

SAP PRESS is a joint initiative of SAP and Rheinwerk Publishing. The know-
how offered by SAP specialists combined with the expertise of Rheinwerk
Publishing offers the reader expert books in the field. SAP PRESS features
first-hand information and expert advice, and provides useful skills for
professional decision-making.

SAP PRESS offers a variety of books on technical and business-related
topics for the SAP user. For further information, please visit our website:
http://www.sap-press.com.

James Wood, Joseph Rupert
Object-Oriented Programming with ABAP Objects (2nd edition)
2016, 470 pages, hardcover and e-book
www.sap-press.com/3597

Paul Hardy
ABAP to the Future (2nd edition)
2016, 801 pages, hardcover and e-book
www.sap-press.com/4161

Kerem Koseoglu
Design Patterns in ABAP Objects
2017, 387 pages, hardcover and e-book
www.sap-press.com/4277

Gahm, Schneider, Swanepoel, Westenberger
ABAP Development for SAP HANA (2nd edition)
2016, 641 pages, hardcover and e-book
www.sap-press.com/3973

http://www.sap-press.com
http://www.sap-press.com/3597
http://www.sap-press.com/4161
http://www.sap-press.com/4277
http://www.sap-press.com/3973

Kiran Bandari

Complete ABAP®

Dear Reader,

Flexing your linguistic muscle can be both a rewarding and nerve-wracking experi-
ence. When traveling in Spain, I may have, for example, accidentally asked for no
octopus (pulpo) in my orange juice instead of no pulp (pulpa). The truth of the matter
is, learning a new language is no easy task—programming not excluded.

Whether you’re an ABAP newbie or need a refresher on key concepts, this book offers
a 360-degree view of everything you need to know about ABAP. From introductions
to ABAP keywords to techniques and best practices every good ABAP developer
should know, this heavyweight guide is your key to mastering the ABAP language.
And since the best way to learn a language is via the help of a native speaker, you’ll
be in good company with the expertise of author Kiran Bandari.

What did you think about Complete ABAP? Your comments and suggestions are the
most useful tools to help us make our books the best they can be. Please feel free
to contact me and share any praise or criticism you may have.

Thank you for purchasing a book from SAP PRESS!

Sarah Frazier
Editor, SAP PRESS

Rheinwerk Publishing
Boston, MA

editorial@rheinwerk-publishing.com

http://www.sap-press.com

mailto:editorial@rheinwerk-publishing.com
http://www.sap-press.com

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed
to accept and adhere to the copyrights. You are entitled to use this e-book for
personal purposes. You may print and copy it, too, but also only for personal use.
Sharing an electronic or printed copy with others, however, is not permitted, neither
as a whole nor in parts. Of course, making them available on the Internet or in a
company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section
Legal Notes.

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy:

Imprint

This e-book is a publication many contributed to, specifically:

Editor Sarah Frazier
Acquisitions Editor Kelly Grace Weaver
Copyeditor Melinda Rankin
Cover Design Graham Geary
Photo Credit Shutterstock.com/167078399/© Africa Studio
Production E-Book Kelly O’Callaghan
Typesetting E-Book SatzPro, Krefeld (Germany)

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Names: Bandari, Kiran, author.

Title: Complete ABAP / Kiran Bandari.

Description: 1st edition. | Bonn ; Boston : Rheinwerk Publishing, 2016. |

Includes index.

Identifiers: LCCN 2016016863| ISBN 9781493212729 (print : alk. paper) | ISBN

9781493212743 (print and ebook : alk. paper) | ISBN 9781493212736 (ebook)

Subjects: LCSH: ABAP/4 (Computer program language) | SAP ERP.

Classification: LCC QA76.73.A12 B36 2016 | DDC 005.1/17--dc23 LC record available at https://

lccn.loc.gov/2016016863

ISBN 978-1-4932-1272-9 (print)
ISBN 978-1-4932-1273-6 (e-book)
ISBN 978-1-4932-1274-3 (print and e-book)

© 2017 by Rheinwerk Publishing, Inc., Boston (MA)
1st edition 2017

7

Acknowledgments .. 21
Preface ... 23

1 Introduction to ERP and SAP ... 29

1.1 Historical Overview .. 29
1.2 Understanding an ERP System .. 32

1.2.1 What Is ERP? ... 32
1.2.2 ERP vs. Non-ERP Systems .. 33
1.2.3 Advantages of an ERP System .. 35

1.3 Introduction to SAP .. 36
1.3.1 Modules in SAP ... 36
1.3.2 Types of Users ... 37
1.3.3 Role of an ABAP Consultant .. 38
1.3.4 Changing and Adapting the Data Structure 40

1.4 ABAP Overview .. 43
1.4.1 Types of Applications .. 43
1.4.2 RICEF Overview .. 43

1.5 System Requirements ... 48
1.6 Summary .. 48

2 Architecture of an SAP System .. 49

2.1 Introduction to the Three-Tier Architecture 49
2.2 SAP Implementation Overview ... 52

2.2.1 SAP GUI: Presentation Layer ... 52
2.2.2 Application Servers and Message Servers:

Application Layer .. 54
2.2.3 Database Server/RDBMS: Database Layer 61

2.3 Data Structures ... 64
2.3.1 Client Overview .. 64
2.3.2 Client-Specific and Cross-Client Data 65
2.3.3 Repository ... 68
2.3.4 Packages ... 68
2.3.5 Transport Organizer .. 70

2.4 Summary .. 75

Contents

8

Contents

3 Introduction to the ABAP Environment 77

3.1 SAP Environment ... 78
3.1.1 ABAP Programming Environment 78
3.1.2 Logging On to the SAP Environment 78
3.1.3 Elements of the SAP Screen .. 79
3.1.4 Transaction Codes .. 82
3.1.5 Navigating and Opening Transactions 83

3.2 ABAP Workbench Overview .. 87
3.2.1 ABAP Editor ... 88
3.2.2 Function Builder ... 90
3.2.3 Class Builder ... 91
3.2.4 Screen Painter .. 92
3.2.5 Menu Painter ... 95
3.2.6 ABAP Data Dictionary .. 96
3.2.7 Object Navigator .. 98

3.3 Eclipse IDE Overview ... 99
3.4 Summary ... 105

4 ABAP Programming Concepts .. 107

4.1 General Program Structure .. 108
4.1.1 Global Declarations .. 108
4.1.2 Procedural ... 109

4.2 ABAP Syntax .. 110
4.2.1 Basic Syntax Rules .. 110
4.2.2 Chained Statements ... 111
4.2.3 Comment Lines .. 112

4.3 ABAP Keywords .. 113
4.4 Introduction to the TYPE Concept ... 114

4.4.1 Data Types ... 115
4.4.2 Data Elements .. 130
4.4.3 Domains .. 134
4.4.4 Data Objects .. 137

4.5 ABAP Statements .. 141
4.6 Creating Your First ABAP Program ... 143
4.7 Summary ... 149

Contents

9

5 Structures and Internal Tables ... 151

5.1 Defining Structures ... 152
5.1.1 When to Define Structures .. 154
5.1.2 Local Structures ... 155
5.1.3 Global Structures ... 158
5.1.4 Working with Structures .. 162
5.1.5 Use Cases .. 163

5.2 Internal Tables .. 164
5.2.1 Defining Internal Tables .. 164
5.2.2 Types of Internal Tables ... 167
5.2.3 Table Keys ... 171
5.2.4 Working with Internal Tables .. 175
5.2.5 Control Break Statements .. 182

5.3 Introduction to Open SQL Statements .. 187
5.3.1 Database Overview ... 189
5.3.2 Selecting Data from Database Tables 198
5.3.3 Selecting Data from Multiple Tables 200

5.4 Processing Data from Database via Internal Tables and
Structures ... 203

5.5 Introduction to the Debugger ... 205
5.6 Practice .. 209
5.7 Summary .. 209

6 User Interaction ... 211

6.1 Selection Screen Overview ... 212
6.1.1 PARAMETERS ... 214
6.1.2 SELECT-OPTIONS ... 221
6.1.3 SELECTION-SCREEN ... 229
6.1.4 Selection Texts .. 230

6.2 Messages .. 231
6.2.1 Types of Messages ... 231
6.2.2 Messages Using Text Symbols ... 233
6.2.3 Messages Using Message Classes 235
6.2.4 Dynamic Messages .. 237
6.2.5 Translation .. 238

6.3 Summary .. 239

10

Contents

7 Modularization Techniques .. 241

7.1 Modularization Overview .. 242
7.2 Program Structure ... 245

7.2.1 Processing Blocks ... 246
7.2.2 Event Blocks ... 258
7.2.3 Dialog Modules .. 260
7.2.4 Procedures ... 261

7.3 Events ... 261
7.3.1 Program Constructor Events ... 262
7.3.2 Reporting Events .. 262
7.3.3 Selection Screen Events .. 269
7.3.4 List Events .. 270
7.3.5 Screen Events ... 271

7.4 Procedures .. 272
7.4.1 Subroutines .. 274
7.4.2 Function Modules .. 284
7.4.3 Methods .. 293

7.5 Inline Declarations ... 300
7.5.1 Assigning Values to Data Objects 301
7.5.2 Using Inline Declarations with Table Work Areas 301
7.5.3 Avoiding Helper Variables .. 302
7.5.4 Declaring Actual Parameters ... 302

7.6 Summary ... 303

8 Object-Oriented ABAP ... 305

8.1 Introduction to Object-Oriented Programming 305
8.1.1 Classes ... 308
8.1.2 Methods .. 313
8.1.3 Instance and Static Components 320
8.1.4 Events .. 322

8.2 Encapsulation .. 325
8.2.1 Component Visibility .. 326
8.2.2 Friends ... 329
8.2.3 Implementation Hiding .. 332

8.3 Inheritance .. 335
8.3.1 Inheriting Components ... 336
8.3.2 Abstract Classes and Methods .. 341
8.3.3 Final Classes and Methods ... 344

Contents

11

8.3.4 Composition ... 345
8.3.5 Refactoring Assistant ... 346

8.4 Polymorphism .. 347
8.4.1 Static and Dynamic Types .. 348
8.4.2 Casting .. 350
8.4.3 Dynamic Binding with the CALL Method 354
8.4.4 Interfaces .. 357

8.5 Working with XML ... 362
8.5.1 XML Overview .. 362
8.5.2 XML Processing Concepts ... 364

8.6 Summary .. 366

9 Exception Handling .. 369

9.1 Exceptions Overview .. 369
9.2 Procedural Exception Handling ... 370

9.2.1 Maintaining Exceptions Using Function Modules 370
9.2.2 Maintaining Exceptions Using Methods 373
9.2.3 Maintaining Exceptions for Local Classes 374

9.3 Class-Based Exception Handling ... 375
9.3.1 Raising Exceptions ... 376
9.3.2 Catchable and Non-Catchable Exceptions 378
9.3.3 Defining Exception Classes Globally 383
9.3.4 Defining Exception Classes Locally 386

9.4 Messages in Exception Classes .. 387
9.4.1 Using the Online Text Repository 387
9.4.2 Using Messages from a Message Class 390
9.4.3 Using the MESSAGE Addition to Raise an Exception 393

9.5 Summary .. 393

10 ABAP Data Dictionary .. 395

10.1 Database Tables ... 396
10.1.1 Creating a Database Table ... 399
10.1.2 Indexes ... 409
10.1.3 Table Maintenance Generator ... 414
10.1.4 Foreign Keys ... 418
10.1.5 Include Structure ... 422
10.1.6 Append Structure .. 424

10.2 Views ... 426
10.2.1 Database Views ... 427

12

Contents

10.2.2 Projection Views .. 429
10.2.3 Maintenance Views .. 431
10.2.4 Help Views ... 433
10.2.5 ABAP CDS Views .. 434

10.3 Data Types .. 438
10.3.1 Data Elements .. 439
10.3.2 Structures ... 443
10.3.3 Table Types .. 446

10.4 Type Groups .. 450
10.5 Domains .. 451
10.6 Search Helps .. 455

10.6.1 Elementary Search Helps .. 457
10.6.2 Collective Search Helps .. 461
10.6.3 Assigning a Search Help ... 463
10.6.4 Search Help Exits .. 464

10.7 Lock Objects ... 465
10.8 Summary ... 469

11 Persistent Data .. 471

11.1 Working with Data in Databases .. 472
11.1.1 Open SQL .. 474
11.1.2 Logical Unit of Work .. 485

11.2 ABAP Object Services .. 492
11.2.1 Persistence Service Overview ... 493
11.2.2 Building Persistent Classes .. 493
11.2.3 Working with Persistent Objects 498

11.3 File Interfaces .. 498
11.3.1 Working with Files in the Application Server 499
11.3.2 Working with Files in the Presentation Layer 501

11.4 Data Clusters ... 503
11.4.1 Exporting Data Clusters to Databases 505
11.4.2 Importing Data Clusters ... 506

11.5 Security Concepts .. 506
11.6 Summary ... 508

12 Dialog Programming .. 509

12.1 Screen Events .. 510
12.2 Screen Elements and Flow Logic .. 513

12.2.1 Components of a Dialog Program 515

Contents

13

12.2.2 Screens ... 520
12.2.3 Screen Elements .. 525

12.3 Basic Screen Elements .. 529
12.3.1 Text Fields ... 530
12.3.2 Checkboxes and Radio Buttons 531
12.3.3 Push Button .. 533

12.4 Input/Output Fields .. 534
12.5 List Box .. 536
12.6 Table Controls .. 537

12.6.1 Create a Table Control without a Wizard 538
12.6.2 Create a Table Control with a Wizard 542

12.7 Tabstrip Controls .. 544
12.8 Subscreens ... 545
12.9 Working with Screens ... 547

12.9.1 Screen Flow Logic ... 548
12.9.2 GUI Status ... 550
12.9.3 GUI Title ... 552
12.9.4 Modifying Screen Fields Dynamically 553
12.9.5 Field Help and Input Help ... 555
12.9.6 Screen Sequence ... 556
12.9.7 Assigning Transaction Codes ... 558

12.10 Control Framework ... 560
12.10.1 Using Container Controls ... 561
12.10.2 Implementing Custom Controls 562

12.11 Practice .. 564
12.11.1 Application Flow ... 566
12.11.2 Delete Functionality .. 567
12.11.3 Validations and Autofills ... 567

12.12 Summary .. 568

13 List Screens .. 569

13.1 Program Types .. 570
13.1.1 Executable Programs ... 571
13.1.2 Module Pool Programs .. 572
13.1.3 Function Groups ... 572
13.1.4 Class Pools .. 573
13.1.5 Interface Pools .. 573
13.1.6 Subroutine Pools ... 573
13.1.7 Type Pools .. 574
13.1.8 Include Programs .. 574

14

Contents

13.2 Program Execution .. 574
13.2.1 Executable Program Flow ... 575
13.2.2 Module Pool Program Flow .. 576
13.2.3 Calling Programs Internally ... 577

13.3 Memory Organization .. 578
13.4 List Events ... 582

13.4.1 TOP-OF-PAGE ... 583
13.4.2 END-OF-PAGE ... 585
13.4.3 AT LINE-SELECTION .. 586
13.4.4 AT USER-COMMAND .. 586

13.5 Basic Lists and Detail Lists ... 588
13.6 Classical Reports .. 592
13.7 Interactive Reports .. 592

13.7.1 HIDE .. 592
13.7.2 READ LINE ... 596
13.7.3 GET CURSOR ... 597
13.7.4 DESCRIBE LIST ... 597

13.8 Practice ... 598
13.9 Summary ... 599

14 Selection Screens ... 601

14.1 Defining Selection Screens ... 602
14.2 Selection Screen Events ... 604
14.3 Input Validations ... 606
14.4 Selection Screen Variants ... 608

14.4.1 Creating a Variant .. 609
14.4.2 Variant Attributes ... 613
14.4.3 Table Variables from Table TVARVC 614
14.4.4 Dynamic Date Calculation .. 616
14.4.5 Dynamic Time Calculation .. 617
14.4.6 User-Specific Variables ... 618

14.5 Executing Programs in the Background .. 619
14.6 Displaying and Hiding Screen Elements Dynamically 621
14.7 Calling Programs via Selection Screens ... 623
14.8 Summary ... 623

15 ALV Reports .. 625

15.1 Standard ALV Reports Using the Reuse Library 626
15.1.1 List and Grid Display: Simple Reports 627

Contents

15

15.1.2 Block Display .. 636
15.1.3 Hierarchical Sequential Display .. 640

15.2 Interactive Reports ... 644
15.2.1 Loading a Custom SAP GUI Status 645
15.2.2 Reacting to User Actions ... 649
15.2.3 Printing TOP-OF-PAGE ... 650

15.3 ALV Reports Using the Control Framework 650
15.4 ALV Object Model ... 653

15.4.1 Table Display .. 654
15.4.2 Hierarchical Display ... 655
15.4.3 Tree Object Model .. 659

15.5 Summary .. 661

16 Dynamic Programming ... 663

16.1 Field Symbols ... 665
16.1.1 Using Field Symbols to Make Programs Dynamic 666
16.1.2 Defining Field Symbols .. 673
16.1.3 Assigning a Data Object .. 674
16.1.4 Checking if a Field Symbol is Assigned 677
16.1.5 Unassigning a Field Symbol ... 678
16.1.6 Casting .. 678

16.2 Data References ... 679
16.2.1 Defining Reference Variables ... 680
16.2.2 Getting Data References .. 681
16.2.3 Anonymous Data Objects .. 682
16.2.4 Assignment between Reference Variables 684

16.3 Runtime Type Services .. 685
16.3.1 Runtime Type Information .. 686
16.3.2 Runtime Type Creation .. 687

16.4 Dynamic Token Specification .. 691
16.5 Dynamic Procedure Calls .. 693
16.6 Dynamic Program Generation ... 695
16.7 Summary .. 697

17 Debugging .. 699

17.1 Classic Debugger .. 700
17.1.1 Activating and Using the Classic Debugger 701
17.1.2 Field View ... 705
17.1.3 Table View .. 705

16

Contents

17.1.4 Breakpoints View ... 706
17.1.5 Watchpoints View .. 707
17.1.6 Calls View .. 708
17.1.7 Overview View ... 708
17.1.8 Settings View ... 708
17.1.9 Additional Features .. 710

17.2 New Debugger .. 714
17.2.1 UI and Tools ... 714
17.2.2 Layout and Sessions ... 717

17.3 AMDP Debugger ... 718
17.4 Using the Debugger to Troubleshoot ... 719
17.5 Using the Debugger as a Learning Tool .. 721
17.6 Summary ... 722

18 Forms .. 723

18.1 SAPscripts ... 725
18.1.1 Overview and Layout ... 725
18.1.2 Creating the Form Layout ... 729
18.1.3 Maintaining Window Details .. 736
18.1.4 Processing Forms with Function Modules 741

18.2 Smart Forms .. 749
18.2.1 Overview and Layout ... 750
18.2.2 Maintaining the Global Settings 753
18.2.3 Maintaining Elements ... 756
18.2.4 Driver Program ... 774

18.3 SAP Interactive Forms by Adobe .. 777
18.3.1 Form Interface .. 778
18.3.2 Form Context and Layout ... 785
18.3.3 Driver Program ... 797
18.3.4 Downloading the Form as a PDF 799

18.4 Summary ... 800

19 Interfaces .. 803

19.1 Batch Data Communication ... 804
19.1.1 Direct Input ... 806
19.1.2 Batch Input .. 807

19.2 Business Application Programming Interface 819
19.2.1 Business Object Types and Business Components 819
19.2.2 BAPI Development via BAPI Explorer 820

Contents

17

19.2.3 Standardized BAPIs ... 823
19.2.4 Standardized Parameters ... 824
19.2.5 Implementing BAPIs .. 826

19.3 EDI/ALE/IDocs ... 835
19.3.1 Electronic Data Interchange .. 836
19.3.2 Application Link Enabling .. 841
19.3.3 Intermediate Documents ... 844
19.3.4 System Configurations ... 856
19.3.5 Inbound/Outbound Programs ... 863

19.4 Legacy System Migration Workbench ... 867
19.4.1 Getting Started .. 868
19.4.2 Migration Process Steps .. 869

19.5 Web Services .. 880
19.5.1 Creating a Web Service ... 884
19.5.2 Consuming Web Services .. 888

19.6 OData Services ... 895
19.6.1 Data Model Definition .. 897
19.6.2 Service Maintenance ... 901
19.6.3 Service Implementation ... 903
19.6.4 READ .. 905

19.7 XSL Transformations ... 908
19.7.1 Serialization .. 909
19.7.2 Deserialization .. 910

19.8 XML and JSON Data Representation .. 911
19.9 WebSockets (ABAP Channels and Messages) 913

19.9.1 Creating an ABAP Messaging Channel 914
19.9.2 Creating a Producer Program ... 916
19.9.3 Creating a Consumer Program ... 917

19.10 Summary .. 920

20 Modifications and Enhancements .. 921

20.1 Customization Overview ... 921
20.2 Modification Overview ... 923
20.3 Using Modification Assistant .. 924

20.3.1 Modifications to Programs .. 925
20.3.2 Modifications to Class Builder ... 927
20.3.3 Modifications to Screen Painter 928
20.3.4 Modifications to Menu Painter .. 929
20.3.5 Modifications to ABAP Data Dictionary 929

18

Contents

20.3.6 Modifications to Function Modules 930
20.3.7 Resetting to Original .. 931

20.4 Using Modification Browser ... 932
20.5 Enhancements Overview ... 933
20.6 User Exits .. 935
20.7 Customer Exits ... 936

20.7.1 Create a Customer Exit ... 939
20.7.2 Function Module Exits ... 942
20.7.3 Screen Exits .. 942
20.7.4 Menu Exits ... 944

20.8 BAdIs .. 946
20.8.1 Overview ... 946
20.8.2 Defining a BAdI .. 948
20.8.3 Implementing a BAdI ... 955
20.8.4 Implementing a Fallback Class .. 958
20.8.5 Calling a BAdI .. 959

20.9 Enhancement Points .. 960
20.9.1 Explicit Enhancements .. 961
20.9.2 Implicit Enhancements ... 963

20.10 Business Transaction Events ... 966
20.10.1 Implementing a BTE ... 967
20.10.2 Testing a Custom Function Module 971

20.11 Summary ... 972

21 Test and Analysis Tools .. 973

21.1 Overview of Tools ... 974
21.2 ABAP Unit ... 976

21.2.1 Eliminating Dependencies .. 977
21.2.2 Implementing Mock Objects .. 979
21.2.3 Writing and Implementing Unit Tests 980

21.3 Code Inspector .. 987
21.4 Selectivity Analysis .. 990
21.5 Process Analysis ... 992
21.6 Memory Inspector ... 995

21.6.1 Creating Memory Snapshots ... 995
21.6.2 Comparing Memory Snapshots 996

21.7 Table Call Statistics .. 997
21.8 Performance Trace ... 1000

21.8.1 Activating and Filtering a Performance Trace 1001
21.8.2 SQL Trace ... 1004

Contents

19

21.8.3 RFC Trace .. 1006
21.8.4 Enqueue Trace .. 1007
21.8.5 Buffer Trace ... 1008

21.9 ABAP Trace/Runtime Analysis ... 1009
21.9.1 Running ABAP Trace ... 1009
21.9.2 Analyzing the Results .. 1011

21.10 Single-Transaction Analysis ... 1014
21.11 Dump Analysis ... 1017
21.12 Summary .. 1019

The Author ... 1021
Index ... 1023

Service Pages ... I
Legal Notes ... II

3

Acknowledgments

Writing an acknowledgement page is like preparing a wedding invitation list; you
just have too many people to include.

This book took over a year to write and includes all the learnings from my decade
long career in ABAP. First, I'd like to thank Ram Mohan and Raj Narayan for
introducing me to this wonderful world of ABAP. A special thanks to my col-
leagues, who gave their perspective on the depth of discussion for each topic of
this book, and my students, who helped me with their feedback to keep the dis-
cussions simple enough to comprehend.

I'd like to express my gratitude to Kelly Grace Weaver for giving me the opportu-
nity to author this book for SAP PRESS and brainstorming with me to get the top-
ics for this book finalized.

Special thanks to my editor, Sarah Frazier, for all her support, patience, and
encouragement to see this project through. Her input, corrections, and attention
to detail have helped me tremendously to expand the coverage of each topic.

Writing a book this big that expands over a thousand pages takes a toll on your
personal life. I am grateful to my family for their blessings, especially my late
father without whose teachings I wouldn't be what I am today.

I'd especially like to thank my dear wife, Dr. Reena Sinha, who ensured I stayed
fit and healthy despite long hours and late nights spent to meet the deadlines.
This book would not have been possible without her constant moral support and
motivation. She literally took care of everything else while I focused on writing
this book and forgave me (with little tantrums, of course!) each time I failed to
keep my promises of spending our free time together.
21

Acknowledgments
There were many difficult times during this project which tested my persever-
ance. Finally, I want to add a quote that inspired me to push myself each time I
felt like giving up:

A hero is no braver than an ordinary man, but he is brave five minutes longer.
– Ralph Waldo Emerson

Kiran Bandari
22

4

Preface

Advanced Business Application Programming, or ABAP, is a programming language
used to develop applications in an SAP environment. ABAP contains numerous
language elements that are stored in different libraries, and ABAP programs are
developed in development environments as part of SAP NetWeaver AS ABAP. All
application development objects are created within the SAP NetWeaver AS ABAP
environment.

ABAP was developed to meet the business processing needs of ERP systems, and
has evolved over time to meet other enterprise requirements as well. More infor-
mation on the evolution of SAP ERP and ABAP will be discussed in Chapter 1 and
Chapter 2.

With the advent of SAP NetWeaver AS ABAP 7.5 and higher, new innovations
have emerged that make the lives of developers that much easier. In this introduc-
tion, we’ll discuss the primary objective of this book and how it addresses both
standard practices and new innovations in ABAP. We will also discuss who this
book is targeted at as well as its structure and methodology.

The Objective of this Book

The objective of this book is to offer complete coverage on the most important
elements of ABAP, explaining both the concepts at hand and then providing
examples of their practical application.

The book is divided into chapters based on the major concepts in ABAP program-
ming, and are ordered according to how one would learn ABAP. For example, we
explain the elements of the ABAP Data Dictionary that are relevant in their
respective chapters: data elements are discussed when explaining data types,
table types are explored when discussing procedures, and so on. The idea is to
provide a book that focuses on your learning process.
23

Preface
Target Audience

This book is an everyday reference for ABAP developers of all program levels.
While the beginning chapters tend to cater to a more beginner audiences, the
most advanced chapters provide refreshers and insights that even seasoned ABAP
developers will be interested in reviewing. Taking a good look at the table of con-
tents will allow you to identify which topic areas you may need more insight into.
This book also provides a detailed index if you have a particular subject in mind
you’d like to jump to.

Structure of this Book

This book starts off with basic concepts and then transitions into more advanced
topics. Understanding the prerequisites discussed in the beginning chapters is
important for grasping the more advanced topics explained later on in the book.

The following overview offers details on individual chapters and the overall struc-
ture of the book:

� Chapter 1, Introduction to ERP and SAP, provides an overview of enterprise
resource planning (ERP) systems and the advantages this type of software
offers. We then look at the different SAP modules, both functional and techni-
cal, used in SAP. From there, we discuss how you can customize your SAP sys-
tem per your business requirements using custom development, modifications,
and enhancements. Finally, we begin shifting the focus to the main topic of this
book, ABAP, and the system requirements necessary for carrying out the dif-
ferent examples discussed throughout this book.

� Chapter 2, The Architecture of an SAP System, offers a “nuts-and-bolts” look
at the SAP system architecture. The topics in this chapter will help you clearly
understand the type of environment your ABAP programs will be run in. We’ll
look at the different architectural layers: presentation, application, and data-
base. Finally, we’ll close out our discussion with an overview of data structures
and the use of clients and packages.

� Chapter 3, Introduction to the ABAP Environment, discusses two different
integrated development environments (IDEs) that can be used when working
24

Structure of this Book
with ABAP: SAP GUI and Eclipse. This chapter begins by looking at the differ-
ent elements of an SAP screen and how to use transaction codes to navigate
between these screens. We then dive into the tools found in the ABAP Work-
bench: the ABAP Editor, ABAP Data Dictionary, Screen Painter, Menu Painter,
and Object Navigator. We round out our discussion with a look at Eclipse and
its setup.

� Chapter 4, ABAP Programming Concepts, introduces the basics of ABAP: key
concepts, general program structures, syntax, keywords, and more. In addi-
tion, we’ll also look at using data types, data elements, data objects, and
domains. We end the chapter with steps to create your first ABAP program.

� Chapter 5, Structures and Internal Tables, explores complex data types and
lays the foundation for working with the data stored in a typical database. We
begin the chapter by looking at local and global structures and how to define
them. We then move on to working with internal tables, before jumping into
an introduction to Open SQL. The chapter ends with a practice example that
highlights the concepts taught throughout the chapter.

� Chapter 6, User Interaction, takes us beyond the basics and introduces user
interaction within our ABAP code. The chapter begins with instructions for
using a special kind of dynpro: selection screens. Implementing selection screens
enables users to provide selection criteria for a report program, while also pro-
viding an interface for data transfer between two executable programs. We
then move on to using messages to communicate with users from ABAP pro-
grams.

� Chapter 7, Modularization Techniques, teaches how to implement modular-
ization into your code to provide, among other things, better readability and
organization in your programs. Specifically, this chapter looks at the structure
of an ABAP program, including processing blocks, events, and procedures. The
chapter ends by discussing a feature introduced in SAP NetWeaver 7.4: inline
declarations.

� Chapter 8, Object-Oriented ABAP, takes a walk on the object-oriented side of
ABAP. As we will discuss, there are two programming approaches to ABAP:
procedural and object-oriented (OOP). While we discuss both techniques
throughout the book, this chapter focuses on the general concepts of OOP. This
includes key features such as encapsulation, inheritance, polymorphism, and
more.
25

Preface
� Chapter 9, Exception Handling, explains how to implement messages to users
when an error has occurred in the system (for example, inputting an incorrect
field value). The chapter will look at both procedural and OOP (class-based)
exception handling approaches.

� Chapter 10, ABAP Data Dictionary, reviews concepts previously mentioned
about the ABAP Data Dictionary thus far and offers a complete discussion on
topics not yet covered. This includes more detailed information on database
tables, views, data types, domains, type groups, search helps, and lock objects.

� Chapter 11, Persistent Data, explains how persistent data is used in ABAP pro-
grams. ABAP programs generally work with data that is read from a persistent
storage source, such as a database, meaning that data exists even when the pro-
gram is not reading it. In this chapter, we’ll look at how to work with data in a
database, persistent object services, file interfaces, and data clusters. We’ll end
the chapter with a look at key security concepts to keep in mind when dealing
with persistent data.

� Chapter 12, Dialog Programming, provides steps for creating screens, flow
logic, menu bars, and more for an application. The end of the chapter offers a
practice example where you can implement what you learned into a real appli-
cation.

� Chapter 13, List Screens, explains one of the most basic ways to develop
reports in ABAP: list screens. There are three types of screens in ABAP: selec-
tion screens (discussed previously in Chapter 6 and to be discussed in Chapter
14), general dialog screens, and list screens. This chapter provide steps for cre-
ating list screens for developing reports using program types, program execu-
tion, list events, and more. We again end this chapter with a series of exercises.

� Chapter 14, Selection Screens, offers more details on selection screens and
how you can use them to display information to application users. Specifically,
we’ll dive into the events, input validations, variants, and batch jobs used with
selection screens. We’ll also provide tips for displaying and hiding screen ele-
ments dynamically and steps for calling a program.

� Chapter 15, ALV Reports, discusses how to develop reports using procedural
and OOP ALV function modules. ALV function modules are another way to cre-
ate reports in ABAP.

� Chapter 16, Dynamic Programming, explains how to enable dynamic pro-
grams in ABAP. Dynamic programs return results based on user inputs. In this
26

Structure of this Book
chapter, we’ll look specifically at using field symbols, data references, specifi-
cations, procedure calls, and more, dynamically.

� Chapter 17, Debugging, takes a close look at the two primary debuggers used
in ABAP: the Classic Debugger and the New Debugger. In addition to learning
how to implement debugging via these two debuggers, we’ll also take a brief
look at the new AMDP Debugger for ABAP Managed Database Procedures
(AMDP). We’ll end the chapter with a discussion on using debugging tools for
troubleshooting and for learning purposes.

� Chapter 18, Forms, explores the three main types of form technology that can
be used to create forms in ABAP: SAPscripts, smart forms, and SAP Interactive
Forms by Adobe. Each section describes the step-by-step process for creating
forms. We then compare and contrast the advantages and disadvantages of
these three technologies.

� Chapter 19, Interfaces, focuses on interface development. Each section is
devoted to a different type of interface, including LSWM, web and OData ser-
vices, ALE/EDI/IDocs, XSL transformations, and more. We begin by explaining
the concept behind each interface technology, then dive into the steps for
working with them.

� Chapter 20, Modifications and Enhancements, provides information on how
to modify and enhance repository objects. We begin with an overview of the
Modification Assistant and Modification Browser, and how they can be used to
modify objects within the ABAP Workbench. Moving on to enhancements,
we’ll look at how to best implement user exits, customer exits, BAdIs, and
more.

� Chapter 21, Test and Analysis Tools, concludes our book with a look at the
tools for testing and analyzing your ABAP code. As any good developer will tell
you, it is important to test your code to ensure that it is error-free. Therefore,
we’ll look at a number of tools to guarantee this, including ABAP Unit for cre-
ating unit tests, Code Inspector for analyzing program code, Memory Inspector
for creating memory snapshots of the memory consumed by an ABAP program,
and many more.

It is our hope that this book serves as a roadmap for your journey as an ABAP
developer. Now, roll up your sleeves and get ready to work!
27

Chapter 1

We’ll begin our journey with a basic introduction to ERP systems and
SAP. From there, we’ll begin to paint a picture of what it means to be an
ABAP consultant and begin looking at an overview of ABAP and system
requirements.

1 Introduction to ERP and SAP

This book is targeted for people who wish to learn the ABAP programming lan-
guage inside and out, irrespective of their prior programming exposure. Our aim
is to start from the very basics of programming in the initial chapters and intro-
duce you to advanced concepts in the later chapters. We are not assuming you to
have any prior programming experience, so whether you are an ABAP consultant
or a seasoned SAP functional consultant, or even if you are completely new to
SAP, you should find it easy to follow this book.

This chapter begins by introducing the basic concepts of ERP and SAP. Section 1.1
discusses how the SAP system has evolved over the years. Then, in Section 1.2,
we provide a deeper understanding of ERP systems in general, before diving into
SAP-specific information in Section 1.3, including the different modules within
SAP. Section 1.4 introduces the focus of this book, ABAP, before listing the sys-
tem requirements necessary to work with ABAP in Section 1.5.

1.1 Historical Overview

In 1972, SAP introduced its first system, R/1. R represents real-time data process-
ing. This system was used for financial accounting and did not include the presen-
tation, application, or database layers that you would find in the SAP system
today. In the late 1970s, SAP introduced the R/2 system, which had two layers:
the presentation layer and the application plus database layer. These systems fol-
lowed a two-tier architecture.
29

Introduction to ERP and SAP1
As technology evolved, SAP moved towards a three-tier architecture with the
introduction of SAP R/3 in the 1990s. The SAP R/3 system comprised three layers:
the presentation layer, application layer, and database layer. With the release of
SAP R/3, SAP named its releases with versions such as R/3 1.0, R/3 2.0, R/3 3.1i,
R/3 4.0B (until 2001, with R/3 4.6D), with an underlying component called SAP
Basis.

SAP R/3 4.7 was the first release that came with a technology platform called SAP
Web Application Server, which included Business Server Pages (BSP) applications
and a J2EE engine. Since then, SAP has added technology platform naming to its
product line. The SAP Web Application Server is a natural evolution to support
web infrastructure (for the World Wide Web), so it performs all the duties of an
application server, similar to the previous releases, and also acts as a web server
to support web infrastructure. BSP is the server pages technology developed by
SAP, similar to JavaServer Pages from Sun Microsystems (JSP) and Active Server
Pages by Microsoft (ASP).

SAP then started adding the platform version to the product naming. This led to
some confusion when, for example, you could have your SAP R/3 4.x system
(denoting the version of your SAP R/3 system) on SAP Web Application Server
6.10 (denoting the version of your platform).

With the introduction of platforms (the first being SAP Web Application Server),
SAP systems began using specific components that represented the platform, such
as Internet Communication Manager (ICM), SAP Gateway, and so on, and other
components related to business functions that showed the functionality of the
system. SAP then introduced enterprise editions along with SAP Web Application
Server 6.20, such as SAP R/3 Enterprise 4.70. The enterprise editions provided
new functionality to split components based on business functions and also pro-
vided the ability to use extensions to extend the functionality of these core busi-
ness functions.

SAP included the release year with the product names, such as mySAP ERP 2004.
mySAP ERP 2004 signaled a complete architectural change in SAP R/3 Enterprise,
which was replaced with SAP Enterprise Central Component (SAP ECC). SAP then
introduced SAP NetWeaver 2004, which also contained SAP Web Application
Server 6.40.

To add to the confusion, SAP started referring to mySAP ERP 2004 as SAP ECC
5.0, which puzzled customers when trying to refer to SAP products. For example,
30

Historical Overview 1.1
at that moment, both mySAP ERP2004 and SAP ECC 5.0 could refer to the same
system, and SAP NetWeaver 2004 and SAP Web Application Server 6.40 could
refer to the same platform. The mySAP 2004 and SAP ECC 5.0 systems were also
found under the umbrella term SAP ERP 5.0.

In 2005, mySAP ERP 2005 came out, which was referenced as SAP ECC 6.0,
resided on the SAP NetWeaver 2004 (SAP Web Application Server 7.00) plat-
form, and was also called SAP ERP 6.0.

Table 1.1 captures the evolution of SAP systems over the years.

Enhancement packages provided additional functionality to customers without
touching the core components. Customers activate the new business functions
that they want to use via the Switch Framework. The enhancement packages con-
tain new functions for both generic and industry-specific processes.

These enhancement packages are delivered to customers at regular intervals (usu-
ally every two years), bundled with all the new business software functionalities

Year Version

1972 SAP R/1 (R represents real-time; 1 represents one layer)

Late 1970s SAP R/2 (R represents real-time; 2 represents two layers)

1992 SAP R/3 (R represents real-time; 3 represents three layers)

2001 Introduction of SAP Web Application Server (technology platform)

2002 SAP R/3 Enterprise 4.70 (SAP Web Application Server 6.20)

2003 mySAP ERP 2003 (SAP Web Application Server 6.30)

2004 mySAP ERP 2004 ECC 5.0 ERP 5.0 (SAP Web Application Server 6.40;
SAP NetWeaver 2004)

2005 mySAP ERP 2005 ECC 6.0 ERP 6.0 (SAP Web Application Server 7.00;
NetWeaver 2004s/7)

2006 SAP NetWeaver 7.1

2011 SAP NetWeaver 7.3

2013 SAP NetWeaver 7.4

2015 SAP NetWeaver 7.5

Table 1.1 Evolution of SAP Systems
31

Introduction to ERP and SAP1
that SAP has delivered in the forms of service packs (SP) since the last enhance-
ment pack.

For example, SAP ERP 6.0 EHP 7 offers over one hundred new functions com-
pared to SAP ERP 6.0 EHP 6 and is the first enhancement package (EHP) to be
optimized for both the SAP HANA database and traditional databases.

Table 1.2 lists the enhancement packages released for the SAP ERP 6.0 system.

Now that you have a better understanding of the evolution of SAP software and
naming conventions, in the next section we’ll dive deeper into ERP system soft-
ware.

1.2 Understanding an ERP System

SAP provides enterprise resource planning (ERP) software, and ABAP is the pro-
gramming language used to develop applications in SAP systems. Understanding
how an SAP ERP system works is vital to understanding ABAP programming. In
this section, we will look at what ERP software encompasses, ERP vs. non-ERP
systems, and the advantages of using ERP software.

1.2.1 What Is ERP?

ERP business management software integrates various functions of a business. An
ERP system typically implements a common database in which all the data from

Year Enhancement Package

2006 EHP 1

2007 EHP 2

2007 EHP 3

2008 EHP 4

2010 EHP 5

2011 EHP 6

2014 EHP 7

2016 EHP 8

Table 1.2 Overview of Enhancement Packages Released for SAP ERP 6.0
32

Understanding an ERP System 1.2
various business functions of an organization are stored. This allows applications
to access the data seamlessly across business processes. To understand ERP, let’s
look at how a non-ERP system works.

1.2.2 ERP vs. Non-ERP Systems

In a typical non-ERP system, every department in an organization uses its own
database and standalone applications. To better understand this, let’s look at a
simple example of how a typical business works and the challenges a business
faces with a non-ERP setup. This should help you appreciate the advantages an
ERP system provides.

Let’s assume you’re running a business that sells laptop computers. Your organi-
zation has various departments to run the business—for example, say that you
have the following departments that take care of different business activities:

� Sales department
Captures customer orders

� Materials department
Procures various raw material from different vendors to build the product

� Production department
Produces the product

� Logistics department
Delivers the product to the customer

� Finance department
Manages accounts

These activities—from taking a customer order to delivering the product—com-
prise a single business transaction within the system. Each business transaction
involves multiple departments. If we take the example of a made-to-order prod-
uct, the business transaction flow will be as follows:

1. The sales department captures the order as per the customer requirement.

2. The materials department procures the required raw materials based on the
order information.

3. The production department manufactures or assembles the product from the
raw materials.
33

Introduction to ERP and SAP1
4. The logistics department delivers the product to the customer address captured
by the sales department while creating the order.

5. The accounts department addresses all the costs involved in this business trans-
action and payments received.

As shown in this example, all departments rely on information from each other to
complete a business transaction. However, in a non-ERP setup, the system is not
designed for the seamless transfer of data across departments. Instead, each
department is connected to its own database, as illustrated in Figure 1.1.

Figure 1.1 Typical Non-ERP System Layout

This setup requires pushing the data manually to other departments before they
can act on it. In other words, the data is not exchanged in real time across busi-
ness functions. In this example, the materials department can’t start with pro-
curement until the order details are sent manually by the sales team. This causes
delays and hinders automated business processes.

For the purposes of our example, let’s say the materials team members update
their system to indicate the unavailability of a key raw material, or the logistics
team members update their system to indicate a temporary unserviceability in a
particular location. The sales team can’t take advantage of this information while
taking the order or before committing to a delivery date for the customer; sales
has to check with other departments manually before committing to the date. The
software application that the sales team uses to capture the order doesn’t auto-
matically validate material availability, because it doesn’t have access to data
across departments.

Figure 1.2 illustrates a typical ERP system layout. As you can see, because all busi-
ness functions across the organization access a common database, the informa-
tion can flow seamlessly.

Sales Department Accounts DepartmentLogistics DepartmentMaterials Department Production Department

Database DatabaseDatabaseDatabaseDatabase
34

Understanding an ERP System 1.2
Figure 1.2 Typical ERP System Layout

1.2.3 Advantages of an ERP System

An ERP system allows you to build software applications that can access informa-
tion across the business functions of an organization, enabling the scope for auto-
mation. With an ERP setup, a sales order application can, for example, automati-
cally query the material availability data and the logistics data to provide
automatic validation for the delivery date.

An ERP setup can throw an error if a sales person enters a delivery date that can’t
be met. You can develop an online order-tracking application for customers,
because an ERP system can access data across departments to provide an accurate
status update. An ERP system provides real-time data access: Data updated by one
department is instantly available for others.

A common database allows for developing ERP software with tightly integrated
business applications. In an ERP system, you typically have thousands of applica-
tions across business functions, seamlessly integrated with one another, as
opposed to single, standalone applications for individual business functions. The
database consists of hundreds of tables to store data from different business func-
tions, usable by any application.

Of course, each ERP system implements various security measures, such as check-
ing for user authorizations, to prevent any unauthorized access of data. We will
discuss the security concepts that can be implemented in an SAP system in Chap-
ter 11.

Now that you have an overview of ERP software, in the next section we’ll look at
SAP specifically; SAP is currently the market leader in ERP software.

Database

Sales Department Accounts DepartmentLogistics DepartmentMaterials Department Production Department
35

Introduction to ERP and SAP1
1.3 Introduction to SAP

SAP provides a market-leading ERP software that is used by hundreds of thou-
sands of customers, including a suite of integrated applications across industrial
sectors. SAP offers various products, such as Customer Relationship Management
(CRM), Enterprise Resource Planning (ERP), Product Lifecycle Management
(PLM), Supply Chain Management (SCM), Supplier Relationship Management
(SRM), and more. This book focuses on the SAP ERP system—more specifically,
SAP ERP 6.0 on the SAP NetWeaver 7.5 platform.

The business functions within SAP ERP’s software are called modules. As an SAP
consultant, you will be working in one or more modules. We’ll look at the differ-
ent types of modules in this section. We’ll also discuss the types of users that take
advantage of these modules and then look at your specific role as an ABAP con-
sultant. Finally, we’ll wrap up this section by looking at what types of modifica-
tions, enhancements, and customizations are available to customize software for
users.

1.3.1 Modules in SAP

One of the reasons that SAP is popular is because it is very flexible and easily
customizable. To achieve this flexibility, an SAP system is divided into various
modules. Each SAP module maps to a business process of a business unit. For
example, the SAP ERP MM module maps to the Material Management business
unit of the organization, the HR module maps to the Human Resources business
unit of the organization, and so on.

All SAP modules can be integrated with one another or with third-party systems.
For example, you can integrate SAP ERP PP with an HR module from PeopleSoft.
Based on the organization, you can implement either one or several SAP modules
and integrate them with other ERP systems.

SAP modules are classified into two categories: functional or technical.

Functional Modules

Functional modules cover business processes and functional areas that carry out
day-to-day activities of a business, such as the following:
36

Introduction to SAP 1.3
� Financial Accounting (FI)

� Controlling (CO)

� Human Resource (HR)

� Sales and Distribution (SD)

� Materials Management (MM)

� Plant Maintenance (PM)

� Production Planning (PP)

� And more

Technical Modules

Technical modules cover the technical side of the SAP system that are required to
customize the system based on business needs, including setting up and main-
taining the SAP system.

Technical modules include the following:

� SAP Basis

� ABAP

� SAP BusinessObjects Business Intelligence (BI)/SAP Business Warehouse (BW)

� SAP Exchange Infrastructure (XI)/SAP Process Integration (PI)

� SAP Enterprise Portal

� SAP HANA

� And more

1.3.2 Types of Users

In the previous section, we looked at the functional and technical modules avail-
able in SAP. These modules are accessed by different users.

There are three types of SAP users:

� End users

� Functional consultants

� Technical consultants
37

Introduction to ERP and SAP1
End users are people who use the SAP system in a production environment to
carry out their day-to-day business activities. These users include sales people
using the SAP system to create sales orders and HR managers managing human
capital, for example.

Consultants are subject matter experts (SME) who help to customize and maintain
the SAP system for a business. Consultants also address any issues or customiza-
tion requests from end users.

In general, a consultant will gain expertise in a particular modules. The consul-
tant’s area of expertise determines if he is a technical consultant or a functional con-
sultant. If you work as an ABAP consultant, you would be a technical consultant
with expertise in ABAP programming. Similarly, if you had domain experience in
finance, you would be a functional consultant in a finance module. However,
many consultants gain expertise in one of the functional modules and one of the
technical modules. They are techno-functional consultants.

It has become increasingly important for functional consultants to learn ABAP to
become techno-functional consultants. Functional consultants with a background
in ABAP can work more effectively with ABAP teams and develop a holistic tech-
nical understanding of SAP applications.

In the next section, we’ll take a deeper look at the role an ABAP consultant plays.

1.3.3 Role of an ABAP Consultant

Because this book focuses on ABAP and ABAP development, let’s discuss the role
of an ABAP consultant in an organization that has implemented an SAP system.

Even though having a good understanding of business processes helps with appli-
cation development, it isn’t absolutely necessary to know the intricacies of the
business to succeed as an ABAP developer. As ABAP developers, we don’t usually
interact with end users directly. When an end user has a requirement or an issue
with an SAP application, he or she will contact the respective functional Center of
Excellence (CoE).

A functional CoE consists of functional consultants with expertise in a respective
domain who will evaluate a customer requirement and decide if it requires any
technical changes. If the user’s issue or requirement necessitates any technical
changes, then the functional CoE will assign the task to the ABAP CoE. It is the
38

Introduction to SAP 1.3
responsibility of the functional consultant to prepare a functional requirement
document explaining the requirement and listing all the essential information to
make the changes needed in the application.

For example, if a user asks for some extra information to be shown in a report
output, the functional specification will provide the required information, such as
the name of the report program that should be changed and the database tables
where the extra information can be found to show in the report output.

Once the functional specification is received by the ABAP CoE, it will be assigned
to an ABAP consultant, who will prepare a technical specification based on the
functional specification and carry out the necessary changes to the application in
the development system. The technical specification will capture the required
changes from a technical perspective, such as which part of the program code is
changed and any extra lines of code added to the program.

Once the changes are made, the application will be tested by the functional con-
sultant and the end user in the quality assurance system before transporting the
changes to the production system.

Systems within SAP

We talk about different systems, such as the development system, quality assurance sys-
tem, and production system, and the transportation mechanism to transport the objects
between systems in the discussion of the SAP system landscape in Chapter 2.

The typical work of an ABAP consultant involves production support, enhance-
ments, and new projects. Production support involves fixing bugs when an existing
application develops a problem and needs troubleshooting. For enhancements,
consultants enhance an existing application to provide added functionality. For
new projects, consultants develop new applications to meet business requirements.

The proficiency required from an ABAP consultant varies with the requirement.
The more experience you gain in ABAP, the more confident you become in han-
dling complex business requirements. To succeed as an ABAP consultant, a good
understanding of ABAP programming language and general understanding of
business processes is crucial. ABAP consultants are not restricted to any one busi-
ness function; they can work on requirements across business functions.

One advantage of being an ABAP consultant, compared to being a consultant in
other technical modules, is that with years of experience ABAP consultants gain
39

Introduction to ERP and SAP1
not only technical expertise but also good functional knowledge. In Section 1.4,
we’ll look at various types of developments ABAP consultants work on.

1.3.4 Changing and Adapting the Data Structure

SAP system software is business software delivered with predefined standard SAP
applications and configurations to meet the needs of various industry sectors. It is
not necessary to change the repository objects (programs, applications, etc.) to use
an SAP system. However, every company within an industry sector may have its
own company-specific requirements. During implementation, SAP software
needs to be adapted to fit these enterprise requirements. We refer to this process
as customization.

There are three types of customization:

� Modification
The standard SAP code is modified per specific business requirements.

� Customer enhancement
The standard SAP applications are enhanced without changing the source code
of the standard SAP program.

� Customer development
Customers develop applications in the SAP system.

In the following subsections, we will look at each of these ABAP customization
methods.

Modifications

Changes to standard SAP-delivered objects (e.g., programs and table definitions)
are called modifications, and repository objects delivered by SAP are changed in
this process. In other words, with modifications, you directly change the source
code of a standard SAP program to extend its functionality. These changes will be
lost when the system is upgraded or when a support package is imported. To pre-
vent this, you will need to check these modifications against the new repository
when next upgrading your system or when importing support packages. This can
escalate the cost and time for such upgrade projects. We always recommend
keeping modifications to a minimum and as a last resort in customization.
40

Introduction to SAP 1.3
As an example of implementing a modification, let’s say you have a standard SAP
application to create a sales order. This standard SAP application allows you to
capture certain details while creating the sales order. Your company requires
additional details to be captured while creating the sales order as well, which are
not available with the standard SAP application. One way of customizing the sales
order application is to modify the standard SAP sales order application screen to
add your custom fields. However, these custom fields will be lost when you next
upgrade the standard SAP application.

We will provide further details about the modification process in Chapter 20.

Customer Enhancements

To create a customer enhancement, you add customer-specific objects to the
repository without actually changing the original source code of the program.
While developing the standard SAP applications, SAP anticipated the need to
extend program functionality. There are specific openings in the code where you
can supplement the SAP standard system with your own objects.

You can enhance a standard SAP application only if SAP has anticipated the need
and provided an opening or hook to add customer-specific objects. SAP provides
a variety of enhancement techniques, such as user exits/customer exits, Business
Add-Ins (BAdIs), and explicit and implicit enhancement points to extend the func-
tionality of a standard SAP object.

Not every standard SAP object can be enhanced, and the enhancement options
provided may not meet your company-specific requirements. However, most of
the standard SAP programs are flexible and support many enhancements.

For example, considering the same scenario of adding custom fields to a standard
SAP sales order application, if SAP has provided a screen enhancement to the
standard SAP application, you can implement the enhancement to add custom
fields. Because SAP calls these enhancements strategically in the standard pro-
gram, the custom fields will not be lost in an upgrade. By implementing an
enhancement, you extend the program without modifying the standard code.

We will discuss the available enhancement techniques further in Chapter 20.
41

Introduction to ERP and SAP1
Customer Developments

If you can’t find a suitable enhancement option, don’t wish to modify a standard
SAP program, or can’t find a suitable standard SAP object that fulfills your com-
pany-specific requirement, you can create your own repository objects (such as
tables, programs, transactions, etc.). All customer developments normally take
place in a customer namespace, meaning that the names of all objects created by
a customer should start with Y or Z.

For example, let’s say your company has to implement a new business solution
for a specific region due to a change in local laws of that region and there is no
standard SAP solution that meets the requirement. In such scenarios, you can
develop your custom applications to implement the business requirements. These
custom applications will be in a customer namespace and will coexist with stan-
dard SAP applications.

Figure 1.3 depicts the customization overview. As you can see, modifications fall
under the SAP namespace, because modifications change the standard SAP pro-
gram directly, whereas enhancements and customer developments fall under the
customer namespace and are immune to being changed during upgrades.

Figure 1.3 Customization Overview

SAP Namespace Customer Namespace

Repository

. . .
DEV

Modification Enhancement Customer
Development

42

ABAP Overview 1.4
Now that we’ve explored the roles of ABAP consultants and the changes and
adaptations that can be made to the data structure in an SAP system, let’s turn our
attention to ABAP as a whole.

1.4 ABAP Overview

ABAP is a programming language used to develop applications in SAP. To work
with modifications, enhancements, or customer developments, you need knowl-
edge of application development within ABAP.

Let’s look at a few of the objects we can develop with ABAP.

1.4.1 Types of Applications

Originally designed for report development within SAP, ABAP has been extended
enormously. Currently, we can develop a wide variety of applications in ABAP,
both in the traditional SAP GUI environment and in the web environment. These
typical developments include reports, forms, interfaces, transactions, and more.

ABAP is a hybrid programming language that supports both procedural and
object-oriented programming techniques to meet any complex business require-
ment.

1.4.2 RICEF Overview

Reports, interfaces, conversions, extensions, and forms (RICEF) is the general acro-
nym used to highlight the different kinds of objects developed in ABAP. The fol-
lowing sections look at each of these areas.

Reports

Reports provide read-only access to a database. ABAP was originally named Allge-
meiner Berichts-Aufbereitungs-Prozessor, German for general report creation proces-
sor, before it was rechristened as Advance Business Application Programming.

As the original name suggests, ABAP was mostly used for creating reports in SAP
in the beginning. Even though ABAP has extended and matured over the decades
43

Introduction to ERP and SAP1
and allows you to create many complex applications and interfaces, reports are
still common developments within ABAP.

During the reporting process, data is updated in the SAP system by transactions,
and is processed by report programs to generate various kinds of reports for
users. For example, if you want to check available stock, then you’ll need a report
program that will pull out this data from the database and present it to you as a
report output.

Figure 1.4 illustrates a typical report program. As you can see, data is updated in
the SAP database from across the business functions, and the report program can
process that data and present it to the user as a report output.

Figure 1.4 Report Programs

Interface Programs

Interface programs allow you to exchange data with other systems, such as a leg-
acy system or a partner system. You typically develop two kinds of interface pro-
grams: inbound interface programs and outbound interface programs. For
inbound interface programs, data is received from an external system and updated
in the SAP system. For outbound interface programs, data is extracted from the SAP
system and pushed to external systems.

Figure 1.5 illustrates inbound and outbound interface program processes in SAP.
As you can see, in the inbound interface the data is extracted from the external
system and the file is transferred to the SAP system. An ABAP program will pro-
cess this file and update the data in the SAP system. In an outbound interface, the

FI

SD

MM

HR

WM

PP

SAP
Database

Report
Output

ABAP
Report

Program

Reports

B
us

in
es

s
Fu

nc
ti

on
s

44

ABAP Overview 1.4
data is extracted from the SAP system by an ABAP program, which is then pushed
to the external system. The external program will process this data and update the
system.

Figure 1.5 Interface Programs

Interfaces are a key concept, and SAP provides various technologies to interact
with external systems. We will explore different interface technologies in Chap-
ter 19.

Conversions

Conversion programs move data from a legacy system to an SAP system. Usually,
these are one-time-use programs for the initial load of data to an SAP system
before go-live.

For example, once you implement a new SAP system, you may want to move all
your existing data for customers or materials maintained in your legacy system.
In such a case, you would develop conversion programs to process, validate, and
update this data in the SAP system.

Figure 1.6 illustrates conversion program processes in SAP.

External
Database

External
Database

Legacy System/External System

Extract
Program

ABAP
Translation
Program

ABAP
Translation
Program

SAP
Database

SAP SYSTEM

SAP SYSTEM Legacy System/External System

SAP Inbound Interface Example

SAP Outbound Interface Example

Interfaces

Extract
File

Extract
File

SAP
Database

ABAP
Extract

Program

ABAP
Load

Program

External
Load

Program
45

Introduction to ERP and SAP1
Figure 1.6 Conversion Programs

Similar to inbound interface programs, for conversion programs, data is extracted
from the legacy system and transferred to the SAP system, which is then validated
by an ABAP load program to post in the SAP system.

SAP provides a tool called the Legacy System Migration Workbench (LSMW) that
integrates various conversion techniques to migrate the data from the legacy sys-
tem to the SAP system. You’ll learn more about conversion programs and LSMW
in Chapter 19.

Extensions

Extensions are programs that extend the functionality of a standard SAP system.
These include modifications, enhancements, new developments, and third-party
add-on programs.

Figure 1.7 Extensions

External
Database

Legacy System

Extract
Program

ABAP
Translation
Program

SAP
Database

SAP SYSTEM

Conversion Example

Conversion Programs

Extract
File

ABAP
Load

Program

Extensions

Customizing/Enhancements

Modifications Add-on/Bolt-on

Supported by SAP

Generally not supported by SAP Generally supported by SAP

SAP Delivered
ABAP Programs Third Party

Application
Programs

Standard SAP
Program

My ABAP Code

Standard SAP
Program

CALL
Enhancement

Enhancement

My ABAP Code

New ABAP Development

My New SAP
Transaction

My ABAP Code

Supported by SAP
46

ABAP Overview 1.4
As shown in Figure 1.7, you can extend the functionality of standard SAP soft-
ware by implementing SAP-delivered enhancements, modifying standard SAP
programs, developing custom programs in a customer namespace, or using third-
party extensions.

Forms

Forms are like report programs that provide read-only access to the database.
However, forms provide more flexibility in their layout design. Forms are used
with documents for which the user wants a physical version (e.g., purchase
orders or invoices). These documents should meet legal requirements and should
have a specific format.

SAP provides various tools that are integrated with the ABAP Workbench to
allow you to design a form layout to meet legal and customer requirements (e.g.,
SAPscripts, smart forms, or Adobe forms).

As shown in Figure 1.8, a typical form layout contains various windows to print
different data from the document. The layout is usually designed to meet the legal
requirements for the document to print various data in a specific format.

Figure 1.8 Forms

Forms
SAPscripts Form

.. Page

Window

Main Window

Layout

Payment Information

Invoice Number 55558
Invoice Date 1/1/2016

Customer Order Number 3670
Purchase Order Number 1007680

Payment Terms 10% Cash Discount
within 10 Days

Curren
Amount

Window

SAPscripts Forms

Payment Terms 10% Cash Discount
within 10 Days

Content
47

Introduction to ERP and SAP1
This brief overview of ABAP provided a glimpse into some of the topics that we’ll
cover in this book. The final section of this chapter looks at the system require-
ments you’ll need to meet to follow along with the examples in this book.

1.5 System Requirements

To work with ABAP development and follow the examples in this book, you need
access to an SAP system and a client-side program (SAP GUI or Eclipse IDE). SAP
provides the Internet Demonstration and Evaluation System (IDES) for training.

IDES in the SAP ERP system represents a model company and contains applica-
tion data for various business scenarios that can be run in the SAP system. The
business processes in the IDES system are designed to reflect real-life business
requirements and have access to many realistic characteristics. To follow the
examples in this book, you need IDES for release 7.4.

There are several ways of accessing IDES data:

� Local IDES system

� Remote access to an SAP IDES system from either SAP or third-party vendors

� Access to an IDES system on your notebook

1.6 Summary

In this chapter, we walked through the evolution of SAP and the various product
naming conventions enacted by SAP over the years. We discussed the different
user types and the role of an ABAP consultant.

Next, we talked about the need for customization and the various ways in which
an SAP system can be customized. Finally, we looked at the development objects
provided in ABAP. We will explore each of those development objects in greater
detail as we progress in this book.

In the next chapter, we’ll take a closer look at the architecture of an SAP system.
48

Chapter 2 A technical overview of the SAP system architecture before you begin
coding will allow you to better understand the environment in which your
programs run.

2 Architecture of an SAP System

Understanding the SAP system architecture from a technical point of view will
help you understand how ABAP programs run. In this chapter, we’ll explore the
system architecture and look at the various layers that make up the SAP system.

We’ll start with an introduction to the three-tier architecture of an SAP system in
Section 2.1, covering the presentation layer, application layer, and database layer
that makes up the system. In Section 2.2, we’ll discuss the individual components
that make up each of these different layers.

Section 2.3 concludes the chapter with a discussion on data structures, which will
help you understand how data is typically stored in an SAP system.

2.1 Introduction to the Three-Tier Architecture

In Chapter 1, we discussed SAP’s move towards a three-tier architecture since the
introduction of the SAP R/3 system. Here, R stands for real-time (instantaneous
data exchange), and three represents three-tier architecture.

Three-tier architecture is a client-server architecture in which the user interface
(presentation layer), business logic (application layer), and data storage (database
layer) are developed and maintained as independent modules (often on separate
platforms).

Figure 2.1 illustrates the three layers of the ABAP architecture. As you can see, the
presentation layer communicates with the application layer, and the application
layer communicates with the database layer. The presentation layer cannot com-
municate with the database layer directly, which further enhances security for
business logic, because the client doesn’t have direct access to the database.
49

Architecture of an SAP System2
Compared to two-tier architecture, the introduction of an additional layer in a
three-tier system brings its own complexities to an implementation, but it allows
for a highly scalable system. In addition, in a three-tier system you can maintain
and update each layer independently. For example, in web server architecture,
typically the presentation tier consists of a web browser (Internet Explorer,
Google Chrome, etc.), the application tier consists of a web server (Apache, IIS,
etc.), and the database tier consists of a database (MSSQL, MySQL, etc.).

Here, each tier exists as independent software and can be changed or updated
without affecting the other tiers. Therefore, the user can update his or her
browser independently without worrying about breaking anything in the applica-
tion or the database tier. All the user needs to worry about is whether the
browser is compatible with the web server or not. Similarly, the web server and
the database can be updated or replaced independently without affecting the soft-
ware in any other tiers. This independence provides flexibility to update the sys-
tem in response to changes in either requirements or technology.

Figure 2.1 Three-Tier Architecture

The following list describes the different layers shown in Figure 2.1:

� Presentation layer
The presentation layer consists of the user interface, which runs on a client
machine that uses a standard graphical user interface (GUI). The user interface
can be a web browser or propriety software like SAP GUI. Because the presen-
tation layer can be developed independently depending on the requirements

Presentation
Layer

RDBMS

Application
Layer

Database
Layer
50

Introduction to the Three-Tier Architecture 2.1
and system configuration, it can support various devices (PCs, smartphones,
etc.) and operating system environments.

The GUI communicates with the application layer by taking user inputs, send-
ing requests to the application server, and displaying the results received from
the application server. For example, when you open a website in your web
browser, you are requesting a resource from the web server. The web server
responds to your request, and the browser presents the result in a user-friendly
way.

We’ll discuss the presentation layer further in Section 2.2.1.

� Application layer
The application layer is where all the major work is done by ABAP programs.
This is the software layer that hosts various modules of business functions and
executes program code. It can consist of one or multiple application servers and
a messaging server, which is responsible for communication within the layer.

When you run an application, the execution takes place in the application layer.
The application layer can communicate with the database to process the data
requested by the user.

We will explore the various components of the application layer in Section 2.2.2.

� Database layer
The database layer is where all the persistent data is stored. The database is typ-
ically managed by a relational database management system (RDBMS). The
RDBMS provides a declarative method to maintain data and queries, and the
system takes care of describing the structures for storing the data.

In an RDBMS model, the data is stored in one or more tables. Each table con-
sists of rows and columns, with each row identified by a unique key. Tables are
related to one another with foreign keys. If the key field of one table exists as a
non-key field in another table, then the two tables have a foreign key relation.
Foreign keys allow you to define a parent-child relationship between different
tables of the database. You’ll learn more about RDBMS in Chapter 5.

SAP supports various database systems, like SAP HANA, Oracle, MSSQL,
MaxDB, and IBM DB/2.

We will discuss the database layer further in Section 2.2.3.
51

Architecture of an SAP System2
2.2 SAP Implementation Overview

When implementing an SAP system, organizations typically implement at least
three separate systems: one for development, one for quality assurance/testing,
and one for a production environment. Each of these SAP systems have three lay-
ers—namely, the presentation layer, application layer, and database layer.

In this section, we’ll discuss each individual layer in more detail and each layer’s
various components.

2.2.1 SAP GUI: Presentation Layer

There are two options for the presentation layer: a system with SAP GUI installed
to access the SAP system and work with classic SAP GUI-based applications, or a
web browser to work with modern web-based applications. SAP GUI is a program
installed on a user’s workstation. You can also use a web browser to access web-
based applications without installing SAP GUI.

The presentation interface allows users to interact with the SAP system and
access various SAP applications. The requests from the presentation interface are
sent to the application server for processing. The results are then presented to
the user. The presentation interface (SAP GUI or web browser) captures the user
actions on screen, and also takes care of formatting the output received from the
application server.

Depending on the operating system on the user’s workstation, the user may
choose to install the compatible SAP GUI version. For example, if you’re using a
Windows PC, you can install SAP GUI for the Windows environment. Similarly,
if you are using a Mac- or Linux-based system, you can install SAP GUI for the
Java environment. If you simply wish to use a web browser to access the classic
SAP GUI-based applications, you can install SAP GUI for HTML.

Figure 2.2 depicts the following SAP GUI versions:

� SAP GUI for the Windows environment
SAP GUI for Windows is the most popular version. Via an EXE file, the user
installs the GUI on his or her workstation. SAP GUI for Windows supports all
the functionality to develop and access all SAP GUI-based applications.

� SAP GUI for the Java environment
SAP GUI for Java allows users to work with SAP GUI-based applications when
52

SAP Implementation Overview 2.2
operating Mac or Linux systems. Certain application development features are
not supported in this version of SAP GUI, such as the graphical PC editor. We
recommend using SAP GUI for Windows to take advantage of all development
features.

� SAP GUI for HTML (Web GUI)
SAP GUI for HTML is SAP’s attempt to enable all SAP GUI-based applications
for the web. For these applications, the GUI maps SAP screens to HTML pages.

SAP GUI for HTML requires the server to run Internet Transaction Server (ITS).
ITS performs one-to-one mapping of SAP screen fields (i.e., input fields, text
fields, etc.) to SAP GUI for HTML fields. Even though SAP GUI for HTML is the
fastest way to enable SAP applications for the web, it isn’t very popular with
end users.

Because web browsers communicate using the HTTP/HTTPS protocol, the
Internet Communication Manager (ICM) ensures that communication between
the SAP system and the outside world—via HTTP, HTTPS, and SMTP proto-
cols—works properly, as shown in Figure 2.2. Without the ICM component, it
isn’t possible to use a web browser to communicate with the application server.

SAP GUI sends requests to the dispatcher in the application server (see Figure
2.2), which takes care of assigning the task to an available work process and also
takes care of returning the result to the GUI.

We will discuss the different components of an application server further in
Section 2.2.2.

Figure 2.2 SAP GUI

SAP GUI for Windows SAP GUI for JAVA SAP GUI for HTML

Dispatcher ICM*

Windows PC JAVA Environment Windows PC and
Browser

*ICM–Internet Communication Manager
53

Architecture of an SAP System2
2.2.2 Application Servers and Message Servers: Application Layer

ABAP programs run in the application layer, and all program execution takes
place in the application server. The application layer includes one or more appli-
cation servers and a message server. The message server is responsible for com-
munication between the application servers. The application server interprets
ABAP programs by providing the runtime environment to execute ABAP code.

The application server consists of various components, as shown in Figure 2.3.

Figure 2.3 ABAP Application Server

SAP NetWeaver is the application server that provides the runtime environment
for both ABAP and Java programs. It can be installed as a pure ABAP system, a
pure Java system, or a dual-stack system:

� Pure ABAP system
A pure ABAP system supports developing and running ABAP-based applica-
tions, but offers limited support for running SAP Java-based applications.

� Pure Java system
A pure Java system supports the Java platform and Java Enterprise Edition
(Java EE) applications. It provides full infrastructure support for developing
and running Java EE applications, but it doesn’t provide support for ABAP
applications.

SAP GUI Web Browser

St
ar

t
Se

rv
ic

e

ABAP
Dispatcher Gateway ICM

St
ar

t
Se

rv
ic

e

Message Server

Enqueue Server

WP WP

Application Server Instance
Any number can exist.

ASCS Instance
Only one can exist.

ABAP

Architecture of an ABAP System
54

SAP Implementation Overview 2.2
� Dual-stack system
A dual-stack system offers the best of both worlds by providing support for
both ABAP-based and Java EE-based applications.

ABAP consultants are not directly involved with the installation or maintenance
of an application server. This is the role of an SAP Basis consultant. However,
because ABAP programs run in the application server, understanding the various
components of the application server (and their roles) help to understand the
backend process that takes place when an ABAP program is executed.

Discussing all of the components in an application layer is beyond the scope of
this book. Therefore, we’ll limit our discussion to some of the important compo-
nents that make up the application layer.

The various components of an SAP system are collectively called instances. These
instances process user requests, and we can have any number of application
server instances.

Some of the major components of the application server instance are as follows:

� ICM

� ABAP Dispatcher

� SAP Web Dispatcher

� Gateway

� SAP start service

� Work processes

Each application server instance can have multiple work processes but can’t have
more than one ICM, dispatcher, gateway, and SAP start service.

Along with multiple application server instances, there is a special instance called
the ABAP System Central Services (ASCS) instance. The ASCS instance includes the
message server, the enqueue server, and a separate start service. The ASCS
instance handles managing locks, exchanging messages, and load balancing.

The message server takes care of load balancing and communication between mul-
tiple instances, whereas the enqueue server manages application locks. Application
locks ensure that no two users edit the same data at the same time.
55

Architecture of an SAP System2
Let’s look the various components of an application server instance in a bit more
detail.

Internet Communication Manager

The ICM enables the application server to communicate with the outside world
using web protocols like HTTP, HTTPS, or SMTP. The ICM web-enables the appli-
cation server. This allows users to use a web browser to make requests to the
application server, as opposed to using SAP’s proprietary GUI.

ICM runs as a separate process, started and monitored by the ABAP Dispatcher.
With ICM, the application server can process requests from the Internet, such as
Web Dynpro-based applications.

ABAP Dispatcher

Each application server has a dispatcher. Requests are processed via work pro-
cesses. The role of the dispatcher is to assign requests to work processes. A user
makes a request, the request is sent to the dispatcher, and the dispatcher assigns
the request to a freely available work process.

Once the request is assigned to the work process, the work process executes the
request and sends back the result. The work process then becomes free, ready to
take up another request.

When a user logs in to an SAP system, the logon request goes to the message
server, which performs load balancing and connects the user to the dispatcher of
an instance with the least load. Once connected, the dispatcher of that instance
handles all the requests by the user.

Work Processes

In Figure 2.3, “WP” stands for work processes. User requests are processed through
work processes. There may exists multiple work processes per application server
instance.

As shown in Figure 2.4, when a user makes a request, the request is sent to the
ABAP Dispatcher. The ABAP Dispatcher, in turn, assigns the request to the avail-
able work process for processing. Once the work process completes the request,
56

SAP Implementation Overview 2.2
it sends back the result, and the work process becomes free again to take a new
request.

Figure 2.4 Dispatcher and Work Process

Work processes are not dedicated to any user session. They can take requests
from any user. For example, as shown in Figure 2.4, User 1 executes a report.
This request is assigned to Work Process 1 by the dispatcher. Work Process 1 pro-
cesses the request and sends the result back to User 1.

At this point, if User 2 makes a request, the dispatcher can assign it to Work Pro-
cess 1, because that work process is free to take a new request. If User 1 makes a
new request while Work Process 1 is processing the request from User 2, then the
dispatcher will simply assign the User 1 request to Work Process 2. If a new
request is made by either User 1 or User 2 while both Work Process 1 and Work
Process 2 are busy, then the dispatcher will assign this task to the next available
work process.

You can see how the work process statuses change by opening Transaction SM50
(see Figure 2.5). If you run any program and check Transaction SM50, you’ll
notice that the request is processed by a dialog work process (DIA) with a Run-

ning status. The work processes that are free to take requests have a Waiting sta-
tus.

User 1 User 2

SAP GUI SAP GUI

Application
Server

Shared
Memory

Work
Process 1

Work
Process 2

Work
Process 3

C
on

te
xt

C
on

te
xt

C
on

te
xt

Dispatcher
57

Architecture of an SAP System2
Figure 2.5 Transaction SM50: Work Process Overview

As shown in Figure 2.5, there are different types of work processes that handle
different types of requests. Table 2.1 lists the available work process.

The SAP Basis administrator can configure the number of work processes for each
type by using Transaction RZ10.

Gateway

The gateway reader enables communication with external systems using remote
function calls (RFCs), which are based on TCP/IP. RFC services enable external
applications to communicate with the SAP system. RFCs can be made in ABAP
programs or by using interfaces with external programs (e.g., RFC-enabled func-
tion modules).

In addition to using RFCs between systems, gateways can also be used between
processes of an instance.

Work Process Type Purpose

DIA (Dialog) Handles dialog requests (i.e., requests made from
users through screens)

UPD/UPD2 (Update) Handles high- and low-priority updates to the
database

BTC (Background processing) Handles background jobs

SPO (Spool) Handles spool requests

Table 2.1 Work Process Overview
58

SAP Implementation Overview 2.2
Start Service

A start service starts the SAP system instance. It is implemented as a service in
Windows and as a daemon in Unix. A start service helps start and stop instances,
monitor the runtime state, and read logs.

A start service also provides technical information, such as information about
active sessions or network ports.

Message Server

Only one message server can exist per SAP system. A message server helps differ-
ent application server instances communicate with each other.

A message server also handles load balancing. As discussed earlier, when the user
logs into an SAP system, the message server connects the user to the application
server instance with the least load. Note that the message server handles the load
balancing for SAP GUI and RFC connections, whereas the load balancing in a web
environment is handled by the SAP Web Dispatcher.

SAP Web Dispatcher

SAP Web Dispatcher is useful in web environments. It lies between the Internet
and the SAP system, which means that all HTTP(S) requests are routed through
SAP Web Dispatcher. It can be placed in front of multiple SAP systems and con-
figured to route specific requests to specific systems for better load balancing.
You can also configure it to accept or reject connections, enabling better security.

SAP Web Dispatcher can reject certain URLs, allowing for restricted access to the
system through URL filtering. It can also be used as a web cache to improve appli-
cation response time.

Enqueue Server

The enqueue server manages locks. It can be part of the classical ABAP central
instance, or it can be installed as a standalone server that isn’t part of SAP Net-
Weaver AS ABAP.

The enqueue function provides logical locking functionality that helps to pre-
vent multiple users from updating the same data at the same time. For example,
enqueue functions are used to prevent multiple users from editing the same
59

Architecture of an SAP System2
document at the same time. The moment one user enters the change mode to
edit a document, enqueue functions can prevent other users from entering the
change mode to edit the same document.

User Context

User context is where contextual information about the user is stored. When a
user makes a request, the work process uses the information about the user avail-
able in the user context area. The user context area stores information like the
user’s personal settings, authorizations, and date and currency formats. The work
process applies this information to each request by the user.

For each user, the user context is loaded once into the application server on each
user login and deleted when the user logs off from the system. The data in the
user context is not refreshed until the next login for that user.

Figure 2.6 Roll-In and Roll-Out of User Context

SAP GUI

Request
Queues

ABAP Dispatcher

In
te

rn
al

 M
em

or
y Screen

Processor

ABAP
Interpreter

Database
Interface

. . .

Work Process 1 Work Process n

Accesses

Roll in

Application Buffer Roll Area

ABAP • Factory Calendar
• Screens
• ABAP Programs
• Tables
• Dictionary Objects…

User Context

Shared
Memory

LAN/WAN network

Roll out
60

SAP Implementation Overview 2.2
As shown in Figure 2.6, before processing the request from the user, the work
process will roll in the user context, apply it to the request, and roll out the user
context once the request is processed. This allows the work process to handle
requests from any user and apply user-specific context to each request.

2.2.3 Database Server/RDBMS: Database Layer

Each SAP system consists of a central database in which the entire dataset is
stored. All the data is stored here, including application data, administration data,
customizing settings, and ABAP source code. The database layer consists of the
RDBMS.

SAP supports a wide range of database systems, such as SAP HANA, Oracle,
Microsoft SQL Server, IBM DB2, SAP liveCache, and SAP MaxDB. SAP NetWea-
ver 7.5 is optimized for SAP HANA. It enables the use of SAP HANA as the under-
lying database and facilitates the optimization of applications for SAP HANA.

The RDBMS allows you to spread data across multiple tables and link the tables
using foreign keys. A table consists of columns (fields) and rows (records). Each
table includes a key, which uniquely identifies the row.

For example, say you want to store an item’s details in the database table. Let’s
call this table TB_ITEM. The table consists of four columns: ITEM_ID, DESCRIPTION,
QUANTITY, and UoM (unit of measure), as shown in Table 2.2.

Because each row in Table 2.2 can be uniquely identified by the ITEM_ID field, we
will keep ITEM_ID as the key field of the table.

This looks fine for basic information storage. However, since our SAP system
supports multiple languages, say that users want to see the item descriptions in
different languages. How will you expand this table to accommodate the descrip-
tions in different languages? One way is to add a LANGUAGE field to the table and
maintain the descriptions in multiple languages, as shown in Table 2.3.

ITEM_ID DESCRIPTION QUANTITY UoM

1 Pen 10 PC

2 Pencil 20 Box

3 Paper 10 KG

Table 2.2 Example TB_ITEM Showing Rows and Columns
61

Architecture of an SAP System2
In Table 2.3, the ITEM_ID field is no longer unique. The primary key of the table
should always be unique, so the key of this table should be expanded to include
the LANGUAGE field as well. Therefore, the key of Table 2.3 is a combination of the
ITEM_ID and LANGUAGE fields. Individually, the data in ITEM_ID field can repeat n
number of times and the data in LANGUAGE field can repeat n number of times, but
the combination should always be unique.

As you may have noticed, in Table 2.3 we’re repeating the same data multiple
times to accommodate various languages. When more languages are added to the
mix, you end up with redundant data. What if we could separate the descriptions
and maintain them in a separate table that can be linked to this table with foreign
keys?

Table 2.4 stores the item details, and Table 2.5 stores the descriptions in multiple
languages. This arrangement of tables avoids data redundancy, and because the
tables are now linked through a foreign key we can query Table 2.5 for the
description in the preferred language using the ITEM_ID field of Table 2.4.

ITEM_ID LANGUAGE DESCRIPTION QUANTITY UOM

1 English Pen 10 PC

1 German Stift 10 PC

2 English Pencil 20 Box

2 German Bleistift 20 Box

3 English Paper 10 KG

3 German Papier 10 KG

Table 2.3 TB_ITEM Expanded to Accommodate Language Key

ITEM_ID QUANTITY UOM

1 10 PC

2 20 Box

3 10 KG

Table 2.4 TB_ITEM without Description
62

SAP Implementation Overview 2.2
This is how you model data in an SAP system. For example, the material master
data is stored in table MARA, the material description in multiple languages is
stored in table MAKT, and the plant data for material is stored in table MARC. With
this arrangement, you can query different tables to get different information
about the material using the foreign key concept.

In this section, we discussed the different layers of SAP’s three-tier architecture in
detail. Figure 2.7 summarizes the three layers of the SAP system.

Figure 2.7 Overview of Three Layers

As shown in Figure 2.7, the application server includes a special area called the
buffer. A buffer acts like a cache in which data that is frequently accessed but sel-
dom changed can be stored. This allows you to improve the performance of the
applications, because the data can be accessed from the local buffer. A buffer also

ITEM_ID LANGUAGE DESCRIPTION

1 English Pen

1 German Stift

2 English Pencil

2 German Bleistift

3 English Paper

3 German Papier

Table 2.5 New Storing Item Descriptions

SAP GUI SAP GUI SAP GUI SAP GUI

Presentation Layer

E

ABAP Dispatcher

D D V B S

Buffer

Application Level

Database Level
Database Processes ABAP
63

Architecture of an SAP System2
helps to reduce the database and network load, as the application server need not
access the database repeatedly for the same information.

Buffering data is recommended when data in the tables does not change fre-
quently and having access to up-to-date data is not critical for the application. If
any data changes in the database table, a background process will update the buf-
fer at a fixed interval. This means that buffering a frequently changing table is
counterproductive.

In the next section, we’ll look at data structures and clients.

2.3 Data Structures

The SAP system typically contains various data, such as master data, user data,
and transaction data. Each SAP system further consists of multiple clients. A client
represents an organizational unit in an SAP system.

In SAP systems, the following terms must be differentiated with regard to the
data structure:

� Client-specific data
Data that exists within a specific client of the system

� Cross-client (client-independent) data
Data that exists across all the clients of the system.

In other words, when we store any data in an SAP system, the data can be specific
to a client or it can be accessed centrally from any client.

In this section, we will discuss the concept of a client, the significance of using dif-
ferent clients, and how our decisions about clients influence the data stored in an
SAP system.

2.3.1 Client Overview

Each SAP system can be divided into multiple clients, and each client is identified
by a three-digit numeric value. Each client has its own master data, user data, and
transactional data. The data in a client is known as client-specific data.

Each SAP system logon must include a client ID (see Figure 2.8), which indicates
a logon to a specific client.
64

Data Structures 2.3
Figure 2.8 Client ID on Logon Screen

2.3.2 Client-Specific and Cross-Client Data

As mentioned previously, data in an SAP system is either client-specific or cross-
client. Client-specific data is visible only in the client in which the data was cre-
ated, whereas cross-client data is accessible from any client in the system.

Because the data in an SAP system is always stored in a database table, the data is
restricted to a client by maintaining a client column (field) in the application
table. These tables are called client-specific tables and the client columns (see
Figure 2.9) are called MANDT.

Figure 2.9 Client Field in Table

3 digit client ID

Client field/column
in table to restrict the
data to a client. This
makes the data client
dependent.

Missing client
field/column in
table. This makes
the data cross-client.
65

Architecture of an SAP System2
The MANDT field stores the current client number in which the data is generated.
While accessing the data from the client-specific tables, the system automatically
matches the user’s current client with the MANDT field of the table, restricting the
data to the current client.

For example, say a purchase order is created while logged on to client 100. The
relevant purchase order application–related database tables update with the new
purchase order data, and the MANDT fields of those tables will be updated with the
client number (100 in this case) automatically. If you try to open the purchase
order in another client—say, client 200—the system won’t show the purchase
orders created in client 100, because it will try to match the MANDT field with 200.

For cross-client tables, the MANDT field isn’t part of the table key, so the data isn’t
restricted to the client. The data can be accessed from any client of the system. To
find out if the data in a table is client-dependent or cross-client, check if the table
has MANDT as the first field and as part of the key, as shown in Figure 2.9.

For example, say that the material master table MARA has MANDT as the first field
and part of the table key. This makes table MARA client-specific. If you create a new
material in client 100, then the material data is visible only in client 100. You
can’t access this data from other clients of the system. Similarly, if the material
data is changed in a particular client, then the change won’t affect the data in
other clients of the system. Application data is generally client-specific, and cus-
tomizing data is generally cross-client.

The client concept entails splitting your SAP system into multiple clients and
separating the data by either restricting it to a particular client or keeping it
cross-client.

When you log on to an SAP system, you’re logging onto a particular client. Any
activities carried out in the system are always carried out in one specific client.
When planning the SAP system landscape, you can create various clients for var-
ious activities. For example, you can have one client for development, one client
for testing (QA), and one client for production.

Some of the most important client roles are as follows:

� Customizing and development client (CUST)
The SAP system software is standard business software and is adapted to com-
pany-specific business requirements when implemented. To customize the SAP
66

Data Structures 2.3
software and carry out various development activities, each SAP system has a
CUST client.

� Quality assurance client (QTST)
Once the developments are completed in CUST, they need to be tested thor-
oughly before the application can be used in production. The client in which
these tests are carried out is called QTST. The QTST client is generally refreshed
with production data at regular intervals so that applications can be tested with
more realistic production data.

� Production client (PROD)
The production environment uses a different client, PROD. PROD is where
actual business activities take place. There are no development or testing activ-
ities in this client in order to ensure smooth business operations.

These three clients (CUST, QTST, and PROD) are central clients that exist in every
system landscape. In general, these three clients are maintained in separate sys-
tems and SAP instances, with some transportation mechanism in place to move
objects between clients.

Each system will have precisely one client for each of these client roles. The devel-
opment system will have a CUST client, the quality system will have a QTST cli-
ent, and the production system will have a PROD client.

For example, ABAP programs are cross-client. When you create a program in one
client, it is made automatically available in all the clients of that system. If you
change the program in a CUST client, the changes automatically will be reflected
in the QTST and PROD clients (if all the clients are set up in the same SAP
instance). If all clients are set up in the same instance, you won’t have the oppor-
tunity to test your program changes. By keeping the clients in separate systems,
you can make your changes in the development system, transport them to the
quality system for testing, and once you’re satisfied, import them to the produc-
tion system.

In order to maintain consistency across clients, we recommend that all the Custo-
mizing settings be carried out in a single Customizing client and transported (with
the Change and Transport System [CTS]) to other clients. This helps prevent situ-
ations in which applications behave differently in different clients due to differ-
ent customization settings.
67

Architecture of an SAP System2
We also recommend that no Customizing settings or workbench developments
be carried out in the QTST or PROD clients. If you establish the appropriate client
settings using Transaction SCC4 to prevent any development activities in the
QTST and PROD clients, this ensures that development activities are always car-
ried out in the CUST client and transported to other clients for testing and subse-
quent use by end users in the production environment.

2.3.3 Repository

The repository is a central store for all ABAP Workbench development objects,
such as ABAP programs, screens, menus, function modules, and ABAP Data Dic-
tionary objects.

As discussed in Section 2.2.3, all data, including the source code of ABAP pro-
grams and table definitions, is stored in database tables. These tables are not
restricted by the client field (MANDT), making them cross-client. Therefore, if you
create a table or a program in one client, it is automatically available in all clients.
All repository objects are cross-client.

In other words, a table is cross-client, but the data in a table can be made client-
specific or cross-client by including or ignoring the client field.

2.3.4 Packages

Repository objects are organized into packages. Packages contain related develop-
ment objects, like programs or tables.

If you create multiple reports, a class, and a few tables for a project, keeping these
semantically linked objects in one package helps to identify the related develop-
ment objects for a project. This allows you to easily identify the dependent
objects that need to be changed when the project requirement changes. Packages
also transport all related objects together between clients.

Packages can be broadly classified as transportable or non-transportable:

� Transportable package
A transportable package is a package in which transport attributes are defined.
The objects in the transport package can be transported to the target system.

When developing a new application, you start in the development client
and transport it to the testing client for testing. Finally, you transport the
68

Data Structures 2.3
application to the production client for end users to use. In this process, you
keep all the development objects and customization settings of the applica-
tion in a transportable package to facilitate their transport to the target sys-
tem using CTS.

� Non-transportable package
A package with no defined transport attributes is called a non-transportable
package. The objects in a non-transportable package can’t be transported
between clients and are called local objects. A local object—for example, a test
program—is not intended to be transported or used in a production environ-
ment.

Figure 2.10 shows the development objects grouped into the standard SAP pack-
age named VF. All objects are grouped into different folders based on the type of
object for easy identification. You easily can look up all related objects for a given
application. For example, if you want to find all the related transactions, tables,
enhancements, and so on for billing documents, you can open the VF package in
the Object Navigator (Transaction SE80), as shown in Figure 2.10. You can check
the package to which a transaction belongs by using Transaction SE93.

Figure 2.10 Checking the Package

Objects in a package

Transport Layer

Software Component
69

Architecture of an SAP System2
2.3.5 Transport Organizer

Objects are transported between clients using CTS. The Transport Organizer is a
tool within CTS for managing the objects that change during the development
and customization phases. The Transport Organizer delivers the changed objects
to the target client (QTST or PROD).

The CTS uses requests and tasks to manage objects. These objects are added to a
task, and the tasks are grouped into requests. To transport an object, all the tasks
in a request are released, and then the request itself is released. Once the request
is released, the objects are transported to the target system automatically (or man-
ually by the administrator). The target system to which the object is transported
depends upon the transport routes of the package to which the object is assigned.

Figure 2.11 shows the requests and tasks in the Transport Organizer.

Figure 2.11 Requests and Tasks in Transport Organizer

Table 2.6 lists some of the important Transport Organizer transaction codes.

Transaction Description

SE01 Transport Organizer (extended view)

SE09/SE10 Search transport request by user

STMS Transport Management system

SE03 Transport Organizer tools

Table 2.6 Important Transport Organizer Transactions

Request

Task
70

Data Structures 2.3
Certain naming conventions are followed when creating packages. Table 2.7 lists
the naming conventions used for packages.

Package Naming Convention Explanation

Names beginning with a letter
from A to S or from U to X.

� Package names beginning with these letters are
reserved for standard SAP objects; customer objects
cannot be created in these packages.

� The objects in these packages can be transported as
the Transport Organizer records changes to the
objects in these packages. As shown in Figure 2.10,
these packages belong to the SAP transport layer and
are assigned to an SAP software component (e.g.,
SAP_BASIS, SAP_APPL, etc.).

Names beginning with Y or Z � Customer objects are created in these packages; the
objects in these packages can be transported as the
Transport Organizer records changes to the objects in
these packages.

� These packages are assigned to the software compo-
nent HOME.

Packages belonging to a prefix
namespace

� The objects in the prefix namespace begin with a for-
ward slash (/). Like other repository objects (such as
programs, tables, etc.), packages can also belong to a
prefix namespace.

� Customer objects are created in these packages; the
objects in these packages can be transported as the
Transport Organizer records changes to the objects in
these packages.

Names beginning with T
(private test packages)

� These packages allow you to create objects in a cus-
tomer namespace (Y or Z) or objects from the prefix
namespace (objects starting with /).

� This package doesn’t belong to a transport layer, so
the objects in this package can’t be transported using
the Transport Organizer. However, if the package is
linked to the Transport Organizer, the objects are
recorded in nontransportable local requests.

Table 2.7 Package Naming Conventions
71

Architecture of an SAP System2
Often, you’ll be using an existing package to save your development objects. The
package used to save the repository object depends on the transport layer (the cli-
ent to which the repository object will be transported) and the application area
(the business function to which the repository object belongs).

Organizing and transporting development objects varies widely across organiza-
tions. Always check the internal process and coding standards followed by your
organization.

Follow these steps to create a new package:

1. Open Transaction SE21 or Transaction SPACKAGE to access the Package Builder
tool.

2. On the Package Builder: Initial Screen, select the Package radio button and
enter the name of the package. Make sure to follow the namespace conven-
tions, as listed in Table 2.7. Once you enter the name of the package, click the
Create button shown in Figure 2.12.

Names beginning with T
(private test packages)

(Cont.)

� Objects in these packages can be transported to other
systems only by special transport requests, such as
transport of copies or relocation transports. Newly
installed SAP systems contain a private test package
by default with the name TEST. This package is not
connected to the Transport Organizer.

� These packages are assigned to the software compo-
nent LOCAL.

Names beginning with $
(local packages)

� Objects in the customer namespace or prefix name-
space can be created in these packages.

� The objects in these packages can’t be transported;
these packages don’t belong to a transport layer, and
the Transport Organizer doesn’t record any changes to
these objects. These packages are used for local
objects.

� A newly installed SAP system contains the local
package ($TMP) by default.

Package Naming Convention Explanation

Table 2.7 Package Naming Conventions (Cont.)
72

Data Structures 2.3
Figure 2.12 Package Builder Initial Screen

3. After clicking the Create button, a dialog box will appear. In the Create Pack-

age dialog box, maintain the attributes of the package, as shown in Figure 2.13,
and click OK. Only the Short Description field is mandatory.

The following are the important attributes:

� Package: Provide the name of the package.

� Short Description: Provide a short description for your package.

� Application Component: Use the (F4) help to select the appropriate appli-
cation component based on the development objects that will be saved in
this package.

� Software Component: This is selected as HOME for customer packages.

� Transport Layer: Select the transport layer based on the target system for
the objects. You may have to consult your manager or SAP Basis administra-
tor to select the correct transport layer.

� Superpackage: Packages can be nested, so you can embed one package into
another in a package hierarchy. This allows for better modularization. Pro-
vide the name of the superpackage in this field if you want to nest the cur-
rent package as a subpackage in an existing package.

� Package Type: Select the package type that you wish to create. You can create
the package as a Structure Package, Main Package, or Development Pack-

age:

– Structure Package: This forms the top level in the package hierarchy. You
can add main packages to a structure package.

– Main Package: A main package acts as a container for development objects
that are semantically linked. A main package contains subpackages (of
73

Architecture of an SAP System2
either other main packages or standard development packages). Develop-
ment objects are always added to the subpackage and never directly to the
main package itself. You can group several main packages to form a struc-
ture package.

– Development Package: Development objects are always added to a devel-
opment package.

� Package encapsulated: Setting this flag encapsulates the package. When a
package is encapsulated, only development elements exposed in package
interfaces of the package are visible to the outside world. Package interfaces
allow you to expose the development objects to other packages.

Figure 2.13 Package Attributes Window

4. Once you’ve completed filling out the fields in Figure 2.13, select the green
checkmark to continue.

5. In the dialog box that appears, assign a transport request to save the package.
You can either assign an existing transport request by clicking the Own

Requests button or create a new request, as shown in Figure 2.14. To create a
new request, simply select the Create icon. This will open the Create Request

dialog box, where you can fill out the fields for your new request.

Tip

If you’re creating something in the SAP system and the system prompts you to assign a
package, it means you’re creating a repository object; keep this in mind if you need to
identify if what you’re creating is a repository object or not. Remember that all reposi-
tory objects (except for SAPscripts) are cross-client.
74

Summary 2.4
Figure 2.14 Creating a Request

2.4 Summary

In this chapter, we explored the technical aspects of an SAP system. Even though
SAP Basis administrators perform most of the setup and configuration for the
components discussed in this chapter, having a basic understanding of these com-
ponents helps when developing ABAP programs.

We discussed the three layers of an SAP system—namely, the presentation layer,
application layer, and database layer. We also explored the different components
that make up these systems, such as different SAP GUI versions and the compo-
nents of the application server and database server.

We also looked into the client concept and discussed the data structure of an
SAP system and how the data can be made specific to a client or available across
clients.

Click “Create” to create a new request
75

Architecture of an SAP System2
Finally, we provided an overview of repository objects and how they’re grouped
into packages. This overview lays the foundation to discuss development objects.

In the next chapter, we’ll begin to introduce you to the ABAP environment and
the ABAP Workbench tools.
76

Chapter 3

Now that you’ve walked through the SAP system, let’s turn our attention
to the ABAP environment. In this chapter, we’ll introduce native IDE and
the Eclipse IDE plug-in.

3 Introduction to the ABAP Environment

SAP provides an integrated development environment (IDE) called ABAP Work-
bench, a collection of tools used to develop, test, and run ABAP programs. After
the release of SAP NetWeaver 7.31 SPS 4, SAP introduced the ABAP Development
Tools (ADT) for SAP NetWeaver, also known as ABAP in Eclipse, which adds
Eclipse capabilities to ABAP Workbench (Transaction SE80) functionality.

In this chapter, we will showcase SAP GUI and the Eclipse IDE and introduce the
ABAP Workbench tools that we’ll to use to develop various ABAP programs
throughout this book.

In Section 3.1, we’ll begin by looking at the SAP environment in general, includ-
ing information on the ABAP programming environment and steps for logging
onto the SAP system. We’ll also look at the different elements of an SAP screen
and how to use transaction codes to get from point A to point B.

Section 3.2 will dig into the different ABAP tools found in ABAP Workbench. This
includes the ABAP Editor, Function Builder, Class Builder, Screen Painter, Menu
Painter, ABAP Data Dictionary, and Object Navigator. Each of these tools will be
used and discussed throughout the remainder of the book, so it’s important to
gain a good understanding of their functions and purpose.

We’ll end the chapter with an overview of the Eclipse IDE in Section 3.3, includ-
ing steps for installation and setup.
77

Introduction to the ABAP Environment3
3.1 SAP Environment

As discussed in earlier chapters, you can use SAP GUI or a web browser (SAP Web
GUI for traditional applications or for Web Dynpro applications) to logon to an
SAP system and run applications. However, ABAP Workbench tools are fully sup-
ported in a desktop environment for both SAP GUI and Eclipse IDE. To avoid con-
fusion and to follow a consistent theme throughout the book, we will be using
SAP GUI for Windows in this book for all examples. You should be able to use
SAP GUI for Java or Eclipse IDE to follow the examples without any difficulty.

In this section, we’ll explain how to logon to an SAP system and navigate through
the SAP screens. We’ll explore the different ways to run SAP applications and will
look at various elements of an SAP screen.

3.1.1 ABAP Programming Environment

Unlike in other programming languages (Java, C/C++, etc.), ABAP source code is
not stored in files; instead, all ABAP source code is saved in the underlying data-
base of the SAP instance. There is no separate compiler for ABAP code; the ABAP
runtime environment itself interprets and executes ABAP code.

The database interface in the work process communicates with the underlying
database. The database interface converts Open SQL statements in the ABAP pro-
gram to Native SQL statements (native to the underlying database). The ABAP
runtime system ensures that the ABAP programs are operating system- and data-
base-independent, making ABAP programs portable. In other words, you don’t
have to worry about changing your program code if the underlying database or
operating system environment changes.

In the next few sections, we’ll explore these environments and their on-screen
elements in greater detail.

3.1.2 Logging On to the SAP Environment

The SAP logon screen shows four input fields, as shown in Figure 3.1. Along with
username (User) and Password, you also enter the ID of the Client you wish to
logon onto. SAP supports multiple languages, so you can choose a Logon Lan-

guage from any of the installed languages in your SAP system.
78

SAP Environment 3.1
To use a specific language, input its two-digit SAP language code on the logon
screen—for example, “EN” for English, “DE” for German, and so on. The logon
screen also includes a New Password button to change your password.

Figure 3.1 SAP Logon Screen

Once you fill in the details on the logon screen, press (Enter) to log on to the sys-
tem.

3.1.3 Elements of the SAP Screen

Upon successful logon, you’ll see the default SAP Easy Access screen (see Figure
3.2); this entry screen is always displayed after logon and is used for opening var-
ious SAP applications. The SAP Easy Access screen includes a customizable SAP
menu with a tree structure in which all the installed applications are organized
into various folders.

The navigation area of the SAP Easy Access screen is divided into the SAP Menu,
User Menu, and Favorites:

� SAP Menu

The SAP Menu is delivered standard with SAP.

� User Menu

The User Menu can be customized to display user-specific applications based
on the user’s role in the organization. For example, a finance user might see
finance-related applications and a sales user may see sales-related applications
by default in the SAP Menu.
79

Introduction to the ABAP Environment3
� Favorites

Frequently accessed applications can be added as favorites under the Favorites

folder for quick access.

Figure 3.2 SAP Easy Access Screen with Screen Elements

Figure 3.2 shows the various screen elements of a standard SAP screen as
accessed by the SAP GUI.

Now, let’s walk through each of the standard screen elements identified in Figure
3.2.

Menu Bar

The menu bar is where various menu items for applications are located. You can
use the menu bar to carry out additional activities with the application. When
developing your own ABAP applications, you can design the menu bar by using
the Menu Painter tool (Transaction SE41). You’ll learn more about Menu Painter
in Section 3.2.5 and how to use it in Chapter 12.

The menu bar consists of an application-specific menu, system menu, and help
menu. The application-specific menu consists of menu items that are specific to

Tree Structure

Title Bar

Menu Bar

Application Toolbar

Command Field

Status Bar

Standard Tool Bar
80

SAP Environment 3.1
each application and are created when developing the application. For example, if
you want the user to download report output to a spreadsheet, you can add a
menu item and related functionality to do so. The system menu and help menu
are available by default and consist of standard system functions and links to help
resources, respectively.

Standard Toolbar

The standard toolbar contains a standard set of icons for every application. The
standard icons include Save, Back, Exit, Cancel, Print, Find, Find Next, and so
on.

You can’t remove icons from or add icons to this toolbar. However, you can
enable or disable certain icons for your application according to your business
requirements. The standard toolbar is customized via the Menu Painter tool
during application development.

Title Bar

The title bar displays the title of the application, allowing you to identify the
application you’re running easily. Based on the type of program, the title is dis-
played either from the program attributes or from your program code, using the
ABAP keyword SET TITLEBAR.

You’ll learn more about setting the application title and using the ABAP keyword
SET TITLEBAR in Chapter 12.

Application Toolbar

The application toolbar displays all the application-specific icons. The application
toolbar is located directly below the title bar. This area can be used to provide var-
ious icons that enhance the functionality of the application.

It’s standard design practice to use an application toolbar to duplicate functions
from the menu bar. This allows for quick access to some of the most commonly
used functions for the current screen and system task. The buttons available in
the application toolbar change from application to application as per each appli-
cation’s design.
81

Introduction to the ABAP Environment3
You can display any of the available icons in the application toolbar by using the
Menu Painter tool. To check the possible icons that can be displayed in the appli-
cation toolbar, see table ICON. For example, you can display the PDF icon in the
application toolbar of your report output to allow for downloading the report
output quickly as a PDF file.

Status Bar

The status bar displays all status messages. This area is used to show various mes-
sages to the users while they run your application. For example, you can display
an error message when an invalid entry is made in the input field of the screen,
or you can show a status message to give the user a status update while your
application runs.

The status bar also displays other information, such as the server you’re logged
into, the client database you’re accessing, and the user ID with which you’re
logged in.

You’ll learn more about the types of messages that can be displayed for the user
in Chapter 6.

Command Field

The command field can be used to open applications (programs) quickly by using
their transaction codes. Applications (also known as transactions) can be associ-
ated with a transaction code, and a user can directly enter the transaction code in
the command field to run the application.

Certain commands, such as /n to terminate the application, /h to turn on the
debugging, and others, can be entered in the command field to carry out different
actions. Table 3.1 shows some of the popular commands. In the next section,
we’ll look specifically at the transaction codes typically used in ABAP develop-
ment.

3.1.4 Transaction Codes

To make it easy to open an application, each SAP application is associated with a
transaction code. Applications are linked to a transaction code in Transaction
SE93 (Maintain Transaction). Once a program is associated with a transaction
82

SAP Environment 3.1
code, the user can directly input the transaction code in the command field to run
the program. Letters A to X are reserved for standard SAP applications; transac-
tion codes for custom applications should be created in the customer namespace
Y or Z.

SAP follows a standard naming convention for most of the standard SAP applica-
tions. Transaction codes ending with a 1 generally are used for creation, transac-
tion codes ending with a 2 are for editing, and transaction codes ending with 3
are for displaying. The following are some example transaction codes that hold to
this pattern:

� MM01 (Material Master Create)

� MM02 (Material Master Change)

� MM03 (Material Master Display)

� VF01 (Billing Document Create)

� VF02 (Billing Document Change)

� VF03 (Billing Document Display)

� ME21N (Purchase Order Create)

� ME22N (Purchase Order Change)

� ME23N (Purchase Order Display)

Transaction codes ending with N are called enjoy transactions. Enjoy transactions
were released with the SAP ERP release, which was also known as the Enjoy
release. These transactions implement the Control Framework elements, such as
docking containers, custom containers, ALV grids, and picture controls. These
transactions replaced older transactions. For example, Transaction ME21N is an
SAP enjoy transaction for Transaction ME21.

Next, we’ll explain how transactions can be used to navigate within the system
and how to open them.

3.1.5 Navigating and Opening Transactions

There are couple of ways to open a transaction (application). You can use the tree
structure in the SAP Menu on the SAP Easy Access screen, or you can input the
transaction code in the command field directly.
83

Introduction to the ABAP Environment3
Each SAP window that you open is called a session, and each application runs in a
session. Each session occupies memory in the application server, so to conserve
system memory the SAP Basis administrator can restrict the maximum sessions
that are allowed per user login. The maximum allowed is sixteen sessions per
login, but the limit is usually set to six sessions per login.

Various transactions are organized into different folders in the SAP Menu on the
SAP Easy Access screen (see Figure 3.3).

Figure 3.3 SAP Menu on SAP Easy Access Screen

The menu shown in Figure 3.3 can be customized based on a user’s role in the
organization. System administrators usually assign role-specific menus to users
while setting up user accounts in the SAP system. For example, a sales executive
might see only sales-related transactions in his SAP menu.

A user can also add frequently used transactions to the Favorites folder for easy
access. For example, as an ABAP consultant, you often use the ABAP Editor. To
access the ABAP Editor, you can navigate to the menu path SAP Menu � Tools �
84

SAP Environment 3.1
ABAP Workbench � Development and double-click ABAP Editor (see Figure
3.3). This can be time-consuming each time you want to open the ABAP Editor.
Instead, you can simply add ABAP Editor to your favorites by right-clicking the
Favorites folder in the SAP Easy Access screen and selecting Insert Transaction

from the context menu (see Figure 3.4).

Figure 3.4 Adding Transactions to Favorites

Another, faster way to open transactions is to enter the transaction code directly
into the command field. This is useful when you want to open another transac-
tion from any session without having to open the SAP Easy Access screen.

If you’re on the SAP Easy Access screen, you can directly input the transaction
code in the command field and then press (Enter) or click the green checkmark to
the left of command field. However, if you’ve already opened a transaction and
want to open a new transaction from the existing transaction screen, then you
should preface the transaction code with /N or /O. Entering the transaction code
alone will not open the application unless you’re on the SAP Easy Access screen.

/N and /O are used for the following purposes:

� /N
Preface the transaction code with /N to terminate the current transaction and
open the new transaction in the same session.

� /O
Preface the transaction code with /O to keep the current session intact and
open the new transaction in a new session.
85

Introduction to the ABAP Environment3
For example, on the SAP Easy Access screen, you can enter the transaction code
“SE38” to open the ABAP Editor. This will terminate the SAP Easy Access screen
and open the ABAP Editor in the same session.

Now, if you want to open Transaction SE11 (ABAP Data Dictionary) from the
ABAP Editor, enter “/NSE11” or “/OSE11” in the command field, depending on
whether you want to terminate ABAP Editor and open ABAP Data Dictionary in
the same session or keep ABAP Editor intact and open ABAP Data Dictionary in a
new session.

Table 3.1 lists some of the common command field formats that can be used.
Please note the list in not exhaustive.

You can easily check the transaction code associated with each transaction by
enabling a setting to display the technical name. On the SAP Easy Access screen,
follow the menu path Extras � Settings, or press (Shift)+(F9), and select the Dis-

play Technical Names checkbox (see Figure 3.5).

Common Command Field Options Description

/nxxxx Call a transaction in the same session (window)

/*xxxx Call transaction in the same session (window);
the initial screen is skipped

/oxxxx Call transaction in an additional session

/n To end the current transaction (caution: unsaved
changes are lost without warning)

/i Delete the current session

/o Generate a session list

/ns000 End the current transaction and return to the
starting menu

/nend Log off from the system

/nex Log off from the system without a confirmation
prompt (caution: unsaved changes are lost with-
out warning)

/h Turn on debugging

Note: xxxx represents transaction code

Table 3.1 Some Common Command Field Options
86

ABAP Workbench Overview 3.2
Figure 3.5 Enabling Technical Names

After this setting is enabled, when you open the tree structure in SAP Menu, you
should see the transaction code displayed for each application (see Figure 3.6).

Figure 3.6 Transaction Code Displayed for Each Application

3.2 ABAP Workbench Overview

As an ABAP developer, you’ll use the ABAP Workbench tools to work with vari-
ous development objects, such as programs, functions, classes, tables, and so on.
87

Introduction to the ABAP Environment3
In this section, we’ll explore some of the important ABAP Workbench tools that
you’ll use to develop ABAP programs. We’ll explore other ABAP Workbench
tools as we progress through this book.

ABAP Workbench tools are integrated with development objects, and the ABAP
Workbench provides forward navigation support to move between objects. For
example, if you’re editing the program code in the ABAP Editor and come across
a statement in which a function module is called, simply double-clicking the func-
tion module name will open the function module in the Function Builder tool.

Because you use different ABAP Workbench tools to design and develop various
objects in an ABAP application, instead of juggling between ABAP Workbench
tools in different screens, SAP provides an application called Object Navigator
(Transaction SE80).

Object Navigator organizes all the development objects in a tree-like hierarchy,
which makes it easy to edit the application’s different objects. We’ll look more
closely at the structure of the Object Navigator screen in Section 3.2.7.

Let’s explore the ABAP Workbench tools and see how they’re integrated into the
Object Navigator to provide an IDE.

3.2.1 ABAP Editor

One of the main components of ABAP Workbench is ABAP Editor, in which you
write and edit ABAP code. The main transaction to open ABAP Editor is Transac-
tion SE38, but the editor also is integrated into other ABAP Workbench tools, like
Class Builder, Function Builder, and Screen Painter.

In ABAP Editor, you can choose one of three different modes:

� Front-End Editor (New) (source code mode)
The new front-end editor is a universal programming tool optimized for ABAP
since the release SAP NetWeaver 7.0 and is available with SAP GUI for Win-
dows 6.40 patch level 10 or higher. It is fully integrated with the SAP environ-
ment and provides various features beyond those in the old editor, such as code
completion, code templates, changing the color of ABAP keywords and the
background color, auto-filling parameter interfaces for procedures, and so on.

� Front-End Editor (Old) (plain text mode)
The old front-end editor works in plain text mode and provides a basic feature
88

ABAP Workbench Overview 3.2
set. When using this mode, the source code is loaded into the frontend and
edited locally. Since the source code is edited locally, all the functions that do
not require interaction with backend are performed faster. This editor is avail-
able in SAP GUI for Windows and SAP GUI for Java.

� Back-End Editor (line-based mode)
The back-end editor works in a line-based mode in which only one line at a
time is edited. Even though this editor is not very user-friendly, it can be used
in any operating system environment (unlike the front-end editor).

You can select a mode by following the menu path Utilities � Settings from
any ABAP Workbench tool to open the User-Specific Settings dialog box (see
Figure 3.7).

On this screen, select the ABAP Editor tab and then the Editor tab. Under the
Editor tab, select the radio button for your preferred editor.

Figure 3.7 ABAP Editor Settings

We recommend using the new front-end editor; it offers many powerful features
for writing and editing ABAP code, such as syntax highlighting, code hints, and
auto-completion. Figure 3.8 highlights some of the features of the new editor that
are not available in other editor modes.

As shown in Figure 3.8, the new front-end editor supports bookmarking for fast
navigation, highlights the changes to the source code when editing, provides code
hints and auto-completion of language elements and structures, and displays ele-
ment blocks that easily can be expanded or collapsed for legibility.
89

Introduction to the ABAP Environment3
Figure 3.8 New Editor Mode Features

You can also quickly set a breakpoint by double-clicking the margin line. From
within the settings, you can create user-defined source code templates to speed
up the development process and avoid manually writing repetitive code.

3.2.2 Function Builder

Function modules are reusable software blocks that can be called from ABAP
programs. The Function Builder is the ABAP Workbench tool that allows you to
create and maintain function modules globally in the system. These function
modules can be called by any ABAP program or remotely by external pro-
grams.

Function modules are called in ABAP programs or called remotely by external
programs and never executed by the user directly. However, Function Builder
provides a test environment to test the function modules without actually calling
them in a program.

Function Builder also serves as a central library to search for existing function
modules to use in your programs. You can also maintain documentation for each
function module during development in the Function Builder, allowing other

Use bookmark for
fast navigation

Notice your changes

Click on margin to
set breakpoint

Press to see Settings

Collapse Expand block
90

ABAP Workbench Overview 3.2
developers to understand the functionality and parameter interface of the func-
tion module when they use the module in their own programs.

Access Function Builder via Transaction SE37 or from the Repository Browser
(Transaction SE80). Figure 3.9 shows Function Builder.

Figure 3.9 Function Builder

We’ll explain Function Builder in more detail and you’ll use it to develop function
modules in Chapter 7.

3.2.3 Class Builder

Similar to how Function Builder is used to create and maintain function modules,
Class Builder is an ABAP Workbench tool used to create, define, change, and test
global ABAP classes and interfaces. ABAP classes are procedures that implement
object-oriented programming concepts (see Chapter 8).

ABAP classes can be defined locally in an ABAP program or globally in the system
using the Class Builder tool. Class Builder allows you not only to define and main-
tain global classes but to maintain relations such as inheritance between objects,
91

Introduction to the ABAP Environment3
redefine methods in subclasses, and maintain attributes, methods, and events for
the class. Class Builder also provides the runtime to test classes and interfaces.

Access Class Builder via Transaction SE24 or from the Repository Browser (Trans-
action SE80). Figure 3.10 shows Class Builder. As you can see, the Class Builder
includes multiple tabs to maintain various components of the class, such as meth-
ods, attributes, interfaces, and more.

Figure 3.10 Class Builder

We’ll explain Class Builder in more detail and you’ll use it to implement global
classes in Chapter 7.

3.2.4 Screen Painter

Screen Painter is an ABAP Workbench tool used to create screens for ABAP pro-
grams and to maintain the screen flow logic. In ABAP, three types of screen can
be defined for ABAP programs: selection screens, list screens, and general
screens. Selections screens and list screens are automatically generated using spe-
cific ABAP keywords. General screens are designed and maintained using Screen
Painter.

Screen Painter provides a graphical layout editor mode in SAP GUI for Windows,
in which various screen elements, like input fields, text fields, and dropdown list
boxes, can be defined easily via drag-and-drop functionality.
92

ABAP Workbench Overview 3.2
For operating systems that don’t support the graphical layout editor mode (e.g.,
SAP GUI for Java), an alphanumerical mode is also available to work with screen
elements.

Figure 3.11 Screen Painter

As shown in Figure 3.11, Screen Painter includes three tabs:

� Attributes

In the Attributes tab, you can adjust the screen attributes, such as the descrip-
tion, type of screen, and default behavior. There are three types of screens: the
normal screen, the subscreen, and the modal dialog box. A normal screen is
shown in the SAP GUI window, a subscreen is shown in a specific area within
the normal screen window, and a modal dialog box is shown as a pop-up win-
dow. You create the required type of screen depending on your requirements
under Screen Type in the Attributes tab.
93

Introduction to the ABAP Environment3
� Element list/Screen Layout

Under the Elements list tab, you maintain the screen elements and the layout.
You can maintain a variety of screen elements, such as input/output fields, text
fields, radio buttons, checkboxes, and push buttons. You can also maintain
more complex screen elements, such as tab strip controls and table controls.
This tab is automatically filled with the screen element list when you design the
screen using the graphical layout editor.

� Flow Logic

In the Flow Logic tab, you can maintain the flow logic of the screen. The run-
time environment triggers the code in the flow logic based on the screen
events. For example, a process before output (PBO) event is triggered before
the screen is shown to the user, so any code that you want to execute before the
screen is shown (such as disabling a field) can be handled by maintaining a PBO
event in the flow logic of the screen.

The graphical layout editor is only available in SAP GUI for Windows. This editor
is shown in Figure 3.12.

Figure 3.12 Layout Editor in Graphical Mode

Graphical Layout Editor

Screen Painter’s graphical layout editor is part of SAP GUI and works only with the SAP
NetWeaver Application Server 6.10 with SAP GUI release 6.10 or later. In SAP NetWea-
ver 4.0, it works with SAP GUI release 6.20 or later, patch 56, or release 6.40, patch 8.
94

ABAP Workbench Overview 3.2
3.2.5 Menu Painter

Menu Painter is an ABAP Workbench tool with which you can design user inter-
faces for ABAP programs. As discussed in Section 3.1.3, various screen ele-
ments—such as items in the menu bar, the standard toolbar, and the application
toolbar—can be designed using Menu Painter. For example, you can define the
Back, Exit, and Cancel buttons for your screen or define application-specific
menu options in the menu bar and define corresponding icons in the application
toolbar for quick access. These items are collectively called the GUI statuses of the
screen.

Figure 3.13 shows the Menu Painter screen on which various UI elements for a
screen can be maintained. You can maintain the elements for the menu bar, stan-
dard toolbar, application toolbar, and function keys that can be used as keyboard
shortcuts by the user.

Figure 3.13 Menu Painter

We’ll explore Menu Painter further when we discuss dialog programming in
Chapter 12.
95

Introduction to the ABAP Environment3
3.2.6 ABAP Data Dictionary

ABAP Data Dictionary (see Figure 3.14) is a tool provided by SAP to centrally cre-
ate and maintain data definitions. You can use ABAP Data Dictionary to create
and maintain global user-defined types, like data elements, structures, and table
types that can be used in any ABAP program.

You can use ABAP Data Dictionary to create objects (tables and views) in the
underlying relational database, which facilitates central description of data with-
out redundancy.

Figure 3.14 ABAP Data Dictionary: Initial Screen

In ABAP programs, Open SQL statements process data from the underlying rela-
tional database. Open SQL statements consist of the Data Manipulative Language
(DML) part of SQL that helps perform certain actions, like reading, modifying, or
updating data in database tables.

To perform certain actions, like creating or deleting database tables or creating
table indexes, you use the Data Definition Language (DDL) part of SQL, which
requires using Native SQL statements. However, you only use Open SQL state-
ments in ABAP applications; it’s highly recommended not to use Native SQL
statements to define database tables or perform any actions on the underlying
relation database.
96

ABAP Workbench Overview 3.2
Instead, use ABAP Data Dictionary to create and maintain tables and views or per-
form any actions that would otherwise require the use of Native SQL statements.
This not only helps to avoid redundancy but also helps clarify how the logical
structure of the objects used in application development are mapped to the
underlying relational database.

All ABAP Data Dictionary objects are globally visible in the system and main-
tained centrally. For example, if many programs are using a particular data ele-
ment and the definition of the data element needs to be changed due to a change
in business requirements, the change will be automatically reflected for all the
programs using the data element. Therefore, no program needs to be manually
updated, because the runtime system automatically adjusts to the changes in
ABAP Data Dictionary and ensures that all the applications and tools always
access current data.

The most important object types in ABAP Data Dictionary are as follows:

� Tables
Tables are created in the underlying relational database using definitions from
ABAP Data Dictionary. When a table is activated in ABAP Data Dictionary, the
system uses the structure of the ABAP Data Dictionary table to create a physical
table in the underlying database with the same structure as the table in ABAP
Data Dictionary.

� Views
Multiple tables can be combined to create a logical view. The structure of the
view is created in ABAP Data Dictionary, and the view of the database is then
created using this structure.

� Data types
You can create global data types in ABAP Data Dictionary to centrally maintain
the definition of data objects that use these global types. When a data type is
changed in ABAP Data Dictionary, ABAP Data Dictionary automatically reflects
the change in all the programs using that data type.

� Lock objects
Lock objects provide logical locking functionality in ABAP applications to pre-
vent more than one user from accessing or manipulating the same data at the
same time. When you create a lock object in ABAP Data Dictionary, ABAP Data
Dictionary generates a function module that can be used in ABAP programs to
97

Introduction to the ABAP Environment3
implement the logical locking functionality to restrict simultaneous data access
by multiple users.

� Domains
Domains are used to maintain the technical attributes (type and length) for
fields. When multiple fields share the same technical attributes, you can main-
tain a domain centrally and assign the domain to each field that shares the same
technical description.

A value range for a table or structure component can be defined by maintaining
a value range in the domain when the component refers to this domain.
Domains are always assigned to data elements.

3.2.7 Object Navigator

The Object Navigator provides an IDE in which all the ABAP Workbench tools
can be used centrally. For example, when developing an ABAP application that
requires defining screens, GUI statuses, and ABAP Data Dictionary objects, these
respective tools can be opened in the Object Navigator itself without having to
leave the screen to access individual tools.

The Object Navigator helps organize your development objects during develop-
ment and makes it easy to edit all related objects in an application in one place.

As shown in Figure 3.15, the Object Navigator includes two main areas:

� Navigation area
The navigation area displays all the development objects of the application. All
the objects are organized into folders with a tree structure.

� Tool area
The tool area is where the development objects are opened. It automatically
opens the respective ABAP Workbench tool to open the object. For example,
when you create or edit a screen, the Object Navigator automatically opens the
screen using Screen Painter in the tool area.

Now that you’ve seen a general overview of the objects in the ABAP Workbench,
the final section in this chapter will look at the other IDE that can be used with
ABAP: Eclipse.
98

Eclipse IDE Overview 3.3
Figure 3.15 Object Navigator

3.3 Eclipse IDE Overview

SAP provides various development tools and functionalities for building and
extending its business applications. With changing and evolving technologies,
SAP has grown its portfolio of development tools.

Eclipse is a popular IDE that offers a range of benefits for Java application devel-
opment. With SAP NetWeaver 7.31 SPS 4, SAP introduced ABAP Development
Tools (ADT) for SAP NetWeaver, also known as ABAP in Eclipse. ADT provides the
functionality of the ABAP Workbench (Transaction SE80) with Eclipse capabili-
ties, aligning ABAP with SAP’s other Eclipse-based development environments.

The learning curve involved is negligible, and if you’re familiar with using the tra-
ditional ABAP Workbench tools in the SAP GUI environment, you should feel
right at home with Eclipse.

The first step toward using ABAP in Eclipse is to set up a personal development
environment, as opposed to the bundled environment you may be accustomed to
using Object Navigator.

Tool Area

Navigation Area
99

Introduction to the ABAP Environment3
However, setting up Eclipse is as easy as installing the SAP GUI. Please note that
not every tool has been migrated to the Eclipse platform yet; some tools will be
added to future ADT releases. For some of the tools, SAP is evaluating new con-
cepts that fit much better into its platform strategy.

For the tools that are not yet available for ADT, you can use the tight SAP GUI
integration for now, which allows you to use existing transactions with context-
aware navigation. For example, there are no native dynpro development tools
within Eclipse, but you can use the integrated SAP GUI to run the standard ABAP
Workbench tools like Screen Painter or Menu Painter within Eclipse.

Follow these steps to install and set up the Eclipse IDE:

1. Download the latest Eclipse release from http://www.eclipse.org/. Eclipse is
available for Windows, Mac, and Linux platforms. The latest version available
at the time of writing (October 2016) is Neon (see Figure 3.16). Make sure to
check and download the latest version of Eclipse.

Figure 3.16 Eclipse Website
100

http://www.eclipse.org/

Eclipse IDE Overview 3.3
2. You can download the basic package or any of the predefined packages. Eclipse
does not come with ABAP as a predefined package yet. Therefore, you need
to download ADT separately from SAP’s website. Go to https://tools.hana.
ondemand.com/#abap for all the required information (see Figure 3.17). This
webpage will provide information on which tools are available for the different
Eclipse versions, therefore, your page may differ.

Figure 3.17 SAP Development Tools

3. To add ADT to Eclipse, open the installation wizard from within Eclipse via the
menu path Help � Install New Software (see Figure 3.18).

4. In the installation wizard, enter the URL in the Word With field and click Add

to see a list of the available tools (see Figure 3.19). From the list, select ABAP

Development Tools for SAP NetWeaver and click Next to continue.
101

https://tools.hana.ondemand.com/#abpa
https://tools.hana.ondemand.com/#abpa

Introduction to the ABAP Environment3
Figure 3.18 Installing ADT in Eclipse

Figure 3.19 Eclipse Installation Wizard
102

Eclipse IDE Overview 3.3
5. Once the installation completes, you can create a new project to start working.
From the menu bar, select File � New � ABAP Project.

6. Now, you can load the logon parameters for your SAP system from the existing
SAP GUI information or manually maintain the connection parameters. Figure
3.20 shows the System Connection screen. Click Next to enter the SAP logon
credentials to connect to your SAP system.

Note

Note that your backend SAP system requires certain configurations to be maintained to
make a successful connection and work with ADT. SAP Basis administrators maintain
these configurations, therefore, please contact your SAP Basis administrator if you need
further information.

Figure 3.20 Connection Parameters Screen
103

Introduction to the ABAP Environment3
7. When you create an ABAP project in Eclipse, a connection is established to an
existing ABAP backend to gain access to the development objects (such as pro-
grams, ABAP Data Dictionary objects, and classes) maintained in the system’s
ABAP packages.

8. Once you’ve established a connection, you can use the Eclipse Project

Explorer (see Figure 3.21) to open the objects of the backend ABAP packages
and add them to your project.

Figure 3.21 Project Explorer

You can now select a development object contained in an ABAP package and dis-
play it in a particular tool. For example, you can open a program in the source
code editor if you want to modify the code.

The Outline view, which is located beneath the Project Explorer view, displays
the structure of the selected development object, such as the program variables,
and enables you to navigate directly to that element in the source code.

Eclipse IDE provides a quick start guide when you open the editor, which should
help you get up to speed with Eclipse. You should find the Eclipse editor quite
104

Summary 3.4
familiar; most of the features are similar to the new front-end editor in the tradi-
tional SAP GUI that we previously discussed.

3.4 Summary

In this chapter, we looked at both the SAP environment and the ABAP environ-
ment. We walked through steps for logging on to the SAP system and then looked
at the different elements found on a screen in SAP. We then looked at how to
navigate the menu tree in SAP using transaction codes.

At that point, we shifted our focus to the two IDEs: SAP GUI and Eclipse. We
explored the ABAP Workbench tools, including ABAP Editor, Function Builder,
Class Builder, Screen Painter, Menu Painter, ABAP Data Dictionary, and Object
Navigator. We’ll use all the tools discussed in this chapter to develop ABAP
objects and will have an opportunity to explore more about them when we dis-
cuss specific topics in this book.

In the final section of this chapter, we provided an overview of how to set up
and use the Eclipse IDE. Many of the settings in Eclipse are similar to those in
SAP GUI.

With this basic understanding of the SAP and ABAP environment and the various
ABAP Workbench tools in place, in the next chapter we’ll dive into basic ABAP
programming concepts, such as ABAP syntax, data types, and data objects. At the
end of the next chapter, you’ll create your first ABAP program.
105

Chapter 4

In this chapter, we’ll look at basic ABAP programming language concepts.
The concepts discussed in this chapter will lay the foundations to write
your own ABAP programs.

4 ABAP Programming Concepts

ABAP programs process data from the database or an external source. As discussed
in Chapter 2, ABAP programs run in the application layer, and ABAP program
statements can work only with locally available data in the program. External data,
like user inputs on screens, data from a sequential file, or data from a database ta-
ble, must always be transported to and saved in the program’s local memory in or-
der to be processed with ABAP statements.

In other words, before any data can be processed with an ABAP program, it must
first be read from the source, stored locally in the program memory, and then
accessed via ABAP statements; you can’t work with the external data directly
using ABAP statements. This temporary data that exists in an ABAP program
while the program is executed is called transient data and is cleared from memory
once the program execution ends. If you wish to access this data later, it must be
stored persistently in the database; such stored data is called persistent data.

This chapter provides information on the basic building blocks of the ABAP pro-
gramming language in order to understand the different ways to store and pro-
cess data locally in ABAP programs. In Section 4.1, we begin by looking at the
general structure of an ABAP program, before diving into ABAP syntax rules and
ABAP keywords in Section 4.2 and Section 4.3, respectively.

Section 4.4 introduces the TYPE concept, and explores key elements such as data
types and data objects, which define memory locations in ABAP programs to
store data locally. In Section 4.5, we discuss the different types of ABAP state-
ments that can be employed, including declarative, modularization, control, call,
and operational statements. Finally, in Section 4.6, we conclude this chapter by
walking through the steps to create your first ABAP program!
107

ABAP Programming Concepts4
Initially, we’ll use a procedural model for our examples to keep things simple;
we’ll switch to an object-oriented model after we discuss object-oriented pro-
gramming in Chapter 8.

4.1 General Program Structure

Any ABAP program can be broadly divided into two parts:

� Global declarations
In the global declaration area, global data for the program is defined; this data
can then be accessed from anywhere in the program.

� Procedural
The procedural part of the program consists of various processing blocks such
as dialog modules, event blocks, and procedures. The statements within these
processing blocks can access the global data defined in the global declarations.

In this section, we’ll look at both of these program structure parts.

4.1.1 Global Declarations

The global declaration part of an ABAP program uses declarative statements to
define memory locations, which are called data objects and which store the work
data of the program. ABAP statements work only with data available in the pro-
gram as content for data objects, so it’s imperative that data is stored in a data
object before it’s processed by an ABAP program.

Data objects are local to the program; they can be accessed via ABAP statements
in the same program. The global declaration area exists at the top of the program
(see Figure 4.1). We use the term global with respect to the program; data objects
defined in this area are visible and valid throughout the entire ABAP program and
can be accessed from anywhere in the source code using ABAP statements.

ABAP also uses local declarations, which can be accessed only within a subset of
the program. We’ll explore local declarations in Chapter 7 when we discuss mod-
ularization techniques.
108

General Program Structure 4.1
Figure 4.1 Program Structure

4.1.2 Procedural

After the declarative area is the procedural portion of the program. Here, the pro-
cessing logic of the ABAP program is defined. In this section of the ABAP pro-
gram, you typically use various ABAP statements to import and process data from
an external source.

The procedural area is where the program logic is implemented. It uses various
processing blocks that contain ABAP statements to implement business require-
ments. For example, in a typical report, the procedural area contains an event
block to process the selection screen and validate user inputs on the selection
screen and another event block to fetch the data from the database based on user
input, and then calls a procedure to display the output to the user.

Declaration Part

Procedural Part
109

ABAP Programming Concepts4
4.2 ABAP Syntax

The source code of an ABAP program is simply a collection of various ABAP state-
ments, interpreted by the runtime environment to perform specific tasks. You use
declarative statements to define data objects, modularization statements to define
processing blocks, and database statements to work with the data in the database.

In this section, we’ll look at the basic syntax rules that every ABAP programmer
should know. We’ll then look at the use of chained statements and comment
lines.

4.2.1 Basic Syntax Rules

There are certain basic syntax rules that need to be followed while writing ABAP
statements:

� An ABAP program is a collection of individual ABAP statements that exist
within the program. Each ABAP statement is concluded with a period (".") and
the first word of the statement is known as a keyword.

� An ABAP statement consists of operands, operators, or additions to keywords
(see Figure 4.2). The first word of an ABAP statement is an ABAP keyword, the
remaining can be operands, operators, or additions. Operands are the data
objects, data types, procedures, and so on.
Various operators are available, such as assignment operators that associate the
source and target fields of an assignment (e.g., = or ?=), arithmetic operators
that assign two or more numeric operands with an arithmetic expression (e.g.,
+, -, *), relational operators that associate two operands with a logical expres-
sion (such as =, <, >), etc. Each ABAP keyword will have its own set of additions.

� Each word in the statement must be separated by at least one space.

� An ABAP statement ends with a period, and you can write a new statement on
the same line or on a new line. A single ABAP statement can extended over sev-
eral lines.

� ABAP code is not case-sensitive.

In Figure 4.2, the program shown consists of three ABAP statements written
across three lines. The first word in each of these statements (REPORT, PARAMETERS,
110

ABAP Syntax 4.2
and WRITE) is a keyword. As you can see, each statement begins with a keyword
and ends with a period. Also, each ABAP word is separated by a space.

Figure 4.2 ABAP Statement

You can write multiple statements on one line or one statement can extend over
multiple lines. Therefore, if you wish, you can rewrite the code in Figure 4.2 as
shown:

REPORT ZCA_DEMO_PROGRAM. PARAMETERS p_input(10) TYPE c. WRITE p_
input RIGHT-JUSTIFIED.

However, to keep the code legible, we recommend restricting your program to
one statement per line. In some cases, it’s recommended to break a single state-
ment across multiple lines—for example:

SELECT * FROM mara INTO TABLE it_mara WHERE matnr EQ p_matnr.

The above statement may be written as shown in Listing 4.1 to make it more leg-
ible.

SELECT * FROM mara
INTO TABLE it_mara
WHERE matnr EQ p_matnr.

Listing 4.1 Example of Splitting Statement across Multiple Lines

4.2.2 Chained Statements

If more than one statement starts with the same keyword, you can use a colon (:)
as a chain operator and separate each statement with a comma. These are called
chained statements, and they help you avoid repeating the same keyword on each
line.

For example,

DATA v_name(20) TYPE c.
DATA v_age TYPE i.

Keyword Operand Addition
111

ABAP Programming Concepts4
Also can be written as

DATA : v_name(20) TYPE c,
v_age TYPE i.

End the last statement in the chain with a period. Chained statements are not lim-
ited to keywords; you can put any identical first part of a chain of statements
before the colon and write the remaining parts of the individual statements sepa-
rated by comma—for example,

v_total = v_total + 1.
v_total = v_total + 2.
v_total = v_total + 3.
v_total = v_total + 4.

can be chained as

v_total = v_total + : 1, 2, 3, 4.

Note

ABAP code is not case-sensitive, so you can use either uppercase or lowercase to write
ABAP statements. We recommend writing keywords and their additions in uppercase
and using lowercase for other words in the statement to make the code more legible.

4.2.3 Comment Lines

To make your source code easy to understand for other programmers, you can
add comments to it (see Listing 4.2). Comment lines are ignored by the system
when the program is generated, and they’re useful in many ways.

DATA f1 TYPE c LENGTH 2 VALUE 'T3'.
DATA f2 TYPE n LENGTH 2.
*This is a comment line
f2 = f1.
WRITE f2. "This is also a comment line

Listing 4.2 Comment lines

There are two ways to add comment lines in source code:

� You can enter an asterisk (*) at the beginning of a line to make the entire line
a comment.

� You can enter a double quotation mark (") midline to make the part of the line
after the quotation mark a comment this is called an in-line comment).
112

ABAP Keywords 4.3
You can comment (i.e., set as a comment) on a block of lines at once (a multiline
comment) by selecting the lines to be commented on and pressing (Ctrl) + (<) on
the keyboard. Similarly, to uncomment (i.e., set as normal code) a block of lines,
you can select the lines and press (Ctrl) + (>).

Alternatively, you can also use the context menu to comment or uncomment
code. To comment a line of code or a block lines, select the code, right-click, and
select the appropriate option from the Format context menu. This helps you
avoid the tedious job of adding asterisks manually at the beginning of each line.

Now that you have a better understanding of basic ABAP syntax rules and chain-
ing ABAP statements, in the next section, we’ll look at the keywords used in
ABAP.

4.3 ABAP Keywords

Because each ABAP statement starts with a keyword, writing ABAP statements is
all about choosing the right keyword to perform the required task. Every key-
word provides specific functionality and comes with its own set of additions,
which allow you to extend the keyword’s functionality.

For each keyword, SAP maintains extensive documentation, which serves as a
guide to understanding the syntax to use with the keyword and the set of addi-
tions supported for the keyword.

You can access the keyword documentation by typing “ABAPDOCU” in the com-
mand bar to open it just like any other transaction or by placing the cursor on the
keyword and pressing (F1) while writing your code in ABAP Editor. You can also
visit https://help.sap.com/abapdocu_750/en/abenabap.htm, to access an online ver-
sion of the ABAP keyword documentation (see Figure 4.3).

Because there are literally hundreds of keywords that can be used in ABAP, the
best way to become familiar with the keywords is to explore them in relation to
a requirement. We’ll be taking this approach throughout the book as we intro-
duce you to these keywords in various examples.
113

https://help.sap.com/abapdocu_750/en/abenabap.htm

ABAP Programming Concepts4
Figure 4.3 ABAP Keyword Documentation

4.4 Introduction to the TYPE Concept

An ABAP program only works with data inside data objects. The first thing you
do when developing a program is declare data objects. Inside these data objects,
you store the data to be processed in your ABAP program. You use declarative
statements to define data objects that store data in the program; these statements
are called data declarations.

Typically, you’ll work with various kinds of data, such as a customer’s name,
phone number, or amount payable. Each type of data has specific characteristics.
The customer’s name consists of letters, a phone number consists of digits from 0
to 9, and the amount due to the customer will be a number with decimal values.
Identifying the type and length of data that you plan to store in data objects is
what the TYPE concept is all about.

In this section, we’ll look at data types, domains, and data objects.
114

Introduction to the TYPE Concept 4.4
4.4.1 Data Types

Data types are templates that define data objects. A data type determines how the
contents of a data object are interpreted by ABAP statements. Other than occupy-
ing some space to store administrative information, they don’t occupy any mem-
ory space for work data in the program. Their purpose simply is to supply the
technical attributes of a data object.

Data types can be broadly classified as elementary, complex, or reference types.
In this chapter, we’ll primarily explore the elementary data types and will only
briefly cover complex types and reference types. More information on complex
data types can be found in Chapter 5, and more details about reference types are
provided in Chapter 8.

Elementary Data Types

Elementary data types specify the types of individual fields in an ABAP program.
Elementary data types can be classified as predefined elementary types or user-
defined elementary types. We’ll look at these subtypes next.

Predefined Elementary Data Types

The SAP system comes built in with predefined elementary data types. These data
types are predefined in the SAP NetWeaver AS ABAP kernel and are visible in all
ABAP programs. You can use these predefined elementary data types to assign a
type to your program data objects. You can also create your own data types (user-
defined elementary data types) by referring to the predefined data types.

Table 4.1 lists the available predefined elementary data types.

Data Type Definition

i Four-byte integer

int8 Eight-byte integer

f Binary floating-point number

p Packed number

decfloat16 Decimal floating-point number with sixteen decimal places

decfloat34 Decimal floating-point number with thirty-four decimal places

Table 4.1 Predefined Elementary Data Types
115

ABAP Programming Concepts4
Predefined elementary data types can be classified as numeric or nonnumeric
types. There are six predefined numeric elementary data types:

� 4-byte integer (i)

� 8-byte integer (int8)

� Binary floating-point number (f)

� Packed number (p)

� Decimal floating point number with 16 decimal places (decfloat16)

� Decimal floating point number with 34 decimal places (decfloat34)

There are five predefined nonnumeric elementary data types:

� Text field (c)

� Numeric character string (n)

� Date (d)

� Time (t)

� Hexadecimal (x)

The field length for data types f, i, int8, decfloat16, decfloat34, d, and t is
fixed. In other words, you don’t need to specify the length when you use these
data types to declare data objects (or user-defined elementary data types) in your
program. The field length determines the number of bytes that the data object
occupies in memory. In types c, n, x, and p, the length is not part of the type defi-
nition. Instead, you define it when you declare the data object in your program.

c Text field
(alphanumeric characters)

d Date field
(format: YYYYMMDD)

n Numeric text field
(numeric characters 0 to 9)

t Time field
(format: HHMMSS)

x Hexadecimal field

Data Type Definition

Table 4.1 Predefined Elementary Data Types (Cont.)
116

Introduction to the TYPE Concept 4.4
Before we discuss the predefined elementary data types further, let’s see how
they’re used to define a data object in the program.

The keyword used to define a data object is DATA. For the syntax, you provide a
name for your data object and use the addition TYPE to refer it to a data type, from
which the data object can derive its technical attributes.

For example, the line of code in Figure 4.4 defines the data object V_NAME of TYPE
c (character).

Figure 4.4 Declaring a Data Object

Notice that we did not specify the length in Figure 4.4; therefore, the object will
take the data type’s initial length by default. Here, V_NAME will be a data object of
TYPE c (text field) and LENGTH 1 (default length). It can store only one alphanu-
meric character.

If you wish to have a different length for your data object, you need to specify the
length while declaring the data object, either with parentheses or using the addi-
tion LENGTH:

DATA v_name(10) TYPE c.
DATA v_name TYPE c LENGTH 10.

In this example, V_NAME will be a data object of TYPE c and LENGTH 10. It can now
store up to 10 alphanumeric characters. The Valid Field Length column in Table
4.2 lists the maximum length that can be assigned to each data type.

For data types of fixed lengths, you don’t need to specify the length, because it’s
part of the TYPE definition—for example:

DATA count TYPE i.
DATA date TYPE d.

Table 4.2 lists the initial length of each data type, its valid length, and its initial
value. The initial length is the default length that the data object occupies in mem-
ory if no length specification is provided while defining the data object, and the
initial value of a data object is the value it stores when the memory is empty.

Keyword Data Object Name Data Type Reference
117

ABAP Programming Concepts4
For example, as shown in Table 4.2, a TYPE c data object will be filled with spaces
initially, whereas a TYPE n data object would be filled with zeros.

Predefined nonnumeric data types can be further classified as follows:

� Character types
Data types c, n, d, and t are character types. Data objects of these types are
known as character fields. Each position in one of these fields can store one
code character. For example, a data object of LENGTH 5 can store five characters
and a data object of LENGTH 10 can store ten characters. Currently, ABAP only
works with single-byte codes, such as American Standard Code for Information
Interchange (ASCII) and Extended Binary Coded Decimal Interchange Code
(EBCDI). As of release 6.10, SAP NetWeaver AS ABAP supports both Unicode
and non-Unicode systems. However, support for non-Unicode systems has
been withdrawn from SAP NetWeaver 7.5.

Data Type Initial Field Length
(Bytes)

Valid Field Length
(Bytes)

Initial Value

Numeric Types

i 4 4 0

int8 8 8 0

f 8 8 0

p 8 1–16 0

decfloat16 8 8 0

decfloat34 16 16 0

Character Types

c 1 1–65535 Space

d 8 8 '00000000'

n 1 1–65535 '0 … 0'

t 6 6 '000000'

Hexadecimal Type

x 1 1–65535 X'0 … 0'

Table 4.2 Elementary Data Types: Technical Specifications
118

Introduction to the TYPE Concept 4.4
Single-byte code refers to character encodings that use exactly one byte for each
character. For example, the letter A will occupy one byte in single-byte encod-
ing.

ASCII is a character-encoding standard. ASCII code represents text in comput-
ers and other devices and is a popular choice for many modern character-
encoding schemes. In an ASCII file, each alphabetic or numeric character is rep-
resented with a seven-bit binary number.

EBCDI is an eight-bit character encoding, which means each alphabetic or
numeric character is represented with an eight-bit binary number.

� Hexadecimal types
The data type x interprets individual bytes in memory. These fields are called
hexadecimal fields. You can process single bits using hexadecimal fields. Hexa-
decimal notation is a human-friendly representation of binary-coded values.
Each hexadecimal digit represents four binary digits (bits), so a byte (eight bits)
can be more easily represented by a two-digit hexadecimal value.

With modern programming languages, we seldom need to work with data at the
bits and bytes levels. However, unlike ABAP (which uses single-byte code pages,
like ASCII), many external data sources use multibyte encodings. Therefore, TYPE
x fields are more useful in a Unicode system, in which you can work with the
binary data to be processed by an external software application.

For example, you can insert the hexadecimal code 09 between fields to create a
tab-delimited file so that spreadsheet software—like Microsoft Excel—knows
where each new field starts. TYPE x fields are also useful if you wish to create files
in various formats from your internal table data.

Predefined Elementary ABAP Types with Variable Length

The data types we’ve discussed so far either have a fixed length or require a
length specification as part of data object declaration. We assume that we know
the length of the data we plan to process; for example, a material number is
defined in SAP as an alphanumeric field with a maximum of eighteen characters
in length. Therefore, if you wish to process a material number in your ABAP pro-
gram, you can safely create a data object as a TYPE c field with LENGTH 18. How-
ever, there can be situations in which you need a field with dynamic length
because you won’t know the length of the data until runtime.
119

ABAP Programming Concepts4
For such situations, ABAP provides data types with variable lengths:

� string

This is a character type with a variable length. It can contain any number of
alphanumeric characters.

� xstring

This is a hexadecimal type with a variable length.

When you define a string as a data object, only the string header, which holds
administrative information, is created statically. The initial length of the string
data object is 0, and its length changes dynamically at runtime based on the data
stored in the data object—for example:

DATA path TYPE string.
DATA xpath TYPE xstring.

Table 4.3 highlights some of the use cases for the predefined elementary data
types.

Data Type Use Case

Numeric Types

i Use to process integers like counters, indexes, time peri-
ods, and so on. Valid value range is -2147483648 to
+2147483647.

If the value range of i is too small for your need, use
TYPE p without the DECIMALS addition.

Example syntax:

DATA f1 TYPE i. "fixed length

f Use to process large values when rounding errors aren’t
critical. To a great extent, TYPE f is replaced by dec-
float (decfloat16 and decfloat34) as of SAP Net-
Weaver AS ABAP 7.1.

Use data type f only if performance-critical algorithms
are involved and accuracy is not important.

Example syntax:

DATA f1 TYPE f. "fixed length

Table 4.3 Predefined Elementary Data Types and Use Cases
120

Introduction to the TYPE Concept 4.4
p Use type p when fractions are expected with fixed deci-
mals known at design time (distances, amount of money
or quantities, etc.).

Example syntax:

DATA f1 TYPE p DECIMALS 2. "Takes default le
ngth 8
* OR you can manually specify length.
DATA f1(4) TYPE p DECIMALS 3.

decfloat16 and decfloat34 If you need fractions with a variable number of decimal
places or a larger value range, use decfloat16 or dec-
float34.

Example syntax:

DATA f1 TYPE decfloat16.
DATA f1 TYPE decfloat34.

Nonnumeric Types

c Use to process alphanumeric values like names, places,
or any character strings.

Example syntax:

DATA f1 TYPE c.
DATA f1(10) TYPE c.
DATA f1 TYPE c LENGTH 10.

n Use to process numeric values like phone numbers or zip
codes.

Example syntax:

DATA f1 TYPE n.
DATA f1(10) TYPE n.
DATA f1 TYPE n LENGTH 10.

d Use to process dates; expected format is YYYYMMDD.

Example syntax:

DATA f1 TYPE d.

t Use to process time; expected format is HHMMSS.

Example syntax:

DATA f1 TYPE t.

Data Type Use Case

Table 4.3 Predefined Elementary Data Types and Use Cases (Cont.)
121

ABAP Programming Concepts4
For arithmetic operations, use numeric fields only. If nonnumeric fields are used
in arithmetic operations, the system tries to automatically convert the fields to
numeric types before applying the arithmetic operation. This is called type conver-
sion, and each data type has specific conversion rules. Let’s look at this concept in
more detail next.

Type Conversions

When you move data between data objects, either the data objects involved in the
assignment should be similar (both data objects should be of the same type and
length), or the data type of the source field should be convertible to the target
field.

If you move data between dissimilar data objects, then the system performs type
conversion automatically by converting the data in the source field to the target
field using the conversion rules. For the conversion to happen, a conversion rule
should exist between the data types involved.

For example, the code in Listing 4.3 assigns a character field to an integer field.

x Use to process the binary value of the data. Useful for
working with different code pages.

Example syntax:

DATA f1 TYPE x.
DATA f1(10) TYPE x.
DATA f1 TYPE x LENGTH 10.

string Use when the length of the TYPE c field is known only at
runtime.

Example syntax:

DATA f1 TYPE string.

xstring Use when the length of the TYPE x field is known only at
runtime.

Example syntax:

DATA f1 TYPE xstring.

Data Type Use Case

Table 4.3 Predefined Elementary Data Types and Use Cases (Cont.)
122

Introduction to the TYPE Concept 4.4
DATA f1 TYPE c LENGTH 2 VALUE 23.
DATA f2 TYPE i.
f2 = f1.

Listing 4.3 Type Conversion with Valid Content

In Listing 4.3, the data object f1 is defined as a character field with an initial value
of 23. Since f1 is of TYPE c, the value is interpreted as a character by the system
rather than an integer. The listing also defines another data object, f2, as an inte-
ger type.

When you assign the value of f1 to the data object f2, the system performs the
conversion using the applicable conversion rule (from c to i) before moving the
data to f2. If the conversion is successful, the data is moved. If the conversion is
unsuccessful, the system throws a runtime error. Because the field f1 has the
value 23, the conversion will be successful, because 23 is a valid integer.

Listing 4.4 assigns an initial value of T3 for the field f1. This is a valid value for a
character-type field, but what happens if you try to assign this field to an integer-
type field?

DATA f1 TYPE c LENGTH 2 VALUE 'T3'.
DATA f2 TYPE i.
f2 = f1.

Listing 4.4 Type Conversion with Invalid Content

In Listing 4.4, the field f1 has the value T3; because the system can’t convert this
value to a number, it’ll throw a runtime error by raising the exception CX_SY_CON-
VERSION_NO_NUMBER (see Figure 4.5) when the statement f2 = f1 is executed. The
runtime error can be avoided by catching the exception, which we will discuss in
Chapter 9.

Figure 4.5 Runtime Error Raised by Code in Listing 4.4
123

ABAP Programming Concepts4
There are two exceptions: A data object of TYPE t can’t be assigned to a data object
of TYPE d and vice versa. In addition, assignments between data objects of nearly
every different data type are possible.

Conversion Rules

The conversion rule for a TYPE c source field and a TYPE i target field is that they must
contain a number in commercial or mathematical notation. There are a few exceptions
however. The following lists a few of these exceptions:

� A source field that only has blank characters is interpreted with the number 0.

� Scientific notations is only allowed if it can be interpreted as a mathematical nota-
tion.

� Decimal places must be rounded to whole numbers.

You can read all the conversion rules and their exceptions by visiting the SAP Help web-
site at http://help.sap.com/abapdocu_750/en/abenconversion_elementary.htm.

Even though the automatic type conversion makes it easy to move data between
different types, do not get carried away. Exploiting all the conversion rules to
their full extent may give you invalid data. Only assign data objects to each other
if the content of the source field is valid for the target field and produces an
expected result.

For example, the code in Listing 4.5 will result in invalid data when a TYPE c field
containing character string is assigned to a numeric field.

DATA f1 TYPE c LENGTH 2 VALUE 'T3'.
DATA f2 TYPE n LENGTH 2.
f2 = f1.

Listing 4.5 Example Leading to Data Inconsistency

In Listing 4.5, f2 is of TYPE n and will have the value 03 (T is ignored) instead of
raising an exception as in the earlier case, when f2 was declared as TYPE i.

Type conversions are also performed automatically with all the ABAP operations
that perform value assignments between data objects (like arithmetic operations).

It’s always recommended to use the correct TYPE for the data you plan to process.
This not only saves the time of performing type conversions, it also allows your
ABAP statements to interpret the data correctly and provide additional function-
ality.
124

http://help.sap.com/abapdocu_750/en/abenconversion_elementary.htm

Introduction to the TYPE Concept 4.4
Say you want to process a date that’s represented in an internal format as YYYYM-
MDD. The following example explains how the WRITE statement interprets this
data based on the data type. In Listing 4.6, a data object date is defined as a TYPE
c field with 20151130 as the value to represent the date in internal format. When
this field is written to the output using the WRITE statement, the value is printed
as it is in the output. The WRITE statement does not interpret this value as a date;
instead, it’s interpreted as a text value.

DATA date TYPE c LENGTH 8 VALUE '20151130'.
WRITE date.

Listing 4.6 Date Stored in TYPE c Field

The output of the code in Listing 4.6 will be 20151130. If instead you declare the
data object date as TYPE d as shown in Listing 4.7, the output will depend on the
date format set by the country-specific system settings or the user’s personal set-
tings.

DATA date TYPE d VALUE '20151130'.
WRITE date.

Listing 4.7 Date Stored in TYPE d Field

SAP allows you to set your own personal date format. So, say that User 1 has his
personal date format set as MMDDYYYY, and User 2 has his personal date format
set as DDMMYYYY. When User 1 executes a program with the code in Listing 4.7,
the output would be 11302015, and when User 2 executes the same program, the
output would be 30112015.

Here, the WRITE statement can make use of the system settings/user’s personal set-
tings to display the output, because it can interpret the value as a date. In Listing
4.6, however, the value in the data object v_date was interpreted as a character
string, so the code outputted the value as is.

User-Defined Elementary Data Types

In ABAP, you can define your own elementary data types based on the predefined
elementary data types. These are called user-defined elementary data types and are
useful when you want to define a few related data objects that can be maintained
centrally.
125

ABAP Programming Concepts4
User-defined elementary data types can be declared locally in the program using
the TYPE keyword, or you can define them globally in the system in ABAP Data
Dictionary.

