selected entry is determined by the lead selection of the
context node integrated by the DATASOURCE property (0). The SELECTION

CHANGEBEHAVIOR property is adhered to when the user changes a selec
tion. With a multiple selection (MULTIPLEStLCCriON property = ASAP_

TRUE), the selected entries are determined by selecting the DATASOURCE

property only; SELECTION(HANGEBEHAVIOR is ignored in this case.

T CAPTION_KINO_METHOO_ILB [He-ader)
• tlB_KINO_METHOO

Propertigs l!!emUs!BoX)

10
aeli'lateAttessKey
eont.mMenuBehaviour
C0nt9)2Mtnuld

tool'lip

ILB .. KIND ... METHOO

n
Inherit Q

Visible

0 3

Grou

Item ListBox

Figure 6.10 Using an ltemlistBox Ul Element

IGnd of Mc:thod (l.B)

t Nttw~Ce· enct O.,s Meerwxts .

t (..................

Selection The user can select several entries from the list by holding down the
I Shi f t I or I Ctrl) key and clicking the required entry.

336

Implementing Selection Options I 6 .1

6.1.6 TriStateCheckBox

The Tri StateCheckBox UI element is similar to a CheckBox but differs in
that the clicked status is variable (see Figure 6.1 1).

Tri StateCheckBox can have three statuses:

.,. CheckBox can be activated (selected). With this, a checkmark is dis·
played in the checkbox for the user.

.,. CheckBox cannot be activated (selected). With this, an empty check·
box is displayed for the user.

.,. CheckBox is unspecified . With this, the user can decide whether to set
this CheckBox. A normal checkbox does not know this third status and
an asterisk is displayed in the checkbox for the user.

... D GR_REOEF _METHOD
T CAPOON_REOEF _METHOD
+ TSCB_STATIC

Proper1y Value
Ptooertin Cir!S1ateCheok8c»Q
10 TSCB_STAnC
L~vtOata MatrbtleadOata

actwa~eAl.tessKey

cheC'I<ed 0
cont~mlltenoSehawour

C'
v_ctASs_set._• uum
Inherit 9

cont.mMenutd
enabte4

exPlanation
reaaOnly 0
S1ate Norm~l ltem Q

IQX1 e Redefined methOdS
textOir&cliOn
100itlp

'ois:lble

h'lh8rll

Iii

Group
Redefined method

OlrMting

~Redefined methods

TriStateCheckBox

• 0 COt<TEXT r:=t'D iittl > @ ClASS_SEL_CRIT 1- a a , lil Vls_ce
Binding : 'b cHECK

"• REDEfiNED

Property I ValUe
A.1rlbute
A."ltibute Name REOEFINEO
Type assignmenl Type ill
TY!Ie WOUI_ TRI_STATE
Read-onty r
OefauftValue
Null Value n
rnput Help MOCI-e Automa!ie ill
Oeterminea lnpul Help WOVI_ TRI_STATE

TVPe Oflf'ICKJI Help FIXed values tof domains

Figure 6 .11 Using a TriStateCheckBox Ul Element

You bind the UI element to a context attribute us ing the CHECKED Typing

property (0). Yo u can type the context attribute using the l40U T_TRT_

STATE runtime type in Web Dynpro. This data element references the

337

6 I Input Help and Semantic Help

Differentiation
with selection

options

WOUI _TRI _STATE domain with the following three fixed values, which can
be used for analysis purposes in context programming:

.. 00

for undecided

.. 01

for true

.. 02

for f~lse

Like CheckBox, you specify the name for Tr i StateCheckBox in the UI
us ing the TEXT property.

6.2 Input Help

In this section, we wi ll discuss one of the greatest assets of Web Dyn
pro, input help. Its strength lies mainly in reusing objects from the ASAP
Dictionary. For developers, this means a lot of time can be saved when
implementing requirements. At the same time, it affords the user maxi
mum convenience.

The idea of input help is to enable the user to choose a va lue from a
number of possible values. The diffe rence with the selection options
discussed in Section 6.1, Implementing Selection Options, is that the
user does not have to but rather is able to choose from a predefined set of
values. It is therefore up to the user to decide whether to use the input
help for entry purposes.

Note

Search help o r F4 help are ot her terms used for t he term "input help."

Types of input help If the user is not restricted to selecting one value from a set of values, but
is instead supposed to be able to enter values as he wishes, the Input·

Fie 1 d UI e lement is the correct choice as the input medium. The input
help must be integrated on this field. The d ifferent types of input help
available for input fields are:

338

"' Search help

"' Check table

"' Domain fixed values and fixed value area

"' Date selection

"' Self-programmed input help

Input Help I 6.2

In the INPUT HELP MODE property in the context attribute properties, Input help mode

you can implement which input help setting should be used (see Figure
6.12). Five different values are available for the INPUT HELP MODE prop-
erly. We will discuss these in deta il in the following sections. Selecting a
particular mode will influence which additional fields will be provided
for entering or displaying data.

1:::Name
Type assignment
Type
ReacJ..onty
Oefau11 Value
Null Value
lnpu1 Help MOde

formatting ~~~~~=~=~~~~~!:~ compression

l-~--J~~:~~;;;;;~~~=~~Inpu1 Help Mode Input Help Component usage

Figure 6.12 Different Input Help Modes

As a result of the mode selected for the corresponding I nputFi e 1 d, the Activating help

Web Dynpro framework automatically generates and implements the
specific icon the user will have to use for ca ll ing the input help at run-
time. At the same time, the [IT) key is also automatically available for
call ing the input help.

The icon to show that search help exists (see the Search Help box) is
always the same, regardless of whether the help is search help from the
ABAP Dictionary, OVS search help (Object Value Selector), or freely pro
grammed search help.

339

6 I Input Help and Semantic Help

(ABAP Dictionary) Search Help

An input help mechanism known as search help is provided at the input field
level in the ASAP Dictionary. This search help is an encapsulated function
used for selecting and finding values, as you can see in Figure 6.13.

In this case, values entered by the user into an input field (also using * and
+ wildcard characters) can be t ransferred to the search help through the im
port parameter. Based on the selection method defined in the search help
(transparent table or view), the data in the database system is selected and
presented to the user as a hit list. If the hit list exceeds a certain number
of hits (100), an intermediate value selection dialog can be shown th rough
search help customizing.

If the user selects a specific value, it is placed into the input field(s) by the
export parameter.

Figure 6.13 Structure of ABAP Dictionary Search Help

6.2.1 Input Help Mode: Deactivated

As the name suggests, the input help is deactivated. An I nput Fi e 1 d with
out any indication of input help - in other words, no icon or [IT) key
function - is provided for the user.

6.2.2 Input Help Mode: Automatic

In the AUTON\ATIC input help mode, the Web Dynpro framework decides
which input help should be used. The search for input help is run at

340

development time. The search algorithm used here is developed as

follows:

1. If the context attribute was standardized using a field from a structure
type and search help integration exists for this field in the ABAP Dic

tionary, this search help is used (see Figure 6.14):

~ The NA14 E_C LASS attribute was typed with a component from an
ABAP Dictionary structure (0).

~ This ASAP Dictionary component has an explicit search help inte

gration that is found by the A UTOMATIC input help mode (0) (SFBE •

CLNAME. 0) and is classified correctly as search help by the Web
Dynpro framework (0).

~ The input help type found controls that an input help icon is dis

played for the I nputField Ul element that binds the NANE_CLASS

attribute through data binding (0).

~ By selecting the icon or pressing the [E) key. the user can activate
the search help (0), search for a value, and select the found value

to place it into the Input Field (0).

Oi!llnli"te'tecle; (wJ[ZO..' J ~
SJw)tcle;s(r~ 0 ¢

gRMSI'iCI~OI VM~e\.1# &*iN T• 5100

Sf9EOLNAAIE
I ,.,II...., I

• Desai*'•

Input Help I 6.2

Integrating search
help

........ .

Assctonc:e OMs tor &«_03_<t..ASS_ .

Class Neme: •

Figure 6.14 Search Help Found Automatically as Input Help

2. If search help was not found, the Web Dynpro framework checks Check table

whether a foreign key check was defined for the component or a
field from the ABAP Dictionary. If one was defined, the Web Dynpro

341

6 J Input Help and Semantic Help

Search help for a
data element

framework checks whether search help exisLS for the check table. If
so, this search help is displayed; otherwise, the key fields of the check
table are displayed with descriptions if a text table was defined for
the check table.

Figure 6.15 shows how the NAt1E_CLASS attribute was typed with a
component from an ABAP Dictionary structure (0). This ABAP Dic
tionary component has a foreign key check that was found by the
AuTOMATIC input help mode (9) (SEOC LASS, f)) and classified correctly
as a check table with a text table by the Web Dynpro framework (0).

NAME_ CLASS

ObjectTypeName: ZCL_03 _A_ CLASS _BROVVSER

Figure 6.15 Check Table with Text Table Found Automatically as Input Help

3. If a foreign key check was not found, a search for possible search help
is run for the data e lement in question in the ABAP Dictionary. If a
search help is found, it is used to define the input help. The search
result for automatically determining the search help is presented like
the search help for fields.

What is the difference between search help at the field level and at the
data element level? If search help is integrated at the field level, other
structure fields can be taken into account by the search help impott
and export parameters; data can be included in the search help and
delivered to fields. This is known as search help context and is not pos
sible if search help is bound to the data element.

Default values 4. With the next search option, the Web Dynpro framework checks
whether fixed values or fixed value areas exist for the domain in ques-

342

tion. In Figure 6.16, the vIS I BILl TY _t·1ETHOD attribute was typed with
a component from an ABAP Dictionary structure (0). This ABAP Dic
tionary component has an ABAP Dictionary domain that was found
by the AUTOMATIC input help mode (f.)) (SEOEXPOSE, E)) and classified
correctly as FIXED VAlUES FOR DOMAINS by the Web Dynpro frame·
work (0).

VISIBILITY _METHOD

r,. ZST_03_WD_ClASS_SEL_CRfT.VIS19lUTY_ItETHOD

Oefaunvarue Pt~

topUI Help Mode

Oe-rmined fnput

Type of Input Ht!p

AuiOmillc

G SEOEXPOSE
Fllt<lvatuts fOr IJOtnlllnt

Visibility:

,._

0

Figure 6.16 Fixed Values for Domains Found Automatically as Input Help

Input Help I 6.2

5. The next check in the automatic search for input help examines the DATS data element

attribute typing. If the OATS or TIM$ da ta element was used for the or TIMSfortyping

typ ing, the calendar help or clock help is found, as you can see fo r the
OATS data e lement in Figure 6.17:

• The DATE auribute was typed with the OATS ABAP Dictionary data
e lement (0).

• This ABAP Dictionary data e lement has the CALENDAR HELP input
help type that was foun d by the AuTOMATIC input help mode (f.),

E)) and classified correctly as CALENDAR HELP by the Web Dynpro
framework (0).

• The fo und input help type controls that a date icon is displayed for
the input help for the lnputFie ld Ul e lement that binds the DATE
attribute through data binding (0).

• By selecting the icon or pressing the [E) key, the user can activate
the search help, search for a value, and select the found value to
place it into the JnputField (0).

343

6 I Input Help and Semantic Help

Oste: ...
Mo Tu We Th Ff' Sa Su

22 '5 ta)0

23 1 ~3 4 6 0 7
24 8 0 11 12 13 14

25 15 • 17 19 1Q 20 21

26 22 23 24 25 2C 27 28

27 2Q 30 5

OATE

Automatic m
CALENDAR
Calendar help

Figure 6 .17 Input Help Found Automatically for OATS Data Element

No help 6. If none of these search steps were successful, no input help is
displayed.

The algorithm seems quite complicated at first glance, but is actually
a very natural approach if you want to use defin itions from the ABAP
Dictionary.

6.2.3 Dictionary Search Help

Manual An automatic search for input help sometimes does not yield the required
specification result. In this case, you can use the DICTIONARY SEARCH HELP input help

mode to specil)' search help from the ABAP Dictionary by directly mak
ing an entry in the DICTIONARY SEARCH HELP field.

Test this direct allocation as follows: Use the predefined SFBECLNAME

search help for the NAME_CLASS context attribute in the CLASS_SEL_CRI T
context node of the component controller. You will see that the check
table with the text table found using the automatic input help mode is
now no longer provided for the input field; instead, the search help you
specified is available as input support for the user.

6.2.4 Object Value Selector

Usage You can use the OBJECT VALUE SELECTOR (OVS) input help if you cannot
use ABAP Dictionary resources to run a search; for example, for deter
mining the set of values in the Web Dynpro applica tion. Like with inte
grating search help in to components or at the field level, the other ben
efit of OVS is that you can fill several fields at once in a corresponding

344

implementation (for instance, the two fields for the name of the ASAP
class and its description).

OVS input help is implemented using the provided I~OR_OVS Web Dyn
pro component that can be used by every Web Dynpro component. We
already covered the basics for using Web Dynpro in Chapter 5, Web
Dynpro Standard Components. After OVS input help has been entered
for a context attribute, it is automatically available for every InputFi el d

bound to this context attribute. At runtime, an active instance is always
created automatically for the OVS component when a user presses the
[E) key for a selected lnputFi el d . or clicks the input help icon next to
the l nputfield. The dialog box also automatically appears on the screen
at this time.

To integrate OVS input help into a context attribute, you need to carry
out the following steps, which we will illustrate by way of an example.
OVS input help is defined for the !F_NAfiE_CLASS Jnputfield of the v_

C LASS_SELECT ION view.

1. Switch to the zwoc_o3_CLASS_BROWSER Web Dynpro component shown
in Figure 6.18, and enter the USAGE_ovs component usage (0) for the
WOR_OVS OVS component (0) on the USED COMPONENTS tab.

Web Oynpro component

Description

Assistan(e Class

Created By

Last Changed By

Original Lang. iENl
Che(kS AUive

ZWDC_03_CLASS_8ROWSER lna(tive

Class Browser

c reated on

Changed On

Pa(Kage

Implemented interfaces

11.65 .2069

62 .66 .2069

$THP

Description of Component
rorovs

Figure 6.18 Declaration of Use of the WDR_OVS Web Dynpro Component

Input Help I 6.2

WDR_OVS Web
Dynpro component

Integrating input
help into a context
attribute

[8]

2. Also define this use on the PROPERTIES tab of the V_CLASS_SELECTION Defining the use
view, as shown in Figure 6.19. Click the CREATE (ONTROLLEil USAGE
button (0) to copy the OVS use (0).

345

6 J Input Help and Semantic Help

View
'

; r ION l lnat1ive(revlsed)

.r Layout Inbound Plugs Outbound Plugs Contex1 Attributes Attions Meth

Description ·Class Selec1ion

Ufetime r framework contn .]

Created By Created on 12.05 .2099

Last changed by Changed On 19.05 .2009

J~l
Used<

Component Use Component Controller Description

Setting the Input
Help Mode

property

Creating an event
handler method

ZWDC_Ol_CLASS_BROWSER COMPONENTCONTROLLER

ovs f)
WDR_OVS System Component for OVS Input Help

WDR_OVS IMTERFACECONTROLLER Generic

Figure 6.19 Declaration of Use of the OVS Input Help in the View

3. Switch to the component controller context and then to the NAME_

CLASS attribute in the CLASS_SEL_CRIT node. In the properties table
(see Figure 6.20) of the NAME_CLASS context attribute (0), you can
now select the OBJECT VALUE SELECTOR entry in the INPUT HELP MODE
row (8). In the new OVS COMPONENT USAGE row in the properties
table, you must enter the component usage provided for the input
help. Input help is available for this in th is row- select the USAGE_OVS

input help (0).

1:::Name 0 NAME_CLASS

assignment Type

ZST_03_WO_CLASS_SEL...CRIT·NAME_CLASS

n

varue
Help Mode f) Object Value

Component Usage USAOE_OVS

fJ

Figure 6.20 Assigning OVS Component Usage

4. For the V_CLASS_SELECTION view, you must create an event handler
for the ovs event of the USAGE_OVS OVS component being used. To do
this, switch to the METHODS tab of the V_CLASS_SE LECTION view (see
Figure 6.21). Enter the name on_ovs for the event handler method

(0). Using the input help, choose EVENT HANDLER (G) as the entry for
METHOD TYPE. Select the OVS (E)) event from the COMPONENT USAGE
input help. You have now completed the registration of the on_ovs < >

event handler method for the OVS event.

Voew V_CLASS_SELECT I ON Inactive

Input Help I 6.2

Properties Layout Inbound Plugs Outt:Jound Plugs ContelCI Attributes Actions MethOds

Method

OH_OVS

Figure 6.21 Defining the OVS Event Handler

You are provided considerable support when implementing the event
handler method because a source code structure is already generated by
ass igning the handler method to the OVS event. To be able to understand
the source code structure, you must fi rst consider the internal structure
and the inte raction behavior of the ovs component.

The WDR_OVS component provides an event view where search results are
displayed as a table. The component also contains a selection view you
can use to restrict search results. The input fie lds for the selection view,
as well as the structure and contents of the table for the search result
view resulting from this restriction, are defined by the using application
component. Therefore, at a suitable time based on user interaction, the
OVS component has to communicate again with the using Web Dynpro
component.

Communication with the using component is achieved using the OVS ovs phase model
event for the OVS component. This event is triggered automatically four
times in succession and transfers the ovs_ca 11 back_obj ect parameter to
the corresponding event handler in the using Web Dynpro. An example
of the phase model for the DVS component is illustrated in Figure 6.22.

We will explain the phase model in detai l in the following sections.
The explanations are based on the interaction cycle between the using
component (ZWOG_OLCLASS_BROWSER) and the component being used
(WDR_OVS) .

347

6 I Input Help and Semantic Help

ZWDC_03_CLASS_BROWSER

o ... -.. .•

Event Handler

Export OVS texts
(optional)

Export selection
and selection values

Export value set

Get selected values
and set the Context

Event OVS - Phase 0
FIGURATION()

Event OVS - Phase 1

WDR_OVS

,_
v
w
a>
o,
"

SET_INPUT_STRUCTURE() ~
"' ...J

Event OVS - Phase 3

...J
<(

v ,
V'>

6

Figure 6.22 Phase Model for an OVS Component

Calling the Object Value Selector

The user activates the ovs input help by clicking the input help icon or
the IE) key on an input field. This results in the OVS component being
initialized. The ovs component Lriggers the ovs event, which causes the
event handler in the using component (in th is example, the ZWDC_03_

CLASS_BROWSER component) to be called.

The event handler contains the ovs_ca 11 back_obj ect importing param
eter, which has the public ovs_callback_object->phase_indicator
instance attribute. You use this to find out which ovs phase contains the
OVS. The phase count begins at 0, whereby the constants if _,ld_o vs->co_
phase_[o 1112131 are defined forthe different phases. It is now up to the
event handler to implement the reactions to the events.

Object Value Selector: Phase 0 Event

Configuration You can configure the OVS component in the phase 0 period. This means,
for example, that you can define the window title, header, or column
header for the event table. The different layout options for OVS v1ews
are displayed in Figure 6.23.

I Stort Search II Reset I
Harne end Description 0

a... f)
ZOL_03 .. _CLASSjBROO¥SER

'

I OK II c..ncel I

Figure 6.23 OVS View layout

You can specify the input fields for the selection view and their labels
(0), the number of display columns and rows for the result view (h it

list), and a header for every column (&). You can also specify a group
header for the hit list (0), and create a window header and group header

for the w indows that d isplay the ovs component (0 , 0).

Input Help I 6.2

At this time, you can also implement a se tting to specify whether one set_configuration(l

or more rows can be selected from the result table. The ovs_cal l back_
object event parameter provides the set_configurati on(l method for
th is, w hich you can only expressly use at this time. An error message will

be issued if you ca ll this method at another time.

As the first step in implementing the example, switch to the on_ovs(l

event handler. The complete implementation structure has already been
created; therefore, you can focus on the pending requirements and use

the pregenerated parts. Phase 0 involves aspects of configuration that
were implemented for the example in Listing 6.3.

METHOD on_ovs .
* Declaration of data structure for search fields and
* hit list co l umns
TYPES :

BEGIN OF l ty_stru_input .
* Fields for search

349

6 I Input Help and Semantic Help

name_class TYPE
wd_this·>element_class_sel_crit·name_class .

category_class type SEOCATEGRY .
END OF lty_stru_input .

• Fields for result list
BEGIN OF lty_stru_list .

name_class TYPE
wd_this · >element_class_sel_crit-name_class .

descr_class TYPE
wd_this · >element_class_sel_crit·descr_class .

END OF lty_stru_list .
• Definitions
DATA: ls_search_input TYPE lty_stru_input .

1 t_select_l i st TYPE STANDARD TABLE OF lty_stru_l ist.
ls_text TYPE wdr_name_value .
lt_label_texts TYPE wdr_name_value_list .
lt_column_texts TYPE wdr_name_value_list .
lv window .title TYPE string .
lv_group_header TYPE str ing,
lv_table_header TY PE stri ng.

* References
FIELD SYt~BOLS : <ls_query_pa rams>

<ls_selection>
TYPE lty_stru_in pu t .

TYPE lty_st r u_list .
* Analysis
* Which OVS phase?
CASE ovs_callback_object·>phase_indicator .
* Configuration phase . optional

WHEN if_wd_ovs•>co_phase_O .
* Texts for input fields in selection screen
• Name of class

ls_text·name - 'NAME_CLASS' . "Name•searchfieldname
ls_text·value • 'Name of class· . '' the text
INSERT ls_text INTO TABLE lt_label_texts .

• Category of class
ls_text· name • 'CATEGORY_CLASS' . "Name=searchfieldname
ls_text·value • ·categorie of class· . '' the text

INSERT ls_text INTO TABLE lt_label_texts .
• Texts for columns in selection screen
• Name of class

ls_text·name- 'NAME_CLASS' . "Name•liststructure Is_
text value 'Class· . ·· the text

INSERT ls_text INTO TABLE lt_column_texts .
* Another column for the description

350

1 s_text- name = 'DESCR_CLASS · . "Name= 1 i s ts tructure
ls_text-val ue - 'Description· . '' the text

INSERT ls_text INTO TABLE l t_column_texts .
• Texts for title . GroupHeader . and TableHeader

lv_window_t itle = 'Class search '.
lv_group_header - 'Class group .
lv_table_header = ' Name and description '.

*Set the conf iguration us ing CallBack object
ovs_callback_object->set_configuration(

label _texts = lt_label_texts
column_texts - lt_column_texts
group_header = lv_group_header
l<i ndow_t it 1 e • 1 v_wi ndow_t it 1 e
table_header = lv_table_header
col_count - 2
row_count = 5) .

Listing 6.3 Handling OVS Phase 0 in the Event Handler

The generated handler method begins with the declaration section.
This is where the L TY _STRU_I NPUT structure type for defining the fields
you want to appear in the search template is prepared. The two fields
na me_class and category_class were extended and enable the user to
enter a name and the class category for the selection. The name can be
entered with wildcard symbols such as an asterisk (*), for example. The
catego1y stands for the class type such as GENERAL OBJECT TYPE or ExcEP
TION CLASS.

The L TY _STRU_ll ST structure type is used to define the result table. The
fields you enter in this type will become the output table columns. The
two fields name_cl ass and descr _class were extended and, for this rea
son, the result table has two columns. Other declarations follow, which
are used for transferring data to methods for the Ca 11 Back object.

The implementation part begins with the CASE ovs_call back_object
>phase_i ndicator statement to find out which OVS phase contains the
OVS component. The public phase_indi cater instance attribute has the
value for the current phase. The question about whether the ovs compo
nent is in phase 0 is WHEN if _•.-~d_ovs=>co_phase_O .

351

Input Help I 6.2

Configuring a
search template
and result table

Determining
phases

6 I Input Help and Semantic Help

Configuring a
selection view

The structures and tab les are filled for phase 0 (configuration phase) to
initialize the ovs component:

" lt_l~be l _texts

Is filled to define texts for selection fields.

" lt_column_texts

Is filled to define headers for the result tab le.

1> lv_window_title

Is filled to define the title of the search and result window.

1> 1 v_group_he~der ,

Is filled to define additional text for the title .

" lv_tabl e_header

Is filled w give the result table a title.

Finally, the ovs_callback_object·>set_configuration<) method is
called to return the values to the OVS component.

Object Value Selector: Phase 1 Event

If you want to use the optional selection view of the ovs component,
in phase 1, you must define the structure of the selection fields to be
disp layed and transfer it to the ovs component. You can also transfer
initial values for the selection fields at the same time. You can use the
set_ input_structure() method to do this.

The followi ng also applies fo r this method: an erro r message will be
issued if it is called at another time. If the method is not ca lled, display·
ing the selection view will not apply and the resu lt view will be dis
played directly. Figure 6.24 shows the effects of handling OVS phases on
the selection screen.

If the OVS phase 0 handling is implemented in the handler method,
the selection screen can be explicitly arranged, as a lready explained for
phase 0. If phase 0 is omitted, standard texts from the ABAP Dictionary
(if available) will be used.

352

With Phase 0
With Phase 1

W ithout Phase 0
W ith Phase 1

Class Search: Class Group ~ EJj : 'WO Component Application Class Bro... ~ CJ I
Hide Filter Criteria Hde Filter Oitena

Ctsss Name: I za.::cussj ldl
c..tegory: ~.:loo=--____ __JI"""'O'I

Ol>jedTypeName: ~~~;====~~OJ~,
C'"egory: I~::::00:.._ ____ ---"101'="]

Start Search II Reset I Start Search II Rosel I

I OK II Caned I I OK II Cencel l

Figure 6.24 Effects of Handling OVS Phases on the Selection Screen

Although handling phase 1 is optional , the user should be offered the
option of restricting the search result to an ABAP class name. To do this,

you must take into account the search structure and user values already
entered. Listing 6.4 shows the implementation for ovs phase 1.

* Search structure and defau l t values phase . optional
* If they are omitted . no search view appears
HHEN if_wd_ovs=>co_phase_ l .
*Determine values already entered by user from
* the lnputField search f i eld
ovs_callback_object·>context_element · >get_static_attributes(

IMPORTING static_attributes = l s_search_input) .
* Transfer the values using the CallBack object
ovs_callback_object->set_i nput_structure<

input - ls_search_input) .

l ist ing 6.4 Handling OVS Phase 1 in the Event Handler

You can use the public context_element instance attribute of the ovs_

ca 11 back_obj ect Ca 11 Back object to determine the entry already made
by the user. As always in context programming, the get_static_attri
bu tes () method is available for th is. Finally, you can transfer the struc

ture with the data to the set_input_structure() method of the Call
Back object. This will complete the process of defin ing the selection

screen.

353

Input Help I 6.2

Sett ing a selection
screen

6 J Input Help and Semantic Help

Determining a set
of results

Object Value Selector: Phase 2 Event

In phase 2, you must determine the set of search results from the using
component. If values for selection parameters were entered in a selection
view, they are now available as a query_parameters instance attribute of

the ovs_ca 11 back_object event parameter.

The application component must also transfer the table containing the
values available for selection to the ovs component. This is ach ieved
using the set_output_tab 1 e< l method of the ovs_ca 11 back_object
event parameter. Call ing set_output_ta b 1 e (J is mandatory and must
be done in this phase.

Listing 6.5 shows the implementation details.

* Determine values for the hit list phase
WHEN if_wd_ovs=>co_phase_2 .
* If phase 1 was implemented . use entry
* If not . use own values

IF ovs_callback_object·>query_parameters IS BOUND .
*Exception handling

ASSIGN ovs_ca ll back_object->query_parameters->*
TO <ls_query_params> .

I F NOT <ls_query_pa rams> IS ASSIGNED .
* Ini tialize parameters

ls_search_input-name_class = ' ZCL*' .
ls_search_input ·category_c l ass - ·oo · _

ELSE. "<1 s_query_params> no t ASSIGNED
* Trans fer values from query_parameters

ls_search_input -name_class =
<ls_query_params>-name_class .

ls_search_input-ca tegory_c lass =

<ls_query_params>-category_class .
ENDIF .

ELSE . ··ouery_parameters not bound
* Initialize parameters

ls_search_input-name_class = ' ZCL* ' _
l s_search_input-category_class - ·oo ·.

ENDIF .
* Determine values for the hit list
wd_comp_controller · >getmodel_class_list(

EXPORT! NG
clstype- ·o· ··search for classes

354

clsn~me_pattern = ls_search_input·name_cl ass
category- ls_search_input·category_class
l~ngu = sy·langu

IMPORTING
clsnames_w_desc r iption = lt_select_list) .

*Set the hit li st
ovs_c~llb~ck_object·>set_output_table<

output= lt_select_l ist) .

listing 6.5 Handling OVS Phase 2 in the Event Handler

Input Help I 6.2

A check is performed to see whether the public query_parameters query_parameter
instance attribute for the ovs_cal lba ck_object CallBack object is
bound. This is done using the IF ovs_call back_object · >query_param·
eters IS BOUND statement. This is the case if a selection screen was
defined in phase 0 or 1.

However, it may be that OVS phases 0 and 1 were not processed in the
handler method. You must react to this. In this example, you assign the
ZCL * value to the 1 s_sea rch_ input· name_cl ass auxiliary variable and 00

to the ls_search_input -category_cl ass variable. This will ensure that
general ABAP classes whose names begin with ZCL* are determined.

The next part of the implementation involves determining the hit list; in Business logic
other words, the business logic. In this example, the getmodel _c l ass_
1 is t() service method, based on the SEO_C LASS_Ll B_I NTROSPECT ION
function module that determines ABAP classes. was created using the
service call wizard.