Say you want to create a family tree or a pedigree chart. You’d start by defining
various data objects to process the names of different family members. The data
object declarations would look something like what’s shown in Listing 4.8.

DATA : Father_Name TYPE c LENGTH 20,
Mother_Name TYPE c LENGTH 20,
Wife_Name TYPE c LENGTH 20,
Son_Name TYPE c LENGHT 20,
Daughter_Name TYPE c LENGTH 20.

Listing 4.8 Data Objects Referring to Predefined Types

Here, it’s assumed that the length of a person’s name can be a maximum of
twenty characters. Later, if you want to extend the length of a person’s name to
thirty characters, you’ll need to edit the definition of all data objects individually.

In Listing 4.8, the source code needs changes in five different places. This may
become time-consuming and tedious in larger programs.

To overcome this problem, first you can create a user-defined type and then point
all references to a person to this data type, as shown in Listing 4.9.

TYPES person TYPE c LENGTH 20.
DATA : Father_Name TYPE person,

Mother_Name TYPE person,
Wife_Name TYPE person,
Son_Name TYPE person,
Daughter_Name TYPE person.

Listing 4.9 Data Objects Referring to User-Defined Types

In Listing 4.9, you first define a user-defined elementary data type person using
the TYPE keyword, and this data type is then used to define other data objects.
Here, the data type person is based on the elementary TYPE c. This way, if you
need to extend the length of all data objects referring to a person in your code,
you just need to change the definition of your user-defined type rather than edit
each individual data object manually.

The basic syntax of the TYPE keyword is similar to that of the DATA keyword, but
with a different set of additions that can be used. Remember that data types don’t
occupy any memory space on their own and can’t be used to store any work data.
126

Introduction to the TYPE Concept 4.4
You always need to create a data object as an instance of a data type to work with
the program data.

Data types and data objects have their own namespaces, which means that a data
type and data object with the same name in the same program can exist. How-
ever, to avoid confusion, we follow certain naming conventions while defining
various data types and data objects. For example, global variables are prefaced
with gv_, local variables with lv_, internal tables with it_, and so on. These nam-
ing conventions are generally set by a company as part of its programming best
practices and coding standards.

Complex Data Types

Complex data types are made up of a combination of other data types and must be
created using existing data types. Complex data types allow you to work with
interrelated data types under a common name.

For more information on complex data types, see Chapter 5.

Reference Types

Reference types describe reference variables (data references and object references)
that provide references to other objects. For more information on reference
types, see Chapter 8. For more information on data references see Chapter 16.

Internal and External Format of Data

As you’ve seen, data can be represented in various formats. Say you have a
requirement indicating that the user wants to create a document and capture the
due date for each document. This data should be updated in the database so that
the user can later run a report to pull out all the documents that are due on a par-
ticular date.

While creating the document, users would prefer to input the due date in their
own personal format. For example, let’s assume there are two users, User 1 and
User 2, who will be using this application to create documents. User 1 inputs the
due date in MM/DD/YYYY format, and User 2 inputs the date in DD-MM-YYYY
format. Assume both users have created four documents in total and that the data
127

ABAP Programming Concepts4
has been updated in the database. The data in the database table would look like
Table 4.4.

Now, the report you want to develop takes the due date as an input to pull out the
documents that are due on that particular date. This report will have a select state-
ment something like the following to query the database table:

SELECT Document_Number FROM db_table WHERE Due_Date EQ inp_due_date.

Here, you’re comparing the data in the Due_Date column of the table with the
user-provided date to fetch all the matching document numbers. As you can see,
if the user inputs the November 5, 2015, as the due date in MM/DD/YYYY format
(11/05/2015), then the SELECT statement will fetch only document number 1001
and ignores document 1003, because the latter doesn’t match character-for-char-
acter with the given input. If the input is given in DD-MM-YYYY format (05-11-
2015), then document 1003 is fetched and 1001 is ignored. If you input the date
in any other format, none of the records are fetched.

Internal and external data formats can help with this issue. If you maintain the
internal format of the date as YYYYMMDD, you can convert the user-provided
date to the internal format (20151105) and save it to the database. In this way,
the data can be saved in the same format consistently. Similarly, you can convert
the date to an external format before displaying it to the user so that the user
always sees the date in his own preferred format.

Following this concept, the data in Table 4.5 can be represented as shown.

Document_Number Due_Date Created_By

1001 11/05/2015 USER1

1002 11/06/2015 USER1

1003 05-11-2015 USER2

1004 06-11-2015 USER2

Table 4.4 Data Represented in External Format

Document_Number Due_Date Created_By

1001 20151105 USER1

1002 20151106 USER1

Table 4.5 Dates Represented in Internal Format
128

Introduction to the TYPE Concept 4.4
Now, when the user inputs a date in your report, it’s always converted to the
internal format first before querying the database table to fetch the matching
records. This allows the user to input the date in any of the valid external formats
per his personal choice without worrying about the format the program expects.

Output Length of Data Types

In the previous section, the external format of date included two separators (/ or
-). The internal length of a date is eight characters, but to represent the date in an
external format requires two extra characters to accommodate the separators.
Therefore, the external length should be a minimum of ten characters. This is
determined by the output length of the data type.

If you examine the data object of TYPE i in the debugger, you’ll see that differ-
ent lengths have been assigned for Length and Output Length, as shown in
Figure 4.6.

Figure 4.6 Output Length

As shown in Figure 4.6, the data object f2 is of Type I with Length 4 bytes. How-
ever, the Output Length is 11 to accommodate the thousands separator for the
value.

If you check the same for a data object of Type D, you’ll see that the Length and
the Output Length are the same—eight bytes—as shown in Figure 4.7.

1003 20151105 USER2

1004 20151106 USER2

Document_Number Due_Date Created_By

Table 4.5 Dates Represented in Internal Format (Cont.)
129

ABAP Programming Concepts4
Figure 4.7 Output Length of Type d

If you return to Listing 4.7, you’ll see that the system outputted the date without
the separators, because there was no space in the data object to accommodate the
separators. Therefore, it simply converted the date to external format while ing-
noring the separators. The output length of each data type is predefined and can’t
be overridden manually.

If you want more control, you can create your own user-defined elementary data
types, as described earlier in this section.

4.4.2 Data Elements

As mentioned earlier, user-defined elementary data types can be created for local
reusability within the program or for global reusability across multiple programs.
The global user-defined elementary types are called data elements and are created
in ABAP Data Dictionary.

Data types defined using the TYPE keyword are only visible within the same pro-
gram that they’re created in. If you want to create an elementary user-defined
type with global visibility across the system, you can do so in ABAP Data
Dictionary. As you may recall from Chapter 3, ABAP Data Dictionary is com-
pletely integrated into ABAP Workbench. This allows you to create and manage
data definitions (metadata) centrally.

Now, let’s create a data element in ABAP Data Dictionary. Proceed through the
following steps to create a data element ZCB_PERSON, which is of TYPE c and
LENGTH 20:

1. Open ABAP Data Dictionary via Transaction SE11 in the command bar or by
navigating to the menu path Tools � ABAP Workbench � Development � ABAP

Dictionary in SAP menu.
130

Introduction to the TYPE Concept 4.4
2. Select the Data Type radio button, provide a name for your data element in the
field to the right of the button, and click the Create button. Because the data
elements are repository objects, they should exist in a customer namespace
(i.e., the data element name should start with Z or Y; see Figure 4.8).

Figure 4.8 ABAP Data Dictionary: Initial Screen

3. The system presents a dialog box (see Figure 4.9) asking you to select the data
type you want to create. Data Element represents the user-defined elementary
data type, so select the Data Element radio button and click Continue (green
checkmark). (We’ll have an opportunity to explore structures and table types in
later chapters.)

Figure 4.9 Create Type

4. On the next screen (see Figure 4.10), provide a short description for your data
type to help others understand its purpose. This short text is also displayed as
a title in the (F1) help for all screen fields referring to this data element.
131

ABAP Programming Concepts4
Note that the Data Type tab is selcted by default and the radio button Elemen-

tary Type preselected. Here, you have two options to maintain the technical
attributes for your data element: You can either derive them from a domain or
use one of the predefined types.

For now, use the predefined elementary data type; we’ll explore the domain
concept in the next section.

Figure 4.10 Change Data Element Screen

5. Select the Predefined Type radio button and enter the predefined type name in
the Data Type field. Note that ABAP Data Dictionary has its own predefined
elementary data types that correspond to the predefined elementary data types
in ABAP programs we discussed earlier.

6. Because we plan to create a character data type, you can enter “CHAR” in the
Data Type field or select it by using (F4) help in the field (see Figure 4.11).

7. Enter the length of the data type in the Length field. For this data element,
enter “20”. Click the Activate button (see Figure 4.12) or press (Ctrl)+ (F3) to
activate the data element. Save it to a package, and click Continue when an
informative message asks you to maintain field labels.
132

Introduction to the TYPE Concept 4.4
Figure 4.11 Data Type Value List

Figure 4.12 Activating a Data Element

8. If the data type supports decimals, you can also maintain the number of deci-
mal places in the Decimal Places field.

The data type we just created has global visibility and can be used to define data
objects or user-defined data types in any program, as shown:

DATA name TYPE ZCB_PERSON.
TYPES user TYPE ZCB_PERSON.

Activate Button
133

ABAP Programming Concepts4
If you change the definition of the data element, the changes will be automatically
reflected for all the objects refering to that data element. This allows you to cen-
trally maintain the definitions of all related objects. Because data elements are
global objects, it’s recommended not to change them without analyzing the
impact first.

There are many things that can be maintained at the data element level, like
search helps, field labels, and help documentation. The program fields can derive
these properties automatically. We’ll explore these concepts in greater detail in
Chapter 10.

4.4.3 Domains

A domain describes the technical attributes of a field. The primary function of a
domain is to define a value range that describes the valid data values for the fields
that refer to this domain.

However, if you plan to create multiple data elements that are technically the
same, you can attach a domain to derive the technical attributes of a data element.
This allows you to manage the technical attributes of multiple data elements cen-
trally, meaning that you can change the technical attributes once for the domain,
and the change will be reflected automatically for all the data elements that use
the domain. This is an alternative to changing each individual data element to
maintain technical attributes when a predefined elementary data type is selected.

A field can’t be referred to a domain directly; it picks up the domain reference
through a data element if the domain is attached to the data element. In other
words, you always attach a domain to a data element. Figure 4.13 depicts this
relationship.

In Figure 4.13, Field 1 refers to Data Element 1, whereas Field 2 and Field 3 refer
to Data Element 2. Both Data Element 1 and Data Element 2 are using the same
domain to derive technical attributes. This implies that Field 2 and Field 3 are
both semantically and technically the same, whereas Field 1 is semantically differ-
ent from Field 2 and Field 3 but is technically the same as these two fields.

For example, a sales document number and a billing document number can both
be technically the same, such as both being ten-digit character fields. However,
the sales document and billing document are semantically different (i.e., their
purposes are different). For such a case, you can use the same domain for both the
134

Introduction to the TYPE Concept 4.4
sales document number and billing document number but a separate data ele-
ment for each.

Figure 4.13 Fields, Data Elements, and Domain Relationships

You can also maintain a conversion routine at the domain level for automatic con-
version to internal and external data formats for fields referring to a domain.
We’ll discuss this topic more in Chapter 10.

You can take a top-down approach or bottom-up approach to create a domain; that
is, you either can create the domain separately first and attach it to a data element
or can create the domain while creating the data element. Let’s take a bottom-up
approach to create a domain and attach it to the previously created data element
ZCB_PERSON.

Because domains and data elements have their own namespaces, you can use the
same name for both of them. In the following example, you’ll create a domain
using the same name as the data element created previously in Section 4.4.2; you
can use a different name if it becomes too confusing.

The following steps will walk you through the procedure to create a domain in
ABAP Data Dictionary:

1. On the initial ABAP Data Dictionary screen (Figure 4.14), select the Domain

radio button, input the name of the domain, and click the Create button.
Domains are also repository objects, so they should exist in a customer name-
space.

2. Enter a Short Description for the domain. This short description is never seen
by end users. It’s displayed when searching for domains using (F4) help and it
helps other developers understand your domain’s purpose.

Field 1 Field 2 Field 3

Data Element 1 Data Element 2

Domain
135

ABAP Programming Concepts4
Figure 4.14 ABAP Dictionary: Initial Screen

3. Use the (F4) help for the Data Type field to select the data type and enter a
value for the No. Characters field. This value defines the field length (Figure
4.15). Optionally, you can enter the number of Decimal Places for numeric
types.

Figure 4.15 Change Domain Screen
136

Introduction to the TYPE Concept 4.4
4. You can also enter Output Characteristics like output length, conversion rou-
tine, or disabling automatic uppercase conversion for screen fields referring to
this domain. We’ll explore these options further in Chapter 10.

5. Activate the domain. To attach this domain to a data element, open the data ele-
ment and select the Domain radio button under the Elementary Type radio
button, as shown in Figure 4.16. Type the name of the domain and press
(Enter).

6. Notice that the Data Type and Length are chosen by the system automatically.
If the system does not set the Data Type and Length after pressing the (Enter)
key, it means the domain does not exist, and an informative message, No

active domain [domain_name] available, is displayed.

At this point, you can simply double-click the domain name to create it using
the top-down approach.

Figure 4.16 Attaching Domain to Data Element

4.4.4 Data Objects

Data objects derive their technical attributes from data types and occupy memory
space to store the work data of a program. ABAP statements access this content by
addressing the name of the data object. Data objects exist as an instance of data
137

ABAP Programming Concepts4
types. Each ABAP data object has a set of technical attributes, such as data type,
field length, and number of decimal places.

Data objects are the physical memory units with which your ABAP statements can
work. ABAP statements can address and interpret the contents of data objects. All
data objects are declared in the ABAP program and are local to the program,
which means they exist in the program memory and can be accessed only from
within the same program. There is no concept of defining data objects centrally in
the system.

Data objects are not persistent; they exist only while the program is being exe-
cuted. The life of the data object lasts only as long as the program execution lasts.
They are created when the program execution starts and destroyed when the pro-
gram execution ends.

Before you can process persistent data (such as data from a database or a sequen-
tial file), you must read the data into data objects first, which can then be accessed
by ABAP statements. Similarly, if you want to retain the contents of a data object
beyond the end of the program, you must save it in a persistent form. Technically,
anything that can store work data in a program can be called a data object.

Let’s explore different kinds of data objects that can be defined in your ABAP pro-
grams. In the following subsections, we will look at the different classifications of
data objects.

Literals

Literals are not created using any declarative statements, nor do they have names.
They exist in the program source code and are called unnamed data objects. Like
all data objects, they have fixed technical attributes.

You cannot access the memory of a literal to read its content, because it’s an
unnamed data object. This means that literals are not reusable data objects and
their contents can’t be changed. Unlike literals, all other data objects are named
data objects, which are explicitly declared in the program.

For example, in the following snippet, Hello World and 1234 are literals:

WRITE 'Hello World'.
WRITE 1234.
138

Introduction to the TYPE Concept 4.4
There are two types of literals:

� Numeric literals
Numeric literals are a sequence of digits (0 to 9) that can have a prefixed sign.
They do not support decimal separators or notation with a mantissa and expo-
nent.

Examples of numeric literals include the following:

� +415

� -345

� 400

The following excerpt shows numeric literals used in ABAP statements:

DATA f1 TYPE I VALUE -4563.
WRITE 1234.
F1 = 1234.

� Character literals
Character literals are alphanumeric characters in the source code of the pro-
gram enclosed in single quotation marks (') or back quotes (`).

For example:

'This is a text field literal'.
'1901 CA'.
`This is a string literal`.
`1901 CA`.

Character literals maintained in single quotes have the predefined type c and
length matching the number of characters. These are called text field literals.
The ones maintained with back quotes have the predefined type string and are
called string literals. If you use character literals where a numeric value is
expected, they are converted into a numeric value. Examples of character liter-
als that can be converted to numeric types include the following:

� '12345'.

� '-12345'.

� '0.345'.

� '123E5'.

� '+23E+12'.
139

ABAP Programming Concepts4
Variables

Variables are data objects for which content can be changed via ABAP statements.
Variables are named data objects and are declared in the declaration area of the
program. Different keywords, like DATA and PARAMETERS, declare different types
of variables.

For now, let’s explore these two keywords, which define variables, and defer the
discussion of other keywords to later chapters.

DATA

The DATA keyword defines a variable in every context. You can use this keyword
in the global declaration area of the ABAP program to declare a global variable
that has visibility throughout the program, or you can use it inside a procedure to
declare a local variable with visibility only within the procedure—for example:

DATA field1 TYPE i

In the preceding statement, a variable with the name field1 is defined as an inte-
ger field, using the DATA keyword.

Inline Declarations

SAP NetWeaver 7.4 introduced inline declaration, which no longer restricts you to
define your local variables separately at the beginning of the procedure. You can define
them inline as embedded in the given context, helping you to make your code thinner.
We’ll explore this concept in later chapters.

PARAMETERS

The PARAMETERS keyword plays a dual role. It defines a variable within the pro-
gram context and also generates a screen field (selection screen). This keyword is
used to create a selection screen for report programs. In these report programs,
we present a selection screen for the user to input the selection criteria for report
processing—for example:

PARAMETERS p_input TYPE c LENGTH 10.

In the preceding statement, a ten-character input field with the name p_input is
defined on the selection screen using the PARAMETERS keyword. This field also
exists as a variable in the program and is linked to the screen field. The input
made on the selection screen for this input field will be stored in the program as
the content of the p_input variable.
140

ABAP Statements 4.5
Constants

Constants are named data objects that are declared using a keyword and whose
content cannot be changed by ABAP statements. The keyword used to declare a
constant is CONSTANT. It is recommended to use constants in lieu of literals wher-
ever possible. Unlike literals, constants can be reused and maintained centrally.
The syntax of constants statement mostly matches the data statement. However,
with constants statements, it is mandatory to use the addition VALUE to assign an
initial value. This value cannot be changed at runtime. For example:

CONSTANTS c_item TYPE c LENGTH 4 VALUE 'ITEM'.

Text Symbols

A text symbol is a named data object in an ABAP program that is not declared in
the program itself. Instead, it’s defined as a part of the text elements of the pro-
gram.

A text symbol behaves like a constant and has the data type c with the length
defined in the text element. We’ll explore text symbols further in Chapter 6.

An example of a text symbol is WRITE text-001. In this statement, a text symbol of
the program with the number 001 is written to the output using the WRITE state-
ment. This text symbol is defined separately in ABAP Editor via the menu path
Goto � Text Elements � Text Symbols.

Text symbols are accessed using the syntax text-nnn, where nnn is the text sym-
bol number.

4.5 ABAP Statements

As we discussed earlier, the source code of an ABAP program is made up of vari-
ous ABAP statements. Unlike other programming languages like C/C++ or Java,
which contain a limited set of language-specific statements and provide most
functionality via libraries, ABAP contains an extensive set of built-in statements.
We’ll explore many ABAP statements as we progress in this book.

The best way to learn about the various ABAP statements available is to put them
in perspective with the requirements at hand. It is beyond the scope of this book
to cover all the available ABAP statements, so we’ll give a brief introduction to
141

ABAP Programming Concepts4
some popular statements here, and we’ll explore these in greater detail in the
upcoming chapters:

� Declarative statements
Declarative statements define data types or declare data objects that are used by
the other statements in a program.

Examples include TYPE, DATA, CONSTANTS, PARAMETERS, SELECT-OPTIONS, and
TABLES.

� Modularization statements
Modularization statements define the processing blocks in an ABAP program.
Processing blocks allow you to organize your code into modules. All ABAP pro-
grams are made up of processing blocks, and different processing blocks allow
you to modularize your code differently. We will explore this topic further in
Chapter 7.

Examples include the LOAD-OF-A-PROGRAM, INITIALIZATION, AT SELECTION SCREEN,
START-OF-SELECTION, END-OF-SELECTION, AT USER-COMMAND, AT LINE-SELECTION,
GET, AT USER COMMAND, AT LINE SELECTION, FORM-ENDFORM, FUNCTION-ENDFUNC-
TION, MODULE-ENDMODULE, and METHOD-ENDMETHOD.

� Control statements
Control statements control the flow of the program within a processing block.
Examples include IF-ELSEIF-ELSE-ENDIF, CASE-WHEN-ENDCASE, CHECK, EXIT,
and RETURN.

� Call statements
Call statements are used to call processing blocks or other programs and trans-
actions.

Examples include PERFORM, CALL METHOD, CALL TRANSACTION, CALL SCREEN, SUB-
MIT, LEAVE TO TRANSACTION, and CALL FUNCTION.

� Operational statements
Operational statements allow you to modify or retrieve the contents of data
objects.

Examples include ADD, SUBTRACT, MULTIPLY, DIVIDE, SEARCH, REPLACE, CONCATE-
NATE, CONDENSE, READ TABLE, LOOP AT, INSERT, DELETE, MODIFY, SORT, DELETE
ADJACENT DUPLICATES, APPEND, CLEAR, REFRESH, and FREE.
142

Creating Your First ABAP Program 4.6
� Database access statements (Open SQL)
Database access statements allow you to work with the data in the database.
Examples include SELECT, INSERT, UPDATE, DELETE, and MODIFY.

In this chapter thus far, we’ve explored the general program structure of an ABAP
program, learned basic rules for using ABAP syntax, touched on the use of ABAP
keywords and ABAP keyword documentation, and introduced the TYPE concept
for data types, data elements, and data objects.

In the next section, you’ll start creating your first ABAP program using what
you’ve learned so far.

4.6 Creating Your First ABAP Program

Before we explore ABAP basics further, you’ll have the chance to create your first
program using ABAP Editor.

You’ll need developer access to the SAP system with relevant development autho-
rizations and a developer key assigned to your user ID. Contact your system
administrator if the system complains about missing authorizations or prompts
you for a developer key when creating the program.

To begin, proceed with the following steps:

1. Open Transaction SE38 or follow the menu path Tools � ABAP Workbench �
Development � ABAP Editor.

2. On the ABAP Editor initial screen, enter the program name, select the Source

Code radio button and click the Create button. Because this program will be a
repository object, it should be in a customer namespace starting with Z or Y, as
shown in Figure 4.17.

3. You’ll see the Program Attributes window (Figure 4.18) to maintain the attri-
butes for your program. Program attributes allow you to set the runtime envi-
ronment of the program.
143

ABAP Programming Concepts4
Figure 4.17 ABAP Editor: Initial Screen

Figure 4.18 Program Attributes Screen

Here, you can maintain a title for your program and other attributes. The Title

and Type are mandatory fields; the others are optional.

Table 4.6 provides an explanation of all the attributes and their significance.
144

Creating Your First ABAP Program 4.6
Attribute Explanation

Type Allows you to select the type of program you wish to create.
This is the most important attribute and specifies how the pro-
gram is executed. It’s a mandatory field.

From within ABAP Editor, you can only choose from the follow-
ing program types:

� Executable Program

� Module Pool

� Subroutine Pool

� Include Program

All other program types are not created directly from within
ABAP Editor but are created with the help of special tools such
as Function Builder for function groups or Class Builder for class
pools.

Status Allows you to set the status of the program development—for
example, production program or test program.

Application Allows you to set the program application area so that the sys-
tem can allocate the program to the correct business area. For
example, SAP ERP Financial Accounting.

Authorization Group In this field, you can enter the name of a program group. This
allows you to group different programs together for authoriza-
tion checks.

Logical Database Visible only when the program type is selected as an executable
program. This attribute determines the logical database used by
the executable program. Used only when creating reports using
a logical database.

Logical databases are special ABAP programs created using
Transaction SLDB that retrieve data and make it available to
application programs.

Selection Screen Visible only when the program type is selected as an executable
program. Allows you to specify the selection screen of the logi-
cal database that should be used.

Editor Lock If you set this attribute, other users can’t change, rename, or
delete your program. Only you will be able to change the pro-
gram, its attributes, text elements, and documentation or
release the lock.

Table 4.6 Program Attributes
145

ABAP Programming Concepts4
4. Under the Attributes section, provide the following values (see Figure 4.19):

� Type: Executable program

� Status: Test Program

� Application: Unknown application

� Also check the Unicode Checks Active and Fixed point arithmetic check-
boxes.

Click the Save button when finished.

Figure 4.19 Maintaining Program Attributes

Fixed Point Arithmetic If this attribute is set for a program, the system rounds type p
fields according to the number of decimal places, or pads them
with zeros.

The decimal sign in this case is always the period (.), regardless
of the user’s personal settings. SAP recommends that this attri-
bute is always set.

Unicode Checks Active This attribute allows you to set if the syntax checker should
check for non-Unicode-compatible code and display a warning
message.

As of SAP NetWeaver 7.5, the system does not support non-
Unicode systems, so this option is always selected by default.

Start Using Variant Applicable only for executable programs. If you set this attri-
bute, other users can only start your program using a variant.
You must then create at least one variant before the report can
be started.

Attribute Explanation

Table 4.6 Program Attributes (Cont.)
146

Creating Your First ABAP Program 4.6
5. On the Create Object Directory Entry screen (see Figure 4.20), you can assign
the program to a package. The package is important for transports between sys-
tems. All of the ABAP Workbench objects assigned to one package are com-
bined into one transport request.

When working in a team, you may have to assign your program to an existing
package, or you may be free to create a new package. All programs assigned to
the package $TMP are private objects (local object) and can’t be transported into
other systems. For this example, create the program as a local object.

Figure 4.20 Assigning Package

6. Either enter “$TMP” as the Package and click the Save button or simply click
the Local Object button (see Figure 4.20).

7. This takes you to the ABAP Editor: Change Report screen where you can write
your ABAP code. By default, the source code includes the introductory state-
ment to introduce the program type. For example, executable programs are
introduced with the REPORT statement, whereas module pool programs are
introduced with the PROGRAM statement.

8. Write the following code in the program and activate the program:

PARAMETERS p_input TYPE c LENGTH 20.

WRITE : 'The input was:', p_input.

9. In the code, you’re using two statements—PARAMETERS and WRITE. The PARAME-
TERS statement generates a selection screen (see Figure 4.21) with one input
field. The input field will be of TYPE c with LENGTH 20, so you can input up to
twenty alphanumeric characters.
147

ABAP Programming Concepts4
Here, the PARAMETERS statement is performing a couple of tasks:

� Declaring a variable called p_input.

� Generating a screen field (screen element) on the selection screen with the
same name as the variable p_input. The screen field p_input is automati-
cally linked to the variable sharing the same name. Therefore, the data
transfer between the screen and the program is handled automatically. In
other words, if you enter some data in the p_input screen field, it will be
automatically transferred to the program and stored in the p_input vari-
able. This data in the p_input variable can then be accessed by other state-
ments, like you’re doing with the WRITE statement to print it in the output.

Figure 4.21 Selection screen

10. Enter a value in the input field and click the Execute button, or press (F8). This
should show you the output or List screen, as shown in Figure 4.22.

Figure 4.22 List Screen

11. The list screen (output screen) is generated by the WRITE statement in the code.
With the WRITE statement, you’re printing the contents of two data objects
148

Summary 4.7
here. One is a text literal, 'The input was:', and the other is the variable p_
input created by the PARAMETERS keyword.

Whatever input was entered on the selection screen was transferred to the
program and stored in the variable p_input, which was then processed by the
WRITE statement to display in the output.

We’ll have many opportunities to work with different types of screens as we
progress through the book.

4.7 Summary

In this chapter, you learned the basics of the ABAP programming language ele-
ments. You saw that ABAP programs can only work with data of the same pro-
gram. Because we typically process various kinds of data in the real world, we
explained the different elementary types that are supported by the system to pro-
cess various kinds of data. Because the basic task of an ABAP program is to pro-
cess data, this understanding is crucial to process the data consistently.

We also described the syntax to write a couple of statements. We’ll explore more
statements as we progress through the book. In the final section, you created your
first ABAP program.

By now, you should have a good understanding of data types and data objects.
However, if you find yourself a little lost, don’t worry; the concepts should make
more sense as we work through creating more programs in the next chapter. In
the next chapter, we’ll discuss complex data types and internal tables.
149

Chapter 5

This chapter explores complex data types and lays the foundations for
working with data stored in typical database tables.

5 Structures and Internal Tables

In the previous chapter, we discussed how to declare and work with individual
fields. However, most of the time, we’ll be working with data from a group of
related fields. For example, when you store a customer’s data, you won’t store all
of it in one field; you’ll create multiple fields to store all the different information
about the customer: one field to store the customer’s name, one for the cus-
tomer’s address, one for phone number, and so on.

In this chapter, we’ll discuss the data types and data objects that let us work with
data in the form of an array (a series of objects). Figure 5.1 shows some sample
data in a spreadsheet. Here, each field is represented by a column, and each row
stores information about a customer.

Figure 5.1 Data Represented in Rows and Columns

The data in a database table looks similar to what’s shown in Figure 5.1. When
you want to process this data from a database table in an ABAP program, you
need data objects that can store this data in a similar fashion, like a set of fields
grouped together to represent a row.

These data types and data objects with individual fields are grouped together into
structure types and structures, respectively. We use the term structure type to refer
to a data type and the term structure to refer to a data object. A structure consists
of one or more fields. The fields in a structure are called components. Each field in
a structure is defined using a type or like reference, similar to an individual field
(variable), which we discussed in Chapter 4, Section 4.4.2.
151

Structures and Internal Tables5
In Section 5.1, we’ll look at different ways to define and work with structures. A
structure data object consists of only one row, meaning that it can only store one
row of data. When you store a new record in the structure, it replaces the existing
record. To process multiple rows of data, we need to use internal tables. We’ll dis-
cuss internal tables in Section 5.2.

Structures and internal tables are mostly used when working with data from a
database table; such data is accessed via Open SQL statements. You’ll learn more
about relational databases and look at different Open SQL statements in Section
5.3. We’ll then look at how to process data from database tables using structures
and internal tables in Section 5.4.

It’s common, especially for a beginner, for programs to have logical issues that are
difficult to detect statically during the syntax check. We’ll discuss debugging in
Section 5.5 to help you become familiar with the debugging tool in order to fix
any logical issues with your programs. Debugging also helps you understand the
program execution better, and we encourage you to debug all the programs you
create during the course of this book.

We’ll conclude this chapter with an assignment in Section 5.6, which will rein-
force the concepts discussed in this chapter.

5.1 Defining Structures

Structures are either local or global. There are several definitions for both local
and global, which we will cover later. Based on the context, the term local can
mean a couple of things; if we’re talking about a program, local may refer to an
object (data object or a data type) that is native to a particular procedure within
the program. These objects will be visible within the procedure where they’re
defined. In this context, a global object is the one that has visibility throughout
the program; it can be accessed from any procedure or processing block in the
program. Visibility indicates whether a data object or a data type can be accessed
from a particular location in the program code.

For example, as shown in Listing 5.1 , you can access the data type ty_sflight
and the data object ls_sflight, but only within the subroutine data. Trying to
access them from another procedure (the subroutine output in the example) of
the same program will result in a syntax error, because these objects aren’t visible
152

Defining Structures 5.1
outside their parent procedure. However, if you declare both ty_sflight and ls_
sflight in the global declaration area of the program, they can be accessed from
any processing block of the program.

FORM data.
TYPES : BEGIN OF ty_sflight,

CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
END OF ty_sflight.

DATA ls_sflight TYPE ty_sflight.
ENDFORM.

FORM output.
*Both of the lines below will result in a syntax error.
DATA lv_sflight TYPE ty_sflight.
SELECT SINGLE carrid connid fldate FROM sflight

INTO ls_sflight
WHERE carrid EQ 'AA'.

ENDFORM.

Listing 5.1 Using Local Declaration within Subroutine

If we’re talking about an SAP system, then local and global will have different
meanings. In such a case, global means that the object is visible across the system
and can be accessed from any ABAP program. Conversely, local means that the
object is visible only within a particular program and can’t be accessed from other
programs.

There are three types of ABAP structures, as depicted in Figure 5.2:

� Flat structures
Components are made of individual fields that refer to elementary types.

� Nested structures
If at least one component of a structure refers to another structure, it’s a nested
structure.

� Deep structures
References at least one table type (a type that defines an internal table).

In this section, you’ll learn how structures are useful in programs. We’ll look at
how structure types can be defined both locally in the program and globally in
ABAP Data Dictionary. You’ll also learn how data can be stored and accessed
with structures. We’ll conclude this section by providing some use cases for
structures.
153

Structures and Internal Tables5
Figure 5.2 Different Structure Types

5.1.1 When to Define Structures

We use structures to process sequential data, such as the data stored in the rows
and columns of a database table or a sequential file. Data objects allow you to
import data from an external source (such as a database table or a sequential file)
into your ABAP program, which has to happen before that same data can be
accessed by ABAP statements (see Figure 5.3).

Figure 5.3 Data Processing within ABAP Programs

FIELD A FIELD B

FIELD A FIELD B

FIELD A FIELD B

FIELD C FIELD D

FIELD C FIELD D

Flat Structure

Nested Structure

Deep Structure

Typing to other structure

Typing to table type

ABAP Program

• External data stored in data objects
• Processed by ABAP Statements

External Data

From Database Table

From Sequential File

From Other External Source

Processed Data

To Database Table

To Sequential File

On Screen Display
(Eg: Report Output)
154

Defining Structures 5.1
Therefore, whether you need a single variable or a structure with multiple fields
depends on the data that you’re importing to process in your ABAP program. If
you’re working with more than one field in a row or a complete row of data,
define a structure in your program. If you’re working with an individual field or
just one field from a row, define a single field in your program.

5.1.2 Local Structures

Let’s take the example of table SFLIGHT to understand the different ways to define
structures in your ABAP program. Once you understand how to define a struc-
ture, you should be able to put them to use to process data from the database
table.

Figure 5.4 shows the table SFLIGHT fields.

Figure 5.4 Table SFLIGHT Fields
155

Structures and Internal Tables5
Figure 5.5 shows the table data in the data browser tool. To open the table, go to
Transaction SE11, select the Database Table radio button, enter the table name,
and click Display.

Figure 5.5 Table Fields Represented as Columns in Data Browser View

Listing 5.2 defines a structure data type using the TYPES keyword. This structure
has three fields from table SFLIGHT. Defining a structure with specific fields from
the database table is useful when you want to process certain field’s data from the
table. All the fields of the structure should have the same technical attributes as
the corresponding fields of the database table.

To ensure this, refer the components of the structure in the program to the same
data elements as their corresponding fields in the database table—for example,
CARRID TYPE S_CARR_ID.

Here, S_CARR_ID is the data element to which the CARRID field of table SFLIGHT is
referring to. You may also refer the components of the structure to the table field
by using the table reference—for example, CARRID TYPE SFLIGHT-CARRID. Refer-
ring the fields to data elements or table fields also ensures that any changes in the
definition for the data element or table field will automatically be reflected in the
program.
156

Defining Structures 5.1
In Listing 5.2, we’ve defined structure type TY_SFLIGHT using the TYPES keyword
with CARRID, CONNID, and FLDATE as components. We’ve referred the components
of the structure type to respective data elements. We’ve also defined structure ST_
FLIGHT using the DATA keyword, referring to the structure type TY_SFLIGHT. The
example showing the declaration of structure type TY_SFLIGHT1 uses elementary
types to type the components of the structure type.

*Notice the chain operator colon(:) after the TYPES keyword,
*without which you will have to use the keyword at the beginning
*of each line and end each line with a period.

TYPES : BEGIN OF ty_sflight,
CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
END OF ty_sflight.

*Since the TYPES keyword created a data type, you can define a
*data object referring to this structure as below.
DATA st_sflight TYPE ty_sflight.

*The same structure type can also be declared while refering the
*fields to elementary types. Note that the type and length of
*each field matches the fields in the table. Matching the type
*and length is very important when using elementary types.
TYPES : BEGIN OF ty_sflight1,

CARRID TYPE C LENGTH 3,
CONNID TYPE N LENGTH 4,
FLDATE TYPE D,
END OF ty_sflight1.

Listing 5.2 Defining Structure Type with Set of Fields

The following shows how to define a structure type to match the ABAP Data Dic-
tionary table:

TYPES : ty_sflight TYPE sflight.

To define a structure type with all the fields in the table, you can simply refer the
structure type to the table. In this example, ty_sflight will have all the 14 fields
of the ABAP Data Dictionary table SFLIGHT.

Listing 5.3 shows an example of defining a nested structure.

* Defining nested structure type
TYPES : ty_sflight TYPE sflight.
TYPES : BEGIN OF ty_trip,

name TYPE name1,
157

Structures and Internal Tables5
flight TYPE ty_sflight,
END OF ty_trip.

Listing 5.3 Nested Structure Type

In Listing 5.3, we’ve defined structure type TY_SFLIGHT referring to the transpar-
ent table SFLIGHT. We’ve also defined a nested structure type TY_TRIP that con-
sists of the component NAME and the structure type FLIGHT.

Listing 5.4 shows an example of defining the structure as a data object using the
DATA keyword. The syntax is similar to the TYPES keyword.

*To define a structure as a data object, simply use the
*DATA keyword instead of the TYPES keyword.
DATA : BEGIN OF st_sflight,

CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
END OF st_sflight.

*You can also create a structure by referring to the
*database table to match the table row type.
DATA st_sflight1 TYPE sflight.

Listing 5.4 Defining Data Object as Structure

In Listing 5.4, structure ST_SFLIGHT consists of three components, CARRID, CON-
NID, and FLDATE, whereas structure ST_SFLIGHT1 contains all the fields of the
ABAP Data Dictionary table SFLIGHT.

5.1.3 Global Structures

Structures types can be defined globally to have visibility across programs. Global
structure types are also used to define the parameter interface for function mod-
ules or methods and also can be used to define screen elements for general
screens. You’ll learn more about function modules and methods in Chapter 7 and
more about screen programming in Chapter 12.

Global structures types are created in ABAP Data Dictionary (Transaction SE11).
Follow these steps to create a global structure:

1. Enter Transaction SE11.

2. Select the Data Type radio button on the ABAP Data Dictionary initial screen.
Enter the name of the structure. The name should be in a customer namespace,
starting with Y or Z. Click the Create button (Figure 5.6).
158

Defining Structures 5.1
Figure 5.6 ABAP Dictionary Initial Screen

3. In the modal dialog box, select the Structure radio button and click the green
checkmark (Figure 5.7).

Figure 5.7 Modal Dialog Box to Select Data Type Category

4. On the next screen, enter a Short Description for your structure. Maintain the
fields as shown in Figure 5.8. Enter the field name under the Component col-
umn. Select Types from the dropdown list under the Typing Method column.
Enter the data element name under the Component Type column and press
(Enter).

For Component Type, you can either use an existing data element or create
your own data element, as discussed in Chapter 4. If you wish, you can use a
predefined elementary type by clicking the Predefined Type button.
159

Structures and Internal Tables5
Figure 5.8 Maintaining Structure Type Components

5. Click Activate to enter the package name and save it. You can save it as a local
object ($TMP package) or save it to a transportable package.

6. Upon activation, the system may produce a warning message about a missing
enhancement category; however, this warning will not prevent you from acti-
vating the structure.

SAP-delivered tables and structures in ABAP Data Dictionary can be enhanced by
adding extra fields through customizing includes (CI Includes) or append structures.
We will learn more about CI Includes and append structures in Chapter 20 when
we discuss modifications and enhancements.

The enhancement category setting specifies how a particular table or structure
can be enhanced. Using this setting, you can restrict whether the structure can be
enhanced by allowing only character type fields, both character and numeric
fields, or deep structures.

You can maintain the enhancement category via the menu path Extras � En-

hancement Category (Figure 5.9). You can refer to the online documentation by
using the Information button.
160

Defining Structures 5.1
Figure 5.9 Enhancement Category

If your structure has a currency (type CURR) or quantity (type QUAN) fields, you
should maintain reference fields in the Currency/Quantity Fields tab (as shown
in Figure 5.10). A currency field should refer to a currency key field (type CUKY)
and a quantity field should refer to a Unit of Measure field (type UNIT). The ref-
erence fields can exist in the same table or another table.

Maintaining the reference fields for currency and quantity fields is mandatory,
and the system uses this reference to insert the relevant currency or unit when
the field is outputted. If the reference field exists in the same table, then the sys-
tem can use the reference to automatically apply the correct formatting to the
output. While providing the reference fields, enter the reference table name and
reference field name in the respective columns.

Figure 5.10 Reference Fields Maintained for Currency and Quantity Fields in Table VBRP

Figure 5.10 shows the reference fields as maintained in billing document item
table VBRP. The VOLUM field of table VBRP is of type QUAN and is referenced to the
161

Structures and Internal Tables5
field VOLEH of the same table VBRP, which is of type UNIT. Similarly, the NETWR field
of table VBRP is of type CURR and is referenced to the WAERK field of table VBRK,
which is of type CUKY.

If the reference fields aren’t maintained for currency and quantity fields of your
table/structure, you won’t be able to activate the table or structure in ABAP Data
Dictionary.

5.1.4 Working with Structures

Now that you know how to define both local and global structures, let’s look at
how to work with them in ABAP programs.

There are four possible ways to define a structure data object in a program:

1. Refer to a local structure type defined in the program using the TYPES keyword
(see Listing 5.5).

2. Refer to a global structure type.

3. Refer to an ABAP Data Dictionary table.

4. Directly declare the data object using the BEGIN OF…END OF syntax for the DATA
keyword.

Structures behave similarly to single fields, except for how you access the com-
ponents of a structure. To access the field of a structure, you need to give the
structure name field reference, as shown in the example in Listing 5.5. Note that
structures can store only one row at a time. If you store a new record, it will
replace the existing record.

The example code in Listing 5.5 defines a flat structure TY_SFLIGHT and a nested
structure TY_TRIP. Corresponding data objects ST_SFLIGHT and ST_TRIP are
defined that refer to these structures respectively. The comment lines in the code
explain how the components of the structures are accessed using ABAP state-
ments.

TYPES : BEGIN OF ty_sflight,
CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
END OF ty_sflight.

TYPES : BEGIN OF ty_trip,
name TYPE name1,
162

Defining Structures 5.1
flight type ty_sflight,
END OF ty_trip.

DATA : st_sflight TYPE ty_sflight,
st_trip TYPE ty_trip.

*Adressing to the field of a structure type
DATA v_connid TYPE ty_sflight-connid.

*Accessing field of a structure data object
st_sflight-carrid = 'AA'.
st_sflight-connid = '04'.
WRITE st_sflight-connid.

*Accessing field of a nested structure
st_trip-flight-carrid = 'AB'.

Listing 5.5 Accessing Fields of Structure

5.1.5 Use Cases

Structures should be used in the following cases:

� Use structures to process multiple fields of data. For example, when you want
to process a record, you can define a structure with the fields of the record as
components and process the record as a single entity.

� Group related fields into a structure if you need to perform certain actions on
the fields together. It’s easy to clear the data in all the fields of a structure at
once instead of individually clearing the data for each field.

For example, if you have a structure ST_SFLIGHT with all the components of the
ABAP Data Dictionary table SFLIGHT, you can clear a record easily by using the
statement CLEAR ST_SFLIGHT rather than using the CLEAR statement for each
individual field.

� Even though it’s possible to select data from a database table row into individ-
ual fields, it’s always recommended to use structures when processing data
from database tables.

� Structure types also help you keep the parameter interface (signature) of a pro-
cedure (such as function module or method) simple by grouping relevant fields
into one structure, as opposed to maintaining all fields individually in the inter-
face.
163

Structures and Internal Tables5
5.2 Internal Tables

Internal tables are dynamic data objects that can store multiple rows of data with
a common row type. In fact, internal tables are the only data objects that can store
multiple rows of data at a time. We use internal tables when we need to work
with mass data. Internal tables can be compared to two-dimensional arrays.

Working with internal tables is a bit different from other data objects. In this sec-
tion, we’ll look at how to define, store, and access data with internal tables. We’ll
discuss how to define internal types and the different types of internal tables
available. We’ll then provide steps for working with internal tables before dis-
cussing the use of control break statements.

5.2.1 Defining Internal Tables

Listing 5.6 shows the basic syntax for declaring an internal table. Here, the data
object IT_SFLIGHT is declared as an internal table with the line type as TY_
SFLIGHT. The line type of a table specifies the fields that make up a row. The TABLE
OF addition to the type specification defines an internal table.

TYPES : BEGIN OF ty_sflight,
CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
END OF ty_sflight.

DATA : it_sflight TYPE TABLE OF ty_sflight.

Listing 5.6 Declaring Internal Table

Because an internal table consists of multiple rows, you can’t work with the data
of an individual row directly. To process the data from an internal table, you need
a structure data object, called the work area. The work area of an internal table is
a structure that can store one record at a time and has the same Line type as the
internal table. This allows you to read an individual row from an internal table
into the work area and process it.

Listing 5.7 shows the work area wa_sflight declaration, referring to the same
Line type as the internal table IT_SFLIGHT.

TYPES : BEGIN OF ty_sflight,
CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
164

Internal Tables 5.2
FLDATE TYPE S_DATE,
END OF ty_sflight.

DATA : it_sflight TYPE TABLE OF ty_sflight,
wa_sflight TYPE ty_sflight.

Listing 5.7 Defining Internal Table Work Area

Figure 5.11 depicts the usage of a work area. Because the work area can store only
one record, you can read a single row from the internal table or loop through all
rows of the table one row at a time.

To read a single record from the internal table, use the READ statement, and to
process more than one record, use the LOOP statement. The READ and LOOP state-
ments copy the data from the internal table to the work area.

Figure 5.11 Internal Table and Work Area

There are a couple of ways to access a single record from an internal table via the
READ statement. You can use an index (index access) or you can read the table by
comparing the value of a field (or a set of fields) of the row (key access). Please
note that not all internal tables support index access, which we will discuss in the
next section.

Listing 5.8 shows example code to read an internal table using index access.

TYPES : BEGIN OF ty_sflight,
CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
END OF ty_sflight.

DATA : it_sflight TYPE TABLE OF ty_sflight,
wa_sflight TYPE ty_sflight.

SELECT carrid connid fldate FROM sflight INTO TABLE it_sflight.

*Reading a single record from the internal table into work area

CARRID CONNID FLDATE

AA 0004 20111201

AB 0005 20111202

AC 0006 20111203

AD 0007 20111204

AE 0008 20111205

AF 0009 20111206

AB 0005 20111202

CARRID CONNID FLDATE

Internal Table Work Area
165

Structures and Internal Tables5
*using index access
READ TABLE it_sflight INTO wa_sflight INDEX 2.

Listing 5.8 Using Index Access

Listing 5.8 defines a structure type TY_SFLIGHT and an internal table IT_SFLIGHT
using the TABLE OF addition to the DATA keyword. The line type of the internal
table IT_SFLIGHT is defined as the structure type TY_SFLIGHT. We used a SELECT
statement to fetch the data from database table SFLIGHT into the internal table IT_
SFLIGHT.

Because the internal table can store multiple records, the system will transfer all
the records from the database table SFLIGHT into the internal table IT_SFLIGHT. A
SELECT statement should always be restricted using a WHERE clause, but we
ignored that rule in this example for simplicity. You’ll learn more about Open
SQL statements in Section 5.3.

In Listing 5.8, we’re reading a single record from the internal table using the READ
statement and specifying the index using the INDEX addition. In this example, the
second record of the internal table will be copied to the work area.

To read an internal table record using key access, use the addition WITH KEY and list
the components of the table to be matched with a value using the = operator as
shown in the example ahead. You can list multiple components separated by a
space:

READ TABLE it_sflight INTO wa_sflight WITH KEY connid = 'AA'.

To process all the records of an internal table one row at a time, use the LOOP
statement:

LOOP AT it_sflight INTO wa_sflight.

ENDLOOP.

We can restrict the loop to process specific records using the index:

LOOP AT it_sflight INTO wa_sflight FROM 1 to 5.

ENDLOOP.

We can also restrict the loop using a key:

LOOP AT it_sflight INTO wa_sflight WHERE carrid EQ 'AA'.

ENDLOOP.
166

Internal Tables 5.2
5.2.2 Types of Internal Tables

An internal table is defined by its row type, table category, and table key. We will
walk through each of these elements in the following subsections.

Row Type

A row type defines the row of an internal table (the fields that make up the row
of a table). Any type can be used as a row type, such as an elementary type,
structured type, table type, or reference type. For example, an internal table can
consist of fields (known as elementary types), a structure, a table type, or even
a reference object (such as an ABAP class).

Table Category

There are three types of internal tables that can be defined in ABAP programs:
standard, sorted, and hashed. The table category defines the type of internal table
based on how individual rows can be accessed.

In the following subsections, we’ll take a close look at the different types of table
categories that can be defined.

Standard Tables

Standard tables are managed using a row index. For every record that you add to
an internal table, the system creates a linear index. New rows can be either
appended to the end of the table using the APPEND keyword (e.g., APPEND wa_
sflight TO it_sflight) or inserted at specific positions using the INSERT key-
word (e.g., INSERT wa_sflight INTO it_sflight INDEX 3). Individual rows are
accessed using the table key or the row index; standard table support both key
access and index access.

You are not required to explicitly specify the primary table key during table dec-
laration. The primary key can be empty for standard tables. Standard tables only
support non-unique primary keys, which means that multiple rows in the same
table can have the same key value.

When using the TABLE KEY addition with the READ statement, the system performs
a linear search to identify the matching row.
167

Structures and Internal Tables5
The syntax for declaring a standard table is as follows:

DATA internaltable_name TYPE TABLE OF [or STANDARD TABLE OF] structure_
reference

The TYPE TABLE OF and TYPE STANDARD TABLE OF additions both define standard
tables. internaltable_name is the name of the internal table, and structure_ref-
erence is a reference to the structure type.

In the statement

DATA it_sflight TYPE TABLE OF ty_sflight.

the internal table IT_SFLIGHT is defined as a standard table with the line type TY_
SFLIGHT. Here, TY_SFLIGHT is a structure type. The TABLE OF addition is a short
form to define a standard table. We can also use the long form STANDARD TABLE OF
to define the standard table, as shown:

DATA it_sflight TYPE STANDARD TABLE OF ty_sflight.

Sorted Tables

Sorted tables are similar to standard tables, except the records are always sorted by
the key in ascending order. New records can be inserted or appended only if they
are sorted. Like standard tables, sorted tables are also managed via a row index,
so you can read the individual rows by index or key.

Sorted tables support both unique and non-unique primary keys, and defining
the primary key is mandatory when declaring the internal table. If the table has a
unique key, the key can’t be repeated. A table with a non-unique key can contain
multiple records for the key. In other words, for a unique key, you can’t have
multiple records with the same value for the key fields.

For example, if the key of the table is defined as CARRID and CONNID and the table con-
tains a record in which CARRID has the value 'AA' and CONNID has the value '0017',
then you can’t have a second record in the table with the same values for CARRID and
CONNID. The individual fields that form the key can repeat themselves, but the combi-
nation of the key fields should be unique. Therefore, we can have another record
with CARRID as 'AA' and a different record with CONNID as '0017', but we can’t have
another single record that contains CARRID as 'AA' and CONNID as '0017'.
168

Internal Tables 5.2
When you define a table with a non-unique key, you can have multiple records
with the same values for the key and no restrictions apply. You should choose the
key carefully based on the data being processed to avoid data inconsistency.

When using the TABLE KEY addition with the READ statement, the system performs
a binary search to identify the matching row.

The syntax for declaring a sorted table is as follows:

DATA internaltable_name TYPE SORTED TABLE OF structure_
reference WITH UNIQUE [or NON-UNIQUE] KEY key_fields.

To define a sorted table, use the SORTED TABLE OF addition. It’s mandatory to
define the key of the table during a declaration. The key is defined using the WITH
UNIQUE KEY or WITH NON-UNIQUE KEY addition to define a unique or non-unique
key, respectively. The key of the sorted table can consist of a single field or mul-
tiple fields. If the key contains multiple fields, each field is listed after the WITH
UNIQUE (or NON-UNIQUE) KEY addition, separated by a space.

For example, the following statement defines a sorted table IT_SFLIGHT with line
type TY_SFLIGHT consisting of unique key CARRID and CONNID (assuming CARRID
and CONNID are components of structure type TY_SFLIGHT):

DATA it_sflight TYPE SORTED TABLE OF ty_
sflight WITH UNIQUE KEY carrid connid.

In addition, the following statement defines a sorted table IT_SFLIGHT with non-
unique key CARRID and CONNID:

DATA it_sflight TYPE SORTED TABLE OF ty_sflight WITH NON-
UNIQUE KEY carrid connid.

Hashed Tables

Unlike standard and sorted tables, hashed tables do not have a row index. They are
managed using a hash algorithm. Because there is no row index, you can’t perform
any index operations and can only read the individual rows by the key. Hashed
tables support only unique keys, and defining the key is mandatory while declar-
ing the internal table.

When using the TABLE KEY addition with the READ statement, the system doesn’t
compare the contents of the key fields manually to identify the matching row.
Instead, the system uses hash functions to identify the matching row.
169

Structures and Internal Tables5
The syntax for declaring hashed table is as follows:

DATA internaltable_name TYPE HASHED TABLE OF structure_
reference WITH UNIQUE KEY key_fields.

Use the HASHED TABLE OF addition to define a hashed table and list the table key
using the WITH UNIQUE KEY addition. The following statement defines an internal
table IT_SFLIGHT as a hashed table with unique key CARRID and CONNID:

DATA it_sflight TYPE HASHED TABLE OF ty_
sflight WITH UNIQUE KEY carrid connid.

Table 5.1 lists some of the key properties of the table categories.

Any Tables and Index Tables

In addition to the standard table, sorted table, and hashed table categories, there
are two other generic table categories—namely, any table and index table. The
generic table categories are used when typing formal parameters of a procedure
and field symbols.

Standard Table Sorted Table Hashed Table

� Contains row index.

� Accessed using key and
index.

� Only non-unique pri-
mary key.

� Linear search.

� Lookup time is directly
proportional to the num-
ber of entries in the table.

� Primary key can be
empty.

� Rows are not sorted
implicitly but can be
sorted explicitly.

� Contains row index.

� Accessed using key and
index.

� Both unique and non-
unique primary key.

� Binary search.

� Lookup time is directly
proportional to the num-
ber of entries in the table
but faster than linear
search.

� Key is mandatory.

� Rows are always sorted
by key in ascending order
by default and no manual
sort operations are
allowed.

� No row index.

� No INDEX operations
allowed; only key access.

� Only unique primary key.

� Hash algorithm.

� Lookup time is always
constant irrespective of
the number of entries.

� Key is mandatory.

� Rows are not sorted
implicitly but can be
sorted explicitly.

Table 5.1 Key Properties of Internal Tables
170

Internal Tables 5.2
The any table category covers all table categories; the index table category only
covers those table categories in which index operations are possible (standard
tables and sorted tables). The objects referred to generic table types don’t contain
any fields statically during design time; instead, any fields defined during runtime
are based on the definition of the parent object.

The following example shows a field symbol <fs_table> defined as a generic
type:

FIELD-SYMBOLS <fs_table> TYPE ANY TABLE.

Because the field symbol <fs_table> is defined as the generic type ANY TABLE, you
can assign any internal table (be it standard, sorted, or hashed) to the field symbol
at runtime. The field symbol will then point to the assigned table.

Field symbols are an important concept in dynamic programming; we will
explore them further in Chapter 16.

5.2.3 Table Keys

Internal tables have a primary table key and can also support secondary table
keys. A table key can consist of a list of structure components with a certain
sequence or can use table_line as a pseudo-component to specify the entire
table row as a key, as shown in the following example:

DATA it_sflight TYPE HASHED TABLE OF ty_sflight WITH UNIQUE key TABLE_
LINE.

You can also list the individual components of the table as the table key:

DATA it_sflight TYPE HASHED TABLE OF ty_
sflight WITH UNIQUE key CARRID CONNID.

You can also specify the standard key’s default key. This key contains all compo-
nents that are not numeric and are not themselves table types, as shown:

DATA it_sflight TYPE HASHED TABLE OF ty_
sflight WITH UNIQUE DEFAULT KEY.

Support for secondary table keys was introduced with SAP NetWeaver 7.0 EHP 2.
Previously, each internal table had just one table key (the primary key). When
reading an internal table, you can use either a table key or a free key; that is, you
can either read the table using the complete key defined for the table (table key)
or read the table using any of the fields of the table (free key).
171

Structures and Internal Tables5
When a table key is used to read the table, the system performs a linear search for
standard tables, a binary search for sorted tables, and uses hash functions for
hashed tables. However, when using a free key, the system always performs a lin-
ear search irrespective of the type of table, thus degrading the performance.

Because using a table key is very restrictive, many programmers use a free key
and compromise on the performance. To overcome this problem, SAP introduced
secondary keys. You can define secondary keys with different names and use
them while processing the internal table. This provides the flexibility of using dif-
ferent keys while ensuring efficiency.

Along with the primary key, an internal table can have up to fifteen secondary
table keys with different names. With the introduction of secondary keys, what
was previously the table key has now become the primary table key and a pre-
defined name for it, primary_key, has been introduced. Secondary table keys can
be hash keys or sorted keys. Hash keys must be unique, whereas sorted keys can be
unique or non-unique. The system creates a secondary table index for each sorted
secondary key of an internal table.

Listing 5.9 shows the syntax to define a standard table with a non-unique sorted
secondary key and unique hashed key.

DATA it_sflight TYPE STANDARD TABLE OF ty_sflight
WITH NON-UNIQUE DEFAULT KEY
WITH NON-UNIQUE sorted KEY by_airline COMPONENTS carrid
WITH UNIQUE HASHED KEY by_flight COMPONENTS carrid connid.

Listing 5.9 Secondary Keys with Standard Table

Note

Note that defining the primary and secondary keys is completely optional for standard
tables.

In Listing 5.9, we defined the internal table IT_SFLIGHT as a standard table with a
non-unique default primary key that contains two secondary keys, BY_AIRLINE
and BY_FLIGHT. The secondary key BY_AIRLINE is defined as a non-unique sorted
key with CARRID as the key component. The secondary key BY_FLIGHT is defined
as a unique hash key with CARRID and CONNID as the key components.

The syntax to use a secondary key in a READ statement is shown in the following
example; here, key_name signifies the name of the secondary key:
172

Internal Tables 5.2
WITH KEY[or WITH TABLE KEY] key_name COMPONENTS comp1…

To read an internal table using the secondary key, specify the name of the second-
ary key in the READ statement, as shown in Listing 5.10.

*Using the secondary key by_airline to read the internal table.
READ TABLE it_sflight INTO wa_sflight WITH TABLE KEY by_airline
COMPONENTS carrid = 'AA'.

Listing 5.10 Reading Internal Table Using Secondary Key

In Listing 5.10, assuming the internal table IT_SFLIGHT is defined with a second-
ary key BY_AIRLINE, we’re using the READ statement and specifying the name of
the secondary key to read the record of the table using the secondary key.

In Listing 5.11, we’ve defined an internal table IT_SFLIGHT as a sorted table using
the pseudo-component table_line as the unique primary key. Two secondary
keys, BY_AIRLINE and BY_FLIGHT, are also defined for the table. The secondary key
BY_AIRLINE is defined as a non-unique sorted key, and the secondary key BY_
FLIGHT is defined as a unique hashed key.

DATA it_sflight TYPE SORTED TABLE OF ty_sflight
WITH UNIQUE KEY table_line
WITH NON-UNIQUE SORTED KEY by_airline COMPONENTS carrid
WITH UNIQUE HASHED KEY by_flight COMPONENTS carrid connid.

Listing 5.11 Secondary Keys for Sorted Table

Listing 5.12 shows an example to define secondary keys for hashed table.

DATA it_sflight TYPE HASHED TABLE OF ty_sflight
WITH UNIQUE KEY table_line
WITH NON-UNIQUE SORTED KEY by_airline COMPONENTS carrid
WITH UNIQUE HASHED KEY by_flight COMPONENTS carrid connid.

Listing 5.12 Secondary Keys for Hashed Table

In Listing 5.12, we defined an internal table IT_SFLIGHT as a hashed table using
the pseudo-component table_line as the unique primary key. Two secondary
keys, BY_AIRLINE and BY_FLIGHT, are defined for the table. The secondary key BY_
AIRLINE is defined as a non-unique sorted key, and the secondary key BY_FLIGHT
is defined as a unique hashed key.

Before secondary keys were available, the only way to have the flexibility to read
a table by any key while ensuring performance was to sort a standard table by the
key and read it using the BINARY search addition.
173

Structures and Internal Tables5
Listing 5.13 makes the standard table behave like a sorted table with CONNID as
the non-unique primary key.

SORT it_sflight BY connid.
READ TABLE it_sflight INTO wa_sflight WITH KEY connid BINARY SEARCH.

Listing 5.13 Performing Binary Search on Standard Table

Secondary keys provide a lot more flexibility. You can use different keys and
improve performance while accessing individual rows of a table. However, the
ABAP runtime system needs to administer each additional secondary key, so you
should use them carefully.

You should define a secondary key for an internal table only when the required
key or table index is used in processing statements.

Be mindful of the following considerations when using secondary keys:

� Use secondary keys for large internal tables with infrequently changed content.
This ensures that the costs for administrating the secondary keys are only
incurred when setting up the internal table initially with the data.

� Always avoid secondary hash keys with too many components. If the hash key
has too many components, the system has to deal with a high system load for
additional hash management. Use sorted keys for secondary keys with a large
number of components.

� If you have secondary keys for an index table, the primary index of the table is
updated immediately when you insert or delete rows using a secondary key.
Because the standard table uses linear search, deleting a row from a standard
table using a secondary key can’t be optimized.

� You can use secondary keys for small internal tables in some circumstances if
you want to ensure unique table entries in relation to particular components.
Primary keys don’t allow this, especially in the case of standard tables.

� For pure read access, non-unique secondary keys are as quick as unique keys.
Use non-unique secondary keys if unique table entries are not required. Non-
unique secondary keys perform better while updating a table and use a lazy
update. With a lazy update, secondary keys aren’t updated immediately after a
record is inserted or modified in the table; they’re updated when the secondary
key is used explicitly the next time after the records were updated or modified
in the table.
174

Internal Tables 5.2
� You should not use secondary table keys in the following situations:

� For small internal tables (less than fifty rows). The performance gain for read
accesses is much less compared to the increased storage and administration
load.

� With tables that are updated or modified frequently. Each time the table is
modified, the secondary keys need to be updated. The loads incurred by
updating the secondary keys outweighs the performance benefit for read
accesses. Also, with delayed updates and lazy updates in particular, the sys-
tem may perform the update during a read access, affecting the performance
of the READ statement. This defeats the purpose of using secondary keys,
because the main purpose of secondary keys is to optimize read access.

� Avoid using secondary hash keys unless you want to ensure the uniqueness
of table entries.

5.2.4 Working with Internal Tables

Now that you know how to define internal tables, let’s discuss how to perform
various actions with them. As discussed earlier, we need to use a work area to add
a record to internal table or to read a record from an internal table. In the follow-
ing subsections, we’ll discuss the different ways we can work with internal tables.

APPEND and INSERT Statements

To add a record to an internal table, use the APPEND or INSERT statement. An
APPEND statement always adds the record at the end of the table and is used with
standard tables. An INSERT statement behaves differently based on the table type.
For example, an INSERT statement behaves like an APPEND statement for standard
tables in that it adds a record at the end of the table if no explicit index is speci-
fied.

However, with sorted tables, the INSERT statement automatically selects the posi-
tion based on the sort sequence of the table. You need to use caution when using
an APPEND statement with sorted tables; the system may produce a runtime error
if the new row does not match the sort sequence of the table or if the table is
defined with a unique key and the new row creates a duplicate entry. For this rea-
son, we recommend always using the INSERT statement with sorted tables. You
175

Structures and Internal Tables5
can’t use APPEND statements with hashed tables, because they only support INSERT
statements.

Listing 5.14 shows an example of using the APPEND statement to add records to a
standard table. To add a record to an internal table, first fill the work area with
the required data and then append it to the table using the APPEND statement.

*Adding a record to internal table
TYPES : BEGIN OF ty_sflight,

CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
END OF ty_sflight.

DATA : it_sflight TYPE STANDARD TABLE OF ty_sflight,
wa_sflight TYPE ty_sflight.

*You can’t refer to the table row directly to add a record.
*Fill the work area with the values and add it to the table.
wa_sflight-carrid = 'AA'.
wa_sflight-connid = '0004'.
wa_sflight-fldate = '20140101'.
APPEND wa_sflight TO it_sflight. "Adds the first row to the table

wa_sflight-carrid = 'AB'.
wa_sflight-connid = '0005'.
wa_sflight-fldate = '20140102'.
APPEND wa_sflight TO it_sflight. "Adds second row to the table

Listing 5.14 Using APPEND Statement to Add Records to Internal Table

Listing 5.15 shows an example using the INSERT statement. Notice the difference
in the syntax compared to the APPEND statement. The listing shows the usage of
the INSERT statement with and without an explicit index. When an index is sup-
plied with the INSERT statement, the record is added explicitly in that row.

If the index supplied is greater than the line of the table, no record is inserted and
the system field sy-subrc is set to 4. Refer to the box ahead for an explanation of
system fields.

*The following code inserts the record as last row
wa_sflight-carrid = 'AC'.
wa_sflight-connid = '0006'.
wa_sflight-fldate = '20140103'.
INSERT wa_sflight INTO TABLE it_sflight.
*The follow code inserts the record at a specific position based on
*the index.
wa_sflight-carrid = 'AD'.
176

Internal Tables 5.2
wa_sflight-connid = '0007'.
wa_sflight-fldate = '20140104'.
INSERT wa_sflight INTO it_sflight INDEX 1

Listing 5.15 Adding Records Using INSERT Statement

The syntax to use the INSERT statement is the same for all table types. However,
index operations can’t be performed on hash keys.

System Fields

System fields are always available in ABAP programs and they are filled by the runtime
system based on the context. You query the system fields in the program to identify the
status. For example, you can query the system field subrc to learn whether an INSERT
operation was successful or whether a SELECT statement could find a matching record
in the database.

System fields are available as variables in the program. However, they should be treated
like constants and should never be manipulated. All system fields are available in the
ABAP Data Dictionary structure SYST and can be accessed in the program using the pre-
defined structure SY. For example, to access the system field subrc in an ABAP pro-
gram, use the structure reference sy followed by the field name separated by a hyphen,
as in sy-subrc.

To refer your program data types and data objects to system fields, use the SYST struc-
ture reference. For example, DATA lv_index TYPE syst-index.

Often, you’ll perform an INITIAL check on system fields to see if a statement was suc-
cessful, as shown in Listing 5.16.

READ TABLE it_sflight INTO wa_sflight WITH KEY CARRID = 'AA'.
IF sy-subrc IS INTIAL.

ELSE.

ENDIF.

Listing 5.16 System Fields

This example checks if the READ statement could successfully find a matching record and
accordingly build the program logic. In this case, sy-subrc will have its initial value if
the READ statement was successful; otherwise, it will have a value other than its initial
value.

Each keyword updates different system fields with different values based on the con-
text. The keyword documentation helps you understand the system field values set by
different keywords. To open the keyword documentation, simply press (F1) in the
ABAP Editor.
177

Structures and Internal Tables5
For more information on various system fields, visit SAP Help at https://help.sap.com/
saphelp_nw70/helpdata/en/7b/fb96c8882811d295a90000e8353423/content.htm.

A system field check should immediately follow the statement for which the status is
queried, because other statements also may update the system fields.

COLLECT Statement

There is one more statement available to add records to an internal table: the COL-
LECT statement. It behaves a bit differently from the APPEND and INSERT state-
ments. When you try to add a row with a COLLECT statement, the system checks if
the nonnumeric fields of the row exist in the table.

If the nonnumeric fields match, it will not create a new row but simply adds the
numeric fields of the row. If the nonnumeric fields don’t match, then it creates a
new row.

This statement is useful when you need to consolidate data, such as in a super-
market billing application in which the currency and quantity fields are updated
when an existing item in the bill is scanned multiple times rather than creating a
new entry each time.

Listing 5.17 shows an example of using a COLLECT statement. In this example, a
new entry is added in the table for each new item. However, if the item already
exists in the table, then only the quantity and amount fields are updated.

TYPES : BEGIN OF ty_bill,
item TYPE c LENGTH 20, "Item name
qty TYPE i, " Quantity
amt TYPE p DECIMALS 2,"Amount

END OF ty_bill.
DATA : it_bill TYPE STANDARD TABLE OF ty_bill,

wa_bill TYPE ty_bill.

wa_bill-item = 'soap'.
wa_bill-qty = 1.
wa_bill-amt = 10.
COLLECT wa_bill INTO it_bill. " Creates a new entry

wa_bill-item = 'brush'.
wa_bill-qty = 1.
wa_bill-amt = 20.
COLLECT wa_bill INTO it_bill. " Creates a new entry
178

https://help.sap.com/saphelp_nw70/helpdata/en/7b/fb96c8882811d295a90000e8353423/content.htm
https://help.sap.com/saphelp_nw70/helpdata/en/7b/fb96c8882811d295a90000e8353423/content.htm

Internal Tables 5.2
wa_bill-item = 'soap'.
wa_bill-qty = 1.
wa_bill-amt = 10.
COLLECT wa_bill INTO it_bill. "Adds the qty and amt
*fields of the first record instead of creating a new record.

Listing 5.17 COLLECT Statement

Reading Internal Table Data

You can’t access the records of the internal table directly by addressing the name
of the internal table; you use the READ and LOOP statements to process the internal
table records. To read a single record from the internal table you use the READ
statement, and to read more than one record, you use the LOOP statement.

To read the internal table, you can use a TABLE KEY or FREE KEY. The TABLE KEY
compares all the key fields and automatically performs a linear search for stan-
dard tables, a binary search for sorted tables, and uses the hash algorithm for
hashed tables.

If you use FREE KEY instead of TABLE KEY, you can compare any field of the table
and the system will always perform a linear search irrespective of the type of
table. A WITH KEY portion of the READ statement allows you to use a free key, while
a WITH TABLE KEY portion expects you to provide the table key.

When using the table key, you should specify the fields in the same order as the
key. Listing 5.18 shows the syntax to use the READ statement.

*Read statement using free key.
READ TABLE it_sflight INTO wa_sflight WITH KEY connid = '0004'.

*READ statement using table key. Assuming the key is defined as
*carrid and connid
READ TABLE it_sflight INTO wa_sflight WITH TABLE KEY carrid =
'AA' connid = '0004'.

*READ statement using the index. Note that index operations can
*be performed only on standard and sorted tables.
READ TABLE it_sflight INTO wa_sflight INDEX 3.

*Assuming a secondary key is defined as "by_airline"
READ TABLE it_sflight INTO wa_sflight INDEX 3 USING KEY by_airline.

Listing 5.18 Syntax to Use READ Statement
179

Structures and Internal Tables5
Listing 5.18 demonstrates using the READ statement with a free key, table key, and
index. When reading an internal table record using an index, the system uses the
index of the primary key by default.

If you want to use the index of the secondary key, you can explicitly specify the
secondary key name via the USING KEY addition. If you specify a primary key after
the USING KEY addition, then the behavior is similar to using the READ statement
without the USING KEY addition.

The LOOP statement can be used to process multiple rows. The system loops
between LOOP and ENDLOOP, reading one row at a time to the work area.

Listing 5.19 shows the syntax to use the LOOP statement.

*Looping all the records of the internal table
LOOP AT it_sflight INTO wa_sflight.
*Statements to process the row can go here
ENDLOOP.
*Looping specific records of the internal table using key
LOOP AT it_sflight INTO wa_sflight WHERE connid EQ '0004'.

ENDLOOP.
*Looping specific records using secondary key. Assuming a
*secondary key "by_airline" is defined with carrid and connid as
*components.
LOOP AT it_sflight INTO wa_sflight

USING KEY by_airline
WHERE carrid EQ 'AA'
AND connid EQ '0004'.

ENDLOOP.
*Looping specific records using index.
LOOP AT it_sflight INTO wa_sflight FROM 3 TO 5.

ENDLOOP.

*Looping specific records using secondary key index. Note that
*the secondary key should be a sorted key and not hashed key
LOOP AT it_sflight INTO wa_sflight USING KEY by_airline

FROM 3 TO 5.

ENDLOOP.

Listing 5.19 Using LOOP Statement

Listing 5.19 demonstrates different scenarios to use the LOOP statement to process
the internal table records. You can loop all the records of the internal table or
180

Internal Tables 5.2
restrict the loop to certain records. The loop can be restricted either by key or
index; you can restrict the loop with a key via the WHERE clause.

Modifying Records of an Internal Table

In certain scenarios, you may want to modify the records of the internal table. For
example, if you’re fetching data about a sales order from a database table to an
internal table and displaying it on the screen for the user to edit the sales order,
then once the user makes any changes to the records on the screen, you may want
to modify the corresponding record in the internal table and update it back to the
database table.

The MODIFY keyword can be used to modify a particular row(s) of an internal
table. You need to be careful while using the MODIFY statement; it will result in a
runtime error if the key doesn’t match. You can only modify the non-key fields
and can’t change an active key.

Listing 5.20 shows an example of the MODIFY statement using both an index and
a key.

*To modify using index
MODIFY it_sflight FROM wa_sflight INDEX 3.

*To modify using key
MODIFY TABLE it_sflight FROM wa_sflight.

Listing 5.20 Performing Modification Operations

When the index is provided, the corresponding row is modified by copying the
contents of the work area to the internal table. When using the key, the system
scans for the corresponding record in the table and modifies it by copying the
contents of the work area to the internal table.

If you want to restrict the fields of the row that are modified, you can use the
TRANSPORTING addition, as shown ahead. The TRANSPORTING addition transports
only the specified fields from the work area to the internal table:

MODIFY TABLE it_sflight FROM wa_sflight TRANSPORTING carrid.

To delete a row from an internal table, you can use the DELETE keyword:

DELETE it_sflight INDEX 3.
DELETE it_sflight WHERE connid EQ 'AA'.
CLEAR it_sflight. "To delete all rows
181

Structures and Internal Tables5
5.2.5 Control Break Statements

While processing data in a loop, special control-level processing can be per-
formed via control break statements. The statement block LOOP can contain
control structures that trigger the control break statements when the control
structure is changed.

For example, a control break statement is triggered when the first record is pro-
cessed in a loop, when a field value in the control structure changes, or when the
last record of a loop is processed. Control break statements are introduced with
AT and closed with ENDAT.

There are four control break statements available:

� AT FIRST

Triggered in the first loop pass.

� AT NEW comp

Triggered when the value of any field up to comp in the row changes, compared
to the previous record.

� AT END OF comp

Triggered when the value of any field up to comp in the row changes, compared
to the next record.

� AT LAST

Triggered in the last loop pass.

Assuming internal table IT_SFLIGHT has three components (CARRID, CONNID, and
FLDATE—in that order), Listing 5.21 shows the syntax of using various control
break statements and why they trigger.

LOOP AT it_sflight INTO wa_sflight.
AT FIRST.
*The code here will be executed only in first loop pass.
ENDAT.
AT NEW carrid.
*The code here will be executed if the value of the field carrid
*is different from previous loop pass.
ENDAT.
AT NEW connid.
*The code here will be executed if the value of carrid or connid
*is different from previous loop pass. It not only checks the
*field mentioned in the control structure but checks all
*the fields to the left-hand side in the row.
ENDAT.
182

Internal Tables 5.2
AT END OF connid.
*The code here will be executed if the value of either carrid or
*connid will be different in the next loop pass.
ENDAT.
AT LAST.
*The code here will be executed only in last loop pass.
ENDAT.
ENDLOOP

Listing 5.21 Control Break Statements

Control break statements can be maintained in any order in the loop, because
they’re always triggered on the control break and not by the order in which they
are maintained in the code.

The code sample in Listing 5.22 shows an example of some control break state-
ments. The code in this example prints the header and item details of a billing
document, highlighting how control break statements can be used to control the
report output.

*Billing document header structure
TYPES: BEGIN OF TY_VBRK,

VBELN TYPE VBELN_VF, "Document Number
FKDAT TYPE FKDAT, "Bill Date
NETWR TYPE NETWR, "Net Value
KUNRG TYPE KUNRG, "Payer

END OF TY_VBRK.

*Billing document item structure
TYPES: BEGIN OF TY_VBRP,

VBELN TYPE VBELN_VF, "Document Number
POSNR TYPE POSNR_VF, "Item Number
ARKTX TYPE ARKTX, "Description
FKIMG TYPE FKIMG, "Qty
VRKME TYPE VRKME, "Sales Unit
NETWR TYPE NETWR_FP, "Net Value
MATNR TYPE MATNR, "Material Num
MWSBP TYPE MWSBP, "Tax amt

END OF TY_VBRP.

DATA: it_vbrp TYPE TABLE OF ty_vbrp,
it_vbrk TYPE TABLE OF ty_vbrk,
wa_vbrk TYPE ty_vbrk,
wa_vbrp TYPE ty_vbrp.

*Selection screen declaration for user selection criteria
SELECT-OPTIONS: s_vbeln FOR wa_vbrp-vbeln.
183

Structures and Internal Tables5
START-OF-SELECTION.
*Select Header Data
SELECT VBELN FKDAT NETWR KUNRG FROM VBRK

INTO TABLE it_vbrk
WHERE VBELN in s_matnr.

"Select Item Data
SELECT VBELN POSNR ARKTX FKIMG VRKME NETWR MATNR MWSBP

FROM vbrp INTO TABLE it_vbrp WHERE vbeln in s_vbeln.

END-OF-SELECTION
*The SORT statement ensures the control break is consistent if
*the table is not a sorted table.
SORT it_vbrp BY vbeln.
LOOP AT it_vbrp INTO wa_vbrp.

AT FIRST. "Print Column Headings
WRITE AT: /05 'ITEM',

15 'DESCRIPTION',
60 'BILLED QUANTITY',
80 'UNITS',
105 'NET VALUE',
130 'MATERIAL NUMBER',
150 'TAX AMOUNT'.

WRITE SY-ULINE.
ENDAT.

AT NEW VBELN. " To print header data once per new document
READ TABLE it_vbrk into wa_vbrk WITH KEY

VBELN = wa_vbrp-vbeln.
WRITE AT : /5 'Billing Document' LEFT-JUSTIFIED.
WRITE AT : 30 wa_vbrk-vbeln LEFT-JUSTIFIED COLOR 2.
WRITE AT : /5 'Payer' LEFT-JUSTIFIED.
WRITE AT : 30 wa_vbrk-kunrg LEFT-JUSTIFIED COLOR 3.
WRITE AT: /5 'BILLING DATE' LEFT-JUSTIFIED.
WRITE AT: 30 wa_vbrk-fkdat LEFT-JUSTIFIED COLOR 5.
WRITE AT: /5 'NET VALUE' LEFT-JUSTIFIED.
WRITE AT: 30 wa_vbrk-netwr LEFT-JUSTIFIED COLOR 6.

ENDAT.
*Print Item details

WRITE : /5 wa_vbrp-posnr LEFT-JUSTIFIED,
15 wa_vbrp-arktx LEFT-JUSTIFIED,
60 wa_vbrp-fkimg LEFT-JUSTIFIED,
80 wa_vbrp-vrkme LEFT-JUSTIFIED
105 wa_vbrp-netwr LEFT-JUSTIFIED,
130 wa_vbrp-matnr LEFT-JUSTIFIED,
150 wa_vbrp-mwsbp LEFT-JUSTIFIED.
184

Internal Tables 5.2
*To print document total netvalue at the end of last item in the
*document. The code in AT END OF will execute before the next new
*document.

AT END OF vbeln
*The keyword SUM can be used within a control break to
*automatically add up the column.

SUM.
*Prints total Sum for document

WRITE : / 105 WA_VBRP-NETWR LEFT-JUSTIFIED.
ENDAT.

*To identify the last record in the table
AT LAST.
WRITE : / 'END OF REPORT'.

ENDAT.
ENDLOOP.

Listing 5.22 Control Break Example

Listing 5.22 processes the header and item data of a billing document. The header
data is fetched from the database table VBRK and the item data is fetched from the
database table VBRP. We’re providing a selection screen to the user via the
SELECT-OPTIONS statement. The SELECT-OPTIONS statement allows the user to
input multiple document numbers that should be processed by the program.
You’ll learn more about SELECT-OPTIONS in Chapter 6.

Based on the user’s input, we fetch the relevant records from the database table
and process the records to print in the output using the WRITE statement. We’re
using the control break statements within the LOOP statement of the item table IT_
VBRP to format the output.

For example, we’re using the AT FIRST statement to identify the first loop pass to
print the column heading. AT NEW is used to identify a new document to read and
print the header record. AT END OF is used to identify the last item of the current
document to print the total sum for the document. Finally, we used the AT LAST
statement to identify the last record of the internal table to print a report closing
statement.

The WRITE statement supports various formatting techniques, such as specifying
the position on the screen to print the record, using the WRITE AT addition, using /
to print the record in a new line, and so on. We’ll explore the WRITE statement
further in Chapter 13.
185

Structures and Internal Tables5
The following rules are applicable while using control break statements:

� The internal table fields should be sorted by the fields used in the control
break.

� The internal table can’t be modified within the loop.

� The content of a work area specified in the LOOP statement after the INTO addi-
tion can’t be modified.

When the AT-ENDAT control structure is entered, the contents of the work area are
modified as follows:

� The content of the components to which the control break is applied remain
unchanged.

� All components with a character-like flat data type that are after the current
control key are set to character * in every position.

� All the other components that are after the current control key are set to their
initial values.

Figure 5.12 and Figure 5.13 display the contents of a work area before entering
the control break and after entering the control break, respectively.

Figure 5.12 Contents of Work Area before Control Break Is Applied, Viewed in Debugger
186

Introduction to Open SQL Statements 5.3
Figure 5.13 Contents of Work Area after Control Break Is Applied, Viewed in Debugger

When the AT-ENDAT control structure is exited, the content of the current table
row is assigned to the entire work area.

5.3 Introduction to Open SQL Statements

SAP supports different relational database management systems (RDBMSs) like
Oracle, Microsoft SQL, and SAP HANA. Structured Query Language (SQL) is a
programming language designed for working with data in a relational database
management system.

ABAP supports two types of SQL:

� Open SQL
Open SQL allows you to access database tables and perform certain actions
independent of the underlying database that the SAP ERP system is using.
When executing an Open SQL statement, the database interface of the work
process will take care of converting the Open SQL statement to a Native SQL
statement—that is, native to the underlying database. This ensures your ABAP
code is portable and will work irrespective of the underlying database.

� Native SQL
Native SQL allows you to use database-specific SQL statements in an ABAP pro-
gram. With a Native SQL statement, you can use database tables that are not
187

Structures and Internal Tables5
part of ABAP Data Dictionary. This allows you to integrate data that is not part
of the SAP ERP system. To use a Native SQL statement in an ABAP program,
precede the statement with the EXEC SQL keyword and close it with the ENDEXEC
statement—for example:

EXEC SQL.
<native sql statement>.
ENDEXEC.

SQL statements are categorized into the following languages:

� Data Definition Language (DDL)
DDL statements are used to define the database structure or schema. Using a
DDL statement, you can perform actions such as creating a table, dropping a
table, changing the structure of the database table, and so on.

The following are some examples of DDL statements:

� CREATE: Creates objects in the database

� ALTER: Alters the structure of the database

� DROP: Deletes objects from the database

� TRUNCATE: Removes all records from a table, including all spaces allocated for
the records

� RENAME: Renames an object

� Data Manipulation Language (DML)
DML statements manage data within schema objects. Using DML statements,
you can’t alter the database schema but you can manipulate the data. For exam-
ple, you can fetch the data from a database table, modify the records of the
database table, delete records from the database table, and so on.

The following are some examples of DML statements:

� SELECT: Retrieves data from a database

� INSERT: Inserts data into a table

� UPDATE: Updates existing data within a table

� DELETE: Deletes all records from a table, leaving the spaces for the records in
place

With Open SQL, you can use DML statements. With Native SQL, you can use
DDL statements. We generally use ABAP Data Dictionary to perform tasks that
require using DDL statements with Native SQL.
188

Introduction to Open SQL Statements 5.3
In this section, we’ll discuss various key concepts of an RDBMS, such as database
design, tables and keys, foreign key relationships, and normalization. We’ll also
provide an introduction to Open SQL statements used to fetch data from database
tables.

5.3.1 Database Overview

As discussed in Chapter 2, the database is managed by an RDBMS. A relational
database consists of multiple tables that store particular sets of data, and an
RDBMS standardizes how the data is stored and processed. In a relational data-
base, data is stored in multiple tables, with a relationship between the tables.

The relational database model was first conceived by E. F. Codd in 1969. The
model is based on set theory and predicate logic (branches of mathematics). The
idea behind the relational model is that the database consists of a series of tables
that can be manipulated using a declarative approach (nonprocedural operations).

It’s commonly thought that the word relational in a relational database pertains to
the fact that you relate the tables in the database to one another. However, a table
is also known as a relation, and the word relational takes its root from this. In fact,
Codd and other database theorists use the terms relations, attributes, and tuples to
refer to what developers call tables, columns (fields), and rows (or what we’d call
files, fields, and records in a physical sense).

In the following subsections, we’ll explain how a database is modeled. We’ll start
by discussing the use of database tables and the significance of table keys. We’ll
then explore the concept of foreign key relationships to establish relationships
between different tables of the database. We’ll also discuss the concept of normal-
ization, which helps to simplify database design and avoid redundancy. We’ll
conclude this section with an introduction to SAP HANA and the many benefits
this database provides.

Relational Database Design

A database model to reflect a real-world system takes time and effort to conceive,
build, and refine. You need to make decisions about the tables you need to create,
what fields they’ll contain, and how the tables can be related to each other.
189

Structures and Internal Tables5
A good database that’s designed according to the relational model provides many
advantages. A good design makes the data entries, updates, and deletions effi-
cient, and it also helps make retrieval and summarization of data easy. Because
most data is stored in the database and not in the application, the database should
be sufficiently self-documenting. A good database design should also consider
future changes in real-world requirements and should be flexible to allow for
changes to the database schema.

Tables and Keys

A table is the basic entity in a relational model. Each table should represent an
entity in the real world, and these entities can be real-world objects or events. For
example, a customer is a real-world object, and the order placed by a customer is
an event.

A table consists of rows and columns. The relational model dictates that each row
in a table should be unique so that it can be uniquely addressed through program-
ming. The uniqueness of a row is guaranteed by defining a primary key for the
table. The primary key of a table consists of one or more fields that uniquely iden-
tify a row. Each table can have only one primary key. All fields from which a pri-
mary key is drawn are called candidate keys. Multiple secondary keys can be
drawn from the other fields of the table.

Secondary keys can be unique or non-unique. Secondary keys are generally used
to define secondary indexes for the table in order to speed up data retrieval. Keys
can be simple or composite. If a key is made up of one field, it’s called a simple
key; if the key is made up of two or more fields, it’s called a composite key.

When modeling a table, you should decide which candidate keys form the pri-
mary key of the table based on business requirements; there are no hard and fast
rules to define the primary key of a table. In his book titled SQL and Relational
Basics, Fabian Pascal notes that such a decision should be based upon the princi-
ples of minimalism (choose the fewest fields necessary), stability (choose a key
that seldom changes), and simplicity/familiarity (choose a key that is both simple
and familiar to users).

For example, if you have a table to store employee details—such as employee ID,
first name, last name, address, telephone number, and zip code—which of these
190

Introduction to Open SQL Statements 5.3
fields will make for a good primary key? Following Pascal’s guidelines, the
address and telephone number can be ruled out because they change frequently.
There’s also a chance of the employee’s name changing due to marriage or other
reasons; plus, names can be misspelled, and there’s a high likelihood that two
employees will have the same first or last name.

Because the employee ID is unique across the organization, it makes the best can-
didate for the primary key. Even though there are no fixed rules for choosing a
primary key, most developers prefer choosing a numeric primary key, because
searches on numeric fields are more efficient than those on text fields.

Tip

In many situations, it’s recommended to use static numbers, such as employee ID, cus-
tomer ID, document number, and so on, as primary keys and to avoid descriptive texts.

Foreign Keys and Domains

Even though primary keys are defined in individual tables, there may be a need to
define a relationship with different tables of the database using foreign key rela-
tions. A foreign key is a field in a table that is used to reference a primary key in
another table.

Let’s look at an example. Table 5.2 shows a customer table in which customer
details are stored. The primary key of this table is the Cust ID column, which
uniquely identifies each row.

Table 5.3 shows an orders table that stores information about customer orders.
The primary key of this table is the Order ID column, which uniquely identifies
each order.

Cust ID Name Address ZIP Phone

1 Joey 171 CE 110099 99889900

2 James 345 DE 118899 88997788

3 John 563 WE 442299 88993354

Table 5.2 Customer Table
191

Structures and Internal Tables5
In this example, the Cust ID field of Table 5.3 is considered the foreign key of the
table, because it can be used to refer to the customer table (see Table 5.2).

It’s important that both the primary keys and foreign keys that are used to form
a relationship share the same meaning and domain. A domain defines a possible
set of values for a field.

For example, if a valid value for a customer ID can be a number between 1 and
10,000, then the Cust ID fields in both tables (Table 5.2 and Table 5.3) should
adhere to this range. By implementing a foreign key check, we can also ensure
that the Cust ID field in the orders table (Table 5.3) consists of only the values
available in the Cust ID field of the customers table (Table 5.2).

Relationship

Foreign keys model relationships between real-world entities. Such real-world
entities can have complex relationships—for example, one entity may have mul-
tiple relations with other entities. In a relational database, relationships are
defined between a pair of tables.

These tables can be related in one of three ways:

� One-to-one relationship
Two tables are said to be in a one-to-one relationship if for every row in the
first table there is at most one row in the second table. One-to-one relation-
ships are seldom used to model real-world entities; they are mostly used to split
the data into multiple tables due to software limitations.

For example, you can split data into two tables if the number of fields exceeds
the limitation of 249 per table, or you can model two tables with customer data
if one of the tables can store more sensitive information about a customer. You
have better access to control restrictions for this table compared to the table

Order ID Cust ID Item Qty UoM

2230 1 Pen 10 Pieces

2231 2 Pencil 10 Pieces

Table 5.3 Orders Table
192

Introduction to Open SQL Statements 5.3
that stores general information about the customer. The tables in a one-to-one
relationship should have similar primary keys.

� One-to-many relationship
Two tables are said to be in a one-to-many relationship if for every row in the
first table there can be zero, one, or multiple rows in the second table, but for
every row in the second table there is exactly one row in the first table.

One-to-many relations are the most commonly modeled. The tables in a one-to-
many relation are also called parent-child tables or header-item tables. Com-
mon tables with one-to-many relationships in the SAP system include order
tables such as VBAK-VBAP, which stores header and item details of sales orders,
and EKKO-EKPO, which stores the header and item details of purchase orders.
The one-to-many relationship is also used to link a base table with a lookup
table. For example, in the orders table you can store a two-character abbrevia-
tion for a unit of measure, and this info can be linked to a lookup table in which
the descriptions for the abbreviations are maintained.

� Many-to-many relationship
Two tables are said to be in a many-to-many relationship when for every row
in the first table there can be many rows in the second table, and for every row
in the second table there can be many rows in the first table. Many-to-many
relations cannot be directly modeled in a relational database, and they’re typi-
cally broken down into multiple one-to-many relations.

Normalization

Normalization is the process of simplifying the design of a database. Normaliza-
tion answers core questions regarding the number of tables required, what each
table represents, the number of fields in each table, and the relationship between
tables. Normalization also helps avoid redundancy and anomalies in database
design.

Anomalies can occur while inserting, updating, or deleting records from a data-
base table (if the database is poorly designed). For example, if you have a database
table as shown Table 5.4, when a record is updated to change the customer
address, all the rows where the customer record exists should be updated. If any
rows are missed, then it will lead to data inconsistency. This is called an update
anomaly.
193

Structures and Internal Tables5
If you try to insert a record for a customer that isn’t available in the customer
master table, it causes an insertion anomaly. If you delete item 3 in Table 5.4, it will
also delete the record of the customer John, because his details are linked to this
item only. This is called a delete anomaly.

Normalization helps to overcome these anomalies and model a database that is
consistent and predictable. Normalizations use the concept of normal forms to
assist in designing an optimal structure. There are three available normal forms:
first, second, and third.

The following subsections look at each of these normal forms.

First Normal Form

The first normal form (1NF) dictates that the field of a table should contain atomic
values. The field should contain only one value. For example, the data in Table
5.5 does not conform to 1NF, because the phone number field contains multiple
values for the Emp_id 2290.

To make Table 5.5 conform to 1NF, it should be adjusted as shown in Table 5.6
by creating a new record for the second phone number in Emp_id 2290.

Item_ID Customer_ID Customer_name Customer_address

1 921 Ryan 12E West End

2 921 Ryan 12E West End

3 728 John 44 Avenue Road

Table 5.4 Sample to Show Update Anomaly

Emp_id Emp_name Phone_num

2289 John 99889988

2290 Mark 88998899

99887755

Table 5.5 Employee Not Conforming to 1NF
194

Introduction to Open SQL Statements 5.3
Second Normal Form

For a table to conform to the second normal form (2NF), it should meet the fol-
lowing criteria:

� It should conform to 1NF.

� The non-key fields of the table should be fully dependent on all the primary key
fields and not on the subset of the key fields.

For example, in Table 5.7, let’s assume that Employee_ID and Department_ID are
the primary key fields. According to 2NF, the non-primary fields Employee_name
and Department_name should be fully dependent on the complete primary key
fields Employee_ID and Department_ID, not on the subset of the primary key
fields.

That’s not the case here; the Employee_name field can be identified by the Employ-
ee_ID field, and the Department_name field can be identified fully by the Depart-
ment_ID field. Therefore, the non-primary fields of this table are only partially
dependent on the primary key fields of the table, which is not allowed in 2NF.

To make Table 5.7 conform to 2NF, it should be split into two tables, as shown in
Table 5.8 and Table 5.9. This ensures that there is no partial dependency on pri-
mary key fields.

Emp_id Emp_name Phone_num

2289 John 99889988

2290 Mark 88998899

2290 Mark 99887755

Table 5.6 Employee Conforming to 1NF

Employee_ID Department_ID Employee_name Department_name

1122 01 John Sales

1123 02 Mark Finance

Table 5.7 Not Conforming to 2NF
195

Structures and Internal Tables5
Third Normal Form

A table conforms to the third normal form (3NF) if it conforms to 2NF and all
non-key fields of the table are mutually independent.

For example, Table 5.10 does not conform to third normal form, because the field
Total is dependent on the information in the nonkey fields Quantity and Price.
To make this table conform to 3NF, it’s best to remove the Total field from the
table and handle the calculations in a query or report. This ensures that updating
one of the fields of the table does not result in any anomalies.

Every higher normal form is a superset of all lower normal forms. For example, if
you design for 3NF, then by default it conforms to 1NF and 2NF. Normalization
helps achieve optimal database design. A good database design takes time and
effort and requires a good understanding of business requirements. A good
design not only makes your applications efficient, but also prevents headaches
down the line.

Employee_ID Department_ID Employee_name

1122 01 John

1123 02 Mark

Table 5.8 Employee Table

Department_ID Department_name

01 Sales

02 Finance

Table 5.9 Department Table

Item_id Quantity Price Total

1 10 10 100

2 20 15 300

Table 5.10 Conforming to 3NF
196

Introduction to Open SQL Statements 5.3
SAP HANA

There has been a growing need for real-time analytics over the years, which
requires processing huge sets of data. Traditional database systems form data pro-
cessing speed bottlenecks for large data volumes. SAP addressed this problem
with its in-memory database system called SAP HANA.

SAP HANA has transformed the relational database industry with its innovations
in hardware and software technology to process massive datasets in real time
using in-memory computing. SAP HANA combines database, application process-
ing, and integration services on a single platform.

SAP HANA stores compressed data in memory in a columnar format that enables
faster scanning and quicker processing. Compared to traditional databases, pro-
grams take minutes to process the data from SAP HANA, as opposed to hours
when using a traditional database.

The following are some important features to consider with SAP HANA when it
comes to ABAP:

� Parallelism
One of the main features of the SAP HANA database is parallelism. SAP HANA
takes advantage of the multiple cores of the processor to process information in
parallel. Traditional database systems were built decades ago, when only sin-
gle-core processors existed and the DRAM was extremely expensive.

The hardware and computing power of systems has changed tremendously
over the years. SAP designed SAP HANA from the ground up to take advantage
of modern hardware capabilities. Typically, an SAP HANA system performs
around 3.5 billion scans per second per core and around twelve to fifteen mil-
lion aggregations per second per core. This enables you to perform real-time
analytics and process huge sets of data on the fly.

� Code pushdown
The SAP HANA database allows you to push certain data-intensive operations
to the database using a technique known as code pushdown.

For example, if you want to calculate the sum of all invoices, you can use an
aggregate function on the database instead of fetching all the invoice data into
the application server and calculating the sum in an internal table loop. This can
be achieved using ABAP Core Data Services (CDS) views.
197

Structures and Internal Tables5
� ABAP Core Data Services (CDS) views
ABAP CDS views are not persistent objects, but a projection of a database
entity. An ABAP CDS view is created as a design-time file in the repository and
exists as an ABAP Data Dictionary object once activated. This allows you to
access the CDS view using Open SQL and to use aggregate functions.

5.3.2 Selecting Data from Database Tables

You can use internal tables to process data from a database table, allowing you to
store multiple rows of data at once. In this section, we’ll explore a few Open SQL
statements that can be used to process data from a database.

The SELECT keyword fetches data from a database table. You can select a single
record or multiple records, and you can select the data from the database into a
structure or an internal table of your ABAP program. You can either select the
complete row (all fields) of a database table or select only specific fields.

UNION Addition

As of SAP NetWeaver 7.5, the UNION addition can be used to create a union between
the result sets of two SELECT statements.

When selecting data from a database, the row of the data object should be identi-
cal to the row of the database table. To ensure this, refer your data object to the
table when selecting the complete row. If you need to select only certain fields
from the row, make sure to define the fields in the same order in which you plan
to select them. The SELECT statement supports an INTO CORRESPONDING FIELDS
addition if the order of fields in your data object doesn’t match the order of the
selection.

Listing 5.23 shows the usage of a SELECT SINGLE statement to select a single row
from the database table. If more than one row satisfies the WHERE clause, the first
matching row is fetched.

TYPES: BEGIN OF ty_vbrk,
VBELN TYPE VBELN_VF, "Document Number
FKDAT TYPE FKDAT, "Bill Date
NETWR TYPE NETWR, "Net Value
KUNRG TYPE KUNRG, "Payer

END OF ty_vbrk.
198

Introduction to Open SQL Statements 5.3
DATA : it_vbrk TYPE STANDARD TABLE OF ty_vbrk,
wa_vbrk TYPE ty_vbrk.

*Selecting a single row of specific fields from table vbrk.
SELECT SINGLE vbeln fkdat netwr kunrg FROM vbrk

INTO wa_vbrk
WHERE vbeln EQ '9000'.

Listing 5.23 Using SELECT SINGLE

Listing 5.24 uses SELECT…ENDSELECT to fetch all matching rows, one row at a time.
The system loops between SELECT…ENDSELECT, transferring one row at a time to
the structure wa_vbrk. You can process the contents of wa_vbrk in each loop by
writing the statements before ENDSELECT. This is an efficient way to process the
records from the database table if you plan to use a database table only once
during program execution.

However, if you plan to reuse the data multiple times during the life of the pro-
gram execution, we recommend using internal tables, which allows you to fetch
the data once into your program and access it subsequently multiple times, as
opposed to accessing the database every time you need the same data.

*Selecting all matching rows of specific fields from the table
*vbrk using a structure.
*Here the system fetches one row at a time and loops between
*select…endselect. The row can be processed between SELECT…ENDSELECT.
SELECT vbeln fkdat netwr kunrg FROM vbrk

INTO wa_vbrk
WHERE vbeln EQ '9000'.

ENDSELECT.

Listing 5.24 Using SELECT…ENDSELECT

Listing 5.25 shows using an internal table in a SELECT statement, also known as
performing an array fetch. Once the SELECT statement is executed, you can access
the data from the internal table as discussed previously.

*Selecting all matching rows of specific fields from the table
*vbrk using an internal table.
SELECT vbeln fkdat netwr kunrg FROM vbrk

INTO TABLE it_vbrk
WHERE vbeln EQ '9000'.

Listing 5.25 Selecting Data to Internal Table
199

Structures and Internal Tables5
Listing 5.26 shows selecting the fields of the complete table row. Notice the dif-
ference in data object declaration and the usage of * as the SELECT statement.

DATA : it_vbrk TYPE STANDARD TABLE OF vbrk,
wa_vbrk TYPE vbrk.

*Selecting a single row of all fields from table vbrk.
SELECT SINGLE * FROM vbrk

INTO wa_vbrk
WHERE vbeln EQ '9000'.

*Selecting all matching rows of all fields from table vbrk
*using a structure.
SELECT * FROM vbrk

INTO wa_vbrk
WHERE vbeln EQ '9000'.

ENDSELECT.
*Selecting all matching rows of all fields from table vbrk
*using an internal table.
SELECT * FROM vbrk

INTO TABLE it_vbrk
WHERE vbeln EQ '9000'.

Listing 5.26 Selecting All Fields of a Row

5.3.3 Selecting Data from Multiple Tables

The syntax we’ve discussed so far allows you to select data from a single table.
However, in real-world applications, data is spread across multiple tables with
foreign keys.

To select data from tables that are in a foreign key relationship, you can use joins
or use the FOR ALL ENTRIES addition with the SELECT statement. The FOR ALL
ENTRIES addition allows you to select the data from the database table and com-
pare it to the data in an internal table that was previously selected from another
database table. This is efficient if you’re processing data from two tables.

Listing 5.27 shows the syntax to use for all entries. Here, the data is first selected
from database table VBRK into an internal table IT_VBRK; then the data in IT_VBRK
is compared to select the data from database table VBRP.

When using FOR ALL ENTRIES, make sure the internal table used for comparison
isn’t empty. Otherwise, the system will execute the SELECT statement without
restriction. Notice the IF condition used in the listing.

SELECT * FROM vbrk
INTO TABLE it_vbrk
200

Introduction to Open SQL Statements 5.3
WHERE vbeln EQ p_vbeln.
IF sy-subrc IS INITIAL.
SELECT * FROM vbrp

INTO TABLE it_vbrp
FOR ALL ENTRIES IN it_vbrk
WHERE vbeln EQ it_vbrk-vbeln.

ENDIF.

Listing 5.27 Using FOR ALL ENTRIES

Alternately, joins allow you to select data from up to twenty-five database tables.
There are two types of joins:

� Inner joins
Inner joins require an entry with the KEY of one table in the second table, to be
extracted to an internal table.

� Outer joins
Irrespective of whether an entry exists or not in the second table, outer joins
still extract data from the first table.

Listing 5.28 highlights the difference between an inner and outer join. If the
internal table has three fields—FLD1, FLD2, and FLD3—the result for an inner join
and outer join are shown in Listing 5.28.

Inner Join:

FLD1 FLD2 FLD3

X 100 ABC
X 100 DEF
Z 300 WXY

Outer Join:

FLD1 FLD2 FLD3

Table A Table B

Field 1 Field 2 Field 1 Field 3

X 100 X ABC

Y 200 X DEF

Z 300 Z WXY
201

Structures and Internal Tables5

X 100 ABC
X 100 DEF
Y 200 "No entry for Key Y in table B so FLD3 is blank
Z 300 GHI

Listing 5.28 Inner Join vs. Outer Join

Listing 5.29 shows an example using an inner join. Here, we join the columns
carrname, connid, and fldate of the database tables scarr, spfli, and sflight
using two inner joins. This creates a list of flights from p_cityfr to p_cityto. An
alias name is assigned to each table.

PARAMETERS: p_cityfr TYPE spfli-cityfrom,
p_cityto TYPE spfli-cityto.

TYPES: BEGIN OF wa,
fldate TYPE sflight-fldate,
carrname TYPE scarr-carrname,
connid TYPE spfli-connid,

END OF wa.

DATA itab TYPE SORTED TABLE OF wa
WITH UNIQUE KEY fldate carrname connid.

SELECT c~carrname p~connid f~fldate
FROM ((scarr AS c
INNER JOIN spfli AS p ON p~carrid = c~carrid

AND p~cityfrom = p_cityfr
AND p~cityto = p_cityto)

INNER JOIN sflight AS f ON f~carrid = p~carrid
AND f~connid = p~connid)

INTO CORRESPONDING FIELDS OF TABLE itab.

Listing 5.29 Inner Join Example

Listing 5.30 shows an example using an outer join.

PARAMETERS p_cityfr TYPE spfli-cityfrom.

TYPES: BEGIN OF wa,
carrid TYPE scarr-carrid,
carrname TYPE scarr-carrname,
connid TYPE spfli-connid,

END OF wa.
DATA itab TYPE SORTED TABLE OF wa

WITH NON-UNIQUE KEY carrid.
START-OF-SELECTION.
SELECT s~carrid s~carrname p~connid
202

Processing Data from Database via Internal Tables and Structures 5.4
FROM scarr AS s
LEFT OUTER JOIN spfli AS p ON s~carrid = p~carrid

AND p~cityfrom = p_cityfr
INTO CORRESPONDING FIELDS OF TABLE itab.

Listing 5.30 Outer Join Example

Using joins may seem a bit overwhelming initially, so we suggest you practice
using FOR ALL ENTRIES and use joins only if you need data from many tables.

5.4 Processing Data from Database via Internal Tables
and Structures

Internal tables and structures are primarily used to process data from database
tables. Because all transaction data is stored in database tables, we use internal
tables and structures in almost all ABAP programs. Working with internal tables
may seem a bit tricky initially, especially when working with multiple tables.

When processing data from multiple internal tables, you should always avoid
nested loops (a loop within a loop) because they degrade performance. We
always loop the main table and read the secondary tables.

When you have a requirement to process data from more than one table, you may
struggle to identify which internal table to loop and which one to read. For exam-
ple, say you have a requirement to process material and plant data, and this data
is available in database table MARC. To print the plant details of a material in the
output, write the code shown in Listing 5.31.

TYPES: BEGIN OF ty_marc,
matnr TYPE matnr,
werks TYPE werks_d,

END OF ty_marc.
DATA : it_marc TYPE STANDARD TABLE OF ty_marc,

wa_marc TYPE ty_marc.
PARAMETERS p_matnr TYPE matnr.
SELECT matnr werks from marc INTO TABLE it_marc WHERE matnr EQ p_matnr.
LOOP AT it_marc INTO wa_marc.
WRITE: / wa_marc-matnr, wa_marc-werks.
ENDLOOP.

Listing 5.31 Sample Code to Print Material Plant Data
203

Structures and Internal Tables5
Now, if the code in Listing 5.31 has to be expanded to print the plant description
as the third column for every plant number, you need to select the plant descrip-
tion from another table, T001W, and compare against the plant data in table MARC,
as shown in Listing 5.32.

TYPES: BEGIN OF ty_marc,
matnr TYPE matnr,
werks TYPE werks_d,

END OF ty_marc.
TYPES : BEGIN OF ty_t001w,

Werks TYPE werks_d,
Name1 TYPE name1,
END OF ty_t001w.

DATA : it_marc TYPE STANDARD TABLE OF ty_marc,
wa_marc TYPE ty_marc,
it_t001w TYPE STANDARD TABLE OF ty_t001w,
wa_t001w TYPE ty_t001w.

PARAMETERS p_matnr TYPE matnr.
SELECT matnr werks from marc INTO TABLE it_marc WHERE matnr EQ p_matnr.
IF sy-subrc IS INITIAL.
SELECT werks name1 FROM t001w INTO TABLE it_
t001w FOR ALL ENTRIES IN it_marc WHERE werks EQ it_marc-werks.
ENDIF.
LOOP AT it_marc INTO wa_marc.
READ TABLE it_t001w INTO wa_t001w WITH KEY werks = wa_marc-werks.
WRITE: / wa_marc-matnr, wa_marc-werks, wa_t001w-name1.
ENDLOOP.

Listing 5.32 Printing Plant Descriptions

As you can see in Listing 5.32, we selected the required information from two
database tables into two internal tables by matching the entries of the first table
with the second table. After selecting the data into the respective internal tables,
we loop one table and read the other table in the loop to print the output.

Now, how do you decide which table to loop, and which table to read? This is
where many beginners become confused, but the answer is simple: Loop the
table that has the main data, and read the table that has the secondary data. In this
example, the main data we’re printing is the plant details of the material; the
plant descriptions are just secondary information. Therefore, we’re looping the
main table MARA and reading the secondary table T001W.
204

Introduction to the Debugger 5.5
5.5 Introduction to the Debugger

We’ll discuss debugging details in Chapter 17, but for now we’ll cover the basics
of debugging so that you can check your program execution to understand the
program flow.

The debugger is a useful tool not only to troubleshoot logical errors in your code,
but also to understand the program flow, and it can be an invaluable tool to
understand your code better.

Two types of debugger are available: the Classic Debugger and the New Debug-
ger. The New Debugger provides a lot more options than the Classic Debugger. If
you’re a beginner, we suggest that you use the Classic Debugger if you’re using a
pre-SAP NetWeaver 7.5 system; as you progress through this book, you should
feel at home exploring the New Debugger.

With the release of SAP NetWeaver 7.5, the Classic Debugger has been declared
obsolete, and it’s no longer possible to set the Classic Debugger as your default
debugger. You can still use the Classic Debugger by clicking the information icon
in the debugger settings, however. Alternately, you can refer to Chapter 17 for a
quick introduction to the New Debugger.

To always use the Classic Debugger, you need to make it the default debugger in
your personal settings, as shown in Figure 5.14.

Figure 5.14 Setting Classic Debugger As Default
205

Structures and Internal Tables5
Open the User-Specific Settings dialog box by following the menu path Utili-

ties � Settings from any ABAP Workbench tool, and then select the Classic
Debugger from the Debugging tab under the ABAP Editor tab.

From now on, the system will always run the Classic Debugger.

To turn on debugging, you need to set a breakpoint in the program. A breakpoint
interrupts program execution and loads the debugger when the program execu-
tion reaches the statement for which the breakpoint is set. You can set a break-
point a couple of ways, as shown in Figure 5.15.

Figure 5.15 Setting Breakpoints

Once you set a breakpoint, execute the program normally; the system will auto-
matically hold the program execution and present the debugger screen when it
reaches the breakpoint, as shown in Figure 5.16.

On the debugger screen, you can press (F5) to execute one statement at a time or
(F8) to stop at the next breakpoint or to complete the program execution if there
are no further breakpoints. If the debugger screen opens and you wish to exit the
debugger, you can select the menu option Debugging � Debugging Off in the
debugger screen (see Figure 5.17).

Double click here
to set or delete
break point

Click here to set or
delete break point
206

Introduction to the Debugger 5.5
Figure 5.16 Debugger Screen

Figure 5.17 Menu Option to Exit Debugger

Buttons to
execute the code

Different views
in debugger

Enter the data object/field
name to check its contents.
Double click on the field
name to open detail view.
207

Structures and Internal Tables5
While you’re in debug mode, you can type the name of a field to check its con-
tent. You can double-click on the field name to see a more detailed view of the
field, as shown in Figure 5.18. This helps confirm that your variables are filled
with the correct data and to see what happens after each statement is executed.
This way, you don’t have to imagine the program execution; you can see it step by
step.

Figure 5.18 Detail View of Field

We’ll explore all the options in the debugger later in the book in Chapter 17, but
for now you can use these basic options to better understand your program flow
208

Summary 5.7
and troubleshoot any issues. For example, if you’ve written some code but don’t
see the output, you can debug to see where the problem is, allowing you to check
if the problem is with your selection logic or output logic.

5.6 Practice

We’ve explored quite a lot of concepts in this chapter, centering on processing
data from database tables. The following task should help you put the theory
you’ve learned into practice.

Ahead, you’ll find a requirement to develop a simple report to display the header
and item details of a billing document. Working on this report will require you to
use the knowledge you’ve gained so far to define a simple selection screen for the
report that will take the user input, fetch the relevant data from the database, and
print it in the output:

Create a report to print the header and item details of a billing document. You can
use Transaction VF03 as a reference. The report should take billing document
number as the input and print the header and item details of the document as out-
put.

The header details of the billing document are stored in table VBRK, and line items
are stored in table VBRP. Identify the fields in table VBRK that contain the header
details, such as document number, billing date, payer, and net value, and print
them as header information in the output.

Identify the fields in table VBRP that contain the item details, such as item number,
description, billed quantity, unit of measure, net value, and tax amount. Print
these details below the header details in the output with respective column head-
ings.

5.7 Summary

In this chapter, we looked at structures and internal tables. We use structures and
internal tables while working with any data that is in a structure format with rows
and columns. We also explored different types of internal tables and discussed
the key differences between them. We examined basic Open SQL statements that
209

Structures and Internal Tables5
can be used to select data from database tables into your ABAP program for pro-
cessing, and we also explored the basics of debugging to help you debug any
minor issues and understand the program flow.

In the next chapter, we’ll discuss how to enable user interaction with our code.
210

Chapter 6

So far, we’ve covered basic concepts for writing ABAP programs. In this
chapter, we’ll introduce the concepts that enable user interaction with
programs.

6 User Interaction

In an SAP GUI environment, there are typically three types of screens: the selec-
tion screen, the list screen, and the general screen. In ABAP, a screen is also
known as a dynamic program (dynpro). A dynpro is a component of a program and
can be defined for three types of ABAP programs: executable programs, module
pool programs, and function groups. A program can have multiple dynpros.

A dynpro consists of a screen, dynpro fields, and dynpro flow logic. General dyn-
pros are created with the Screen Painter tool, and special dynpros (selection
screens, list screens) are created implicitly using specific keywords. For example,
SELECT-OPTIONS and PARAMETERS define selection screens, and WRITE defines a list
screen.

Dynpro flow logic contains processing blocks for events that are triggered before
a screen is displayed to the user and after user action on the displayed screen.
Using these processing blocks, we can control the behavior of a dynpro and react
to user actions. You’ll learn about various processing blocks in Chapter 7. Dyn-
pros, together with the new web-oriented features (such as ABAP Web Dynpro)
of SAP NetWeaver AS ABAP, form the basis of user dialogs in an ABAP system.

In this chapter, we’ll discuss the rudimentary concepts of selection screens to get
you started with basic report development, and you’ll use all the concepts dis-
cussed so far in this book to develop a report program (see Section 6.1). This will
allow you to understand the practical application of these concepts. We’ll defer
an in-depth discussion of selection screens to Chapter 14, and we’ll discuss the
other two screens in Chapter 12 (general screens) and Chapter 13 (list screens).
211

User Interaction6
In Section 6.2, we’ll discuss messages so that you cannot only take user inputs for
your program through the selection screen but also validate the input and show a
message to the user accordingly.

6.1 Selection Screen Overview

Selection screens are special dynpros that can be defined in certain program
types—for example, executable programs, function groups, and module pools.
Selection screens are defined in the global declaration area of an ABAP program
with the statements SELECT-OPTIONS, SELECTION-SCREEN, and PARAMETERS, with-
out using the Screen Painter tool. The screens of the selection screens can contain
a subset of the screen elements of general dynpros.

Selection screens are typically used in report programs, in which we first present
the user with a screen to provide the selection criteria and then based on user
input pull the required data from the database to be presented as the report out-
put.

For example, if we want to develop a report to show a flight’s status, we first need
to take the input (selection criteria) from the user to determine the flight number.
The user typically provides this input on a selection screen. After processing, we
show the result on a different screen (either list dynpro or general dynpro).

Selection screens essentially have two tasks:

� They enable users to provide selection criteria for a report program.

� They provide an interface for data transfer between two executable programs
when a program is called internally using the SUBMIT statement.

Each screen is assigned a four-digit number. A program can have a standard selec-
tion screen and a user-defined selection screen. Screen number 1000 is assigned to
the standard selection screen by default. The standard selection screen is created
automatically when you use the PARAMETERS or SELECT-OPTIONS keyword in the
global declaration area of the program. Other user-defined selection screens can
be created for the program using the SELECTION-SCREEN BEGIN OF SCREEN keyword
with each user-defined screen assigned a unique screen number.

The SELECTION-SCREEN statement can also be used to define different blocks with
frames to better organize the selection screen fields (see Figure 6.1). All screens
212

Selection Screen Overview 6.1
(such as general screens, selections screens, and list screens) share the same
namespace in the program, so you can’t assign the same screen number to differ-
ent types of screens in the same program.

Figure 6.1 Selection Screen Fields Organized with Blocked Frames

When you use the PARAMETERS or SELECT-OPTIONS keyword in the program and
activate it, the system automatically creates the screen with all the screen ele-
ments and dynpro flow logic. If the SELECTION-SCREEN keyword is not used to
define a user-defined screen, then the program automatically creates a standard
selection screen with dynpro number 1000 and with all the PARAMETERS and
SELECT-OPTIONS fields belonging to this standard screen.

We can define various screen elements on the selection screen, such as input
fields, checkboxes, radio buttons, list boxes, and push buttons. All the screen ele-
ments are defined in the program using the PARAMETERS keyword. The SELECT-
OPTIONS keyword defines a range field on the selection screen, which supports
more complex selection criteria.

In the following subsections, we’ll discuss the PARAMETERS, SELECT-OPTIONS, and
SELECTION-SCREEN keywords in more detail.
213

User Interaction6
6.1.1 PARAMETERS

Parameters are components of a selection screen that are assigned a global ele-
mentary data object in the ABAP program and an input field on the selection
screen. In other words, the PARAMETERS keyword performs two tasks:

� Defines a data object in the program

� Defines a screen element (such as an input field or checkbox) on the selection
screen

The system automatically links a program data object with the screen field to
facilitate automatic data transfer between the screen and the program. Thereby
the user inputs on the screen are automatically transferred to the ABAP program
and stored in the corresponding data object, which can then be accessed by ABAP
statements.

The syntax for using the PARAMETERS keyword is somewhat similar to that of the
DATA keyword, with its own set of additions. The PARAMETERS field is typed by
referring to a data type from which it derives its technical attributes. Listing 6.1
shows the syntax to use the PARAMETERS statement.

PARAMETERS {para TYPE data_type}
[type_options]
[screen_options]
[value_options]

Listing 6.1 Parameters Keyword Syntax

Listing 6.2 shows an example of the PARAMETERS keyword in action.

PARAMETERS p_name TYPE c LENGTH 20.
PARAMETERS p_name(20) TYPE c.
PARAMETERS p_carrid TYPE s_carr_id.
PARAMETERS p_chk AS CHECKBOX DEFAULT 'X'.

Listing 6.2 Parameters Keyword Example

The name of the parameter field para (in the syntax shown in Listing 6.1) can con-
tain a maximum of eight characters. This statement is allowed in the global decla-
ration part of the program.

Similar to the DATA statement, the length can only be specified in the PARAMETERS
statement if the data type specified in TYPE_OPTIONS has a generic length (types c,
n, p, and x).
214

Selection Screen Overview 6.1
The PARAMETERS statement has the following effects:

� Declares a global variable of the specified length and type in the program.

� Creates an input field with the same name and corresponding type in the new
row of the current selection screen. The length of the input field on the screen
is determined from the parameter definition. The maximum visible length of
the input field is 45, so if the parameter length is more than 45, the field will
be displayed with movable content. The visible length of the field can be con-
trolled using the VISIBLE LENGTH addition with the PARAMETERS keyword.

� Automatically creates a label for each field to the left side of the input field. The
maximum length of the field label is 30, and it displays either the name of the
parameter or the selection text to which the parameter is assigned in the text
elements (see Section 6.1.4) of the program.

� Allows for the attributes of the screen elements to be modified by passing
SCREEN_OPTIONS during the declaration of the parameters.

In the following subsections, we’ll discuss the type options, screen options, and
value options that can be supplied with the PARAMETERS statement.

TYPE_OPTIONS

The PARAMETERS keyword can be supplied with different type options. These
options define the data type of the parameter. If no type options are specified, the
default option is TYPE c with LENGTH 1. The data type can be defined by referring
to an existing data type of the program, to a data object, or to a data type from
ABAP Data Dictionary.

If the PARAMETERS field is referred to a data type from ABAP Data Dictionary, it
adopts all the screen-relevant properties (such as field labels or input helps)
defined for the data type in ABAP Data Dictionary. If a domain is attached to the
data element, conversion routines defined in the domain will be executed to con-
vert the data to internal and external formats during the data transport from and
to the input field, respectively.

There are three ways to provide TYPE_OPTIONS:

� TYPE data_type [DECIMALS dec]

� LIKE dobj

� LIKE (name)
215

User Interaction6
The following subsections look at each of these options.

TYPE data_type [DECIMALS dec]

The TYPE data_type [DECIMALS dec] addition types the parameter with data_
type, where data_type may be any of the following:

� A predefined ABAP type, with the exception of f and xstring;

� A non-generic data type from ABAP Data Dictionary;

� A non-generic public data type of a global class; or

� A user-defined elementary data type from the same program (which is not of
the type f or xstring), already defined using the TYPES keyword

If the predefined TYPE p (packed decimal) is specified, the DECIMALS addition can
be used to define the number of decimal places.

If the parameter is referred to a data element to which a domain of TYPE CHAR,
LENGTH 1, and the fixed values "X" and a space is attached, the input field on the
selection screen is automatically displayed as a checkbox.

The following is an example of an elementary data type:

PARAMETERS p_carrid TYPE c LENGTH 3.

The next example automatically inherits the (F1) and (F4) help from ABAP Data
Dictionary and refers to the data element:

PARAMETERS p_carrid TYPE s_carr_id.

The following example is a declaration of a parameter with reference to the com-
ponent carrid of the database table spfli:

PARAMETERS p_carrid TYPE spfli-carrid.

LIKE dobj

Using the LIKE dobj addition, the parameter adopts all the properties of a data
object dobj already declared in the program.

Here’s an example of this addition in use:

DATA v_carrid TYPE s_carr_id.
PARAMETERS p_carrid LIKE v_carrid.
216

Selection Screen Overview 6.1
TYPE vs. LIKE

TYPE is used to refer to an elementary data type, local data type in a program, or data
type in ABAP Data Dictionary. LIKE is used to refer to another data object in the pro-
gram.

To support backward compatibility, it’s still possible to use LIKE to refer to an ABAP
Data Dictionary table or flat structure; however, this usage is obsolete and should be
avoided.

LIKE (name)

The LIKE (name) addition allows you to supply the field reference dynamically.
name expects a flat character data object containing the name of a component in a
flat structure from ABAP Data Dictionary in uppercase. The parameter is created
internally with data TYPE c and LENGTH 132, but it’s displayed on the selection
screen with a length, field label, input help, and field help as per the data type
specified in name.

Listing 6.3 shows an example of dynamically assigning the data type for the input
field. In this example, we’re passing the field name SCOL_FLIGHT_MEAL-CARRID at
runtime. The statement comp = 'SCOL_FLIGHT_MEAL-CARRID' in the example is exe-
cuted before the selection screen is called because it’s maintained under the AT
SELECTION-SCREEN OUTPUT event. The ABAP runtime environment triggers various
selection screen events that we can maintain in the program to process selection
screens.

You’ll learn about various selection screen events in detail in Chapter 14.

DATA comp TYPE c LENGTH 30.
PARAMETERS p_dyn LIKE (comp).
AT SELECTION-SCREEN OUTPUT.

comp = 'SCOL_FLIGHT_MEAL-CARRID'.

Listing 6.3 Dynamically Assigning Data Type for Input Field

In Listing 6.3, the keyword AT SELECTION-SCREEN OUTPUT defines an event that
ensures the code under it is executed before the selection screen is called. Because
this event is triggered before showing the selection screen to the user, we can
make use of it to dynamically assign the properties to the selection screen field.

We’ll explore all the program events in Chapter 7.
217

User Interaction6
SCREEN_OPTIONS

These options allow you to manipulate screen fields, including declaring the
input field as a required field or hiding the input field on the selection screen.
Using SCREEN_OPTIONS, the input field can be displayed as a checkbox, radio but-
ton, or dropdown list box.

The following subsections look at the different additions for SCREEN_OPTIONS.

OBLIGATORY

The OBLIGATORY addition defines the input field on the selection screen as a
required (obligatory) field. The program can’t be executed if the obligatory field is
empty. The runtime system automatically performs a validation to check if all
obligatory fields are filled with input values when the user selects the Execute

function (F8) to exit the selection screen. If the obligatory field isn’t filled, the
user can only use the functions Back, Exit, or Cancel to leave the selection
screen.

An example of this addition is as follows:

PARAMETERS p_carrid TYPE s_carr_id OBLIGATORY.

NO-DISPLAY

When the NO-DISPLAY addition is used, no screen elements are generated for the
parameter on the selection screen. This is useful when you want to use the param-
eter only as part of the interface defined by the selection screen in an executable
program that can be supplied with a value by the calling program with the SUBMIT
statement. The SUBMIT statement is used to execute an executable program inter-
nally from another program.

An example of this addition is as follows:

PARAMETERS p_carrid TYPE s_carr_id NO-DISPLAY.

VISIBLE LENGTH vlen

The VISIBLE LENGTH vlen addition controls the visible length of a screen field.
Here, vlen is entered directly as a positive number. If vlen is less than the length
of the parameter and less than the maximum visible length (45), then the input
field is displayed as per the length defined in vlen, with movable content. Other-
wise, the addition is ignored.
218

Selection Screen Overview 6.1
An example of this addition is as follows:

PARAMETERS: p_carrid TYPE s_carr_id VISIBLE LENGTH 2.

AS CHECKBOX

The AS CHECKBOX addition generates the input field as a checkbox with the corre-
sponding description next to it on the right. The value of the field is filled with
'X' or a space when the checkbox is selected or deselected, respectively. The
checkbox can be selected by default by assigning a default value 'X' during the
declaration. This parameter must be created with TYPE c and LENGTH 1. Check-
boxes are used to allow multiple selection.

An example of this addition is as follows:

PARAMETERS p_chk AS CHECKBOX.
PARAMETERS p_chk AS CHECKBOX DEFAULT 'X'.

RADIOBUTTON GROUP

The RADIOBUTTON GROUP addition generates the input field as a radio button with
the corresponding description next to it on the right. The radio button is selected
if the value of the field is X; otherwise, it isn’t selected.

Radio buttons are always grouped together because they enable the user to select
from several options. Only one of the radio buttons can be selected at once in a
group. Groups define the radio button groups for the parameter. Two or more
radio buttons are assigned to the same group by entering the name of the group
directly as a character string with a maximum of four characters. Within a selec-
tion screen, there must be a minimum of two parameters in the same radio but-
ton group. There cannot be more than one radio button group with the same
name in one program.

In a radio button group, only one parameter can be selected by default, which
means that the DEFAULT addition can be used with only one parameter of the
group. By default, the first parameter in a radio button group is set to the value X
and the rest are set to space. This parameter must be created with TYPE c and
LENGTH 1.

An example of the radio button group is shown in Listing 6.4.

PARAMETERS: p_day RADIOBUTTON GROUP rb1,
p_month RADIOBUTTON GROUP rb1 DEFAULT 'X'.
219

User Interaction6
PARAMETERS: p_hour RADIOBUTTON GROUP rb2,
p_sec RADIOBUTTON GROUP rb2.

Listing 6.4 Radio Button Group

AS LISTBOX VISIBLE LENGTH vlen

The AS LISTBOX VISIBLE LENGTH vlen addition generates a dropdown list box for
an input field on the selection screen. The list box is automatically filled with val-
ues if the parameter is created with a data type from ABAP Data Dictionary and
the data type is associated with the input help in ABAP Data Dictionary. Other-
wise, a single-row list box is displayed containing the current value of the param-
eter.

You must use the VISIBLE LENGTH addition to specify the visible length of the
input field. An example of this addition is shown in Listing 6.5.

PARAMETERS p_carrid TYPE spfli-carrid
AS LISTBOX VISIBLE LENGTH 20
DEFAULT 'LH'.

Listing 6.5 AS LISTBOX VISIBLE LENGTH vlen

Figure 6.2 shows different screen elements on the selection screen defined using
the PARAMETERS keyword.

Figure 6.2 Different Screen Elements on Selection Screen
220

Selection Screen Overview 6.1
VALUE_OPTIONS

Using VALUE-OPTIONS, it’s possible to define a default value or allow lowercase let-
ters to be transported to the data object. It’s also possible to set a search help, an
SPA/GPA parameter to be bound, or a check to be executed against a value list.

For simplicity, we’ll defer the discussion of these options to Chapter 14.

6.1.2 SELECT-OPTIONS

The PARAMETERS statement defines a single input field in which the user can input
a single value. For example, say that a user wants to run a report to see informa-
tion about a billing document. With PARAMETERS, the user can run the report to
check the details of one document at a time, because the parameters field can only
take one document number as input.

But what if the user wants to check the details of multiple documents at once?
That’s when SELECT-OPTIONS comes into play. SELECT-OPTIONS defines an internal
range table for a data object.

To better understand how SELECT-OPTIONS works, we need to first understand
the range table, and then we’ll discuss multiple selection windows.

Range Table

A range table is an internal table with a special structure, the content of which can
be analyzed with the relational operator IN. For example, to check if a particular
material number falls within a given range of materials, we can use the following
statement:

IF v_matnr IN rt_matnr.

ENDIF.

In this example, v_matnr contains the material number we want to check, and rt_
matnr is a special range table that contains the range of materials. The IN operator
automatically scans the range table to check if the value falls within the range.

A range table can be defined in the program via the TYPE RANGE OF addition with
the DATA keyword—for example:

DATA rt_carrid TYPE RANGE OF s_carr_id.
221

User Interaction6
A range table has four fields (columns): SIGN, OPTION, LOW, and HIGH. Figure 6.3
shows the components of a range table as seen in debug mode; note the Type and
length (Lngth) of each field.

Figure 6.3 Components of Range Table

The four range table components can be described as follows:

� SIGN

This field is of TYPE c and LENGTH 1. The content of SIGN determines for every
row whether the values in the LOW and HIGH fields are included or excluded.
Valid values are I for include and E for exclude.

� OPTION

This field is of TYPE c and LENGTH 2. OPTION contains the relational operator for
the selection condition of the row. Valid operators are EQ (equal to), NE (not
equal to), GE (greater than or equal to), GT (greater than), LE (less than or equal
to), LT (less than), CP (matches pattern), and NP (does not match pattern) if col-
umn HIGH is initial. If column HIGH is not initial, BT (between), NB (not between)
are valid. For the options CP and NP, the data type of the columns LOW and HIGH
must be c.

� LOW

The length and type of the LOW field depends on the data type reference pro-
vided while declaring the range table. In Figure 6.3, the range table is defined
with reference to s_carr_id, so it’s of TYPE c and LENGTH 3. This column is des-
ignated for the comparison value or the lower interval limitation.

� HIGH

Similar to the LOW field, the LENGTH and TYPE of the HIGH field depends on the
data type reference provided while declaring the range table. This column is
designated for the upper interval limitation.

The system automatically analyzes the row of a range table when used with the IN
operator. IN operators are very useful when a complex comparison of values is
required.
222

Selection Screen Overview 6.1
When we use SELECT-OPTIONS, the system defines an internal range table with a
header line in the program and creates two input fields, low and high, on the cur-
rent selection screen.

To define a SELECT-OPTIONS field, use the FOR addition with the SELECT-OPTIONS
keyword. The system expects a data object after FOR—for example:

DATA v_carrid TYPE s_carr_id.
SELECT-OPTIONS s_carrid FOR v_carrid.

This code creates a range table with a header line for which the LOW and HIGH
fields are of type v_carrid in the program. It also creates two input fields on the
selection screen, s_carrid-low and s_carrid-high, with a Multiple Selection

button, as shown in Figure 6.4

Figure 6.4 Range Field on Selection Screen

Multiple Selection Window

With SELECT-OPTIONS, the user can provide a value range or use the Multiple

Selection button to enter a more complex selection criterion. Figure 6.5 shows
the Multiple Selection dialog box that’s presented upon clicking the Multiple

Selection button.

Figure 6.5 Multiple Selection Dialog Box

Low Field High Field
Multiple
Selection

Selection Tabs

Enter values here.

Operator
Selection
223

User Interaction6
The Multiple Selection dialog box includes four tabs to input selection criteria:

� Select Single Values

The Select Single Values tab allows the user to input multiple single values to
be considered for selection. The user can also select the options for each value
by using the Options button, as shown in Figure 6.6.

Figure 6.6 Options Button for Single Values

The entries made in this tab will be stored in the range table with SIGN as I
(include), OPTION as the operator selected (default is EQ), and LOW field with
the input value. The HIGH field for this row will be empty.

Figure 6.7 shows the rows of the SELECT-OPTIONS range table as seen in debug
mode for the corresponding entries made in the Select Single Values tab.

When used with the IN operator, the system automatically processes the row as
per the values in the SIGN, OPTION, LOW, and HIGH fields.

� Select Ranges

This tab allows you to enter values in a range that should be included in the
search. The operator allows you to specify whether the values are inside the
range or outside the range. Figure 6.8 shows the options available for ranges.
224

Selection Screen Overview 6.1
Figure 6.7 Range Table in Debug Mode for Multiple Selection Dialog Box Entries

Figure 6.8 Operator for Ranges

Entries made on
the selection screen

Entries stored in
the range table
225

User Interaction6
The SIGN field of the range table will be I, OPTIONS will either be BT or NB
based on the options selected for the row, the LOW field will be filled with the
low value, and the HIGH field will be filled with the high value entered on the
screen. The high value entered on the screen should be greater than the low
value; otherwise, the screen will throw an error message. Figure 6.9 shows the
corresponding entries in the range table for the values entered on the screen.

Figure 6.9 Range Table Values per Select Ranges Tab

� Exclude Single Values

The entries in this tab are similar to those of the Select Single Values tab, with
the exception that the values maintained in this tab are excluded from selec-
tion. In other words, the SIGN field of the row will be filled with E (exclude).

� Exclude Ranges

The entries in this tab are similar to those of the Select Ranges tab, with the
exception that the values maintained in this tab are excluded from selection.

The SIGN field for rows in Select Values (both single values and ranges) will be
filled with I, and Exclude Values (both single values and ranges) will be filled
with E.

Entries made on
the selection screen

Entries stored in
the range table
226

Selection Screen Overview 6.1
Let’s consider a requirement in which the user wants to run a report to process
billing documents. The user’s selection criteria are as follows:

1. Select document numbers 100, 122, 140.

2. Select all the documents from 200 to 400 and from 500 to 600.

3. Exclude document numbers 222 and 320 from the previous range.

4. Exclude document numbers 520 to 540.

For the example selection criteria, the user will make the entries in the multiple
selection window in different tabs, as shown in Figure 6.10.

Figure 6.10 Entries in Different Tabs of Multiple Selection Window

The entries in Figure 6.10 will be transferred to the range table, as shown in
Figure 6.11. Notice the value in the SIGN field for the entries made in the Select

and Exclude tabs.

For the entries made in the Select tabs of the Multiple Selection window, the
SIGN field is filled with the value I, and for the entries made in the exclude tabs
of the Multiple Selection window, the SIGN field is filled with the value E. The
227

User Interaction6
values in the LOW and HIGH fields are automatically filled with leading zeros
with the help of a conversion routine attached to the domain.

Figure 6.11 Corresponding Entries in Range Table for Selection Criteria in Figure 6.10

The code in Listing 6.6 shows the usage of SELECT-OPTIONS to process these mul-
tiple documents. In this code, we’re processing the basic header data of the doc-
uments provided in the selection criteria. The code highlights the declaration of
SELECT-OPTIONS and its subsequent use in the SELECT query to filter the records
per the user selection criteria using the IN operator.

TYPES : BEGIN OF ty_vbrk,
VBELN TYPE VBELN_VF, " Document Number
FKART TYPE FKART, " Billing Type
FKDAT TYPE FKDAT, " Billing Date
NETWR TYPE NETWR, " Net Value
KUNRG TYPE KUNRG, " Payer

END OF ty_vbrk.
DATA : it_vbrk TYPE STANDARD TABLE OF ty_vbrk,

wa_vbrk TYPE ty_vbrk.
SELECT-OPTIONS s_vbeln FOR wa_vbrk-vbeln.
SELECT VBELN

FKART
FKDAT
NETWR
KUNRG

FROM VBRK
INTO TABLE it_vbrk
WHERE vbeln IN s_vbeln.

LOOP AT it_vbrk INTO wa_vbrk.
WRITE:/ 'DOCUMENT NUMBER:' , wa_vbrk-vbeln,

/ 'Billing Type :' , wa_vbrk-fkart.
/ 'PAYER:' , wa_vbrk-kunrg,
/ 'BILLING DATE :', wa_vbrk-fkdat,
228

Selection Screen Overview 6.1
/ 'NET VALUE :' , wa_vbrk-netwr LEFT-JUSTIFIED.

ENDLOOP.

Listing 6.6 Sample Code to Process Multiple Billing Documents

6.1.3 SELECTION-SCREEN

The SELECTION-SCREEN keyword has several uses. It creates stand-alone selection
screens and selection screen layouts, and it uses elements from other selection
screens. We’ll provide some examples of using this keyword to define selection
screen layouts in this section. A more in-depth discussion of the SELECTION-
SCREEN keyword can be found in Chapter 14.

The SELECTION-SCREEN keyword can be supplied with various layout options to
influence the screen layout:

� SKIP

Creates a blank line.

Example: SELECTION-SCREEN SKIP.

� ULINE

Creates a horizontal line.

Example: SELECTION-SCREEN ULINE.

� BEGIN OF BLOCK

This option allows you to organize the selection screen elements into multiple
blocks. The block is closed with the END OF BLOCK statement, and it supports
defining frames and titles for the frames. Arranging the screen elements into
multiple blocks is very useful on selection screens with many fields, as shown
in Listing 6.7.

SELECTION-SCREEN BEGIN OF BLOCK b1 WITH FRAME
TITLE text-001.

PARAMETERS : p_carrid TYPE s_carr_id,
p_connid TYPE s_conn_id.

SELECTION-SCREEN END OF BLOCK b1.

SELECTION-SCREEN BEGIN OF BLOCK b2 WITH FRAME
TITLE text-002.

PARAMETERS : p_alv RADIOBUTTON GROUP rb1,
p_list RADIOBUTTON GROUP rb1.

SELECTION-SCREEN END OF BLOCK b2.

Listing 6.7 Organizing Selection Screen Fields into Multiple Blocks
229

User Interaction6
The code in Listing 6.7 generates the selection screen layout shown in Figure
6.12. The frame titles are maintained using text elements.

Figure 6.12 Selection Screen Layout Generated by Code in Listing 6.7

6.1.4 Selection Texts

We can maintain labels for selection screen fields via selection texts. Selection
texts are maintained in the ABAP program by following the menu path GoTo �
Text Elements � Selection Texts.

Figure 6.13 shows the selection text maintenance screen.

Figure 6.13 Selection Text Maintenance Screen

Here, you can manually maintain the text—or pick it from ABAP Data Dictionary,
if the screen field is referred to a data element. To pick the text from ABAP Data
230

Messages 6.2
Dictionary, simply select the checkbox to the right of the corresponding field in
the Dictionary Ref. column, as shown in Figure 6.13. This checkbox is disabled
if the field is not referred to any ABAP Data Dictionary object.

Click the Activate icon in the application toolbar to apply the changes. The selec-
tion screen fields will show the label, as shown in Figure 6.12. The selection
screen is generated when the program is activated. If any changes are made to the
selection screen fields, the program should be activated to regenerate the selec-
tion screen and reflect the changes. The selection screen of the program should
not be edited manually using the Screen Painter tool, because any changes made
manually will be lost when the selection screen is regenerated.

6.2 Messages

Messages allow you to communicate with users from your programs. They’re used
mainly when the user has made an invalid entry on a screen. Messages are raised
in the program code via the MESSAGE statement. There are different types of mes-
sages that can be displayed based on requirements. The message text can be main-
tained locally in the program or globally using a message class.

An example of a MESSAGE statement in use is as follows:

MESSAGE 'The input is invalid' TYPE 'E'.

The addition TYPE 'E' in the statement specifies it as an error message.

In this section, we’ll look at the various types of messages that can be displayed in
an ABAP program. We’ll also explore the different ways messages can be dis-
played and how messages can be translated to other languages.

6.2.1 Types of Messages

Message processing depends on the message type specified in the MESSAGE state-
ment and the program context in which the statement occurs.

The system behavior after a particular message type is sent is context-dependent.
Table 6.1 lists all the possible types of messages that can be sent from ABAP pro-
grams. The type of message shown influences how the program behaves in a post-
error situation and defines how the ABAP runtime should process the message.
231

User Interaction6
Always use the right message type for the condition, and keep the message infor-
mative enough for the user to understand the error.

It’s highly recommended to always validate the user inputs and show specific and
relevant messages to the user to identify any issues with input values.

Message Type Meaning Notes

A Termination message The message appears in a dialog box and the
program terminates. When the user has con-
firmed the message, the control returns to the
next-highest area menu. This type of message
should be limited to situations in which the
error can’t be handled by the current task or
when system-related errors occur.

E Error message Depending on the program context, an error
dialog appears or the program terminates.
Program execution won’t continue unless
the error is corrected. These types of mes-
sages are used for input validations or when
program execution can’t proceed due to an
error.

I Information message The message appears in a dialog box. Once
the user has confirmed the message, the
program continues immediately after the
MESSAGE statement. This type of message is
used to show informative messages, such as
successful database updates and so on.

S Status message The program continues normally after the
MESSAGE statement, and the message is dis-
played in the status bar of the next screen.
This type of message is used to display the
status of any action.

W Warning message Depending on the program context, an error
dialog appears or the program terminates.
The user can press (Enter) to continue with
program execution. This type of message is
used to warn the user of missing informa-
tion.

Table 6.1 Types of Messages
232

Messages 6.2
The type of message is specified in the MESSAGE statement directly—for example:

MESSAGE 'The input was invalid' TYPE 'E'
MESSAGE 'Database update successful' TYPE 'I'
MESSAGE 'Key parameters are missing' TYPE 'W

6.2.2 Messages Using Text Symbols

One major disadvantage of using text literals to maintain a message in program
code is that they can’t be reused in the program or customized for the user logon
language. By using text symbols, we can reuse the messages within the program
and maintain translations wherein the translated text can be automatically picked
up by the system based on a user’s logon language.

To maintain text symbols, follow the menu path GoTo � Text Elements � Text

Symbols in ABAP Editor, as shown in Figure 6.14.

Figure 6.14 Menu Path to Maintain Text Symbols in ABAP Program

On the Change Text Symbols screen (see Figure 6.15), you can assign a unique
three-digit alphanumeric value to each text symbol that can then be called from
the ABAP program.

X Exit message No message is displayed, and the program
terminates with a short dump. Program ter-
minations with a short dump normally only
occur when a runtime error occurs. Message
type X allows you to force a program termi-
nation. The short dump contains the mes-
sage ID.

Message Type Meaning Notes

Table 6.1 Types of Messages (Cont.)
233

User Interaction6
Figure 6.15 Change Text Symbol Screen

The text symbol editor also has the option to maintain translations for each text
via the menu path GoTo � Translation from the Change Text Symbols screen, as
shown in Figure 6.16.

Figure 6.16 Menu Path to Access Translation Editor

To use a text symbol in a message, simply use text-nnn to call the text symbol.
Here, nnn is the three-digit text symbol number—for example:

MESSAGE text-001 TYPE 'E'.

The system will automatically take care of pulling the respective translated texts
to support multiple logon languages. If there’s no translation maintained for the
given logon language, a blank message will be shown.
234

Messages 6.2
6.2.3 Messages Using Message Classes

Text symbols maintained in the program are local, so they can only be reused
within the program. However, what if you need to share message texts across
multiple related programs? Maintaining the same message texts and their transla-
tions in multiple programs can be redundant and a waste of time, because any
changes to texts should also be manually maintained in each program. To main-
tain message texts globally, use a message class.

Global message texts are stored in table T100 and can be configured using Trans-
action SE91. When creating a new message class, it should be in a customer
namespace, starting with Y or Z.

To create a new message class, open Transaction SE91. On the Message Mainte-

nance initial screen, enter a unique name for your message class and click the
Create button, as shown in Figure 6.17.

Figure 6.17 Message Maintenance Initial Screen

On the next screen, select the Messages tab to edit your messages. The system
will prompt you to assign a package when navigating to the Messages tab,
because a message class is a repository object. Message texts are similar to text
symbols; each message text is assigned a unique three-digit alphanumeric value.

You can select the SelfExplanatory checkbox (see Figure 6.18) if the message
explains itself sufficiently, or you can create long texts for each message to show
235

User Interaction6
more information about a message to the user. The long text is displayed when
the user double-clicks the message (see Figure 6.19). The long text is maintained
by clicking the Long Text button, as shown in Figure 6.18.

Figure 6.18 Maintaining Messages in Message Class

Figure 6.19 Long Text Displayed in Performance Assistant Window

Maintain long description
using the Long Text button

Double clicking on
the status message
opens the long text.
236

Messages 6.2
The syntax to display a message from the message class is a bit different than dis-
playing it using a text symbol. Here, the message number is preceded by the type
of message as opposed to using the TYPE addition. The message class name is sup-
plied in parenthesis—for example:

MESSAGE e000(ZMSG_CLASS).

In this statement, we’re displaying the message with the message number 000,
maintained in the message class ZMSG_CLASS as an error message. The message
type e precedes the message number 000. You can use other message types simi-
larly; for example, w000 will display the message as a warning message.

The message class name can also be maintained in the REPORT statement for exe-
cutable programs, using the MESSAGE-ID addition, instead of maintaining it in
parenthesis for each message—for example:

REPORT ZDEMO_MESSAGES MESSAGE-ID zmsg_class.

MESSAGE E000.

You can maintain translations for each message via the menu path GoTo � Trans-

lation from the Message Maintenance screen.

6.2.4 Dynamic Messages

You may have noticed that Figure 6.19 contains some dynamic elements. The
message shows the username and the program name as part of the message text.
We can use an ampersand (&) as a placeholder in message text, and it can be
replaced dynamically in the program via the WITH addition to the MESSAGE key-
word. You can use up to four placeholders in the message text.

Figure 6.20 shows the message with two placeholders that will be replaced with
a value supplied in the MESSAGE statement via the WITH addition.

The message can be sent using the syntax MESSAGE s000(ZMSG_CLASS) WITH sy-
uname sy-repid. Here, sy-uname is a system field that stores the username, and
sy-repid is the system field that stores the current program name. The value of
the variable sy-uname will replace the first placeholder in the message, and sy-
repid will replace the second placeholder. The fields are inserted sequentially
into the message text in place of the placeholders.
237

User Interaction6
Figure 6.20 Using Placeholders in Message Text

Alternately, you can use the placeholders with position numbers such as &1, &2, &
3, and &4 in the message to specify where the value is inserted in the message.
Placeholders that are not supplied with a value via the WITH addition will be
ignored.

Placeholders can also be used in the long text of a message by maintaining &V1& to
&V4& as the placeholders. When the long text is called, the values supplied with
the message will replace the placeholders in the long text.

6.2.5 Translation

Because the SAP system supports multiple logon languages, it’s recommended to
create translations for all texts maintained in the program (in case users with dif-
ferent logon languages access your program).

The translation editor can be accessed by following the menu path GoTo � Trans-

lation from ABAP Editor or from text maintenance screens like those for the
message class or the text symbols. After selecting the menu path GoTo � Transla-

tion, the system presents a dialog box to specify the target language into which
the text needs to be translated, as shown in Figure 6.21.

Once the target language is selected, you can maintain translations manually for
each text individually and click Save, as shown in Figure 6.22.
238

Summary 6.3
Figure 6.21 Target Language Selection

Figure 6.22 Maintain Translation Screen

Translations can be created for the program title, selection texts, text symbols,
and list headings.

6.3 Summary

In this chapter, we discussed the concepts behind selection screens and messages.
Understanding both these concepts is required to create your first complete
report program. We also explored different ways to use the PARAMETERS and
SELECT-OPTIONS keywords to create different selection screen elements. We’ve
created the groundwork to create a report program, which we’ll explore further
with selection screens and their events in Chapter 14.
239

User Interaction6
We also looked at messages and the different types of messages that can be sent
from your ABAP programs. We touched upon various ways to maintain messages
and discussed both static and dynamic messages. Finally, we concluded by dis-
cussing translation. It’s important to note that all texts can be translated to multi-
ple languages.

We’ll wrap up our discussion of ABAP basics in the next chapter, in which we’ll
discuss key concepts in modularization techniques. The concepts in the next
chapter are crucial to understanding the advanced topics in ABAP.
240

Chapter 7

ABAP programs are modular in nature. Taking advantage of modulariza-
tion techniques will provide a number of advantages, including better
readability and organization. In this chapter, we’ll discuss ABAP modu-
larization.

7 Modularization Techniques

Modularization is breaking down and organizing program code into a modular
structure, rather than dealing with the program as a single, indivisible unit. There
are many advantages to modularization: reusability of code, which helps in reduc-
ing code redundancy, and better organization of program code, which in turn
makes your ABAP programs maintenance-friendly.

In this chapter, we’ll discuss how the ABAP program flow and the runtime envi-
ronment control program execution through events and procedures. We’ll also
look at the concept of processing blocks, their features, the statements that define
processing blocks, how they’re called, whether they can keep local data, and
ABAP programs in which they can be defined.

In Section 7.1, we’ll begin with an overview of modularization in general. We’ll
introduce key concepts and provide an example to get you started. Section 7.2
then explores the program structure, including the use of event blocks, dialog
modules, and procedures.

Section 7.3 dives into the different event type categories: program constructor
events, reporting events, selection screen events, list events, and screen events.
Then, in Section 7.4, we take a look at procedures—specifically, subroutines,
function modules, and methods. Finally, we end the chapter in Section 7.5, using
inline declarations for declaring data objects inline.
241

Modularization Techniques7
7.1 Modularization Overview

ABAP programs are modular in nature, allowing you to break down the program
functionality into smaller modules. These modules are known as processing blocks.
Processing blocks can be put together to achieve the overall functionality of a pro-
gram.

To better illustrate this process, let’s look at an example. Say you’re developing an
application for your HR department, and one of the requirements of the applica-
tion is to find the day an employee joined the organization. This is just a part of
the overall functionality the application provides, but this feature is required in
many applications in the HR module.

To find the weekday of a given date, you may have to write some forty lines of
code. If you’re a new developer, you may spend a few hours or days getting the
logic right. If you chose to implement the code directly in the main program,
you’ll have to repeat the code in all the other applications that require similar
functionality.

Worst of all, if none of the other developers in your organization are aware that
you’ve already spent hours or days implementing the logic for this requirement,
they may try to implement the same logic on their own, which leads to a situation
in which multiple people are spending time working on the same task.

By implementing this functionality in a module (let’s say a function module) that
can be called from any program, you avoid code redundancy and save a lot of
time and effort.

Modularizing your ABAP programs leads to many benefits, including the follow-
ing:

� Improves code readability

� Eases maintenance

� Helps develop reusable software blocks

� Designs applications with scope for future enhancements

� Saves development effort

� Helps break down big, complex requirements into smaller, easy-to-maintain
modules that can be combined to meet your requirements

� Splits development across team members without locking the code
242

Modularization Overview 7.1
As you spend more time developing ABAP programs, you may appreciate the
advantages of modularization because it helps you simplify the development and
maintenance of large applications.

In ABAP, we have various kinds of processing blocks. Some processing blocks are
called by the ABAP runtime environment from outside the program, and some
are called by ABAP statements from inside the program. The processing blocks
that are called by ABAP statements within the program are called procedures.

Table 7.1 lists the various processing blocks and their key features.

Processing Block Features

Called by ABAP Runtime Environment

Event blocks Called by the ABAP runtime environment when a predefined event is
triggered while the program is running. These processing blocks are
maintained in the program using specific event keywords.

Dialog modules Called by the ABAP runtime environment from the screen flow logic
while processing general screens. These processing blocks are main-
tained in the main program of the screen between MODULE…ENDMOD-
ULE statements and are called from the screen flow logic using the
MODULE statement.

Called by ABAP Statements

Subroutines Useful for modularization within the program. Although subroutines
can be called both internally from ABAP statements within the pro-
gram or externally from other programs, they are typically used for
reusability within a program. Calling subroutines externally is not
recommended and should be avoided.

Subroutines are maintained between FORM...ENDFORM statements
and are called using the PERFORM statement.

Function modules Procedures that are maintained globally in the system and can be
called from any ABAP program. They are maintained using the Func-
tion Builder tool (Transaction SE37), which also serves as a central
library to search for existing function modules.

Function modules are maintained between FUNCTION…ENDFUNCTION
statements in a function pool type of program and are called using
the CALL FUNCTION statement.

Although function modules work similarly to subroutines, they can
only be defined globally, which in turn makes them easier to search
for.

Table 7.1 Processing Blocks
243

Modularization Techniques7
In general, you use subroutines for reusability within a program, function mod-
ules for reusability across multiple programs in the system, and methods to
implement object-oriented programming concepts along with reusability.

Modularization is not just limited to processing blocks; you can also modularize
your ABAP source code to organize the source code better with the help of include
programs or macros:

� Include programs
Include programs are repository objects for which the sole purpose is to mod-
ularize source code. Include programs are built into other programs and can’t
be executed independently.

� Macros
Macros are another way to modularize code, but they’re considered obsolete
technology and shouldn’t be used. Macros are difficult to debug, but can be
used to run a statement more than once in a code.

To better understand include programs, think of them this way: If you want to
use a similar set of lengthy data declarations in multiple programs, you can keep
the declarations in an include program that can be included in any ABAP pro-
gram. This way, you can reuse the source code without having to type the same
code in multiple programs. This also helps maintain the code centrally.

In ABAP Objects, include programs are useful to split up classes into visibility
parts, declarations, methods, and so on. The sole purpose of the include pro-
gram is to modularize the source code. The ABAP runtime environment doesn’t

Methods Contain the functions of classes in ABAP Objects. Methods are
defined in classes and support object-oriented programming con-
cepts (see Chapter 8 for more information on object-oriented pro-
gramming).

Methods are maintained between METHOD…ENDMETHOD statements
and are called using the CALL METHOD statement.

Classes can be defined both locally within an ABAP program and
globally in Class Builder (Transaction SE24). ABAP Objects is an
important topic that we will discuss in detail in Chapter 8.

Processing Block Features

Table 7.1 Processing Blocks (Cont.)
244

Program Structure 7.2
recognize include programs as independent main programs; they’re never
directly executed and are used to be included in another main program.

Figure 7.1 shows the use of an include program.

Figure 7.1 Include Program

Modularization in event blocks and dialog modules helps with the general execu-
tion of ABAP programs, and modularization in procedures and include programs
helps improve the readability and maintainability of ABAP programs, and allow
you to avoid code redundancies, reuse functionality, and encapsulation data.

Now that you have a basic understanding of the key concepts and methods used
in modularization, we’ll explore these techniques in greater depth in the remain-
ing sections of this chapter.

7.2 Program Structure

ABAP was originally designed for the development of applications that process
data from the database; users could interact with the application using SAP GUI
screens. In a classic programming method based on screens (like reports and
245

Modularization Techniques7
transactions) that require user interaction, the control is passed back and forth
between the presentation layer and the application layer. For example, when the
user is making an input on the selection screen, the screen is active on the presen-
tation layer, but there’s no activity at this point in the application layer.

Once the user clicks the Execute button, even though the selection screen is still
displayed on the screen, it’s not active. At this point, the application layer is
actively processing the request and the presentation layer is idle. After the appli-
cation layer processes the user request, the result is sent to the presentation layer.
Now, the selection screen is active again, or a new screen is called.

The execution of the program between consecutive screens is called a dialog step.
A dialog step in a report program starts when the user clicks the Execute button
on the selection screen and ends when the results are displayed on the list screen.
Again, once the user performs an action on the list screen, a new dialog step
starts, which ends when a new screen is called and displayed to the user.

In such a scenario, you can’t construct the program as a single sequential unit.
You must divide the program into dialog steps, with each step comprising the
programming logic between two successive screens.

Because ABAP programs are modular in structure, we divide the program into
modules that can be assigned to the individual dialog steps. Each module is called
a processing block, which consists of a set of ABAP statements. In other words,
when you run a program, you’re calling a series of processing blocks.

In this section, we’ll discuss the use of processing blocks, event blocks, dialog
modules, and procedures in the ABAP program structure.

7.2.1 Processing Blocks

In general, processing blocks can be broadly classified as event blocks, dialog
modules, or procedures.

In the following subsections, we’ll discuss the use of processing blocks in the pro-
gram structure before discussing the different types of processing blocks that can
be used.
246

Program Structure 7.2
Declaration Area

Each ABAP program consists of a global declaration area followed by a number of
processing blocks. The objects defined in the global declaration part are visible in
all processing blocks of the ABAP program. In some processing blocks (such as
procedures), data declarations can be made within the processing block that are
locally visible.

Listing 7.1 shows an example of global and local declarations.

REPORT ZCB_EXAMPLE.
*Global declarations of the program
DATA : f1 TYPE c VALUE 'A',

f2 TYPE c VALUE 'B'.
END-OF-SELECTION.
PERFORM output. "Calling a subroutine

&--
*& Form OUTPUT
&--
FORM output.
*Local declaration that can be accessed (visible) within
*this subroutine
DATA f3 TYPE c VALUE 'C'.
WRITE f1.
WRITE f2.
WRITE f3.

ENDFORM.

Listing 7.1 Local and Global Data

In Listing 7.1, we defined data objects f1 and f2 in the global declaration area of
the program. The program contains a subroutine with the name OUTPUT, within
which we declared the data object f3. Because the data object f3 is declared
within the subroutine OUTPUT, it’s local to this subroutine. In other words, the
data object f3 is locally visible within the subroutine OUTPUT and can be accessed
only by ABAP statements that are part of the subroutine.

You can’t access this data object f3 from other processing blocks of the program.
However, the global data objects f1 and f2 can be accessed by ABAP statements
from any processing block of the program.

Using Processing Blocks

Processing blocks are indivisible units that contain ABAP statements. For example,
in Listing 7.1, END-OF-SELECTION is an event block, which is a type of processing
247

Modularization Techniques7
block that contains the ABAP statement PERFORM. FORM OUTPUT...ENDFORM is a sub-
routine, which is also a type of processing block that contains the WRITE state-
ments.

Note

Processing blocks can’t be nested, so you can’t include one processing block in another
processing block. For example, ahead in Listing 7.8, you can’t include the END-OF-
SELECTION processing block within the FORM OUTPUT…ENDFORM processing block. How-
ever, you can call one processing block from another processing block. In Listing 7.1,
we’re calling the OUTPUT processing block from the END-OF-SELECTION processing
block using the PERFORM statement.

Calling Processing Blocks

Processing blocks are called either externally by the ABAP runtime environment
or internally by specific statements in the program.

For example, END-OF-SELECTION is an event block called by the ABAP runtime
environment when the program is running, and FORM OUTPUT is a procedure called
by the PERFORM statement in the code.

Sequence of Processing Blocks

When we divide program code into various processing blocks, the program code
isn’t executed in the sequence in which the processing blocks are defined in the
program. When a particular processing block is called depends totally on the
ABAP runtime environment (in the case of event blocks and modules) or when a
specific processing block call statement is executed (in the case of procedures).

Therefore, the order in which the processing blocks are maintained in the pro-
gram source code is totally irrelevant to the sequence in which they’re executed.
Once the processing block is called, the code in a processing block is executed
sequentially.

For example, in Listing 7.1, the order in which the processing blocks are main-
tained in the code is irrelevant. Listing 7.2 shows the same code but rearranges
the order of the END-OF-SELECTION and FORM OUTPUT processing blocks in the pro-
gram; it returns the same output.
248

Program Structure 7.2
REPORT ZCB_EXAMPLE.
*Global declarations of the program.
DATA : f1 TYPE c VALUE 'A',

f2 TYPE c VALUE 'B'.
&--
*& Form OUTPUT
&--
FORM output.
*Local declaration that can be accessed (visible) within
*this subroutine
DATA f3 TYPE c VALUE 'C'.
WRITE f1.
WRITE f2.
WRITE f3.

ENDFORM.
END-OF-SELECTION.

PERFORM output. "Calling a subroutine

Listing 7.2 Changing Processing Block Order

After executing the code in a processing block, control is returned to its caller.

Ending Processing Blocks

The execution of a processing block ends when the last statement of the process-
ing block has been executed. However, it can also be ended programmatically by
using certain statements, like CHECK, EXIT, or RETURN. For example, after checking
for a certain condition, if you don’t want to execute the remaining code in a pro-
cessing block if the condition isn’t met, then you can use the CHECK, EXIT, or
RETURN statement to end the processing block without executing the remaining
code in the processing block.

The CHECK and EXIT statements behave differently if they’re used inside a loop
statement (DO loop, WHILE loop, LOOP AT, etc.). When these statements are used
within a loop, they don’t end the processing block; they only affect the loop pro-
cessing. For example, the CHECK statement will quit the current loop and process
the next iteration when used in a loop.

However, the EXIT statement will quit the loop processing completely. Both the
EXIT and CHECK statements will continue executing the remaining code in the pro-
cessing block after loop processing. The RETURN statement always quits the pro-
cessing block irrespective of whether it’s used inside a loop or outside the loop.
249

Modularization Techniques7
No matter how the processing block ends, on each termination control is
returned to the caller of the processing block.

Listing 7.3 shows the usage of the EXIT statement. In Listing 7.3, we’re using the
EXIT statement within the subroutine OUTPUT. The statement WRITE f3 maintained
after the EXIT statement will not be executed, because the program will quit the
processing block when it reaches the EXIT statement.

REPORT ZCB_EXAMPLE.
DATA : f1 TYPE c VALUE 'A',

f2 TYPE c VALUE 'B'.
END-OF-SELECTION.
PERFORM output. "Calling a subroutine

&--
*& Form OUTPUT
&--
FORM output.
DATA f3 TYPE c VALUE 'C'.
WRITE f1.
WRITE f2.

EXIT.
WRITE f3.

ENDFORM.

Listing 7.3 Using EXIT Statement within Processing Block

Listing 7.4 shows an example using the EXIT statement within a loop. In this
example, we’re using the EXIT statement inside a DO loop. After the first loop, the
system will quit the loop when it encounters the EXIT statement but will continue
executing the remaining code in the subroutine.

Therefore, in this case, the statement WRITE f3 will be executed.

REPORT ZCB_EXAMPLE.
DATA : f1 TYPE c VALUE 'A',

f2 TYPE c VALUE 'B'.
END-OF-SELECTION.
PERFORM output. "Calling a subroutine

&--
*& Form OUTPUT
&--
FORM output.
DATA f3 TYPE c VALUE 'C'.
DO 3 TIMES.
WRITE f1.
WRITE f2.

EXIT.
250

Program Structure 7.2
ENDDO.
WRITE f3.

ENDFORM.

Listing 7.4 EXIT Statement within Loop

Listing 7.5 shows an example using the CHECK statement to quit the processing
block. In this example, we’re using the CHECK statement to check that the contents
of the data objects f2 and f3 do not match.

If the condition is satisfied, the remaining code of the processing block will be
executed; otherwise the system will quit the processing block without executing
further code in the processing block. In our example, the statement WRITE f3
won’t be executed, because f2 and f3 have the same value.

REPORT ZCB_EXAMPLE.
DATA : f1 TYPE c VALUE 'A',

f2 TYPE c VALUE 'B'.
END-OF-SELECTION.
PERFORM output. "Calling a subroutine

&--
*& Form OUTPUT
&--
FORM output.
DATA f3 TYPE c VALUE 'B'.
WRITE f1.
WRITE f2.

CHECK f2 <> f3.
WRITE f3.

ENDFORM.

Listing 7.5 Using CHECK Statement in Processing Block

Listing 7.6 shows an example using the CHECK statement within a loop. In the
example, we’re using the CHECK statement within a DO loop to check if the con-
tents of the data objects f1 and f2 are the same.

When the system encounters the CHECK statement, it will execute the statements
after the CHECK statement only if the CHECK condition is satisfied. If the condition
is not satisfied, the system will skip to the next loop pass without executing fur-
ther code in the current loop pass.

Once the loop processing is complete, the system will continue executing the
remaining code in the processing block. Therefore, in this example, the WRITE f1
251

Modularization Techniques7
statement is executed three times, the WRITE f2 statement is never executed, and
the WRITE f3 statement is executed once.

REPORT ZCB_EXAMPLE.
DATA : f1 TYPE c VALUE 'A',

f2 TYPE c VALUE 'B'.
END-OF-SELECTION.
PERFORM output. "Calling a subroutine

&--
*& Form OUTPUT
&--
FORM output.
DATA f3 TYPE c VALUE 'B'.

DO 3 TIMES.
WRITE f1.

CHECK f1 = f2.
WRITE f2.

ENDDO.
WRITE f3.

ENDFORM.

Listing 7.6 CHECK Statement within Loop

Listing 7.7 shows an example using the RETURN statement. In this example, we’re
using the RETURN statement within the DO loop. Because the RETURN statement will
always quit the processing block irrespective of whether it’s used within a loop or
outside the loop, the WRITE f1 statement is executed once, and the WRITE f2 and
WRITE f3 statements are never executed.

REPORT ZCB_EXAMPLE.
DATA : f1 TYPE c VALUE 'A',

f2 TYPE c VALUE 'B'.
END-OF-SELECTION.
PERFORM output. "Calling a subroutine

&--
*& Form OUTPUT
&--
FORM output.
DATA f3 TYPE c VALUE 'B'.

DO 3 TIMES.
WRITE f1.

RETURN.
WRITE f2.

ENDDO.
WRITE f3.

ENDFORM.

Listing 7.7 RETURN Statement
252

Program Structure 7.2
Statements

All ABAP program statements, except global data declarations (also referred to as
virtual processing blocks), belong to a processing block. If you write any statements
between the global declaration area and a processing block (the statement is not
explicitly assigned to a processing block and is not a declarative statement),
they’re automatically assigned to the beginning of the START-OF-SELECTION pro-
cessing block. The START-OF-SELECTION processing block plays the role of a
default processing block in executable programs.

Listing 7.8 contains sample code using various processing blocks. Here, we’re
showing item data for a given billing document number.

TYPES: BEGIN OF ty_vbrp,
vbeln TYPE vbeln_vf, "Document Number
posnr TYPE posnr, "Item Number
fkimg TYPE fkimg, "Quantity
vrkme TYPE vrkme, "UoM
netwr TYPE netwr, "Net Value
matnr TYPE matnr, "Material Number
arktx TYPE arktx, "Description
mwsbp TYPE mwsbp, "Tax Amount

END OF ty_vbrp.

DATA : it_vbrp TYPE STANDARD TABLE OF ty_vbrp,
wa_vbrp LIKE LINE OF it_vbrp,
v_vbeln TYPE vbeln_vf.

PARAMETERS p_vbeln TYPE vbeln_vf.

INITIALIZATION. "Event Block
AUTHORITY-CHECK OBJECT 'V_VBRK_FKA'

ID 'FKART' FIELD 'F2'
ID 'ACTVT' FIELD '03'.

IF sy-subrc <> 0.
* Implement a suitable exception handling here

MESSAGE 'Authorization check failed' TYPE 'E'.
ENDIF.

AT SELECTION-SCREEN. "Event Block
SELECT SINGLE vbeln FROM vbrk

INTO v_vbeln
WHERE vbeln EQ p_vbeln.

IF sy-subrc IS NOT INITIAL.
MESSAGE 'Invalid Document Number' TYPE 'E'.

ENDIF.

START-OF-SELECTION. "Event Block
253

Modularization Techniques7
PERFORM get_data. "Calls procedure
PERFORM show_output. "Calls procedure

&--
*& Form GET_DATA
&--
FORM get_data . "Subroutine
SELECT vbeln

posnr
fkimg
vrkme
netwr
matnr
arktx
mwsbp

FROM vbrp
INTO TABLE it_vbrp
WHERE vbeln EQ p_vbeln.

ENDFORM. " GET_DATA

&--
*& Form show-output
&--
FORM show_output . "Subroutine
FORMAT COLOR COL_HEADING.
WRITE : / 'Item',

10 'Description',
33 'Billed Qty',
48 'UoM',
57 'Netvalue',
70 'Material',
80 'Taxamount'.

FORMAT COLOR OFF.
LOOP AT it_vbrp INTO wa_vbrp.
WRITE :/ wa_vbrp-posnr,

10 wa_vbrp-arktx,
33 wa_vbrp-fkimg LEFT-JUSTIFIED,
48 wa_vbrp-vrkme,
57 wa_vbrp-netwr LEFT-JUSTIFIED,
70 wa_vbrp-matnr,
80 wa_vbrp-mwsbp LEFT-JUSTIFIED.

ENDLOOP.
ENDFORM. " SHOW-OUTPUT

Listing 7.8 Code Showing Various Processing Blocks

In the report that results from Listing 7.8, the user inputs the document number
of a billing document on a selection screen, and based on that document number,
the item details are fetched from table VBRP.
254

Program Structure 7.2
In this code, we’re using five processing blocks: three event blocks (INITIALIZA-
TION, AT SELECTION-SCREEN, START-OF-SELECTION) and two procedures (FORM get_
data and FORM show_output).

The event blocks allow us to control the sequence in which our code is executed.
For example, the code related to the authorization check is maintained under
INITIALIZATION event block (we can also use another event block, LOAD-OF-PRO-
GRAM, as an alternative). Because this event is always triggered when the program
is initialized, we can ensure that the first element checked when the user runs the
report is whether that user has the required authorizations to run the report.

Similarly, the AT SELECTION-SCREEN event is triggered when the user clicks the
Execute button on the selection screen. By keeping the code to validate the user
input under this event block, we can ensure that the program execution doesn’t
continue without a valid document number.

We’ve also separated the selection logic from output logic by maintaining two
procedures in the program: FORM get_data and FORM show_output. These subrou-
tines are called by the PERFORM statements in the START-OF-SELECTION event
block.

Thus far, we’ve looked at how processing blocks are used in an ABAP program
structure. In doing so, we’ve already touched on the different types of processing
blocks available. In the next section, we’ll take a closer look at these processing
block types.

Types of Processing Blocks

As previously mentioned, processing blocks can be classified as event blocks,
dialog modules, or procedures. The differentiating factors among the types of
processing blocks lie in how they’re introduced in the program and how they’re
called. The type of processing block also establishes whether or not it can keep
local data and its support for the parameter interface.

Notice that in Listing 7.8, although procedures are closed with their own END
statements (FORM...ENDFORM), event blocks are introduced with event keywords
and end implicitly by the beginning of the next processing block, by the end of
the program, or with the first definition of a modularization unit. In addition, the
event blocks are called by the ABAP runtime environment automatically when
255

Modularization Techniques7
the program is running. Alternately, subroutines (procedures) are called with the
specific PERFORM keyword in the code under the START-OF-SELECTION event block.

Note

As discussed earlier, you can call processing blocks from outside the ABAP program or
by using ABAP commands (which are themselves part of a processing block).

Event blocks behave differently from other processing blocks. Event blocks are
always called by the ABAP runtime environment, and the call is triggered by an
event. For example, user actions on selection screens and lists trigger certain
events for which corresponding event blocks are called. The ABAP runtime envi-
ronment also triggers events (while the ABAP program is running) that can be
processed in ABAP programs.

For example, an event triggers when the program is loaded into the memory,
before a selection screen is sent. You can make the program react to these events
by defining the corresponding event blocks in your program and ignoring an
event block if you don’t want the program to react to that event. This is unlike a
subroutine call, where you must have a corresponding subroutine. In other
words, you aren’t forced to react to a particular event, because the event is simply
ignored if a corresponding event block is not maintained in your ABAP program,
while allowing you to react to an event by maintaining the event block.

Please note that event blocks and dialog modules do not have a local declaration
area. Any data declaration within these blocks are automatically added to the global
declaration area of the program, making these blocks behave like global data
(visible in all internal processing blocks). However, any data declarations within
procedures (methods, subroutines, function modules) are called local data declara-
tions and are only visible within the procedure in which they are declared. They are
created when the procedure starts and destroyed when the procedure ends.

Processing blocks can be maintained in any order in the program. The code in Lis-
ting 7.9 shows the same code as in Listing 7.8, but the order of the processing
blocks is changed to highlight the fact that the order of the processing blocks in
the program is irrelevant.

TYPES: BEGIN OF ty_vbrp,
vbeln TYPE vbeln_vf, "Document Number
posnr TYPE posnr, "Item Number
fkimg TYPE fkimg, "Quantity
256

Program Structure 7.2
vrkme TYPE vrkme, "UoM
netwr TYPE netwr, "Net Value
matnr TYPE matnr, "Material Number
arktx TYPE arktx, "Description
mwsbp TYPE mwsbp, "Tax Amount

END OF ty_vbrp.

DATA : it_vbrp TYPE STANDARD TABLE OF ty_vbrp,
wa_vbrp TYPE ty_vbrp,
v_vbeln TYPE vbeln_vf.

PARAMETERS p_vbeln TYPE vbeln_vf.

AT SELECTION-SCREEN. "Event Block
SELECT SINGLE vbeln FROM vbrk

INTO v_vbeln
WHERE vbeln EQ p_vbeln.

IF sy-subrc IS NOT INITIAL.
MESSAGE 'Invalid Document Number' TYPE 'E'.

ENDIF.

START-OF-SELECTION.
PERFORM get_data. "Calls procedure
PERFORM show_output. "Calls procedure

INITIALIZATION. "Event Block
AUTHORITY-CHECK OBJECT 'V_VBRK_FKA'

ID 'FKART' FIELD 'F2'
ID 'ACTVT' FIELD '03'.

IF sy-subrc <> 0.
* Implement suitable exception handling here

MESSAGE 'Authorization check failed' TYPE 'E'.
ENDIF.

&--
*& Form show-output
&--
FORM show_output . "Subroutine
FORMAT COLOR COL_HEADING.
WRITE : / 'Item',

10 'Description',
33 'Billed Qty',
48 'UoM',
57 'Netvalue',
70 'Material',
80 'Taxamount'.

FORMAT COLOR OFF.
LOOP AT it_vbrp INTO wa_vbrp.
WRITE :/ wa_vbrp-posnr,

10 wa_vbrp-arktx,
33 wa_vbrp-fkimg LEFT-JUSTIFIED,
257

Modularization Techniques7
48 wa_vbrp-vrkme,
57 wa_vbrp-netwr LEFT-JUSTIFIED,
70 wa_vbrp-matnr,
80 wa_vbrp-mwsbp LEFT-JUSTIFIED.

ENDLOOP.
ENDFORM. " SHOW-OUTPUT

&--
*& Form GET_DATA
&--
FORM get_data . "Subroutine
SELECT vbeln

posnr
fkimg
vrkme
netwr
matnr
arktx
mwsbp

FROM vbrp
INTO TABLE it_vbrp
WHERE vbeln EQ p_vbeln.

ENDFORM. " GET_DATA

Listing 7.9 Code from Listing 7.8, Rearranged to Change Order of Processing Blocks

Figure 7.2 Output of Code in Listing 7.8 and Listing 7.9

The code in Listing 7.8 and Listing 7.9 behave exactly the same and produce the
same results (refer back to Figure 7.2).

The following sections discuss the different processing blocks in greater depth.

7.2.2 Event Blocks

Event blocks are introduced in the program through event keywords. Each
event has a specific keyword, and we can use the respective event keyword in
258

Program Structure 7.2
the program to make it react to that event. When the event is triggered by the
ABAP runtime environment, the code under the event keyword is executed.

An event block ends implicitly when the next processing block starts, as opposed
to specifically by its own keyword. Therefore, unlike procedures, we don’t have
to use any END statement to end the event block explicitly.

Event blocks are internal to the program and can’t be called programmatically
using any ABAP statements. They’re always triggered by events in the ABAP run-
time environment. They don’t support local data or parameter interfaces. When
you use declarative statements within an event block, the system will not throw
any syntax errors, but rather treats the declarative statement as a global declara-
tion.

If we maintain an appropriate event block in the ABAP program for an event of
the ABAP runtime environment, the code in the event block is executed; other-
wise, the event is simply ignored.

Conversely, the code in an event block won’t be executed unless the associated
event takes place while the program is being executed. In other words, just
because you’ve maintained an event block in your program, that doesn’t guaran-
tee its execution. It’s only executed if the associated event is triggered while the
program is running.

For example, the AT LINE-SELECTION event is triggered when the user double-
clicks any output line on the list screen. If you want your program to react to the
double-click event, you can maintain this event keyword in your program and
write the corresponding code under it.

When the user double-clicks the output line, the code under the AT LINE-SELEC-
TION event block is executed. However, if the user doesn’t double-click the output
line, this code is never executed. For example, in the following code, the state-
ment CALL TRANSACTION 'MM03' will be executed when user double-clicks a line in
the list output; if the user doesn’t double-click, this statement is never executed:

AT LINE-SELECTION.
CALL TRANSACTION 'MM03'.

We’ll discuss all the available events and their keywords in Section 7.3.
259

Modularization Techniques7
7.2.3 Dialog Modules

Dialog modules are implemented in executable programs, module pool programs,
or function groups between MODULE and ENDMODULE.

We use dialog modules when working with dialogs (screens). Because executable
programs, module pools, and function groups are the only programs that support
screens, we can use dialog modules only in these type of programs. Note that you
can’t define screens and modules with ABAP Objects.

You maintain dialog modules in the main program where a screen is defined and
call these modules from the screen flow logic using the MODULE keyword, as
shown in Figure 7.3.

Figure 7.3 Module Call

Like event blocks, dialog modules have no local data area and no parameter inter-
face. A data declaration in a dialog module is also added to the global data.

We’ll discuss dialog modules further when we cover dialog programming in
Chapter 12.
260

Events 7.3
7.2.4 Procedures

Procedures are callable processing blocks—which is to say that they’re called by
ABAP statements in the program. Procedures support a mechanism to import and
export data (parameter interface) for the calling program and contain local data
area. You can exchange data with the procedure using its parameter interface.
They can be called internally and externally, meaning that they can be called from
within the same program or externally from other ABAP programs.

The main purpose of procedures is to create reusable software blocks. For exam-
ple, say you need a specific function in many programs or many times within the
same program. You can simply create a procedure and call it where you need that
functionality, instead of manually developing the same program logic many
times. SAP provides many standard procedures out of the box that can be called
in your ABAP programs.

Understanding procedures is crucial, because doing so helps you take advantage
of many SAP-delivered reusable libraries and lays the foundation to grasp cer-
tain advanced concepts in ABAP, such as BAPIs, forms, SAP List Viewer (ALV),
and so on. For example, BAPIs are technically implemented as remote function
calls (RFCs), so developing a BAPI requires an understanding of function mod-
ules. Similarly, an understanding of ABAP Objects helps you work with ALV
Object Models.

7.3 Events

Events can be broadly classified into the following categories:

� Program constructor events

� Reporting events

� Selection screen events

� List events

� Screen events

The next sections take a look at each of these event types.
261

Modularization Techniques7
7.3.1 Program Constructor Events

The LOAD-OF-PROGRAM event block serves as a program constructor. A program con-
structor serves the same purpose for ABAP programs as a constructor serves for a
class (i.e., to initialize program variables).

This type of event block is called by the ABAP runtime environment when an exe-
cutable program, module pool program, function group, or subroutine pool is
loaded into memory (internal session). This event is triggered only once per pro-
gram execution. If the program call opens a new internal session for each call
(such as when using the SUBMIT or CALL TRANSACTION statements to call another
program), then the LOAD-OF-PROGRAM event is triggered once per every program
call.

To make the program react to this event, we use the LOAD-OF-PROGRAM event
keyword, which is the first event to be called before any other ABAP code is
processed. The statements in this block allow you to initialize the data of the
program.

The LOAD-OF-PROGRAM event is mainly used when calling external procedures to
initialize the global data of the called procedure. For example, in Listing 7.10 the
data object DATE is initialized with the current date via the LOAD-OF-PROGRAM
event.

By maintaining the statement DATE = SY-DATUM under the LOAD-OF-PROGRAM event,
we ensure that the data object DATE is always initialized with the current date
when the program is executed.

REPORT ZCB_EXAMPLE.
DATA date TYPE d.
LOAD-OF-PROGRAM.
date = sy-datum.

Listing 7.10 Using LOAD-OF-PROGRAM to Initialize Data

7.3.2 Reporting Events

Reporting events can be used in executable programs (report programs). Execut-
able programs are event-driven. When you run an executable program, a series of
events are triggered, one after the other, by the ABAP runtime environment. You
can define event blocks to react to these events. Reporting events that can be used
in an executable type of program include the following:
262

Events 7.3
� INITIALIZATION

� START-OF-SELECTION

� GET table

� GET table LATE

� END-OF-SELECTION

In the following subsections, we’ll take an in-depth look at each of these report-
ing events.

INITIALIZATION

INITIALIZATION is the first reporting event triggered when an executable pro-
gram is running. If the program also has a LOAD-OF-PROGRAM event block, then the
INITIALIZATION event block is executed immediately after the LOAD-OF-PROGRAM
event block.

If the executable program has a selection screen defined, an INITIALIZATION
event is called after the ABAP selection screen code has been processed, but
before the selection screen is displayed to the user.

Therefore, you can use it to initialize input fields of the selection screen or change
the default values of these at runtime before the user gets to enter data into them,
as shown in Listing 7.11.

PARAMETERS p_carrid TYPE s_carr_id DEFAULT 'LH'.
INITIALIZATION.
p_carrid = 'AA'.

Listing 7.11 INITIALIZATION Event

However, an INITIALIZATION event is triggered only once per program execution,
so any subsequent call to the selection screen will not execute the code under the
INITIALIZATION event. It just works when the selection screen is called by the
ABAP runtime environment for the first time. For this reason, we recommend
using selection screen-related events to initialize or modify the selection screen
fields and using the INITIALIZATION event to initialize all of the values in the pro-
gram.
263

Modularization Techniques7
In Listing 7.11, the p_carrid parameters field is assigned a default value LH. How-
ever, this value can be changed at runtime via the INITIALIZATION event; as a
result, the user will see AA as the default value on the selection screen.

START-OF-SELECTION

The START-OF-SELECTION event is called after the INITIALIZATION event, when an
executable program is running. If the program has a selection screen defined, this
is the first event that is triggered after all selection screen processing has been
completed (after executing all selection screen events). Selection screen events
are executed between INITIALIZATION and START-OF-SELECTION events.

The START-OF-SELECTION event plays the role of a standard event, which means
that if no other events are declared, there’s no need to manually code this event.
All processing statements will be automatically assigned to an implicit START-OF-
SELECTION block, as shown in Figure 7.4.

Figure 7.4 START-OF-SELECTION as Standard Event

Similarly, if you have any statements between the global declaration area and the
first processing block of the program, they’re automatically inserted at the begin-
ning of this event block and executed.

In Figure 7.5, the statement at line 28 is not explicitly assigned to any event, so
the system automatically adds it to the top of the START-OF-SELECTION event and
executes it before the PERFORM statement at line 46.
264

Events 7.3
Figure 7.5 START-OF-SELECTION Acts as Default Event

In general, you put all the data selection logic of your ABAP program within the
START-OF-SELECTION event. Here, the program starts selecting values from tables.
In a typical report program, you initialize the program data under the INITIAL-
IZATION event, validate the selection screen inputs under the selection screen
events, and, if everything looks fine, proceed with the data selection (based on
the selection criteria) under the START-OF-SELECTION event.

GET table

The GET table event is used when the executable program uses a logical database
for data selection. A logical database is a special ABAP program that retrieves data
from the database and makes it available to the application program. In other
words, when you use a logical database in your program, you do not need to code
the SQL statements to retrieve the data from the database.

The logical database itself contains the Open SQL statements that retrieve the data
from the database and pass the data line by line to the interface work area of your
application program.
265

Modularization Techniques7
A logical database consists of a program with selection screen and authorization
checks. When a logical database is used for the report program, the program can
automatically inherit the selection screen and authorization checks.

Interface work areas are defined using the TABLES or NODES keywords, and they
work similarly to the work areas defined using the DATA keyword, with just one
basic difference. These interface work areas are created in the shared data area of
between the programs. In other words, when you define a work area using the
DATA keyword, it is defined in the memory space of the program. Interface work
areas are defined in the shared memory space of the session, which all the pro-
grams running in the same session can have access to. For this reason, using
TABLES is not recommended, as it can produce side effects.

In older versions of the SAP ERP system, the only way to use a logical database
was to link it to an executable program and use GET events to retrieve the data.
However, since release SAP R/3 4.5A, it’s been possible to call a logical database
in any program using the LDB_PROCESS function module. This module allows you
to call many logical databases in your program, nested in any order. In this
respect, the use of interface work areas is practically obsolete, available only for
backward compatibility with earlier releases.

The GET event is triggered when the logical database has read a line from the table
mentioned in the event keyword and made it available to the program in the
work area declared using the TABLES <table> or NODES <table> statement (as seen
in Listing 7.12).

NODES: SPFLI.
GET SPFLI.
SKIP.
WRITE: / 'From:', SPFLI-CITYFROM,
'TO :', SPFLI-CITYTO.

Listing 7.12 Code Showing GET Event

GET <table> LATE

Once all of the data records for a node of the logical database have been read, the
ABAP runtime environment triggers the GET <table> LATE event. By maintaining
this event in the program, you can process the steps that should be executed at
the end of the block. For example, if you want to print an itemized summary of
sales orders, you can do so in this event block.
266

Events 7.3
Listing 7.13 shows the implementation of this event block.

NODES: SPFLI, SFLIGHT, SBOOK.
DATA WEIGHT TYPE I VALUE 0.
GET SPFLI.
SKIP.
WRITE: / 'Carrid:', SPFLI-CARRID,
'Connid:', SPFLI-CONNID,
/ 'From: ', SPFLI-CITYFROM,
'To: ', SPFLI-CITYTO.
ULINE.
GET SFLIGHT.
SKIP.
WRITE: / 'Date:', SFLIGHT-FLDATE.
GET SBOOK.
WEIGHT = WEIGHT + SBOOK-LUGGWEIGHT.
GET SFLIGHT LATE.
WRITE: / 'Total luggage weight =', WEIGHT.
ULINE.
CLEAR WEIGHT.

Listing 7.13 Code Showing GET <table> LATE Event

In Listing 7.13, we’re printing the date-wise summary of the total luggage weight
for each airline code (CARRID) and flight connection number (CONNID). We retrieve
the flight details using the GET SPFLI event. The GET SFLIGHT event loops through
all the flights for a given date (the user can restrict the range on the logical data-
base selection screen).

The GET SBOOK event retrieves the luggage weight for each booking from table
SBOOK for the respective flight. Within this event, we’re aggregating the total
weight for the given date.

Finally, the GET SFLIGHT LATE event is called at the end once all the records for the
flights in a given date are processed. In this event, we’re printing the total luggage
weight for the given date for the respective CARRID and CONNID. For this example,
we’re using the logical database selection F1S, which you can check using Trans-
action SLDB.

END-OF-SELECTION

The END-OF-SELECTION event is used to mark the end of selection. If your report
isn’t using a logical database, then this event is used after a START-OF-SELECTION
event to mark the end of selection and to continue with further processing of the
267

Modularization Techniques7
selected data, such as printing the selected data in the output. However, if your
report is linked to a logical database, this event is called after the logical database
has completely transferred all the records to the application program.

For example, in Listing 7.13, if all the data from the logical database selection is
updated in an internal table that you then want to process further, you can use
the END-OF-SELECTION event to mark the end of data selection and implement the
logic to further process the selected data. The END-OF-SELECTION event is called by
the runtime environment after processing all the GET events.

Using this event becomes mandatory to separate the selection logic from the out-
put logic when using a logical database. Otherwise, its purpose is purely for doc-
umentation and for making the code legible. We recommend using this event to
mark the separation from selection logic to output logic even if no logical data-
base is used in the program.

Listing 7.14 shows an example using the END-OF-SELECTION event.

NODES: SPFLI, SFLIGHT, SBOOK.
DATA: gr_table TYPE REF TO cl_salv_hierseq_table.
DATA: it_spfli TYPE TABLE OF spfli.
DATA: it_sflight TYPE TABLE OF sflight.
DATA: it_binding TYPE salv_t_hierseq_binding.
DATA: wa_binding LIKE LINE OF it_binding.

GET SPFLI.
APPEND spfli to it_spfli.
GET SFLIGHT.
APPEND sflight to it_sflight.

END-OF-SELECTION.
wa_binding-master = 'CARRID'.
wa_binding-slave = 'CARRID'.
APPEND wa_binding TO it_binding.

wa_binding-master = 'CONNID'.
wa_binding-slave = 'CONNID'.
APPEND wa_binding TO it_binding.

cl_salv_hierseq_table=>factory(
EXPORTING
t_binding_level1_level2 = it_binding

IMPORTING
r_hierseq = gr_table

CHANGING
t_table_level1 = it_spfli
268

Events 7.3
t_table_level2 = it_sflight).
gr_table->display().

Listing 7.14 END-OF-SELECTION Event

In Listing 7.14, we’re filling the internal tables IT_SPFLI and IT_SFLIGHT within
the GET SPFLI and GET SFLIGHT events, respectively. We’re then displaying this
data as a hierarchical sequential display using the ALV object model within the
END-OF-SELECTION event.

The ALV object model makes it easy to generate the ALV output. We’ll discuss the
ALV object model further in Chapter 15.

7.3.3 Selection Screen Events

Selections screens are special screens that allow the user to input the selection cri-
teria for a program. These are typically used in report programs (executable pro-
grams), but can also be used in module pool programs or function groups.

Selection screen events typically help to prepare the selection screen and evaluate
user actions on the screen. For example, we can use selection screen events to
assign default values to the input fields at runtime, dynamically disable or enable
certain fields, or validate user input and show appropriate messages to the user.

Selection screen events are triggered when a selection screen is defined for the
program and is processed by the ABAP runtime environment. If there is no selec-
tion screen defined for the program, none of the selection screen events are trig-
gered.

Selection screens are categorized as special screens that can be defined using
ABAP statements (PARAMETERS or SELECT-OPTIONS) and are generated by the ABAP
compiler automatically, rather than defined manually using the Screen Painter
(like general screens).

Because selection screens are generated automatically, programmers don’t have
access to the screen flow logic in which they can define dialog modules to modify
the screen or react to user actions. The ABAP runtime environment fully controls
the screen processing, generating a number of selection screen events through
which programmers can maintain the event blocks in the program to react to
these events.
269

Modularization Techniques7
Screen flow logic is broadly divided into process before output (PBO) and process
after input (PAI). PBO is triggered before the screen is displayed to the user, and
PAI is triggered after user takes some action on the displayed screen (like clicking
a button). The ABAP runtime environment triggers different events at PBO and
PAI while processing the screen.

For example, AT SELECTION-SCREEN OUTPUT is a PBO event; we can edit this event
block in the program to react to the event and execute the code to modify the
screen or to assign default values. Similarly, AT SELECTION-SCREEN is a PAI event
that is triggered once the user takes some action on the screen. We can use this
event block to validate user inputs.

The basic form of the selection screen events is the AT SELECTION-SCREEN event.
This event is triggered after the ABAP runtime environment has transferred all
input data from the selection screen to the ABAP program.

We’ll explore all the available selection screen events in Chapter 14.

7.3.4 List Events

List screens are one of the three types of screens in the SAP system (along with
dialog screens and selection screens). They are used to display output data and to
support user interaction. Like selection screens, list screens are also created using
ABAP statements. In addition, the output of the list screen can be sent to a
printer.

List screens are generated by using the WRITE, ULINE, or SKIP statements, and the
ABAP runtime environment calls list events while processing the list screen. List
screens provide a freely definable area that can be filled with data. List screens are
generally used to display report output; this is considered old-fashion. These
screens mostly have been replaced by ALV technology in newer systems.

Because the only three types of programs that support screens are executable pro-
grams, module pool programs, and function groups, list events can be used only
in these types of programs while a classical list is being generated or when the
user performs an action on the displayed list.

There are five list events:

� TOP-OF-PAGE

� TOP-OF-PAGE DURING LINE-SELECTION
270

Events 7.3
� END-OF-PAGE

� AT USER-COMMAND

� AT LINE-SELECTION

TOP-OF-PAGE and END-OF-PAGE events are triggered in PBO and can be used to
print the header (top) and footer (end) information on the page.

AT USER-COMMAND and AT LINE-SELECTION are triggered in PAI and can be used to
react to user actions on screen. TOP-OF-PAGE DURING LINE-SELECTION is triggered
when preparing the secondary list. For example, AT USER-COMMAND is triggered
when the user selects any of the application toolbar buttons, whereas AT LINE-
SELECTION is triggered when the user double-clicks the output line. These events
can be used to provide drill-down reports.

We’ll discuss all the available list events in detail in Chapter 13 when we cover list
screens.

7.3.5 Screen Events

Screen events are triggered when processing general screens. Special screens (selec-
tion screens and list screens) are defined in ABAP programs using ABAP state-
ments, but general screens are created using the Screen Painter. General screens
are the most common screens used in transactions.

A general screen consists of the input/output fields and the screen flow logic. Like
selection screens and list screens, general screens can be defined for executable
programs, module pool programs, and function groups. General screens are the
common screens used with module pool programs.

The screen flow logic is divided into the PBO event, which is processed before the
screen is displayed, and the PAI event, which is processed after a user action on
the screen.

There are four screen events triggered when the screen is processed:

� Process before output (PBO)
A PBO event is triggered before the screen is shown to the user and can be used
to modify the screen.
271

Modularization Techniques7
� Process after input (PAI)
A PAI event is triggered when the user performs an action on the screen. This
event can be used to evaluate user actions.

� Process on help request (POH)
A POH event is triggered when the user selects (F1) help on the screen field.
This event can be used to show field documentation to help the user learn more
about a field.

� Process on value request (POV)
POV is triggered when the user selects (F4) help on the screen field. This event
can be used to show the possible entries for a field (a value list).

All the screen events other than PBO are triggered after showing the program
screen.

We’ll discuss all the available screen events in more detail in Chapter 12 when we
discuss dialog programming.

7.4 Procedures

Procedures are special modularization units that are called with ABAP statements.
They provide reusable software blocks. Procedures contain a set of statements
that are executed when called from ABAP programs.

As shown in Figure 7.6, the ABAP program calls a procedure using specific ABAP
statements (depending on the type of procedure being called). When the proce-
dure is called, the code in the procedure is executed.

Figure 7.6 Call of Modularization Unit

Program…

Call of
Modularization
Unit…

Modularization Unit

Statement Sequence
272

Procedures 7.4
Procedures are defined in ABAP programs, and upon activation of the program
they remain as standalone modules. As discussed previously, procedures can be
called from the same program in which they’re maintained or from external pro-
grams. For example, you can call a subroutine of the same program using the PER-
FORM statement, as shown:

PERFORM prepare_data.

If the subroutine is maintained in a different program and you want to call it
externally, you can do so by giving the program reference. The following state-
ment calls an external subroutine (note that it isn’t recommended to call subrou-
tines externally, because they’re not designed for external calls; for external calls,
use function modules or ABAP classes):

PERFORM prepare_data IN PROGRAM ZCA_EXAMPLE.

When the procedure is called externally, the entire program in which the proce-
dure is maintained is loaded into memory, but only the code inside the procedure
is executed. Because procedures support the parameter interface (an interface to
exchange data with the calling program), we can exchange data with the proce-
dure to pass an input and receive a result.

Procedures support the local data area, the life of which is limited to the execu-
tion of the procedure. The data objects declared in the local data area of a proce-
dure are created when the procedure is called and terminated once the execution
of the procedure is completed.

For example, in the following code, the data object F1 is defined within the sub-
routine OUTPUT. This data object F1 is created when the subroutine is called and
can be accessed by ABAP statements within the subroutine. Once the subroutine
execution is completed (i.e., ENDFORM is executed), the data object F1 is no longer
available in the program memory and can’t be accessed by any ABAP statements:

FORM output.
DATA f1 TYPE C.
ENDFORM.

Any data stored in the local data is cleared upon termination of the procedure.
Local data objects are useful when you don’t want to occupy the memory space of
the main program unnecessarily, especially after the purpose of the data has been
fulfilled.
273

Modularization Techniques7
For example, say you’re writing code to select data from two different database
tables, copying it into two internal tables, and finally consolidating the data to a
final internal table. Once the data from these two internal tables is consolidated
into the final table, you no longer need the data in the original internal tables.

If you defined these tables in the global declaration area, they continue to occupy
memory throughout the runtime of the program, unless you manually clear the
tables. However, if those internal tables are defined locally in a procedure, they’re
automatically cleared once the program exits the procedure.

ABAP contains the following kinds of procedures:

� Subroutines
Subroutines are primarily used for local modularization. Even though they can
be called externally from other ABAP programs, they’re generally called locally
from the program from which they’re defined. Subroutines are useful for reus-
ability within the program, and they can be defined in any ABAP program.

� Function modules
Function modules are created globally and are used for global modularization.
They’re typically employed for reusability across multiple programs and are
always called from a different program. Function modules are defined in a
function group type of program but can be called from any ABAP program.
They also support the RFC interface system and thus can be executed from
remote systems.

� Methods
Methods support object-oriented programming concepts and contain the func-
tions of classes and their instances in ABAP Objects. Methods are defined in
classes and can be maintained locally in the program or globally in the system.

In the following subsections, we’ll take a closer look at each of these different
ABAP procedure types.

7.4.1 Subroutines

Subroutines are maintained between FORM and ENDFORM statements and are called
using the PERFORM statement:

FORM subr.
…
ENDFORM.
274

Procedures 7.4
The additions USING and CHANGING define the parameter interface for the subrou-
tine. The parameter interface allows you to pass data to a subroutine and is
defined by directly declaring variables on the FORM statement; these variables are
called formal parameters. Formal parameters are filled by the PERFORM statement
by maintaining the parameters in the PERFORM statement; such parameters are
called actual parameters.

Parameters can be defined by referring either to local data types or to global types
in ABAP Data Dictionary. The parameters defined exist as local variables to the
subroutine; they’re created when the subroutine is called and freed when it ends.
If the subroutine has variables defined on the FORM statement, the PERFORM state-
ment must pass a value to each of these variables in the defined sequence.

The parameter names that appear at the FORM level are called formal parameters,
and the parameters that appear at the PERFORM level are called actual parameters.

The number of actual and formal parameters should always be same. For exam-
ple, if a subroutine has three formal parameters, then it expects three actual
parameters to be passed when the subroutine is called using the PERFORM state-
ment. In Listing 7.15, actual parameters f1, f2, and f3 are passed to formal
parameters p1, p2, and p3.

PERFORM abc USING f1 f2 f3.

FORM abc USING p1 p2 p3.

ENDFORM.

Listing 7.15 Example Syntax for Parameter Interface

While defining formal parameters, they can be either typed or untyped. If a for-
mal parameter is referred to a data type, it is called a typed formal parameter; oth-
erwise, it’s an untyped formal parameter. In Listing 7.15, all parameters are
untyped.

When an untyped formal parameter is used, you can pass a variable of any data
type or length to it. In such a case, the formal parameter uses the attributes of the
actual parameter. For example, if you pass a four-byte integer to an untyped for-
mal parameter p1, then p1 becomes a four-byte integer. If you pass a character
string of length three to the same parameter, it will become a three-character
field. The data type and length of the untyped parameter is determined in run-
time based on the actual parameter passed to it.
275

Modularization Techniques7
Even though using untyped parameters is flexible, it’s no longer considered
appropriate since the introduction of generic types. Generic types allow you to
dynamically assign the typing for data objects. You’ll learn more about generic
types in Chapter 16 when we discuss dynamic programming.

The following is the syntax for typed parameters:

FORM abc using u1 type t.
ENDFORM.

With typed parameters, you define the data type statically. Typed parameters are
considered more efficient than untyped parameters. You must use generic types
instead of untyped parameters if the requirement is to determine the data type
dynamically during the runtime. For this reason, we discourage you from using
untyped parameters.

The following points apply when working with typed formal parameters:

� The syntax of the FORM statement is a bit restricted, so you can only specify a
data type on the FORM statement and can’t use the length addition when using
elementary types. For this reason, we recommend typing the formal parame-
ters by referring them to either user-defined global types in the program or
data types from ABAP Data Dictionary.

� The type and length of the actual parameter should match the formal parame-
ter. You usually don’t pass one data type to a different data type.

� Passing a variable of the wrong data type or length to a typed parameter causes
a syntax error.

� Typed formal parameters are more efficient, because the system doesn’t need
to determine the data type at runtime to allocate memory.

� They help prevent coding errors, because the syntax checker will prevent you
from passing incompatible parameters.

� They also help prevent runtime errors. If you perform an arithmetic operation
on an untyped formal parameter and a character value is passed to it, it will
result in a runtime error.

� You always use typed parameters when passing structures. If a structure is
passed to an untyped formal parameter, you can’t access the fields of the struc-
ture statically, because the system will identify the formal parameter as a struc-
ture only at runtime.
276

Procedures 7.4
In the following subsection, we’ll discuss how to pass parameters and internal
tables to subroutines.

Passing Parameters to Subroutines

There are three different ways that parameters can be passed to subroutines:

� Parameters passed by reference (known as pass by reference parameters)

� Input parameters that pass values (known as pass by value parameters)

� Output parameters that pass values (known as pass by value and result parame-
ters)

The USING and CHANGING additions for the FORM statement define the parameter
interface and also determine how the parameters are passed. The same additions
are also used for the PERFORM statement to pass the actual parameters, but purely
for documentation purposes; they don’t influence how the parameters are passed
in that case.

The sequence of the additions is fixed. USING comes first, followed by CHANGING.
You can use either one of the additions or both of them in the statement. Each
addition can be followed by a list of any number of parameters.

The syntax at the PERFORM level is as follows:

PERFORM abc USING f1 f2 CHANGING f3

The parameters are listed either under USING or CHANGING, depending on whether
the value of the actual parameter is changed after the subroutine call or remains
unchanged. If the actual parameter is changed after the subroutine call, list it
under CHANGING; otherwise, list it under USING.

Listing 7.16 shows an example of the USING addition.

DATA f1 TYPE c VALUE 'A'.
PERFORM abc USING f1.
FORM abc USING p1.
WRITE p1.
ENDFORM.

Listing 7.16 Passing Parameters with USING Addition
277

Modularization Techniques7
In Listing 7.16, actual parameter f1 is passed to formal parameter p1 in the sub-
routine abc. Because the value of actual parameter f1 doesn’t change after the
subroutine call, we used the USING addition at the PERFORM statement.

In Listing 7.17, the value of actual parameter f1 will change from A to B, so we
used the CHANGING addition at the PERFORM statement. Please note that the USING
or CHANGING additions are only to help other developers looking at the code to
identify if the actual parameter simply is being used or actually is changed within
the subroutine.

DATA f1 TYPE c VALUE 'A'.
PERFORM abc CHANGING f1.
FORM abc USING p1.
P1 = 'B'.
ENDFORM.

Listing 7.17 Passing Parameters with CHANGING Addition

The example in Listing 7.16 will produce the same result and behave the same
way even if we use the CHANGING addition at the PERFORM statement or the USING
addition as in Listing 7.17.

In the following subsections, we’ll introduce the different methods for passing
parameters to subroutines.

Parameters Passed by Reference

The syntax at the FORM statement determines how the parameters are passed.
When the parameters are passed by reference, the formal parameter points to the
same memory location as the actual parameter. In other words, a new memory
isn’t created for the formal parameter; instead, a pointer is created that directs to
the memory location of the actual parameter. This way of passing the parameters
is efficient (especially in case of internal tables), because no copy of the data is
made and no extra memory is used.

When parameters are defined with just the USING or CHANGING additions at the
FORM statement, they’re passed by reference by default. Some examples include
the following:

� FORM abc USING p1.

ENDFORM.

� FORM abc CHANGING p1.
278

Procedures 7.4
ENDFORM.

� FORM abc USING p1 CHANGING p2.

ENDFORM.

When the parameters are passed by reference, the value of the actual parameter
changes immediately the moment the contents of the formal parameter are
changed, because both point to the same memory location. While programming,
you need to be careful, because the original data is instantly changed. If any con-
ditions are not met later in the program logic and you want to quit the subrou-
tine, changes to the original data can’t be reverted.

When passing the parameters by reference, USING and CHANGING are equivalent,
but for documentation purposes, you should use USING for input parameters
(which are not changed in the subroutine) and CHANGING for output parameters
(which are changed in the subroutine).

If you don’t want the value of an actual parameter to be changed automatically,
you must pass it by value.

Input Parameters that Pass Values

Parameters are passed by value when the VALUE addition is used after the USING
addition, as shown in Listing 7.18.

FORM abc USING VALUE (p1)
VALUE (p2).

ENDFORM.
FORM xyz USING VALUE (p1) CHANGING p2.
ENDFORM.

Listing 7.18 Passing by Value

In Listing 7.18, the parameters p1 and p2 are passed by value in subroutine abc,
whereas in subroutine xyz the parameter p1 is passed by value and p2 is passed by
reference. You use the USING addition only once in the syntax and precede each
parameter that needs to be passed by value with the VALUE addition.

When the parameters are passed by value, the actual parameter and the formal
parameter occupy their own memory space. When you call the subroutine, the
value of the actual parameter is passed to the formal parameter (it creates a copy
of the original data). If the value of the formal parameter changes, this has no
effect on the actual parameter. Passing parameters by value is to be avoided,
279

Modularization Techniques7
especially when passing large internal tables. However, passing by value allows
you to work with a copy of the original data without worrying about changing
the original data, because the value of the actual parameter is never changed.
Actual parameters are used for input parameters that the subroutine receives.

Output Parameters that Pass Values

If you want to work with a copy of the output parameters, you can pass them by
using the VALUE addition with the CHANGING statement. This way, a new memory
is created for the formal parameter, and the contents of the actual parameter are
copied to the formal parameter (similar to the input parameters passed by value).

However, the difference is that the actual parameter will be changed after the sub-
routine call. The contents of the formal parameter are copied to the actual param-
eter either once ENDFORM is executed or when the subroutine is terminated with
the CHECK or EXIT statements.

The actual parameter remains the same if the subroutine is terminated prema-
turely with an error message. This allows you to change the actual parameter only
when all the conditions are met, unlike pass by reference cases, in which the
actual parameter is changed instantly.

The syntax to pass parameters by value and result is shown in Listing 7.19.

FORM abc CHANGING VALUE (p1)
VALUE (p2).

ENDFORM.
FORM xyz USING VALUE (p1)

CHANGING VALUE (p2).
ENDFORM.

Listing 7.19 Passing by Value and Result

In Listing 7.19, the parameters p1 and p2 of subroutine abc are passed by value
and both are output parameters. In subroutine xyz, the parameter p1 is an input
parameter that is passed by value and p2 is an output parameter that is passed by
value. You use the CHANGING addition only once in the syntax and precede each
parameter that needs to be passed with the VALUE addition.

Passing Internal Tables to Subroutines

Passing fields to subroutines is simple—but there are a few things to keep in mind
when passing internal tables.
280

Procedures 7.4
Internal tables can be passed a couple of ways. You can pass internal tables with
USING or CHANGING statements. Alternately, you can use the TABLES keyword—for
example:

FORM abc TABLES pt_sflight.
ENDFORM.

Using the TABLES keyword allows you to pass both internal tables and their
header lines (if the actual parameter is an internal table with header line). How-
ever, using the TABLES keyword is obsolete, and we don’t recommend it.

Always pass internal tables with the USING or CHANGING statements. In addition,
always use typed parameters when passing internal tables. The syntax checker
will throw an error if any internal table–specific statements, like LOOP or READ, are
used statically on the formal parameter. This is because there is no way for the
syntax checker to recognize the formal parameter as an internal table when using
untyped formal parameters.

To type the formal parameter, you can refer the formal parameter to a structure
or table type. The syntax to type an internal table is similar to that for the DATA
keyword. When referring to a structure, you can use the syntax TYPE TABLE OF, as
shown in Listing 7.20.

TYPES: BEGIN OF ty_makt,
matnr type matnr,

END OF ty_makt.
FORM abc USING pt_makt TYPE STANDARD TABLE OF ty_makt.
ENDFORM.

Listing 7.20 Defining Internal Table as Formal Parameter

Table types are the data types for internal tables. Similar to how a structure type
defines a structure, a table type defines an internal table. When a data object is
referred to a table type using the TYPE addition, it creates an internal table. Table
types can be defined either locally in ABAP programs or globally in ABAP Data
Dictionary. To define a table type locally, use the OCCURS clause with the TYPES
keyword, as shown in Listing 7.21.

TYPES: BEGIN OF ty_makt,
matnr type matnr,

END OF ty_makt.
TYPES: tbty_makt TYPE ty_makt OCCURS 0.
281

Modularization Techniques7
FORM abc USING pt_makt TYPE tbty_makt.
ENDFORM.

Listing 7.21 Defining Internal Table Using Table Type

Table types are more useful in function modules and methods, where the typing
is restricted to TYPE or LIKE statements and doesn’t allow the use of the TABLE OF
addition.

You can also type the formal parameter by referring to a global internal table via
the LIKE addition (see Listing 7.22).

TYPES: BEGIN OF ty_makt,
matnr type matnr,

END OF ty_makt.
DATA: it_makt TYPE STANDARD TABLE OF ty_makt.
FORM abc USING pt_makt LIKE it_makt.
ENDFORM.

Listing 7.22 LIKE Addition

Table types can be defined globally in ABAP Data Dictionary. To create a global
table type, proceed as follows:

1. Open Transaction SE11 and select the Data Type radio button. Provide the
name of the table type and click Create. The name of the table type should be
in a customer namespace, starting with Y or Z (as shown in Figure 7.7).

Figure 7.7 ABAP Data Dictionary: Initial Screen
282

Procedures 7.4
2. In the modal dialog box that appears, select the Table Type radio button and
click OK (see Figure 7.8).

Figure 7.8 Modal Dialog Box to Select Table Type

3. On the next screen, provide short text and enter the structure name or ABAP
Data Dictionary table name based on the line type you want the table type to
contain, as shown in Figure 7.9. The line type mentioned here will form the
components of the table type.

Figure 7.9 Maintaining Line Type for Table Type

4. Click Activate to activate the table type.

The preceding steps quickly create a table type with default options. However, we
can determine more properties for the table type using different tabs on the
screen. We’ll dive into this topic further in Chapter 10.
283

Modularization Techniques7
7.4.2 Function Modules

Function modules are defined in function groups but can be called from all ABAP
programs. Function groups act as containers for function modules that logically
belong together. You can create function groups and function modules in ABAP
Workbench using the Function Builder tool (Transaction SE37).

Function modules are managed in a central function library, making it easy to
look for existing function modules. The SAP system comes with many standard
function modules that can be called from any ABAP program. Function modules
also support RFC and thus can be called from remote systems using RFC.

One type of function module, the update module, is useful when performing data-
base updates. Update modules allow you to extend the scope of the logical unit of
work (LUW) from a single dialog step to multiple dialog steps. An LUW is a unit
that exists between PAI of one screen and PBO of the next screen. We’ll discuss
LUWs further in Chapter 12.

Unlike subroutines, function modules are not defined in an ABAP program’s
source code. Instead, they’re defined using the Function Builder. Because func-
tion modules are always called externally and provide generic functionality, rais-
ing messages in a function module to handle error situations doesn’t make sense.
If an error occurs, function modules support exception handling, which allows
you to catch certain errors while the function module is running.

Function modules are called by many programs. Changing an existing function
module will affect all the programs that call that particular function module. If the
parameter interface is changed, then all the programs that call the function mod-
ule should be modified to reflect the new interface. If the function module isn’t
changed, the programs will throw runtime errors.

To prevent this, the Function Builder has a release process for function modules.
By releasing the function module, we can ensure that incompatible changes can’t
be made to the function module, particularly to the interface. Programs that use
a released function module will not cease to work if the function module is
changed.

Function modules are created in function groups that act as containers for function
modules. Function groups can’t be executed directly. Rather, they’re loaded into
memory when any function module of the function group is called. Note that all
of the function modules belonging to the function group are loaded into memory
284

Procedures 7.4
when any one of its function modules is called. For this reason, even though you
can define multiple function modules in a function group, we recommend keep-
ing related function modules in the same group.

In this section, we’ll discuss the steps for creating and calling function modules.

Creating Function Modules

The following steps walk you through creating a function module:

1. Open Transaction SE37 to access Function Builder.

2. As shown in Figure 7.10, navigate to Goto � Function Groups � Create Group

to create a new function group.

Figure 7.10 Menu Path to Create Function Groups Using Function Builder

3. On the dialog screen that appears, as shown in Figure 7.11, enter a name for
your function group (here, we entered “zcb_fg”). The name of a function group
can be up to twenty-six characters long. This name is used by the system to cre-
ate the components of the group (the main program and corresponding include
programs).

Figure 7.11 Create Function Group
285

Modularization Techniques7
When you create a function group or function module in the Function Builder,
the main program and include programs are generated automatically (see
Figure 7.12).

Figure 7.12 Function Group Includes

As shown in Figure 7.12, the main program SAPLZCB_FG contains nothing but
the INCLUDE statements for the following include programs:

� LZCB_FGTOP: Contains the FUNCTION-POOL statement and global data declara-
tions for the entire function group.

� LZCB_FGUXX: Contains further INCLUDE statements for the include programs
LfgrpU01, LfgrpU02, and so on. These INCLUDE statements contain the actual
function modules.

� LfgrpF01 and LfgrpF02: Subroutines can be maintained in the INCLUDE pro-
grams LfgrpF01, LfgrpF02, and so on and can be called from all function
modules of the group as internal subroutines.

All the function modules in the function group can access the data declarations
made in the global data area of the function group. For this reason, you should
place all function modules that use the same data in a single function group
instead of creating a new function group for each function module. For exam-
ple, if you have a set of function modules that all use the same internal table,
you could place them in a function group containing the table definition in its
global data.
286

Procedures 7.4
Function groups, like executable programs and module pools, can contain
screens. Depending upon the type of screen, user inputs can be processed
either in dialog modules or in the corresponding event blocks in the main pro-
gram of the function group.

Data declarations made within the function module between the FUNC-
TION…ENDFUNCTION statements are local to the specific function module. These
data declarations can be accessed only within the function module in which
they are defined.

4. Once the function group is created, you can create the function module within
this function group. To do so, enter the name of the Function Module on the
initial screen of Function Builder and click Create (Figure 7.13).

Figure 7.13 Creating Function Module

5. This will open a dialog box in which you’ll input the name of the function
group and a short description (Figure 7.14). Then, click Save.

Figure 7.14 Assigning Function Module to Function Group

6. This will open the function module editor, as shown in Figure 7.15.
287

Modularization Techniques7
Figure 7.15 Function Module Editor

The editor contains seven tabs:

� Attributes: The most important setting in the Attributes tab is Processing

Type. Here, you can choose to create a Normal Function Module, a
Remote-Enabled Module, or an Update Module. By default, the Normal

Function Module is selected (as shown in Figure 7.16).

Figure 7.16 Attributes Tab
288

Procedures 7.4
Normal function modules can be called from any ABAP program in the SAP
system. Remote-enabled function modules can be called from a remote sys-
tem. These types of function modules help SAP system to SAP system inter-
actions, or interactions between SAP systems and remote systems (through
remote communications). Update modules are used during updating. We’ll
look at update techniques in Chapter 12.

� Import: In this tab, you define all the importing parameters that will be
imported from the calling program. Import parameters can’t be changed in
the function module. As shown in Figure 7.17, in the Parameter Name col-
umn, you enter the name of your importing parameter. In the second col-
umn, Typing, you provide the type specification (either TYPE or TYPE REF TO).
In the third column, Associated Type, you provide the reference to a data
type defined in ABAP Data Dictionary.

In the Default Value column, you can assign a default value to the param-
eter that’s automatically filled when the function module is called in any
ABAP program. The Optional column has a checkbox that can be ticked to
make the parameter optional. Optional parameters can be ignored by the
calling program. The Pass Value column checkbox allows you to pass the
parameter by value. Otherwise, is the parameter’s passed by reference. You
can maintain Short Text and Long Text in the corresponding columns to
describe the parameter for other developers, as shown in Figure 7.17.

Figure 7.17 Import Tab

� Export: You define all the parameters that will be exported to the calling
program under the Export tab. Except for the missing Default Value and
Optional columns, as shown in the Import tab, all other columns are similar
to the Import tab (Figure 7.18). These parameters are filled in the function
289

Modularization Techniques7
module and sent to the calling program. The program can’t send any values
to the function module using these parameters.

Figure 7.18 Export Tab

� Changing: In this tab, you define CHANGING parameters. CHANGING parame-
ters work as both importing and exporting parameters (i.e., the function
module can pass values to and import values using these parameters). The
columns are identical to those in the Import tab.

� Tables: This tab is used to define internal tables. However, it’s considered
obsolete and it’s recommended to define internal tables in the Import,
Export, or Changing tabs per requirements. You refer the parameter to a
structure or database table using the LIKE specification to define an internal
table in the Tables tab. This creates an internal table with a header line. To
define an internal table in the Import, Export, or Changing tabs, use the
TYPE specification and refer the parameter to a table type.

� Exceptions: In this tab, you can maintain exceptions that can be raised in the
function modules. When an exception is raised, the function module is
exited without executing further code. At this point, the control will return
to the calling program and the system field sy-subrc will be set to the excep-
tion number assigned while calling the function module. The value of the
sy-subrc field can be checked in the calling program to implement suitable
error handling, as shown ahead at line numbers 26 to 31 in Figure 7.22.

You raise exceptions using the RAISE keyword in the source code of the func-
tion module, as shown ahead at line number 15 in Figure 7.20. To maintain
the exception, enter the name of the exception in the Exception column and
Short and Long Text in the respective columns to provide additional infor-
mation (Figure 7.19).
290

Procedures 7.4
Figure 7.19 Exceptions Tab

� Source code: In this tab, you write the ABAP code for the function module
within the FUNCTION…ENDFUNCTION block. Figure 7.20 shows code in which a
function module is importing the material number and language through the
im_matnr and im_spras parameters, respectively, and exporting the material
description in the ex_maktx export parameter. If the SELECT statement fails,
an exception is raised.

Figure 7.20 Source Code Tab
291

Modularization Techniques7
Once the source code is maintained, activate the function module by clicking the
Activate button. Make sure to select all inactive objects when the system
prompts you to do so; the function group we first created wasn’t activated sepa-
rately.

Calling Function Modules

Function modules are called using the CALL FUNCTION statement in any ABAP pro-
gram. To call a function module, you need to fill the parameter interface in the
calling program. You can use the Pattern button in the application toolbar of the
ABAP Editor to make this task easy (as shown in Figure 7.21).

Figure 7.21 Using Pattern Button to Call Function Module
292

Procedures 7.4
In the code generated by the Pattern button, simply map your actual parameters
to the corresponding formal parameters, as shown in Figure 7.22. Always ensure
that you’ve defined your actual parameters as the same type as the formal param-
eters. Passing incorrect or incompatible parameters results in runtime errors
when the function module is called.

Figure 7.22 Function Module Call

7.4.3 Methods

Methods have been a part of procedures since ABAP Objects was first introduced.
In this section, you’ll learn how to work with methods and how to call methods
into your ABAP programs. However, we’ll have an in-depth discussion of object-
oriented programming concepts and explore methods further in the next chapter.

Creating a Method

Object-oriented programming takes a different approach than procedural pro-
gramming. In procedural programming, we create procedures that take some
293

Modularization Techniques7
input, process it, and export the results. In object-oriented programming, we deal
with the objects we want to manipulate rather than the logic required to manip-
ulate them. This approach helps developers identify the objects that require
manipulation and establish a relationship between them. This process is called
data modeling.

Once an object is identified, a class is defined representing the object. Methods
are then defined as tasks that can be performed on the object. Methods are the
procedures in object-oriented programming, and variables are the attributes.

A class is like a generic representation of an object. In other words, an object
exists as an instance of a class. For example, an employee class can be defined
with methods and attributes that perform various actions, like leaves, personal
info, or compensation. In addition, an object named James can be defined as an
instance of the class employee.

You can define classes either globally in the repository or locally in an ABAP pro-
gram. Global classes are created in class pool types of programs using the Class
Builder (Transaction SE24).

Like function groups, you can’t execute class pools directly. Each class pool con-
tains the definition of one class. Objects (runtime instances) are created using the
CREATE OBJECT statement in ABAP programs. These objects execute the statements
of the class pool.

In this section, you’ll learn how to create a global class and how to define meth-
ods within it. Like the function module example, we’ll create a method that
imports a material number and language and exports a description.

Creating a Global Class

To create a global class and define the methods within, follow these steps:

1. Open the Class Builder tool using Transaction SE24.

2. In the Object type field, enter the name of the class you want to create and click
the Create button. The name of the class should be in a customer namespace,
starting with a Y or Z. We recommend starting the class name with the naming
convention ZCL_; we’ll discuss why shortly. Figure 7.23 shows the initial screen
of the Class Builder.
294

Procedures 7.4
Figure 7.23 Class Builder: Initial Screen

Class Builder is used to the create the class pool and the interface pool pro-
grams. If the first three letters of your object name are “zcl”, then Class Builder
will create a class directly. Similarly, if the first three letters are “zif”, then it will
create an interface pool. However, if you start your object name with any other
letters, the builder will prompt you to select whether you want to create a class
pool or interface pool.

Interface pools don’t contain any executable statements. Instead, they function
as containers for interface definitions. When you implement an interface in a
class, the interface definition is implicitly included in the class definition.

3. In the dialog box that appears, maintain a short description for your class, and
leave other options set to their default values; we’ll explore these other options
in the next chapter. Click Save, as shown in Figure 7.24.

Figure 7.24 Maintain Class Properties
295

Modularization Techniques7
4. This will open the form-based editor, with the Methods tab selected by
default, as shown in Figure 7.25. The editor has eight tabs that allow you to
maintain different properties. For now, use the Methods tab to create a
method; we’ll explore the other tabs in the next chapter once we discuss the
basics of object-oriented programming.

Figure 7.25 Form-Based Editor

The table control under the Methods tab has five columns:

� Method: This is where you create the name of your method.

� Level: Here, you maintain whether the method is a static or instance
method. Static methods are similar to function modules in that one instance
exists in the program when the method is called, whereas instance methods
can have multiple instances in the same program. For now, create a static
method. You can read more about instance methods in the next chapter. Use
the (F4) help to select the level.

� Visibility: In a class, attributes and methods can be set to a visibility level to
encapsulate the implementation from the outside world. There are three vis-
ibility levels:

– Public: Allows the attributes and methods to be accessed directly from any
ABAP program

– Protected: Allows the attributes and methods to be accessed only from the
methods of the same class or its subclasses

– Private: Allows the attributes and methods to be accessed only from the
methods of the same class

Setting the right visibility level at the design stage to encapsulate the imple-
mentation is a great way to reduce bugs in your applications. For now, set
296

Procedures 7.4
the visibility of the method to Public because you’ll be calling it in the pro-
gram directly. We’ll discuss encapsulation and implementation hiding in the
next chapter.

� Description: Maintain a short description for your method so other pro-
grammers can understand its purpose.

5. Click Save in the standard toolbar to save your changes, and then click the
Parameter button above the Method column (as shown in Figure 7.26) to
maintain the parameter interface for the method. Make sure the cursor is on
the method name when you click the Parameter button.

Figure 7.26 Save and Maintain Parameter Interface

6. On the parameter interface screen, as shown in Figure 7.27, you can maintain
importing, exporting, changing, and returning parameters. Importing, export-
ing, and changing parameters work like the parameters in a function module.
Returning parameters are useful for special methods called functional methods,
which just return one value, like validation logic in which the method just
returns a Boolean value: true or false. When you use returning parameters, you
can’t have any exporting parameters for the method.

7. As shown in Figure 7.27, enter the name for your parameter and use the (F4)
help to maintain the parameter type (either Importing or Exporting in this
example).

8. In the Associated Type column, enter the data element reference for each
parameter, as you did for function modules.

Click SAVE and then
Parameter push
button
297

Modularization Techniques7
9. Maintain the description for the parameter in the Description column, or
simply press (Enter) to pick the description associated with the data element
from ABAP Data Dictionary.

Figure 7.27 Maintain Parameter Interface

10. Click the Activate button in the application toolbar to activate your class and
the method.

11. Once activated, click the Code button, as shown in Figure 7.28.

Figure 7.28 Click Code Button to Maintain Method Code

12. This will open the editor, in which you can write the code between METHOD and
ENDMETHOD, as shown in Figure 7.29. You can also click the Signature button
to see the parameter interface. Click the Activate button to save and activate
your changes.

13. Click the Back button twice to go back to the main screen.

Code Button
298

Procedures 7.4
Figure 7.29 Writing Code in Method

Now that the method is implemented and maintained as a public method, it can
be called from any program.

Calling a Method

Calling a static method is similar to calling a function module; it can be called
directly using the CALL METHOD statement. We can use the Pattern button in ABAP
Editor to insert the statement, but to call an instance method, we first need to cre-
ate a reference object, instantiate it, and then access the method using the refer-
ence object. We’ll discuss instance methods in the next chapter.

Because we’ve created a static method in this example, use the Pattern button in
the ABAP Editor, as shown in Figure 7.30.

Figure 7.30 Calling Static Method

Click Signature
button to see the
parameter interface.
299

Modularization Techniques7
Select the second radio button, ABAP Objects Patterns, and then the Call

Method radio button on next screen. Enter the class name and method name and
click OK to insert the statement.

The syntax used to call a static method is CALL METHOD class_name=>method_name,
as shown in Figure 7.31.

Figure 7.31 Calling Method in ABAP Program

7.5 Inline Declarations

In SAP NetWeaver 7.4, SAP introduced inline declarations. Inline declarations
allow you to declare data objects inline when required, as opposed to declaring
them prior to their usage in an ABAP statement.

Most ABAP developers are taught to define data objects at the beginning of a pro-
gram (for global data) or at the beginning of a procedure (for local data) and avoid
using data declarations randomly throughout the code. However, many develop-
ers ignore following these rules, and declare the data object just before it is used
in an ABAP statement, as it provides more clarity on where the data object is
used. Many other programming languages, for example PHP, don't require you to
declare a data object before its use. With the introduction of inline declarations,
300

Inline Declarations 7.5
you now have the flexibility to declare data objects when you need them as
opposed to declaring them at the top of the program or a procedure.

Even though it is possible to use inline declarations with global scope (global
data), it is advised not to use inline declarations for global data objects in order to
avoid confusion. SAP recommends using inline declarations only within proce-
dures to keep the scope of the data object local.

Inline declarations are very helpful when you have a long procedure with hun-
dreds of lines of code, as it gets annoying to scroll up to the beginning of the pro-
cedure each time you want to define a new data object. Inline declarations are
made using the keyword DATA(..) within the ABAP statement's operand position
where the data object is expected in a writer position (that is, where the data is
written to a variable).

To get a better idea of how inline declarations have impacted ABAP coding, let's
look at how to use inline declarations with examples comparing the old syntax. In
the following subsections, we discuss some examples of when it’s best to use
inline declarations.

7.5.1 Assigning Values to Data Objects

In a pre-SAP NetWeaver 7.4 system, to assign a value to a data object we first
define the data object and then assign the value as shown:

DATA lv_book TYPE string.
lv_book = 'Complete ABAP'.

With SAP NetWeaver 7.4 and later, you can write the previous two lines of code
as a single statement:

DATA(lv_book) = 'Complete ABAP'.

As you can see, inline declarations reduce the number of lines by half. When we
use the statement DATA(..), the data object is automatically created when the
code is compiled, irrespective of whether the statement is executed during run-
time.

7.5.2 Using Inline Declarations with Table Work Areas

You can use inline declarations with table work areas as well. Listing 7.23 shows
the pre-SAP NetWeaver 7.4 table work area.
301

Modularization Techniques7
DATA: lt_spfli TYPE STANDARD TABLE OF SPFLI,
lw_spfli LIKE LINE OF lt_spfli.

LOOP AT lt_spfli INTO lw_spfli.
ENDLOOP.

Listing 7.23 Pre-SAP NetWeaver Table Work Area

Listing 7.24 shows the transformed SAP NetWeaver 7.4 or higher change with
the inline declaration.

DATA: lt_spfli TYPE STANDARD TABLE OF SPFLI.
LOOP AT lt_spfli INTO DATA(lw_spfli).
ENDLOOP.

Listing 7.24 SAP NetWeaver 7.4 and Higher Table Work Area

You can use inline declaration for work area with the READ statement as well:

READ TABLE lt_spfli INTO DATA(lw_spfli) INDEX 1.

7.5.3 Avoiding Helper Variables

Inline declarations are also useful when you want to avoid defining helper vari-
ables beforehand. For example, to find the number of rows in an internal table,
we use the DESCRIBE TABLE statement in conjunction with a helper variable. A pre-
SAP NetWeaver 7.4 approach would be:

DATA lv_lines TYPE i. "helper variable
DESCRIBE TABLE lt_spfli LINES lv_lines.

With inline declarations, we can avoid declaring the helper variable lv_lines in
the above statement, as shown:

DESCRIBE TABLE lt_spfli LINES DATA(lv_lines).

7.5.4 Declaring Actual Parameters

Another area where inline declarations are very useful is with the declaration of
actual parameters. For example, when calling the method of a class, the actual
parameters should match the typing of the formal parameters. To ensure the
actual parameters are of the same type as the formal parameter, we check the sig-
nature of the method and define the actual parameters using the same typing as
the formal parameters.
302

Summary 7.6
Navigating to check the signature of the method for declaring each actual param-
eter is annoying. In addition, each time the typing for the formal parameter is
changed, the typing for the actual parameter in the program should also be
changed. Inline declarations help you to avoid all of these problems as shown
below.

Listing 7.25 shows how actual parameters were used before SAP NetWeaver 7.4.

DATA: lv_a1 TYPE string,
lv_a2 TYPE string.

oref->meth(IMPORTING fp1 = lv_a1
fp2 = lv_a1).

Listing 7.25 Actual Parameters Pre-SAP NetWeaver 7.4

Listing 7.26 shows how we should use actual parameters after SAP NetWeaver
7.4.

oref->meth(IMPORTING fp1 = DATA(lv_a1)
fp2 = DATA(lv_a1)).

Listing 7.26 Post-SAP NetWeaver 7.4 Actual Parameter Usage

As you can see, inline declarations can be used in any statement in the writer
position. If used correctly, inline declarations can make your code leaner and eas-
ier to understand. As previously mentioned, use inline declarations only within
procedures to limit their scope to the local data of the procedure.

7.6 Summary

In this chapter, we discussed various modularization techniques that can be used
in ABAP programs. We began this chapter with an overview of key concepts and
elements. You then learned about processing blocks and how they’re called and
implemented. You saw that event blocks are implemented by event keywords
and called by the ABAP runtime environment.

Procedures are implemented by their own keywords and are called by specific
keywords in the code. With this understanding of processing blocks, we’re ready
to discuss their usage when we cover some of the advanced topics in ABAP in
upcoming chapters.
303

Modularization Techniques7
In the last section of this chapter, we looked how inline declarations have simpli-
fied coding for ABAP developers. We did this by comparing a pre-SAP NetWeaver
7.4 line of code to an inline declaration-oriented code, to highlight the signifi-
cance of the change.

In the next chapter, we’ll explore concepts related to object-oriented program-
ming and you’ll learn more about classes and methods.
304

Chapter 8

Some elements of ABAP programs can be designed using procedural or
object-oriented programming. This chapter explores the concepts of object-
oriented programming and their implementation in ABAP.

8 Object-Oriented ABAP

ABAP is a hybrid programming language that supports both procedural and
object-oriented programming (OOP) techniques. In this chapter, we’ll discuss the
various concepts used in OOP and the advantages it provides over procedural
programming techniques.

We’ll start with a basic overview of OOP in Section 8.1. This introduction should
help you appreciate the advantages of using OOP techniques. To understand
OOP, you’ll need to understand concepts such as encapsulation, inheritance,
polymorphism, data encapsulation, and information hiding. We’ll start examin-
ing those concepts in Section 8.2 with a look at encapsulation and the techniques
to hide implementation from the outside world.

In Section 8.3, we’ll discuss inheritance and the techniques that allow you to
leverage existing features and functionality without having to reinvent the wheel.
In Section 8.4, we’ll look at polymorphism, which allows the same object to
behave differently at runtime. We’ll conclude the chapter with a discussion of
XML in Section 8.5.

8.1 Introduction to Object-Oriented Programming

Before OOP, everything was based on functions and variables without focusing
on the object itself. With OOP, the focus is on objects, which represent real-life
entities, with functions and variables approximating the objects.

Traditional programming focused on developing programming logic to manipu-
late data—for example, a logical procedure that takes input data, processes it, and
305

Object-Oriented ABAP8
produces output. However, OOP focuses on the object being manipulated rather
than the logic to manipulate the data.

If you look around, you’ll see many real-world objects, such as your car, your
dog, your laptop, and so on. Each of these real-world objects is represented as a
software object in OOP. Real-world objects have two characteristics: states and
behaviors. For example, a car has states such as its current gear, current speed,
and so on, and behaviors such as changing gears, applying brakes, and so on. Soft-
ware objects that represent real-world objects also have states and behaviors;
software objects store their states in variables (called attributes) and contain func-
tions (called methods) to manipulate or expose the states of the object. For exam-
ple, a car object can have attributes to store the current speed, current gear, and
so on, and methods to read the current speed or change the gear.

Methods operate on the internal state of the object; that is, they can access the
attributes of their own object and serve as a mechanism for communication
between objects. Hiding this internal state of the object and routing all access to
the object through its methods is known as encapsulation. Encapsulation is a fun-
damental principle of OOP, which we’ll discuss in Section 8.2.

Sometimes, an object may share many similarities with other objects while hav-
ing specific features of its own. For example, a mountain bike may have all the
features of a road bike plus certain features unique only to mountain bikes. The
concept of inheritance helps us leverage existing code and avoid code redundancy
while extending functionality. We’ll discuss inheritance in Section 8.3.

Identifying the states and behaviors of real-world objects is the first step to start
thinking in terms of OOP. Before exploring OOP further, let’s consider a simple
procedural programming application that calculates a person’s body mass index
(BMI). We’ll then look at how this application can be designed using OOP. For
this example, we can create a function module with three interface parameters:
height, weight, and BMI. We can pass the person’s height and weight to the func-
tion and receive the calculated BMI as a result, as shown in Listing 8.1.

FUNCTION ZCALCULATE_BMI.
*"---
""Local Interface:
*" IMPORTING
*" REFERENCE(HEIGHT) TYPE I
*" REFERENCE(WEIGHT) TYPE I
*" EXPORTING
306

Introduction to Object-Oriented Programming 8.1
*" REFERENCE(BMI) TYPE I
BMI = WEIGHT / HEIGHT.
ENDFUNCTION.

Listing 8.1 Example Function Module to Calculate BMI

Listing 8.2 shows the call to the function module zcalculate_bmi that we defined
in Listing 8.1.

REPORT ZCA_BMI.
DATA : v_bmi TYPE I.
PARAMETERS: p_height TYPE I,

P_weight TYPE I.

CALL FUNCTION 'ZCALCULATE_BMI'
EXPORTING

height = p_height
weight = p_weight

IMPORTING
bmi = v_bmi.

WRITE: 'Your BMI is', v_bmi.

Listing 8.2 Program to Calculate BMI

When the function module is called in the program, the whole function group to
which this function module belongs is loaded into the memory (internal session)
the main program is assigned to. Each subsequent call to this function module in
the program will access the existing instance in the memory as opposed to load-
ing a new instance.

When a function module is called in a program, one instance of it is created in the
internal session in which the program runs, and each subsequent call to this func-
tion module from the program will point to the existing instance that was previ-
ously loaded into the internal session. You can’t have multiple instances of the
same function module within the same internal session.

If you call the zcalculate_bmi function module in the program to calculate the
BMI of multiple persons, there’s no way for the function module to be aware of
the person for which the BMI is calculated. You can define a global variable in the
function group to store a person’s name so that other function modules of the
function group can use this information, but it’s easy to lose track of all these vari-
ables in the code—and even then, this design can only support one person at a
time in the application.
307

Object-Oriented ABAP8
The focus of the function module here is to take a certain input and process it to
produce a result. OOP shifts the focus to the object. In this example, we define an
object that represents a person and then define attributes and methods to store
and process the person’s BMI.

In this section, we’ll look at the defining elements of OOP, including classes,
methods, instances and static components, and events.

8.1.1 Classes

Objects encapsulate data and create functions to manipulate that data. The charac-
teristics (called attributes) and functions (called methods) of an object are put into
one package. The definition of this package is called a class. To use objects in a
program, classes must be defined, because an object exists as an instance of a
class.

A class can be defined as shown in Listing 8.3.

REPORT ZCA_BMI.
CLASS CL_PERSON DEFINITION.
PUBLIC SECTION.

TYPES ty_packed TYPE p LENGTH 4 DECIMALS 2.
METHODS set_height IMPORTING im_height TYPE ty_packed.
METHODS set_weight IMPORTING im_weight TYPE ty_packed.
METHODS set_bmi.
METHODS get_bmi RETURNING VALUE(r_bmi) TYPE ty_packed.
PRIVATE SECTION.
DATA : bmi TYPE I,

height TYPE I,
weight TYPE I.

ENDCLASS.
CLASS CL_PERSON IMPLEMENTATION.
METHOD set_height.

height = im_height.
ENDMETHOD.
METHOD set_weight.
weight = im_weight.

ENDMETHOD.
METHOD set_bmi.
bmi = height / weight.
ENDMETHOD.
METHOD get_bmi.
r_bmi = bmi.

ENDMETHOD.
ENDCLASS.
308

Introduction to Object-Oriented Programming 8.1
DATA john TYPE REF TO cl_person.
DATA mark TYPE REF TO cl_person.
START-OF-SELECTION.
CREATE OBJECT john.

john->set_height(exporting im_height = 165).
john->set_weight(exporting im_weight = 50).
john->set_bmi().
WRITE : / 'John’s BMI is', john->get_bmi().

CREATE OBJECT mark.

mark->set_height(exporting im_height = 175).
mark->set_weight(exporting im_weight = 80).
mark->set_bmi().
WRITE : / 'Mark’s BMI is', mark->get_bmi().

IF john->get_bmi() GT mark->get_bmi().
WRITE : / 'John is fatter than Mark'.
ELSE.
WRITE : / 'Mark is fatter than John'.
ENDIF.

Listing 8.3 Using Objects

A class consists of two sections: a definition section and an implementation sec-
tion. In the definition section, we define the components of the class, such as attri-
butes, methods, and events. The attributes of a class store the state of an object,
and the methods implement the logic to manipulate the behavior of an object by
accessing the attributes.

Different events can be defined for the class, which can be raised during the run-
time of the object. Methods can be called directly or can respond to events
defined in the class. In the implementation section, we implement the methods to
manipulate the behavior of an object or to respond to the events of the class.

Each class component can belong to a specific visibility section, such as public,
protected, or private. The visibility section enables data encapsulation by putting
restrictions on how the class component can be accessed. For example, a compo-
nent belonging to the public visibility section can be accessed by external objects
and programs without any restrictions, whereas a component belonging to the
private visibility section can be accessed only by the methods of the same class.
309

Object-Oriented ABAP8
Components belonging to the protected section can be accessed by the methods
of the same class and its subclasses. A subclass inherits its components from a par-
ent class. Once a class inherits from a parent class, it can access the public and
protected components of the parent class. We’ll learn more about encapsulation
in Section 8.2.

In Listing 8.3, we defined the CL_PERSON class consisting of HEIGHT, WEIGHT and
BMI attributes in the private visibility section. Because these attributes are private,
they can’t be accessed by external objects or programs directly. To manipulate
these attributes, we defined setter and getter methods in the public section of the
class. Setter methods allow you to set the value of an attribute, and getter methods
allow you to read the value of an attribute. Defining the attributes in the private
section and providing setter and getter methods to manipulate the attributes
allows for more control, such as validating the data before changing the state of
the object.

For example, we can avoid an invalid value being set for a person’s height by val-
idating the input in the SET_HEIGHT method. In the program, we defined two
object reference variables called JOHN and MARK referring to the CL_PERSON class. An
object exists as an instance of a class, and each class can have multiple instances.
The object reference variable initially contains an empty value until the object is
instantiated using the CREATE OBJECT statement. Once the object is instantiated,
the object reference variable contains the reference (pointer) to the object in
memory, and the object is accessed using the object reference variable. The object
reference variables are also called reference objects and are defined using the TYPE
REF TO addition.

Unlike in function modules, here each reference object occupies its own memory
space and multiple instances of the class can be defined in the program, with each
instance working with its own data.

In this section, we’ll discuss local and global classes, class parts and components,
and the use of visibility in classes.

Local and Global Classes

As previously discussed, classes can be defined locally in an ABAP program or
globally in the system using Class Builder (Transaction SE24). Local classes can be
used only within the program in which they’re defined, whereas global classes can
310

Introduction to Object-Oriented Programming 8.1
be used in any ABAP program. Irrespective of whether the class is defined locally
or globally, the syntax to define the class remains the same, as shown in Listing
8.3. Apart from visibility, there is no difference between a local class and a global
class. When a class is used in an ABAP program, the system first searches if the
class exists locally. If the class isn’t defined locally, then the system looks for a
global class.

When defining global classes, we can use the form-based editor of the Class
Builder tool to easily define the components of the class and implement the meth-
ods without getting into the nitty gritty of the syntax.

Wherever applicable, we will show you the steps to define classes both locally
and globally throughout this chapter. Define local classes if the scope of the object
is limited to the program and the object may be irrelevant to other programs, but
if you plan to use an object in multiple programs, we recommend defining the
class globally in Class Builder.

Class Parts and Components

To break down the code in Listing 8.3 further, a class in ABAP has two sections:

� Definition section
In the definition section, various components of a class, such as attributes,
events, and methods, are defined. For example, in Listing 8.3, we defined the
attributes and the methods of the class in the definition section of the class.
When defining the methods, we also defined the parameter interface for the
methods.

For the sake of simplicity, we haven’t defined any events in Listing 8.3, but if
you want to trigger various events to which the methods of the class can
respond, you can do so in the definition part of the class. The methods that
respond to events are called event handler methods. We’ll learn more about
defining events and implementing suitable event handler methods in Section
8.1.4.

� Implementation section
The implementation section of the class is where we implement the methods
defined in the definition section. The methods are implemented between the
METHOD and ENDMETHOD statements, and each method defined in the definition
part must have an implementation in the implementation part of the class.
311

Object-Oriented ABAP8
There are three important types of components available in a class:

� Methods
Methods are used to change the state of an object and manipulate its behavior.
For example, in Listing 8.3, different methods were implemented in the CL_
PERSON class to set the height, weight, and BMI of the person. Methods can also
be defined as event handler methods that respond to specific events during the
runtime of the object. By using setter and getter methods, we can ensure that
all attributes of the class are always accessed through its methods, thus guaran-
teeing data consistency.

� Attributes
Attributes are the internal data fields of a class and store the state of an object.
We can change the state of an object by changing the contents of an attribute.

� Events
Events are defined in the definition area of a class and can be raised during the
runtime of the object. A suitable event handler method is maintained in the
implementation part of the class and is triggered when the corresponding event
is raised. Events allow you to call specific methods dynamically during the run-
time of the object.

For example, if you want to perform specific tasks when the user double-clicks
an output line, you can maintain a DOUBLE_CLICK event, which can be raised on
that event. The registered event handler method will be called dynamically
when the event is raised.

The components of a class can be categorized as follows:

� Static components
Static components can be accessed directly using the class component selector
=>. Static components behave similarly to function modules in that only one
instance of a static component exists in the program.

� Instance components
Instance components can’t be accessed directly using the class name. To access
an instance component, you need to define a reference object in the program
using TYPE REF TO (for example, the objects John and Mark in Listing 8.3) and
then access its attributes and methods through the reference object using the
object component selector ->.
312

Introduction to Object-Oriented Programming 8.1
Before the attributes and methods can be accessed through the reference
object, the reference object needs to be instantiated using the CREATE OBJECT
statement, which creates an instance of the class (an object described by the
class) in the program.

We’ll discuss static and instance components further in Section 8.1.3.

Visibility

The components of a class can have different visibility sections, such as public,
protected, and private. The visibility is set in the definition part of the class. Com-
ponent visibility allows for data encapsulation and hiding the implementation
from the external world.

Encapsulation is an important concept in OOP, and we’ll discuss visibility further
in Section 8.2.

8.1.2 Methods

A method can access other components of the same object. To access the attributes
and methods of the same class, a special self-reference variable, me, is used. Even
though the components of the class can be accessed directly from within the
methods of the same class, for better readability it’s recommended to use the self-
reference variable me when accessing the same class components. You can access
both static and instance components from within an instance method, whereas
you only can access static components from within a static method.

To call a method of the class, we can either use the CALL METHOD statement (e.g.,
CALL METHOD John->get_bmi) or use the object component selector and parenthe-
ses directly (e.g., john->get_bmi()).

A method can have importing, exporting, changing, and returning parameters.
The importing, exporting, and changing parameters behave similarly to the pa-
rameters we define in function modules. For example, data is imported through
importing parameters and exported through exporting parameters, while chang-
ing parameters can be used for both importing and exporting.

The methods that use returning parameters are called functional methods. Prior to
SAP NetWeaver 7.4, functional methods could only have one returning parameter
and no exporting parameters. However, with SAP NetWeaver 7.4, this restriction
313

Object-Oriented ABAP8
is lifted. Functional methods are typically used when a result is returned to the
caller program that can be directly assigned to a data object in the program.

For example, with the statement v_bmi = oref->get_bmi(), v_bmi is the data
object, oref is the reference object, and get_bmi is a method with a returning
parameter the value of which will be assigned to the v_bmi variable.

Inheritance

Often, many objects are different, but similar enough to be put into a single class.
For example, animals and humans have heartbeats, so a class may have a get_
heart_beat method. However, dogs have tail lengths, so should this class also
have a get_tail_length method? No, we can define another class as a child class
(called a subclass) of the parent class. This subclass will have all the features of the
parent class plus some additional features. This allows you to extend the function-
ality of your applications while leveraging the existing code.

Let’s look at an example. Objects are designed to closely represent real-life
objects—such as a printer. A printer may have an external interface, including a
paper tray, keypad, and so on, and the basic functionality of the printer is to cre-
ate a printout. OOP objects can be designed to represent that setup.

Therefore, let’s create a class called printer with a method called print, as shown
in Listing 8.4.

CLASS PRINTER DEFINITION.
PUBLIC SECTION.
METHODS print.
ENDCLASS.
CLASS PRINTER IMPLEMENTATION.
METHOD print.
WRITE 'document printed'.
ENDMETHOD.
ENDCLASS.

Listing 8.4 Parent Class for Printer

This is a basic printer, but what if we want to extend its functionality? For exam-
ple, if we have a new printer model that has a counter feature to keep track of the
number of copies printed, do we have to build all of the printer logic from
scratch? No, we can define a subclass, as shown in Listing 8.5, that inherits all the
functionality of the basic printer and extends it.
314

Introduction to Object-Oriented Programming 8.1
CLASS PRINTER_WITH_COUNTER DEFINITION INHERITING FROM PRINTER.
PUBLIC SECTION.
DATA counter TYPE I.
METHODS print REDEFINITION.
ENDCLASS.
CLASS PRINTER_WITH_COUNTER IMPLEMENTATION.
METHOD print.
Counter = counter + 1.
CALL METHOD SUPER->PRINT.
ENDMETHOD.
ENDCLASS.

Listing 8.5 Subclass Implementation

In Listing 8.5, the class PRINTER_WITH_COUNTER is inherited from the class printer.
Here, printer is the superclass (parent class) and PRINTER_WITH_COUNTER is the
subclass (child class). This process of a subclass inheriting the traits of a superclass
is called inheritance in OOP.

Notice the keyword INHERITING FROM used in the definition of the class PRINTER_
WITH_COUNTER. The subclass inherits all the components of the parent class. It will,
by default, have all the attributes and methods defined in the parent class. If
required, the methods inherited in the subclass can be redefined to add function-
ality.

In Listing 8.5, the print method in the PRINTER_WITH_COUNTER subclass is rede-
fined to increment the counter attribute and calls the print method of the parent
class. This effectively extends the functionality of the method while leveraging
the existing functionality provided by the method of the parent class. Because the
same print method behaves differently in the superclass and subclass, it leads to
some interesting behavior called polymorphism (meaning having many forms),
which we’ll discuss in Section 8.4.

Now we have a printer with a counter, and we know that the counter increments
by one every time a document is printed. However, what will its initial value be?
How do we ensure that the counter always starts from one or any other initial
value? These details are sorted out by defining a constructor for the class.

There are two types of constructors:

� Instance constructor
An instance constructor is a special method called when the object is instanti-
ated. The instance constructor is called for each object when it is instantiated.
315

Object-Oriented ABAP8
� Class constructor
The class constructor is special method called just once for the whole class in one
internal mode. A class constructor can have a maximum of one instance and
one static constructor. A static constructor can’t have any parameters, whereas
the instance constructor can have only importing parameters.

By defining importing parameters for the instance constructor, we can ensure
that the object is always initialized before any of its attributes or methods are
accessed.

Listing 8.6 shows the implementation of the constructor.

CLASS PRINTER_WITH_COUNTER DEFINITION INHERITING FROM PRINTER.
PUBLIC SECTION.
DATA counter TYPE I.
METHODS constructor IMPORTING count TYPE I.
METHODS print REDEFINITION.
ENDCLASS.

CLASS PRINTER_WITH_COUNTER IMPLEMENTATION.
METHOD constructor.
CALL METHOD super->constructor.
counter = count.
ENDMETHOD.
METHOD print.
counter = counter + 1.
CALL METHOD SUPER->PRINT.
ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
DATA oref TYPE REF TO PRINTER_WITH_COUNTER.
CREATE OBJECT oref
EXPORTING
count = 0.

Listing 8.6 Class with Constructor

In Listing 8.6, the constructor method is defined in the definition part of the
PRINTER_WITH_COUNTER class with one importing parameter, count. Because the
PRINTER_WITH_COUNTER class is a subclass of the printer class, the superclass con-
structor must be called first in the implementation of the constructor method,
even if there’s no constructor defined in the superclass. This ensures that all of
the superclass components in the inheritance tree are initialized properly. If a
constructor is defined in the superclass, it won’t be inherited by the subclass. This
316

Introduction to Object-Oriented Programming 8.1
allows each class in the inheritance tree to have its own constructor in order to
initialize its attributes per requirements.

In the example in Listing 8.6, the count parameter of the constructor is assigned
a value when instantiating the reference object oref. The syntax checker will give
an error if the constructor’s mandatory parameters aren’t passed while instantiat-
ing the reference object. This ensures that the object is always instantiated prop-
erly.

Now, say we have a more advanced printer model that can print multiple copies
along with the basic features provided so far. To create this printer, we’ll inherit
the PRINTER_WITH_COUNTER class and add additional functionality, as shown in Lis-
ting 8.7.

CLASS MULTI_COPY_PRINTER DEFINITION INHERITING FROM PRINTER_WITH_
COUNTER.
PUBLIC SECTION.
DATA copies TYPE I.
METHODS set_copies IMPORTING copies TYPE I.
METHODS print REDEFINITION.
ENDCLASS.

CLASS MULTI_COPY_PRINTER IMPLEMENTATION.
METHOD set_copies.
Me->copies = copies.
ENDMETHOD.
METHOD print.
Do copies TIMES.
CALL METHOD SUPER->Print.
ENDDO.
ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
DATA oref TYPE REF TO MULTI_COPY_PRINTER.
CREATE OBJECT oref
EXPORTING
count = 0.
oref->set_copies(5).
oref->print().

Listing 8.7 Class Extended to Print Multiple Copies

In Listing 8.7, we defined the MULTI_COPY_PRINTER class, inheriting from PRINT-
ER_WITH_COUNTER. In the MULTI_COPY_PRINTER class, we defined a method called
317

Object-Oriented ABAP8
set_copies that receives the copies importing parameter and assigns the value to
the copies attribute. We redefined the print method to print multiple copies by
calling the method in the superclass in a DO loop.

It’s good practice not to allow direct access to the class attributes and to use meth-
ods to set or get attribute values. This gives us more control while manipulating
attributes. The methods that set values are called setter methods and the methods
that are used to get values are called getter methods. Setter methods are prefixed
with set_ and getter methods are prefixed with get_.

Encapsulation

Now, say our printer is an industrial printer and we want to set a restriction for
the minimum number of prints. For example, the printer should only take a
request if a minimum of fifty copies is requested. We implement this restriction
by writing an IF condition in the set_copies method, as shown in Listing 8.8.

METHOD set_copies.
IF copies GE 50.
Me->copies = copies.
ELSE.
*Raise exception
ENDIF.
ENDMETHOD.

Listing 8.8 Restricting Copies in set_copies Method

The code in Listing 8.8 adds the restriction to set the copies attribute only if the
value is greater than or equal to 50. However, there’s one loophole in this imple-
mentation: Because the copies attribute is defined with its visibility as public,
anyone can directly access this attribute from outside the class and set a value,
thus bypassing the check in the set_copies method, as shown in Listing 8.9.

DATA oref TYPE REF TO MULTI_COPY_PRINTER.
CREATE OBJECT oref
EXPORTING
count = 0.
oref->copies = 5.
oref->print().

Listing 8.9 Bypassing set_copies Method to Set Number of Copies

As you can see in Listing 8.9, we can directly access the copies attribute to set the
number of copies. This is where encapsulation and implementation hiding plays an
318

Introduction to Object-Oriented Programming 8.1
important role. By defining clear boundaries on what can be accessed from out-
side the class and what should be restricted, we not only make it easy for devel-
opers to use our classes, because they only need to know the public interface
(components that are publicly accessible) of our class, but also ensure that inad-
vertent bugs don’t creep into our software implementation.

Encapsulation also gives you the freedom to change the private sections of the
class according to changing requirements without having to worry about depen-
dencies. For example, if you change the interface of a method in the public visi-
bility section, all the programs that call this method will be affected; however,
because no programs can directly access the private section of a class, you can
change private sections freely without having to worry about program dependen-
cies.

In this example, we can make the attribute copies private so that it can be ac-
cessed only from the methods of the same class, as shown in Listing 8.10.

CLASS MULTI_COPY_PRINTER DEFINITION INHERITING FROM PRINTER_WITH_
COUNTER.
PUBLIC SECTION.
METHODS set_copies IMPORTING copies TYPE I.
METHODS print REDEFINITION.
PRIVATE SECTION.
DATA copies TYPE I.
ENDCLASS.

Listing 8.10 Making Attribute Private

As you can see, we made our printer more and more complex without having to
duplicate any code. Also, as the printer added advanced capabilities, it still per-
formed the basic task of printing a document. Therefore, a user using the
advanced model of the printer need not be aware of its advanced features to per-
form the basic task of printing a document. This is similar to a car with advanced
features like cruise control. The driver need not know how to set cruise control to
drive the car, but he can learn to set cruise control to take advantage of it.

In addition, if the print method in the printer superclass is enhanced, then all
the enhancements will be available by default to all the subclasses without having
to change any of them.
319

Object-Oriented ABAP8
8.1.3 Instance and Static Components

A class can contain both instance and static components. An instance attribute
can have multiple instances in the program, whereas a static attribute has only
one instance. An instance component is accessed through a reference object using
the object component selector ->, whereas a static component is accessed using
the class component selector =>. Static components are preceded by the CLASS
keyword during the definition.

Listing 8.11 shows the definition of both instance and static components. For
simplicity, we’re accessing the attributes of the class directly in this example, but
in real-world code direct access to attributes should always be avoided by using
setter and getter methods.

CLASS CL_PERSON DEFINITION.
PUBLIC SECTION.
CLASS-DATA height TYPE I. "Static attribute
DATA weight TYPE I. "Instance attribute
METHODS get_bmi EXPORTING bmi TYPE I. "Instance method
METHODS constructor "Instance constructor

IMPORTING name TYPE CHAR20.
CLASS-METHODS set_height "Static Method
IMPORTING height TYPE I.
CLASS-METHODS class_constructor. "Static Constructor

ENDCLASS.

CLASS CL_PERSON IMPLEMENTATION.
METHOD class_constructor.
ENDMETHOD.
METHOD constructor.
ENDMETHOD.
METHOD get_bmi.
ENDMETHOD.
METHOD set_height.
ENDMETHOD.

ENDCLASS.
DATA oref TYPE REF TO cl_person. "Defining reference object
DATA v_bmi TYPE I.
START-OF-SELECTION.
*Accessing static attributes and methods using the selector "=>"
*with class reference
cl_person=>height = 165.
CALL METHOD cl_person=>set_height
EXPORTING
height = 165.

*Instantiating the reference object and accessing the instance
320

Introduction to Object-Oriented Programming 8.1
*attributes and methods using the selector "->" with object
*reference.
CREATE OBJECT oref
EXPORTING
name = 'JOHN'.

oref->weight = 50.
CALL METHOD oref->get_bmi
IMPORTING

bmi = v_bmi.

Listing 8.11 Instance and Static Class Components

As shown, static components are defined with the preceding keyword CLASS (e.g.,
CLASS-DATA, CLASS-METHODS) and accessed using the => selector with the class
name reference directly (e.g., class_name=>component). Static methods are some-
what similar to function modules in that only one instance exists in the program
memory and each subsequent call to the method points to the same instance,
whereas each reference object works with its own instance components.

A static constructor can’t have any parameter interface, whereas an instance con-
structor can have importing parameters. A static constructor is executed only
once on the first access of any of the class components, including instantiation of
any reference object. An instance constructor is executed each time a reference
object is instantiated.

Table 8.1 compares and contrasts instance and static components.

Instance Component Static Component

Instance components are accessed through
a reference object with the -> selector.

Static components can be accessed directly
through the class name reference with the
=> selector even before a reference object
is instantiated. They can also be accessed
using a reference object.

Multiple instances can exist. Only single instance exists.

Within an instance method, both static and
instance attributes can be accessed.

Within a static method, only static attri-
butes or static methods can be accessed.

To access the instance components of a
class, a reference object needs to be
defined in the program and instantiated
using CREATE OBJECT statement.

Static components can be accessed directly
from program using a class reference (simi-
lar to calling a function module directly)
without the need for a reference object.

Table 8.1 Differences between Instance and Static Components
321

Object-Oriented ABAP8
8.1.4 Events

Events can be defined in a class to be triggered from a method (called triggers)
when a specific event takes place during the runtime of the object; specific meth-
ods (called event handlers) react to these events. For example, we can define an
event called double_click in the class to be triggered in one of the methods when
the user double-clicks the report output. The on_double_click method can be
defined as an event handler for this event so that it’s executed when the double_
click event is triggered from the trigger method.

To trigger an event, the class must have the events defined in the definition part
of the code and triggered in one of its methods. Instance events are defined using
the EVENTS keyword and static events are defined using the CLASS-EVENTS key-
word. A static event can be triggered from both static and instance methods,
whereas, an instance event can only be triggered from an instance method.

Events can have exporting parameters that are passed to the event handler
method when the event is triggered. To trigger an event, the statement RAISE
EVENT event_name is used in one of the methods of the class. The EXPORTING addi-
tion is used with the RAISE EVENT keyword to pass the event parameters to the
event handler method.

Event handlers are special methods that are defined to react to the event. Event
handler methods are defined in the definition part of the class as methods for spe-
cific events. The syntax to define an event handler method is METHODS method_
name FOR EVENT event_name OF class_name, where method_name is the name of the
event handler method, event_name is the name of the event, and class_name is
the name of the class in which the event is defined. If the event has exporting

An instance constructor only can have
importing parameters and is executed each
time a reference object is instantiated.

A static constructor can’t have any parame-
ter interface and is executed only once per
program session. However, it’s executed
before the instance constructor, if the class
has both static and instance constructors,
and when the first reference object is
instantiated, provided it isn’t loaded previ-
ously.

Instance Component Static Component

Table 8.1 Differences between Instance and Static Components (Cont.)
322

Introduction to Object-Oriented Programming 8.1
parameters defined, then the event handler must import all non-optional param-
eters. All instance events have an implicit sender parameter that can be imported
in the event handler. The sender parameter contains a reference to the sender
object in which the event is defined. To define a static method as an event han-
dler, use the CLASS-METHODS keyword.

To allow an event handler method to react to an event, we must determine at run-
time the trigger to which it is to react. We can do that by using the SET HANDLER
statement. The SET HANDLER statement registers the event handler methods with
the event triggers.

Instance events can be registered to a specific instance or to all instances, whereas
static events are registered to the whole class. The syntax to use SET HANDLER state-
ment for instance events is as follows:

SET HANDLER event_handler_method FOR oref.

or:

SET HANDLER event_handler_method FOR ALL INSTANCES.

The syntax to use the SET HANDLER statement for static events is as follows:

SET HANDLER event_handler_method.

Here, event_handler_method is an instance or static method that is defined as an
event handler for an event. The event handler method will not be triggered if the
handler is not registered using the SET HANDLER statement.

Listing 8.12 shows an example to define and register events in a class. This exam-
ple defines the cl_events_demo class with two events, double_click and right_
click. Here, double_click is defined as an instance event and right_click is
defined as a static event. The double_click event also has a couple of mandatory
exporting parameters (column and row) defined. We’ve also defined a trigger_
event method to act as a trigger method. This is defined similarly to any regular
method. The on_double_click and on_right_click methods are defined as event
handler methods for the double_click and right_click events, respectively.

CLASS cl_events_demo DEFINITION.
PUBLIC SECTION.
EVENTS double_click
EXPORTING
VALUE(column) TYPE i
VALUE(row) TYPE i .

CLASS-EVENTS right_click .
323

Object-Oriented ABAP8
METHODS trigger_event.
METHODS on_double_click FOR EVENT double_click OF cl_events_demo
IMPORTING

column
row
sender.

METHODS on_right_click FOR EVENT right_click OF cl_events_demo.
ENDCLASS.
CLASS cl_events_demo IMPLEMENTATION.

METHOD trigger_event.
RAISE EVENT double_click

EXPORTING
column = 4
row = 5.

RAISE EVENT right_click.
ENDMETHOD.
METHOD on_double_click.
WRITE: / 'Double click event triggered at column', column,

'and row', row.
ENDMETHOD.
METHOD on_right_click.
WRITE: / 'Right click event triggered’.

ENDMETHOD.
ENDCLASS.
DATA oref TYPE REF TO cl_events_demo.
START-OF-SELECTION.

CREATE OBJECT oref.
SET HANDLER oref->on_double_click FOR oref. “Instance event
SET HANDLER oref->on_right_click. “Handler for Static event
CALL METHOD oref->trigger_event().

Listing 8.12 Defining Events

In the implementation part of the class, the trigger_event method uses the RAISE
EVENT statement to trigger the double_click and right_click events. Because the
double_click event contains defined exporting parameters, this method exports
certain values to the event handler method. The on_double_click method
imports the values that were exported by the trigger method. In the program
code, the events are registered using the SET HANDLER statement, and the code in
the event handler methods is executed when the trigger_event method is called.

In this section, we introduced the basics of OOP, including classes, methods,
instance and static components, and event. Working with objects simplifies the
implementation of functionality. OOP concepts provide many advantages com-
pared to procedural programming techniques. Programs developed using OOP
techniques are easy to maintain and, if designed well, should be easy to enhance.
324

Encapsulation 8.2
Now that you’ve been introduced to the basics of OOP, in the next few sections
we’ll discuss some of the characteristics of this kind of programming, beginning
with the process of encapsulation.

8.2 Encapsulation

In procedural programming, developers generally use a technique called func-
tional decomposition for application development design. In functional decompo-
sition, the series of steps that the application needs to perform are identified from
the functional requirements, and procedures are developed for each step. In
other words, complex business requirements are broken down into smaller, easy
to understand steps. Once all the procedures are in place, they are composed into
the main program, which calls the procedures in a fixed order and passes the rel-
evant data to each procedure.

For example, if you want to develop software for an ATM machine, then the
requirements can be broken down into smaller steps, such as reading a card,
verifying its PIN, dispensing cash, and so on. Modules can then be developed sep-
arately for each of these steps, such as one module to read the card, another mod-
ule to validate the PIN, another module to verify the account balance and dis-
pense cash, and so on. These modules can then be combined to form the overall
application. By breaking down the requirements into smaller steps that are easy
to understand and maintain, this approach makes it easy to develop small- to
medium-sized applications.

However, because procedures (function modules or subroutines) don’t have their
own data environment, they’re dependent on the main program to supply the
data each time a procedure is called, or they must work with the global data of the
program. This makes the procedures tightly coupled with the main program. As
the application branches out and becomes more and more complex, it may lead to
maintenance headaches.

For example, if many procedures are manipulating the global data, we can’t be
sure if the application will behave in a predictable way if the sequence of proce-
dure calls is changed for any future enhancements. By depending entirely on the
main program to supply the required data each time the procedure is called, the
interface will soon be cluttered, and it makes the procedure too restrictive to
work in other environments. The developer of the procedure depends too much
325

Object-Oriented ABAP8
on the external application, over which he has no control. It also becomes diffi-
cult to develop loosely coupled procedures that can work seamlessly for future
enhancements. In addition, once the procedure is developed, the developer can’t
change the parameter interface for future enhancements without breaking exist-
ing applications that call the procedure.

In OOP, because objects have their own data environment, they can be made
smart enough to make their own decisions without too much dependency on
external applications.

Encapsulation in OOP allows you to define boundaries and hide implementation
from the external world. The term encapsulation means that the attributes (data)
and the methods (functions) that manipulate the data are enclosed in a capsule
(object). This means that we can set a boundary between what can be accessed
from within the object and from the outside world. This boundary helps to
address many of the issues mentioned previously regarding procedures.

In this section, we’ll discuss some of the characteristics of encapsulation in OOP.
We’ll look at component visibility, the different visibility sections, friendship
between classes, and implementation hiding.

8.2.1 Component Visibility

As shown back in Listing 8.7, the component of an object can be accessed from an
external program or from a subclass or from within the class. The access restriction
on a component of a class is what defines its visibility. In other words, we can
decide if the component of a class can be accessed only from within the class or its
subclasses or from external programs.

Back in Listing 8.10, we defined sections (PUBLIC SECTION, PRIVATE SECTION)
under which components are declared. These sections are called visibility sections.
There are three visibility sections: public, protected, and private.

The visibility section identifies how the component of a class can be accessed. The
following list defines the different visibility sections:

� Public section
The components in the public section can be accessed from within the class and
outside of the class. These components form the public interface of the class.
326

Encapsulation 8.2
� Protected section
The components in the protected section can be accessed only from within the
class and its subclasses (child classes). These components can’t be accessed from
external programs.

� Private section
The components in the private section can be accessed only from within the
class and its friend classes (we’ll discuss friend classes in Section 8.2.2).

Listing 8.13 shows an example of the visibility sections.

CLASS cl_encapsulation_demo DEFINITION.
PUBLIC SECTION.
METHODS print.
METHODS set_copies IMPORTING copies TYPE i.
METHODS get_counter EXPORTING counter TYPE i.

PROTECTED SECTION.
METHODS reset_counter.

PRIVATE SECTION.
DATA copies TYPE i.
DATA counter TYPE i.
METHODS reset_copies.

ENDCLASS.
CLASS cl_encapsulation_demo IMPLEMENTATION.

METHOD print.
"Business logic goes here

ENDMETHOD.
METHOD set_copies.
"Business logic goes here
me->copies = copies.

ENDMETHOD.
METHOD get_counter.
"Business logic goes here
counter = me->counter.

ENDMETHOD.
METHOD reset_counter.
"Business logic goes here
CLEAR counter.

ENDMETHOD.
METHOD reset_copies.
"Business logic goes here
CLEAR copies.

ENDMETHOD.
ENDCLASS.
CLASS cl_encapsulation_sub_demo DEFINITION INHERITING FROM cl_
encapsulation_demo.
PROTECTED SECTION.
METHODS reset_counter REDEFINITION.
327

Object-Oriented ABAP8
ENDCLASS.
CLASS cl_encapsulation_sub_demo IMPLEMENTATION.
METHOD reset_counter.
super->reset_counter().

* super->reset_copies(). "gives syntax error
ENDMETHOD.

ENDCLASS.

Listing 8.13 Implementing Visibility Sections

The code in Listing 8.13 implements the cl_encapsulation_demo class, and the
cl_encapsulation_sub_demo class is defined as a subclass of cl_encapsulation_
demo. The code shows the syntax to implement visibility sections. Notice the
order of implementation of the visibility sections: First, public components are
defined, then protected components, and finally private components. This decla-
ration order can’t be changed.

In Listing 8.13, the cl_encapsulation_sub_demo subclass can access only the pub-
lic and protected components of its superclass, cl_encapsulation_demo. If the
cl_encapsulation_sub_demo class tries to access the private components of its
superclass, the attempt will result in a syntax error. Note that when redefining a
method of the superclass in a subclass, the visibility section of the method can’t
be changed. For example, if the method is defined in the protected section of the
superclass, then the method should be redefined in the protected section of the
subclass.

Figure 8.1 shows the visibility set in Class Builder for global classes.

Figure 8.1 Visibility Using Class Builder

With visibility sections, clear boundaries can be defined so that only the required
components of an object are exposed to the outside world. This arrangement
328

Encapsulation 8.2
provides greater flexibility in designing the objects because the private and pro-
tected components of a class can be changed per changing business requirements
without affecting the external programs, which only need to worry about the
public interface.

By keeping object attributes private and implementing setter and getter methods
in the class, we have more control and security over the object’s data; any change
to the attributes should be requested through the setter methods, and any request
for information should be requested through getter methods. This arrangement
allows for better abstraction and prevents undesired data corruption scenarios,
which in turn helps objects perform in a predictable way.

For example, by implementing a setter method to set the value of an attribute, we
can ensure that all the business logic is applied before the value is changed. This
level of certainty isn’t possible if the attribute is directly accessed by an external
program to assign a value over which we have no control.

8.2.2 Friends

A class can declare another class as its friend to allow access to all of its compo-
nents, including its private and protected components. A friend class is any class
that is explicitly defined as a friend in the class definition. The friendship relation
is not reciprocal; for example, if class c1 declares class c2 as a friend, then the
methods of the class c2 can access the private components of class c1, but the
methods of class c1 can’t access the private components of class c2.

Listing 8.14 expands the code from Listing 8.13 to show the implementation of
friend classes.

CLASS c1 DEFINITION DEFERRED.
CLASS c2 DEFINITION DEFERRED.
CLASS cl_encapsulation_demo DEFINITION FRIENDS c1 c2.
PUBLIC SECTION.
METHODS print.
METHODS set_copies IMPORTING copies TYPE i.
METHODS get_counter EXPORTING counter TYPE i.

PROTECTED SECTION.
METHODS reset_counter.

PRIVATE SECTION.
DATA copies TYPE i.
DATA counter TYPE i.
METHODS reset_copies.

ENDCLASS.
329

Object-Oriented ABAP8
CLASS cl_encapsulation_demo IMPLEMENTATION.
METHOD print.
"Business logic goes here

ENDMETHOD.
METHOD set_copies.
"Business logic goes here
me->copies = copies.

ENDMETHOD.
METHOD get_counter.
"Business logic goes here
counter = me->counter.

ENDMETHOD.
METHOD reset_counter.
"Business logic goes here
CLEAR counter.

ENDMETHOD.
METHOD reset_copies.
"Business logic goes here
CLEAR copies.

ENDMETHOD.
ENDCLASS.

CLASS c1 DEFINITION.
PUBLIC SECTION.
METHODS get_counter IMPORTING counter TYPE i.

PROTECTED SECTION.
DATA counter TYPE i.

ENDCLASS.
CLASS c1 IMPLEMENTATION.

METHOD get_counter.
DATA oref TYPE REF TO cl_encapsulation_demo.
CREATE OBJECT oref.
oref->reset_counter().
oref->counter = counter.

ENDMETHOD.
ENDCLASS.
CLASS c2 DEFINITION.

PUBLIC SECTION.
METHODS set_copies IMPORTING copies TYPE i.

PRIVATE SECTION.
DATA copies TYPE i.

ENDCLASS.
CLASS c2 IMPLEMENTATION.

METHOD set_copies.
DATA oref TYPE REF TO cl_encapsulation_demo.
CREATE OBJECT oref.
oref->reset_copies().
oref->copies = copies.

ENDMETHOD.
ENDCLASS.
330

Encapsulation 8.2
CLASS cl_encapsulation_sub_demo DEFINITION INHERITING FROM cl_
encapsulation_demo.
PROTECTED SECTION.
METHODS reset_counter REDEFINITION.

ENDCLASS.
CLASS cl_encapsulation_sub_demo IMPLEMENTATION.

METHOD reset_counter.
super->reset_counter().
super->reset_copies(). "Gives syntax error

ENDMETHOD.
ENDCLASS.

Listing 8.14 Visibility with Friends

The code in Listing 8.14 implements the cl_encapsulation_demo class and de-
fines the c1 and c2 classes as friends via the FRIENDS addition in the CLASS DEFI-
NITION statement. Any number of classes can be listed with the FRIENDS addition,
separated by spaces. Also notice the CLASS c1 DEFINITION DEFERRED and CLASS c2
DEFINITION DEFERRED statements at the beginning of the code. These two state-
ments tell the syntax checker that the classes c1 and c2 are defined later in the
code; otherwise, the syntax checker will give an error when the cl_encapsula-
tion_demo class refers to the c1 and c2 classes as friends in its definition.

In Listing 8.14, the c1 and c2 classes can access the public, private, and protected
components of cl_encapsulation_demo because they’re defined as friends for
that class. However, the cl_encapsulation_demo class can’t access the protected
or private sections of the c1 or c2 classes because the relationship isn’t reciprocal.
Without this restriction, any class can declare itself as a friend of another class to
access its private or protected components, which defeats the purpose of having
visibility sections.

Figure 8.2 shows the friend classes defined under the Friends tab in Class Builder,
where you can maintain friend classes for a global class.

Figure 8.2 Friends Definition in Class Builder

Friend classes are
maintained under
Friends tab.
331

Object-Oriented ABAP8
8.2.3 Implementation Hiding

Hiding implementation from the outside world allows for better implementation
control while providing flexibility for future enhancements due to ever-changing
business requirements. Keeping the public interface to a minimum allows you to
change the private and protected sections of the class per changing requirements
without having to worry about existing applications that call the class. This saves
a lot of headaches during enhancements and maintenance.

Let’s consider a use case to understand how implementation hiding is useful. For
this example, assume you’re developing an app for a mobile operating system
such as iOS or Android. One of the features in this software is to show notifica-
tions to the user from different apps. To facilitate this, define a public attribute in
the application programming interface (API) class that can be accessed by app
developers to send notifications. However, this way, you can’t have control over
the number of notifications displayed by the third-party app or control any spam
activity. Listing 8.15 shows the sample API code.

CLASS cl_notification_api DEFINITION.
PUBLIC SECTION.
DATA message TYPE string.
METHODS set_message IMPORTING im_message TYPE string.
METHODS display_notification.
ENDCLASS.
CLASS cl_notification_api IMPLEMENTATION.
METHOD set_message.
message = im_message.
ENDMETHOD.
METHOD display_notification.
WRITE message.
ENDMETHOD.
ENDCLASS.
*Code in the calling program.
DATA notify TYPE REF TO cl_notification_api.
CREATE OBJECT notify.
notify->set_message(im_message = ‘My App notification’).
Notify->display_notification().

Listing 8.15 Making All Implementation Public

In Listing 8.15, the cl_notification_api class is defined with a message attribute
and the set_message and display_notification methods. Let’s assume cl_noti-
fication_api works as an API that can be called from third-party apps to display
notifications to the user.
332

Encapsulation 8.2
The attribute message holds the message that can be set by calling the set_mes-
sage method. The notification is displayed by calling the display_notification
method. In this class, all of the components have public visibility.

Because all of the components are visible outside the class, any change to them
will break the implementation in all the apps that use this API. For example,
implementing additional features such as filtering a message or restricting the
number of messages per app may be difficult with this design.

The set_message setter method is provided to set the message after screening it
(such as screening for inappropriate words). However, this restriction can be
bypassed easily by third-party app developers, because the message attribute is
also accessible from outside the class. Therefore, outside developers can directly
access the attribute to set the message instead of calling the set_message method.

The API in Listing 8.15 can be enhanced by hiding the implementation, as shown
in Listing 8.16.

CLASS cl_notification_api DEFINITION.
PUBLIC SECTION.
METHODS set_message IMPORTING im_message TYPE string.
METHODS display_notification.
PRIVATE SECTION.
DATA MESSAGE TYPE string.
METHODS filter_message RETURNING VALUE(boolean) TYPE boolean.
METHODS check_count RETURNING VALUE(boolean) TYPE boolean.
METHODS check_status RETURNING VALUE(boolean) TYPE boolean.

ENDCLASS.
CLASS cl_notification_api IMPLEMENTATION.
METHOD set_message.
MESSAGE = im_message.

ENDMETHOD.
METHOD display_notification.
IF me->filter_message() EQ abap_true OR

me->check_count() EQ abap_true OR
me->check_status() EQ abap_true.

WRITE MESSAGE.
ELSE.
CLEAR message.

ENDIF.
ENDMETHOD.
METHOD filter_message.

*Filtering logic goes here and the parameter "Boolean" is set to
*abap_true or abap_false accordingly.
ENDMETHOD.
METHOD check_count.
333

Object-Oriented ABAP8
*Logic to check number of messages goes here and the parameter
*"Boolean" is set to abap_true or abap_false accordingly.

ENDMETHOD.
METHOD check_status.

*Logic to check user personal setting goes here and the parameter
*"Boolean" is set to abap_true or abap_false accordingly.
ENDMETHOD.

ENDCLASS.
*Code in the calling program.
DATA notify TYPE REF TO cl_notification_api.
CREATE OBJECT notify.
notify->set_message(im_message = 'My App notification').
Notify->display_notification().

Listing 8.16 Hiding Implementation

The code in Listing 8.16 now moves the message attribute to the private section
so that it can’t be accessed outside of the class, meaning that its implementation
is hidden from the outside world. In addition, three new methods are defined in
the private section to perform various checks on the message before it’s displayed
to the user; for example, if the user has turned off notifications for the app, the
program can check for that information in the check_status method, and the
message is not displayed if the check_status method returns the Boolean value
abap_false. Similarly, if the user has set a restriction not to display more than
five notifications per day for an app, the check_count method can handle that val-
idation. The validating methods used in the private section can be enhanced or
changed without having to worry about any dependencies.

External developers need not know about the intricacies of the validations per-
formed to display their notifications. All they need to know is how to set the mes-
sage and call the notification API. With the implementation in Listing 8.16, you
have total control over the displayed notifications, and there’s no way for any
checks to be bypassed. This also makes the implementation future-proof, because
you can add as many additional checks as you’d like without external developers
changing anything about the way the API is called in their applications.

When used the right way, implementation hiding makes software development
less prone to errors and easier to enhance or maintain.

Now that we’ve looked at the primary characteristics of encapsulation, in the next
section we’ll move onto another OOP concept: inheritance.
334

Inheritance 8.3
8.3 Inheritance

Inheritance is an important concept in OOP that helps us avoid repetition of code
and leverage existing code libraries. In Section 8.1, we described how inheritance
makes it easy to expand functionality without having to rewrite existing code.
With procedural programming techniques, the closest you can get to something
similar to inheritance is either editing the existing code to expand the functional-
ity or copying the existing code and then adding the additional functionality.
Both approaches are undesirable, because editing existing code may break the
original functionality, and it requires a lot of testing to check that the original and
the new functionality both work correctly, which can itself be a time-consuming
process to go through each time the functionality is enhanced. If we copy the
existing code, not only is the code now redundant, but also it leads to a mainte-
nance nightmare, because each update to the original code needs to be replicated
in all of the copies.

Inheritance allows you to expand a class to meet more specific requirements
while reusing what’s already been developed without having to repeat the exist-
ing code. For example, say that during the initial stage of development you
defined a class to process information about students. Because your requirement
didn’t differentiate between types of students, you developed a generic student
class.

However, later in the development process, the requirement has been enhanced
to branch students into various categories—commerce students, IT students, sci-
ence students, and so on—with each student category required to perform spe-
cific tasks. As the requirement becomes more specific, you can simply inherit the
original student class to add more specific functionality for each student category,
as shown in Listing 8.17. This allows you to move from generic functionality to
specific functionality without breaking the existing implementation while reusing
the effort that already went into the original development.

CLASS cl_student DEFINITION.
PUBLIC SECTION.
METHODS tuition_fee.

ENDCLASS.
CLASS cl_commerce_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.
METHODS subject. "New method for additional functionality
ENDCLASS.
335

Object-Oriented ABAP8
CLASS cl_commerce_student IMPLEMENTATION.
METHOD tuition_fee.
"Logic to calculate tuition fee for commerce students goes here
ENDMETHOD.

METHOD subject.
ENDMETHOD.
ENDCLASS.

Listing 8.17 Inheritance

In Listing 8.17, the new cl_commerce_student class is a subclass of the original
student superclass from which it’s inheriting, cl_student.

In this section, we’ll look at the different components of the inheritance concept.
We’ll then look at both abstract and final classes and methods before moving on
to composition relationships. In the final subsection, we’ll look at how to use the
refactoring assistant in Class Builder to move class components in the inheritance
tree.

8.3.1 Inheriting Components

In Listing 8.16, we were only concerned with what can be accessed from within
and outside of a class. The public section allowed access from external applica-
tions, while the private section restricted access to components within the class.

Inheritance brings a new dimension to implementation hiding. With the pro-
tected section, you can restrict access to the components from external applica-
tions but allow access to the subclasses. Therefore, for external programs, the
components defined in the protected section are similar to the components in the
private section. This allows you to provide access to child classes without expos-
ing the components of a parent class to the public.

Listing 8.18 provides some sample code to demonstrate inheritance. In this exam-
ple, we’re demonstrating how all the components of the parent class are inherited
by the child class.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS set_value IMPORTING value TYPE string.
PROTECTED SECTION.
DATA value TYPE string.
METHODS check_value.
PRIVATE SECTION.
METHODS reset_value.
336

Inheritance 8.3
ENDCLASS.
CLASS cl_parent IMPLEMENTATION.
METHOD set_value.
ENDMETHOD.
METHOD check_value.
ENDMETHOD.
METHOD reset_value.
ENDMETHOD.
ENDCLASS.
CLASS cl_child DEFINITION INHERITING FROM cl_parent.
ENDCLASS.
CLASS cl_child IMPLEMENTATION.
ENDCLASS.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT child.
Child->set_value(value = 'child').

Listing 8.18 Inheritance Example

In Listing 8.18, the cl_child class is defined as a subclass of cl_parent. Here, cl_
parent is the superclass, and it implements the set_value method in the public
section, the check_value method and the value attribute in the protected section,
and the reset_value method in the private section.

The cl_child class is inherited from cl_parent using the inheriting from addi-
tion of the class definition statement. This sets the parent-child relationship
between the two classes. The cl_child class doesn’t list any components on its
own. All the components in the public and protected sections of the cl_parent
superclass are, by default, available to the cl_child subclass. This is shown in the
program code under start-of-selection (see Listing 8.18), where a reference
object child is defined by referring to cl_child and the set_value method of cl_
parent is accessed using this child class reference with the statement Child->set_
value(value = 'child').

Keep the following important points about inheritance in mind:

� The subclass can access the components defined under public and protected
visibility sections in the superclass.

� You can’t define a component in a subclass with the same name as the compo-
nent in the public or protected sections of the superclass.

� Because the private section of the superclass is invisible to the subclass, you can
define a component in the subclass with the same name as the component in
the superclass.
337

Object-Oriented ABAP8
� The visible instance attributes in the superclass can be accessed from the sub-
class directly or by using the self-reference variable me.

� The visible instance methods of the superclass can be accessed from the sub-
class using the pseudo-reference variable super.

� The static attributes of a class are associated with the complete inheritance tree
(all the classes in the hierarchy) and not just with a single class, so they can be
accessed using any class reference in the hierarchy. For example, if three classes
A, B, and C are in inheritance relationship (B inherits A and C inherits B) and class
A contains a static attribute counter, then this attribute can be accessed as A=
>counter or B=>counter or C=>counter.

� The constructor of the superclass is not inherited by the subclass. This allows
the subclass to define its own constructor, but to ensure the components of the
superclass are instantiated properly, it’s mandatory to call the constructor of
the superclass in the constructor of the subclass, for instance constructors. If
the subclass implements a static constructor, the runtime environment auto-
matically calls the static constructor of the superclass when the subclass is
instantiated if the static constructor of the superclass isn’t yet called.

� The constructor of the class will have visibility to its own components. For
example, if a method is redefined in the subclass and this method is accessed in
the constructor of both the superclass and subclass, then the constructor of the
subclass will execute the redefined method in the subclass, while the construc-
tor of the superclass will execute the original method in the superclass, as
shown in Listing 8.19.

� A method of the superclass can be redefined in the subclass using the REDEFI-
NITION addition to the METHODS statement in the definition part of the subclass,
as shown in Listing 8.19. This allows you to enhance the functionality of the
superclass method in the subclass.

� Any changes in the superclass will be automatically available to the subclass,
whereas changes to subclasses don’t affect the superclass. For example, if a
method of the superclass is enhanced, then the enhancements will be automat-
ically available to the subclass. However, if the same method is changed (rede-
fined) in the subclass, then it won’t impact the superclass.

� The definition of a component of superclass can’t be changed in the subclass; in
other words, you can redefine a superclass method in a subclass, but you can’t
change its parameter interface.
338

Inheritance 8.3
CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS constructor.
PROTECTED SECTION.
METHODS meth.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.

METHOD constructor.
Me->meth().

ENDMETHOD.
METHOD meth.
WRITE 'I'm in parent class'.

ENDMETHOD.
ENDCLASS.
CLASS cl_child DEFINITION INHERITING FROM cl_parent.

PUBLIC SECTION.
METHODS constructor.
PROTECTED SECTION.
METHODS meth REDEFINITION.

ENDCLASS.
CLASS cl_child IMPLEMENTATION.
METHOD constructor.
super->constructor().
Me->meth().

ENDMETHOD.
METHOD meth.
WRITE 'I'm in child class'.

ENDMETHOD.
ENDCLASS.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT child.

Listing 8.19 Constructor Access in Superclass and Subclass

In Listing 8.19, cl_parent is defined with an instance constructor and the meth
method. cl_child inherits the cl_parent class, and the meth method is redefined
in the cl_child subclass. A reference object, child, is defined in the program
referring to cl_child. When the reference object child is instantiated under
start-of-selection using the CREATE OBJECT statement, it will call the construc-
tor of the cl_child class. However, because it’s mandatory to call the parent con-
structor before any instance components can be accessed, the constructor in cl_
child calls the parent constructor using the super->constructor() statement.

The meth method is called in the respective constructors of the superclass and
subclass. The constructor of the cl_child subclass calls the redefined meth
339

Object-Oriented ABAP8
method in cl_child, whereas the constructor of the cl_parent superclass calls
the meth method defined in cl_parent. You can keep a breakpoint on the CREATE
OBJECT statement and execute the code to see the sequence of the code execution
in debug mode for easy understanding.

For global classes in Class Builder, the inheritance relation can be maintained
either while creating the class, as shown in Figure 8.3, or under the Properties

tab, as shown in Figure 8.4.

Figure 8.3 Maintaining Superclass Details in Class Builder

Figure 8.4 Maintaining Inheritance under Class Properties

To redefine a method in the subclass, you can use the Redefine button in Class
Builder, as shown in Figure 8.5.

Selecting this button
allows you to maintain
inheritance.
340

Inheritance 8.3
Figure 8.5 Redefine Button in Class Builder

8.3.2 Abstract Classes and Methods

Sometimes, you may want to define a generic class that can be used as a template
that can be implemented in subclasses. Defining a dummy superclass with
dummy methods may not be a good way of defining this template. For example,
if you have students and various course categories and each student course cate-
gory has a different process to determine its tuition, then you can define a student
class with a tuition_fee method that can be used as a template, and its imple-
mentation can be maintained more specifically in the specific subclasses that
inherit this class. For example, a commerce_student class can inherit the student
class and implement the tuition_fee method specific to commerce students.

If you define this student class as a regular class, then you also need to maintain
its implementation. However, because this is a generic class, maintaining the
implementation doesn’t make sense. In such scenarios, we can define this student
class as an abstract class and define the tuition_fee method as an abstract
method.

An abstract class only maintains a definition; no implementation is required for
such a class if it contains all abstract components, which are inherited in a sub-
class in which the specific implementation can be maintained. Listing 8.20 pro-
vides an example of using an abstract class.

CLASS cl_student DEFINITION ABSTRACT.
PUBLIC SECTION.
METHODS tuition_fee ABSTRACT.

ENDCLASS.

CLASS cl_commerce_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.

To redefine a method in
subclass, keep the cursor
in the method and click
the redefine button.
341

Object-Oriented ABAP8
METHODS tuition_fee REDEFINITION.
ENDCLASS.
CLASS cl_commerce_student IMPLEMENTATION.
METHOD tuition_fee.
"Logic to calculate tuition fee for commerce students goes here

ENDMETHOD.
ENDCLASS.

CLASS cl_science_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.

ENDCLASS.
CLASS cl_science_student IMPLEMENTATION.
METHOD tuition_fee.
"Logic to calculate tuition fee for science students goes here

ENDMETHOD.
ENDCLASS.

Listing 8.20 Using Abstract Class

In Listing 8.20, cl_student is defined as an abstract class by using the ABSTRACT
addition with the CLASS DEFINITION statement.

An abstract method is defined in class cl_student using the ABSTRACT addition
with the METHODS statement. Because this class contains an abstract method, it can
only be implemented in a subclass by using the redefinition addition. If the
class contains a regular method (not an abstract method), then we need to main-
tain the implementation of that method in the implementation part of the class
cl_student. This implementation then would be part of the template that the
subclasses inherit. Because there are no regular methods in Listing 8.20, we’ve
ignored the implementation of the cl_student class completely.

The code in Listing 8.20 defines two subclasses—cl_commerce_student and cl_
science_student—which are inherited from the cl_student abstract class. The
tuition_fee method is redefined in the respective subclasses to implement spe-
cific functionality.

Note

It isn’t possible to create an instance of an abstract class, because an abstract class is
only used as a template.

For global classes, the abstract property for a class is set under the Properties tab
in the Inst.Generation field, as shown in Figure 8.6.
342

Inheritance 8.3
Figure 8.6 Abstract Class in Class Builder

For methods in Class Builder, the abstract property is set by keeping the cursor on
the method, selecting the Detail View button, and then selecting the Abstract

checkbox, as shown in Figure 8.7.

Figure 8.7 Defining Abstract Method in Class Builder

Detail View
button
343

Object-Oriented ABAP8
8.3.3 Final Classes and Methods

Sometimes, in the inheritance tree, it may not make sense to expand a class fur-
ther. In such a scenario, you can make the class final, which means it can’t be
inherited further. A local class can be defined as a final class by adding FINAL to
the CLASS DEFINITION statement, as shown in Listing 8.21.

CLASS cl_final DEFINITION FINAL.
……
ENDCLASS.

Listing 8.21 Defining Final Class

For global classes, to define a class as final in Class Builder, the Final checkbox
needs to be selected in the Properties tab, as shown in Figure 8.8.

Methods can also be defined as final so that they can’t be redefined further in the
subclass. For example, it may make sense to further inherit a class, but a method
in the class may not need to be extended further because it’s purpose is complete.
You can make a method final by adding FINAL to the METHODS statement, as shown
in Listing 8.22.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS student FINAL.
ENDCLASS.

Listing 8.22 Final Method

Figure 8.8 Final Class

To make the method of a global class final, keep the cursor on the method in the
Class Builder and select the Detail View button. In the Change Method window,
select the Final checkbox, as shown in Figure 8.9.
344

Inheritance 8.3
Figure 8.9 Final Method in Class Builder

8.3.4 Composition

Using inheritance, we design classes that fit an is a relationship. For example, a
commerce student is a type of student, so we define the class commerce_student
as a subclass of student in the example in Listing 8.20. Sometimes, in an effort to
reuse the existing code, developers create an inheritance tree that doesn’t fit an is
a relationship. For example, if we have an existing orders class, it makes sense to
create a sales_order class inheriting from the orders class, because a sales order
is an order.

However, if you want to define a class for delivery, it may not make sense to
inherit the orders class, because a delivery is not an order. However, each order
has one or more deliveries associated with it. If the objects fit the has a relation-
ship, we call it a composition relationship.

Composition allows you to reuse existing functionality by maintaining the exist-
ing object as an attribute in the class. Therefore, the orders class can have deliv-
ery as an attribute in the class. This arrangement allows you to take advantage of
the existing functionality in the system, as shown in Listing 8.23.

Detail View
button
345

Object-Oriented ABAP8
CLASS cl_delivery DEFINITION.
PUBLIC SECTION.
METHODS get_delivery.
ENDCLASS.
CLASS cl_delivery IMPLEMENTATION.
METHOD get_delivery.
ENDMETHOD.
ENDCLASS.
CLASS cl_orders DEFINITION.
PUBLIC SECTION.
METHODS track_order.
PRIVATE SECTION.
DATA delivery TYPE REF TO cl_delivery.
ENDCLASS.
CLASS cl_orders IMPLEMENTATION.
METHOD track_order.
CREATE OBJECT delivery.
delivery->get_delivery().
ENDMETHOD.
ENDCLASS.

Listing 8.23 Composition Example

In Listing 8.23, the cl_delivery class is maintained as an attribute in the cl_
orders class. The delivery object is instantiated in the track method to access the
delivery information about the order.

Tip

As a rule of thumb, use an inheritance relationship between objects if they fit the is a
relationship and use composition if the objects fit the has a relationship. This tip should
help you make better design decisions.

8.3.5 Refactoring Assistant

When you’re designing an application, sometimes you may miss defining the
class components at the right level in the inheritance hierarchy. For example, you
may have defined a method in the subclass that may make more sense in the
superclass due to a change in the requirement.

In such a scenario, you can use the refactoring assistant tool in Class Builder to
move the class components up or down the inheritance tree. This saves a lot of
effort and any chance of missing steps when manually moving the components.
346

Polymorphism 8.4
To use the refactoring assistant, select the menu path Utilities � Refactoring �
Refactoring in Class Builder, as shown in Figure 8.10.

Figure 8.10 Refactoring Assistant Menu Path

In the Refactoring Assistant window (see Figure 8.11), you can drag and drop
components to the right hierarchy level.

Figure 8.11 Refactoring Assistant Window

Now that we’ve walked through the inheritance principles, let’s move on to using
polymorphism in OOP.

8.4 Polymorphism

Polymorphism means having many forms. The inheritance concept leads to many
interesting scenarios in which objects can take different forms. For example, it’s
possible for a subclass to respond to a method call of the superclass.
347

Object-Oriented ABAP8
To understand polymorphism, you first need to understand static and dynamic
types. We’ll then look at how to use casting when a static type source reference
object isn’t the same as the target reference object. From there, we’ll discuss how
to use dynamic binding with the CALL method before finally looking at imple-
menting multiple inheritances using interfaces.

8.4.1 Static and Dynamic Types

The static type of an object (reference variable) is the class type that is used to
define an object. For example, in Listing 8.24, the oref reference is defined by
referring to the cl_class class. In this case, the static type of the oref object is the
cl_class class as it’s statically defined in the code.

CLASS cl_class DEFINITION.
PUBLIC SECTION.
METHODS meth.
ENDCLASS.
CLASS cl_class IMPLEMENTATION.
METHOD meth.
ENDMETHOD.
ENDCLASS.
DATA oref TYPE REF TO cl_class.

Listing 8.24 Code Defining Reference Object

Sometimes, you may want to assign one reference object to another reference
object that doesn’t share the same static type. For example, because instances of
classes in an inheritance tree are interchangeable, you can assign the instance of
the subclass to the instance of the superclass, as shown in Listing 8.25, by using
the parent = child statement.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS meth1.
METHODS meth2.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.

METHOD meth1.
WRITE 'In method1 of parent'.
ENDMETHOD.
METHOD meth2.
WRITE 'In method2 of parent'.
ENDMETHOD.

ENDCLASS.
348

Polymorphism 8.4
CLASS cl_child DEFINITION INHERITING FROM cl_parent.
PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3.

ENDCLASS.
CLASS cl_child IMPLEMENTATION.

METHOD meth2.
WRITE 'In method2 of child'.

ENDMETHOD.
METHOD meth3.
WRITE 'In method3 of child'.

ENDMETHOD.
ENDCLASS.
DATA parent TYPE REF TO cl_parent.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT parent.
CREATE OBJECT child.
Parent->meth2().
parent = child.
parent->meth2().

Listing 8.25 Example of Casting

In Listing 8.25, once the reference object parent is instantiated using the CREATE
OBJECT statement, it sets the pointer (in memory) of the parent reference object
to the cl_parent class. The pointer to which the reference object points at run-
time is called the dynamic type of the object.

At this point, both the static type and dynamic type of the parent object are the
same. The parent = child statement assigns the instance of the child object to the
parent object. When one reference object is assigned to another reference object,
the object itself is not assigned; only the pointer of the object is moved. In other
words, after the assignment parent = child, the parent object points to the mem-
ory location of the child object. After this assignment, the dynamic type of the
parent object is changed to the cl_child class and the static type is cl_parent.

At this point in the code, both the parent and child reference objects are point-
ing to the same cl_child object. Because there’s no reference to the parent object
after this assignment, the parent object will be removed from the memory auto-
matically by the garbage collector. The ABAP runtime environment calls the gar-
bage collector periodically to remove objects from memory that are no longer ref-
erenced by object reference variables.
349

Object-Oriented ABAP8
In Listing 8.25, when the parent->meth2() method is first called before the par-
ent = child assignment (that is, before its dynamic type is changed), it will exe-
cute the code in the meth2 method of the cl_parent superclass. However, the
same statement after the parent = child assignment will execute the code in the
meth2 method of the cl_child subclass, effectively displaying polymorphism
because the same object behaves differently during the runtime of the program.

8.4.2 Casting

Similar to the conversion rules applied when different types of data objects are
assigned to each other, the assignment of objects of different static types are gov-
erned by certain rules. If the static type of the source reference object is not the
same as the target reference object, then a special operation called a cast must
occur. This process is known as casting. For the cast operation to work, the static
type of the target reference object should be same or more general than the
dynamic type of the source reference object.

In the example in Listing 8.25, the cl_parent parent object is more generic than
the cl_child child object (a superclass will always be the same as or more generic
than a subclass). In other words, the parent class has implemented two methods,
whereas the subclass has become more specific by implementing a third method
not available in the parent class. Therefore, the parent class is more generic than
the child class, and for this reason, we could assign the child object to the parent
object.

There are two different types of cast operations possible: a narrowing cast (or up
cast) and a widening cast (or down cast). The following subsections look at these
different casting operations.

Narrowing Cast

A narrowing cast occurs when the static type of the target reference object is
more generic than the static type of the source reference object. The casting oper-
ation we performed in Listing 8.25 is a narrowing cast. It’s called a narrowing cast
because the parent class is more generic, and after casting the parent class can
only access the components of the child class that are defined in the static type of
the parent class, effectively reducing the scope of (narrowing) the components
that can be accessed.
350

Polymorphism 8.4
For example, say a parent class has two methods, meth1 and meth2, and the child
class has an additional method, meth3, which isn’t defined in the parent class.
After the casting operation, you can only access the meth1 and meth2 methods of
the child class by using the parent object reference. If you try to access the meth3
method, it will result in a syntax error, as shown in Listing 8.26. You can, how-
ever, access the meth3 method using the child object reference, because it still
exists in the program and isn’t truncated.

Parent = child. "Assigns child reference to parent.
Parent->meth1()."Calls the method meth1 in child if redefined.
Parent->meth2()."Calls the method meth2 in child if redefined.
Parent->meth3()."Results in syntax error.
Child->meth3()."Works as expected.

Listing 8.26 Narrow Cast

The narrow cast can also be performed during instantiation by adding TYPE to the
CREATE OBJECT statement as shown:

DATA parent TYPE REF TO cl_parent.
CREATE OBJECT parent TYPE cl_child.

Widening Cast

A widening cast occurs when the static type of the target reference object is more
specific than the static type of the source reference object. Because this contra-
venes the rule for casting, which specifies that the target object should always be
more generic than the source object, the syntax checker will complain that the
source object can’t be converted to the target object if you try to assign the
objects using the = operator or use the MOVE statement. To bypass this restriction
and tell the compiler that we know what we’re doing, we use the ?= operator for
a widening cast, as shown:

Child ?= parent.

Using the ?= operator will only bypass the check statically during compile time
and postpones it until runtime. It will throw a runtime error if the target object is
not more generic than the source object.

For example, the code in Listing 8.27 will pass the syntax checker (static check)
but result in a runtime error because the child object is more specific than the par-
ent object.
351

Object-Oriented ABAP8
CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS meth1.
METHODS meth2.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.

METHOD meth1.
WRITE 'In method1 of parent'.
ENDMETHOD.
METHOD meth2.
WRITE 'In method2 of parent'.
ENDMETHOD.

ENDCLASS.
CLASS cl_child DEFINITION INHERITING FROM cl_parent.

PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3.

ENDCLASS.
CLASS cl_child IMPLEMENTATION.

METHOD meth2.
WRITE 'In method2 of child'.

ENDMETHOD.
METHOD meth3.
WRITE 'In method3 of child'.

ENDMETHOD.
ENDCLASS.
DATA parent TYPE REF TO cl_parent.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT parent.
CREATE OBJECT child.
Child ?= parent. "Results in runtime error

Listing 8.27 Widening Cast Resulting in Runtime Error

A widening cast should only be used when the dynamic type of the target object
will be generic than the source object. This effectively means that a narrowing
cast must be performed before a widening cast, as shown in Listing 8.28. Widen-
ing casts can be confusing and dangerous, so they should be used with care.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS meth1.
METHODS meth2.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.

METHOD meth1.
WRITE 'In method1 of parent'.
ENDMETHOD.
352

Polymorphism 8.4
METHOD meth2.
WRITE 'In method2 of parent'.
ENDMETHOD.

ENDCLASS.
CLASS cl_child1 DEFINITION INHERITING FROM cl_parent.

PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3.

ENDCLASS.
CLASS cl_child1 IMPLEMENTATION.

METHOD meth2.
WRITE 'In method2 of child1'.

ENDMETHOD.
METHOD meth3.
WRITE 'In method3 of child1'.

ENDMETHOD.
ENDCLASS.
CLASS cl_child2 DEFINITION INHERITING FROM cl_child1.

PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3 REDEFINITION.
METHODS meth4.

ENDCLASS.
CLASS cl_child2 IMPLEMENTATION.

METHOD meth2.
WRITE 'In method2 of child2'.

ENDMETHOD.
METHOD meth3.
WRITE 'In method3 of child2'.

ENDMETHOD.
METHOD meth4.

WRITE 'In method4 of child2'.
ENDMETHOD.

ENDCLASS.
DATA parent TYPE REF TO cl_parent.
DATA child1 TYPE REF TO cl_child1.
DATA child2 TYPE REF TO cl_child2.
START-OF-SELECTION.
CREATE OBJECT parent.
CREATE OBJECT child1.
CREATE OBJECT child2.
parent = child2.
child1 ?= parent.

child1->meth2().

Listing 8.28 Widening Cast Example
353

Object-Oriented ABAP8
In Listing 8.28, three classes are defined: cl_parent, cl_child1, and cl_child2.
cl_child1 inherits from cl_parent, and Cl_child2 inherits from cl_child1.

A narrow cast is first performed by assigning the child2 object to the parent
object, and then a widening cast is performed by assigning the parent object to
child1. When the meth2 method is called using the child1 object reference after
the widening cast, it will execute the code in the meth2 method of the cl_child2
class.

8.4.3 Dynamic Binding with the CALL Method

When an object is passed to the method as a parameter, the system automatically
binds the object dynamically. This allows us to design objects that are easily
extendable.

To understand dynamic binding with the CALL method, let’s look at the code snip-
pet in Listing 8.29. Here, we’ve defined cl_student as an abstract class with
tuition_fee and get_fee as abstract methods with public visibility. A fee_paid
attribute that can be set if the fee is paid by the student is defined in the protected
section.

Two classes, cl_commerce_student and cl_science_student, inherit the cl_stu-
dent class and maintain their own implementation of the tuition_fee and get_
fee abstract methods. In the tuition_fee method, the private fee_paid attribute
is set to abap_true if the student has paid the fee. The get_fee method returns the
value of the private fee_paid attribute.

We’ve defined one cl_admission class that can be used to enroll a student in a
course. This class has two methods, set_student and enroll, which can be used
to complete the admission of the student in a course. Because this cl_admission
class should be able to enroll any student from any student category (science stu-
dent, commerce student, etc.), we need to design this class to import information
about any student category.

The set_student method of the cl_admission class is defined with an importing
parameter to import the student object. If we maintain the static type of this
importing parameter as cl_commerce_student, it can only import the commerce
student object and our class can only process the admission for commerce stu-
dents. Similarly, if we maintain the static type of the importing parameter as cl_
science_student, it can only import the science student object and our class can
354

Polymorphism 8.4
only process the admission for science students. In order to make it work for any
student category, we’ve maintained the importing parameter of this method as a
static type of the cl_student abstract class, from which the cl_science_student
and cl_commerce_student classes inherit.

CLASS cl_student DEFINITION ABSTRACT.
PUBLIC SECTION.
METHODS tuition_fee ABSTRACT.
METHODS get_fee ABSTRACT RETURNING VALUE(fee_paid) TYPE boolean.
PROTECTED SECTION.
DATA fee_paid TYPE boolean.

ENDCLASS.
CLASS cl_commerce_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.
METHODS get_fee REDEFINITION.
ENDCLASS.
CLASS cl_commerce_student IMPLEMENTATION.
METHOD tuition_fee.
"logic to calculate tuition fee for commerce students goes here
"IF fee paid.
fee_paid = abap_true.

ENDMETHOD.
METHOD get_fee.
fee_paid = me->fee_paid.

ENDMETHOD.
ENDCLASS.
CLASS cl_science_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.
METHODS get_fee REDEFINITION.

ENDCLASS.
CLASS cl_science_student IMPLEMENTATION.

METHOD tuition_fee.
"logic to calculate tuition fee for science students goes here
"IF fee paid.
fee_paid = abap_true.

ENDMETHOD.
METHOD get_fee.
fee_paid = me->fee_paid.

ENDMETHOD.
ENDCLASS.
CLASS cl_admission DEFINITION.