The values returned as an internal table by the service method are trans- set_output_table()
ferred to the set_output_table() method of the ovs_callback_object
Ca 11 Back object. In th is case. the typing for the internal table delivered
by the service method is identical to the hit list structure. This means that
the data in the internal table does not need to be converted to the hit
list typing. The ovs component then ensures that the hit list. as shown
in Figure 6.25, is displayed. The appearance of the search is controlled
by using phases 0 and 1.

355

6 J Input Help and Semantic Help

W ith Phase 0
W ith Phase 1

C.l~ss Seuch: Ctass Group ~ £J
1 ... tide f'l er Ctt erta

"""' """' llli 'ClASS'

c"-y. L
I Slar1 Search II Re$~ I

Name end OesCJription

Without Phase 0
Without Phase 1

0...

Z0._03_A_Cl.ASS_tJ«)NSfR
OlojedT

ZCL_03_A_CLASS_BRO'wVSfR

Oe:criphon

As*'lence cbr;ss

Transferring the
user selection

I 01< II c.,.., I

Figure 6.25 Different Displays for Selection View and Result View

Object Value Selector: Phase 3 Event

The search result was displayed in the result view of the ovs component.

The user now has the opportunity to select one or more table rows.
However, the latter is only possible if a multiple selection for the result
table was configured in the first phase of the process using the set_con ·
figuration() method.

Only one result table row can be selected in the standard configuration

for the ovs component. The content of the selected row is then availab le
for reading in the selection instance attribute of the ovs_callback_

object event parameter. The details for this are shown in Listing 6.6.

WHEN if_wd_ovsa>co_phase_3 .
* Read data
IF ovs_callback_object · >selection IS BOUND .
* Oe·reference data to read i t
ASSIGN ovs_cal l back_object · >selection·>* TO <ls_selection> .
IF <ls_selection> IS ASSIGNED .
* Put data back i n selection conditions
ovs_callback_object·>context_element·>set_static_attributes<

static_attr i butes - <ls_selection>) .
ENOl F.
ENO TF.
ENDCASE .
ENOMETHOO .

Listing 6.6 Handling OVS Phase 3 in the Event Handler

SELECT-OPTIONS I 6.3

The user selection is de-referenced by the following statement: Setting selected
values in view

ASSIGN ovs_ca11 back_object->se 1ection ->* TO <1s_se1ection> . fields
The values selected by the user are available in the <1 s_se1 ect ion>
field symbol and can be placed into view fi elds. The set_static_attri -
butes <) method for context_e 1 ement from the ovs_ca 11 back_obj ect
ca 11 Back object was used for this.

The OVS phase 3 handling also completes the handler method imple
mentation for the OVS event.

6.2.5 Input Help Mode: Freely Programmed

Another input help mode available is FREELY PROGRAMMED. This mode IWD_VALUE_HELP
enables you to program your own input help as you wish: the Web
Dynpro framework allows you to create and use your own input help
components. A Web Dynpro component to be used as input help must
implement the HIO_VALUE_HE LP Web Dynpro component interface. After
the freely programmed input help has been bound to a context attribute,
the input help is automatically available for every Input fie 1 d bound to
this attribute.

6.3 SELECT-OPTIONS

Before, you had to struggle with manually compiling a selection view.
You had to define view fields and program the handling of inconsisten
cies and incorrect entries. Although we mentioned that you can take
search context into account when you integrate search help, you might
have already noticed that something is missing.

When we look again at defining standard selection screens in ASAP SELECT-OPTIONS
programming, it is apparent that the SELECT -OPTIONS ASAP statement
exists specifically for this purpose. This statement creates an interval
entry option in a very user-friendly way for the developer and user. Fig-
ure 6.26 displays a selection screen that was defined using the following
statement sequence:

DATA : l s_seoc l ass TYPE seoc l assdf .
SELECT ·OPT!ONS : clsname FOR 1s_seoc l ass · c1sname .

357

6 J Input Help and Semantic Help

Programm Z_06_SELECT_OPTIONS

~

Ctassnnterfate JzcL_83' J to _@f_os •

Figure 6.26 SElECT-OPTIONS in an Executable Program

]~

Ranges table This means individual entries and interval entries can be allowed that
can be defined as inclusive criteria or as exclusive criteria . Within the
program, an internal table with a header line is created from the SELECT

OPTIONS ABAP statement. The columns contained in th is internal tab le
are listed in Table 6.1.

WDR_SELECT _
OPTIONS

Components Type

sign COl

option C(2)

1 ow SEOClSNAME

high SEOClSNAME

Description

Specifi es whether the result is included
in or excluded from the overall set of
results. Values are I for inclusion and E
for exclusion.

Th is is the selection option for t he
row specification in the form of logical
operators, for example, EO for equals.

Th is is the comparison value in single
comparisons or the lower interval limit
for interval limits.

Th is is the higher interval limit for
interval limits.

Table 6.1 Columns in SElECT-OPTIONS Table

The type for the 1 ow and high columns is derived from the reference type
for the SELECT -OPT IONS statement. This internal table is filled row by
row with user entries and can be used for later operations.

You can also use SELECT-OPTIONS in Web Dynpro. The ~IDR_SELECT_
OPTIONS Web Dynpro component is made ava ilable for th is purpose.
The interface controller for the ~IOR_SELECT _OPT IONS Web Dynpro com
ponent provides the i n i t _ se 1 ect i on_sc reen (l method, which can

SELECT-OPTIONS I 6.3

be used to determine a reference to SELECT- OP T! ONS with the I F _~I D_

SELECT_OPTIONS type. This reference provides the methods to arrange
the corresponding options visually.

The SELECT -OPTIONS visualization (see Figure 6.27, 0), which is imple
mented in the WN O_SELECTI ON_SCREEN interface view of the WOR_SELECT _
OPTIONS Web Dynpro component, displays the standard functions (G)

CANCEL, CH ECK, RESET, and COPY in the first row. You can deactivate these
fu nctions if you do not need them (set_gl obal _opt ions(l method and
m_d i sp 1 ay_btn_ * constant from the IF _wo_SELECT_OPT IONS interface).

t:J Closs ""'"''"

• Cancel Check R~et Cotrf •

Clas-Sktet"face (x) CL_\'\0"

>9> Option Low """ 0 V.D'

BT ZCL_OO• ZCL_06•

E Cl' a._\<\()-T"

'

~ Option Frorn To

1•1 CL_V.O'

[I ZCL_03' ZCL_OG•

:I] CL_V.O_T'

0

0

Figure 6.27 Web Dynpro Appl ication with SELECT-OPTIONS

•

WNO_

SELECTION

SCREEN

The area with selection fields and parameters follows under the fu nc- Selection and

tions; the user can configure this area as required (0). In th is example, parameter fields

a selection field was defined for entering an ABAP class name (cre
ate_range_table(J and add_select ion_field() methods of the IF_
wo_SELECT_OPT IONS interface). As a result, the lower and upper limits of

359

6 I Input Help and Semantic Help

the selection field are displayed as input fields. If defined. input help is
available for the fields and parameters. The user can use the MULTIPLE
SELECTION button (0) to open the MULTIPLE SELECriON dialog box fo r
selection fields, where additional search criteria can be entered. Inclu
sive conditions are displayed in green, exclusive ones in red. The entries
made by the user are placed in the created range table, visualized in this
example in the Table Ul element.

Functions and Another word about standard functions: events such as ON_CHECK are
events defined for standard functions in the in terface controller of the NOR_

SELECT _OPT IONS Web Dynpro component. These events are triggered
when the corresponding button is clicked; for instance, the CHECK but
ton. In the using component, an EVENT HANDLER must be defined that
will register itself on the required event for the NOR_S ELECT_OPT IO NS
Web Dynpro component and handle this event.

[g] As an exercise, we will look at a simple way of using the NOR_SELECT _
OPTIONS component. In this case, you wi ll implement the previously
mentioned selection screen in a Web Dynpro component.

1. Create the new zwoc_o6_CLASS_BRmiSER Web Dynpro component
with the v_so view and w_MAHI window.

component usage 2. Define the usage for the WOR_SELECT_OPTIONS Web Dynpro compo-
nent. Call this usage USAGE_SO.

3. Declare the COMPONENT UsE for USAGE_SO in the v_so view, as already
described in Chapter 5, Web Dynpro Standard Components. The view
controller can subsequently use the usage declaration to access com
ponent interface elements for the ~IDR_SE LECT_OPTIONS Web Dynpro
component.

View attributes 4. Define the two new object references in the view attributes:

.,. GO_SO
The GO_SO attribute provides the methods for configuring the selec
tion screen (NAME: GO_SO, REFERENCE TYPE: IF _WO_SELECT _
OPT IONS) .

.,. GO_IC_SO
The GO_IC_so attribute is used as a reference to the interface con
troller for the SELECT -OPTIONS component (NAME: GO_ IC_SO, REF
ERENCE TYPE: I WC I_WOR_SELECT _OPTIONS).

SELECT-OPTIONS I 6.3

5. Create the new i ni t_se 1 ect_opt ions(l method in the view control
ler and implement it as shown in Listing 6.7:

"' In the first step, check whether the component usage already has
an active instance. You do this using the has_active_component(l
method. If not, create an active instance for it using the create_
component() method.

"' Then, determine the reference to the interface conu·oller (wd_thi s
>go_i c_so). You will use this interface controller in the next step to

determine the reference to the selection screen (wd_thi s- >go_so).
This reference is then used to create and configure the selection
screen.

"' Create a range table for the SEOCLSNANE data element using the cre
ate_range_tab 1 e() method.

"' Finally, add the add_selec t ion_field(> method to the new
CLSNAI·1E selection field. This method provides a range of parame
ters that control how the field is created. The option to define the
explicit SFBECLNAME search help fo r the field has been used in this
example.

METHOD init_select_options
* The range table for the se l ection field
DATA : lt_range_table TYPE REF TO data .
* Reference to the select options usage controller

lo_ref_cmp_usage TYPE REF TO i f_"d_component_usage .
* Instantiate the usage component . if necessary
l o_ref_cmp_usage = "d_this->wd_cpuse_usage_so() .
IF lo_ref_cmp_usage->has_act i ve_component() IS INITIAL .

1 o_ref _cmp_usage · >c rea te_componen t (> •

ENDIF .
* Determine reference to the i nterface controller
wd_this->go_ic_so = wd_this ->wd_cpifc_usage_so() .
* Initialize selection screen
wd_this->go_so =

wd_this·>go_ic_so->init_se l ection_screen() .
* Generate range table for data element
l t_range_table = wd_this->go_so->create_range_table(

i_typename - ' SEOCLSNAME ') .
* Generate field in select ion screen
wd_this ·>go_so·>add_selection_fi eld(

init_select_
options()

6 J Input Help and Semantic Help

i _ id = ' CLSNAME '
it_resu l t • lt_range_ table
i_value_help_type =

if_wd_value_help_handler• >co_prefix_searchhelp
i _va I ue_he I p_ i d = 'SFBECLNA~1E ' J .

ENDMEHIOO .

Listing 6.7 Initial izing the Selection Screen

wddoinit() 6. The next thing you must do is call the method in the wddoini t(l

Creating a table
and a button

method of the view controller to ensure that the selection screen is
initialized.

7. Define the NAME_CLASS node in the context. The context attributes
correspond to the columns in the interna l table for SELECT -OPTIONS;

that is, SIGN (CHARl type), OPTION (CHAR2 type), LOW (SEOCLSNAME type),
and HIGH (SEOCLSNAME type) .

8. In the view, create a table for the NAME_CLASS context node.

9. Create the BTN_GO button in the view and assign the GO action to the
onAct ion button event. Switch to the implementation for the action
handler method and implement this , as shown in Listing 6.8:

• Use the get_range_table_of_sel _ field(J method to read the
range table of the CLSNAME field. What is interesting here is that the
method returns a data reference (TYPE REF TO OATA).

• You must de-reference the data reference to be ab le to continue
working with it. You do this using a field symbol. After the de-ref
erencing, you can use the field symbol as you would a normal vari
able.

• The business logic in this example is minimal. Place the ranges
table back into the context to display it.

METHOD onactiongo .
* Context node reference
DATA : lo_nd_name_class TYPE REF TO if_wd_context_node .
* User entries as the data reference

r t _name_class TYPE REF TO data .
* To de - reference the range table
FIELD-SYt1BOLS : <fs_name_class> TYPE table .
* Retr i eve user entry
rt_name_c l ass =

Semantic Help I 6.4

wd_this·>go_so->get_range_table_of_sel_ fie ld(
i_id • ' CLSNAME ') .

• De-reference the da ta reference with field symbol
ASSIGN rt_name_c l ass ·>* TO <fs_name_class> .
* Here comes the business log i c
* Place the range table in t he context
lo_nd_name_class = wd_context->get_child_node(

name= 'NAME_CLASS') .
lo_nd_name_class->bind_table(<fs_name_class>) .
ENDMETHOD .

listing 6.8 Action Handler for the GO Action

10. Create a Viei<ContainerUIElement in the view to embed the WND_
SELECTION_SCREEN window of the SELECT-OPTIONS component.

11. Switch to the window and embed the WND_SELECT ION_SCREEN inter
face view in the vc_so view container of the v_so view.

ViewContainer
UIEiement

12. Create a Web Dynpro application for the Web Dynpro component Testing
and test the application.

You have now used SELECT -OPTIONS in your Web Dynpro application
and thus opened up many possibilities for your future developments.
With th is new knowledge, you can now standardize the visual appear
ance of selection options and offer the user the familiar visual appearance
and known input options of selection screens for classic ASAP reports.

6.4 Semantic Help

The general goal so far has been to provide users with input help to sup
port them in specifically entering values in to input fields; however, you
may also need to explain what they are actually entering. This requires
having to provide the user with explanations in the form of semantic
information or semantic help.

The following options are available for this in Web Dynpro:

~ Field-related help texts with tooltips

~ Field-related explanation texts

~ Field-related ASAP Dictionary help (F1 help)

6 I Input Help and Semantic Help

.. Non-field related explanations

.. Application-related or window-related KW documents

Naturally. the principle of reuse once again forms the basis fo r the differ
ent approaches. Let us look at the different options in detail.

6.4.1 Help Texts with Tooltips

As already described, a number of properties exis t for view elements.
Among them is the TOOLTIP property, which is available for all UI ele
ments because it is defined in the CL_\W_UIELEMENT ABAP class. This
property enables the display of short texts up to a maximum length of
255 characters.

To display the help text in a yellow box known as a tooltip. you move the
mouse cursor over the view element (see Figure 6.28). When you move
the mouse cursor away from the field, the display disappears.

P- Cla'!is Browser- Wmdows lntetn"et"~pJO - [J X

~@ · 111. httt>''' ::J ., X IGoo91e

<Ji 4/l ,6Ciass Browser

ObjedTypeName: L--~~~~==----W lclass....,.l

r I II II~ Local Intranet

Property !Value
Propertfes <lnputFieiCO
ID IF _NAME_ ClASS

value
'risible
width

Visible

Figure 6.28 Tooltip with OTR Alias Short Text

!Binding

tooltip property The TOOLTIP property value can come from different sources: the prop
erty is entered directly, an OTR alias short text is used, or texts for the
data element being used are used. In the example in Figure 6.28, the
OTR alias short text SOTR : HMP/NAMECLASS was used as the tex t source.

6.4.2 Explanation Texts

The next option is also implemented using view element properties.
specifically, the EXPlANATION property. This property is only available for
a subset of view elements (for example, Button, DropDown* . or Input
Fi e ld), not all of them.

Semantic Help I 6 .4

The help text is displayed when you click a view element or move the
mouse cursor on the view element label. This is displayed as underlined
in green.

You can enter the EXPlANATION property value direc tly or by using OTR
alias short texts . If the primary property of a Ul element is bound to a
context attribute, parts of the data element documentation can be pre
sented to the user. To do th is, you must use DropDown in the input field
for the property or the CREATE BINDING ... button to the right of the input
field to open a maintenance dialog box for the explanation text and
implement the required settings (see Figure 6.29).

Explanation
property

3 ~, X

If _!'WilE_ CLASS

....

0

'1
0

, _A O.WHettTM

• rromN:OoJbS\tm"t ~IKL!.IIJ.!(

llh«tO.-.r!m
• comtnffll~OCJ!:&OEr.l!TIQf.~

rMm.w~OTR...u.ot

ftOm W'II:MOAI OTR Ttlll Ill• 2$S C"-'t)

• 0011&

1.111<:C1MeS
NOr'mlltllem &

lnhtr'lt a!==l '--... ----l>t
SOTR.STMPINAMECI.ASS

VIsible e

Figure 6.29 Maintaining and Displaying Explanation Values

SHORT DESCRIPTN, CONTENT OF KEYBLOCK &DEFINITION&, and CONTENT

OF KEYBLOCK & USE& are available for displaying (0). You can deactivate
the display of explanation texts (0) by selecting the HIDE QuiCK HELP

menu option in the context menu (anywhere in the view) or activate the
display by selecting the DISPlAY QUICK HELP menu option. If you deac
tivate the display, you must refresh the Web Dynpro application for the
setting to take effect.

6 J Input Help and Semantic Help

6.4.3 ABAP Dictionary Help

You will most likely be familiar with F1 help for input fields from classic
dynpro programming. This help is derived from data element documen
tation from the ASAP Dictionary.

For F1 help, the view element has to be bound to a context attribute that
was typed with a data element. To now display the help, the user can
activate it using the I Ctrl I + [IT) key combination or the MORE FIELD
HELP context menu option (see Figure 6.30).

C Class Browser 4 Windows lnt~rnet Explor

~ ~ • lru http 11

1:1 'Si 1(9 Class Browser

~~~·~ ~~~~~~~r-~ I Use• Sett"<<s 'I 
- QIJ<ck HelP 
More Field Herp 

'-J Local lntr anet 

.. __ 

» 

Figure 6.30 F1 Help with Field Documentation and Technical Help 

Todlo • ,. 

Display If data element documentation is available, field documentation is dis
played for the user in the MORE FIELD HELP modal dialog box. The user 
can navigate via the TECHNICAL HELP link to the technical details for the 
field. These details consist of the following elements: 

366 



Semantic Help I 6.4 

"' General Information About the Application and Component 
Application, Web Dynpro Component, Window Info rmation, View 

Information, and Configuration ID 

"' Information on Field 
Field ID, Type of UI Element, UI Element Library (Category) 

"' UI Element Attributes 
Attribute Name, Value, Context Path and Type of UI Element Attri

bute 

If no data element documentation exists, the technical help is immedi

ately displayed. It is also immediately d isplayed if the 140HIDE~IOREFIELD
HELPASOEFAUL T application parameter is set to ABAP _TRUE. This means that 

no more data element documenta tion w ill be created, unless the EXPLA

NATION property was created for a field using the ABAP Dictionary. 

6.4.4 Explanations 

So far, all of the help had a reference to a view field. We will now look 
a t non-field related help. You use the Exp 1 ana t ion UI e lement to display 

help texts for a view element of a Web Dynpro application on one or 
more rows. An example is shown in Figure 6.31. 

OMs 8rOW$er 
Used to reM the d$$C:riptjon of en ABNI ctM:s 

• Oets the methods of an ASAP class 
• Displays the methods es tree and teble 
• Adopts dynernieety 

Gl<fATI 

Figure 6.31 Explanation Ul Element 

» 

ttJe Qujck Hep 

The relevant documentation developer usua lly edits help text in the Web 
Dynpro authoring environment at design time. 

Web Dynpro 
authoring 
environment 



6 I Input Help and Semantic Help 

Web Dynpro Authoring Environment 

One of the many text types stored in the Online Text Repository (OTR) are 
translatable texts. The ABAP Workbench provides a separate authoring envi
ronment called the Web Oynpro Text Browser for editing texts retrospectively 
without having to enter the development environment. You can activate the 
Web Dynpro Text Browser in Transaction SEBO by selecting the UTI LITIES • 
SETIINGS ... • WORKBENCH (GENERAL) path in the BROWSER SELEOION group 
and then choosing the WEB DYNPRO TEXT BROWSER menu option. After you 
confirm your selection by clicking the green checkmark, the Web Dynpro Text 
Browser now appears in you r browser selection above the object list in the 
left-hand margin of the Workbench window. 

When you click the WEB DYNPRO TEXT BROWSER button, only the Web Dynpro 
component views containing texts from the OTR that are ready for changing 
are displayed. These views are subject to the following restrictions: 

~ Only texts from the OTR and not from the ABAP Dictionary can be 
changed. 

~ All OTR texts for a Web Dynpro application can be edited only in the origi
nal logon language. 

~ Only text elements from active views can be changed; inactive views are 
not displayed in the Web Dynpro Text Browser. 

Text property The Explanation UI e lement has the TEXT property, to which you can 

ass ign a static text or a text from the OTR. You cannot bind a text to 
th is field using data binding. This results in a maximum length of 255 

characters. 

Can longer texts be assigned? The approach varies depending on the SPS 

version. 

SPS lower than 11 If you are using SAP NetWeaver Application Server 7 .0 with an SPS 

lower than 11, the text must be dynamically assigned to the TEXT prop
erty in the ~<ddomod i fyv i e~<< > method. 

SPS 11 or higher If you are using SAP NetWeaver 7.0 SPS 11 or higher, the TEXTDOC
UMENTNAME property is available in the Exp 1 a nation UI element to 

directly specify the name of the documentation module to be displayed. 
listing 6.9 shows an example of how you can assign a text or documen
tation module to the TEXT property of the Explanation UI element. 

368 



Assigning Explanation Text 

The DOCU_GET function module makes the content of a documentation 
module available in an internal table. The format of the documentation cor
responds to the SAPscript format. You can use the static cl_wd_format· 
ted_text->create_from_sapscri pt( ) method to convert the text into 
text to be displayed. 

The DOCU_CREA T£ function module is used to create documentation mod
ules. Select the G EN ERAL TEXT entry for the D OCUMENTATION ( LASS, specify a 
name, and then switch to the SAPscript editor to maintain the text. 

METHOD wddomod ifyv i e11 . 
* Refe rence to the explanat i on element 
DATA: lo_explanation TYPE REF TO cl_wd_explanation . 
* Document module text in internal table (for option 1) 

lt_tl i ne TYPE text_line_tab . 
* Formatted text fo r explanation (for opt ion 1) 

lo_formatted_text TYPE REF TO cl_wd_formatted_text . 
* Determine reference to view element 
lo_explanation ?= view ->get_element( 

id - ' EX_NAME_CLASS' ) . 
***Option 1 CSPS l ower than 11)** 
•• Read document modul e 
* CALL FUNCTION ' DOCU_GET ' 

* 
* 
• 
• 
* 

* 
* 
* 
* 
* 

EXPORTING 
id = ' TX ' "General text 
langu - ' E' 
object= ' ZTXT_06_CLASS_BROWSER ' 

TABLES 
line - lt_tline 

EXCEPTIONS 
OTHERS - 5 . 

IF sy-subrc <> 0. 
EX IT . 

END IF . 
**Convert from SAPscript to Web Application Documentati on 

lo_format t ed_text = * 
* 
• 
* 

cl_wd_formatted_text=>create_from_sapscr i pt( 
sapscript_lines - lt_tline 
type = cl _•o'ld_formatted_tex t=>e_type-,1ad ) . 

** Set text 
* lo_explanation->set_text( 

Semantic Help I 6.4 



6 I Input Help and Semantic Help 

Option 1 (SPS 
lower than 11) 

Option 2 (SPS 11 

or higher) 

* value= lo_formatted_text ->m_xml _text ) . 
** Option 2 (SPS 11 or higher)** 
* Set name of document module 
lo_explanation ->set_text_document_name( 

value = ' ZTXT_06_CLASS_BRO~I SER ' ) . 
ENDMETHOD . 

Listi ng 6.9 Dynamically Setting the Text Property of the Explanation Ul Element 

,.. In option 1, you see the dynamic option for an SPS lower than 11 . 
The documentation module is read first using the DOCU_GET function 
module. This documentation module must have been created before
hand by the DOCU_CREATE function module. The function module 
returns an internal table with SAPscript formatting. The static cl_wd_ 
formatted_text· >create_from_sapscript method converts this into 
Web Application Documentation (WAD) format and stores it in a CL_ 
wo_FORMATTED_TEXT object in the public m_xml_text instance attri
bute. This attribute is then transferred to the set_text( ) method of 
the Exp l anation UI element. 

,.. Option 2, for SPS 11 or higher, is quite simple: you transfer the name 
of the documentation module to the set_text_document_name( > 

method of the Explanat ion UI element. 

You can use the DESIGN property (if you assign the emphasized value 
to it) to control whether the user is provided with a link for hiding the 
Explanation. Otherwise, the context menu is still available to hide the 
Exp 1 ana t ion. 

6.4.5 I<nowledge Warehouse Documents 

In the SAP Knowledge Warehouse (SAP KW), you can use created infor
mation objects (help texts) as help for a Web Dynpro appl ication or a 
Window. 

1. To be able to use SAP KW contents in your Web Dynpro application, 
switch to the PROPERTIES tab of the Web Dynpro application or to a 
window in your Web Dynpro component (see Figure 6.32). 

370 



Semantic Help I 6.4 

AllPIIcation ZWdc_06_class_browser_app Saved 

./Properties t Parameters 

Oescrtption Class Browser J 
Component 'ZWDC_06_CLASS_BRDWSER ' 
Interlace VIew W_HAIN 

Plug Name DEFAULT 
Help Menu Told 

Help Link 

Figure 6.32 Integrating Information Objects from SAP Knowledge Warehouse 

SAP Knowledge Warehouse 

SAP KW is the SAP solution for all materials used in the areas of training, 
documentation, and manuals. It is an integrated environment for creating, 
translating, presenting, sharing, and managing information objects you can 
use for purposes such as the following: 

• Documentation (help for applications) 

• Training materials (for attendance-based training) 

• Manuals (especially for quality management) 

All contents managed in SAP KW are stored t here as information objects. 
You can use structures, a particular type of information object, and hyperlinks 
to link information objects to mult imedia hyperdocuments (for example, for 
t raining courses) . Information objects with a common topic area are com
piled and managed in folders. Information objects and folders are each as
signed to an area (primary use). 

Information objects are available in SAP KW in different versions that can be 
accessed using different contexts . 

1.?(0 ] 

2. In the HELl' M ENU TEXT field, enter the text for the help window title. RFC connection 

You cannot maintain the HELP LINK field directly; instead, you must 
use the (REATE/(J-JANGE LINK to the righ t of the field. For your SAP 
KW system, you will need an AIO_FOfLHHP _Ll NKS RFC connection 
maintained using Transaction SM59. 

3. A dialog box appears that allows you to restrict the search context Context 

when searching for information objects in SAP KW. You can filter 
your search according to language, release, enhancement, and coun-
try (see Figure 6.33). 

371 



6 J Input Help and Semantic Help 

@>'Enter Con~ell.1 >< 

r 
Context 

Language 

Release 

I english 

lm :J 

Gal Show Enhancement I! Show CountiY I@ 

Figure 6.33 Defining the Context 

4. After y ou have made your entries and confirmed them by clicking on 
the button with the green checkmark, a dialog box appears for select· 
ing a topic area in SAP KW. Here, you can search for the information 
object (see Figure 6.34). 

-----------------------
@ChOose A1ea for Topic m Kno X 07 Se.uU! for Toplt 111 ~ W-irellouu X 

JRest~ctions I 
. 

F oiGer Aa'IIM.IIes . 
n" 

~ 
.. 

~ Tetllnk tiNatr.e .. 
~[!;!]IOOJ~m Ptrson Rtt;ponSIOit ~ 
Description I lito OOjtCI$ 

Document Management System n" _]w AtceleratedSAP Ttctlnk.Natne 1104.e. 'I ~ 
Documentation C<IN!enll)l)& · r.. 
uanagemenl ' 

Person RoSS~ontitllo ~ 
I 

Ow!glin 

8 
J ~ IMG document repository ~ Orlgtnet i<Jn!)uaoe y 8/iP Solution Architect Or!g~ntl language ~ Training Into Objet! $b!Us ~ HTML·Based Documents Keyword (Old) 

Performance Assessment lnCieJEnrt c: 
Demonstration area 

Clta:!lontimt .. ~ 
Cle.;ted DY 

Quality management manuals Time of ttlttiCt 
.~ .. ~ 

X)ltL Documentation 
Xlri1L Training 

13 Entries found 

~ 
. 

Utt <:han9t d br • 
• • • • 

·~ ~!"' c .... 1mal!l 
Figure 6.34 Selecting the Area and Topic 

5. After you have made your selection- fo r example, DOCUMENTATION 

and confi rmed it by cl icking on the button with the green checkmark, 
you go to the next dialog box. You can search for the information 
object using the numerous input fields provided. 

372 



Semantic Help I 6 .4 

For example, if you are interested in the documentation for Web Dyn
pro ABAP, select the TECHNICAL NAME input field to search for infor

mation objects with the technical name W04A*. 

6. Confirm your entry by cl icking on the button with the green check
mark. In the next screen, the search result for the information objects 

is displayed as a list, and you can select an entry (see Figure 6.35). 

Selecting an 
informat ion object 
(content) 

(So Choose Info ObJet! >< 

ProcesW., lyj)8 Change 
Contoxt 7S21Engli$h 
Oate,Time 01.06.2009,16:20:45 

(Sa Info ObjeCI Trtte 

Stfle SI'IUIS In Web Dynpro ASAP 
Suppof1ed Etemenes ofltle Adobe Ubrary 

URL. of a Web O)flpro Ac~l)lk:allon 

-~~~hnical Name 
W04A_ST\1..ESHEET 
~4AJJ)OOE_UBRARV 

WD4A_URL 
V«>CA_URl_PARN.IS 

WD4A._URt._tw.IESPACE 
V«)CA_UI 

J?bj.Ctns-J?hnoe ret(~atus .. JCh.OoljUse 
Topk 688 Reteas.ed • 

688 Releas-ed • 

URL Parameters and Applieallon Parame1ers 

URLs and Name5paees 
User lnleffate Elements 
Using Parameters to Ca\1 a Web Oynpro ~pile-a 
Wtb D,npro AfJNJ 
Web QvnproABAP Connourabon 

H~tb ()wtlpro fOr ASAP 
You1 OWn CCimponent as Yo!¥ Own Conf1gura1i 

Wtb O)npro~ Rurttimt Atlaly$1J 

Ym4A_CALL...,PARAM 
V.O<A 
WD4A,..CONFIO 
W()CA_OEVOUIDE 
WD4A.,.COMP _CONf'IO_EOITOR 
W()4A_SE30 

Crea:lng Web DynJlfO A8JtP Mews W04A_EP _.APPLC0Nft0 
AdJUSIMal):ing Wtb ~pro forloSAP ~plic.atio . W04A..Jti)APT 

ConllgurlngWeb OynproAI)plleatrons ~ \\'04A._CONFIOURA.TION 
OevtiOPifltl Web Qmpro "41Piitalions for AfJNJ V«>4A_DEV 

Modeling a Web DynproAppllca1ioo (fVJAP) W04A.MOOEUNO 
Vpgr:us !)!) weo o,.,pro ~italions (ltfJJtP) W04A_UPGRAOE 

690 Releast4 

700 Releas-ed 

674 Relus.ed 

6955 Retent'd 

682 Released 

695 RetUS-t'd 

6955 Released 

690 Rttentd 
690 Released 

690 Rtltalt<l 
7<0 ReleaS-ed 

688 Releas-e-d 

688 Released 

688 Releas-e-d 

674 Released 

688 Rttt-Ut'd 

• • • • 

Figure 6.35 Found Information Objects with Single Selection 

• 

7. After you select a row and confirm this selection by clicking on the Structure area 

button with the green checkmark, a d ialog box for defining the struc-
ture area appears. This closely resembles searching for a topic area 

and can also be skipped. 

8. In the next step, the link is created in the HELP LINK field (see Figure 
6.36). 

373 



6 Input Help and Semantic Help 

N:IPiitalion ZW'dc_os_c:lass_browser_app 1 Rmsed 

IJProper1les Parameters 

-

Description Class Browser J 
Component 'zwDC_06_ClASS_8ROWSER 
Interface View W_ft.t.IN 

PtuoName DEFAULT 

Help hlenu Tex1 Web I),Tlpro for NJAP 

Help Link ' aHElPIYPE•SAPHElP&_lOIO•F650184285815133EI OOOOOOOAI 551 06&_ClASS•I WB_E~tf 

Figure 6.36 Result of Search - a Link 

9. After you have started the Web Dynpro application, you can start the 
SAP KW-based help (Help Center) by pressing the (IT) key. A separate 
browser window opens, like the one shown in Figure 6.37. The infor
mation object you defined in the Web Dynpro application properties 
is displayed in the WORTH KNOW ING section. 

• Hole~ 

• F1equently A$ked OuHiions (FAO$) 

t..,., !T SAP NotWeaver~ 
~ Knowledge Warehou" 

. , X I 

HI! Web Dynpro f or ABAP 

Figure 6.37 Help from SAP KW 

374 

P· 



10. By using an action handler, you can also trigger the display of the 
Help Cente r (see Listing 6.1 0). You can even change the stored link 
during runtime. 

* Reference to component controller API 
DATA : lo_api_comp_controller TYPE REF TO i f_wd_component . 
*Reference to application 

lo_applica tion TYPE REF TO if_l<d_application . 
* Determine API reference 
lo_api_comp_controller = wd_comp_controller->wd_get_api( ) . 
* Determine reference to application 
lo_application = lo_api_comp_controller->get_application< ) . 
* Open SAP KW help 
1 o_app 1 i cation- >open_he 1 p_center( ) . 

listing 6.10 Triggering the Display of Help in SAP KW 

6.5 Summary 

In this chapter, y ou learned about the options for providing use rs 
with input support. We explained the two major groups of selection 
options and input help in depth, and presented detailed examples for 
each group. The UI elements to which you were introduced in this 
chapter include DropDown, Rad i oBut ton, CheckBox, I teml is tBox . and 
TriStateCheckBox. 

The requirement to provide users with input options they can select 
(using optional input help) led us to the topic of input help. In this con
text, we comprehensively discussed the options for in tegrating input 
help, and presented practical examples. The WDR_SELECT_OPTIONS Web 
Dynpro component we used for illus tration showed you one way that 
you can smartly implement selection screens through component usage. 
We ended this chapter with the topic of semantic help. 

In Chapter 7 (Configuration, Customizing, and Personalization), you will 
learn about the different options available to adjust Web Dynpro appli
cations. We will explain the concepts of personalization. customizing. 
and configuration, and use examples to deepen your understanding of 
the topics. 

375 

Summary I 6 .5 

Triggering the 
display 





Web Dynpro components and applications can be customized at 
different levels without the need to change the implementation. 
This chapter describes these levels in detail and explains them 
using examples. 

7 Configuration, Customizing, 
and Personalization 

In practice, it is sometimes necessary to customize exis ting Web Dy npro 
applications according to individual requiremen ts - be they standard 
SAP applications or applications you developed yourself. These require
ments can range from ente rprise-wide functional customizations, to 
industry-specific requirements, to user-specific changes to the interface 
or the navigation. 

Applications that are created on the basis of Web Dynpro can be custom
ized in different ways and for different target groups: 

,.. Configuration 
Developers can create configuration data sets, which contain values for 
view element properties, context attributes , or both. These data sets 
enable the developer to override the values of view element proper
ties using data binding, and thus to change the appearance of the user 
interface (UI) without having to modify the implementation. 

,.. Customizing 
Settings for a specific user group in a particular cl ient are made using 
the Customizing fu nction. This fu nction is controlled and regulated by 
authorizations. The Customizing options are wider in scope than the 
personalization options, which affect the se ttings for individual users 
only. 

,.. Personalization 
Individual users can make individual UI settings using personalization. 

377 



7 I Configuration, Customizing, and Personalization 

Implicit and 
explicit 

customizations 

Customization 
hierarchy 

These options are very restricted because the relevant settings depend 
on and affect only a single user. 

Web Dynpro distinguishes between implicit and explicit customizations: 

,.. Implicit customizations are provided by the Web Dynpro framework. 
Implicit changes do not require any programming or definition. 

As of SAP NetWeaver 7.0 EhP 2, implicit changes are referred to as 
Web Dynpro built-in. 

,.. If the implicit change options are insufficient, the developer has addi· 
tiona] options on the basis of context attributes. This kind of change 
is called explicit wstomization. 

As of SAP NetWeaver 7.0 EhP 2, explicit changes are referred to as 
Web Dynpro component-difined. 

How are the options for configuration, Customizing, and personalization 
interrelated? Figure 7.1 shows the hierarchy of customization options. 

Execution 

Properties 
overwritten 

Properties 
excluded 

Concerned 

Configuration All users 

All users in client 

Personalization One user in client 

Figure 7.1 Hierarchy of Customization Options in Web Dynpro Applications 

The customization hierarchy defines who can set and overwrite property 
values. and where this can be done. It also shows how properties can be 
marked to ensure that no further changes are made to them. Customi· 
zations can then be made only if the user in question has the correct 
authorizations (this topic is dealt with in this chapter). 

378 



Topics Discussed 

This chapter discusses the following topics: 

1> Configuration, which a llows you to configure settings for Web Dynpro 
components and applications that are used by all system users. 

~>- Customizing, which allows you to configure settings that apply to all users 
in a particular client . 

~>- Personalization, which allows you to adapt a Web Dynpro application to 
your personal requirements. 

7.1 Configuration 

Let us begin by looking at the customization options at the highest level 
in terms of effect: configuration. As mentioned before. configuration 
affects the Web Dynpro components and applications that are used by 
all users in a system. 

Web Dynpro applications are configured using a configurator (configura
tion editor). The configurator is started automatically when configurations 
are created or changed. in two steps: 

1. The developer creates configuration data sets for individual Web Dyn
pro components. These data sets are used to control the behavior or 
the UJ of the individual views. Several data sets can be created for a 
single Web Dynpro component. 

2. The application developer of a Web Dynpro application uses the con
figuration data sets for the Web Dynpro components to create an appli
cation configuration. The application configuration specifies which of 
the Web Dynpro components is used with which configuration. 

The data in the configuration data set that is created in the configuration 
editor is divided into three categories: 

~>- General administration data 
This data includes, for example, the name of the configuration, the 
descriptive text and the name of the associated Web Dynpro compo
nent. 

379 

Configuration I 7.1 

Configuration 
steps 

Configuration data 
set 



7 I Configuration, Customizing, and Personalization 

Procedure 

[8] 

CONFIGURE_ 
COMPON ENT 

configurator 

~ Explicit configuration data 
The existence of a configuration controller is a prerequisite for th is data. 
Each Web Dynpro component can have only one configuratio n con
trolle r. The configuration controller is a special instance of the cus tom 
controller. 

~ Implicit configuration data 
This data represents the values of the properties for the view ele
ments . In a special usage of the Web Dynpro component in which 
certain properties are changed, the application developer creates a 
configuration that overrides the property values. 

After this brief overview of configuration, we will provide you with a 
more de tailed description of implicit and explicit configuration. 

7.1.1 Implicit Configuration 

To customize a Web Dynpro application using implicit configuration, 
you need to create configuration data sets. A configuration data set pro
vides the properties of the view elements for maintenance purposes. 
Maintaining these properties causes the appearance of the Web Dynpro 
application to be changed for all users when the set is used in an applica
tion configuration later on. Proceed as follows to create a configuration 
data set: 

1. In the Object Navigator (Transaction SE80), open the Web Dynpro 
component for which you want to create the configuration data set. 

2. Open the context menu of the Web Dynpro component and select 
CREATE/C~IANGE CONFIGURATION. This Starts the Standard configurator 
in the form of the Web Dynpro application CONF I GURE_COMPONENT. 

3. Enter the name of the configuration data se t in the CoNFIGURATION 

ID input field, which in this case is ZWDC_07 _CLASS_BROWSER_Cl (see 

Figure 7.2, 0 ). When entering the name. note that you must ere· 
ate your configura tion data sets in the customer namespace and that 
these names have to be globally unique. 



Configuration J 7.1 

P- Conrtgure Component • Wtndows Internet Explorer ' 

00 . It!> .... ," :.:J •• 

.:;; $t :6 '""""""• '""""""" 

Editor for the Web Dynpro ABAP Component Configuration !:!n! 

Which eompooent dO you want to configure? 

Configuration D: ' (l'M>C_07 _CLASS_BRONSER_C1 (OJ 0 
ijOVasc,ipt :vdci(O); 

Figure 7-2 Creating a Configuration Data Set 

4. Select the CREATE function. A dialog box opens that contains the input 
options for the configuration administration data (see Figure 7.3). 
Enter the DESCRIPTION (0 ) and the PACKAGE (0 ) for the configuration 
data set and confirm your entries by clicking on OK. 

Create Configuroltton [iJ CJ I 

New Configurttlon 

Configure&n: 

Description: 

Package: 

Figure 7-3 Maintaining the Configuration Oata for the Configuration Data Set 

Maintaining 
administration 
data 

5. The configura tion data set with the available functions and the selec- Selecting a view 
tion option for the views of the configuration data set is disp layed, as 
shown in Figure 7.4. The toolbar contains three views: ATTRIBUTES, 
COMPONENT-DEFINED (explicit configuration), and WE8 DYNPRO BUILT-
IN (implicit configuration) (0 ). 

6. Open WEB DYNPRO BUI LT-IN. On the left, in a table, you will see a 
dropdown list with the views of the Web Dynpro components (0 ), 

and, on the right, you wil l see the attributes that can be set (E)). 



7 I Configuration, Customizing, and Personalization 

Setting Ul 
attributes 

Configuration data 
set in the Web 

Dyn pro component 
object list 

Creating the 
application 

configuration 

•t X I P· 

Component Configuration ZWDC_07_CLASS_BROWSER_C1 ..., 

0 

e --• v _Q.ASS_WftHOO$ ·-.. u 1$ J.EntOO$ 0 
• LJ r~n1_rME 

• LJ tJoETH.,l .taf 

• T~H .. T,t.et,f~V _(XIIiA,.fX 

0'"" 

I Resilll IOf U Blmltl l 
.. J v_Q.ASS:_Sft.fCTIOH 

• T l8JWoE.CLASS 

' f;i;.F JWE .. CU.SS 

• .,. 8lN_(I..ASS_SEAACH 

Figure 7-4 Maintenance Screen for a Configuration Data Set 

7. In this screen, you can now set the view element attributes as required. 
In this example, we set the VISIBILITY of Tab element T_METH_TABLE_ 

REALLY_COMPLEX to No. The effect of this is that th is tab is no longer 
displayed. In this screen, you can also use the FINAL checkbox to pre
vent the attribute from being changed using Customizing or person
alization. After you have changed all of the view element attributes as 
required, select the SAVE FUNCTION. 

8. Close the browser window of the configuration application and 
update the object list of your Web Dynpro component in the Object 
Navigator. After you have updated the object list, the configuration 
data set is shown as a sub-element of the Web Dynpro component 
(see Figure 7.5. 0 ) . 

You can create the appl ication configuration if the appropriate configura
tion data sets are available for all of the relevant Web Dynpro components 
that are used in your Web Dynpro application. Proceed as follows: 

1. In the Object Navigator (Transaction SE80), open the Web Dynpro 
component and, from there, the Web Dynpro application for which 
you want to create the application configuration. 



2. Open the context menu of the Web Dynpro component and select 
(REATE/CHANGE CON FIGURATION (see Figure 7.6). This starts the 
configurator in the form of a Web Dynpro application (CONF 1 GURE_ 
APPLICATION) . 

Object Name 
~ ~ ZWOC_07 _CLASS_SROWSER 

• Ll Assislance Class 
· ~ COMPONENTCONTROLLER 
• cO ComponenllniOiface 
• 1!:;1 Views 

Web Oynpro ~plicalions 

Description 
Class Bmwser 

Figure 7.5 Configuration Data Set in the Object List of the Web Dynpro Component 

~ c0 ZWOC_07_CLASS_SROWSER 
~ L) Assistance Class 
• ~ COMPONENTCONTROLLER 
• cO Component Interface 
• 1!:;1 Views 
• ll::J WindOWS 

Class Browser 

~ ~Web;miiJmr:..---~-----
... cJ Component~~~ . m zV.nSc_o7_~·~. 

Qreate 

c nange 

Qlspiay • 
create/Change Connguratton ~ 

Chec~ 

Toil 

Qelete 

OiSP!3Y ObJeCt Directory Enlry 

Change Package ASslgnmenl 

Wnle I ranspon Entry 

Figure 7.6 Creating the Appl ication Configuration 

3. Enter the name of the application configuration in the CoNFIGURA

TION ID input field. When entering the name, note that you must 
create your application configuration in the customer names pace and 
that this name has to be globally unique. 

Configuration J 7.1 

Start the 
configuration 
editor 



7 I Configuration. Customizing. and Personalization 

Selecting a 
configuration data 

set for each Web 
Oyn pro component 

4. Select the CREATE function. A dialog box opens that contains the input 
options for the configuration administration data. Enter the DESCRIP
TION and the PACKAGE for the application configuration; for example, 
"Application configuration for the class browser" and "$TMP." Con
firm your entries by clicking on OK. 

5. Select the STRUOURE tab in the next screen. In the ASSIGNMENT OF 
COMPONENT CONFIGURATIONS group, select a configuration set for 
each Web Dynpro component (see Figure 7.7. 0 ). In this example, 
the configuration set is COMPONENT CONFIGURATION ZWOC_07 _CLASS_ 

BROWSER_Cl (0 ). 

Appllcatlon Configuration ZWDC_07 _CLASS_BROWSER_APP _C1 

CORilt)ur..,... 

~c.on,,.. .... 
0 XNi:IC_fP _Q,.A$$~_,1 

Figure 7.7 Selecting a Configuration Data Set for a Web Dynpro Component 

0 

Save 6. After you have made all of the required assignments, select SAVE to 
save the application configuration. 

7. You can use the TEST function to check the effects of the application 
configuration on the Web Dynpro application. Figure 7.8 shows the 
test results for the settings that have just been made: the METHODS 
TA8LE COMPLEX tab iS now hidden. 

8. Close the browser window of the configuration application and 
update the object list of your Web Dynpro component in the Object 
Navigator. After the update, the application configuration is displayed 
as a sub-element of the Web Dynpro application. 



Configuration J 7.1 

I Without application configuration With applicat ion configuration 

~n - Wondow~ lntc"'ct ("'*'•u ~ Wond"""" Jnlnnt'l fNJbt'r 

::::J 4' X . II!.""'"' :::J 't X 4t 

T.i' • EiJ • ~ • •.. e: .. .. • 

=no e. (J .... l !IOICO.. 

<) • _c.oo<S> .J'f'CP-«1 .J<l<I.J'R<" 
G , _CN>e>~./'fi'$T.Jft<* 0 It 0 

<.) f .CN:>fS>~T.Pft¢1> 0 3 f'.CAOEO~~ 0 
G , _OU_DVKAAtC,PATA--()H..f)lfOJrfJ«J(lf 0 
() P .OU_D~J)AlAt-OO~.)f(U 0 

~ f' .OO.Jf'IHAJ«-.PAl.t.~,J~ 0 
(t f' .fN)YvKAJ/fC_DAU.~J&'Jf(U Q 

Figure 7.8 Effects of the Application Configuration 

To ensure that the application configuration has a real effect on the Web 
Dynpro application, you have to assign it to the Web Dynpro applica
tion. There are two ways of doing th is (see Figure 7 .9): 

"' Application parameters 
To make assignments using application parameters (0 ), go to the 
PARAMETERS tab in the Web Dynpro application and create the param
eter WOCONFIGURATIONIO with the ID of the application configuration 
as a VALUE. 

"' URL parameters 
To make assignments using URL parameters (9 ), append [? 1 &l <param· 
eter name>- <parameter value> to the URL of the relevant Web Dyn
pro application. For testing purposes, you can enter this into the 
address bar of the browser after you have launched the application. 
Provide a hyperlink for users that points to the Web Dynpro applica
tion, including the URL parameter. 

For more information on making assignments for the application config
uration, see Section 7.3, URL Parameters and Application Parameters. 