PUBLIC SECTION.
METHODS set_student IMPORTING im_student TYPE REF TO cl_student.
METHODS enroll.
PRIVATE SECTION.
DATA admit TYPE boolean.

ENDCLASS.
355

Object-Oriented ABAP8
CLASS cl_admission IMPLEMENTATION.
METHOD set_student.
IF im_student->get_fee() EQ abap_true.
admit = abap_true.
ENDIF.

ENDMETHOD.
METHOD enroll.
IF admit EQ abap_true.

*Perform the steps to enroll
ENDIF.

ENDMETHOD.
ENDCLASS.

DATA : commerce_student TYPE REF TO cl_commerce_student,
science_student TYPE REF TO cl_science_student,
admission TYPE REF TO cl_admission.

START-OF-SELECTION.
CREATE OBJECT: commerce_student,

science_student,
admission.

CALL METHOD commerce_student->tuition_fee.
CALL METHOD admission->set_student(EXPORTING im_student = commerce_
student).
CALL METHOD admission->enroll.

CALL METHOD science_student->tuition_fee.
CALL METHOD admission->set_student(EXPORTING im_student = science_
student).
CALL METHOD admission->enroll.

Listing 8.29 Code for Dynamic Call Method Binding

When the set_student method of the cl_admission class is called, it allows us to
pass any student object that is inherited from cl_student. Within this method,
we’re checking if the student has paid the fee by calling the get_fee method of
the imported object and accordingly processing the admission of the student.
Here, even though the static type of the imported object is different from the
static type of the importing parameter, the system automatically binds the object
to the correct instance.

With this design, we can easily process admissions for any future student cate-
gory via the cl_admission class. All the student category class needs to do is to
inherit the abstract class cl_student.
356

Polymorphism 8.4
8.4.4 Interfaces

Similar to Java, ABAP Objects only supports single inheritance and don’t support
multiple inheritance as in C++. Single inheritance means a class can have multiple
subclasses but only one superclass. Many subclasses can use the same class as
their superclass, but each subclass can only have a single superclass.

Modern programming languages didn’t add support for multiple inheritance
(having multiple superclasses) in order to avoid ambiguity. One of the common
problems with multiple inheritance is called the diamond problem. For example,
as depicted in Figure 8.12, assume you have two subclasses B and C inheriting
from the same superclass A and that both classes B and C have redefined a method
XYZ of class A in their implementation. Now, if a new subclass D is defined as hav-
ing both class B and class C as its superclasses then which superclass method will
it use?

Figure 8.12 Diamond Problem with Multiple Inheritance

One way of implementing multiple inheritance is to use interfaces. Interfaces pro-
vide all the advantages of multiple inheritance while avoiding all the problems.

Interfaces are defined similarly to classes via the INTERFACE statement. An inter-
face only contains a definition for which the implementation is maintained in the
class that uses the interface. If you need a common definition in multiple classes,
then you can create an interface and use it in multiple classes.

Class A

Method xyz

Class C INHERITING FROM AClass B INHERITING FROM A

Methods xyz REDEFINITION

Class D INHERITING FROM A B

Methods xyz REDEFINITION

Methods xyz
Which implementation is
called? Class B or Class C?
357

Object-Oriented ABAP8
The syntax to define an interface is shown in Listing 8.30, in which interface if_
student is defined using the INTERFACE statement and ended with the ENDINTER-
FACE statement.

INTERFACE if_student.
DATA course TYPE char10.
METHODS meth1.
EVENTS enrolled.

ENDINTERFACE.

CLASS cl_science DEFINITION.
PUBLIC SECTION.
INTERFACES if_student.

ENDCLASS.
CLASS cl_science IMPLEMENTATION.

METHOD if_student~meth1.
ENDMETHOD.

ENDCLASS.

Listing 8.30 Interfaces

An interface can have all the components that a class supports, such as methods,
attributes, events, and so on. All of the components are in PUBLIC SECTION by
default, and you can’t use any visibility section in the interface definition.
Because an interface is generally created to be used in multiple classes, it makes
sense to use the interface to define the public interface of the class, with each class
that uses the interface implementing its own private or protected components.

In Listing 8.30, a cl_science class implements the if_student interface via the
INTERFACES statement. In the implementation of the cl_science class, the meth1
method defined in the if_student interface is implemented. Because the meth1
method is defined in the interface and not in the class itself, the method is
accessed using the interface_name~component_name syntax. Here, the tilde sym-
bol (~) is the interface component selector that should be used to access the com-
ponent of an interface.

Unlike classes, interfaces do not have any implementation section. Interfaces can
be defined only in the global declaration area of a program and can’t be defined
within a class or a procedure or an event block.

Sometimes, the interface name can be too long. To avoid addressing the interface
component using the long interface name, we can use aliases to make it easy
while coding, as shown in Listing 8.31.
358

Polymorphism 8.4
INTERFACE if_student.
DATA course TYPE char10.
METHODS meth1.
EVENTS enrolled.

ENDINTERFACE.
CLASS cl_science DEFINITION.

PUBLIC SECTION.
INTERFACES if_student.
ALIASES m1 FOR if_student~meth1.

ENDCLASS.
CLASS cl_science IMPLEMENTATION.
METHOD m1.
ENDMETHOD.

ENDCLASS.
DATA science TYPE REF TO cl_science.
START-OF-SELECTION.
CREATE OBJECT science.
science->m1().

Listing 8.31 Using Aliases

Interfaces can be nested by using the INTERFACES statement to include an inter-
face within an interface. In Listing 8.32, the if_student interface is nested inside
if_college. An alias is defined for the meth1 method of if_student within if_
college. The cl_science class implements the if_college interface. The meth1
method of the if_student interface is accessed within the class using the alias
defined for it in if_college.

INTERFACE if_student.
DATA course TYPE char10.
METHODS meth1.
EVENTS enrolled.

ENDINTERFACE.
INTERFACE if_college.

INTERFACES if_student.
ALIASES m1 FOR if_student~meth1.
METHODS meth1.

ENDINTERFACE.
CLASS cl_science DEFINITION.

PUBLIC SECTION.
INTERFACES if_college.
ALIASES m1 FOR if_college~m1.
ALIASES m2 FOR if_college~meth1.

ENDCLASS.
CLASS cl_science IMPLEMENTATION.

METHOD m1.
ENDMETHOD.
359

Object-Oriented ABAP8
METHOD m2.
ENDMETHOD.

ENDCLASS.
DATA science TYPE REF TO cl_science.
START-OF-SELECTION.
CREATE OBJECT science.
science->m1().

Listing 8.32 Nesting Interfaces

The process of defining a global interface in Class Builder is similar to creating a
class. Follow these steps to create an interface in Class Builder:

1. On the initial Class Builder screen (Transaction SE24; see Figure 8.13), enter the
name of the interface and click the Create button. If the name starts with ZIF,
Class Builder will automatically create an interface; otherwise, you’ll see a
dialog box (see Figure 8.14) to choose whether to create a class or interface.

Figure 8.13 Class Builder: Initial Screen

Figure 8.14 Object Type Selection Dialog Box

2. On the Class Builder: Change Interface… screen (see Figure 8.15), maintain
the components of the interface and click the Activate button in the applica-
tion toolbar to activate.
360

Polymorphism 8.4
Figure 8.15 Class Builder: Change Interface Screen

3. You can include the interface in a global class under the Interfaces tab, as
shown in Figure 8.16.

Figure 8.16 Including Interface in Global Class

4. The alias for an interface component can be maintained under the Aliases tab,
as shown in Figure 8.17. The name of the alias is maintained under the Alias

column, and the visibility for the alias can be set under the Visible column.

Figure 8.17 Aliases for Interface Component
361

Object-Oriented ABAP8
In this section, we discussed the concept of polymorphism in OOP. In the next
section, we’ll take a bit of a departure from object-oriented concepts and look at
how to work with XML.

8.5 Working with XML

Extensible Markup Language (XML) is a meta markup language that is used to
define structured documents that can be easily exchanged between heteroge-
neous systems. There are many ways to exchange data between systems, but with
the growth of web services, XML has gained popularity among developers. The
beauty of XML lies in its flexibility and simplicity.

XML defines a standard that can be used to define the format of documents.
Using XML, we can structure and organize various kind of data. A markup lan-
guage (e.g., HTML) consists of tags, which are predefined. Tags allow you to for-
mat and organize the data. Tags are maintained between less than (<) and greater
than (>) symbols. For example, in an HTML document, we can open the para-
graph tag with <p> and close it with </p>. The content maintained between the
tags is interpreted accordingly. Here, the content maintained between <p> and </
p> is formatted as a paragraph; the content maintained between <h1> and </h1> is
interpreted as a header.

However, XML is a meta markup language, which defines a markup language. It’s
designed to be flexible and easy to understand for both humans and machines. In
XML, there are no predefined tags; any tag can be used to describe content.

Even though an in-depth understanding of XML documents and their processing
is beyond the scope of this book, in this section we’ll discuss the basic XML syn-
tax and look at the iXML library provided by SAP to create XML documents in
ABAP. Understanding XML is helpful when exposing or consuming data with
external applications. This section should help you appreciate how OOP aids in
designing libraries that are easy for developers to use in their programs.

8.5.1 XML Overview

XML files provide great flexibility to share structured documents. Because there
are no predefined tags, we can use tags that suit our domain and that are self-
362

Working with XML 8.5
explanatory. Of course, developing a standard for document markup makes it
easy for third-party vendors to develop software that can process XML files.

For example, say we have a website that can be extended by installing custom
extensions. The extensions are of two types: components and plugins (i.e., the
website can be extended by developing a component or a plugin). We’ve devel-
oped a component and want to upload the files of the custom component as a
package to the webserver. To provide the information about the component to
the installer script, we can supply an XML file with the package that contains
information about the file structure of the package, as shown in Listing 8.33. The
installer can read this XML file and upload the files in the package to the desig-
nated folders in the web server.

<?xml version="1.0" encoding="utf-8"?>
<!—This is comment-->
<extension type="component">

<files folder="site">
<filename>index.html</filename>
<filename>site.php</filename>

</files>
<media folder="media">
<folder>css</folder>
<folder>images</folder>
<folder>js</folder>
</media>

</extension>

Listing 8.33 Sample XML Document

As shown in Listing 8.33, XML documents are organized into a series of elements.
The first line in the document specifies the XML version and the encoding used.
The syntax for this statement is <?xml version="1.0" encoding=""?> and it’s
optional.

The basic syntax to define an element in XML is as follows:

<element_name attribute_name=attribute_value>
<!-- Element Content -->

</element_name>

In the example XML file provided, for the <extension type="component"> tag, the
element name is extension, the attribute name is type, and the attribute value is
component. This tells the upload script that we’re trying to upload an extension
that’s a component. The tags <files> and <media> are the elements under the
363

Object-Oriented ABAP8
parent node <extension>. The tags under <files> and <media> are the respective
elements’ content, which specifies the folders and files that we are uploading. The
document is closed with the closing tag </extension>. Comments can be main-
tained between<!-- and -->.

XML markup is case-sensitive; for example, the element name <ELEMENT> is differ-
ent than <element>.

8.5.2 XML Processing Concepts

SAP NetWeaver AS ABAP provides an iXML library that can be used to process
XML files. This library implements various interfaces that allow us to work with
XML files by calling various methods.

Listing 8.34 shows the code to create an XML file using the iXML library. The
XML file we’re creating contains the data from Listing 8.33. In Listing 8.34, we’re
defining reference objects for the XML document from the iXML library. The
reference object for the XML document is referenced to the if_ixml_document
interface, and a reference object is defined for each element in the XML file by
referencing if_ixml_element. The XML file is generated by calling the respective
methods from the library, as shown in Listing 8.34.

REPORT ZDEMO_XML.
*Declarations to create XML document
DATA: lr_ixml TYPE REF TO if_ixml. "Reference for iXML object
"Reference for XML document
DATA: lr_document TYPE REF TO if_ixml_document.
."Reference for "extension" element in document
DATA: lr_extension TYPE REF TO if_ixml_element

."Reference for "files" element in document
DATA: lr_files TYPE REF TO if_ixml_element
."Reference for "media" element in document
DATA: lr_media TYPE REF TO if_ixml_element
."Reference to set encoding
DATA: lr_encoding TYPE REF TO if_ixml_encoding

*Declarations to create output stream and render the file to
*application server directory
DATA: lr_streamfactory TYPE REF TO if_ixml_stream_factory,

lr_ostream TYPE REF TO if_ixml_ostream,
lr_renderer TYPE REF TO if_ixml_renderer.

DATA file_path TYPE string VALUE 'D:\USR\SAP\PUT\MANIFEST.XML'.
364

Working with XML 8.5
* Create iXML object
lr_ixml = cl_ixml=>create().
*Create Document
lr_document = lr_ixml->create_document().
*Create encoding
lr_encoding = lr_ixml->create_encoding(BYTE_ORDER = 0 CHARACTER_SET =
'UTF-8').
*Set encoding
lr_document->set_encoding(lr_encoding).
*Create element "extension" as root
lr_extension = lr_document->create_simple_element(
name = 'extension'
parent = lr_document).
*Set attribute for the "extension" element
lr_extension->set_attribute(name = 'Type'
VALUE = 'Component').
*Create "files" element with "extension" element as parent
lr_files = lr_document->create_simple_element(
name = 'files'
parent = lr_extension).
*Set attribute for "files" element
lr_files->set_attribute(name = 'Folder'
VALUE = 'site').
*Create element content
lr_document->create_simple_element(name = 'filename'
parent = lr_files
VALUE = 'index.html').
lr_document->create_simple_element(name = 'filename'
parent = lr_files
VALUE = 'site.php').

*Create "media" element with "extension" element as parent
lr_media = lr_document->create_simple_element(
name = 'media'
parent = lr_extension).
**Set attribute for "media" element
lr_media->set_attribute(name = 'Folder'
VALUE = 'media').

*Create element content
lr_document->create_simple_element(name = 'folder'
parent = lr_media
VALUE = 'css').
lr_document->create_simple_element(name = 'folder'
parent = lr_media
VALUE = 'images').
lr_document->create_simple_element(name = 'folder'
parent = lr_media
VALUE = 'js').
365

Object-Oriented ABAP8
* Create stream factory
lr_streamfactory = lr_ixml->create_stream_factory().
* Create output stream
lr_ostream = lr_streamfactory->create_ostream_uri(system_id = file_
path).
* Create renderer
lr_renderer = lr_ixml->create_renderer(ostream = lr_ostream
document = lr_document).
* Set pretty print
lr_ostream->set_pretty_print(abap_true).
* Renders the attached document into output stream
lr_renderer->render().

Listing 8.34 Using iXML library to Create XML File

The code in Listing 8.34 saves the XML file in the application server directory, as
shown in Figure 8.18.

Figure 8.18 XML File

8.6 Summary

In this chapter, we explored various OOP concepts. The four pillars of OOP are
encapsulation, inheritance, polymorphism, and abstraction. We discussed all of
these concepts and looked at the various ways they’re implemented in ABAP.
366

Summary 8.6
By now, you should have a good overview of objects and should feel comfortable
working with ABAP Objects. Designing software using ABAP Objects takes some
experience, but this chapter should serve as a starting point for you to start look-
ing at designing applications by using OOP concepts.

In the next chapter, we’ll use some of the concepts from this chapter to shed light
on how to handle error situations in applications.
367

Chapter 9

Exception handling is what happens when a system throws an error. In
this chapter, we’ll discuss how to handle exceptions for both procedural
and object-oriented programming approaches.

9 Exception Handling

During the runtime of a program, a program may encounter error situations.
Sometimes, errors are introduced by programmers accidentally, but most errors
are due to incorrect handling of the application. Error situations may be antici-
pated during the development of an application, but there is simply no way to
avoid every type of error.

In this chapter, we’ll discuss how to handle exceptions and look at the various
ways in which errors can be captured. In Section 9.1, we provide an overview of
what exceptions are before turning our attention to how exceptions are handled
in procedures in Section 9.2. Then, we look at how exception handling can be
separated from the main program logic by using class-based exceptions and OOP
in Section 9.3. Finally, in Section 9.4, we’ll look at using messages within excep-
tion classes.

9.1 Exceptions Overview

In Chapter 6, Section 6.2, you learned how to show various messages to the user
when an error situation occurs while the user is executing a program. However,
procedures are always called in programs and never executed by the user directly.
Showing a message in a procedure doesn’t really make sense, because messages
are meant to be displayed to the user. With procedures, the recommended way to
handle an error situation is to raise an exception and let the calling program
decide what to do with the exception.
369

Exception Handling9
For example, say we’ve developed a function module to take the material number
as an importing parameter and export various details of the material. If the mate-
rial number imported into the function module is invalid, then instead of show-
ing a message that the material number is invalid, we can raise an exception in the
function module, which the calling program can process per its functional
requirement. That is, the calling program can either show an error message or
perform other steps. In addition, because the procedures are designed to be reus-
able, by raising exceptions in a procedure different programs can handle them
differently per their particular requirements.

9.2 Procedural Exception Handling

Prior to class-based exceptions, only function modules and methods were al-
lowed to raise self-defined treatable exceptions, and exception handling logic was
intermixed with actual program logic.

In this section, we’ll look at using function modules and methods for maintaining
exceptions. We’ll then look at how to maintain exceptions for local classes.

9.2.1 Maintaining Exceptions Using Function Modules

Exceptions are statically maintained in a function module with explanatory text
explaining the exception situation. When this exception is raised, the SY-SUBRC
system field is set with the exception number, which the calling program can
check to implement custom error handling logic.

In Listing 9.1, the ZEXCEPTION_EXAMPLE function module has two exceptions
maintained: NO_MATERIAL_DATA and NO_PLANT_DATA. When this function module is
called, a suitable exception is raised in the function module if an error situation
occurs. The calling program checks the value of SY-SUBRC to identify the excep-
tion and maintain suitable error handling logic in the program.

CALL FUNCTION 'ZEXCEPTION_EXAMPLE'
EXPORTING
Im_matnr = v_matnr
IMPORTING
t_marc = it_marc
EXCEPTIONS
370

Procedural Exception Handling 9.2
NO_MATERIAL_DATA = 1
NO_PLAT_DATA = 2
OTHERS = 3.
IF sy-subrc <> 0.
CASE sy-subrc.
WHEN 1.
"NO_MATERIAL_DATA exception is raised by Function Module
"Suitable exception handling code goes here
WHEN 2.
"NO_PLANT_DATA exception is raised by Function Module
"Suitable exception handling code goes here
WHEN 3.
"Unknown exception is raised by Function Module
ENDCASE.
ENDIF.

Listing 9.1 Exception Handling with Function Modules

These self-defined exceptions are manually maintained in function modules and
methods and are raised using the RAISE statement within a function module or
method.

Figure 9.1 shows the exception maintained under the Exceptions tab in a func-
tion module.

Figure 9.1 Maintaining Exceptions

Figure 9.2 shows the code to raise the exception using the RAISE statement.
371

Exception Handling9
Figure 9.2 Raising Exception

When the first exception is raised, the function module is exited, and control is
passed back to the calling program without executing further code in the function
module. If the calling program doesn’t catch the exception, then a runtime error
(short dump) is generated. For this reason, it’s always recommended to use the
EXCEPTIONS keyword in the function module call (CALL FUNCTION) to catch excep-
tions (see Figure 9.3), even if you don’t plan to implement any custom logic for
the exception.

Figure 9.3 Catching Exception in Calling Program
372

Procedural Exception Handling 9.2
9.2.2 Maintaining Exceptions Using Methods

Similar to function modules, exceptions can be maintained in methods via Class
Builder by keeping the cursor on the method and selecting the Exception button,
as shown in Figure 9.4.

Figure 9.4 Exception Button

Under the Exception column in the Method tab (Figure 9.5), give a name for the
exception and maintain a description to explain the exception so that developers
calling the method can understand why that exception is raised.

Figure 9.5 Exceptions Window

As shown in Figure 9.6, an exception can be raised in the method using the RAISE
statement.
373

Exception Handling9
Figure 9.6 Raising Exception for Class ZCL_MATERIAL_DATA

Note that exceptions are specific to a procedure in the sense that if an exception
is maintained for a function module, it can be raised only within that function
module and can’t be raised from other function modules of the function group.
Similarly, an exception maintained for a method can be raised only from within
that method and can’t be raised from other methods of the class.

9.2.3 Maintaining Exceptions for Local Classes

For local classes, exceptions can be defined using the EXCEPTIONS statement in the
definition part of the class, as shown in Listing 9.2. The exceptions that are
defined in the definition part of the class can be raised by the methods imple-
mented in the implementation part of the same class.

In Listing 9.2, we defined the INVALID_MATERIAL exception in the definition part
of the LCL_METERIAL_DATA class. Exceptions are defined using the EXCEPTIONS key-
word. It’s a good practice to maintain a comment with a short description for the
exception.

CLASS lcl_material_data DEFINITION
PUBLIC
PUBLIC SECTION.
CLASS-METHODS get_description
IMPORTING
im_matnr TYPE matnr
im_spras TYPE spras

EXPORTING
ex_maktx TYPE maktx
374

Class-Based Exception Handling 9.3
EXCEPTIONS
invalid_material. "Raised when material is invalid

ENDCLASS.

Listing 9.2 Maintaining Exception in Local Class

Having gone through how to handle procedural-based exceptions, next we’ll shift
our focus to class-based exception handling.

9.3 Class-Based Exception Handling

Class-based exceptions (object-oriented) help separate the exception handling logic
from the main programming logic by handling the exceptions in a separate block.
In the previous section on procedural methods for handling exceptions, you saw
that beyond checking the system field SY-SUBRC to identify the exception, there
isn’t much information available about the exception.

In addition, because self-defined exceptions are supported only in function mod-
ules and methods, there’s no proper way to handle error situations in regular pro-
grams. For example, if there’s an error situation within a subroutine in which
self-defined exceptions aren’t supported, how do we handle it?

One way is to pass the error structure or some kind of variable in the parameter
interface and check against it after the execution of subroutine, as shown in Lis-
ting 9.3.

PERFORM get_data USING v_matnr
CHANGING it_makt

retcode.
IF retcode IS INITIAL.
*Program logic
ELSE.
*Error handling logic
ENDIF.
FORM get_data USING p_matnr

CHANGING pt_makt
P_retcode.

SELECT * FROM makt INTO TABLE pt_makt WHERE matnr EQ p_matnr.
IF sy-subrc IS NOT INITIAL.
p_retcode = 1.
ENDIF.
ENDFORM.

Listing 9.3 Error Handling in Subroutine
375

Exception Handling9
As you can see, the code in Listing 9.3 uses the RETCODE parameter to capture the
error situation and build the program logic accordingly to handle the exception.
However, this isn’t an elegant way to handle exceptions, and the interface can
soon become cluttered if many exception situations need to be handled. This also
creates problems when forwarding the exception if the exception needs to be
handled in another processing block. For example, most BAPIs implement an
error structure in the interface to capture the error. In this error structure, most
of the information about the error is captured, such as error type, error ID, mes-
sage, and so on.

Now, we want to pass these error details to another function module called
within the BAPI, one in which the exception can be handled. To do this, we need
to ensure that the BAPI and the function module called within the BAPI have sim-
ilar error structures; otherwise, we need to manually convert the data and assign
it to the new error structure of the function module.

Contrary to what many developers assume, class-based exceptions are not limited
to ABAP Objects. They can be used in any processing block. Class-based excep-
tions are handled using a special block called the TRY block. Using the CATCH and
CLEANUP statements, we can handle exceptions within a TRY block. The CATCH
statement can catch multiple exceptions within a block, and the CLEANUP state-
ment allows you to perform cleanup tasks while exiting the exception. For exam-
ple, if you open a file for output and come across an exception while transferring
one of the records, then the cleanup block allows you to close the file.

In this section, we’ll discuss the use of class-based exception handling, including
steps for raising exceptions, using catchable and non-catchable exceptions, and
how to define exception classes both globally and locally.

9.3.1 Raising Exceptions

Exceptions are raised in a couple of situations—either programmatically using the
RAISE EXCEPTION statement or automatically by the ABAP runtime environment.
For example, if we execute the code in Listing 9.4, it will result in a runtime error,
as shown in Figure 9.7.

DATA : v_unit_value TYPE I,
v_total_value TYPE I VALUE 20,
376

Class-Based Exception Handling 9.3
v_quantity TYPE I.
v_unit_value = v_total_value / v_quantity.

Listing 9.4 Illegal Arithmetic Operation

Figure 9.7 Exception Raised by Runtime System

Figure 9.7 highlights the exception class that is raised by the system when the
operand is divided by zero. We can avoid the short dump by catching the excep-
tion in our program and exiting the exception situation.

Listing 9.5 shows the syntax to implement the TRY block to handle exceptions.

DATA : v_unit_value TYPE I,
v_total_value TYPE I VALUE 20,
v_quantity TYPE I.

DATA r_ex TYPE REF TO cx_sy_zerodivide.
TRY. "Begin of TRY block
v_unit_value = v_total_value / v_quantity.
* Other programming logic goes here
CATCH cx_sy_zerodivide INTO r_ex.

WRITE : / 'Error Short Text:', r_ex->get_text().
WRITE : / 'Error long Text:', r_ex->get_longtext().

CLEANUP.

Exception class
377

Exception Handling9
* Any cleanup logic goes here
ENDTRY. "End of try block

Listing 9.5 Catching Exceptions

The code in Listing 9.5 results in the output shown in Figure 9.8. Here, the system
didn’t generate a short dump because we caught the exception in the program
and handled the exception situation programmatically. A good programming
practice is to avoid such exception situations by making sure a check is performed
on the denominator before using it in division (e.g., IF v_quantity IS NOT
INITIAL).

Figure 9.8 Output for Code in Listing 9.5

9.3.2 Catchable and Non-Catchable Exceptions

There are two types of exceptions generated by the system: catchable and non-
catchable. For catchable exceptions, we can use the TRY control structure to catch
the exception in the program, non-catchable exceptions result in a runtime error.

We can find information about various possible exceptions raised by the system
by checking the keyword documentation of any particular keyword and imple-
ment suitable exception handling in our program. For example, Figure 9.9 shows
the possible catchable and non-catchable exceptions raised by the system for
ASSIGN statement. All the system exception classes start with CX_SY_.

Going back to the code in Listing 9.5, we have identified the CX_SY_ZERODIVIDE
catchable exception, which is raised by the system when it encounters a value
being divided by zero. The only situation in which a system exception is not
raised under such circumstances is when the numerator is also zero. Here, CX_SY_
ZERODIVIDE is a global class with certain components, as shown in Figure 9.10.
378

Class-Based Exception Handling 9.3
Figure 9.9 Possible Exceptions for ASSIGN Statement

Figure 9.10 CX_SY_ZERODIVIDE Class

As you can see in Figure 9.10, the CX_SY_ZERODIVIDE class implements an IF_MES-
SAGE interface that has two methods: GET_TEXT and GET_LONGTEXT. Aliases for
these methods are maintained in the Aliases tab, as shown in Figure 9.11.
379

Exception Handling9
Figure 9.11 Aliases for Interface Methods

In Listing 9.5, we defined a R_ER reference object referring to the CX_SY_ZERODI-
VIDE static type. Within the TRY control structure, the statement CATCH cx_sy_
zerodivide INTO r_ex instantiates the R_EX object. We accessed the short text and
long text of the error by calling the methods GET_TEXT and GET_LONGTEXT, respec-
tively.

Optionally, we also maintained the CLEANUP block, in which suitable exit code to
gracefully exit the procedure can be maintained. For example, the CLEANUP block
can be used to close any open files or rollback any database updates.

If you look carefully at the class CX_SY_ZERODIVIDE, you’ll see that it inherits from
a CX_SY_ARITHMETIC_ERROR superclass. The CX_SY_ARITHMETIC_ERROR class in turn
inherits from a CX_DYNAMIC_CHECK superclass, which inherits from CX_ROOT (see
Figure 9.12).

Figure 9.12 Inheritance Tree for Exception Class

Superclass Superclass

Superclass
380

Class-Based Exception Handling 9.3
The base class for all exception classes is CX_ROOT, which implements the IF_MES-
SAGE and IF_SERIALIZABLE_OBJECT interfaces. The IF_MESSAGE interface contains
the GET_TEXT and GET_LONGTEXT methods, which allow you to extract the error
message. The IF_SERIALIZABLE_OBJECT interface is used for object serialization, a
process in which the object is converted into a serialization format (e.g., XML,
CSV) that can be transmitted to create a clone of the object in the same system or
another system. The IF_SERIALIZABLE_OBJECT interface should be implemented if
the exception object needs to be serialized. The CX_ROOT class also implements
another method, GET_SOURCE_position, which returns the position in the source
code that caused the error.

When catching class-based exceptions, the exception information is captured by
an object that is an instance of a class that inherits from one of three global
abstract classes: CX_STATIC_CHECK, CX_DYNAMIC_CHECK, or CX_NO_CHECK. These
three global abstract classes are in turn subclasses of CX_ROOT. For example, in Lis-
ting 9.5, we can define the R_ER reference object as an instance of the CX_ROOT
class instead of the CX_SY_ZERODIVIDE class and still be able to catch the exception
as shown in Listing 9.6. However, doing so will make the error logic generic and
miss any specific exception handling details maintained in the specific exception
class.

DATA r_ex TYPE REF TO cx_root.
TRY.
v_unit_value = v_total_value / v_quantity.
CATCH cx_sy_zerodivide INTO r_ex.

WRITE : / 'Error Short Text:', r_ex->get_text().
WRITE : / 'Error long Text:', r_ex->get_longtext().

ENDTRY.

Listing 9.6 Using CX_ROOT Instance

As noted, when defining a custom exception class, it should inherit from one of
three classes:

� CX_STATIC_CHECK

If an exception class that’s a subclass of CX_STATIC_CHECK is raised in a function
module or method, it should be either defined in the signature (parameter
interface) or caught in the procedure within a TRY block. Otherwise, a warning
message is shown by the syntax checker.
381

Exception Handling9
� CX_DYNAMIC_CHECK
Similar to CX_STATIC_CHECK, if an exception class that’s a subclass of CX_DYNAM-
IC_CHECK is raised in a function module or method, it should either be defined
in the signature (parameter interface) or caught in the procedure within a TRY
block. Otherwise, the compiler will not give a static warning message statically
but will produce a runtime error.

� CX_NO_CHECK

The exception class that is a subclass of CX_NO_CHECK can’t be defined in the sig-
nature of a function module or method. It’s implicitly declared by default and
always propagated to the caller.

Because CX_STATIC_CHECK is checked by the compiler during design time, it’s rec-
ommended to use this class to define exception classes. Most system exceptions
are derived from CX_DYNAMIC_CHECK.

SAP has implemented many exception classes that can be used out of the box. The
keyword documentation lists all the available system exception classes, as shown
in Figure 9.13. Keyword documentation can be accessed using Transaction ABAP-
DOCU.

Figure 9.13 System Exception Classes in Keyword Documentation
382

Class-Based Exception Handling 9.3
However, if required, we can create custom exception classes either locally in the
program or globally in Class Builder. We’ll look at how to implement both
options next.

9.3.3 Defining Exception Classes Globally

Most often, we define exception classes globally so that they can be used in mul-
tiple programs. The steps to create an exception class in Class Builder are similar
to those to create any regular class, except that the exception class must inherit
CX_STATIC_CHECK, CX_DYNAMIC_CHECK, or CX_NO_CHECK, or any class that inherits
these classes.

In addition, exception classes should follow the naming convention of CX_ for the
SAP namespace and ZCX_ for customer namespace. The Exception Class check-
box is also checked for the exception class.

Follow these steps to define an exception class in Class Builder:

1. Enter the name of the exception class on the Class Builder initial screen (Trans-
action SE24) and click the Create button. The name of the exception class
should start with ZCX_, as shown in Figure 9.14.

Figure 9.14 Class Builder: Initial Screen

2. The system will present the properties dialog box. Because you used the nam-
ing convention ZCX_, the system automatically assigns CX_STATIC_CHECK under
Superclass and selects the Exception Class radio button under Class Type, as
shown in Figure 9.15. Optionally, you can change the superclass to CX_DYNAM-
IC_CHECK or CX_NO_CHECK or any class that inherits these abstract classes. Main-
tain a description for the class and set the preferred instantiability for the class,
as shown in Figure 9.15.
383

Exception Handling9
The With Message Class checkbox will allow you to use a message class for
storing messages. We’ll discuss using messages in Section 9.4.

3. Click Save and save the class to a suitable package.

Figure 9.15 Class Properties Dialog Box

4. You’ll notice that Class Builder has opened the class in the exception class per-
spective, which is similar to the class perspective except for minor additional
options (see Figure 9.16). For example, you’ll see a Texts tab that isn’t available
when creating regular classes.

Figure 9.16 Class Builder in Exception Class Perspective
384

Class-Based Exception Handling 9.3
The class inherits the interfaces and methods from the CX_ROOT superclass. A
constructor is also generated for the class, and it can’t be edited. The construc-
tor initializes the attributes defined in the class. These attributes can be passed
when the exception is raised using the RAISE EXCEPTION statement. We’ll
explain how to use these attributes in the next section.

SAP recommends that you do not define new methods or redefine inherited
methods.

5. Click the Activate button to activate the class.

6. The exception class now can be used in your programs to raise an exception. In
function modules and methods of a global class, you need to select the Excep-

tion Classes checkbox to maintain the exception class, as shown in Figure
9.17.

Note

Note that in function modules and methods, you can’t maintain the static exceptions
discussed in Section 9.2 when using exception classes.

Figure 9.17 Maintaining Exception Class in Function Module

7. The exception can be raised within the function module using the syntax RAISE
EXCEPTION TYPE ZCX_NO_MATERIAL, as shown in Figure 9.18.
385

Exception Handling9
Figure 9.18 Raising Exception for ZDEMO_GET_MATERIAL_DESCRIPTION

Now that you know how to define exception classes globally, let’s look at local
exception classes.

9.3.4 Defining Exception Classes Locally

Local exception classes can be defined to work with exceptions within the program
locally. The syntax to define a local exception class is similar to that for a regular
class, except that it should inherit CX_STATIC_CHECK, CX_DYNAMIC_CHECK, or CX_NO_
CHECK, as shown in Listing 9.7. The naming convention LCX_ is used for local
exception classes.

In Listing 9.7, we define a LCX_NO_MATERIAL local exception class, which inherits
from the CX_STATIC_CHECK class. Apart from their visibility, working with local
exception classes is similar to working with global exception classes.

CLASS lcx_no_material DEFINITION INHERITING FROM cx_static_check.
ENDCLASS.
CLASS lcx_no_material IMPLEMENTATION.
ENDCLASS.

Listing 9.7 Local Exception Class
386

Messages in Exception Classes 9.4
9.4 Messages in Exception Classes

Exception classes allow us to exit an exception situation gracefully. However,
sometimes an exception is caused by an error that may need human intervention
to fix. In such situations, we can capture a message when the exception is raised
so that the error can be identified. For this, we can pass a text message with the
exception. Texts can also have dynamic field values to supplement the message.

Texts can be maintained directly in the exception class, which uses the Online
Text Repository (OTR), or we can also use messages from a message class (Trans-
action SE91). The following subsections will look at each of these cases.

9.4.1 Using the Online Text Repository

The following steps walk you through maintaining messages in exception classes:

1. In the Attributes tab of the exception class, define an attribute with a value
you want to pass in the message (see Figure 9.19). In this example, we’re main-
taining MAT_NO as the attribute name of type MATNR because we plan to pass the
material number in the exception message. Once the attribute is defined, click
Activate.

Figure 9.19 Maintaining Attribute in Exception Class

2. Under the Texts tab, maintain an Exception ID and a Text. You can pass the
attribute value in the message by keeping the attribute name between amper-
sands (&), as shown in Figure 9.20. Here, we’ve maintained the Exception ID

as INVALID_MATERIAL and the text as The material &mat_no& is invalid by
enclosing the attribute within ampersands. You can also maintain long text for
the message by clicking the Long Text button. When finished, click Activate.
387

Exception Handling9
Figure 9.20 Maintaining Exception ID and Text

3. At this point, under the Attributes tab, you’ll see that the Exception ID defined
is added as a constant of type SOTR_CONC, as shown in Figure 9.21. The main-
tained text is saved in the OTR and supports internationalization (translations).

Figure 9.21 Exception ID Added as Attribute

4. The class constructor automatically adds the attributes that you’ve added as
importing parameters to its signature, which can be passed while raising the
exception using the EXPORTING keyword. The constructor ensures that all the
attributes are initialized properly. The textid attribute stores the Exception ID

to access the corresponding text. The previous attribute stores the previous
exceptions in the context. Figure 9.22 shows the signature and initialization
code of the constructor method after adding the mat_no attribute.
388

Messages in Exception Classes 9.4
Figure 9.22 Signature of Constructor

5. To raise the exception and pass the message with the material number, you can
enhance the RAISE EXCEPTION statement used earlier, as shown in Figure 9.23.
Here, you call the constructor and pass TEXTID by accessing the INVALID_MATE-
RIAL constant defined under the attributes of the class. This constant refers to
the corresponding Exception ID. You also pass the material number to the mat_
no attribute so that the &mat_no& field in the text will be replaced with the
value.

Figure 9.23 Passing Message in Exception
389

Exception Handling9
When this exception is caught in the program using the code listed in Listing 9.8,
it will result in the output shown in Figure 9.24.

DATA v_matnr TYPE matnr VALUE '100'.
DATA v_maktx TYPE maktx.
DATA lr_err TYPE REF TO ZCX_NO_MATERIAL.
TRY.

CALL FUNCTION 'ZDEMO_GET_MATERIAL_DESCRIPTION'
EXPORTING
im_matnr = v_matnr
im_spras = sy-langu

IMPORTING
ex_maktx = v_maktx.

CATCH ZCX_NO_MATERIAL INTO lr_err.
WRITE lr_err->get_text().

ENDTRY.

Listing 9.8 Catching Exception to Print Text

Figure 9.24 Output of Code in Listing 9.8

9.4.2 Using Messages from a Message Class

To use messages from a message class, proceed with the following steps:

1. Select the With Message Class checkbox, as shown in Figure 9.25.

Figure 9.25 Class Properties Window
390

Messages in Exception Classes 9.4
2. Once this checkbox is selected, the system automatically adds an IF_T100_MES-
SAGE interface to the message class, which is used to access the messages stored
in message class (see Figure 9.26).

Figure 9.26 IF_T100_MESSAGE Interface Added to Message Class

3. To use the message from the message class, go to the Texts tab, maintain the
exception ID, and click the Message Text button, as shown in Figure 9.27.

Figure 9.27 Maintaining Message from Message Class

4. In the Assign Attributes of an Exception Class to a Message window, pro-
vide the Message Class name and message ID (Message Number). If you want
to pass the attribute value to the message, you can select the attribute from the
dropdown next to each attribute field. You can pass up to four attributes, as
shown in Figure 9.28.

5. For the attribute value to be shown in the message, the message in the message
class should use & as a placeholder, as shown in Figure 9.29. When the message
is called, the placeholder will be replaced with the actual value.
391

Exception Handling9
Figure 9.28 Assigning Attributes to Message

Figure 9.29 Using Placeholder in Message Maintained in Message Class

With SAP NetWeaver 7.5, SAP introduced a new interface, IF_T100_DYN_MSG,
which extends the functionality of the IF_T100_MESSAGE interface, which we dis-
cussed in the preceding steps. The IF_T100_DYN_MSG interface contains the IF_
T100_MESSAGE interface as a component interface and contains the MSGTY attribute
for the message type and attributes from MSGV1 to MSGV4 for the placeholders of
the message.

Unlike using the IF_T100_MESSAGE interface, for which there is no built-in support
for message attributes, with the IF_T100_DYN_MSG interface you don’t need to
manually define attributes for dynamic messages, because they’re predefined in
the interface. The IF_T100_DYN_MSG interface also provides built-in support to set
the message type for the message using the MSGTY attribute.
392

Summary 9.5
9.4.3 Using the MESSAGE Addition to Raise an Exception

SAP NetWeaver 7.5 introduced a new addition, MESSAGE, which can be used when
raising exceptions. Using the MESSAGE addition, you can pass the message specifi-
cations, such as the message type, message ID, and message number, as well as
the placeholders for the message.

If the message class implements the IF_T100_DYN_MSG interface, you can pass the
message type using the TYPE addition, and the placeholders for the message can
be passed using the WITH addition (see Listing 9.9). However, if the message class
implements the IF_T100_MESSAGE interface, then you can’t pass the message type
and the message placeholders using the WITH addition.

Listing 9.9 shows example code to raise an exception when the IF_T100_DYN_MSG
interface is implemented in the message class. In this example, we’re using the
MESSAGE addition to pass the message specifications. The attributes and the mes-
sage type can be passed directly without having to define them separately in the
exception class, because the IF_T100_DYN_MSG interface provides built-in support.

RAISE EXCEPTION TYPE zcx_no_material
MESSAGE ID sy-msgid

TYPE sy-msgty
NUMBER sy-msgno
WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.

Listing 9.9 Raising Exception with IF_T100_DYN_MSG Interface Implemented

9.5 Summary

In this chapter, you learned how errors can be handled in your programs to exit
applications gracefully. We also looked at both procedural exceptions and class-
based (object-oriented) exceptions. In the final section of this chapter, we dis-
cussed the use of messages in exception classes and explained how to use both the
OTR and messages from message classes. We also identified some new concepts
introduced in SAP NetWeaver 7.5.

At this point, you should be comfortable raising exceptions from your procedures
and catching exceptions in your programs that are raised by other procedures.

In the next chapter, we’ll discuss ABAP Data Dictionary in greater detail and go
over how to create various dictionary objects.
393

Chapter 10

ABAP Data Dictionary has been discussed in previous chapters on an
as-needed basis. This chapter reviews the concepts already mentioned and
offers a complete discussion of those topics that haven’t yet been covered.

10 ABAP Data Dictionary

ABAP Data Dictionary is the central store used to create and manage data defini-
tions (metadata). Maintaining data definitions centrally in ABAP Data Dictionary
helps avoid redundancies. In addition, because APAP Data Dictionary is a central
repository, any modifications made to its data definitions will be reflected in pro-
grams automatically. In other words, ABAP Data Dictionary ensures data integ-
rity, data consistency, and data security.

Using ABAP Data Dictionary, we can maintain a variety of objects, such as tables,
views, data types, domains, type groups, search helps, and lock objects. Figure
10.1 shows the initial ABAP Data Dictionary screen (Transaction SE11). Using
ABAP Data Dictionary objects, we can add additional functionality to screen fields
automatically, such as input help ((F1) help) and search help ((F4) help).

Figure 10.1 ABAP Data Dictionary: Initial Screen
395

ABAP Data Dictionary10
ABAP Data Dictionary is completely integrated with ABAP Workbench, so defini-
tions maintained in ABAP Data Dictionary can be used seamlessly in all ABAP
Workbench tools. As for all repository objects, to allow for continuous changes to
ABAP Data Dictionary objects during the development phase, such objects are
stored in active and inactive versions. Any changes that are made are saved as an
inactive version, allowing all the related objects to be activated together and
transported. The runtime system uses only the active version of the object and
ignores the inactive version, allowing us to change objects without affecting
dependent applications.

We’ve discussed some of the ABAP Data Dictionary objects in bits and pieces so
far in this book on an as-needed basis. In this chapter, we’ll discuss all of the ABAP
Data Dictionary objects in greater detail, including the database tables, views, data
types, type groups, domains, search helps, and lock objects. This chapter will also
serve as a step-by-step guide to create all of these dictionary objects.

In Section 10.1, we’ll discuss database tables, including how to create them and
how to use primary and secondary indexes. We’ll also touch on using the table
maintenance generator, foreign keys, and include and append structures. Then,
in Section 10.2, we’ll discuss creating, using, and maintaining database views,
projection views, maintenance views, help views, and the new ABAP Core Data
Services (CDS) views.

Next, in Section 10.3, you’ll learn how to create global data types, such as screen
elements, structures, and table types. We’ll then discuss how to use type groups
to maintain global data type declarations in Section 10.4, before shifting our
attention to domains in Section 10.5.

Section 10.6 will examine elementary and collective search helps. Finally, in Sec-
tion 10.7, we’ll provide information on using logical lock functionality in applica-
tions using lock objects. By the end of the chapter, you’ll have a thorough under-
standing of the ABAP Data Dictionary objects and how to use them in your own
projects.

10.1 Database Tables

Database tables are one of the most important objects in ABAP Data Dictionary.
As you know, every SAP system consists of an underlying relational database or
396

Database Tables 10.1
in-memory database, such as SAP HANA. However, we can define tables inde-
pendently of databases in ABAP Data Dictionary. We don’t work at the database
level to define database tables; we always use ABAP Data Dictionary to maintain
database table definitions.

Once the corresponding object (the table) is defined in ABAP Data Dictionary and
activated, the system creates the database table physically in the underlying data-
base with the same structure as the table definition defined in ABAP Data Dictio-
nary. The system automatically translates the definitions of the table in ABAP
Data Dictionary to the definitions native to the underlying database. This allows
us to not worry about the underlying database specifics; ABAP Data Dictionary
acts as middleware between the database and the SAP system.

Figure 10.2 shows the table definition of the transparent table MAKT maintained
in ABAP Data Dictionary. Figure 10.3 shows the corresponding database table
created in the underlying database.

Figure 10.2 Table Definition in ABAP Data Dictionary

A transparent table in ABAP Data Dictionary has a one-to-one projection of the
underlying database table. In other words, when we define a transparent table in
ABAP Data Dictionary, exactly one database table with identical names and fields
is created in the underlying database.

In addition to transparent tables, we can define other categories of tables in ABAP
Data Dictionary, such as cluster tables, pool tables, and global temporary tables.
You’ll learn more about these table categories in Section 10.1.1.
397

ABAP Data Dictionary10
Figure 10.3 Database Object Created in Underlying Database

A database table in ABAP Data Dictionary consists of the following components:

� Table fields
Each database table consists of fields. Table fields define the structure of the
database table. Each database table field is fully defined by assigning a data
type. The fields represent table columns, and the primary key of the table exists
as a subset of table fields.

� Foreign keys
Foreign keys define the relationship between the current database table and
other database tables in the database.
398

Database Tables 10.1
� Technical settings
Technical settings control the creation of the database table in the underlying
database. We can maintain different settings, such as initial database table size,
tablespace to create the database table, and so on.

� Indexes
The key fields of the database table form the primary index of the database
table. Additional secondary indexes can be created to speed up data selection.

In this section, we’ll look at these database table components, as well as inputting
data into a database table using a maintenance view. We’ll also discuss including
structures in tables and using append structures to enhance standard SAP data-
base tables.

But first, let’s walk through the steps for creating a database table in the ABAP
Data Dictionary.

10.1.1 Creating a Database Table

The following is a step-by-step guide to create a database table in the ABAP Data
Dictionary:

1. On the initial screen of the ABAP Data Dictionary (refer back to Figure 10.1),
select the Database Table radio button, enter the name of the database table
you wish to create, and click the Create button. The name of the database table
should be in the customer namespaces (starting with Y or Z).

2. The table will open in the Dictionary: Change Table view. On this screen, pro-
vide a meaningful description for the table. By default, the system will create a
transparent table. If you wish to create other types of tables, such as cluster,
pool, or global temporary tables, use the menu path Extras � Change/Display

Table Type to change the table category.

The following table categories can be defined in ABAP Data Dictionary:

� Transparent table: Each transparent table defined in ABAP Data Dictionary
creates exactly one database table in the underlying database, with identical
names and fields. All customer tables, including tables that store business
data, should be defined as transparent tables.
399

ABAP Data Dictionary10
� Pool tables and cluster tables: Pooled tables and cluster tables are an SAP-
specific category of database tables that has one to many relationships with
underlying database tables. In other words, when you define a pooled table
or a cluster table in ABAP Data Dictionary, it can create multiple database
tables in the underlying database. These tables are usually used by SAP to
store internal control information, documentation, and so on.

Transparent, pool, and cluster tables

These tables shouldn’t be used to store business data. SAP recommends transforming all
existing pooled tables and clustered tables to transparent tables. Similar to transparent
tables, you can use Open SQL statements to access pooled and cluster tables; however,
you can’t use Native SQL statements for pooled and cluster tables.

You can read more about these tables at http://help.sap.com/abapdocu_750/en/index.htm?
file=abenddic_database_tables_poolclu.htm.

� Global temporary tables (GTTs): With the release of SAP NetWeaver 7.5, a
new table category, global temporary tables, has become available. GTTs are
special transparent tables used to store temporary data within a database log-
ical unit of work (LUW). A database LUW exists between each dialog step.
Each dialog step comprises programming logic between two successive
screens. Individual dialog steps of a program can be executed by different
work processes in the application server, and a program consists of multiple
dialog steps. GTTs allow you split complicated database processes into mul-
tiple steps, such as storing temporary subtotals.

GTTs are designed specifically for storing temporary data within a database
LUW and thus incur far lower administration costs than regular transparent
tables. A GTT is always empty at the start of a database LUW, which implies
that it should be cleared at the end of each database LUW. Database systems
generally provide native support for GTTs by implicitly defining the data in a
GTT database table as transaction-specific data. This ensures that the data in a
GTT is implicitly deleted at the end of a database LUW (when a database com-
mit or rollback is performed).

If a GTT defined in ABAP Data Dictionary is filled explicitly using Open SQL
statements, then it should be cleared explicitly at the end of a database LUW
using the statement DELETE FROM dbtab. A GTT should also be explicitly cleared
400

http://help.sap.com/abapdocu_750/en/index.htm?file=abenddic_database_tables_poolclu.htm
http://help.sap.com/abapdocu_750/en/index.htm?file=abenddic_database_tables_poolclu.htm

Database Tables 10.1
if ABAP statements such as COMMIT WORK, COMMIT CONNECTION, ROLLBACK WORK,
ROLLBACK CONNECTION, or associated Native SQL statements are used. The COM-
MIT WORK and ROLLBACK WORK statements clear the GTTs of all currently open
database connections, but you can delete the GTTs of the specified connection
by using the COMMIT CONNECTION and ROLLBACK CONNECTION statements.

If an ABAP Data Dictionary GTT isn’t cleared explicitly via the DELETE FROM
dbtab statement before an implicit database commit is performed, it will result
in the runtime error COMMIT_GTT_ERROR. This runtime error is raised even if the
table is empty if the statement DELETE FROM dbtab is supplied with a WHERE
clause. The explicit clearing of ABAP Data Dictionary GTTs is forced by SAP to
ensure that the code is transparent and easy to understand. For example, the
developer may be surprised to find the table empty in between a programming
module if the table was cleared implicitly by the database system due to a data-
base LUW performed by an RFC. Explicitly clearing GTTs also helps to avoid
platform dependencies, because not all database systems implicitly clear GTTs.
GTTs can be accessed just like regular transparent tables via both Open SQL and
Native SQL statements. However, SAP recommends using only Open SQL state-
ments when working with GTTs.

3. The Dictionary: Change Table view consists of multiple tabs to maintain var-
ious properties of the database table. The Delivery and Maintenance tab is
selected by default. Under this tab, you can maintain the settings for Delivery

Class and Data Browser/Table View Maintenance:

� Delivery Class: This field allows you to select the type of data the database
table will contain. Use (F4) help to select from one of the available options,
as shown in Figure 10.4. The option selected for Delivery Class will control
the transport of table data during installation, upgrades, and client copies.
This setting also influences transport between customer systems. For this
example, select A so that you can store application data in this table.

� Data Browser/Table View Maintenance: This field allows you to restrict
whether data can be entered by the user manually or the table can be
updated only through programs (i.e., Transaction SE16). Select the relevant
option from the dropdown list. Use (F1) help on both fields to learn more
about these settings.
401

ABAP Data Dictionary10
Figure 10.4 Delivery and Maintenance Tab

4. Once the settings are maintained in the Delivery and Maintenance tab, click
the Fields tab. This tab allows you to maintain the fields for the database table
(see Figure 10.5). The Fields tab presents a table control to maintain various
attributes for the field.

Under the Fields tab is a table containing several columns:

� Field: Provide a name for the field. The acceptable characters for field names
are letters, numbers, and underscore. The field name must begin with a let-
ter. A field name must not be longer than sixteen characters.

� Key: Select this checkbox if the field is part of the table key. All the key fields
should be at the top of the table contiguously.

� Initial Values: Select this checkbox to set a NOT NULL flag in the database.
This setting is useful when adding new fields to the existing database table,
because the system will automatically fill the field with type-compatible ini-
tial values for all the rows of the field. If this flag is not set for new fields in
an existing table, the system will assign a NULL value for all the rows of the
field. Because there’s no counterpart for NULL in ABAP, this field can then be
402

Database Tables 10.1
queried only using the special WHERE condition IS NULL or IS NOT NULL with
Open SQL.

Figure 10.5 Fields Tab

Please keep the following points in mind when using this setting:

– This setting has no effect for new tables, because the NOT NULL flag is set by
default for new tables. This flag is always set for key fields.

– Components of the table can be defined by including components of other
flat structures in ABAP Data Dictionary. These structures are known as
include structures. If this flag is set for an include structure, then it applies
to only to the structure components for which the flag is set. If the structure
component is not set with this flag, it will be ignored.

– It’s recommended to use this flag only if required or if the table has a few
records. In tables with many records, it can take a long time to set the type-
compatible initial values.

� Data Element: Provide the data element from which the field should inherit
semantic and technical properties. If you want to create a new data element,
you can enter the name of the data element and double-click it to create a
new data element.
403

ABAP Data Dictionary10
� Data Type/Length/Decimal Places/Short Description: These fields are dis-
abled by default and filled automatically based on the data element provided
in the previous field. If you wish to maintain the data type, length, decimal
places, and short description manually, click the Predefined Type button (see
Figure 10.6) and enter the details manually. Note that only limited function-
ality is provided for fields without data elements. These fields can’t have for-
eign keys or fixed values defined. There is no (F1) help for these fields.

� Group: When including a structure in the table, the structure can be
assigned a group name. ABAP programs can access the fields of this include
structure together or individually using the group name. Note that the com-
ponents of the include structure are part of the table, so they can be accessed
directly using the table name reference. Providing a group name is optional.

Figure 10.6 Predefined Type

5. Once you’ve finished with the entries under the Fields tab, go to the Entry

Help/Check tab. The Entry Help/Check tab shows information about the asso-
ciated check table, input help, and search help for the fields (see Figure 10.7).

Figure 10.7 Entry Help/Check Tab
404

Database Tables 10.1
6. If the table has fields of type currency (type CURR) or quantity (type QUAN), then
the reference fields should be maintained in the Currency/Quantity Fields tab
(see Figure 10.8). Currency fields should be referred to a field of type CUKY and
quantity fields should be referred to a field of type UNIT. Reference fields can
exist in the same table or another table. This tab can be ignored if your table
doesn’t have any currency or quantity fields.

Figure 10.8 Currency/Quantity Fields Tab

7. Once all the fields are maintained, you need to maintain the enhancement cat-
egory for the table. If the enhancement category isn’t maintained, the system
will produce a warning message during activation. To maintain the enhance-
ment category, follow the menu path Extras � Enhancement Category to open
the Maintain Enhancement Category dialog box, as shown in Figure 10.9.
The following options are available:

� Can Be Enhanced (Deep): Select this option if the table can be enhanced by
adding fields of any type.

� Can Be Enhanced (Character-Type or Numeric): Select this option if the
table can be enhanced with character or numeric fields but must not contain
any deep data types, such as tables, object references, or strings.

� Can Be Enhanced (Character-Type): These tables can be enhanced with
character-type fields (types C, N, D, T, and X) only.

� Cannot Be Enhanced: Select this option if the table must not be enhanced
in any way.
405

ABAP Data Dictionary10
Click the Information icon (lowercase i) in the window to learn more about
these options.

Figure 10.9 Maintain Enhancement Category

8. Once the enhancement category for the table is maintained, you need to main-
tain the technical settings for the table before it can be activated.

Technical settings define how the table is created in the database. Save your
table before calling the technical settings screen. To maintain technical settings
for the table, click the Technical Settings button (see Figure 10.10) in the
application toolbar to call the Dictionary: Maintain Technical Settings

screen (see Figure 10.11). This will open Transaction SE13.

Figure 10.10 Calling Technical Settings Screen

9. You can maintain the following technical settings for the database table on this
screen (see Figure 10.11):

� Data Class: This setting is significant only for Oracle and Informix database
platforms. For all other database platforms, this setting should be ignored.
406

Database Tables 10.1
This setting decides the physical area of the database (known as the
tablespace) in which the table must be created. Use (F4) help to select the
type of data that you plan to store in the table. Based on the value, the system
will automatically decide the location of the table in the database.

� Size Category: Size Category determines the initial memory space to be
allocated for the database table. If the initial memory space is used up, the
size of the table will be incremented by the same value, known as extends.
Provide a good estimate to avoid too many small memory areas or memory
areas that are too big. Use the (F4) help to select the applicable value. You can
ask your functional consultant to provide you an estimate of expected
records.

Figure 10.11 Technical Settings Screen

� Buffering: As discussed in Chapter 2, Section 2.2.2, these settings deter-
mine whether the data in the database table should be buffered. If buffering
407

ABAP Data Dictionary10
is switched on, the system will keep a copy of the database content in the
application server to speed up data selection and improve performance.
Because the data for the buffered tables can be accessed directly from the
application server buffer, buffering helps to avoid the time-consuming pro-
cess of accessing the database and also reduces the network load.

Buffering is recommended for data that seldom changes. When an application
changes the data of the buffered table in the application server, the database
interface notes this change in a log. A synchronization program checks this log
and updates based on the changes at regular intervals (say, every one to two
minutes) to keep the application server buffer in sync with the data in the cor-
responding database table. If the data in the database table changes frequently,
then the synchronization program continuously updates the data in the buffer,
which may impact system performance. For this reason, we don’t recommend
buffering tables for which data changes frequently or using buffering when
access to real-time data is required.

The following options are available to set buffering permissions:

� Buffering Not Allowed: This setting turns off the buffering for the data-
base table and specifies that this table should not be buffered in any system.

� Buffering Allowed but Switched Off: This option specifies that the buff-
ering is switched off for the database table when delivered but can be acti-
vated later in other systems, depending on how the table is used.

� Buffering Activated: This setting activates buffering, and the database table
contents are buffered to the application server.

� Buffering Type: If the table buffer is activated, a buffering type must be
defined. Buffering Type defines how many database table records are buff-
ered when a record is read from the database table. The following buffering
types are available: Single Records Buffered, Generic Area Buffered,
Fully Buffered. If Single Records Buffered is selected, only those rows
that are accessed by the program are buffered. If Generic Area Buffered is
selected, the number of key fields should be entered in the input field. When
a row is read from the database table, the system buffers all the matching
rows of the primary key fields up to the number of key fields maintained for
this setting. In addition, if Fully Buffered is selected, all the rows of the
table are buffered when a row of the table is read. With this option, either all
the data in the database table exists in the buffer or none of the data exists.
408

Database Tables 10.1
� Log Data Changes: This setting determines if the data in the table should
be logged for any changes. If this option is selected, all the changes to the
data in the database table will be logged.

� Write Access Only with Java: If this setting is selected, the data in the
table can be updated or modified only from Java applications.

Global Temporary Tables

Note that for GTTs the technical settings are predefined and can’t be modified. Data
type and size category are ignored and undefined. SAP buffering is not allowed, and log-
ging is switched off.

10. Once the required settings are made, click Save in the standard toolbar. After
saving the technical settings, click the Back button to go back to the table and
activate it. The physical table in the database is created when the table is acti-
vated.

We’ve now covered the steps for creating a database table. In the following sec-
tion, we’ll look at one of the key components of database tables: indexes.

10.1.2 Indexes

In this section, we’ll discuss how to use both primary and secondary indexes for
database tables.

Primary Index

The key fields of a database table form the primary index of the table. When the
database table is created, the system automatically generates the primary index
for the key fields. You can think of an index as a copy of the actual table, but with
a reduced number of fields (consisting of only index fields) and with pointers to
the other fields of the table. The entries in the index are always sorted to provide
faster access to the table records. When a search is made for a table record using
the index fields, the system checks the index instead of manually scanning the
database table in order to retrieve the data faster.

For example, say table XYZ has four fields—A, B, C, and D—with A as the key field.
If we write a select query as SELECT * FROM TABLE xyz WHERE A = '10', the system
409

ABAP Data Dictionary10
checks the index to locate the entry where A=10 and uses the pointer to retrieve
the remaining fields of the row from the table (see Figure 10.12).

Figure 10.12 Index

Secondary Index

Apart from the primary index created by default, we can create other indexes,
called secondary indexes. These are required if we’re performing a look up on a
table in which the complete primary key is not used in the WHERE clause. For
example, if we’re searching table XYZ where D=41, then the system can’t make use
of the primary index, because the primary index stores only the key fields.

In such situations in which a suitable index isn’t available, the system performs a
full table scan, which affects performance. To avoid a full table scan if the com-
plete primary key can’t be supplied in the WHERE clause, we can create secondary
indexes.

The database kernel consists of an SQL optimizer, which analyzes the SQL query
and optimizes access to the data by performing cost determination and analyzing
table statistics. The SQL optimizer selects the best search strategy for accessing the
data. For example, if the table contains multiple indexes, the SQL optimizer auto-
matically selects the most suitable index for reading the data.

The SQL optimizer can also determine if performing a full table scan results in
more efficient access than selecting any of the available indexes. Sometimes, the
SQL optimizer may ignore an index and perform a full table scan even when a
suitable index is available. This can happen if the SQL optimizer finds the cost of
a full table scan to be lower than the cost of using a secondary index due to profile
settings that are more favorable to full table scans. Certain databases, such as

A Pointer

1 1

5 4

10 2

12 3

A B

1 20

10 21

12 22

5 23

C

30

31

32

33

D

40

41

42

43

Index Table XYZ
410

Database Tables 10.1
Oracle, support hints, which allows you as an application developer to make deci-
sions that are usually made by the SQL optimizer.

Sometimes, you may know information about your data that the SQL optimizer
may not know; for example, you may know that a certain index is more selective
for certain queries, but the SQL optimizer may ignore it. In such cases, you can
use hints to force the SQL optimizer to use a specific index. You can supply hints
with your query by using the %_HINTS parameter, as shown in Listing 10.1.

SELECT <fields> INTO TABLE<itab> FROM <database table>
WHERE <logical expression>
AND <logical expression>
%_HINTS <database name> 'INDEX("<database table>" "Index name")'.

Listing 10.1 Supplying Hints Using %_HINTS

In Listing 10.1, the %_HINTS parameter is followed by the database name and the
index of the table that should be used. If the database is Oracle and we want the
SQL optimizer to use the secondary index SPFLI~001 of table SPFLI, we can write
the query as shown in Listing 10.2.

SELECT * FROM spfli
INTO TABLE it_spfli
WHERE cityfrom EQ ' NEW YORK'
AND cityto EQ ' SAN FRANCISCO'
%_HINTS ORACLE 'INDEX("SPFLI" "SPFLI~001")'.

Listing 10.2 Hints in Oracle

Multiple secondary indexes on the same table are identified by using a three-
character index identifier.

The following steps walk through how to define a secondary index for a database
table:

1. First, on the Dictionary: Change Table screen, click the Indexes button, as
shown in Figure 10.13.

2. The system will open a window displaying all the secondary indexes created for
the database table. If no secondary indexes are defined, this window will show
an empty list. Click the Create button and choose Create Index from the drop-
down menu, as shown in Figure 10.14.
411

ABAP Data Dictionary10
Figure 10.13 Creating Index

Figure 10.14 Create Secondary Index

3. In the Create Index dialog box that appears, input the index name and click
Continue (see Figure 10.15).

Figure 10.15 Maintain Index Name

4. On the Dictionary: Change Index screen (see Figure 10.16), provide a mean-
ingful short description. On this screen, you have the option to select to create
a unique index or a non-unique index. If the values in index fields uniquely iden-
tify a row (i.e., the combination of the values in the key fields shouldn’t exist
412

Database Tables 10.1
more than once in the table), select Unique Index. Otherwise, select Non-

Unique Index. When you select Non-Unique Index, you can also select if the
index should be created in all database systems (Index on All Databases Sys-

tems), For Selected Database Systems, or not created at all in the database
(No Database Index).

Figure 10.16 Maintaining Index Properties

5. Use the Table Fields button to select the fields of the index. The order of the
fields selected is very important. While querying the table, the index is used
only if the order of the fields is specified in the same order as in the WHERE
clause of a SELECT statement or if a SQL optimizer hint is supplied (for some
database systems, such as Oracle).

6. Once the fields are selected, activate the index. The secondary index is now cre-
ated for the table.

Creating additional secondary indexes can have side effects for system perfor-
mance. It isn’t a good idea to create too many indexes or indexes that have too
many common fields, because doing so might make it more difficult for the opti-
mizer to choose the most selective index.

Choose index fields
413

ABAP Data Dictionary10
You can check all the available indexes for the database object by selecting the
Indexes button in the application toolbar, as shown in Figure 10.17.

Figure 10.17 Displaying Indexes

10.1.3 Table Maintenance Generator

To make it easy for users to input data into a database table, we can generate a
maintenance view for the database table.

Follow these steps to create a maintenance view:

1. From the table maintenance screen, select the Delivery and Maintenance tab.
For the Table View Maint. field, select Display/Maintenance Allowed (see
Figure 10.18) from the dropdown and activate the table.

Figure 10.18 Set Display/Maintenance Allowed
414

Database Tables 10.1
2. Follow the menu path Utilities � Table Maintenance Generator. This will
open the Generate Table Maintenance Dialog: Generation Environment

window, as shown in Figure 10.19.

Figure 10.19 Table Maintenance Generator

On this screen, you have the following options:

� Authorization Group: Provide the Authorization Group to restrict the
maintenance permission to select users. Enter “&NC&” in this field if you
don’t want to set any restrictions.

� Function group: Enter the name of the function group in which all the
required code will be generated.

� Package: Displays the package to which the object is assigned.

� Maintenance type: There are two radio button options for this field:

– one step: This will create a single screen for display and maintenance.

– two step: This will create two screens, one for display and one for main-
tenance.

� Maint. Screen No.: You can enter the screen numbers that should be cre-
ated or use the Find Screen Numbers button in the application toolbar for
the system to propose available screen numbers for the chosen function
group.
415

ABAP Data Dictionary10
� Recording Routine: Allows you to record the changes to the table records,
which can then be transported. Select Standard Recording Routine or the
no, or user, recording routine. If you select Standard Recording Rou-

tine, the system will use the standard routine to record the changes and the
data can be transported based on the client settings. Disabling this option
will result in changes not recorded and data not transported.

� Find Screen Numbers: Click this button to allow the system to propose the
available screen numbers for the function group used.

3. Once the required settings are maintained, click the Create button to generate
the maintenance view for the table.

The maintenance view that is generated allows you to perform various actions
using different predefined events.

To execute custom code for the available events, proceed with the following
steps:

1. Follow the menu path Environment � Modification � Events on the table
maintenance screen.

Figure 10.20 Using Events

Enter the routine name
Click the editor to
maintain code

Use F4 to select the event
416

Database Tables 10.1
2. In the next window, click the New Entries button and select the event using
the (F4) help. Enter the form routine name that should be called for the event,
as shown in Figure 10.20.

Click the Editor icon to create an include program in the function group (see
Figure 10.21) and maintain the subroutine with your custom code (see Figure
10.22).

Figure 10.21 Create Include

Figure 10.22 Maintain Subroutine

3. Here, use event 05, which is triggered when creating a new entry. In the sub-
routine, you’re checking if the SPRAS field is empty and throwing an error mes-
sage accordingly. You can test the implementation by opening the table in
Transaction SM30 or using the menu path Utilities � Create Entries from the
table maintenance screen, as shown in Figure 10.23.

4. Click the New Entries button on to create a record. If the Language key field
is left empty, it will show the error message on the New Entries screen (see
Figure 10.24).
417

ABAP Data Dictionary10
Figure 10.23 Create Entries

Figure 10.24 Error Message Triggered by Subroutine

In this section, we discussed the steps for creating a maintenance view for a data-
base table. In the next section, we’ll look at using foreign keys to define the rela-
tionships between database tables.

10.1.4 Foreign Keys

Foreign keys define the relationship between tables. If a field of one table exists as
a key field in another table, then the tables are said to be in a foreign key relation-
ship. The table in which the fields exist as keys is called the check table, and the
other table is called the foreign key table.
418

Database Tables 10.1
In Figure 10.25, the PLANETYPE field in table SFLIGHT exists as a key field in table
SAPLANE. Here, table SFLIGHT is the foreign key table and table SAPLANE is the
check table.

Figure 10.25 Foreign Key Relationship

Using the check table, automatic input validations can be performed for the field
in the foreign key table. This ensures data integrity, and no invalid data goes into
the system. For example, if you have a custom table with the MATNR field and you
want to ensure that the user must input only the valid material numbers main-
tained in the material master table MARA, you can create a foreign key relationship
with MARA as the check table.

When the user inputs the material number in your custom table, the system will
automatically check if the record exists in table MARA. Note that the foreign key
relationship is created only in ABAP Data Dictionary and not in the database. The
check is performed against the check table only when the user inputs the record
through a screen. The check is not performed when the records are updated using
Open SQL statements. While programming an Open SQL statement, the check
table should be considered manually and checked in the program.

Foreign Key Table Check Table
419

ABAP Data Dictionary10
The following steps allow you to create a foreign key relationship:

1. On the table maintenance screen, select the table field and click the Foreign

Keys icon, as shown in Figure 10.26.

Figure 10.26 Foreign Key

2. If a value table is maintained at the domain of the field, the system will show a
prompt asking whether to create a proposal based on the value table. A value
table is maintained at the domain (see Figure 10.27) that is attached to the data
element; it specifies the possible entries for the field but does not perform any
checks.

Figure 10.27 Value Table Assigned for Domain
420

Database Tables 10.1
Check tables perform checks on the field input. In most cases, the value table
and check table will be same; otherwise, the value table may propose a value as
a possible entry and the check table may reject that entry. You can accept the
system proposal or maintain any other table as a check table.

3. On the Change Foreign Key… screen (see Figure 10.28), you have the follow-
ing options:

� Check Table: Enter the check table name and click Generate Proposal to
list the fields of the check table that can be mapped to the foreign key table.

� Generic: If you have multiple fields in the foreign key table that match the
key fields in the check table, you can select this checkbox to ignore the input
validation for the field.

� Constant: You can assign a constant value for other fields so that the system
will check if the field in the check table has the assigned constant value for
the input validations.

� Screen Check: Select this checkbox if you want the system to perform input
validations for the foreign key field against the check table. Optionally, you
can also assign a custom error message.

� Semantic attributes: Optionally, you can maintain semantic attributes
while creating the foreign key relationship. These are primarily for docu-
mentation purposes.

� Foreign Key field type: Optionally, the type of foreign key fields can be
defined to describe the meaning of the foreign key fields in the foreign key
table. There are a few options:

– Non-Key Fields/Candidate: Indicates if the fields of the foreign key table
are non-key fields that don’t uniquely identify the row.

– Key Fields/Candidate: Indicates if the fields of the foreign key table are
key fields that uniquely identify the row.

– Key Fields of a Text Table: If this option is selected, the foreign key table
is handled as a text table of the check table. The primary key of the foreign
key table must match the check table, plus a language key field with the
type LANG should exist. One check table can have only one text table. The
entries in the text table are used for input helps for screen fields and other
such purposes.
421

ABAP Data Dictionary10
� Cardinality: A n:m cardinality can be defined for the foreign key table. Car-
dinality specifies, for example, for each record in check table, how many
records can exist in the foreign key table. Use (F4) help to select possible
options. The short text for each option explains the cardinality sufficiently.

4. Click Copy to save the foreign key relationship.

Figure 10.28 Maintain Foreign Key Relationship

10.1.5 Include Structure

If you want to use fields from an existing structure or if you’re creating multiple
tables with common fields that should be maintained centrally, you can add the
fields of the structure to the table by including the structure.

The following requirements must be met to include a structure:

� The structure to be included in the table should be a flat structure.

� The field names in the structure should not be more than sixteen characters in
length.
422

Database Tables 10.1
� The structure can’t have any fields that already exist in the table, because once
the structure is included in the table, the fields of the structure are considered
to be part of the table.

Follow these steps to include a structure in table:

1. On the table maintenance screen, place your cursor on the field where you
want to include the structure. Follow the menu path Edit � Include � Insert, as
shown in Figure 10.29.

Figure 10.29 Include Structure

2. In the Insert Include window shown in Figure 10.30, enter the name of the
Structure. Optionally, you can input a Group name and Name Suffix. If the
group name is provided, the components of the structure can be addressed
from programs once or individually using that group name. If the name suffix
is provided, the fields of the structure will be suffixed with the entered value to
avoid any naming conflicts with the existing fields of the table.

3. Click OK to insert the structure and activate the table.

Figure 10.30 Insert Include Window

4. You can display the fields of the include structure by using the Expand and Col-

lapse button (see Figure 10.31). An include structure can be included any-
where in the table.
423

ABAP Data Dictionary10
Figure 10.31 Expand/Collapse Include Structure

10.1.6 Append Structure

Append structures are used to enhance standard SAP tables by adding your own
fields. Append structures are specific to a table and are added at the bottom of the
table. You can have more than one append structure for a table, but the append
structure of one table can’t be used in another table.

The append structure is created in the customer namespace so that it won’t be
overwritten in an upgrade. The fields in the append structure should also be in
the customer namespace and should start with YY or ZZ. If the new version of the
standard table is imported after an upgrade, the fields of the append structure are
added to the standard table.

As noted, an append structure can be assigned only to one table. If you want sim-
ilar fields in multiple tables, you can create a structure with the fields and include
the structure inside an append structure. You can then create append structures
for each table and include the include structure.

The following steps will walk you through adding an append structure:

1. Open the table in change mode in ABAP Data Dictionary.

2. Click the Append Structure button in the application toolbar, shown in Figure
10.32.

3. In the window that appears (see Figure 10.32), provide the append structure
name in the customer namespace.

4. Maintain the components of the append structure. The field names should start
with ZZ or YY, as shown in Figure 10.33.
424

Database Tables 10.1
Figure 10.32 Adding an Append Structure

Figure 10.33 Creating Append Structure

5. Activate the append structure and click Back to return to the table. The append
structure will be shown at the end of the fields, as in Figure 10.34. You can click
the Expand and Collapse buttons in the toolbar to show the append structure
fields or hide them from view.

Figure 10.34 Append Structure in Table
425

ABAP Data Dictionary10
Note

A database table can’t have long fields (data types VARC, LCHR, or LRAW), because these
long fields should always be at the end of the table.

In this section, we discussed creating, using, and maintaining database tables and
their components. In the next section, we’ll shift our focus to using views in
ABAP Data Dictionary.

10.2 Views

Application data is often spread across multiple tables; you can define views to
combine this data. The lists of database tables accessed by a view are called basis
tables. If the view contains more than one basis table, the basis tables can be
joined using joins. The structure of the view is made from the fields from the
basis tables that are combined. A view is not created physically in the database, so
a view doesn’t store data on its own. A view can be used in ABAP programs for
data selection or as a structure type in data declarations.

The following are different general types of views that can be created in ABAP:

� Database views
Allow you to combine multiple tables and link them using join conditions.

� Projection views
Allow you to create a projection of one table in which fields that aren’t required
can be hidden, thus simplifying the interface.

� Maintenance views
Allow you to join related tables for maintenance.

� Help views
Used for search helps.

� ABAP CDS views
CDS views form an infrastructure that can be used to create the underlying
(persistent) data model in SAP HANA. A CDS view is an entity that isn’t per-
sistent and is defined as a projection of other entities. CDS views were origi-
nally available only with SAP HANA, but with SAP NetWeaver 7.4 SP 5, ABAP
CDS views were introduced. ABAP CDS views implement the general CDS con-
cept of SAP NetWeaver for AS ABAP. Once the ABAP CDS view is defined, it
426

Views 10.2
becomes part of ABAP Data Dictionary and can be accessed from ABAP pro-
grams similarly to other ABAP Data Dictionary objects. ABAP CDS views help
to push certain resource-intensive operations (for example, performing aggre-
gate functions) down to the database level (called code pushdown; see Chapter 5,
Section 5.3.1).

The database view, maintenance view, help view, and projection view can be
defined using ABAP Data Dictionary (Transaction SE11) and are called classic
views. ABAP CDS views can be defined only by using ABAP in Eclipse.

10.2.1 Database Views

A database view is a general view for one or more tables. If more than one table is
used in a view, they can be joined using an inner join.

The following steps detail how to create a database view:

1. On the initial ABAP Data Dictionary screen, select the Views radio button,
input the name of the view, and click the Create button. Note that the view
name should be in the customer namespace.

2. A dialog window appears in which you can select the type of view, as shown in
Figure 10.35. You’re creating a database view here, so select the Database

View radio button and click the green checkmark.

Figure 10.35 View Type

3. Under the Table/Join Conditions tab, enter the database table names under
the table column that you wish to join. You only can use transparent tables as
the base tables in a database view. Under Join conditions, write the condition
to join the tables, as shown in Figure 10.36. Include the MANDT field in the join
condition to restrict the data to the current client. Only inner joins are allowed.
427

ABAP Data Dictionary10
Figure 10.36 Join Conditions

4. Click on the View Fields tab. Use the Table Fields button to select the fields
that you want to show in the view, as shown in Figure 10.37. You can select the
fields from the basis tables that are listed in the Table/Join Conditions tab.

Figure 10.37 View Fields

5. Optionally, you can maintain the select condition under Select Conditions tab
(see Figure 10.38).

6. You can set the maintenance status under the Mant.Status tab. Database views
with more than one basis table only can be read.

7. Activate the view by clicking the Activate button in the application toolbar.
428

Views 10.2
Figure 10.38 Select Conditions

8. You can execute the view by clicking on the Contents icon in the application
toolbar, as shown in Figure 10.39.

Figure 10.39 Contents Icon

10.2.2 Projection Views

Projection views are the simplest form of view. They can be used to hide unwanted
fields from the table to simplify the interface. Projection views can’t be used to
join multiple tables; they’re used to create a new projection for an existing table.

To create a projection view, follow these steps:

1. Enter the name of the view on the initial screen of ABAP Data Dictionary and
click Create.

2. In the View Type window (shown earlier in Figure 10.35), select Projection

View.

3. On the Dictionary: Change View screen (see Figure 10.40), maintain a short
description for the view. Enter the name of the base table in the Base Table

field. Use the Table Fields button to select the fields for the view.

Contents Icon
429

ABAP Data Dictionary10
Figure 10.40 Projection View

4. Under the Maintenance Status tab, select the Access type as either Read Only

or Read and Change, as shown in Figure 10.41.

5. If the Read and Change option is set, you can select Display/Maintenance

Allowed for the Table View Maintenance field to allow the user to manually
maintain the data.

Figure 10.41 Maintenance Status

6. Activate the view by clicking the Activate button in the application toolbar.
430

Views 10.2
10.2.3 Maintenance Views

Maintenance views are special views used to perform writes on multiple tables at
once. You can use one maintenance view to modify data of multiple related data-
base tables. Unlike other views, maintenance views can’t be accessed using Open
SQL statements.

To create a maintenance view, proceed with following steps:

1. Select Maintenance view in the View Type window (see Figure 10.35).

2. Creating a maintenance view is similar to creating a database view. However, in
maintenance views, only related tables can be joined. Select join tables by click-
ing the Relationships button under the Table/Join Conditions tab in the view
maintenance screen, as shown in Figure 10.42.

Figure 10.42 Maintenance View
431

ABAP Data Dictionary10
3. Enter the primary table name and click the Relationships button to select sec-
ondary tables. Additional tables can be selected by keeping the cursor on the
secondary table and using the Relationships button. You can’t maintain the
join condition manually.

The view key in a maintenance view can be divided into a time-dependent area
and a non-time-dependent area. The time-dependent area can contain date
fields and time fields. This means that the rows of these views have chronolog-
ical importance.

In the maintenance view, if a database table is joined with its text table, the
logon language is selected automatically for this table.

4. Under the Maintenance Status tab, you can select the access type, as shown in
Figure 10.43:

� Read Only: The view only reads the data.

� Read, Change, Delete and Insert: The view can be used to change, delete,
or insert data.

� Read and Change: The view can be used to change the data, but the records
can’t be deleted or inserted.

� Read and Change (Time-Dependent Views): The view can be used to insert
only entries for which the non-time-dependent part of the key doesn’t differ
from existing entries.

The data can be maintained using Transaction SM30.

Figure 10.43 Maintenance Status
432

Views 10.2
Along with the maintenance status of the view, a status can also be maintained
for view fields, as shown in Figure 10.44. The available options are as follows:

� Standard (blank): This is the blank field. There are no restrictions on the
view field.

� Read-only (R): The view can’t be used to perform writes on the view field.

� Subset (S): Only a subset of the data is displayed. This subset is defined by
entering an appropriate value in this field.

� Hidden (H): A field of this type is hidden in table maintenance and can’t be
edited. The content is initialized implicitly.

Figure 10.44 Maintenance Status of Field

10.2.4 Help Views

Help views are used as selection methods in search helps. You can create a help
view if you want to display data from multiple tables in the search help. A data-
base view should be used in search helps if you want to join multiple tables using
inner join, but if you need to use an outer join to join tables, you need to create
a help view.

The steps to create a help view are similar to those for a maintenance view in
which only related tables can be joined. However, help views can’t be used to
maintain data in tables.

We’ll discuss search helps in Section 10.6.
433

ABAP Data Dictionary10
10.2.5 ABAP CDS Views

ABAP Data Dictionary doesn’t support defining ABAP CDS views. To define a
CDS view, we need to use ABAP in Eclipse.

Defining ABAP CDS Views

To define ABAP CDS views, proceed with the following steps:

1. If you haven’t done so yet, set up the Eclipse IDE and install the ABAP Devel-
opment Tools (ADT) as explained in Chapter 3, Section 3.3.

2. In the Eclipse IDE, create a new project (or use existing project). Chose the
package in which you want to create the ABAP CDS view. Right-click the pack-
age and select New � Other ABAP Repository Object, as shown in Figure
10.45.

Figure 10.45 Create New Repository Object

3. In the New ABAP Repository Object window, expand the Dictionary folder
and select Data Definition. You can also search for “data definition”, as shown
in Figure 10.46. Click Next.

4. In the New Data Definition window, enter the name and description for the
ABAP CDS view, as shown in Figure 10.47. Click Finish.
434

Views 10.2
Figure 10.46 Data Definition

Figure 10.47 Create Data Definition

5. The new CDS view editor opens (see Figure 10.48). The editor automatically
loads a template, which you need to edit to supply information. The template
435

ABAP Data Dictionary10
code is shown in Listing 10.3. From this template, replace 'sql_view_name'
with the name of the view and data_source_name with the name of the data-
base table.

Figure 10.48 CDS View Editor

@AbapCatalog.sqlViewName: 'sql_view_name'
@AbapCatalog.compiler.compareFilter: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Test'
define view Zcds_Demo1 as select from data_source_name {
}

Listing 10.3 CDS View Template

6. You can specify database table fields within the curly braces. For example, if
you want to define the "ZDEMO_V1" view for database table VBRK and list certain
fields from the table, the template can be edited as shown in Figure 10.49.

Figure 10.49 Editing Template to List Certain Fields from Table

7. To list all the fields from the table, use * within the curly braces, as shown in
Figure 10.50.
436

Views 10.2
Figure 10.50 Listing All the Fields from Table

8. Activate the view by clicking the Activate button in toolbar or by pressing
(CTRL) +(F3).

Accessing ABAP CDS Views

After following the preceding steps, you’ve successfully defined a CDS view. This
view is now available as an ABAP Data Dictionary object (see Figure 10.51) and
can be accessed from ABAP programs.

Figure 10.51 View Defined in ABAP Dictionary

You can access ABAP CDS views in ABAP programs as an ABAP type or use Open
SQL statements to fetch the data.
437

ABAP Data Dictionary10
Defining ABAP CDS Views as Replacement Objects

An ABAP CDS view can be defined as a replacement object for transparent tables
and classic database views. When the CDS view is defined as a replacement
object, all read access to the transparent table or database view will be redirected
to the ABAP CDS view, using Open SQL. The replacement object will also be used
for any foreign key checks for screen fields. All other access, such as write access
or Native SQL statements, will access the original table or classic database view.

An ABAP CDS view defined as a replacement object should have the same struc-
ture (same number of components with the same name and technical attributes
for each component) as the original object to which the CDS view is attached as a
replacement object. You can check if a transparent table or classic database view
is assigned a replacement object by opening the transparent table or classic data-
base view in ABAP Data Dictionary and following the menu path Extras � Re-

placement Object.

In customer systems, an ABAP CDS view replacement object can be defined only
for classic database views that are defined by customers in a customer namespace
and can’t be defined for transparent tables. SAP might deliver a replacement ob-
ject for transparent tables, but it’s not recommended to define your own replace-
ment objects in customer systems. Replacement objects can’t be defined for GTTs.

Replacement objects are intended for existing aggregate tables that aggregate data
from other tables. Using an ABAP CDS view as a replacement object for aggregate
tables allows you to aggregate the data for every read using the ABAP CDS view
instead of selecting the data in an ABAP program for aggregation and writing it
into the table. ABAP CDS view replacement objects help to improve performance
by aggregating data in the database for tables with large volumes of data without
invalidating the existing programs.

In this section, we discussed how to create, define, use, and access different
views. In the next section, we’ll turn our attention to maintaining different data
types in ABAP Data Dictionary.

10.3 Data Types

By using the Data Types radio button in the ABAP Data Dictionary initial screen,
we can create global data types such as data elements, structures, and table types.
438

Data Types 10.3
You’ve seen how to create these global types at various points in previous chap-
ters, so this section will focus on the additional options that can be maintained for
these global types centrally and can then be inherited into programs automati-
cally.

10.3.1 Data Elements

A data element describes an elementary data type or a reference data type. It
allows you to maintain both technical and semantic attributes. Semantic attributes
are significant for screen fields that refer to this data element. For example, the
screen field can automatically import input help ((F4) help) or field help ((F1)
help) from a data element. For ABAP data objects that refer to the data element,
the semantic attributes hold no significance.

For an elementary data type, technical specifications are derived from a domain
or directly maintained in the data element. Similarly, for reference data types, a
reference to a global class or interface can be maintained or a reference to a pre-
defined type can be maintained.

Figure 10.52 shows the Data Type tab of the data element, where the technical
attributes can be maintained by selecting the relevant radio button (i.e., Elemen-

tary Type, Predefined Type, or Reference Type).

Figure 10.52 Data Type Tab
439

ABAP Data Dictionary10
There are various semantic attributes that can be maintained for the data ele-
ments. Under the Data Type tab and in the application toolbar of the Dictionary:

Change Data Element page, the following attributes can be maintained:

� Short text

Short text can be maintained for the data element under the Data Type tab. The
short text appears as a header in the field texts for screen fields and table/struc-
ture fields.

� Documentation

Documentation can be maintained for a data element, to be shown automati-
cally as (F1) help for screen fields that refer to this data element. To maintain
documentation, click the Documentation button in the application toolbar.

A documentation status can be set by following the menu path GoTo � Docu-

mentation � Status. This path will open a window with self-explanatory op-
tions, as shown in Figure 10.53.

Figure 10.53 Documentation Status

� Supplementary Documentation

Additional supplementary documentation can be created for the data element
to be be assigned to specific program screen fields as field help. Each piece of
supplementary documentation is assigned a four-digit number. Click the Sup-

plementary Documentation button in the application toolbar to maintain the
supplementary documentation.

Under the Further Characteristics tab, as shown in Figure 10.54, the following
options can be maintained:

� Search Help

A search help can be assigned to a data element with an elementary data type;
it will be available automatically as (F4) help to screen fields that refer to this
data element. A search help can’t be assigned to a reference type.
440

Data Types 10.3
� Parameters

A parameter that is passed to the search help is entered in this field. The (F4)
help for this field can be used to select the parameter based on the assigned
search help.

� Parameter ID
The data element can be linked with SAP memory using the SPA/GPA parame-
ter ID. SAP memory is the memory area that is accessible by all SAP GUI ses-
sions in the user session. SAP memory can be used to exchange data between
programs running in different sessions (GUI windows). You’ll learn more about
memory organization in Chapter 13. The Parameter ID is only used if the data
element is an elementary data type. The screen fields that refer to this data ele-
ment are automatically filled with the contents of the parameter from SAP
memory unless the field itself is manually associated with a Parameter ID.
Data elements of a reference type can’t be linked to the Parameter ID.

� Default Component Name

For table and structure fields, a naming suggestion can be maintained to be pro-
posed when the structure or table field references this data element. English
names are generally maintained as default component names (for example,
MATERIAL for MATNR). Structures (such as BAPIs) that are used in APIs should
follow this convention.

� Change Document

This flag specifies whether changes to fields in database tables should be logged
by change objects when the field refers to this data element.

� No Input History

This flag determines if the input history in SAP GUI is active for screen fields
that refer to this data element. This allows you to turn off SAP GUI history for
sensitive fields.

� Bi-Directional Options

This option defines the behavior of screen fields when using bidirectional fonts
such as Hebrew or Arabic. There are two options:

� Basic Direction Is Set to LTR: This sets the writing direction as left to right.

� No BIDI Filtering: This option sets the bidirection filtering that prevents
the Unicode formatting characters that specify the writing direction of bidi-
rectional fonts in data transport between SAP GUI and the application
server.
441

ABAP Data Dictionary10
Figure 10.54 Further Characteristics

Most of the semantic attributes of data elements are significant for UI elements
(screen elements), but some may be useful for database fields (such as documen-
tation). We recommend creating separate data elements for UI fields and database
table fields.

Field labels can be maintained for the data element under the Field Label tab (see
Figure 10.55); these labels are used as column headings for lists on screens. You
can maintain short, medium, and long headings, plus a header with a freely defin-
able length field.

Figure 10.55 Field Label
442

Data Types 10.3
10.3.2 Structures

We discussed creating structures in Chapter 5, and most of the steps involved in
creating structures are similar to those for creating database tables, discussed ear-
lier in this chapter in Section 10.1.1.

A structure can include elementary data types, other structures, or table types.
Structures can be nested to any depth. Structures allow you to centrally maintain
the fields when similar fields are used in multiple objects (e.g., programs, func-
tion module interfaces, etc.).

The components of a structure can include elementary types, reference types, or
boxed types, as shown in the available typing methods in Figure 10.56.

Figure 10.56 Typing Method

The following list defines each of these types:

� Elementary types
Elementary types can be defined by referring to a data element from which the
type can take the technical and semantic attributes or to a predefined type for
which the data type, length, and any decimals are manually assigned.

� Referenced types
These can be defined as either data references or object references. Data refer-
ences can be specified by using a data element that defines a data reference or
by using a predefined ABAP Data Dictionary type, length, and any decimals.
443

ABAP Data Dictionary10
Object references can be specified by using a data element with a global class or
interface reference.

� Boxed types
These can be defined in the structure as of SAP NetWeaver 7.0 EHP 2. Boxed
types help to reduce the memory footprint in ABAP programs and improve per-
formance. When a boxed type is used, the system doesn’t allocate initial mem-
ory. Memory is allocated to one structure, and all data of a similar type points
to that memory, unlike a structure with elementary types in which each data
object of the type takes up its own initial memory space. This is called initial
value sharing. Memory is shared across multiple data objects that use this type.

Reference types don’t take any initial memory space, so boxed types fall some-
where between elementary types and reference types. In other words, the initial
memory of boxed types is much lower than elementary types but greater than ref-
erence types.

Currently, only static boxes are supported. Static types are boxed components for
which components are known statically. Only a substructure of a structure or
attributes of classes or interfaces can be defined as boxed. Boxed types are
defined in programs by adding BOXED to the TYPES statement, as shown in Listing
10.4.

TYPES : BEGIN OF ty_lfa1
Lfa1 TYPE lfa1 BOXED,
END OF ty_lfa1.

Listing 10.4 Defining Boxed Component Using TYPES

The efficiency of a boxed structure is due to the initial value sharing in which all
occurrences of similar data are referenced to the same initial memory. However,
the initial value sharing is revoked under the following circumstances:

� Write access is made to a static box or its components.

� The static box or its components are assigned to a field symbol.

� The static box or its components are addressed using a data reference.

� The static box or its components are used as an actual parameter of a proce-
dure.
444

Data Types 10.3
Once the initial value sharing is revoked, the internal reference will reference an
instance of the structure.

Boxed types reduce the memory requirement of structures that are used more
than once. For example, if an internal table has a substructure, then each row will
increment the memory store even if the row is initial. If the substructure is
defined as boxed type, then it won’t require multiple memory stores, because
each row can point to the same initial memory as long as only read accessed is
permitted.

Figure 10.57 shows the initial memory allocation of structures, as shown in the
debugger window, using the normal types, boxed types, and reference types
defined in Listing 10.5. In Listing 10.5, we’ve defined three structures of each
type to highlight how the memory is allocated individually when the object of the
same type is repeated.

As you can see in Figure 10.57, boxed types have a much smaller memory foot-
print then normal types. Boxed types are deep structures—that is, structures that
contain table types.

*Normal type
TYPES : BEGIN OF ty_kna1,

kna1 TYPE kna1,
END OF ty_kna1.
*Boxed type
TYPES : BEGIN OF ty_kna1_b,

kna1 TYPE kna1 BOXED,
END OF ty_kna1_b.
*Data declarations using normal type
DATA : st_kna1_1 TYPE ty_kna1.
DATA : st_kna1_2 TYPE ty_kna1.
DATA : st_kna1_3 TYPE ty_kna1.
*Data declarations using boxed type
DATA : st_kna1_b_1 TYPE ty_kna1_b.
DATA : st_kna1_b_2 TYPE ty_kna1_b.
DATA : st_kna1_b_3 TYPE ty_kna1_b.

*Data declaration using reference type
DATA : st_kna1_o_1 TYPE REF TO ty_kna1.
DATA : st_kna1_o_2 TYPE REF TO ty_kna1.
DATA : st_kna1_o_3 TYPE REF TO ty_kna1.
BREAK-POINT.

Listing 10.5 Different Types of Components
445

ABAP Data Dictionary10
Figure 10.57 Memory Allocation for Different Types of Components

10.3.3 Table Types

Table types describe the structure and functional attributes of internal tables. You
learned how to create a global table type in ABAP Data Dictionary in Chapter 7,
but we limited our discussion there in order to quickly define a table type with
default options. In this section, we’ll discuss table types in greater detail and go
over the various options that are available while defining a table type in ABAP
Data Dictionary.

The Line Type tab of the Dictionary: Change Table Type screen in ABAP Data
Dictionary (see Figure 10.58) allows you to maintain the line type for the table
type. This line type then defines the components of the table type. Internal tables
that refer to this table type will have a row type as defined by the line type of the
table type.

There are multiple options to define the line type of the table type:

� Line Type

In this field, you can enter an existing type such as a data element, structure,
table type, table, view, and so on; its properties are then copied as properties of
the table line.

� Predefined Type

You can select this option to manually input the ABAP Data Dictionary type,
length, and any decimals.

� Reference Type

Using this option, you can specify an object reference (class or interface) or data
reference (elementary data type).
446

Data Types 10.3
Figure 10.58 Line Type View in Table Type Maintenance Screen

Under the Initialization and Access tab (see Figure 10.59), attributes such as the
type of table and initial size can be maintained. The available options are as fol-
lows:

� Initial Line Number

This value is used for internal memory management to allocate the initial size
of the table. This is similar to using the INITIAL SIZE addition in ABAP pro-
grams while defining the internal table.

� Access

You can select the kind of table that is defined when a data object is referred to
this table type. The following options are found under the Access section:

� Standard Table: Defines a standard internal table.

� Sorted Table: Defines a sorted internal table. The key should be specified in
the Primary Key and Secondary Key tabs.

� Hashed Table: Defines a hashed internal table. The key should be specified
in the Primary Key and Secondary Key tabs.

� Index Table: Index tables define a generic table category for standard and
sorted tables (because they have an index).

� Not Specified: Defines a generic category for any table (all table categories).
447

ABAP Data Dictionary10
Generic types can only be used for generic typing of formal parameters in pro-
cedures or with field symbols.

Figure 10.59 Initialization and Access Tab

The Primary Key tab (see Figure 10.60) allows you to define the primary key. This
property will then be set for internal tables that refer to this table type. The avail-
able options on this screen are as follows:

� Key definition

Under the Key definition section, you can define one of the following for the
primary key:

� Standard Key: This sets the standard key in which all the fields of the row
are part of the key. This option can be selected only if the line type of the
table type is not a table type itself or the line type doesn’t contain any com-
ponents that are table types.

� Line Type: The primary key is the line type used for the table type.

� Key Components: The primary key fields can be selected manually by click-
ing the Choose Components button.

� Not Specified: This is used for generic table types for which a key is not
defined.
448

Data Types 10.3
� Key Category

Key Category defines whether the key is unique or nonunique. If the key fields
uniquely define a row, the key can be set to Unique; otherwise, Non-Unique.
You can select Not Specified for generic types.

Figure 10.60 Primary Key Tab

Beyond the primary key, additional secondary keys can be specified under the
Secondary Key tab (see Figure 10.61). You can define up to fifteen secondary
keys for the table type. Each secondary key should have a unique name. The
name of the secondary key can’t be PRIMARY_KEY or LOOP_KEY. The secondary key
can be either a sorted key or a hash key. If it’s sorted key, it can be unique or non-
unique; a hash key is always unique. The key definition for a secondary key is
defined by the entire table row if the line type is not a table type or doesn’t con-
tain a table type as a component.

In this section, we discussed using data types, including data elements, structures,
and table types. In the next section, we’ll see how type groups are used and main-
tained.
449

ABAP Data Dictionary10
Figure 10.61 Secondary Keys

10.4 Type Groups

Type groups are created in ABAP Data Dictionary where global data type declara-
tions are maintained. Type groups are obsolete; we have better ways to maintain
data types with all the semantic attributes, as discussed in the previous section.

One of the disadvantages of data types defined in a type group is that, except for
any comment lines maintained in the code, no documentation or other semantic
attributes can be maintained. Another drawback of using type groups is that the
complete type group should be loaded even if you want to reference only one or
two data types or constants from the type group.

Type groups still exist to provide backward compatibility to programs that use
definitions from type groups. You may come across function modules that define
their formal parameters by referring to the data types in a type group. To ensure

Click to create secondary keys
450

Domains 10.5
compatibility, the actual parameters in the calling program should also be re-
ferred to the data types of the type group.

In older systems, type group declarations were made visible to the program by
using TYPE-POOLS statement. This is no longer required, because type groups are
visible to programs by default.

Because type groups are obsolete, you shouldn’t create any new type groups and
should only use existing type groups if required. For example, we can use the
constants abap_true and abap_false from the type group ABAP (see Figure 10.62)
to check for X or a space, respectively.

Figure 10.62 Type Group ABAP

10.5 Domains

Domains provide the technical attributes for data elements. The important prop-
erty of a domain is that it defines a value range. All the table fields and structure
components that use the data element to which a domain is attached can have
value ranges defined by the domain. Value ranges provides possible entries for a
field.
451

ABAP Data Dictionary10
In Chapter 4, Section 4.4.1, we discussed how to define a domain and attach it to
a data element. In this section, we’ll discuss some of the options that can be set
for the domain.

You can create a domain in ABAP Data Dictionary by selecting the Domain radio
button on the ABAP Data Dictionary initial screen. The Definition tab on the Dic-

tionary: Change Domain screen (see Figure 10.63) includes the following
options:

� Format

Use the (F4) help to maintain an ABAP Data Dictionary elementary data type.
Maintain the number of characters and any decimals.

� Output Characteristics

Output characteristics define how the fields referenced to a data element that
uses this domain are displayed on screens or when using the WRITE statement.
The following options are found under the Output Characteristics section:

� Output Length: The output length value is determined based on the elemen-
tary data type selected. This value can be overridden by maintaining a value
in this field. The output length of the field should be determined based on
any formatting characters in the field. For example, for a date field, the inter-
nal length is 8 (YYYYMMDD), but the output length should be larger to
accommodate any separators (DD-MM-YYYY).

� Output style: A domain that is a decimal floating point should be assigned
an output style by selecting one of the available options.

� Conversion Routine: Conversion routines (also known as conversion exits) are
special function modules that are created with the naming conventions CON-
VERSION_EXIT_XXXXX_INPUT and CONVERSION_EXIT_XXXX_OUTPUT, where XXXXX
is the five-character name of the conversion routine.

For each conversion routine, both input and output function modules exist. If
a screen field is referencing a data element to which this domain is attached and
if the conversion routine is maintained for the domain, then the _INPUT func-
tion module is called for each input on the screen and the _OUTPUT function
module is called for the screen output. This allows you to convert the data into
internal and external formats.

For example, the user will input the date in an external format (DD-MM-YYYY),
and this value is passed to a conversion routine (_INPUT function module),
which converts the date to an internal format (YYYYMMDD) that the program
452

Domains 10.5
can use internally (say, in a select WHERE clause). When this date is outputted to
the screen, the date is converted to an external format (_OUTPUT function mod-
ule) and shown to the user.

You can maintain a five-character conversion routine name in this field. The
conversion routine name can also be assigned to screen fields directly. If you
want to create a custom conversion routine, you can do so in Function Builder
following the naming convention for conversion routines. The conversion exit
function modules should have one mandatory parameter as INPUT and one
mandatory parameter as OUTPUT. The input parameter will have the value being
converted, and the output parameter will have the converted value.

� Sign: If the data type is numeric, then this option can be selected to show a
negative sign for negative values on screens.

� Lower case: For character-type fields, setting this option will ensure that a
value is not transformed to uppercase. For example, when you input a value
in a selection screen field, the value is automatically transformed to upper-
case when passed to the program. When you set this value at the domain of
the field, the value will not be transformed and will be passed as is to the
program field.

� Time format: For time fields (type TIMS), the time format can be set as 12-
hour or 24-hour format.

Figure 10.63 Domain Maintenance Screen
453

ABAP Data Dictionary10
The Value Range tab (see Figure 10.64) allows you to maintain the value range
for fields that reference data elements to which the domain is attached. Here, you
can set fixed values, intervals (a value range), or a combination of both. The value
range can be defined for elementary data types CHAR, NUMC, DEC, INT1, INT2, and
INT4. For fields of type CHAR and NUMC, the value range specifies the valid input
values for screen fields that refer to the data element to which the domain is
attached.

Figure 10.64 Value Range

The input field doesn’t have a search help attached; the value range is shown as
the input help. The value range is ignored for the content of data objects in ABAP
454

Search Helps 10.6
programs and database fields. Short text can be maintained for each individual
value and is then displayed in the input help if the value range is used for the
input help.

A value table can be maintained and is then proposed as a check table when a
check table is assigned for table fields using foreign keys. The value table itself
doesn’t trigger a check.

For standard domains, a fixed value append can be defined to maintain additional
fixed values. The additional fixed values will be not be lost in upgrades. A domain
can have more than one fixed value append. Use the menu path GoTo � Fixed

Value Append to define a fixed value append for the domain.

In this section, we discussed the use of domains and how to create a domain. In
the next section, we’ll explore the different types of search helps that can be used
in ABAP Data Dictionary.

10.6 Search Helps

Search helps provide input help for screen fields. A search help can be assigned to
a screen field, data element, or table field. Input helps are a standard function of
the SAP system. When we develop applications, we should maintain input helps
for our screens to provide a consistent UI experience for users.

To use an input help, the user can press (F4) on the keyboard or click the Input

Help button on the screen field. Once the input help is called, it displays the
possible entries for the field in multiple rows, and the user can double-click the
most suitable row to copy the value to the input field.

Input helps also can offer multiple search paths and restrictions to let the user
search for a suitable value. For example, if the user needs to input a plant number
but he only knows the plant name, the input help can allow the user to search for
the plant number based on the plant name.

Multiple search paths are displayed as tabs in input helps. For example, Figure
10.65 shows the search helps with a single search path (single tab) and multiple
search paths (multiple tabs). Figure 10.66 shows the search help restriction that is
displayed to the user to search for the value.
455

ABAP Data Dictionary10
Figure 10.65 Search Helps

Figure 10.66 Search Help Restriction

Search help with
single search path

Search help with multiple search paths
456

Search Helps 10.6
There are two types of search helps that can be created in ABAP Data Dictionary:

� Elementary search helps
Elementary search helps provide a single search path for input help. Two or
more elementary search helps can be used to create a collective search help.

� Collective search helps
A collective search help provides multiple search paths for the input help.

Ahead, we’ll discuss these two kinds of search helps and how to create them.
We’ll then look at how to assign search helps to screen fields and data elements
before walking through search help exits.

10.6.1 Elementary Search Helps

Elementary search helps can be created by using a single table or a projection
view. If search help fields are required from more than one table, you can define
a database view or help view and use it as a selection method for the search help.

The following steps take you through creating an elementary search help:

1. On the initial ABAP Data Dictionary screen, select the Search Help radio but-
ton, provide the search help name in the customer namespace (starting with Z
or Y), and click the Create button, as shown in Figure 10.67.

Figure 10.67 ABAP Data Dictionary: Initial Screen
457

ABAP Data Dictionary10
2. In the dialog window that appears, select Elementary Search Help and click
the green checkmark (see Figure 10.68).

Figure 10.68 Create Search Help Window

This takes you to the Dictionary: Change Search Help screen, as shown in
Figure 10.69.

Figure 10.69 Search Help Maintenance Screen

3. Maintain the following options:

� Short Description: Provide a meaningful short description. This description
can be used to search for the search help.

� Selection Method: Under the Data Collection section, provide the table
or view name (except maintenance view) that should be used for data selec-
tion.
458

Search Helps 10.6
� Text Table: If the selection table has a text table attached, it will be automat-
ically filled in the Text Table field of the Data Collection section.

� Dialog type: This setting influences how the search help dialog is displayed.
Using the dropdown menu, choose one of the following options:

– Immediate Value Display: When the input help is called, the hit list is dis-
played immediately. Select this option if the hit list is small and usually con-
tains only a few records.

– Dialog with Value Restriction: When the input help is called, the dialog
box for restricting values is displayed, which allows the user to restrict the
hit list. Select this option if the list of possible entries is normally very large.
Restricting the hit list improves system performance and clarity for the
user.

– Dialog Depends on Value Set: This setting allows you to dynamically
decide if the hit list should be displayed immediately or the restrictions
dialog should be displayed. If the hit list contains less than one hundred
entries, it’s displayed immediately; if the hit list contains more than one
hundred entries, the dialog box for restricting values is displayed.

� Hot Key: When the elementary search help is used in a collective search
help, a hot key allows the user to select the elementary search help using the
hot key. You can enter a two-character alphanumeric value.

� Enhanced Options: These are additional enhanced options that work with
SAP GUI 7.40 or later:

– Proposal Search For Input Fields: Selecting this option will display the
search help values below the field automatically when the user starts typ-
ing. This does not require the search help to be called manually via (F4).

– Full Text Fuzzy Search: Selecting this option allows the system to perform
the search across multiple columns so that the user can identify the input
value based on the value in different columns. For example, if the user
doesn’t know the customer number, the data in the Name or Address col-
umns can help the user identify the customer for input.

– Accuracy Value: This allows you to provide the accuracy value that should
be considered—for example, if the system should exactly match the value
when performing a search or use variations to address any spelling mis-
takes.
459

ABAP Data Dictionary10
� Search help exit: Standard search helps can be enhanced using a search help
exit. We’ll discuss search help exits in Section 10.6.4.

� Parameter: These options allow you to maintain fields that are displayed
in the search help. The following columns are found under the Parameter

table:

– Search help parameters: Enter the fields from the selection table that
should be displayed in the search help.

– IMP: Flag for setting the parameter as an importing parameter. The value
of this parameter is imported to search help from the screen fields.

– EXP: Flag for setting the exporting parameter. The value of this parameter
is exported to the screen fields.

– LPos: Sets the position of the field on the hit list. For example, if the value
3 is set, then the field will be displayed as the third column. If no value or
0 is maintained, then this field is hidden.

– SPos: Sets the position of the field on the restrictions dialog. For example,
in Figure 10.66, the SPos value of the Material field is 3. If no value or
0 is maintained, then this field is hidden.

– SDis: Flag to set the parameter as a display-only field. The contents of the
parameter restrict the hit list, and the user can’t change the value. A con-
stant value can be assigned to this parameter.

– Data element: The data element used for the field in the selection table is
automatically populated based on the field name entered. The screen field
to which this search help is assigned uses the documentation maintained
for this data element as (F1) help.

– Modified: If you want to change the data element name that was auto-
filled, select this flag to make the data element field input-enabled.

– Default value: Maintain a default value that should be used for the param-
eter.

Once all the required parameters are maintained, activate the search help. You
can execute the search help directly for testing by using the Execute button in the
application toolbar.
460

Search Helps 10.6
10.6.2 Collective Search Helps

Two or more search helps can be used to create a collective search help. A collec-
tive search help provides multiple search paths to users, with each elementary
search help displayed as a tab.

Like elementary search helps, the collective search help has an interface to import
values from screen fields and export values to screen fields. When creating a col-
lective search help, you can include all the fields of the elementary search helps or
only selective fields from the elementary search helps.

The following steps walk through creating a collective search help. For this exam-
ple, we’ll use two elementary search helps: ZSH_DEMO (see Figure 10.69) and ZSH_
DEMO1 (see Figure 10.70). The elementary search help ZSH_DEMO uses the table MARA
as the selection method with MATNR and MAKTX as parameters. The elementary
search help ZSH_DEMO1 uses the table MARC as the selection method with MATNR and
WERKS as the parameters.

Figure 10.70 Elementary Search Help Using Table MARC as Selection Method

Proceed with the following steps to create a collective search help:

1. On the initial ABAP Data Dictionary screen, select the Search Help radio but-
ton, provide the search help name, and click Create.
461

ABAP Data Dictionary10
2. In the create search help window (refer back to Figure 10.68), select Collective

Search Help and click the green checkmark.

3. On the Dictionary: Change Search Help screen (see Figure 10.71), enter the
search help parameters and the corresponding data elements. Set the Import

and Export flags for the parameters. Optionally, you can set a default value for
each parameter.

Figure 10.71 Collective Search Help Maintenance Screen

4. Click the Include Search Helps tab (see Figure 10.72) and include the search
helps that should be part of the collective search help. You can include both ele-
mentary and collective search helps.

Figure 10.72 Include Search Helps
462

Search Helps 10.6
5. Keep the cursor on a search help name and click the Param.assignment button.
The Define Parameter Assignment dialog box will appear (see Figure 10.73).
Click Yes to let the system propose the assignment, and click Copy on the next
screen. Repeat this process for all search helps listed.

Figure 10.73 Parameter Assignment

6. For each search help listed, you can set the Hidden flag (refer to Figure 10.72)
to hide the search help. This is useful when you want to hide a particular search
path in a certain system.

7. Activate the search help by clicking the Execute button to test it.

10.6.3 Assigning a Search Help

Search helps can be assigned to screen fields directly or maintained for data ele-
ments and then used when the field refers to those data elements.

To assign a search help to selection screen field, use MATCHCODE OBJECT as shown:

PARAMETERS p_matnr TYPE matnr MATCHCODE OBJECT ZSH_DEMO_COLL.

For screen fields of the general screen, the search help can be assigned in Screen
Painter under the field attributes, as shown in Figure 10.74. We’ll work with
Screen Painter in Chapter 12.

Figure 10.74 Field Attributes
463

ABAP Data Dictionary10
The search help can be assigned to the data element under the Further Charac-

teristics tab, as shown in Figure 10.75. Enter the search help name in the Name

field and use the (F4) help for the Parameters field to select the parameter of the
search help that should passed to this field. Screen fields referring to this data ele-
ment will automatically inherit the search help unless overridden by the screen
field attribute value.

Figure 10.75 Assigning Search Help to Data Element

10.6.4 Search Help Exits

Search help exits are used to enhance the standard functionality of a search help.
This allows you to dynamically manipulate the search help functionality. For
example, you can adjust the column width or combine the values of two columns.
A search help exit is implemented as a function module with a predefined inter-
face. The demo function module F4IF_SHLP_EXIT_EXAMPLE can be used as a refer-
ence to create your own function module for a search help exit.

Search help exits are called on different events by the help processor, as listed:

� Before displaying the dialog box for selecting the required search path (only for
collective search helps)

� Before starting the (F4) process for the elementary search help

� Before displaying the dialog box for entering search conditions

� Before selecting data

� Before displaying the hit list

� Before returning the values selected by the user to the input template

These steps are passed to the function module parameter CALLCONTROL-STEP (refer
to the demo function module F4IF_SHLP_EXIT_EXAMPLE in Function Builder). This
464

Lock Objects 10.7
field is checked using an IF condition in which suitable logic can be implemented
for each step.

In this section, we looked at the two different types of search helps used and how
to create and assign them before discussing the use of search help exits to
enhance standard system functionality. In the next section, we’ll discuss the final
topic of this chapter: lock objects.

10.7 Lock Objects

Lock objects are used to provide logical locking functionality in applications. For
example, if you don’t want two users to edit the same document simultaneously,
then you can implement lock objects to restrict a user from opening a document
if another user has already opened the document for editing.

Lock objects are defined in ABAP Data Dictionary. A lock object creates two func-
tion modules, ENQUEUE and DEQUEUE, that can be called in ABAP programs to lock
and unlock the objects, respectively.

Follow these steps to create a lock object in ABAP Data Dictionary:

1. On the ABAP Data Dictionary initial screen, select the Lock Objects radio but-
ton. Enter the name of the lock object and click Create. The lock object name
should start with EZ, as shown in Figure 10.76.

Figure 10.76 ABAP Data Dictionary: Initial Screen
465

ABAP Data Dictionary10
2. On the Dictionary: Change Lock Object screen, select the Tables tab, as
shown in Figure 10.77. Enter the Name of the Primary Table and select the
Lock Mode. The lock mode determines how the lock is implemented.

Figure 10.77 Lock Object Maintenance Screen

3. The following options can be set for Lock Mode under the Primary Table sec-
tion:

� Exclusive Locks (Write Lock): When an exclusive lock is applied, the
locked data can be displayed or edited only by one user. Any further re-
quests for either another exclusive lock or a shared lock are rejected.

� Shared Lock (Read Lock): When a shared lock is applied, several users can
access the data in read mode. However, as soon as any one user goes into
change mode to process the data, a second user will not have any access to
the data. Requests from further shared locks are accepted, even if they’re
from different users. Exclusive locks are rejected.

� Exclusive but Not Cumulative lock: Unlike exclusive locks that can be
requested several times by the same transaction, an exclusive, noncumula-
tive lock can only be requested once by the same transaction. Each subse-
quent lock request will be rejected.
466

Lock Objects 10.7
� Optimistic Lock (O): Optimistic locks initially behave like shared locks and
can be converted into exclusive locks.

� Promote Optimistic Lock (R): Converts an optimistic lock into an exclusive
lock.

� Collision check/Promotion check ('U', 'V', 'W', 'C'): Checks whether one
of the respective locks ('E', 'S', 'X', 'O') is possible, but doesn’t set a lock

If required, further secondary tables can be added to the lock object.

4. Select the Lock parameter tab, as shown in Figure 10.78. The key fields of the
table are automatically populated. Verify and activate the lock by clicking the
Activate button in the toolbar.

Figure 10.78 Lock Parameters

5. Once the lock object is activated, the system generates two function modules:
ENQUEUE_obj name and DEQUEUE_obj name. For this example, the function mod-
ules ENQUEUE_EZ_BILL_DOC and DEQUEUE_EZ_BILL_DOC are generated, as shown
in Figure 10.79. These function modules can be called in ABAP programs to set
and release locks. The lock parameters are passed to the function module
during requests to set or release the lock.

Listing 10.6 shows example code to implement lock objects using the generated
function modules. In this example, we’re calling the ENQUEUE function module
ENQUEUE_EZ_BILL_DOC within the subroutine REQUEST_LOCK. To this function mod-
ule, we’re passing the document number for which a lock should be set.
467

ABAP Data Dictionary10
Figure 10.79 Function Modules Generated by Lock Object

Once the lock is set, we perform other operations (such as updating the docu-
ment). Locking the document ensures that no other user can edit the same docu-
ment using the same program while another user is editing it. At the end, we
release the lock by calling the DEQUEUE function module DEQUEUE_EZ_BILL_DOC
within the subroutine RELEASE_LOCK.

We pass the same document number to the DEQUEUE function module that was
originally locked using the ENQUEUE function module. Once the lock is released,
another user will be able to edit the document.

&--
*& Module CHANGE_DOCUMENT INPUT
&--
MODULE change_document INPUT.
PERFORM request_lock CHANGING retcode.
IF retcode IS INITIAL.
PERFORM update.

ENDIF.
PERFORM release_lock.

ENDMODULE.
&--
*& Form REQUEST_LOCK
&--
FORM request_lock CHANGING p_retcode.
CALL FUNCTION 'ENQUEUE_EZ_BILL_DOC'
EXPORTING
468

Summary 10.8
mode_vbrk = 'E'
mandt = sy-mandt
vbeln = vbrp-vbeln
x_vbeln = ' '
_scope = '2'
_wait = ' '
_collect = ' '

EXCEPTIONS
foreign_lock = 1
system_failure = 2
OTHERS = 3.

IF sy-subrc <> 0.
p_retcode = sy-subrc.

ENDIF.
ENDFORM.
&--
*& Form RELEASE_LOCK
&--
FORM release_lock .
CALL FUNCTION 'DEQUEUE_EZ_BILL_DOC'
EXPORTING
mode_vbrk = 'E'
mandt = sy-mandt
vbeln = vbrp-vbeln
x_vbeln = ' '
_scope = '3'
_synchron = ' '
_collect = ' '.

ENDFORM.

Listing 10.6 Working with Lock Objects

10.8 Summary

In this chapter, you learned how to create various ABAP Data Dictionary objects.
Understanding dictionary objects is vital to ABAP development, because you’ll
use objects from the ABAP Data Dictionary in every application.

We’ve discussed how to create database tables using ABAP Data Dictionary which
immunizes us from knowing the intricacies of the underlying relational database
when performing various tasks related to defining tables. Using ABAP Data Dic-
tionary also ensures we need not use the DDL part of SQL to perform various
tasks, such as creating tables, deleting tables, creating indexes, and so on. This
ultimately ensures that the database is consistent and avoids redundancy.
469

ABAP Data Dictionary10
We discussed how views can be created by joining different tables to quickly pro-
cess data from multiple tables. With the help of data types, domains, and search
helps, we can easily extend the functionality of applications while maintaining
them centrally.

We concluded our discussion of ABAP Data Dictionary by looking at how lock
objects can be used for the lock management of application data. All such data
generated by applications is transient, which means the data is lost when the exe-
cution of the application ends. In the next chapter, we’ll discuss the ways in
which data can be saved persistently.
470

Chapter 11

ABAP programs generally work with data that is read from a persistent
storage source, like a database, meaning that the data exists even when
the program isn’t reading it. This chapter explains how to save persistent
data for use in ABAP programs.

11 Persistent Data

Data exists in two states: a transient state and a persistent state. When ABAP pro-
grams are processing data, the data in the program is transient in nature; that is,
its lifetime is limited to when the application is running. When the application is
closed, the application and the data in the application are cleared from memory.
This data can’t be accessed again. If you want to access the data processed by the
application, you need to save the data in a persistent form in a persistent storage
media.

Data stored in a persistent form is called persistent data. All ABAP programs work
with persistent data in a user-driven manner. Data can be stored persistently in
different ways, such as the following:

� In database tables in the underlying relational database

� In data clusters in special database tables

� In text or binary files on the application server

� In text or binary files on the presentation server (user desktop)

The most popular way of storing data persistently is to save it to database tables,
which are fully supported by SAP. However, based on your requirements, we
may have to use other persistent media to save the data. For example, if the user
wants to download the report output to a spreadsheet for further analysis, it can
be downloaded as a spreadsheet file to the user’s desktop. The first choice for
storing persistent data should always be storage in relational database tables,
because this option allows you to work with the data using Open SQL, which is
integrated into the ABAP language.
471

Persistent Data11
You can also have object-oriented access to the data in the database via ABAP
Objects. Sometimes, it may be advantageous to store the data in data clusters,
especially when the data isn’t available in first normal form (1NF)—for example,
in nested internal tables. Refer back to Chapter 5 for a refresher on normal forms.

Storing persistent data as files on the application server or presentation server
should be the least preferred choice, because unlike data stored in database tables
or data clusters, application or presentation server files offer no built-in support
for different code pages or byte sequences. Storing data in files on the presenta-
tion or application server is more suitable for interfaces for data transport to and
from external systems.

In this chapter, we’ll discuss all the different ways in which data can be stored
persistently. We’ll begin in Section 11.1 by looking at how to work with data in
a database, including using Open SQL statements and providing data consistency
with logical units of work (LUW).

In Section 11.2, we’ll discuss ABAP Object Services, the framework used to pro-
vide services to create and work with persistent objects. We’ll include steps for
building persistent classes and working with persistent objects.

Section 11.3 discusses storing data in the application and presentation layers (file
interfaces). Then, in Section 11.4, we’ll look at the data storage capabilities of data
clusters.

Finally, in Section 11.5, we’ll turn from data consistency to data security and
steps for ensuring the right users have access to the right data.

11.1 Working with Data in Databases

Each SAP system uses an underlying relational database. The database system
consists of tables in which the data is stored in rows and columns. Each column
represents a field of the table, and the data of the fields make up the rows. Each
table has a field (or set of fields) that uniquely identify a row, called the primary
key of the table. One table can be related to other tables in the database using for-
eign keys. As discussed in Chapter 10, we can also define secondary keys for data-
base tables, which the SQL optimizer can use to speed up the data lookup process.
472

Working with Data in Databases 11.1
SAP NetWeaver AS ABAP is delivered with many standard SAP tables. Some of
these tables are prepopulated with data related to the system, such as repository
objects or customization settings. Many database tables, such as application
tables, are delivered empty and then updated by customers via ABAP programs or
by transferring external data from legacy systems. Each relational database sys-
tem provides a programming interface to access the tables of the database using
the SQL query language. SQL statements aren’t completely standardized and vary
from one database vendor to another.

As discussed in Chapter 5, standard SQL is comprised of the following languages:

� Data Definition Language (DDL)
DDL contains statements such as CREATE, ALTER, and DROP, which allow you to
define or alter database tables. ABAP doesn’t support these statements directly
because they’re vendor-specific; that is, they vary from vendor to vendor.
Rather than using these DDL statements in ABAP programs, we use the ABAP
Data Dictionary tool to define or alter tables in the database; the tool imple-
ments these DDL statements such that they work with the underlying database.
DDL statements are part of the Native SQL statements—that is, native to the
underlying database.

� Data Manipulation Language (DML)
DML contains statements such as SELECT, INSERT, UPDATE, and DELETE, which
allow you to process data in the database tables. ABAP implements these state-
ments as Open SQL statements; they’re independent of the database. SAP Net-
Weaver AS ABAP contains a database interface that handles converting Open
SQL statements in ABAP to vendor-specific SQL (or Native SQL) statements.

The database interface makes ABAP programs portable and database-indepen-
dent. We discussed Native SQL and Open SQL statements in Chapter 5 and pro-
vided a brief overview of different Open SQL statements, and we recommend
that you refer to that section if you need a quick recap. In the next subsection,
we’ll examine Open SQL statements in more depth and look at the different
Open SQL statements supported in ABAP.

� Data Control Language (DCL)
DCL contains statements that allow you to define user views, execute access
control, and ensure data consistency. ABAP doesn’t contain any DCL state-
ments. Access control is ensured using SAP NetWeaver AS ABAP authorization
473

Persistent Data11
concepts (see Section 11.5), and data consistency is ensured via the LUW con-
cept.

Data in a database should always be stored in a consistent form, but different
applications trying to work with the same data can easily leave the database in
an inconsistent state. In Section 11.1.2, you’ll learn about concepts like LUW
that help ensure data consistency.

11.1.1 Open SQL

ABAP programs don’t interact with the database system directly; instead, the
database interface of SAP NetWeaver AS ABAP is responsible for communicating
with the underlying database. When we use Open SQL statements in ABAP pro-
grams, the database interface converts the Open SQL statements into Native SQL
statements that are native to the underlying database. This layer of abstraction
makes ABAP programs portable; that is, they can work in any database environ-
ment.

Open SQL comprises the DML part of standard SQL that allows data from the
database tables to be read and changed. For example, the SELECT statement allows
you to read data from a database table, whereas the INSERT, UPDATE, MODIFY, and
DELETE statements allow you to change data in a database table. Open SQL state-
ments in ABAP offer additional variations compared to standard SQL; these vari-
ations simplify and accelerate database access.

Open SQL statements must be monitored for negative impacts on an application’s
performance. If the database access isn’t programmed properly, a program can
adversely affect system performance. We can use various tools, such as SQL trace
(Transaction ST05) or runtime analysis (Transaction SAT), to monitor the perfor-
mance of database accesses. You’ll learn more about the various tools that can be
used to monitor and improve the performance of ABAP programs in Chapter 21.

You can follow certain general guidelines while programming database access to
ensure your programs perform at high level of efficiency. When you fetch data
from the database, the amount of data fetched puts a load on the memory of the
database as well on the network between the database and the application server.
We recommend keeping database hits and the amount of data to a minimum.

For example, if you want to process only certain data fields from the database
table, you should fetch only the required fields instead of fetching the complete
474

Working with Data in Databases 11.1
row. Also, you should program in such a way that you only fetch the data from
the database table once and work with that data locally by accessing the data
objects of the program, instead of writing a SELECT statement to fetch the data
from the same table multiple times in the program, because each database access
adds to the workload on the database and the network.

The WHERE clause of the SELECT statement also plays a crucial role in improving the
performance of the program. You should ensure the search effort is low by for-
mulating the WHERE clause to use any available index, or in general keep the search
effort as low as possible. Unnecessary database access should be avoided because
generally many application programs access the same database, and each database
access by each program will increase the workload on the database. There are no
fixed rules for programming for efficient database access, so you need to decide
the best possible approach on a case-by-case basis depending on the data you plan
to process.

In the following subsections, we discuss the different Open SQL statements.

SELECT

The SELECT statement allows you to import data from the database tables into
data objects of the ABAP program. The functions of the SELECT statement range
from simple data selection to programming complex database queries.

We discussed the basic variations of the SELECT statement, such as fetching data
from a single database or multiple database tables, in Chapter 5. As we noted
there, a basic SELECT statement contains different clauses, as shown in Listing 11.1.

SELECT result
FROM source
INTO target
WHERE cond.

Listing 11.1 SELECT Statement Clauses

In the listing, the SELECT clause result determines the result set of the database
table—that is, the fields of the database table that are read. You can read only cer-
tain fields or all the fields of the database table. The FROM clause source deter-
mines the database table or view from which the data is read.

The INTO clause target determines the data object of the program into which the
data from the database table is read. This data object is updated with the data
475

Persistent Data11
from the database after successful execution of the SELECT statement. If no data is
read, the SY-SUBRC system field is updated with 4. The SY-DBCNT system field is
updated with the number of records read.

The WHERE clause cond specifies the conditions under which the data is read. The
system performs a lookup on the database table based on the condition specified
in the WHERE clause. If no WHERE clause is specified, all the data from the database
table specified in the FROM clause will be read to the data object specified in the
INTO clause. Executing SELECT without a WHERE clause should always be avoided,
because it can result in huge data transfer and cause memory overflow under cer-
tain conditions.

In addition to these basic clauses, the SELECT statement can contain three other
clauses:

� GROUP BY

Used to aggregate several rows and import to a single row.

� HAVING

Used to specify conditions for aggregated rows.

� ORDER BY

Used to sort the rows of the result set.

Now, let’s discuss the different clauses of the SELECT statement and the different
additions that are supported.

SELECT Clause

The SELECT clause determines if one or several rows are read from a database table
and what columns are read. If the SINGLE addition is used, only one record is
read. If the SINGLE addition isn’t specified, the SELECT statement should be closed
with an ENDSELECT statement (or the target variable should be an internal table),
and the system will assume that the result set contains multiple rows. The system
loops between the SELECT and ENDSELECT statements, transferring one record at a
time to the data object specified in the INTO clause.

The SELECT...ENDSELECT statement allows you to evaluate each row as it’s trans-
ferred to the program. When using the SINGLE addition, the WHERE clause should
use the complete key of the database table to uniquely identify the row; other-
wise, the first matching row is fetched into the program. To ignore duplicates
476

Working with Data in Databases 11.1
when using a non-unique WHERE clause with SELECT...ENDSELECT, you can use the
DISTINCT addition.

You can specify the columns that should be selected by listing the field names sep-
arated by spaces, or use * to select all the fields of the table. The following state-
ment shows an example of using SELECT SINGLE to select certain fields of table
SPFLI:

SELECT SINGLE carrid connid FROM spfli INTO st_
spfli WHERE carrid EQ 'AA' AND connid EQ '0017'.

The following statement shows an example of using SELECT SINGLE to select all
the fields of table SPFLI:

SELECT SINGLE * FROM spfli INTO st_
spfli WHERE carrid EQ 'AA' AND connid EQ '0017'.

Listing 11.2 shows an example of how to use the SELECT...ENDSELECT statement
to fetch certain fields from table SPFLI. The system loops between SELECT and
ENDSELECT, transferring one record at a time.

SELECT carrid connid FROM sflight INTO st_
sflight WHERE carrid EQ 'AA' AND connid EQ '0017'.
*Code to process the record
ENDSELECT.

Listing 11.2 Fetching Particular Fields from Table SPFLI

Listing 11.3 shows an example of using the SELECT...ENDSELECT statement to
fetch all fields from table SPFLI. The system loops between SELECT and ENDSE-
LECT, transferring one record at a time.

SELECT * FROM sflight INTO st_
sflight WHERE carrid EQ 'AA' AND connid EQ '0017'.
*Code to process the record
ENDSELECT.

Listing 11.3 Fetching All Fields from Table SPFLI

Aggregate functions can be used with the SELECT clause, which then calculates the
value in the database system and returns a single value. This is especially useful
with CDS views, in which calculations can be pushed to a database, such as SAP
HANA, which performs the aggregations much faster than fetching the records
into the ABAP program and then performing aggregations. Aggregate functions
477

Persistent Data11
also reduce the data transfer between the database and the ABAP program by
returning just the result. Aggregate functions bypass the buffer.

The following aggregation functions are supported:

� Average (AVG)
Returns the average value for the specified column field of the result set. The
AVG function can only be applied to numeric fields. For example:

SELECT AVG(netwr) FROM vbrp INTO lv_avg_netwr WHERE vbeln EQ
p_vbeln.

In the preceding example, the lv_avg_netwr variable should be of type F (float-
ing point).

� Minimum (MIN)
Returns the smallest value for the specified column in the result set. NULL values
are ignored unless all the rows in the column contain NULL values.

For example:

SELECT MIN(fkimg) FROM vbrp INTO lv_min_fkimg WHERE vbeln EQ
p_vbeln.

� Maximum (MAX)
Returns the greatest value for the specified column in the result set. NULL values
are ignored unless all the rows in the column contain NULL values.

For example:

SELECT MAX(fkimg) FROM vbrp INTO lv_max_fkimg WHERE vbeln EQ
p_vbeln.

� Total (SUM)
Returns the sum of all values for the specified column in the result set. SUM can
only be applied to numeric fields.

For example:

SELECT SUM(fkimg) FROM vbrp INTO lv_sum_fkimg WHERE vbeln EQ
p_vbeln.

� Count (COUNT)
Returns the number of rows or distinct rows for the specified column in the
result set. Using COUNT DISTINCT returns the number of distinct rows, whereas
COUNT (*) returns the number of rows for the given selection.
478

Working with Data in Databases 11.1
For example:

SELECT COUNT(DISTINCT MATNR) FROM vbrp INTO lv_
count WHERE vbeln EQ p_vbeln.

In the preceding example, the lv_count variable should be of type integer.

Each column specified in the SELECT clause can be set as an alternate column
name via the AS addition. This is useful when you want to address the column
name in other additions of the SELECT statement, such as ORDER BY or JOIN. For
example:

SELECT vbeln AS a1 fkimg AS a2 FROM vbrp INTO CORRESPONDING FIELDS OF
TABLE it_vbrp WHERE vbeln EQ p_vbeln ORDER BY a2.

FROM Clause

The FROM clause allows you to specify an ABAP Data Dictionary table, a classic
view, or a CDS view. You can specify one or multiple tables using inner and outer
joins.

In the example of Listing 11.1, FROM source was used to show the database table
or view from which the data is read.

INTO Clause

The INTO clause determines the ABAP program data objects into which the data
should be fetched. The data object specified in the INTO clause must match the
table columns listed in the SELECT clause. With SELECT SINGLE, the INTO clause
can’t list an internal table. If SELECT SINGLE isn’t used, the INTO clause can list an
internal table using the TABLE addition. For example:

SELECT * FROM vbrp INTO TABLE it_vbrp WHERE vbeln EQ p_vbeln.

The INTO TABLE addition copies the result set into the internal table, and any pre-
vious records in the internal table will be replaced. If you want to keep the previ-
ous records in the internal table and append the new records, you can use the
APPENDING TABLE addition instead of the INTO TABLE addition.

The CORRESPONDING FIELDS OF addition is used to automatically map the identical
fields from the result set to the target data object. If the column names are sup-
plied with alternate names using the AS addition, then the alternate names are
matched with the target data object. This is especially useful when selecting data
from multiple tables into a single target data object when more than one table
contains the same field name.
479

Persistent Data11
WHERE Clause

The WHERE clause allows you to restrict the data selection; it plays a crucial role in
performance of the program. You can specify logical expressions with the WHERE
clause, which can be combined with AND and OR, or negated with NOT. Logical
expressions can form conditions by using the comparison operators=, < >, <>, <=,
or >=, such as in the following example: WHERE carrid = 'AA'.

The left operand in the comparison must always be a field of the table specified in
the FROM clause. You can also specify the predicates BETWEEN and IN in the WHERE
clause—for example: WHERE col BETWEEN v_col1 AND v_col2. The IN predicate is
used with selection tables (range tables).

INSERT

The INSERT statement inserts a new record in the database table. If the primary
key of the record already exists, the new record isn’t inserted.

Similar to other Open SQL statements, the INSERT statement sets the value for sys-
tem fields SY-SUBRC and SY-DBCNT. If the SY-SUBRC value is 0 after the statement is
executed, it means the record is inserted to the database table successfully. The
SY-SUBRC field will be set to 0 if an empty internal table is supplied in the source.
If the SY-SUBRC value is 4, it means the record isn’t inserted to the database table,
because the primary key or unique secondary key already exists in the table. The
SY-DBCNT system field is updated with the number of rows that are inserted.

With the INSERT statement, you can insert a single row from a structure (e.g.,
INSERT table_name FROM wa) or multiple rows from an internal table (e.g., INSERT
table_name FROM TABLE itab).

Listing 11.4 shows an example of inserting a single row using the INSERT state-
ment.

DATA : wa_makt TYPE makt.

wa_makt-matnr = '100'.
wa_makt-spras = 'E'.
wa_makt-maktx = 'Pen'.

INSERT makt FROM wa_makt.
IF sy-subrc IS INITIAL.
MESSAGE 'Record inserted successfully' TYPE 'I'.
ENDIF.

Listing 11.4 Inserting Single Row
480

Working with Data in Databases 11.1
Listing 11.5 shows an example of inserting multiple rows.

DATA : it_makt TYPE STANDARD TABLE OF makt,
wa_makt TYPE makt.

wa_makt-matnr = '100'.
wa_makt-spras = 'E'.
wa_makt-maktx = 'Pen'.
APPEND wa_makt TO it_makt.

wa_makt-matnr = '200'.
wa_makt-spras = 'E'.
wa_makt-maktx = 'Pencil'
.
APPEND wa_makt TO it_makt.

INSERT makt FROM TABLE it_makt.
IF sy-subrc IS INITIAL.
MESSAGE 'Records inserted successfully' TYPE 'I'.
ENDIF.

Listing 11.5 Inserting Multiple Rows

UPDATE

The UPDATE statement updates an existing record in the table. When this state-
ment is used, the non-key fields of the existing row are updated. If the key
doesn’t exist, no record is updated.

Similar to the INSERT statement, you can update a single record by supplying a
structure or update multiple records by passing an internal table. The system sets
the SY-SUBRC and SY-DBCNT fields, similar to the INSERT statement. These system
fields can be checked to identify if the record is updated successfully and the
number of records that were updated, respectively.

The syntax to use the UPDATE statement is similar to that for the INSERT statement.
For example, for the code in Listing 11.4, to update a record from a work area,
you can use the UPDATE statement in place of INSERT as follows:

UPDATE makt FROM wa_makt

Similarly, in Listing 11.5, to update from an internal table, you can use the fol-
lowing statement:

UPDATE makt FROM TABLE it_makt.
481

Persistent Data11
MODIFY

The MODIFY statement works as a combination of the INSERT and UPDATE state-
ments. When you use the MODIFY statement, a record is inserted if the key doesn’t
exist and updated if the key does exist. The SY-SUBRC and SY-DBCNT system fields
are set in a similar way as with the INSERT and UPDATE statements.

The syntax to use the MODIFY statement is also similar to the other two statements.
For example, to modify a single record, you can use the MODIFY statement as fol-
lows:

MODIFY makt FROM wa_makt.

To modify multiple records using an internal table, you can use the statement as
follows:

MODIFY makt FROM TABLE it_makt.

DELETE

The DELETE statement deletes a row or multiple rows from the database table per-
manently. With the DELETE statement, you can supply a WHERE condition or a
source structure/internal table. When a WHERE condition is used, all the matching
records are deleted. The SY-SUBRC and SY-DBCNT system fields are set similarly to
the other three statements.

Listing 11.6 shows the syntax to use the DELETE statement.

*Delete using WHERE condition
DELETE FROM makt WHERE matnr EQ '100' AND spras EQ 'E'.
*Delete using work area/structure
DELETE makt FROM wa_makt.
*Delete using internal table
DELETE makt FROM TABLE it_makt.

Listing 11.6 Using DELETE Statement

These Open SQL statements don’t update the database immediately when the
statement is executed in the application server; instead, the data is committed to
the database when a commit work is performed in an LUW. Until the commit
work is performed, these statements set a database lock. If used incorrectly, these
statements can result in a dead lock (blocking access to the data).
482

Working with Data in Databases 11.1
New SQL Syntax

With the release of SAP NetWeaver 7.4, SAP has introduced new SQL syntax,
which was further updated in SAP NetWeaver 7.5. As previously discussed, Open
SQL is a subset of standard SQL and contains limited functions compared to those
in standard SQL. With SAP NetWeaver 7.4 and 7.5, SAP has expanded the possi-
bilities of Open SQL.

The following are some of the important additions introduced to Open SQL:

� Inline declarations
With SAP NetWeaver 7.4, SAP introduced inline declarations, which allows
you to declare data objects when required as opposed to declaring the data
object beforehand. Before SAP NetWeaver 7.4, a data object needed to be
declared as follows before it could be accessed by ABAP statements:

DATA lv_date TYPE sy-datum.
date = sydatum.

As of SAP NetWeaver 7.4, you can perform the data declaration inline and
avoid extra lines of code as follows:

DATA(lv_date) = sy-datum.

The support for inline declarations extends to SQL statements—so instead of
defining the structures and internal tables beforehand, you can declare the tar-
get field while reading the data from the database. For example, Listing 11.7
shows the traditional way to write code.

REPORT ZDEMO_EXAMPLE.
TYPES : BEGIN OF ty_makt,

matnr TYPE matnr,
spras TYPE spras,
maktx TYPE maktx,

END OF ty_makt.
DATA it_makt TYPE STANDARD TABLE OF ty_makt.
PARAMETERS p_matnr TYPE matnr.
SELECT matnr spras maktx FROM makt INTO TABLE it_
makt WHERE matnr eq p_matnr.

Listing 11.7 Traditional Code

As of SAP NetWeaver 7.4, you can save considerable effort by not defining the
structure type and internal table beforehand. The code in Listing 11.7 can be
written as shown in Listing 11.8.
483

Persistent Data11
PARAMETERS p_matnr TYPE matnr.
SELECT matnr, spras, maktx FROM makt WHERE matnr EQ @p_matnr
INTO TABLE @DATA(it_makt).

Listing 11.8 New Syntax as of SAP NetWeaver 7.4

In the preceding example, we’re using the new SQL syntax, in which the fields
of the table are separated by commas and all the host variables are escaped
using the escape character @. Host variables are the program data objects that
should be escaped to tell the compiler that we’re not talking about the fields in
the database.

� Strict mode
When using new SQL syntax, the syntax checker runs in strict mode to ensure
all of the new syntax rules are followed. Strict mode helps maintain backward
compatibility by forcing you to write the statement either completely using
new syntax or completely using old syntax, but not a mix of both.

� INTO clause
The INTO clause has moved to the end of the statement. By moving the INTO
clause to the end of the statement, SAP can further enhance the Open SQL
statement by adding support for new features.

� CASE statement
You can embed the CASE statement within an SQL statement, as opposed to
fetching the data into the program and then comparing the data using the CASE
statement.

Listing 11.9 shows a sample statement in which the sex of an employee is
checked via the CASE statement.

SELECT name, age,
CASE WHEN sex = 1 THEN @male

WHEN sex = 2 HEN @female
ELSE @others

END AS group
FROM zemployee
ORDER BY group
INTO TABLE @DATA(lt_employee).

Listing 11.9 Case Expression

� Arithmetical operations
The new SQL syntax allows you to perform arithmetical operations within the
SQL statement. In versions before SAP NetWeaver 7.4, you’ll have to get the
484

Working with Data in Databases 11.1
data into the program and then perform arithmetic operations on the data.
However, with the new SQL syntax, you can perform arithmetic operations
inside SQL statements.

In the following statement, we’re performing an arithmetic operation inside a
SQL statement—in this case, reading the result of multiplying the fkimg (quan-
tity) and netwr (net value) of an item in the billing document:

SELECT SINGLE fkimg * netwr FROM vbrp WHERE vbeln EQ @p_vbeln
AND posnr EQ @p_posnr INTO @DATA(total).

11.1.2 Logical Unit of Work

In the real world, a user completes a transaction by performing a sequence of
actions that logically belong together—for example, booking a flight. This
sequence of actions should be completed together as a single unit, and this unit is
called a logical unit of work (LUW).

To ensure correctness and completeness of data, either all data belonging to an
LUW should be committed to the database together or none of the data should be
committed. For example, when you transfer an amount in financial accounting,
one account should be debited and the other account credited. Once the amount
is debited from one account and before it’s posted to another account, the data is
in an inconsistent form. If the database is updated immediately when the account
is debited but, due to an error in the application, the credit account isn’t posted,
there will be data inconsistency because the amount isn’t reflected in either
account.

The data in a logical unit should be committed wholly and there should be a
mechanism to roll back the data if the transaction wasn’t completed successfully.
To avoid such data inconsistency and ensure that data is always consistent at the
end of each transaction, we implement the concepts of a database LUW and SAP
LUW.

In the following subsections, we’ll look at each LUW type.

Database LUW

A database LUW exists between each dialog step; it works as a single unit with an
inseparable sequence of database operations that ends with a database commit. A
database LUW is either executed fully or not at all. If there is any error within a
485

Persistent Data11
database LUW, none of the data within the LUW is committed to the database.
This ensures that at the end of each database LUW, the data is always in a consis-
tent form. In other words, the data is either modified at the end of the database
LUW or it remains as it was before the beginning of the database LUW.

When you run a transaction, the program loads in the application server, which is
processed by a work process. The work process sends a screen to the user in the
presentation layer. Once the user makes an input and, for example, clicks a but-
ton, the request is sent to the work process in the application server. During this
time, while the work process is processing the request, the screen is visible to the
user but isn’t ready for input. In other words, the screen is inactive. Once the
work process has processed the request, it will send the next screen in the
sequence, making the screen active for input.

The time between the screen becoming inactive and the screen becoming active
again when the work process finishes processing is called a dialog step (see Figure
11.1). The database LUW begins each time a dialog step starts and ends when the
commit work is performed.

Figure 11.1 Dialog Steps

Database changes within a database LUW are not written to the database until the
commit work is performed. This allows you to perform a roll back to reverse the
changes. For example, say that you’ve executed an INSERT statement in the pro-
gram to insert the header data of a document, but later in the code, some crucial
data about the item details of the document are missing, so you can’t update the
item details.

Because the records aren’t written to the database until the commit work is per-
formed, the INSERT statement didn’t update the database with the header record
of the document immediately when the statement was executed. At this point,
you can still roll back the data using the ROLLBACK WORK statement when the vali-
dation for item data fails.

Screen 100 Screen 200 Screen 300

Database LUW Database LUW

Dialog step/
Screen inactive

Dialog step/
Screen inactive
486

Working with Data in Databases 11.1
The commit work is performed both implicitly and explicitly; it’s performed
implicitly in the following instances:

� When a dialog step is completed.

� When a remote-enabled function module is called in another work process
(RFC call) from the program. This passes the control to another work process,
so the commit work is performed implicitly.

� When the remote-enabled function module called in another work process
ends. This results in control being returned to the calling work process.

� When a WAIT statement is used in the program. This interrupts the work pro-
cess, and the control passes to another work process.

� When a message dialog is shown (error message, warning message, or informa-
tive message). This results in control being passed to the presentation layer.

The commit work can be performed explicitly in a program by calling the DB_COM-
MIT function module or using the COMMIT WORK ABAP statement.

Within a database LUW, a rollback is also performed both implicitly and explic-
itly. The rollback is performed implicitly when the program results in a runtime
error or when a termination message (type A or X) is generated using the MESSAGE
statement. The rollback can be triggered explicitly by using the ROLLBACK WORK
ABAP statement.

A database LUW also consists of database locks to ensure no two users can edit the
same data simultaneously. The lock is active during the duration of the database
LUW and is automatically released at the end of the database LUW.

Each work process can only handle one database LUW. However, many database
LUWs can be run in parallel in the system by different work processes.

SAP LUW

The lifetime of each database LUW is limited to a single dialog step—but what if
your transaction extends over several dialog steps? Perhaps the transaction is
spread over a series of screens called in sequence and the data spread over multi-
ple dialog steps should be handled in one LUW; for example, the data should be
saved when the user confirms the last screen. If you used INSERT or UPDATE state-
ments in individual screens, the data would be committed to the database when
the commit work is performed implicitly between each dialog step. There’s no
487

Persistent Data11
way for you to roll back this data if the user cancels the transaction on the final
screen.

To handle transactions that are typically spread across multiple dialog steps, we
implement different bundling techniques to carry out the database changes in the
final dialog step. Using these bundling techniques, we can ensure that the data of
individual dialog steps isn’t committed to the database within the database LUWs
between the dialog steps. Bundling techniques involve using a function module
or a subroutine that’s executed in the last dialog step, as opposed to using the
Open SQL statements in individual dialog steps, to update the data.

A logical unit consisting of multiple dialog steps for which changes are written to
the database in a single database LUW (final database LUW) is called an SAP LUW.
Whereas a database LUW spans a single dialog step, an SAP LUW spans multiple
dialog steps, as shown in Figure 11.2.

Figure 11.2 SAP LUW Dialog Steps

SAP LUW effectively extends the LUW across multiple dialog steps. This allows
you to bundle all the database changes that occur in individual dialog steps so that
they can be committed in the final database LUW using the COMMIT WORK state-
ment when the transaction ends successfully. If any error occurs, we can use the
ROLLBACK WORK statement to cancel all the bundled updates. In this way, either the
data in a transaction is updated fully in the database or none of the data is
updated.

The SAP LUW allows you to handle complex business processes and distribute
your transaction across multiple work processes or even across multiple systems.
The various bundling techniques we use to implement SAP LUW are discussed in
the following subsections.

SAP LUW

Screen 100 Screen 200 Screen 300

Database LUW Database LUW

Dialog step/
Screen inactive

Dialog step/
Screen inactive
488

Working with Data in Databases 11.1
Bundling with Function Modules

To bundle database updates until the last step of an SAP LUW, a special function
module called an update function module is used.

Update function modules are created in Function Builder by setting the Process-

ing Type to Update Module in the function module attributes, as shown in
Figure 11.3.

Figure 11.3 Update Function Module

There are two types of updates: high-priority updates, called V1, and low-priority
updates, called V2. V1 updates are those that describe critical or primary changes,
such as the creation of orders or changing material stock. V2 updates are those
that describe less critical, secondary changes, such as statistical updates or results
calculations. V1 updates always are processed before V2 updates. V1 updates are
processed on the same application server in which the update is requested and
are processed consecutively in a single-update work process; they can be rolled
back and belong to a single database LUW. V2 updates are executed together in a
separate LUW.
489

Persistent Data11
You can set the following attributes for the update function module:

� Start Immediately

Set this option for V1 updates within a shared SAP LUW. If there is any techni-
cal error during the update (e.g., a memory shortage), the update is rolled back
and can be restarted by the update task.

� Immediate Start, No restart

Similar to the preceding option, but the update is not restarted in the case of a
technical error.

� Start Delayed

Set this option for V2 updates. If there is any technical error, the update can be
restarted by the update task.

� Coll.run

This flag is for internal SAP use. When this flag is set, the update function mod-
ules are executed collectively.

An update function module can’t have exceptions or any exporting parameters,
because the function module can’t export anything to the program during an
update. Also, all the parameters of the function module should be referenced to
the ABAP Data Dictionary objects.

The Open SQL statements that modify the data are not written in the application
program directly. Instead, the data that should be modified is passed to the
update function module, and the Open SQL statements to modify the data in the
database are used inside the function module. In other words, the update state-
ments are written in the function module instead of the program. This update
function module is then called at the location in the program at which you other-
wise would have included Open SQL statements. The function module is called
using the IN UPDATE TASK addition to the CALL FUNCTION statement (e.g., CALL
FUNCTION 'XYZ' IN UPDATE TASK).

When a function module is called using the IN UPDATE TASK addition, it isn’t exe-
cuted immediately; instead, it’s flagged for execution in a special work process
called the update work process. The function module and its parameters are stored
as a log entry in database table VBLOG. When the COMMIT WORK statement is exe-
cuted in the program, the update work process takes care of updating the data,
and the function module is executed by reading the log from table VBLOG.
490

Working with Data in Databases 11.1
For example, if the transaction flow involves three dialog steps and the update
function module is called in the first dialog step, it isn’t executed immediately;
instead, a log entry is made in table VBLOG. In the final dialog step, if you use the
COMMIT WORK statement, then the update work process will update the data in the
database.

If for some reason in the final dialog step you decide not to update the data (due
to a logical error), you can use the ROLLBACK WORK statement. When the ROLLBACK
WORK statement is used, the log entry will be deleted from table VBLOG and no data
will be updated to the database, because the function module won’t be executed.

If due to any technical reasons the update work process can’t complete the
update, it will automatically perform a rollback and place the log entry back in
table VBLOG (depending on the function module setting). It then sends a message
to the user who originally started the dialog work process with the error informa-
tion. After correcting the error, the VBLOG entries can be processed again.

This technique allows you to perform database updates asynchronously because
updates are handled by a separate update work process. This in turn improves
program performance because the dialog work process in which the program is
running doesn’t need to wait for the update to complete before executing the
next step.

Bundling with Subroutines

A bundling technique can also be performed with subroutines using the ON COM-
MIT addition with the PERFORM statement. When you use the PERFORM statement to
call a subroutine with the ON COMMIT addition (e.g., PERFORM <xyz> ON COMMIT), the
subroutine isn’t called immediately. The subroutine is called when the COMMIT
WORK statement is executed in the program.

Unlike the update function module, the update task isn’t assigned to the update
work process; instead, it’s handled by the same dialog work process. Because the
system doesn’t need to write log entries to table VBLOG, performance improves
due to reduced database accesses. However, no parameters can be passed to this
subroutine, so the program uses global variables and ABAP memory to perform
the update, which can be risky and lead to inconsistencies.
491

Persistent Data11
Bundling with RFC

When you call a remote-enabled function module using IN BACKGROUND TASK
DESTINATION with the CALL FUNCTION statement (e.g., CALL FUNCTION 'ABC' IN
BACKGROUND TASK DESTINATION 'QAS'), the function module is registered for back-
ground execution in another SAP system specified in the destination. The destina-
tion contains the details of the remote system, such as remote system IP address
and logon credentials. When the program encounters the COMMIT WORK statement,
the remote function module is executed in background in the destination system.

If multiple remote function modules are called using the IN BACKGROUND TASK DES-
TINATION addition, all of them will be executed together in a single database LUW
when the COMMIT WORK statement is executed in the program. The dialog work pro-
cess doesn’t need to wait for the update to complete, because the function mod-
ules are called asynchronously. This technique is useful if you want to update the
same data in multiple systems.

So far, we’ve discussed various ways to store data persistently in the database.
However, all of the techniques we discussed use procedural elements to save the
data persistently. ABAP Object Services is a framework that provides various ser-
vices to create and work with persistent objects. We’ll discuss this further in the
next section.

11.2 ABAP Object Services

As previously mentioned, ABAP Object Services is a framework for various ser-
vices related to creating and working with persistent objects. Persistent objects
allow you to use a purely object-oriented data model to store the data as opposed
to using a relational data model. SAP provides a persistence service that acts as a
software layer between persistent objects and the underlying database; in other
words, the persistence service enables you to work with persistent data without
having to use Open SQL statements in your program.