Assigning the 
application 
configurat ion to 
the Web Dynpro 
application 



7 I Configuration. Customizing. and Personalization 

I With application parameter I 
' s&ved 

Propetlies Parameters 
1-""' 

Parameters Value 
ION I() 

'I'll>• 
STRING 

Description 
Name 

With URL parameter 

If implicit is not 
enough .. . 

[D) 

Figure 7·9 Assigning the Application Configuration to the Web Dynpro Appl ication 

7.1.2 Explicit Configuration 

If the options provided by implicit configuration are not enough -because 
you want to influence the program flow using configuration, for example
you have to be prepared for some definition and programming work to 
enable explicit configuration. To do this, proceed as follows: 

1. In the Object Navigator (Transaction SE80), open the Web Dynpro 
component for which you want to enable explicit configuration. 

2. Open the context menu of the Web Dynpro component and select 
CREATE • CUSTOM CONTROLLER. 

3. The CREATE CONTROLLER dialog box opens. Here, enter the name 
of the custom controller in the CONTROLLER (0 ) input field and the 
description in the DESCRIPTION (8 ) field (see Figure 7.10). Confirm 
your entries using the button with the green checkmark. 

@Create controller X 

Component 

Con!Joller 

Oestription 

0 
lzwoc_o7 _cLASs_eROWSER I 
CONFC_CLASS_BROWSI 

f) Configuration Controller Class 8rowser 

Figure 7.10 Maintaining the Attributes of the Custom Controller 

1 



4. The next screen that opens is the view for defin ing the elements of a 
custom controller (see Figure 7.11). 

The CONTEXT tab allows you to define the context nodes (I CONS in this 
example) and context attributes (METHOO_K 1 NO_ ! CON_NAME in this 
example) that the user can set later on in the explicit configuration. 

Custom Controller ICONFC_CLASS_BROWSER I 

[ D Controller Usage 

Conte>ct CONFC_CL.ASS_9ROWSER 

• Q CONTEXT 
• ICONS 

Attribute 
Attribute Name METHOO_KtNO_tCON_NAME 
Type assignment Type ill 
Typo STRING 
Read-only 0 
oeraunvatue ICON_OO_CL.ASS_tjETHOO 
Null Value 0 
tnpU1 Help Mode Automatic ill 
Determined Input Help 
Type of Input Help 

Eorroattjng 

DefauttVatue 

Figure 7.11 Defining the Context Node and Context Attributes for the Custom 
Controller 

In addition to being used for the properties of view elements , the 
application developer can also take these context attribute values into 
account in the implementation. 

When doing so, the developer has to be aware of the following rules, 
as set down in the Web Dynpro framework: 

.. When a node is created in tl1e configuration controller context, 
recursion nodes are not allowed. If you go ahead and create a recur· 
sion node, you will not be able to maintain values for this node. 

.. Singleton nodes are also prohibited and cannot be created. 

Configuration J 7.1 

Defining the 
custom controller 
context 



7 I Configuration, Customizing, and Personalization 

From custom 
controller to 

configuration 
controller 

Context mapping 
and data binding 

~ The attributes have to have a simple type; in other words, no refer
ence types or structured types. 

~ In the case of a multiple node (maximum cardinali ty n), one of the 
node attributes has to be marked in the properties as the PR IMARY 

AITRJBUTE to ensure the uniqueness of the elements in relation to 
the primary attribute. This property is visible only in the configura
tion controller and not in the custom controller. 

5. After SAVE, the custom controller is displayed in the object list of the 
Web Dynpro component. 

6. Next, select (RE)SET AS (ON FIG. CONTROLLER FROM THE CONTEXT MENU 

OF TilE CUSTOM CONTRO LLER YOU JUST CREATED. This converts the com
ponent controller to the configuration controller of the Web Dynpro 
component (see Figure 7.12). There can be only one configuration 
controller per Web Dynpro component. 

Object Name 

Y <t:i ZWDC_07_CLASS_BROWSER 
• [J Assistance Class 
· ~ COMPONENTCONTROLLER 
• ct:J Component Interface 

Description 
Class Browser 

• ~ Custom Controllers ....... _____ _ 
, · CONFC_C 

• I!;;! VIews 
• g:,wndows 
Y !i5l Web Dynpro 

Y ~ LWO< •• Uo _ <oas 

~reate 

Change 

Qisplay ~ 

!Re)Set as Conn g. controller 1-.. 

Che<~ "' 

y Ll Componenl Aoljvate 

· fi1' zwoc_o7 c w l!PY ... 

Rename ... 

Qelete 

write Iran sport Entry 

~erslon Management 

Figure 7.12 Converting a Custom Controller to a Configuration Controller 

7. To be able to access the configuration controller data from any con
troller in the Web Dynpro component, you have to define the con
figuration controller as a used controller and then execute context 
mapping on the context nodes of the configuration controller. You 



can then use the mapped context attributes in the implementation or 
in the data binding. 

Figure 7.13 shows the definition of the configuration controller as a 
used controller (0 ) and the context mapping of the configuration con
troller's context nodes to the context of a view (0 ). Part (0 ) of Figure 
7.13 shows the effect of the context attribute data binding in the con
figuration controller on the ICON SOURCE property of the view element 
Caption; that is, the icon, which is stored in the DEFAULT VALUE of the 
context attribute of the configuration controller. is displayed. 

VIeW 'J.ClA&S.JIEfl!llOS .O.CM:rMtc& 

U10111 I'IIIOUniiPN;t Qucb01,1!t#Pll9t COI'Wm Mlt!UIH An<lnt ....;""'l 

"""'" l'~tOnlll• 

Cf't~O&r C5019$t9 
Lui UIID)t(l t>v CSOHifiW 

Configuration J 7.1 

...... . 
I 0 Conlrollor Us• F . CAOEOJ"'(f'--flfl'Xlj'R()P 

Conltll V.CI.ASS,.WETHOOS <t ~"-""~-~&<ftiCSi_l'ffOII Cl 
• Q COHTEXT 

• Cil .w£Tl.IOOS 
<J ,_CAMD~T,.P!lOP Q 
(t F _OUI.JWW...Cj)ATA•OHPf(IJffj()OE 0 

• Ill CV.SS_SEl._CRIT 
• ~ tO ,.METHODS 

COni$11¢0UFC_CV.SS_eROWSER 
• Q CONm<f 

• OiJ IC<IUS 

<t ,--~.PATJo·OO.}&I.]«U D • 

• G) ru_ME"TWOOS_COOE 
· "!) MJIIIElYPE$ 

• 'b MHA\tOuR 

• 

Figure 7.13 Using the Configuration Controller in a View 

After you have finished creating the configuration controller, it is acces· 
sible in the definition of configuration data sets. 

1. In order to use explicit configuration go to the configuration editor. 

2. The context attribu tes that were created in the configuration control
ler are now located on the CoMPONENT-DEFINED tab in the configura
tor, where you can set tl1e values you require (see Figure 7.14). 

•, 100'1. 

Explicit 
configuration 



7 I Configuration, Customizing. and Personalization 

Maintaining 
context attribute 

values 

Component Configuration ZWDC_ 07_ CLASS_ BROWSER_C1 1:11 

I Save II ~tes~art I I Disp~ey I 

Attributes otttle Oameoc kons 

-• awtexl 

1' · - 0 n. l 

Figure 7.14 Explicit Configuration 

3. The defined context nodes from the configuration controller are li sted 

in a table on the COMPON ENT-DEFINED tab (0 ). To the right of the 

table, the context attributes are displayed with their input options. 
The required va lues can be entered here (0 ). 

4. After making your entries, make the data persistent using the SAVE 
function. 

7.2 Personalization and Customizing 

Individualization Aside from the configuration that affects the entire user group of a Web 

Dynpro application, individua l users can also change some of the settings 
of the Web Dynpro application. These settings cover personal requ ire

ments and preferences. However, th is is very restricted in comparison to 
the configuration because the performance of a Web Dynpro application 

mus t not be jeopardized by incorrect settings. 

Customizing The purpose of the Customizing function is to control settings that affect 

large user groups. An administrator with the approp riate authorizations 
can configure advanced settings by opening the Web Dynpro application 
in Customizing mode. 

Another difference between configuration. Customizing. and person
alization is the time at which changes are made. Whereas configura

tion changes are made at design time. Customizing and personalization 

390 



Personalization and Customizing I 7.2 

changes are made at runtime. Furthermore, with Customizing, the Web 
Dynpro application CUSTO~I I ZE_COt1PO NENT can be used at design time. 

Proceed as follows to carry out implicit Customizing: 

1. Start the Web Dynpro application in configuration mode. To do this, 
add the parameter name or parameter value pair sap-config-mode=X 

to the end of the URL of the Web Dynpro application. 

2. In the relevant view element, select SETIINGS FOR CURRENT CONFIG· 
URATION from the context menu (see Figure 7.15). This opens the 
Customizing dialog box (provided that the user in question has the 
relevant authorizations). 

Mth. Oce. levoi. ~once- end CIO$$-MeChOCIS 

OOjec!Ty..-..: ~CL0GUI-':LV0GRD b@ AI.VUstY..-

j. 

G'oMethods !HI-
) sett*lgs lor <:went COOIIgur<•lon 

Ei). ~ lrter face Cclrrf1) Oisphy Quid: ~ 

® IF _CACHEO_I'ROI'-<lET_NEXT_ .... e fdc! He;> 

I 
(!!) IF _CACHEO_PROP-SEEK_fiRSTj>ROP [U 
(!!) IF_CACHEO_PROP-SET_PROP 0 
(!!) IF _QUI_OYNAMC_OATA•ON_El<ECUTlU<OOE 0 
(!!) IF _QUI_OYNAMC_OATA•ON_NEW_NOOE ro ~--

Figure 7.15 Implicit Customizing 

[8] 
Configuration 
mode 

3. In the next step, you should set the view element properties you Setting values 
require. In the example in Figure 7.16, the VISIBILITY (8 ) proper!)' of 
the Tab (0 ) view element is set to NoT PERSONALIZED, and the check-
box is checked to set the FINAL (E)) property to ABAP _TRUE. Properties 
that are marked as final in the configuration cannot be changed using 
personalization. 

With implicit personalization, proceed the same way as you did with Personalization 
implicit Customizing. You can change a restricted set of properties in the 
context menu of each view element such as the visibility of a view ele-
ment (see Figure 7.17). 

391 



7 Configuration. Customizing. and Personalization 

,.n [ 

' 

• 

::J ,, X I"""' P · 
f.} • G:J • .;.; • • \ Page • .• Tools • )) 

• 

\foow. '"u"-=.,o;.,,.,,;;:.,;;---,-.~ • 
. :t -· 
• tJ Tot»tr¥1 Cora:rOI 

· ¢ • ... 
•D........., 
•D-

( Reue•oru~l 0 T ec:tv"icee Nne:s 

• *' Mf:thoctt & P•amt:ters 
till$ mer Oi:tanoo: (' Ve$ r hb r. Nell Peuoneli:z:ed 

• 2$ Melt'IOOSTI!iltlleCOmpleX 0 
Text '"'-hOO:t T._~lC. I _R~t't 

rr 
Figure 7.16 Setting Property Values in Customizing 

~ Class Brnwscr - W1ndows Inte-rnet EKplorer : 

@ • 11!1 .. tp:/1 

<Ji o:l/1 ~Closs Browser 

ObjeetT

Mih. Oet. tevet 

Visililly: Private 

----
::J ~, X !Gooote 

"1' - ~· 

A.lVUstV~ 

' - C.op()o-..n Box 'Vlslllilty" " 
-------1 _......koye<l!veled I\} 
o;sptoy <U:k He_, 

l"rvisi)le Elements 
More f'leld Hetp 

Nerfeoe c""''--;;..;~~;:;.---L...:-~•:;·;;.·· =--...---,r..-_j 
F _tAOiOO J'R()P-GET J<EXT J'R(>P [l 

0 F _tAOEO _PROP-SEEJ<_fllST _PROP 

F _tAOiOO.}'ROP-Sa .J'ROP 0 
F _OUI_0""-"'11<:_0ATA~-E><OOJT1U>IOOE 0 

0 

Figure 7.17 Personalizing the Web Dynpro Application 

•,tOO"Ao 

Tools • » 

This also means that the user can reset view elements to visible that were 
previously set to invisible. Properties of view elements that were set to 

392 



URL Parameters and Application Parameters I 7.3 

FINAL in the configuration or in Customizing are not accessible using 
personalization. 

7-3 URL Parameters and Application Parameters 

As you have already seen, URL query string parameters can be included 
in a request URL to affect the properties of the Web Dynpro applica
tion or to switch to configuration or Customizing mode. The following 
section contains additional useful parameters and also describes several 
usable application parameters. 

7-3-1 URL Parameters 

The URL parameters for Web Dynpro applications are added to the stan
dard URL of a Web Dynpro application. They all start with sap·wd · or 
sap- . These are prefixes that are reserved for SAP. Table 7.1 explains 
selected URL parameters. 

Parameter 

sap·wd· 
configld 

sap·config· 
mode 

sap·wd· 
ssrconsole 

Value 

I D of the application 
configuration 

X, confi g 

true 

Table 7.1 Selected URL Parameters 

Description 

The application configuration 
I D is transferred with this 
parameter. The name of the 
relevant application parameter 
is WDCONFIGURATIONID. 

Switches the user to 
configuration mode (confi g) 

or Customizing mode 
(X), provided that he has 
authorization S_OEVELOP or 
S_WOR_P13N. 

Displays the Web Dynpro 
console, which provides 
information on memory usage 
and runtime, among other 
things. 

393 



7 I Configuration, Customizing, and Personalization 

7.3.2 Application Parameters 

It is also possible to include application parameters in a Web Dynpro 

application in the Web Dynpro Explorer. You can do th is on the PARAM· 

ETERS tab of the relevant Web Dynpro application. You can either define 
your own parameters or select one of the predefined parameters. Table 

7.2 describes selected predefined parameters. 

Parameter 

WOCON FI GURAT IONIO 

WOO! SAB LEUSERPERSONAL! ZAT! ON 

Table 7.2 Selected Application Parameters 

Note 

Value 

ID of the 
application 

configuration 

Bool ean 

Description 

The name of 
the associated 

U RL parameter 
is sap-wd
conf i gl d. 

Disables 
personalization 
options (no URL 
parameter). 

Note that the parameters specified in the URL are processed first, followed by 
the standard parameters that are defined for the Web Dynpro application. 

7-4 Summary 

Customizations to Web Dynpro components and Web Dynpro app li 
cations provide an elegant solution for modifying the appearance and 
behavior of Web Dynpro applications to suit the requirements of users 

and user groups w ithout the need to undertake additional implementa
tion efforts. The Web Dynpro framework contains the following levels 

of customization: 

,. Pe rsonalization, which enables the individual user to make changes to 

the UI 

,. Customizing, which enables users with the relevant authorizations to 
configure settings for a group of users 

394 



"' Config uration. w hich enables application deve lopers to configure set-
tings in the fo rm of configuration data se ts for all users 

The customization options that are provided by the Web Dynpro frame
work without the need for defini tion and im plementation work are 

known as implicit customizations. If these options a re not sufficient for 
a particular purpose, the application developer can define configuration 

controllers to create add itiona l customization options. This kind of cus
tomization is known as explicit configuration. 

Chapter 8, Practical Tips and Hints , describes more extension optio ns 
provided by the Enhancement Framework, a comprehensive tool for 

making extensions to Web Dy npro components that is quite different in 
its approach to the methods discussed so far. 

395 

Summary I 7-4 





Even with marry years of programming experience, you can 
still discover new Web Dynpro tools and features. This chapter 
describes these new tools and features. 

8 Practical Tips and Hints 

The Web Dynpro technology has been enhanced considerably in recent 
years. For example, the Web Dynpro Debugger is a tool you could only 
have imagined in the early days of Web Dynpro. Along with the techno
logical progress, the know-how of the Web Dynpro developer commu
nity grew steadily. If you were to ask an experienced Web Dynpro today 
if he would design his fi rst Web Dynpro component in the same way he 
did in the early days, he would most likely respond in the negative. 

This chapter provides you with a discussion of technological innova
tions, enhanced by our many years of experience. Of course, you cannot 
substitute practical experience by reading a chapter. However, what we 
can do is share with you some of our experience. This chapter discusses 
the following topics: 

~ Performance and memory optimization 
Inadequate server configuration and lack of knowledge concerning 
the most important rules for developing highly-performing compo
nents frequently resu lt in slow and inertly responding Web Dynpro 
Uls. Optimizing the server configuration and observing simple rules 
helps you develop Web Dnypro applications with good performance 
from the very beginning. 

~ Debugging Web Dynpro applications 
The Web Dynpro Debugger allows you to easily navigate through the 
active components and their sub-objects. For this, the debugger tool 
displays al l active windows, views, controllers, and component usages 
in a hierarchical structure. The Web Dynpro Debugger facilitates your 
daily work and is an excellent tool for analyzing components. 

397 



8 I Practical Tips and Hints 

1> Popup windows 
Popup windows have become an essential part of modern Uls. Creat
ing popup windows in Web Dynpro is very easy. Using a few method 
calls, you can display any window in a popup window. 

.. Context change log 
The context change log enables you to log user input. Using the 
change log, in turn, allows you to analyze and further process this 
user input . 

.. Hotkeys 
Hotkeys allow for defining shortcut key combinations to trigger 
actions such as a click on a button. 

1> Context menus 
By right-clicking on any part of a Web Dynpro application, you can 
open its context menu. The context menu can be enhanced by your 
own custom items with very little effort. 

Topics Discussed 

This chapter discusses the following topics: 

~ Optimizing the Web Dynpro system configuration 

~ Checklist for highly-performing Web Dynpro applications 

~ Analysis tools such as the performance monitor, t race tool, nesting 
analysis, and DOM analysis 

~ On-demand instancing of views and components 

~ Delta rendering 

~ Debugging Web Dynpro applications 

~ Creating simple popup windows 

~ Dialog boxes 

~ Using the context change log 

~ Defining hotkeys 

~ Creating context menus 

8.1 Performance and Memory Optimization 

If the degree of complexity of Web Dynpro applications increases, their 
memory consumption and response times to user actions likewise grows. 



Performance and Memory Optimization J 8.1 

This can qu ickly lead to problems caused by high memory consumption 

or slowly responding Uis. Whereas most of the time high memory con
sumption does not occur until a later stage in a project - for example, 
during mass tes ting projects - slow response times of the UI to user 

actions can occur as early as the development phase. 

However, poor system performance can often be avoided. In practice, it Typical errors 

often appears that a lack of knowledge about the fundamental aspects of 
high-performance Web Dynpro development is the main reason for bad 

system performance. For example, few Web Dynpro developers know 
the concept of delta rendering optimization. Similarly, the global instanc-
ing of non-needed components is a typical error that frequently occurs. 

In contrast to the performance and memory optim ization of classical Areas of analysis 

dynpros or ABAP applications, when optimizing Web Dynpro Uis, you 

must not only pay special attention to the appl ication server but also to 
the client and its interaction with the backend. The following list con-

tains the three most important aspects for optimizing Web Dy npro Uis. 
Each of them is discussed in th is section. 

,. Backend runtime 

From the point of view ofWeb Dynpro, the backend runtime consists 
of the runtime of the application logic and the runtime of the Web 

Dynpro framework. It can be in fl uenced by a la rge number of factors. 
For example, you can minimize the backend runtime by optimizing 

your ow n application logic. However, you have only limited options 
to influence the runtime of the Web Dynpro framework. With th is, 
the most important thing is to observe the basic rules fo r developing 

highly-perfo rming Web Dy npro applications. 

,. Data volume transferred 

Almost every user action entails an interaction between the frontend 
and backend. In this context, you should always try to reduce the vol

ume of data that is transferred to a m inimum. Because you cannot 
d irectly influence the flow of data between the frontend and backend, 

the transferred data volume can often be used only as an indicator for 
analyses. 

399 



8 I Practical Tips and Hints 

" Frontend rendering runtime 
The frontend rendering runtime frequently represents a new aspect 
to ABAP developers. The data that has been transferred from the 
backend must be rendered by the browser, and with complex applica
tions, slow client machines, and poor system configuration, the ren
dering process can take more than one second. 

Analysis tools You can use a number of tools to optimize the performance of Web 
Dynpro applications. For example, the backend provides the runtime 
analysis (Transaction SE30), which allows you to search for weak points 
in the coding as well as the Memory Inspector (Transaction S_MEMORY _ 
INSPECTOR) for analyzing memory consumption. Furthermore, you can 
use the Debugger including its tools. To analyze the data flow, several 
tools are available on the Internet such as the Internet Explorer plug-in, 
HTTPWatch. In addition to the tools mentioned here, you can also use 
the Web Dynpro Trace tool , which is particularly usefu l for analyzing the 
delta rendering process. 

The following sections provide an overview of the most important set
tings parameters, tools, and techniques for developing Web Dynpro 
applications with good performance. 

8.1.1 Optimal System Configuration 

By optimizing the system configuration, you can often achieve a signifi
cant performance improvement in the Web Dynpro area. An inadequate 
configuration can, for example, affect both the backend performance and 
the performance of the browser in the cl ient. The following aspects are 
particularly important with regard to the performance of Web Dynpro 
applications: 

" The WO_GLOBAL_SETT I NG component. 

.. The compression of the data flow between the browser and applica
tion server. 

These two aspects are discussed in greater detail in the following two 
sections. 

400 



Performance and Memory Optim ization I 8.1 

Global Web Dynpro Settings 

The WD_GLOBAL_SETT I NG component is a standard component provided 
by SAP, which allows for the global configuration of Web-Dynpro-spe
cific parameters. The parameters can be queried and modified via the 

wd_gl obij l_sett i ng application that belongs to the component. Figure 
8.1 shows a list of ava ilable settings parameters. 

GIOI:Mie Web Oynpro Settings 

EnellleAc<e-v-.: [!] 

Defto R,_lng: ION b:JI 
Do Nell: AJow Petsoneltstlon ty the user: [!] 

Disi)IOy-SCreen: [!] 

Force lJ$e of Extem&l Styiesheet: ~ 
Extended Help OU by OefM (Exception pet Field): [!] 

'*>oCSS: 0 
Ligl'<speed Rendemg: ~ 
Save Appication: [!] 

Rurtine Reposlory as SMred Object: [!] 

Sc:ra18ehavior of Tel.*:s:: I SCROLLB.t.R li:Jl 
Stytesfleet !.Iii: 

Show Arimation: 

Figure 8.1 Parameters of WD_GLOBAL_SETTING 

Three of the global settings parameters have a direct effect on the per

formance of Web Dynpro applications. These parameters are INUNE CSS, 
DELTA RENDERING, and SHOW ANIMATION: 

• Inline-CSS 
Cascading stylesheets (CSS) are used to design the layout of Web Dyn

pro applications. They can e ither be transferred on demand in to the 
output flow to the browser Online CSS). or read by the browser from 

an external CSS file on the server. 

Depending on the usage scenario, the use of Inline CSS can have a 

positive or negative effect on the performance of Web Dynpro appl i
cations. Experience has shown that you can significantly increase the 

speed of frontline rendering for complex Uls containing many differ
ent Ul elements if you deactivate Jnline CSS. Therefore, it is advisable 
to check out the optimal configuration of the In line CSS parameter 

yourself. 

401 

Performance

relevant settings 

parameters 



8 I Practical Tips and Hints 

Act ivating the 
HTIP compression 

,.. Delta rendering 
Normally, with each roundtrip, all views that are active in a window 
are transferred to the browser. However, in many cases this is unnec· 
essary. After you have activated the delta rendering function, only the 
views that have actually changed will be transferred to the browser. 
This way, you can streamline your system in many respects - in the 
backend, with regard to the data throughput, and in the frontend. 
Consequently, you should only disable the delta rendering fu nction if 
display problems occur. 

Section 8.1.3, Performance Tools, provides a detailed description of 
delta rendering. 

Note 

If you cannot fin d any delta rendering settings paramet ers, it is probably be
cause delta rendering has only been available as of SAP _BASIS 7.00 Support 
Package 12. 

,.. Animations 
The animation of some events, such as hiding the background during 
the opening of a popup window, is meant to make your daily work 
with Web Dynpro more intuitive. However, each animation slows 
down the workflow. Measurements have shown that a single anima· 
tion can cost you up to 600 ms of time. You can save this precious 
time by disabling the animations function. 

Compressing the HTTP Data Flow 

Both on the Internet and in Web Dynpro, aU data is transferred via TCP/IP. 
To minimize the network load, you can compress the data during the trans
fer using the GZIP algorithm. With Web Dynpro, th is type of compression 
enables you to reduce the network load generated between the application 
server and the browser by approximately 85% to 95%. Thus, the com pres· 
sion is particularly useful with long and slow network connections. 

You can activate the compression of the HTTP data flow in the HTTP SER· 
VICE TREE MAINTENANCE (Transaction SICF). 

1. You can fi nd the application by selecting TOOLS • ADMINISTRATION • 
ADMINISTRATION • NETWORK from the SAP menu. 

4 02 



Performance and Memory Optimization I 8.1 

2. Skip the initial screen by pressing the [NJ key. 

3. In the lower part of the next screen, you can see the HTIP service 
tree. Select DEFAULT_HOST • SAP • BC and double-click on the WEBDYN
PRO node element. 

4. Go to the settings item on the SERVICE DATA tab and select YES under 
COMPRESSION (see Figure 8.2). 

~Semce Data V Logon Data Handler List Error Pages Administration j 

SeNite Options 

0 Do Not Include Inherited Settings 

Load Balancing I ~ 
SAP Authoriz. I 1 
Session Timeout lee: 99 :991 (HH:MM:SS) 
Compression rr(8S --·---·- ·-----·---r; 

Not specified 

Interactive Options - ~~s ~ 
OUI Link cified OUI Configuration 

Support Accessibility J Not specified 

Figure 8.2 Activating HTTP Compression 

8.1.2 Checklists for Developing High- Performing Web 
Dynpro Applications 

Prior to looking at more complex topics such as delta rendering, in the 
following sections, we will take a look at a few basic rules that should be 
observed to develop Web Dynpro Uls with good performance. 

Checklist: Components 

At the level of components in particular, errors can occur from the point 
of view of the application performance, which is very difficult to undo 
later. The following checklist provides an overview of the most impor
tant basic rules of component performance: 

.,. Use components only for programming Uls. Separate your applica
tion logic from the Web Dynpro controllers in such a way that you 
use classes for the application logic and controllers for managing com
ponents and views. 

403 



8 I Practical Tips and Hints 

" Each component instancing affects the runtime and memory space. 
Do not develop one-view components but do not exaggerate either 
by creating large "monster components." Combine all views that are 
logically related in one component. In most cases, a sound mixture of 
five to ten views per component is ideal. 

" Avoid the global instancing of external components in the wddoi nit( J 
method. Do not instance an external component until you want to 
display it in the UI (see Section 8.1.4, On-Demand Instancing of Com
ponents and Views). 

" Delete component instances when they are no longer used. To do 
this, use the de 1 ete_component < J method of the respective compo
nent usage (I F _wo_COt1PONENT_USAGE type). Deleting an instance releases 
the corresponding memory space. 

" If possible, set the lifetime of all views to WH EN VISIBLE. Note: On the 
one hand, this setting reduces the memory requirement but on the 
other hand, it can increase the runtime if a new instancing process is 
necessary. Therefore, you should ask yourself which of the two is the 
better solution to your specific requirements: reduced memory 
requirements or the probability of having to re-in stance the views. 

Checklist: Context 

The context is responsible for the data exchange between the user inter
face and the Web Dynpro component; it is one of the most important 
elements of components. Therefore, it is also essential to observe certain 
rules concerning efficient context programming: 

" Do not store all of the data in the context. Use the context only for 
data that is bound to UJ elements. 

" Do not create deeply nested contexts. 

" Create local contexts as required; for example, in views. 

" Avoid long context mapping chains. 

" Update the context only if you really need to update the data. 

" Use singleton nodes combined with a supply function if master-detail 
nestings are required. 



Performance and Memory Optimization I 8.1 

"' Pay attention to the following aspects for all nodes whose attributes 
are based on DDIC structures: 

"' Transfer only required fields as attributes into the node. 

"' If possible, use lean structures. Even if you include only a small 
portion of the fields of a structure in the attribute list of a node, the 
system internally requires the entire structure. 

"' Use the set_stat i c_attribut es( > method instead of set_attri · 

bute ( ) to update multiple context attributes of an element. Use the 
bind_table( >method to update entire nodes. 

Checklist : Ul Elements 

Every generated Ul element requires memory and computing time on 
the server, at the network level, and in the browser. For this reason, you 
should economize on the number ofUI elements you use. The following 
checklist will provide assistance: 

"' Avoid any kind of scrolling. Do not use container scrolling or the 
scrolling function of the browser. In particular, with Uls that are ready 
for input, using scrolling containers reduces performance signifi
cantly. 

"' Avoid deep nes tings of containers, groups, and tabstrips. Wherever 
possible, you should use the REPLACE ROOT ELEMENT function (see 
Chapter 2, Web Dynpro Architecture). 

"' If possible, do not use the Ul element Tree. 

"' Use either RowRepeater or Multi Pane for repeated Uls. Do not nest 
these two Ul elements. 

"' Modify your Ul elements only if they have really changed. 

"' If possible, avoid making changes to Ul elements via view method 
wddomodi fyvi ew( ) . Instead, use the importing parameter firs t_t i me 

for this. 

8.1.3 Performance Tools 

With the Web Dynpro framework, SAP provides a number of useful 
analysis tools. These tools specifically developed for Web Dynpro let you 
check your applications in a variety of ways, and include: 

Web Dynpro 
analysis tools 



8 I Practical Ti ps and Hints 

Traditional 
performance 

analysis tools 

[8] 

Starting the 
performance 

monitor 

" Performance monitor 

" Nesting analys is 

" Document Object Model (DOM) analysis 

" Trace tool (contains the following sub-tools: delta rendering change 
tracking, detailed memory allocation information, and navigation 
information) 

In addition to these tools, you can also use the traditional ABAP tools for 
performance measurement such as the runtime analysis, which we will 
briefly describe in this section. 

Note 

The tools and features described in thi s section require the availability of 
lightspeed rendering. Lightspeed rendering has been available as of SAP _BA
SIS 7.01. 

Performance Monitor 

The performance monitor allows you to easily display the most impor
tant performance-relevant key figures such as current memory consump
tion, end-to-end response time, as well as server-s ide and client-side 
rendering times. 

1. To start the performance monitor, you can either append the sap -wd · 

perfMoni tor= X parameter to the URL of your application, or simulta
neously press the I Ctrl I + I Shift I + @I) + II) keys in your brows
er. A small box with the performance monitor should appear in the 
upper right-hand corner (see Figure 8.3). 

Tip 

When you press the I Ct rl I + I Sh i ft I + [&D + IE) keys simultaneously 
in the browser, a small popup window opens displaying an overview of all 

I Ctrll + I Sh i ft I + I Al t I shortcuts available. 

406 



Performance and Memory Optimization I 8.1 

p. 

.,Pools • 
» 

Ius Gl 
~ USA 
Ncltionalty. AmeriCan 

n 
~Local,.,....,. 

Figure 8.3 Performance Monitor 

Caution 

The data displayed in the Web Dynpro performance monitor is a set of values 
that lets you get a rough idea of performance; these values are by no means 
exact and cannot be used for comparative analyses. 

2. To enhance the performance monitor and view additional deta ils in Displaying details 
different categories, click on the » link. 

3. Figure 8.4 shows the MEMORY category as an example. This category 

lets you view current memory consumption and the number of active 
components. active controllers. context nodes. and context elements. 
In addition, you can write a memory dump tha t can be analyzed using 

Transaaion $_MEMORY _INSPECTOR. 

Web OVrlx'o for ABAP SSR Consde 13 
oyeryiew 1 Performance 1 Memorv 1 ReD"erlnQ 1 SV1tem loCos 

Tinestamp of measl.t'e-ment 25.05.2009 21:27:06 

Memory S.7t2kB 
MaXmel1lOI'Y in $101) 8.183 
Number of ftdive \A.IO-~nts 2 

Number of Cortrollers 6 

Number of Cortext Nodes: 10 

Number of Cortext El~erts 244 

Figure 8.4 MemoryPerformance Monitor Category 

407 



8 I Practical Tips and Hints 

Nesting Analysis 

To trace deeply nested (and often unnecessaty) containers, you can use 
the nesting analysis tool. This tool uses colors to highlight the different 
HTML tags used, as follows: 

11> <TABLE> 

Red highlighting 

"' <OIV> 
Blue highlighting 

"' <SPAN> 

Green highlighting 

Starting the You can start the nesting analysis in the browser window by pressing the 
nesting analysis I Ctrl 1 + I Sh i rt I + 0I) + [Q) keys simultaneously. Figure 8.5 shows the 

nesting of an ALV table. 

Coal of t he nesting 
analysis 

B: Performance 

Figure 8.5 Nesting Analysis of an ALV Table 

The nesting analysis lets you quickly identifY and remove weak points. 
The higher the number of nestings that appear in a UI during analysis , 
the higher the number of UI elements that are generated in the backend, 
transferred to the client, and rendered by the browser in the frontend. 

For performance reasons, you should reduce the rendering of HTML 
tables to an absolute minimum. HTML tables are used primarily with 

408 



Performance and Memory Optimization I 8.1 

Mat ri xlayout ; in many cases, you can use the Fl owlayout or Gr i dlayout 

as an alternative. 

Document Object Model Analysis 

The Document Object Model (DOM) is a specification for accessing 
HTML or XML documents defined by the World Wide Web Consor
tium. DOM specifies the display of documents in a pedigree, which are 
interconnected using relationships. 

The DOM analysis is particularly useful for checking the complexity of 
Web Dynpro applications. It simply counts the number of elements con
tained in a document and outputs this number in a popup window (see 
Figure 8.6). You can start the DOM analysis in the browser window by 
pressing the I Ctrl I + I Shift I + lN] + (]) keys simultaneously. 

Nodes:Ul'l7 
Element Nodes: 751 
Text Nodes: 296 

Mox Nestr.Q: 38 
AYQ Nestno: 29.s 

Max Table Nes:tirlg: 5 
Max Cntic~ NestnQ: 8 

HTM..: I 
1-EAO: I 
nnE: 1 
SCRu>T: 5 
LlNK: I 
BODY: I 
OIV: 47 
SPAN: 60 

TBOOY: 15 
TR:267 
TO: 295 
IMG: 7 
A:8 
XMP:2 
IH'UT: 9 
LAlla: 3 
Tt£AO: 1 
TH:S 
COLGROUP: I 
COL: 4 
FORM: I 
lfi!AME:I 

It ()I( J 

Figure 8.6 DOM Analysis for a Web Dynpro Application 

Trace Tool 

The trace tool is the most powerful tool among the Web Dynpro analysis 
tools. After it has been started, it logs entries about navigation events, 
memory consumption, events, components, and view changes during 
each roundtrip between the application server and the browser. Yo u can 
either view these entries directly in the browser or download them in 
a ZIP fi le. 

You can activate the trace tool in two different ways. The easiest way to 
do this is to simultaneously press the I Ctrl I + ISh i ft I + lNJ + III keys 

Document Object 
Model analysis 

Using the trace 
tool 



8 I Practical Ti ps and Hints 

in the browser window of the application to be analyzed. After you have 
activated the trace tool , a second browser window containing the trace 
tool opens below the window of the active application. Figure 8.7 shows 
this window . 

• U•J ~<••'"""'-·""'·""·'""''500761 ... /b<I-•I __ .. .,...,_ .. N ::J ., X 1-... p . 

"Ci ~ ~~ 8: Pet'f(l(t!WI(e~IOn f.} • L)t ..- .1 Toob .. n 

Chapter B: Performance optimization 

AJ.V1-------------------------~ 

<?xml version=·Lo• encoding="utf·8" ?> O.splay tn New Window 
- <asx: abap xmlns:asx=•http:/ /www.sop.com/abopxml• version=" l.O"> 

- <a-sx:values> .. :Mih Image r 
- <DUMP _OET AILS> 

"" 0 - <ttem> 

Transaction WD_ 

TRACE_ TOOL 

<COMMENT>Noviqotion queues clcorcd</COMMENT> ..:J 

Figure 8.7 Web Dynpro Trace Tool 

The dropdown list on the right enables you to toggle between the avail
able traces. Most of the traces are displayed as XML documents. In addi
tion to the display function, you can also store a comment for each trace 
roundtrip. When the measurements are fin ished, you can download the 
entire trace, including the comments in a ZIP file, by cl icking on SAVE 

TRACE AS ZIP FILE . . . & END TRACE. 

Alte rnatively, you can activate the trace tool using Transaction wo_TRACE_ 

TOOL (see Figure 8.8). Click on the ACTIVATE FOR THIS USER button within 
this transaction and confirm the two popup windows that appear by 
cl icking on OK. Then, restart the Web Dynpro appl ication. Aside from 
enabling you to activate the trace tool, the transaction also allows you to 
retroactively download comple ted traces in a ZIP file. 

410 



Performance and Memory Optim ization I 8.1 

Web Dynpro Trace Tool 

til Refresh C Attlvate rorThis User Att1vate for ~Download Trace ~ Delete Trace Delete All 

Status <> No Web Dynpro prograDs •ill be traced 
1
1nstance Name l u serNameJstatus Jslep} start Date l startTimen 
SID:ANON:pw<lf6394_P9F _76:1mha2mi¥Sdo68_SNPZVIO OFENLOCH Running 1 25.05.2009 23:38:56 0 

SID:ANON:pw<lf6394_P9F _76:1mha2m.Jk!lsoobAnE61AqVl OFENLOCH Running 3 25.05.2009 23:36:18 0 

Figure 8.8 Transaction WD_TRACE_TOOL 

More Tools 

In addition to the tools that are specific to Web Dynpro, SAP provides 
the traditional tools for performance measurement such as the runtime 
analysis. Thus, you can also use the following tools for measuring and 
analyzing Web Dynpro applications: 

~ Memory Inspector (Transaction S_MEMORY_INSPECTOR) 
The Memory Inspector lets you carry out a deta iled analys is of the 
memory dumps stored in the performance monitor. 

~ Runtime analysis (Transaction SE30) 
The runtime analysis is particularly usefu l for analyzing your own 
application coding. This type of analysis allows you to quickly iden
tify weak points in your coding. 

~ Workload Monitor (Transaction STAD) 
The Workload Monitor can be used to exactly measure the response 
time of the application server during a roundtrip. In contrast to the run
time analysis, the measurement process does not distort the results. 

8.1.4 On-Demand Instancing of Views and Components 

An error that occurs very often, and that is particularly serious from the 
point of view of performance. is the global and premature instancing 
of non-visible views and components. These should not be instanced 
until you really need them; that is, when you want to disp lay them in 
the browser. After using them for the last time, you should delete these 
views and components (when vis i b 1 e/ de 1 ete_component). If you apply 
these rules. you can minimize the memory requi rement of an applica
tion and ensure that instancings are equally distributed across the entire 
life time of the application. 

411 



8 I Practical Ti ps and Hints 

Instancing views 
and components 

To avoid premature instancing of views and components, you should 
first answer the following question: When exactly are views and com

ponents instanced? 

The lifetime of a view is determined by its visibility. When you make a 

view visible, the system instances this view and keeps it in memory until 
the component is released. If its VIEW LIFETIME setting was set to when 

vis i b 1 e , it will be removed when the status changes to invis ible. 

However, you must not confuse the term "visible" with the normal 

meaning of the word as used in everyday speech: For example, a v iew 
can have the status "visible" in the system even though you cannot see 

it in the browser. Whether a view is visible or invisible to the system 
depends entirely on the window of the respective component. A view is 
instanced if it is embedded in a visible window and flagged as a default 

view or if it is addressed through its inbound plug. If the view is an 
interface view of an external component, this component is automati
cally instanced w ith its interface view. In addition, you can also ins tance 

external components using the create_component( ) method of their 
component usage. 

Behavior with Cross-Component Mapping 

If you define a cross-component mapping between two or more components, 
these will be instanced irrespective of the visibility of their views. 

Example Let us now try to clarify what has been said in the previous paragraph 

using a small example. Figure 8.9 shows a simple application with two 
tabs and the associated w indow structure. The FoRM VIEW tab is d is
played in the browser. The user cannot see the other tab, ALV TABLE; 

that is, it is invisible to h im. You might therefore assume that the TABLE 

interface view that is integrated in the second tab has not yet been 
instanced; this assumption is wrong though. It is the ~1_14A l N window 

that is solely responsible for the visibility of the TABLE interface view. not 
the browser window. However, because the TABLE view was flagged as 

a defau lt view in the window, it is vis ible to the system. Consequently, 
it is instanced and transferred to the browser immediately upon startup 

of the application. 

412 



Performance and Memory Optimization I 8 .1 

Browser Window Structure 

f«ITU$(sichl ALV.Tebele 
• I:]W_IMJN 

• [J V_IAAJN 

lAO H • [J VC_AI.V_TOOST 
' [J TABLE L-. Ando<<O • [JVC_FORM 

Net:iorwtail: endorrarisch 
' lj W_NATIONS 

"='DEFAULT 

Figure 8.9 Visibility of Views 

Now that you know that the window always instances all visible views, 
the next question is: How can you make the views that do not display in 
the browser invisible? 

To accelerate the startup process of the sample application, you must 
prevent the automatic instancing of the vis ib le TABLE interface view. 
The window must recognize the status of the TAB LE in terface view as 
invisible. 

1. For this, you must firs t integrate an Et~ PTYV I EW in view container vc_ 
ALV_TOOST and fl ag this view as a default view. 

2. Then, create a new outbound plug in V_I~AIN to enable the navigation 
to the TABLE interface view. Link this outbound plug in the window 
with the defau l t inbound plug of the TABLE interface view. 

3. Finally, create an event that allows for navigating to the ALV TABLE 
tab. In th is event, you trigger the outbound plug to the ALV table. 

Figure 8.1 0 shows the restructured window structure. 

• ll?rci~~N-·--··----·-· 
• EJ VC_Al.V_TOOST 

' Ll EIIPTWIEW 
• Ll TABLE 

0 "!!" DEFAULT 

1-
• EJVC_FORM 

1- ' L! W_NATIONS 
• ~ TO_ALV_TOOST 

I'-- · ,f' DEFAULT 
-

1-: "it- DEFAULT -
Figure 8.10 Invisible Interface View TABLE after Restructu ring ofW_MAIN 

Restructuring the 
window 



8 I Practical Tips and Hints 

In the following exercise, you will implement this example in the sys
tem. As a prerequisite for this exercise, you must have completed the 
exercises in Chapter 5, Web Dynpro Standard Components. 

1. Create a copy of the ZWDC_05_t1AI N component. To do this, right-click 
on the component and select CoPY. Assign the name ZWDC_ OS_MA IN 

to the new component. Then, create the new application zwdc_os_ 

main. Next, adapt the label of the page header in V_MAIN to your 
requirements. 

Measurement 2. Activate the component and test the application. Start the perfor
mance monitor and activate its detailed view. Go to the MEMORY tab 
and take note of the memory consumption and the number of active 
components. 

3. Then, select the PERFORMANCE tab. Select a different element from 
the country ID dropdown list and then note the amount of data trans
ferred during the roundtrip. 

4. Delete the external context mapping. This will prevent the on-demand 
instancing of the ALV table. To do th is, open the path COMPONENT 
USAGES • ALV_T005T • INTERFACECONTROLLER_USAGE in the object list 
of the component. Then, right-click on the DATA and select DELETE 
EXTERNAL MAPPING. 

5. Go to the component controller and open the wddoini t( ) method. 
Delete the coding for the manual instancing of the ALV component 
from the method, up to the call of in i t_al v_t005t( ) . 

6. Navigate to V_MA I N. Create the outbound plug to_al v_t005t . Next, 
define a component usage for the interface controller of the ALV com
ponent. Select the LAYOUT tab and create the TAB_SELECTED action for 
the TabStrip event, ONSELECr. During the creation process, activate 
the flag for TRANSFER U I EVENT PARAMETERS and fill the new event han
dler method with the coding from Listing 8.1. This way, you ensure 
that the ALV component is instanced when the user changes to the 
ALV tab. 

DATA : l o_cmp_usage TYPE REF TO i f_wd_ 
component_ usage . 

l o_in ter facecontro ll er TYPE REF TO iwci_salv_wd_table . 
l o_node_ t005t TYPE REF TO i f _wd_contex t_node . 

CASE tab . 



Performance and Memory Optimization I 8.1 

WHEN ' TAB_l ' . 
·· Naviga te to ALV table 
wd_this->fi re_to_alv_t005t_plg( ) . 
·· Instance ALV component 
lo_cmp_usage = wd_this->wd_cpuse_alv_t005t< l . 
IF lo_cmp_usage->has_active_component( l IS INITIAL . 

1 o_cmp_usage- >create_component< ) . 
·· Display node T005T in ALV table 
1 o_i nterfacecont rol l er - wd_th i s- >wd_cpifc_ 

alv_ t005t< ) . 
lo_node_t005t -

wd_context- >get_chi 1 d_node( wd_thi s- >l<dctx_t005t l . 
lo_interfacecontroller->set_data( 

r_node_data = lo_node_t005t ) . 
ENOl F. 

ENDCASE . 

Listing 8.1 Event Handler Method ONACTIONTAB_SELECTED 

7. Go to the IU1AIN window. Integrate an E11PTYV IEW in view container 
VC_ALV_TOOST . and flag this view as a default view. Then, bind out
bound plug to_alv_t005t to the default inbound plug of the TABLE 
interface view. 

8. Activate the component and test the application. Carry out the 
same performance measurement as you did at the beginning of this 
exercise. 

The number of active components should have gone down from three 
to two. Similarly. the memory consumption of the application should 
have decreased considerably. Because the ALV table is now invisible to 
the window for the first time, it is no longer transferred automatically to 
the frontend. Only when the user selects the ALV table will the system 
read the data needed for displaying the table. 

Without question, this exercise is far from perfect. For example, it would 
be conceivable to have the delete_component( l method remove the 
component usage that becomes invisible every time the user changes 
the tab. However, this gain in extra memory space would also result in a 
longer runtime during the next tab change. Thus, it is advisable to decide 
for each individual case whether you prefer better performance or lower 

415 

Testing the 
application/ 
measuring 

Comments on the 
exercise 



8 I Practical Tips and Hints 

Lightspeed 
rendering 

Delta rendering 

memory consumption values. For components you only need once, it 
makes a lot of sense to delete such components right after their use. 

8.1.5 Delta Rendering 

The introduction of lightspeed rendering technology heralded a new 
Web Dynpro era; lights peed rep laces the traditional Web Dynpro render
ing technology. Lightspeed rendering is based on the AJAX technology 
(Asynchronous JavaScript and XML). AJAX enables asynchronous com
munication between the browser and web server and is thus one of the 
key technologies for modern and powerful Web Uls. In addition, light
speed offers a significantly larger set of Ul elements and features. 

Along with lightspeed rendering came delta rendering. Delta rendering 
allows you to update only the portion of a page that has been modi
fied by the application. Therefore, delta rendering leads to a significant 
improvement in performance under many circumstances because only 
a portion of the Ul - instead of the entire Ul - must be generated in the 
backend, then transferred, and then rendered in the browser. More com
plex Uls, in particular, benefit considerably from delta rendering with 
respect to performance. 

Example Figure 8.11 shows a simple example to demonstrate what delta render
ing does. The example consists of views: an outer view containing a cus
tomer table and a second view embedded in the outer one, containing 
detailed information about customers that can be selected in the outer 
view. If a user changes the detailed information stored for a specific cus
tomer and presses the I Enter I key, a roundtrip occurs between the server 
and browser in the background. Depending on whether delta rendering 
has been activated, the server either transfers only the modified view 
(inner view), or all visib le views to the browser where they will be ren
dered. The fact that only a portion of the Ul is transferred has a positive 
effect on the server runtime, the network load, and also on the rendering 
time of the browser. 

However, there is more you need to know about delta rendering. 
Al though as an application developer you do not need to worry about 
handling the deltas (Web Dynpro does that for you), you should know 
how the delta rendering process works. This way, you will know to what 

416 



Performance and Memory Optimization I 8.1 

you have to pay attention when developing your app lications to ensure 
that delta rendering can be carried out without problems. 

View: Customer List 

Table: list of Customers 

View: Details 
Detailed lnformationen 
about a customer 

Normal View: Customer list 

Rendering Table: List of Customers 

Modification of 
Detailed Data 

View: Details 
Detailed Information 
about a customer 

Server Roundtrip r ----------------------------; 
, View· Customer list 

Delta 
Rendering 

' 
' lable L1st of Cus,omers 

View: Details 
Detailed Information 
about a customer 

Figure 8 .11 Example of the Delta Rendering Effect 

Delta Rendering Functionality 

Delta rendering is based on views. Each view has a what is called a dirty 
flag. If during a roundtrip, a visual change is made to a view, the system 
flags the entire view as dirty. At the end of each roundtrip, the render
ing engine of the server analyzes the dirty flags of all visible views and 
generates a delta file for the browser from the smallest common superset 
of dirty views. 

For delta rendering to be fully efficient, you must reduce the number of 
changes to the visual area of the views to an absolute minimum. Conse
quently, the question that arises is when or how a view can be declared 
dirty. The following list provides examples of actions that flag views as 
dirty: 

~ Changes to the context 

~ Any changes to nodes or elements (attributes, properties, etc.) 

~ Irrespective of whether the context change affects the currently 
visible view area 

Basic principles of 
delta rendering 

Dirty views 



8 I Practical Ti ps and Hints 

Granularity of 
changes 

" Changes to Ul elements 

" Typically in wddomodi fyvi ew( ) 

" set_visible( >. set_enabled< ) and others 

" Navigation 

" Interaction with Ul elements (by pressing the I Enter I key in an input 
field or clicking on a button, etc.) 

" Non-supported Ul elements: TimedTrigger , Gantt , Network , Jnterac· 

tiveForm, and OfficeControl 

Attention! 

Any change to the visual areas of a view flags this view as dirty. The system 
does not check whether such changes also entail a value change. Note that 
views are already updated when just calling a changing method. 

Even if a view has not been flagged as dirty, it can happen that the view 
must be rendered again. It is one of the specific features of delta render
ing that only one area is updated at a time. Accordingly. the innermost 
of all common views that have been changed is the one rendered again. 
In the most adverse case, this is the outermost view of the application. 
To clarity th is, Figure 8.12 contains three examples: 

" View A 
View A has been changed. Although the A_ l and A_ 2 views are clean, 
they are children of A and must therefore be updated as well. 

" View B 
The changes to view B_l only have a local effect. Views B and B_2 do 
not need to be updated. 

" View C 
Changes are made to views C_l and C_2. However, because only one 
area is updated at a time, view C will also be included in the update 
process. 



Performance and Memory Optimization I 8.1 

View A • ViewS ViewC 

View A_1 I View 8_1 • I I View C_1 • I I View A_2 I I View 8_2 I I View C_2 • I 
. View Modification D Updated Area 

Figure 8.12 Rendering Clean Views 

Consequences for Application Developers 

Based on the information as to how the status of views changes to dirty. 
and in which cases they must be rendered anew, developers can draw a 
number of conclusions regarding the development of Web Dynpro Uls: 

~ Avoid making unnecessary changes to the context and UI elements. 

~ Compare the actual value with the planned value in advance. 

IF lo_input f i el d· >get_visible( ) EO abap_t rue . 
l o_input_fi el d->set_visible( abap_fal se ) . 

ENOl F. 
~ Make a detailed plan of the structure and nesting of your views in 

advance. For example, answer the following questions: 

~ Which of the views of a window change most often? 

~ How can I keep a delta as small as possible? 

~ How can I avoid using Ul elements for data input, such as input 
fields , in outer views? 

~ Would it even make sense to integrate additional views to keep the 
delta s malt? 

Analyses using the Trace Tool 

The trace tool enables you to very easily analyze the delta rendering in 
Web Dynpro appl ications. For example, after each user action, the tool 
displays an updated area within a green frame. In addition, the trace tool 
provides a list of the reasons for updates in a table. 



8 I Practical Ti ps and Hints 

Let us take a look at Figure 8.13. A frame that is displayed in green in 
the running application indicates the updated view area. The trace tool 
that displays below the application lists all changes relevant to the de lta 
rendering process in a table. 

(J@ • l!!l http'/1"""639<.wdf ..... c<><P'50076/sao~O/saol __ oo_,_,_:::J 't X I Gooo~e P · 

~ & ~~ere: P-etfori'I'I¥Uopttnlz~ f.} · ~ .. ~· · 1 Paoe • _ Tools • ,, 

Chapter S: Perlormance optimization 

m New Window 

<User lnteraclion> 
<User InteractiOn> 

<User lnten~ction> 

... 'Mth Imager 

Starting the t race 
tool 

lnteraclion> 

Figure 8.13 Tracing the Delta Rendering 

In the following exercise, you will learn about the details of carrying 
out a delta rendering analysis using the Web Dynpro trace tool. For this 
purpose, you will analyze and discuss the zwoc_OS_MA 1 N component you 
created in the previous exercise. If you have not completed this exercise, 
you can also use the ZWDC_05_MA IN component from Chapter 5, Web 
Dynpro Standard Components. 

1. Open the Z I~OC_OS_MA IN component and start its appl ication. 

2. Start the trace too l. To do so, use Transaction wo_TRACE_ TOOL. or go to 
the browser window and press the I Ctrl I + I Shift I + @I) + III keys 
simultaneously; if this key combination does not work, the focus is 
probably not on that page. The trace tool should now appear in a new 
window below your application. 

420 



Performance and Memory Optimization I 8.1 

3. Go to the de lta rendering tool of the trace tool. To do this, select 
DELTARENDERINGCHANGETRACK ING.XM L from the trace tool's drop
down list (see Figure 8.14). 

Figure 8.14 Trace Tool - Changing the Tool 

4. Select a different country in the country ID dropdown list. A green 
frame (see Figure 8.15) around all visible elements indicates that the 
entire Ul was rendered again and transferred to the browser. In this 
example, there are two reasons for this: 

~>- If you change the lead selection, visible areas both in the page 
header and in the FORM VIEW tab must be updated. 

~>- The TOOST node is mapped across the two views, V_NATIONS and 
V_MA IN . 

<Ji<Sl ~ O>opt« e' Perronnance oc>tllrizotlon I fll · lil! • d!b · llil Pooe • J Tools • 
.. 

L:... 

1-
Chapter 8: Performance optimization 

I.Jnjted""" --.. 

fO<mYiew IJ. ALVteble -
IAE H 
Lond: Unlled Areb Emlretes 
Nallionelity. United Areb Emireles 

[=] 

~ 11'111'.-~ l~r.t .. - ~~ 100% .. .-i 

Figure 8.15 Changing the Dropdown list 

5. Then, take a look at the trace tool (see Figure 8.1 6). The table of the 
delta rendering tool indicates that a <USER INTERACTION> has occurred 
in the ZWOC_05_NAT I ONS component of the V_NATI ONS controller. 
This is because you changed the lead selection. Due to this change. 

421 

Changes to the 
dropdown list 



8 I Practical Ti ps and Hints 

Scrolling t hrough 
the ALV Table 

A look ahead 

v_NATIONS has been flagged as dirty. What this table does not contain 
is the v _t1A IN view of the main component, although it is also affected 
via the mapping of the T005T node. 

Figure 8 .16 Trace Tool - Changing the Lead Selection 

6. Go to the ALV TABLE tab and scroll through the tab le a bit. At this 
stage, only the ALV table should have a green frame. Then, check the 
delta rendering log of the trace tool. As you can see, changes have 
been made to the VI EW_ TABLE of the ALV component. However, these 
changes were limited to views in the ALV component, which means 
that the update could also be limited to the ALV table. 

In this section, you learned about several aspects of the delta rendering 
process and the functionality of Web Dynpro. Delta rendering and on
demand instancing provide the greatest potential for improving Web 
Dynpro performance. Experience has shown, for example, that the 
data volume transferred for simple entries in complex Uls can often be 
reduced from an initial 20Kb to less than 3Kb. This significantly smaller 
data volume has a dramatic effect on the performance of both the back
end and the frontend. 

8.2 Debugging Web Dynpro Applications 

The new ABAP Debugger (available as of release 6.40; active by default 
since release 7.0) provides a number of tools for the detailed analy
sis of applications at runtime, including a Web Dynpro debugging tool. 
You can use the Web Dynpro Debugger to quickly and easily navigate 
through the tree of active components and analyze their objects: 

~ Controllers (window, view, component, and custom controllers) 

~ Attributes 

~ Nodes and elements of the context 

422 



Debugging Web Dynpro Applications I 8.2 

"' Views 

"' Ul elements and their properties 

"' Window structures 

This section describes how the Web Dynpro Debugger works in a live 
system. For this purpose. you will debug the zwoc_OS_MA 1 N component. 
Of course, you can also analyze any other component of your choice in 
the Debugger. 

1. Open the ZIWC_OS_MAIN component. 

2. Go to the component controller and set a breakpoint in the fi rst line 
of the wddoi nit( J method. To do this, move the cursor to the first 
line and click on the breakpoint icon (see Figure 8.17). 

for ZWDC 08 MAIN 

ID 0 ~ 1tter 

Figure 8.17 Setting a Breakpoint 

3. Then, go to the v_MAIN view and set another breakpoint in the wddo· 

modifyvi ew( ) method. 

4. Start the component via the application. The new Debugger should 
open in a SAP GUI window. 

If the classical debugger opens ins tead, you can activate the new 
Debugger via the menu of the component. To do this, select UTILITIES 