In this section, we’ll discuss how to use ABAP Object Services for persistent
objects. We’ll begin with an overview of what a persistence service is, then we’ll
look at building persistent classes and working with persistent objects.
492

ABAP Object Services 11.2
11.2.1 Persistence Service Overview

The persistence service is based on object-relation mapping (ORM) tools. Using
ORM tools, the persistence details are encapsulated inside persistent classes by
mapping the database tables/structures/views onto the object-oriented model.
This in effect allows you to work with the data in the relational database in an
object-oriented way. Classes with object-relational mapping are referred to as per-
sistent classes, and the attributes that are mapped to the columns in the database
table are called persistent attributes.

In other programming languages, such as Java, the ORM framework automati-
cally generates the corresponding database tables and represents data as objects
when you construct a class with attributes. However, SAP doesn’t yet support
such functionality. The persistence service is a software layer that intermediates
between the persistent objects and the relational database (see Figure 11.4). The
persistent objects themselves are transient in nature.

Figure 11.4 Persistence Service

The persistence service handles extracting the data from the database and initial-
izing the attributes of the persistent object, and it works with the instances of per-
sistent objects.

11.2.2 Building Persistent Classes

The steps to create a persistent class are similar to creating a regular class, except
that you select Persistent Class as the Class Type, as shown in Figure 11.5. For
customer objects, the name of the persistent class should start with ZCA or YZA.

Database

Persistence service

ABAP Program

Object

Create and
initialize object

Save data and
delete object
493

Persistent Data11
Figure 11.5 Creating Persistent Class

When the persistent class is created, it implements the IF_OS_STATE interface.
This interface is implemented in all persistent classes to ensure all the persistent
classes are accessed in a consistent way.

The Class Builder also creates two agent classes with the naming convention CA_
and CB_. These agent classes are used to manage the persistent objects of the per-
sistent class. In other words, these agent classes will have the methods that imple-
ment the actual Open SQL statements and take care of initializing the persistent
objects.

For example, in Figure 11.5 we’re creating a persistent class called ZCL_OS_
SFLIGHT, and Class Builder will generate the ZCA_OS_SFLIGHT and ZCB_OS_SFLIGHT
agent classes.

The ZCB_OS_SFLIGHT agent class is an abstract class, and the ZCA_OS_SFLIGHT class
inherits from it. The ZCB_OS_SFLIGHT class is added as a friend to the ZCL_OS_
SFLIGHT persistent class, as shown in Figure 11.6.

At this point, the ZCL_OS_SFLIGHT class only has the methods from the IF_OS_
STATE interface (see Figure 11.7). Class Builder adds additional methods once we
perform persistence mapping with the database table, structure, or view. Per-
sistence mapping is the process of mapping the database table fields with the attri-
butes of the persistence class.
494

ABAP Object Services 11.2
Figure 11.6 Abstract Agent Class Added as Friend

Figure 11.7 Methods of Base Class

To perform persistence mapping, click the Persistence button in the application
toolbar, as shown in Figure 11.7. This will open the mapping tool, as shown in
Figure 11.8. Provide the name of the table/structure to which you want to map
the persistence class.

Class Builder will automatically create the attributes in the class for the fields of
the table/structure mapped. It will also create setter and getter methods to manip-
ulate these fields. The setter methods are not created for the key fields of the table
because the key shouldn’t be changed.

Once you provide the table/structure name, all the fields of the table will load in
the bottom section, as shown in Figure 11.9. You can double-click a field name to
change some of the field’s properties if required—for example, to make the field
read-only.
495

Persistent Data11
Figure 11.8 Mapping Tool

Figure 11.9 Fields of Table in Mapping Tool
496

ABAP Object Services 11.2
Select each field and press (Enter) to add the field to the class. All the fields of the
table should be added. If you want to use only some fields of the table, then cre-
ate a projection view for the table and use the view name for mapping. Once all
the fields are added, click Save and then Back.

Note that all the fields are added as attributes, and the corresponding SET and GET
methods are created (see Figure 11.10).

Figure 11.10 SET and GET methods

Now activate the class. If you haven’t activated this class before, the system will
show you a prompt asking whether the class activator should also be activated.
Click Yes.
497

Persistent Data11
11.2.3 Working with Persistent Objects

Working with persistent objects is fairly straightforward. The CA agent class
implements a singleton design pattern, so we can’t instantiate the object directly
using the CREATE OBJECT statement in the program. A singleton design pattern
ensures that only one instance of the object exists.

To get the reference of the agent class, we need to access the agent static attribute
defined in the agent class. From there, we can work with the persistent data just
like working with an object by calling the get_persistent, create_persistent,
and delete_persistent methods to read, write, and delete a record in the data-
base table.

Listing 11.10 shows an example of reading a record by calling the get_per-
sistent method of the agent class.

DATA : lr_sflight_agent TYPE REF TO zca_os_sflight,
lr_sflight TYPE REF TO zcl_os_sflight,
v_price TYPE s_price.

TRY.
lr_sflight_agent = zca_os_sflight=>agent.
lr_sflight = lr_sflight_agent->get_persistent(
i_carrid = 'AA'
i_connid = 0017
i_fldate = '20150211'
).
v_price = lr_sflight->get_price().
WRITE v_price.

CATCH cx_os_object_not_found. " Object not Found
ENDTRY.

Listing 11.10 Working with Persistent Objects

In this section, we learn how to create persistent classes and work with persistent
objects. In the next section, we’ll look at working with files in the application
server and the presentation layer.

11.3 File Interfaces

In addition to storing data in the database layer, you can save data in a persistent
form in the application and presentation layers. Data is stored as sequential files
in these layers—for example, as spreadsheets. In this section, you’ll learn about
working with files in the presentation application layers.
498

File Interfaces 11.3
We’ll first look at how sequential files can be saved to the application server
directories from the ABAP program and how to read the saved files to be pro-
cessed in ABAP programs in Section 11.3.1. Then, in Section 11.3.2, we’ll discuss
exporting and importing files from and to the presentation layer.

11.3.1 Working with Files in the Application Server

We use different ABAP statements to transfer data to a file stored in the applica-
tion server directory. We typically perform two kinds of operations with files
stored in the application server directory:

1. Read the file from the application server directory to an ABAP program
(inbound interface)

2. Transfer the file from the ABAP program to the application server directory
(outbound interface)

In an inbound interface, the data is read from the file and transferred to an internal
table for further processing in the ABAP program. Conversely, in an outbound
interface, the data from an internal table in the ABAP program is transferred to
the file in the application server.

The following ABAP statements are used to read and write the files in the appli-
cation server:

� OPEN DATASET

Opens the file for access. The system performs certain implicit authorization
checks to ensure the user has the required permissions to access the file. Up to
one hundred files can be opened per internal session. This statement will result
in a catchable exception if the file is already opened in the program. The access
type for which the file is to be opened should be supplied. The file can be
opened for the following:

� For Input: Opens the file for reading.

� For Output: Opens the file for writing

� Appending: Opens the file for appending data. If the file exists, the file is
opened and the cursor points to the end of the line to append new lines. If
the file doesn’t exist, a new file is created.

� Update: Opens the file for modifying the existing content.
499

Persistent Data11
The file can be opened in text mode or binary mode, and the encoding must be
specified. The file should always be opened using this statement before any
other operations can be performed.

The following statement shows an example of using the OPEN DATASET state-
ment to open a file for writing:

OPEN DATASET v_file FOR OUTPUT IN TEXT MODE ENCODING DEFAULT.

Here, v_file contains the path of the file in the application server. directory.

� TRANSFER

If the file isn’t opened for INPUT, data from a data object can be transferred to
the file using this statement. Before this statement can be used, the file should
be opened using the OPEN DATASET statement. If the file isn’t opened, it will
result in a catchable exception.

Listing 11.11 shows the sample code to transfer the records to file in the appli-
cation server.

OPEN DATASET v_file FOR OUTPUT IN TEXT MODE ENCODING DEFAULT.
LOOP AT itab INTO wa.
TRANSFER wa TO v_file.
ENDLOOP.
CLOSE DATASET v_file.

Listing 11.11 Transferring Data to File

If the file is opened in text mode, the data object should be character type. If the
file is opened in binary mode, only binary data should be transferred.

� READ DATASET

This statement transfers the data from the file to the program data object one
line at a time. The file should be opened for input before using the READ DATA-
SET statement. This statement is used in a DO loop to read all the lines of the file.
Listing 11.12 shows example code using the READ DATASET statement.

OPEN DATASET v_file FOR INPUT IN TEXT MODE ENCODING DEFAULT.
DO.
READ DATASET v_file into wa_makt.
IF sy-subrc IS NOT INITIAL.
EXIT.
ELSE.
APPEND wa to itab.
ENDIF.
500

File Interfaces 11.3
ENDDO.
CLOSE DATASET v_file.

Listing 11.12 Reading File

� GET DATASET

Gets the current cursor position in the file.

� SET DATASET

Sets the cursor in the file. The position is specified explicitly or can be set as the
end of the file.

� TRUNCATE DATASET

Sets the end of the file.

� CLOSE DATASET

Closes the file. If the file isn’t closed explicitly using this statement, it’s closed
automatically when the program is closed.

� DELETE DATASET

Deletes the file. The system performs implicit checks to ensure the user has the
required authorizations to delete the file.

The file names are operating system-dependent because they’re physical names.
We recommend using platform-independent file names to make your programs
portable.

To make your file names platform-independent, use logical file names and paths.
These logical file names and paths are linked to physical file names and paths
using special tables in customizing that can be maintained using Transaction FILE.
The physical file name from a logical file name is generated using the FILE_GET_
NAME function module.

Using logical file names and paths also enhances security.

11.3.2 Working with Files in the Presentation Layer

Sometimes, users may want to save data locally to their workstations or upload
data to a program for processing. For example, a user may want to download the
report output as a PDF file or upload a spreadsheet with material data to be
posted in the database. In such scenarios, we can use the CL_GUI_FRONTEND_SER-
VICES global class to work with the files in the presentation layer.
501

Persistent Data11
Among other methods, the class provides the GUI_UPLOAD and GUI_DOWNLOAD static
methods to upload or download data from or to the user’s workstation. The class
documentation available for these methods in Class Builder explains their usage
clearly.

To download the file to the presentation layer, the file path, file type (binary or
ASCII), and internal table that contains the data are passed to the GUI_DOWNLOAD
method.

To upload a file, an internal table is defined with the number of fields matching
the number of columns in the file. This table is then passed to the GUI_UPLOAD
method along with the file path. The data will be uploaded from the file to the
supplied internal table.

Listing 11.13 shows sample code using the GUI_UPLOAD method.

TYPES : BEGIN OF ty_file,
field1 TYPE char20,
field2 TYPE char30,
field3 TYPE char10,
END OF ty_file.

DATA : it_file TYPE STANDARD TABLE OF ty_file.
PARAMETERS p_file type string.

CALL METHOD cl_gui_frontend_services=>gui_upload
EXPORTING
filename = p_file
filetype = 'ASC'
has_field_separator = SPACE

CHANGING
data_tab = it_file

EXCEPTIONS
file_open_error = 1
file_read_error = 2
no_batch = 3
gui_refuse_filetransfer = 4
invalid_type = 5
no_authority = 6
unknown_error = 7
bad_data_format = 8
header_not_allowed = 9
separator_not_allowed = 10
header_too_long = 11
unknown_dp_error = 12
access_denied = 13
dp_out_of_memory = 14
disk_full = 15
502

Data Clusters 11.4
dp_timeout = 16
not_supported_by_gui = 17
error_no_gui = 18
others = 19

.
IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.

Listing 11.13 GUI Upload

In this section, we looked at how to save data persistently in the application and
presentation layers. In the next section, we’ll discuss what data clusters are and
how to export and import data by using them.

11.4 Data Clusters

Data clusters are a type of storage that can only be used by ABAP programs. A data
cluster is a group of data objects that stored in a storage medium. The data of data
objects can be stored in different media using data clusters, and this data can then
be read by ABAP programs.

Data clusters are in an ABAP-specific format and can only be accessed using
IMPORT and EXPORT statements. A data cluster consists of an administration section
and a data section. The administration section stores administration information
about the data cluster, and the data section contains the compressed data objects.
The administrative information that is stored in a data cluster varies based on the
storage medium.

The following media support data clusters:

� Byte string

� Internal table

� ABAP memory

� Database

� Cross-transaction application buffers

The following statements are used when working with data clusters:

� EXPORT

Allows data objects to be written to the storage medium.
503

Persistent Data11
� IMPORT

Allows data objects to be extracted from the storage medium.

� DELETE

Deletes any storage medium.

� FREE

Can be used to delete ABAP memory.

� IMPORT DIRECTORY

Generates a list of all data objects that have previously been exported to a data-
base table.

A data cluster stored in a database table is stored persistently, so it can be
imported later by ABAP programs. In this section, we’ll discuss storing data clus-
ters in a database table.

When storing data clusters in database tables, the table should have a specific
structure. These structures are called INDX structures (see Figure 11.11), because
they’re based on the standard table INDX provided by SAP.

The table structure should satisfy the following conditions:

� The first field of a table should be the MANDT field if you want to store data
objects specific to a client, and it should be a key field. You don’t need to
include the MANDT field if the data cluster is to be stored cross-client.

� The second field must be a key field named RELID of TYPE CHAR and LENGTH 2. It
stores the two-character area specification supplied while exporting the data
cluster. The area specification splits up the rows of the database table into sev-
eral areas so that data clusters with the same ID can exist multiple times in the
database table.

� The table should contain one key field of TYPE CHAR with any name to store the
identifier specified in the EXPORT statement.

� The next field must be a key field named SRTF2 of TYPE INT4. It contains the row
numbers of a stored data cluster that can extend over several rows and is filled
automatically by the system.

� Any number of components with any names and types may follow. The com-
ponents will be passed with the EXPORT statement. The IMPORT TO statement
reads these fields out again.
504

Data Clusters 11.4
� The last two components must be named CLUSTR and CLUSTD and be of types
INT2 and LRAW of any length. In CLUSTR, the current length of field CLUSTD of
each row is stored, whereas CLUSTD contains the actual data cluster.

Figure 11.11 INDX-Like Table

11.4.1 Exporting Data Clusters to Databases

The EXPORT TO DATABASE statement exports the data cluster to the special database
that is of table INDX.

With the EXPORT statement, a two-character area specification and ID are sup-
plied. The area specification splits up the rows of the database table into several
areas so that data clusters with the same ID can exist multiple times in the data-
base table.

Listing 11.14 shows sample code using the EXPORT statement.

DATA: it_kna1 TYPE STANDARD TABLE OF kna1.
SELECT * FROM kna1 INTO TABLE it_kna1 UP TO 10 ROWS.
EXPORT tab = it_kna1
TO DATABASE zdemo_dc(SA)
ID 'TABLE'.

Listing 11.14 Exporting Data Cluster to Table
505

Persistent Data11
11.4.2 Importing Data Clusters

Using the IMPORT statement, the data cluster that was written to the database table
dbtab in the area ar and under the ID specified in id using the EXPORT statement
is imported.

Listing 11.15 shows an example of importing data clusters using the IMPORT state-
ment.

DATA: it_kna1 TYPE STANDARD TABLE OF kna1.
IMPORT tab = it_kna1
FROM DATABASE zdemo_dc(SA)
ID 'TABLE'.

Listing 11.15 Importing Data Clusters

11.5 Security Concepts

Database LUWs and the bundling techniques used with an SAP LUW ensure that
data is consistent at the end of a transaction. Along with the lock objects used at
the application level, SAP implicitly sets database locks when the Open SQL state-
ments SELECT, INSERT, UPDATE, MODIFY, or DELETE are used. These lock concepts
further ensure data consistency.

Data security is another vital component to consider. Ensuring that only autho-
rized users have accesses to data is vital for business. For example, you wouldn’t
want an employee to see compensation benefits or personal data of other
employees. Open SQL statements in themselves don’t perform any authorization
checks when they’re executed; user authorizations should be checked at the appli-
cation level before providing access to data.

To facilitate user authorization in application programs, we can use authorization
objects. An authorization object consists of up to ten authorization fields. We use
these authorization fields to check if the user has authorization for a certain activ-
ity in the system. For example, Figure 11.12 shows the authorization object S_
CARRID with couple of authorization fields—namely, CARRID and ACTVT. The CAR-
RID field expects the airline code for which the authorization should be checked
for the user.

The ACTVT fields expects the activity that should be checked, such as Change or
Display. Clicking the Permitted Activities button shows you the available activ-
ities that can be checked. This allows you to check for various activities based on
506

Security Concepts 11.5
the user actions in the application. For example, you may want to give display
access to a certain user but not change access.

In the example in Figure 11.12, we can use the S_CARRID authorization object to
check if the user has Create or Generate authorization. This check can be per-
formed before creating new records with the INSERT statement.

Similarly, we can check if the user has Display authorization before executing the
SELECT statement to select the data.

Figure 11.12 Authorization Object

The authorization object is called in the application program using the AUTHOR-
ITY-CHECK OBJECT statement. The Pattern button in ABAP Editor can be used to
insert the required syntax. Listing 11.16 shows sample code to check if the user
has display authorization for a particular airline.
507

Persistent Data11
PARAMETERS p_carrid TYPE spfli-carrid.
AT SELECTION-SCREEN.
AUTHORITY-CHECK OBJECT 'S_CARRID'
ID 'CARRID' FIELD p_carrid
ID 'ACTVT' FIELD '03'.

IF sy-subrc <> 0.
MESSAGE 'No Authorization for the Airline' TYPE 'E'.

ENDIF.

Listing 11.16 Checking for Authorization

Authorization objects are created by SAP Basis administrators, and the authori-
zation profile is maintained in the user master record. The AUTHORITY-CHECK
statement checks against the user profile to identify if the user has the required
authorization. It’s always a good practice to perform the authorization check
early in the program.

11.6 Summary

In this chapter, we discussed various ways in which data can be stored per-
sistently in the database and in files. We covered concepts such as database LUWs
and SAP LUWs that are used to ensure data consistency.

We also discussed the ABAP Object Services framework, which is an object-ori-
ented framework that allows you to work with relational databases without hav-
ing to use Open SQL statements in the application program.

Even though the database is the most preferred persistence source, we often store
application data in the other two layers. We discussed how data can be stored in
and accessed from the application server as well as the user’s workstation in the
presentation layer.

We concluded this chapter with a discussion of persistent data security concepts
and how to ensure users have the required privileges to work with data.

In the next chapter, we’ll discuss dialog programming, which enables us to create
screens, flow logic, menu bars, and ABAP code that can be linked to make an
application.
508

Chapter 12

Dialog programming involves creating a collection of screens, flow logic,
menu bars, and ABAP code that when linked together builds an applica-
tion. At the end of this chapter, you’ll know how to create transactions
and develop dialog programs.

12 Dialog Programming

Dialog programming is very different from the reporting program creation
you’ve seen so far in this book. Whereas reports traditionally provide read-only
access to a database, dialog programs allow a user to create and update data. For
example, if the user needs an application to create a sales order in which he wants
to capture information about the order and save it to the database, we need to
develop a dialog program to enable the user to capture various information about
the order, validate the data, and save it to the database. However, both report
programs and dialog programs can work interchangeably, and both can be used
to both read and update data.

Dialog programs are also known as transactions. Dialog programs involve various
screens that are called to capture or show data to the user. These programs are
accessed through the SAP GUI and form the user interface. Using dialog
programs, the user can navigate between screens and interact with the SAP ERP
system.

In this chapter, we’ll discuss screen processing and how to create various screen
elements using Screen Painter. As previously discussed in Chapter 3, Screen
Painter is an ABAP Workbench tool used to design dialogs in the SAP system.
We’ll also discuss how to create various screen objects (GUI statuses) such as
menus, buttons on the application toolbar, and so on via the Menu Painter. GUI
statuses extend the functionality of the application.

When the screen is processed, the ABAP runtime environment triggers specific
screen events. We’ll start our discussion in this chapter with an introduction to
screen events in Section 12.1, and we’ll examine the different attributes of a
screen in Section 12.2.
509

Dialog Programming12
A screen consists of different screen elements, which allow the user to interact
with the program. The screen elements we’ll discuss in this chapter are as follows:

� Basic screen elements (text fields, checkboxes, radio button, and push buttons):
Section 12.3

� Input and output fields: Section 12.4

� List boxes: Section 12.5

� Tables controls: Section 12.6

� Tablestrip controls: Section 12.7

� Subscreens: Section 12.8

We will also provide instructions for working with screens in Section 12.9. Even
though there are many screen elements that allow us to design screens, they
sometimes lack the necessary ingredients to provide a rich user experience, or
more may be needed when customer requirements demand complex screen ele-
ments. To fill this gap, SAP provides the Control Framework, which helps us
design better UIs and provide rich user experiences. You’ll learn how to use the
Control Framework in Section 12.10.

Dialog programming is one of the topics that can become complicated easily,
especially when you develop an application that consists of many screens. To
grow more comfortable with dialog programming, you’ll need to practice devel-
oping these applications. Therefore, Section 12.11 concludes the chapter with a
practice exercise.

12.1 Screen Events

Before you develop dialog programs, you first need to understand how dialogs
are processed in SAP. As previously discussed, there are three types of screens
that form SAP GUI. Selection screens and list screens are automatically created via
specific keywords in ABAP programs. For example, a selection screen is gener-
ated by using the PARAMETERS or SELECT-OPTIONS keyword, and a list screen is cre-
ated by using the WRITE keyword.

The third type of screen, called a general screen (or just a screen), is created manu-
ally via Screen Painter.
510

Screen Events 12.1
Figure 12.1 shows a general screen from Transaction VF03. As you can see in
Figure 12.1, the general screen provides greater flexibility to design the screen
with various screen elements, such as input fields, dropdown lists, tables, and
more per your requirements, compared to selection screens or list screens.

Figure 12.1 General Screen with Various Screen Elements

Recall the architecture of the application server that we discussed in Chapter 2:
ABAP programs are processed by the work process in the application server. The
work process consists of a screen processor, ABAP processor, and database interface,
as shown in Figure 12.2.

Figure 12.2 Components of Work Process

The screen processor is responsible for communication between the work pro-
cess and SAP GUI. It processes the screen flow logic that makes up a screen and

Screen Processor

ABAP Processor

Database Interface

Work Process

Database Management System

Database

Context
511

Dialog Programming12
calls different dialog modules. Dialog modules are maintained in the ABAP pro-
gram between the MODULE…ENDMODULE statements and are called from the screen
flow logic using the MODULE statement. The screen processor calls the dialog mod-
ules from the screen flow logic (see Figure 12.3) and ensures that the data is trans-
ferred from the screen to the flow logic.

In other words, the screen flow is controlled by the screen processor via various
screen events. Similar to selection screen events and list events, which are called
respectively when the selection screen and list screens are processed, the screen
processor triggers different screen events when the general screen is processed.

Once the screen processor calls the dialog module from the screen flow logic, the
control will be passed to the ABAP processor (see Figure 12.2), which takes care
of executing the ABAP statements within the dialog module. If the ABAP proces-
sor encounters any statements that require interaction with the database, control
is handed over to the database interface in the work process, which takes care of
interacting with the underlying database.

Figure 12.3 shows the screen flow logic in which screen events are maintained.
When a screen event is triggered by the ABAP runtime environment, the dialog
modules that are called within the event block are executed. The following are the
four screen events that are triggered when a screen is processed:

� Process before output (PBO)
A PBO event is triggered before showing the screen to the user. We use this
event to prepare the screen, such as by assigning default values or dynamically
displaying/hiding certain fields on the screen.

� Process after input (PAI)
A PAI event is triggered after showing the screen to the user, when the user
performs any action on the screen. This event allows you to respond to user
actions on the screen.

� Process on help request (POH)
A POH event is triggered when the user selects (F1) (or field) help for the screen
field. We use this event to provide field help for the screen field.

� Process on value request (POV)
The POV event is triggered when the user selects (F4) (or input) help for the
screen field. We use this event to provide input help for the screen field.
512

Screen Elements and Flow Logic 12.2
In Figure 12.3, all four screen events listed are maintained with their respective
event statements. Dialog modules are called from within the event block using
the MODULE statement. The dialog modules that are called from the screen flow
logic should be maintained between the MODULE...ENDMODULE statements in the
main program to which the screen belongs (refer ahead Figure 12.5).

Figure 12.3 Screen Flow Logic

The PBO event is triggered before the screen is shown to the user, and the
remaining events are triggered after the screen is shown. The PBO event allows
you to prepare the screen before it’s displayed to the user, and other events allow
you to react to user actions on the screen. For example, if you want to disable a
field on the screen or hide some of the screen elements dynamically, you can use
the PBO event.

Similarly, you can capture user inputs and process the application in the PAI
event. The POH and POV events allow us to extend an application’s functionality
by providing additional help for the screen fields. This helps the user understand
what input is expected in each screen field or search for a valid input. The field
help documentation along with input helps provides a consistent user experience
for the user throughout the SAP system.

12.2 Screen Elements and Flow Logic

When we develop dialog programs, we work with ABAP Workbench tools to cre-
ate different objects. For example, we use Screen Painter (Transaction SE51) to
create and design a screen, and we use Menu Painter (Transaction SE41) to define
the GUI status for the screen.
513

Dialog Programming12
Dialog transactions are created using module pool programs. Unlike executable
programs, module pool programs can’t be executed directly using the program
name. Module pool programs are always executed by assigning a transaction code
to the program.

To assign a transaction code to the program, we use Transaction SE93. Instead of
opening all of these various ABAP Workbench tools in different windows, we can
use Object Navigator (Transaction SE80) to work with different ABAP Work-
bench tools in one place. Object Navigator provides an integrated development
environment (IDE), as shown in Figure 12.4.

Object Navigator consists of a navigation area on the left-hand side that groups
various development objects of the program into different folders of a tree struc-
ture. On the right-hand side is the tool area, where the selected objects are
opened using the respective ABAP Workbench tool. For example, if you expand
the Screens folder from the navigation area shown in Figure 12.4 and select a
screen number, the screen will automatically open in Screen Painter in the tool
area.

Figure 12.4 Object Navigator
514

Screen Elements and Flow Logic 12.2
In this section, we’ll discuss the various components of a dialog program. Then,
we’ll explain the use of screens and the process of creating screens for ABAP pro-
grams. Finally, we’ll provide steps for using and implementing screen elements.

12.2.1 Components of a Dialog Program

Dialog programs consist of various objects. These objects aren’t executed on their
own; instead, they’re linked to a main program (dialog program) from which
these objects are called based on the screen flow logic.

The various objects of a dialog program include the following:

� Screens
Screens are central to dialog programming. A dialog program may consist of
many screens. These screens are created using Screen Painter, and each screen
belongs to a program. In other words, each program defines its own screens,
and one screen can’t be shared with multiple programs. Each program screen is
identified by a number between 1 and 9999. We’ll walk through the step-by-
step process of creating screens using Screen Painter in the next section.

A screen consists of screen elements and flow logic. Flow logic controls the
screen flow by calling various modules in the main program to which the
screen belongs. The various UI elements, such as input/output fields, check-
boxes, radio buttons, dropdown list boxes, table controls, and so on, are called
screen elements.

� GUI status
Each screen can load its own GUI status. A GUI status controls the menu bar,
standard toolbar, and application toolbar of the screen and passes the user
actions on those elements as function codes to the program.

The GUI status is defined independently of the screen, and each GUI status
belongs to a program. Each screen of the program can load a different GUI sta-
tus defined for the main program to which the screen belongs, or it can load an
external GUI status defined for another program.

A GUI status is defined using Menu Painter. It’s an independent component of
a program. We’ll discuss creating and using GUI statuses in Section 12.9.2.

� ABAP program
All processing logic is maintained in the ABAP program in dialog modules, pro-
cessing blocks that are maintained between MODULE and ENDMODULE. These
515

Dialog Programming12
dialog modules are called from the screen flow logic for a screen event via the
MODULE statement (see Figure 12.5).

Figure 12.5 Dialog Modules

Dialog modules can’t keep any local data, so any data declarations within a
dialog module are added to the global declaration area of the program. Dialog
modules can’t be called externally from external program screens, nor do they
support any parameter interface. Modules called from PAI end with INPUT and
modules called from PBO end with OUTPUT (e.g., MODULE xyz INPUT or MODULE
abc OUTPUT).

Data is transferred from the screen to the program during a PAI event and from
the program to the screen during a PBO event. When we define a data object of
the program with the same name as the screen field, the data is automatically
transferred from screen to program in the PAI event and stored in the identi-
cally named data object of the program. Similarly, the data in a data object of
the program is transferred to the identically named screen field in the PBO
event.

For example, if we have an input field on the screen with the name V_MATNR in
which the user can input a material number, then we need to define a data
object in the program with the same name, V_MATNR, to store the value entered
by the user.

Module Call from screen flow logic

Module maintained in main program
516

Screen Elements and Flow Logic 12.2
Whatever value the user inputs in the V_MATNR screen field will be transferred
to the program into the V_MATNR data object in a PAI event. Similarly, whatever
data is contained in the V_MATNR data object of the program will be transferred
to the V_MATNR screen field in PBO.

Each screen belongs to an ABAP program and can call modules of the same pro-
gram. The purpose of the main program is to maintain different dialog modules
that are called from the screen flow logic. For this purpose, a module pool pro-
gram is used. The role of the program is limited to maintaining a pool of mod-
ules—hence the name module pool. Module pool programs are always executed
through a transaction code to which the initial screen of the program is linked.
When the transaction is called, it triggers the screen flow logic of the initial
screen, from which other program screens can be called.

Because screens are also supported by executable programs and function
groups, they can be used as main programs as well. With module pool pro-
grams, the first processing block called is always a dialog module within the
PBO event of the initial screen.

With executable programs and function groups, the first processing block
called could be a runtime event or a procedure call. The CALL SCREEN statement
within these processing blocks then starts the screen sequence.

Listing 12.1 shows example code in an executable program. In this example,
when the program is executed, the ABAP runtime environment triggers the
START-OF-SELECTION event and executes the CALL SCREEN 100 statement. When
the CALL SCREEN statement is executed, the screen processing starts by calling
the PBO event of screen 100 and subsequently displaying the screen. At this
point, the program behaves like a module pool program.

REPORT ZDEMO_PROGRAM.
DATA v_matnr TYPE matnr.

START-OF-SELECTION.
CALL SCREEN 100.
&--
*& Module STATUS_0100 OUTPUT
&--
MODULE status_0100 OUTPUT.
* SET PF-STATUS 'xxxxxxxx'.
* SET TITLEBAR 'xxx'.
ENDMODULE.
&--
*& Module USER_COMMAND_0100 INPUT
517

Dialog Programming12
&--
MODULE user_command_0100 INPUT.

ENDMODULE.

Listing 12.1 Starting Screen Processing in Report Program

� Transaction code
A dialog transaction links the program with its initial screen. When the trans-
action code is called, it starts the screen sequence by calling the flow logic of the
initial screen. From the flow logic of the initial screen, other screens can be
called. Figure 12.6 shows Transaction VF01, which links the main program and
the initial screen of the billing document application. As previously mentioned,
transaction codes are created using Transaction SE93.

Figure 12.6 Transaction VF01

� Screen flow logic
The screen flow logic controls the screen flow and consists of different screen
events (as discussed in Section 12.1) from which dialog modules are called. You
can only call dialog modules from the screen flow logic, and these dialog mod-
ules should be maintained in the main program of the screen.

� Dynpro
The screen along with its flow logic is called a dynpro (dynamic program). Each
dynpro represents a dialog step of the program.

� Dialog step
A dialog step starts with the PAI of one screen and ends with the PBO of the next
screen. Each dialog step comprises programming logic between two successive
518

Screen Elements and Flow Logic 12.2
screens. Individual dialog steps of a program can be executed by different work
processes in the application server, and a program consists of multiple dialog
steps.

During a dialog step, the screen remains inactive for input. For example, the
screen is shown to the user in the presentation layer. When the user inputs data
on the screen and presses (Enter), this action initiates the dialog step by calling
the PAI event of the screen. The user action is processed by the work process in
the application server.

While the work process is processing the request, the screen is visible in the
presentation layer but can’t take any input (i.e., the screen is inactive). After the
work process has completed processing the request, the same screen or another
screen is sent back by the work process, completing the dialog step. Once the
screen is sent back to presentation layer, the screen becomes active for user
input. At this point, the work process is free to take another request from same
user or a different user. Figure 12.7 depicts this request-response cycle.

The number of work processes available in the system is often less than the
number of users logged on to the system. Because a work process isn’t dedi-
cated to one user or program, many users can use the system simultaneously.
The dispatcher is responsible for distributing all dialog steps among the avail-
able work processes in the application server.

Figure 12.7 Request-Response Cycle

Now that we’ve looked at the different components of a dialog program, in the
next section let’s hone in on the use of screen components and how to create
these screens.

SAP GUI
Application

Server

Request sent to
application server and
waiting for response

GUI is inactive for input

Response sent to GUI

GUI is active and ready
for input
519

Dialog Programming12
12.2.2 Screens

A screen is a repository object that belongs to a program. Screens are dynamic
programs (dynpros) that contain their own data objects. The data objects of the
screen are called screen fields and are linked to the I/O fields on the screen (see
Section 12.4 for more on I/O fields). The system passes the data between the
screen fields and identically named data objects of the program. This allows us to
transfer data from the program to the screen or from the screen to the program.

The screen can be defined for executable programs, module pool programs, and
function pools. The process of creating a screen is similar irrespective of the pro-
gram type. In this chapter, we’ll work with module pool programs.

Because a screen is a component of a program, we first need to create a program
and then create a screen for a program. We’ll use Object Navigator for the exam-
ples in this chapter, because it’s helpful to work with all the objects in one place.

The following steps illustrate how to create a screen for a program:

1. Open the program in Object Navigator. Right-click the program name and
select Create � Screen, as shown in Figure 12.8.

Figure 12.8 Create Screen Menu Path
520

Screen Elements and Flow Logic 12.2
2. On the Create Screen dialog box that appears (see Figure 12.9), enter the
Screen Number and click the green checkmark. The screen number should be
unique for the program and can be up to four digits. Screen numbers above
9000 are reserved for SAP customers. The initial screen of the program usually
ends with 100.

Figure 12.9 Create Screen Window

3. The system will display the Change Screen Attributes screen (see Figure
12.10). This screen consists of three tabs: Attributes, Element list, and Flow

logic.

Figure 12.10 Change Screen Attributes
521

Dialog Programming12
4. In the Attributes tab, various screen attributes can be maintained:

� Screen Type

In this section, you define the type of screen you want to create. For the
screen type, the Selection Screen option is grayed out, because selection
screens aren’t defined in Screen Painter but rather are generated using
PARAMETERS or SELECT-OPTIONS statements in an ABAP program. This option
is automatically selected for the generated selection screen. You can choose
one of the following options:

– Normal: Defines a normal screen. This is the default option and is the type
of the main screen. A normal screen acts as a main screen that can have a
GUI status and can be called independently in the program or via a trans-
action code.

– Subscreen: This option defines the screen as a subscreen. A subscreen can’t
be called individually; it’s always loaded on the main screen.

– Modal Dialog Box: This type of screen is used to display a pop-up screen.

� Settings

Under this section, various settings can be maintained for the screen:

– Hold Data: If this option is selected, the screen fields will hold data if the
user has enabled it under System � User Profile � Hold Data. This holds
any entries made on the screen and will redisplay the data when the screen
is processed.

– Switch Off Runtime Compression: If this setting is enabled, the screen
isn’t compressed during runtime. That is, if compression is enabled, the
system will automatically remove any lines in which fields were made
invisible dynamically. If compression is turned off, then it will show empty
lines in such scenarios.

– Template—Non-executable: This setting is used by SAP internally. This is
selected if the screen is to be used as a template for other screens and never
executed.

– Hold Scroll Position: Enabling this setting will make the screen hold the
scroll position. This is especially useful for large screens. When you come
back to the screen after processing another screen, the system will hold the
last scroll position.
522

Screen Elements and Flow Logic 12.2
– Without Application Toolbar: Enabling this setting will hide the appli-
cation toolbar on the screen.

� Other Attributes

Under the Other Attributes section, the following options can be set:

– Next Screen: You can input the next screen that should be called after PAI
of the current screen. This setting can be overridden by using the SET
SCREEN statement in one of the PAI modules of the current screen. If the
same screen number is entered as the next screen, then the system will call
the same screen PBO event after the PAI event and display the same screen.

– Cursor Position: Input the screen field where the cursor should be ini-
tially placed when the screen is called.

– Screen Group: Several screens can be assigned to a screen group to per-
form any modifications consistently on all screens of the group. The screen
group name can be accessed by using the SY-DNGR system field.

– Lines/Columns: This setting shows the screen size occupied by the screen
elements. This information is useful when calling the screen as a modal
dialog box.

– Context Menu FORM on CTMENU: You can assign a context menu for the
screen in this field.

5. In the Element list tab, all the screen elements that can be maintained will be
listed. Figure 12.11 shows the Element list tab with all the screen elements
belonging to the screen listed. The screen element details are automatically
populated in the Element list tab when we create the screen elements using
the layout editor. We’ll discuss this tab further when we create screen elements
in the next section.

6. The Flow logic tab (see Figure 12.12) allows you to maintain the screen flow
logic. The screen events are maintained in the flow logic and are then called by
the screen processor. Dialog modules can be called from the flow logic using
the MODULE statement.
523

Dialog Programming12
Figure 12.11 Element List Tab

Figure 12.12 Flow Logic Tab

7. Once all the settings are maintained, activate the screen by clicking the Acti-

vate icon in the application toolbar.
524

Screen Elements and Flow Logic 12.2
12.2.3 Screen Elements

The various screen elements of a dialog program make up the user interface (UI)
of the screen. Screen elements are created in graphical or alphanumeric mode in
Screen Painter.

The graphical layout editor in Screen Painter allows you to create screen elements
via drag and drop functionality. You can access the graphical layout editor by
clicking the Layout button in the application toolbar, as shown in Figure 12.13.

Figure 12.13 Layout Button

To open the editor in alphanumeric mode, from within Screen Painter follow the
menu path Utilities � Settings and select the Screen Painter tab. In the Screen

Painter tab, deselect the Graphical Layout Editor option, as shown in Figure
12.14, and click the OK button (green checkmark). Once the Graphical Layout

Editor option is deselected, click the Layout button shown in Figure 12.13 to
open the editor in alphanumeric mode.

Figure 12.14 Deselecting Graphical Layout Editor

The graphical layout editor (see Figure 12.15) provides an easy-to-use interface in
which all the screen elements can be added using drag and drop functionality.

The alphanumeric layout editor doesn’t support drag and drop; it requires fields
to be inserted manually. To insert a screen element, position the cursor on the
editor where the screen element should be inserted and follow the menu path
Edit � Create Element, as shown in Figure 12.16. You are then shown a list of
screen elements that you can create via the context menu.
525

Dialog Programming12
Figure 12.15 Graphical Layout Editor

Figure 12.16 Alphanumeric Layout Editor

GUI Dependency

The graphical layout editor in Screen Painter is available only for SAP GUI for Windows
and can be started in the SAP NetWeaver Application Server 6.10 with SAP GUI release
6.10 or later.
526

Screen Elements and Flow Logic 12.2
In SAP NetWeaver 7.0, the graphical layout editor can be started if you have SAP GUI
release 6.20 or later, patch 56, or release 6.40, patch 8. In all other cases, the system
starts the alphanumeric full-screen editor automatically.

Figure 12.17 shows the different screen elements that can be maintained; the
basic screen elements include the following:

� Text fields
Used to provide labels for other fields and are not editable.

� Dropdown list boxes
A special type of input/output field that show a list of possible entries from
which the user can select. The user won’t be able to input a free value in this
field; he must select from the available options.

� Checkboxes
Used to allow the user to select multiple options in a group. If a function code
is assigned to a checkbox, the system will call the PAI event immediately; oth-
erwise, the user can continue making other inputs and call the PAI by pressing
(Enter) or clicking a button.

� Radio buttons
Used to allow the user to select any one of the options in a group. Radio buttons
always belong to a group. If a function code is assigned to a radio button/group,
the system will call the PAI event immediately; otherwise, the user can con-
tinue making other inputs and call the PAI by pressing (Enter) or clicking a but-
ton.

� Push buttons
Associated with a function code. When the user clicks the push button, the sys-
tem triggers the PAI event and the function code is passed to the program.

� Boxes
Used to group different screen elements. This allows the screen elements to be
arranged into various groups and provide greater visual appeal for the user.
These are used purely for display purposes and can contain a header to show
the group title.

Other, more specialized screen elements include the following:

� Input/output (I/O) fields
Used to enter or display data.
527

Dialog Programming12
� Table controls
Used to display data in a tabular format—for example, to display all the line
items of a document.

� Tabstrip controls
Allow you to create multiple tabs on a single screen for easy navigation. Each
tab of the tabstrip control loads a subscreen.

� Subscreen area
You can create a subscreen area on a screen so that another screen can be dis-
played there as a subscreen at runtime.

� Custom container
A custom container area can be marked on a screen where a custom control can
be displayed.

Figure 12.17 Screen Elements

Now that we’ve reviewed the various elements of dialog screens, in the next sec-
tion we’ll examine how to create the basic elements we’ve discussed: text fields,
checkboxes, radio buttons, and push buttons. We’ll look at the more complex ele-
ments in later sections.

Input/output field

Tabstrip Control

List Box

Text field

Table Control

Checkbox

Push button

Radio Buttons
528

Basic Screen Elements 12.3
12.3 Basic Screen Elements

Now that we have an understanding of the screen elements that can be created on
a screen, let’s go ahead and create some of the basic elements.

As previously discussed, to create screen elements we call the layout editor by
clicking the Layout button (see Figure 12.13) in Screen Painter. The graphical lay-
out editor is part of the SAP GUI, and you can use it if you’re using a supported
SAP GUI version on the Windows platform (SAP NetWeaver Application Server
6.10 with SAP GUI release 6.10 or later). If you aren’t using a supported platform,
the system will open the alphanumeric editor. Both editors offer the same func-
tionality but different interfaces. The graphical layout editor makes it easy to cre-
ate screen elements using drag and drop.

Figure 12.18 Graphical Layout Editor

The graphical layout editor has three components, as shown in Figure 12.18:

� Element palette
Allows you to create all the screen elements.

Element
Palette

Work Area Element Bar
529

Dialog Programming12
� Work area
The area in which you design the screen by adding various screen elements.

� Element bar
Shows the major attributes associated with a screen element when you double-
click it.

In this section, we’ll walk through the steps for creating text fields, checkboxes,
radio buttons, and push buttons via the graphical layout editor in Screen Painter.

12.3.1 Text Fields

As previously mentioned, text fields provide labels for other fields and are not
editable. To create a text field, follow these steps:

1. Select the element from the element palette and drag it to the work area, as
shown in Figure 12.19.

Figure 12.19 Creating a Text Field

2. Adjust the length and height of the element if required.

3. Maintain a name for the screen element.

4. Maintain text for the screen element. This text will be displayed inside the ele-
ment.

5. Double-click the screen element to open the element bar in order to maintain
further attributes. If the text element is displayed as a label for an I/O field,
select As Label on Left/As Label on Right in the Display tab under Attri-

butes.

Maintain element name

Drag and drop
element to
work area

Maintain
element text
530

Basic Screen Elements 12.3
12.3.2 Checkboxes and Radio Buttons

To create a checkbox or radio button, the corresponding program/dictionary field
should be of type C and length 1. When the checkbox or radio button is selected,
the corresponding program data object will be passed X. We can identify if the
checkbox or radio button is selected by checking the corresponding program field
for X or a space.

In the Screen Painter: Dict./Program Fields window, select the checkbox
(ChkB) or radio button (RadB) option under the Copy As column (see Figure
12.20). These options will be enabled only if the field is of TYPE C and LENGTH 1.

Figure 12.20 Copying Checkbox/Radio Button

The checkbox and radio button elements can also be created by selecting them
from the element palette. The radio buttons should be grouped so that only one
of the buttons in the group can be selected at a time. To group the radio buttons,
select all the buttons that should be part of the group (by holding the (Ctrl) key
and clicking each element), right-click, and select Radio Button Group � Define

from the context menu, as shown in Figure 12.21.
531

Dialog Programming12
Figure 12.21 Defining Radio Button Group

Optionally, the checkboxes and radio buttons can be assigned a function code in
the element bar, which will then trigger a PAI event the moment the checkbox or
radio button is selected. This is useful if you want enable/disable fields dynami-
cally when a checkbox or radio button is selected, for example.

To assign the function code, double-click the screen element to open the element
bar and enter the function code (up to twenty characters long) in the FctCode

field (see Figure 12.22).

Figure 12.22 Assigning Function Code

Assign Function code
532

Basic Screen Elements 12.3
12.3.3 Push Button

Before SAP ERP release 4.6, push buttons were the only UI elements that trig-
gered PAI when the user clicked on them. However, checkboxes, radio buttons,
and list boxes can now also trigger PAI. Each push button is assigned a function
code that is passed to the program when PAI is triggered. You can maintain text
for the push button statically in the attributes, or it can be set dynamically in the
program.

To set the push button text dynamically, you need to define a data object in the
program with the same name as the push button. The text that is filled in this data
object will be displayed as the push button text. An icon can also be assigned to a
push button in the element bar.

Double-click the screen element to open the element bar. Maintain the push but-
ton name in the Name field, the text in the Text field, select the icon in the Icon

name field, and assign a function code in the FctCode field, as shown in Figure
12.23.

Figure 12.23 Assigning Icon

The function code can be accessed in the program using the sy-ucomm system
field. It is also transferred to the ok_code field if the ok_code field is assigned in
the screen element list. The screen element list consists of a field of type OK, as
shown in Figure 12.24. Once the ok_code field is assigned in the element list, it
should be declared in the program as type sy-ucomm.
533

Dialog Programming12
Some user actions may trigger PAI but not pass any function code (e.g., if the user
presses the (Enter) key on the keyboard). In such cases, the sy-ucomm field or the
ok_code field retains the function code of the previous action. To ensure the pre-
vious actions of the user are not performed when the function code isn’t sent, it’s
good practice to clear the ok_code field after performing the related task for the
user action.

Figure 12.24 Assigning ok_code Field in Element List

This section discussed the steps for creating the most basic screen elements of a
dialog program. In the next section, we’ll look at one of the more specialized ele-
ments: I/O fields.

12.4 Input/Output Fields

As previously discussed, I/O fields are used to enter or display data. To create an
I/O field, you can drag and drop the I/O field from the element palette on to the
work area, similarly to text fields, as shown in Figure 12.25.

Figure 12.25 I/O Field
534

Input/Output Fields 12.4
However, if the screen element has corresponding fields in your program or in
ABAP Data Dictionary, you can perform the following steps to add an I/O field:

1. Select the Dictionary/Program Fields icon from the toolbar, as shown in
Figure 12.26.

2. Enter the table name or field name in the Table/Field Name field and click Get

from Dictionary or Get from Program, depending on from where you want
to pick the field from.

3. Select the field and click Continue.

4. Once you move your cursor in the work area, you’ll see the cursor with the
block of fields selected. Click the position in the work area where you want to
display the screen element(s).

Figure 12.26 Using the Dictionary/Program Fields Button to Add I/O Elements
535

Dialog Programming12
If you inserted the fields from ABAP Data Dictionary, then the ABAP Data Dictio-
nary table should be declared in the program to facilitate data transfer between
the program and the screen.

The screen field properties, such as conversion exit, foreign key check, and so on,
are automatically inherited from the table field if they’re maintained for the field
in ABAP Data Dictionary.

12.5 List Box

List boxes are special I/O fields that display possible entries in a dropdown list.
These fields are useful if you want the user to select only from available options.
The user can’t enter a value in the list box directly. If a function code is assigned
to the list box, it will trigger PAI the moment a value is selected from the list box.

A list box consists of two columns: key and value. You can define the list box to
show both key and value or just the value. When the user selects a value in the list
box, the corresponding program data object will be passed the key of the value.
This is useful when you want to show the external format of the data to the user
but use the internal format internally.

To set the I/O field as a list box, double-click the screen element and select List-

box or Listbox with Key in the Dropdown field in the field attributes, as shown
in Figure 12.27. You can populate the values in the list box either from ABAP
Data Dictionary (from the search help or value range) or from the flow logic using
the POV event. This is the recommended method, though you can also populate
the list box by setting the From Program attribute for the value list (see Figure
12.27). In such cases, the list box is populated by passing an internal table to the
VRM_SET_VALUES function module called in a PBO module.

Element Attributes

Each screen element can be set with additional attributes by double-clicking it. The fol-
lowing URL provides comprehensive documentation for various attributes that can be
set for different screen elements:

https://help.sap.com/saphelp_nw74/helpdata/en/d1/801c2d454211d189710000e8322
d00/content.htm.
536

https://help.sap.com/saphelp_nw74/helpdata/en/d1/801c2d454211d189710000e8322d00/content.htm
https://help.sap.com/saphelp_nw74/helpdata/en/d1/801c2d454211d189710000e8322d00/content.htm

Table Controls 12.6
Figure 12.27 List Box

12.6 Table Controls

Table controls are used to display data in a tabular format. You can use a table con-
trol when you want to display multiple rows of data (such as order items). Figure
12.28 shows the various elements of a table control.

Figure 12.28 Table Control

Assign function code

Select Type

Select Listbox/
Listbox with key

Column heading

Vertical scrollRows Table Control

Horizontal scroll
537

Dialog Programming12
Table controls can be created on a screen either directly or by using a wizard. In
the following subsections, we’ll look at each of these options.

12.6.1 Create a Table Control without a Wizard

This section walks through the steps for creating a table control without the use of
a wizard.

Proceed as follows:

1. Select the table control element from the element palette and drag it to the
work area, as shown in Figure 12.29. Provide a name for the table control.

Figure 12.29 Creating Table Control

2. Click the Dictionary/Program Fields icon on the toolbar (see Figure 12.26) to
select the fields for the table control. Enter the ABAP Data Dictionary table
name or internal table name and select either the Get from Dictionary button
or the Get from Program button, respectively. Select the fields that should be
added to the table control and click Continue.
538

Table Controls 12.6
3. Move the cursor over the table control and click to add the columns. You can
repeat this process to select additional columns from different tables. At this
point, the table control should look like Figure 12.30.

Figure 12.30 Adding Table Fields

4. You can maintain additional attributes, such as separators, rows, and column
selection modes, as shown in Figure 12.31.
539

Dialog Programming12
Figure 12.31 Table Control Attributes

Table 12.1 describes the attributes shown in Figure 12.31.

Attribute Description

w/ ColHeads Allows you to create column headings with text fields or I/O fields.

w/ Title Allows you to create a table tile with text fields or I/O fields.

Configbl Allows the table control settings (such as column width) to be saved to
a file at runtime. The system will read this file whenever the table is dis-
played.

Resizing Allows the table to be resized vertically and horizontally.

Separators Adds vertical separators between columns and horizontal separators
between rows.

Line Sel. Allows the table row to be selected. You can set it to select a single
row, multiple rows, or none.

Column sel. Allows the table column to be selected. You can set it to select a single
row, multiple rows, or none.

w/ SelColumn Specifies if the line selection column should appear in the table. If this
option is selected, you should provide a name for the column, and the
column will be stored internally as a checkbox.

Fixed Columns Allows you to display a fixed number of columns by excluding one or
more columns from horizontal scrolling. Enter the number of columns
you want to fix (the count starts from the left and moves to the right).

Table 12.1 Attribute Meanings
540

Table Controls 12.6
5. The table control displays multiple rows of data, but only one row of data is
transported between the program and screen at once. To transport the data
between the table control and the program’s internal table, a loop statement
should be maintained in the flow logic of the screen. The loop statement is
maintained in both PBO and PAI. In a PBO loop, the records are transported
from the program to the screen, and in a PAI loop the records are transported
from the screen to the program, allowing you to capture user inputs.

In PBO, the loop statement is specified using the following syntax:

LOOP AT itab INTO wa WITH CONTROL tbl_ctrl.
ENDLOOP.

Here, itab is the internal table name, wa is the work area, and tbl_ctrl is the
table control name. You can’t call any modules within this loop. The name of
the work area should match the structure name used in table control. If the
table control columns are inserted from an ABAP Data Dictionary table, then
the same should be defined using the TABLES statement in the ABAP program
and used as the work area in the loop.

In PAI, the syntax for a loop statement is as follows:

LOOP AT itab.
MODULE mod.
ENDLOOP.

In a PAI loop, modules can be called to process user inputs and update the
internal table. If the screen consists of more than one table control, then the
loop statement should be maintained for each table control.

In this example, we’ve named our table control VCONTROL and inserted the
fields from table MAKT. Figure 12.32 shows the flow logic code maintained for
the table control.

Figure 12.32 Flow Logic for Table Control
541

Dialog Programming12
6. The table control should be defined in the ABAP program using the CONTROLS
statement as shown:

CONTROLS tbl_ctrl TYPE TABLEVIEW USING SCREEN dynnr.

Here, tbl_ctrl is the name of the table control, and dynnr is the screen number
of the screen for which the table control is defined.

The CONTROLS statement defines the table control tbl_ctrl as a structure of
type CXTAB_CONTROL. We can control the table control using the components of
structure CXTAB_CONTROL. For example, the CURRENT_LINE component contains
the current row being processed.

Listing 12.2 shows the code in the main program for this example.

TABLES makt.
DATA : it_makt TYPE STANDARD TABLE OF makt.
CONTROLS vcontrol TYPE TABLEVIEW USING SCREEN 100.

MODULE prepare_tab OUTPUT.
IF it_makt IS INITIAL.
SELECT * FROM makt INTO TABLE it_makt UP TO 10 ROWS.
ENDIF.

ENDMODULE.

MODULE modify_table INPUT.
MODIFY it_makt FROM makt INDEX vcontrol-current_line.
ENDMODULE.

Listing 12.2 Main Program Code for Table Control

We’ve looked at the steps for creating a table control without the use of a wizard,
so now we’ll look at how the wizard provided by SAP can speed up this process.

12.6.2 Create a Table Control with a Wizard

SAP provides a wizard to quickly create the table control; with the wizard, all the
required steps and code is autogenerated.

Follow these steps to create the table control with the wizard:

1. In the graphical layout editor, select Table Control with Wizard and drag it
onto the work area to start the wizard, as shown in Figure 12.33.

The wizard will walk you through multiple steps, as shown in Figure 12.34. The
wizard provides a detailed explanation for each step; before you begin, read the
explanation for each step and then click Continue.
542

Table Controls 12.6
Figure 12.33 Table Control with Wizard in Work Area

Figure 12.34 Table Control Wizard: Start

2. In the next step, provide the name of the table control. If you have multiple
table controls on the screen, each table control should have a unique name.
Click Continue.

3. On the next screen, provide the name of the table, either from ABAP Data Dic-
tionary or an internal table name from the program. If the internal table is
without a header line, provide the name of the work area as well. Click Con-

tinue.

4. Select the fields of the table control. Click Continue.

5. Set the preferred attributes for the table control. Click Continue.

6. You can set additional table maintenance functions, such as scroll. Click Con-

tinue.
543

Dialog Programming12
7. Provide the include names where the code should be generated. You can enter
the program name to generate all the code directly in the main program. To
maintain legibility, we recommend creating separate include programs for PBO
modules, PAI modules, and subroutines. Click Continue.

8. Click Complete to complete the wizard and generate the table control and the
associated code. Activate the screen and the program.

12.7 Tabstrip Controls

Tabstrip controls allow you to create multiple tabs on a screen. If the screen has
many UI elements, you can segregate them into multiple tabs for a better user
experience.

A tabstrip control area is marked on the main screen, and each tab is linked to a
subscreen. When a tab is selected, the respective subscreen is loaded with all the
elements maintained on the subscreen. The elements of the tab are not main-
tained on the main screen where the tabstrip control is created, but are instead
maintained on the subscreen to which the tab is linked. You need to have a min-
imum of two tabs to create a tabstrip control.

The following steps walk you through creating a tabstrip control with the wizard:

1. From the element palette, select Tabstrip Control with Wizard and drag it
onto the work area where you want to have the tabstrip control (see Figure
12.35).

Figure 12.35 Tabstrip Control with Wizard

This will start the wizard, as shown in Figure 12.36. Read the notes for the step
and click Continue.
544

Subscreens 12.8
Figure 12.36 Tabstrip Control Wizard

2. In the next step, provide a name for the tabstrip control. You can also set the
scrolling behavior. The documentation for the steps explains the significance of
each option. Click Continue.

3. Next, maintain the tab titles. You must define at least two tabs. This title will be
displayed for the tab. Click Continue.

4. The system will automatically propose the screen number for the subscreens
that should be generated. The number of subscreens generated depends on the
number of tabs defined in the previous step. A function code for each tab is also
proposed. You can accept the defaults or modify them. Click Continue.

5. Provide the include names where the code should be generated. Click Con-

tinue.

6. The wizard will display a summary of all the actions that will be performed.
Click Complete to generate the screens and the corresponding code.

7. Activate the screen and the program, along with the newly generated sub-
screens. To maintain screen elements, open the subscreen corresponding to
each tab and create elements using the graphical layout editor.

12.8 Subscreens

Subscreens are independent screens that are always embedded on another screen.
Subscreens are created in Screen Painter, similarly to normal screens, but with
the subscreen attribute selected, as shown in Figure 12.37.
545

Dialog Programming12
Figure 12.37 Subscreen

A subscreen can’t have its own GUI status, and the flow logic of the subscreen will
be embedded into the flow logic of the main screen. A subscreen can embed
another subscreen.

To embed a subscreen, a subscreen area is marked on the main screen (see Figure
12.38), where the subscreen will be loaded at runtime using the CALL SUBSCREEN
statement.

Figure 12.38 Subscreen Area

One main screen can have many subscreen areas. Each subscreen area of the main
screen should be assigned a unique name (Figure 12.38).
546

Working with Screens 12.9
To create a subscreen area on the main screen, select the subscreen area from the
element palette and drag it to the work area where you want the subscreen to
load. Provide a unique name for the subscreen area. To load the subscreen in the
subscreen area, under PBO event, use the CALL SUBSCREEN statement in the screen
flow logic of the main screen where the subscreen area is defined.

The syntax is as follows:

CALL SUBSCREEN sub INCLUDING prog dynnr.

Here, sub is the subscreen area name, prog is the program name to which the sub-
screen belongs, and dynnr is the subscreen number.

To access the contents of the screen elements of the subscreen in the main screen
flow logic, use the CALL SUBSCREEN statement in PAI of the main screen:

CALL SUBSCREEN sub.

All the screen elements that you can define on a normal screen can be defined on
a subscreen. You can’t define an OK_CODE field for a subscreen, because the sub-
screen uses the main screen’s GUI status. Also, you can’t set a screen title for the
subscreen.

Now that we’ve reviewed the various screens elements, in the next section we’ll
discuss how to work with screens.

12.9 Working with Screens

Thus far, you’ve learned how to create various screen elements on the screen. In
this section, we’ll shift our focus to the screen flow logic. We’ll discuss the vari-
ous statements that can be used in screen flow logic to call dialog modules, how
to maintain and call the GUI status for the screen, and how to set the title for the
screen. We’ll also look at how screen fields can be modified dynamically and how
field help and input help can be set for the screen fields.

A single dialog program can have multiple screens that can be called in sequence.
We’ll look at how different screens can be called in sequence, and then we’ll con-
clude the section by walking through the steps to assign a transaction code to the
program.
547

Dialog Programming12
12.9.1 Screen Flow Logic

Let’s look at the statements that can be used in the screen flow logic and how to
call dialog modules. Screen flow logic allows you to use a limited set of ABAP state-
ments, and it’s divided into different sections of screen events. The screen events
maintained in the flow logic are as follows:

� PROCESS BEFORE OUTPUT

� PROCESS AFTER INPUT

� PROCESS ON HELP-REQUEST

� PROCESS ON VALUE-REQUEST

The screen flow logic must contain the PROCESS BEFORE OUTPUT and PROCESS AFTER
INPUT events at a minimum; the PROCESS ON HELP-REQUEST and PROCESS ON VALUE-
REQUEST events are optional. You only need to maintain the POH and POV events
if you want to handle the (F1) help and (F4) help for the screen fields.

Within each event block, you can call dialog modules. Some of the statements
that you can use within the event block of the flow logic include the following:

� MODULE

This statement calls the dialog module maintained in the main program. This
statement can be used in all screen events.

� FIELD

This statement controls the data transport from the screen field to the ABAP
program. If this statement isn’t used, the data of the field is automatically
transferred to the program at the beginning of the PAI event. When the FIELD
statement is used, the corresponding screen field value is transferred when the
system executes this statement. The FIELD statement is used in conjunction
with the MODULE statement to restrict the data transfer until a particular module
is executed.

For example, in Listing 12.3, the data of the screen field v_matnr isn’t trans-
ferred until the system executes the FIELD v_matnr MODULE get_data statement.
This effectively restricts the data transfer of the screen field to all the modules
that are called before the FIELD statement. In our example, the data of the v_
matnr field will not be available in the user_command module that is called
before the get_data module. The FIELD statement is also used to validate input
fields.
548

Working with Screens 12.9
When an error message is shown within a module that is called with the FIELD
statement, the corresponding field will be input-enabled for the user to correct
the input; otherwise, the error message disables all the input fields on the
screen and the user won’t be able to correct wrong input. Always handle an
error message inside a module that’s called with the FIELD statement.

PROCESS AFTER INPUT.
MODULE user_command.
FIELD v_matnr MODULE get_data.

Listing 12.3 FIELD Statement

The FIELD statement supports ON INPUT and ON REQUEST (e.g., FIELD v_matnr
MODULE get_data ON INPUT). ON INPUT restricts the module call if the correspond-
ing field is empty, whereas ON REQUEST restricts the module call if the value in
the corresponding field hasn’t changed compared to the last PBO event. If none
of these additions are used, the module is always called in each PAI event.
These additions are useful when you’re performing steps inside a module that
need not be repeated if the field value is empty or if the field value hasn’t
changed (e.g., when querying the database table to validate the input).

ON INPUT and ON REQUEST can be used only in PAI events.

� CHAIN

The purpose of the CHAIN statement is similar to the FIELD statement, except
that the FIELD statement is used for a single field and the CHAIN statement is
used for multiple fields. For example, if you want to restrict the data transfer of
multiple related fields, use the CHAIN statement as shown in Listing 12.4. The
CHAIN statement is concluded with ENDCHAIN.

PROCESS AFTER INPUT.
MODULE user_command.
CHAIN.
FIELD v_matnr.
FIELD v_spras.
MODULE get_data.
ENDCHAIN.

Listing 12.4 CHAIN Statement

The corresponding ON INPUT and ON REQUEST options for the CHAIN statement are
ON CHAIN-INPUT and ON CHAIN-REQUEST (e.g., MODULE get_data ON CHAIN-INPUT).
The ON CHAIN-INPUT and ON CHAIN-REQUEST additions can be used only in PAI
events.
549

Dialog Programming12
� CALL

This statement is used in the flow logic to call a subscreen. This statement can’t
be used with LOOP...ENDLOOP or CHAIN...ENDCHAIN statements.

� LOOP

This statement is used to loop the table control. For example, the LOOP WITH
CONTROL statement is used to loop the table control.

Within the dialog module maintained in the ABAP program, you can use all valid
ABAP statements.

12.9.2 GUI Status

Each screen can load its own GUI status. The GUI status is set in the PBO module
of the screen using the SET PF-STAUS statement. The GUI status is defined using
Menu Painter.

Follow these steps to define a GUI status:

1. Right-click the program name in Object Navigator and select Create � GUI

Status.

2. In the Create Status window, as shown in Figure 12.39, enter the status name
and a description. For Status Type, select Normal Screen. If you’re creating
the GUI status for a model dialog box, you should select the Dialog Box

option. If you’re creating a context menu (displayed on right-click), you should
select the Context Menu option. Click Continue.

Figure 12.39 Create Status
550

Working with Screens 12.9
3. On the Maintain Status screen, you can define the status for the menu bar,
application toolbar, standard toolbar, and function keys. Expand each status to
maintain the function code, as shown in Figure 12.40. You can define new
objects for the menu bar and application toolbar, but for the standard toolbar
you can only enable or disable the standard buttons by maintaining a function
code for each button.

Figure 12.40 Maintaining Status

4. To create an application toolbar button, expand the Application Toolbar sta-
tus (see Figure 12.41). Provide a function code in the available item positions
and press (Enter).

Figure 12.41 Application Toolbar
551

Dialog Programming12
5. In the Enter Function Text popup window that appears, select Static Text or
Dynamic Text and click Continue. If you select Dynamic Text, the system will
prompt you to provide a data object or dictionary field that will contain the
text. If you select Static Text, it will show a window in which you can maintain
the details manually (see Figure 12.42). Click Continue to set a function key for
the status.

Figure 12.42 Maintaining Static Text for Status Button

6. Once all the GUI statuses are defined, activate them.

7. To load the GUI status for a screen, use the SET PF-STATUS <'status_name'>
statement in the PBO module of the screen as shown:

MODULE status_100 OUTPUT.
SET PF-STATUS 'GUI100'.
ENDMODULE.

8. If you want to dynamically hide the status button on the screen, you can use the
EXCLUDING addition with the SET PF-STATUS statement:

SET PF-STATUS 'GUI100' EXCLUDING fcode.

Here, fcode is a function code that should be excluded from the screen. You can
also supply an internal table with a single field of type sy-ucomm. All the func-
tion codes maintained in this internal table will be excluded on the screen.

12.9.3 GUI Title

You can set a title for the screen to be displayed in the title bar. The title is loaded
in a PBO module using the SET TITLEBAR title_code statement.
552

Working with Screens 12.9
To create a title, proceed with the following steps:

1. Right-click the program name in Object Navigator and select Create � GUI

Titles.

2. The Create Title window will open (see Figure 12.43). Maintain a title code
and the Title text. Click Continue.

Figure 12.43 Create Title

3. Once the title is created and activated, you can load the title as shown in Listing
12.5.

MODULE status_100 OUTPUT.
SET TITLEBAR 'TITLE'.
ENDMODULE.

Listing 12.5 Set Title

12.9.4 Modifying Screen Fields Dynamically

The attributes of screen fields are set statically at design time. However, it’s pos-
sible to modify some of these attributes at runtime. The screen field attributes can
be accessed using a predefined SCREEN structure. We can access each screen ele-
ment by looping the screen structure as shown:

LOOP AT SCREEN.
MODIFY SCREEN,
ENDLOOP.

The screen structure (see Figure 12.44) has various attributes that can be modified
at runtime in the ABAP program. The name component holds the names of the
screen fields that can be checked to apply the changes to specific screen fields. If
the screen fields are assigned to a group, the group name can be accessed by
checking the group1, group2, group3, and group4 fields. By grouping the screen
fields, we can apply the changes consistently to all fields of the group.
553

Dialog Programming12
Figure 12.44 Screen Structure

For example, if we want to dynamically set a screen field as a required field, then
we can use the SCREEN structure, as shown in Listing 12.6. The screen field attri-
butes should be modified in a PBO module just before showing the screen.

DATA wa_screen TYPE screen.
MODULE modify_fields OUTPUT.
LOOP AT SCREEN INTO WA_SCREEN.
IF WA_SCREEN-NAME = 'V_MATNR'.
WA_SCREEN-REQUIRED = abap_true.
MODIFY SCREEN FROM WA_SCREEN.
ENDIF.
ENDLOOP.
ENDMODULE.

Listing 12.6 Modifying Screen Field Attribute

Table 12.2 explains the components of the SCREEN structure.
554

Working with Screens 12.9
The cursor position can be set statically in the screen attributes. To dynamically
set the cursor position, you can use the statement SET CURSOR, as shown:

SET CURSOR FIELD field_name.

Here, field_name is the name of the screen field. The SET HOLD DATA ON|OFF state-
ment can be used to dynamically set the Hold Data flag for the screen.

12.9.5 Field Help and Input Help

The field help (F1) and input help (F4) for the screen field can be shown directly if
they’re maintained for the ABAP Data Dictionary table field and the screen field
is inserted by selecting from the ABAP Data Dictionary table field (for example,
data element documentation for (F1) help or search help for (F4) help). However,
you can also handle this in the program by maintaining the POH event for field
help and the POV event for input help.

Field Name Possible Values Meaning

NAME Name of screen element Name of the screen field

GROUP1 to GROUP4 id1 to id4 Modification group to apply common
settings to related fields that belong to
the same group

REQUIRED 0, 1, 2 Mandatory or recommended field

INPUT 0, 1 Input-ready field

OUTPUT 0, 1 Read-only/display field

INTENSIFIED 0, 1 Highlighted field

INVISIBLE 0, 1 Invisible element

LENGTH Visible length of field Field length

ACTIVE 0, 1 Active field

DISPLAY_3D 0, 1 Display frame

VALUE_HELP 0, 1, 2 Input help button

REQUEST 0, 1 Input exists

VALUES_IN_COMBO 0, 1 Dropdown list box

Table 12.2 Components of Screen Structure
555

Dialog Programming12
In the following subsections, we’ll look at how to handle the field help and input
help settings.

Field Help

To handle the field help, the event PROCESS ON HELP-REQUEST should be main-
tained in the screen flow logic. Within this event, a module can be called for the
field using the statement FIELD field_name MODULE mod_name. Here, field_name is
the name of the field for which the field help should be called, and mod_name is
the dialog module called in the program—for example:

PROCESS ON HELP-REQUEST.
FIELD MATNR MODULE F1_MATNR.

Inside the module called for field help, you can call the HELP_OBJECT_SHOW_FOR_
FIELD or HELP_OBJECT_SHOW function modules to load the field help. The function
module HELP_OBJECT_SHOW_FOR_FIELD displays the data element documentation
maintained for any table or structure component of ABAP Data Dictionary. Using
the function module HELP_OBJECT_SHOW, you can display an SAPscripts document.

Input Help

To handle input help in the program, you need to use the PROCESS ON VALUE-
REQUEST event and call the dialog module using the FIELD statement, similarly to
the POH event—for example:

PROCESS ON VALUE-REQUEST.
FIELD MATNR MODULE F4_MATNR.

Within the module called for the field, you can call the F4IF_FIELD_VALUE_
REQUEST or F4IF_INT_TABLE_VALUE_REQUEST function module to pass the value
list.

12.9.6 Screen Sequence

Dialog transactions often involve calling multiple screens in sequence. When a
transaction is called, it calls the initial screen of the program. The next screen
attribute of the screen can be set statically to call the next screen after the current
screen is processed (i.e., after the current screen’s PAI). Often, the next screen
called in the screen sequence depends on the user actions on the current screen.
556

Working with Screens 12.9
The screen sequence can be dynamically handled by using statements such as SET
SCREEN, CALL SCREEN, and LEAVE SCREEN.

In the following subsections, we discuss each of these screen sequence state-
ments.

SET SCREEN

The SET SCREEN statement overrides the next screen attribute set for the screen at
design time. When you call the next screen in the screen sequence using the SET
SCREEN statement, it will call the next screen after executing all the modules in the
current screen’s PAI.

CALL SCREEN

The CALL SCREEN statement stacks the current screen and calls the new screen
immediately without executing further code in the current screen. When the
screen sequence ends, the control will return to the statement immediately after
the CALL SCREEN statement. For example, in screen 100, if you use the CALL SCREEN
110 statement, it will call screen 110 immediately. If the next screen for screen
110 is set as screen 120, then after the PAI of screen 110, the PBO of screen 120
will be called.

If the statement LEAVE TO SCREEN 0 is used in screen 120, then the system will end
the screen sequence and return to screen 100 and execute the statement immedi-
ately after the CALL SCREEN statement, which started the screen sequence. The
CALL SCREEN statement interrupts the current screen sequence and starts a new
screen sequence. The maximum number of screens that can be stacked is fifty, but
it’s not recommended to stack more than forty screens in a sequence because the
system uses additional screen sequences internally—for example, to show mes-
sages.

LEAVE SCREEN

The LEAVE SCREEN statement leaves the current screen immediately and starts the
next screen. The next screen could be a static next screen set in the screen attri-
butes or a dynamic next screen set using the SET SCREEN statement. The LEAVE TO
SCREEN dynnr statement leaves the current screen and goes to the one specified by
dynnr. With the LEAVE SCREEN statement, the screens aren’t stacked, because this
557

Dialog Programming12
statement doesn’t start a new screen sequence; instead, it calls the next screen in
the current sequence immediately. The screen sequence ends when you leave to
screen 0.

Note

A modal dialog box (pop-up screen) is called using the syntax CALL SCREEN STARTING AT
XX YY ENDING AT XX YY. Here, XX and YY are two-digit numbers specifying the coordi-
nates used for the position on screen.

12.9.7 Assigning Transaction Codes

As we discussed earlier, module pool programs can’t be executed directly by pro-
gram name. To execute a module pool program, we need to create a transaction
code for the program, to which the initial screen of the program is assigned.

To create a transaction code for the program, proceed with the following steps:

1. Right-click the program name in Object Navigator and select Create � Transac-

tion, as shown in Figure 12.45.

Figure 12.45 Create Transaction
558

Working with Screens 12.9
2. In the Create Transaction window (see Figure 12.46), input a Transaction

Code and Short Text. Select the Program and Screen (Dialog Transaction)

radio button and click Continue. The other options on this screen allow you to
create the following types of transaction codes:

� Program and Selection Screen (Report Program): This option is used if
the program has a selection screen that should be called as the initial screen
of the program.

� Method of a Class (OO Transaction): A method of a class can be linked to
a transaction code and can then be called directly using the transaction code.

� Transaction with Variant (Variant Transaction): This option allows you
to create a transaction code for a report program that can be started with a
selection screen variant directly.

� Transaction Code with Parameters (Parameter Transaction): This op-
tion allows you to create a transaction code that can support parameters to
be passed. For example, you want to pass certain default values to the input
fields of the initial screen of the transaction.

Figure 12.46 Creating Transactions

3. The transaction code should be in the customer namespace (starting with Z or
Y). Choose a transaction code that’s short and easy to remember, because users
will always run the program using the transaction code. Click Continue (green
checkmark) to confirm.
559

Dialog Programming12
4. On the next screen, input the program name and the initial screen of the pro-
gram that should be called when the transaction is executed. Optionally, you
can assign an authorization object to restrict the access to certain users. Select
the GUI Support for the transaction, as shown in Figure 12.47. For example,
uncheck the checkbox for a particular GUI if any of the screen elements you’re
using aren’t supported by that GUI.

Figure 12.47 Maintaining Transaction Attributes

5. Once the transaction code is assigned to the program, you can execute the pro-
gram by entering the transaction code in the command bar.

So far, we’ve discussed various screen elements and how they can be processed.
However, these screen elements may not always cover your business require-
ments. To meet more complex requirements and provide a better user experi-
ence, SAP introduced the Control Framework, which we’ll discuss next.

12.10 Control Framework

When we design transactions using Screen Painter, the list of available screen
elements is limited to I/O fields, labels, checkboxes, and so on. This provides a
560

Control Framework 12.10
limitation on the possible UI elements that can used on the screen. Many desktop
applications that users are accustomed to may provide better UI experiences than
what was traditionally possible with SAP screens. Understanding this gap, SAP
introduced the Control Framework with SAP ERP 4.5.

The Control Framework allows you to create complex screens that are intuitive
and fluid. It enables you to create custom controls on the user’s client from your
ABAP programs. This framework involves two types of components: server-side
components and client-side components.

On the server side, the framework implements a series of ABAP objects, which
are collectively called ABAP Objects Control Framework. On the client side, the
framework is managed by a component called the Automation Controller (or Auto-
mation Client). The Automation Client manages all the custom control instances
and takes care of the communication between the custom controls in the presen-
tation layer and the ABAP Objects Control Framework in the application server.

In the following subsections, we’ll discuss how to use container controls and then
how to implement custom controls using the Control Framework.

12.10.1 Using Container Controls

Custom controls are integrated in the SAP GUI client, which implements either
Active X controls or JavaBeans depending on the GUI client version. Custom con-
trols allow you to create many complex controls, such as ALV Grid Controls, SAP
calendar controls, SAP picture controls, and so on. Each custom control is
exposed as an ABAP object of the corresponding control type.

A custom control runs inside a container control. Each container control is
exposed as an ABAP object that acts as a parent to the custom control. Different
container controls are described in Table 12.3.

Container Control Class Description

Custom container CL_GUI_CUSTOM_CONTAINER The custom container is
defined on the screen using
Screen Painter. The custom
control is displayed inside the
container. One screen can have
multiple containers.

Table 12.3 Container Controls
561

Dialog Programming12
12.10.2 Implementing Custom Controls

Implementing a custom control is straightforward. We’ll use the example of the
SAP picture control to explain how a control is implemented in an ABAP pro-
gram. The steps should be similar for other controls with the exception of using
the specific container and controller class for the chosen control.

To implement a controller, we first create a container on screen. Then, instantiate
the parent container and pass the parent container reference to the custom con-
trol. From there, we can use various methods of the custom control class to work
with the custom control.

Follow these steps to create a SAP picture control:

1. Create a custom container in the work area of the graphical layout editor by
selecting the Custom Control button from the element palette and dragging it
to the work area, as shown in Figure 12.48. Provide a name for this container.
In our example, the container name is CUSTOM.

Dialog box container CL_GUI_DIALOGBOX_CONTAINER The dialog box container
allows you to display controls
in a modal dialog box or full-
screen.

Docking container CL_GUI_DOCKING_CONTAINER The docking container allows
you to attach a control to any
of the four edges of a screen as
a resizable screen area. You can
also detach it so that it
becomes an independent
modal dialog box.

Splitter container CL_GUI_SPLITTER_CONTAINER The splitter container allows
you to display more than one
control by splitting the screen
area into cells.

Container Control Class Description

Table 12.3 Container Controls (Cont.)
562

Control Framework 12.10
Figure 12.48 Custom Container

2. In the main program, define two reference objects for the container and the
control. In our example, the reference object for the container should have a
CL_GUI_CUSTOM_CONTAINER static type, because we’re using a custom container.
The reference object for the control should have a CL_GUI_PICTURE static type,
because we’re using the SAP picture controller.

3. In the PBO module of the screen, instantiate the container by passing the con-
tainer name to the constructor. Once the container is instantiated, instantiate
the controller by passing the container object to the constructor.

4. Once the controller is instantiated, you can call the load_picture_from_url
method to pass the URL of the image that should be displayed in the container
of the screen. Listing 12.7 shows the code in the main program.

*Declare reference objects for container and controller
DATA : container TYPE REF TO CL_GUI_CUSTOM_CONTAINER,

controller TYPE REF TO CL_GUI_PICTURE.
563

Dialog Programming12
MODULE load_container OUTPUT.
*Instantiate the container
CREATE OBJECT container
EXPORTING
container_name = 'CUSTOM'.

*Instantiate the controller
CREATE OBJECT controller
EXPORTING
parent = container.

*Load image
controller->load_picture_from_url(
url = 'http://www.domain.com/image.jpg'
).
ENDMODULE.

Listing 12.7 Code to Load Image in Container

Note

Your program can react to events raised by the custom controller by implementing suit-
able event handler methods.

Now that we’ve covered dialog programming in detail, let’s take a look at a prac-
tical example to practice developing these applications.

12.11 Practice

Dialog programming involves processing multiple screens and reacting to user
actions on the screen. Even though the application development is fairly simple,
it can become complicated easily when many screens are involved. Hands-on
experience is important to feel comfortable with dialog programming.

In this section, we’ll look at a practice example for dialog programming. We’ll
start by laying out the instructions for this example:

� Scenario
A user wants to capture materials that are loaded to a container. Design and cre-
ate an application with the functionality indicated in the Functional Require-
ments bullet point.

� Tables
Create a Z table with the fields listed in Table 12.4. You can use any field names.
564

Practice 12.11
� Functional requirements
The application should provide the following functionality:

� All the fields except the field to input the container number should be input-
disabled.

� Provide a Display/Change toggle button in the application toolbar to toggle
between display and change modes.

� Provide a table control as shown in Figure 12.49. Note that the Shift field is
a list box and the Delete field is a checkbox.

� Enable the Save button in the standard toolbar to let the user save the data.

Figure 12.49 Initial Screen of Transaction

Field Name Field Type

Container Number Type C, length 6

Material Number Type C, length 18

Material Description Type C, length 40

Quantity Type P, decimals 2

Shift Indicator Type C, length 1

Date Type D

User Name Type C, length 20

Deletion Indicator Type C, length 1

Table 12.4 Required Fields of Table
565

Dialog Programming12
� End product
The application should eventually look like Figure 12.49.

The following subsections explain the functionality of the application.

12.11.1 Application Flow

Once the user inputs the container number and presses (Enter), check if the data
for that container exists in your Z table.

If the data exists, pull out the data for the container and display it in the table con-
trol. The table control should still be input-disabled. At this point, if the user
wants to change or delete items, he can click the Display/Change button to enter
the change mode and make the necessary changes. He can toggle back to display
mode by clicking the same button. Figure 12.50 shows the application in change
mode.

Figure 12.50 Change Mode

If there is no data for the given container in your Z table, display a pop-up mes-
sage, as shown in Figure 12.51.

If the user selects OK (the green checkmark), make the table control input-
enabled and let the user create items. If he selects Cancel, simply keep the table
control input disabled and let the user input a new container number.
566

Practice 12.11
Figure 12.51 Modal Window Showing Message

At this point, clicking the Display/Change toggle button should not allow the
user to enter change mode. In short, the user should enter change mode only to
edit existing container data.

12.11.2 Delete Functionality

If the user chooses to delete an item from the container, he can select the Delete

checkbox and click Save. This entry should be removed from the table control
immediately (unless the Show Deleted Items checkbox is selected). The deleted
items should appear in the table control only if the Show Deleted Items check-
box above the table control is selected.

The Shift dropdown list box should have three options from which the user can
select: Morning, Afternoon, and Evening.

12.11.3 Validations and Autofills

The following are the validations that should be performed for the screen fields:

� Material Number should be validated against table MARA.

� The Material Descriptions column should always be input-disabled and filled
automatically based on the material number entered.
567

Dialog Programming12
� The Save button should be enabled only when in change mode.

� The Show Deleted Items checkbox should be enabled only if the container has
any deleted items.

� Creation date should be filled with the current date automatically

� Created By should be filled with the current user ID automatically.

� When the Show Deleted Items checkbox is selected, all the items including the
deleted ones should be shown, not just the deleted ones. The items should
appear/disappear the moment the checkbox is selected or deselected; this
change shouldn’t require an (Enter) action.

� The application shouldn’t allow the same material to be added twice.

� If the user tries to add the same material twice, show a pop-up informing him
that the material already exists and asking if he wants to update the quantity of
the existing material.

� The On Save action should validate none of the items that have zero quantity.

12.12 Summary

In this chapter, we discussed how to develop dialog applications. You’ve seen
how to work with Screen Painter to design screens in SAP, and we discussed var-
ious screen elements that can be used in SAP screens, from simple elements like
I/O fields to more complex elements like table controls and custom controls.

You should now understand how screen processing is controlled by the ABAP
runtime environment by calling various screen events. We also discussed how
dialog modules can be called from the screen flow logic.

The concepts discussed in this chapter should help you get started with dialog
programming. Of course, it takes hands-on experience to feel comfortable with
dialog programming and confident to handle business requirements. We highly
recommend that you complete the assignment given in the last section before
proceeding further in this book. This assignment should help you feel more com-
fortable following along with the remainder of the topics in this book.

We’ll continue our discussion of screens in the following chapters. Now that you
have a good understanding of the general screen, we’ll explore list screens in the
next chapter.
568

Chapter 13

List screens are one of the most basic ways of developing reports in ABAP.
This chapter explains how to use list screens for report development.

13 List Screens

List screens, also known as classical lists, are one of the three types of screens in the
SAP GUI. The other two type of screens, as previously discussed, are selection
screens and general (dialog) screens. List screens are obsolete and have been
replaced with the SAP List Viewer (ALV) for live applications, but because many
old programs might still use list screens, understanding them is important to
work with such programs.

In ABAP, we can create different types of programs, and not all program types
support screens. Before we talk more about list screens, let’s discuss the different
types of ABAP programs that you can create, whether they support screens, and
the various processing blocks that they support. We’ve already worked with
some of these program types while discussing the various topics covered so far in
this book.

We’ll start our discussion in this chapter by looking at the various types of ABAP
programs in Section 13.1, which should serve as a quick recap of the different
program types used so far in this book. Different program types behave differ-
ently during execution, and we’ll discuss program execution in Section 13.2.
Note that one program can call other programs during execution. In Section 13.3,
we’ll look at how memory is managed when a program runs and we’ll explore
various ways in which different programs can exchange data during runtime.

ABAP is an event-driven programming language. We discussed various events in
Chapter 7, but in Section 13.4 we’ll look at events specific to list screens. Classical
lists are typically used to generate reports or issue print output; they can be used
for creating normal reports (basic lists) and drilldown reports (detail lists). We’ll
discuss basic and detail lists in Section 13.5. We’ll look at classical reports that use
569

List Screens13
basic lists in Section 13.6, and finally at interactive reports that use detail lists in
Section 13.7. We’ll take what we’ve learned and put it to practice in Section 13.8.

13.1 Program Types

When you created your first program in Chapter 4, you saw that the program
type attribute in the Program Attributes window is a dropdown list with vari-
ous options (see Figure 13.1).

The Program Attributes window can be called using the menu path Goto �

Attributes from the ABAP Editor screen. The various types of programs include
executable programs, module pools, function groups, class pools, interface pools,
subroutine pools, type groups, and include programs.

Figure 13.1 Program Types in ABAP Editor

When you run an ABAP program, you call its processing blocks in a specific
sequence. The program type attribute needs to be set while creating the program.
The program type determines which processing blocks the program can contain,
how the program is executed and handled by the ABAP runtime environment,
and whether the program can define its own screens.

In this section, we’ll look at the different program types.
570

Program Types 13.1
13.1.1 Executable Programs

Traditionally, executable programs are used for developing reports due to their
sequence of execution. This is why executable programs are introduced with a
REPORT statement in the code. For example, if you create an executable program
with the name ZEXAMPLE_PROGRAM, you’ll see that the first statement inserted in
ABAP Editor is REPORT ZEXAMPLE_PROGRAM.

An executable program can contain any ABAP processing blocks, except function
modules. They can also contain any number of local classes. Executable programs
support screens, but it’s not mandatory to have a screen defined for the program
to run. You don’t need to manually design a screen to work with executable pro-
grams; you can use use selection screens and list screens, which are generated by
specific statements in the code (such as PARAMETERS or SELECT-OPTIONS for selec-
tion screens and WRITE for list screens).

A selection screen allows the user to specify selection criteria, based on which the
data from the database can be processed and shown as output on the list screen.
This process flow makes selection screens suitable for developing reports.

Executable programs are executed with SUBMIT statements. Users can execute pro-
grams directly by entering the program name in Transaction SA38 or using the
menu path System � Services � Reporting. Even when using the transaction or
menu path, the system uses the SUBMIT statement internally to execute the pro-
gram.

An executable program can also be executed directly from ABAP Editor (Transac-
tion SE38). However, end users may not have the required authorizations to open
ABAP Editor to execute the program, because ABAP Editor is an ABAP Work-
bench tool and requires development authorizations to access.

Transaction SA38 provides a simple interface to run any executable program by
entering the program name, as shown in Figure 13.2. Optionally, a transaction
code can be assigned to an executable program, allowing the program to be exe-
cuted directly using the transaction code. These transactions are called report
transactions.

Executable programs are the only programs that can be used for background pro-
cessing. Executable programs are created using either ABAP Editor or Object Nav-
igator (Transaction SE80).
571

List Screens13
Figure 13.2 Initial Screen of Transaction SA38

13.1.2 Module Pool Programs

Module pool programs are used for dialog-oriented applications that contain a
large number of screens. They’re created using ABAP Editor or Object Navigator
and are introduced with the PROGRAM statement.

A module pool program can contain all the possible processing blocks in ABAP,
except function modules and reporting events (INITIALIZATION, START-OF-
SELECTION, GET, END-OF-SELECTION). Module pool programs can contain as many
local classes as required.

Unlike executable programs, module pool programs can’t be executed directly
using the program name. Instead, they’re executed using a transaction code. It’s
mandatory for a module pool program to have at least one screen defined; that is,
you can’t execute a module pool program without having a screen defined for the
program.

To execute a module pool program, a transaction code is created for the program,
which links to the initial screen of the program when the transaction is executed.
From this initial screen flow logic, dialog modules are called. The execution of
module pool programs is controlled by screen flow logic. The screens for the
module pool program are created using the Screen Painter tool. We’ll discuss the
module pool program flow further in Section 13.2.2.

13.1.3 Function Groups

Function groups are introduced using the FUNCTION-POOL statement and are the
only program type that can contain function modules. A function group can use
all processing blocks in ABAP, except reporting events. They can also contain
local classes.
572

Program Types 13.1
Function groups are created using the Function Builder tool (Transaction SE37) or
Object Navigator. They can be executed by a transaction code, but are generally
loaded by calling the function modules of the function group. When a function
module is called, the entire function group with all its function modules is loaded
into the program memory. For this reason, it’s important to keep only related
function modules in a function group.

Similar to executable programs and module pools, a function group can have its
own screens defined, including selection screens and list screens. The screens of
a function group are called from the function module belonging to the group.

13.1.4 Class Pools

Class pools are created in the Class Builder tool (Transaction SE24) and are intro-
duced with the CLASS-POOL statement. They act as a container to hold exactly one
global class and as many local classes as required. They can’t have any other pro-
cessing blocks, except methods. A class pool can’t have any screens defined.

Note

Executable programs, module pools, and function groups are the only three types of
programs that support screens.

A class pool is loaded when the global class is called from programs. A transaction
code can be created for a method of the global class so that an object of the class
can be created implicitly when the method is used.

13.1.5 Interface Pools

Interface pools are created in Class Builder and are introduced with the INTER-
FACE-POOL statement. Interface pools act as a container for global interfaces that
can be implemented in any global or local class. Interface pools can’t contain any
screens and are loaded when the interface is used in a class.

We covered the steps to create interface pools in Chapter 8.

13.1.6 Subroutine Pools

Subroutine pools are used to maintain subroutines. Apart from subroutines, they
can contain only a LOAD-OF-PROGRAM event. Subroutine pools are created in ABAP
573

List Screens13
Editor and are introduced with the PROGRAM statement. They can’t contain any
screens and are loaded when the subroutine is called from an external program.

13.1.7 Type Pools

Type pools (or type groups) are created in ABAP Data Dictionary (Transaction
SE11) and are introduced with the TYPE-POOL statement. A type pool is used to
define data types that have global visibility.

Type pools are predecessors of the general type definitions in ABAP Data Dictio-
nary. Type pools are obsolete; we no longer use type pools to define global data
types. One drawback of type groups is their missing semantic attributes; in other
words, except for any comments in the code, semantic attributes can’t be main-
tained for data types or constants defined in a type group, unlike other ABAP
Data Dictionary objects, such as data elements.

In older systems, the declarations in a type group are made visible in other pro-
grams using the TYPE-POOLS statement.

13.1.8 Include Programs

Include programs provide library functions through which the source code main-
tained in an include program can be inserted in other programs using the INCLUDE
statement. They aren’t standalone programs on their own and can’t be executed
independently. They’re used to organize the program source code into smaller
editable units. They don’t have introductory statement, because they don’t repre-
sent stand-alone compilation units with memory of their own.

Now that you have an understanding of the various types of programs, let’s dis-
cuss how these programs are executed.

13.2 Program Execution

Programs are either executed by the user directly or called by other programs. Of
all the available program types, only executable programs and module pool pro-
grams are executed by the user directly; all the other programs are loaded when
called from other already running programs. For example, a user will run an exe-
cutable program, and if a functional module is called within this executable pro-
574

Program Execution 13.2
gram, then the function group is loaded into memory. The user doesn’t execute
the function group directly.

An ABAP program is made of various processing blocks, and executing an ABAP
program is all about calling these processing blocks in a certain order. The execu-
tion flow of the program is entirely controlled by the runtime system. When the
program is executed, the first processing block is always called from outside the
program by the runtime environment, and the rest of the sequence depends on
user actions.

For example, if you execute a report program, the runtime environment first calls
the INITIALIZATION event and, if a selection screen is defined, prepares the selec-
tion screen. Based on the user actions on the selection screen, other processing
blocks are called. The program type determines which of the processing blocks is
first called.

In this section, we’ll look at implementing both executable programs and module
pool programs, the only program types executed by the user. We’ll then discuss
how to internally call the other program types we’ve discussed thus far.

13.2.1 Executable Program Flow

Executable programs are executed by entering the program name in Transaction
SA38 (see Figure 13.2). From a user perspective, executable programs are the
only programs that can be executed by their program names. However, often
users need not know the program names, because the programs are either
assigned an easy-to-remember transaction code (e.g., Transaction MRKO) or
linked to menu items on the screen. From a technical perspective, executable pro-
grams are the only programs that can be executed using a SUBMIT statement—for
example, SUBMIT ZEXAMPLE_PROGRAM.

When an executable program is run, the ABAP runtime environment triggers a
predefined sequence of events. The sequence of events triggered by the ABAP
runtime environment is as follows:

1. LOAD-OF-PROGRAM

2. INITIALIZATION

3. AT SELECTION-SCREEN

4. START-OF-SELECTION
575

List Screens13
5. GET

6. END-OF-SELECTION

The selection screen events are triggered only if the program has a selection
screen defined using the PARAMETERS or SELECT-OPTIONS statement in the pro-
gram. Similarly, list events are triggered if the program generates a list screen (see
Section 13.4 for more on list events). A list is generated automatically at the end
of program execution. User actions on the list trigger list events.

The sequence of events for executable programs makes them suitable for devel-
oping reports. Reports provide read-only access to the database; the data from the
database can be read based on the selection criteria entered by the user and
shown as a report output on a list screen.

For example, when the user executes a report, we can initialize the program vari-
ables under the INITIALIZATION event, validate the selection screen inputs under
the AT SELECTION-SCREEN event, select and process the data under the START-OF-
SELECTION event, and finally generate the report output under the END-OF-SELEC-
TION event.

We can use the GET event to process the data from a logical database, an ABAP pro-
gram that transfers the data from multiple logically related database tables to
ABAP programs in an efficient way. In the past, logical databases could only be
used in executable programs using the GET event, but now they can be used in
other programs as well without the need to use GET event.

13.2.2 Module Pool Program Flow

Module pool programs are executed differently than executable programs. To
execute a module pool program, we need to define at least one screen and create
a transaction code. The transaction code links the program with one of its screens,
which becomes the initial screen. From this initial screen, dialog modules and
other screens are called.

The sequence of events triggered for module pool programs is as follows:

1. LOAD-OF-PROGRAM

2. PROCESS BEFORE OUTPUT (PBO)

3. PROCESS AFTER INPUT (PAI)
576

Program Execution 13.2
The ABAP runtime environment first calls the PBO event of the initial screen and
displays the screen to the user. User actions on the screen trigger PAI. After PAI,
the ABAP runtime environment triggers the same screen’s PBO or another
screen’s PBO immediately, before presenting the screen again, depending on
whether the same screen is called or a different screen is called. Additional events
such as PROCESS ON HELP-REQUEST (POH) and PROCESS ON VALUE-REQUEST (POV) are
called if the user selects (F1) or (F4) help respectively for screen fields.

With this program flow, the role of the ABAP program is to maintain dialog mod-
ules that are called from the screen—hence the name module pool program.

Module pool programs (also called dialog programs) are used to create transac-
tions that allow the user to modify the data in the system. Most of the standard
SAP transactions that are used by users to carry out day-to-day activities such as
creating sales orders (Transaction VA01) and purchase orders (Transaction ME21n)
are dialog programs.

13.2.3 Calling Programs Internally

As mentioned previously, only executable programs and module pool programs
are called by the user through a screen; all other program types are called inter-
nally using specific statements (e.g., using CALL FUNCTION to call a function mod-
ule that loads the function group).

Even executable programs and module pools can be called internally from other
programs that are already running. Executable programs are called internally
using the SUMBIT statement with the program name (e.g., SUBMIT ZDEMO_PRO-
GRAM.), whereas module pool programs are called using CALL TRANSACTION (e.g.,
CALL TRANSACTION MM01.) or LEAVE TO TRANSACTION (e.g., LEAVE TO TRANSACTION
MM01.) statement.

A program call can be distinguished by whether the calling program is terminated
when the new program is called or the called program is embedded in the calling
program. The SUMBIT and LEAVE TO TRANSACTION statements terminate the calling
program and load the new program in memory, while SUBMIT AND RETURN (e.g.,
SUMBIT ZDEMO_PROGRAM AND RETURN) and CALL TRANSACTION stack the current pro-
gram with all its data before loading the called program into memory.

Once the called program’s execution ends, the calling program is loaded back into
memory with all its data and continues execution of the statement immediately
577

List Screens13
after the call location. This allows us to go back to the previous program in the call
sequence.

Now that you have an understanding of how programs are executed, let’s take a
look at how memory is organized in ABAP programs.

13.3 Memory Organization

When you log onto an SAP system, a session opens in the application server and
occupies memory. You can open up to sixteen sessions (depending on the restric-
tions set by your SAP Basis administrator), with each session occupying its own
memory space in the application server and linked to its own window in SAP
GUI. ABAP programs run within the session (window), and each session is inde-
pendent of the others.

When you run an executable program or transaction (i.e., programs linked to a
transaction code), the system creates an internal session within the main session,
as shown in Figure 13.3.

Figure 13.3 Internal Session

Multiple programs can be called within an internal session and are organized into
program groups. The first program that is called in the internal session creates a

Interface Work Area

Internal Session

Program Group

Program

Object (class instance)

ABAP Memory

Data Object

Calling external subroutine

Calling Function modules,
global classes

Calling Programs
578

Memory Organization 13.3
main program group. This program will be the main program of the main program
group. When a function module or global class is called from the main program,
it creates an additional program group. The main program of the additional group
will be the first program that created the additional group.

When a program is called that isn’t a function group or class pool (e.g., external
subroutine call), it won’t create an additional program group; instead, it’s loaded
into the program group of the user. It’s not the program type that determines the
assignment of a program to a program group; it’s the introductory statement. For
example, subroutine pool programs use the PROGRAM introductory statement.
However, if the introductory statement is changed to FUNCTION-POOL without
changing the program type in the program attributes, it will create an additional
program group.

When a new program is called using the CALL TRANSACTION or SUMBIT AND RETURN
statement, it creates a new internal session. The new internal session creates a
new program group, with the called program being the main program of the pro-
gram group. If a function module or global class is called in this new session, it
will create an additional program group.

If a new program is called in the new session using the CALL TRANSACTION or SUM-
BIT AND RETURN statement, it will again create a new internal session. Every inter-
nal session has its own program group. You can have up to nine internal sessions
in a main session. If the call sequence exceeds nine internal sessions, it will ter-
minate all internal sessions and lead to a runtime error.

When a function module is called, the system will check if the function group to
which the function module belongs already exists in the additional program
group. If it exists, it won’t load the function group again; instead, the function
module is called directly from the additional program group, which can then
access the global data of the function group. If the function group doesn’t exist in
the additional program group, then the function group is loaded with all its func-
tion modules, and the global data of the function group is initialized.

If the same functional module is called in a new internal session, it creates an
additional program group (if not yet created in new session) if the function group
doesn’t exist in the additional program group and initializes all its global data.
The data accessed by the function module in the new internal session will be dif-
ferent than the data accessed by the function module in the previous internal ses-
sion.
579

List Screens13
For example, let’s say two programs A and B call function modules FM1 and FM2,
which belong to function group FG1. Program A is executed, which creates an
internal session 1 in the main session, creating a main program group. When this
program A calls the function module FM1, the function group FG1 is loaded to the
internal session 1, creating an additional program group. Let’s then assume FM1
sets some global data in the function group FG1. If program A calls function mod-
ule FM2 next, the function group FG1 isn’t reloaded, because it already exists in the
additional program group, and FM2 can work with the global data set by FM1.

At this point, if program A calls the second program B using a SUBMIT AND RETURN
statement, it will create a new internal session 2 with a main program group. The
main program of this main program group will be program B. If program B calls
the function module FM2, then the function group FG1 is loaded into the internal
session 2, creating an additional program group because the function group exists
in the additional program group of internal session 1 and not internal session 2.
When function group FG1 is loaded in internal session 2, all its global data is reset,
so function module FM2 called in program B will be working with the global data
of the function group FG1 loaded in session 2. Therefore, the data accessed by FM2
in internal session 1 will be different from the data accessed by FM2 in internal
session 2.

All the internal sessions of the main session have access to the ABAP memory of
the main session. Programs in the call sequence can exchange data using ABAP
memory with IMPORT and EXPORT statements. For example, the calling program
can export data to ABAP memory using the EXPORT statement before calling a new
program. Once the new program is loaded into the internal session, it can import
the data from ABAP memory using the IMPORT statement, as shown in Listing
13.1.

*Code in calling program
DATA v_matnr TYPE matnr VALUE 'ABCD'.
EXPORT v_matnr TO MEMORY ID 'MAT'.
CALL TRANSACTION ZXXX.
*Code in called program
DATA v_matnr TYPE matnr.
IMPORT v_matnr FROM MEMORY ID 'MAT'.

Listing 13.1 Using IMPORT/EXPORT Statements to Access ABAP Memory

ABAP memory can be used to exchange data between programs running in the
same main session. Each main session has its own ABAP memory that can’t be
580

Memory Organization 13.3
accessed from external sessions. To exchange data between programs running in
different main sessions of the user session, we use SAP memory.

Figure 13.4 shows the memory organization of ABAP programs.

Figure 13.4 Memory Organization of ABAP Programs

All the main sessions are linked to SAP memory in the user session. Programs
running in the internal session can access the SAP memory of the user session.
This allows you to exchange data between programs running in different win-
dows of SAP GUI (different main sessions) for the user session. For example, one
program running in main session 1 can store data in SAP memory, and another
program running in main session 2 can read the data stored by the program run-
ning in main session 1. Data can be stored in SAP memory using the SET PARAME-
TER ID statement and accessed using the GET PARAMETER ID statement. Input fields
of the screen can be linked to SAP memory to establish default values.

In Listing 13.2, we created a ZPROGRAM1 program in which we use the SET PARAM-
ETER ID statement to save the value of the v_matnr field in SAP memory and
assigning the value "MAT" as the memory ID. Once this value is stored in SAP
memory, any program running in the user session can access this value by refer-
ring to the memory ID "MAT".

REPORT ZPROGRAM1.
DATA v_matnr TYPE matnr VALUE '100'.
START-OF-SELECTION.
SET PARAMETER ID 'MAT' FIELD v_matnr.

Listing 13.2 Storing Value in SAP Memory

A
B

A
P

M
em

or
y

Active Internal Session

Main Program/
Function Pool/

Class Pool

SAP Memory

Stacked Internal Session
581

List Screens13
In Listing 13.3, we created program ZPROGRAM2 where we use the GET PARAMETER
ID statement to read the value from SAP memory using the same memory ID
assigned in Listing 13.2.

Once the GET PARAMETER ID statement is executed, the value stored in the "MAT"
memory ID will be transferred to the v_matnr field irrespective of whether the
ZPROGRAM2 program is running in the same session as the ZPROGRAM1 program or in
a different session.

REPORT ZPROGRAM2.
DATA v_matnr TYPE matnr.
START-OF-SELECTION.
GET PARAMETER ID 'MAT' FIELD v_matnr.

Listing 13.3 Reading Value from SAP Memory

Now that you have an understanding of memory organization, let’s shift our
attention to how list screens are processed by programs.

13.4 List Events

You’ve seen that executable programs, module pools, and function groups are the
three types of programs that can contain screens. List screens are typically used
with executable programs to generate report output.

List screens aren’t created manually; they’re automatically generated using the
WRITE, SKIP, or ULINE statement. In executable programs, the list screen is pre-
sented automatically at the end of program execution. In module pool programs,
the LEAVE TO LIST-PROCESSING statement will present the generated list.

Unlike selection screens and general screens that consist of named screen ele-
ments (e.g., input fields, radio buttons, checkboxes, etc.) and data exchanged
with ABAP programs with identically named fields, list screens provide a freely
definable area to output data.

The runtime environment triggers list events when a list screen is processed. List
events allow you to prepare a list and react to user actions on the screen.

The following are the different types of list events:

� TOP-OF-PAGE

� END-OF-PAGE
582

List Events 13.4
� AT LINE-SELECTION

� AT USER-COMMAND

List events can be categorized as those that are triggered before the screen is
shown and those that are triggered after the screen is shown. TOP-OF-PAGE and
END-OF-PAGE are triggered before the list screen is displayed to the user, whereas
AT LINE-SELECTION and AT USER-COMMAND are triggered by user actions on the dis-
played list.

In this section, we’ll look at the different types of list events.

13.4.1 TOP-OF-PAGE

The TOP-OF-PAGE event is triggered when a list is first prepared or when a new
page starts. For example, when the runtime system encounters the first statement
that generates the list (WRITE, SKIP, or ULINE), it will trigger the TOP-OF-PAGE event
and execute the code under the event. Once the code under the TOP-OF-PAGE
event is processed, control will return to the statement that generated the list, and
the statement will be executed.

For example, in Listing 13.4, when the runtime system encounters the first WRITE
statement under the END-OF-SELECTION event, before executing the WRITE state-
ment control will be passed to the TOP-OF-PAGE event and the statements under it
will be executed. Once the last of the statements in the TOP-OF-PAGE event is exe-
cuted, the control will return to the WRITE statement that triggered the TOP-OF-
PAGE event, and it will be executed. NO STANDARD PAGE HEADING for the REPORT
statement disables the program title being displayed as the default page heading.

REPORT ZDEMO_CLASSICAL_LISTS NO STANDARD PAGE HEADING.
TYPES : BEGIN OF ty_sflight,

CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
PRICE TYPE S_PRICE,

END OF ty_sflight.
DATA : it_sflight TYPE STANDARD TABLE OF ty_sflight,

wa_sflight TYPE ty_sflight.
SELECT-OPTIONS : s_carrid FOR wa_sflight-carrid.
START-OF-SELECTION.
SELECT carrid

connid
fldate
price
583

List Screens13
FROM sflight
INTO TABLE it_sflight
WHERE carrid IN s_carrid.

END-OF-SELECTION.
LOOP AT it_sflight INTO wa_sflight.

AT FIRST.
WRITE : / 'Airline Code',

20 'Flight Connection No.',
50 'Flight Date',
70 'Airfare'.

ENDAT.
WRITE : / wa_sflight-carrid,

20 wa_sflight-connid,
50 wa_sflight-fldate,
70 wa_sflight-price LEFT-JUSTIFIED.

ENDLOOP.
TOP-OF-PAGE.
WRITE : 'Report Generated On:',

sy-uzeit.
ULINE. SKIP.

Listing 13.4 TOP-OF-PAGE Event

The statements under the TOP-OF-PAGE event allow you to print page headings, as
shown in Figure 13.5.

Figure 13.5 List Output with TOP-OF-PAGE
584

List Events 13.4
13.4.2 END-OF-PAGE

The END-OF-PAGE event is triggered when the page ends. The statements in this
event allow you to maintain the page footer. To trigger the END-OF-PAGE event,
the line count for the page should be set and a certain number of lines reserved
for the footer in the program introductory statement. The line count is set using
the LINE-COUNT statement in the program introductory statement—for example,
REPORT ZDEMO_CLASSICAL_LISTS. Here, the line count is any numeric value and the
line count for the footer is specified in parenthesis.

During the program execution, once the list page reaches the number of lines per
page, the runtime system calls the END-OF-PAGE event and executes the code
under it. After the END-OF-PAGE event, the system starts a new page to print the
new records, which will trigger the TOP-OF-PAGE event.

Listing 13.5 shows sample code using the END-OF-PAGE event. In this example,
we’re using the LINE-COUNT 10(2) addition to maintain the line count per page.
Here, 10(2) indicates that the total number of lines per page is ten, out of which
two lines are reserved for the footer. Therefore, in this example, the END-OF-PAGE
event will trigger after printing eight lines per page.

REPORT ZDEMO_CLASSICAL_LISTS NO STANDARD PAGE HEADING LINE-COUNT 10(2).

TYPES: BEGIN OF ty_sflight,
carrid TYPE s_carr_id,
connid TYPE s_conn_id,
fldate TYPE s_date,
END OF ty_sflight.

DATA : it_sflight TYPE STANDARD TABLE OF ty_sflight,
wa_sflight TYPE ty_sflight.

PARAMETERS p_carrid TYPE sflight-carrid.

START-OF-SELECTION.
SELECT carrid connid fldate FROM sflight INTO TABLE it_
sflight WHERE carrid EQ p_carrid.

END-OF-SELECTION.
LOOP AT it_sflight INTO wa_sflight.
WRITE : / wa_sflight-carrid,

wa_sflight-connid,
wa_sflight-fldate.

ENDLOOP.

TOP-OF-PAGE.
585

List Screens13
WRITE: 'Report generated by:', sy-uname.

END-OF-PAGE.
WRITE: 'End of current page'.

Listing 13.5 Sample Code for END-OF-PAGE Event

13.4.3 AT LINE-SELECTION

An AT LINE-SELECTION event is triggered when the user double-clicks any record
of the displayed list. The AT LINE-SELECTION event allows you to provide drill-
down functionality in reports, making them interactive. The GET CURSOR state-
ment (for more information, see Section 13.7.3) can be used to identify the col-
umn and row on which the user has double-clicked, as shown in Listing 13.6.

DATA : column TYPE string,
Row TYPE I.

AT LINE-SELECTION.
GET CURSOR FIELD column.
GET CURSOR LINE row.

Listing 13.6 Using GET CURSOR

In Listing 13.6, the column name will be transferred to the column field and the
row number will be transferred to the row field.

13.4.4 AT USER-COMMAND

When the list screen is displayed, the list processor calls the special container
screen (screen number 120). This container screen temporarily replaces the exist-
ing screen of the calling program. The container screen will inherit the same posi-
tion, size, and GUI status of the screen it replaces. In executable programs, the
container screen will replace the selection screen and uses a standard GUI status.

To override the standard GUI status with your own GUI status in order to add
functionality, you can load a GUI status (using SET PF-STATUS) before the list is
displayed. When the user selects any of the GUI buttons or menu items of the cus-
tom GUI status, the runtime environment will call the AT USER-COMMAND event.
Under this event, we can maintain the functionality to perform various actions
based on the button selected by the user on the list screen.

The function code of the GUI menu item or button is transferred to the sy-ucomm
system field, which can be checked to identify the user action. Figure 13.6 shows
586

List Events 13.4
a custom GUI status, with a PDF icon in the application toolbar. The function
code set for this icon is PDF.

Figure 13.6 Custom GUI Status with PDF Icon

Figure 13.7 shows the PDF icon displayed on the list screen when the code in Lis-
ting 13.7 is executed. In Listing 13.7, the GUI status is loaded under the END-OF-
SELECTION event, before the list is displayed. Under the AT USER-COMMAND event,
the user action is identified by checking the sy-ucomm system field.

Figure 13.7 PDF Button Displayed on List Screen

END-OF-SELECTION.
SET PF-STATUS 'GUILIST'.
WRITE '---output---'.
AT USER-COMMAND.
IF sy-ucomm EQ 'PDF'.
ENDIF.

Listing 13.7 Checking sy-ucomm under AT USER-COMMAND
587

List Screens13
This section looked at the different list events used for list screens. In the next sec-
tion, we’ll look at two different kinds of lists.

13.5 Basic Lists and Detail Lists

When the list screen is displayed, the list processor has control over the program.
The initial list screen is called the basic list, and the user actions on the basic list
can create additional lists if any output statements are executed. These additional
lists are called detail lists (or secondary lists).

One basic list can have up to nineteen detail lists. For example, if we use a WRITE
statement under the AT LINE-SELECTION event, it creates a detail list when the
user double-clicks the displayed list. When a detail list is created, it temporarily
replaces the previous list on the container screen. The basic list and detail lists
form a list system, which can have up to twenty levels. This list system allows you
to create drilldown reports in which header data is shown on the basic list and the
user can click the displayed header record to see the item data of the record.

Drilldown reports are also useful to divide program output into multiple levels
and allow the user to navigate between different levels. For example, if we print
salary details of all employees in the report output, the user can click on the
employee ID to see more information about a particular employee. After check-
ing the employee details, the user can click the Back button to return to the main
list. This allows us to break the report output into multiple levels without having
to display all the information in one screen.

The code in Listing 13.8 shows the basic information about the flights from table
SFLIGHT on a basic list. When the user double-clicks a record in the basic list, a
secondary list is generated that shows the flight schedule from table SPFLI.

REPORT zdemo_classical_lists NO STANDARD PAGE HEADING.

TYPES: BEGIN OF ty_sflight,
carrid TYPE s_carr_id,
connid TYPE s_conn_id,
fldate TYPE s_date,

END OF ty_sflight.

DATA : it_sflight TYPE STANDARD TABLE OF ty_sflight,
wa_sflight TYPE ty_sflight.

PARAMETERS p_carrid TYPE sflight-carrid.
588

Basic Lists and Detail Lists 13.5
START-OF-SELECTION.
PERFORM get_data.

END-OF-SELECTION.
PERFORM output.

AT LINE-SELECTION.
PERFORM detail_list.

&--
*& Form GET_DATA
&--
FORM get_data .
SELECT carrid connid fldate FROM sflight INTO TABLE it_

sflight WHERE carrid EQ p_carrid.
ENDFORM.
&--
*& Form OUTPUT
&--
FORM output .
LOOP AT it_sflight INTO wa_sflight.
WRITE : / wa_sflight-carrid,

wa_sflight-connid,
wa_sflight-fldate.

HIDE: wa_sflight-carrid,
wa_sflight-connid.

ENDLOOP.
ENDFORM.
&--
*& Form DETAIL_LIST
&--
FORM detail_list .
TYPES: BEGIN OF ty_spfli,

carrid TYPE spfli-carrid,
connid TYPE spfli-connid,
countryfr TYPE spfli-countryfr,
cityfrom TYPE spfli-cityfrom,
airpfrom TYPE spfli-airpfrom,
fltime TYPE spfli-fltime,
deptime TYPE spfli-deptime,

END OF ty_spfli.

DATA : lt_spfli TYPE STANDARD TABLE OF ty_spfli,
lw_spfli TYPE ty_spfli.

SELECT carrid
connid
countryfr
cityfrom
589

List Screens13
airpfrom
fltime
deptime

FROM spfli
INTO TABLE lt_spfli
WHERE carrid EQ wa_sflight-carrid
AND connid EQ wa_sflight-connid.

LOOP AT lt_spfli INTO lw_spfli.
WRITE : / lw_spfli-carrid,

lw_spfli-connid,
lw_spfli-countryfr,
lw_spfli-cityfrom,
lw_spfli-airpfrom,
lw_spfli-fltime,
lw_spfli-deptime.

ENDLOOP.
ENDFORM.

Listing 13.8 Drilldown List for Flights

Figure 13.8 shows the output generated by the code in Listing 13.8. In this exam-
ple, we’re generating the secondary lists via WRITE statements under the AT LINE-
SELECTION event.

Figure 13.8 Basic and Secondary Lists

Basic List Secondary List
590

Basic Lists and Detail Lists 13.5
Figure 13.9 shows the representation of a list system. The main screen contains
the container in which the basic list is displayed initially. When the secondary list
is generated, the basic list stacks itself and the secondary list is displayed in the
container. If further secondary lists are generated, the current list will be stacked,
and the new list will be displayed in the container. The system field SY-LSIND con-
tains the list number currently displayed in the container.

Figure 13.9 List System

From a general screen, you can call the list processor by using the LEAVE TO LIST-
PROCESSING statement. You can display up to twenty lists in the list system. How-
ever, when the screen is processed, the list system is always initialized, which
means that the basic list is called first and other lists are generated based on the
user actions on the screen.

If a new screen is called from within the list system (e.g., using CALL SCREEN), the
list system of the original screen is retained and the new screen is called. At the
end of processing the new screen, the program returns to the last list level that
was displayed.

The TOP-OF-PAGE DURING LINE-SELECTION event is executed before a detail list is
called. This allows us to maintain page headings on detail lists separately from the
basic list. The SY-LSIND system field contains the list number, which can be used
to distinguish between the detail lists.

Container Screen List System
591

List Screens13
Now that you understand both basic and detail lists, let’s take a look at both clas-
sical and interactive reports.

13.6 Classical Reports

Reports that use list screens to display report output are called classical reports.
Classical reports have been replaced with ALV and are seldom used. Classical
reports can be normal reports or interactive reports. Normal reports use only the
basic list to display the report output. In other words, a normal report doesn’t
have any interactive elements. On the other hand, interactive reports can have
interactive elements that react to user actions on the displayed list.

In a typical classical report, the user is presented with a selection screen to input
selection criteria. Once the selection criteria are validated, the data from the data-
base is fetched into internal tables and processed as per program requirements.
The processed data is displayed on the list screen using WRITE statements within
the internal table loop. Listing 13.8 provides an example of a typical report.

13.7 Interactive Reports

Interactive reports are those reports that react to user actions on the list screen,
adding an element of interactivity to the report. The AT LINE-SELECTION and AT
USER-COMMAND events allow you to create interactive reports. Typically, interactive
reports are designed in such a way that summarized information is displayed on
the basic list and the user can then click on the displayed line to branch out to
more detailed information on subsequent lists.

Various techniques are used to identify the line that the user selected on the list
and pass this data to subsequent processing blocks. Some of the important ABAP
statements used in interactive reports are discussed in the following subsections.

13.7.1 HIDE

The HIDE statement is one of the fundamental statements used with interactive
reports. It’s used when creating a basic list to define a hide area where the infor-
mation that needs to be passed to subsequent lists is defined. Once a record is
592

Interactive Reports 13.7
written to the basic list using the WRITE statement, the HIDE statement is used
immediately to store the record in the hide area. When the user selects the record
from the list, it’s automatically copied to the data object in the program for which
the value was written in the output.

For example, say we need to develop a report to show all the billing documents
created in a given date range. The requirement specifies that the user should be
presented with a selection screen to input the date range.

On clicking Execute, the report should display all the billing documents created
in the given date range. The basic list should display the header data of each doc-
ument, and the user can double-click the document number to see the item
details of the selected document.

Listing 13.9 shows the code for this requirement.

REPORT zdemo_billing_report NO STANDARD PAGE HEADING.

TYPES: BEGIN OF ty_vbrk,
vbeln TYPE vbeln_vf,
fkdat TYPE fkdat,
netwr TYPE netwr,
kunrg TYPE kunrg,

END OF ty_vbrk.

TYPES: BEGIN OF ty_vbrp,
vbeln TYPE vbeln,
posnr TYPE posnr_vf,
arktx TYPE arktx,
fkimg TYPE fkimg,
vrkme TYPE vrkme,
netwr TYPE netwr_fp,
matnr TYPE matnr,
mwsbp TYPE mwsbp,

END OF ty_vbrp.

DATA: it_vbrp TYPE TABLE OF ty_vbrp,
wa_vbrp TYPE ty_vbrp,
it_vbrk TYPE TABLE OF ty_vbrk,
wa_vbrk TYPE ty_vbrk.

SELECT-OPTIONS: s_fkdat FOR wa_vbrk-fkdat.

START-OF-SELECTION.
SELECT vbeln

fkdat
netwr
593

List Screens13
kunrg
FROM vbrk
INTO TABLE it_vbrk
WHERE fkdat IN s_fkdat.

END-OF-SELECTION.
LOOP AT it_vbrk INTO wa_vbrk.
AT FIRST.
FORMAT COLOR COL_HEADING.
WRITE : 5 'BILLING DOCUMENT',
30 'PAYER',
50 'NET VALUE',
80 'BILLING DATE'.
FORMAT COLOR OFF.
ENDAT.
FORMAT COLOR COL_NORMAL.
WRITE : /5 wa_vbrk-vbeln,

30 wa_vbrk-kunrg,
50 wa_vbrk-netwr LEFT-JUSTIFIED,
80 wa_vbrk-fkdat.

HIDE wa_vbrk-vbeln.
ENDLOOP.
FORMAT COLOR OFF.

AT LINE-SELECTION.

SELECT vbeln
posnr
arktx
fkimg
vrkme
netwr
matnr
mwsbp
FROM vbrp
INTO TABLE it_vbrp

WHERE vbeln EQ wa_vbrk-vbeln.
LOOP AT it_vbrp INTO wa_vbrp.
AT FIRST.
FORMAT COLOR COL_HEADING.
WRITE AT: /5 'ITEM',
20 'DESCRIPTION',
56 'BILLED QUANTITY',
75 'SU',
96 'NET VALUE',
115 'MATERIAL',
130 'TAX AMOUNT'.
FORMAT COLOR OFF.

ENDAT.
594

Interactive Reports 13.7
FORMAT COLOR COL_NORMAL.
WRITE AT: /5 wa_vbrp-posnr,
20 wa_vbrp-arktx,
55 wa_vbrp-fkimg,
75 wa_vbrp-vrkme,
85 wa_vbrp-netwr,
115 wa_vbrp-matnr,
130 wa_vbrp-mwsbp LEFT-JUSTIFIED.
FORMAT COLOR OFF.

ENDLOOP.
TOP-OF-PAGE.
WRITE 'Billing Document Header Data'.
TOP-OF-PAGE DURING LINE-SELECTION.
WRITE 'Billing Document Item Data'.

Listing 13.9 Billing Document Report

In Listing 13.9, initially the document header details are selected from table VBRK
for the given data range and displayed in the basic list. To display the data in basic
list, we loop the data in internal table it_vbrk and use the WRITE statement to
print the record. We used the HIDE statement before ENDLOOP to store the docu-
ment number in the hide area, which will be transferred to the AT LINE-SELEC-
TION processing block when the user double-clicks the document number in the
basic list.

The hide area is the area in the list buffer in which global variables can be stored
for every row of a screen list via the HIDE statement. Without using the HIDE state-
ment, there’s no way to identify the document number on which the user double-
clicked in order to fetch subsequent item details for the document inside the AT
LINE-SELECTION event. When the user double-clicks the document number, its
value will be transferred to the original wa_vbrk-vbeln field in the program. We
use this field to select the data from the item table VBRP.

We print the page heading for the basic list under the TOP-OF-PAGE event and the
page heading for the detail list under the TOP-OF-PAGE DURING LINE-SELECTION
event.

Figure 13.10 shows the expected output in the basic list and Figure 13.11 shows
the expected output in the detail list for the given requirement. The detail list is
called when the user double-clicks the document number displayed in the basic
list.
595

List Screens13
Figure 13.10 Basic List for Code in Listing 13.9

Figure 13.11 Detail List for Code in Listing 13.9

13.7.2 READ LINE

Similar to the HIDE statement, the READ LINE or READ CURRENT LINE statement can
be used to capture the value when the user double-clicks a record. Using the READ
LINE statement, you can read any line by supplying the row number. You can use
the GET CURSOR statement to dynamically identify the row on which the user dou-
ble-clicked and use that row number with the READ LINE statement to get the field
value, as shown in Listing 13.10. To read the line in succession, use the READ CUR-
RENT LINE statement.

DATA row TYPE sy-index.
GET CURSOR LINE row.
READ LINE row FIELD VALUE wa_vbrk-vbeln.
READ CURRENT LINE FIELD VALUE wa_vbrk-vbeln.

Listing 13.10 Using READ LINE and READ CURRENT LINE
596

Interactive Reports 13.7
In Listing 13.10, we are defining a row variable of type sy-index to identify the
cursor position. The GET CURSOR statement fills the variable row with the line
number in the list of the current cursor position. The READ LINE statement reads
the field value of the supplied row number, and the READ CURRENT LINE statement
automatically reads the line where the cursor is currently positioned.

13.7.3 GET CURSOR

To retrieve information about the cursor position, we can use the GET CURSOR
statement to determine the current row and current field, as shown in Listing
13.11.

*Using GET CURSOR to fetch row number
DATA row TYPE sy-index.
GET CURSOR LINE row.
*Using GET CURSOR to fetch column (field) name
DATA field TYPE string.
GET CURSOR FIELD field.

Listing 13.11 Using GET CURSOR

13.7.4 DESCRIBE LIST

The DESCRIBE LIST statement provides information about the attributes of the list
levels. Using this statement, we can retrieve information such as the number of
lines or number of pages of a list, get the page number of a particular line num-
ber, or get the properties of the particular page. Refer to the keyword documen-
tation to see all the possible additions that can be used with this statement.

Listing 13.12 uses the DESCRIBE LIST statement to identify the last page and then
read the number of lines on the last page. In this example, the last_page field will
contain the total number of pages generated. Using this value, we read the num-
ber of lines on the last page. The lines field will contain the number of lines in
the last page.

DATA: last_page TYPE I,
lines TYPE I.

AT LINE-SELECTION.
DESCRIBE LIST NUMBER OF PAGES last_page,
DESCRIBE LIST PAGE last_page LINES lines.

Listing 13.12 Using DESCRIBE LIST Statement
597

List Screens13
13.8 Practice

Learning is all about putting theory into practice. The following practice examples
should help you explore classical lists (list screens):

1. An END-OF-PAGE event is triggered when the page is filled. For example, if you
have set the line count as 10 (2), it means the total number of lines per page is
ten, out of which two lines are reserved for the footer. Therefore, the system
will trigger the END-OF-PAGE event after printing eight lines on the page. How-
ever, if the page isn’t filled, the END-OF-PAGE event isn’t triggered. For example,
if you’ve set the line count as 10 (2) but only six lines are printed in the output,
then END-OF-PAGE isn’t triggered.

The code in Listing 13.13 doesn’t trigger the END-OF-PAGE event. For this prac-
tice example, modify the code (without printing extra lines) in such a way as to
trigger the END-OF-PAGE event even if the page isn’t filled.

REPORT ZDEMO_LIST LINE-COUNT 12(2).
START-OF-SELECTION.
DO 6 TIMES.
WRITE : / 'Demo on end-of-page'.
ENDDO.
END-OF-SELECTION.
WRITE 'END-OF-PAGE event is executed'.

Listing 13.13 Code for Exercise 1

Hints

� Find out how many lines are printed and calculate the difference by checking a sys-
tem field that gives the line count. Use the SKIP statement to print blank lines.

� Explore the RESERVE keyword.

2. Create a basic list and multiple detail lists. For example, when you double-click
a line in the basic list, it should open a detail list (use the WRITE statement in the
AT LINE-SELECTION event to print some dummy data). When you double-click
a line in the detail list, it should open a new detail list. Double-clicking a line in
this list should open further detail lists. For example, say you’ve opened five
detail lists. When you click the Back button on the fifth detail list, it will take
you to the fourth detail list. Clicking the Back button on the fourth detail list
will take you to the third detail list and so on, until you reach the basic list.
598

Summary 13.9
For this exercise, find out how you can reach the basic list directly when you
click on any detail list in the system.

Hint

Explore the sy-lsind system field.

3. Discover how to print icons on the list screen. We can print different icons to
display the status of a record when displaying records in the output. Figure
13.12 shows a green light icon in the first column of the record to signify that
the record is processed successfully. For this exercise, find out how to print
icons as shown in Figure 13.12.

Figure 13.12 Icon Displayed in Output

HINT

Explore all the additions for the WRITE statement.

13.9 Summary

In this chapter, we discussed the various program types in ABAP, which process-
ing blocks they support, and how program types determine program execution
flow. We also discussed different ways to execute programs, both internally in
the program code and through SAP GUI and covered how understanding memory
management is vital to determining how data is exchanged between programs.
We looked at how programs run in an internal session and what happens behind
the scenes when different programs are called internally.

In addition, we discussed various list events and explored when the events are
called and their purposes. You also learned how different events are used to cre-
ate interactive reports.

In the next chapter, we’ll discuss another type of screen in ABAP: the selection
screen.
599

Chapter 14

Selection screens allow users to select what information they see in a spe-
cific application. This chapter discusses how to design events that occur in
a selection screen.

14 Selection Screens

Selection screens are special screens created by using specific ABAP statements.
Unlike dialog screens, which are created in Screen Painter, selection screens are
auto-generated and don’t require manual design. Selection screens are used when
a user can provide the selection criteria to restrict the data processed by a pro-
gram.

In this chapter, we’ll look at the features of selection screens. We’ll start by discuss-
ing how to define selection screens in Section 14.1. When the selection screen is
processed, the ABAP runtime environment triggers different selection screen
events that allow us to prepare and process input fields on the selection screen.
We’ll explore the selection screen events in Section 14.2 and how these events can
be used for validating user inputs in Section 14.3. A selection screen can contain
many input fields to restrict the data being processed by the program.

Often, users run a report frequently with same set of inputs. For example, a user
may input same selection criteria to check daily stock movements for a particular
plant each time he runs the report. To avoid having to repeatedly input the same
selection criteria each time the report is run, we can create a selection screen vari-
ant to save the selection criteria. We’ll discuss how to create and use selection
screen variants in Section 14.4.

Reports can be executed online by the user through an SAP GUI screen or they
can be scheduled to execute in the background. Background execution of a pro-
gram is useful if the program is processing huge amounts of data and takes a long
time to complete execution. Sometimes, a user may also want to run a report at a
fixed time of day at regular intervals. We’ll discuss how to execute programs in
the background in Section 14.5.
601

Selection Screens14
Some selection screens may have too many fields, and many fields may not be rel-
evant for the given context. For example, a user without the authorization to set-
tle a consignment may not require fields that allow the user to input settlement
criteria for consignments. We can dynamically display or hide selection screens
to improve user experience. We’ll discuss dynamically manipulating screen ele-
ments in Section 14.6.

Finally, we’ll conclude this chapter in Section 14.7, with a discussion of how pro-
grams can be called internally and how to use selection screen fields as an inter-
face to pass data between programs.

14.1 Defining Selection Screens

Selection screens typically are used with reports that run executable programs to
take user input. However, selection screens can also be defined with module
pools and function groups.

With executable programs, a standard selection screen is defined with the PARAM-
ETERS or SELECT-OPTIONS statement. The standard selection screen is assigned
screen number 1000 and is automatically called when the program is executed.
You can also define as many user-defined selection screens as you wish in the pro-
gram.

User-defined selection screens allow you to dynamically present the user with a
selection screen for further data restriction based on the user actions. For exam-
ple, in a drilldown report, when the user double-clicks a line in the basic list, you
can call a user-defined selection screen to allow the user to input restrictions for
the data to be displayed on the secondary list.

Each user-defined screen is assigned a four-digit screen number—any number
other than screen number 1000, which is reserved for the standard selection
screen. The user-defined selection screens are defined between the SELECTION
SCREEN BEGIN OF SCREEN and SELECTION SCREEN END OF SCREEN statements and are
called using the CALL SELECTION-SCREEN statement.

Listing 14.1 shows the syntax to define a standard selection screen and user-
defined selection screen.

*Defines a standard selection screen.
PARAMERTES p_carrid TYPE s_carrid.
602

Defining Selection Screens 14.1
*Defines a user-defined selection screen with screen number 2000
SELECTION-SCREEN BEGIN OF SCREEN 2000.
PARAMETERS p_connid TYPE s_connid.
SELECTION-SCREEN END OF SCREEN 2000.

Listing 14.1 Defining Selection Screen

In Listing 14.1, the PARAMERTES p_carrid TYPE s_carrid statement defines a stan-
dard selection that is assigned the default screen number 1000. Any PARAMETERS
or SELECT-OPTIONS declarations that do not explicitly belong to a SELECTION-
SCREEN BEGIN OF SCREEN block will be part of the standard selection screen.

To define a user-defined selection screen, use the SELECTION-SCREEN BEGIN OF
SCREEN statement and assign a custom screen number. All the selection screen
fields defined between the SELECTION-SCREEN BEGIN OF SCREEN and SELECTION-
SCREEN END OF SCREEN statements will belong to this user-defined selection screen.

For executable programs, the standard selection screen is called automatically
when the program is executed. User-defined selection screens should be called
explicitly using the CALL SELECTION-SCREEN statement. For example, to call a user-
defined selection screen with screen number 2000, you use the statement CALL
SELECTION-SCREEN 2000.

In function groups and module pools, you can only define user-defined selection
screens. In function modules, you call the user-defined selection screen with the
CALL SELECTION-SCREEN statement. User-defined selection screens can be used as
initial screens in module pool programs. The selection screen can also be included
as a subscreen on a dialog screen.

The syntax to define and call a selection screen is the same irrespective of the pro-
gram type. To define a selection screen as a subscreen, use the AS SUBSCREEN addi-
tion with the SELECTION-SCREEN BEGIN OF SCREEN statement. Listing 14.2 shows an
example to define a user-defined selection screen as a subscreen.

PROGRAM ZSUBSCREEN_EXAMPLE.
DATA v_matnr TYPE matnr.
SELECTION-SCREEN BEGIN OF SCREEN 500 AS SUBSCREEN.
SELECT-OPTIONS s_matnr FOR v_matnr.
SELECTION-SCREEN END OF SCREEN 500.

Listing 14.2 Defining Subscreen

In Listing 14.2, we defined a subscreen with screen number 500 that contains a
SELECT-OPTIONS field, S_MATNR. This subscreen can be included in the main screen
603

Selection Screens14
just like any regular subscreen created via Screen Painter, as discussed in Chapter
12. The advantage of using a user-defined selection screen as a subscreen and
then including it on a main screen is that with the user-defined selection screen,
you can have range fields (select options) for input. You can’t define range fields
directly with Screen Painter.

Selection screens provide a standardized UI for users to enter selection criteria.
They also allow users to input single values and complex selection criteria. Selec-
tions screens also provide an interface to transfer data between selection screen
fields of executable programs called with the SUBMIT statement.

Now that you understand how to define selection screens using the program
types, in the next section we’ll discuss the various selection screen events that can
be used.

14.2 Selection Screen Events

Selection screen events are called when a selection screen is processed. The stan-
dard selection screen event is AT SELECTION-SCREEN.

The different variations of the AT SELECTION-SCREEN event are as follows:

� AT SELECTION-SCREEN OUTPUT

This event is triggered by the PBO event of the selection screen. The code in
this event is executed before the selection screen is displayed to the user. This
event allows you to set default values for the selection screen fields or dynam-
ically change field properties (e.g., enable or disable fields). This event is trig-
gered before the selection screen is called.

You can use the AT SELECTION-SCREEN OUTPUT event to assign a default value. In
this example, we set the current date as the default value for the p_date field.
The p_date = sy-datum statement will be executed before the selection screen
is displayed to the user. For example:

REPORT ZEXAMPLE_PROGRAM.
PARAMETERS p_date TYPE sy-datum.
AT SELECTION-SCREEN OUTPUT.
p_date = sy-datum.

� AT SELECTION-SCREEN ON <field>

This event is triggered in the PAI event of the selection screen, when the data
604

Selection Screen Events 14.2
of the parameters field or the line of SELECT-OPTIONS is transferred to the ABAP
program. This event is used to validate the field input. If an error or warning
message is shown, the field will be automatically input-enabled. For example:

PARAMETERS p_matnr TYPE matnr.
AT SELECTION-SCREEN ON p_matnr.

� AT SELECTION-SCREEN ON END OF <sel>

This event is triggered when the selection table of the SELECT-OPTIONS field is
fully passed to the ABAP program after the user action on the multiple selection
window. This event allows you to validate all the entries of the selection table.
For example:

SELECT-OPTIONS s_matnr FOR v_matnr.
AT SELECTION-SCREEN ON END OF s_matnr.

� AT SELECTION-SCREEN ON BLOCK

You can organize the selection screen fields into multiple blocks. This event is
triggered when the data of all the fields of the block is transferred to the pro-
gram. If an error or warning message is raised in this event, all the fields in the
block will be input-enabled. For example:

SELECTION-SCREEN BEGIN OF BLOCK b1.
PARAMTERS : p_matnr TYPE matnr,

P_spras TYPE spras.
SELECTION-SCREEN END OF BLOCK.
AT SELECTION-SCREEN ON BLOCK b1.

� AT SELECTION-SCREEN ON RADIO BUTTON GROUP

This event is triggered when all the fields of a radio button group are passed to
the ABAP program. If an error or warning message is raised in this event, all the
fields in the radio button group will be input-enabled. The individual radio but-
ton fields are not passed to the ABAP program independently, so they don’t
trigger AT SELECTION-SCREEN ON field event. For example:

PARAMETERS : p_day RADIOBUTTON GROUP rb1,
p_month RADIOBUTTON GROUP rb1,
p_year RADIOBUTTON GROUP rb1.

AT SELECTION-SCREEN ON RADIOBUTTON GROUP rb1.

� AT SELECTION-SCREEN

This is a standard selection screen event and is triggered after all the selection
screen events are executed. This event can be used to validate user inputs. If an
error or warning message is raised in this event, all the fields of the selection
605

Selection Screens14
screen will be input-enabled and the selection screen becomes ready for input
again.

� AT SELECTION-SCREEN ON HELP-REQUEST FOR <field>

This is the POH event of the selection screen. This event is triggered when the
user selects (F1) help for the field. For example:

PARAMETERS p_matnr TYPE matnr.
AT SELECTION-SCREEN ON HELP-REQUEST FOR p_matnr.

� AT SELECTION-SCREEN ON VALUE-REQUEST FOR <field>

This is the POV event of the selection screen. This event is triggered when the
user selects (F4) help for the field. For example:

PARAMETERS p_matnr TYPE matnr.
AT SELECTION-SCREEN ON VALUE-REQUEST FOR p_matnr.

� AT SELECTION-SCREEN ON EXIT-COMMAND

This event is triggered when the user selects the Back, Exit, or Cancel button
on the selection screen. Any cleanup code can be handled in this event.

Now that you understand different variations of the AT SELECTION-SCREEN event,
in the next section we’ll discuss how to validate the selection screen inputs.

14.3 Input Validations

Selection screen inputs should be validated before using the selection criteria to
process the data from database. This allows us to identify any invalid inputs and
show any resulting messages to the user so that the input can be corrected. Often,
a user may not realize he’s entered the wrong input on the selection screen and
may assume that the program isn’t working if he sees the wrong output. For such
reasons, it’s important to validate all selection screen inputs and alert the user if
required.

Selection screen fields should always be validated using one of the selection
screen events. Otherwise, when an error message is shown the selection screen
becomes unusable, preventing the user from correcting his input. The user would
then have to refresh the transaction to make a correct input.

If the selection screen has many fields, it’s recommended to validate each indi-
vidual field using the AT SELECTION-SCREEN ON FIELD event. This allows you to
606

Input Validations 14.3
automatically highlight the field with an error by disabling all the other fields on
the screen and enabling only the field with the error.

In Listing 14.3, we defined two selection screen fields, p_matnr and p_spras.
When we use the AT SELECTION-SCREEN ON field event to independently validate
the fields, the system will automatically highlight the field in error by input-
enabling the error field and making the remaining fields on the selection screen
input-disabled.

PARAMETERS : p_matnr TYPE matnr,
p_spras TYPE spras.

AT SELECTION-SCREEN ON p_matnr.
*Validate p_matnr input field
AT SELECTION-SCREEN ON p_spras.
*Validate p_spras input field.

Listing 14.3 Validating Input Fields Independently

If a group of fields should be validated together, it’s recommended to group the
fields into a block (using SELECTION-SCREEN BEGIN OF BLOCK) and use the AT SELEC-
TION-SCREEN ON BLOCK event. This allows you to automatically highlight the fields
of the block by disabling all the other fields on the screen and enabling only the
fields of the block.

In Listing 14.4, we grouped the p_matnr and p_spras fields into block b1. When
we use the AT SELECTION-SCREEN ON BLOCK b1 event to validate the input fields,
both p_matnr and p_spras will be input-enabled together when an error message
is raised in the event.

SELECTION-SCREEN BEGIN OF BLOCK b1.
PARAMETERS : p_matnr TYPE matnr,

p_spras TYPE spras.
SELECTION-SCREEN END OF BLOCK.
SELECTION-SCREEN BEGIN OF BLOCK b2.
PARAMETERS : p_werks TYPE werks_d,
SELECTION-SCREEN END OF BLOCK.

AT SELECTION-SCREEN ON BLOCK b1.
*Validate p_matnr and p_spras input fields together

Listing 14.4 Validating Input Fields as Related Group

Similarly, when validating radio buttons, use the AT SELECTION-SCREEN ON RADIO
BUTTON GROUP event to ensure all the radio buttons are enabled when an error
message is shown. For example, in Listing 14.5, if an invalid radio button option
607

Selection Screens14
is selected based on the context, all the radio buttons will be input-enabled for
the user to make a new selection when the error message is raised within the AT
SELECTION-SCREEN ON RADIOBUTTON GROUP event.

PARAMETERS : p_day RADIOBUTTON GROUP rb1,
p_month RADIOBUTTON GROUP rb1,
p_year RADIOBUTTON GROUP rb1.

AT SELECTION-SCREEN ON RADIOBUTTON GROUP rb1.
*Validate radio button

Listing 14.5 Validating Radio Button Group

Next, we’ll take a comprehensive look at selection screen variants, from their cre-
ation to user-specific variables.

14.4 Selection Screen Variants

Selection screens allow users to input selection criteria. When executing a report,
users will input the selection criteria for the report. Based on the selection crite-
ria, the report will process the records. For example, if the user wants to check
the data for a given date range, then the report will process the data for the given
date range only.

Sometimes, selection screens consist of many input fields and allow the user to
provide complex selection criterion, but most often users run a report with the
same selection criteria repeatedly. For example, a user in a particular plant may
want to run a report by restricting the data to his particular plant each time. If the
selection criteria are complex, it may be time-consuming to input the same data
on the selection screen each time the report is used. If the report is run with same
set of selections often, then the selection criteria can be saved as a variant. Once
the selection data is saved as a variant, the user can use the variant to fill the selec-
tion screen and avoid manually inputting the same data over and over again.

We can create any number of variants for programs that have a selection screen
defined. Therefore, each user can create his own variant to run the report. Vari-
ants are local to programs and are not global. Variants also can be used to hide the
selection screen fields. This allows users to customize the selection screen by hid-
ing the non-relevant optional fields, which is particularly useful when a report
contains a large selection screen with many fields.
608

Selection Screen Variants 14.4
As we discussed, programs can contain multiple selection screens, so variants can
be created for different selection screens of the program. Apart from using the
variant to fill the selection screen fields on the screen, variants can also be used to
run reports in background mode.

In this section, we’ll discuss how to create a selection screen variant and different
attributes of the variant in Section 14.4.1 and Section 14.4.2, then we’ll cover
how to fill the input fields with contents from database table in Section 14.4.3.

Sometimes, the data that should be populated in the selection screen fields may
be dynamic. For example, the user may want to use the variant in such a way that
the date and time fields are always filled with current date and current time
during the execution of the program. We’ll discuss how to dynamically calculate
the date in Section 14.4.4 and the time in Section 14.4.5. Selection screen fields
can also be defaulted to user-specific values maintained in a user’s personal set-
tings. We’ll look at these user-specific variables in Section 14.4.6.

14.4.1 Creating a Variant

A variant can be created from the ABAP Editor initial screen or directly from the
selection screen. The following steps walk through how to create or edit a selec-
tion screen variant:

1. To create or change a variant, from the ABAP Editor initial screen enter the pro-
gram name, select the Variants radio button under Subobjects, and click
Change, as shown in Figure 14.1.

Figure 14.1 Create/Change Variant from ABAP Editor: Initial Screen
609

Selection Screens14
2. On the ABAP: Variants initial screen, enter a name for your variant and select
the Values radio button under Subobjects. Click the Create button when you’ve
finished (see Figure 14.2).

Figure 14.2 Variants Initial Screen

3. The system will call the selection screen for which the variant is being created,
as shown in Figure 14.3.

Figure 14.3 Selection Screen of Transaction MRKO
610

Selection Screen Variants 14.4
In this example, the system is showing the standard selection screen of pro-
gram RMVKON00 (Transaction MRKO). On this selection screen, fill the selection
criteria and click the Attributes button in the application toolbar. The Attri-

butes button allows you to maintain different attributes for the selection screen
fields.

4. The Variant Attributes screen, as shown in Figure 14.4, has options that can
be maintained for the selection screen fields. Some of the important options
include the follow:

� Description: Maintain a meaningful description for the variant.

� Only for Background Processing: Selecting this checkbox restricts the
variant to be used only for background processing.

� Protect Variant: Selecting this checkbox will allow the variant to be
changed only by the person who created it.

� Only Display in Catalog: When this option is checked, the variant will not
be displayed in (F4) help; it will be displayed only in the catalog.

� System variant: This field can’t be set manually; it’s automatically set by the
system. If you want the variant to be transported automatically with the pro-
gram, then you must create a system variant by starting the variant name
with CUS&.

Figure 14.4 Attributes Screen
611

Selection Screens14
� Screen Assignment: This box lists all the defined selection screens for which
this variant can be assigned.

� Information icon: For each field of the selection screen, certain attributes
can be set to manipulate the field. The Information button in the applica-
tion toolbar documents all of the fields and their purposes—some of which
we’ll discuss in Section 14.4.2.

5. Click Save in the standard toolbar to save the variant.

Once the variant is created, it can be accessed by choosing the Get variant but-
ton in the application toolbar of the selection screen, as shown in Figure 14.5.

Figure 14.5 Get Variant

The variant can also be created by filling in the information in the program’s
selection screen and clicking the Save button in the standard toolbar. For exam-
ple, Figure 14.6 shows the standard selection screen called when we execute
Transaction MRKO. On this screen, you can fill the selection criteria and click the
Save button in the standard toolbar to save the selection criteria as a variant.

Figure 14.6 Save Variant Directly

Get Variant Bu�on

Save Variant directly
612

Selection Screen Variants 14.4
Now that you know how to create and edit variants, let’s explore the different
attributes associated with selection screen fields.

14.4.2 Variant Attributes

The attributes of selection screen fields can be changed in a variant. For example,
you can hide a field or restrict overwriting a field value. The Information icon on
the Variant Attributes screen (refer back to Figure 14.4) provides documenta-
tion to explain the purpose of each option.

Some of the important options include the following:

� Field Type

Indicates whether the field is of type PARAMETERS or SELECT-OPTIONS.

� Protected

When this option is selected, the user can’t overwrite the value in the field on
the selection screen.

� Hide Field

Selecting this checkbox will hide the field from the selection screen. If a value
is maintained for the field in the variant, it will be used, but the field won’t be
displayed on the selection screen. This setting is useful if the selection screen
has too many fields.

� Hide Field BIS

This checkbox is enabled only for SELECT-OPTIONS fields. Selecting this check-
box will hide the range selection (only the low field is displayed).

� Save Field without Values

If this is checked, the system will ignore the value saved for the field in the vari-
ant.

� Switch GPA

This field will disable the link to SAP memory so that the value isn’t imported
from SAP memory (GET PARAMETER). SPA/GPA is not active in background pro-
cessing.

� Required Field

Marks the field as mandatory.
613

Selection Screens14
� Selection Variable

To set dynamic values for selection screen fields, use the selection variable
field. It supports four types of selection variables: table variables from table
TVARVC, dynamic date calculations, dynamic time calculations, and user specific
variables. For dynamic date and time calculations, the field should be of type D
or T respectively.

In the following sections, we’ll discuss the Selection Variable types.

14.4.3 Table Variables from Table TVARVC

There may be times when the user wants to input a set of values on the selection
screen, but these values may be updated frequently. In such a scenario, instead of
modifying the variant each time the value needs to be changed, the field can be
linked to the variant in table TVARVC.

To use the Table Variables from Table TVARVC option, we need to first create
a variant in table TVARVC. Proceed with the following steps:

1. Open Transaction STVARV.

2. Go to change mode by clicking the Display/Change button, then click the Cre-

ate button in the application toolbar (see Figure 14.7).

Figure 14.7 Transaction STVARV Initial Screen

3. Enter a name for the variant in the Parameters or Select Options tab (depend-
ing on the screen field) and maintain the values (see Figure 14.8).
614

Selection Screen Variants 14.4
Figure 14.8 Creating Variant in Transaction STVARV

To use the variant for the selection screen field, proceed with the following steps:

1. Go the Variant Attributes screen of the variant for the selection screen, select
the (F4) help in the Selection Variable field, and select the Table Variable

from Table TVARVC option, as shown in Figure 14.9.

Figure 14.9 Selection Variable
615

Selection Screens14
2. Use the (F4) help in the Name of Variable column to select the variant created
in Transaction STVARV (see Figure 14.10).

Figure 14.10 Selecting Variant

14.4.4 Dynamic Date Calculation

If the selection screen field is of TYPE D, then the field can be set to use a dynamic
date calculation. For example, if you want to run a report with the current date
daily, this option can automatically fill the date field with the current date.

We can use either the system date or the local date. Use the (F4) help in Selection

Variable for the Date field to select either Dynamic Date Calculation (Local

Date) or Dynamic Date Calculation (System Date), as shown in Figure 14.11.

Figure 14.11 Dynamic Date Calculation
616

Selection Screen Variants 14.4
Once this option is selected, use the (F4) help in the Name of Variable field to
select from the available options, as shown in Figure 14.12. As you can see, you
can select from many available options, including Current Date or a specific
number of days from the current date, among others.

Figure 14.12 Dynamic Date Selection

14.4.5 Dynamic Time Calculation

Similar to dynamic date calculation, a field of type T can be set with dynamic time
calculation. To set a dynamic time for the field, use the (F4) help in the Selection

Variable field and select the Dynamic Time Calculation (Local Time) or
Dynamic Time Calculation (System Time) option, as shown in Figure 14.13.

Figure 14.13 Dynamic Time Calculation

Once an option is selected, use the (F4) help in the Name of Variable field to
select from the available options, as shown in Figure 14.14.
617

Selection Screens14
Figure 14.14 Dynamic Time Selection

14.4.6 User-Specific Variables

The User-Specific Variables option is available if the field is linked to a memory
ID in the program using the MEMORY ID xxx addition (where xxx is the three-char-
acter ID) with the PARAMTERS or SELECT-OPTIONS statement. User-specific values
that are created from the selection screen or from the user maintenance are set at
runtime for the field. For example, if the selection screen field is defined in the
program as PARAMETERS p_kunnr TYPE kunnr MEMORY ID dat and the parameter ID
"DAT" is maintained in the user’s personal settings (Transaction SU3) as shown in
Figure 14.15, then the value will be populated automatically for the selection
screen field.

The Parameters tab in the user’s personal settings screen provides the option to
maintain the Set/Get Parameter ID and Parameter Value fields. Set/Get Para-

meter ID will be linked to SAP memory. Any screen field pointing to this param-
eter ID in SAP memory will automatically show the parameter value as the default
value within the user session.

Figure 14.15 User Settings

Now that you understand selection screen variants, we’ll discuss executing pro-
grams in the background.
618

Executing Programs in the Background 14.5
14.5 Executing Programs in the Background

Executable programs are the only programs that can be run in the background.
Programs can be executed in the background manually or automatically. For
example, if a report processes huge amounts data and takes hours to finish, a user
may want to run it in the background and check the report output in the spool.

If a report needs to be run at a fixed time at fixed intervals, then it can be sched-
uled to run as a batch job. For example, if you want to run a report every Sunday
at 4:00 pm, it can be scheduled to run automatically in the background as a batch
job.

To run a report in the background, proceed with the following steps:

1. Open Transaction SA38, input the program name, and click the Background

button in the application toolbar (see Figure 14.16).

Figure 14.16 Transaction SA38 Initial Screen

2. On the Execute Report in Background screen, provide the selection screen
Variant Name that should be used to run the report. Here, you can choose to
run it immediately (via the Execute Immed. button) or schedule it to run at a
later time (via the Schedule button; see Figure 14.17).

Figure 14.17 Scheduling Report Execution
619

Selection Screens14
3. For this example, select the Schedule button, which opens the Schedule

Report screen shown in Figure 14.18. On this screen, you have the option to
schedule the report once or periodically. Enter the job name, start date, and
time. Click Schedule Once to schedule the program to run once.

Figure 14.18 Scheduling Report for Background Execution

4. If you wish to schedule the report to run periodically, click the Schedule Peri-

odically button which will open the Schedule Report dialog box to maintain
the schedule, as shown in Figure 14.19.

Figure 14.19 Maintain Schedule Window

Next, let’s discuss how to dynamically display or hide specific selection screen
fields.
620

Displaying and Hiding Screen Elements Dynamically 14.6
14.6 Displaying and Hiding Screen Elements Dynamically

You’ve seen that selection screen fields can be hidden manually by using a vari-
ant, but if you want to dynamically display or hide selection screen fields, you can
handle that task programmatically in the code. For example, say you want to
show certain fields to the user or hide fields based on user authorization; you can
address this programmatically.

To manipulate the selection screen fields programmatically, use the AT SELEC-
TION-SCREEN OUTPUT event. Because this event is called in the PBO event of the
selection screen, we can change the field attributes before the selection screen is
displayed to the user.

All the screen fields and their attributes are transferred through a special table
called SCREEN. We can loop this table to access individual screen field attributes
and manipulate them accordingly.

Figure 14.20 shows the components of the screen structure.

Figure 14.20 Components of Screen Structure
621

Selection Screens14
Table 14.1 describes the components of the screen structure and provides their
possible values (as shown in Figure 14.20).

As discussed in Chapter 12, we can use the LOOP AT SCREEN statement to access all
the screen fields one at a time and modify their attributes. Listing 14.6 shows an
example of how to modify the screen fields using the screen structure. In this
example, we’re looping the screen structure to disable input for the p_matnr and
p_spras fields.

PARAMETERS : p_kunnr TYPE kunnr,
p_matnr TYPE matnr,
p_spras TYPE spras.

DATA wa_screen TYPE screen.
AT SELECTION-SCREEN OUTPUT.

LOOP AT SCREEN INTO wa_screen.
IF wa_screen-name EQ 'P_MATNR'.
wa_screen-input = abap_false.
ENDIF.

IF wa_screen-name EQ 'P_SPRAS'.

Field Name Possible Values Meaning

NAME Name of screen element Name of the screen field

GROUP1 to GROUP4 id1 to id4 Modification group to apply common
settings to related fields that belong to
the same group

REQUIRED 0, 1, 2 Mandatory or recommended field

INPUT 0, 1 Input-ready field

OUTPUT 0, 1 Read-only/display field

INTENSIFIED 0, 1 Highlighted field

INVISIBLE 0, 1 Invisible element

LENGTH Visible length of field Field length

ACTIVE 0, 1 Active field

DISPLAY_3D 0, 1 Display frame

VALUE_HELP 0, 1, 2 Input help button

REQUEST 0, 1 Input exists

VALUES_IN_COMBO 0, 1 Dropdown list box

Table 14.1 Screen Structure Components
622

Summary 14.8
wa_screen-input = abap_false.
ENDIF.
MODIFY SCREEN FROM wa_screen.
ENDLOOP.

Listing 14.6 Using SCREEN Structure

Next, let’s quickly discuss calling programs using selection screen.

14.7 Calling Programs via Selection Screens

For executable programs called using the SUBMIT statement, the selection screen
fields can be used as a parameter interface to transfer data from the calling pro-
gram to the called program. The called program should have a selection screen
defined.

Use the WITH addition with the SUBMIT statement to map the fields between the
calling program and the called program as shown:

SUBMIT zdemo_prg WITH p_matnr = v_matnr AND RETURN.

Here, the p_matnr selection screen field of the zdemo_prg program will be passed
the value of v_matnr from the calling program.

If you wish to display the selection screen of the called program to the user, you
can use the VIA addition as shown:

SUBMIT zdemo_prg WITH p_matnr = v_matnr VIA SELECTION-
SCREEN AND RETURN.

14.8 Summary

In this chapter, we discussed various selection screen concepts. We explored all
the available selection screen events and when each of the selection screen events
is called. We also explained how to create variants for a selection screen. Variants
save time and effort by preventing a user from needing to enter the same input
data each time he runs a report.

In addition, we looked at how to dynamically set values for selection screen fields
using variants. We also showed how a variant can be used to run a program in
background and discussed how selection screen fields can be manipulated
623

Selection Screens14
dynamically and how to use a selection screen as an interface to transfer data. At
the end of this chapter, you should be comfortable working with selection
screens and dynamically manipulating screen fields.

In the next chapter, we’ll discuss how to develop reports using the SAP List
Viewer (ALV).
624

Chapter 15

SAP List Viewer (ALV) is another way to create reports in ABAP. This
chapter explains how to develop reports using both procedural and object-
oriented ALV libraries.

15 ALV Reports

Reports are a common development in ABAP. A typical report extracts data from
the database and processes it per a user’s requirements. The processed data is
then presented to the user as a report output. Such report output typically shows
data in rows and columns and also provides some basic functionality, such as
sorting the output, filtering the data, summarizing the values, and so on.

As discussed in Chapter 13, developing a classical report requires a developer to
spend too much time making the report output presentable and provides only
basic functions, such as sorting or filtering data.

To this end, SAP provides the SAP List Viewer (ALV) library, which automatically
manages report output and provides additional functionalities without develop-
ers having to sweat. All the developer needs to do is supply the output data to the
library. The ALV library is available for both procedural and object-oriented pro-
gramming techniques. The object-oriented ALV library is available in two vari-
ants: the CL_GUI_ALV_GRID ABAP class and the ALV object model, the latter of
which is an object-oriented encapsulation of the existing ALV tool.

In this chapter, we’ll discuss how to work with the ALV library using function
modules, the CL_GUI_ALV_GRID ABAP class, and the ALV object model. In Section
15.1, we begin by discussing the standard ALV reports in the reuse library. We’ll
look at the four primary report displays: list, grid, block, and hierarchical.

From there, in Section 15.2, we provide an overview of the interactive features
that can be used in ALV reports. Section 15.3 teaches how to use the Control
Framework to create a custom ALV grid control. Finally, in Section 15.4, we offer
details on using the different displays of the ALV object model, including the
table, hierarchical, and tree object displays.
625

ALV Reports15
15.1 Standard ALV Reports Using the Reuse Library

SAP provides various function modules in the reuse library that can be used to dis-
play report output. These function modules take care of formatting the output
and automatically provide various additional functionalities, such as sorting, fil-
tering, and so on. All the function module names in the reuse library start with
REUSE_ALV*. The function modules in the reuse library require you to pass certain
components to prepare the output; the basic components that you need to pass to
the ALV function module include the following:

� Output table
Prepare an internal table with the output data that should be displayed as an
ALV output and pass it to the ALV function module. The ALV function module
reads this output table to display it as an ALV output.

� Field catalog
Prepare another internal table to define specifications for how the output data
supplied to the ALV function module should be displayed. These specifications
about the output data are called the field catalog. The field catalog consists of
different specifications for the output fields, such as column name, length, data
format, and so on. An ABAP Data Dictionary structure can also be passed to
ALV instead of an internal table to describe the structure of the output data.

With the reuse library, you can create simple reports, block reports, and hierar-
chical reports.

The following are the different types of report output that can be displayed using
the function modules from the reuse library:

� List display
The REUSE_ALV_LIST_DISPLAY function module is used to display a simple
report as list output. The list display looks similar to the output generated using
a WRITE statement. You’ll learn how to use a list display in Section 15.1.1.

� Grid display
The REUSE_ALV_GRID_DISPLAY function module is used to display a simple
report as a two-dimensional grid output. The grid output is displayed using the
control technology for the screen display and is part of the ALV grid control.
Controls are software components that are installed on a local PC. You’ll learn
more about the Control Framework in Section 15.3.
626

Standard ALV Reports Using the Reuse Library 15.1
� Block display
List and grid displays allow you to show data from one internal table in the out-
put, but a block display allows you to show data from multiple internal tables
in the output. With a block display, you can show multiple report outputs on
a single screen. The function modules used for block displays are REUSE_ALV_
BLOCK_LIST_INIT, REUSE_ALV_BLOCK_LIST_APPEND, and REUSE_ALV_BLOCK_LIST_
DISPLAY. You’ll learn about block displays in Section 15.1.2.

� Hierarchical display
This display is useful when you want to show header and line items in the out-
put, such as a sales order header and its item details. The REUSE_ALV_HIERSEQ_
LIST_DISPLAY function module is used for this purpose, which allows you to
pass the header and item tables. The header and item tables should have a com-
mon key. You’ll learn how to create a hierarchical display in Section 15.1.3.

In the following subsections, we’ll discuss each of these report outputs in detail.

15.1.1 List and Grid Display: Simple Reports

A simple report shows data from a single internal table as a report output; data
from various database tables can be consolidated into a single internal table and
passed to the ALV function module as report output. The reuse library provides
two function modules—REUSE_ALV_LIST_DISPLAY and REUSE_ALV_GRID_DISPLAY—
that can be used to show a simple report either as a list or as a grid, respectively.

The parameter interfaces of these two function modules are similar. The function
module help documentation in Function Builder (Transaction SE37) for each
function module contains detailed information about each parameter.

Listing 15.1 shows sample code using a list display; it generates the output shown
in Figure 15.1.

REPORT ZDEMO_SIMPLE_REPORT.
DATA it_sflight TYPE STANDARD TABLE OF sflight.
PARAMETERS p_carrid TYPE s_carr_id.
SELECT * FROM sflight INTO TABLE it_sflight WHERE carrid EQ p_carrid.
CALL FUNCTION 'REUSE_ALV_LIST_DISPLAY'
EXPORTING

I_STRUCTURE_NAME = 'SFLIGHT'
TABLES
t_outtab = it_sflight

EXCEPTIONS
PROGRAM_ERROR = 1
627

ALV Reports15
OTHERS = 2
.

IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.

Listing 15.1 Simple ALV Report Using List Display

Figure 15.1 List Output Generated by Code in Listing 15.1

In Listing 15.1, we’re selecting the data from table SFLIGHT for a given airline
code and displaying it as report output using the list display ALV. We pass the
structure name from ABAP Data Dictionary to the I_STRUCTURE_NAME formal
parameter of the REUSE_ALV_LIST_DISPLAY function module, which uses this
structure name to create the output layout.

The data that should be displayed in the output is selected into the internal table
IT_SFLIGHT and passed to the T_OUTTAB formal parameter. The ALV function
module takes care of printing all the data in internal table IT_SFLIGHT without us
having to spend any additional effort on formatting the output.

The function module also loads a default SAP GUI status, which provides many
buttons in the application toolbar for additional functionality, such as sorting the
output, printing the output, exporting the report output, and so on, as shown in
Figure 15.1.
628

Standard ALV Reports Using the Reuse Library 15.1
Table 15.1 lists some of the significant parameters of the ALV function module,
not all of which are used in the example. Please refer to the function module doc-
umentation in Function Builder for each ALV function module for a more exhaus-
tive explanation.

Parameter Description

I_CALLBACK_PROGRAM Name of the calling program. The function module uses
this information to call routines in the calling program
for interactive reports.

I_CALLBACK_PF_STATUS_SET A subroutine name of the program is passed to this
parameter, in which the custom SAP GUI status can be
set.

I_CALLBACK_USER_COMMAND A subroutine name of the program is passed to this
parameter, which is called when the user performs any
actions on the displayed list, such as selecting a SAP GUI
button or double-clicking a row.

I_CALLBACK_TOP_OF_PAGE This parameter is specific to a grid display. A subroutine
name of the program is passed to this parameter, to
which simple header information can be passed for
TOP-OF-PAGE.

I_GRID_TITLE This parameter is specific to a grid display. A title for the
grid can be passed to this parameter.

I_STRUCTURE_NAME An ABAP Data Dictionary table or structure type name
can be passed to this parameter, which contains the
output fields.

IT_FIELDCAT An internal table of type SLIS_T_FIELDCAT_ALV is
passed to this parameter, which contains the field cata-
log information for the output fields.

IT_EXCLUDING An internal table consisting of the function codes that
should be excluded from the output can be passed to
this parameter. All the function codes maintained in the
internal table will be hidden when the list is generated.

IT_SPECIAL_GROUPS An internal table with information about grouping fields
for column selection is passed to this parameter.

IT_SORT The sort criteria for the initial display can be passed to
this parameter.

Table 15.1 ALV Function Module Parameters
629

ALV Reports15
The grid display ALV is similar to the list display ALV for all practical purposes,
but the grid display is part of the Control Framework. The Control Framework
uses JavaBeans or ActiveX controls in the presentation layer and provides certain
additional features, such as grid title, TOP-OF-PAGE, removing vertical and hori-
zontal lines, making the ALV editable, and so on.

JavaBeans and ActiveX are competing technologies that facilitate communication
among components within a framework container (such as SAP GUI or a web
browser). The grid display can also be used within the Control Framework, allow-
ing multiple grid displays to be shown on a single screen, which isn’t possible
with a list display.

Listing 15.2 shows the grid display ALV being called, which is similar to calling
the list display ALV. Here, we’re also passing the optional grid title, which is dis-
played in the report output, as shown in Figure 15.2.

CALL FUNCTION 'REUSE_ALV_GRID_DISPLAY'
EXPORTING

I_STRUCTURE_NAME = 'SFLIGHT'
I_GRID_TITLE = text-001
TABLES
t_outtab = it_sflight

EXCEPTIONS
PROGRAM_ERROR = 1
OTHERS = 2.

Listing 15.2 Calling Grid Display ALV

IT_FILTER The filter criteria for the initial display can be passed to
this parameter.

IS_VARIANT The variant that should be used for the initial display
can be passed to this parameter.

IT_EVENTS A table consisting of the relevant events and the form
routines called for each event can be passed to this
parameter. The ALV function module calls the form
routine of the program for the respective event.

IS_PRINT Print-related information can be passed to this para-
meter.

Parameter Description

Table 15.1 ALV Function Module Parameters (Cont.)
630

Standard ALV Reports Using the Reuse Library 15.1
Figure 15.2 Grid Display

The ALV function module has many parameters (see Table 15.1) that can be
passed to control the report output. At a bare minimum, the ALV function mod-
ule requires you to supply the output layout information, such as the column
positions, column names, and so on, and the actual data that should be displayed
in the output.

If you wish to display all the fields of an ABAP Data Dictionary table or structure,
then the table/structure name can be passed to the I_STRUCTURE_NAME formal
parameter of the ALV function module.

In Listing 15.1 and Listing 15.2, we passed SFLIGHT as the structure name to the
I_STRUCTURE_NAME formal parameter, because we wanted to print all the fields of
table SFLIGHT in the output. However, you may often be printing only certain
fields of a table or fields from different tables in the output. In such scenarios, you
can create a field catalog and pass it to the function module using the IT_FIELDCAT
formal parameter.

You can also create a structure in ABAP Data Dictionary consisting of the output
fields and pass it to the I_STRUCTURE_NAME formal parameter. Using a structure
name as opposed to defining a field catalog in the program helps you to maintain
the output fields centrally if multiple reports are using a similar layout.

Using the field catalog has the advantage that additional attributes can be sup-
plied for each field. The field catalog should be an internal table in which infor-
mation about each output field is maintained. This internal table should be of
631

ALV Reports15
type SLIS_T_FIELDCAT_ALV, which belongs to the type group SLIS. The function
module documentation provides information about each of the components of
the SLIS_T_FIELDCAT_ALV structure and the valid values that can be passed.

Figure 15.3 shows some of the components of the field catalog structure. At a
minimum, you should fill the COL_POS, TABNAME, FIELDNAME, and SELTEXT (long,
medium, or short) components.

Figure 15.3 Field Catalog Components

Listing 15.3 shows the code for a simple report using a field catalog.
632

Standard ALV Reports Using the Reuse Library 15.1
REPORT ZDEMO_SIMPLE_REPORT.
TYPES: BEGIN OF ty_sflight,

CARRID TYPE S_CARR_ID,
CONNID TYPE S_CONN_ID,
FLDATE TYPE S_DATE,
PRICE TYPE S_PRICE,
CURRENCY TYPE S_CURRCODE,
END OF ty_sflight.

DATA : it_sflight TYPE STANDARD TABLE OF ty_sflight,
it_fieldcat TYPE SLIS_T_FIELDCAT_ALV.

PARAMETERS p_carrid TYPE s_carr_id.

START-OF-SELECTION.
PERFORM get_data USING p_carrid CHANGING it_sflight.
END-OF-SELECTION.
PERFORM field_catalog CHANGING it_fieldcat.
PERFORM show_output.

&--
*& Form GET_DATA
&--
FORM get_data USING p_p_carrid CHANGING pt_sflight LIKE it_sflight.
SELECT carrid connid fldate price currency FROM sflight INTO TABLE
pt_sflight WHERE carrid EQ p_p_carrid.
ENDFORM.
&--
*& Form FIELD_CATALOG
&--
FORM field_catalog CHANGING pt_fieldcat LIKE it_fieldcat.
DATA lw_fieldcat LIKE LINE OF pt_fieldcat.
lw_fieldcat-col_pos = 1.
lw_fieldcat-fieldname = 'CARRID'.
lw_fieldcat-tabname = 'IT_SFLIGHT'.
lw_fieldcat-seltext_m = 'Airline Code'.
APPEND lw_fieldcat TO pt_fieldcat.
CLEAR lw_fieldcat.

lw_fieldcat-col_pos = 2.
lw_fieldcat-fieldname = 'CONNID'.
lw_fieldcat-tabname = 'IT_SFLIGHT'.
lw_fieldcat-seltext_l = 'Flight Connection Number'.
lw_fieldcat-outputlen = 25.
APPEND lw_fieldcat TO pt_fieldcat.
CLEAR lw_fieldcat.

lw_fieldcat-col_pos = 3.
lw_fieldcat-fieldname = 'FLDATE'.
633

ALV Reports15
lw_fieldcat-tabname = 'IT_SFLIGHT'.
lw_fieldcat-seltext_m = 'Flight Date'.
APPEND lw_fieldcat TO pt_fieldcat.
CLEAR lw_fieldcat.

lw_fieldcat-col_pos = 4.
lw_fieldcat-fieldname = 'PRICE'.
lw_fieldcat-tabname = 'IT_SFLIGHT'.
lw_fieldcat-seltext_m = 'Airfare'.
APPEND lw_fieldcat TO pt_fieldcat.
CLEAR lw_fieldcat.

lw_fieldcat-col_pos = 5.
lw_fieldcat-fieldname = 'CURRENCY'.
lw_fieldcat-tabname = 'IT_SFLIGHT'.
lw_fieldcat-seltext_m = 'Airline Currency'.
APPEND lw_fieldcat TO pt_fieldcat.
CLEAR lw_fieldcat.
ENDFORM.
&--
*& Form SHOW_OUTPUT
&--
FORM show_output.
CALL FUNCTION 'REUSE_ALV_GRID_DISPLAY'
EXPORTING
I_GRID_TITLE = 'ALV Grid Display'
IT_FIELDCAT = it_fieldcat

TABLES
t_outtab = it_sflight

EXCEPTIONS
PROGRAM_ERROR = 1
OTHERS = 2
.

IF sy-subrc <> 0.
* Implement suitable error handling here

ENDIF.
ENDFORM.

Listing 15.3 Using Field Catalog

In Listing 15.3, we are printing certain fields from table SFLIGHT (see Figure 15.4),
as defined in the TY_SFLIGHT structure. We defined a field catalog internal table
IT_FIELDCAT of type SLIS_T_FIELDCAT_ALV.SLIS_T_FIELDCAT_ALV as a table type,
which belongs to the type group SLIS and has a line type of SLIS_FIELDCAT_ALV.
The SLIS_FIELDCAT_ALV structure has various field catalog components.

In our program, we’re passing various information about the output fields by fill-
ing the components of structure SLIS_FIELDCAT_ALV. For example, we’re passing
634

Standard ALV Reports Using the Reuse Library 15.1
the name of the internal table that holds the output data to the TABNAME compo-
nent, the field name to the FIELDNAME component, the column position to the
COL_POS component, and the column name to the relevant SELTEXT component.

In Listing 15.3, the field catalog is filled inside the FIELD_CATALOG subroutine. The
function module documentation should help you explore other components of
the field catalog that can be used for formatting the output.

We can also use the REUSE_ALV_FIELDCATALOG_MERGE function module to fill the
field catalog internal table.

Figure 15.4 Printing Selected Table SFLIGHT Fields

The layout can be handled by passing a structure of type SLIS_LAYOUT_ALV to the
IS_LAYOUT formal parameter. Using the IS_LAYOUT parameter, we can control the
output layout, such as making the fields editable, using a stripped pattern for
cells, removing horizontal or vertical lines, and so on. The function module doc-
umentation explains the significance of each component of the SLIS_LAYOUT_ALV
structure.

Listing 15.4 shows how the IS_LAYOUT parameter can be used to make the cells
editable, as shown in Figure 15.5.
635

ALV Reports15
Note

The cells can be made editable only in a grid display; this feature is not supported in a
list display.

FORM show_output.
DATA layout TYPE SLIS_LAYOUT_ALV.
layout-edit = 'X'.
CALL FUNCTION 'REUSE_ALV_GRID_DISPLAY'
EXPORTING
I_GRID_TITLE = 'ALV Grid Display'
IS_LAYOUT = layout
IT_FIELDCAT = it_fieldcat

TABLES
t_outtab = it_sflight

EXCEPTIONS
PROGRAM_ERROR = 1
OTHERS = 2
.

Listing 15.4 Passing an ALV Layout

Figure 15.5 Making Cells Editable

15.1.2 Block Display

Using a block display, we can print data from multiple internal tables in the out-
put, with each internal table’s data printed in a block. For a block display, we use
three function modules:

� REUSE_ALV_BLOCK_LIST_INIT

This function module is used to initialize the block list and set the SAP GUI sta-
tus.
636

Standard ALV Reports Using the Reuse Library 15.1
� REUSE_ALV_BLOCK_LIST_APPEND

This function module is used to append the simple list in block mode; it’s called
each time the data from an internal table need to be appended to the output.

� REUSE_ALV_BLOCK_LIST_APPEND

This function module is used to display the block list. All the parameters of this
function module are optional.

Listing 15.5 shows the sample code to work with a block display.

REPORT ZDEMO_BLOCK_REPORT.
DATA : it_sflight TYPE STANDARD TABLE OF sflight,

it_spfli TYPE STANDARD TABLE OF spfli,
it_fcat_sflight TYPE SLIS_T_FIELDCAT_ALV,
it_fcat_spfli TYPE slis_t_fieldcat_alv,
it_events TYPE SLIS_T_EVENT.

PARAMETERS p_carrid TYPE s_carr_id.
START-OF-SELECTION.
PERFORM get_data.
END-OF-SELECTION.
PERFORM field_catalog.
PERFORM show_output.

&--
*& Form GET_DATA
&--
FORM get_data .
SELECT * FROM sflight INTO TABLE it_sflight WHERE carrid EQ p_carrid.
SELECT * FROM spfli INTO TABLE it_spfli WHERE carrid EQ p_carrid.
ENDFORM.
&--
*& Form FIELD_CATALOG
&--
FORM field_catalog .
CALL FUNCTION 'REUSE_ALV_FIELDCATALOG_MERGE'
EXPORTING

I_STRUCTURE_NAME = 'SPFLI'
CHANGING
ct_fieldcat = it_fcat_spfli

EXCEPTIONS
INCONSISTENT_INTERFACE = 1
PROGRAM_ERROR = 2
OTHERS = 3

.
IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.
637

ALV Reports15
CALL FUNCTION 'REUSE_ALV_FIELDCATALOG_MERGE'
EXPORTING
I_STRUCTURE_NAME = 'SFLIGHT'

CHANGING
ct_fieldcat = it_fcat_sflight

EXCEPTIONS
INCONSISTENT_INTERFACE = 1
PROGRAM_ERROR = 2
OTHERS = 3
.

IF sy-subrc <> 0.
* Implement suitable error handling here

ENDIF.
ENDFORM.
&--
*& Form SHOW_OUTPUT
&--
FORM show_output .
DATA layout TYPE SLIS_LAYOUT_ALV.
layout-zebra = 'X'.
CALL FUNCTION 'REUSE_ALV_BLOCK_LIST_INIT'
EXPORTING
i_callback_program = 'ZDEMO_BLOCK_REPORT'

.
CALL FUNCTION 'REUSE_ALV_BLOCK_LIST_APPEND'
EXPORTING
is_layout = layout
it_fieldcat = it_fcat_spfli
i_tabname = 'IT_SPFLI'
it_events = it_events

TABLES
t_outtab = it_spfli
EXCEPTIONS
PROGRAM_ERROR = 1
MAXIMUM_OF_APPENDS_REACHED = 2
OTHERS = 3
.

IF sy-subrc <> 0.
* Implement suitable error handling here

ENDIF.

CALL FUNCTION 'REUSE_ALV_BLOCK_LIST_APPEND'
EXPORTING
is_layout = layout
it_fieldcat = it_fcat_sflight
i_tabname = 'IT_SFLIGHT'
it_events = it_events

TABLES
t_outtab = it_sflight

EXCEPTIONS
638

Standard ALV Reports Using the Reuse Library 15.1
PROGRAM_ERROR = 1
MAXIMUM_OF_APPENDS_REACHED = 2
OTHERS = 3

.
IF sy-subrc <> 0.

* Implement suitable error handling here
ENDIF.

CALL FUNCTION 'REUSE_ALV_BLOCK_LIST_DISPLAY'
EXCEPTIONS
PROGRAM_ERROR = 1
OTHERS = 2

.
IF sy-subrc <> 0.

* Implement suitable error handling here
ENDIF.

ENDFORM.

Listing 15.5 Block Display

In Listing 15.5, we’re selecting data from tables SFLIGHT and SPFLI and displaying
that data as blocks in the output, as shown in Figure 15.6.

Figure 15.6 Block Display Showing Data from Tables SPFLI and SFLIGHT
639

ALV Reports15
15.1.3 Hierarchical Sequential Display

A hierarchical sequential display is used when displaying related data, such as the
header and item data of a document. We use the REUSE_ALV_HIERSEQ_LIST_DIS-
PLAY function module to generate the hierarchical sequential display. This func-
tion module requires you to pass the header and item tables along with the key
information of the tables.

The key information is used to identify the related records in the header and item
tables. A field catalog is prepared with all the fields of the header and item tables
and is passed to the function module.

Listing 15.6 shows the sequential report for a billing document, with certain data
about the header and item details of the billing document printed in the output
(see Figure 15.7).

REPORT ZDEMO_HIERARCHICAL_REPORT.
TYPES : BEGIN OF ty_vbrk,

vbeln TYPE vbeln_vf, "Document Number
kunrg TYPE kunrg, "Payer
fkdat TYPE fkdat, "Billing date
netwr TYPE netwr, "Net Value

END OF ty_vbrk.
TYPES : BEGIN OF ty_vbrp,

vbeln TYPE vbeln_vf, " Document Number
posnr TYPE posnr_vf, "Billing item
arktx TYPE arktx, "Description of Item
fkimg TYPE fkimg, "Billed quantity
vrkme TYPE vrkme, "Sales Unit
netwr TYPE netwr_fp, "Net Value
matnr TYPE matnr, "Material Number

END OF ty_vbrp.
DATA : it_vbrk TYPE STANDARD TABLE OF ty_vbrk,

it_vbrp TYPE STANDARD TABLE OF ty_vbrp,
it_fieldcat TYPE SLIS_T_FIELDCAT_ALV,
wa_fieldcat TYPE SLIS_FIELDCAT_ALV,
v_vbeln TYPE vbeln_vf.

SELECT-OPTIONS s_vbeln FOR v_vbeln.
START-OF-SELECTION.
PERFORM get_data.
END-OF-SELECTION.
PERFORM field_catalog.
PERFORM show_output.
&--
*& Form GET_DATA
&--
FORM get_data .
SELECT vbeln kunrg fkdat netwr FROM vbrk INTO TABLE it_
640

Standard ALV Reports Using the Reuse Library 15.1
vbrk WHERE vbeln IN s_vbeln.
SELECT vbeln posnr arktx fkimg vrkme netwr matnr FROM vbrp INTO TABLE
it_vbrp WHERE vbeln IN s_vbeln.
ENDFORM.
&--
*& Form FIELD_CATALOG
&--
FORM field_catalog .
wa_fieldcat-col_pos = 1.
wa_fieldcat-fieldname = 'VBELN'.
wa_fieldcat-tabname = 'IT_VBRK'.
wa_fieldcat-seltext_m = 'Document No.'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 2.
wa_fieldcat-fieldname = 'KUNRG'.
wa_fieldcat-tabname = 'IT_VBRK'.
wa_fieldcat-seltext_m = 'Customer'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 3.
wa_fieldcat-fieldname = 'FKDAT'.
wa_fieldcat-tabname = 'IT_VBRK'.
wa_fieldcat-seltext_m = 'Billing Date'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 4.
wa_fieldcat-fieldname = 'NETWR'.
wa_fieldcat-tabname = 'IT_VBRK'.
wa_fieldcat-seltext_m = 'Net Value'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 5.
wa_fieldcat-fieldname = 'POSNR'.
wa_fieldcat-tabname = 'IT_VBRP'.
wa_fieldcat-seltext_m = 'Item No'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 6.
wa_fieldcat-fieldname = 'MATNR'.
wa_fieldcat-tabname = 'IT_VBRP'.
wa_fieldcat-seltext_m = 'Document No.'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.
641

ALV Reports15
wa_fieldcat-col_pos = 7.
wa_fieldcat-fieldname = 'ARKTX'.
wa_fieldcat-tabname = 'IT_VBRP'.
wa_fieldcat-seltext_m = 'Description'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 8.
wa_fieldcat-fieldname = 'FKIMG'.
wa_fieldcat-tabname = 'IT_VBRP'.
wa_fieldcat-seltext_m = 'Quantity'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 9.
wa_fieldcat-fieldname = 'VRKME'.
wa_fieldcat-tabname = 'IT_VBRP'.
wa_fieldcat-seltext_m = 'UoM'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

wa_fieldcat-col_pos = 10.
wa_fieldcat-fieldname = 'NETWR'.
wa_fieldcat-tabname = 'IT_VBRP'.
wa_fieldcat-seltext_m = 'Net Value'.
APPEND wa_fieldcat TO it_fieldcat.
CLEAR wa_fieldcat.

ENDFORM.
&--
*& Form SHOW_OUTPUT
&--
FORM show_output .
DATA layout TYPE SLIS_LAYOUT_ALV.
DATA key_info TYPE SLIS_KEYINFO_ALV.
key_info-header01 = 'VBELN'.
key_info-item01 = 'VBELN'.
layout-zebra = 'X'.
CALL FUNCTION 'REUSE_ALV_HIERSEQ_LIST_DISPLAY'
EXPORTING
IS_LAYOUT = layout
IT_FIELDCAT = it_fieldcat
i_tabname_header = 'IT_VBRK'
i_tabname_item = 'IT_VBRP'
is_keyinfo = key_info
TABLES
t_outtab_header = it_vbrk
t_outtab_item = it_vbrp

EXCEPTIONS
PROGRAM_ERROR = 1
OTHERS = 2
642

Standard ALV Reports Using the Reuse Library 15.1
.
IF sy-subrc <> 0.

* Implement suitable error handling here
ENDIF.

ENDFORM.

Listing 15.6 Hierarchical Sequential List Display

In Listing 15.6, data from the billing document header table VBRK is fetched into
the internal table IT_VBRK, and the item data from the database table VBRP is
fetched into the internal table IT_VBRP.

A field catalog is built manually with all the fields of the header and item tables.
The REUSE_ALV_HIERSEQ_LIST_DISPLAY function module is called in the program
to which the field catalog is passed, along with the internal tables that contain the
header and item table. A KEY_INFO structure of type SLIS_KEYINFO_ALV is used to
pass the common key fields of the header and item tables.

Figure 15.7 Hierarchical Sequential Report
643

ALV Reports15
In this section, we discussed the different standard ALV report types available
from the reuse library. In the next section, we’ll transition into a discussion of
interactive reports.

15.2 Interactive Reports

Similar to classical reports that can be made interactive in order to respond to
user actions on the list output, ALV reports also support various interactive fea-
tures. Unlike classical reports, in which list events are maintained in the program
directly to make the report interactive, ALV requires you to pass the subroutine
name of the calling program that should be called for the event.

The output screen of the ALV report belongs to the SLVC_FULLSCREEN function
group; when the user performs any action on the screen, it triggers the PAI mod-
ule of the function group, in which the user action is evaluated and the respective
subroutine of the calling program is called using dynamic programming tech-
niques.

If we dig into the ALV function group code, we’ll see the dynamic subroutine call,
as shown in Figure 15.8.

Figure 15.8 Dynamic Subroutine Call of Calling Program from ALV
644

Interactive Reports 15.2
The code shown in Figure 15.8 uses the information supplied to the I_CALLBACK_
PROGRAM and I_CALLBACK_USER_COMMAND parameters of the ALV function modules
to execute the code in the supplied subroutine.

Now, let’s look at some of the interactive elements that can be added to ALV
reports.

15.2.1 Loading a Custom SAP GUI Status

ALV provides standard SAP GUI buttons, which can be replaced or supplemented
by a custom SAP GUI status in the program. The SAP GUI status must first be
defined for the program using Menu Painter before it can be set. You can also set
the SAP GUI status defined for another program. When you pass your custom
SAP GUI status to ALV, it will completely replace the default ALV SAP GUI status.

If you want to use the standard features provided by the default ALV SAP GUI sta-
tus and supplement it with your custom buttons, then we recommend copying
the standard ALV SAP GUI status and modifying it. The SAPLSLVC_FULLSCREEN
ALV function group contains the STANDARD_FULLSCREEN SAP GUI status, which
can be copied to your program and modified.

Follow these steps to copy the SAP GUI status:

1. On the Menu Painter initial screen (Transaction SE41), enter the name of the
function group, SAPLSLVC_FULLSCREEN, and the SAP GUI status, STANDARD_
FULLSCREEN, that you intend to copy, as shown in Figure 15.9. Click the Copy

Status button in the application toolbar.

Figure 15.9 Menu Painter: Initial Screen
645

ALV Reports15
2. In the Copy Status dialog box that appears, enter your program name and the
SAP GUI status, as shown in Figure 15.10. Click Copy on the current and sub-
sequent windows to copy the status.

Figure 15.10 Copy Status Window

3. Once the status is copied, you can edit it to add or remove any function codes.
In Figure 15.11, we added a PDF icon to the application toolbar with PDF as the
function code. Note that all the standard ALV function codes start with &; this
helps ALV to distinguish between standard function codes (which are part of
ALV) and user-defined function codes. When you select a standard function
code, ALV automatically handles the function code, but you need to handle cus-
tom function codes in your program.

Figure 15.11 Adding Function Codes to Copied Status
646

Interactive Reports 15.2
To set an SAP GUI status, you need to pass the program name to the I_CALLBACK_
PROGRAM parameter and a subroutine name to the I_CALLBACK_PF_STATUS_SET
parameter of the ALV function module. The subroutine name that is passed to the
I_CALLBACK_PF_STATUS_SET formal parameter should be maintained in the pro-
gram with one formal parameter of type SLIS_T_EXTAB. This formal parameter
will contain the function codes to be hidden from the UI.

Listing 15.7 shows sample code to set an SAP GUI status.

&--
*& Form SHOW_OUTPUT
&--
FORM show_output.
CALL FUNCTION 'REUSE_ALV_GRID_DISPLAY'

EXPORTING
I_CALLBACK_PROGRAM = 'ZDEMO_INTERACTIVE_REPORT'

 I_CALLBACK_PF_STATUS_SET = 'SET_PF_STATUS'
I_GRID_TITLE = 'ALV Grid Display'
IS_LAYOUT = layout
IT_FIELDCAT = it_fieldcat

TABLES
t_outtab = it_sflight

EXCEPTIONS
PROGRAM_ERROR = 1
OTHERS = 2
.

ENDFORM.
&--
*& Form SET_PF_STATUS
&--
FORM set_pf_status USING rt_extab TYPE slis_t_extab.
SET PF-STATUS 'GUIALV'.
ENDFORM.

Listing 15.7 Setting Custom SAP GUI Status

In Listing 15.7, the calling program name and the subroutine name of the pro-
gram are passed to the I_CALLBACK_PROGRAM and I_CALLBACK_PF_STATUS_SET pa-
rameters, respectively. The subroutine name 'SET_PF_STATUS' is passed to the
ALV function module and is maintained in the calling program with the rt_extab
formal parameter, which is of type SLIS_T_EXTAB.

In this example, the RT_EXTAB formal parameter of the SET_PF_STATUS subroutine
can be used to hide the function codes in the output, using the EXCLUDING addi-
tion with the SET PF-STATUS statement.
647

ALV Reports15
For example, we defined the PDF icon in the currently displayed SAP GUI status,
as shown in Figure 15.12.

Figure 15.12 Showing Custom PDF Icon

However, say you want to hide this icon from the display if the output has no
records; in that case, you can use the code shown in Listing 15.8. This code will
ensure that the PDF icon is displayed only if the output table IT_SFLIGHT is not
initial, as shown in Figure 15.13. We’re clearing the internal table RT_EXTAB to
ensure no other function codes are excluded.

&--
*& Form SET_PF_STATUS
&--
FORM set_pf_status USING rt_extab TYPE slis_t_extab.
DATA rw_extab LIKE LINE OF rt_extab.
IF it_sflight IS INITIAL.
CLEAR rt_extab.
rw_extab-fcode = 'PDF'.
APPEND rw_extab to rt_extab.
SET PF-STATUS 'GUIALV' EXCLUDING rt_extab.
ELSE.
SET PF-STATUS 'GUIALV'.
ENDIF.
ENDFORM.

Listing 15.8 Excluding Function Codes

Figure 15.13 PDF Icon Hidden from User
648

Interactive Reports 15.2
15.2.2 Reacting to User Actions

When we provide additional function codes using a custom SAP GUI status, we
need to handle the related functionality in the program. For example, if we add a
PDF button to allow a user to download the output as a PDF, then we need to
write code in the program to download the output as a PDF. This requires identi-
fying the user action on the screen and writing the respective logic.

To achieve this, we need to pass the subroutine name to the I_CALLBACK_USER_
COMMAND parameter. This subroutine should be maintained in the program with
two formal parameters, one of type SY-UCOMM and another of type SLIS_SELFIELD,
as shown:

FORM user_command USING r_ucomm LIKE sy-ucomm
rs_selfield TYPE slis_selfield.

ENDFORM.

When this subroutine is called from the ALV function module (refer back to
Figure 15.8), it will pass these parameters to the calling program. Here, R_UCOMM
will contain the function code, and RS_SELFIELD will contain information about
the output table, the current row, the user selected, and so on.

Listing 15.9 shows sample code to identify if the user has selected the PDF icon
we created previously. Multiple user actions can be evaluated within the subrou-
tine using the CASE statement. The standard function code '&IC1' is passed to the
R_UCOMM formal parameter if the user double-clicks the row. The rs_selfield-
fieldname and RS_SELFIELD-VALUE fields will contain the column name in which
the user double-clicked the displayed output and the value in the cell, respec-
tively.

FORM user_command USING r_ucomm LIKE sy-ucomm
rs_selfield TYPE slis_selfield.

CASE r_ucomm.
WHEN 'PDF'.

*write appropriate logic.
WHEN '&IC1'.

*write appropriate logic.
ENDCASE.
ENDFORM.

Listing 15.9 Identifying User Action
649

ALV Reports15
15.2.3 Printing TOP-OF-PAGE

To print the TOP-OF-PAGE information, we can pass the subroutine name to the I_
CALLBACK_TOP_OF_PAGE parameter. Within this subroutine, the REUSE_ALV_COM-
MENTARY_WRITE function module is called to print TOP-OF-PAGE, as shown in Lis-
ting 15.10.

Refer to the function module documentation for the REUSE_ALV_COMMENTARY_
WRITE function module to learn more about the parameter interface.

FORM top_of_page.
DATA: lt_cw TYPE slis_t_listheader,

lw_cw TYPE slis_listheader.
lw_cw-typ = 'H'.
lw_cw-info = 'Flight Information'.
APPEND lw_cw TO lt_cw.

lw_cw-typ = 'S'.
lw_cw-key = P_CARRID.
lw_cw-info = 'Selection criteria'.
APPEND lw_cw TO lt_cw.
CALL FUNCTION 'REUSE_ALV_COMMENTARY_WRITE'
EXPORTING
it_list_commentary = lt_cw.

ENDFORM.

Listing 15.10 Printing TOP-OF-PAGE

ALV function modules support various other events, such as USER_COMMAND, TOP_
OF_COVERPAGE, END_OF_COVERPAGE, and so on, depending on the type of list gener-
ated. These events allow you to provide additional information to ALV when the
report is running. The REUSE_ALV_EVENTS_GET function module can be used to get
the supported events for the list, and the subroutine names can be passed for dif-
ferent events using the IT_EVENTS parameter.

15.3 ALV Reports Using the Control Framework

As discussed in Chapter 12, the Control Framework shows the grid display in a
custom control. The CL_GUI_ALV_GRID control class is used to display the ALV out-
put in a custom container. The CL_GUI_ALV_GRID class is the classic (old) variant
used to work with the Control Framework. We recommend using the modern
variant class, CL_SALV_TABLE, for new developments. We’ll provide more details
about the CL_SALV_TABLE class in Section 15.4.
650

ALV Reports Using the Control Framework 15.3
Similar to the picture control example from Chapter 12, working with the ALV
grid control is pretty straightforward. In this section, you’ll learn how to use the
ALV grid control via the CL_GUI_ALV_GRID control class.

To begin, we first need to define a screen for the program and create a custom
container on the screen. In the PBO module of the screen, we instantiate the con-
tainer object that is referenced to the CL_GUI_CUSTOM_CONTAINER class. The custom
container name is passed to the constructor during instantiation.

Once the container object is instantiated, we instantiate the ALV grid object that’s
referenced to the CL_GUI_ALV_GRID class. The parent container object is passed to
the constructor of this class.

The SET_TABLE_FOR_FIRST_DISPLAY method of the CL_GUI_ALV_GRID class is called
to pass the output data that should be displayed in the grid control. The parame-
ter interface of this method is similar to the ALV function modules we discussed
in the previous section.

Listing 15.11 shows the sample code to load the custom ALV grid control.

REPORT zdemo_alv_grid.
TABLES sflight.
DATA : it_sflight TYPE STANDARD TABLE OF sflight.
DATA: g_container TYPE REF TO cl_gui_custom_container,

g_grid TYPE REF TO cl_gui_alv_grid.

START-OF-SELECTION.
CALL SCREEN 100.

&--
*& Module PBO OUTPUT
&--
MODULE pbo OUTPUT.
IF g_grid IS NOT BOUND.
CREATE OBJECT g_container
EXPORTING
container_name = 'CUSTOM'.

CREATE OBJECT g_grid
EXPORTING
i_parent = g_container.

ENDIF.

ENDMODULE.
&--
*& Module PAI INPUT
&--
651

ALV Reports15
MODULE pai INPUT.
SELECT * FROM sflight INTO TABLE it_sflight WHERE carrid EQ sflight-

carrid.

CALL METHOD g_grid->set_table_for_first_display
EXPORTING
i_structure_name = 'SFLIGHT'

CHANGING
it_outtab = it_sflight

EXCEPTIONS
invalid_parameter_combination = 1
program_error = 2
too_many_lines = 3
others = 4
.

IF sy-subrc <> 0.
* Implement suitable error handling here

ENDIF.
ENDMODULE.

Listing 15.11 Working with ALV Grid Custom Control

In Listing 15.11, we defined two reference objects, G_CONTAINER and G_GRID,
referring to CL_GUI_CUSTOM_CONTAINER and CL_GUI_ALV_GRID, respectively. A
screen with screen number 100 is defined for the program, with one input field,
SFLIGHT-CARRID, and a custom container named 'CUSTOM'.

The G_CONATINER reference object is instantiated by passing the custom container
name. The reference object G_GRID is instantiated by passing the G_CONTAINER
object as the parent container. We’re ensuring the grid object is instantiated only
once by using the IF condition IF g_grid IS NOT BOUND. The IF statement ensures
that the grid object isn’t instantiated each time the PBO module is called.

In the PAI module, the data from table SFLIGHT is selected into internal table IT_
SFLIGHT and passed to the SET_TABLE_FOR_FIRST_DISPLAY method of the G_GRID
reference object. The user can input the airline code and press (Enter) to see the
details in the grid, as shown in Figure 15.14.

The CL_GUI_ALV_GRID class provides various methods that help you to work with
the ALV grid. The class also triggers various events that can be handled by main-
taining suitable event handler methods in the program. To learn more about each
method of the class, visit https://help.sap.com/saphelp_erp60_sp/helpdata/en/22/
a3f5ecd2fe11d2b467006094192fe3/content.htm.
652

https://help.sap.com/saphelp_erp60_sp/helpdata/en/22/a3f5ecd2fe11d2b467006094192fe3/content.htm
https://help.sap.com/saphelp_erp60_sp/helpdata/en/22/a3f5ecd2fe11d2b467006094192fe3/content.htm

ALV Object Model 15.4
Figure 15.14 ALV Grid Control

15.4 ALV Object Model

With the 2004 SAP NetWeaver release, SAP introduced the ALV object model,
which simplifies ALV generation via the CL_SALV family of classes. As you’ve seen
in previous sections, we have to pass a lot of parameters to ALV and manually
build the field catalog.

ALV function modules use procedural programming, which may not always suit
you if you try to implement your programs in a completely object-oriented way.
The CL_GUI_ALV_GRID custom controller class does provide object-oriented imple-
mentation, but you still need to create your own screens, pass various parame-
ters, and build the field catalog manually.

The ALV object model provides a purely object-oriented implementation of ALV
and simplifies creating ALV reports. The ALV object model supports three types
of display: tabular display, hierarchical display, and the tree model.

The tabular display shows the output in a two-dimensional grid format; the hier-
archical display shows the output in a hierarchical sequence, such as showing
header and item data; and the tree model shows the output as a tree structure
with parent and child nodes.

Table 15.2 lists the classes of the ALV object model for each type of display.
653

ALV Reports15
The classes listed in Table 15.2 implement a static factory method that is called to
get the instance of the ALV object. The class contains many methods that can be
used to manipulate ALV.

In the following subsections, we’ll look at these different ALV object model dis-
play types in detail.

15.4.1 Table Display

The most common form of report output is the two-dimensional table display.
The sample code in Listing 15.12 shows how to create such a table display.

DATA : it_sflight TYPE STANDARD TABLE OF sflight,
lo_alv TYPE REF TO cl_salv_table,
lcx_msg TYPE REF TO cx_salv_msg.

PARAMETERS p_carrid TYPE s_carrid.

SELECT * FROM sflight INTO TABLE it_sflight WHERE carrid EQ p_carrid.

TRY.
CALL METHOD cl_salv_table=>factory
IMPORTING
r_salv_table = lo_alv

CHANGING
t_table = it_sflight.

.

CATCH cx_salv_msg INTO lcx_msg.
ENDTRY.
lo_alv->display().

Listing 15.12 ALV Table Display

The code in Listing 15.12 defines a lo_alv reference object of type cl_salv_
table. The factory method of the cl_salv_table class is called to get the ALV
object reference into the lo_alv reference object, and the output table with the

Display Class

Table display CL_SALV_TABLE

Hierarchical display CL_SALV_HIERSEQ_TABLE

Tree model CL_SALV_TREE

Table 15.2 ALV Object Model Classes
654

ALV Object Model 15.4
data is passed to this factory method. Various methods of this class can be called
to work with the ALV object, and we call the method display to display the ALV
output.

As you can see, we didn’t spend any time building the field catalog or passing var-
ious parameters. Calling ALV is pretty intuitive and straightforward. We can
extend this basic ALV code by using various methods of the cl_salv_table class.

For example, the code in Listing 15.13 uses the get_functions method to get the
reference to the function object, which is used to set the default SAP GUI status.

TRY.
CALL METHOD cl_salv_table=>factory
IMPORTING
r_salv_table = lo_alv

CHANGING
t_table = it_sflight.

.
CATCH cx_salv_msg INTO lcx_msg.

ENDTRY.
DATA: lo_functions TYPE REF TO cl_salv_functions_list.
lo_functions = lo_alv->get_functions().
lo_functions->set_default(abap_true).
lo_alv->display().

Listing 15.13 Setting Default SAP GUI Status

Similarly, the SET_SCREEN_STATUS method can be used to set the custom SAP GUI
status as shown in Listing 15.14.

lo_alv->set_screen_status(
REPORT = 'ZDEMO_INTERACTIVE_REPORT'
PFSTATUS = 'GUIALV').

Listing 15.14 Setting Custom GUI Status

Refer to the class documentation to explore all the available methods of the CL_
SALV_TABLE class.

15.4.2 Hierarchical Display

The hierarchical display model can be used to replace the REUSE_ALV_HIERSEQ_
LIST_DISPLAY function module that we discussed in Section 15.1.3. Similar to
the table display, using a hierarchical display is pretty straightforward. For a
655

ALV Reports15
hierarchical display, use the CL_SALV_HIERSEQ_TABLE class. This class implements
a factory method, which gives the reference to the ALV object.

We pass the header and item tables and also the table binding information to this
factory method. The sample code in Listing 15.15 shows how to generate a hier-
archical report using the ALV object model. To keep it simple, we’re using the
same example that we used in Listing 15.6.

REPORT ZDEMO_HIERARCHICAL_ALV_REPORT.
TYPES : BEGIN OF ty_vbrk,

vbeln TYPE vbeln_vf, "Document Number
kunrg TYPE kunrg, "Payer
fkdat TYPE fkdat, "Billing date
netwr TYPE netwr, "Net Value

END OF ty_vbrk.

TYPES : BEGIN OF ty_vbrp,
vbeln TYPE vbeln_vf, " Document Number
posnr TYPE posnr_vf, "Billing ITEM
arktx TYPE arktx, "Description of Item
fkimg TYPE fkimg, "Billed quantity
vrkme TYPE vrkme, "Sales Unit
netwr TYPE netwr_fp, "Net Value
matnr TYPE matnr, "Material Number

END OF ty_vbrp.

DATA : it_vbrk TYPE STANDARD TABLE OF ty_vbrk,
it_vbrp TYPE STANDARD TABLE OF ty_vbrp,
lo_alv TYPE REF TO CL_SALV_HIERSEQ_TABLE,
v_vbeln TYPE vbeln_vf.

SELECT-OPTIONS s_vbeln FOR v_vbeln.

START-OF-SELECTION.
PERFORM get_data.
END-OF-SELECTION.
PERFORM show_output.

&---
*& Form GET_DATA
&---
FORM get_data .
SELECT vbeln kunrg fkdat netwr FROM vbrk INTO TABLE it_
vbrk WHERE vbeln IN s_vbeln.
SELECT vbeln posnr arktx fkimg vrkme netwr matnr FROM vbrp INTO TABLE i
t_vbrp WHERE vbeln IN s_vbeln.
ENDFORM.
&---
656

ALV Object Model 15.4
*& Form SHOW_OUTPUT
&---
FORM show_output .
DATA: lt_key TYPE salv_t_hierseq_binding,

lw_key LIKE LINE OF lt_key,
lcx_data_err TYPE REF TO cx_salv_data_error,
lcx_not_found TYPE REF TO cx_salv_not_found.

lw_key-master = 'VBELN'.
lw_key-slave = 'VBELN'.
APPEND lw_key TO lt_key.

TRY.
CALL METHOD cl_salv_hierseq_table=>factory
EXPORTING
t_binding_level1_level2 = lt_key

IMPORTING
r_hierseq = lo_alv

CHANGING
t_table_level1 = it_vbrk
t_table_level2 = it_vbrp.

CATCH cx_salv_data_error INTO lcx_data_err.
CATCH cx_salv_not_found INTO lcx_not_found.
ENDTRY.

lo_alv->display().

ENDFORM.

Listing 15.15 Hierarchical Display

In Listing 15.15, we’re defining a LO_ALV reference object of type CL_SALV_
HIERSEQ_TABLE. In the SHOW_OUTPUT subroutine, we’re calling the factory method
of the CL_SALV_HIERSEQ_TABLE class to get the instance of the ALV reference
object. To this factory method, we’re also passing the internal tables that contain
the header and item data.

The factory method also requires you to pass the binding information (i.e., the
common key between the header and item tables). The DISPLAY method is called
to show the output. Figure 15.15 shows the output generated by the sample code
in Listing 15.15.

Note that the default output shown in Figure 15.15 doesn’t show a toolbar for
performing actions on the generated list. We can add the toolbar by using the
GET_FUNCTIONS method to get the reference to the functions list reference object
via the code in Listing 15.16.
657

ALV Reports15
Figure 15.15 Output Generated by Code in Listing 15.16

The default status should be set before calling the DISPLAY method. The default
status is shown in Figure 15.16.

TRY.
 CALL METHOD cl_salv_hierseq_table=>factory
 EXPORTING
 t_binding_level1_level2 = lt_key
 IMPORTING
 r_hierseq = lo_alv
 CHANGING
 t_table_level1 = it_vbrk
 t_table_level2 = it_vbrp.
 CATCH cx_salv_data_error INTO lcx_data_err.
 CATCH cx_salv_not_found INTO lcx_not_found.
 ENDTRY.
 DATA: lo_functions TYPE REF TO cl_salv_functions_list.
 lo_functions = lo_alv->get_functions().
 lo_functions->set_all(abap_true).
 lo_alv->display().

Listing 15.16 Adding Default Status
658

ALV Object Model 15.4
Figure 15.16 Default Status

15.4.3 Tree Object Model

With the tree object model, we can display data in a tree structure. The tree
model is node-based, and each record represents a node. We create an empty tree
control first and add records as nodes to the tree structure. The tree object model
uses the CL_SALV_TREE class, and the node objects are managed by the CL_SALV_
NODES class.

The factory method of the CL_SALV_TREE class is called to get the instance of the
tree object. We need to pass an empty internal table to the factory method for
which the line type represents the node of the tree structure. Once we have the
reference to the tree object, we add the records of the internal table by manipu-
lating the nodes.

The sample code in Listing 15.17 generates a tree display, as shown in Figure
15.17.

REPORT ZDEMO_ALV_TREE.
DATA: it_sflight TYPE STANDARD TABLE OF sflight,

it_outtab LIKE it_sflight,
wa_sflight TYPE sflight.

DATA: lo_tree TYPE REF TO cl_salv_tree.
DATA: nodes TYPE REF TO cl_salv_nodes,

node TYPE REF TO cl_salv_node,
columns type ref to cl_salv_columns,
lo_functions TYPE REF TO cl_salv_functions_tree,
key TYPE salv_de_node_key.

SELECT-OPTIONS s_carrid FOR wa_sflight-carrid.
* Select data
SELECT * FROM sflight INTO TABLE it_sflight WHERE carrid IN s_carrid.
* Create instance with an empty table
CALL METHOD cl_salv_tree=>factory
IMPORTING
659

ALV Reports15
R_SALV_TREE = lo_tree
CHANGING

t_table = it_outtab.

* Add the nodes to the tree
NODES = lo_tree->get_nodes().
LOOP AT it_sflight INTO wa_sflight.

ON CHANGE OF wa_sflight-carrid.
CLEAR key.
TRY.
node = nodes->add_node(related_node = KEY
relationship = cl_gui_column_tree=>relat_first_child
data_row = wa_sflight).
KEY = node->get_key().

CATCH cx_salv_msg.
ENDTRY.

ENDON.
TRY.
node = nodes->add_node(related_node = KEY
relationship = cl_gui_column_tree=>relat_last_child
data_row = wa_sflight).

CATCH cx_salv_msg.
ENDTRY.

ENDLOOP.
columns = lo_tree->get_columns().
columns->set_optimize(abap_true).
*Set default status
lo_functions = lo_tree->get_functions().
lo_functions->set_all(abap_true).
*Display table
lo_tree->display().

Listing 15.17 Tree Display

In Listing 15.17, we’re selecting data from table SFLIGHT and displaying it as a
tree structure. We’ve defined an internal table IT_OUTTAB, which is of the same
type as the internal table IT_SFLIGHT.

The empty table IT_OUTTAB is passed to the factory method, and the reference to
the tree object is imported to the LO_TREE reference object. We’re getting the
nodes references via the GET_NODES method. The records are added to the tree
structure by looping the internal table IT_SFLIGHT and calling the ADD_NODE
method of the nodes object. To this method, the record of the internal table and
the node relationship is transferred, which is displayed as a node in the output.
660

Summary 15.5
Figure 15.17 Tree Display

15.5 Summary

In this chapter, we discussed the ways to display reports using the ALV model.
We started our discussion by focusing on procedural techniques, then progressed
to the object-oriented implementation of ALV. Object-oriented ALV, especially
the ALV object model, makes it easy to issue ALV output without having to spend
any time performing mundane tasks, such as formatting the output.

We discussed different ways to make ALV reports interactively react to user
actions. The ALV model makes displaying the output such an easy task that you
can spend the majority of your time getting the program logic correct instead of
wasting time formatting the output.

Creating reports is a frequent task for ABAP users, and we hope this chapter
makes you comfortable working with reports.

So far in this book, we’ve approached problems in a static way; that is, we knew
what problems we were trying to solve. However, sometimes we may need to
address problems dynamically and may not have all the information we need
until runtime. In the next chapter, we’ll focus on dynamic programming so that
you can be prepared for such situations.
661

Chapter 16

A dynamic program returns results based on specific user input that
changes and can only be determined at runtime. This chapter explains
how to enable dynamic programs in ABAP.

16 Dynamic Programming

Software applications are developed to solve a problem or to help users with their
day-to-day activities. Most of the time, the problem is known beforehand and the
design and development of the application focuses on solving the problem at
hand. For example, assume your company follows a vendor-managed inventory
model in which if goods are unsold for thirty days, the company becomes billable
to the supplier. At this point, the company can either pay to keep the inventory or
return it to the supplier.

To accommodate this business process, you need to develop a set of applications
that allow a user to capture information when goods arrive in the warehouse and
a report that can show the age of the inventory. The report helps the supervisor
check the goods that are reaching the end of the supplier contract period.

To develop applications for this requirement, we know all the information that
we need to process in the program at design time. For example, we know which
tables to update the data in, and we know which tables to query to calculate the
age of the inventory for the report. All this information is available statically
(beforehand) at design time.

To show the age of the inventory, we could write the code shown in Listing 16.1.

SELECT item_id item_name in_date INTO it_inv FROM ztabinv WHERE
in_date LE p_date.
WRITE : / 'The following items exceed 30 days'.
LOOP AT it_inv INTO wa_inv.
WRITE: / wa_inv-item_id, wa_inv-item_name, wa_inv-in_date.
ENDLOOP.

Listing 16.1 Sample Code for Inventory Age
663

Dynamic Programming16
To write the code as shown in Listing 16.1, we need to know the table name and
the fields of the table statically. In the program, we statically define the data
objects and access them statically by addressing the name of the data object.

However, sometimes we may not have all the information until runtime. What if
the table to which we need to write the select query depends on the result of the
previous statement? It isn’t possible to include the table name statically in the
query; to handle such scenarios, we use dynamic programming.

There are various ways in which you can handle dynamic programming. Some-
times, a program may have mostly static elements, but some part of it may be
dynamic, or the complete program itself could be dynamic. Sometimes, we may
even need to create new programs on the fly dynamically or call procedures
dynamically. In this chapter, we’ll explore various ways to handle all these sce-
narios.

ABAP supports various concepts to make ABAP programs dynamic. We’ll begin
by discussing field symbols in Section 16.1. Field symbols act as pointers and can
be used to point to any data object of the program dynamically, allowing you to
determine dynamically which data object should be accessed at runtime.

We’ll discuss data references in Section 16.2, which, similarly to field symbols,
allow you to point dynamically to existing data objects in the program. However,
data references also allow you to create data objects dynamically. Another
important aspect of dynamic programming is the ability to dynamically deter-
mine the type information of an existing data object or to create a data type
dynamically.

In Section 16.3, we will discuss Runtime Type Services (RTTS) and explore iden-
tifying and creating data types dynamically. Sometimes, business requirements
demand that you determine dynamically the database table from which the data
is fetched or which program/transaction should be called during the program
flow or something similar. ABAP allows you to dynamically determine the data-
base table, procedure, program, transaction, and so on by providing the token
dynamically in the code.

You’ll learn about dynamic token specification in Section 16.4 and dynamic proce-
dure calls in Section 16.5. Not only can you make the ABAP code within an ABAP
program dynamic, but you also can generate the complete ABAP program itself
664

Field Symbols 16.1
dynamically. We’ll conclude this chapter with a discussion of dynamic program
generation in Section 16.6.

16.1 Field Symbols

A field symbol is similar to a pointer, which points to an existing data object. A
field symbol is not a data object; it doesn’t hold any memory on its own. Instead,
when a data object is assigned to a field symbol, it points to the memory location
of the assigned data object.

A field symbol serves as a label for its assigned data object, which you can access
as you’d access the data object itself. For example, assume we have an internal
table with three fields, FIELD1, FIELD2, and FIELD3, and you want to modify the
third row of the internal table. To do so, write the code shown in Listing 16.2.

DATA wa LIKE LINE OF itab.
wa-field1 = 'ABC'.
wa-field2 = 'XYZ'.
wa-field3 = 123.
MODIFY itab FROM wa INDEX 3.

Listing 16.2 Modifying Internal Table Record Using Work Area

In Listing 16.2, we’re using a work area wa to modify the internal table record.
Here, wa and itab are two separate memory locations, and we’re using the MODIFY
statement to copy the contents of wa to itab.

Listing 16.3 shows how the same end can be achieved using field symbols.

FIELD-SYMBOLS: <wa> LIKE LINE OF itab.
READ TABLE itab ASSIGNING <wa> INDEX 3.
IF <wa> IS ASSIGNED.
<wa>-field1 = 'ABC'.
<wa>-field2 = 'XYZ'.
<wa>-field3 = 123.
ENDIF.

Listing 16.3 Modifying Internal Table Record Using a Field Symbol

In Listing 16.3, we defined a <wa> field symbol as a line of itab. The READ state-
ment assigns the third row of the internal table to the field symbol <wa>. At this
point, the field symbol <wa> points to the third row of the internal table. When
665

Dynamic Programming16
you change a field, through the field symbol, the field of the third row is changed
immediately, because the field symbol points to the third row directly.

We don’t have to copy the contents manually using the MODIFY statement as we
did in Listing 16.2, because the <wa> field symbol in Listing 16.3 doesn’t take a
separate memory space but points to the existing memory, unlike the work area
wa in Listing 16.2.

Once the data object is assigned to the field symbol, we can work with the field
symbol just like the assigned data object and perform operations that can usually
be performed on the assigned data object. Almost any data object can be assigned
to a field symbol.

As you can see in Listing 16.3, there is a way to define field symbols, assign a data
object to a field symbol, check if the field symbol is assigned before accessing the
field symbol, and more. Before we discuss these aspects, however, let’s look at
how field symbols can help make programs dynamic.

16.1.1 Using Field Symbols to Make Programs Dynamic

For our example, we’ll use a report to show some basic information about a mate-
rial. In this report, we’ll use the ALV object model to display the output. We’ll
provide functionality for the user to double-click in any cell to filter the records
based on the value of the cell and show the result in a new container below the
displayed output.

Most of the components of this report are static: We already know the data to be
displayed in the output and the user input for the report. However, filtering the
records based on user action is dynamic. Let’s look at how we can achieve this in
a static way and then look at how to make it dynamic.

Listing 16.4 shows the code for the report using the ALV object model. The code
is long, but very straightforward. Take some time to go through the code and try
it out in your system.

REPORT zdemo_salv_static.
CLASS lcl_event_handler DEFINITION DEFERRED.
DATA: custom_container TYPE REF TO cl_gui_custom_container,

splitter TYPE REF TO cl_gui_splitter_container,
container_1 TYPE REF TO cl_gui_container,
so_alv TYPE REF TO cl_salv_table,
mo_alv TYPE REF TO cl_salv_table,
666

Field Symbols 16.1
gr_event_handler TYPE REF TO lcl_event_handler,
gr_event TYPE REF TO cl_salv_events_table.

TYPES: BEGIN OF ty_mara,
matnr TYPE mara-matnr,
ersda TYPE ersda,
ernam TYPE ernam,
laeda TYPE laeda,
mtart TYPE mtart,

END OF ty_mara.
DATA: it_mara TYPE STANDARD TABLE OF ty_mara,

gv_matnr TYPE matnr.
SELECT-OPTIONS: s_matnr FOR gv_matnr.

&--
*& Class LCL_EVENT_HANDLER
&--
CLASS lcl_event_handler DEFINITION.
PUBLIC SECTION.
METHODS : on_double_click FOR EVENT double_click OF cl_salv_events_

table IMPORTING row column.
ENDCLASS. "LCL_EVENT_HANDLER

* CLASS lcl_event_handler IMPLEMENTATION

CLASS lcl_event_handler IMPLEMENTATION.
METHOD on_double_click.
DATA : lo_sel TYPE REF TO cl_salv_selections,

ls_cell TYPE salv_s_cell,
container_2 TYPE REF TO cl_gui_container,
lt_mara TYPE STANDARD TABLE OF ty_mara,
lw_mara TYPE ty_mara.

*Get reference to the user selection.
lo_sel = mo_alv->get_selections().

*Get the value of the cell
ls_cell = lo_sel->get_current_cell().

*Logic to filter records
IF ls_cell-columnname EQ 'MATNR'.
LOOP AT it_mara INTO lw_mara WHERE matnr EQ ls_cell-value.

APPEND lw_mara TO lt_mara.
ENDLOOP.

ELSEIF ls_cell-columnname EQ 'ERSDA'.
LOOP AT it_mara INTO lw_mara WHERE ersda EQ ls_cell-value.

APPEND lw_mara TO lt_mara.
ENDLOOP.

ELSEIF ls_cell-columnname EQ 'ERNAM'.
LOOP AT it_mara INTO lw_mara WHERE ernam EQ ls_cell-value.

APPEND lw_mara TO lt_mara.
ENDLOOP.
667

Dynamic Programming16
ELSEIF ls_cell-columnname EQ 'LAEDA'.
LOOP AT it_mara INTO lw_mara WHERE laeda EQ ls_cell-value.
APPEND lw_mara TO lt_mara.

ENDLOOP.
ELSEIF ls_cell-columnname EQ 'MTART'.

LOOP AT it_mara INTO lw_mara WHERE mtart EQ ls_cell-value.
APPEND lw_mara TO lt_mara.

ENDLOOP.
ENDIF.
CALL METHOD splitter->get_container
EXPORTING
row = 2
column = 1

RECEIVING
container = container_2.

TRY.
IF so_alv IS BOUND.
so_alv->set_data(CHANGING t_table = lt_mara).

ELSE.
CALL METHOD cl_salv_table=>factory
EXPORTING
list_display = if_salv_c_bool_sap=>false
r_container = container_2

IMPORTING
r_salv_table = so_alv

CHANGING
t_table = lt_mara.

ENDIF.
CATCH cx_salv_no_new_data_allowed.
CATCH cx_salv_msg .

ENDTRY.

so_alv->display().
ENDMETHOD. "on_double_click

ENDCLASS. "lcl_event_handler

START-OF-SELECTION.
PERFORM fill_table.
CALL SCREEN 100.

&--
*& Module STATUS_100 OUTPUT
&--
MODULE status_100 OUTPUT.
* Create Container Object
CREATE OBJECT custom_container
EXPORTING
668

Field Symbols 16.1
container_name = 'CONTAINER'.
*Create splitter Object
CREATE OBJECT splitter
EXPORTING
parent = custom_container
rows = 2
columns = 1.

*Split the container
CALL METHOD splitter->get_container
EXPORTING
row = 1
column = 1

RECEIVING
container = container_1.

*Get ALV Object reference
TRY.

CALL METHOD cl_salv_table=>factory
EXPORTING
list_display = if_salv_c_bool_sap=>false
r_container = container_1

IMPORTING
r_salv_table = mo_alv

CHANGING
t_table = it_mara.

CATCH cx_salv_msg .
ENDTRY.

* Set the event handler here
gr_event = mo_alv->get_event().
CREATE OBJECT gr_event_handler.
SET HANDLER gr_event_handler->on_double_click FOR gr_event.

*Display Output
mo_alv->display().

ENDMODULE. " STATUS_100 OUTPUT
&--
*& Form FILL_TABLE
&--
FORM fill_table .
SELECT matnr ersda ernam laeda mtart FROM mara INTO TABLE it_

mara WHERE matnr IN s_matnr.
ENDFORM. " FILL_TABLE

Listing 16.4 Report to Display Material and Filter Functionality

In Listing 16.4, we’re selecting certain field data from table MARA and displaying
the output. We’re using the ALV object model to generate the ALV output.

We’ve defined a screen 100 for our program, in which we’ve created a custom
control. Because we want to display the filtered records on the same screen, we’re
using the CL_GUI_SPLITTER_CONTAINER class to split the container into two rows.
669

Dynamic Programming16
In the first row, we show the complete selected data, and in the second row, we
display the filtered data. Figure 16.1 shows the initial display of the report.

Figure 16.1 Initial ALV Display

The user can double-click any cell to show the filtered records in a new container
below the main display. For example, if the user double-clicks the material type
HALB in Figure 16.1, the output would look like Figure 16.2.

To display the filtered data in a new container as per the user’s selection, we need
to do a couple of things:

1. Identify the user action (double-click)

2. Identify the column and value of the cell to filter the records

The ALV object model raises the ON_DOUBLE_CLICK event when the user double-
clicks the cell. In the program, we’re setting the event handler and also have
defined the ON_DOUBLE_CLICK event handler method in the LCL_EVENT_HANDLER
local class. In this method, we’re filtering the records based on the value and dis-
playing the filtered records, as shown in Figure 16.2.

When the user double-clicks, the ON_DOUBLE_CLICK method of the LCL_EVENT_
HANDLER local class is called. The code in this method is where our interest lies. If
you look at the code in this method, you’ll notice that we used the IF...
ELSEIF... ENDIF block to manually check the field name and accordingly filter
the internal table data.
670

Field Symbols 16.1
Figure 16.2 Filtered Output in New Container

Because there’s no way for us to know statically which column the user will dou-
ble-click, we had to construct the IF…ELSEIF block to include all the fields of the
internal table. Luckily, we only had five fields in the internal table, so it wasn’t
that difficult.

However, what if the internal table has thirty fields or fifty fields? What if some
new fields are added to the internal table as part of future enhancement? We have
no other option but to update this logic to include the additional fields. Not only
does listing all the fields statically in an IF…ELSEIF block make the code cumber-
some, but hard-coding also is not a good programming practice and should be
avoided as much as possible.

There must be a better way to handle this, right? Of course, this is where field
symbols come to the rescue. Using field symbols, we can modify the code in the
ON_DOUBLE_CLICK method of the LCL_EVENT_HANDLER local class, as shown in Lis-
ting 16.5. Nothing much has changed in Listing 16.5, except how we’re filtering
the records.

METHOD on_double_click.
FIELD-SYMBOLS: <field> TYPE any.
671

Dynamic Programming16
DATA : lo_sel TYPE REF TO cl_salv_selections,
ls_cell TYPE salv_s_cell,
container_2 TYPE REF TO cl_gui_container,
lt_mara TYPE STANDARD TABLE OF ty_mara,
lw_mara TYPE ty_mara.

lo_sel = mo_alv->get_selections().
ls_cell = lo_sel->get_current_cell().

LOOP AT it_mara INTO lw_mara.
ASSIGN COMPONENT ls_cell-columnname OF STRUCTURE lw_mara TO

<field>.
 IF <field> IS ASSIGNED.

IF <field> EQ ls_cell-value.
APPEND lw_mara TO lt_mara.

ENDIF.
ENDIF.

ENDLOOP.
CALL METHOD splitter->get_container
EXPORTING
row = 2
column = 1

RECEIVING
container = container_2.

TRY.
IF so_alv IS BOUND.
so_alv->set_data(CHANGING t_table = lt_mara).

ELSE.
CALL METHOD cl_salv_table=>factory
EXPORTING
list_display = if_salv_c_bool_sap=>false
r_container = container_2

IMPORTING
r_salv_table = so_alv

CHANGING
t_table = lt_mara.

ENDIF.
CATCH cx_salv_msg .

ENDTRY.
so_alv->display().

ENDMETHOD. "on_double_click

Listing 16.5 Filter Functionality Using Field Symbols

In Listing 16.5, we’ve defined a <FIELD> field symbol as a generic type (we'll dis-
cuss typing field symbols in a moment). Within the loop, we’re dynamically
assigning the component of the table to the field symbol. Based on which column
the user double-clicks, the LS_CELL-COLUMNNAME field will have that field name.
672

Field Symbols 16.1
The ASSIGN COMPONENT OF statement will assign that field to the <FIELD> field
symbol.

From here, all we need to do is to check the cell value and filter the records. As
you can see, now our filtering logic is dynamic. The code will filter the records
irrespective of which column the user double-clicks. This code will be equally
effective when new fields are added to the structure as part of future enhance-
ment, because we’re no longer hard-coding anything.

Now that you understand how field symbols can be used to make programs
dynamic, let’s go into further detail about how to define field symbols.

16.1.2 Defining Field Symbols

Field symbols are declared using the FIELD-SYMBOLS statement. The name of the
field symbol should be enclosed between angled brackets (< and >). You can type
the field symbol just like any other data object using the TYPE reference or LIKE
reference.

You can also define a generic field symbol by typing it as ANY. When you define a
fully typed field symbol, only a data object of the same type can be assigned to the
field symbol. This is useful if you plan to access the components of a structure
statically.

For example, if you want to work with the individual components of a structure
as shown in Listing 16.6, then the field symbol should be fully typed. Without
typing the field symbol, there’s no way for the compiler to know what fields it
contains when the code is compiled.

DATA st_mara TYPE mara.
FIELD-SYMBOLS: <fs_mara> TYPE mara,
 <fs_matnr> TYPE matnr.
ASSIGN st_mara TO <fs_mara>.
<fs_mara>-matnr = '100'.
ASSIGN st_mara-matnr TO <fs_matnr>.

Listing 16.6 Working with Structure Components

If you plan to use the field symbol to point to any field or structure dynamically,
you can define the field symbol as a generic type using the TYPE ANY addition, as
shown in Listing 16.7. However, with generic types, the components are known
only at runtime, so you can’t access them statically.
673

Dynamic Programming16
DATA st_mara TYPE mara.
FIELD-SYMBOLS: <fs_any> TYPE ANY.
ASSIGN st_mara TO <fs_any>.
* <fs_any>-matnr = '100'. "This will result in syntax error
ASSIGN st_mara-matnr TO <fs_any>.

Listing 16.7 Generic Type

You can also assign an internal table to the field symbol. To assign an internal
table, the field symbol should be defined as a table. You can type the field symbol
fully as shown:

FIELD-SYMBOLS <fs_mara> TYPE STANDARD TABLE OF mara.

You can define it as any kind of internal table of any type, just like a data object.
You can also perform all the actions and use all the statements that are applicable
to an internal table. For example, the syntax checker won’t complain if you use a
LOOP statement with a field symbol.

If you plan to assign any internal table dynamically (for which the line type is
known only at runtime), you can define the field symbol as a generic table using
the ANY TABLE syntax, as shown:

FIELD-SYMBOLS <fs_table> TYPE ANY TABLE.

16.1.3 Assigning a Data Object

The ASSIGN statement is used to assign the data object to a field symbol, as shown:

ASSIGN dobj TO <fs>.

The assignment operation can be performed both statically and dynamically.

If we know the data object name that we want to assign to the field symbol, we
can assign the data object statically, as shown in Listing 16.8.

DATA st_mara TYPE mara.
FIELD-SYMBOLS: <fs_mara> TYPE mara.
ASSIGN st_mara TO <fs_mara>.

Listing 16.8 Static Assignment of Field Symbol

Sometimes, we may know the data object that we want to assign dynamically
only at runtime. For example, say that you’re maintaining some change history in
a table in which you’re storing the field name with its old and new values. In your
674

Field Symbols 16.1
program, you want to process only those fields for which a record is available in
the change history table.

You can assign the data object dynamically, as shown:

ASSIGN (name) TO <fs>.

Here, the name variable contains the name of the data object. The variable should
be enclosed within parenthesis.

Listing 16.9 shows an example of dynamic assignment. Here, the data object
name stored in the FIELD_NAME variable will be assigned to the field symbol. If the
assignment is successful (i.e., the data object with that field name exists in the
program), the SY-SUBRC system field will be set to 0.

When using dynamic assignments, it’s important to check if the field symbol is
assigned before accessing the field symbol. Trying to access an unassigned field
symbol will result in a runtime error.

DATA field_name TYPE string.
FIELD-SYMBOLS <fs_field> TYPE ANY.
SELECT SINGLE ... FROM ... INTO field_name WHERE
ASSIGN (field_name) TO <fs_field>.

Listing 16.9 Dynamic Field Assignment

You can use dynamic assignment for the attributes of a class as shown:

ASSIGN oref->(attribute_name) TO <fs>.

In this assignment, the name of the attribute is derived dynamically. If you’re
accessing a static attribute, you can even derive the class name dynamically, as
shown in Listing 16.10.

ASSIGN (class_name)=>(attribute_name) TO <fs>.
ASSIGN (class_name)=>attribute TO <fs>.

Listing 16.10 Accessing Class Attributes Dynamically

The first line in Listing 16.10 addresses both the class name and the attribute
name dynamically, whereas the second line addresses the class name dynamically
and the attribute name statically.

You can also assign the components of a structure dynamically. The syntax to
assign a component of the structure dynamically is as follows:
675

Dynamic Programming16
ASSIGN comp OF STRUCTURE struc TO <fs>.

With this statement, the comp component of the struc structure is assigned to the
<fs> field symbol. If the comp data object is set as TYPE c or TYPE string, then the
content of the comp field is interpreted to be the component name. For example,
in Listing 16.11, the matnr field of the st_mara structure will be assigned to the
field symbol.

DATA : st_mara TYPE mara,
l_field TYPE string VALUE 'MATNR'.

FIELD-SYMBOLS: <fs_any> TYPE any.
ASSIGN l_field OF STRUCTURE st_mara TO <fs_any>.

Listing 16.11 Assigning Structure Field

However, if the comp data object is of a different type and has a number, then the
system will interpret it as a field position and assign that field to the field symbol.

For example, in Listing 16.12, the third field, mtart, of the st_mara structure will
be assigned to the field symbol because the l_field data object contains the
value 3.

TYPES: BEGIN OF ty_mara,
matnr TYPE matnr,
ersda TYPE ersda,
mtart TYPE mtart,
END OF ty_mara.

DATA : st_mara TYPE ty_mara,
l_field TYPE n VALUE 3.

FIELD-SYMBOLS: <fs_any> TYPE any.
ASSIGN l_field OF STRUCTURE st_mara TO <fs_any>.

Listing 16.12 Dynamic Assignment Based on Field Position

You can use the field symbol as a work area when working with internal tables.
The internal table record is assigned to the field symbol using the ASSIGNING addi-
tion with the LOOP or READ statement, as shown in Listing 16.13.

READ TABLE itab ASSIGNING <fs>...
LOOP AT itab ASSIGNING <fs>..
ENDLOOP.

Listing 16.13 Using the ASSIGNING Addition

When an internal table record is assigned to a field symbol using the LOOP or READ
statement, the field symbol will directly point to the assigned row of the table.
676

Field Symbols 16.1
For example, in Listing 16.14, we are assigning the first row of the internal table
IT_MARA to the <FS_MARA> field symbol.

After this assignment, the field symbol will point to the first row of the internal
table, and you can change any field in the row directly using the field symbol.

In this example, the <FS_MARA>-MTART = 'ROH' statement will change the value of
the MTART field in the first row of the internal table. Unlike a work area, when
using a field symbol you don’t need to use the MODIFY statement to copy the con-
tents of the work area back to the internal table.

TYPES: BEGIN OF ty_mara,
matnr TYPE matnr,
ersda TYPE ersda,
mtart TYPE mtart,
END OF ty_mara.

DATA : it_mara TYPE TABLE OF ty_mara.
FIELD-SYMBOLS: <fs_mara> LIKE LINE OF it_mara.
PARAMETERS p_matnr TYPE matnr.
SELECT matnr ersda mtart FROM mara INTO TABLE it_mara WHERE matnr EQ p_
matnr.
READ TABLE it_mara ASSIGNING <fs_mara> INDEX 1.
IF <fs_mara> IS ASSIGNED.
<fs_mara>-mtart = 'ROH'.
ENDIF.

Listing 16.14 Assigning Internal Table Record to Field Symbol

16.1.4 Checking if a Field Symbol is Assigned

When a data object is assigned to a field symbol, the SY-SUBRC system field is set
to 0. If you want to check immediately after the assignment, you can check the
SY-SUBRC field, as shown in Listing 16.15.

ASSIGN dobj TO <fs>.
IF sy-subrc IS INITIAL.
<fs> = 123.
ENDIF.

Listing 16.15 Checking the SY-SUBRC Field

However, in most situations, you won’t need to access the field symbol immedi-
ately after the assignment but may need to access it later in the code. In such sit-
uations, checking the SY-SUBRC system field isn’t useful, because SY-SUBRC is
677

Dynamic Programming16
updated by many statements and it always contains the result of the last state-
ment that updated it.

To be sure that the field symbol is assigned before accessing it, use the IS
ASSIGNED statement with the following syntax:

IF <fs> IS ASSIGNED.
ENDIF.

We recommend that you always check if the field symbol is assigned before
accessing it. Trying to access a field symbol that isn’t assigned will result in an
untreatable exception.

16.1.5 Unassigning a Field Symbol

If you want to remove the assignment of the field symbol to ensure that no data
object is assigned to it, use the UNASSIGN statement as follows:

UNASSIGN <fs>.

After the field symbol is unassigned, it will be initialized, so it won’t point to any
data object. You shouldn’t access the field symbol after it’s unassigned unless
another data object is assigned to the field symbol.

Using the CLEAR statement won’t initialize the field symbol; it’ll simply clear the
contents of the data object assigned to the field symbol.

16.1.6 Casting

When a data object is assigned to a field symbol, the field symbol should be of a
type compatible with the data object. However, you can perform a cast on any
data type when the data object is assigned to the field symbol.

Casting allows you to treat a particular data type as another data type. This means
that any area of memory can be viewed as having assumed a given type. For
example, you can interpret the value of a character field as a date field when the
data object is assigned to the field symbol by performing a cast.

CASTING is used to perform a cast, as shown:

ASSIGN dobj TO <fs> CASTING.
678

Data References 16.2
When you use CASTING, a data object of a different type can be assigned to the
field symbol. Casting allows you to assign a data object to the field symbol that is
not compatible with the field symbol.

Listing 16.16 shows sample code in which a field of TYPE C is assigned to the field
symbol, which is of TYPE D. Once the data object is assigned, the contents of the
data object will be interpreted as TYPE D.

DATA text(8) TYPE c VALUE '20111201'.
FIELD-SYMBOLS <fs> TYPE sy-datum.
ASSIGN text TO <fs> CASTING.
WRITE <fs>.

Listing 16.16 Casting

Casting can be performed implicitly or explicitly. If the field symbol is fully typed
or is typed generically using one of the built-in ABAP types (c, n, p, or x), then
CASTING can be used with the ASSIGN statement, which performs an implicit cast-
ing to cast the assigned memory to the type of the field symbol.

If the field symbol is typed generically, then you can perform an explicit casting
by specifying the data type in the ASSIGN statement as follows:

ASSIGN dobj TO <fs> CASTING [TYPE data_type|LIKE dobj].

After the CASTING addition, you can specify the data type or a data object. The
casting will be performed as per the specified type. Your specified type should be
compatible with the generic type of the field symbol, and you shouldn’t perform
an explicit typing for a fully typed field symbol. Casting allows you to interpret
data differently per type conversions.

In this section, we discussed the use of field symbols in dynamic programming. In
the next section, we’ll look at using data references to point to a data object in
memory.

16.2 Data References

Similar to object references, a data reference points to a data object in memory.
Data references can be used as alternate access references to existing data objects,
similarly to field symbols. However, with data references, it’s possible to define
679

Dynamic Programming16
anonymous data objects. The data reference is stored in the data reference vari-
able defined using the TYPE REF TO addition of the DATA statement.

Now, we’ll explain how to define and work with data references. We’ll also dis-
cuss how to define data objects dynamically using data references and assign-
ments between data references.

16.2.1 Defining Reference Variables

The syntax to define a data reference variable is shown in Listing 16.17.

DATA dref TYPE REF TO dtype
DATA dref LIKE REF TP dobj
DATA dref TYPE REF TO DATA

Listing 16.17 Defining Data Reference Variable

In Listing 16.17, the first statement uses the data type reference, and the second
statement uses the data object reference. The data reference variables are fully
typed and can point to data objects of this type. The third statement is defined as
a generic type, DATA, and can point to any data object.

Similar to object references, a data reference can be a static type or a dynamic
type. A static type of data reference should be a fully typed or fully generic type,
as shown in Listing 16.17. A dynamic type should be either equal to the static
type or more special than its static type (not generic).

When the data reference variable is defined, it’s initial; in other words, the data
reference variable doesn’t point to any data object. A reference to a data object
should be supplied to the data reference variable.

Once the data reference is supplied, it holds the memory location of the refer-
enced data object and not its content. To access the contents of the referenced
data object, the reference variable should be dereferenced using the ->* derefer-
ence selector.

Figure 16.3 shows the data reference variable in debug mode for better visualiza-
tion. As shown, when the data reference variable DREF is accessed, it holds the ref-
erence to the V_MATNR data object. To access the contents of V_MATNR, we derefer-
ence the reference variable using the ->* selector.
680

Data References 16.2
Figure 16.3 Data Reference Variable in Debug Mode

16.2.2 Getting Data References

The GET REFERENCE OF statement is used to obtain a reference to an existing data
object. You can obtain a reference to an existing data object, an assigned field
symbol, or a dereferenced data reference variable.

Listing 16.18 shows how to obtain a data reference using the GET REFERENCE OF
statement from a data object, field symbol, or dereferenced reference variable.

DATA v_matnr type matnr VALUE '100'.
DATA dref TYPE REF TO matnr.
DATA dref1 TYPE REF TO matnr.
FIELD-SYMBOLS <fs> TYPE matnr.
ASSIGN v_matnr TO <fs>.
*Getting reference from data object
GET REFERENCE OF v_matnr into dref.
*Getting reference from dereferenced reference variable
GET REFERENCE OF dref->* INTO dref1.
*Getting reference from field symbol
GET REFERENCE OF <fs> INTO dref1.
WRITE dref->*.

Listing 16.18 Getting Data Object Reference

Once the data object reference is obtained, the reference variable should be deref-
erenced to access the contents of the referenced data object. For example, in Lis-
ting 16.18, we’re dereferencing the reference variable using the ->* dereference
681

Dynamic Programming16
selector to access the contents of the referenced data object with the WRITE state-
ment.

Once the reference variable is dereferenced, the reference variable can be used to
perform any actions or use any statements that are possible with the referenced
data object. You can dereference the data reference variable directly only if it’s
fully typed. If the reference variable is generically typed, then it should be
assigned to a field symbol to access the contents of the referenced data object.

Listing 16.19 shows an example using generic reference variables.

DATA v_matnr type matnr VALUE '100'.
DATA dref TYPE REF TO data.
FIELD-SYMBOLS <fs> TYPE any.

GET REFERENCE OF v_matnr into dref.
ASSIGN dref->* TO <fs>.
* WRITE dref->*. " Results in syntax error
WRITE <fs>.

Listing 16.19 Dereferencing Generic Type

In Listing 16.19, the DREF reference variable is declared as a generic type. The ref-
erence of data object V_MATNR is obtained using the GET REFERENCE statement.
However, because the DREF reference variable is a generic type, we can’t access
the contents of V_MATNR by directly dereferencing the reference variable as we did
in the WRITE statement in Listing 16.18; in fact, dereferencing a generic type
results in a syntax error.

To dereference the generic type, we assign it to a field symbol as shown in Listing
16.19. If the reference variable has an empty reference, then the field symbol will
not be assigned. You can check if the field symbol is assigned before accessing it
to avoid an untreatable exception.

16.2.3 Anonymous Data Objects

Anonymous data objects are used when the data type is unknown statically. When
we define data objects using the DATA statement, all the data objects are created by
the runtime environment when the program starts. All these data objects can be
accessed in the program statically using the name of the data object. These are
called named data objects.
682

Data References 16.2
Anonymous data objects are created on demand in the program as required and
can be assigned a suitable type per requirements. You use the CREATE DATA state-
ment to instantiate an anonymous data object with the following syntax:

CREATE DATA dref TYPE|LIKE dtype.

The CREATE DATA statement creates an anonymous data object and assigns the ref-
erence of the data object to the reference variable. Anonymous data objects can’t
be accessed directly by their names. The data object needs to be dereferenced to
access its contents.

Listing 16.20 shows an example using an anonymous data object.

FIELD-SYMBOLS <fs> TYPE DATA.
DATA dref TYPE REF TO DATA.
CREATE DATA dref TYPE i.
ASSIGN dref->* TO <fs>.
<fs> = 5.

Listing 16.20 Anonymous Data Object

The data type can be specified dynamically using a field in parenthesis—for exam-
ple, CREATE DATA dref TYPE (name). Here, name is a data object that contains the
data type.

With the release of SAP NetWeaver 7.4, a new instantiation operation, NEW, has
been introduced to instantiate both data references and object references in lieu
of the CREATE statement. The NEW statement, as shown in Listing 16.21, takes its
cue from other programming languages, such as Java.

FIELD-SYMBOLS <fs> TYPE DATA.
DATA dref TYPE REF TO data.
dref = NEW i(5).
ASSIGN dref->* TO <fs>.

Listing 16.21 Using NEW Instantiation Operator

Similarly to accessing reference objects, you can access the components of a data
reference using the -> selector—for example, DREF->COMP. If no TYPE specification
is provided with the CREATE DATA statement, the anonymous data object is created
as a static type of the data reference variable.

Listing 16.22 shows example code to access components of the anonymous data
object.
683

Dynamic Programming16
TYPES: BEGIN OF ty_mara,
matnr TYPE matnr,
mtart TYPE mtart,

END OF ty_mara.
DATA dref TYPE REF TO ty_mara.
CREATE DATA dref.
dref->matnr = '100'.

Listing 16.22 Accessing Components of Anonymous Data Objects

You can use the IS BOUND statement to check if the data reference variable con-
tains a valid reference and is dereferenceable—for example, IF dref IS BOUND.

16.2.4 Assignment between Reference Variables

As with object references, you can perform assignments between data references.
When a data reference is assigned, the target reference variable will point to the
same data object as the source reference variable.

A reference variable can be assigned only to another reference variable. In other
words, you can’t assign a reference variable to a data object or a reference object
and vice versa.

Like object references, data references also support upcasting and downcasting.
When assigning a reference variable, if the static type of the source reference vari-
able is similar to or more special than the static type of the target reference vari-
able, then an upcast is performed. You can use the = assignment operator or the
MOVE statement to perform the assignment.

An upcast is performed when the target reference variable is a generic type and
the source reference variable is fully typed, as shown in Listing 16.23.

TYPES: BEGIN OF ty_mara,
matnr TYPE matnr,
mtart TYPE mtart,

END OF ty_mara.
DATA : dref TYPE REF TO ty_mara, " Fully Typed

dref1 TYPE REF TO DATA. " Generic type
CREATE DATA dref.
dref1 = dref. " Upcast

Listing 16.23 Upcast

If the static type of the source reference variable is more general than the static
type of the target reference variable, it leads to a downcast. The assignment can
684

Runtime Type Services 16.3
only be validated at runtime, because the type of the source reference variable
will be known only at runtime.

For this assignment, the syntax checker can’t validate statically and will throw a
syntax error if the = assignment operator or the MOVE statement is used for the
assignment.

For such assignments, we have to use the "?=" casting operator or the MOVE ?TO
statement. An upcast is performed if the source reference variable is of a generic
type and the target reference variable is fully typed.

Listing 16.24 shows an example of a downcast.

TYPES: BEGIN OF ty_mara,
matnr TYPE matnr,
mtart TYPE mtart,

END OF ty_mara.
DATA : s_mara TYPE ty_mara,

dref TYPE REF TO ty_mara, " Fully Typed
dref1 TYPE REF TO DATA. " Generic type

CREATE DATA dref.
GET REFERENCE OF s_mara INTO dref1.
TRY,
dref ?= dref1. " Down Cast
CATCH cx_sy_move_cast_error.
ENDTRY.

Listing 16.24 Downcast

16.3 Runtime Type Services

ABAP Runtime Type Services (RTTS) is an object-oriented framework that consists
of the following elements:

� Runtime Type Information (RTTI)
Using RTTI, we can determine the type information about data objects or
instances of classes at runtime during program execution.

� Runtime Type Creation (RTTC)
RTTC allows us to define new data types during the program execution.

The RTTS framework implements a hierarchy of classes, as shown in Figure 16.4,
via which we can determine the type information of data objects and define new
685

Dynamic Programming16
data types at runtime. The instances of these type classes are known as type
objects.

For each ABAP type, such as elementary types, reference types, complex types
(structures and tables), and so on, there exists a type class.

Figure 16.4 Type Class Hierarchy

For each ABAP type, there can exist exactly one type object in the program, and
we can create new type objects for new types. The type objects contain attributes
that describe the type. The class documentation provides information on each
type class.

In the following subsections, we’ll discuss RTTI and RTTC in greater detail.

16.3.1 Runtime Type Information

Often, you’ll need to dynamically determine the type information of an object.
For example, before using a generically typed parameter of a procedure or a
generically typed anonymous data object in an arithmetic operation, you may
want to check its type, length, and number of decimal places. In such cases, you
can use type objects to identify the type information of a data object.

Type objects are created using the methods of the type class. The attributes of the
type object contain the type information. Listing 16.25 shows example code to
identify the type information.

CL_ABAP_TYPEDESCR

CL_ABAP_DATADESCR

CL_ABAP_ELEMDESCR

CL_ABAP_REFDESCR

CL_ABAP_COMPLEXDESCR

CL_ABAP_TABLEDESCR

CL_ABAP_STRUCTDESCR

CL_ABAP_OBJECTDESCR

CL_ABAP_CLASSDESCR

CL_ABAP_INTFDESCR
686

Runtime Type Services 16.3
REPORT ZDEMO_EXAMPLES.
TYPES: ty_type TYPE p DECIMALS 2.
DATA: v_data TYPE ty_type,

r_typedescr TYPE REF TO cl_abap_typedescr.
START-OF-SELECTION.
r_typedescr = cl_abap_typedescr=>describe_by_data(v_data).

WRITE: / 'Kind:', r_typedescr->type_kind.
WRITE: / 'Length:', r_typedescr->length.
WRITE: / 'Decimals:', r_typedescr->decimals.

Listing 16.25 Querying Type Information

In Listing 16.25, we’ve defined a R_TYPEDESCR type object as an instance of the
type class CL_ABAP_TYPEDESCR. The type object is instantiated when the DESCRIBE_
BY_DATA static method of the type class is called. To this static method, we’re pass-
ing the data object for which the type information is required.

Once the type object is instantiated with the type information, we can access its
attributes to determine the type information of the data object. The type object
also contains constants that can be used in an IF or CASE structure to compare the
TYPE_KIND attribute.

16.3.2 Runtime Type Creation

As discussed in the previous section, type objects are created using RTTI methods
of RTTS; these type objects can be used to create new types using the RTTC meth-
ods of RTTS. The RTTC methods allow you to dynamically create data types that
can be used to define data objects dynamically.

For example, say you want to dynamically create a structure on the fly and use it
in a SELECT statement. You’ll only know the fields of the structure at runtime. In
such a situation, you use the RTTC methods to define a data type and use to
dynamically create the data object. The GET factory method of the CL_ABAP_
STRUCTDESCR, CL_ABAP_TABLEDESCR, and CL_ABAP_REFDESCR classes allows you to
create a type object.

The required information to create the type object is passed to the factory method
of these classes. For example, the component details are passed to the factory
method of the CL_ABAP_STRUCTDESCR class to create the type object for structure.
Similarly, the structure type object is passed to the factory method of the CL_
ABAP_TABLEDESCR class to create the table type object. Listing 16.26 shows how
687

Dynamic Programming16
the RTTC methods can be used to dynamically define data types and create data
objects using these types.

In Listing 16.26, we’ve defined two selection screen fields to take the table name
and the WHERE clause as input. The program logic is built to display data from any
table given as the input.

To achieve this, in the GET_TABLE subroutine, we’re dynamically identifying the
type information of the given structure to get its components. We’re building an
internal table on the fly using these components and writing a dynamic SELECT
statement to get the data from the requested table. Finally, we’re displaying the
output using ALV in the DISPLAY_TABLE subroutine.

PARAMETERS: p_table TYPE string,
p_where TYPE string.

DATA: r_typedescr TYPE REF TO cl_abap_typedescr,
r_structdescr TYPE REF TO cl_abap_structdescr,
r_tabledescr TYPE REF TO cl_abap_tabledescr,
r_table TYPE REF TO data,
components TYPE cl_abap_structdescr=>component_table,
component LIKE LINE OF components,
ro_alv TYPE REF TO cl_salv_table.

FIELD-SYMBOLS : <table> TYPE ANY TABLE.
START-OF-SELECTION.
PERFORM get_table.
PERFORM display_table.

&--
*& Form GET_TABLE
&--
* text

FORM get_table .
r_typedescr = cl_abap_typedescr=>describe_by_name(p_table).
TRY.

r_structdescr ?= r_typedescr.
CATCH cx_sy_move_cast_error.

ENDTRY.
components = r_structdescr->get_components().
TRY.

r_structdescr = cl_abap_structdescr=>get(components).
 r_tabledescr = cl_abap_tabledescr=>get(r_structdescr).

CATCH cx_sy_struct_creation.
CATCH cx_sy_table_creation .

ENDTRY.
TRY.
688

Runtime Type Services 16.3
CREATE DATA r_table TYPE HANDLE r_tabledescr.
ASSIGN r_table->* TO <table>.

CATCH cx_sy_create_data_error.
ENDTRY.
TRY.

SELECT *
FROM (p_table)
INTO CORRESPONDING FIELDS OF TABLE <table> WHERE (p_where).

CATCH cx_sy_sql_error.
ENDTRY.

ENDFORM.
&--
*& Form DISPLAY_TABLE
&--
* text

FORM display_table .
TRY.

CALL METHOD cl_salv_table=>factory
IMPORTING
r_salv_table = ro_alv

CHANGING
t_table = <table>.

CATCH cx_salv_msg.
ENDTRY.
ro_alv->display().

ENDFORM.

Listing 16.26 Dynamic Type Creation

In the GET_TABLE subroutine of Listing 16.26, we’re first creating the R_TYPEDESCR
type object based on the table name entered on the selection screen. We’re down-
casting the R_TYPEDESCR type object to R_STRUCTDESCR. The R_STRUCTDESCR type
object is an instance of the CL_ABAP_STRUCTDESCR class that contains the RTTC
methods to create new type objects.

We’re calling the GET_COMPONENTS method to get the components of the structure.
Using this information, we call the GET factory method of the CL_ABAP_STRUCTDE-
SCR class to create the structure type object. We pass this structure type object to
the GET factory method of the CL_ABAP_TABLEDESCR class to create the table type
object.

Once we have the table type object, we use the TYPE HANDLE addition with the
CREATE statement to instantiate the data reference with the type object. This will
create the R_TABLE data reference, the type definition of which is defined in the R_
TABLEDESCR type object.
689

Dynamic Programming16
Although the TYPE or LIKE addition allows you to specify a data type or data
object, respectively, the TYPE HANDLE addition with the CREATE DATA statement
allows you to specify a type object.

After the internal table is defined dynamically, we use it in the SELECT statement
to query the given database table and subsequently display the output. As you can
see, we’re handling the errors at each step; error handling is vital to dynamic pro-
gramming.

If the user completes the fields as shown in Figure 16.5, the code in Listing 16.26
will generate the output as shown in Figure 16.6. We can enhance the code fur-
ther to select only specific fields of the table and create the structure with only
specific fields.

Figure 16.5 Selection Screen for Data Browser

Figure 16.6 Data Browser Output

In this section, we looked at both RTTI and RTTC. In the next section, we’ll look
at using dynamic tokens.
690

Dynamic Token Specification 16.4
16.4 Dynamic Token Specification

With many ABAP statements, you can specify individual operands as tokens
dynamically by using a data object enclosed within parentheses. The content of
the data object will then be used as the operand of the statement. For example, in
PERFORM (dobj), dobj (a token) usually is a character-type elementary data object.

The statement will be evaluated at runtime, and if there’s a syntax error, it will
result in a runtime error. For this reason, catching exceptions is very important
while using dynamic tokens in a statement.

The dynamic assignment of operands can cause security risks, especially if the
operands are supplied externally. For this reason, the CL_ABAP_DYN_PRG class
should be used to check the operand thoroughly before using it in the statement.
The class documentation for CL_ABAP_DYN_PRG provides more information about
different scenarios in which the methods of the class can be used.

Some of the statements in which operands can be specified dynamically include
the following:

� SUBMIT (dobj)

With this statement, you supply the program name dynamically. The following
code example shows using the dynamic token with a SUBMIT statement:

DATA lv_progname TYPE progname.
SELECT SINGLE progname FROM zprogdir INTO lv_progname WHERE ...
SUBMIT (lv_progname).

� WRITE (dobj) TO..

With this statement, you can pass formatting options dynamically. For exam-
ple, in the following code, we’re passing the formatting of the SY-DATUM system
date field to the DATE character field.

After the WRITE statement is executed, the contents of the DATE field will have
the formatting of the SY-DATUM field:

DATA format_date TYPE c LENGTH 8 VALUE 'SY-DATUM'.
DATA date TYPE c LENGTH 10.
date = sy-datum.
WRITE (format_date) TO date.

� CALL FUNCTION

The CALL FUNCTION statement only supports dynamic calls. We can either pass
the data object or use a literal for the function module name.
691

Dynamic Programming16
For example:

DATA form_name TYPE C LENGTH 30 VALUE 'ZDEMO_FM'.
CALL FUNCTION (form_name)
EXPORTING
.....
IMPORTING
.....

� CALL TRANSACTION

Similar to CALL FUNCTION, the CALL TRANSACTION statement also supports only
dynamic call. The name of the transaction should be supplied dynamically
using a data object or statically using a literal.

For example:

DATA tcode TYPE C LENGTH 30 VALUE 'MM03'.
CALL TRANSACTION (tcode).

� ASSIGN (dobj)

Dynamically assigns the field to a field symbol.

For example:

DATA field TYPE C LENGTH 30 VALUE 'V_MATNR'.
FIELD-SYMBOLS <fs> TYPE ANY.
ASSIGN (field) TO <fs>.

� READ, MODIFY, DELETE, SORT

You can specify internal table fields dynamically with these statements.

For example:

DATA field TYPE C LENGTH 30 VALUE 'MATNR'
SORT itab BY (field).

� CLASSES

You can access class attributes dynamically. For an instance attribute, you can
specify the attribute name dynamically, as follows:

ASSIGN oref->(attribute_name) TO <fs>

For a static attribute, you can even specify the class name dynamically, as fol-
lows:

ASSIGN (class_name)=>(attribute_name) TO <fs>

Apart from operands, the WHERE clause for an Open SQL statement can also be
constructed dynamically, as shown in Listing 16.26. With the WHERE clause, the
692

Dynamic Procedure Calls 16.5
complete statement can be constructed dynamically without any restrictions. The
dynamic WHERE clause is supported for internal tables as well.

In this section we looked at dynamic tokens. In the next section, we’ll look at call-
ing procedures dynamically.

16.5 Dynamic Procedure Calls

Procedures can be called dynamically using dynamic tokens. For example, if you
can determine the subroutine that needs to be called only at runtime, then you
can pass the subroutine name using a dynamic token. When calling an external
subroutine, the program name can also be passed dynamically as follows:

PERFORM (l_name) IN PROGRAM (l_program) IF FOUND.

When calling a subroutine dynamically, the system will generate a runtime error
if the specified subroutine or program is not found. To avoid the runtime error,
you should use the IF FOUND addition.

Methods can also be called dynamically by passing the class name and the
method name with a dynamic token. In fact, the parameters of the method can
also be supplied dynamically using the PARAMETER-TABLE addition as follows:

CALL METHOD class_name=>method_name PARAMETER-TABLE para.

In the preceding statement, we’re passing the parameters to the method dynami-
cally using the PARAMETER-TABLE addition. Here, an internal table of type ABAP_
PARMBIND_TAB is expected. The line type of ABAP_PARMBIND_TAB consists of three
fields: NAME, KIND, and VALUE. The NAME field should contain the formal parameter
name.

The KIND field should be filled with the parameter type (whether exporting,
importing, returning, etc., from a caller’s point of view). The VALUE field should
contain the reference of the actual parameter.

We can use the constants of the cl_abap_objectdescr class to fill the KIND field.
As with PARAMETER-TABLE, non-class-based exceptions can be handled using the
EXCEPTION-TABLE addition.
693

Dynamic Programming16
As with methods, the parameters for a function module can also be supplied
dynamically using PARAMETER-TABLE. The only difference is that PARAMETER-TABLE
when used for the function module is of type ABAP_FUNC_PARMBIND_TAB.

Listing 16.27 shows example code using a parameter table to pass parameters
dynamically.

DATA: fm_name TYPE STRING,
filename TYPE STRING,
filetype TYPE C LENGTH 80,
text_tab LIKE STANDARD TABLE OF LINE,
fleng TYPE I,
ptab TYPE abap_func_parmbind_tab,
ptab_line LIKE LINE OF ptab,
etab TYPE abap_func_excpbind_tab,
etab_line LIKE LINE OF etab.

fm_name = 'GUI_DOWNLOAD'.
filename = 'C:\text.txt'.
filetype = 'ASC'.

ptab_line-NAME = 'FILENAME'.
ptab_line-KIND = abap_func_exporting.
GET REFERENCE OF filename INTO ptab_line-VALUE.
INSERT ptab_line INTO TABLE ptab.

ptab_line-NAME = 'FILETYPE'.
ptab_line-KIND = abap_func_exporting.
GET REFERENCE OF filetype INTO ptab_line-VALUE.
INSERT ptab_line INTO TABLE ptab.

ptab_line-NAME = 'DATA_TAB'.
ptab_line-KIND = abap_func_tables.
GET REFERENCE OF text_tab INTO ptab_line-VALUE.
INSERT ptab_line INTO TABLE ptab.

ptab_line-NAME = 'FILELENGTH'.
ptab_line-KIND = abap_func_importing.
GET REFERENCE OF fleng INTO ptab_line-VALUE.
INSERT ptab_line INTO TABLE ptab.

...

etab_line-NAME = 'OTHERS'.
etab_line-VALUE = 10.
INSERT etab_line INTO TABLE etab.

CALL FUNCTION fm_name
PARAMETER-TABLE
694

Dynamic Program Generation 16.6
ptab
EXCEPTION-TABLE
etab.

Listing 16.27 Parameter Table

In Listing 16.27, we defined the parameter table PTAB as type ABAP_FUNC_PARM-
BIND_TAB. We’re filing the parameter of the function module GUI_DOWNLOAD
dynamically in the internal table PTAB.

The function module is called dynamically, and the parameter table is passed
using the PARAMETER-TABLE addition. We’re also passing the exceptions table
ETAB, which is defined as type ABAP_FUNC_EXCPBIND_TAB.

This section looked at the process of calling procedures dynamically. In the next
section, we look at a more advanced feature of ABAP: dynamic program genera-
tion.

16.6 Dynamic Program Generation

In addition to all the dynamic programming concepts discussed in this chapter,
which can be used within an ABAP program, we can also generate ABAP pro-
grams dynamically. Generating a program dynamically should be used as a last
resort if other dynamic programming techniques do not satisfy your require-
ments.

Dynamic program generation is for expert programmers and should be used with
caution; it can cause serious problems if you don’t know what you’re doing. The
downsides of programs generated dynamically are that these programs can’t be
tested like regular programs and can involve serious security risks.

There are two types of programs that can be generated dynamically:

� Transient program
A transient program exists temporarily in the internal session memory and can
be accessed only from the current internal session. The GENERATE SUBROUTINE
POOL itab NAME prog statement is used to generate a temporary subroutine pool
program. The internal table itab should be a character type and contains the
source code of the program. The prog variable contains the name of the gener-
ated program, via which the program can be accessed.
695

Dynamic Programming16
The generated subroutine pool program can contain local classes or subrou-
tines, which can be accessed from outside of the program. If the source code of
the program contains any syntax errors, the program isn’t generated.

Listing 16.28 shows sample code to generate a temporary subroutine pool pro-
gram. In this example, we’re appending the internal table IT_SOURCE with the
source code of the subroutine pool program and generating the program using
the GENERATE SUBROUTINE POOL statement.

DATA: it_source TYPE TABLE OF string,
program TYPE string ,
mesg TYPE string.

APPEND 'PROGRAM.' TO it_source.
APPEND 'FORM subr.' TO it_source.
APPEND 'WRITE / ''This is dynamic subroutine''.' TO it_source.
APPEND 'ENDFORM.' TO it_source.

GENERATE SUBROUTINE POOL it_source NAME program MESSAGE mesg.
IF sy-subrc = 0.
PERFORM subr IN PROGRAM (PROGRAM).
ENDIF.

Listing 16.28 Dynamic Subroutine Pool

� Persistent program
Persistent programs exist permanently in the repository and can be accessed
just like other programs that are created manually. The INSERT REPORT prog
FROM itab statement generates a persistent program. Here, the internal table
itab contains the source code of the program, and the prog variable contains
the program name.

You should be careful when using this statement: If a program with the same
name already exists, it will be overwritten without any warning. To ensure you
don’t overwrite existing programs, we recommend checking the database table
TRDIR to see if a program with the same name already exists.

Listing 16.29 shows example code to generate a program dynamically. In this
example, we’re filling the internal table IT_SOURCE with the source code line by
line and then using the INSERT REPORT keyword to generate the program.

REPORT ZDYN_PROG.

DATA: it_source TYPE TABLE OF rssource-line.
696

Summary 16.7
APPEND 'REPORT ZDYN_EXAMPLE.' TO it_source.

APPEND 'WRITE / ''This program is generated dynamically''.'
TO it_source.

INSERT REPORT 'ZDYN_EXAMPLE' FROM it_source.

Listing 16.29 Dynamic Program Generation

When generating programs dynamically, it’s a good idea to create a program stat-
ically and use that program as a template to generate new programs. You can use
the READ REPORT INTO itab statement to read the source code of an existing pro-
gram, which can then be used as a template to generate a new program.

16.7 Summary

In this chapter, we explored the various concepts that can be used to make ABAP
programs dynamic. Dynamic programming may seem intimidating, especially for
a beginner, but it opens up many possibilities, such as developing applications
that can handle dynamic requirements and work across multiple business func-
tions.

This chapter looked at how field symbols and data references can be used to
dynamically point to existing memory of data objects, and you saw how anony-
mous data objects can be created using data references.

We also discussed the RTTS framework and how it helps to dynamically find the
type information of program data objects and to create new data types in the pro-
gram during runtime. We concluded the chapter with a discussion of calling pro-
cedures dynamically and how to generate programs dynamically. We hope this
knowledge will help you to approach program development from a different per-
spective.

In the next chapter, we’ll discuss the process of debugging, which plays an
important role in identifying problems within a program, especially if dynamic
elements are involved.
697

Chapter 17

This chapters touches on the debugging options offered in ABAP. The
ABAP Debugger, as the name suggests, will help you debug code. This
chapter explains all the options available in both the new and classic
versions of this tool. We’ll also briefly look at the new AMDP Debugger.

17 Debugging

A debugger is an invaluable tool for any programming environment. Whereas the
syntax checker helps identify any syntax or static errors, the debugger helps you
to identify any logical errors. Sometimes, it’s impossible to detect logical errors
without debugging. Having good debugging skills helps you to troubleshoot
many problems with application programs.

Debugging helps you to analyze program flow for a specific scenario and analyze
program execution. Using a debugger, you can stop at a particular point in the
program execution and analyze the system status, the contents of the data objects,
and so on. The debugger is a program tool that allows you to execute a program
systematically and analyze the system status at each step to troubleshoot prob-
lems with the program.

If you’re a beginner to ABAP, a debugger can be your best friend when it comes
to understanding ABAP programming; it allows you to examine your programs
step by step, which in turn can help you understand how each statement behaves
and the functionality it offers. The more comfortable you are with ABAP, the bet-
ter you become at debugging programs to troubleshoot problems. If you’re an
intermediate to advanced ABAP user, the debugger is still an immensely helpful
tool to ensure error-free code.

SAP offers two debugging tool versions: (1) the old debugger, called the Classic
Debugger, which was available for releases earlier than SAP NetWeaver AS ABAP
6.40, and (2) the New Debugger, released with SAP NetWeaver AS ABAP 6.40. As
you may expect, the New Debugger offers many more features than the Classic
Debugger.
699

Debugging17
If you’re a beginner, you may find the New Debugger overwhelming, so we’ll
start our discussion in this chapter with the Classic Debugger and then look at all
the new features offered by the New Debugger. However, SAP is phasing out the
Classic Debugger, and as of SAP NetWeaver 7.5, the Classic Debugger has been
declared obsolete. It’s no longer possible to set the Classic Debugger as the default
debugger, and we recommend using the New Debugger, which is the default
debugger. The major difference between the two debuggers is that the Classic
Debugger loads in the same session as the program, whereas the New Debugger
uses a two-process architecture so that it’s loaded in a new session. The New
Debugger also offers a customizable user interface with many new tools.

In Section 17.1, we’ll begin by looking at the Classic Debugger features, which are
similar to the New Debugger features. Specifically, we’ll discuss how to activate
and use the Classic Debugger and discuss the different types of views and addi-
tional features available.

Section 17.2 will then touch on the features offered in the New Debugger, includ-
ing its UI and tools. From there, in Section 17.3, we’ll discuss a new debugger
tool as of SAP NetWeaver 7.5: the ABAP Managed Database Procedures (AMDP)
Debugger.

In Section 17.4 and Section 17.5, we end the chapter by looking at how the de-
bugging tools can enable to troubleshoot code and identify important concepts.

17.1 Classic Debugger

To understand the various features of the Classic Debugger, let’s work with an
example that sets up a problem and see how to go about troubleshooting the
problem using this tool. For the example, assume a report isn’t showing the
expected output, and you want to debug the program to figure out where things
are going wrong.

In this section, we’ll begin by looking at how to activate and use the Classic
Debugger.
700

Classic Debugger 17.1
17.1.1 Activating and Using the Classic Debugger

The Classical Debugger can be activated by changing the user settings. From any
ABAP Workbench tool, such as ABAP Editor (Transaction SE38), use the menu
path Utilities � Settings; under the ABAP Editor tab, select the Debugging sub-
tab, as shown in Figure 17.1.

Here, you can select the Classic Debugger radio button under the ABAP Debug-

ger section. Once the setting is changed, the system will call the Classic Debugger
by default. Note that this setting is no longer possible to set in SAP NetWeaver
7.5.

Figure 17.1 Setting Classic Debugger

Now that we’ve activated the Classic Debugger tool, let’s look at the debugging
process.

The first step to debugging is to identify from which point in the program flow
you want to start debugging. Do you want to start debugging from the beginning
of the program or from a specific point in the program? For example, if you’re not
seeing the expected output for your report program, you may want to start by
troubleshooting the data selection logic. If your program has logic for selection
screen validations, which typically occurs before data selection, you may want to
skip debugging all of the selection screen logic and jump directly to the selection
logic. So, in this case, our starting point will be the selection logic.
701

Debugging17
Once you identify the starting point, you need to set a breakpoint in the code. A
breakpoint stops the program execution and calls the debugger. There are two
types of breakpoints you can set:

� Session breakpoint
A session breakpoint is triggered when the program is executed from with the
SAP GUI session.

� External breakpoint
The external breakpoint is triggered when the program is called externally from
a different system. This is useful when you want to debug, say, RFC or Web
Dynpro ABAP, when they’re called from external applications.

To set a breakpoint, keep your cursor on the statement and click the Session

Breakpoint button in the application toolbar, as shown in Figure 17.2. Alterna-
tively, you can double-click in the first column of ABAP Editor to set a breakpoint.
Repeat the same process to delete the breakpoint. The program should be in an
active status to set a breakpoint. If the program is not active, activate the program
first before setting the breakpoint.

Figure 17.2 Setting Breakpoint

Once the breakpoint is set, execute the program; the debugger will automatically
load when the program reaches the breakpoint location during program execu-
tion. When you’re in debug mode, you can set new breakpoints or delete existing
breakpoints by double-clicking at the beginning of the line. Click the Save button
in the standard toolbar to save the new breakpoints. The Classic Debugger should
now look similar to Figure 17.3.

Session Break
Point

External Break
Point

Double-click
on this column
702

Classic Debugger 17.1
Figure 17.3 Classic Debugger

The top section of the debugger provides various options, as shown in Figure
17.4. Here, you have the option to execute the code step by step, switch to differ-
ent views, create watchpoints, and scroll through the debugger window. A watch-
point allows you to stop the program execution when a field contains a specific
value. Watchpoints are useful for debugging based on a field value as opposed to
a specific ABAP statement.
703

Debugging17
The different views on the debugger screen allow you to check information
while debugging; you’ll learn more about these views in the following subsec-
tions. The execution steps allow you to execute the code step by step to trou-
bleshoot issues. The horizontal and vertical scrolling buttons allow you to
scroll through the debugger window. The debugger window also displays the
program and subprogram name that you’re currently debugging.

Figure 17.4 Debugger: Top Area

There are four ways to execute the code in debug mode:

� Single Step (Press (F5))
This will execute the code line by line. Use this if you want to execute each
statement, one-by-one.

� Execute (Press (F6))
This will execute the complete processing block and go to the next statement
after the call location if used at the processing block call location. For example,
if you press (F6) at the PERFORM statement or CALL FUNCTION statement, the
debugger will execute the subroutine or function module completely without
going inside the block. This is useful if you don’t want to check the execution
of a processing block and skip to the next statement after the call location. If
(F6) is used at any location except a processing block call, it will behave simi-
larly to Single Step and execute each line, one-by-one.

� Return (Press (F7))
This option will exit the processing block if used inside a processing block. For
example, if you’ve entered a processing block by pressing (F5) and after execut-
ing a few lines you realize you want exit the processing block because you don’t
want to analyze further code, you can press (F7) to leave the processing block
and go back to the statement immediately after the call location.

Horizontal/Vertical
Scrolling

Create Watchpoint

Execution Steps

Program/
Subprogram info

Views
704

Classic Debugger 17.1
� Run (Press (F8))
This will go to the next breakpoint or complete the program execution if no fur-
ther breakpoints are set.

The Classic Debugger screen provides different views, which we’ll discuss in the
following subsections.

17.1.2 Field View

In the field view, you can assess the contents of different fields. At the bottom of
the debugger screen, this view shows two columns, as in Figure 17.5.

Figure 17.5 Checking Field Contents

You can double-click a field name to copy it to the Field Names column and see
the field contents in the Field Contents column. You can also manually type a
field name in the Field Names column. Double-clicking a field name will show
the technical attributes of the field. If the field is a structure, it will show the con-
tents of the structure.

Clicking on the pencil icon at the end of the row will allow you to change the con-
tents of the field. For example, if you want to test for a particular value, you can
dynamically change the field contents in debug mode by clicking the pencil icon.

At the bottom of the screen, you can see the contents of certain system fields. This
will help you quickly assess the status, such as if the SELECT was successful (SY-
SUBRC), or check the number of rows fetched from the database after the SELECT
was executed (SY-DBCNT).

17.1.3 Table View

The table view allows you to check the contents of internal tables, as shown in
Figure 17.6. Double-click a line number to see the complete line. You can use the
705

Debugging17
horizontal scrolling buttons at the top of the debugger to scroll horizontally in the
table. Also, you can check a single row of a table by using the index number
within square braces; for example, it_mara[3] will display the third row of an
internal table like a structure.

The Change, Insert, Append, and Delete buttons will allow you to change the
contents of a row, insert a new row, append a new row, or delete a row, respec-
tively. The plus icon in the top-right corner in Figure 17.6 will expand the table
view vertically.

Figure 17.6 Table Contents

17.1.4 Breakpoints View

The breakpoints view (see Figure 17.7) allows you to see all the breakpoints of the
program. You can delete any breakpoint by double-clicking the breakpoint sym-
bol to the left of the respective line.

Figure 17.7 Breakpoints View
706

Classic Debugger 17.1
17.1.5 Watchpoints View

The watchpoints view lists all the watchpoints set for the debugging session.
Watchpoints allow you to interrupt the program execution when a particular field
is updated with a specific value.

For example, say you want to debug the code within an internal table loop when
a particular row is copied to the work area. In such a case, you can create a watch-
point to monitor the work area. When the work area is updated with the value,
the program execution stops and waits for your interaction.

To create a watchpoint, click the Create Watchpoint button at the top of the
debugger screen (refer back to Figure 17.4). This will open the Create/Change

Watchpoint dialog box, in which you can provide information about the field
that you want to monitor and the value, as shown in Figure 17.8.

Figure 17.8 Creating Watchpoint

You can create multiple watchpoints and select the logical operator between the
watchpoints as an OR condition or an AND condition, as shown in Figure 17.9.
Clicking the pencil icon allows you to edit a watchpoint, and clicking the Delete

icon allows you to delete a watchpoint.

Figure 17.9 Watchpoints View
707

Debugging17
Once the watchpoint is set, press (F8) and the system will automatically stop at
the next breakpoint or when the watchpoint is reached. Watchpoints are useful
when you want to troubleshoot based on field values rather than program flow.

17.1.6 Calls View

The calls view provides information about the complete call stack of the session.
This allows you to check all the programs loaded in the call stack, as shown in
Figure 17.10.

Figure 17.10 Call Stack

This view is useful if you want to check all the programs that are loaded into the
session while your program is running. Checking the call stack allows you to ver-
ify if an expected procedure is loaded or ignored during program execution.

17.1.7 Overview View

The overview view lists all the processing blocks of the current main program,
with an arrow pointing to the processing block that is being executed currently,
as shown in Figure 17.11. This view allows you to quickly identify the current
processing block being executed.

17.1.8 Settings View

The settings view allows you to change the debugger settings and system behav-
ior. There are various settings that can be changed, as shown in Figure 17.12. You
can learn more about these settings by referring to the SAP Help documentation
708

Classic Debugger 17.1
at https://help.sap.com/saphelp_erp60_sp/helpdata/en/c6/617d0ce68c11d2b2ab080
009b43351/content.htm.

Figure 17.11 Overview View

Figure 17.12 Classic Debugger Settings
709

https://help.sap.com/saphelp_erp60_sp/helpdata/en/c6/617d0ce68c11d2b2ab080009b43351/content.htm
https://help.sap.com/saphelp_erp60_sp/helpdata/en/c6/617d0ce68c11d2b2ab080009b43351/content.htm

Debugging17
17.1.9 Additional Features

The menu bar of the debugger screen offers addition features, as shown in Figure
17.13. Under the debugging menu, you can select Control � Goto Statement to
jump to a specific cursor position. For example, if you’ve executed a statement
and want to jump back and execute the statement again, you can keep the cursor
on the statement and follow the menu path Debugging � Control � Goto State-

ment, as shown in Figure 17.13. From this menu, you can also choose Switch to

New ABAP Debugger.

Figure 17.13 Jumping to Statement

You can select Debugging � Debugging off to turn off debugging and complete
the program execution. This will complete the program execution without stop-
ping at any additional breakpoints.

You can select Debugging � Restart to terminate the program execution. This is
useful, for example, if you’ve changed any values in debug mode and don’t want
the program to update those values in the database.

The GoTo menu offers certain interesting options. Select GoTo � Display Data

Object to load different data object views and see various data objects. For exam-
ple, selecting GoTo � Display Data Object � Object will open a view in which you
can analyze the contents of an object, as shown in Figure 17.14. This object view
provides certain specific options to check the contents of the object. For example,
you can filter based on the visibility section or display only static attributes or
instance attributes of the object.
710

Classic Debugger 17.1
Figure 17.14 Object View

Following the menu path GoTo � Status Display � Memory Consumption allows
you to check the memory consumption of the program. Meanwhile, following
the menu path Breakpoints � Breakpoint At allows you to set a breakpoint when
a particular statement is executed, a function module is called, and so on, as
shown in Figure 17.15. This option is particularly useful when debugging long
programs.

For example, if you’re getting a runtime error and want to debug what’s causing
the runtime error or check the status of the program before the exception is trig-
gered, you can check the short dump to identify the statement causing the excep-
tion; once you’re in debug mode, select the menu Breakpoints � Breakpoint At �
Statement to enter the statement at which you want to set the breakpoint. Then,
the system will stop each time that statement is called. You can use the same
Breakpoints � Breakpoint At menu to quickly stop at a particular Function

Module or Method call.

Figure 17.15 Setting Breakpoint at Particular Call

Another menu option worth mentioning is the option to activate system debug-
ging, which allows you to debug system programs (programs of TYPE s). For
711

Debugging17
example, say you’re debugging a program and come across a function module
call, as shown in Figure 17.16.

Figure 17.16 Debugging System Program

The SUSR_SHOW_USER_DETAILS function module shown in Figure 17.16 belongs to
a function group for which the Program Status is set to system program (type S),
as shown in Figure 17.17. If you press (F5) at this function module call, the
debugger won’t enter the function module. To enter the function module, you
first need to activate system debugging. To do so, follow the menu path Set-

tings � System Debugging. It’s turned off by default to allow you to skip debug-
ging system programs, which usually don’t pose any issues.

Figure 17.17 Program Status
712

Classic Debugger 17.1
Other than keeping a breakpoint in the program source code, you also can acti-
vate the debugger by typing /H in the command bar of the screen. This option is
useful if you want to start debugging from the PAI of a certain screen of the appli-
cation. For example, say you want to analyze the code called when you select a
particular button on the screen. Going through the source code to identify the
code called for the button action is cumbersome. You easily can avoid manually
looking through the source code by activating debugging for the screen and per-
forming the action for which you want to examine the program execution.

Sometimes, you may want to activate debugging for modal dialog windows.
Because these windows don’t have a command bar, you can’t use /H to activate
the debugger for such windows. To activate the debugger for dialog windows
without a command bar, you can create a shortcut for the /H command and then
drag and drop this shortcut onto the dialog window. To create a shortcut, click
the Generate Shortcut icon in the standard toolbar of any screen. This will open
a dialog window, as shown in Figure 17.18.

Figure 17.18 Create Shortcut
713

Debugging17
Under Type, select System Command and enter “/H” in the Command field. For
Location, select Desktop and then click Finish. This will create a shortcut on
your desktop. You can drag and drop this shortcut onto any modal dialog box to
turn on debugging for the window.

17.2 New Debugger

The Classic Debugger loads in the same session as the program. This poses certain
technical challenges for debugging ABAP programs. This also restricts developing
a new UI design for the debugger. To overcome such challenges, SAP introduced
the New Debugger.

In the following sections, we’ll look at the UI and tools offered with the New
Debugger that differ from the Classic Debugger. We’ll also look at the overall lay-
out and the use of sessions.

17.2.1 UI and Tools

The New Debugger provides a feature-rich UI that can be customized to display
up to four tools in a desktop. Figure 17.19 shows the New Debugger with the UI
customized to display different tools. One tool shows the source code, another
tool shows an internal table, the third tool shows an object, and the fourth tool
shows variables.

Each tab is called a desktop in the New Debugger, and there are twelve total desk-
tops, with each desktop capable of displaying four tools. Each tool has its own
options, as shown in Figure 17.20. Using the available options for the tool, you
can load new tools in the desktop, replace the tool, swap the tool, maximize the
tool, and so on. There are also specific services for the tool that can be accessed
using the Services of the Tool icon.
714

New Debugger 17.2
Figure 17.19 New ABAP Debugger

Figure 17.20 Tool Area

Close tool

New tool

Replace tool

Full screen

Maximize horizontally

Swap tool

Services of the tool

Various desktops
715

Debugging17
Selecting the New Tool option opens a window, as shown in Figure 17.21. As
you can see, the New Debugger provides wider tool support than the Classic
Debugger. It also provides some special tools—for example, a tool to debug Web
Dynpro applications. Select any tool from the New Tool window to add it to the
desktop.

The process to run through the code and analyze data objects is similar to that for
the Classic Debugger (using (F5) to (F8) function keys, as discussed in Section
17.1.1). Compared to the Classic Debugger, the Create Watchpoint window,
apart from variables, allows you to set watchpoints to monitor changes to object
attributes.

Following the menu path Miscellaneous � Debugger Tips will lead you to vari-
ous tips to use the New Debugger. We recommend that you go through all the
tips to feel comfortable using the New Debugger.

Figure 17.21 New Debugger Tools
716

New Debugger 17.2
17.2.2 Layout and Sessions

You can save the layout of the New Debugger via the menu path Debugger �

Debugger Session � Save Layout (see Figure 17.22). This option is useful if you
customized the desktop layout with different tools and want to use the result as
your default layout.

Figure 17.22 Save Layout

You can save the current debugging session via the menu path Debugger �

Debugger Session � Save. This will open the Save Current Debugging Session

window, as shown in Figure 17.23. You can save the current debug session to a
file or to database by selecting the relevant radio button and providing a name for
the session. Optionally, you can also add a comment to easily identify a saved ses-
sion.

Different components of the session, such as layout, breakpoints, watchpoints,
settings, options and variables, can be saved (see Figure 17.23). You can load a
saved session via the menu path Debugger � Debugger Session � Load, view the
saved sessions and delete them via the menu path Debugger � Debugger Ses-

sion � Overview/Delete, and change the names of the desktop tabs via the
menu path Debugger � Debugger Session � Designation of the User Desktop.

Because the New Debugger opens in a new session, when the application being
debugged becomes ready for input, the external debugger session remains open
and the application screen is presented to the user for input. If any further break-
point is reached, the debugger loads automatically. This ensures that the debug-
ger doesn’t lose any layout changes or tool arrangements set previously.
717

Debugging17
Figure 17.23 Save Current Debug Session

To close the external debugger session when the control is returned to the appli-
cation, use the /hx command in the command bar of the application screen. The
debugger can be turned on from any transaction screen using the /h command in
the command bar of the SAP GUI screen.

17.3 AMDP Debugger

ABAP Managed Database Procedures (AMDP) are a new feature as of SAP Net-
Weaver AS ABAP 7.5. They enable developers to write database procedures
directly into ABAP code. Because the AMDP Debugger deals primarily with the
topic of ABAP in SAP HANA we won’t dive into much depth in this section.

You can debug AMDPs via the ADT. The AMDP Debugger enables you to debug
executed database procedures that run on top of an SAP HANA database.

The following are the prerequisites that must be fulfilled before using the AMDP
Debugger:

� SAP NetWeaver 7.5 or higher

� SAP HANA SPS 09 or higher

� ADT 2.51, or higher
718

Using the Debugger to Troubleshoot 17.4
The AMDP Debugger provides numerous features. The following list highlights a
few of these capabilities:

� Execute database procedures

� Debug SQLScript and Llang

� Analyze table variables

� Analyze scalar variable values

� Create and manage breakpoints of AMDP classes in embedded code

In the next two sections, we end the chapter by looking at how the debugger can
be used for troubleshooting and as a learning tool.

17.4 Using the Debugger to Troubleshoot

Sometimes, it’s difficult to identify problems with programs just by reading the pro-
gram code. Programs often behave unexpectedly under particular circumstances.

Debugging helps you to check how the program is behaving at a particular
moment, under particular circumstances. Sometimes, the problem may not be
with the program at all and may be externally generated. For example, the post-
ing program may not be posting the document not due to program error, but due
to the wrong data being fed into the program. In such a situation, debugging the
program may be the only way to troubleshoot.

Debugging helps troubleshoot any logic errors that are difficult to identify by
reading the code. Understanding how to use the debugger tool is just one part;
the major skill lies in understanding the program flow and knowing what to
debug. If the program is big, you may end up spending hours or even days debug-
ging to identify a problem.

In this section, we’ll provide tips that should help you troubleshoot issues:

� The first step to troubleshooting is to identify where to start. For example, if
the program isn’t giving the right output, start with the selection logic.

� Use (F6) to skip debugging unwanted processing blocks. For example, if you
come across a function call and you’re sure that the problem doesn’t lie in the
function module, press (F6) to skip debugging the function module call. This
saves you a lot of time while debugging.
719

Debugging17
� Check program variables while debugging. It may sound obvious, but many
people—especially beginners—debug the whole program without even bother-
ing to check if the program variables are initialized with the right data.

� Check if the program is executing the right control structures. If the program is
expected to execute the code in a certain IF condition for the given data, check
if that’s happening. If the program variables are initialized with unexpected
data, the program logic may fail. This is another reason that you should check
if the program variables are initialized with expected data.

� Set and save breakpoints from within the debugger. When executing long pro-
grams, you may go through a long list of code before you can zero in on the
problem. Setting a breakpoint halfway through may help you to start from
where you left off when you rerun the program. However, breakpoints are
valid only for the current session, so if you log out from the system or get dis-
connected, you may have to start from the beginning.

� Use watchpoints to run through the code faster. Want to check how the pro-
gram is behaving when the 898th record of the internal table is being pro-
cessed? Don’t press (F5) until you reach the 898th loop; use watchpoints to
directly jump to that row.

� Use the Breakpoint At option (see Figure 17.24) in the debugger to go directly
to a statement or a procedure call if you feel a certain statement or a procedure
is causing the issue.

Figure 17.24 Setting Breakpoint
720

Using the Debugger as a Learning Tool 17.5
� Want to check why a particular error message or exception is being thrown by
the program? Simply place the breakpoint for that message or exception using
the Breakpoint At menu (see Figure 17.24), and monitor the program vari-
ables to identify what is triggering that exception.

� If you encounter a loop statement, keep a breakpoint outside the loop and press
(F8) to continue debugging the program without going through each loop pass.

� Debug only relevant code. If you’re facing issues with a certain task in the
application, focus on debugging only the relevant code for that task. Using
/H to start debugging from that specific screen may help you understand
all the code that’s being executed for that task.

� Short dumps are your best friends. If the program is generating a short dump,
read it carefully; it will provide invaluable information about the problem.

These tips should help make you comfortable when troubleshooting problems
using the debugger. The more you understand ABAP programming, the better
you become at debugging.

17.5 Using the Debugger as a Learning Tool

In addition to using the debugger as a troubleshooting tool, you also can use the
debugger as a learning tool. Debugging helps you to see what exactly is happen-
ing behind the scenes when you execute a program. You don’t have to imagine
what a particular statement is doing; just debug to see what exactly happens
when the statement is executed. Debugging helps you visualize program execu-
tion better, which in turn helps you to understand the program flow. Debugging
indirectly helps you to understand programming better by relating various
actions performed by different ABAP statements.

If you’re a beginner, we recommend that you debug every program that you cre-
ate to help you understand the program flow. For example, if you’re using events,
check in debug mode to see the order in which the events are triggered. As an
exercise, list all the event blocks (such as selection screen events, reporting
events, list events, etc.) in an ABAP program, and in debug mode check the
sequence in which these events are called.

Developing debugging skills is a continuous process, so the more you debug, the
better you become.
721

Debugging17
17.6 Summary

In this chapter, you learned how to use the debugger tool. We discussed both
Classic Debugger and New Debugger. We explored all the options available while
debugging programs. We also provided some tips, which you can keep in mind
while troubleshooting programs.

In the next chapter, we’ll discuss developing forms in SAP. Forms allow you to
print documents, and because almost all businesses need forms, creating them is
one of the frequent tasks you’re likely to undertake.
722

Chapter 18

In this chapter, we’ll explain how to create forms using the three primary
SAP form technologies. We’ll describe the process and provide step-by-step
examples.

18 Forms

Forms print application data. Reports are typically used to process data in a user-
driven fashion and display the result on the screen. With forms, we process the
data from the database and print the output. Because reports also provide the
ability to print the output, you may ask, “Why exactly do we need forms?” With
reports, you’re limited to displaying the data in a tabular or hierarchical format,
but forms provide more control over how you print the output.

If you’ve ever seen an invoice, you may have noticed that the data on the invoice
isn’t exactly in a tabular format. An invoice typically has many sections (or win-
dows) in which different information is printed. For example, one window on the
top right might show invoice details such as the invoice number, payment due
date, and so on. Another window on the top left might show customer details and
shipping information. The main section in the center of the page might show item
details and the like.

Figure 18.1 shows a typical invoice; you can see the invoice data printed across
various sections of the page.

Forms generally are used to print document data such as sales orders, invoices,
delivery documents, and so on. Sometimes, there is a legal requirement to print
these documents in a specific format. With form development, we use a layout
designer that helps format the page for printing.

There are three different technologies available to develop forms: SAPscripts,
smart forms, and SAP Interactive Forms by Adobe. Each new technology has
attempted to make developing and maintaining forms easy. The oldest among
them is SAPscripts, which always was and still is a pain to develop and has a lot of
limitations. We’ll discuss SAPscripts in Section 18.1.
723

Forms18
Figure 18.1 Typical Invoice

Realizing the limitations of SAPscripts, SAP introduced smart form technology,
which simplified the form development to a large extent. We’ll cover smart forms
in Section 18.2. More recently, SAP has adopted Adobe forms technology, which
further simplifies form development. We’ll talk about SAP Interactive Forms by
Adobe in Section 18.3.

Let’s start our discussion of form technology in SAP systems by looking at SAP-
scripts.

Company Logo

Totals

Invoice Details

Consignee Details

Item Details
724

SAPscripts 18.1
18.1 SAPscripts

SAPscripts is the oldest of the three technologies available for form development.
We use the Form Painter tool to develop forms based on SAPscripts. Because SAP-
scripts is obsolete and replaced with smart forms and Adobe technology, we rec-
ommend not using it for new developments. However, SAP will support existing
forms developed using SAPscripts for years to come and your company may still
be using old forms that were developed in SAPscripts, so understanding how it
works is crucial from a maintenance point of view.

In this section, we’ll explain the development activities involved with form devel-
opment using SAPscripts. We’ll limit our discussion to concepts that lay the foun-
dations for understanding the newer technologies (smart forms and Adobe
forms) or that help you appreciate the advantages that the new technologies bring
to the table.

18.1.1 Overview and Layout

From a developer point of view, there are two components involved with form
development: the driver (or interface) program, via which the required data is
extracted from the database, and the form layout, in which the extracted data is
printed. The driver program is an executable program created using ABAP Editor.
The form layout is designed using Form Painter (Transaction SE71). A component
called a composer acts as a central output module, which prepares the text for a
certain output device by including all the formatting information.

The composer works behind the scenes and is not visible to the outside. We acti-
vate the composer by calling certain function modules in the driver program to
process the form. The driver program retrieves the data from the database and
the form and controls the output.

Let’s get started with form development and discuss the various activities as we
go along. For an example, let’s print some header and item data from a billing
document. The driver program can be executed directly, but in most cases it’s
called from the application using the message control or linking an output type.
We’ll discuss message control and output types in more detail later in this section.
725

Forms18
For the example, we’ll use the driver program to fetch the data from the billing
document header and item tablesVBRK and VBRP, respectively. In this driver pro-
gram, we’ll call a form to initiate form processing.

The code in Listing 18.1 shows the selection logic in the driver program.

REPORT zdemo_sapscript_driver.
*Document header data
TYPES : BEGIN OF ty_vbrk,

vbeln TYPE vbeln_vf,
fkdat TYPE fkdat,
kunrg TYPE kunrg,
netwr TYPE netwr,

END OF ty_vbrk.
*Document item data
TYPES : BEGIN OF ty_vbrp,

vbeln TYPE vbeln_vf,
posnr TYPE posnr,
arktx TYPE arktx,
netwr TYPE netwr,

END OF ty_vbrp.

*Customer data
TYPES : BEGIN OF ty_kna1,

kunnr TYPE kunnr,
land1 TYPE land1_gp,
name1 TYPE name1_gp,
name2 TYPE name2_gp,
ort01 TYPE ort01_gp,

END OF ty_kna1.

DATA : wa_vbrk TYPE ty_vbrk,
wa_kna1 TYPE ty_kna1,
it_vbrp TYPE STANDARD TABLE OF ty_vbrp,
wa_vbrp TYPE ty_vbrp.

PARAMETERS p_vbeln TYPE vbeln_vf.

START-OF-SELECTION.
PERFORM fetch_data.
PERFORM print_form.

&--
*& Form FETCH_DATA
&--
FORM fetch_data .
SELECT SINGLE vbeln fkdat kunrg netwr FROM vbrk INTO wa_

vbrk WHERE vbeln EQ p_vbeln.
IF sy-subrc IS INITIAL.
726

SAPscripts 18.1
SELECT SINGLE kunnr land1 name1 name2 ort01 FROM kna1 INTO wa_
kna1 WHERE kunnr EQ wa_vbrk-kunrg.

SELECT vbeln posnr arktx netwr FROM vbrp INTO TABLE it_
vbrp WHERE vbeln EQ wa_vbrk-vbeln.
ENDIF.

ENDFORM.
&--
*& Form PRINT_FORM
&--
FORM print_form .

*Add print form logic

ENDFORM.

Listing 18.1 Driver Program Code to Fetch Application Data

In Listing 18.1, we modularized the code by using two subroutines: fetch_data
and print_form. In the fetch_data subroutine, we’re selecting the header and
item data of the billing document into their own internal tables. We’re also fetch-
ing the customer data from the customer master table KNA1. We’ll add the form
printing logic to the print_form subroutine once we develop the form.

As previously mentioned, the form is designed using the Form Painter tool
(Transaction SE71). For this example, we’ll print the company logo at the top left
of the page and the document header data, such as the document number, docu-
ment date, and net value, at the top right of the page. The payer details are
printed in a section below the company logo. The item details are printed in the
body of the page.

Figure 18.2 shows a rough layout of the planned form. SAP calls each section of
the page a window. When designing the form layout, we create different windows
on the page in which the planned data will be printed.

In SAPscripts, there are three types of windows that you can create:

� Constant window
This window is used if you want to print some constant text on multiple pages.
The window size is the same on all the pages and displays the same content on
every page. This makes it easy to edit the content, because you only need to edit
once to reflect the changes in all the pages. The length of this window is fixed.
If you try to print more lines than the window can accommodate, the data will
be truncated. You can have any number of constant windows in a form.
727

Forms18
Figure 18.2 Form Layout

� Variable window
This window is used when you want to print data that varies in each window.
Variable windows can be of different sizes and show different content. Similar
to constant windows, the length of a variable window is fixed. If you try to
print more lines than the window can accommodate, the data will be truncated.
You can have any number of variable windows in a form, and each window is
a separate entity.

� Main window
The width of the main window is fixed on all pages, but the length of the win-
dow isn’t fixed. It will automatically trigger a page break and call the next page
if the number of lines exceeds the window height. We use this window to print
data for which the number of lines are not known at design time. In other
words, if the number of lines is dynamic, such as for the item lines of a docu-
ment, you use a main window. A form should have at least one main window.

You can have multiple main windows in a form, but all the main windows
share the same code and have the same width throughout the form. A main
window consists of a top area and a bottom area, which can be used to print

Company Logo

Footer info

Invoice Details
Payer Details

Item Details

Window 1

Window 3

Window 4

Window 5

Window 2
728

SAPscripts 18.1
text elements such as column headings (in the top area) and subtotals (in the
bottom area).

Various formatting options, including paragraph and character options, help for-
mat the text of a form. Forms can be created in multiple languages so that users
from different regions can use a form in their own language. Forms are also cli-
ent-dependent, so if you create a form in one client and need to use it in another
client, you need to manually transport it to the other clients of the system.

Now that we’ve reviewed the basic layout of a form, in the next section we’ll walk
through the steps for creating a form layout using SAPscripts.

18.1.2 Creating the Form Layout

In this section, we’ll create the form layout as per the design shown in Figure 18.2.

Proceed with the following steps:

1. Open Form Painter using Transaction SE71. On the initial screen of the Form
Painter, enter the name of the form and the language (see Figure 18.3). This lan-
guage will be the original language of the form and can be later translated to
other languages. Click the Create button.

Figure 18.3 Form Painter: Initial Screen
729

Forms18
2. The system shows an informative message indicating that the form isn’t avail-
able in the current client. Click OK in the message dialog box to create the form.
The system shows the Change Header screen (based on the subobject selected
in previous step), in which some administrative data such as the short descrip-
tion and translations can be maintained. You can also maintain certain basic set-
tings, such as page format, default paragraph format, and so on. We’ll revisit
this header screen later before activating the form.

Figure 18.4 Form: Change Header

3. To activate the layout designer, from the menu select Settings � Form Painter

to open the User-Specific Settings window. In this window, under the SAP-

script tab, select Graphical Form Painter (see Figure 18.5) and click OK. Once
the graphical Form Painter is activated, you’ll see a Layout button in the tool-
bar. Click the Layout button to start the graphical Form Painter.
730

SAPscripts 18.1
Figure 18.5 Activating Graphical Form Painter

4. The graphical Form Painter opens in a separate screen, with one default main
window created (see Figure 18.6).

Figure 18.6 Graphical Form Painter
731

Forms18
5. You can create additional windows and pages by using the Create button in the
respective sections of the Form Painter page layout screen, as shown in Figure
18.7. Certain attributes for the page, such as a short description for the page,
the next page that should be called in sequence, and so on, can be maintained
by selecting the Maintain Page Attributes button.

Figure 18.7 Form Painter Page Layout Screen

6. Click the Create Window button to create a new window. The window ap-
pears in the graphical Form Painter, where you can adjust its size and position
(see Figure 18.8). Rename the window to reflect the content it shows and pro-
vide a meaningful short description. Providing a meaningful name and short
description for the window is important because it helps other developers eas-
ily maintain your form.

Create New Page

Create New Window
on page

Maintain Page
Attributes
732

SAPscripts 18.1
Figure 18.8 Creating New Window

7. Create the other windows on the page as per the layout shown in Figure 18.2.
Once done, deactivate the graphical Form Painter (using the menu path Set-

tings � Form Painter) to go back to the Change Page Windows screen, as
shown in Figure 18.9. All the windows that you’ve created for the page will be
displayed in this screen. If you want to, you can create multiple pages with dif-
ferent windows.

For example, you may want to print the customer details and invoice details
on the first page but don’t want them to be repeated on further pages. In such
a case, you can create two pages and have the windows to show the customer
and invoice details created on the first page only and have the second page
consists of only the main window.

Create New
Window

Rename
Window

Drag to adjust
the window size
733

Forms18
In the page attributes (see Figure 18.7), you can maintain the page sequence
accordingly. For example, for PAGE1, the next page will be maintained as
PAGE2, and for PAGE2, the next page will be maintained as PAGE2 itself. This
way, you can print various information on PAGE1 but print only the item
details on subsequent pages. This also helps to reduce the number of pages
while printing by ensuring that unnecessary data isn’t printed on all pages.

Figure 18.9 Page Windows Screen

8. Click the Windows button in the toolbar to display all the windows of the
form and change the window types (constant, variable, or main) if required.

9. Maintain Paragraph Formats and Character Formats by selecting the
appropriate button on the toolbar. At least one paragraph format should be
created and assigned as the default paragraph format for the form. If no spe-
cific paragraph format is explicitly maintained for the text, then the system
will use the default paragraph format.

10. Click the Paragraph Format button to create a paragraph format. At the bot-
tom of the screen, enter a two-character name for the format and press
(Enter). Provide a short description (see Figure 18.10) and maintain other for-
matting information as required. You can maintain margins, alignment, font,
tab spacing, and so on.

Select the Page Protection checkbox if you want to ensure the paragraph
doesn’t break across pages. When this checkbox is selected, the system will
automatically print the paragraph as a whole on the next page. If there isn’t
sufficient space on the page, instead of splitting the text between pages, you
can create multiple paragraph formats.
734

SAPscripts 18.1
Figure 18.10 Paragraph Format

11. Once the default paragraph is defined, click the Header button (the hat sym-
bol in Figure 18.9 to the left of the Pages button) in the toolbar (or press (F5))
to assign the default paragraph format for the form. On the Form: Change

Header screen shown in Figure 18.11, select Basic Settings to maintain the
Page Format, First Page that should be called (if the form has multiple
pages), default paragraph (Default Paragr.), default font (Font Family), and
Font Size. Once these mandatory settings are maintained, the form can be
activated. From the menu, select Form � Activate to activate the form.

Figure 18.11 Change Header Screen
735

Forms18
18.1.3 Maintaining Window Details

So far, we’ve created the required windows on the page and maintained the
required settings to activate the form. In this section, we’ll maintain the required
details in each window. For this example, we’ll print the company logo in the
logo window, the billing document details in the info window, the payer details
in the payer window, the item details in the main window, and the footer infor-
mation in the footer window.

Let’s work on each window step by step:

1. To print the logo in the logo window, you first need to upload the logo to the
document server. To do so, open Transaction SE78 (Graphics Administration)
and click the Import button on the toolbar, as shown in Figure 18.12. Provide
the file path where the logo is saved, provide a name for the logo, and maintain
a short description.

Select the appropriate radio button for Type based on whether the logo is in
color or black and white. The logo file should be a bitmap image (BMP). Click
OK to upload the logo to the document server.

Figure 18.12 Graphics Administration

2. Once the logo is uploaded, go back to the form and click on Page Windows in
the toolbar to list all the windows of the page. Double-click the LOGO window
736

SAPscripts 18.1
and select the Text Elements button in the toolbar. This will open the SAP-
scripts editor, as shown in Figure 18.13.

The SAP script editor contains three columns: Format, Left Margin, and Row

Text. The Format and Row Text columns are editable; the Left Margin col-
umn simply indicates if the text starts at the beginning of the line.

Figure 18.13 SAP Script Editor

3. In the Format column, maintain the line format, such as the paragraph format.
The system will use this information to format the output while printing. If the
paragraph format is maintained, it will signify the beginning of a new para-
graph, and all the lines immediately below it that have an empty value in this
field will belong to this paragraph. The system will print these lines as contin-
uous text.

Some of the possible entries in this field are listed in Table 18.1.

Symbol Name Meaning

XX Paragraph Format Two-character paragraph format. The paragraph
format can use the letters A to Z and numbers 0
to 9. The first character should be a letter.

Table 18.1 Formatting Options
737

Forms18
In the Row Text column, you can enter the text that should be printed in the
output. You can use any control statement by entering “/:” as the format for the
line. To print the value of a program variable, you need to preface and follow
the variable name with an ampersand symbol (&)—for example, &V_MATNR&. If
the & symbol isn’t used, then the system will treat the variable name as text and
print the variable name in the output, instead of printing its content.

4. You want to print a logo in this window, so insert the logo that you uploaded
in the previous step by keeping the cursor in the Row Text column and follow-
ing the menu path Insert � Graphics. Here, select the Stored on Document

Server tab and provide the name of the logo and its type, as shown in Figure
18.14. Optionally, you can also specify the image resolution to be used. If the
logo isn’t already uploaded to the document server, you can click the Import

button on this window to upload the logo. Once the details are maintained,
click OK to include the logo.

* Default Paragraph Format Entering “*” in this field will apply the default
paragraph format.

/ New Line The line will be outputted on a new line. The
formatting options of the paragraph will be
retained.

/: Control Command Specifies a control command. The lines with this
format are not outputted but treated as a control
statement. Use this when using control com-
mands such as IF statements.

/* Comment Line A statement with this format won’t be processed.

= Extended Line This format option signifies that the previous line
is extended to this row. You can split your single
text into multiple rows in the SAP script editor by
using this symbol. All the extended lines will be
treated as a single line when outputted.

/= Like Extended Line Similar to an extended line, but outputted in a
new line.

(Raw Line No formatting will be applied, and the output is
issued as is.

/(Like Raw Line Similar to a raw line, but printed in a new line.

Symbol Name Meaning

Table 18.1 Formatting Options (Cont.)
738

SAPscripts 18.1
You can also type the BITMAP 'LOGO_NAME' OBJECT GRAPHICS ID BMAP TYPE BCOL
DPI 200 command with /: as the format, because this is a control command.
Once done, click Back to go back to the Page Windows screen.

Figure 18.14 Insert Graphic

5. Now, you need to print the billing document number, billing date, and net
value in the info window. To do so, open the SAP script editor for the window
and maintain the text as shown in Figure 18.15. Here, you’re printing the field
label and the field name that contains the data. In the driver program, you have
to ensure that the wa_vbrk work area contains the data before this window is
processed by the composer. (You’ll see how to activate the composer and write
the data when we enhance the driver program from Listing 18.1.) Note the dif-
ferent formats used for each line in the Format column. Enter “*” to use the
default paragraph format and “/” to print on a new line.

Figure 18.15 Printing Document Info
739

Forms18
6. To print payer details, open the SAP script editor for the payer window and
maintain the text as shown in Figure 18.16. Here, you’re printing the data from
the wa_kna1 data object of the driver program.

Figure 18.16 Payer Window

7. Print the item details of the document in the main window (window of type
MAIN). A main window is divided into three areas: the TOP, BODY, and BOTTOM
areas. When the MAIN window is called in the driver program, the composer
automatically takes care of printing the text in the top area above the body.
Once the body contents are outputted, the composer will print the text in the
bottom area.

The top area and bottom area are triggered by the text in the body. If the body
is empty, then the text in the top and bottom areas will not be printed. The
composer will remember the contents of the top and bottom areas and will
print them on all pages. Among other things, you can use the top area to print
column headings and the bottom area to print subtotals. The top and bottom
areas are specified in the form using the /:TOP…ENDTOP and /:BOTTOM…ENDBOT-
TOM control commands, as shown in Figure 18.17.

Figure 18.17 Main Window
740

SAPscripts 18.1
8. Finally, input some text in the footer window. For the footer, print a dis-
claimer that can be edited by the user directly. When you maintain the text
directly in the form, the user has to ask an ABAP programmer to edit the text
each time he wants to modify the text. To let the user maintain the text
directly instead, you can use standard text. Standard text is maintained sepa-
rately using Transaction SO10 or by navigating to Tools � Form Printout �
SAPscript � Standard Text in the SAP Menu of the SAP Easy Access screen.

To create a standard text, on the standard text initial screen, enter the Text

Name, Text ID, and the Language (see Figure 18.18) and click Create. For
standard text, the Text ID is ST. Clicking Create will open the SAP script editor
(or PC editor, based on your personal settings) for you to maintain the text.

Figure 18.18 Standard Text Initial Screen

9. Once the standard text is maintained, you can include it in the form. To
include the standard text, open the footer window and follow the menu path
Insert � Text � Standard Text. Enter the details of the standard text and click
OK. You can also type the command INCLUDE XXXX OBJECT TEXT ID ST LANGUAGE
YY directly in the Row Text column. Here, XXXX is the standard text name and
YY is the language.