• SETTI NGS • ABAP EDITOR • DEBUGGING and click on the NEW DEBUG· 
GER radio button. 

Problem: The Breakpoint Does Not Work 

If your applications do not stop despite the fact that they contain an acti· 
vated breakpoint, one of the following tips usually provides help: 

.. Check how many SAP GUI windows you have opened. The maj ority of 
systems are configured in such a way that you can open six w indows at the 
same time in one system . 

.. Check on wh ich appli cation server the breakpoint was created. The De· 
bugger will stop only if the browser uses the same server. 

423 

[8] 

Setting a 
breakpoint 

Starting the 
application and the 
debugger 



8 I Practical Tips and Hints 

Replacing a tool 5. Open the Web Dynpro Debugger. To do th is, click on the REPLACE 
TOOL icon, as shown in Figure 8.18. In the popup window, select the 
Web Dynpro tool from the SPECIAL TooLS menu. 

e [ 

Exploring the 
debugger 

Iii! 
ramm NavJ:H 
~DYI4V8QU6JXUD81~ • ~ 
~DYI4V8QU6JXUD81~ • III 

Figure 8.18 Selecting the Debugger Tool 

Tip 

To avoid having to reconfigure all tools for every new debugging session, you 
can save the layout in the Debugger. To do this, select DEBUGGER • DEBUGGER 

SESSION • SAVE lAYOUT from the menu. 

6. The system now displays the Web Dynpro Debugger (see Figure 8.19). 
Take a look at the component usages for the zwoc_OS_MAIN compo
nent. As you can see, there is only one component at this point. 

(lhs) ABAP Debugger Conlrols Sesslon(1) (EXclUsive) -HTTP -(plllldtfl394) 

~ 0,. .. 11 0 Dw.t<""O'"' '!ilL ..... 

fsv -sua~o 
t ·voDoTMn ] ' ~a o 'Sv·UBIX 0 
.:l Cz:t zii~D<~-~08~-~KA~IN:::;:~~* rct:NCPOOCEifTCINITROllER 
~ DeSk10J) 1 Oes.klop 2 Oest\aopl SU~ard Slru(OJres Tabtes OC)etts Oe&a!l OISI)tS Data i:)JIIoter Bfe&kJW8KllPOW'IIS Dill' 

Web [¥~pro Oebug!)er 

• ZV.OC_OS_MNN 
• <) Componenl 

• cCJ zwoc_os_...-.. 
· a< 

Controller 'COIIPOIIENTCOfiTROll£R "@ 

, Properon ConleXI Allrlbult$ 1 

Attrllute 1--
All!btt!es 

1:9 __ IS 

El 

J 
V.O _THIS tO 84'"\ClASS.POOI.;:;II 9CWDYifiiSOU6JX\108P76KOO 19\CI..ASS=Clf _ COMP< 
WO_CONTEXT t 0"9(nCLASS=OL._v«>R_CONTEXT_NODE_VAL} 

I> PI)IF (2) 001 • pwd~39.4 INS 

Figure 8.19 Web Dynpro Debugger After Startup 

424 



Debugging Web Dynpro Applications I 8.2 

7. Next, go to the view that contains the SouRcE CoDE Debugger tool. 
Use the Debugger to jump over the crea te_componen t ( ) method. 
Calling this method simultaneously generates an instance of the 
nations component. 

8. Return to the Web Dynpro view and compare the component usages 
with each other. You will see that there is now an instance of the 
nations component. Exit the Debugger by pressing the [NJ key 
twice. 

9. At this point, your application has been fully instanced. Start the 
Debugger again by selecting a different country in the dropdown 
list. This action should cause the breakpoint in 11ddomod i fyv i e•d ) to 
open the Debugger. 

Instancing the 
component 

In addition to the component controller and component usage, the Context analysis 
Web Dynpro tool now also displays views and windows. Open the 
v_~1AI N view and go to the CONTEXT tab. This tab allows you to view 
the details of all existing nodes and elements of the context such as 
the values stored in the elements (see Figure 8 .20). 

Web O)npfO OtbtJO!W 
• · uoc_os_JrtWN 

• <I COMponent 
• .0 ZWOC_08_~ 

• ~'-1 CuSIOtn COtlb'Oiers 
... fJti\1\M$ 

. OTA:r,t@ 
• ttJ WindOWS 

• C)W_MAJN 
• C]W_POPUP 

• ~ co,.,onem us aott 

'V_IIAIH (JJ 
CO'"Mi XI: """"' Alllt:IU'les ) 

• (!) V_I!Vr.IN 
• Q (0604"\CI.ASS=Ct.._WOR_CONTEXT_ELEMENTJ 

.. _, Jwtoo 
Prooed!et 

"' (0:633"\CLASS.CL_WOR_CONTEXT_ElEWENT) 
IS_SEI.ECTEO 
ts_LEAD_SEU:CllON 

Sll~ e.ltt!l!ltii 
"""OT 001 
SPRAS E 
\ANOI ... 
\ANOX VtiCI.Alab Emir 
NAno Uni!AiabEmlr. 

LANDX50 Unl!ed Arab En*ates 

Figure 8.20 View Context in Detail 

13 

• 
• 

• 



8 I Practical Tips and Hints 

Modularity of 

popups 

Levels in detail 

The Web Dynpro Debugger is especially useful for Lak ing a quick look 
at the context. It allows for fast navigation through your components to 
obtain an overview of all active contexts. This Web Dynpro tool is also 
ve1y useful for performance analyses. For example, a few clicks of the 
mouse enable you to see which components are currently active and 
which views are currently being used in the window. 

8.3 Popup Windows 

Using popup windows makes sense in many appl ication scenarios. From 
simple popup messages to OK/CANCEL queries to complex Uls with any 
number ofUI elements - countless scenarios are conceivable for the use 
of popup windows. 

Web Dynpro currently supports only modal popup windows. As long as 
a modal popup is opened, the level below the popup disp lays in a darker 
color and does not allow for data entries. It is also possible to open 
another popup window from within the existing one. This way. you can 
generate any number of levels on top of each other. 

Take a look at Figure 8.21. This figure shows an appl ication with an 
open popup window. Both the background level and the popup level are 
based on normal Web Dynpro windows. Whereas in this example the 
background is based on the w_MA!N window, the popup uses the w_POPUP 

window to display the popup level. 

Window: W_MAIN 

Window: W_POPUP 

I Standard Buttons 

Figure 8.21 Popups and Windows 

All windows work in the same way, irrespective of their displayed level. 
Thus, you can integrate views in a popup window in the usual manner 
and create a network of the views using plugs. Each popup has what is 
called a window manager that enables you to manage the basic properties 



Popup Windows I 8.3 

of Lhe popup window. You can use the window manager to define Lhe 
popup title , and its dimensions or to define the default buttons such 

as CLOSE, OK, or CANCEL. The following sections describe how you can 
develop popup windows. 

8.3.1 Creating Popup Windows 

The window manager 1 F _wo_w 1 N00W_t1ANAG ER allows you to create popup 
windows. The window manager provides three different methods for 

th is, as shown in Table 8.1. 

Method 

c r eate_wi ndol<( l 

crea t e_wi ndOI<_for _cmp_ 
usage( l 

crea t e_popup_to_confirm( ) 

Description 

Creates a modal popup. 

Creates a modal popup for a 
component usage. 

Creates a simple dialog box. 

Table 8.1 Overview of Window Manager Methods 

Before you can initialize a popup window, you must obtain an object 

instance of the window manager from the component. You can get this 
object instance using the get_1•i ndo"_manager< l method of component 
API IF _WO_COMPONENT. You can get the component API of the IF _WD_COM • 

PONE NT type via the wd_get_api < J component controlle r method. List
ing 8.2 shows how you can use the component controller to obtain Lhe 

window manager. 

DATA : lo_component_api TY PE REF TO if_wd_componen t . 

l o_wi ndow_manager TY PE REF TO if _.,d_•li ndow_manager . 
lo_component_api • wd_this · >VId_get_api( ) . 

l o_wi ndow_manager = l o_component_api- >get_•li ndow_manager< l . 

Listing 8.2 Reading a Window Manager Instance 

The create_wi ndow( J method enables you to create popup windows. 
Calling this method does not pose any problem. You only need to trans

fer the mandat01y wi ndow_name parameter during the call. The frame
work then initializes Lhe window (I F _I~ O_w 1 NOOW type) and returns its 
instance. In addition to the window name, you can also provide several 

427 

Obtaining the 
window manager 

Creating a simple 
popup window 



8 I Practical Tips and Hints 

Popups from 
external 

components 

Dialog boxes 

other parameters such as the popup title ( t i tle) or the defaul t buttons 
(button_k i nd). 

Don' t worry! The following exercise describes how to use the most 
important parameters of create_window in the system. listing 8.3 con
ta ins an example of the creation of a simple popup window. 

OATA : lo_1~ indo~1 TYPE REF TO if_wd_window . 
* Create simple wi ndow 
CALL METHOD lo_window_manager ·>create_window 

EXPORTING 
window_name = ' W_POPUP ' 
title - ' Popup Window · 
button_kind = if_wd_window=>co_buttons_c l ose 

RECEIVING 
window = lo_window . 

Listing 8.3 Creating a Simple Popup Window 

If you want to in tegrate an interface view of an external component 
directly in a popup, you can use the window manager method ere· 

a te_wi ndow_for _cmp_usage ( ) instead of create_wi ndow( ) . If you do 
so, you must transfer an interface view, interface_view_name, and the 
component usage component_usage_name instead of a window. 

In many cases it is advisable to use a Web Dynpro dialog box instead of 
cus tom popup windows. You can create dialog boxes using the window 
manager method c r ea t e_popup_ to_confi rm( ) ; the button_k i nd param
eter allows you to define the buttons to be displayed in the dialog box. 

The message_ type parameter enables you to define the type of the dialog 
box. For this, Web Dynpro provides the following types: INFORMATION, 
WARNING, ERROR, (ANCEL, and QUESTION. Figure 8.22 shows a simple 
dialog box of the WARNING type, which was generated via Listing 8.4. 

One Ouest1on [iJ £'1 
Areyousl.l'e? 

Figure 8.22 Dialog Sox Created via create_popup_to_confi rm( ) 



Popup Windows I 8.3 

OAT A: 1 O_Yii ndow 
lt_text 

APPEND ' Are you 

TYPE REF TO if_wd_windoYI . 
TYPE string_table . 
sure? ' TO lt_text . 

• Create dia log box 
CALL t1 ETHOO 1 o_wi ndo1cma nager- >c rea te_popup_t o_confi rm 

EXPORTING 
text 
button_kind 
message_type 
close_button 

= l t_text 
= if_Yid_Yiindow=>co_buttons_yesnocancel 
- if _Yid_wi ndo,•· >co_msg_type_wa rni ng 
= abap_true 

wi ndoYI_t it 1 e - · One Question · 
default_button = if_Yid_window=>co_but t on_no 

RECEIVING 
result = l o_Yiindow . 

Listing 8.4 Creating a Dialog Box 

If you have already tried to reproduce the previous examples in the sys
tem, you were probably disappointed by the fact that no popup window 
opened. This is because one small building block was still missing for 
the display of a popup window. After creating the popup window. you 
must open it by using its open ( ) method. You can close the popup by 
calling close( ). 

Opening External Browser Windows 

You can also use the window manager to open Web Dynpro windows or any 
kind of address in external browser windows. For th is, the window manager 
provides the create_external_window( ) method. 

Opening and 
closing popups 

In the following exercise, you will create a new component with two [I ] 
windows: ~U1AI N and w_POPUP. After you have started the applica-
tion, you want a new popup window with window w_POPUP to open 
automatica lly. 

1. Create a component called HJOC_08_POPUP with window ~I_MA I N Preparatory work 
and view V_MAIN. Create a new Web Dynpro application for this 
component. 



8 I Practical Tips and Hints 

2. Create a new v_POPUP view. This view is supposed to be displayed in 

a popup window. Integrate a TextView element containing the text 
"Hello Popup!" in the view. Save the view and create a IC POPUP win
dow. Integrate v_POPUP into w_POPUP. 

Opening the 3. Go to the wddoi nit( ) method in the V_MAIN view. Implement the 
popup coding requ ired to open the popup window. The popup should pro· 

vide the buttons YEs/No/CANCEL. Listing 8.5 contains the solution. 

Testing the 
application 

DATA : lo_component_api TYPE REF TO if_•lld_component . 
1 o_•11i ndow_manager TYPE REF TO if _•lld_wi ndOI<_manager . 
1 o_wi ndow TYPE REF TO if _l<d_wi ndow . 

1o_component_api - wd_comp_con t ro11er->wd_ge t_api( ) . 
1 o_wi ndow_manager = 1 o_component_api- >get_wi ndOI<_manager ( ) . 
* Create wi ndow 
CALL NETHOD 1o_window_manager ->create_window 

EXPORT ING 
window_name - · w_POPUP ' 
title = ' Popup Window · 
button_kind - i f_wd_window- >co_buttons_yesnocance l 

RECEIVING 
window - 1o_window . 

*Open window 
1 o_wi ndow- >open ( ) . 

listing 8.5 Opening the W_POPUP Window in the Popup 

Changing the Window Size 

By default, Web Dynpro defines the size of a popup window automatically. 
However, you can change the size manually by calling the set_wi ndow_ 
size( ) method in the window object. 

4. Activate the component and start the application. The popup w indow 
should open with W_POPUP and V_POPU P immediately after the startup 

process. To close the popup, you must cl ick on one of the buttons. 
Figure 8.23 shows the result of this exercise. 

430 



Popup Windows I 8.3 

PoptJp-Wlndow ~ CJ --
100% 

Figure 8.23 W_MAIN Displayed in the Popup 

8.3.2 Standard Button Actions 

In Section 8.3.1 , Creating Popup Windows, you created a component 
with two windows. After you have started the application with the first 
window, the second one opens automatically in a popup window. This 
popup window contains three standard buttons: YES, No, and CANCEL. 
The popup closes automatically when you cl ick on one of the buttons. 

To determine on which button the user clicked, you must register an 
action for the event of each button. Because the popup window does 
not provide any direct access to the standard buttons and their events, 
you must carry out the registration process dynamically using the sub · 

scribe_to_button_event( l window method. 

Listing 8.6 shows the registration of the BUTTON_CLICKED action for the 
YES button as an example. As you can see there, you need the API of the 
view to register the button. You can obtain the API using view control· 
ler method wd_get_~pi ( ) . This should remind you of the component 
controller. For the YES button, the IF _wo_WINOOW interface provides the 
co_but ton_yes constant. Similar constants, all based on the same struc
ture , are provided for all buttons. 

DATA : lo_view_api TYPE REF TO if_wd_vie>~_controll er . 
lo_view_api - >~d_this·>wd_get_api( ) . 
CALL METHOD lo_>~indow·>subscribe_to_button_event 

EXPORTING 
button = i f_,.d_,.,i ndow=>co_button_yes 
action_name • ' BUTTON_CL I CKEO ' 
action_view = lo_view_api . 

Listing 8.6 Registering a Popup Button Action for an Event 

431 

Registering for 
button events 

Example 



8 I Practical Tips and Hints 

[ g] In the following exercise. you wil l register the three buttons from the 
previous exercise for the BUTTON_CLICK£0 action of the V_t1AIN view. 
After this, you will output the button you clicked on as text in the v_MA IN 
view. 

1. Select the CONTEXT tab of the V_MA IN view. Integrate a new BUTTON_ 
CLICKEO attribute with type STRING in the context. Then, go to the 
LAYO UT tab and add a new TextVieo1 element. Bind the TEXT property 
to the BUTTON attribute. 

creating an action 2. Create the action. BUTTON_CL ICKEO. Double-click on the action to open 
its event handler method and insert the coding from Listing 8. 7 into 
the event handler. This coding makes sure that the button selected by 
the user is output in v_MAI N. 

Registering 
buttons 

wd_context·>set_attribute( 
EXPORTING 

name - ' BUTTON_CLICKEO ' 
value = wdevent·>name }. 

Listing 8.7 Outputting the Selected Button 

3. Enhance the wddoinit( } method. First, you must obtain the view 
API. Next, you must register the YES, No, and CANCEL buttons for the 
BUTTON_Cll CKEO action by inserting the coding from Listing 8.8 into 
the method. 

OATA : lo_view_api TYPE REF TO if_wd_vieN_controller . 
lo_viel~_api - wd_th i s·>l~d_get_ap i ( l . 
CALL METHOO lo_wi ndow·>subscribe_to_button_event 

EXPORTING 
button - i f_wd_Nindow·>co_button_yes 
action_name = ' BUTTON_CLICKEO ' 
action_ vi eo1 - 1 o_vi eN_api . 

CALL METHOO lo_window·>subscribe_to_button_event 
EXPORTING 

432 

button = i f_wd_l~indow=>co_button_no 
action_name = ' BUTTON_CLICKEO ' 
action_view = lo_vieN_api . 



Context Change Log I 8.4 

CALL 11ETHOO 1 o_wi ndo1•- > subscr i be_to_but ton_even t 
EXPORTING 

button = if_wd_window=>co_button_cancel 
action_name - ' BUTTON_CLICKED ' 
action_v i e~t = l o_vie••_api . 

Listing 8.8 Registering the Standard Buttons in the wddoinit() Method 

4. Activate the component and start the application. Click on one of the 
three popup buttons. This will close the popup window and display 
the technica l name of the button that has been clicked on in V_1·1AI N. 

Figure 8.24 shows the result after clicking on the CANCEL button in 
the popup. 

ON_ CANCEL 

Figure 8.24 Output of the Button Clicked in the Popup 

This section has described the most important aspects of developing 
popup windows. Yo u now know how to create and open popup win
dows and how to register standard popup button events. In addition to 
these important functions, several other interesting methods are avail
ab le for controlling popups; you can find these methods in the interface 
of the window. For example, you can define the display position of the 
popup window according to your requirements. 

8.4 Context Change Log 

Imagine the following situation: A user modifies a few data records in a 
table that contains several hundreds of rows. To save these changes in a 
database, you can apply different strategies: 

~ You read the node of the table in its entirety and update all data 
records in the database. 

433 

Testing the 
application 



8 I Practical Tips and Hints 

Activating the 
change log 

Reading the 
change log 

~> You read the node of the table in its entirety and identify the changes 
using a before/after comparison of the data records. You then update 
the modified data records in the database. 

~> You use the context change log. This log records all changes imple-
mented by the user in a table; after this , you can read the changes. 

Thus, using the context change log represents the most elegant and effi
cient way to analyze the changes that have been made to the node. The 
context change log lists all user changes to the context in a single table. 

The change log is deactivated in the default settings of a controller. There
fore, you must activate it in the context of the respective component, if 
necessary. To do this, you can use the If _wo_CONTEXT interface. You can 
obtain the reference to the context via the wd_contex t · >get_context ( J 

method. You can then activate the change log by calling the enab 1 e_con
text_change_1og( l method (see Listing 8.9). 

DATA : 1o_context TYPE REf TO i f_wd_context . 
1o_context- .,d_context· >get_context( ) . 
1 o_con text- >en a b 1 e_con tex t_cha nge_1 og ( l . 

Listing 8.9 Activating the Context Change Log 

Note 

The change log records only the changes made by users. Changes to context 
elements that have been entered by the program are not listed. 

You can read the change log by calling the get_context_change_1 og( l 
in the IF _wo_CONTEXT interface. This will return a table of type WOR_CON · 
TEXT _CHANGE_ll ST. The optional importing parameter and_reset allows 
you to delete the change log after reading it. Note that with mapped 
nodes, you can read the change log only in the original node. Table 8.2 
provides a brief overview of the change log methods of If _wo_CONTEXT. 

The analysis of the WOR_CONTEXT_CHANGE_LIST change log table is self
explanatory and is not described further in this book. Nevertheless, the 
change log should be part of your Web Dynpro toolbox. In particular, 
you should use it for complex Web Dynpro architectures. 

434 



Method 

enabl e_context_change_log( ) 

disable_context_change_log< ) 

get_context_change_log( ) 

reset_context_change_l og( ) 

add_context_at t ribute_ 
change( ) 

Description 

Activates the logging of user entries 
for this controller. 

Deactivates the logging function. 

Provides the current content of 
the change log table and resets 
the table automatically (the reset 
property is activated by default but 
can be deactivated at any time) . 

Resets the change log table. 

Enables you to manually enter 
context attribute changes into the 
change log table. 

Table 8.2 Change Log Methods in IF _WD_CONTEXT 

8.5 Hotkeys 

Hotkeys, also referred to as shortcuts or shortcut keys, were introduced in 
Web Dynpro along with the lightspeed rendering technology. Hotkeys 
enable you to trigger the events of buttons and other Ul elements via 
your keyboard instead of using the mouse. Therefore, they represent a 
significant contribution to an increase in productivity and acceptance of 
Web Dynpro applications among power users. For example, like other 
applications, Web Dynpro also allows you to implement the classical 
shortcut I Ctrl I + [I) for saving documents. 

You can define hotkeys in the properties of supported UI elements. The 
following Ul elements support the use of hotkeys: But ton, Too 1 BarBut· 
ton, LinkToAction, r~enuActio n ltem , ToolBa rLinkToAction, ToolBar· 
LinkToURL . and LinkToURL. 

After you have selected a hotkey. the corresponding action stored in 
the UI element is triggered for the on Ac t ion event. Note that for the 
ToolBarlinkToURL and LinkToURL elements, the corresponding URL is 
opened in a new browser window instead of the event. Figure 8.25 
shows the example of a SAVE button with hotkey lctrll + []) . 

435 

Hotkeys I 8.5 

Ul elements with 
hotkey support 



8 I Practical Tips and Hints 

Supported 
shortcuts 

SAVE 
at1iva1eAttessKe 0 
tontextMenuBeh~ Inherit iD 
contextMenuld 
design standard ill 
enabled 0 
explanation 

ctrl_s ill 

Figure 8.25 Save Button with Hotkey 

When defining hotkeys, you can choose from a limited number of key 
combinations: 

,.. I Ctrll + [0- 9] 

,.. lctrl l + [F2- F12] 

,.. I Ctrll + [A- Z] 

,.. I Ctrll + I Shift I + [F1 - F12] 

Note 

Note that browser add-ins such as HTIPWatch in Internet Explorer also use 
shortcuts and therefore may be able to block shortcuts you define in Web 
Dynpro. This goes beyond the control of the Web Dynpro ASAP framework. 

Global and local Web Dynpro distinguishes between local and global hotkeys. Whereas 
hotkeys global hotkeys are valid for the entire visible area, local hotkeys are only 

valid with in their local area. You can define local areas via the HANDLE

HOTKEYS property of the UI element. This property is available for the UI 
elements TransparentContainer, Table, Group, and Tray. 

Example Figure 8.26 shows an example for global and local hotkeys. View A con
tains two containers and a total of three buttons. Button2 has a unique 
hotkey. lctrll + (I), and Button1 and Button3 share hotkey I Ctrll + (I) . 
However, Button3 is located within a container whose HANDLEHOTKEYS 

property is activated. The question now is at which cursor position you 
can trigger which hotkey. 



Context Menus I 8.6 

View A 1 Button1 (Ctrl+1) I 
~Hotkey Handler J 

Container 1 Container 2 

I Button2 (Ctrl+2) I I Button3 (Ctrl+ 1) I 

Figure 8.26 Global and Local Hotkeys 

~ Button1 
The I ctrl I + [I) hotkey for Button1 is valid in all views and contain
ers except for Container 2. 

~ Button2 
The I Ctrl) + III hotkey is valid in all views and containers. 

~ Button3 
Button3 is only valid within Container 2. Because th is container is a 
hotkey handler, all buttons defined in it are only valid wi thin this 
area. 

Displaying Hotkeys 

The respective key combination for a hotkey is automatically added to the 
tooltip of the associated Ul element. If a text for the tool tip exists already. the 
text is appended to the end of the tooltip. 

If you use hotkeys intelligently, they can significantly contribute to 
increased productivity of users working in Web Dynpro applications. 
It is therefore advisable to define hotkeys for your most important UI 
elements, provided they support the use of hotkeys. Because it is ve ry 
easy to implement hotkeys, there is no need for a practical exercise in 
th is section. 

8.6 Context Menus 

Context menus can be opened at any time in Web Dynpro applications 
using a right-click. Depending on the area you click on, Web Dynpro 
provides a collection of different system menu items. For example, you 

437 



8 I Practical Tips and Hints 

can hide unused input fields or define entered va lues as default values. 
As of SAP Net Weaver 7.0 Support Package 13, you can also create your 
own context menus. 

Usage scenarios You can use context menus in many different scenarios. The follow
ing list contains some ideas you could implement in your own context 
menus: 

" Standard date 
Right-clicking on a date field allows you to select a default value from 
the context menu. This can either be the current date or a future date. 
The value you select is stored in a configuration controller. When you 
load the view, the context attribute of the date field is assigned the 
calculated date va lue. 

" Customization of views 
Another example involves showing or hiding entire areas of a view 
via the context menu. This way you can customize your views accord
ing to your requirements. 

.. Calling actions 
Right-clicking on a view area enables you to call your own actions. An 
example of this scenario is the RES ET menu item, which allows you to 
reset the attributes of a context element. 

8.6.1 Standard Context Menu 

Web Dynpro provides a set of default context menu items. This set of 
menu items is referred to as the system menu. Depending on the view 
area you click on, the system menu provides different items for you to 
select. For example, Figure 8.27 shows the system menu of an input field 
from Chapter 2, Web Dynpro Architecture. 

My tevorle iee cream: I Next t 
User Settngs • tiCie lnPIA f"ldd *My t&verle iCe CJe& ... " 

Access t;ey activated 
01Spl$y 0\.6ck Help use O..r·ent v-..e N Def$1..111 
More Field._ 

More ... -" 
_, 

Figure 8.27 System Menu of an Input Field 



Context Menus I 8.6 

Take a look at the individual system menu items in detail: 

~ User Settings 
This menu item enables you to enter user-specific settings for the UJ. 

~ Hide Input Field "My favorite ice cream flavors" Visibility 
Clicking on this menu item allows you to hide the MY FAVORITE ICE 
(REAM FLAVORS input fi eld, including its label. The context menu 
will then contain an item called INVISIBLE ELEMENTS, which enables 
you to show the hidden elements again. 

~ Access key activated Access keys 
Access keys enable you to quickly access Ul elements using the 
keyboard. After an access key has been activated, you can use the 
key combination IN! + [first letter of field label) to set the focus 
directly to the respective field. If the labels of mul tiple fields begin 
with the same letter, you can toggle between these fields by repeat-
edly pressing the same key combination. Press the IN! key to 
view a list of currently active access keys. For this purpose, Web 
Dynpro underlines the first character of a field that has an active 
access key. 

Note 

By default, access keys are deactivated in the layout editor. You can activate 
the access key function for a specific Ul element using the ACTtVATEAccessKEY 
Ul element property in the view designer. In add it ion, any user can store set
t ings via the context menu of t he respective Ul element. 

But be careful! Due to browser restrictions, not every letter can be used as 

an access key. 

~ Use Current Value as Default 
When this item is selected, the Web Dynpro framework saves the Default values 
value entered by the user as the default value. On initialization of 
the view, the stored value is automatica lly entered into the field. 

However, note that this setting works only for Ul elements that 
have a unique !D. Consequently, you cannot use the default value 
fu nction in conjunction with the RowRepeater and 1·1ult i Pane 

elements. 

439 



8 I Practical Tips and Hints 

Help texts 

Technical details 

.,. More 

By selecting the MORE item, you can view all available settings for 
the respective field and for all hidden UI elements in a popup 
window . 

.,. Display Quick Help 

The DISPLAY QUICK HELP item lets you show and hide the quick help 
fo r a Ul element. For th is fu nction to work, you must first configure 
the EXPLANATION property of the corresponding UI element . 

.,. More Field Help 

Finally, the MORE FIELD HELP item allows you to call the fi eld help 
(also referred to as ITIJ help). If no field help is configured for a 
selected element, the system displays the technical details of the Ul 
element instead. Therefore, this menu item is particularly helpful for 
analyzing unknown Uls. When you click on the menu item, a popup 
window opens displaying technical details for the respective Ul ele
ment that has been clicked on. An example is provided in Figure 
8.28. 

More Fceld Help [i) EJ 
Technical Information for Ul Element 

General Information About the Application and Component 
Applieo!XIt< MOCJELI.O_w:JRI.O 
Neb f)ynpro Component: MOC_02_HELLO_~ 

o/Vrdow Information: ~Jfi.LO .. ~o 
View Information: V _HELLO-~ 

COnflgor .. loo 10: FCOC77327320BEI781 307C55115X7E<l0 

Inform ation on Field 
Field D. 

TY!)OofLIEiemer<: 
F _ICfOlfAM 

tf'UT_FEI.D 
STAII[)ARO 

• 

E LIEiemer<l.bory: 
I Clo•• l .::l 

Figure 8.28 More Field Help Context Menu Item 

8.6.2 Developing Custom Context Menus 

Developing your own context menus is very easy. Similar to normal 
Ul elements, you use the view designer to create them in the element 
hierarchy under the CONTEXT_MENUS root node. After this, you define the 

440 



Context Menus I 8 .6 

new menu statically as a context menu for the respective UI element via 
the CONTEXTMENUID property. In addition, you can also assign a context 

menu to a UI e lement dynamically using hook method wddooncontext
menu< J. This is all you need to do to implement a context menu. 

Return to the context menu creation function in the view designer. Here 
you have a choice between the following menu elements: 

~ t·1enu 

The ~1enu element represents the root of every context menu and is 
the only element that can be added directly under the COtiTEXT_MENUS 

root node. In this position, it serves as a container for any number of 
child context menu elements. This way, the Menu element enables you 

to implement a hierarchical menu structure. 

~ MenuActionltem 

This UI element represents a concrete menu item. If you click on a 
~1enuAc t ion I tern element, an action is executed in the view. 

~ ~1enuCheckBox 

This UI e lement provides a checkbox. For this, you must bind its 
CHECKED property to an attribute. 

~ MenuRadioButton 