10. Once all the windows are edited, you can perform a print test by selecting
Utilities � Printing Test to see how the layout will look when printed.

This completes the form development. Now, we need to process the form in the
driver program, which we’ll discuss next.

18.1.4 Processing Forms with Function Modules

To process a form, SAP provides various function modules. Three important func-
tion modules are OPEN_FORM, WRITE_FORM, and CLOSE_FORM, used to open the form
for writing, write the data to the form, and close the form processing, respec-
tively.
741

Forms18
Let’s go ahead and enhance the code from Listing 18.1 to add the form processing
logic to the print_form subroutine, as shown in Listing 18.2. Here, we’ll loop the
item table it_vbrp that contains the item records. Within the loop, using the AT
FIRST control break statement, we’ll call the OPEN_FORM function module, to
which the form name and language are supplied. We can also pass other informa-
tion to this function module, such as print options.

&--
*& Form PRINT_FORM
&--
FORM print_form .
LOOP AT it_vbrp INTO wa_vbrp.
AT FIRST.
CALL FUNCTION 'OPEN_FORM'
EXPORTING
form = 'ZCA_FORM'
language = sy-langu.

ENDAT.

CALL FUNCTION 'WRITE_FORM'
EXPORTING
type = 'BODY'
window = 'MAIN'.

AT LAST.
CALL FUNCTION 'CLOSE_FORM'.

ENDAT.
ENDLOOP.

ENDFORM.

Listing 18.2 Code to Print Form

Once the form is opened, we call the WRITE_FORM function module to write the
data to the form. To this function module, we pass the window name and the area
(TOP, BODY, or BOTTOM). When the body of the main window is called, the com-
poser will automatically call the top and bottom areas if they’re maintained in the
form. All the variables that are visible at this point in the program flow will be
automatically transferred to the form. Finally, we close the form in the last loop
pass by calling the CLOSE_FORM function module under the AT LAST control break
statement.

Because we’re calling the MAIN window within a loop, the complete text in the
main window body will be executed in each loop pass. If you don’t want certain
text to be executed in each loop pass, then you can further divide the main win-
dow body into different sections using elements.
742

SAPscripts 18.1
An element is maintained in the form using the format /E (see Figure 18.19) and
is called from the driver program by passing the element name to the ELEMENT for-
mal parameter of the WRITE_FORM function module, as shown in Listing 18.3.

Figure 18.19 Using Elements

CALL FUNCTION 'WRITE_FORM'
EXPORTING
element = 'ITEM'
type = 'BODY'
window = 'MAIN'.

Listing 18.3 Calling Element

We’re now ready to execute the driver program and see the print preview. When
the driver program is executed, the system will prompt you to provide the output
device name, because you’re not passing the printer information in the OPEN_FORM
function module. Enter “LP01” (logical printer) as the output device and click the
Print Preview button, as shown in Figure 18.20.

Figure 18.20 Print Dialog
743

Forms18
The output should look similar to Figure 18.21. As you can see, even though the
form is printing all the data, the text isn’t aligned properly.

Figure 18.21 Form Output

Let’s align the text properly and also print the column headings in the main win-
dow in bold by using paragraph formats. Follow these steps:

1. Create a paragraph format in the form by selecting the Paragraph Format but-
ton in the toolbar (see Figure 18.22). Under Tabs, maintain the tab positions as
shown in Figure 18.23.

Figure 18.22 Toolbar
744

SAPscripts 18.1
Figure 18.23 Maintaining Tab Positions

2. Click the Font button and select On for the Bold option, as shown in Figure
18.24. For this example, use this paragraph format for column headings.

Figure 18.24 Maintain Font for Paragraph Format

3. To create a new paragraph format for item records, enter the paragraph format
name and press (Enter).

4. The system will ask whether you want to create a new paragraph format or
copy the previous paragraph format. Select Copy to use the same tab positions
for item records as well. Make sure to turn off Bold font for this copied ele-
ment.

5. Once the paragraph formats are created, edit the main window text elements to
use these paragraph formats, as shown in Figure 18.25. To use the tab posi-
tions, insert a double comma (,,) between words. Each double comma takes
one tab position. Note that the net value field is printing leading spaces in
Figure 18.21. You can get rid of the leading spaces by using the formatting
option (C) with the field, as shown in Figure 18.25 for the wa_vbrp-netwr vari-
able.
745

Forms18
Figure 18.25 Using Tab Positions

Formatting Options

You can check all the available formatting options in the SAP Help portal at http://
help.sap.com/saphelp_nw74/helpdata/en/4e/34031063de02c2e10000000a15822b/
frameset.htm.

6. Similarly, edit the text elements of other windows to use tab positions and
adjust the window widths if required. The final output should look similar to
Figure 18.26.

Figure 18.26 Final Formatted Output
746

http://help.sap.com/saphelp_nw74/helpdata/en/4e/34031063de02c2e10000000a15822b/frameset.htm
http://help.sap.com/saphelp_nw74/helpdata/en/4e/34031063de02c2e10000000a15822b/frameset.htm
http://help.sap.com/saphelp_nw74/helpdata/en/4e/34031063de02c2e10000000a15822b/frameset.htm

SAPscripts 18.1
You can format the item data as a table using the BOX control command where you
can manually specify the positions. Similarly, you can format the address using
the ADDRESS control command. As mentioned earlier, it’s a lot of work to format
SAPscripts forms, because you need to manually maintain the text positions and
size, similar to classical reports that generate the list using WRITE statements. Visit
http://help.sap.com/saphelp_nw74/helpdata/en/4e/37991b862135aae10000000a42
189c/content.htm for information about all the control commands that can be
used, including the BOX command and the ADDRESS command.

Forms are seldom triggered by executing the driver program directly. Instead,
they’re called from the application directly using the output type. Output types
are set up by the functional consultant in which details such as transmission
medium (print, EDI, etc.), processing routines, and so on are maintained.

We can configure the driver program and form for the output type via Transac-
tion NACE. Proceed with the following steps:

1. In Transaction NACE, select the application area and click on the Output Types

button in the toolbar (see Figure 18.27) to display all the output types available
for the application area.

Figure 18.27 Output Types

2. Select the output type that should be configured, and double-click the Process-

ing Routines folder, as shown in Figure 18.28.
747

http://help.sap.com/saphelp_nw74/helpdata/en/4e/37991b862135aae10000000a42189c/content.htm
http://help.sap.com/saphelp_nw74/helpdata/en/4e/37991b862135aae10000000a42189c/content.htm

Forms18
Figure 18.28 Display View of Output Types

3. Under the Processing Routines section, maintain the Program name, Form

Routine name, and Form name (see Figure 18.29). The form routine name
should be the subroutine that acts as an entry point to the driver program. This
subroutine should have two formal parameters—return_code and us_screen—
as follows:

FORM entry_fuci USING return_code us_screen.

If there is any error during form processing in the driver program, the return_
code parameter can be updated with a value of 1 to inform the calling program
that the form processing resulted in an error. If the return_code is 0, the form
is processed successfully. The us_screen parameter will have the value X if the
form is called for print preview, in which case the spool doesn’t need to be gen-
erated.

Figure 18.29 Configuring Output Type
748

Smart Forms 18.2
4. Once the document is processed using an output type in the application docu-
ment, the processed output proposal is recorded in table NAST. Within the
driver program, we can access the NAST structure by defining it using the
TABLES statement. The OBJKY field will contain the document number.

Listing 18.4 shows the coding changes required to call the structure using the
output type.

TABLES NAST.
FORM entry_fuci USING return_code us_screen.

PERFORM fetch_data.
PERFORM print_form.

ENDFORM.
&--
*& Form FETCH_DATA
&--
FORM fetch_data .
SELECT SINGLE vbeln fkdat kunrg netwr FROM vbrk INTO wa_

vbrk WHERE vbeln EQ NAST-OBJKY.
ENDFORM.

Listing 18.4 Code Using NAST Structure

5. In the application document, the output can be issued by configuring the out-
put type in the document header. For example, for a billing document, open
Transaction VF02 and follow the menu path GoTo � Header � Output to main-
tain the output type. Once the output type is configured for the document, you
can issue the output by following the menu path Billing Document � Issue

Output To.

Now that we’ve looked at the older technology used for creating forms, in the
next section we’ll discuss a more recent form technology: smart forms.

18.2 Smart Forms

For all practical purposes, smart forms can be considered a successor to SAP-
scripts. Smart forms provide various advantages and address most of the chal-
lenges faced with SAPscripts.

The advantages of using smart forms over SAPscripts include the following:

� Smart forms reduce the development effort by more than 50 percent compared
to SAPscripts.
749

Forms18
� Smart forms provides a complete GUI to develop and adapt forms.

� Smart forms requires less programming knowledge, because the data from the
SAP system can be configured directly. Thus, a user with good understanding
of the tool and rudimentary programming knowledge can carry out modifica-
tions using SAP GUI.

� Various elements of the form can be easily recreated using copy and paste or
drag and drop.

� Input elements can be integrated easily with HTML output, thus enabling a
form to be used in Internet applications.

� It takes very little effort to create tables and format output with smart forms
compared to SAPscripts.

However, as previously mentioned, SAPscripts will still be supported for years to
come, and companies that have already invested in SAPscripts need not migrate
existing SAPscripts to smart forms just yet. SAP also provides a migration tool if
you wish to migrate existing SAPscript forms to smart forms. For all new devel-
opments, smart forms should be used.

We’ll walk you through smart forms by developing the same form we used in the
earlier example in Section 18.1. This should help you appreciate the ease of devel-
opment smart forms adds. We’ll also use the same driver program, with certain
changes to make it compatible with smart forms.

18.2.1 Overview and Layout

You build smart forms using the Form Builder tool. You can access Form Builder
using Transaction SMARTFORMS or by navigating to Tools � Form Printout �
Smart Forms in the SAP Menu on the SAP Easy Access screen. Form Builder pro-
vides a GUI to develop and maintain smart forms.

When you develop a form in Form Builder and activate it, a function module is
generated that can be called from any application program, similar to a regular
function module. An interface can be defined for a smart form, and through that
interface data can be supplied from the driver program.

The logic of the form can be mapped entirely in the smart form. Form Builder
provides various tools to develop a smart form, such as Form Painter to design
the layout, Table Painter to design table output, and so on. We’ll explore all the
various tools within Form Builder in the next few subsections.
750

Smart Forms 18.2
The form logic is represented by a tree structure in which individual nodes con-
sisting of various form elements are created. Form Builder is divided into three
areas (see Figure 18.30):

� Navigation area
The navigation area displays the nodes in a tree structure. For example, in the
navigation area you can define a table node to display the data in a tabular for-
mat, define an address node to display the data in a country-specific address
format, and so on.

� Maintenance area
Once an element is selected in the node, its attributes can be maintained in the
maintenance area. For example, once a table node is selected in the navigation
area, the properties for the table node, such as number of columns, column
width, column headings, and table data, can be maintained in the maintenance
area.

� Form Painter
Form Painter allows you to design the layout of the page. Similar to SAPscripts,
Form Painter lets you quickly design the page layout to position the windows
using drag and drop.

Figure 18.30 Form Builder

Naviga�on Area Maintenance Area Form Painter
751

Forms18
One of the major disadvantages of SAPscripts is its lack of a syntax checker. In
Form Builder, you can easily check individual nodes or the complete form. You
can also perform data flow analysis to check if all fields have defined values.

Similar to SAPscripts, smart forms consists of pages and windows. You can create
multiple windows on a page, and each page can have different windows. We can
design the page using Form Painter to position windows at different places on the
page. We create form elements as nodes with attributes within a window. You
also can create a draft page, which acts as a template from which print pages can
be derived.

As in SAPscripts, you can create separate pages to represent the first page and
subsequent pages. The first page typically has more windows to show data that
doesn’t need to be printed in the subsequent pages. The next page can be manu-
ally triggered from within the main window or called automatically when the
data in the main window exceeds the length of the window.

You can create two types of windows with smart forms:

� Secondary window
A secondary window has a fixed length, and the text will be truncated if the
length of the text exceeds the window height. You can have the same secondary
window (with the same name) on multiple pages to print the same text on mul-
tiple pages.

� Main window
A form can have only one main window. A main window has a dynamic length,
and the system continues printing in the next page if the text exceeds the win-
dow height. The main window triggers the page break automatically when the
text exceeds the window height. The width of the main window should be
same on all pages, but the height can vary.

Each smart form has certain global settings that should be maintained in areas
such as the following:

� Form Attributes

Here, we maintain form attributes such as page format, default style, transla-
tions, and so on.

� Form Interface

Here, we define the interface of the form, via which the driver program can
supply the data. The interface defined here forms the parameter interface of the
752

Smart Forms 18.2
generated function module when the smart form is activated. Defining this
interface is similar to defining the interface of a function module using Func-
tion Builder.

� Global Definitions

In this section, we define global variables or constants that can be used within
the form. For example, if you defined an internal table in the form interface,
then a work area for that internal table can be defined in the Global Defini-

tions section, which then can be used to loop or read the internal table within
the form nodes.

The Global Definitions section contains various tabs in which you can define
local data types, field symbols, form routines, and so on. Any code to initialize
the form can be written in the Initialization tab. If the structures defined in
the interface or global definitions have currency or quantity fields, then the ref-
erence fields can be maintained in the Currency/Quantity Fields tab.

We can create various elements in a smart form: text, tables, templates, addresses,
graphics, and so on. Each element node has options that can be defined under the
corresponding tab in Form Builder. Let’s walk through how to work with the ele-
ments of a smart form while developing the form to meet our requirements.
We’ll use the same example as we used in the previous section in which we devel-
oped a SAPscripts form to print billing document information.

On the initial screen of Form Builder (Transaction SMARTFORMS), select the
Form radio button, enter the name of the form, and click Create.

18.2.2 Maintaining the Global Settings

As previously discussed, a smart form has three unique global settings that must
be maintained: form attributes, form interface, and global definitions. In the fol-
lowing subsection, we’ll discuss each of these settings.

Form Attributes

The Form Attributes section consists of the General Attributes and Output

Options tabs. Under the General Attributes tab, we can maintain translations.
In the Output Options tab, we maintain different output options, such as page
format, default style, output format, and so on, as shown in Figure 18.31.
753

Forms18
Figure 18.31 Form Attributes

By default, the Style option is set to SYSTEM. You can define your own custom
smart style and assign it to the form; you’ll learn about creating smart styles in
Section 18.2.3. Paragraph formats and character formats are maintained in the
style. Once the style is assigned to the form, we can use formats defined in the
style in text nodes.

Form Interface

Under Form Interface, we define the interface parameters for the form. Defin-
ing the interface is similar to function modules in that we can maintain Import-

ing Parameters, Exporting Parameters, Table Parameters, and Exceptions, as
shown in Figure 18.32.

Some default parameters are predefined in the interface; these control printing,
archiving, mailing, and so on. For this example, we’ll import the billing docu-
ment header and item data into the form from the driver program. The interface
parameters should be referred to global structures in the ABAP Data Dictionary.

For the header, we’ve defined a ZBILL_HEADER structure in ABAP Data Dictionary,
as shown in Figure 18.33. The structure consists of VBELN, FKDAT, NETWR, and
ADRNR as the components. The ADRNR component will have the address number of
the customer that we’ll be fetching from the customer master table. This address
number can be used in the form directly to print the customer data.
754

Smart Forms 18.2
Figure 18.32 Form Interface

Similarly, we’ve defined a ZBILL_T_ITEM table type in ABAP Data Dictionary, the
line type for which has the components VBELN, POSNR, ARKTX, and NETWR for item
data. In the form interface, we’ve defined a im_header structure, which is of type
zbill_header, and an internal table im_item, which is of type zbill_t_item (see
Figure 18.32).

Figure 18.33 Header Structure

Global Definitions

Global variables and constants for the form are defined in Global Definitions.
This section consists of multiple tabs to define objects such as variables, con-
stants, field symbols, data types, and currency and quantity fields under their
respective tabs. You can also maintain the initialization code under the Initializa-

tion tab to initialize the form fields. The Form Routines tab allows you to main-
tain subroutines that can be called from within the form. The definitions in this
755

Forms18
section are global within the form and can be accessed from any element of the
form. To define a variable, enter the variable name, type assignment, and associ-
ated type in the respective columns under the Global Data tab (see Figure 18.34).

For this example, we’ll be looping data in the internal table im_item and printing
it in the main window. Because we need a work area to loop the internal table,
define a work area under Global Definitions, as shown in Figure 18.34. The
work area should be of the line type of the internal table. To define a variable,
enter the name

Figure 18.34 Defining Variable under Global Definitions Node

18.2.3 Maintaining Elements

As previously mentioned, we can create elements in a smart form, and each ele-
ment node has options that can be defined under tabs in Form Builder.

You can maintain element attributes under the General Attributes tab and out-
put options under the Output Options tab. If you want the node to appear only
when certain conditions are met, you can maintain the conditions under the Con-

ditions tab. Using the context menu on the node, you can create additional nodes
and elements within the node.

In the following subsections, we’ll discuss the different elements that can be
maintained for smart forms.

Windows

Windows are sections on the page in which text and data can be positioned. A
page can have multiple secondary windows but only one main window. You can
adjust the size of the window or position the window using drag-and-drop func-
tionality in Form Painter. Windows can overlap one another.
756

Smart Forms 18.2
Under the Pages and Windows folder, a default page with one main window is
created by default. You can double-click the page to rename it.

To create a window on the page, right-click the page and select Create � Window

from the context menu, as shown in Figure 18.35. Using the context menu, you
can cut, copy, paste, or delete a node. Under the Create submenu, you have the
options to create a new Page, Window, Graphic, or Address. We’ll use these
options one by one in following subsections.

Figure 18.35 Context Menu for Page Node

At this point, the new window should appear in Form Painter towards the right
(see Figure 18.36). If you don’t see Form Painter, click the Form Painter button
in the toolbar. Form Painter opens in a split screen, which can be dragged to
adjust the width.

You can rename the window to reflect the text it displays. For this example, we’ll
use this window to print the document information, so let’s name it INFO. Main-
tain the window name in the Window field and its short description in the
Meaning field, as shown in Figure 18.36. We also need one more window to
print the footer text; go ahead and create one more window and position it below
the main window in Form Painter.
757

Forms18
Figure 18.36 Window Creation

Graphics

Graphic elements allow you to quickly display images stored in the document
server, such as a company logo. You can create a graphic element within a win-
dow or directly on the page.

To create a graphic element, from the context menu of the node, select Create �
Graphic. In this node, we’ll display a company logo; therefore, let’s name the
node LOGO.

Under the General Attributes tab, enter the logo details, as shown in Figure
18.37. Here, we’re using the same logo that we uploaded previously to the docu-
ment server (see Section 18.1).

Optionally, you can use the Conditions tab to restrict when this node is dis-
played. For example, if you’re using the same form for multiple plants and want
to print a different logo for each plant, then you can create multiple graphic
nodes, and for each node you can maintain the plant number as the condition. In
the Conditions tab, you can compare a variable of the form with a value.
758

Smart Forms 18.2
Figure 18.37 Logo Attributes

Addresses

Address elements use Business Address Services (BAS) to print an address. This
helps you avoid manually querying the address table to retrieve and print an
address. The address element also automatically formats the address as per the
postal regulations of the sender’s country. In BAS, the address is identified by the
address number, so all we have to do is enter the address number, either statically
or dynamically. To dynamically enter the address number, include the variable
name between ampersands (&).

For this example, we’re passing the address number in the header structure of the
form interface. We’ll use this address number in the address node, as shown in
Figure 18.38.

Figure 18.38 Address Element
759

Forms18
At this point, the page should have five windows, as shown in Figure 18.39.
Adjust the window positions in Form Painter as per the layout we used in Section
18.1.1 (see Figure 18.2).

Figure 18.39 Nodes Inside Page

Templates

Templates allow you to format output in rows and columns. Using templates, we
can display data in a tabular format. However, templates differ from table ele-
ments. Table elements are dynamic in length, whereas templates have a fixed
length. We define the row type for a template in which individual column posi-
tions are maintained. We can define multiple rows for a template and link indi-
vidual text, graphic, or address elements within the template to a specific row and
column of the template.

To create a template, proceed with the following steps:

1. Right-click a node and select Create � Template from the context menu.

2. In the template node, click the Details button under the Templates tab to
define the line type for the template (see Figure 18.40).

3. In the line type, define the number of columns in a line. The total width of the
columns shouldn’t exceed the width of the window. You can define the num-
ber of rows using the FROM and TO fields. If different rows need different col-
umn lengths, you can define multiple row types and assign each row type to a
row by entering the row number in the FROM and TO fields. You can enter the
same row number in both the FROM and TO fields to assign the row type to a
single row.
760

Smart Forms 18.2
4. You can define borders and shading for the template under the Output Options

tab.

Figure 18.40 Defining Row Type for Template

5. Once the template is defined, you can add multiple elements to the template.
For each element in the template, assign the column and row number corre-
sponding to where the element should be displayed in the template. You can
assign the column and row numbers under the element’s Output Structure

area, as shown in Figure 18.41.

Figure 18.41 Assigning Row and Column for Element within Template

Text

Text elements are used to display text in the form. We can display the value of a
variable within the text by using the field name within ampersands. We can use
four different text types within the text node: text elements, text modules,
include texts, and dynamic texts.

Text can be maintained directly within the text element node or referred to a text
module. Text modules are created separately by selecting the Text Module radio
761

Forms18
button on the initial screen of Form Builder. Text modules allow you to reuse the
text in multiple forms. Include texts allow you to include the standard texts that
have been created for SAPscripts (as we used for the footer in the example in Sec-
tion 18.1). Dynamic texts are directly passed in the form interface from the driver
program.

With text elements, you can use the PC editor or the SAP script editor (based on
your personal settings). When using the PC editor, click the Insert Field button
to insert a field (the field name should be maintained between ampersands). You
also can use the SAP script editor as discussed in the previous section. You can
open the SAP script editor by clicking the Editor icon (see Figure 18.42).

Figure 18.42 Text Element

For this example, we’ll create six text elements within the template (see Figure
18.43), because we plan to include the print document number, document date,
and net value with their respective labels in a two-column layout. For each text
element, we’ll assign the line number and column number of the template under
the output options of the text element.

In this example, as shown in Figure 18.43, the DOCUMENT_T text element contains
the label, DOCUMENT_V contains the value, and so on.

‘&’ as place holder for field name

Insert Field

Open SAPscript Editor
762

Smart Forms 18.2
Figure 18.43 Text Nodes under Template

To create a text element, proceed with the following steps:

1. Right-click the template node and select Create � Text to create a text element
under the template node.

2. Under the General Attributes tab for the text element, you can choose the
type of text you want to use, such as a text element, text module, include text,
or dynamic text. The default type is text element, for which you can directly
enter the text and insert fields.

3. Similarly, in the footer window, we plan to print the footer text maintained in
a standard text that we created in the previous section. To include the standard
text in the footer window, create the text element and select Include Text for
the text Type. Enter the Text Name, Text Object, Text ID, and Language, as
shown in Figure 18.44. The text object for standard text is TEXT.

Figure 18.44 Including Standard Text
763

Forms18
Table

You can use a table element you’ve created to print data from an internal table.
You define a row type (or line type) for the table element similar to how it’s
defined for a template. In the row type, maintain the number of columns and
their widths.

The table element consists of three areas (see Figure 18.45):

� Header

In the Header area, you can print the column headings.

� Main Area

In the Main Area, you can print the records of the internal table.

� Footer
The Footer area is where you can print any subtotals.

The table element consists of different tabs. In the Table tab, you define the line
type by clicking the Details button. In the Data tab, you can loop the internal
table. The Data tab also provides support to mention a WHERE condition and sort
criteria (see Figure 18.45). You can maintain borders and shading for the tables in
the Output Options tab. You can perform certain calculations, such as totals,
mean values, and count, under the Calculations tab.

Figure 18.45 Table Element
764

Smart Forms 18.2
To print text within a table, proceed with the following steps:

1. Right-click the relevant area (Header, Main Area, or Footer) and select Cre-

ate � Table line, as shown in Figure 18.46.

Figure 18.46 Create Table Line

2. Under the Output Options tab, select the Line Type that was previously
defined for the table (see Figure 18.47). The number of cells created within the
node is based on the number of columns defined in the line type (Figure
18.48). In each cell, you can create the text element using the context menu to
print the text or field.

Figure 18.47 Table Line

3. Once you create the table lines for Header, Main Area, and Footer, you’ll see
the respective cells added under each section, as shown in Figure 18.48. You
can use different line types for each of these sections depending on your
requirements. For this example, we defined the line type L1 for the table with
three columns and used the same line type for all three sections (header, main
area, and footer), so you’ll see three cells being added under each section.

Within each cell, create text elements to print the data. You’re printing column
headings in the header section, so maintain the text directly in the respective
765

Forms18
text elements. For this example, enter “Item” in the text element of CELL1,
“Description” in the text element of CELL2, and “Amount” in the text element
of CELL3.

4. Print the internal table data in the main area. In order to print data from the
internal table, loop the internal table into a work area under the Data tab of the
table node (see Figure 18.45). Within the text element of the cells in the main
area, list the work area fields that should be printed. For this example, in the
first cell of the main area, print the WA_ITEM-POSNR field; in the second cell of
the main area, print the WA_ITEM-ARKTX field; and in the third cell of the main
area, print the WA_ITEM-NETWR field.

5. Print the subtotals in the footer section. For this example, leave the first cell in
the footer section empty to maintain the table alignment and print the text
"Total" in the second cell and the IM_HEADER-NETWR field in the third cell. The
IM_HEADER structure is defined in the form interface and will receive the data
from the driver program when the form is called.

Figure 18.48 Table Cells
766

Smart Forms 18.2
Program Lines

Using the program lines element, you can write ABAP code within the form. This
is useful if you want to perform simple calculations or query the database to fetch
additional data. To create program lines, right-click a node and select Create �

Flow Logic � Program Lines. There is no restriction on what code you can write
within program lines, but we recommend limiting the code to performing basic
operations, such as executing conversion routines. The data selection for the form
should always be delegated to the driver program instead of using program lines
to fetch the data in the form.

The variables for which values are used within the program lines should be spec-
ified as input parameters for the program lines element. The variables for which
values are changed within the program lines and should be available outside the
program lines element must be specified as output parameters for the program
lines element, as shown in Figure 18.49. Here, we’re calling the CONVERSION_
EXIT_MATN1_OUTPUT function module to convert the material number in WA_ITEM-
MATNR to an external format.

The converted value is copied to V_MATNR. In this example, we’re maintaining WA_
ITEM-MATNR as the input parameter for the program lines element as it’s being
used inside the program lines. The value in WA_ITEM-MATNR doesn’t change after
the code is executed. However, because we’re changing the value in V_MATNR,
we’re maintaining this field as the output parameter for the program lines ele-
ment.

Figure 18.49 Program Lines
767

Forms18
Commands

The command node is used to call a new page or to execute other special com-
mands such as numbering, printer control, and so on. This node is mostly used in
the main window to trigger a page break, as shown in Figure 18.50.

To create a command node, right-click the node in which you want to insert the
command node and select Create � Flow Logic � Command.

Figure 18.50 Command Node

Loop

You can use a loop node to process the nodes within the loop node repeatedly.
Similarly to a table node, you can loop an internal table with the loop node and
access its data within the elements of the node. The table node can have a layout
defined that isn’t available in the loop node. To create a loop node, right-click
the node in which you want to insert the loop node and select Create � Flow

Logic � Loop.

You can have a table node within a loop node as an inferior node and vice versa.
This allows you to loop multiple tables that are linked with a foreign key as a
nested loop. For example, if you want to loop the item table for each record of the
header table, you can define a loop node within the header table node, as shown
in Figure 18.51.
768

Smart Forms 18.2
Figure 18.51 Loop Node

Styles

Styles allow you to define your own paragraph and character formats. A style is
defined independently of the form, and you can use one style in multiple forms.
The following steps walk you through defining a style:

1. On the initial screen of Form Builder (Transaction SMARTFORMS), select the
Style radio button and enter the name of the style, as shown in Figure 18.52.
Click Create.

2. The style consists of three nodes: Header Data, Paragraph Formats, and
Character Formats, as shown in Figure 18.53. In the header data, you main-
tain the default paragraph format and other settings that will be used as defaults
if no paragraph format or character format is explicitly assigned to the text.
769

Forms18
Figure 18.52 Form Builder Initial Screen

Figure 18.53 Style Change Screen

3. You can create any number of paragraph and character formats within the style.
To create a paragraph format, right-click the Paragraph Formats node and
select Create Node from the context menu, as shown in Figure 18.54.

4. In the Create Node window (see Figure 18.55), enter the paragraph format
name and click the green checkmark (or press (Enter)).
770

Smart Forms 18.2
Figure 18.54 Create Paragraph Format

Figure 18.55 Create Node

5. In the Paragraph Format window (see Figure 18.56), you can maintain vari-
ous details, such as indentation and spacing, fonts, tab positions, and so on. All
of the options are self-explanatory. The paragraph format can be assigned to
the text in a smart form, which will then derive the formatting from the
assigned paragraph format. We’ll explain how to use the paragraph format in
just a moment.

Figure 18.56 Maintain Paragraph Format
771

Forms18
6. Similarly, to create character formats right-click the Character Formats node
and select Create Node from the context menu. For character formats, you can
maintain formatting that is applied to specific words within the text. The para-
graph format is used for the complete paragraph or line, whereas the character
format is used for words within a line.

Figure 18.57 shows the Character Format screen in which you can maintain
the required font.

Figure 18.57 Character Format

7. Once you define at least one paragraph format, assign the default paragraph
format for the style in the Header data node by selecting one of the paragraph
formats from the dropdown list for the Standard Paragraph field, as shown
in Figure 18.58. Once the default paragraph format for the style is assigned,
click the Activate button in the toolbar to activate the style.

Figure 18.58 Assigning Default Paragraph

Now that you know how to create custom styles and maintain paragraph and
character formats, let’s look at how to use these custom styles in a smart form.
772

Smart Forms 18.2
You can assign the style for a smart form under Form Attributes by entering the
name of the style in the Style field, as shown in Figure 18.59. This style will be
used for the entire smart form.

Figure 18.59 Assigning Style to Smart Form

If you want to use different styles for different nodes, you can maintain the style
for the node under the node’s Output Options tab, as shown in Figure 18.60.

Figure 18.60 Maintaining Style for Node

To use the paragraph format and character format from the style, open the Text

Element node and switch to the SAP script editor by clicking the Editor button
(see Figure 18.61). In the SAP script editor, you can use the formats similar to
those used in SAPscripts. In the first column, you maintain the paragraph format
that is applied to the complete line. To use the character format, use the character
format between the <> and </> tags, as shown in Figure 18.61.
773

Forms18
Figure 18.61 Using Paragraph and Character Formats

18.2.4 Driver Program

Once all the nodes of the form are defined, you can activate the form by clicking
the Activate button in the toolbar. Once the form is activated, it generates a func-
tion module, which can be called from the driver program. You can check the
name of the generated function module via the menu path Environment � Func-

tion Module name.

We don’t generally call a smart form directly by the function module name but
instead call it dynamically using the SSF_FUNCTION_MODULE_NAME function module.
This is important, because the function module name generated by the smart
form is dynamic. When this smart form is transported to another system, the
other system can generate a totally different name for the function module. If you
hard-code the generated function module name in your driver program, it may
not work in the new system after transportation.

Listing 18.5 shows the code in the driver program. The data selection logic is sim-
ilar to that in the SAPscripts driver program, but we’re calling the smart form as
a function module directly in the driver program instead of using open_form,
write_form, or close_form function modules to print the form.

REPORT zdemo_smart_driver.
TYPES : BEGIN OF ty_vbrk,

vbeln TYPE vbeln_vf,
fkdat TYPE fkdat,
kunrg TYPE kunrg,
netwr TYPE netwr,

END OF ty_vbrk.

TYPES : BEGIN OF ty_vbrp,
vbeln TYPE vbeln_vf,

Paragraph format Character format
774

Smart Forms 18.2
posnr TYPE posnr,
arktx TYPE arktx,
netwr TYPE netwr,

END OF ty_vbrp.

TYPES : BEGIN OF ty_kna1,
kunnr TYPE kunnr,
adrnr TYPE adrnr,

END OF ty_kna1.

DATA : wa_vbrk TYPE ty_vbrk,
wa_kna1 TYPE ty_kna1,
it_vbrp TYPE zbill_t_item,
wa_vbrp TYPE zbill_item,
st_header TYPE zbill_header.

PARAMETERS p_vbeln TYPE vbeln_vf.

START-OF-SELECTION.
PERFORM fetch_data.
PERFORM print_form.

&--
*& Form FETCH_DATA
&--
FORM fetch_data .
SELECT SINGLE vbeln fkdat kunrg netwr FROM vbrk INTO wa_

vbrk WHERE vbeln EQ p_vbeln.
IF sy-subrc IS INITIAL.
SELECT SINGLE kunnr adrnr FROM kna1 INTO wa_kna1 WHERE kunnr EQ wa_

vbrk-kunrg.
SELECT vbeln posnr arktx netwr FROM vbrp INTO TABLE it_

vbrp WHERE vbeln EQ wa_vbrk-vbeln.
ENDIF.

MOVE-CORRESPONDING : wa_vbrk to st_header, wa_kna1 to st_header.
ENDFORM.
&--
*& Form PRINT_FORM
&--
FORM print_form .
DATA fm_name TYPE RS38L_FNAM.
CALL FUNCTION 'SSF_FUNCTION_MODULE_NAME'
EXPORTING
formname = 'ZDEMO_SMART_FORM'

IMPORTING
FM_NAME = fm_name.

CALL FUNCTION fm_name
EXPORTING
775

Forms18
im_header = st_header
im_item = it_vbrp

EXCEPTIONS
FORMATTING_ERROR = 1
INTERNAL_ERROR = 2
SEND_ERROR = 3
USER_CANCELED = 4
OTHERS = 5

.
IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.
ENDFORM.

Listing 18.5 Smart Form Driver Program

In Listing 18.5, we’re consolidating the header data from tables vbrk and kna1
into the st_header structure. This allows us to keep the form interface simple and
easy to read, as opposed to passing multiple structures.

In the print_form subroutine, we’re calling the SSF_FUNCTION_MODULE_NAME func-
tion module, to which we’re passing the smart form name; the function module
will return the corresponding generated function module name for the smart
form. We’re then calling this function module dynamically and passing the
header and item data.

Figure 18.62 shows the smart form output.

Figure 18.62 Smart Form Output
776

SAP Interactive Forms by Adobe 18.3
As you may have noticed, we created the form quite easily without having to
write any code or spend any time formatting the output.

In this section, we walked through how to use smart forms. In the next section,
we’ll look at using SAP Interactive Forms by Adobe.

18.3 SAP Interactive Forms by Adobe

SAP, in partnership with Adobe, introduced SAP Interactive Forms by Adobe in
2005 with the release of SAP NetWeaver 2004. The partnership aims to integrate
Adobe’s design expertise into the SAP NetWeaver platform. The integration takes
advantage of the feature-rich Adobe LiveCycle Designer tool, which enables users
to create form layouts, and combines it with SAP’s expertise in form development
from SAPscripts and smart forms. While Adobe continues to improve the core
technology, SAP focuses on improving the integration and the frameworks based
on the new technology.

To work with Adobe forms, you need the SAP system to be configured with
Adobe Document Server (ADS). Adobe LiveCycle Designer and Adobe Acrobat
Reader should also be installed on your system. Adobe Acrobat Reader is avail-
able as a free download from Adobe’s website, but Adobe LiveCycle Designer
needs to be downloaded from the SAP Service Marketplace at service.sap.com.

We won’t discuss the technical configurations to set up ADS or Adobe Live-
Cycle Designer here, because it’s beyond the scope of this chapter. For more
information on ADS configuration, visit http://scn.sap.com/docs/DOC-52256. In
this section, we’ll focus on form development using Adobe Forms. If you
haven’t practiced developing smart forms in the previous section yet, we
highly recommend that you do so before proceeding with Adobe forms. This
should help you follow the steps in this section more easily, because many of
the tasks involved with Adobe forms are similar to those for smart forms. After
all, smart forms were used as the outline for integrating Adobe forms with SAP
applications.

We’ll cover the following high-level steps in this section to develop Adobe forms:

1. Create an interface.

2. Map the context for the form.

3. Design the form layout.
777

service.sap.com
http://scn.sap.com/docs/DOC-52256

Forms18
The form consists of the context and layout; the interface is defined separately.
The interface is used in the form context to map the form fields.

We’ll use the same billing document example we’ve used throughout this chapter
to develop an Adobe form.

18.3.1 Form Interface

Unlike smart forms, in which the form interface is part of the form and is defined
from within the form, with Adobe forms we define the interface separately. This
allows you to use the same interface for multiple forms. The where-used list on
the interface shows all the forms that use the interface. This helps determine all
the dependent forms that need to be adapted when the interface is extended.

The form interface must be defined before we can create the form. Proceed with
the following steps to create the interface:

1. To use Object Navigator to create the interface, select Create � Form Object �
Interface from the context menu within the package. Alternately, you can use
Form Builder. Figure 18.63 shows the initial screen of Form Builder.

Figure 18.63 Form Builder Initial Screen

2. On the Form Builder: Entry Point screen, select the Interface radio button,
provide a name for the interface, and click the Create button.

3. You’ll see the Create Interface window, as shown in Figure 18.64. In this win-
dow, provide a short description and select the Interface Type.
778

SAP Interactive Forms by Adobe 18.3
Figure 18.64 Create Interface Window

There are three types of interfaces you can create:

� ABAP Dictionary-Based Interface: This is the most frequently created
interface. With this interface, you define the interface parameters by refer-
ring to the ABAP Data Dictionary objects, such as structures, table types, and
data elements. This interface allows you to define the import parameters,
export parameters, and exceptions (similar to a function module), as shown
in Figure 18.65. Similar to a smart form, you can also define global defini-
tions, initialization code, and currency/quantity fields. We’ll use this inter-
face for this example.

Figure 18.65 ABAP Dictionary-Based Interface
779

Forms18
� XML Schema-Based Interface: This interface is used when the application
processes XML data instead of ABAP Dictionary data—for example, with
Web Dynpro ABAP, which defines its own data context. The XML schema–
based interface definition looks similar to Figure 18.66. In the XML Schema

Source field, you see two options, File and Generated. You can’t use the
Generated option; it’s used when the interface is generated using an API
from a Web Dynpro ABAP application. When manually creating an inter-
face, select the File option only.

In the File field, provide the path of the XML file and click the Load button
to load the file.

The XML schema, import/export parameters, and exceptions are displayed
in the Interface tab. However, you can’t make any changes.

Figure 18.66 XML Schema-Based Interface

� Smart Forms-Compatible Interface: This interface type allows you to
define an interface that is compatible with applications that have used smart
forms previously. The interface defines the parameters that are similar to
smart forms; for example, in Figure 18.67, you can see that the Tables

option is added to the Form Interface node and to the default importing
parameters of the smart form.

This allows you to replace the smart form called with an Adobe form in the
application program without having to change the interface parameters.

4. For this example, select ABAP Dictionary-Based Interface. The interface, as
shown in Figure 18.65, consists of a tree structure on the left, which is used for
navigation between different definitions. The right-hand side provides the
work area to define the parameters, global definitions, and so on. As you can
780

SAP Interactive Forms by Adobe 18.3
see in Figure 18.65, there is a default /1BCDWB/DOCPARAMS parameter defined of
type SFPDOCPARAMS. The SFPDOCPARAMS structure consists of various compo-
nents, as shown in Figure 18.68.

Figure 18.67 Smart Forms-Compatible Interface

Figure 18.68 Components of Structure SFPDOCPARAMS

Table 18.2 explains the components of the SFPDOCPARAMS structure.
781

Forms18
5. The Parameters section provides a toolbar on top with buttons to Create,
Insert, Delete, Cut, Copy, Paste, and Search parameters. In the example form,
import the header and item data from the driver program, similar to the exam-
ple used in Section 18.2. To define the importing parameters, click the Create

button and maintain the parameters as shown in Figure 18.69.

Figure 18.69 Importing Parameters

You can’t define any export parameters manually. However, you can define
your own exceptions. This interface will be used to generate the interface of the
generated function module when the form is activated.

6. Under Global Definitions, define the global data objects for the form, local
type definitions, and field symbols (see Figure 18.70).

7. Under Initialization, write the code to initialize the form fields. You can also
write the code to fetch any additional data that is required but not supplied by
the driver program. However, we recommend delegating all data selection to
the driver program. The Form Routines section allows you to maintain sub-
routines, just like in a regular ABAP program.

Component Meaning

LANGU Form language

COUNTRY The country key along with language, used for formatting output

FILLABLE Flag to indicate if the form is to be created as an interactive form

DYNAMIC Used when form is interactive

DARATAB Archiving information

REPLANGU1 Alternate language if the form is not available in the requested language

REPLANGU2 Another alternate language

REPLANGU3 Another alternate language

Table 18.2 Component of Structure SFPDOCPARAMS
782

SAP Interactive Forms by Adobe 18.3
Figure 18.70 Global Definitions

8. The Currency/Quantity Fields section (see Figure 18.71) allows you to define
reference fields for currency and quantity fields. The reference fields allow the
form to apply output formatting for the fields. For example, it may show deci-
mals when printing the currency in US dollars, but when printing Japanese
Yen, it might suppress the decimals. If the reference fields exist in the same
structure for the parameters or global definitions, the program will use that
structure automatically.

9. If the reference fields use an external reference, then you need to manually
define the reference fields in the interface. For example, the IM_HEADER import-
ing parameter in the form interface contains a NETWR currency field. In the
structure, you’re using an external reference from table VBRK for this field, as
shown in Figure 18.72. Because the reference field doesn’t belong to the same
structure, ZBILL_HEADER, you need to manually define reference fields in the
form interface. This is also true for the IM_ITEM parameter for the interface.
783

Forms18
Figure 18.71 Currency/Quantity Fields I

Figure 18.72 External Reference to Currency Field

10. To maintain the reference fields, first define a variable of type CUKY in Global

Data (see Figure 18.70) and then use it as a reference field in the Currency/

Quantity fields section, as shown in Figure 18.73. For this example, we
defined a WAERK global variable of type WAERK.

In the Currency/Quantity Fields section, use this global variable as the ref-
erence field for the NETWR field in both the header and item structure. Under
Data Type, select CURR or QUAN based on the type of field.
784

SAP Interactive Forms by Adobe 18.3
Figure 18.73 Currency/Quantity Fields II

Once all the required information is maintained, activate the interface.

18.3.2 Form Context and Layout

Now that we’ve defined the interface, we can create the form linking the inter-
face. Proceed with the following steps:

1. On the Form Builder initial screen, select the Form radio button, enter the
name of the form, and click the Create button, as shown in Figure 18.74.

Figure 18.74 Form Builder: Entry Point

2. In the Create Form window, provide a short description and the interface
name you just created, as shown in Figure 18.75.

Figure 18.75 Create Form
785

Forms18
This will open the form in which you can map the context and design the lay-
out, as shown in Figure 18.76. The screen contains three tabs:

� Properties: The Properties tab shows general information about the form,
such as the form interface name, who it’s created by, its original language,
and so on.

� Context: The Context tab allows you to map the interface components with
the context.

� Layout: The Layout tab is where you design the form. You need Adobe Live-
Cycle Designer installed and configured with SAP GUI to work in the Layout

tab. The Adobe LiveCycle Designer patch for SAP GUI can be downloaded
and installed from SAP Service Marketplace at https://websmp107.sap-ag.de/.
Note that you’ll need download authorizations to download any SAP soft-
ware from SAP Service Marketplace.

Figure 18.76 Form Editor
786

https://websmp107.sap-ag.de/.

SAP Interactive Forms by Adobe 18.3
In the following subsections, we’ll look at using first the Context tab and then
the Layout tab.

Context

The Context tab is divided into two areas: On the left-hand side is an interface
that includes the parameters and global data defined in the interface. It also
includes the SFPSY structure, which consists of the DATE, TIME, USERNAME, and
SUBRC system fields. They are initialized at runtime and can be used in the form—
for example, to print the current date, time, and so on. You can double-click any
component to see more information about the component, such as its data type.

On the right-hand side is the context. By default, the context is empty and shows
an empty parent folder. This parent folder acts as the root folder under which we
can define various nodes. All the nodes that can be added to the context are more
or less similar to the smart form. For example, similar to smart forms, we can add
graphic nodes, table nodes, address nodes, and so on.

The easiest way to add nodes is to drag the field/structure/table from the interface
and drop it in the context. Another way to add the node is to right-click on the
root folder or existing node in the context and select the node from the context
menu, as shown in Figure 18.77. As you can see, most of the nodes are similar to
those for a smart form.

Figure 18.77 Adding Nodes to Context

Let’s go through each node, one-by-one, while developing the form to meet the
example requirements.
787

Forms18
Graphic

A graphic node allows you to print a logo or any image, such as a scanned copy of
a signature, for example. To add and edit a graphic node, follow these steps:

1. Right-click the root folder and select Create � Graphic. This will add the
Graphic node under the root folder, as shown in Figure 18.78.

Figure 18.78 Graphic Node

2. When you select a node, you’ll see the Property window at the bottom of the
screen. In the Property window, you can maintain the properties for the node.
For all nodes, except the alternatives node, a Conditions button appears at the
top of the window. The Conditions button allows you to conditionally display
the node, similar to the Conditions tab for the nodes in smart forms.

3. In the Property window for the Graphic node, you can maintain the Name for
the node and the Description. The Status field can be set to Active or Inac-

tive. If you no longer want to use the node or want to temporarily deactivate
it, set it to Inactive.

4. The Graphic Type field allows you to set how graphics are processed. Here, you
can select from one of the two options. You can load a graphic from a URL by
selecting the Graphic Reference option or select the Graphic Content option
to map a field (of type string or xstring) that contains binary data about the
graphic. If a field of type string is used, the data should be base 64 encoded.

5. The Graphic Reference option is selected by default. To provide the URL when
this option is selected, click the URL button at the top of the properties window
and enter the URL of the image, as shown in Figure 18.79.
788

SAP Interactive Forms by Adobe 18.3
Figure 18.79 Logo URL

6. If you want to make some part of the URL dynamic, you can create one more
row with an appropriate delimiter selected under the Delimiter field. For
example, if all the images are stored in the images folder and you want to assign
the image name dynamically at the end, you can do so by entering the static
part of the URL in the first row and maintaining the field name that contains
the image name in the second row, with a forward slash (/) as the delimiter, as
shown in Figure 18.80.

In Figure 18.80, the v_image field contains the name of the image, which can be
updated dynamically in the form logic.

Figure 18.80 Dynamic URL

You can also upload the image to the form while designing the layout, which we’ll
discuss in the next section.

Address

To create and edit the address node, proceed with the following steps:

1. Select Create � Address from the context menu. The address node is similar the
address node in a smart form. With the address node, you can use BAS, which
stores and formats the address.

2. Based on the address type, you need to assign the address number and/or the
person number. If the address type is Organization, Company, then you need
to assign the address number. If the address type is Private Address or Office

Address, then you need to assign both the address number and the person
number. The system will automatically take care of formatting the address as
per the postal requirements of the location of the address.
789

Forms18
3. For this example, assign the ADRNR field of the IM_HEADER structure to the
Address Number, as shown in Figure 18.81. You also need to assign the Send-

ing Country.

Figure 18.81 Address Node

Structure

The easiest way to add a structure node is to drag the structure from the interface
and drop it in the context. Another way is to select Create � Structure from the
context menu of the root folder. This will open a window in which you can input
the structure name and click OK. The structure will be added to the context, as
shown in Figure 18.82.

By default, all the fields of structure will be active. If you don’t want to use a field
of the structure, then you can right-click that field and deactivate it from the con-
text menu. The system won’t use deactivated fields at runtime, and no data is
transferred to them. This is useful if you added a structure with many fields but
only want to use certain fields in the form. This will save the memory used by the
form. You’ll see a lock symbol for each field of the structure. This symbol indi-
cates that the fields of the structure can’t be deleted independently; you only can
make them inactive.
790

SAP Interactive Forms by Adobe 18.3
Figure 18.82 Structure Node

LOOP

To add an internal table, you can either drag and drop the internal table from the
interface to the context or create a loop node manually. Selecting Create � Loop

will open a window in which you can enter the internal table name. Once the
internal table is added, it’ll be displayed in the context as shown in Figure 18.83.
A loop node allows you to show tabular data in a form, and you can nest multiple
tables using a loop node.

Figure 18.83 Loop Node
791

Forms18
For example, if you have two tables with a foreign key relationship, then you can
loop one table inside another and use the WHERE condition to link the foreign key
relationship. A loop node provides buttons at the top of the Properties window
to specify the WHERE condition and sort sequence.

Data

A data node allows you to add a single field to the context. To create a data node,
you can either drag and drop the field from the interface to the context or select
Create � Data from the context menu of the root folder/node.

Text

A text node allows you to display text in a form. Similar to smart forms, you can
use a text module, include text, or dynamic text with the text node by selecting
the appropriate type in the Text Type field, as shown in Figure 18.84. Based on
the text type selected, the screen will show the appropriate fields to input the text
details. The text object name should be maintained between single quotes.

Figure 18.84 Text Node

Alternative

An alternative node allows you to check for a specific condition and accordingly
assign an alternative value. It consists of two subnodes: true and false. When you
create an alternative node, you set the condition for the node by clicking the
Alternative Conditions button, as shown in Figure 18.85. If the condition is
true, the node assigned to the true node is used; otherwise, the node inside the
false node is used.
792

SAP Interactive Forms by Adobe 18.3
In Figure 18.85, the condition we’re checking is whether IM_HEADER-FKDAT is ini-
tial. If the condition is true, then we print the system field DATE; otherwise, we
print the FKDAT field of IM_HEADER. You can set multiple conditions by using AND
or OR as an operator. You can also use other relation operators, such as = (equal
to), > (greater than), ? (not equal to), and so on.

Figure 18.85 Alternative Node

Single-Record

The single-record node can be used within a loop node to read a single record of
another internal table. This is similar to using a READ statement within the LOOP
statement. When you add a single-record node, you specify the WITH KEY condi-
tion by clicking the With Key Conditions button, as shown in Figure 18.86. We
can use the SUBRC field of system structure SFPSY to check if the READ operation
was successful.

Figure 18.86 With Key Condition for Single-Record Node

This concludes our discussion of context. Once the context is designed, click the
Layout tab, discussed ahead, to design the layout of the form.

Layout

The Layout tab loads Adobe LiveCycle Designer and consists of three sections, as
shown in Figure 18.87.
793

Forms18
Figure 18.87 Form Layout

The left section contains different tabs. The middle section is the design view,
where we add form fields. The Preview PDF tab allows you to quickly preview
the form.

The right section contains the library palette and the Object palette. The library
palette consists of different form fields organized into multiple groups. Below the
library palette, we maintain the properties for form fields in the Object palette.
We add the form fields from the library palette to the design view. To add a field,
you can simply drag the field from the group and drop it in the design view. Once
the field is added, we bind it to the context from the Object palette.

Let’s create an image field first. Proceed with the following steps:

1. To add the image field, drag the image field from the Standard Group under
the Object Library and drop it in the design view, as shown in Figure 18.88.

2. Click on the image field in the design view to set the object properties. In the
Object palette, as shown in Figure 18.89, you can set a caption for the image
and provide the image URL and sizing.
794

SAP Interactive Forms by Adobe 18.3
Figure 18.88 Adding Image Field

Figure 18.89 Object Palette

3. If you want to bind the image field with the graphic node from the context, you
can do so in the Binding tab of the Object palette. Binding to the graphic node
of the context allows you to dynamically pass the image URL. Click the drop-
down icon next to the Data Binding field and select the Graphic node, as
shown in Figure 18.90. Once bound, the field will display the node name pre-
ceded by a dollar sign ($) symbol.

You can also click within the image field in design view to upload the image
from your local PC.
795

Forms18
Figure 18.90 Binding Field to Context

4. An easier way to add the image field to the design view is to simply drag the
Graphic node from the Data View to the Design View area, as shown in Figure
18.91. This will automatically bind the field.

Figure 18.91 Adding Field from Data View

5. Similarly, you can add other fields to the design view by selecting the respec-
tive object from the Object Library or by dragging the field from the data view.
When adding from the Object Library, select the relevant field type based on
the data type of the field to which it is bound. For example, to show Net Value

on the form, you select Decimal Field from the Object Library and bind it to
796

SAP Interactive Forms by Adobe 18.3
NETWR field from the context. If you use the wrong field, the system will auto-
matically prompt you to convert the field when binding.

6. When adding fields of a structure or table, you can directly drag the structure
from the data view instead of manually adding individual fields. You can also
insert the fields using the Insert menu, as shown in Figure 18.92.

Figure 18.92 Inserting Fields from Menu

Once all the fields are added to the form, activate it. To pass data to the form, we
call it from the driver program. Calling the form is similar to the process for a
smart form.

18.3.3 Driver Program

When the form is activated, a function module is generated. We call this gener-
ated function module in the driver program to pass the data to the form. Similar
to smart forms, when the form is transported, the corresponding function mod-
ule is generated in the target system. This function module may have a different
name in the target system than in the current system. Therefore, we use the FP_
FUNCTION_MODULE_NAME function module to identify the corresponding function
module name for the form.
797

Forms18
The code for the driver program is similar to the that for a smart form, as shown
in Listing 18.5. However, in the print_form subroutine of Listing 18.5, we
replace the code as shown in Listing 18.6.

&--
*& Form PRINT_FORM
&--
FORM print_form.
CALL FUNCTION 'FP_FUNCTION_MODULE_NAME'

EXPORTING
i_name = c_formname "ZDEMO_FORM

IMPORTING
E_FUNCNAME = gv_formname.

DATA gs_outputpar TYPE SFPOUTPUTPARAMS.
gs_outputpar-reqnew = abap_true.

CALL FUNCTION 'FP_JOB_OPEN'
CHANGING
ie_outputparams = gs_outputpar

EXCEPTIONS
cancel = 1
usage_error = 2
system_error = 3
internal_error = 4
OTHERS = 5.

CALL FUNCTION gv_formname
EXPORTING
zbill_header = st_header
im_item = it_vbrp

EXCEPTIONS
USAGE_ERROR = 1
SYSTEM_ERROR = 2
INTERNAL_ERROR = 3
OTHERS = 4

.
IF sy-subrc <> 0.
* Implement suitable error handling here
ENDIF.

CALL FUNCTION 'FP_JOB_CLOSE'.
ENDFORM.

Listing 18.6 Calling Form from Driver Program

In Listing 18.6, we’re calling the FP_FUNCTION_MODULE_NAME function module to
get the name of the generated function module for the form. Before this gener-
798

SAP Interactive Forms by Adobe 18.3
ated function module is called, we call the FP_JOB_OPEN function module to open
the job and generate a new spool. Once the job is opened, we call the generated
function module to which the data from the driver program is transported.

At the end, we call the FP_JOB_CLOSE function module to close the job. Executing
the driver program should print the form. The driver program and the form can
be assigned to the output type using Transaction NACE, as previously discussed.

18.3.4 Downloading the Form as a PDF

Instead of printing the form, if you want to download the form as a PDF or send
the form output back to the application program for further processing (e.g., to
send as an email attachment), you can do so by importing the form data. The code
in Listing 18.7 shows how to import the form data.

CALL FUNCTION 'FP_FUNCTION_MODULE_NAME'
EXPORTING
i_name = 'ZDEMO_FORM'

IMPORTING
e_funcname = gv_fmname.

DATA : gs_outputpar TYPE sfpoutputparams,
gs_formoutput TYPE fpformoutput.

gs_outputpar-nodialog = abap_true.
 gs_outputpar-getpdf = abap_true.

CALL FUNCTION 'FP_JOB_OPEN'
CHANGING
ie_outputparams = gs_outputpar

EXCEPTIONS
cancel = 1
usage_error = 2
system_error = 3
internal_error = 4
OTHERS = 5.

DATA gs_docparams TYPE sfpdocparams.
gs_docparams-fillable = abap_true "Makes the PDF interactive
CALL FUNCTION gv_fmname
EXPORTING

 /1bcdwb/docparams = gs_docparams
zbill_header = st_header
im_item = it_vbrp

IMPORTING
 /1bcdwb/formoutput = gs_formoutput "Returns PDF!
799

Forms18
EXCEPTIONS
usage_error = 1
system_error = 2
internal_error = 3
OTHERS = 4.

IF sy-subrc <> 0.
* Implement suitable error handling here

ENDIF.

CALL FUNCTION 'FP_JOB_CLOSE'.

Listing 18.7 Importing Form Data

In Listing 18.7, we’re setting the nodialog and getpdf flags for the output param-
eters of the FP_JOB_OPEN function module. The generated function module
exports the raw data, which we’re importing into the gs_formoutput structure of
the program. The gs_formoutput structure contains a component called PDF that
will contain the PDF output. We can set the fillable flag in the gs_docparams
structure to make the PDF interactive. The FP_UTILITIES include program pro-
vides various routines that can be used to download the PDF.

18.4 Summary

In this chapter, we explored all the different ways to develop forms. We have
seen the old technologies and how SAP has improved form development by
investing in new technologies. Improvements in technologies over the years have
made form development both easy and intuitive.

We started our discussion with SAPscripts and you learned how form design is
separated from application logic. We also discussed how to develop a driver pro-
gram to get the required data and use Form Builder to design the page layout to
display the data.

We discussed smart forms, which make form development quite easy compared
to SAPscripts. We also discussed various nodes that can be used in smart forms
for different purposes.

Finally, we looked at how SAP has leveraged its experience in developing smart
form technology to integrate Adobe forms. Adobe forms take form development
to the next level. We only scratched the surface here; all the details of Adobe
forms are beyond the scope of this chapter.
800

Summary 18.4
In the next chapter, we’ll discuss interface development. In today’s connected
world, interfaces play a vital role for any system. SAP has implemented many
technologies and many open standards to help SAP systems interface with exter-
nal systems.
801

Chapter 19

This chapter focuses on interface development. Each section is devoted to a
different type of interface and explains both the concepts behind the inter-
face and walks through step-by-step examples of working with the inter-
face.

19 Interfaces

In today’s connected world, interfaces play a vital role in exchanging information
between different systems, both in heterogeneous landscapes within an organiza-
tion and in the outside world. Interfaces are used for wide variety of reasons,
such as transferring data from a legacy system to an SAP system, providing an
application programming interface (API) to perform actions in the SAP system,
and more.

Interfaces allow external developers to access and process information in an SAP
system without having to understand the underlying business processes or tech-
nical implementation. For example, a travel agency that wants to design a book-
ing engine to make airline reservations can implement its website using any
technology and use the interface provided by the airline to request seat availabil-
ity or to process bookings. The travel agency doesn’t need to know the technical
aspects of the airline’s system, nor do the developers in the travel agency need to
learn the programming language used in the airline’s system. The only thing
they need to know is how to use the API provided by the airline and pass the
required details to the API.

Some interfaces may be required for one-time use—such as a one-time data trans-
fer from a legacy system—and others for frequent use—such as posting orders
from business partners. The data may need to be transferred in real time or at fre-
quent intervals. To cover various scenarios based on business requirements, SAP
provides different technologies and tools for interface development.

At the end of the day, all interfaces achieve the same task of posting external data
into the SAP system and retrieving data from the SAP system and making it avail-
able for external systems.
803

Interfaces19
In this chapter, we will discuss the different methods and tools that can be used
to develop various types of interface programs. We begin in Section 19.1, where
we discuss direct and batch input for batch data communication (BDC). In Section
19.2, we look at how Business Application Programming Interfaces (BAPIs) can
be used to transfer data into SAP.

From there, in Section 19.3, we look at the various data exchange formats (i.e.,
EDI/ALE/IDocs), before turning our attention to migrating data from legacy sys-
tems using the Legacy System Migration Workbench (LSWM) in Section 19.4. In
this section, we’ll include step-by-step instructions of the migration process.

In Section 19.5 and Section 19.6, we discuss web services and OData services,
respectively. First, we’ll explore the framework of a web service and the steps for
consuming a web service. Then, we’ll look at the process of creating OData ser-
vices, including data model definition, service maintenance, and service imple-
mentation.

Section 19.7 walks through serialization and deserialization via XSL transforma-
tions and Section 19.8 offers a brief overview of data representation via XML and
JSON. Finally, we end the chapter in Section 19.9, with a discussion on ABAP
channels.

19.1 Batch Data Communication

SAP provides different methods to transfer data into an SAP system, such as via
BAPIs, batch input, or direct input. BAPIs are standardized programming inter-
faces that provide external access to SAP data and business processes, which we’ll
discuss in Section 19.2.

Batch input is a standard technique used to move large volumes of data into an
SAP system. The advantage of batch input is that all the transaction-level checks
can be performed on the data as if it were entered online, and the data is updated
through the transactions.

Direct input is similar to batch input in that all the transaction-level checks can be
performed on the data. However, with direct input, the data is updated into the
database directly as opposed to via transactions. All these data transfer methods
allow you to move data from external systems into your SAP system, either as
one-time transfers or as regular periodic transfers.
804

Batch Data Communication 19.1
Almost any data transfer project involves the following steps:

1. Identifying the data that needs to be transferred
The first step is to identify the data that should be transferred into an SAP sys-
tem—for example, material master data from a legacy system. Once the data is
identified, it should be exported from the legacy system into a flat file. The
exported data should be cleaned up to remove any inconsistencies or any old
data. You can clean up all the data that was temporarily created and is no longer
used, such as one-time customers’ data or any materials that no longer exist or
don’t need to be transferred.

2. Identifying the frequency of transfer
The next step is to identify the frequency of data transfer. Based on this, you
can identify which data transfer technique is most suitable. For example, if you
need to transfer the data only once, a batch input or a direct input method may
be more suitable. If the data needs to be transferred frequently and in real time,
then using a BAPI might be more suitable.

3. Identifying the conversion logic
External data should be converted to an SAP-specific format. For example, if
the material number is stored as a ten-character field in the legacy system, it
may need to be converted to an eighteen-character field (SAP format) before
transferring the data into the SAP system. This is typically done via a transfer
program.

4. Processing the data transfer program
A transfer program uploads the flat file and processes the data to be transferred
into the SAP system. Once the data is processed and converted to SAP format,
it will be posted in the SAP system.

5. Handling any errors
Any errors that arise during data transfer need to be addressed. For example, if
there are errors in the data, the errors should be corrected in the source file and
reprocessed.

6. Verifying the transferred data
After successful transfer of the data, it needs to be verified to ensure data con-
sistency. For example, if we transferred material master data from a legacy sys-
tem to an SAP system, the material data should be verified in the SAP system
for consistency and completeness after the successful transfer.
805

Interfaces19
As mentioned, there are two methods we use to transfer mass data: direct input
and batch input. The direct input method relies on certain function modules to
validate the data, whereas a batch input program relies on the screens of the cor-
responding transaction to validate the data.

These methods are suitable for transferring mass data for one-time transfer or
periodic transfer, but they’re not suitable if real-time data transfer is required. We
typically use these methods when moving data from a legacy system into an SAP
system just before go-live.

In the following subsections, we’ll discuss the direct and batch input methods in
greater detail.

19.1.1 Direct Input

SAP provides certain direct input programs that can be used to move data from an
external system into an SAP system. These direct input programs typically use
function modules to validate the data and update it in the database. The function
modules subject the data to the same level of validations as a corresponding trans-
action. For example, when you create a material master record using Transaction
MM01, the transaction validates the data you input on the screen (e.g., material
group, unit of measure, etc.).

When the material master data is transferred using the corresponding direct input
program, the direct input program subjects the data to the same validations that
are performed by Transaction MM01.

For example, a material master record transferred using the direct input program
RMDATIND will be subjected to same set of validations as a material created using
Transaction MM01. Transaction MM01 allows you to create a material manually,
whereas the direct input program can be used for bulk transfer.

Table 19.1 lists the direct input programs provided by SAP for different applica-
tion areas.

Program Application Description

RFBIBL00 FI Used for entering accounting documents and clearing open
items

RMDATIND MM Transfers material master data

Table 19.1 Direct Input Programs
806

Batch Data Communication 19.1
A direct input program is faster than a batch input program because it doesn’t
depend on transaction screens to validate the data. Direct input programs are exe-
cuted in the background and support error reporting. In case of any errors, the
data transfer can be resumed after correcting the errors. A background job can be
scheduled to run the programs at regular intervals.

Direct input programs are run in the background and managed using Transaction
BMV0 (see Figure 19.1). Running direct input programs in the background is the
preferred method for production runs, but you can also execute these programs
in the foreground for testing the data transfers.

The program documentation for each of the direct input programs provides more
information on their usage.

Figure 19.1 Direct Input Management

19.1.2 Batch Input

Unlike direct input programs, batch input programs rely on the corresponding
transactions to validate the data. Batch input programs allow you to capture the
steps involved in processing the data and automate this process.

RVAFSS00 SD Creates billing documents

RAALTD11 AM Direct data import for asset accounting

RKEVEXT0 CO-PA Transfers external data to CO-PA

Program Application Description

Table 19.1 Direct Input Programs (Cont.)
807

Interfaces19
For example, to create a material, you’d go through the following steps:

1. Go to Transaction MM01, which will take you through a series of screens in
which you input certain details on each screen. For this example, input the
Material, Industry Sector, and Material Type on the initial screen of Trans-
action MM01, as shown in Figure 19.2.

Figure 19.2 Initial Screen of Transaction MM01

2. On the next screen, select the view to input further data, as shown in Figure
19.3.

Figure 19.3 Second Screen of Transaction MM01

3. The system will present the selected view, and you can input further details of
the material, such as its description, Material Group, Base Unit of Measure,
and so on, as shown in Figure 19.4.

4. Once the information is entered, click the Save button to create a material.
808

Batch Data Communication 19.1
Figure 19.4 Third Screen of Transaction MM01

To create another material, you repeat the same steps with a different set of data.
If you want to create only a few materials, it’s easy to create materials manually
via this transaction. But what if you want to create hundreds or thousands of
materials? We can automate this process by creating a batch input program. We’ll
walk through the steps for doing so in the next subsection.

Creating a Batch Input Program

A batch input program requires you to capture the screen and field information in
an internal table with a special structure known as BDCDATA (BDC here indicates
batch data communication).

The BDCDATA structure is shown in Figure 19.5.

Figure 19.5 BDCDATA Structure
809

Interfaces19
The BDCDATA structure consists of five components, as detailed in Table 19.2.

The basic concept behind developing a batch input program is that you capture
the program name and screen field names of the transaction and map the values
that should be passed to the screen fields using table BDCDATA. For example, if you
look at the initial screen of Transaction MM01 and use the (F1) help on the Mate-

rial field to look at the technical information, you can find the technical details of
the field as shown in Figure 19.6.

Figure 19.6 Technical Information about Screen Field

Field Name Meaning

PROGRAM Program name of the screen to which the data is transferred

DYNPRO Screen number of the program (specified in the PROGRAM field above)

DYNBEGIN Flag to indicate new screen

FNAM Field name of the screen

FVAL Value to be transferred to the field

Table 19.2 BDCDATA Structure Components
810

Batch Data Communication 19.1
Notice that the program name is SAPLMGMM, the screen number is 0060, and the
screen field name is RMMG1-MATNR. Using this information, we can map the BDC-
DATA structure, as shown in Listing 19.1.

PROGRAM ZDEMO_BATCH_INPUT.
Data: it_bdcdata TYPE STANDARD TABLE OF bdcdata,

wa_bdcdata TYPE bdcdata.
START-OF-SELECTION.
perform bdc_dynpro USING 'SAPLMGMM' '0060'.
perform bdc_field USING 'RMMG1-MATNR' '567ASHG'.
PERFORM bdc_field USING 'RMMG1-MBRSH' 'P'.
PERFORM bdc_field USING 'RMMG1-MTART' 'ROH'.
PERFORM bdc_dynpro USING 'SAPLMGMM' '0070'.
.........
FORM bdc_dynpro USING program dynpro.
CLEAR wa_bdcdata.
wa_bdcdata-program = program.
wa_bdcdata-dynpro = dynpro.
wa_bdcdata-dynbegin = 'X'.
APPEND wa_bdcdata TO it_bdcdata.

ENDFORM.
FORM bdc_field USING fnam fval.

CLEAR wa_bdcdata.
wa_bdcdata-fnam = fnam.
wa_bdcdata-fval = fval.
APPEND wa_bdcdata TO it_bdcdata.

ENDFORM.

Listing 19.1 Filling BDCDATA Structure

In Listing 19.1, we defined an internal table it_bdcdata with the line type as BDC-
DATA. We defined two subroutines, BDC_DYNPRO and BDC_FIELD. In the BDC_DYNPRO
subroutine, we’re filling the program name and screen number. In the BDC_FIELD
subroutine, we’re filling the field name and field value. The PERFORM statements
for both these subroutines are passing two actual parameters.

For example, the PERFORM BDC_DYNPRO statement is passing the program name and
screen number as literals, and the PERFORM BDC_FIELD statement is passing the
field name and field value. In our example, we’re passing the literals for the field
value, but the literal will be replaced with the field value uploaded from the
sequential file. We’re flagging dynbegin as X in the BDC_DYNPRO subroutine,
because this subroutine is called only when new screen information needs to be
passed.
811

Interfaces19
Once the internal table is filled with all the required screen and field information,
we can pass the data by using either the CALL TRANSACTION method or the SESSION
method. We’ll look at these methods in the next two subsections.

CALL TRANSACTION

In the CALL TRANSACTION method, BDCDATA is passed to the transaction using the
CALL TRANSACTION USING statement. The internal table that contains BDCDATA is
passed with the statement. The transaction can be executed in foreground mode,
background mode, or foreground on error mode.

When a transaction is executed in foreground mode, the transaction runs in the
foreground, displaying all the screens. Running a transaction in foreground mode
is useful when doing a test run, because it helps verify that the fields are mapped
correctly with the right data.

When a transaction is executed in background mode, the transaction completely
runs in the background and no screens are displayed. Any messages raised by the
transaction during the execution will be transferred to the batch input program at
the end.

Running a transaction in background mode is the preferred method for pro-
duction runs. If foreground on error mode is used, the transaction runs in the
background unless any error messages are raised by the transaction. If an error
message is raised, the transaction screen that has caused the error is displayed
to the user.

Data can be updated synchronously or asynchronously. With synchronous
updates, the system waits for the previous transaction to commit, while with
asynchronous updates, the system will start processing the next transaction with-
out waiting for the previous transaction to commit.

For example, if you’re updating a sales order header and item data, synchronous
updates can ensure that the sales order item data is updated only after the header
data is committed to the database. If you use asynchronous updates, the sales
order item data may commit to the database without waiting for the header data
to commit first. For this reason, an asynchronous update is faster than a synchro-
nous update.
812

Batch Data Communication 19.1
The CALL TRANSACTION method doesn’t support an automated error log or resum-
ing on error. Error handling should be performed in the program. You can call
one transaction at a time, and the data is processed synchronously.

SESSION

In the SESSION method, we generate a session with all the data. The session is
then processed separately. The session can be processed manually or at regular
intervals by scheduling the program RSBDCSUB as a background job. This method
automatically creates an error log in case of any errors.

The error transactions can be processed, after correcting the errors, by resuming
the session. The BDC program opens the session (using function module BDC_
OPEN_GROUP), writes the data to the session (using function module BDC_INSERT),
and closes the session (using function module BDC_CLOSE_GROUP). The previous
session should be closed before opening a new session.

The SESSION method can be used to transfer data to multiple transactions and per-
form a synchronous database update. For example, you can use the SESSION
method to post the header and item data of a document and have the system
update the item data after updating the header data.

Transactions should always be updated in background mode; foreground mode
should be used only for testing the screen sequence.

Both the CALL TRANSACTION method and the SESSION method require you to pass
the screen and field information of the transaction using table BDCDATA. However,
capturing all the screen and field information manually is a tedious job. To make
this easy and generate a batch input program, SAP provides a tool called Transac-
tion Recorder (Transaction SHDB).

In the next subsection, we’ll discuss the steps for generating a batch input pro-
gram with Transaction SHDB.

Creating a Batch Input Program Using the Transaction Recorder

Using Transaction Recorder, we can simulate the sequence of steps performed by
the transaction to capture all the required information for table BDCDATA. Transac-
tion Recorder also supports generating the batch input program using this infor-
mation.
813

Interfaces19
The following steps walk through generating a batch input program via Transac-
tion Recorder:

1. On the initial screen of Transaction SHDB (Transaction Recorder: Recording

Overview), as shown in Figure 19.7, click the New Recording button.

Figure 19.7 Transaction Recorder Initial Screen

2. In the Create Recording dialog box, as shown in Figure 19.8, provide a name
for the recording and enter the transaction code for which the recording should
be performed. You can also set the Update Mode to update the data. There are
three update modes available, as listed in Table 19.3.

Also provide the following settings in the Create Recording box (Figure 19.8):

� Select the Default Size checkbox to avoid screen resolution issues and use a
default size for recording.

� The Cont. after commit checkbox sets a flag to continue processing when a
commit work is performed while using the CALL TRANSACTION method.

Update Mode Meaning

Local The update task is carried out by the dialog work process that is
processing the transaction.

Asynchronous The update is performed by the update work process asynchronously.

Synchronous The update is performed by the update work process synchronously.

Table 19.3 Update Mode Options
814

Batch Data Communication 19.1
� The Not a Batch Input Session checkbox sets the flag to use the CALL TRANS-
ACTION method.

� Click the Start Recording button to run the transaction and capture the
steps.

Figure 19.8 Create Recording Screen

3. While recording the transaction, try to avoid any errors, because the error steps
will also be recorded. Once the recording is complete, you can see all the
screen-related information being captured, as shown in Figure 19.9.

Figure 19.9 Screen Recorder Data
815

Interfaces19
4. Save the recording by clicking the Save button in the toolbar, and click the
Back button to go back to the initial screen of the transaction recorded.

5. On the initial screen of Transaction Recorder, select the recording and click the
Program button, as shown in Figure 19.10.

Figure 19.10 Create Program from Recording

6. In the Generate Program window, provide the Program Name and select the
options shown in Figure 19.11.

Figure 19.11 Generate Program

The Read from File option generates additional code to allow the program to
upload the data from a sequential file. The sequential file should have the fields
in the same order as the structure of the internal table generated in the program
(see Figure 19.12). The Test Data section allows you to generate the test data
file in the application server directory, which the generated program can read.
816

Batch Data Communication 19.1
Figure 19.12 Structure for Sequential File

The selection screen of the generated program, as shown in Figure 19.13, pro-
vides you the option to process the program using either the SESSION method
or the CALL TRANSACTION method.

Figure 19.13 Selection Screen of Generated Program

When processing via the CALL TRANSACTION method, the transaction is called
immediately and the records are processed immediately. If the SESSION method is
used, the program generates a session that can be processed later. The records
will be updated when the session is processed. You can automate processing the
session by scheduling a batch job to run program RSBDCSUB.
817

Interfaces19
To process a session manually, proceed with the following steps:

1. Go to Transaction SM35.

2. Select the session from the list and click the Process button (see Figure 19.14)
to process the session. If any errors occur during the processing, you can check
the error log to identify the cause of the error.

3. After correcting the error, the session can be processed again to post only the
records that returned an error. This ensures data consistency and avoids the
same records being updated twice.

4. On the selection screen of the generated program, as shown in Figure 19.13,
the Keep Session checkbox ensures the session isn’t deleted after successful
processing, assuming no errors occur. If the Keep Session checkbox isn’t
selected, the session will be deleted if all transactions are processed success-
fully.

Figure 19.14 Processing Session

5. You can also generate a function module from the recording via Transaction
Recorder. The function module will act as an interface to transfer the data into
the SAP system. Each field of the recording will be added as a parameter to the
function module.

6. When processing the batch input session, the system uses the authorizations of
the user currently processing the session. If the batch input session is executed
using a background job, then you can assign the username of a user whose
authorizations should be used to process the session.
818

Business Application Programming Interface 19.2
19.2 Business Application Programming Interface

BAPIs are standard SAP interfaces that play an important role in the technical
integration and exchange of data between different systems, including communi-
cation between SAP systems and between SAP and non-SAP systems.

BAPIs are integrated at the business level, which allows them to encapsulate
underlying technical details and provide greater stability to integrate various sys-
tems.

BAPIs are typically used in the following scenarios:

� Connecting to third-party systems and software

� Connecting to legacy systems

� Implementing distributed environments in which different business compo-
nents are implemented across various systems

� Enabling communications between PC programs, such as desktop applications
developed using Visual Basic and so on, and SAP systems

� Connecting SAP systems to the Internet

In this section, we’ll look at the different object types and components that can be
accessed through BAPIs, the steps and tools used for developing BAPIs, the use of
standardized BAPIs for implementing standard functionality, and finally the steps
for implementing a BAPI.

19.2.1 Business Object Types and Business Components

BAPIs allow access to the business object types in an SAP system, and business
object types allow you to break the SAP system into individual components that
are easy to manage and that reduce complexity.

To understand the role of BAPIs, we need to understand what constitutes a busi-
ness component and a business object type:

� Business component
A business component consists of business objects and provides autonomous
functions. For example, the Human Resources business component consists of
a business object type employee.
819

Interfaces19
� Business object type
A business object type represents one business entity. It includes the data and
functions of this entity.

� BAPIs
BAPIs are added as an API method to the business object type. They allow
object-oriented access to the SAP system through the methods of the business
object types. BAPIs and business object types together define the interface at
the business level. For example, a purchase order business object type can have
different BAPIs added as API methods to create a purchase order, edit a pur-
chase order, or display a purchase order.

Business object types allow you to structure data and processing according to
business criteria. Because BAPIs are defined as API methods of business object
types, many external applications can gain object-oriented access to the SAP sys-
tem.

19.2.2 BAPI Development via BAPI Explorer

To help you find existing BAPIs in the SAP system and develop new BAPIs, SAP
provides a tool called BAPI Explorer.

BAPI Explorer (Transaction BAPI) integrates all the tools required to develop and
maintain BAPIs. Using BAPI Explorer, you can search for available BAPIs in the
system either by application area or by alphabetical order, using the Hierarchi-

cal tab or Alphabetical tab, respectively, as shown on the left-hand side of the
screen in Figure 19.15.

On the right-hand side of the screen (see Figure 19.15), BAPI Explorer contains
different tabs that provide various information about the BAPI in the following
areas:

� Details

Provides the business object details, such as the object name, object type, pack-
age, component, release version, and so on, as shown in Figure 19.15.

� Documentation

Displays the BAPI documentation, which helps explain the purpose and usage
of the BAPI. Each BAPI should be well-documented during implementation to
help external developers understand the BAPI’s usage.
820

Business Application Programming Interface 19.2
� Tools

Contains tools to create a web service from a BAPI and change the definition of
the business object type.

� Project

Allows you to create a new project and carry out all the activities to implement
a BAPI.

Figure 19.15 BAPI Explorer

The external application developer can call BAPIs as methods of the business
object types without needing to understand underlying technical complexities of
the business process. Technically, BAPIs are implemented as remote-enabled func-
tion calls (RFC). RFC is SAP’s own standard protocol to allow functions in remote
systems to be called.

A BAPI development can be divided into four phases:

1. Analysis
In the analysis phase, you determine which business process should be imple-
mented using the BAPI. In this phase, you identify the business scenarios and
821

Interfaces19
determine which steps of the business process should be exposed to external
components. You also identify the business object types and their BAPIs. For
example, you may want to have a CreateForm BAPI to create an order and
another BAPI to edit the order.

2. Design
In the design phase, you define the interface for each BAPI involved in the sce-
nario. In this phase, you only design the structure conceptually. The idea is to
design the interfaces of the BAPI intuitively so that they’re easy to use.

3. Implementation
In the implementation phase, you define the structures, data elements, and
domains on which the parameter interface of the BAPI is based. Once the
parameter interface is defined, you write the program logic to perform the
required task within a function module. After the function module is devel-
oped, the function module is added as an API method to the business object
using the Business Object Repository (BOR). Adding the function module as an
API method allows for object-oriented access to the business object.

4. Testing
Once the BAPI is implemented, you test the BAPI in the testing phase. All the
required documentation for the BAPI is maintained during this phase. After
successful testing, the BAPI is released.

BAPIs are designed to be called from external applications. The external devel-
oper calling the BAPI shouldn’t be expected to have any knowledge of SAP. The
application knowledge and the BAPI documentation should suffice for external
developers to work with the BAPI.

For this reason, the parameter interface and the field names should use generally
understandable names. For example, a material field should be named MATERIAL
instead of MATNR, and a language field could be named LANGU instead of SPRAS.

Before developing a BAPI, you also need to identify if the BAPI is added as a class
method or an instance method to the business object type:

� Class method
A class method doesn’t refer to any specific instance but rather is applicable to
all instances—for example, getting details about all the flights or orders for a
given search criterion.
822

Business Application Programming Interface 19.2
� Instance method
An instance method refers to a specific instance of a business object type—for
example, getting details about a particular flight or an order.

Another important decision to make when implementing a BAPI is to check if the
BAPI can be implemented as a standardized BAPI. Some BAPIs provide basic func-
tions that can be used for most business object types. These BAPIs that provide
similar functions are called standardized BAPIs and must be implemented simi-
larly across business object types. For example, the GetList() BAPI is used to
select multiple instances of objects in a business object type, such as materials,
employees, and so on. Similarly, a Create() or CreateFormData() BAPI is used
to create an instance of the business object type, such as creating an employee
record.

If the BAPI you’re planning to develop can be implemented as a standardized
BAPI (i.e., it performs standardized functions), then you should follow the nam-
ing conventions defined for standardized BAPIs. This helps avoid confusion when
accessing BAPIs across multiple business object types. BAPIs that do not provide
standard functions can be developed as individual BAPIs with company-specific
naming conventions.

Various BAPIs can have the same parameters because they contain the same or
the equivalent data in all BAPIs. Such parameters are known as standardized
parameters and should be implemented the same way in all BAPIs. For example,
a standard BAPIADDR2 reference structure is provided for addresses of individuals.
All BAPIs containing addresses of individuals must copy this structure to use in
the BAPI.

19.2.3 Standardized BAPIs

If the BAPI provides standard functions, it’s recommended to implement a stan-
dardized BAPI instead of an individual BAPI.

Some of the standardized BAPIs provided are as follows:

� GetList()

The GetList() BAPI provides a list of instances for a business object type. This
BAPI is implemented as a class method and returns the list of objects within the
business object type—for example, a list of employees or materials.
823

Interfaces19
� GetDetail()

The GetDetail() BAPI returns the details of an instance of the business object
type—for example, details about a specific employee or specific material. This
BAPI is added as an instance method.

� Create or CreateFormData
This BAPI creates an instance of the business object type—for example, creating
an employee or creating a material.

� Change()

This BAPI changes the existing instance of a business object type—for example,
changing the details about an employee maintained in the business object type.

� Delete()

This BAPI deletes an instance of the business object type from the database.
Normally, we set a delete flag for the record instead of actually deleting the
record. The Delete() BAPI is an instance method.

� Undelete()

This BAPI removes the delete flag for the instance of the business object type.
The Undelete() BAPI is an instance method.

� Cancel()

This BAPI cancels the instance of a business object type. Unlike Delete(), the
instance is not deleted but is cancelled by creating a new instance—for exam-
ple, cancelling an invoice receipt.

� Add<subobject>()

This BAPI adds a subobject to the business object instance. For example, to add
a subobject item to the business object type purchase order, you create the
AddItem() BAPI.

� Remove<subobject>()

This BAPI removes a subobject from an object—for example, RemoveItem().

19.2.4 Standardized Parameters

BAPIs that contain the same or equivalent data should be implemented with same
parameters. The standardized parameters are as follows:

� Address parameters
Specific standard SAP structures are defined for address parameters for BAPIs.
824

Business Application Programming Interface 19.2
You should copy these structures to use in your BAPIs. Table 19.4 lists the stan-
dard address reference structures that should be used in BAPIs.

� Change parameters
In BAPIs that cause database changes (e.g., Change() or CreateFormData()),
the parameters that contain modified values must be differentiated from
parameters that contain original values. This distinction can be made by using
the standardized parameters. For example, in Table 19.4, the parameter that
contains addresses for individuals should use the reference structure BAPIADDR2
if the parameter contains the original value and the reference structure BAPI-
ADDR2X if it contains the modified value.

� Extension parameters
To provide a mechanism for customers to enhance a BAPI without modifica-
tion, you should include the ExtensionIn (for data import) and ExtensionOut
(for data export) parameters. These extension parameters serve as containers to
pass customer enhancements to the BAPI and must always be based on the
BAPIPAREX structure.

� Return parameters
Each BAPI must have an export parameter to return messages to the calling
application. This return parameter should be named Return and implemented
in a standardized way to provide a consistent error handling process.

� Test run parameters
BAPIs that cause database changes (Change() or CreateFormData()) should use
the TestRun parameter to simulate the creation of object instance without actu-
ally updating the data.

Structure Use

BAPIADDR1 Addresses of companies and organizations

BAPIADDR2 Addresses of individuals

BAPIADDR3 Addresses of contact persons within an organization

BAPIADDR1X Change structure for addresses of companies and organizations

BAPIADDR2X Change structure for addresses of individuals

BAPIADDR3X Change structure for addresses of contact persons within an organiza-
tion

Table 19.4 Address Reference Structures
825

Interfaces19
19.2.5 Implementing BAPIs

BAPIs are usually implemented as remote-enabled function modules. Once the
function module is implemented, the BAPI is added as an API method to the busi-
ness object type in the BOR. The BOR (Transaction SWO1) is used to describe and
create business object types and their BAPIs. This allows for object-oriented
access to the SAP system from external applications. Figure 19.16 shows an object
in the BOR containing attributes, methods, and events.

Figure 19.16 Object in BOR

We use a few different tools when implementing BAPIs:

� Function Builder
The BAPI is implemented as an RFC-enabled function module in Function
826

Business Application Programming Interface 19.2
Builder. The BAPI interface and the business logic is maintained within the
function module.

� ABAP Data Dictionary
The BAPI interface should consist of parameters that refer to ABAP Data Dic-
tionary objects. We use ABAP Data Dictionary to define the required struc-
tures, data elements, and so on for defining the parameter interface of the
BAPI.

� Business Object Repository
The BOR (Transaction SWO1) is used to define the business object type. Once
the business object type is defined, the BAPI is added as an API method to the
business object type. One business object type contains multiple BAPIs (meth-
ods).

BAPI development is similar to developing a function module in Function Builder.
However, when developing a BAPI, certain conventions and rules should be fol-
lowed, as we’ll discuss next.

Conventions

When implementing BAPIs, certain conventions apply. These conventions should
always be adhered to for both BAPI methods and BAPI parameters.

The following conventions should be followed for methods:

� If the BAPI that is being implemented is a standardized BAPI, then you should
use generic names for the method—for example, GetList, GetDetail, and so
on.

� You should always use English names for the methods, and the method name
can be a maximum of thirty characters in length.

� You shouldn’t use underscores (_) in method names. You should use camel case
for BAPI names; that is, the first letter of each word should be in uppercase, as
in GetList.

� Each BAPI should have a return parameter (export parameter). The return
parameter should be either an export structure or a table of type BAPIRET2.

� To support enhancement of BAPIs, the BAPI interface should include Exten-
sionIn and ExtensionOut structures. These extension structures allow you to
pass additional data to the BAPI.
827

Interfaces19
For example, if you performed a screen enhancement for Transaction ME21N
to capture additional data while creating a purchase order, then the corre-
sponding Create() BAPI for a business object type purchase order can be
enhanced to process this additional data using the extension structures. The
extension structures are based on the type BAPIPAREX.

The following conventions should be followed for parameters:

� Wherever possible, optional parameters should be used to avoid incompatible
changes in the future and provide stability to the interface.

� Related parameters should be grouped into a structure instead of using too
many scalar parameters.

� The parameter names should be as meaningful as possible. Avoid using techni-
cal names, such as table names, or abbreviations, such as flag.

� The parameter names should be in English and a maximum of thirty characters.

� For ISO-relevant fields such as country, language, unit of measure, and so on,
additional fields for ISO codes should be provided. For example, if you have a
language field LANGU, then an additional field for the ISO code should be pro-
vided as LANGU_ISO.

� A quantity field must accompany a unit of measure field. Similarly, a currency
field must accompany a currency identifier.

Defining the Data Structure in the ABAP Dictionary

Once the parameter interface is identified, the required data structures should be
defined in ABAP Data Dictionary. This includes defining the required structure,
data elements, domains, and so on. We discussed defining these data structures in
Chapter 10.

When defining the data structures in ABAP Data Dictionary for the BAPI inter-
face, certain conventions should be followed:

� The name of the structure should start with (namespace)BAPI_. For example,
ZBAPI_. If the parameter of a BAPI is a structure, it can be referred directly to
this structure in ABAP Data Dictionary. However, if the parameter is an indi-
vidual field, then it should be referred to the component of the structure.

� You should create separate data structures for BAPIs and not use the existing
structures used for the applications, because when the BAPI is released, the
828

Business Application Programming Interface 19.2
underlying structures will be frozen and certain restrictions will apply when
you want to change these structures later.

� You should keep the structure name as meaningful as possible.

� The data structure should not have any APPEND or INCLUDE structures, because
such structures can cause incompatibilities if the BAPI data structure changes.

� Wherever possible, always use existing data elements and domains for the
components of the BAPI structure. This ensures consistency.

� The components of the BAPI structure should have meaningful English names.
For example, use MATERIAL as a field name instead of MATNR. The field name
can’t exceed thirty characters. You can use report BAPIFELD to create a proposal
for English field names for a given ABAP Data Dictionary structure.

� You should define single values or a value table for the domain of the field so
that (F4) help is available to identify the possible values. This helps external
programmers know the possible values that can be passed to the field. Wher-
ever applicable, you should define a foreign key for the fields of the BAPI struc-
ture. If a value table is maintained, then it should be defined as a foreign key
table for the component.

� The internal data format should be used for all parameter fields. For example,
the date field should always use the format YYYYMMDD.

Creating a Function Module in Function Builder

Once the data structures for the BAPI parameters are defined, the underlying
function module for the BAPI is created in Function Builder. We discussed creat-
ing function modules in Chapter 7.

When creating the function module, the following rules apply:

� The function module name should follow the naming convention <Name
space>BAPI_<business object>_<method>. For example, for method Create()
of business object type Employee, you can name the function module ZBAPI_
EMPLOYEE_CREATE. The name of the function module can’t exceed thirty charac-
ters. If required, you can use abbreviations if you ensure that the business
object type assignment is recognizable.

� All the BAPIs belonging to the same business object type should be created in
one function group.
829

Interfaces19
� You shouldn’t put BAPIs belonging to different business object types in the
same function group.

� The function module should be RFC-enabled.

� The function module should have a return parameter of type BAPIRET2.

� Even though underscores aren’t allowed for parameter names in BOR, you can
separate each word in the parameter name using the underscore in function
module. For example, you can name the parameter FirstName in BOR as FIRST_
NAME in the function module.

� The extension structures ExtensionIn and ExtensionOut should be of type
BAPIPAREX. These parameters can be named EXTENSION_IN and EXTENSION_OUT
in the function module.

� The function module shouldn’t raise any exceptions; instead, the error message
should be captured in the RETURN structure. The error message should be easily
understandable.

� The function module shouldn’t generate any screen output or display any
dialog boxes.

� The function module shouldn’t terminate the program. Any errors should be
sent to the caller with the appropriate message type in the RETURN structure.

� No COMMIT WORK statement should be executed in the BAPI. This allows for call-
ing multiple BAPIs in one LUW.

� Wherever possible, every BAPI should execute its own authorization checks.

� Individual parameters of the function module interface should be referred to
the components of the BAPI structure.

Defining the Business Object Type in BOR

Once the function module is developed, the BAPI is defined as a method of the
business object type. SAP provides a wizard that can add the function module as
an API method to the business object type. Using BOR, you can define your own
business object types or create a subtype for an existing business object type.

To add the BAPI as a method to the business object type, proceed with the follow-
ing steps:

1. Open an existing business object type or create a new business object type as
per your requirements via Transaction SWO1.
830

Business Application Programming Interface 19.2
2. Follow the menu path Utilities � API Methods � Add Method, as shown in
Figure 19.17. This will start a wizard, which will take you through a sequence
of steps to add the function module as a method. The wizard will validate if
you’ve followed all the rules in developing the BAPI function module.

Figure 19.17 Adding BAPI as Method

3. Once you start the wizard by selecting the menu path Utilities � API Methods �
Add Method, enter the function module name that should be added as an API
method, as shown in Figure 19.18, and click the green checkmark.

Figure 19.18 Add Function Module

4. On the next screen (see Figure 19.19), verify suggested properties for the
method and make any necessary changes. The Dialog checkbox should be
selected if the function module generates any dialogs that require user actions.
The Synchronous checkbox should be selected if the method is a synchronous
method; if the checkbox isn’t selected, the method will be an asynchronous
method.
831

Interfaces19
The Instance-Independent flag is an indicator that the attribute is valid for all
instances of the object type. Instance independent methods deliver an object
reference such as the Create or Find method. Once the necessary properties are
edited, click the Next Step button.

Figure 19.19 Method Properties

5. In the next step, as shown in Figure 19.20, verify the method parameters and,
if required, edit the parameter names for the method. Click Next Step to imple-
ment the method.

Figure 19.20 Method Parameters

6. The wizard will prompt you to generate the required template to implement
the method, as shown in Figure 19.21. Click Yes to generate the template and
implement the method automatically. At this point, the method will be added
to the object type, as shown in Figure 19.22.
832

Business Application Programming Interface 19.2
Figure 19.21 Generate Template

Figure 19.22 Method Added to Object Type

7. You can repeat the steps to add more methods if required. After adding the
required methods, generate the object by clicking the Generate button in the
toolbar. After the object is successfully generated, change the release status of
each method using the menu path Edit � Change Release Status � Object Type

(see Figure 19.23). The method should be set to Released status to be used by
external applications.

Figure 19.23 Change Release Status
833

Interfaces19
8. After changing the release status of the methods, the object itself should be
released so that external applications can use the business object and access its
components. To change the release status of the business object, from the ini-
tial screen of Transaction SWO1, follow the menu path Object Type � Change

Release Status To � Released, as shown in Figure 19.24. The business object
should be saved in a transportable package for the object to be set to the
Released status. Once released, the object can be accessed from BAPI Explorer
and used by external applications.

Figure 19.24 Release Object

Note

We strongly recommend not creating new BAPIs for SAP business object types, because
doing so involves modification.

Documentation

Each BAPI should be thoroughly documented. The documentation can be main-
tained for each BAPI from within BAPI Explorer. The BAPI documentation should
be maintained in such a way that an external developer with sufficient business
knowledge but no knowledge of the SAP system should be able to work with the
BAPI.

The documentation should clearly explain the purpose of the methods—what
actions they perform and their limitations and dependencies. If the BAPI per-
forms any COMMIT WORK process, it should be explicitly mentioned in the docu-
mentation.
834

EDI/ALE/IDocs 19.3
All the parameters of the method should be documented to reflect their purpose
and expected values. If the parameters have any default values, they should be
clearly documented.

Releasing

Once the BAPI is developed and the documentation maintained, all the develop-
ment objects associated with the BAPI can be released for customers:

� The function module should be released in Function Builder, using the menu
path Function Module � Release.

� The business object type should be released in BOR, using the menu path
Object Type � Change Release Status To.

� The BAPI method should be released in BOR, using the menu path Edit �

Change Release Status.

In this section, we discussed the use of BAPIs in the integration and exchange of
data between different systems, including communication between SAP systems
and between SAP and non-SAP systems. We looked at the different conventions,
methods, and steps for implementing BAPIs.

In the next section, we’ll explore using IDocs for EDI and ALE technologies.

19.3 EDI/ALE/IDocs

Intermediate Documents (IDocs) are a common data exchange format. IDoc inter-
faces allow you to exchange data with external systems. IDocs are commonly
used with Electronic Data Interchange (EDI) and Application Link Enabling (ALE)
technologies to exchange data with external systems.

Working with IDocs in EDI and ALE scenarios is a complex process and requires
numerous configurations, such as RFC destinations, port definitions, partner pro-
files, and so on to be maintained in the system. This involves the help of system
administrators and functional consultants to carry out different tasks. As an ABAP
programmer, your role is limited to developing IDocs and posting programs.
835

Interfaces19
19.3.1 Electronic Data Interchange

EDI is a popular way to exchange business documents between companies. For
example, say that company ABC typically procures raw materials from different
vendors. These vendors are known as business partners. When company ABC
wants to procure different raw materials from its business partners, it needs to
send a purchase order.

In a typical scenario, a purchase order is created in company ABC’s system and
sent to the business partner via mail or fax. Someone at the business partner
enters the purchase order details in the partner’s own internal system to generate
an invoice. The business partner then sends the invoice to company ABC. The
operator at company ABC enters the invoice details in the system for processing.

Figure 19.25 illustrates this manual process. Manually exchanging business docu-
ments is a time-consuming, expensive, and error-prone process. For example,
what if the operator inputs the purchase order details incorrectly while generat-
ing the invoice due to an illegible fax?

Figure 19.25 Manual Exchange of Business Documents

To make it easy for different organizations to exchange business documents, a
more automated process was required. However, different organizations use dif-
ferent systems, and the same data can have different formats, one unique to each
system. Company ABC may create a document in which the data is maintained in
a specific format—for example, representing the date as YYYYMMDD.

Buyer generates a
purchase order

Supplier enters the order
details in their internal system
and creates an invoice

Buyer enters invoice
in internal system
for processing

Document is sent
through fax or mail

The invoice is sent
to the buyer
836

EDI/ALE/IDocs 19.3
When this document is sent to the business partner, the business partner’s system
may use a different format for the same data. For the purposes of our example,
say the business partner’s system uses an MMDDYY format for the date. When
different systems use different formats to represent the same data, it becomes dif-
ficult to automate data exchange.

EDI addresses such challenges by defining a standard format for exchanging data.
EDI is a computer-to-computer electronic exchange of business documents in a
standard format. You may argue that sending a document via email is also an elec-
tronic way to exchange business documents—but when a business document is
sent via email, you still need an operator to manually post the document in the
system. EDI completely automates the process of exchanging business documents
without any human intervention.

Because EDI doesn’t involve exchanging paper-based documents, it provides
major benefits, such as reduced costs, almost real-time exchange of documents,
reduced errors, and so on. EDI completely removes human interaction in the
whole process of exchanging business documents.

Figure 19.26 further illustrates the EDI process.

Figure 19.26 EDI Process

EDI is used to exchange many business documents, such as purchase orders,
invoices, custom documents, shipping documents, and more. Because EDI
improves the speed of processing documents, it provides a business advantage
over competitors that still use a paper-based approach.

Now that you have a baseline understanding of the advantages of EDI, in the fol-
lowing subsections we’ll look at how IDocs are used with EDI and the processes
used to exchange business documents.

Invoice

Supplier’s system

Purchase Order

Buyer’s system
837

Interfaces19
Using IDocs with EDI

Because EDI involves the exchange of documents directly between computers
without any human intervention, a common standard needs to be defined,
describing what data is exchanged for a business document and in what format
the data is presented. For this reason, there are several EDI standards in use
today, such as ANSI, EDIFACT, TRADACOMS, and so on. Each standard also has
multiple versions, such as ANSI5010, EDIFACT version D12, and so on. When
two business agree to exchange documents using EDI, they agree to use a specific
EDI standard and version.

Businesses typically use a translator program to convert the company’s internal
format to an EDI-specific format before exchanging documents. For example, in
an SAP system, when an application document such as a purchase order is cre-
ated, the data is stored in the database in an SAP-specific format (e.g., the date is
stored in YYYYMMDD format). If this application document needs to be sent to a
business partner, it has to be converted first to the agreed-upon EDI standard.

Converting the document to EDI standard produces just another way of repre-
senting the same data. However, EDI standards keep evolving, and if SAP selects
to take on the task of converting application documents to EDI standards, then
SAP needs to keep updating its system each time an EDI standard changes. To
avoid such a problem, SAP has outsourced the translation to third-party software
vendors. The translator software is called the EDI subsystem. Using a third-party
subsystem allows SAP not to worry about ever-changing EDI standards; it’s the
job of the subsystem vendors to update their translation program to keep in sync
with the changing standards.

However, there’s still one challenge. SAP needs the flexibility to change its own
internal format and application documents. If the subsystem depends on the SAP
application data directly, then each time SAP changes its application format, the
subsystem needs to be updated to keep in sync with the changes.

To overcome such challenges, SAP uses the IDoc format. When the application
document is created in the system, an IDoc is generated based on the application
document. IDoc is another way of representing the same data. The subsystem
uses the IDoc for conversion to the EDI document. SAP guarantees that no matter
how an application changes internally, the subsystem always receives data in a
fixed IDoc format. This allows SAP the flexibility to change its internal applica-
tions without worrying about the subsystems being affected.
838

EDI/ALE/IDocs 19.3
The role of the subsystem is to convert the IDoc to an EDI document and transmit
it to the business partner. Similarly, when the EDI transmission is received from
a business partner, the EDI subsystem translates the EDI document into an IDoc.
Exchange of business documents involves an outbound process, in which a docu-
ment is sent from your system to a business partner’s system, and an inbound
process, in which a document is received from a business partner and posted in
your system.

We’ll discuss the inbound and outbound processes further in the following sub-
sections.

Outbound and Inbound Processing

Figure 19.27 shows the steps involved in the outbound and inbound processes.

Figure 19.27 Outbound and Inbound Processes

In the outbound process, the application document is first created in the SAP sys-
tem. If the document needs to be transmitted through EDI (e.g., via message con-
trol), then it triggers the EDI process.

Application Document created

IDoc is generated in the
database

IDoc is pushed to OS level

IDoc processed by subsystem

EDI Document created by
subsystem

EDI Document transmitted by
subsystem

Outbound Process

EDI transmission received by
subsystem

Subsystem converts EDI
Document to IDoc

IDoc processed by ABAP posting
program

Application Document created
in SAP

Inbound Process
839

Interfaces19
In the EDI process, an ABAP program selects the application data from the data-
base and generates an IDoc. This IDoc is then pushed to the OS level, to a specific
directory from which the subsystem will pick up the IDoc for processing. The
subsystem will first perform a syntax check to ensure the IDoc is in the correct
format and all mandatory fields are filled.

The IDoc consists of a control record, multiple data records, and multiple status
records:

� Control record
The control record consists of the general information about the IDoc, such as
the type of document (called the message type), the business partner details,
and so on. You’ll learn more about the control record when we discuss IDoc
development in the upcoming subsections.

� Data records
Data records consist of the actual data of the document.

� Status records
Status records are updated with the status of the IDoc at each processing step.

The subsystem converts the IDoc to EDI format. It uses the control record of the
IDoc to identify the partner details and the message type being exchanged. Based
on the message type, the required syntax checks are performed to ensure data
consistency. The subsystem takes care of stripping the control record before
transmitting the document to the business partner.

Once the IDoc is converted to an EDI document, the subsystem establishes a con-
nection with the business partner’s system (either through direct connection to
the partner’s network or through VAN) and transmits the document. Once the
acknowledgement is received from the business partner that the document has
been received successfully, the subsystem updates the IDoc with the status mes-
sage. The IDoc is updated with the status message at each step of the process to
help identify any issues.

In the inbound process, the EDI transmission is received by the subsystem and
takes care of converting the EDI document to an IDoc. SAP provides program
STARTRFC to start any RFC-enabled function module from the operating system
level. The subsystem uses program STARTRFC to call the EDI_DATA_INCOMING func-
tion module to trigger the inbound processing. The control record of the IDoc is
used to identify the partner profile, using which the ABAP posting program is
840

EDI/ALE/IDocs 19.3
executed. The posting program processes the IDoc and posts the application doc-
ument in the SAP system.

The subsystem, even though not part of SAP, plays a crucial role. It takes care of
processing IDocs, performs a syntax check on the document before transmission,
establishes a connection with the business partner’s network to transmit the file,
and acknowledges the successful transmission.

19.3.2 Application Link Enabling

ALE is a proprietary SAP technology used to create and run distributed applica-
tions. ALE allows you to integrate business processes between SAP systems and
between SAP and non-SAP systems. When communicating with non-SAP sys-
tems, special SAP-certified third-party translator programs are used. ALE allows
you to exchange data between application systems in a distributed environment
in a controlled and consistent manner.

A distributed environment refers to a landscape in which various business func-
tions of an organization are distributed across multiple systems. Due to increased
globalization of markets, a distributed environment is required to decentralize
such systems. For example, the accounts system is maintained in a central loca-
tion, with manufacturing systems maintained locally at each plant.

Distributed environments also improve system performance, because different
business functions run in different systems as opposed to all business functions
running in the same system. ALE is middleware that allows you to integrated
different components of a business process. It allows you to integrate processes
from vendors and customers; business processes aren’t restricted to one organi-
zation only, but instead involve vendors and customers as business partners.

The applications of ALE integrated systems are loosely coupled, and the data is
exchanged asynchronously using IDocs. Synchronous connections are used to
read the data only. Asynchronous exchange of data ensures that the data arrives
in the receiver system even if the system is offline when the data is sent.

ALE guarantees the distribution and synchronization of master data, customiza-
tion data, and transaction data. There are many configurations that need to be set
up for ALE integration. Transaction SALE is used to maintain all the required set-
tings in the system.
841

Interfaces19
ALE has three layers:

� Application layer

� Distribution layer

� Communication layer

Figure 19.28 shows the different ALE layers.

Figure 19.28 ALE Services

The outbound ALE process involves the following steps:

1. Receiver determination
The receiver is determined either by the application or by using the distribution
model. The distribution model defines which applications in the distributed sys-
tem communicate with each other and what data is exchanged between them.

A master IDoc is created with all the data that should be exchanged with exter-
nal systems, and for each receiver system identified from the distribution
model, the data specified by the filter objects in the distribution model is
selected from the master IDoc.

Create
Message?

Create Master
IDoc

Version
Change

Field
Conversion

Segment
Filtering

Distribution
Model

Determine
Recipient

Database
Link Send Control

Master
IDoc

IDoc

Segment
Filtering

Field
Conversion

Post Application
Document

Process IDoc

Transfer
Control

Serialization
IDoc

IDoc

tRFC
or

EDI

Database

IDoc

Application ALE Layer
Communication

Layer ApplicationALE Layer
842

EDI/ALE/IDocs 19.3
2. Data selection
The data that needs to be distributed is selected by the application program.

3. Segment filtering
Individual segments can be removed from the IDoc before it’s dispatched. For
each receiving system, segment filtering is configured to set the filter objects.

4. Field conversion
If the receiver system requires any field conversions, the conversion rules can
be maintained in customizing. For example, a plant field can be converted to a
four-character field from a two-character field when it’s being transferred from
an SAP R/2 system to the latest SAP system.

5. Version change
SAP guarantees that ALE will work to exchange the documents between differ-
ent SAP releases. Changing the IDoc format allows you to convert message
types from different releases.

6. Dispatch control
Dispatch of IDocs can be controlled based on time and quantity. IDocs either
can be sent immediately or can be scheduled to process in the background by
scheduling a background job. The background job can be scheduled to run at
periodic intervals. An IDoc also can be assigned a packet size so that it can be
dispatched in packets. These settings are maintained in the partner’s profile.

Inbound processing involves the following steps:

1. Segment filtering
Similar to outbound processing, individual segments can be removed from the
IDoc on the receiver’s system.

2. Field conversion
This step is similar to the outbound processing step.

3. Transfer control
Once the IDoc is written to the database, it can be posted by the application
either immediately or in the background by scheduling a background job. A
workflow can be used to notify the user if any error occurs while posting the
document.

4. Serialization
Serialization is used to post documents in the correct sequence.
843

Interfaces19
Now that you have a better understanding of EDI and ALE technology, we’ll dive
into the use of IDocs in the next subsection.

19.3.3 Intermediate Documents

IDocs are used to exchange data via EDI or ALE. An IDoc is just a data container
that holds data in a specific data format. For example, a date field may be stored
in an IDoc with an MMDDYY format.

As previously mentioned, an IDoc consists of one control record, multiple data
records, and multiple status records, as shown in Figure 19.29. The control
record holds control information such as direction (inbound or outbound),
sender and receiver information, message type, IDoc status, and so on. In Figure
19.29, you’ll see the control record information displayed under the Short Tech-

nical Information section.

Figure 19.29 IDoc Example

The data records hold the application data. When developing an IDoc, we define
segments (structures) that hold the application data. When the IDoc is generated,
844

EDI/ALE/IDocs 19.3
the segments translate to data records. The fields of the IDoc segment and the
data they contain can be seen under the Content of Selected Segment section in
Figure 19.29. Each IDoc contains multiple data records.

Status records contain the IDoc status. A status record is added to the IDoc at each
milestone. For example, the status code 01 is added when the IDoc is generated,
status code 03 is added when it’s transferred to the port, and so on. The status
records show the status of the IDoc processing at any given stage.

In Figure 19.29, you’ll see status records 03, 30, and 01 attached to the IDoc
under the Status Records folder and displayed in a tree structure. Transaction
WE47 contains all the available status codes and their descriptions, as shown in
Figure 19.30. These status codes should be used when updating the status record
of the IDoc.

Figure 19.30 IDoc Statuses
845

Interfaces19
IDoc Structure

IDocs are stored internally in the database in the following database tables:

� EDIDC

The control record is stored in database table EDIDC with a unique IDoc number
(see Figure 19.31). Each IDoc has one record in this table and is uniquely iden-
tified by the IDoc number. Other details about the IDoc, such as IDoc status,
direction, receiver port, partner details, and so on, also are stored in this table.

Figure 19.31 Table EDIDC

� EDID4

The data records of the IDoc are stored in this table, linking the control record
with the document number. There can be one to many records for each IDoc.
This table stores the segment information and the application data for the IDoc.
The SDATA field in table EDID4 contains the application data. This field is parsed
in the program at runtime to a structure of the type of the IDoc segment.
846

EDI/ALE/IDocs 19.3
When developing an IDoc, a segment is defined that contains the fields to store
the application data. Segments are stored in ABAP Data Dictionary as structure
types.

For example, say you want to generate an IDoc for a billing document with data
such as document number, payer, and net value. To store this data about the
billing document in an IDoc, define a segment with fields such as VBELN, KUNRG,
and NETWR to store the document number, payer, and net value, respectively.
This segment translates to a data record when the IDoc is generated and stored
in table EDID4 with the segment name and corresponding data of the segment
fields. The segment name is stored in the SEGNAM field, and the data of the seg-
ment fields is stored in the SDATA field of table EDID4.

Figure 19.32 Table EDID4

� EDIDS

The status records of the IDoc are stored in this table and linked to the control
and data records using the IDoc number. Table EDIDS contains different infor-
mation about the status record, such as the IDoc status, status code, time and
date of status record, and so on, as shown in Figure 19.33.
847

Interfaces19
Figure 19.33 Table EDIDS

IDoc Development and Tools

An IDoc is an instance of the IDoc basic type. The IDoc is the data container, and
the IDoc basic type defines the IDoc structure. The basic type consists of one or
more segments, which exist as structures in ABAP Data Dictionary. The IDoc seg-
ments provide the structure to parse the application data from the SDATA field of
the data record.

When creating an IDoc basic type, we perform two basic steps: First, define the
segments containing various fields for the application data that should be saved in
an IDoc, and then add these segments to the IDoc basic type. IDoc basic types are
created using Transaction WE30, whereas segments are defined using Segment
Editor (Transaction WE31).

After creating the basic type with the required segments, the basic type should be
linked to a logical message type, which describes the business process, and each
basic type should be linked to a business process via the logical message type. For
example, the ORDERS logical message type usually is used for purchase orders in
848

EDI/ALE/IDocs 19.3
outbound processing, and if you’re creating a basic type to pass purchase order
data to the external system, then the basic type should be linked to the ORDERS
logical message type.

You can link the basic type to an existing logical message type or create a new log-
ical message type if none of the existing message types describe your business
process adequately. One basic type can be assigned to several logical message
types and vice versa, so you should create a new message type only if none of the
existing message types adequately describe your business process.

The logical message types are defined using Transaction WE81, whereas the basic
type is linked to the message type using Transaction WE82.

Now that you have a better idea of the structure, types, and tools of IDocs, in the
following subsections we’ll walk you through IDoc development and the re-
quired configuration steps.

Creating a Segment

Use Transaction WE31 to create a segment. The segment is added to the basic
type to define the structure of the IDoc.

Proceed as follows to create a segment:

1. On the initial screen of Transaction WE31 (see Figure 19.34), provide the name
of the segment and click the Create button in the application toolbar. SAP seg-
ment names start with E1, and customer segment names should start with Z1.

Figure 19.34 Create Development Segment Initial Screen

2. On the Create Segment Definition screen, as shown in Figure 19.35, maintain
the fields for the segment just like you would maintain the components of a
849

Interfaces19
structure. For example, enter the field name in the Field Name column and the
data element name in the Data Element column. Once the fields of the seg-
ment are maintained, click the Save icon in the standard toolbar to save the seg-
ment. The fields of the segment translate to data records in the IDoc.

3. If the segment has a different meaning in different scenarios, then you can
select the Qualified Segment checkbox (see Figure 19.35). When this check-
box is set, the meaning of the segment is derived from the first field of the seg-
ment.

Figure 19.35 Create Segment Definition

4. Once the segment is saved, release the segment by following the menu path
Edit � Set Release from the initial screen, as shown in Figure 19.36.

Figure 19.36 Releasing Segment
850

EDI/ALE/IDocs 19.3
Similarly, you can create additional segments as per your requirements.

Creating a Basic Type

Once the segment is defined using Segment Editor, we can define the basic type
using Transaction WE30.

Proceed with the following steps to create the basic type:

1. On the initial screen of Transaction WE30 (see Figure 19.37), you can create a
new basic type or create an extension for the existing basic type. To create a
new basic type, select the Basic Type radio button. If you want to create an
extension type, enter the name of the basic type for which you want to create
an extension and select the Extension radio button. For this example, create a
new basic type.

Figure 19.37 Develop IDoc Types: Initial Screen

2. Once you provide the name of the basic type and click the Create button, you’ll
see a dialog box in which you can create a basic type from scratch, copy from
an existing basic type, or create a successor to an existing basic type, as shown
in Figure 19.38. Select the Create New radio button to create a new basic type.

3. Now, you’ll see a screen in which you can add segments to the basic type. Click
the Create button, as shown in Figure 19.39.
851

Interfaces19
Figure 19.38 Create Basic Type

Figure 19.39 Add Segment

4. In the Maintain Attributes dialog box that appears (see Figure 19.40), enter
the name of the segment type that you created previously. You can also set the
segment as mandatory. If the Mandatory Seg. checkbox is selected, then the
IDoc will be checked at runtime to validate if all the mandatory segments are
filled.

The Maximum Number and Minimum Number fields allow you to set how
many times the segment can be repeated in the IDoc. For example, if the seg-
ment contains header fields, then you can set it to repeat only once. Similarly,
if the segment contains item records, you can set it to repeat multiple times.

The Segment Editor button takes you to the segment editor, in which you can
check the segment definition.
852

EDI/ALE/IDocs 19.3
Figure 19.40 Maintain Attributes

5. Click OK to add the segment to the basic type. Similarly, you can add additional
segments to the basic type. You can add new segments as child segments by
keeping the cursor on the existing segment and clicking the Create icon. Doing
so will open a dialog box asking you whether you want to add the new segment
type at the same level or as a child segment, as shown in Figure 19.41.

Figure 19.41 Adding Additional Segments

6. Once all the required segments are added to the basic type, save it. The basic
type should be released to freeze any further changes. To release the basic type,
follow the menu path Edit � Set Release from the initial screen of Transaction
WE30.
853

Interfaces19
7. You can check the consistency of the basic type by following the menu path
Development object � Check from the initial screen. At this point, when the
basic type is checked for consistency, the system will show a warning message
indicating that the basic type isn’t linked to any logical type, as shown in Figure
19.42.

Figure 19.42 Consistency Check

The logical message type identifies the type of document being exchanged. Each
basic type is linked to a logical message type. For example, the ORDERS message
type is used for purchase orders, ORDRSP is for order confirmation, and so on. You
can create a new logical type and link your basic type to it. If we want to extend
an existing logical type, create a new extension type and add the extension type
to the existing logical type. In the next subsection, we’ll explain the steps for cre-
ating a logical type.

Creating a Logical Type

You can create a new logical type using Transaction WE81. Proceed with the fol-
lowing steps to create a logical type:

1. On the initial screen of Transaction WE81, enter change mode and click the
New Entries button to maintain the new logical type and its description, as
shown in Figure 19.43.

2. Once the message type and the short description is maintained, click the Save

button in the toolbar to save the new logical message type. The basic type can
now be linked to the new logical message type. The logical message type plays
854

EDI/ALE/IDocs 19.3
a central role in linking different objects of IDoc processing, such as partner
profiles and inbound and outbound process codes.

Figure 19.43 Maintain Message Type

Assigning Basic Types

After the logical message type is maintained, the basic type is linked to the mes-
sage type using Transaction WE82.

The following steps walk you through how to assign and link the basic type
you’ve created:

1. On the initial screen of Transaction WE82, enter change mode and click the
New Entries button. Maintain the message type and basic type details, as
shown in Figure 19.44.

Figure 19.44 Assigning Basic Type to Message Type

2. The Release column should be filled with the SAP release version to which this
message type and basic type are linked. This helps the system use the correct
855

Interfaces19
basic type based on the system release. One message type can have multiple
basic types (a one to many [1:n] relation).

3. Use the menu path System � Status to find the release version of your system
under the SAP System Data section, as shown in Figure 19.45.

Figure 19.45 SAP Product Version

Before IDocs can be generated, there are many configurations that need to be
maintained in the system. Most of these configurations are maintained by system
administrators. In the following subsection, we’ll walk through the different sys-
tem configurations.

19.3.4 System Configurations

There are configurations that need to be maintained to work with IDocs. There
are certain configurations that are specific to EDI and certain configurations that
are specific to ALE. The following sections describe some common configura-
tions.

The different configuration steps involved are as follows:

1. Define an RFC destination using Transaction SM59.

2. Define a port definition using Transaction WE21.

3. Define a partner profile using Transaction WE20.

4. Define an outbound process code using Transaction WE41.

5. Define an inbound process code using Transaction WE42.

6. Define IDoc attributes using Transaction BD51.

On the SAP Easy Access screen, type “WEDI” in the command field to open the
IDoc and EDI Basis menu, as shown in Figure 19.46; from this menu, all the
tools discussed in the following sections can be accessed.
856

EDI/ALE/IDocs 19.3
Figure 19.46 IDoc and EDI Basis Menu

RFC Destination (Transaction SM59)

The RFC destination is maintained by the system administrator using Transaction
SM59, from which different types of connections can be maintained, as shown in
Figure 19.47.

Figure 19.47 RFC Destinations
857

Interfaces19
For ALE, an ABAP connection (Type 3) is defined, whereas for EDI, a TCP/IP con-
nection (Type T) is defined. Within the RFC destination (see Figure 19.48), the
remote server details and the logon credentials for the remote server are main-
tained. The system uses this information to connect to the remote server.

The remote server details are maintained under the Technical Settings, tab and
the logon credentials for the remote system are maintained under the Logon &
Security tab.

The Unicode tab allows you to maintain details about the communication type,
such as Unicode or non-Unicode. Under the Special Options tab, you can main-
tain the settings to activate an RFC trace and the time-out duration if the remote
system doesn’t respond. All these settings are maintained by the SAP Basis
administrator; a discussion of these individual settings is beyond the scope of this
book.

Figure 19.48 RFC Destination for ABAP Connection

In addition to maintaining RFC destinations statically via Transaction SM59, with
the release of SAP NetWeaver 7.5, SAP added support for dynamic RFC destina-
tions. A new CL_DYNAMIC_DESTINATION class is available to manage dynamic RFC
destinations. The CREATE_RFC_DESTINATION method of the CL_DYNAMIC_DESTINA-
TION class makes it possible to create a dynamic destination, which can be used in
current sessions for RFCs.
858

EDI/ALE/IDocs 19.3
Port Definition (Transaction WE21)

The port definition is maintained using Transaction WE21. The port definition is
an important configuration that tells the system the physical/logical directory in
which the IDoc file will be stored when using EDI or the RFC destination for a
transactional RFC (tRFC) when using ALE.

When using a tRFC, the called function module is executed exactly once in the
called system. This ensures that the function module isn’t restarted automatically
if an error occurs.

For EDI, we maintain a file port, and for ALE, we maintain a tRFC port, as shown
in Figure 19.49. If the IDoc is transmitted as an XML file, then an XML file port is
maintained.

Defining ports is the responsibility of the SAP Basis administrator; our concern as
ABAP developers is limited to knowing the port definition that should be used
while generating the IDoc.

Figure 19.49 Port Definition

Partner Profile (Transaction WE20)

A partner profile is one of the important configurations that needs to be main-
tained in the system before any data can be exchanged with a business partner.

The partner type is a key field for maintaining the partner profile. Figure 19.50
shows different types of partners under which business partner profile is main-
tained. In a distributed environment, the receiving system details are maintained
under Partner Type-Logical System (LS).
859

Interfaces19
Figure 19.50 Partner Profile

For each business partner, the outbound and inbound parameters are main-
tained. The outbound parameters contain information such as the message type,
basic type, port definition, outbound process code, and so on. The inbound
parameters contain information such as the inbound process code, which identi-
fies the inbound posting program that should be triggered when an inbound
transmission is received from the partner.

You can also maintain agent details for who can be informed in case of any errors
in processing. The system will trigger a workflow in which the agent can take
actions to correct the errors.

Figure 19.51 shows the outbound and inbound parameters maintained for a part-
ner profile.

Figure 19.51 Outbound and Inbound Parameters for Partner Profile
860

EDI/ALE/IDocs 19.3
Outbound Process Code (Transaction WE41)

The outbound process code links the extraction program that reads the application
data and generates the IDoc with the message type. The extraction and posting
programs are maintained as function modules.

In the outbound process code, we define a process code to which the function
module that extracts the application data and generates the IDoc is linked (see
Figure 19.52). This process code is then assigned to the outbound parameter of
the partner profile under the Message Control settings, as shown in Figure
19.53. Message control is a mechanism to automate the output or follow up with
processing of partner-dependent messages.

Figure 19.52 Outbound Process Code

Figure 19.53 Process Code in Partner Profile
861

Interfaces19
When message control is used to initiate EDI/ALE process, the partner profile is
read to identify the outbound process code from which the extraction program is
triggered.

Inbound Process Code (Transaction WE42)

Similar to the outbound process code, the inbound process code links the message
type with the posting program. The inbound process code is maintained in the
partner profile. When an inbound IDoc is received, the process code is read from
the partner profile to identify the posting program. The posting program then
processes the IDoc to post the application document.

Figure 19.54 shows the inbound process code linking to the function module.
Figure 19.55 shows the process code maintained in the inbound parameters of
the partner profile.

Figure 19.54 Inbound Process Code

Figure 19.55 Process Code Maintained in Partner Profile
862

EDI/ALE/IDocs 19.3
Define IDoc Attributes (Transaction BD51)

IDoc attributes define how the inbound IDoc functions are processed. In this
transaction, you maintain the inbound function module name and the processing
attribute with one of the following options (see Figure 19.56):

� 0

Mass processing for functions that use direct input to the database to post the
application document (direct input method).

� 1

Individual input for functions that use the CALL TRANSACTION method to post
the application document.

� 2

Individual input for functions that use the CALL TRANSACTION method and lock
the IDoc.

� Dialog Allowed

Flag that allows screen display when IDocs are processed in the foreground and
the function uses the CALL TRANSACTION method.

Figure 19.56 IDoc Characteristics

19.3.5 Inbound/Outbound Programs

Once the basic type is developed and all the required configurations are main-
tained, we need ABAP programs to extract the application data and create an IDoc
in the database for outbound IDocs and to post the application data from an
inbound IDoc. We’ll look at inbound and outbound programs in the following
subsections.
863

Interfaces19
Inbound Program

In an inbound program, the function module should use the standard interface
using the EDIDC and EDIDD structures. The IDoc control record will be filled in the
EDIDC structure, which can be used to validate if the inbound program is called for
the correct message type. The EDIDD structure is an internal table that contains the
data records. The SDATA field of the EDIDD structure contains the unformatted
row, which can be parsed to a structure of the correct segment type. This row is
then updated in the database.

The easy way to define an interface is to copy the interface from an existing
inbound function module. Listing 19.2 shows the inbound function code in its
bare minimum form. This inbound function module is configured in Transaction
WE42.

FUNCTION ZDEMO_IDOC_INPUT.
*"--
""Local Interface:
*" TABLES
*" IDOC_CONTRL STRUCTURE EDIDC
*" IDOC_DATA STRUCTURE EDIDD
*" IDOC_STATUS STRUCTURE BDIDOCSTAT
*"--
DATA : wa_makt TYPE zmakt,

st_seg TYPE zseg1,
it_makt TYPE STANDARD TABLE OF zmakt.

LOOP AT IDOC_DATA WHERE DOCNUM EQ IDOC_CONTRL-DOCNUM.
st_seg = IDOC_DATA-SDATA.
MOVE-CORRESPONDING st_seg TO wa_makt.
APPEND wa_makt to it_makt.

ENDLOOP.
MODIFY zmakt FROM TABLE it_makt.
IF sy-subrc IS INITIAL.
IDOC_STATUS-DOCNUM = IDOC_CONTRL-DOCNUM.
IDOC_STATUS-STATUS = '53'.
IDOC_STATUS-MSGTY = 'I'.
IDOC_STATUS-MSGID = 'YM'.
IDOC_STATUS-MSGNO = '004'.
APPEND IDOC_STATUS.

ELSE.
IDOC_STATUS-DOCNUM = IDOC_CONTRL-DOCNUM.
IDOC_STATUS-STATUS = '51'.
IDOC_STATUS-MSGTY = 'E'.
IDOC_STATUS-MSGID = 'YM'.
864

EDI/ALE/IDocs 19.3
IDOC_STATUS-MSGNO = '004'.
APPEND IDOC_STATUS.
ENDIF.

ENDFUNCTION.

Listing 19.2 Inbound Function

In Listing 19.2, we defined a function module with three tables parameters. The
IDOC_CONTRL parameter is of type EDIDC, the IDOC_DATA parameter is of type
EDIDD, and the IDOC_STATUS parameter is of type BDIDOCSTAT. When the function
module is called, the IDoc control record is transferred to the IDOC_CONTRL param-
eter and the data records are transferred to the IDOC_DATA parameter. We also
defined a local structure, st_seg, which is of the segment type used in the basic
type. The IDoc’s data records are based on this segment type.

We first move the data in the SDATA field into the st_seg structure. This data is
then moved to the internal table from which the corresponding database table is
updated. Note that we kept the code very basic in this example to highlight how
the data is processed from the IDoc and updated in the application table.

We updated the status in the IDOC_STATUS parameter, which is updated in the
IDoc as a status record. The status codes are maintained in the system, and only
these codes should be used to update the IDoc. You can find all the status codes
via Transaction WE47, as shown in Figure 19.57.

Figure 19.57 IDoc Status Codes
865

Interfaces19
Outbound Program

In an outbound program, we extract the application data from the database and fill
the EDIDD structure. The MASTER_IDOC_DISTRIBUTE function module is used to
generate the IDoc. This outbound function module is configured in Transaction
WE41.

Listing 19.3 shows sample code for an outbound function module. Again, we
have kept the code to the bare minimum to make it easy for you to follow the
logic.

FUNCTION ZDEMO_IDOC_OUTPUT.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(OBJECT) LIKE NAST STRUCTURE NAST
*" VALUE(CONTROL_RECORD_IN) LIKE EDIDC STRUCTURE EDIDC
*" EXPORTING
*" VALUE(CONTROL_RECORD_OUT) LIKE EDIDC STRUCTURE EDIDC
*" TABLES
*" IDOC_DATA STRUCTURE EDIDD
*" IDOC_STATUS STRUCTURE BDIDOCSTAT
*"--
"Segment Type
DATA : S_ZMAKTID LIKE zseg1.
"Application table
DATA : T_makt TYPE STANDARD TABLE OF zmakt.
DATA : w_makt TYPE zmakt.
DATA : v_matnr TYPE matnr.
"Generated Communication IDOc
DATA : T_COMM_IDOC TYPE STANDARD TABLE OF EDIDC.
CONSTANTS :
C_ZMAKTID LIKE EDIDD-SEGNAM VALUE 'ZSEG1', "Segment name
C_IDOCTP LIKE EDIDC-IDOCTP VALUE 'ZDMIDOC'. "Basic Type

*Fill control record
MOVE control_record_in TO control_record_out.
control_record_out-direct = '1'.
control_record_out-serial = sy-datum.
control_record_out-serial+8 = sy-uzeit.

*Fetch application data
v_matnr = object-objky.
SELECT matnr spras maktx FROM makt INTO TABLE t_makt WHERE matnr EQ v_
matnr.

*Fill data records
LOOP AT t_makt INTO w_makt.
866

Legacy System Migration Workbench 19.4
S_ZMAKTID-matnr = w_makt-matnr.
S_ZMAKTID-spras = w_makt-spras.
S_ZMAKTID-maktx = w_makt-maktx.
IDOC_DATA -SEGNAM = C_ZMAKTID.
IDOC_DATA -SDATA = S_ZMAKTID.
APPEND IDOC_DATA.
CLEAR IDOC_DATA.

ENDLOOP.

*Send IDoc
CALL FUNCTION 'MASTER_IDOC_DISTRIBUTE'

EXPORTING
MASTER_IDOC_CONTROL = control_record_out

TABLES
COMMUNICATION_IDOC_CONTROL = T_COMM_IDOC
MASTER_IDOC_DATA = IDOC_DATA

EXCEPTIONS
ERROR_IN_IDOC_CONTROL = 1
ERROR_WRITING_IDOC_STATUS = 2
ERROR_IN_IDOC_DATA = 3
SENDING_LOGICAL_SYSTEM_UNKNOWN = 4
OTHERS = 5.

IF SY-SUBRC <> 0.
*Update IDoc status
ENDIF.

Listing 19.3 Outbound Program

In Listing 19.3, we selected the data from the application table and filled the IDoc
data structure. This data is then sent to the MASTER_IDOC_DISTRIBUTE function
module along with the control record to generate the IDoc.

In this section, we discussed the steps for creating and generating IDocs to be
used with EDI and ALE technologies. In the next section, we’ll look at a tool used
to migrate data from legacy systems.

19.4 Legacy System Migration Workbench

Legacy System Migration Workbench (LSWM) is a tool provided by SAP to
quickly migrate data from legacy systems. This tool targets functional consultants
and end users and doesn’t require any ABAP knowledge. The tool provides differ-
ent options to migrate data, such as the direct input method, batch input method,
BAPIs, or IDocs.
867

Interfaces19
Using the tool simply involves following a sequence of steps. The major step is to
map the input file fields with the data transfer structure generated from the data
transfer technique used. LSMW is generally employed for one-time data transfers
from non-SAP to SAP systems.

19.4.1 Getting Started

To get started, proceed with the following steps:

1. Open Transaction LSMW.

2. On the initial screen, as shown in Figure 19.58, enter names for the following
fields:

� Project: The project name corresponds to an organizational unit that is used
to combine mapping and field assignments. A project can have any number
of subprojects.

� Subproject: A subproject is an organizational unit that is subordinated to a
project. For example, all the data that should be transferred will be a project,
and if the data needs specific changes for each plant, then each plant can be
a subproject. A subproject can have any number of objects.

� Object: An object constitutes a business object—for example, customer mas-
ter, material master, and so on.

Once you’ve finished providing names for the fields, click Create.

Figure 19.58 LSMW Initial Screen

3. The system will open the Create Object dialog box, in which you can maintain
descriptions for the Project, Subproject, and Object, as shown in Figure
19.59. Once the project is created, click the Execute button to start maintaining
the migration tasks.
868

Legacy System Migration Workbench 19.4
Figure 19.59 Create Object

19.4.2 Migration Process Steps

Working with LSMW involves following a sequence of steps. In each step, we
maintain certain configurations.

To perform a step, you need to select the step and click the Execute button, as
shown in Figure 19.60. The list of steps varies based on the object attributes
maintained in the first step.

Figure 19.60 LSMW Selection Steps
869

Interfaces19
You can personalize the steps by clicking User Menu in the application toolbar or
by following the menu path Extras � User Menu.

The following list walks through the steps shown in Figure 19.60:

1. Select the first step, Maintain Object Attributes, and click the Execute but-
ton. On the LSM Workbench: Change Object Attributes screen, click the Dis-

play/Change button to maintain the attributes for the object.

Here, you can maintain the import method. If a Standard Batch/Direct Input

program is available for the object, you can use the direct input program in
LSMW to migrate the data. You can also use any standard BAPI or IDoc avail-
able for the object. If none of these are available, you can perform a Batch

Input Recording to call the relevant transaction for the object and record the
sequence of steps to post the data using a session.

For example, if you want to post materials, you can perform a recording using
Transaction MM01, similar to using Transaction Recorder. Batch input record-
ings are specific to an object.

Figure 19.61 Maintain Object Attributes
870

Legacy System Migration Workbench 19.4
When a BAPI is used, it generates an IDoc automatically. We need to maintain
the relevant message type and basic type if Business Object Method (BAPI) or
IDoc (Intermediate Document) is selected as the input method. If you want to
use other input options instead of recording, select the corresponding radio
button and use the (F4) help for the field to select the available method for the
object.

For this example, use Batch Input Recording. Select the Batch Input Record-

ing radio button and click the Recordings Overview icon on the right-hand
side of the field.

This will take you to the Recordings Overview screen, as shown in Figure
19.62, where all the recordings for the object are displayed. Because you’re cre-
ating a new project, this screen will be empty. Click the Create icon to perform
a new recording.

Figure 19.62 Recordings Overview

The system will present the Create Recording dialog box, in which you can
input the name for the Recording and a short Description, as shown in Figure
19.63. The recording name will be used for mapping the input file fields.

Figure 19.63 Create Recording
871

Interfaces19
In the next window displayed (Transaction Code; see Figure 19.64), enter the
Transaction Code and complete the recording.

Figure 19.64 Transaction Code

Once the recording is completed, the system will capture all the information
about the transaction screens, such as program name, screen number, field
name, and field values, similar to recordings using Transaction SHDB. For this
example, we recorded Transaction MM01 to create a material. The recording is
displayed as shown in Figure 19.65.

Figure 19.65 Recording of Transaction MM01

Double-click to
maintain field name
872

Legacy System Migration Workbench 19.4
For all the fields where a value was entered during the recording, a colored
field is displayed. Double-click such a field to maintain a field name to which
the field of the input file will be mapped. The values entered during the record-
ing will be maintained as the default values. If, during processing, no data is
passed for the field from the input file, then the default value will be used. If
you wish, you can delete the default value while assigning the field name.

You can add or delete fields using the respective button in the toolbar. Once the
field names are maintained, Save the recording and click the Back button twice
to go back to the LSM Workbench: Change Object Attributes screen.

2. Maintain the recording name for the Batch Input Recording field, as shown in
Figure 19.66. Save the attributes and click the Back button to go back to the list
of steps.

Figure 19.66 Maintain Recording

3. Select the next step, Maintain Source Structures, and click the Execute

button.

4. Click the Display/Change icon and select the Create icon in the toolbar. This
will open a dialog box in which you can enter the input Source Structure

name, as shown in Figure 19.67. Save and click the Back button.

Figure 19.67 Maintain Source Structure

5. Select the Maintain Source Fields step and click the Execute button. In this
step, maintain the source fields that will be mapped to the recording fields cre-
ated in the earlier step. The source fields will be set as per the sequential file
that will be uploaded.
873

Interfaces19
6. Keep the cursor on the source structure name and click the Table Maintenance

icon to maintain the source fields. This will open the table maintenance screen
in which you can maintain the source fields, as shown in Figure 19.68. Click
Save and then Back to return to the list of steps.

Figure 19.68 Maintain Source Fields

7. The next step is Maintain Structure Relations. In this step, notice that the
system has automatically mapped the source structure with the recording struc-
ture (see Figure 19.69), because you’ve maintained only one source structure.
If maintain multiple source structures, then you can map the relevant source
structure with the recording structure in this step.

Figure 19.69 Maintain Structure Relations

8. In the next step, Maintain Field Mapping and Conversion Rules, you can
map the field of the source structure with the recording structure. If you
selected other input methods in step 1, Maintain Object Attributes, then the
fields will be shown as per the method selected. For example, if you selected a
874

Legacy System Migration Workbench 19.4
BAPI, then the fields will be displayed as per the BAPI interface, to which you
can map the source fields.

Click the Display/Change icon to maintain the field relationships. Keep the
cursor on the field and click the Source Field icon, as shown in Figure 19.70.

Figure 19.70 Maintain Field Mapping

Now, you’ll see a list of fields from the source file. Double-click the source file
field to map it to the recording structure. This will map the fields, as shown in
Figure 19.71. You can double-click the displayed rule to edit the mapping. For
example, you can write an IF condition to check that the source field is not ini-
tial.

Figure 19.71 Field Rule

You can click the Rule icon in the toolbar to insert any rule. Figure 19.72 shows
the different rules that can be defined. For example, you can make the field ini-
tial, assign a constant, assign a fixed value, write ABAP code, and so on. You can
learn more about each rule by visiting http://help.sap.com/saphelp_nw74/help-
data/en/4d/adab9cbd316d57e10000000a42189e/frameset.htm.
875

http://help.sap.com/saphelp_nw74/helpdata/en/4d/adab9cbd316d57e10000000a42189e/frameset.htm
http://help.sap.com/saphelp_nw74/helpdata/en/4d/adab9cbd316d57e10000000a42189e/frameset.htm

Interfaces19
Figure 19.72 Rules

Once all the field mappings are maintained, Save and click Back to return to
the list of steps.

9. In the next step, Maintain Fixed Values, Translations, User-Defined Rou-

tines, you can maintain reusable rules such as fixed values for the fields, trans-
lations, or user routines (subroutines; see Figure 19.73). This step allows you to
maintain any conversion rules to convert the data to SAP format. Click the Cre-

ate button in the toolbar to create the reusable rules that can be used during
field mapping.

Figure 19.73 Reusable Rules
876

Legacy System Migration Workbench 19.4
10. In the next step, Specify Files, maintain the path of the input field from which
the input field will be read. The file can be imported either from a PC frontend
or from a specific directory in the application server. The system also shows
the name for the converted file. You can edit the name if you wish. To specify
the file path, keep the cursor on the respective option (either PC Frontend or
Application Server) and click the Create button on the toolbar (see Figure
19.74).

In the Maintain Properties window, as shown in Figure 19.75, you can main-
tain the input file properties. Here, you can maintain file properties such as
delimiter, file type, code page, and so on, as shown in Figure 19.75.

Figure 19.74 Specify Files

Delimiter specifies how the columns in the input file are separated (e.g., by
commas or tab spaces). Field Name at the Start of the File specifies that
the input file contains the column headings in the first row. Selecting this
checkbox will ignore the first row of the input file. The File Order Matches

Source Structure Definition checkbox specifies that the fields in the input
file match the source structure maintained in LSMW. The File Type options
specify how the system identifies the end of a line. In the Code Page section,
you can select the applicable code page.
877

Interfaces19
Figure 19.75 Import File

11. In the next step, Assign Files, you’ll that the source structure is assigned to
the input file path. If you’ve created multiple source fields, you can assign the
files in this step. Otherwise, you can ignore this step.

12. Execute the next step, Read Data, to read the input file. The system will
upload the data from the input file.

13. In the next step, Display Read Data, you can verify if the uploaded data is
mapped correctly to the source structure.

14. The next step, Convert Data, converts the uploaded data as per the field
mappings and conversion rules maintained in the earlier step.

15. In the next step, Display Converted Data, you can verify that the data is con-
verted correctly and mapped correctly to the recording structure, as shown in
Figure 19.76.
878

Legacy System Migration Workbench 19.4
Figure 19.76 Converted Data

16. The next and final step is to create a batch input session (see Figure 19.77).
Once the final step is executed, the batch input session is created, which can
be processed using Transaction SM35. If the LSMW object attribute is main-
tained as direct input or BAPI or IDoc in the first step, then you’ll see the
respective final processing step instead of the batch input steps.

Figure 19.77 Final Steps
879

Interfaces19
As you can see, LSMW allows you to migrate data from an external system with-
out having to write any code. The prerequisite for using LSMW is to extract the
data from the external system into a sequential file.

If you’re using a BAPI or IDoc as an input method, then you need to maintain the
IDoc inbound processing settings (see Figure 19.78) via the menu path Settings �
IDoc Inbound Processing on the initial LSMW screen. Here, you maintain
details such as Partner Type, Partner Number, Port, and so on.

Figure 19.78 Maintain IDoc Inbound Processing

19.5 Web Services

A web service is a service offered by one system to another system over the Inter-
net. With a web service, web technology such as HTTP is utilized for communica-
tion between systems. Using web services, data is exchanged in machine-readable
file formats, such as XML and JSON. Web services provide object-oriented web
interfaces for SAP systems; for example, a mobile application can access SAP data
using a web service. A web service uses Internet standards such as the following:

� Web Services Description Language (WSDL)
Used to specify the interface of a web service. WSDL describes the interface of
the actual web service using this XML-based language, consisting of the names
of operations and the input and output messages. Figure 19.79 shows a sample
web service definition that defines the web service interface in an XML-based
format. In Figure 19.79, note that the interface definition consists of the fields
of table SPFLI.
880

Web Services 19.5
Figure 19.79 Sample Web Service Definition

� Simple Object Access Protocol (SOAP)
Used to transmit remote procedural calls. SOAP specifies a general format for
XML messages that are application-independent. These messages can be ex-
changed between partners over different transport protocols.
881

Interfaces19
� Universal Description, Discovery, and Integration (UDDI)
UDDI is used to locate web services. UDDI publicly enables web services,
which allows them to be discoverable.

Using a web service, we can expose any remote-enabled function module, BAPI,
IDoc, or XI Message interface. We can also consume web services in an ABAP pro-
gram. We’ll discuss how to create a web service in Section 19.5.1 and look at con-
suming web services in an ABAP program in Section 19.5.2.

Any business function that exists independently can be exposed as a web service
using the web service framework. For example, if an external application devel-
oper wants to access the material data from an SAP system, he can consume a
BAPI that has been exposed as a web service. Web services allow you to expose
business functions to external applications using open standards.

SOAP requests are processed through the Internet Communication Framework
(ICF). The ICF was introduced with the SAP Web Application Server in release
6.10, which allows ABAP programs direct access to the Internet. ICF is imple-
mented in AS ABAP as an object-oriented layer that enables handling of HTTP
requests within the ABAP environment. ICF enables you to work with the Inter-
net Communication Manager (ICM) of the application server and is the techno-
logical foundation for all SAP technologies that use HTTP(s) for communication,
such as Web Dynpro ABAP, web services, and SAPUI5. In web services, the HTTP
protocol of the ICF is used for communication between web service requesters
and providers. For web services to work, the SOAP runtime should be activated
in Transaction SICF.

On the initial screen of Transaction SICF (see Figure 19.80), enter “service” in the
Hierarchy Type field and click Execute to see the complete list of services. Navi-
gate to the /sap/bc/srt node, and activate the node and all its subnodes, as shown
in Figure 19.81. You also need to activate the /sap/bc/webdynpro/sap/appl_

soap_management node.
882

Web Services 19.5
Figure 19.80 Transaction SICF Initial Screen

Figure 19.81 Activating SOAP Runtime
883

Interfaces19
19.5.1 Creating a Web Service

The web service framework provides a wizard that makes it easy to create a web
service without writing any code. Any remote-enabled function module or BAPI
can be easily exposed as a web service.

For our example, let’s expose an RFC that provides the flight schedule data from
table SPFLI as a web service. This function module has CARRID and CONNID as
import parameters and the SPFLI structure as the export parameter.

Proceed with the following steps:

1. From the Function Builder menu, select Utilities � More Utilities � Create

Web Service � From the function module. You can also open the function
module in Object Navigator and select Create � Enterprise Service from the
context menu. This will start the Create Web Service wizard.

2. On the wizard screen, provide the web service name (Service Definition) and
Description, then click the Cont. button, as shown in Figure 19.82.

Figure 19.82 Web Service Wizard
884

Web Services 19.5
3. In the next step, enter the name of the function module that should be offered
as a web service. Because you initiated the wizard from the function module,
the function module name should be prefilled. Select the Map Name checkbox
(see Figure 19.83) to remove underscores in the function name and capitalize
the first letter in each word (i.e., set it in camel case).

Figure 19.83 Endpoint Function Module

4. In the next step, select the security profile for the web service. This specifies
how the authentication should be performed for the web service.

5. In the next step, select the package for the web service.

6. In the final step, click Complete to create the web service. The system will take
you to the web service definition, as shown in Figure 19.84. Activate the web
service.

7. The web service doesn’t have a runtime release at this point, so it can’t be used.
We can create the runtime release via Transaction SOAMANAGER.

8. Open Transaction SOAMANAGER to launch the SOA Management application
in your web browser. Under the Service Administration tab, click the Simpli-

fied Web Service Configuration link, as shown in Figure 19.85.
885

Interfaces19
Figure 19.84 Web Service Definition

Figure 19.85 SOA Management

9. Search for the web service, select the User Name/Password (Basic) checkbox,
and click Save, as shown in Figure 19.86.

10. Select the web service as shown in Figure 19.86, and click the Show Details

button. This will display the WSDL URLs (Figure 19.87). Click on the URL to
see the web service definition. Copy this URL; you’ll use it to consume the
web service in the next section. The URL listed after With WS Policy contains
the web service policy (such as security policy) advertised for the consumer.
886

Web Services 19.5
Figure 19.86 Simplified Service Configuration

Figure 19.87 WSDL URLs

11. You can execute the web service definition in Object Navigator to test the web
service (see Figure 19.88).
887

Interfaces19
Figure 19.88 Test Web Service Definition

19.5.2 Consuming Web Services

A web service is consumed using the web service client proxy. The client proxy
takes care of creating valid SOAP messages and evaluates received responses. It
also acts as a transfer program and takes care of connecting to the server of the
required web service.

In the following subsections, we’ll walk through the process of consuming a web
service.

Creating a Web Service Consumer

The following steps walk you through creating a web service consumer:

1. In Object Navigator, select Create � Enterprise Service from the context menu
of the package.

2. This will open the Enterprise Services wizard. Select the Service Consumer

radio button, as shown in Figure 19.89, and click Cont.

3. Select External WSDL/Schema, as shown in Figure 19.90.

4. Select URL as the WSDL/Schema Source, as shown in Figure 19.91. This allows
you to use the URL of the web service as the source.
888

Web Services 19.5
Figure 19.89 Create Consumer

Figure 19.90 Select Generation Source

Figure 19.91 Schema Source
889

Interfaces19
5. Provide the URL for the web service. For this example, use the URL that was
generated for the service definition in the previous steps.

6. The system will prompt you to enter a User Name and Password to connect to
the URL.

7. Enter the Package details (see Figure 19.92).

Figure 19.92 Maintain Package

8. In the final step, verify the details and click Complete to complete the wizard.
Activate the service proxy by clicking the Activate icon.

Maintaining Port Information

Once the web service proxy is created, we need to maintain port information in
Transaction SOAMANAGER. Proceed with the following steps:

1. In Transaction SOAMANAGER, click on the Web Service Configuration link
(see Figure 19.85) and search for the consumer proxy you just created (see
Figure 19.93). If you provided a prefix to be used while creating the proxy, the
same will be used as a prefix.

2. Select the consumer proxy you created and click the Create � Manual Config-

uration (see Figure 19.94) option to create a logical port name (see Figure
19.95). A logical port is used for configuration of the runtime services of the cli-
ent proxy.
890

Web Services 19.5
Figure 19.93 Search Consumer Proxies

Figure 19.94 Create Manual Configuration

Figure 19.95 Maintain Logical Port
891

Interfaces19
3. Provide the authentication details that should be used by the consumer (see
Figure 19.96).

Figure 19.96 Consumer Security

4. In the next step, maintain HTTP settings: Provide the web service producer URL
in the URL Access Path field (see Figure 19.97). Leave the other fields set to
their default values and click Finish.

5. Once completed, you can execute the service consumer in Object Navigator for
testing.

Figure 19.97 HTTP Settings
892

Web Services 19.5
Creating an ABAP Program to Consume a Web Service

Finally, we need to create an ABAP program to consume the web service. In
Object Navigator, you can drag and drop the web service consumer (see Figure
19.98) into ABAP Editor to generate the code template.

Figure 19.98 Generate Sample Code

Listing 19.4 shows sample code to consume a web service in an ABAP program.

REPORT ZDEMO_WS.
DATA: r_ws TYPE REF TO zwsco_zflight,

output TYPE ZWSZDEMO_WS_RESPONSE,
input TYPE ZWSZDEMO_WS.

input-carrid = 'AA'.
input-connid = '0017'.

TRY.
CREATE OBJECT r_ws
EXPORTING
logical_port_name = 'LZ01'.

CALL METHOD r_ws->zdemo_ws
EXPORTING
893

Interfaces19
input = input
IMPORTING
output = output.

CATCH cx_ai_system_fault .
ENDTRY.

Listing 19.4 Consuming Web Service

In Listing 19.4, a R_WS reference object is defined, referring to the service con-
sumer. The function module is added as a method with two parameter, input and
output. The input parameter holds the importing fields of the function module
exposed as a web service. The output parameter holds the exporting parameters
of the function module. The web service proxy object is instantiated using the
logical port name.

Figure 19.99 shows the data in the output structure after the method call.

Figure 19.99 Data in Output Structure
894

OData Services 19.6
19.6 OData Services

Open Data Protocol (OData) is an open protocol that allows you to create and
consume RESTful APIs in a simple and standard way. RESTful APIs follow Repre-
sentational State Transfer (REST) standards-based architecture for data communi-
cation. In REST architecture, the REST server provides access to a resource, and
the REST client can access the resource to present it in a UI. OData is released
under Microsoft’s Open Specification Promise (OSP) and allows for querying and
updating data. Using OData, we can expose business data to any application run-
ning on any device, such as smartphones or HTML-based clients. OData is an
OASIS standard and is endorsed by many leading software vendors.

OData has the potential to become the common protocol for bringing business
data to any Internet-ready device. With OData, information can be accessed from
a variety of sources, including relational databases, file systems, content manage-
ment systems, traditional websites, and more. In the future, OData could be the
standard for sharing business data across applications and could be as popular as
SQL is for relational databases.

OData software development kits (SDKs) are available for many client technolo-
gies, making consuming OData easy in any kind of application. Many client tech-
nologies also have dedicated developer tools and frameworks that allow for
jumpstarting application development by consuming available OData services.

SAP itself has invested in SAP Gateway technology to improve the reach of SAP
business applications. SAP Gateway is a RESTful interface based on OData and
Atom formats for the ABAP technology platform. Atom is an XML language used
to syndicate content for web feeds (much like the RSS syndicate for the web). It
provides a centralized interface to the SAP world that is open and standards-
based. With SAP Gateway and OData, you can easily build applications—for
example, mobile apps—that can work with business data in the SAP system. The
OData protocol defines conventions for performing CRUDQ (create, read, update,
delete, query) operations, which the OData service can support.

Figure 19.100 provides an architectural overview of the SAP Gateway interface.
895

Interfaces19
Figure 19.100 SAP Gateway as a Common Interface

Further Information

An in-depth discussion of SAP Gateway and OData commands a book of its own and is
beyond the scope of this chapter. For more information on SAP Gateway and OData,
please see SAP Gateway and OData (second edition, SAP PRESS, 2016).

In this section, we’ll describe how an OData service is generated using existing
business objects and interfaces. Using SAP Gateway Service Builder, we can gen-
erate OData services from existing RFC modules, BAPIs, search helps, and CDS
views. For search helps and CDS views, only the READ and QUERY methods are sup-
ported.

Building an OData service involves three steps:

1. Data model definition

2. Service implementation

3. Service maintenance

SAP Gateway Service Builder can be accessed via Transaction SEGW. It covers var-
ious options, as shown in Figure 19.101.

OData

SAP Gateway

SAP HANA SAP BW
CRM | SRM | SCM | PLM | ERP

SAP Business Suite

WEB Mobile Devices Cloud
Enterprise
Software
896

OData Services 19.6
Figure 19.101 Service Options in Transaction SEGW

In the following subsections, we’ll walk through the OData service creation pro-
cess.

19.6.1 Data Model Definition

The following steps illustrate creating a service in Transaction SEGW. For this
example, we’ll import the BAPI_EPM_SO_GET_LIST BAPI to expose sales order data.
This BAPI is part of the SAP Enterprise Procurement Model (EPM). SAP EPM is a
test application that serves as a proxy. Proceed as follows:

1. From the initial screen of Transaction SEGW, create a new project by clicking
the Create icon (first icon to the left), as shown in Figure 19.102.