This UI element provides a rad io button. For this , you must bind the 

SELECTEDKEY property to an attribute. 

,. 1·1enuSeparator 
This UI element provides a separator to separate individual context 
menu items from each other. 

Unfortunately , you cannot drag the menu items of the context menu 
from a tool bar into the view, which is possible w ith UI elements. There

fo re, you must compile the new menu by cl icking through the context 
menu in the element hierarchy of the view designer. 

Let us now take a look at the process of assigning context menus to Ul 
elements. As mentioned earli er, this assignment can be carried out e ither 

statically in the view designer or dynamica lly via the wddooncontextmenu 
( J method. In contrast to a static assignment, the dynamic variant is 

much more flexible. 

441 

Creating context 
menus 

Assigning a 
context menu to a 
ur element 



8 I Practical Tips and Hints 

,.. Static assignment 
The static assignment can be carried out via the UI element property 
CONTEXTMENUIO in the view designer. The CONTEXTME NUBEilAVIOR 
property allows you to set the inheritance properties of the UI ele
ment. If you select provide, the system uses the value contained in 
CONTEXTMENUID. If the element in question is a container, the menu 
is available upon cl icks within the entire container area. For example, 
a menu contained in ROOTU I ELEMENTCONTA I NER is available within the 
entire view. 

,.. Dynamic assignment 
The dynamic assignment of a context menu occurs in the wddooncon · 
textmenu( l method. For this purpose. you can read the ID oflhe Ul 
element that has been clicked on via contex t_menu_event • > 
origi nator·>id. You can then read the context menu using the con· 
tex t _me nu_manager · >get_contex t_menu< ) method and directly 
append Lhe menu return parameter (see Listing 8.10). 

CASE context_menu_event·>or i gina tor->id . 
WHEN ' DATE_INPUT_FIELD '. 

menu - context_menu_manager·>get_context_ 
menu< ' DATEMENU ' ) . 

ENOCASE . 

Listing 8.10 Example - wddooncontextmenu() Method 

[ p] Here comes another exercise in which you wil l control the ready for 
input status of a date input field through a context menu. In addition, 
you will create an action that lets you enter the current date into the date 
field using the context menu. 

Preparation 1. Create a component called ZI~OC_OS_CONTEXT_NENU . Next, create an 
application to enter into the component. 

2. Go to the new view. Create the following two attributes in the con
text: ENABLE_OAT£ with type WOY_BOOLEAN and OAT£ with type OATS. 

3. Go to tl1e LAYOUT tab and add a new input field. Bind the VALUE prop
erty to the DATE attribute, and then bind the ENAI3LED property to the 
ENABLE_OA T£ attribute. 

442 



Context Menus I 8.6 

4. Next, create a context menu. This menu allows you to control the 
ready for input status of the input field and to fill it with the current 
date. 

5. Right-click on the CONTEXT _MENUS root in the element hierarchy. Select 
CREATE CONTEXT MENU and enter the NENU_DATE lD in the popup that 
opens. Confirm your entries with the I Enter I key. 

6. Click on the new element and select INSERT MENU ITEM. Enter the 
SET_TODAY ID and select the MENUACTIONITEM type. Fill the TEXT 
property with the value "Today." Then create the SET_TODAY action 
from within the UI element. Insert the coding from Listing 8.11 into 
the associated event handler method. This coding fills the DATE attri
bute with the current system date. 

wd_context->set_~ttr i bute( 

EXPORTING 
name = ' OATE " 
value - sy ·datum ) . 

Listing 8.11 Event Handler ONACTIONSET_DATE 

7. Return to the LAYOUT tab. Add a new menu and enter the ID MENU_ 

ENABLED into the popup window. Then, add a new item called SET_ 

ENABLED with type MENU(HEC KBox into the menu. Bind its CHECKED 
property to the ENABLE_DATE attribute and enter "Date ready for 
input" as TEXT. 

This completes the creation of your context menus. Figure 8.29 shows 
the complete structure of the view. 

• U CONTEXT_MENUS 
• ~ MENU DATE 

- . ~ SET_TODAY 
• ~MENU_ENABLED 

· ~ SET_ENABLED 
f:" 0 ROOTUIELEMENTCONTAINER 

· llii IF _DATE 

Figure 8.29 Element Hierarchy of the View with Context Menus 

8. If you were to activate the entire component at this point, the frame· 
work would not yet display the context menus. This is because you 
must first assign the menus to their respective UI elements. To do this, 

443 

Creating the 
context menu 

Menu for the date 

Menu for input 
status 

Assigning the 
context menus 



8 I Practical Tips and Hints 

Testing the 
application 

click on the ROOTU I ELEMENTCONTAJNER and enter the MENU_ENABl ED 

menu below the CONTEXTMENUID property. Set the CONTEXTMENUBE
HAVIOR property to pro vi de. Then, select the date field and fill the 
same property with the MENU_DATE menu. Select provide for the CON
TEXTMENUBEHAVIOR property. 

9. Activate the component and start the application. Right-click on a free 
area of the view. Then, click on DATE READY FOR INPUT; the input field 
should now open. After you click on the TODAY context menu item in 
the date field, the current date should appear in the field. Figure 8.30 
shows the context menu of the date field. 

Note 

Shortly before this book went into print, the Web Dynpro development de
partment implemented a correction for static context menus. Therefore, it 
may happen in some systems that the context menu does not function as 
described in this exercise. If th is happens, you should implement SAP Note 
1310110 to solve the problem. 

L Today 
~ -

User Settings ~ 

Display Quick Help 
More Field Help 

Figure 8.30 Entering the Current Date via the Context Menu 

In this exercise, you learned how to create context menus and how to 
assign these menus statically to UI elements. The exercise can certainly 
still be improved. For example, you could try to ass ign the context menu 
dynamically using the wddooncontextmenu( J method. 

8.7 Summary 

In this chapter, you learned about important performance optimiza
tion aspects regarding Web Dynpro applications. The chapter provided 

444 



three checklists that should help you optimize Web Dynpro components. 
The two mos t important ways of optimizing your components are on
demand instancing and delta rendering. The section on performance was 
then rounded off by a description of the two major Web Dynpro analy
sis tools. In addition to this, you were introduced to the Web Dynpro 
Debugger. This tool allows you to analyze the structure of components 
and contexts quickly and easily. Next, you learned how to create popup 
windows. Web Dynpro currently supports only modal popup windows. 
The context change log allows you to respond effectively to context 
changes made by users. The fina l sections of the chapter provided you 
with a description of how to create context menus, which allow you to 
generate local menus by right-cl icking the mouse. 

Chapter 9, Web Dynpro in the Enhancement Framework, describes how 
you can use the Enhancement Framework to customize external compo
nents according to your requirements without modifYing them . 

445 

Summary I 8.7 





Very jew development projects start with a "clean slate." How
ever. although you can customize your own components according 
to new requirements at any time, this is not usually possible with 
third-party components. For this reason, SAP provides enhance
ments, a concept that enables you to create modification-free 
extensions. 

9 Web Dynpro in the 
Enhancement Framework 

In large customer projects, the standard SAP software often has to be 
customized according to the individual customer's requirements. In 
such cases, the customer ideally decides to implement a Business Add
In (BAdl). If there is no suitab le Badi, the only remaining option is to 
modify the standard coding using the modification wizard. However, 
every new modification is a further deviation from the standard, and the 
customer then has to deal with any resulting long-term problems. Modi
fications pose a particular challenge when it comes to upgrades. 

With the goal of simplifying and unifying the process of making individ
ual changes to development objects in mind, SAP introduced the Enhance
ment Framework in SAP NetWeaver 7.0. This new kind of extension con
cept is a technology for modifying, extending, and reusing development 
objects. In the Enhancement Framework, changes are made using the 
Enhancement Builder, which is integrated into the ABAP Workbench. 

Enhancements can be made at any point in the coding of the devel
opment obj ect you want to change. Thus, enhancements are implicit 
enhancements; this is in contrast to explicit changes, which can be made 
at points defined in advance by the application developer only. The best
known example of explicit enhancements is the BAd I. 

Development objects that are modified in the Enhancement Builder 
can be managed in the Switch Framework. This framework enables you 

447 

Enhancement 
Framework 

Implicit and 
explicit changes 



9 I Web Dynpro in the Enhancement Framework 

Creating 
enhancements 

to group together your changes to individual development objects in 
switches and in what are known as business function sets. The switches 
and the enhancements they contain can then be activated and deacti· 
vated in any way you like in the Switch Framework. 

Topics Discussed 

This chapter discusses the following topics: 

~ Enhancement Framework 

~ Implicit and explicit enhancements 

~ Creating Web Dynpro enhancements 

~ Enhancing controll er methods 

~ Pre-exi ts, overwrite exits, and post-exits 

~ Context enhancements 

~ Customizing view layouts 

9.1 Enhancements in Web Dynpro 

First, let us look at an example of how to use enhancements. Imagine 
that you have purchased a standard software package for booking airline 
flights. The software is based on Web Dynpro. However, the software 
does not have an airline-specific search function, and you are also dis· 
satisfied with the search resu lts display. Therefore, you decide to add an 
airline search field to the Web Dynpro components of the software and 
to adapt the results display to suit your requirements. At the end of this 
chapter, we will use an enhancement to implement th is example. 

We will start at the beginning and look at how to create Web Dynpro 
enhancements. Because the Enhancement Builder is fully integrated into 
the ABAP Workbench, the processes of extending components and pro
cessing components are not very different. 

1. To create a new enhancement, click on the menu of the relevant com
ponent object and select ENHANCE. For example, to enhance a view, 
click on VI EW • EN HANCE or press the key combination I Ct r l I + IE] 
(see Figure 9.1). 



Enhancements in Web Dynpro I 9.1 

@[j"'ij fdlt Qoto !,!tllltles E~lronme 

J Qther Object... ShiR+F5 

Display<-> Change Ctri•F'1 

~tive <·> Inactive Shift•FS 

I ~ ~ 
t:,nhance Ctri•F 4 

llndo Enhancem~ ImplementatiOn 

Figure 9.1 Enhancing a View 

2. After you select ENHANCE, the CREATE ENHANCEMENT IMPLEMENTA
TION popup opens, as shown in Figure 9.2. Here, enter the name of 
the enhancement you want to create and a description. 

@Create Enhancement Implementation x 

Enhancement Implementation 
ShMText 

Composite Enhancement Implementation 

!linhancement orthe main vtew 

Figure 9.2 Creating an Enhancement Implementation 

J 

IPl[Q] 

You can also specify a superordinate COMPOSITE ENHANCEMENT IMPLE
MENTATION for the new enhancement. Composite enhancement 
implementations are used to bundle simple enhancements in accor
dance with semantics; in other words, they can be used to combine 
simple enhancements to form useful units. 

3. Click on the button with the green checkmark to close the popup. The 
system then creates the enhancement. In the following section, we 
will look at the various enhancement options. 

Selecting Enhancements 

After you have created your first enhancement, the Create dialog box is no 
longer displayed automatically. Instead, Web Dynpro opens a dialog box 
where you can select from existing enhancements. Of course, you can also 
create a new enhancement in this dialog box. 

449 



9 I Web Dynpro in the Enhancement Framework 

Examples of 
enhancements 

9.1.1 Web Dynpro Enhancements in Detail 

Let us now take a detailed look at the enhancement options in Web Dyn
pro Uls. As a general rule, every part of a component can be enhanced: 

1> Components 
You can create additional component usages. However, component 
interfaces may not be implemented. 

1> Controller 
You can create pre-exits, post-exits, and overwrite exits for methods 
and event handlers. You can also define new actions and events, cre
ate new methods, and copy new attributes to the controller. 

1> Context 
You can copy new nodes and attributes to the context. Existing nodes 
cannot be modified, however. 

1> View layout 
You can copy new UI elements to existing views. You can also modifY 
the properties of existing UI elements in accordance with your require
ments. It is even possible to delete UI elements. 

1> Plugs and navigation links 
You can create new plugs and connect them with each other in the 
window editor using navigation links. 

We will now take a closer look a t some of the options in the Enhance
ment Framework. 

Enhancing Controller Methods 

Enhancing methods is one of the most important functions of the 
Enhancement Framework. Unlike modifications, with enhancements, 
the original methods are not changed directly; instead, the Enhancement 
Framework provides pre-exit, post-exit, and overwrite exit methods. 

Properties of exits Exits can be implemented fo r any method in a controller. You can also 
create new methods in an enhancement in the controller: 

1> The Framework executes pre-exits and post-exits either before or after 
the controller method itself is called. 

450 



En hancements in Web Dynpro I 9.1 

"' Overwrite exits. as the name suggests. replace the method. After an 
overwrite exit is created, the original method cannot be called again. 

All three exi t types have access to the same import, change, and export 
parameters as the original methods. 

Figure 9.3 shows the METHODS tab of an enhanced view. Simply click Example 
on one of the CREATE buttons next to the methods to create a new exit 
method. After the enhancement is implemented, the Create icon on the 
button changes to a Source Code icon. Click on th is button to go to the 
source code of the enhancement in question. You can use the DELETE 

button on the toolbar to delete method enhancements. 

II~!:AO@:a~ Ill Pre·Elcit I m Post· Exit I !J OVa rwrite Exit 

""Method Method Type Event 

u""c i iONSTART_SEARCH Event Har • 

Conttoller Pre· Exit Pos~Ex!t OVeiWr~e Exit 

WDDOBEFOREACTION Method • 
WDOOEXIT MethOd • 
WDOOINIT MethOd • lr!! 
WOOONODIFYVIEij MethOd • 

Het hod • 
Method • 
Hethod • 

Figure 9·3 Enhancing Controller Methods 

Enhancing the Context 

In addition to the methods discussed in Section 9.1.1. Enhancing Control
ler Methods, you can also use the Enhancement Framework to enhance 
the context. Context enhancements are somewhat more restricted than 
method enhancements. For example, with context enhancements, no 
changes may be made to the original node. You are permitted to create 
new nodes and add new attributes only; however, the latter can also be 
created under existing nodes. It is also a simple matter to map a ttributes 
between controlle rs. 

Enhancing View Layouts 

Usually. the most important consideration in enhancements to Web 
Dynpro components is to adapt the existing view layouts to specific 

451 



9 I Web Dynpro in the Enhancement Framework 

Creating Ul 
elements 

Deleting Ul 
elements 

requirements. You can make the following changes to lhe view layout in 
enhancement mode: 

,. Create new UI elements 

,. Change the properties of existing UI elements 

,. Hide existing Ul elements 

In the view, you can also add enhancements to methods, actions, plugs. 
attributes, and the context. 

From the technical point of view, the process of creating new UI ele
ments in enhancement mode is no different than creating the same ele
ments in normal editing mode. All of the UI elements that are added as 
part of the enhancement implementation can be processed normally. 
You can identify UI elements that were added at a later point by their 
additional ENHANCEMENT property (see Figure 9.4) . 

Pro11erty _jValue .JBin ... 
Properties CTexrviewl 
ErweHerung ZENH_MAINVJEW 

10 MY_UI_ELEMENT 

<onlextMenuBeha'llnherit 

Figure 9.4 Enhanced TextView Element MY _UI_ELEMENT 

The properties of existing UI elements can be changed in any way you 
like in enhancement mode. For example, you can change the existing 
binding of an input field or customize its design. 

It is also possible to delete existing Ul elements in enhancement mode. 
To do so, right-click on the element in question and select D ELETE ElE

M ENT. However, the original e lement is not deleted directly in the view; 
instead, it is marked with a red X in lhe BINDING column (see Figure 9.5). 
You then have the option to restore the original UI element by selecting 
U N DO DELETE. 

~operty .JVOlue (Bin .. 
Plooertjes romyo> 
ErweHerung ZENH_MAJNVJEW )( 

10 INPUTGROUP _CP 

Figure 9·5 Example of a Ul Element Deleted From an Enhancement 

452 



Enhancements in Web Dynpro I 9.1 

Generating Deleted U I Elements 

When you delete a Ul element, this element is no longer generated. You need 
to keep this in mind especially for dynamically-programmed components for 
the following reason: If an attempt is made during the runtime of the original 
component source code to access a deleted element. this immediately causes 
program errors, and possibly program termination. 

9.1.2 Exercise: Additional Search Field 

At the beginning of Section 9.1, Enhancements in Web Dynpro, we gave 
you an example of a Web Dynpro component extension in the form of a 
flight booking component tha t needs an extra "airline" search field. Let 
us now return to this example. 

In the following exercise, you will get a chance to practice what you have 
learned using the Enhancement Framework and the SAP standard test 
component ~IDT_FLIGHTLIST. The goal is to add an "airline" search field 
to the search screen in the MAINVIEW view of this component. We will 
then hide some table columns we do not require from the event table 
of the same view. Figure 9.6 shows the component before the enhance
ment is added. 

Enhancement of 
component WOT_ 
FLIGHTLIST 

- .... ........... .. . ... _ 
-"" .. ....... """""' -· ......... -- Mt_.• Mtr• CUtOI'IC'y "'""" 

"" .. ,.,._ "" lO 12.2002 , .. ,~,~ ""- MOHTfttN..()OitYAL 100000 11<000 20.12.2002 1Wit#J CAO "" AF 
,...,, __ ..,. n.u1002 "" fl'W+7V'ttAUotO" m FORT Of fRNfCf 1000.00 15-Ut.OO ZU~-201» "'"'"" "" "" "' ......... "" 10.012 199:1 ..... '""""'' I>( -- IQ.IQ_OO 11 )1.(0 lO.o2.199S ''"""' ""' ""' "' - .... 11111~ rRA """"""' ..o ....,IW<I$(0 101000 12.3000 17 H li$5 1.ctiJ)OOO OEM "" "' ......... "" oe.oe 19515 go """""""" ..... ............. IS.OMO 10.31100 oe.oum 1/NJJ)OOO liSt> ... 

Figure 9.6 Component WDT_FLIGHTLIST Before Enhancement 

1. Open the SAP test component WDT_Fll GHTLI ST. Start the wdt_f l i ght · Opening the 
1 i s t application and familiarize yourself with both this application component 
and the component. 

2. Go to the ~IAINVI £ 1~ view and select the LAvour tab. We will now 
add the required search field to the search screen for the airport of 
departure and the airport of destination. The current status is shown 
in Figure 9.7. 

453 

-



9 I Web Dynpro in the Enhancement Framework 

Creating t he 
enhancement 

CONTEXT _MENUS 
Flugdaten euswlhten ~ 0 ROOTUIEI.EMENTCOr.ITAJNER 

()epartdy: IMAIWIEW.NODE_FU3HTI 

Arr1val ely: IIAAI'MEW.NODE_FU3HTI 

FIUge 

"'I Such=enO"ll 

Figure 9.7 Search Screen Before Enhancement 

~ [)JNPUTGROUP_CP 
T CAPTION (Header) 
r Cffi'FROM_l.AllEL_I_CP 
~ Cffi'FROM_INPUTFIELD_I _CP 
r Cffi'TO_LAllEL_I_CP 

JiOl, Cffi'TO_JNPUTFIELD_I _CP 
1":! SEARCH_CP 

3. Start by enhancing the view. To do th is, select VIEW • ENHANCE 

FROM THE M ENU. A popup opens that allows you to create the new 
enhancement. In this popup, enter the value ZENH_t·1A 1 NV 1 EW into the 
ENHANCEM ENT IM PLEMENTATION field. Enter a short text and create 
the enhancement by clicking on the button with the green check
mark, as shown in Figure 9.8. 

@Create Enhancement Implementation x 

Enhancement Implementation 

snort Text 

r·- ··- ··-···- ···-···- ·- ···- ··- ···-···-···-···- ··- ··- ···-···-t 
•ZENH MAJIIV!EW ; 1. .. _,_,;= ... - .. _,_,_,_,_,_,_,_,_,_,_,_,_; 

j Enhancement oflhe main view l 
Composite Enhancement Implementation __._ _ _ ______ lol [Q) 

Creat ing a search 
fi eld 

Creating an 
overwrite exit 

Figure 9.8 Creating an Enhancement 

4. You can now enhance the view. Fi rst, you need to enter a new "airline" 
attribute in the context. To do this, select the Co NTEXT tab and create 
a new attribute called ENH_CARR I o of the type S_CARR_I o under CON

TEXT. Then, go back to the LAYOUT tab and enter a label and an input 
fie ld for the airline under the group element I NPUTGROUP _CP. Bind the 
VALUE property of the input field to the ENH_CARRIO attribute. 

5. Next, you have to enhance the event handler of the START_SEARCH 

action. To do th is, go to the METHODS tab and open onactionst ar t_ 
sea rch( ) . Select the entire source code and copy it to the cl ipboard. 
Then, go back to the method list and, in the event handler row, cl ick 
the CREATE icon in the O VERWRITE EXIT column (see Figure 9.9). The 
overwrite exit of the event handler is now open. 

454 



Enhancements in Web Dynpro I 9.1 

Method Method Type Pre· Exit Post· EXit <M>rwrite EXitEnh.lmpl. 
h oNACTIONSTART_SEARCH Event Har • 

.. ~ l WDDOBEFOREACTION Mllthod • 

Figure 9·9 Creat ing an Overwrite Exit for the Search 

6. Paste the source code from the clipboard into the overwrite exi t. Next, 
modify the pasted source code so that it is suitable for the airline 
search function (see Listing 9.1). To do this, read the ENH_CARRID attri
bute from the context and transfer its value to the function module 

* Insert this coding 
OATA lv_carrid TYPE s_carr_id . 
wd_context->get_attr i bute( EXPORTI NG name ' ENH_CARRID ' 

I I~PORTI NG value= lv_carr id l . 
*Adapt t he function ca l l BAPI_FLIGHT_GE TLIST 
CALL FU NCTION 'BAPI_FLJGHT_GETLIST ' 

EXPORTI NG 
ai rline - l v_carrid 
desti nation_ from = l s_f rom 
destination_to - l s_to 

TABLES 
flight_list - lt_flights . 

Listing 9.1 Adapting the Event Handler onactionstart_search() 

7. You have now completed the search enhancement. In the last step, Deleting a column 

you will reduce the number of visible table columns. To do th is, go 
back to the lAYOUT tab and open the node of the FLI GHTT AB UI ele-
ment. Right-cl ick on the last element, FLIGHTTAB_CURR_ISO_l , and 
select REMOVE GROUP COLUMN, as shown in Figure 9.10. The ele-
ment is still displayed in the element hierarchy, but is now marked 
as deleted. 

~i Display Ul Element Document 

~~ Copy Element . -
Bemove Group Column "'-

I I 

Figure 9.10 Deleting the ISO Code Column 

455 



9 I Web Dynpro in the Enhancement Framework 

-· ..... ..... --t.H WI!'*- 04CO 

LH wn,.,... M1 

t.H WI!~ l$77 

LH l,•.m~~MM 2402 

t.H ""'"""" ""' -

This completes the exercise. Activate the component and test the appli
cation by entering the airline code "LH" in the search field and clicking 
on the SEARCN button. The table that no longer contains the ISO CODE 

column displays all Lufthansa flights , as shown in Figure 9.11. 

''" ... ...., _,.., ""' ...... """'"' Do~*~"'• AirM11 ,.,.. AIYf.ltl cJiliO Ait•o ~Wr~ ISOCOdl> '"' 
21.o2 199$ ""' '"""""' "" ---- 1111000 11:34 00 218D2199S ''""" "" "" 2'11~2002 , .. ,........,., DRS '""""' 11!~4000 17'3600 2112200l ,,_ 

"" M 
218.0. 199$ '"" - .... ,_..., 0105«1 ...... 218.1)4 199$ ,,.,_ 

'" 30,081$97 ... ,........,., ,.. ...... 10;3000 11:315-00 30/J$1$97 
... _ .... "" 25.0S.1997 ""' "''"'"'" "' """" 10;3000 11:35;00 2$J)8 1997 
.,_ 

"" "" • 

Figure 9.11 Testing the Enhanced Component 

Reconciling Enhancements After Upgrades 

When a system is upgraded, conflicts can exist between enhancements you 
have added and the new development objects. Use Transaction SPAU_ENH 
to analyze and reconcile such conflicts. 

9-2 Summary 

In this chapter, you learned about the Enhancement Framework from the 
perspective of Web Dynpro. You gained practical experience of enhanc
ing thi rd-party components and their controllers in accordance with 
your own specific requirements. From now on, you will also find it easy 
to enhance context nodes and adapt view layouts. 



A Appendix 

The first section of this appendix suggests relevant additional reading for 
you, including sources and important references. The second section, on 
naming conventions, describes all of the conventions used in this book 
for variables, methods, view elements, and so on. 

A.1 Recommended Reading 

This is a list of the literature and sources used in the creation of this 
book. 

~ http://sdn.sap.com 

The SAP Developer Network is a treasure trove of high-quality discus
sions on the subject of Web Dynpro ASAP. 

~ http://help.sap.com 

The SAP Help Portal contains a useful collection of topics about Web 
Dynpro ABAP. 

~ Stefan Ehret, NET310 ABAP Web Dynpro. Participant Handbook for the 
SAP standard training course, version 2006/Q3, material number 
50085725. 

This is the Participant Handbook for the SAP standard training course 
for basic Web Dynpro programming. 

~ Stefan Ehret, NET311 Advanced ABAP Web Dynpro. Participant Hand
book for the SAP standard training course, version 2006/Q3, material 
number 50084905. 

This is the Participant Handbook for the SAP standard training course 
for more in-depth information on Web Dynpro. 

~ Stefan Ehret, NET312 Ul Development with Web Dynpro for ABAP. Par
ticipant Handbook for the SAP standard training course, version 
2006/Q2, material number 50089128. 

This is the Participant Handbook for the SAP standard training course 
for in-depth information on how to use view and Ul elements. 

457 



A I Appendix 

A.2 Naming Conventions 

Table A.1 contains the naming conventions for development objects. 

Convention 

Web Dynpro component 

ZWOC_<name> 

ZWOC_<name>_[ANW JAPP] 

CC_<name> 

CONFC_<name> 

Window/View 

W_<name> 

V_<name> 

TO_<target> 

FROM_ <SOURCE> 

BTN_ 

CAPTION_ 

CB_ 

CBG_ 

0081 

DDBK_ 

FD_ 

FU_ 

GR_ 

IF_ 

I LB_ 

IMG_ 

Table A.1 Naming Convention 

Usage 

Web Dynpro component 

Web Dynpro application 

Custom controller 

Configuration controller 

Window 

View 

Outbound plug 

Inbound plug 

Button 

Caption 

CheckBox 

CheckBoxGroup 

OropDownBylndex 

OropOownByKey 

FileDownload 

Fi leUp load 

Group 

lnputF ield 

ItemListBox 

Image 



Convention 

LB_ 

PH -
RB_ 

RBGI 

RBGK_ 

T_ 

TBL -
TBLH_ 

TBLC_ 

TBLCE_ 

TBLCH_ 

TIT -
TNT -
TR -
TS_ 

TSCB_ 

TV -
vc_ 

USAGE_<name> 

ABAP. Classes 

ZCL_A_<name> 

Controller methods 

!$_<condition> 

GETCTX_ <NAME> 

SETCTX_ <name> 

GETMOOEL_<name> 

Table A.1 Naming Conventions (Cont.) 

Usage 

La be 1 

PageHeader 

RadioButton 

RadioButtonlndex 

RadioButtonKey 

Tab 

Table 

TableHeader 

TableColumn 

TableCellEditor 

TableColumnHeader 

TreeltemType 

TreeNodeType 

Tree 

TabStrip 

TriStateCheckBox 

TextView 

ViewContainerUIElement 

Usage 

Assistence class 

Is condition fulfilled? 

Read data from context 

Put data in context 

Read data from model 

Naming Conventions I A.2 

459 



A I Appendix 

Convention 

SUPPLY_<name> 

ON_<event> 

Method parameters 

ID -
IS_ 

IT_ 

IO_ or !R_ 

ED_ 

ES_ 

ET_ 

EO_ or ER_ 

RD -
RS_ 

RT -
RO_ or RR_ 

GO_ or GV_ 

GS_ 

GT_ 

GO_ or GR_ 

local vanables 

LD_ or LV_ 

LS_ 

LT_ 

LO_ or LR_ 

~-

ZST_<name> 

Table A.1 Naming Conventions (Cont .) 

Usage 

Supply function 

Event handler 

Import data (simple type) 

Import structure 

Import table 

Import object reference 

Export data (simple type) 

Export structure 

Export table 

Export object reference 

Return data (simple type) 

Return structure 

Return table 

Return object reference 

Global data (scalar) 

Global structure 

Global table 

Global object reference 

Local data (scalar) 

Local structure 

Local table 

Local object reference 

Structure 



B The Authors 

Dominik Ofenloch studied Business Information 
Systems at the University of Cooperative Educa
tion in Mannheim, Germany. Even before gradu
ating, he was involved in programming various 
UI technologies at SAP AG in Walldorf, Germany. 
After completing his degree in 2006, he started his 
development career in the SCM department at SAP. 
He worked in this department until August 2009, 
where he developed software for user interfaces 

and Web Dynpro in the Transportation Management (SAP TM) area. In 
September 2009, he j oined ENERGY4U GmbH of Siemens in Karlsruhe, 
Germany, where he works in the SAP Utili ties area as a consultant and 
developer. 

If you have comments or feedback on this book, Dominik would like to 
hear from you: mail@dominikofenloch.de. 

Dr. Roland Schwaiger studied Computer Science 
at Bowling Green State Univers ity, Ohio, USA, and 
Applied Computer Science and Mathematics at 
the University of Salzburg, Austria, where he com
pleted his doctorate in Mathematics. 

After several years of working as an assistan t pro
fesso r a t the Univers ity of Salzburg, he joined 
SAP AG in 1996. There, he worked as a Human 
Resources software developer for three years, 

which gave him the opportunity to develop his skills in an exciting and 
inspirational working environment. In 1999, Roland became a free lance 
traine r, editor, consultant, and developer. In th is capacity, he applies 
his academic qualifications and the software development know-how 
he gained at SAP to real-world development projects and SAP training 
courses. In turn, he is able to transfer the knowledge he gains as a free
lancer back to his academic work, thus creating a positive feedback loop 
between theory and practice. 

Roland invites comments and feedback on this book; he can be contacted 
a t roland.schwaiger@facet.at. 





Index 

1 from n, 325, 331 
_blank, 202 

A 

ABAP Debugger-> Debugger, 422 
ABAP Dictionary, 106 

ABAP. 255 
ABAP_JNTFDESCR, 255 
Data element, 106 
OATS, 343 

Enhancement category. 106 
Search help, 338 

SEOCPDNAME. 258 
SEOEXPOSE, 326 
SFBECLNAM~ 344, 361 
Structure, 7 05 
Structure change, 326 
Structure component, 106 
Structure type, 104 
TlOO, 208 
Text, 208, 209 
TIMS, 343 
Transparent tablr, 105 
View, 105 

WDR_CONTEXT _A TTRIBUTE_INFO, 
251, 253 
WDR_CONTEXT_ATTR_VALUE, 329 
WDR_NAME_VALUE .. LIST. 227 
WDR_TEXT_KEY. 214 
WDUI_TRI_$TATE, 337, 338 

ABAP-InstruC1iOn 
CATCH, 225 

ASAP List Viewer-> SAP list Viewer, 
301 
ABAP statement 

CATCH, 232 
CONCATENATE, 204 
EXIT. 116 
FIELD-SYMBOLS, 362 
MESSAGE, 217 
MESSAGE WfTH, 218 

MOVE-CORRESPONDING, 118, 133 
RAISE, 224 

SELECT·OPTIONS. 357 
TRY. 232 

ABAP Workbench, 36 
ACC 

Warning, 165 
Accessibility 

Cl1eck, 165 
Access key ·> Context menu, 439 
Action, 42, 79 

Creatioll, 58, 79, 92 
Event handler. 79 
Standard, 80, 234 

Valldatio11-indrpmdmc, 80, 234 
Action handler, 161 
Aggregation, 139 
AJAX, 19, 34,416 
Alias name, 21 1 
ALV ·> SAP list Viewer, 27 
Animal ion -> Performance, 401 
Application 

Proptrty, 48 
Testing, 49 

Application configuration 
Asslgm11t11t, 385 
Saving, 384 
Test, 384 
URL parameters, 385 

Application paramater 
WDDISABLEUSERPERSONALIZA· 
TION, 394 

Applicallon parameter 
WDCONFIGURATTONTD, 385, 394 
WDHIDEMOREFTELDHELPASDEF· 
AULT. 367 

Application parameters, 48, 394 
Architecture patlern, 20 
Area selection, 191 
Assis1ance class, 80, 213 

Texr, 208 

Asynchronous JavaScript and XML ·> 
AJAX, 34 



Index 

Attribute 
Creation, 89 
wd_assist, 80, 215 
wd_comp_comroller. 67, 76 
wd_context, 66, 84, 112 
wd_this, 66 

Attribute information, 326 

B 

BAdl, 447 
Browse button, 206 
BSP -> Business Server Pages. 27 
Business Add-In -> BAd!, 447 
Business function set, 448 
Business Server Pages -> BSJ', 19, 24, 27 
Button, 330 

c 
Calendar help, 343 
Cardinality -> Context, 83 
Carriage Return, 204 
Cascading style sheets, 147, 401 

Unit of measurement, 147 
Cell editor, 186, 194 

Insert, 194 
Change log -> Context, 398 
Check mark, 333 
Check table 

Text table, 342 
Class 

CL_ABAP _CHAR_UT/L/TJ£5, 204 
CL_ABAP _CONV _OUT_Cf, 203 
CL_SALV _WD_CONFIG_TABL!:.~ 305 
CL_TfXT_IDENTIFIER, 210 
CL_WD_COMPONENT_ASSISTANCE, 
80 
CL_WDJ)YNAMIC_TOOL, 186, 233, 
272 
CL_WD_FORMATTED_TEXT, 369 
CL_WD_RUNTIME_SERVICES, 206 
CL_WD_UTILITIES, 212 
Constant, 252 
Description object, 132 

Client-server architecture, 25 
Clock help, 343 
Column, 184 

Oriented, 139 
Compiler, 33 
Component 

Activation, 49 
Cor1troller interface, 121 
Copy, 414 
Interface, 39 

Component Controller-> Controller, 
38, 65 
Component interface, 300 

Creation, 300 
Component usage, 280, 281 

Controller usage, 73, 292 
Creation, 289 
Definition, 281 
Entry. 286 
Example, 281 
External event, 291 
External method, 291 
lrmancing, 288 
Update, 298 

Configuration, 379 
Application configuratiorl, 379, 382 
Component configuration, 384 
Component-Defined, 389 
Configuration data set, 379, 380 
Create, 380 
Explicit, 386, 389 
Implicit, 380 
Maintenance screen, 382 
Vie1v, 381 

Configuration controller, 380 
Setting, 388 

Configuration data set, 379, 380 
Maintenance, 389 

Configuration editor, 379 
Configuration mode 

sap-con.fig-mode=X, 391 
Configurator, 379 
Console, 24 
Constant 

Usage, 252 
Container, 139 

Element, 40 



Group, 140 
TrarJSparentContainer; 140 
Tray, 140 
ViewContainerUIEiement, 140 

Con tent area. 166 
Content management system, 19 
Context, 81, 104 

Attribute, 104, 109, 326 
Cardinality. 83, 86 
CIJange log, 398, 434 
Cormant, 94 
Creating attributes, 250, 251 
Data binding, 85 
Definition, 81 
Editor; 84 
Element, 45, 82, 123 
Enhancement, 450 
External mapping, 414 
Interface node, 294 
Lead selection, 87 
Mapping, 95, 282, 285, 327 
Navigation, 111 
Node, 82, 88, 104, 244, 246, 247, 
250 
Node attribute, 89 
Node structure, 244 
Parameter table, 253 
Path, 119 
Programming, 104 
Property, 86 
Recursion node, 178 
RTTI, 254 
Runtime, 83 
Structure, 82 

Context change log -> Context, 433 
Context mapping 

Cross-component, 293 
Definition, 295 
Deletion, 298 
External, 293, 296, 297, 298, 299, 
304 
Simple, 293, 294, 295 

Context menu, 398, 437 
Access key, 439 
Creation, 443 
Default value, 439 
Developmem, 440 

Dynamic, 442 
Field l•elp, 440 
Quick help, 440 
Static, 442 
System menu, 438 
Usage scenario, 438 
Visibility, 439 

Con troller, 64 
Attribute, 66 
Component, 38, 65, 74 
Custom, 65, 380, 386, 388 
Interface, 65, 282, 290, 291, 293 
Method, 67 
View, 65 
Visibility, 73, 76 
Window, 65, 71 

Controller usage-> Component usage. 
280 
Conversion object, 204 
Copy 

Structural, 182 
Custom controller-> Controller, 65 
Customization hierarchy. 378 
Customization requirement, 377 
Customizing, 390 

Dialog box, 391 
Mode, 390 
Start, 391 

D 

Data 
Conversion, 204 
Invalidation, 203 

Data binding -> Context, 85 
Data Dictionary, 31 
Data row, 184 

Area, 184 
Data source, 178 
Data type 

Simple, 334 
ODIC binding, 210 
Debugge~ 397,422,424 

Context, 425 
New, 423 

Default value, 110 

Index 



Index 

Default value ·> Context menu, 439 
Default view, 413 
De-referencing, 362 
Description object, 244 
Development period. 14 
Development phase , 239 

Context definition, 241 
Dialog box ·> Popup window, 428 
Display posilion, 160 
Downcast, 134 
Dynamic programming, 242 
Dynpro, 24, 25, 140 

E 

Data transport, 26 
Flow logic, 25 
Process after input, 25 
Process before output, 25 
Screen definition, 25 

Easy·POWL ·> POWER list, 321 
Editabili ty, 158 
Element·> Context, 82 
Enhancement 

Component usage, 450 
Composite, 449 
Context, 451 
Creation, 448 
Exit method, 454 
Explicit, 447 
Implementation, 454 
Implicit, 447 
Layout, 451 
Mapping, 451 
Method, 450, 451 
Navigation link, 450 
Plug, 450 
Reconciling after upgrade, 456 
UJ element, 452, 455 

Enhancement Builder, 447 
Enhancement·> extension, 448 
Enhancement Framework, 447 
Error message. 234 

Attribute, 120 
Context reference, 234, 235 

Event, 77 
Definition, 77 
Event handler. 78 
onAction, 58, 60, 161, 176 
onEnter. 92 
onExpandA/1, 176 
onLeadSelection, 192 
onLoadChildren, 177 
onSelect, 97, 325, 328 
onSort, 19 3 
Registration, 77 
Visibility. 77 

Event handler, 77, 291 
Mechatzism, 162 
Method, 42 
ovs. 346 

Exception, 224 
Exception class 

CX_ROOT, 224 
CX_WD_CONTEXT, 117 
Exception text, 208 

Exception mechanism, 224 
Exit method, 450 
Expansion, 173 
External mapping ·> Context, 
293 

F 

Field label, 209 
Field symbol, 362 
File 

Export, 200, 206 
Import, 200 

firsuime, 260 
fixedTableLayout, 190 
Foreign key check, 341 
Form 

Table, 334 
Forward navigation, 211 
Framework controlled ·> View Lifecycle, 
44 
Function, 184 
Function module, 128 

DOCU_CREATE, 369 



DOCU_GET, 369 

SEO_CLASS_LIB_INTROSPECTION, 
355 

H 

Header, 184 
Hello world, 36 
Help 

Application. 374 
&DEFINITION&, 365 
Explanation, 364, 367 
Explanation text, 364 
F1 help. 364, 366 
Field documellta!ion, 366 
Help uxc with coo/rip, 363, 364 
Hide, 370 

informacion objur. 370 
KW document, 364, 370 
Link, 371 
Menu text, 3 71 
More field help, 366 
Quick help, 365 
Semantic, 323, 363 
Technical, 366 
&USE&, 365 

Help Center, 374 
Hierarchy. 168 
Hilfe 

F4 help, 338 
Hook method, 67 

Flow sequence, 69 
Hotkey. 398, 435 

Global, 436 
Key combinations, 436 
Local, 436 
Ul dement, 435 

HTMLB, 29 
HTTP roundtrip. 154 

I 

Icon, 162 
IETF. 201 

Inbound plug ·> Plug. 50 
Individualization, 390 
Individual selection, 191 
Information 

Semantic, 363 
Information object. 244 
Inheritance hierarchy. 263 
lnline CSS ->Performance. 401 
Input help, 323. 338 

Checlc table, 339 
Dau selection, 339 
OATS, 343 
Domalu. 343 
Domairrfixed value, 339 
Environmeut-seusicive, 109 
Fixed value, 342 
Freely programmed, 357 
Input help, 323 
Key field, 342 
None. 344 
Selecrio11 optioll, 323 
TIMS, 343 

Input help mode 
Automatic. 340 
Deactivated, 340 
Dictionary search help, 344 
ovs. 346 

Interface 
Component controller. 121 
elemenr_•. 121 

elemems_ •. 121 
IF_POWL_FEEDER, 322 
IF _5ALV_WO_TABLE_ *, 309 
IF_WD_COMPONENT. 427 

IF_WD_COMPONENT_USAGE, 404 
IF_WD_CONTEXT. 434 
IF_WD_CONTEXT_ELEMENT. 83, 
113 
IF_WD_CONTEXT_NODE. 83, 94, 
111 
IF_WD_CONTEXT _NODE_INFO, 246, 
247, 258, 259 
IF_WD_MESSAGE...MANAGER. 222, 
224 
IF_wo_ovs. 348 
IF_WD_5ELECT_OPTIONS, 359 

Index 



Index 

IF_WD_TABLE..J;IETHODJINDL. 
194, 198 
IF_WD_WINDOW. 427. 431 
TG_COMPONENTCONTROLLER. 121 
Vienr, 54 

Interface controller-> Controller. 65 
Interface node-> Context, 294 
Interface type 

IF_*, 291 
TG_ •. 291 
TWCf_•, 291 

Interface view, 282 
WND..$ELECTION..$CREEN, 359 

Internationalization, 208 
Internet Engineering Task Force-> IETF, 
201 
Internet Transaction Server-> ITS, 27 
Interval entry. 357 
TtemlistBox. 171 
ITS, 19, 27, 29 

J 

JavaServer Pages. 27 

K 

Key 
Activate, 107 
Ccrl+click, 336 
F4, 339 
Shift+click, 336 
Table navigation, 191 
Table row, 187, 191 

Key technique. 328 
Key value, 328 

L 

Layout, 141 
Data, 140 
FlowLayout, 41, 141 
GridLayout, 41, 149 

MacrixLayout, 41, 145 
RowLayout, 41, 144 

Lead selection 
DropDownBylndex, 325 
RadioBucconGroupBylndex, 331 

Leaf. 175 
Length 

Defined, 213 
Maximum, 213 

lightspeed rendering. 406, 416, 435 
line Feed, 204 
list box. 335 
Loading 

Dynamic, 177 

M 

Mainframe server, 24 
Main property, 188 
Mandatory entry, 156 

Field check, 232 
Mapping -> Context. 95 
MatrixData, 147 
MatrixHeadData. 147 
Memory consumption. 398 
Message. 208, 217 

Class, 218, 229 
Link, 227 
Maintenance, 218 
Manager. 221 
Numbet; 218, 229 
Permanent, 235 
Standard, 235 

Message area, 218 
Customizing. 220 
List, 220 

Message category. 223 
Exception, 224 
Table T100, 224 
Text, 224 

Message Manager, 73 
Message text. 218 

Placeholder. 218 
Message type. 217, 229 

Error. 217 
Information, 217 



Metadata. 33 
Meta information object, 244 
Method 

add_attribute( ), 251, 259 
add_chi/d( ), 268, 277 
add_new_child_node( ), 247, 249, 
255, 256, 259 
add_selectionJield( ), 359 
attachJile_co_response( ), 206 
bind_(). 277 
bind_element(), 112, 123, 124, 125 
bind_strucwre(), 94, 112, 126. 257 
bind_tab/e( ), 112, 127, 133, 405 
bound_(), 277 
check_mandatory_atcr_on_view( ). 
234 
clear_messages(), 235 
convert(). 204 
create(), 204 
create_component(), 289, 361, 412 
create_elemenc( ), 112, 123, 124 
create_from_sapscripc( ), 369 
create_range_tab/e( ). 359 
create_table.Jrom_node(), 186, 272 
delete_comporJent( ), 289, 404 
describe_by_name( ), 134, 136, 255 
enable_context_change_log( ), 434 
functional, 113 
get_(). 277 
get_attribute(), 114, 117, 118, 259 
get_attributes( ), 259 
gec_child( ), 277 
gec_child_node(), 94, 111, 112, 260 
gec_child_nodes( ), 260, 269 
get_children( ). 277 
get_context(), 434 
get_element(), 111. 264 
get_elemellt_counc(), 101, 112 
get_lead....selection( ). 96 
get_message_area( ), 221 
get_messages( ). 2 3 5 
get_node_injo( ). 246, 259, 329 
get_on_( ). 277 
get_parent( ), 260 
get_range_cable_of ....sel_jield( ), 362 
gec_rooc_element(), 261, 264 
gec_seleaed_elemencs( ), 192, 335 

get....static_attributes( ), 114, 117, 
120 
get....static_attributes_table( ). 112, 
118, 120 
get....string( ), 275 
get_text(), 216 
gec_window_manager( ), 427 
has_aaive_component( ), 289, 361 
if_wd_componerlt_assistancehgec_cext( 
). 213 
init_se/ection_screen( ), 359 
irnerface, 113 
is_empty( ), 235 
is....selected( ), 3 3 5 
new_(). 265, 271. 274 
new_caption( ), 270 
new_matrix_head_data( ), 267 
new_matrix_layout( ), 265 
new_tab(), 269 
new_tabstrip(), 267, 276 
new_transparent_container( ), 271 
pach_get_node( ). 271, 335 
remove_all_children(). 267, 277 
remove_attribute( ), 260 
remove_chi/d( ), 2 77 
remove_child_llode( ), 259, 260 
remove_child_nodes( ), 260 
remove_element(), 96, 112, 137 
remove_message( ). 235 
report_attribuce_error _message(). 
227, 229 
report_attribute_exception( ), 231 
report_atcribuce_message( ), 229 
report_accribuce_t100_message( ), 
229, 230 
report_elemenc_error _message(), 229 
report_element_exceptioll( ), 231 
report_element_t1 oo_message( ). 229 
report_error _message(), 229 
report_exception( ). 231 
report_fatal_error_message( ). 229 
report_fatal_exception( ). 231 
report_message(), 229 
report_success( ), 229 
report_t100_message( ), 229, 230 
report_ warning(), 229 
set_(), 266, 277 

Index 



Index 

set_attribute(), 1 H. 114 
set_configuration( ), 349 
set_content( ), 271 
set_display_attributes( ), 221 
set_global_options( ), 359 
set_image_source( ), 271 
set_input_structure( ), 352 
set_ort_( ), 274, 277 
set_output_cable( ), 354 
set_selected( ), 334, 335 
set_static_atcributes(), 113, 116. 405 
set_cext( ), 3 70 
set_cext_document_name( ), 370 
set_ width(), 266 
signature, 113 
Type, 67 
wd_cpifc_(), 291 
wd_cpuse_( ), 288 
wddoajteraction( ), 7 2 
wddoapplicacionstatechange( ), 71 
wddobeforeaction(), 72, 232 
wddobeforenavigation(), 71, 72 
wddoexit(), 70 
wddoinit( ). 70 
wddomodif.yview( ), 72, 260, 405 
wddoonclose(), 71 
wddooncontextmenu( ), 441 
wddoonopen( ), 71 
wddopostprocessing( ), 71 
wd_get_api( ), 431 

Method type 
Event handler. 68 
Simple, 67 
Supply junccion, 68, 99 

m from n, 334 
Microsoft Excel 

Plug-in, 205 
Sheet, 205 

MIME 
Display. 204 

Model integration, 128, 131 
Model View Controller, 20, 23, 28 

Business Server Pages, 28 
Controller. 22 
Example, 22 
Model, 21 

470 

Origins, 20 
Vie1v, 22 

Model View Controller (MVC), 34, 42, 
49 
ModificJtion, 447 
MouseOver, 161 
Mult i component arch itecture, 279, 280 

Example, 280 
Multiple selection, 335 

N 

Navigation 
Element, 166 
Menu, 766 

Navigation link, 50, 62, 63 
Node 

Collapsed, 173 
Collection, 124 
Non-recursive, 171 
Recursive, 171, 177 

Node information, 326 
Non-singleton node, 175 

0 

Object Value Selector -> OVS, 339 
Online text repository -> OTR, 208 
Operating speed. 323 
OTR, 208, 210 

Alias text, 210 
Basic vocabulary. 210 
Browser, 270 

Maitttenattce, 212 
Name stmcture, 211 
Short text, 210 
SOTR_VOCABULARY _BASIC, 210 

Outbound plug -> Plug, 50 
Overwrite exit, 450, 454 
ovs, 339, 344 

Aspect of configuration, 349 
Call, 348 
Column header. 348 
Event handler. 347 



p 

Event vietv, 347 
Group header. 349 
Header, 348 
if_wd_ovs=>co_phase_O, 351 
Input field, 349 
Input help, 344, 345 
Integration, 345 
Label, 349 
ovs_callback_object, 347 
ovs_cal/back_object->phase_indica
cor. 348 
ovs _callback_object->query _pa rame
ters, 355 
ovs_callback_object->selection, 356 
Phase model, 347 
Phases, 348, 352, 354, 356 
Search help context, 353 
Selection view, 347 
Sec of results, 354 
Use, 345 
Window title, 348 

PAl, 154 
Para meter, 113 

Actual parameter. 113 
Changing, 113 
Exporting, 113 
Formal parameter, 113 
Importing, 113 
Returning, 113 
1jlpe, 113 

Parameter reference 
View, 260 

Path 
Absolute, 206 

Performance, 171 
Anarysis cool, 405 
Animation, 401, 402 
Backend rulltime, 399 
Checklist, 403, 404, 405 
Component instancing, 404 
Context change, 419 
Data compression, 400 

Data volume, 399 
Delta rendering, 401, 416, 417, 418, 
422 
Dirty flag, 417, 422 
Document Object Model, 406, 409 
Frontend rendering runtime, 399 
H1TP compression, 402 
In line CSS, 401 
Instancing, 411 
Nesting a~wrysis, 406, 408 
On-demand instancing, 422 
Performance monitor, 406 
Roundtrip, 416, 417 
Runtime anarysis, 400 
Singleton, 404 
Structure, 405 
System configuration, 400 
Trace cool, 406, 409, 420 
View lifetime, 404 
Visibility, 412 

Personalization, 390 
Start, 391 

Personal Object Work Entity Repository 
list -> POWER list, 318 
Phase model, 70, 72 
Placeholder, 213, 225 
Plug. 49 

Convention, 59 
Event handler. 59 
Exit, 55 
Inbound, 50 
Interface flag, 55 
Outbound, 50 
Resume, 54, 56 
Standard, 54 
Startup, 54 
Suspend, 56 

Popup window, 56, 398, 426 
Button, 431 
Button constant, 431 
close(), 429 
Closing, 429 
create_popup_co_confirm( ), 427 
create_window( ), 427, 428 
create_window_for_cmp_usage( ), 
427, 428 

471 

Index 



Index 

Creation, 427 
Dialog box, 428 
Modal, 426 
open(), 429 
Opening, 429 
set_window_size( ), 430 
subscribe_to_button_event( ), 431 
Window manager, 426, 427, 429 

Post-exit, 450 
POWER list, 318 

Calculated data, 319 
Easy-POWL, 321 
Favorite, 320 
POWL_EASY_DEMO, 318 
Quety. 319 
Search criteria, 319 
Usage option. 318 

Pre-exit, 450 
Primary property. 155. 159 
Process After Input-> PAl, 154 
Programming 

Action, 274 
Assignment, 243 
Attribute, 250 
Cardinality. 249 
Context, 244 
Context manipulation, 242 
Cross-controller, 7 3 
Disadvantages, 241 
Dynamic, 242 
Layout manipulation, 243 
Lead selection, 2 50 
Reason, 244 
Selection, 249 
Singleton, 249 
View, 261 
Warning. 260 

Property 
accessibilityDescription. 165 
activateAccessKey. 439 
Behavior, 205 
Cardinality. 110, 186 
ceiiDesign, 141, 142, 147 
ceiiPadding. 149 
ceiiSpacing. 149 
checked, 333, 337 
Checked. 441. 44 3 

472 

co/Count, 149, 331, 333 
co/Span, 14 7 
contextMenuBehavior, 442, 444 
contextMenuld, 441, 442, 444 
data, 202 
dataSource. 172, 173, 188. 336 
difaultltemlconSource, 172 
difaultNodelconSource, 172 
difault value, 110 
descriptiveText. 336 
design, 46, 58, 60, 155, 189, 370 
dictionary strucwre, 109 
displayEmptyRows, 189 
emptyTableText, 190 
enabled, 46, 101, 172 
Enhancement, 452 
expanded. 173, 176 
explanation, 364, 440 
fileName, 205 
Final, 382, 391 
IIA/ign. 144, 147, 155 
handleHotkeys. 436 
hasChildren. 17 3 
height, 147 
iconSource, 173, 336 
ignoreAction, 177 
imageSource, 161, 167, 202 
keyToSelect, 330 
/abe/For. 158, 285 
layout, 140 
layout data, 140 
lead selection, 110 
length, 158 
MenuCheckBox, 443 
mimeType. 201 
multipleSelection. 336 
OVS component usage. 346 
paddingBottom. 151 
paddingLeft. 151 
paddingRight, 151 
paddingTop. 151 
passwordField, 158 
readOn!y, 158 
rootText, 17 2 
rootVisible, 172 
rowBackgroundDesign, 145, 147 
rowDesign, 145 



rowSelectable. 190 
scrollingMode. 140, 183 
selectedKey. 330. 332. 441 
selectedTab, 167 
selection, 187, 190 
selectionChangeBehavior. 336 
selectionMode, 190, 191 
sorcState, 193 
stare. 158, 233 
strecchedHorizontally. 146 
strecchedVertically. 146 
target, 202 
text, 155, 158, 167, 202, 330, 336, 
368 
Text, 46, 97 
texcDirection, 155 
textDocumencName. 368 
texts, 331, 334 
title, 172, 283 
citleVisible, 172 
too/tip, 46, 161, 364 
vAiign. 147 
value, 85, 91, 158, 454 
vGutter. 141, 142, 147 
Visibility. 382 
Visible. 46, 85, 101 
visibleleems, 336 
visibleRowCount, 189 
width, 147, 190 
wrapping, 141, 155 

Pushbutton, 161 

Q 

Reuse. 164 
ABAP Dictionaty. 338 
Of components ·>Multi-component 
architecture, 279 

Reuse component type. 129 
RFC 

A IO_FOR_HELP _LINKS, 371 
Cormeccion, 129, 371 

Root element 
Replacement, 45, 405 

ROOTU IELEMENTCONTAINE R. 44, 45, 
139 
Roundtrip ·> Performance. 416 
Row 

Oriented, 139 
Selection, 187 

RowData. 144 
RowHeadData. 144 
Rows. 184 
RTTC, 134 
RTTI, 103, 134 

CL_ABAP _CLASSDESCR, 132 
CL_ABAP _STRUGDESCR, 255 
CL_ABAP _1YPEDESCR. 134 
Description object, 254 
Jnherita11ce hierarchy. 134 
Usage, 135 

RTTS, 134 
Runtime, 239 
Runtime analysis-> Performance, 400 
Run Time Type Creation -> RTTC, 134 
Run Time Type Identification -> RTTI, 
103 

Quick help -> Context menu. 440 S 
~--------------

R 

RadioButton, 330, 331 
Ragged setting, 144 
Remote function call -> RFC. 129 
Rendering, 176 
Repetition node, 179 
Replacemeru value, 227 

SAP GUI. 25 
SAP Knowledge Warehouse 

Area, 371 
Comexc, 371 
Folder. 371 
Search cotnext. 371 
Structure, 3 71 
Teclmical name. 373 
Topic, 372 

473 

Index 



Index 

SAP List Viewer, 27, 301 
Appearance. 302 
Application-specific function, 306 
Cell editor. 315 
Column header. 313 
Column setting. 306 
Configuration model, 305, 306, 
307 
Corifiguring columns, 313 
CONTROL_VIEW, 304 
Creating colrmms. 315 
DATA, 304 
data_check(), 311 
Deleting columns, 312 
Event, 309 
Feawres, 302 
Field setting, 306 
Function, 316 
get_mode/( ), 310 
get_model_extended( ). 310 
Hiding columns, 3 14 
Implementation, 302 
Integration, 303 
ON_DATA_CHECK, 311 
ON_FUNCTION, 316, 317 
R_PARAM, 309 
SERVICE, 304 
set_data(), 304, 310 
Standard function, 306 
TABLE, 303, 304 
Table setting, 305 
Too/bar, 316 

SAPscript. 369 
Save dialog box. 205 
Screen Painter, 25 
Scroll bar. 184 
Search help. 323 

Check table, 342 
Corltext, 342 
Data element, 342 
Data element level, 342 
Direct. 344 
Export parameter. 340 
Field level, 342 
Hit list, 340 
Import parameter, 340 
Integration, 341, 344 

474 

Search algorithm, 341 
Selection method, 340 

Selection column, 184 
Selection list, 325 

Domain fixed value, 326 
Implementation, 326, 328 

Selection screen. 155 
Standard, 357 

SELECT-OPTIONS, 357 
Condition, 360 
Criterion, 358 
Everlt, 360 
Individual entry. 358 
lntetjace controller, 361 
interval entry. 358 
Multiple selection, 360 
Range table, 360 
Standard function, 360 

Service call. 103 
Service call wizard. 128, 355 

Start, 129 
Step, 128 
Time saving, 130 

Settings 
Personal, 390 

Shortcut ·> Horkey. 435 
Short text, 364 
Simple mapping -> Context, 293 
Single selection, 335 
Singleton·> Performance, 404 
Source code structure. 347 
Standard application. 377 
Standard cell ed itor. 197 
Standard component, 279 

Object value selector, 280 
POWER list, 2 79 
SAP Usc Viewer. 2 79 
SELECT OPTIONS. 280 

Standard message. 235 
Standard message area, 218 

Display, 218 
Statement structure, 124 
Subclass. 263 
Subscreen. 140 
Superclass. 263 
Supply function. 68, 284, 292, 296, 
298 



Switch, 333 
Switch Framework, 447 

T 

T100, 224 
Tab, 166 

Create, 170 
Implemented inteifaces, 301 
Page, 166 

Table, 168 
Dynamic, 186 
Header. 187 
Hierarchical, 183 
Manual, 186 
Template, 186 

Table column 
Insert, 193 
Move, 198 

Text 
Determining, 158 
ID, 214 
Literal, 217 
Pool, 213 
Table, 342 
Translation-relevant, 208 

Text element 
Creating, 213 

Text symbol, 208, 213 
Constant, 214 

Three-tier architecture, 20, 21 
Toolbar, 166, 184 

Insert, 167 
Trace tool ·> Performance, 406 
Transaction 

ICON, 161 
IF _fOWL_EASY_FEEDER, 322 
POWL_CAT, 322 
POWL_EASY, 322 
POWL_QUERY, 322 
POWL_QUERYR, :122 
POWL TYPE :122 - . 
POWL_TYPER, :122 
SE11, 105, 106, 326 
S£24. 106, 1 H, 224, 263 
SEJO, 400 

S£63, 209 
S£91, 218 

SICF. 402 
S_MEMORY_!NSPECTOR, 400 
SOTR_EDIT, 211 
WD_TRACE_TOOL, 410 

Tree entry, 183 
Tree hierarchy, 177 
Two-dimensionali ty, 184 
Type 

Scalar. 157 
Type group, 252 

u 
UI category, 153 

Action, 153, 161 
Complex, 153, 187 
Favorites, 153 
Graphic, 153 
Integration, 153 
Layout, 153 
Selection, 15 3 
Text, 153 

VI-Element, 40, 333 
ABAP class representation, 261 
Add, 261 
Button, 57, 161 

Captio11, 167 
CheckBox, 3 33 
CheckBoxGroup, 285, 334 
Composite, 185 
Creation, 41 
DropDown, 325 
DropDownByl ndex, 97, 325 
DropDownByKey. 325 
Explanation, 367 
FileDownload, 200, 201 
FileUpload, 200, 206 
Group, 40, 45, 330 
Image, 194 
InputField, 157 
Insert, 154 
Insert position, 261 
lnvisible£1ement, 150 
ltemListBox, 335 

Index 

475 



Index 

Label. 91. 141, 158 
Menu, 441 
MenuActionltem. 441 
MenuCheckBox, 441 
MenuRadioButton, 441 
MenuSeparator. 441 
MessageArea, 219 
Move, 159 
MultiPane, 405, 439 
PageHeader. 283, 295 
PageHeaderArea, 296 
Propmy. 46, 265 
RadioButton. 330 
RadioButtonGroupBylndex. 331 
RadioButtonGroupByKey. 331, 332 
RowRepeater. 405, 439 
Runtime object, 265 
ScroiiContainer. 148 
Shift, 154 
Tab, 166, 2 63 
Table, 184 
TableColumn, 193 
TabStrip, 166, 263, 283 
Tex!View, 45, 47, 154, 155 
Too/bar. 167 
TransparentContainet; 41 
Tree, 170 
TreeltemType, 172, 174 
TreeNodeType. 17 2. 17 3 
TriStateCheckBox, 337 
Type, 261 
ViewContainer. 41, 56, 303 
Visibility. 101 

URL-Paramctcr. 393 
sap-cotifig-mode, 393 
sap-wd-cotifigld, 393 
sap-wd-ssrcoiiSole, 393 

User-friendliness. 323 

v 
Value help mode. 252 
View, 39, 40 

Anlage, 42 
API, 432 
Editor. 43 

476 

Embedding. 286 
Empey. 413 
Enhancement, 450, 454 
Hierarchy, 50 
Lifecycle, 44 
Lifetime, 412 

View class 
CL_WD_CAPTION, 270 
CL_WD_LAYOUT_DATA, 263 
CL_WD_MATRIX_DATA, 263 
CL_WD_MATRIX_HEAD_DATA, 263, 
267 
CL_WDR_VIEW_ELEMENT. 262 
CL_WD_TAB, 263, 269 
CL_WD_TABSTRIP. 252, 263, 267 
CL_ WD _TRANSPARENT _CONTAI
NER. 271 
CL_WD_UI£LEMENT, 263, 364 
CL_WD_UIELEMENT_CONTATNER, 
264 
CL_WD_VTEW_£LEMENT, 262 

View controller -> Controller, 65 
View designer, 44 
View element, 138 
View interface 

IF_WD_VI£W_ELEMENT. 262, 264 

w 
Warning 

ACC, 165 
wdevent, 176 

context_element, 176 
id, 176 
Name, 275 
Name/value pairs, 275 
parameters, 176 
path, 176 

Wdcvcnt, 274 
WD_GLOBAL_SETIING, 400 
Web Dynpro, 30 

Application, 35, 47 
Authoring environment, 368 
Benefit, 30 
Component, 34, 37, 38 
Component model, 30 



Debugger, 117 
Developmmt mvironment, 36 
Encapsulation. 31 
Explorer. 36, 38 
Java, 30 
Metadata model, 30 
Programming model, 33, 36 
Text browser. 368 

Web Dynpro application 
CONFIGURE_APPLICATJON, 383 
CONFIGURE_COMPONENT. 380 
Property. 218 
WDR_TEST_UI_ELEMENTS, 154 

Web Dynpro Code Wizard, 115 
Component instancing. 290 
Context element, 93 
Launching, 74 
Message, 225 
Method call, 75, 116 
Navigation transition, 168 
Read, 119 
Table, 196 
Table operation, 123 
Table template, 186 
Template gallery. 196 
Text symbol, 216 

Web Dynpro component 
Copy. 244 
WDR_OVS, 345 
WDR_SELECT_OPTIONS, 358 

Web Dynpro component in terface 
IWD_VALUE_HELP. 357 

Web Dynpro customization 
Configuration, 377 
Configuration data sets, 377 
Customizing. 377 
Personalization, 377 

Web Dynpro customizations 
Explicit, 378 
Implicit, 378 

Web Dynpro Debugger-> Debugger. 
397 
Web Dynpro development 

Procedure, 242 
When visible -> View Lifecycle, 44 
Wildcard, 340 
Window, 39, 49 

Editor. 52 
Interface, 53 
Property. 53 
Structure, 52 
View, 61 

Window API. 221 
Window controller-> Controller, 65 
Window manager-> Popup window. 
426 
Wrapping. 142 
WYSIWYG, 43 

z 
Zero client, 24 

Index 

477 


	Cover
	Contents at a Glance
	Contents
	Preface
	1 Introduction
	1.1 Model View Controller
	1.1.1 Model
	1.1.2 View
	1.1.3 Controller
	1.1.4 MVC Interaction Example

	1.2 Evolution of SAP User Interfaces
	1.2.1 Console
	1.2.2Dynpros
	1.2.3 Business Server Pages
	1.2.4 Web Dynpro

	1.3 Summary

	2 Web Dynpro Architecture
	2.1Components and Applications
	2.1.1 Example: Library
	2.1.2 Web Dynpro Explorer

	2.2 View
	2.2.1 Views
	2.2.2 Windows and Plugs

	2.3 Controllers
	2.3.1 Hook Methods' Flow Sequence
	2.3.2 Usage and Visibility of Controllers
	2.3.3 Actions and Events
	2.3.4 Assistance Class

	2.4 Context
	2.4.1 Structure of a Context
	2.4.2Data Binding
	2.4.3 Mapping
	2.4.4 Supply Functions
	2.4.5 Controlling the Visibility of Ul Elements via the Context

	2.5 Summary

	3 Developing Web DynproApplications
	3.1 Context Programming
	3.1.1 Changing Attribute Values of an Element
	3.1.2 Reading Attribute Values of One or More Elements
	3.1.3Creating Context Elements
	3.1.4 Removing Context Elements

	3.2Layouts and Containers
	3.2.1Containers
	3.2.2 Layouts
	3.2.3 Example

	3.3Using Important View Elements
	3.3.1 TextView
	3.3.2lnputField and Label
	3.3.3Button
	3.3.4TabStrip
	3.3.5Tree
	3.3.6 Table
	3.3.7FileUp/Download

	3.4Messages and Internationalization
	3.4.1 Texts from the ABAP Dictionary
	3.4.2 Texts from the Online Text Repository
	3.4.3 Texts from the Assistance Class
	3.4.4 Messages

	3.5Summary

	4 Dynamic Web Dynpro Applications
	4.1 Advantages and Disadvantagesof Dynamic Programming
	4.2 Types of Dynamic Changes
	4.3 Adjusting Context at Runtime
	4.3.1 Determining a Description Object (Meta Information)for a Context Node
	4.3.2 Creating and Adding Context Nodes
	4.3.3 Creating and Adding Context Attributes Individually
	4.3.4Creating and Adding Context Attributes in Bundles
	4.3.5Other Methods for Dynamic Context Manipulation
	4.3.6 Conclusion

	4.4 Adjusting the User Interface at Runtime
	4.4.1 Adding a View Element to a Container
	4.4.2 Assigning Actions to View Element Events
	4.4.3Conclusion

	4.5Summary

	5 Web Dynpro Standard Components
	5.1 Multi-Component Architectures
	5.1.1 Component Usages
	5.1.2 Cross-Component Mapping
	5.1.3 Component Interfaces

	5.2 SAP list Viewer
	5.2.1 Integrating ALV
	5.2.2 ALV Configuration Model
	5.2.3 Methods and Events of the Interface Controller
	5.2.4 Changes to the Column Set
	5.2.5 Changing the Toolbar

	5.3POWER List
	5.3.1 Example: Defining Custom Queries
	5.3.2 Additional Information

	5.4Summary

	6 Input Help and Semantic Help
	6.1 Implementing Selection Options
	6.1.1 DropDown
	6.1.2 RadioButton
	6.1.3 CheckBox
	6.1.4 CheckBoxGroup
	6.1.5 ltemlistBox
	6.1.6 TriStateCheckBox

	6.2 Input Help
	6.2.1 Input Help Mode: Deactivated
	6.2.2 Input Help Mode: Automatic
	6.2.3 Dictionary Search Help
	6.2.4 Object Value Selector
	6.2.5 Input Help Mode: Freely Programmed

	6.3 SELECT-OPTIONS
	6.4 Semantic Help
	6.4.1 Help Texts with Tooltips
	6.4.2 Explanation Texts
	6.4.3 ABAP Dictionary Help
	6.4.4 Explanations
	6.4.5 KnowledgeWarehouse Documents

	6.5 Summary

	7 Configuration, Customizing,and Personalization
	7.1 Configuration
	7.1.1 Implicit Configuration
	7.1.2 Explicit Configuration

	7.2 Personalization and Customizing
	7.3URL Parameters and Application Parameters
	7.3.1URL Parameters
	7.3.2 Application Parameters

	7.4Summary

	8 Practical Tips and Hints
	8.1 Performance and Memory Optimization
	8.1.1 Optimal System Configuration
	8.1.2 Checklists for Developing High- Performing WebDynpro Applications
	8.1.3 Performance Tools
	8.1.4 On-Demand Instancing of Views and Components
	8.1.5 Delta Rendering

	8.2 Debugging Web Dynpro Applications
	8.3 Popup Windows
	8.3.1 Creating Popup Windows
	8.3.2 Standard Button Actions

	8.4 Context Change Log
	8.5 Hotkeys
	8.6 Context Menus
	8.6.1 Standard Context Menu
	8.6.2 Developing Custom Context Menus

	8.7 Summary

	9 Web Dynpro in theEnhancement Framework
	9.1 Enhancements in Web Dynpro
	9.1.1 Web Dynpro Enhancements in Detail
	9.1.2 Exercise: Additional Search Field

	9.2Summary

	A Appendix
	A.1 Recommended Reading
	A.2 Naming Conventions

	B The Authors
	Index

	www: 
	sap-press: 
	com: www.sap-press.com