Figure 19.102 Create Project

2. In the Create Project dialog box, provide a name for the Project and a short
Description, as shown in Figure 19.103.

OData Service
Definition in

SEGW

Service Registration and
Hub Activation

Redefine Data
Source Service
(GenIL, BOL,
SPI, BW Easy
Query, MDX)

Reference CDS
views as a
data source

Import
DDIC/RFC/BOR
Interface/Search
Help/CDS View

Import Data
Model

(EDMX)

Declarative
Model

Definition

MAP RFC/BOR
Operation,

Search Help,
CDS View

Code-Based Implementation
Code-Based Extensions

Service
Maintenance

Service
Implementation

(DPC)

Declarative
Model Definition

(MPC)
897

Interfaces19
Figure 19.103 Create Project Window

3. Right-click the Data Model folder and select the menu path Import � RFC/BOR

Interface (see Figure 19.104) from the context menu.

Figure 19.104 Import RFC/BOR Interface

4. In the Create Entity window, provide a name for the entity (Entity Type

Name), as shown in Figure 19.105. You’ll be creating two entities, one for the
header and one for line items.

5. Under Target System, you can provide a RFC Destination to add the RFC from
a Remote system. For this example, however, use the RFC in a Local system.

6. Under Data Source Attributes, select Remote Function Call and provide the
name of the RFC. For this example, enter “BAPI_EPM_SO_GET_LIST”. Click
Next.
898

OData Services 19.6
Figure 19.105 Create Entity

7. The wizard will present the interface of the RFC, from which you can select the
relevant fields that should be added to the service. Expand the SOHEADER-

DATA[] node and select the relevant sales order header fields, as shown in
Figure 19.106. For this example, select SO_ID, CREATED_BY, CURRENCY_

CODE, GROSS_AMOUNT, and NET_AMOUNT.

Figure 19.106 Add Fields from Interface

8. In the next step, mark SO_ID as the key field (select the Is Key checkbox; see
Figure 19.107) and click Finish.
899

Interfaces19
Figure 19.107 Mark Key Fields

9. Repeat the steps to add a SalesOrderItem entity, as shown in Figure 19.108.
Name the entity SalesOrderItem and select fields from the SOITEMDATA[]

structure, as shown in Figure 19.109.

Figure 19.108 Add SalesOrderItem Entity

Figure 19.109 Item Fields

10. Mark SO_ID and SO_ITEM_POS as key fields.

11. Expand the Entity Sets folder to see the entity sets you just created. For each
entity, you can select the CRUD operations that can be performed, as shown
in Figure 19.110
900

OData Services 19.6
Figure 19.110 Entity Sets Folder Contents

12. The basic definition of the model is completed; now, you need to generate the
runtime object. Click the Generate Runtime icon, as shown in Figure 19.111,
to generate the runtime object.

Figure 19.111 Generate Runtime Object

13. In the next window, accept the default values and save the object. At this
point, you can verify that the generation was successful, as shown in Figure
19.112.

Figure 19.112 Generation Message

19.6.2 Service Maintenance

After defining the service, the service should be activated and registered with the
SAP Gateway system. The activation and registration of the service is required for
SAP Gateway to consume a service using an OData client. To activate and register
the service, use Transaction /IWFND/MAINT_SERVICE. However, this transac-
tion is integrated with Service Builder and thus can be called from within Service
Builder.
901

Interfaces19
The following steps walk you through activating and registering the service with
SAP Gateway using Service Builder:

1. To register and activate the service, first double-click the Service Maintenance

folder and click the Register button, as shown in Figure 19.113.

Figure 19.113 Service Registration

2. In the Select System Alias window that opens, you can use (F4) help to select
the system that acts as a hub to the backend. You can use the RFC destination
that points to the SAP business system. Based on the IMG configuration and
system installation, you can use LOCAL as the System Alias.

3. In the Add Service window, as shown in Figure 19.114, make a note of the
External Service name. This name is used to access the service.

Figure 19.114 Add Service Window
902

OData Services 19.6
4. At this point, you can verify if the service is registered successfully under the
Registration Status column, as shown in Figure 19.115.

Figure 19.115 Verify Registration

We’ve successfully maintained the basic model data. We can access the metadata
of the service using Transaction /IWFND/GW_CLIENT. Use the /sap/opu/odata/
sap/ZDEMO_SO_SRV/$metadata URI to check the metadata.

We’ve successfully created a project in Service Builder with two entities and reg-
istered and activated the OData service. The OData service isn’t yet mapped to the
data provider, however. The next step is to map the data provider and see the ser-
vice in action.

19.6.3 Service Implementation

When implementing the OData service, we can map the data provider to perform
various CRUD operations. The OData service also supports a query operation to
query the data. To map the data provider, proceed as follows:

1. First, expand the Service Implementation folder and then SalesOrderHead-

erSet. Right-click GetEntitySet (Query) and select Map to Data Source, as
shown in Figure 19.116.

Figure 19.116 Map Data Source
903

Interfaces19
2. Enter the RFC for the Data Source, as shown in Figure 19.117.

Figure 19.117 Map to Data Source

3. The data source parameters will be displayed on the right, as shown in Figure
19.118. You can click the Propose Mapping button to have the system auto-
matically propose the mapping, or manually drag and drop the fields from the
right window to the Data Source Parameter area on the left.

Figure 19.118 Mapping Data Source Parameters

4. Repeat the steps to map the sales order item entity. Once the mapping is com-
plete, click the Generate icon to generate the runtime artifacts.

Once the OData service is implemented, we can test it by entering the URI /sap/
opu/odata/sap/ZDEMO_SO_SRV/SalesOrderHeaderSet in Transaction /IWFND/GW_
CLIENT. Note that there is no filter value, so the OData service will pick all the doc-
904

OData Services 19.6
uments from the system, as shown in Figure 19.119. This may impact perfor-
mance, so we’ll map a data source for the READ operation so that we can get a spe-
cific sales order’s details.

Figure 19.119 Query Operation

19.6.4 READ

The READ method is used to read a specific record from the entity for a given filter.
To put it in a SQL perspective, the READ method behaves similarly to using the
SELECT SINGLE * Open SQL statement, in which one specific record is read. The
QUERY method behaves more like the SELECT INTO TABLE Open SQL statement, in
which multiple records are fetched. The CREATE, UPDATE, and DELETE methods
behave like the INSERT, UPDATE, and DELETE Open SQL statements.

Proceed as follows to define the READ method:

1. Expand the Service Implementation folder and then SalesOrderHeaderSet.
Right-click GetEntity (READ) and select Map to Data Source.

2. For the READ operation, implement the BAPI_EPM_SO_GET_DETAIL RFC, as shown
in Figure 19.120.
905

Interfaces19
Figure 19.120 Mapping Data Source

3. Click the Propose Mapping button to create a proposal automatically, as shown
in Figure 19.121. However, this RFC has an import parameter that should be
supplied with the document number. To map the input field, next you’ll create
a new field in the entity manually and then map it to the import parameter of
the function module.

Figure 19.121 Create Proposal

4. Click the Create icon to add a new row. Use the (F4) help in the row to select
the field from the list, as shown in Figure 19.122.

5. Once the field is added, drag and drop the SO_ID key field from the function
module to the Data Source Parameter, as shown in Figure 19.123. The direc-
tion for this field is automatically set to Input; all the other fields are set to Out-

put.

6. In Transaction /IWFND/GW_CLIENT, run the /sap/opu/odata/sap/ZDEMO_SO_
SRV/SalesOrderHeaderSet('500000002') URI by passing a document number.
This will call the READ method to fetch the details of the specific document, as
shown in Figure 19.124.
906

OData Services 19.6
Figure 19.122 Create New Field

Figure 19.123 Map Import Parameter

Figure 19.124 Reading Specific Record
907

Interfaces19
We’ve successfully modeled the OData service and implemented it using the
QUERY and READ methods. You can implement the CREATE and DELETE methods in
a similar way by right-clicking the respective entity and mapping the source (as
explained in the preceding steps). For example, for the CREATE method, you map
the Create() BAPI, and for the DELETE method you map the Delete() BAPI of
the business object.

As you can see, SAP Gateway Service Builder makes it easy to expose business
services without having to write any code. These services can be consumed by
external applications to perform CRUDQ operations. When working with OData
services, the most time goes into designing the model and its implementation.
Once the service is implemented correctly, consuming the service is fairly easy.

19.7 XSL Transformations

Extensible Stylesheet Language (XSL) is a stylesheet language for XML docu-
ments. Extensible Stylesheet Language Transformations (XSLT) allows you to
transform XML documents into other formats. XSLT is a declarative programming
language used for the structural transformation of XML documents and is stan-
dardized by W3C (World Wide Web Consortium).

XML documents consist of tree structures, and XSLT programs contain the rules
for transformation in templates. These rules are applied to the source tree for
transformation. For navigation and selection of node sets from the source tree,
XSLT uses XML Path Language (XPath), which is a query language.

XSLT allows you to deserialize XML documents into ABAP data objects and vice
versa. The XSLT processor, called the SAP XSLT Processor, is implemented in the
kernel of SAP NetWeaver AS ABAP. The SAP XSLT Processor executes the XSLT
programs, which exist in the repository just like any other ABAP programs. You
can create these programs in Object Navigator via the context menu path Cre-

ate � Other � Transformation.

The CALL TRANSFORMATION statement is used to call the transformation. The syntax
for using the statement is as follows:

CALL TRANSFORMATION trans SOURCE [XML]..
RESULT [XML]..
908

XSL Transformations 19.7
In the statement, trans is an XSLT or a Simple Transformation (ST) program. If
XML is provided for both the source and result, the XML document will be trans-
formed into a different XML document using the specified transformation.

A parameter list, structure, or internal table can be used to serialize or deserialize
data into ABAP data objects. Because XSLT expects data in XML format for trans-
formation and can’t interpret ABAP data directly, the ABAP data is implicitly
transformed into ABAP Serialization XML (asXML) before it’s processed by XSLT.

19.7.1 Serialization

During serialization, ABAP data is first converted to asXML using a predefined
transformation ID, the result of which is used as the source for XSLT. If ID itself is
used for the ID in the transformation, then the asXML itself is output without fur-
ther transformation.

Listing 19.5 shows sample code to transform the data in an ABAP structure to
XML. The DISPLAY_XML_STRING function module displays the XML output, as
shown in Listing 19.5.

DATA : BEGIN OF sflight,
carrid TYPE s_carr_id VALUE 'AA',
connid TYPE s_conn_id VALUE '0017',

END OF sflight.
DATA xmlstr TYPE xstring.

CALL TRANSFORMATION ID
SOURCE FLIGHT = sflight
RESULT XML xmlstr.

CALL FUNCTION 'DISPLAY_XML_STRING'
EXPORTING xml_string = xmlstr.

Listing 19.5 XML Transformation

Figure 19.125 XML Output
909

Interfaces19
19.7.2 Deserialization

During deserialization, the result of the XML transformation is deserialized
directly into the ABAP data. The following is an example of deserialization:

CALL TRANSFORMATION ID
SOURCE XML xmlstr
RESULT FLIGHT = sflight.

Similarly, you can use individual fields or internal tables for serialization and
deserialization. Listing 19.6 shows sample code for serializing internal table data.
The result of the code in Listing 19.6 is shown in Figure 19.126.

DATA: it_sflight TYPE STANDARD TABLE OF sflight,
xmlstr TYPE xstring.

SELECT * FROM sflight INTO TABLE it_sflight WHERE carrid EQ 'AA'.
CALL TRANSFORMATION ID
SOURCE TABLE = it_sflight
RESULT XML xmlstr.
CALL FUNCTION 'DISPLAY_XML_STRING'
EXPORTING xml_string = xmlstr.

Listing 19.6 Serializing Internal Table Data

Figure 19.126 Result of Code in Listing 19.6
910

XML and JSON Data Representation 19.8
You can serialize objects as well, if the class implements the IF_ SERIALIZABLE_
OBJECT interface.

19.8 XML and JSON Data Representation

JavaScript Object Notation (JSON) is a lightweight data-interchange format. Sim-
ilar to XML, JSON is programming language-independent and easy to under-
stand. JSON text can be read and used as a data format in any programming lan-
guage. JSON is self-describing and is an easy-to-use alternative to XML.

Data is represented differently in JSON compared to XML. For example, Listing
19.7 shows an array with three records represented in JSON.

{"books":[
{"title":"OData", "isbn":"78-1-59229-907-2"},
{"title":"ABAP", "isbn":"978-1-59229-859-4"},
{"title":"Portal", "isbn":"978-1-59229-344-5"}

]}

Listing 19.7 Array in JSON

The same data is shown in Listing 19.8 represented in XML. Visit http://help.sap.com/
abapdocu_740/en/index.htm?file=abenjson_oview.htm for a short description of JSON.

<books>
<book>

<title>OData</title> <isbn>78-1-59229-907-2</isbn>
</book>
<book>

<title>ABAP</title> <isbn>978-1-59229-859-4</isbn>
</book>
<book>

<title>Portal</title> <isbn>978-1-59229-344-5</isbn>
</book>

</books>

Listing 19.8 Array in XML

Similar to XML, JSON is self-describing, human-readable, and hierarchical. How-
ever, unlike XML, JSON does not use end tags, the statements are shorter, and it’s
quicker to read and write. JSON also supports arrays.

SAP introduced support for JSON with SAP NetWeaver 7.4 and has downported
that support to versions 7.02 and 7.31. JSON is supported in ABAP similarly to
911

http://help.sap.com/abapdocu_740/en/index.htm?file=abenjson_oview.htm
http://help.sap.com/abapdocu_740/en/index.htm?file=abenjson_oview.htm

Interfaces19
XML. We can use the same tools that are used for XML to process JSON. For
example, the CALL TRANSFORMATION statement can be used to transform JSON sim-
ilarly to XML. To enable this, SAP has introduced a new IF_SXML=>CO_XT_JSON
format of the sXML library.

SAP has introduced an SAP-specific JSON-XML format that maps JSON to XML
and vice versa. When serializing ABAP data objects to JSON and deserializing
from JSON to ABAP data objects, we work with asJSON, which represents ABAP
data. asJSON can be seen as the JSON-XML representation of asXML. However,
unlike asXML, there is no intermediate step internally for asJSON.

JSON allows ABAP to work with web services that use JSON format for data inter-
change.

Listing 19.9 shows serialization with asJSON.

DATA : BEGIN OF sflight,
carrid TYPE s_carr_id VALUE 'AA',
connid TYPE s_conn_id VALUE '0017',

END OF sflight.
DATA writer TYPE REF TO cl_sxml_string_writer.
DATA jsonstr TYPE xstring.
writer = cl_sxml_string_writer=>create(type = if_sxml=>co_xt_json).
CALL TRANSFORMATION ID
SOURCE flight = sflight
RESULT XML writer.
jsonstr = writer->get_output().

Listing 19.9 JSON Transformation

In Listing 19.9, we’re using the if_sxml=>co_xt_json format of the sXML library
with the string writer. Similarly, we can deserialize from JSON to ABAP, as shown
in Listing 19.10.

DATA json_str TYPE STRING VALUE '{"TEXT":"This is JSON text!"}',
v_text TYPE string.

CALL TRANSFORMATION id SOURCE XML json_str
RESULT text = v_text.

Listing 19.10 JSON to ABAP
912

WebSockets (ABAP Channels and Messages) 19.9
19.9 WebSockets (ABAP Channels and Messages)

Say you have an ALV report that displays up-to-date sales data. This report fetches
the sales data from the database and displays it as a report output. While you’re
looking at the report output, if any new sales are entered in the system, those
new sales won’t appear in the report.

Because the data was fetched when the report was executed, you’ll only see the
current data as of the time of the report was run. What if you want the report to
always display up-to-date sales data, even if you spend an hour going through the
report output? One way of doing this is to refresh the report frequently or use the
CL_GUI_TIMER class to auto-refresh the report. However, this approach will put an
unnecessary load on the database, because the report will be frequently refreshed
(polling) to look for new data even when none is available.

ABAP channels enable event-driven communication and implement a publish/
subscribe mechanism. The ABAP messaging channel acts as a broker for the mes-
sage exchange between ABAP sessions in different application servers. Any ABAP
session can subscribe to channels, and any ABAP session can publish messages
through channels.

What if there was a mechanism through which the report could be informed to
refresh as soon as data is updated in the database? This is where ABAP channels
and messages come into the picture. Using ABAP channels, the program that
updates the data can act as a producer and raise a message to which the report can
subscribe as a subscriber.

ABAP channels come in two flavors:

� ABAP messaging channels
Designed to send messages between programs running on different application
servers

� ABAP push channels
Designed to send messages to and from the Internet using WebSockets

You can create ABAP messaging channels and push channels in Object Navigator
via the context menu path Create � Connectivity. ABAP push channels are used
in web applications such as Web Dynpro ABAP, SAPUI5, and more; a discus-
sion of ABAP push channels is beyond the scope of this book. In this section,
913

Interfaces19
we’ll discuss ABAP messaging channels and see how they can be used to send
messages across sessions.

19.9.1 Creating an ABAP Messaging Channel

ABAP messaging channels allow communication between ABAP programs using
messages. These channels use publish-and-subscribe mechanisms and point-to-
point communication that allows messages to be exchanged between any SAP
NetWeaver AS ABAP programs running on the same application server or on dif-
ferent application servers. With the publish-and-subscribe method, the sender of
the message doesn’t know the receiver; point-to-point communication enables a
message to be sent to a specific receiver.

Different messages that can be sent and received with ABAP messaging channels
include text strings, byte strings, and any content that can be serialized by the
sender and deserialized by the receiver in a suitable way, such as XML or JSON
content. SAP also provides its own communication format called Push Channel
Protocol (PCP) for exchanging messages. As of SAP NetWeaver 7.5, the length of
the messages that can be exchanged is currently restricted to thirty thousand
bytes.

ABAP messaging channels are implemented as repository objects in the SAP sys-
tem and can be accessed in sender and receiver programs using an OOP interface.
The classes of the ABAP messaging channel programming interface use the nam-
ing convention CL_AMC_, whereas interfaces use the naming convention IF_AMC_.

For each ABAP messaging channel communication, the ABAP messaging channel
defined as a repository object must exist in the system. You can create an ABAP
messaging channel using the context menu path Create � Connectivity � ABAP

Messaging Channel in Object Navigator, or use Transaction SAMC.

The following steps walk you through creating an ABAP messaging channel:

1. On the initial ABAP messaging channel screen, right-click the ABAP Messaging

Channels folder and select Create, as shown in Figure 19.127.

2. Provide a name for the channel and click OK.
914

WebSockets (ABAP Channels and Messages) 19.9
Figure 19.127 Create ABAP Messaging Channel

3. Maintain a description for the channel and other details, as shown in Figure
19.128:

� Channels: Here, you maintain the channel name. This channel name is used
to publish or consume messages. The channel name should start with a for-
ward slash (/). For this example, enter “/ping”.

� Message Type ID: Maintain the protocol for the channel. You can select Text,
Binary, or PCP, based on the type of message. For this example, select Text.
Table 19.5 lists the interfaces for each message type.

� Activity Scope: Select System, Client, or User. This defines the scope of the
message. For this example, select Client.

Message Type Activity Interface

TEXT

(STRING)
Producer/
sender

IF_AMC_MESSAGE_PRODUCER_TEXT

Consumer/
receiver

IF_AMC_MESSAGE_RECEIVER_TEXT

BINARY

(XSTRING)
Producer/
sender

IF_AMC_MESSAGE_PRODUCER_BINARY

Consumer/
receiver

IF_AMC_MESSAGE_RECEIVER_BINARY

PCP Producer/
sender

IF_AMC_MESSAGE_PRODUCER_PCP

Consumer/
receiver

IF_AMC_MESSAGE_RECEIVER_PCP

Table 19.5 Interface for Each Message Type
915

Interfaces19
� Authorized Programs: The message channel can be used only by autho-
rized programs to produce or subscribe to messages. Here, maintain the pro-
ducer and consumer programs. For this example, we maintained one pro-
gram to act as a producer and one program to act as a consumer (see Figure
19.128).

Figure 19.128 Channel Settings

4. Save, then activate the ABAP messaging channel by clicking the Activate icon
in the toolbar.

19.9.2 Creating a Producer Program

In the previous step, we registered program ZDEMO_AMC_PUBLISHER as the pub-
lisher of the message. Listing 19.11 shows sample code to publish a message. This
program provides a selection screen on which you can input a message that will
then be published as an ABAP message channel message. The subscriber to the
ABAP message channel will receive the message.

REPORT ZDEMO_AMC_PUBLISHER.
PARAMETERS: message TYPE string.
DATA: lv_application_id TYPE amc_application_id VALUE 'ZDEMOAMC',

lv_channel_id TYPE amc_channel_id VALUE '/ping',
lv_extens TYPE amc_channel_extension_id.

DATA: lo_producer_txt TYPE REF TO if_amc_message_producer_text.
DATA: lx_amc_error TYPE REF TO cx_amc_error.

TRY.
916

WebSockets (ABAP Channels and Messages) 19.9
lo_producer_txt ?=
cl_amc_channel_manager=>create_message_producer(
i_application_id = lv_application_id
i_channel_id = lv_channel_id
i_channel_extension_id = lv_extens
).
lo_producer_txt->send(i_message = message).

CATCH cx_amc_error INTO lx_amc_error.
MESSAGE lx_amc_error->get_text() TYPE 'E'.

ENDTRY.

Listing 19.11 Code to Publish Message

In Listing 19.11, we defined a reference object of type if_amc_message_produc-
er_text. The create_message_producer factory method of class cl_amc_channel_
manager instantiates the producer object. To this method, we pass the application
ID and channel ID that we created previously. We’re using the send instance
method to send the message.

19.9.3 Creating a Consumer Program

The consumer program receives the message published by the producer program.
We defined ZDEMO_AMC_RECEIVER as the consumer program for the message chan-
nel.

Listing 19.12 shows sample code for the consumer program ZDEMO_AMC_RECEIVER.
This program demonstrates receiving any message as soon as the producer pro-
gram sends it.

REPORT ZDEMO_AMC_RECEIVER.
SELECTION-SCREEN BEGIN OF BLOCK part1 WITH FRAME TITLE text-001.
PARAMETERS: time RADIOBUTTON GROUP grp,

waiting TYPE i DEFAULT 10,
use_list RADIOBUTTON GROUP grp.

SELECTION-SCREEN END OF BLOCK part1.
DATA: lv_application_id TYPE amc_application_id VALUE 'ZDEMOAMC',

lv_channel_id TYPE amc_channel_id VALUE '/ping',
lv_extension_id TYPE amc_channel_extension_id.

DATA: lo_consumer TYPE REF TO if_amc_message_consumer.
DATA: gv_message TYPE string.
DATA: gv_message_received TYPE abap_bool.
DATA: lx_amc_error TYPE REF TO cx_amc_error.

DATA: gt_message_list TYPE TABLE OF string.
DATA: lv_text TYPE string.
917

Interfaces19
* Implemenation of receiver class for text message type
CLASS lcl_amc_test_text DEFINITION
FINAL
CREATE PUBLIC .

PUBLIC SECTION.
CLASS-DATA cv_message TYPE string .

* Interface for AMC messages of type TEXT
INTERFACES if_amc_message_receiver_text .

PROTECTED SECTION.
PRIVATE SECTION.

ENDCLASS.

CLASS lcl_amc_test_text IMPLEMENTATION.
METHOD if_amc_message_receiver_text~receive.

*
*Message handling take place here
*Remark: in this method hold the message be received and the
*main actions should be processed in the main program and
*usually after WAIT statement.
*Any kind of communication, e.g., RFCs, HTTP, and message handling,
*e.g. error message is not supported and will lead to ABAP dump.

gv_message = i_message.
* For list processing queue the messages

APPEND i_message TO gt_message_list.
gv_message_received = abap_true.

ENDMETHOD.
ENDCLASS.
START-OF-SELECTION.

DATA: lo_receiver_text TYPE REF TO lcl_amc_test_text.
TRY.

lo_consumer =
cl_amc_channel_manager=>create_message_consumer(
i_application_id = lv_application_id
i_channel_id = lv_channel_id
i_channel_extension_id = lv_extension_id
).
CREATE OBJECT lo_receiver_text.
lo_consumer->start_message_delivery(
i_receiver = lo_receiver_text
).

CATCH cx_amc_error INTO lx_amc_error.
MESSAGE lx_amc_error->get_text() TYPE 'E'.

ENDTRY.
918

WebSockets (ABAP Channels and Messages) 19.9
IF use_list IS INITIAL.
* Wait until the boolean variable gv_message_received is set to
* true but not longer than waiting time in seconds

WAIT FOR MESSAGING CHANNELS UNTIL gv_message_received =
abap_true UP TO waiting SECONDS.

IF sy-subrc = 8 OR gv_message_received = abap_false.
gv_message = ')-: Time out occured and no message

received'.
ENDIF.

* Print out the AMC message as popup screen
CALL FUNCTION 'POPUP_TO_CONFIRM'
EXPORTING
titlebar = 'AMC message'
text_question = gv_message.

ELSE.
NEW-PAGE LINE-SIZE 120 NO-TITLE.
lv_text =

|>>> <<<| ##NO_TEXT.
WRITE: /15 lv_text COLOR 1.
lv_text =

|>>> Double click here to check for arrived messages ! <<<| ##NO_TEXT.
WRITE: /15 lv_text COLOR 7 INTENSIFIED.
lv_text =

|>>> <<<| ##NO_TEXT.
WRITE: /15 lv_text COLOR 1.

ENDIF.

AT LINE-SELECTION.
IF gv_message_received = abap_true.
LOOP AT gt_message_list INTO gv_message.
CALL FUNCTION 'POPUP_TO_CONFIRM'
EXPORTING
titlebar = 'AMC message'
text_question = gv_message ##NO_TEXT.

gv_message_received = abap_false.
ENDLOOP.
CLEAR: gt_message_list, gv_message.

ENDIF.

Listing 19.12 Consumer Program

In Listing 19.12, we’re instantiating the receiver object using the create_mes-
sage_consumer factory method of class cl_amc_channel_manager. We defined a
lcl_amc_test_text local class that implements the if_amc_message_receiver_
text interface for text message type. The message sent by the producer is
received within the if_amc_message_receiver_text~receive method.
919

Interfaces19
The code extracts in Listing 19.11 and Listing 19.12 are part of the demo programs
RS_AMC_SEND_MESSAGE_TEXT and RS_AMC_RECEIVE_MESSAGE_TEXT, respectively. You
can execute these demo programs in separate sessions to send and receive mes-
sages.

19.10 Summary

In this chapter, we discussed all the various interfaces used in SAP. Interfaces are
an important aspect of an SAP system and are complicated in nature. Each imple-
mentation brings its own challenges and involves consultants across multiple
domains.

The topics discussed in this chapter should help you understand the options avail-
able to integrate different systems. This in turn should allow you to make an
informed decision based on your business requirements.

As technologies evolve, you can expect SAP to add support for more new technol-
ogies in the future in order to achieve wider goals. Working on interfaces
requires some experience, because business requirements are complicated and no
one strategy fits all scenarios. The good news is that SAP provides customization
options that allow us to customize programs per our business requirements.

In the next chapter, we’ll discuss all the available options to customize standard
SAP programs to meet our business requirements.
920

Chapter 20

In this chapter, you’ll learn about the different tools and features that
can be used to modify and/or enhance repository objects.

20 Modifications and Enhancements

SAP provides standard software that is designed to meet industry-specific
requirements. When we implement an SAP system, it comes with a lot of pre-
packaged applications that can be used right out of the box. It’s possible for a
company to implement SAP and start using applications to carry out their day-to-
day activities after data migration from legacy systems with little configuration.

However, almost all companies within any industry sector evolve their own busi-
ness processes and need to customize standard SAP software to meet their busi-
ness-specific requirements. The process of tailoring standard SAP software to
meet company-specific requirements is known as customization.

In this chapter, we’ll discuss the ways in which a standard SAP system can be cus-
tomized to meet company-specific requirements. We begin with an overview of
the different types of customizations in Section 20.1. We’ll then discuss the dif-
ferent types of modifications possible in Section 20.2 through Section 20.4 using
the Modification Assistant and the Modification Browser.

We conclude the chapters by looking at enhancements in Section 20.5 through
Section 20.10. In these sections, we explore all the different enhancement tech-
niques available in both procedural and object-oriented ABAP programming
approaches.

20.1 Customization Overview

As discussed in the introductory chapters of this book, customization can be
achieved in three ways:
921

Modifications and Enhancements20
� Modifications
In this type of customization, standard SAP programs are changed by directly
editing the code. The major disadvantage of modifications is that the modified
code needs to be reimplemented if the program is updated by SAP in a new
release or support package.

� Enhancements
In this type of customization, standard SAP programs aren’t edited directly;
instead, enhancements take advantage of certain openings in the code that SAP
provides where you can add custom logic to enhance applications. Enhance-
ment techniques have evolved over a period of time, with each new iteration
trying to make enhancements easy to find and implement.

With enhancements, you don’t need to worry about losing changes when the
program is upgraded, because enhancement code resides in the customer
namespace and you’re not editing the standard program code directly. We’ll
discuss all the available enhancement techniques in this chapter. Enhance-
ments are the preferred way to extend standard SAP programs.

� Custom developments
Even though SAP provides many applications out of the box to meet industry
requirements, it’s not always possible to provide everything a company needs.
If there are no standard applications that meet a company’s specific require-
ments or no feasible openings in the standard SAP code to enhance the appli-
cation, you can develop your own applications in the SAP system. Customer
applications should be in the customer namespace; that is, the program name
should start with Y or Z.

When customers report bugs in standard SAP programs, SAP reviews the bugs
and releases corrections as SAP Notes for customers. Customers can apply SAP
Notes in the system using Transaction SNOTE. Once the SAP Note is applied, the
standard SAP program that contained the bug will be corrected.

If many customers request similar changes or if standard SAP programs need to
be enhanced to meet industry-specific or region-specific requirements, then SAP
consolidates all the notes and releases them as a support pack. When a support
pack is imported, it will implement all the corrections (SAP Notes) released for
that version up to the time of release of the support pack.

Originally, one way of customizing standard SAP programs was to copy the pro-
gram to a Z program and make the necessary changes in the copied program. For
922

Modification Overview 20.2
example, if we feel standard SAP program RMVKON00 needs certain modifications
to meet our requirements, then instead of directly modifying standard program
RMVKON00, we copy the program to ZRMVKON00 and make changes in program ZRM-
VKON00. Users then use ZRMVKON00 instead of RMVKON00.

SAP recommended this approach, and because of that, many customers started
copying standard programs to customize the software. However, when new
updates and bug fixes were released for standard programs, it proved to be a chal-
lenge to update all the copied programs to reflect those changes. Clearly, there
was a need for better approach to customizing SAP.

Now that you have a better understanding of customization in general, we’ll
begin looking at the process of implementing modifications.

20.2 Modification Overview

Even though modifications, in which standard SAP programs are edited directly,
aren’t recommended, many companies still use them. If too many standard pro-
grams are modified, it becomes a very time consuming process to upgrade the
system or import support packages.

SAP provides two tools for performing and reviewing modifications:

� Modification Assistant
The Modification Assistant tool is integrated into ABAP Workbench. When
modifications are carried out using Modification Assistant, the changes are
recorded. We’ll discuss how this tool can be used in Section 20.3.

� Modification Browser
The Modification Browser tool provides an overview of enhancements and
modifications carried out in the system. It allows you to search for modifica-
tions integrated using SAP Notes or Modification Assistant. We’ll provide more
information about the Modification Browser in Section 20.4.

When upgrading the system, the customer can use Transactions SPAU and SPDD
to check if the upgrade replaces any modified programs. Transaction SPAU is
used to check repository objects such as programs, screens, functions, and the
like, whereas Transaction SPDD checks modifications against dictionary objects
923

Modifications and Enhancements20
such as tables. After the upgrade, all the modifications still need to be reapplied,
which can be a time-consuming process.

Modifications can be made in a number of places, including programs, ABAP
Class Builder, Screen Painter, Menu Painter, function modules, ABAP Data Dictio-
nary, and documentation.

20.3 Using Modification Assistant

Modification Assistant is integrated into the following ABAP Workbench tools:
ABAP Editor, Class Builder, Function Builder, Screen Painter, Menu Painter,
ABAP Data Dictionary, text element maintenance, and documentation. When
objects are edited using Modification Assistant, the changes are logged and the
assistant provides a detailed overview of all the changes in a clear, easy-to-read
manner. This simplifies the upgrade process to a great extent.

Modification Assistant is available when you open standard SAP objects in change
mode for editing. To open a standard SAP object in change mode, the object
should be registered via SAP Support Portal using the SAP Software Change Reg-
istration (SSCR) application.

You can access the SSCR application at https://support.sap.com/sscr. You’ll need
the required authorizations to use the SSCR application. Once the object is regis-
tered with SAP, you’ll be able to generate an access key from within the SSCR
application to modify the object.

When you open any standard SAP object that wasn’t previously modified by the
same user, the system will present a Register Object window (see Figure 20.1).
You can click on the Perform Registration in the SAP Support Portal link (see
Figure 20.1) to register the object. The modification registration on the SAP Sup-
port Portal is typically carried out by your manager or SAP Basis administrator.
Once the modification is registered with SAP, enter the access key to open the
standard SAP object for editing.

In the following subsections, we’ll look at the different ABAP tools and programs
that can be modified via Modification Assistant.
924

https://support.sap.com/sscr.

Using Modification Assistant 20.3
Figure 20.1 Register Object Window

20.3.1 Modifications to Programs

Modification Assistant provides buttons that enable you to edit objects, as
shown in Figure 20.2. When editing an object supported by Modification Assis-
tant, you can use these buttons from the application toolbar or follow the menu
path Edit � Modification Operations.

Figure 20.2 Modification Assistant

Using Modification Assistant, you can insert, replace, or delete code. When you
change code using Modification Assistant, the original code is commented, and a
window is provided for you to add your code.

If you wish to undo the changes, keep the cursor on the code that was changed
and click the Undo button. This will delete your code and uncomment the origi-
nal code. When you modify the code in an ABAP program, the changes are logged
and assigned to the module (dialog module, procedure, event, etc.) in which the
modification is carried out. You can check this log by clicking the Modification

Overview button to display all the modifications that were carried out to the pro-
gram module-wise.

Modifications to programs happen via buttons in ABAP Editor: Insert, Replace,
and Delete. The following subsections walk through using each of these buttons.
925

Modifications and Enhancements20
Insert

Using the Insert button, you can insert additional code into the original program.
To do so, select the line where you want to insert new code and click the Insert

button from the toolbar. This will add INSERT comment lines (see Figure 20.3) to
identify the type of modification being carried out.

The line where the cursor was positioned will be input-enabled so that you can
add your code, as shown in Figure 20.3. Press (Enter) to add additional lines of
code.

Figure 20.3 Inserting Code

Replace

If you want to replace existing code, select the line you want to replace and click
the Replace button. To replace multiple lines of code, highlight the lines and then
click the Replace button. This will add REPLACE comment lines to identify the
type of change and copy the selected line in the editable area while commenting
out, as shown in Figure 20.4. You can edit the copied line and press (Enter) to add
more lines.

Figure 20.4 Replacing Code

Delete

You can delete an existing line by selecting the line and clicking the Delete but-
ton. This will comment out the line in the program. To delete multiple lines,
select all the lines you want to delete before clicking the Delete button. The
DELETE comment line is inserted to identify the type of change.
926

Using Modification Assistant 20.3
20.3.2 Modifications to Class Builder

Modification Assistant also allows you to modify classes and interfaces within
Class Builder. You can modify the class or interface by adding attributes, meth-
ods, events, and internal data types. You can also modify the existing components
of the class or interface.

Table 20.1 describes different components that can be modified.

To modify the components of the global class/interface or to add new compo-
nents, open the class or interface in change mode using Class Builder. Class
Builder will make the relevant fields input-enabled (see Figure 20.5), allowing
you to edit the relevant properties for the component.

Figure 20.5 Editing Class Components

Similarly, you can change the method’s signature by adding parameters or excep-
tions or by modifying original parameters. You can edit the code in a method

Component Modifications for Classes Modifications for Interfaces

Attribute Visibility (public, private, protected),
kind (static, instance, constant), type,
initial value, and read-only flag

Kind (static, instance-depen-
dent, constant), type, initial
value, and read-only flag

Method Visibility, kind, final flag, and
abstract flag

Kind

Event Visibility and kind Kind

Type Internal data type’s visibility and
type

None

Table 20.1 Modification Options for Class/Interface Components
927

Modifications and Enhancements20
using the Insert, Delete, Replace, and Undo buttons as explained in Section
20.3.1 (see Figure 20.6).

Figure 20.6 Modifying Method Code

20.3.3 Modifications to Screen Painter

Within Screen Painter, you can modify screen attributes, the element list, screen
flow control, and layout. Screen attributes can be changed any way you want—
for example, by changing the screen type or screen settings. In the screen flow
logic, you can change existing events or add new events. Just like in ABAP Editor,
you can add, replace, or delete statements in the flow logic by using the Insert

(add), Replace, and Delete buttons (see Figure 20.7).

Figure 20.7 Screen Flow Logic
928

Using Modification Assistant 20.3
In the layout editor, you can add or modify any screen elements, but you can’t
delete existing screen elements. However, you can make any screen element
invisible by changing the appropriate attribute for the screen element.

20.3.4 Modifications to Menu Painter

You can modify buttons, icons, and functions in the menu bar, and more within
Menu Painter. Use the Insert and Delete buttons in the toolbar to add or delete
functions, as shown in Figure 20.8.

Figure 20.8 Add or Delete Functions in Menu Painter

20.3.5 Modifications to ABAP Data Dictionary

Using Modification Assistant, you can modify tables, structures, and data ele-
ments within ABAP Data Dictionary. ABAP Data Dictionary tables and structures
are modified by adding append structures, as discussed in Chapter 10. Append
structures can be added by opening the table or structure in display mode in
ABAP Data Dictionary, so you don’t need to generate the access key from SSCR to
modify them.

To modify any attributes of a data element using Modification Assistant, first
open the data element in change mode in ABAP Data Dictionary. Select the attri-
bute you want change and click the Change Subobject button in the toolbar, as
shown in Figure 20.9.

Insert EntryDelete Entry
929

Modifications and Enhancements20
Figure 20.9 Modifying Data Element

20.3.6 Modifications to Function Modules

You can create new function modules in a customer namespace and add them to
the standard function group or modify existing ones using Modification Assis-
tant. The source code of the function module can be changed just like in ABAP
Editor via the Insert, Replace, and Delete buttons in the toolbar.

You can also modify the parameter interface of the function module by adding
new parameters or by changing the attributes of the existing parameters. When
adding new parameters, the parameter will be made optional automatically by
setting the Optional flag if no default value is provided (see Figure 20.10).

Figure 20.10 Modifying Function Module

Change Subobject
930

Using Modification Assistant 20.3
20.3.7 Resetting to Original

If you want to reset a repository object to its original state and delete all the mod-
ifications carried out for the object, you can do so by following the menu path
Edit � Modification Operations � Reset to Original on the initial screen of the
respective ABAP Workbench tool (see Figure 20.11).

Figure 20.11 Reset Modifications from ABAP Workbench Tool

You can also use Modification Browser (Transaction SE95) to reset modifications
by selecting the repository object and choosing Modifications � Reset To Origi-

nal from the menu (see Figure 20.12).

Figure 20.12 Reset Modifications from Modification Browser

You can only reset the complete repository object to ensure consistency. If you
want to undo only specific modifications to the object, then you need to manually
931

Modifications and Enhancements20
identify a change and undo it. When the repository object is reset, all the modifi-
cations will be deleted and can’t be restored. Any subobjects belonging to the
repository object also will be reset to their original states.

20.4 Using Modification Browser

Modification Browser provides an overview of the modifications and enhance-
ments carried out in the system. You can open Modification Browser using Trans-
action SE95. The initial Modification Browser screen provides a selection screen
to search for modifications using different criteria, as shown in Figure 20.13.

Figure 20.13 Modification Browser Initial Screen

Here, you can search for modifications that are applied through SAP Notes or car-
ried out using Modification Assistant. You can also search for modifications that
are carried out without Modification Assistant or changes that were performed
before Modification Assistant was introduced. Changes to BAdIs and ABAP Data
Dictionary tables, views, and search helps can also be checked via Modification
Browser.
932

Enhancements Overview 20.5
Once the selection is made and executed, Modification Browser displays all
objects grouped per the category selected under the Display Options tab on the
initial screen, as shown in Figure 20.14.

Figure 20.14 List of Modified Objects

Modification Browser supports forward navigation: Double-click a displayed
object name to open the object in the appropriate tool.

20.5 Enhancements Overview

To address problems with modifying standard SAP programs and to enable cus-
tomers to customize standard SAP applications, SAP provides enhancement tech-
niques. These enhancement techniques have evolved over the years, and each
new technique tries to address problems with the previous techniques.

In order to ensure backward compatibility, SAP never removes legacy code;
therefore, many different enhancement techniques are available, including user
exits, customer exits, business transaction events (BTEs), classic BAdIs, new
BAdIs, and enhancement points. We’ll discuss all of these techniques in the fol-
lowing sections, which should not only enable you to work with new techniques
933

Modifications and Enhancements20
but also help you understand and maintain enhancements implemented using old
techniques.

Many companies are reluctant to convert their old code to new technology; it
requires a lot of effort without necessarily providing any new benefits over the
old implementation. SAP recommends that we use the latest available technology
for any new implementations but doesn’t force customers to convert their exist-
ing implementations.

The enhancement concept works on the basis that SAP can leave an opening in
the code while developing the standard SAP program, and customers can add
their code in these openings (hooks) to enhance the application. This concept
depends heavily on the developer of the standard SAP program anticipating
where customers might want to add their code in the standard SAP program and
providing a hook accordingly.

In some situations, suitable hooks may not be available for you to enhance the
application. For enhancements to meet customer requirements, the hook should
be provided at the right place in the program flow and provide access to the data
that a customer wants to change.

For example, when a user creates a sales order in a standard SAP application, the
application doesn’t put any restriction on item quantity. However, if your organi-
zation deals with wholesale retail and you want to put a restriction on the mini-
mum quantity that can be ordered for each item, you need to validate the order
quantity for the item and allow only bulk orders over a specified order quantity
to be saved.

To enhance the standard SAP application to implement this custom requirement,
you need a hook that’s triggered before the document is saved and provides
access to the item quantity for validation. If the developer of the standard SAP
application has provided a hook after the document is saved, it’s of no use for
your requirement.

When studying if a particular enhancement meets our requirements, we look at
when the enhancement is triggered in the standard SAP program flow and what
data is available to manipulate. If we can’t find any enhancements for a standard
SAP program that meet our requirements, we need to explore other options for
customizing the application, such as modifications or new developments. This
934

User Exits 20.6
problem is addressed to a great extent with enhancement points, which we’ll dis-
cuss in Section 20.9.

20.6 User Exits

User exits are one of the oldest enhancement techniques introduced by SAP. User
exits are implemented as a call to a subroutine in which we can add custom code.
The developer of the standard SAP program inserts a PERFORM statement (see
Figure 20.15) at a specific point in the program code that acts as a hook. The sub-
routines are modularized in an include program in which we can edit a subrou-
tine to add custom code.

Figure 20.15 User Exit

All the include programs that contain user exits are saved in the VMOD package. We
can check the objects belonging to the VMOD package via Object Navigator. User
exists are typically provided for applications in the SAP ERP Sales and Distribu-
tion (SD) module.

When the standard program is called, it calls the user exit subroutine when the
program encounters the PERFORM statement at a specific point in the program
flow. Once the subroutine is called, all the custom code added to the subroutine
is executed at that specific point in the main program flow. Within the user exit,
you can access the global data objects of the main program and manipulate them
per your requirements. For example, if the user exit is called before the sales
order is saved, we can validate the item quantity by accessing the global data of
the program to ensure each item meets the minimum order quantity require-
ment.

Even though user exits are convenient, they can be unstable because they manip-
ulate the global data of the program. Also, there is no user-friendly way to search
935

Modifications and Enhancements20
for user exits; you need to dig through the include programs in which the subrou-
tines are maintained. Other than checking the comment lines maintained for the
subroutine, user exits don’t offer any documentation to explain their purposes.
They also don’t include support for the Switch Framework, so if you don’t want
to use an enhancement in the future, you’ll have to manually delete or comment
out the code.

The Switch Framework allows you to externally control the visibility of a reposi-
tory object, so when an enhancement technique supports the Switch Framework,
it can simply be turned off when not required, without needing to delete the
enhancement.

All enhancement techniques other than user exits support the Switch Framework.
SAP no longer provides user exits for new standard SAP programs, and many user
exits have alternatives provided via modern enhancement techniques.

20.7 Customer Exits

Customer exits, also known as CMOD enhancements, are the successor to user exits.
Customer exits implement hooks using function modules. Customer exit function
modules are implemented with the naming convention EXIT_XXXXX_NNN, where
XXXXX is the program name in which the customer function is called and NNN is the
exit number. In a standard SAP program, a function module is called using the
CALL CUSTOMER-FUNCTION 'NNN' statement.

For example, as shown in Figure 20.16, the customer exit function module EXIT_
SAPLV60B_001 is called from the standard SAP program SAPLV60B. The function
module contains a fixed interface and includes an include program that’s in the
customer namespace.

When the function module is called, certain data from the main program is
exported to the function module, which can be manipulated by writing the code
within the Z include program that’s included by default in the function module.

With customer exits, we can only work with the data available to the function
module through its parameter interface. You can’t change the global data of the
calling program when using customer exits.
936

Customer Exits 20.7
Figure 20.16 Customer Exit

This fixed interface restricts what can be achieved from within a customer exit.
For example, if you want to manipulate the item data of a document and none of
the customer exits provide the item data in the interface, then you can’t use any
of the available customer exits for your requirements. Similarly, like user exits,
where the customer exit is called in the program flow also plays an important role
in deciding if the available customer exit meets your requirement.

Customer exits are implemented by creating a project via Transaction CMOD.
They support the Switch Framework, which allows you to turn off an enhance-
ment if you no longer need it. Another advantage of customer exits is that you
can search for available enhancements easily using Transaction SMOD (see Figure
20.17). For example, you can search for all the customer exits available for a par-
ticular application component or application package.

There are four types of customer exits that can be implemented:

� Function module exits
Function module exits are implemented to enhance the functionality of the pro-
gram by manipulating the data per customer requirements. For example, if you
want to validate the item quantity, then you can implement a suitable function
module exit that provides access to the required data.
937

Modifications and Enhancements20
� Screen exits
Screen exits allow you to enhance standard SAP program screens to add custom
fields. For example, if you want to capture additional information while creat-
ing a purchase order using the standard SAP Transaction ME21N, then you can
use the screen exit to add additional fields to the Transaction ME21N screen.

� Menu exits
Using a menu exit (or GUI exit), you can enhance the standard SAP menu. You
can add custom function codes to the GUI status of a standard SAP transaction
to provide additional functionality; for example, you can add additional menu
items to standard SAP applications to provide additional functionality for the
user.

� Field exits
Field exits allow you to process the input fields of a screen. These are obsolete
and should no longer be used; you should use conversion routines instead.
Because these exits are no longer used and not recommended, we won’t discuss
them further here.

There are different ways to search for a customer exit. You can search using
Transaction SMOD, in which you can use (F4) help in the Enhancement field to
search based on the exit name, short description, package, or application compo-
nent, as shown in Figure 20.17. Another method to search for available enhance-
ments is to use lookup table MODSAP in ABAP Data Dictionary. All enhancements
are saved in database table MODSAP, so you can search table MODSAP by using wild
cards for a program name (e.g., SAPLV60B).

In addition, customer exits are called in standard SAP programs using the CALL
CUSTOMER statement; therefore, you can search the standard SAP program code
using the CALL CUSTOMER keyword to identify the customer exits called in the pro-
gram. This isn’t a straightforward method to find customer exits and may not be
useful if many other programs are called from the main program and the call to
the customer exit is implemented in one of the called programs.

In this section, first we’ll walk through the process of creating a customer exit.
Then, we’ll look at function module exits, screen exits, and menu exits in more
detail.
938

Customer Exits 20.7
Figure 20.17 Using Transaction SMOD to Search for Enhancements

20.7.1 Create a Customer Exit

The following steps walk you through implementing a customer exit:

1. First, create a project using Transaction CMOD. On the initial screen of Trans-
action CMOD, enter the name of the project and click Create, as shown in
Figure 20.18.

Figure 20.18 Transaction CMOD Initial Screen
939

Modifications and Enhancements20
2. Maintain a short description for the project and save the project.

3. To assign an enhancement, click the Enhancement Assignments button (see
Figure 20.19).

Figure 20.19 Project Attributes

4. On the next screen, enter the name of the enhancement under the Enhance-

ment column and press (Enter), as shown in Figure 20.20.

If the enhancement is already used in a different project, the application will
show an error message displaying the project in which this enhancement is
used (see Figure 20.21). In such cases, you can edit the enhancement in the
existing project or delete it from the existing project to add it to the new proj-
ect.

Figure 20.20 Assigning Enhancement to Project

Figure 20.21 Error Message if Enhancement Is Already Implemented

5. Save the project.

6. Click the Components button in the toolbar to see the components of the
enhancement. You can double-click the displayed component to open it in the
appropriate ABAP Workbench tool. In this case, the enhancement consists of
one function exit, as shown in Figure 20.22.
940

Customer Exits 20.7
7. Double-click the function module name to open it in Function Builder. Within
this function module, you’ll see a Z include program. Double-click the Z
include program to create it and write your code. Make sure to activate the Z
include program.

Figure 20.22 Enhancement Component

8. Once the Z include program in the function module is implemented, you can
go back and activate the enhancement. To do so, click the Display/Change but-
ton (if you aren’t already in change mode) so that the Activate and Deactivate

icons appear in the toolbar (see Figure 20.23). Click on the Activate icon to
activate the enhancement, at which point the red dot next to the objects will
change to green.

Figure 20.23 Activating Enhancement

9. At this point, you can test the application to see if your enhancement is being
called by checking the expected behavior or by adding a breakpoint in the func-
tion module you just implemented. If you want to deactivate the enhancement
at any point in the future, simply click the Deactivate icon (see Figure 20.23).
Once deactivated, the enhancement will not be called by the standard program.

SAP also implements many enhancements and supplies them in deactivated mode
by default. Customers can activate these enhancements to implement additional
941

Modifications and Enhancements20
functionality. You can activate any enhancement implementation in Transaction
CMOD.

Implementing enhancements is straightforward; most of the complications lie in
identifying the enhancements that meet your requirements. When working with
enhancements, you’ll spend most of your time searching for a suitable enhance-
ment.

20.7.2 Function Module Exits

Function module exits are called in standard SAP programs that allow you to work
with the data supplied using the function module interface. To evaluate if a par-
ticular function module exit meets your requirements, you must check at what
point in the program flow the exit is called and what data is available through its
interface.

Once you find a suitable enhancement, you can implement the enhancement by
creating a project in Transaction CMOD. Customer exits can be implemented
only once, meaning that if an enhancement is already implemented in a different
project, you can’t implement it again in a new project. We recommend that you
implement all related enhancements in a single project so that they’re easy to
maintain and can be activated and/or deactivated together.

20.7.3 Screen Exits

Screen exits allow you to enhance standard SAP screens to add additional fields.
When a field is added to the screen, the corresponding standard SAP table also
needs to be enhanced to add the extra field. SAP provides customer includes in
standard SAP tables in which you can add your extra fields. Implementing a
screen exit is similar to implementing function module exits; you first create a
project and then add the enhancement to the project.

To allow screen enhancements, SAP calls a subscreen in the PBO event of the
main screen via the CALL CUSTOMER-SUBSCREEN statement, as shown in Figure
20.24. You’re allowed to edit this subscreen to add custom fields. Once the fields
are added to the subscreen, they’ll be displayed on the main screen as though
they’re part of it. The same fields should be added to the corresponding standard
SAP table in the provided CI include. The fields names should be prefaced with
ZZ.
942

Customer Exits 20.7
Figure 20.24 Calling Screen Enhancement

For example, Transaction ME21N belongs to the ME package. If you search for
available enhancements for the ME package in Transaction SMOD, you’ll see the
results shown in Figure 20.25.

Figure 20.25 Enhancements for ME Package

If you open the MM06E005 enhancement and look at the components, you’ll see
that the enhancement consists of function module exits, screen exits, and CI
includes, as shown in Figure 20.26.
943

Modifications and Enhancements20
Under the Screen Areas section, note that information about the Calling Screen

and Called Screen with the respective program names and screen numbers is
listed. To add custom fields, you edit the screen of the called screen. For example,
in Figure 20.26, we’re adding custom fields to screen 0101 of program SAPLXM06
to add extra fields to a PO header. The same fields should be added to the CI
include of the purchase order header table. In this case, we’d add the fields to CI_
EKKODB.

Figure 20.26 Components of Enhancement MM06E005

20.7.4 Menu Exits

Menu exits enable you to add custom function codes to standard SAP applications.
This allows you to provide additional functionality when the function code is
selected. Customer function codes are named +CUS.

For example, if you look at the GUI status for ABAP Editor (from ABAP Editor,
follow the menu path System � Status and double-click the GUI status field),
you’ll see that a customer function code exists under the Utilities menu, as
shown in Figure 20.27. When we implement the enhancement and activate it, the
menu option will be added to ABAP Editor.
944

Customer Exits 20.7
Figure 20.27 Customer Function Code

To implement the menu exit, we create the project (or use an existing project) in
Transaction CMOD, similar to other enhancements. Once the enhancement is
added to the project, navigate to Components and double-click the displayed
menu exit, as shown in Figure 20.28.

Figure 20.28 Menu Exit
945

Modifications and Enhancements20
Here, we’re implementing the SEU00002 enhancement for ABAP Editor. Provide
the function text and other optional information. Each menu exit will have a cor-
responding function exit in which you can write the code to perform any actions
when the menu is selected. In this example, we’ll write the code in function exit
EXIT_SAPLWBABAP_010. Once the enhancement is activated, you should be able to
see the menu option in the standard SAP application.

20.8 BAdIs

Business Add-Ins (BAdIs) were first introduced with the SAP ERP 4.7 release. User
exits and customer exits use a procedural programming approach; BAdIs were
SAP’s first attempt at an object-oriented approach. As you may have guessed,
BAdIs are provided as classes, the methods of which we can use to implement
custom functionality.

In addition to being object-oriented, BAdIs provide a couple of advantages over
customer exits: They can be implemented multiple times, and each implementa-
tion can be restricted using filter criteria.

In this section, we’ll provide an overview of the structure of a BAdI, then dive
into steps for defining and implementing BAdIs. We’ll then look at implementing
fallback classes for multipurpose BAdIs before looking at the steps for calling a
BAdI.

20.8.1 Overview

A BAdI has two parts: a definition part and an implementation part. SAP defines a
BAdI using an interface that consists of a method (or a set of methods). We can
maintain the implementation for this BAdI by defining an implementation class,
which uses the BAdI interface.

The class CL_EXITHANDLER is used in the program to check if the implementation
of the BAdI is active and to get a reference to the BAdI. The get_instance static
method of the cl_exithandler global class queries the database table to see if at
least one implementation of the BAdI is active and accordingly returns the refer-
ence to the BAdI implementation. This approach allows you to have multiple
implementations, with each implementation called based on a filter value set for
the implementation.
946

BAdIs 20.8
However, this process has one major disadvantage: It slows applications down
considerably, because they now need additional database accesses to check if the
BAdI is implemented. The problem is compounded when an application has too
many BAdIs.

To address this problem, SAP has introduced new kernel-based BAdIs in the SAP
ERP 6.0 system, in which this check is moved from the database level to the ker-
nel level. Kernel-based BAdIs are called new BAdIs, and the old ones are called
classic BAdIs.

You could create classic BAdI definitions prior to SAP ERP 6.0, but no longer; as
of SAP ERP 6.0, you can only create new BAdIs. In fact, SAP has changed the
Enhancement Framework completely with the release of SAP ERP 6.0.

You may be thinking that if enhancements are ways for SAP to provide openings
in standard SAP applications, so we should only need to implement BAdIs. Why,
then, would we need to create BAdI definitions? The answer is that BAdIs provide
such great flexibility to enhance applications that we can use them for our custom
applications as well. For example, say you’re developing an application that will
be used in many plants, and each plant wants to do certain things differently.

To accommodate such a requirement, you may have to construct a CASE statement
in the program and write different logic for each plant, as shown in Listing 20.1.
The challenge here is that every time a particular plant wants to change certain
things, you need to change the logic in the program. Because this program is used
by many plants, you need to perform intensive testing to ensure no other plants
are effected by the change.

CASE werks.
WHEN '1000'.
" Write custom logic for plant 1000
WHEN '2000'.
" Write custom logic for plant 2000
WHEN OTHERS.
" Write logic for other plants
ENDCASE.

Listing 20.1 Logic Using CASE Statement

However, you can accommodate such requirements easily by using BAdIs. First,
you define a BAdI that’s called in the program. Multiple implementations for this
BAdI can be maintained, with each implementation having a plant number as the
947

Modifications and Enhancements20
filter criterion. The custom logic is maintained in each respective implementa-
tion. This way when a particular plant needs a change in logic, only the logic in
the respective implementation needs to be changed. Similarly, if the plant no lon-
ger needs the specific logic to be executed, you can simply deactivate the imple-
mentation.

In this section, we’ll create a new BAdI and understand the process to define and
implement the BAdI. There are two transactions available to work with BAdIs:
Transaction SE18 is used to define the BAdI (and to search for existing BAdIs),
and Transaction SE19 is used to implement the BAdI.

To determine all the classic BAdIs that are called in a standard SAP application,
you can set a breakpoint in the get_instance method of the cl_exithandler class
and run the application. The breakpoint is triggered each time a classic BAdI is
called in the application. New BAdIs are instantiated differently, so they don’t
trigger this method.

20.8.2 Defining a BAdI

There are three steps involved in defining a BAdI:

1. Create an enhancement spot.

2. Create the BAdI definition.

3. Create the BAdI interface.

In the following sections, we’ll walk through each of these steps.

Creating Enhancement Spot

Enhancement spots act as wrappers for BAdI definitions. One enhancement spot
can have multiple BAdI definitions.

To create an enhancement spot, proceed with the following steps:

1. Go to Transaction SE18 (BAdI Builder), and select the Enhancement Spot radio
button. Provide a name for the enhancement spot and click Create (see Figure
20.29).

Alternately, you can open the package in Object Navigator (Transaction SE80).
Right-click the package and select Create � Enhancement � Enhancement Spot.
948

BAdIs 20.8
Figure 20.29 BAdi Builder: Initial Screen

2. On the Create Enhancement Spot screen, as shown in Figure 20.30, provide
a short description. In the Technology dropdown box, select BAdI Definition.
In the Composite Enhancement Spot field, you can enter the composite
enhancement spot name, which simply groups the related enhancement spots.
Enhancement spots grouped into a composite enhancement spot are displayed
in a tree structure, allowing you to check dependencies and change all related
enhancement spots together. This only has a semantic meaning and is similar to
grouping related objects into a package.

3. Click the green checkmark (OK) to continue.

Figure 20.30 Create Enhancement Spot

Creating a BAdI Definition

Once you click the green checkmark on the Create Enhancement Spot screen
shown in Figure 20.30, the system will take you to the Enhancement Spot

Change screen, which contains four tabs.

From here, proceed with the following steps:

1. Under the Enh. Spot Element Definition tab, as shown in Figure 20.31, click
the Create BAdI button.
949

Modifications and Enhancements20
Figure 20.31 Create BAdI

2. This will open a dialog box in which you can provide the Name for the BAdI
definition and a Short Description. Click the green checkmark to continue
(see Figure 20.32).

Figure 20.32 Create BAdi Definition

3. On the BAdI definition page, as shown in Figure 20.33, you’ll see the BAdI defi-
nition with its subobjects in a tree structure. Once the BAdI is selected, you can
set certain attributes. Within the Enh. Spot Element Definition tab, imple-
ment the following changes:

� In the Usability section, you can select or deselect the Multiple Use check-
box, depending on whether you want to allow multiple implementations for
this BAdI to be called or if only a single implementation can be active at any
given point in time. As previously mentioned, multiple implementations are
useful when you want to provide different logic for different countries, com-
pany codes, plants, and so on. The Limited Filter Use checkbox allows you
to set a filter criterion for BAdI implementation. You’ll learn more about
implementing filters in the next subsection. Selecting the AMDP BAdI

checkbox creates a special BAdI for ABAP Managed Database Procedures

Create BAdi
950

BAdIs 20.8
(AMDP). AMDP is a framework which currently supports database proce-
dures and functions from the SAP HANA database.

� In the Instance Creation Mode section, you can select the following:

– Newly Creating Instantiation: Select this if you don’t want the BAdI to
buffer the data when it’s called multiple times by the program.

– Reusing Instantiation: Select this if you’re fine with reusing data when
the BAdI is called multiple times by the program. This option is useful if
you’re selecting data from the database and want to avoid database access
each time the BAdI is called in the program. This implements a singleton
pattern in which only one instance exists.

– Context-Specific Instantiation: Selecting this option allows you to spec-
ify a context while calling the BAdI; the context controls the BAdI instan-
tiation. If the BAdI is called with the same context, the same BAdI instance
is reused; otherwise, a new instance is created. To specify the context, the
context class must implement the IF_BADI_CONTEXT interface.

� The Fallback Class option allows you to implement a fallback class. A fall-
back class is the default class called if no implementation is active. The fall-
back class is also called for multiple-use BAdIs with filter criteria when none
of the implementations satisfy the filter criteria.

Figure 20.33 Create BAdI Definition

4. You can define a filter for the BAdI by right-clicking on the BAdI definition
name and selecting Create Filter from the context menu (see Figure 20.34).
951

Modifications and Enhancements20
Figure 20.34 Creating Filter

5. Setting a filter adds the field to the parameter interface. The calling program
needs to supply this filter value to call the BAdI. The Create Filter screen (see
Figure 20.35) allows you to define the filter field. In this example, set the plant
number as the filter.

You can provide the BAdI Filter name, Filter Type, and Description. For the
Filter Type, you can select any elementary type, such as character, numeric,
string, packed, and so on, using the (F4) help for the field. The Constant Filter

Value checkbox forces the program to pass a constant during the call.

Figure 20.35 Create Filter

6. Because the filter value is passed by the program, it’s always a good practice to
validate the value being passed in order to avoid any runtime errors. Under Fil-

ter Value Check for BAdI Implementations, there are three options:
952

BAdIs 20.8
� No Check: This option doesn’t perform any check, and the program is free
to pass any value. This can result in runtime errors if incompatible values are
passed.

� Automatic through Dictionary: Selecting this option will show a field in
which you can assign a data element (or domain). This allows you to check
for type compatibility with the field of the calling program. For example, if
the filter is set as TYPE p, then it will raise a syntax error if a field of another
type is passed in the calling program. During the implementation of the
BAdI, this option uses the value range defined for the domain to list the pos-
sible values. Only one of the possible values defined in the value range can
be set as the filter value (see Figure 20.36).

Figure 20.36 Assigning Data Element as Filter Check

� by own program: This option allows you to implement your own check by
creating a class, as shown in Figure 20.37. Once you provide the class name
and click OK, you’ll be taken to Transaction SE24 (Class Builder), where you
can implement the class.

Figure 20.37 Filter Check by Own Program

This class implements an IF_FILTER_CHECK_AND_F4 interface that has four
methods, as shown in Figure 20.38:

� SHOW_F4_ICON: This method has a returning parameter, which you can set as
abap_true (X) to show the F4 icon to the developer implementing the BAdI;
this tells the developer that (F4) help is available to select the filter value.
953

Modifications and Enhancements20
� F4: This method is similar to using a POV event for dialog programs in which
you can write the custom logic to show (F4) values.

� CHECK: In this method, you can access the value that’s passed for the filter and
validate it. If the filter value passed is invalid, you raise the CX_ENH_BADI_
FLTR_VALUE_INVALID exception.

� INIT: This method is called during initialization, before any of the other
methods in this interface are called. In this method, you can access the
enhancement spot name, BAdI name, enhancement name, and implementa-
tion name.

Figure 20.38 Filter Class

Once the filter is added, it will be displayed under the Filter subobject, as
shown in Figure 20.39.

Figure 20.39 Filter

The next step is to define the interface.

Creating Interface

Now the we’ve created the enhancement spot and BAdI definition, the next step
is to create the interface. Proceed with the following steps:
954

BAdIs 20.8
1. Double-click the Interface subobject (see Figure 20.40), to define an interface
for the BAdI. This interface will be used in the implementation class.

Figure 20.40 Define Interface

2. On the screen now displayed, provide the interface name and click on the pen-
cil icon, as shown in Figure 20.41.

3. This will take you to Class Builder, where you can define methods and other
components for the interface.

Figure 20.41 Defining Interface

Defining this interface is similar to defining any other regular interface in Class
Builder, as discussed in Chapter 8. However, if the Multiple Use option is
selected for the BAdI, then the methods can have only importing and changing
parameters. You can’t have exporting or returning parameters, because when
multiple implementations are called, they’re called in random order, and export-
ing parameters in such a scenario doesn’t make sense. Once the interface is
defined, activate it.

This concludes the BAdI definition, so go ahead and activate the enhancement
spot by clicking the Activate icon in the toolbar.

20.8.3 Implementing a BAdI

Now that you understand how to define a BAdI, let’s look at implementation: To
implement a BAdI, we create an enhancement implementation and then the BAdI
implementation. For the BAdI implementation, we create an implementation
955

Modifications and Enhancements20
class that inherits the methods from the interface class defined for the BAdI defi-
nition.

Proceed with the following steps:

1. Implement the BAdI either using Transaction SE19 or simply by right-clicking
the BAdI definition name and selecting Create BAdI Implementation (see
Figure 20.34).

2. This will open a dialog box in which you can enter the Enhancement Imple-

mentation name and Short Text, as shown in Figure 20.42. Similar to how
you can create multiple BAdI definitions within an enhancement spot, you can
create multiple implementations within an enhancement implementation.

Figure 20.42 Enhancement Implementation

3. Once you input the necessary settings, click the green checkmark. This will
immediately open the Create BAdI Implementation dialog box, in which you
can enter the BAdI Implementation name, Description, and Implementing

Class name (see Figure 20.43).

Figure 20.43 Create BAdI Implementation

4. Once the details are entered, click the green checkmark to go to the Enh. Imple-

mentation Elements tab, as shown in Figure 20.44. Double-click the Imple-

menting Class subobject to see the methods of the interface. Double-click the
method to implement it. The system will automatically open the method in
Transaction SE24, where you can write the code like you would for any regular
method.
956

BAdIs 20.8
Figure 20.44 Enhancement Implementation

5. Once the method is implemented, activate the method and come back to the
Enhancement Implementation screen. At this point, you should see a message
indicating that the implementation will be called (see Figure 20.45).

Figure 20.45 Implementation Is Active

6. Double-click the Filter Val. subobject to set the filter criteria. This will open a
screen in which you can assign filter values. Click the Combination button, as
shown in Figure 20.46, and double-click the question mark symbols to set the
filter value.

Figure 20.46 Setting Filter Criteria

7. Once the filter value is set, they system will display the filter (see Figure 20.47).
You can click on the AND or OR button to add multiple combinations.
957

Modifications and Enhancements20
Figure 20.47 Filter Values

20.8.4 Implementing a Fallback Class

When you define a single-use BAdI, it will result in an error if the BAdI is called
and no implementations are active. In such scenarios, you can implement a fall-
back class for the BAdI, which will automatically be called if there are no active
implementations. A fallback class is also useful for calling multiuse BAdIs for
which the filter criteria aren’t satisfied for any of the active implementations. In
such cases, the fallback class is called automatically.

To implement a fallback class, proceed with the following steps:

1. Double-click the BAdI definition in the enhancement spot. Select the Call

Fallback if no Implementation Is Executed checkbox to enable the Fallback

Class field, in which you can input the class name and click the pencil icon to
create the class (see Figure 20.48).

Figure 20.48 Fallback Class

2. After you click the pencil icon, you’ll be asked if the fallback class should be
used as an example class (see Figure 20.49). This will allow other developers to
understand how the methods should be implemented. If you want the fallback
class to be used as an example, click Yes; this will take you to Transaction SE24
to implement the class.

Figure 20.49 Fallback Class as Example Implementation
958

BAdIs 20.8
3. When using the fallback class as an example class, you may want to allow the
fallback class to be inherited by other classes for ease of implementation. In
such a case, make sure to uncheck the Final class flag, as shown in Figure
20.50.

Figure 20.50 Allowing Inheritance

Now that we’ve defined and implemented a BAdI, let’s look at how the BAdI can
be called in the program.

20.8.5 Calling a BAdI

To call a BAdI, we use the GET BADI statement, which returns the instance of the
BAdI implementation. If the filter criteria are set for the BAdI, we pass the filter
values to the GET BADI statement.

Once the GET BADI statement instantiates the BAdI object with the implementa-
tion reference, we can call the methods using the CALL BADI statement, as shown
in Listing 20.2.

DATA lo_badi TYPE REF TO ZBD_DEMO_PLANT.
TRY.
GET BADI lo_badi
FILTERS
plant = lv_werks. "1000
CALL BADI badi->handle_plant
EXPORTING
werks = lo_werks.
"This exception is only for single-use BAdI
CATCH cx_badi_not_implemented.
ENDTRY.

Listing 20.2 Calling BAdI

In Listing 20.2, we’re defining a reference object, lo_badi, a type of BAdI defi-
nition. We’re using the GET BADI statement to get the reference to the active
959

Modifications and Enhancements20
implementation of the BAdI. Because the BAdI uses plant number as the filter
criterion, we’re passing the filter value with the GET BADI statement using the
FILTERS addition. Once we have the reference to the implementation, we can
access its methods by using the CALL BADI statement.

As you can see, by implementing the BAdI we can avoid using the CASE statement
from Listing 20.1 to handle plant-specific logic in the main program. Each plant
can have its own implementation, which can be changed without changing the
main program. If new plants are added, we can simply add new implementations
to the BAdI.

Good object-oriented design calls for the separation of tasks. By implementing
the BAdI, we separated the task of finding the plant and running the tasks specific
to the plant. The program’s job here is to find the plant, and the BAdI’s job is to
run plant-specific tasks. The program doesn’t need to know what tasks are being
performed for the plant, and the BAdI doesn’t need to know how the program is
determining the logic for each plant.

20.9 Enhancement Points

One major challenge with the enhancement concepts that we’ve discussed so far
is that they’re called at predefined locations in standard SAP programs and have
fixed interfaces. They’re sufficient to meet the requirements of customers most of
the time, but they do have several limitations for customizing standard SAP appli-
cations. The whole concept behind these enhancements relies on SAP anticipating
how customers might want to enhance standard SAP programs and correctly
deciding where to provide the opening in the code.

The Enhancement Framework was introduced in SAP ERP 6.0. This framework
brought the concept of enhancing SAP applications to a different level with the
introduction of enhancement points.

Enhancement points allow you to bend standard SAP applications as you wish.
Enhancement points are source code plugins added to the source code of the stan-
dard SAP programs directly. These source code plugins are compiled with the
main program and are as good as writing the code directly in the main program.

There are two types of enhancements available: explicit and implicit. In the fol-
lowing subsections, we’ll discuss each type.
960

Enhancement Points 20.9
20.9.1 Explicit Enhancements

Explicit enhancements are similar to all the other types of enhancements, such as
customer exits and BAdIs, in that they’re provided explicitly in the code. If an
enhancement isn’t provided explicitly by SAP, you can’t add your custom code.

There are two types of explicit enhancement points:

� Static explicit enhancement points
Static enhancement points are introduced by the ENHANCEMENT-POINT statement
and end with the STATIC keyword, as shown in Figure 20.51. Static enhance-
ment points aren’t controlled by the Switch Framework.

� Dynamic explicit enhancement points
Dynamic enhancement points don’t include the STATIC keyword at the end.
Dynamic enhancement points are controlled by the Switch Framework.

We use static enhancement points to add data declarations and dynamic enhance-
ment points to write program logic. The enhancements are implemented between
ENHANCEMENT and ENDENHANCEMENT statements, with each enhancement assigned a
number that’s unique within the program.

Figure 20.51 Explicit Enhancements

If you see the ENHANCEMENT-POINT statement in a standard SAP program, then you
can add your source code plugin at that point in the source code. Implementing
an enhancement is pretty straightforward.

Static Enhancement
Point

Dynamic Enhancement
Point

Enhancement
Implementation 1

Enhancement
Implementation 2
961

Modifications and Enhancements20
Proceed as follows:

1. Open the standard SAP program that you want to enhance in display mode.
Click on the seashell icon in the application toolbar, as shown in Figure 20.52.
This will enable the program to change or implement enhancements.

Figure 20.52 Enhancement Button

2. Right-click the enhancement point and select Enhancements � Create Imple-

mentation from the context menu. This will open the Select or Create

Enhancement Implementation window (see Figure 20.53). Here, you can
select any existing enhancement implementation or click the Create button to
create a new implementation.

Figure 20.53 Selecting or Creating Implementation

3. If you click the Create button to create a new implementation, the system will
present the Create Enhancement Implementation window, in which you can
enter an Enhancement Implementation name and Short Text description for
962

Enhancement Points 20.9
your implementation, as shown in Figure 20.54. Save the enhancement imple-
mentation to your customer package. The new enhancement implementation
now will appear in the list shown in Figure 20.53. Double-click the enhance-
ment implementation name to select it.

Figure 20.54 Creating New Implementation

4. This will create an ENHANCEMENT ENDENHANCEMENT section in the code in which
you can add your custom code, as shown in Figure 20.55.

Figure 20.55 Enhancement Section

5. Once you add custom code, click on the Activate Enhancements button in the
application toolbar.

20.9.2 Implicit Enhancements

Unlike explicit enhancements that are provided in programs by SAP, implicit
enhancements are available by default in the program. They are available at the
beginning and end of a procedure (i.e., in subroutines, function modules, and
methods), at the end of a structure definition, and at the end of an executable pro-
gram.

To show implicit enhancements, follow the menu path Edit � Enhancement

Operations � Show Implicit Enhancement Operations from ABAP Editor, Func-
tion Builder, or Class Builder.

This will show a comment line under the Source Code tab that indicates where
you can create the implementation, as shown in Figure 20.56.
963

Modifications and Enhancements20
Figure 20.56 Implicit Enhancement Point

Even though you have more flexibility with implicit enhancement points, you
still can’t use them to, for example, add code in the middle of a procedure.

Implementing implicit enhancements is similar to explicit enhancements, in that
you create an enhancement implementation. We recommend keeping all related
enhancements in the same implementation so that they can be switched on or off
together. When you switch off an enhancement implementation, it won’t be
compiled.

Let’s walk through how to enhance a function module interface to add custom
parameters:

1. Open the function module you want to enhance and navigate to the Import,
Export, Changing, or Tables tab, depending on which tab you want to add the
custom parameter to. For this example, go to the Export tab. The process is the
same for other parameters.

2. Click on the Enhance icon (see Figure 20.57) in the toolbar. The system will
prompt you to create an enhancement implementation. Create an enhance-
ment implementation as explained in Section 20.9.1.

Figure 20.57 Create Enhancement
964

Enhancement Points 20.9
3. Add the custom field to the interface, as shown in Figure 20.58. If you’re add-
ing import, changing, or tables parameters, make sure to check the Optional

checkbox to ensure that your enhancement won’t break the existing programs
calling this function module.

As you can see in Figure 20.58, the existing parameters of the function module
are input-disabled. You can also see the enhancement implementation name in
the Enhancement Implementation column.

Figure 20.58 Adding Custom Parameter to Export Tab

4. The parameter added to the interface should be filled in the source code of the
function module. Navigate to the Source Code tab. If you don’t see a suitable
explicit enhancement point in the code, you can use the implicit enhancement
point to update the parameter, as explained in the following steps.

5. Use the menu path Edit � Enhancement Operations � Show Implicit Enhance-

ment Operations to display the implicit enhancement points.

6. Select the implicit enhancement point and follow the menu path Edit � Enhance-

ment Operations � Create Implementation, as shown in Figure 20.59.

Figure 20.59 Creating Implementation
965

Modifications and Enhancements20
7. You’ll see a dialog box to choose the enhancement mode (see Figure 20.60).
Choose the Declaration button if you want to add data declarations (static
enhancement), and choose the Code button if you want to add program logic
(dynamic enhancement). For this example, select the Code button.

Figure 20.60 Enhancement Mode

8. Choose an existing implementation if the code you’re adding is related to
another enhancement; otherwise, create a new enhancement implementation.
Add the program logic between ENHANCEMENT and ENDENHANCEMENT, as shown in
Figure 20.61. Within the source code of the function module, you have access
to both the existing parameters and the new parameter that you added. You can
also access the global data objects of the function group, but use caution when
changing global data of the function group.

Figure 20.61 Implementing Enhancement

The steps to enhance a method are similar to the steps to enhance a function mod-
ule. You can also enhance a class to add new methods. The bonus is that these
new methods can also access the private components of a class.

20.10 Business Transaction Events

Business transaction events (BTEs) are a type of enhancement specifically available
for the SAP ERP Financial Accounting component. BTEs are similar to user exits in
966

Business Transaction Events 20.10
that you can only make program changes, as opposed to customer exits and BAdIs
that support screen and GUI enhancements.

BTEs are implemented using function modules, unlike BAdIs, which use ABAP
Objects. BTEs preceded BAdIs and are an older enhancement technique, but
we’re covering them here for the sake of completeness.

BTEs work on the principle that the system triggers an event for which a suitable
function module is maintained to execute custom code. SAP provides sample
function modules for all events (called samples), and we can copy these sample
function modules and write our custom code. The interface of these function
modules shouldn’t be changed.

There are two types of interfaces available:

� Publish and subscribe interfaces
These interfaces allow you to interrupt standard SAP application flow to carry
out additional work outside of the application. These interfaces don’t export
any data back to the application, so you can’t use them to modify the applica-
tion data. They import certain application data, which can be used to perform
additional steps external to the application. For example, when creating a ven-
dor, you may want to update certain custom tables with additional data using
the vendor number.

� Process interfaces
These interfaces allow you to interrupt the standard SAP application and mod-
ify its data. They allow you to change how a standard SAP application behaves
and influence the application data, and they implement importing and chang-
ing parameters, which can be used to modify the application data.

Let’s use a vendor master record as an example to explain how BTEs are imple-
mented. For this example, we want to execute some custom code when a vendor
master record is saved via Transaction FK02.

20.10.1 Implementing a BTE

BTEs are implemented using Transaction FIBF. Most of the configurations are car-
ried out by functional consultants; as ABAP developers, our role is limited to cre-
ating the function module and adding custom code.
967

Modifications and Enhancements20
The following steps walk you through implementing a BTE:

1. On the initial screen of Transaction FIBF, follow the menu path Environ-

ment � Info Systems (P/S) to find a suitable interface, as shown in Figure
20.62.

Figure 20.62 Menu to Locate Interface

2. On the selection screen for publish and subscribe interfaces, enter “A” (for
application component) in the Attribute Type field and click Execute (see Figure
20.63).

Figure 20.63 Search Publish and Subscribe Interfaces

3. The program will list all the available events. Search for the event you want to
implement. For this example, implement event 00001420, as shown in Figure
20.64.
968

Business Transaction Events 20.10
Figure 20.64 BTE Events

4. You can select the event and click Documentation to learn more about it. Sim-
ilarly, click the Interface icon to check the interface of the corresponding func-
tion module. The function module called for the event should implement this
interface.

5. Click the Sample Function Module icon to open the sample function module
in Function Builder. You can copy this function module into the customer
namespace by using the copy function in Function Builder, as shown in Figure
20.65. The sample function module provided for this event is SAMPLE_INTER-
FACE_00001420.

Figure 20.65 Copy Sample Function Module
969

Modifications and Enhancements20
6. You can maintain the custom logic in this copied function module. For this
example, simply hard-code a breakpoint (see Figure 20.66) to test if the func-
tion module is called when the vendor master record is changed. The function
module interface shouldn’t be changed.

Figure 20.66 Copied Function Module

7. Once the function module is maintained, we need to map it to a product. To do
so, first create a product and then map it to the function module. From the ini-
tial screen of Transaction FIBF, select the menu path Settings � Products � ..of

a Customer.

8. On the Customer Products screen, click on New Entries and add a product,
as shown in Figure 20.67. You can optionally provide an RFC destination. Click
the checkbox in the A column to mark the product as active. Once the product
is added, save it.

Figure 20.67 Add Product
970

Business Transaction Events 20.10
9. Now, link the event and the product with the function module that you cre-
ated. Link the function module, and from the initial screen of Transaction
FIBF, follow the menu path Settings � P/S Modules � ..of a Customer. On the
Publish and Subscribe screen, click the New Entries button and provide the
details shown in Figure 20.68. You can use the (F4) help to select the event
and product.

10. Save the record.

Figure 20.68 Linking Event with Function Module

20.10.2 Testing a Custom Function Module

Let’s test if the custom function module is called when the vendor master record
is saved. Proceed with the following steps:

1. Open any vendor record in Transaction FK02, edit the address of the vendor,
and click Save.

2. This should trigger the function module in debug mode because you hard-
coded a breakpoint in the function module (see Figure 20.69). Also, the vendor
number is passed to the function module.

We successfully interrupted the standard SAP application to execute custom code
before saving the vendor record. Finding a suitable event for the customization is
generally the task of a functional consultant; our role in implementing BTEs is
limited to function module development.
971

Modifications and Enhancements20
Figure 20.69 Function Module in Debug Mode

20.11 Summary

Enhancements are vital for any company that implements SAP. Enhancements
allow a company to customize standard SAP per its needs. In this chapter, we first
looked at Modification Assistant, which allows you to modify various repository
objects. We then discussed all the various enhancement techniques, both old and
new. Understanding enhancement techniques is important; you may need to not
only implement new enhancements but also modify old enhancements. This
chapter should give you enough knowledge and confidence to work with differ-
ent enhancement techniques. Because business processes evolve continuously,
the need for enhancements will be a constant battle.

Enhancements should be implemented with care, because many applications are
closely integrated. Implementing an enhancement for one application may cause
problems in another application. Enhancements should always be tested thor-
oughly and should go through integrated testing before moving to production.

In the next chapter, we’ll discuss various tools provided by SAP for testing and
analyzing ABAP programs.
972

Chapter 21

This chapter discusses native ABAP tools used to test and analyze ABAP
programs.

21 Test and Analysis Tools

Testing software applications for bugs and analyzing their performance is an
important part of the software development lifecycle. As programmers, we
always aim to write code that is bug-free and performs optimally. However, no
matter how experienced you are as a programmer, bugs do creep into the code.
Sometimes, you may make mistakes inadvertently, and the chances of bugs and
impacts on performance increase as more people become involved in the devel-
opment process.

To ensure that applications perform as expected, every company invests in quality
assurance. The need for a well-rounded process to test applications for productive
use can’t be stressed enough. An untested application not only runs the risk of
unexpected behavior, but also can cause a company monetary loss. For example,
if an application that generates an invoice applies the wrong discount under cer-
tain specific conditions due to a bug, it can cause all sorts of troubles.

Similarly, if an application uses too many resources due to a bad SELECT query, it
may not always be possible to catch it in the development system due to a lack of
test data. If such an application is moved to the production environment, it may
bring down the system or affect the performance of other applications.

To ensure applications perform optimally and as expected, SAP provides various
tools that can be used to test and analyze ABAP programs. Most of these tools are
targeted to be used by ABAP developers, quality managers, and system adminis-
trators. In this chapter, we’ll look at some of the important tools available in our
arsenal for testing and analyzing ABAP code.

In Section 21.1, we will provide an overview of all the tools we’ll be discussing
throughout the chapter.
973

Test and Analysis Tools21
21.1 Overview of Tools

Let’s look at all the various tools that can be used to check ABAP programs. Some
tools allow you to identify potential problems, and others help trace definitive
problems.

We’ll discuss the following tools in this chapter:

� ABAP Unit
ABAP Unit is a test-driven development (TDD) tool used to test an application
as it’s being developed and if any new changes to the program affect the orig-
inal functionality. We’ll discuss ABAP Unit further in Section 21.2.

� Code Inspector
Code Inspector allows you to perform a static check on your program to identify
any problem areas in the code. This is probably the first tool we run to check
our code statically to identify any potential problems. Unlike other runtime
tools that check only the code that’s executed at runtime, Code Inspector
checks the complete code of the program.

Code Inspector is integrated into ABAP Workbench and can accessed from var-
ious workbench tools, such as ABAP Editor, Function Builder, and so on, to run
ad hoc tests. It can also be run separately via Transaction SCI. We’ll provide fur-
ther details of the Code Inspector in Section 21.3.

� Selectivity analysis
The selectivity analysis tool (Transaction DB05) allows you to perform an analy-
sis of a database table to identify its size and data distribution. This tool helps
analyze the memory requirements for table buffering and index design. More
details on this tool can be found in Section 21.4.

� Process analysis
The process analysis tool (Transactions SM50 and SM66) is mostly used by sys-
tem administrators to check the work process overview. However, this tool can
also be used to check the performance of programs that take longer durations
to execute. This tool is also useful for checking programs that run in the back-
ground, and it provides information about currently running programs. We’ll
provide a thorough overview of this tool in Section 21.5.

� Memory Inspector
Memory Inspector is part of the ABAP Debugger. The ABAP Debugger is used to
analyze the memory occupied by the data objects. By performing a memory
974

Overview of Tools 21.1
analysis, you can identify, for example, large internal tables that may negatively
impact the performance. From within the debugger, we can create memory
snapshots that can be further analyzed using Memory Inspector (Transaction S_
MEMORY_INSPECTOR). More information on the Memory Inspector can be
found in Section 21.6.

� Table call statistics
The table call statistics tool (Transaction ST10) allows you to analyze the call
statics for database tables. This tool is used by system administrators to analyze
the tables that are buffered and check the efficiency of buffer settings. The
administrator can also analyze unbuffered tables to check if they’re technically
suitable for buffering. For more information on this tool, see Section 21.7.

� Performance trace
A performance trace (Transaction ST05) is one of the most important and most
frequently used analysis tools. Performance traces consist of a SQL trace, RFC
trace, enqueue trace, and table buffer trace. Of all the traces, we most com-
monly perform a SQL trace to identify how long SQL statements are taking to
execute.

Not all performance-related issues will be due to database access. However,
database access often is the cause of sluggish ABAP program performance. In
such cases, analyzing and optimizing SQL queries greatly improves perfor-
mance. We’ll provide further information on this trace tool in Section 21.8.

� ABAP Trace/runtime analysis
ABAP Trace, also called runtime analysis (Transaction SAT), helps to analyze the
performance of ABAP programs. This tool is primarily used to analyze perfor-
mance problems at the application server level. You can identify such things as
issues with CPU usage or modularization units that are called unnecessarily
during program execution. More information on ABAP Trace can be found in
Section 21.9.

� Single-transaction analysis
Single-transaction analysis (Transaction ST12) is similar to runtime analysis, but
it provides certain additional options to analyze a trace.

For more details on single-transaction analysis, see Section 21.10.

� Dump analysis
When a program terminates due to an exception, a short dump is generated.
975

Test and Analysis Tools21
Dump analysis (Transaction ST22) allows you to check the short dumps gener-
ated by the programs.

The last section of this chapter, Section 21.11, provides further details on dump
analysis.

All these tools are used at different stages in the software development lifecycle.
Some of the tools are used in the development system, and others are used in the
quality system. Performance analysis tools shouldn’t be used in production envi-
ronments, except in very rare and extreme situations in which the dataset for test-
ing isn’t available in the quality system. For example, Code Inspector is always
used in the development system, whereas Memory Inspector is generally used in
the quality assurance system because it needs data for analysis.

When analyzing a program, Code Inspector is used before executing the program;
almost all other tools are used while the program is running, because they need to
analyze the data that’s processed or analyze execution of various commands.

Now, let’s explore each tool in the following sections.

21.2 ABAP Unit

One of the key aspects of software development is testing. Testing allows you to
ensure a software application performs as expected and to identify any issues at
an early stage, before the code enters productive use.

The traditional way of testing is to first develop the application and then perform
some basic tests in the development system before the code is moved to the qual-
ity system for further testing. Sometimes, due to a lack of time, aspects of the
application behavior aren’t tested for specific scenarios, resulting in costly errors.
Irrespective of how seasoned a developer is, mistakes are bound to creep into the
application development; one way to ensure that each aspect of the application is
tested is to follow the test-driven development (TDD) approach.

TDD turns testing on its head and requires that you first write tests before the
application is developed, rather than testing after the application is developed.
The tool for implementing the TDD approach in ABAP programs is called ABAP
Unit.
976

ABAP Unit 21.2
The idea behind creating tests first using ABAP Unit is to help you test each aspect
of the application as it’s developed and, more importantly, test if any new
changes to the program affect the original functionality. Once ABAP Unit estab-
lishes the test for the program, you can test the program anytime using the menu
path Program � Execute � Unit Tests (see Figure 21.1).

Figure 21.1 Execute Unit Tests

Using a TDD approach involves three main steps:

1. Eliminating dependencies in the program

2. Implementing mock objects

3. Writing and implementing test classes

21.2.1 Eliminating Dependencies

For unit tests to work, the program under the test shouldn’t have dependencies—
for example, dependencies on user input or a dependency on the database to
fetch the data.

To explain this, let’s consider a regular ABAP program that calls various function
modules to validate and update data. For example, the program calls one function
module to check user authorizations, one function module to ask confirmation
from the user, and so on.

Listing 21.1 shows some typical ABAP code for implementing this example.
977

Test and Analysis Tools21
FORM update.
*Check user authorization
CALL FUNCTION 'ZUSER_SOME_AUTH'
EXPORTING
user = sy-uname
IMPORTING
auth = lv_auth.
*Business logic
IF lv_auth EQ abap_true.
*Prepare for update
ELSEIF lv_auth EQ abap_false.
*Do something else
ENDIF.
*Ask user for confirmation
CALL FUNCTION 'POPUP_TO_CONFIRM'
*Business logic
CASE user_response.
WHEN 'Y'.
"Update data
WHEN 'N'.
"Cancel
WHEN others.
RETURN.
ENDCASE.
ENDFORM.

Listing 21.1 Typical ABAP Logic

Listing 21.1 implements the logic to check user authorizations and updates the
data in the database accordingly. In this program, you want to test how the pro-
gram behaves when the authorization fails or when the user doesn’t confirm the
data update. However, with the way the code is implemented, you need an actual
user to check the authorizations or to respond to the confirmation pop-up.

These are the examples of dependencies; in this case, the program is depending on
the user to provide inputs. Similarly, if the program reads a database table to
check some settings, then we can say the program is dependent on the availability
of actual data in the database to perform a test. We can’t implement TDD for a
program that has such dependencies.

To implement TDD, we need to remove the dependencies of the program, such as
the dependency on the user or database in our example. One way to do so is to
follow the separation of concerns approach to development in which you don’t
burden one program with carrying out all the activities; instead, you implement
different classes to carry out different activities. In our example, instead of
978

ABAP Unit 21.2
burdening the program with validating the user authorizations, validating the
user response, updating the data in the database, and so on, we can implement a
different class for each of these activities. This way, we ensure that each class does
only one job and does it well.

Listing 21.2 implements classes instead of the function modules used in Listing
21.1. The code in Listing 21.2 does exactly the same thing as Listing 21.1, but in
Listing 21.2 we’re using classes to handle dependencies instead of function mod-
ules or subroutines. By replacing function modules or subroutines with classes to
handle dependencies, we can implement mock objects that can simulate external
dependencies.

FORM update.
*Check user authorization
lv_auth = lo_auth->check_auth(sy-uname).
*Business logic
IF lv_auth EQ abap_true.
*Prepare for update
ELSEIF lv_auth EQ abap_false.
*Do something else
ENDIF.
*Ask user for confirmation
user_response = lo_user->popup_to_confirm().
*Business logic
CASE user_response.
WHEN 'Y'.
"Update data
WHEN 'N'.
"Cancel
WHEN others.
RETURN.
ENDCASE.
ENDFORM.

Listing 21.2 Using Classes for Different Tasks

21.2.2 Implementing Mock Objects

Once the dependencies of the program are isolated into their own classes, you
can change your ABAP programs to take advantage of the ABAP Unit framework.
To make use of ABAP Unit, we need to implement mock objects that appear to do
the same thing as real objects, such as database access or a user response. We also
need to ensure that the class under test uses these mock objects instead of real
objects when the test is underway; this is known as injection.
979

Test and Analysis Tools21
To implement a mock object, you can take advantage of OOP by inheriting the
real objects and redefining the methods to return dummy values. For example, if
the method of the real object returns data from the database, you can redefine the
method in the mock object to return some hard-coded values.

21.2.3 Writing and Implementing Unit Tests

To perform a unit test, we need to implement test classes. Test classes can be
defined locally in the program or globally in Class Builder (Transaction SE24). To
define a test class, we use the FOR TESTING addition with the CLASS DEFINITION
statement. While defining a test class, we need to set certain properties, such as
RISK LEVEL and DURATION. The system will use these properties to determine if
the test class should be executed.

Listing 21.3 shows the syntax to define a test class.

CLASS lcl_test DEFINITION FOR TESTING
RISK LEVEL HARMLESS
DURATION SHORT.

ENDCLASS.

Listing 21.3 Define Test Class

For RISK LEVEL, you can set the property as HARMLESS, DANGEROUS, or CRITICAL.
The HARMLESS property indicates that executing the test class doesn’t affect any
customizations or perform any database changes. The DANGEROUS property implies
that the test class performs database changes. The CRITICAL property implies that
the test class performs changes to customization and the database.

For DURATION, you can set the property as SHORT, MEDIUM, or LONG. The SHORT prop-
erty implies the test class runs fast and usually takes less than a minute to execute.
The MEDIUM property implies that the test class takes anywhere from one to five
minutes. The LONG property implies that the test class may take up to one hour to
execute.

The RISK LEVEL and DURATION properties use client settings maintained via Trans-
action SAUNIT_CLIENT_SETUP, as shown in Figure 21.2.

The test class should implement at least one method with the FOR TESTING addi-
tion. The ABAP Unit framework provides a CL_ABAP_UNIT_ASSERT class, which
contains static methods for the verification of test expectations.
980

ABAP Unit 21.2
Figure 21.2 Test Class Properties

In order to execute the test, we need to provide context for the test class. The con-
text of a unit test is called a fixture. ABAP Unit executes certain predefined meth-
ods before executing the test method to prepare the system under test or to per-
form clean up after testing. We can use the fixture to prepare the components of
the system under test or to load the test data.

There are two predefined methods called by ABAP Unit:

� SETUP

This method is called before each test within a test class. We can use this
method to set up the required context for the test, such as test data.

� TEARDOWN

This method is called after each test within the test class. We can use this
method to clear the context after each test.

Let’s explain how to implement test classes with a working example. For this
example, we’ll use a class that provides the total tax due for each customer. The
purpose of this class is to calculate the total tax amount that the customer is due.
The class can be defined as shown in Listing 21.4.

CLASS lcl_account DEFINITION.
PUBLIC SECTION.
TYPES: BEGIN OF ty_customer,

acc_no TYPE char5,
tax_amt TYPE bseg-mwsts,
981

Test and Analysis Tools21
END OF ty_customer.
TYPES tt_customer TYPE STANDARD TABLE OF ty_customer.
METHODS: set_customer IMPORTING im_customer TYPE tt_customer,

get_tax_due IMPORTING im_acc_
no TYPE char5 RETURNING VALUE(rt_tax_amt) TYPE bseg-mwsts.
PRIVATE SECTION.
DATA it_customer TYPE STANDARD TABLE OF ty_customer.

ENDCLASS.
CLASS lcl_account IMPLEMENTATION.
METHOD set_customer.
it_customer = im_customer.

ENDMETHOD.
METHOD get_tax_due.
FIELD-SYMBOLS <fs_customer> LIKE LINE OF it_customer.
LOOP AT it_customer ASSIGNING <fs_customer> WHERE acc_no EQ im_acc_

no.
rt_tax_amt = <fs_customer>-tax_amt.

ENDLOOP.
ENDMETHOD.

ENDCLASS.

Listing 21.4 Class to Calculate Tax Due

In Listing 21.4, we defined a get_tax_due method, which imports the customer
account number and returns the total tax due for the customer. We also imple-
mented the set_customer setter method to initialize the customer table. For nor-
mal testing, this class would depend on data from the database to return the tax
due for customer, but ABAP Unit is all about eliminating these external depen-
dencies.

The test class for this class can be defined as shown in Listing 21.5 to perform the
test with some mock data.

CLASS lcl_test DEFINITION FOR TESTING
RISK LEVEL HARMLESS
DURATION SHORT
.

PRIVATE SECTION.
DATA o_customer TYPE REF TO lcl_account.
METHODS : setup,

teardown,
check_valid_tax FOR TESTING,
check_invalid_tax FOR TESTING.

ENDCLASS.

Listing 21.5 Test Class Definition
982

ABAP Unit 21.2
In Listing 21.5, we defined the LCL_TEST test class using the FOR TESTING addition
and set the RISK LEVEL and DURATION properties. In the private section of the test
class, we defined the O_CUSTOMER attribute as a reference object of the class under
test.

We also defined the SETUP and TEARDOWN methods, which will be called automat-
ically by ABAP Unit before it calls the CHECK_VALID_TAX and CHECK_INVALID_TAX
test methods. We defined these test methods using the FOR TESTING addition.
Note that we defined two test methods to ensure that the class under test is tested
for both valid and invalid scenarios.

Listing 21.6 shows the implementation of the test class.

CLASS lcl_test IMPLEMENTATION.
METHOD setup.
TYPES: BEGIN OF ty_customer,
acc_no TYPE char5,
tax_amt TYPE bseg-mwsts,

END OF ty_customer.
DATA : lt_customer TYPE STANDARD TABLE OF ty_customer,

lw_customer LIKE LINE OF lt_customer.
lw_customer-acc_no = '1001'.
lw_customer-tax_amt = '50'.
APPEND lw_customer to lt_customer.

lw_customer-acc_no = '1001'.
lw_customer-tax_amt = '80'.
APPEND lw_customer TO lt_customer.

lw_customer-acc_no = '1002'.
lw_customer-tax_amt = '100'.
APPEND lw_customer TO lt_customer.

lw_customer-acc_no = '1002'.
lw_customer-tax_amt = '200'.
APPEND lw_customer TO lt_customer.
CREATE OBJECT o_customer.
o_customer->set_customer(lt_customer).

ENDMETHOD.
METHOD teardown.
CLEAR o_customer.

ENDMETHOD.
METHOD check_valid_tax.
DATA lv_tax_amt TYPE bseg-mwsts.
lv_tax_amt = o_customer->get_tax_due('1001').
cl_abap_unit_assert=>assert_equals(
983

Test and Analysis Tools21
EXP = 130
act = lv_tax_amt
msg = 'Tax calculation is incorrect'
).

ENDMETHOD.
METHOD check_invalid_tax.
DATA lv_tax_amt TYPE bseg-mwsts.
lv_tax_amt = o_customer->get_tax_due('2000').
cl_abap_unit_assert=>assert_equals(
EXP = 0
act = lv_tax_amt
msg = 'Tax calculation is incorrect'
).

ENDMETHOD.
ENDCLASS.

Listing 21.6 Test Class Implementation

For the implementation of the test class in Listing 21.6, we used the SETUP
method to load some test data to the class under testing. We’re using the TEAR-
DOWN method to clear the reference to the class under testing. This ensures that
each test is performed with a new context.

Within the CHECK_VALID_TAX and CHECK_INVALID_TAX test methods, we’re calling
the GET_TAX_DUE method of the class under testing by passing different customer
account numbers. We’re using the ASSERT_EQUALS static method of the CL_ABAP_
UNIT_ASSERT class to compare the returned value with the expected value and
show a message accordingly when the test is run.

Listing 21.7 shows the complete code example of the program we’ve discussed so
far.

REPORT zdemo_abap_unit.
CLASS lcl_account DEFINITION.

PUBLIC SECTION.
TYPES: BEGIN OF ty_customer,

acc_no TYPE char5,
tax_amt TYPE bseg-mwsts,

END OF ty_customer.
TYPES tt_customer TYPE STANDARD TABLE OF ty_customer.
METHODS: set_customer IMPORTING im_customer TYPE tt_customer,

get_tax_due IMPORTING im_acc_no TYPE char5 RETURNING VALUE(rt_
tax_amt) TYPE bseg-mwsts.
PRIVATE SECTION.
DATA it_customer TYPE STANDARD TABLE OF ty_customer.

ENDCLASS.
984

ABAP Unit 21.2
CLASS lcl_account IMPLEMENTATION.
METHOD set_customer.
it_customer = im_customer.

ENDMETHOD.
METHOD get_tax_due.
FIELD-SYMBOLS <fs_customer> LIKE LINE OF it_customer.
LOOP AT it_customer ASSIGNING <fs_customer> WHERE acc_no EQ im_acc_

no.
rt_tax_amt = <fs_customer>-tax_amt.

ENDLOOP.
ENDMETHOD.

ENDCLASS.

CLASS lcl_test DEFINITION FOR TESTING
RISK LEVEL HARMLESS
DURATION SHORT
.

PRIVATE SECTION.
DATA o_customer TYPE REF TO lcl_account.
METHODS : setup,
teardown,
check_valid_tax FOR TESTING,
check_invalid_tax FOR TESTING.

ENDCLASS.
CLASS lcl_test IMPLEMENTATION.
METHOD setup.
TYPES: BEGIN OF ty_customer,

acc_no TYPE char5,
tax_amt TYPE bseg-mwsts,

END OF ty_customer.
DATA : lt_customer TYPE STANDARD TABLE OF ty_customer,

lw_customer LIKE LINE OF lt_customer.
lw_customer-acc_no = '1001'.
lw_customer-tax_amt = '50'.
APPEND lw_customer TO lt_customer.

lw_customer-acc_no = '1001'.
lw_customer-tax_amt = '80'.
APPEND lw_customer TO lt_customer.

lw_customer-acc_no = '1002'.
lw_customer-tax_amt = '100'.
APPEND lw_customer TO lt_customer.

lw_customer-acc_no = '1002'.
lw_customer-tax_amt = '200'.
APPEND lw_customer TO lt_customer.
CREATE OBJECT o_customer.
o_customer->set_customer(lt_customer).
985

Test and Analysis Tools21
ENDMETHOD.
METHOD teardown.
CLEAR o_customer.

ENDMETHOD.
METHOD check_valid_tax.
DATA lv_tax_amt TYPE bseg-mwsts.
lv_tax_amt = o_customer->get_tax_due('1001').
cl_abap_unit_assert=>assert_equals(
exp = 130
act = lv_tax_amt
msg = 'Tax calculation is incorrect'
).

ENDMETHOD.
METHOD check_invalid_tax.
DATA lv_tax_amt TYPE bseg-mwsts.
lv_tax_amt = o_customer->get_tax_due('2000').
cl_abap_unit_assert=>assert_equals(
exp = 0
act = lv_tax_amt
msg = 'Tax calculation is incorrect'
).

ENDMETHOD.
ENDCLASS.

Listing 21.7 ABAP Program with ABAP Unit

Once the test class is implemented, the main class can be tested against the test
class and improved by way of any required corrections. The concept of TDD
revolves around the idea that you develop the class, test for expected behavior,
fix issues or redesign, and test again until you get the right behavior. For our
class, the right behavior meant having the GET_TAX_DUE method return the total
tax amount due for a customer.

However, if you examine the implementation of the method in Listing 21.4,
you’ll see that we intentionally included a bug: The method returns the tax value
of the last record instead of returning the sum of the values. Let’s run the test and
see if this bug is identified.

To run the test, follow the menu path Program � Execute � Unit Tests. The sys-
tem will perform the test and show the test results as in Figure 21.3.

As you can see, the CHECK_INVALID_TAX test has passed, and the CHECK_VALID_TAX
test has failed. We can change the tax calculation logic in the GET_TAX_DUE method
of our LCL_ACCOUNT class and run the test again via Program � Execute � Unit

Tests until the class performs as expected.
986

Code Inspector 21.3
Figure 21.3 Test Results

Implementing test classes for each function of an application may be a time-con-
suming task, but it ensures that each function is tested thoroughly and that future
changes won’t break the behavior of the existing functionality.

21.3 Code Inspector

Code Inspector is one of the tools most frequently used by ABAP developers. This
tool allows you to analyze program code to identify any potential problems. Code
Inspector combines various tools to perform a check on different program
aspects, such as performance-related, security-related, syntax-related, and UI-
related aspects, in order to provide a broad analysis. Code Inspector is intended
to be used by developers and quality managers.

The following use cases can be implemented in Code Inspector:

� Run an ad hoc check from ABAP Workbench and within Code Inspector.

� Manage exceptions.

� Define public and private reusable code inspections.

� Perform special test tasks.

� Identify usages of simplified SAP objects in customer objects (useful when
migrating custom code to SAP S/4HANA).

You can run an ad hoc check on a program by navigating to the menu option
(Program/Function Module/Object Type, etc., depending on the object) and
selecting Check � Code Inspector (or by going to Transaction SCII), as shown in
Figure 21.4.
987

Test and Analysis Tools21
Figure 21.4 Accessing Code Inspector

When Code Inspector is called directly from an object, it will immediately exe-
cute the check on the object and display the results. When you access Code
Inspector using Transaction SCII, it will display the initial screen shown in Figure
21.5.

Figure 21.5 Code Inspector Initial Screen
988

Code Inspector 21.3
On this initial screen, you can specify the program name and select the check cat-
egories. The results are grouped in a hierarchical structure, as shown in Figure
21.6.

We can navigate through the hierarchical folder structure to analyze the checks
on various parameters. The result also displays a summary of the statistics of all
the potential problems, categorized as Errors, Warnings, or Information mes-
sages. You can double-click the message text to navigate to the corresponding
code in the program. Ideally, the program should show a zero in each one of
these statistics columns.

Figure 21.6 Code Inspector Results

Sometimes, it isn’t possible to correct the errors shown in Code Inspector. In such
cases, an error can be masked using a pseudocomment. If the statement can be
masked using a pseudocomment, then a comment icon will be displayed in the
Exceptions column.

The blue Information icon provides documentation explaining each type of
check and what exactly is checked under that category. Clicking the blue Infor-

mation icon next to a message will display suggestions to correct the correspond-
ing error.
989

Test and Analysis Tools21
The results of the ad hoc test aren’t stored; they’ll be lost when you exit the
screen. You can also access Code Inspector using Transaction SCII, which allows
you to configure, select, and store individual tests in a check variant. From Trans-
action SCII, you can also create an object set to perform the test on a group of
objects.

21.4 Selectivity Analysis

Selectivity analysis is performed via Transaction DB05. The selectivity analysis
tool requires a certain amount of data volume to show meaningful results. This
test is typically performed in the quality assurance system, which is generally a
replica of the production system.

This tool helps analyze the data distribution and is used to define the size of the
tables that should be buffered. The selectivity analysis tool also helps with index
design.

To run selectivity analysis, on the initial screen of Transaction DB05 (see Figure
21.7), enter the table name for which the analysis should be performed. You can
perform the analysis on the key fields or enter up to five fields of the table. By
selecting the Submit Analysis in Background checkbox, you can run the test in
the background. Running the check in the background is useful for large tables
when you don’t want to block the dialog work process for a long time or if you’re
receiving any timeout errors when the test is run in the foreground.

Figure 21.7 Initial Screen of Transaction DB05
990

Selectivity Analysis 21.4
When the test is run in the background, you can check the result using Transac-
tion SM37. On the result screen, as shown in Figure 21.8, various statistics of the
table are displayed.

The first half of the screen shows information such as the number of rows, buffer
size, and buffer mode. This information helps identify the memory the table is
occupying in the buffer. In our example, table T001T requires about 4.8 MB to be
fully buffered.

The second half of the screen shows the number of times the values for the com-
bination of fields occur. In our example, the field SPRSL occurs thirty-one times
distinctly, out of which three values occur between one and ten times in a total
40,064 rows. Four values occur between eleven and one hundred times, thirteen
values occur between 101 and one thousand times, ten values occur between
1001 and ten thousand times, and one value occurs between 10,001 and one hun-
dred thousand times. There are 37,787 combinations of the SPRSL and STEXT
fields, out of which 37,776 occur between one and ten times, and so on.

Figure 21.8 Result of Transaction DB05

Based on this information, you can make decisions about table buffering. For
example, if we switch to generic buffering for the SPRSL and STEXT fields from the
current single key buffering, we’ll end up buffering two generic areas that contain
two records between 101 and one thousand records. If this key isn’t in the buffer,
991

Test and Analysis Tools21
then the system will have to copy all these records to the buffer when the SELECT
statement is executed in order to read the line.

21.5 Process Analysis

Using Transactions SM50 and SM66, we can check the work process overview.
These transactions are generally used by system administrators. However, we can
use these transactions to check the programs that are currently running, and if
our program is running for a long time, then we can check what step of the pro-
gram is taking the most time. This information helps us identify which part of the
program should be analyzed further. These transactions also help to check pro-
grams that run in background mode.

Figure 21.9 shows the Work Process Overview screen (Transaction SM50).
Work processes will have statuses such as the following:

� Waiting

When the work process has a Waiting status, it means it’s freely available to
take a request.

� Running

If the work process has a Running status, it means the work process is cur-
rently busy processing a request.

� On Hold

The On Hold status signifies that the work process is waiting for some re-
sponse, such as the release of a resource or a response from an RFC call. If the
program is opened in debug mode, the corresponding work process that’s
processing the request will have a Hold status. The column next to the Status

column displays the reason for the hold. (F1) helps provide information about
all the possible reasons for a Hold status.

� Stopped

If the work process status shows a Stopped status, the work process was
aborted and didn’t restart.
992

Process Analysis 21.5
Figure 21.9 Work Process Overview

The Work Process Overview screen provides some important information, such
as the time the program is taking to complete the current step, the current action
being performed by the program, the status of the program, and any failures in
program execution.

Note

If you don’t see all the columns in the overview screen, you can change the ALV layout
via the menu path Settings � Layout � Current.

The information in the Current Action column helps identify if the program is
stuck while performing any particular action, such as database actions like
sequential READ, DIRECT READ, INSERT, UPDATE, DELETE, and so on. If the program is
taking long to perform any of these actions, then the program can be analyzed
further using a tool such as a SQL trace.

The Current Action column also shows different SAP system actions, such as
LOAD REPORT, ROLL-IN, ROLL-OUT, and so on. These actions mean that the work
process is occupied on the SAP system side and not related to our program
performance. If the work process is spending lot of time performing these SAP
993

Test and Analysis Tools21
system actions, then the system administrator should analyze them further,
because these actions usually don’t take much time.

If the Current Actions column is empty, the program is processing ABAP code,
such as LOOP statements or READ statements. You can check the CPU Time column
to analyze the performance of these statements. If the program is taking too long
with an empty Current Action column, then you can perform a more detailed
analysis using the runtime analysis tool.

Transaction SM50 provides a local process overview of the current application
server to which we’re logged in; Transaction SM66 instead provides a global pro-
cess overview. In Transaction SM50, you can double-click any row to see more
detailed statistics, such as memory statistics, database statistics, and so on, as
shown in Figure 21.10

Figure 21.10 Detail Overview Screen

Process analysis can be used as a first step to identify a problem area and then
used to continue the analysis in the corresponding area. For example, the Cur-

rent Action column guides you in a particular direction to carry out further
analysis using other tools. However, this tool is useful only if the program takes a
long time to execute.
994

Memory Inspector 21.6
21.6 Memory Inspector

Memory analysis can be performed using a combination of the New Debugger
and Transaction S_MEMORY_INSPECTOR. The debugger is generally used to
troubleshoot the logical problems in ABAP programs. However, you can use the
debugger to identify the memory occupied by the data objects as well. This infor-
mation is useful to identify large internal tables, which can create problems if
their access isn’t optimized. For example, performing a linear search on a huge
table will affect performance considerably.

In the New Debugger, you can check the Memory Analysis tab to see the mem-
ory occupied by the data objects, as shown in Figure 21.11.

Figure 21.11 Memory Analysis Tab View

In this section, we’ll discuss how you can create and compare memory snapshots.

21.6.1 Creating Memory Snapshots

You can create a memory snapshot for further analysis of the memory usage by
the program. A memory snapshot is a snapshot of the memory consumed by the
ABAP program at a particular point in time. By comparing memory snapshots
taken at different periods, you can analyze the memory usage of the program
over a period of time or in different scenarios.

Follow these steps to create a memory snapshot:

1. Select the New Tool button and then select Memory Analysis under the Mem-

ory Management folder, as shown in Figure 21.12.

2. Once the memory analysis tool is displayed, select the Services of the Tool

button and select Create Memory Snapshot, as shown in Figure 21.13. You
can also use the menu path System � Utilities � Memory Analysis � Create

Memory Snapshot.
995

Test and Analysis Tools21
Figure 21.12 Memory Analysis Tool

Figure 21.13 Create Memory Snapshot

21.6.2 Comparing Memory Snapshots

You use the Memory Inspector tool to analyze the memory snapshots. Comparing
memory snapshots helps you analyze how tables or other dynamic data objects
are growing between intervals. Identifying the rate at which tables grow can help
identify potential problems.

To compare memory snapshots, follow these steps:

1. Go to Transaction S_MEMORY_INSPECTOR to compare memory snapshots or
use the menu path System � Utilities � Memory Analysis � Compare Memory

Snapshot. The initial screen lists all the memory snapshots available for analy-
sis, as shown in Figure 21.14.

2. Double-click the snapshots you wish to compare and then select T_0-T_1 in the
Memory Snapshot dropdown field at the center of the screen. This will com-
pare the two snapshots and allow you analyze the changes between the snap-
shots, as shown in Figure 21.15. For example, you can see the difference in
memory occupied by the dynamic data objects between memory snapshots.

New Tool

Services of the tool
996

Table Call Statistics 21.7
Figure 21.14 Memory Snapshots

Figure 21.15 Comparing Memory Snapshots

21.7 Table Call Statistics

Table call statistics can be checked via Transaction ST10. This transaction is mostly
used by system administrators to check the statistics of tables that are buffered; it
997

Test and Analysis Tools21
allows them to optimize the buffering settings accordingly. By checking the table
statistics, system administrators can also analyze the unbuffered tables to see how
frequently the records are changing and decide if they should be buffered.

Buffering helps speed up applications, and this tool provides the required infor-
mation to identify the technical feasibility of buffering and determine if there’s a
strong business case to buffer tables.

As ABAP programmers, we can view the table call statistics to check the buffer
state of a table. For example, if you notice that buffering isn’t used for a particular
table when checking the SQL trace, you can confirm if the table is buffered at all
in Transaction ST10. If the table is buffered, but the SQL statement is bypassing
the buffer, then the problem is with the SQL statement, which you need to cor-
rect.

To check the table call statistics, open Transaction ST10 and proceed with the fol-
lowing steps:

1. On the initial screen (see Figure 21.16), select Single Key Buffered or Generic

Key Buffered based on the buffer type of the table you want to check.

Figure 21.16 Table Call Statistics Initial Screen
998

Table Call Statistics 21.7
2. Under Server, select This Server to check the statistics for the application
server you’re currently logged on to. You can also check all servers or any spe-
cific server by choosing the relevant option.

3. Under Time Frame, select Since Startup and click Show Statistics. This will
show the results screen, listing all the tables matching the selection criteria.

The results screen displays the buffer state of each table next to the table name, as
shown in Figure 21.17.

Figure 21.17 Table Call Statistics Result Screen

Most of the other information displayed on the results screen is generally used by
system administrators for buffer analysis. For example, the values in Direct

Reads indicate if the table is suitable for single-record buffering, because sequen-
tial reads aren’t executed using single-record buffering.

Similarly, the Changes column provides information about how many times
records were changed. This information, along with the number of records read,
allows you to calculate the change rate. If the change rate is high, then the table
may not be suitable for buffering because it may cause too much system over-
head. We always want to buffer tables that are read frequently but seldom
changed. The Invalidations column gives you information about how many
times the table is invalidated due to changes.

Even though most of this information is useful for system administrators, as an
ABAP developer the most crucial point is to check the buffer state of the table. If
999

Test and Analysis Tools21
you notice that a table that should be buffered isn’t being buffered, you can ask
the system administrator to analyze it further. On the other hand, if the table is
buffered, but the SQL statement in the program is bypassing the buffer, you can
fix the SQL statement (e.g., the table is set for generic buffering, but you didn’t
include the complete generic key in your SQL query, which causes the statement
to bypass the buffer).

21.8 Performance Trace

Performance traces are carried out in the application server and allow you to log
activities such as database access, remote calls of programs, locking activities,
table buffer calls, and more. You can access a performance trace using Transaction
ST05 or via the menu path System � Utilities � Performance Trace. Either
method opens the screen shown in Figure 21.18.

There are four types of traces available:

� SQL trace
A SQL trace allows you to monitor the database access of programs.

� Enqueue trace
An enqueue trace monitors locking activity.

� RFC trace
An RFC trace allows you to monitor RFCs between different instances.

� Buffer trace
A table buffer trace allows you to check the buffer access by programs.

In addition to these traces, Transaction ST05 can be used to trace external re-
quests, such as HTTP (HTTP trace), ABAP push channels (APC trace), and ABAP
messaging channels (AMC trace) requests. The HTTP, APC, and AMC traces are
useful when tracing web applications such as Web Dynpro ABAP or SAPUI5. Dis-
cussion of these external traces is beyond the scope of this book.

In this section, we’ll discuss how to activate performance traces and each of the
different types of trace that can be performed.
1000

Performance Trace 21.8
Figure 21.18 Transaction ST05 Initial Screen

21.8.1 Activating and Filtering a Performance Trace

To run a trace, it must first be activated. When the trace is activated, it’s activated
for the current application server. Only one trace can be activated at a time, so if
the trace is already activated by another user, you can’t activate it until the other
user deactivates it.

The initial screen of Transaction ST05 shows the activation status (refer back to
Figure 21.18). Click the Activate Trace button to activate the trace for your user
ID. Under the Select Trace Type section, you can select the type of the trace you
want to activate. You can activate multiple types at once.

If you want to activate a trace for other users or only for certain programs, trans-
actions, tables, and so on, select the Activate Trace with Filter button. This will
open a dialog box, as shown in Figure 21.19, in which you can provide the filter
criteria; for example, you can list the programs that should be traced in the
Include column or list the programs that should be excluded in the Exclude col-
umn (see Figure 21.19).
1001

Test and Analysis Tools21
Figure 21.19 Trace with Filter

As soon as the trace is activated, the activated traces are displayed under the
Trace Status section of the ST05 Performance Trace screen (Figure 21.18) and
the recording starts.

Any actions executed before the trace was activated won’t be displayed in the log;
the trace only records the activities carried out after the trace is activated. Once
the trace is activated, execute the transactions that you want to analyze. Once all
the transactions that you want to analyze are executed, deactivate the trace by
selecting it in the Trace Status section and clicking the Deactivate button.

All the activities will be written to a log file, which you can check by clicking the
Display Trace button (Figure 21.18). The size of the log file is predefined to avoid
system overflow. If the size of the log file exceeds the predefined value, the file
contents will be overwritten, with old records overwritten by new records. If the
size is exceeded during the trace, you’ll see a message about the overwritten sta-
tus while you view the trace. You can check the saved traces anytime in the future
by clicking the Display Trace Directory button in the toolbar.

Once you click the Display Trace button, a selection screen is presented, as
shown in Figure 21.20, in which you can set the filter conditions for the trace log.
For example, you can check the trace records for a specific period, those executed
1002

Performance Trace 21.8
by a specific client or specific user, those run for a specific program, and so on.
Click Execute to see the trace log.

Figure 21.20 Display Trace

The trace log shows all the recorded activities in an ALV display. Select the right-
most icon in the toolbar to see different views, as shown in Figure 21.21.

Figure 21.21 Trace Log

Now that you understand how to activate a performance trace, in the next few
sections we’ll look at the different types of performance traces.
1003

Test and Analysis Tools21
21.8.2 SQL Trace

The SQL trace option in Transaction ST05 records all the SQL statements that
were sent from the database interface to the database. As discussed in Chapter 2,
Section 2.2.3, when we write an Open SQL statement in an ABAP program, the
database interface of the work process takes care of converting the Open SQL
statements to Native SQL statements. The SQL trace allows you to see how the
Open SQL statements are converted to Native SQL statements by the database
interface and how the parameters are passed with the Native SQL statements to
the database.

The system starts recording all the database activity from the moment the SQL
trace is activated and logs all the converted Native SQL statements, along with the
parameters that are passed from the database interface to the database. All the sta-
tistics, such as number of entries inserted or deleted, time spent on each activity,
programs that were run, statements that were executed, and so on, are logged in
the trace file. The log file also stores information about the runtime of the state-
ment and the position in the program where the statement occurs to support fur-
ther analysis.

We can analyze the SQL trace file to identify the following:

� The different SQL statements that are executed by the program

� The values that are passed to the database

� How the Open SQL statements are converted to Native SQL statements

� Which part of the program makes repeated database access

� What data in the database is being updated by the program

� At what point in the program flow the program performs database commits

Before turning on the trace, we recommend running the program that you want
to analyze. This helps to buffer any data that the program uses. The SQL trace
only records table access that isn’t buffered, so by running the program once
before activating the trace you can check only those tables that aren’t buffered.
Because the trace logs all the database activity, it may affect the performance of
the application server. You should always turn off the trace immediately after
recording the program execution.
1004

Performance Trace 21.8
Once you turn on the trace, record the transaction and turn off the trace to dis-
play the results. The results screen shows the trace list of all the statements that
were executed between turning on and turning off the trace. From the default
view, as shown in Figure 21.22, you can navigate to different views, as shown in
Figure 21.21. Each view provides different information about the database
access, allowing you perform an in-depth analysis.

Figure 21.22 Display Trace

In the default view shown in Figure 21.22, you can double-click any cell to open
the respective view. For example, double-clicking a specific statement in the
Statement column will open the SQL statement’s trace record, double-clicking an
object name in the Object Name column will show information about the object,
and so on.

The Duration column shows the time taken to execute the statement. It takes
into account not only the time taken to perform the action in the database, but
also the time taken by the network between the database interface and the data-
base.

As shown in Figure 21.21, there are a number of selectable views to choose from:

� Structure-Identical Statements

This view allows you to check any redundant statements that were executed.

� Value-Identical Statements

This view allows you to check any statements that return identical values.

� Access to Tables

This view provides the cumulative time spent on each table for different oper-
ations.
1005

Test and Analysis Tools21
� Trace Overview

This option provides various database access statistics, such as time spent on
SELECT, INSERT, or COMMIT or the number of times these statements were exe-
cuted. It also provides suggestions to address any unnecessary database access.

� Sizing Information

This view provides information about the data volume, such as the number of
records inserted, modified, or deleted per table and the size of the tables.

Along with ABAP Trace, the SQL trace is an important tool that can provide great
insight into database access. We recommend that you start your analysis from the
tables that take up a long runtime and branch out to other views.

21.8.3 RFC Trace

The RFC trace allows you to check the RFCs that are executed between instances.
This trace records both incoming and outgoing RFC calls. Using this trace, you can
identify the time the programming is spending with RFC calls and therefore iden-
tify bottlenecks.

Among other things, using the RFC trace helps to analyze the following:

� Different function modules called remotely by the program

� Execution status of the RFC (i.e., if the RFC was executed successfully)

� The total time taken for processing the RFC call

� The size of the data sent and received during the RFC call

� Information about the instance for which the RFC call was executed

� The technical parameters of the instance

The RFC trace display view is similar to the SQL trace view and allows you to
check information about each action. The important details are the duration it
took to execute the RFC, the program that executed the RFC, and details about the
client and the server.

The system differentiates between client and server RFCs. The client calls the
RFC, and the server executes the RFC.
1006

Performance Trace 21.8
The Performance Analysis: Trace Overview screen, as shown in Figure 21.23,
provides an overview of the number of RFCs made and how long it took to com-
plete the execution of each.

Figure 21.23 Trace Overview

21.8.4 Enqueue Trace

An enqueue trace allows you to analyze the lock requests made by an application.
The trace list view (see Figure 21.24) provides information about all the requests
made to the enqueue service.

This trace provides details about the following:

� The type of request made

� The duration of the request

� The user who made the request

� The work process type (e.g., background or dialog)

The Duration column allows you to assess how long the request was active
(between ENQUEUE and DEQUEUE).
1007

Test and Analysis Tools21
Figure 21.24 Trace Overview Screen

Using an enqueue trace allows you to identify bottleneck situations by analyzing
the time spent on enqueue requests.

21.8.5 Buffer Trace

Another useful trace is the buffer trace. Using a buffer trace, you can identify the
following:

� Buffer accesses executed by the program statements

� Which type of buffer is used

� How the buffer is managed

In the trace list view, you can double-click a statement in the Statement column
to see detailed information about the buffer, such as buffer type and buffer key,
as shown in Figure 21.25.

Figure 21.25 Buffer Trace
1008

ABAP Trace/Runtime Analysis 21.9
For example, accessing a fully buffered table with a key that isn’t part of the pri-
mary key will have a negative impact because the system has to scan the records
manually. In such a case, you can consider changing the buffering parameters or
creating a secondary index.

Overall, the various types of traces we’ve just discussed allow you to identify any
statements that are taking up more time and causing bottlenecks.

21.9 ABAP Trace/Runtime Analysis

ABAP Trace allows you to analyze the performance of your program in the appli-
cation layer. It helps identify CPU-intensive modules and any unnecessary use of
modularization. Whereas a SQL trace is used to analyze the performance of state-
ments that interact with the database, the primary purpose of ABAP Trace is to
analyze how CPU-intensive the program is in the application server.

ABAP Trace lets you quickly identify statements that are causing bottlenecks. For
example, you can identify the statements that are called repeatedly or statements
that are CPU-intensive. In this section, we’ll discuss the steps for running and ana-
lyzing ABAP Trace.

21.9.1 Running ABAP Trace

You run ABAP Trace using the Transaction SAT (previously Transaction SE30;
Runtime Analysis). This tool has been available since SAP NetWeaver 7.0 EHP 2
and it provides many improvements over Transaction SE30. You can check out
the release notes for the new tool by visiting http://help.sap.com/saphelp_nw74/
helpdata/en/4e/e6b33b556444ccb3ca9fffef95d244/content.htm.

To run ABAP Trace, proceed with the following steps:

1. Open Transaction SAT.

2. On the initial screen of the transaction, as shown in Figure 21.26, you can enter
the Program name, Transaction, or Function Module to evaluate. The Eval.

Immediately checkbox allows you to display the results immediately, whereas
unchecking this checkbox will allow you to run consecutive tests.
1009

http://help.sap.com/saphelp_nw74/helpdata/en/4e/e6b33b556444ccb3ca9fffef95d244/content.htm
http://help.sap.com/saphelp_nw74/helpdata/en/4e/e6b33b556444ccb3ca9fffef95d244/content.htm

Test and Analysis Tools21
Figure 21.26 Runtime Analysis Initial Screen

3. The Measurement section shows a traffic light icon to indicate if the measure-
ment runtimes are accurate based on the system configurations. When you
open the transaction, the system loads a default variant. You can create your
own variant for the test by clicking the Create icon under Variant. Creating
your own variant allows you to tweak the settings.

For example, when performing an initial analysis, you may want to check ag-
gregate runtimes to quickly identify the problem areas as opposed to individual
calls to the statements. This is useful if any statements are called repetitively,
such as calling a function module in a loop. For such situations, you can select
the Per Call Position option under Aggregation while creating a variant, as
shown in Figure 21.27.

4. Once you provide the program name, transaction, or function module on the
initial screen, click the Execute button to run the test in dialog mode. The sys-
tem will call the program, which you can execute and perform any interactive
actions.
1010

ABAP Trace/Runtime Analysis 21.9
Figure 21.27 Create Variant

5. Once the execution is over, click the Back or Exit button of the program to go back
to the Transaction SAT screen. Based on whether you selected the Eval. Immedi-

ately checkbox, either the results are displayed automatically or you can continue
to perform consecutive tests.

6. Click the Evaluate tab to see the tests that were carried out and evaluate the
same. The Tips & Tricks button in the toolbar provides some great examples of
how to efficiently use various ABAP statements.

21.9.2 Analyzing the Results

The results screen, as shown in Figure 21.28, has multiple tabs that provide infor-
mation for you to analyze. For example, you can check the runtime of various
modularization units, the number of modularization units, and the percentage of
time spent on each modularization unit.
1011

Test and Analysis Tools21
Figure 21.28 Results Screen

There are several tabs available on the results screen:

� Desktop

The Desktop tab is default setup with Profile and Hit List views. It displays the
information available separately in the Profile and Hit list tabs in a single
view.

� Hit List

The Hit List tab, as shown in Figure 21.29, shows the Net [%] and Gross [%]

times for each statement or event. The entries are sorted by the net runtime by
default. This should help you to zero in on problematic areas of the code.

Figure 21.29 Hit List
1012

ABAP Trace/Runtime Analysis 21.9
When you double-click an entry in the Hit List tab, the system will open the
statement belonging to the corresponding program in the appropriate ABAP
Workbench tool. This helps you to check the actual statement in the program
that corresponds to the entry. The value in the Hits column gives you insight
into how many times a particular statement is being executed.

� DB Tables

The DB Tables tab shows information about the time spent on database access
(see Figure 21.30). In this view, you can analyze different information about
database access, such as the database tables or views that were accessed, the
number of times each table or view is accessed, if a buffer is used, the type of
buffer used, and the time spent on each table access.

Figure 21.30 DB Tables View

� Profl.

The Profl. (profile) tab allows you to look at the results in a different perspec-
tive. Here, you can see the details categorized by processing blocks. Click on the
Other Hierarchy button in the toolbar (see Figure 21.31) to change to a differ-
ent grouping, including Trace Results, Packages, Components, Programs,
and SLAD Objects. This allows you to broadly identify which program’s or
package’s statements are creating problems.

� Times
The Times tab provides information about the time spent for each statement or
event (see Figure 21.32). In this view, you can check the time spent by the user
and the system for each statement or event. This helps you analyze if perfor-
mance issues are caused by the program or by the system.
1013

Test and Analysis Tools21
Figure 21.31 Profile View

Figure 21.32 Times View

21.10 Single-Transaction Analysis

Single-transaction analysis (Transaction ST12) allows you to combine ABAP Trace
with the performance traces from Transaction ST05 (i.e., SQL, RFC, enqueue) to
make the tracing and analysis process simpler and convenient. This tool isn’t
exactly developed for customers; it’s intended for SAP’s own use to help SAP
employees with service delivery. Transaction ST12 combines the options avail-
able in Transactions ST05 and SAT.

Figure 21.33 shows the initial screen of Transaction ST12. The Task For section
allows you to select how you want to run the trace. Here, the following options
are available:
1014

Single-Transaction Analysis 21.10
� User/Tasks

If you select User/Tasks, you can activate the trace for a particular username. It
will trace the next actions performed by the user. Here, you can provide the
username and select the task type from the Tasktype dropdown. The task type
allows you to restrict the trace to a particular task type, such as Dialog, Back-

ground, Update, Incoming RFC, HTTP, and so on.

Figure 21.33 Initial Screen of Transaction ST12

� Workprocess

The Workprocess trace allows you to trace parts of long-running programs,
similar to using Transaction SM50.

� Current Mode

The Current Mode option, as shown in Figure 21.34, allows you to run the
trace for a specific program or transaction in current mode. This is similar to
1015

Test and Analysis Tools21
how the task is run in Transaction SAT and requires test data to run the appli-
cation to be monitored.

Figure 21.34 Current Mode

You can specify the trace options in the middle section of the screen shown in
Figure 21.33. The following are the important options to note:

� With Internal Tables

The With Internal Tables checkbox allows you to measure the performance
of internal tables by evaluating statements such as LOOP or READ.

� Size & Duration

This option lets you set the size of the trace and the duration of execution; the
trace will stop once this value is reached. This option can be tweaked if you’re
tracing a long-running program, but otherwise leave it set to the default value.

� Clock Type

This option influences the time accuracy of the recording and is operating sys-
tem–dependent. Select the Auto checkbox to use the right mode for your sys-
tem automatically (either high or low, depending on your operating system).

Once the trace is complete, Transaction ST12 collects the trace files from the local
file system and stores them in the database as a trace analysis. The available trace
analysis files are displayed in the Collected Trace Analyses section (Figure
21.33). In this section, you can find the trace analysis files and information about
the trace files, such as their status, size, duration, and start dates and times. You
can select the trace analyses file and click the Evaluation button to evaluate the
trace in the appropriate tool. For example, clicking Performance traces will
open the trace for evaluation in Transaction ST05.

You can call ABAP Trace for evaluation by clicking the ABAP Trace button. By
default, the ABAP Trace display shows the per call statistics, as shown in Figure
21.35. You can select the Per ModUnit button in the toolbar to list the calls per
1016

Dump Analysis 21.11
modularization unit. A bar chart will then show the amount of time spent at var-
ious levels, such as ABAP, Database, and System. The bar for the time spent in
ABAP shows how much time it took to process the program statements. The
Database bar displays the time spent in database access.

The System bar shows the amount of time spent by the system to carry out system
functions such as loading programs; the time spent here should be negligible. If
not, it may indicate a problem with the system that should be taken care of by the
system administrator.

Figure 21.35 Trace Analysis

21.11 Dump Analysis

When a program encounters a runtime error, it generates a short dump. These
short dumps can be accessed via Transaction ST22. When a short dump is gener-
ated, the system provides some useful information to help identify the problem.
For example, we can use the memory information to identify the memory size the
program occupied at the time of the runtime error.

When you open the short dump in Transaction ST22, the system presents a tree
structure in which you can analyze various aspects of the error, as shown in
Figure 21.36.
1017

Test and Analysis Tools21
Figure 21.36 Dump Analysis

As shown, the different views are targeted for different users:

� User View

The User View provides information to the user so that he or she can trouble-
shoot a problem or contact the system administrator. This view provides op-
tions that can explain what went wrong and what steps the user can take to fix
the issue.

� ABAP Developer View

The ABAP Developer View provides various information about the error that
helps identify which part of the source code is causing the error, what the con-
tents of the system fields are at the time of the error, the memory occupied by
the program, a list of programs affected, the source code extract responsible for
the error, and information about where the program terminated.

The contents of the system fields will help you identify details such as how
many records were fetched from the database (sy-dbcnt) or in which loop of
the internal table the error occurred (sy-tabix), based on context. The memory
1018

Summary 21.12
information is useful to troubleshoot memory overflow situations in which the
data being fetched from the database is more than the internal table can accom-
modate.

� BASIS Developer View

The BASIS Developer View provides technical details about the system that
SAP Basis administrators can analyze.

If you’re an ABAP beginner, you may come across many runtime errors while
you’re developing programs. When you encounter a runtime error, go through
the complete error in detail, because it can provide quite a lot of information,
including suggestions to fix the error.

21.12 Summary

In this chapter, we discussed the tools available in our arsenal for troubleshooting
problems with our code. These tools should help you to stop using guesswork
and provide you with pointers to identify the problem areas in your code. We
may not use all the tools every time; most of the time, a debugger is enough to
identify problem areas. Nevertheless, knowing how to use a variety of tools can
help unravel trickier problems.

You started your journey as a beginner, but worked your way up through some
advanced concepts as we progressed in this book. We hope you enjoyed reading
this book as much as we enjoyed creating it for you! The topics in this book
should give you a good foundation to explore ABAP even further as you progress
through your career as an ABAP consultant.
1019

Appendix A

The Author

Kiran Bandari is a solution architect for one of the world’s
leading MNCs, and has been working with ABAP for more
than 10 years. He has worked as a lead ABAP consultant on
multiple SAP implementations, roll outs, and upgrade proj-
ects with a specific focus on custom development using
ABAP Objects, Web Dynpro ABAP, and SAPUI5. He is also
an industry trainer and has conducted ABAP training work-
shops for major clients like IBM, Accenture, CapGemini, and
more.
1021

1023

Index

$TMP, 147

A

ABAP, 43
additions, 110
conversions, 45
environment, 77
extensions, 46
forms, 47
interfaces, 44
Reports, 43
RICEF, 43
statements, 110, 141
System requirements, 48

ABAP CDS views, 396, 426, 434
access, 437
create, 434
data definition, 435
define, 434
replacement objects, 438
template, 436

ABAP channels, 913, 915
cosumer programs, 917
producer program, 916

ABAP consultants, 38
ABAP Data Dictionary, 77, 86, 96, 395,

469, 535
ABAP CDS views, 427
BAPI, 827
create data element, 130
create domain, 135
data types, 438
database tables, 396
DDL, 473
domains, 451
elementary search help, 457
global table types, 282
GTT, 401
I_STRUCTURE_NAME, 629
interface, 779
lock objects, 465

ABAP Data Dictionary (Cont.)
Modification Browser, 932
modifications, 929
non-generic data type, 216
objects, 97
screen, 96, 395
search helps, 455
selection texts, 231
smart forms, 754
table controls, 538
type groups, 450
type pools, 574
views, 426

ABAP Debugger, 699
learning tool, 721

ABAP Developer View, 1018
ABAP Development Tools (ADT), 77, 101, 434
ABAP Dispatcher, 55, 56
ABAP Editor, 77, 88, 145, 177, 571, 893

back-end editor, 89
creating variants, 609
front-end editor (new), 88
front-end editor (old), 88
modify programs, 925
program attributes, 143
settings, 89
your first program, 143

ABAP in Eclipse
ABAP CDS views, 434

ABAP keyword documentation, 113
ABAP Managed Database Procedures (AMDP),

700, 718
ABAP messaging channels, 913

create, 914
ABAP Object Services, 492, 508
ABAP Objects, 244, 260, 274, 305, 967
ABAP Objects Control Framework, 561
ABAP processor, 511
ABAP programming environment, 78
ABAP programs, 107, 515

declaration, 247
global declarations area, 108
procedural area, 108, 109

1024

Index

ABAP programs (Cont.)
statements, 253
structure, 108, 245

ABAP push channels, 913, 1000
ABAP runtime environment

event blocks, 255
processing blocks, 243, 248
selection screens, 601

ABAP statements
attributes, 144
call, 142
control, 142
declarative, 142
modularization, 142
OpenSQL, 143
operational, 142
processing blocks, 243

ABAP System Central Services (ASCS), 55
ABAP Trace, 975, 1006, 1009

analysis, 1017
analyze results, 1011
call, 1016
results screen, 1012
run, 1009

ABAP Unit, 974, 976
code example, 986
eliminate dependencies, 977
fixture, 981
implement mock objects, 979
predefined methods, 981
SETUP, 981
TEARDOWN, 981
unit tests, 980

ABAP Workbench, 47, 76, 77, 85, 87, 284
ABAP Data Dictionary, 396
Class Builder, 91
Function Builder, 90
Menu Painter, 95
Object Navigator, 98
objects, 147
Screen Painter, 92, 509

abap_false, 334
ABSTRACT, 342
Abstract classes, 341
Abstract methods, 341
Access control, 473

ActiveX, 630
Actual parameters, 275
Add<subobject>(), 824
Additions, 110, 113
Address

elements, 759
node, 789

Adobe Document Server (ADS), 777
Adobe LiveCycle Designer, 777

Layout tab, 793
Advance Business Application Programming

(ABAP), 43
Agent class, 495, 498
Aggregation functions, 477, 478
ALE, 841

inbound process, 843
layers, 842
outbound process, 842
RFC destination, 858
system configuration, 856
tRFC, 859

Aliases, 359, 361
Alternative node, 792
ALV, 993

block display, 636
CL_GUI_ALV_GRID, 625
components, 626
Control Framework, 650
display, 670
dynamic subroutine, 644
grid display, 630, 631
hierarchical sequential display, 640
layout, 636
library, 625
list and grid display, 627
object model, 625
object-oriented, 661
parameters, 629
reports, 625
reuse library, 626
simple reports, 628
standard reports, 626

ALV grid control, 561, 651, 652
ALV object model, 261, 653, 666

classes, 653, 654
default status, 658

Index

1025

ALV object model (Cont.)
hierarchical display, 655, 657
set SAP GUI status, 655
table display, 654
tree display, 660
tree object model, 659

AMDP Debugger, 699, 700, 718
breakpoints, 719
capabilities, 719
prerequisites, 718

American Standard Code for Information
Interchange (ASCII), 118, 119

Analysis, 973
Anomalies, 193
Anonymous data objects, 682, 683

access components, 684
Any

fields, 171
tables, 170

API, 332, 803
APPEND, 175
Append structure, 160, 424

add, 424
Application flow, 566
Application layer, 49, 51, 54, 75, 246
Application Link Enabling (ALE), 835
Application server, 54, 471

components, 55
files, 499

Application toolbar, 515
Architecture, 49
Arithmetical operations, 484
Array fetch, 199
ASSIGNING, 676
Assignment operators, 110
asXML, 912
Asynchronous data update, 812
AT LINE-SELECTION, 259, 586
AT SELECTION-SCREEN, 255, 604

ON <field>, 604
ON BLOCK, 605
ON END OF <sel>, 605
ON EXIT-COMMAND, 606
ON HELP-REQUEST FOR <field>, 606
ON RADIO BUTTON GROUP, 605
OUTPUT, 604

AT USER-COMMAND, 586

Attributes, 306, 308, 312
Authorization group, 415
Authorization objects, 506, 507, 508
Automatic type conversion, 124
Automation Controller, 561
Average, 478
AVG, 478

B

Background mode, 812
Background processing, 601

executing programs, 619
BAdI Builder, 948
BAdIs, 933, 946

call, 959
create, 950
create definition, 949
create interface, 954
define, 948
definition part, 946
enhancement spots, 948
fallback class, 958
filter values, 952
IF_FILTER_CHECK_AND_F4 interface, 953
implementation, 955
implementation part, 946

BAPI, 261, 819, 820
address parameters, 824
BAPI Explorer, 820
business component, 819
business object type, 820, 830
change parameters, 825
class method, 822
conventions, 827
development phases, 821
documentation, 834
extension parameters, 825
implementation, 826
instance method, 823
releasing, 835
return parameters, 825
standardized parameters, 824
test run parameters, 825
tools, 826
use cases, 819

1026

Index

BAPI Explorer, 820
tabs, 820

Basic lists, 569, 591, 596, 598
BASIS Developer View, 1019
Batch data communications (BDC), 804

batch input, 807
direct input, 806

Batch input, 804, 807
BDCDATA, 810
CALL TRANSACTION, 812
create a material, 808
create program, 809
create program with Transaction

Recorder, 813
SESSION, 813
update modes, 814

BDCDATA structure, 811
Billing document reports, 595
Binary search, 173
Block display, 627

example, 639
function modules, 636

Blocks, 605
Boxed

structure, 444
types, 444, 445

Breakpoints, 206, 702
AMDP Debugger, 719
in a call, 711
setup, 702, 720
view, 706

BTEs, 933
events, 969
implement, 967
interfaces, 967
test custom function modules, 971

Buffer, 63
Buffer trace, 1000, 1008
Buffering, 407, 998

permissions, 408
Bundling techniques, 488
Business Add-In (BAdI), 41
Business Address Services (BAS), 759
Business Application Programming

Interface, 804
Business component, 819

Business Object Repository (BOR)
BAPI, 827

Business object type, 820
BOR, 830

C

Calendar control, 561
CALL FUNCTION, 243, 292, 691
CALL METHOD, 244, 299
CALL SCREEN, 517, 557
Call sequence, 580
Call stack, 708
Call statements, 142
CALL SUBSCREEN, 547
CALL TRANSACTION, 262, 692, 812, 817
Calling program, 629
Cancel(), 824
Candidate keys, 190
Cardinality, 422
CASE statement, 484, 947
Casting, 350, 678, 679

implicit or explicit, 679
narrowing cast, 350
widening cast, 350, 351, 352

CATCH, 376, 380
Catchable exceptions, 378
CDS views, 477, 896
Center of Excellence (CoE), 38
CHAIN, 549
Chained statements, 111, 112
Change(), 824
CHANGING, 278, 280, 290

output parameters, 279
Character

data types, 118
fields, 118
literals, 139

CHECK, 249, 251
Check table, 418, 419, 421
check_count, 334
check_status, 334
Checkboxes, 527, 531
cl_notification_api, 332
Class, 294, 308, 321

attributes, 309

Index

1027

Class (Cont.)
constructor, 316
definition, 309, 311, 331
events, 309
global, 344
implementation, 309, 311
methods, 309
pools, 295
private, 309
properties, 295
protected, 309
public, 309

Class Builder, 77, 91, 92, 294, 328, 336, 340,
343, 344, 346, 360, 955
class pools, 573
components, 927
exception classes, 384
interface pools, 573
Methods tab, 296
modifications, 927
persistent classes, 494
test classes, 980
visibility, 296

CLASS C1 DEFINITION DEFERRED, 331
CLASS C2 DEFINITION DEFERRED, 331
Class pools, 573
Class-based exceptions, 375
Classic BAdIs, 947
Classic Debugger, 205, 699, 700, 703

activate, 701
additional features, 710
breakpoints, 702, 706
calls view, 708
execute code, 704
field view, 705
jumping statements, 710
object view, 711
overview view, 708
program status, 712
settings, 701, 708
shortcuts, 713
table view, 705
views, 704
watchpoints view, 707

Classic views, 427
Classical lists, 569
Classical reports, 592

Client proxy, 888
Clients, 64

data, 64, 65
specific data, 64

CLOSE DATASET, 501
CLOSE_FORM, 741
CLUSTD, 505
CLUSTR, 505
CMOD enhancements, 936
Code Inspector, 974, 987

results, 989
use cases, 987

Code pushdown, 197, 427
COLLECT, 178
Collective search helps, 457, 461

create, 461
Collision check, 467
Command node, 768
Comment, 112, 113
COMMIT WORK, 487, 834
Comparison operators, 480
Complex data types, 127
Component, 151

=>, 312
instance, 312
static, 312

Componentstype, 159
Composer, 725
Composition, 345

relationship, 345
Constant window, 727
Constants, 141
Constructor, 389
Consumer program, 919
Container controls, 561
Context menu, 523
Control break statements, 182, 183

AT END OF, 182
AT FIRST, 182
AT LAST, 182
AT NEW comp, 182
rules, 186

Control Framework, 510, 560, 626, 630
ALV, 650
grid display, 630
server and client side, 561

Control record, 840

1028

Index

Control statements, 142
Conversion

routine, 135, 137
rules, 122, 124

Conversion exits, 452
function modules, 453

Conversion logic, 805
Conversion programs, 45
Conversion routines, 452
Core Data Services (CDS), 198
Count, 478
CREATE OBJECT, 294, 310, 321
Cross-client, 64

data, 65
CRUD, 903
CRUDQ, 895
Currency fields, 405
Custom code

execute, 416
Custom containers, 528, 561, 563
Custom controls

create, 562
Customer development, 40, 42, 922
Customer enhancements, 40, 41
Customer exits, 933, 936, 938

create, 939
function module exists, 942
function modules, 936
menu exits, 944
screen exits, 942
types, 937

Customization, 40, 42
Customizing and development client

(CUST), 66
Customizing Includes (CI Includes), 160
CX_DYNAMIC_CHECK, 380, 382
CX_NO_CHECK, 382
CX_ROOT, 380
CX_STATIC_CHECK, 381
CX_SY_, 378

D

DATA, 140
Data browser, 401
Data classes, 406

Data clusters, 472, 503
administration section, 503
data section, 503
export, 505
exporting to databases, 505
import, 506
media, 503
persistent data, 471

Data Control Language (DCL), 473
Data Definition Language (DDL), 96, 188, 473
Data definitions, 395
Data elements, 130, 131, 403, 439

activate, 133
change, 132
domains, 134
global user-defined elementary types, 130
modify, 930
relationship with domains and fields, 135
search helps, 464

Data format, 127
external, 128
internal, 128

Data inconsistency, 124
Data Manipulation Language (DML), 96,

188, 473
Data model definition, 896
Data modeling, 294
Data node, 792
Data objects, 108, 137

anonymous, 682
constants, 141
DATA, 140
declaration, 117
field symbols, 674
inline declarations, 140
literals, 138
named, 682
PARAMETERS, 140
predefined types, 126
references, 681
text symbols, 141
user-defined types, 126
variables, 140

Data records, 840
Data references, 664, 679

debug mode, 680
dereference, 682

Index

1029

Data references (Cont.)
get, 681
initial, 680
variables, 680

Data security, 506
Data structures, 64
Data transfer, 805

frequency, 805
Data types, 97, 115, 118, 131, 404, 438, 439

data elements, 439
data format, 127
documentation, 440
further characteristics, 440
output length, 129
structures, 443
tab, 132, 439
table types, 446
value list, 133

DATA(..), 301
Database

relationship, 192
Database access statements, 143
Database interface, 511
Database kernel, 410
Database layer, 49, 51, 61, 75
Database locks, 487
Database LUW, 400, 485, 508

database locks, 487
dialog steps, 486

Database structure, 188
Database tables, 156, 198, 396, 472

append structures, 424
components, 398
create, 399
Currency/Quantity fields tab, 405
Display/Maintenance tab, 401
enhancement category, 405
Fields tab, 402
fields tab, 402
hints, 411
include structures, 422, 423
indexes, 409
persistent data, 471
SELECT SINGLE, 198
SELECT...ENDSELECT, 199
technical setting, 399
unique and non-unique indexes, 412

Database views, 426
create, 427

Databases
fetching data, 474
persistent data, 472

Debug session, 718
Debugging, 152, 205, 699, 719

breakpoint, 206
Classic Debugger, 205
exit, 207
New Debugger, 205
troubleshooting, 719

decfloat16, 121
decfloat34, 121
Declarative statements, 142
Deep structures, 153
Default key, 171
DELETE, 188
Delete anomaly, 194
DELETE DATASET, 501
Delete(), 824
Delivery classes, 401
Dependencies, 978
DEQUEUE, 465
DESCRIBE LIST, 597
Desktop, 714
Destination, 492
Detail lists, 569, 588, 596
Dialog box container, 562
Dialog modules, 243, 246, 255, 256, 260,

512, 516
selection screens, 269

Dialog programming
components, 515
practice application, 564

Dialog steps, 246, 486
database LUW, 486

Dialog transactions, 514
Diamond problem, 357
Direct input, 804, 806

manage, 807
programs, 806

Dispatch control, 843
Distributed environment, 841
Distribution model, 842
Docking container, 562

1030

Index

Domains, 98, 134, 191, 451
attach to data element, 137
bottom-up approach, 135
create, 135
format, 452
output length, 137
relationship with data elements and

fields, 135
top-down approach, 135

Downcasting, 684, 685
Drilldown reports, 569, 588
Dropdown list boxes, 527
Dual-stack system, 55
Dump analysis, 975, 1017, 1018

views, 1018
Dynamic binding

CALL method, 354
Dynamic date, 616

calculation, 616
selection, 617

Dynamic elements, 237
Dynamic enhancement points, 961
Dynamic messages, 237
Dynamic procedure calls, 693
Dynamic program, 211
Dynamic program generation, 695

persistent program, 696
transient program, 695

Dynamic programming, 171, 663, 664
Dynamic RFC destinations, 858
Dynamic subroutine pool, 696
Dynamic texts, 762
Dynamic time, 617

calculation, 617
selection, 618

Dynamic token, 664, 691, 693
Dynamic token specification, 691
Dynamic type, 349
Dynpro, 211, 518, 520

E

Eclipse, 77, 99
installation, 100
installation wizard, 102
Project Explorer, 104

Eclipse IDE, 434
EDI, 836

benefits, 837
inbound process, 840
outbound and inbbound processing, 839
process, 837
system configuration, 856
using IDocs, 838

Electronic Data Interchange (EDI), 835
Element bar, 530
Element list, 523
Element palette, 529, 530
Elementary data types, 115, 216, 439, 443
Elementary search helps, 457, 458

create, 457
options, 458

Elements, 743
addresses, 759
call, 743
graphics, 758
maintain, 756
program lines, 767
tables, 764
text, 761, 762

Encapsulation, 305, 306, 318, 319, 325, 326
End users, 37
END-OF-PAGE, 585, 586, 598
END-OF-SELECTION, 267, 269
Enhancement category, 405
Enhancement Framework, 947, 960
Enhancement packages, 31, 32
Enhancement points, 960

explicit, 961
Enhancement spots, 948

create, 948
ENHANCEMENT-POINT, 961
Enhancements, 39, 921, 922, 933, 972

assignments, 940
hooks, 934

Enjoy transactions, 83
ENQUEUE, 465
Enqueue server, 55, 59
Enqueue trace, 975, 1000, 1007
Enterprise resource planning (ERP), 29
ERP systems, 32

advantages, 35
departments, 33

Index

1031

ERP systems (Cont.)
layout, 35
vs. non-ERP systems, 33

Error message, 232
Errors, 123
Event blocks, 243, 246, 255, 256, 258
Events, 261, 312, 322, 416

event handlers, 322
instance events, 322
list events, 270
program constructor, 262
reporting events, 262
screen events, 271
selections screens, 269
sender, 323
sequence, 575
static events, 322

Exception classes, 382
define globally, 383
define locally, 386
function modules, 385
messages, 387

Exception handling, 284, 369
local classes, 374
methods, 373

Exceptions, 374
ASSIGN, 379
catching, 372, 378
local classes, 375
maintain, 371
managing via function modules, 370
MESSAGE addition, 393
overview, 369
passing messages, 389
raise, 372, 374, 376, 385

Exclude
ranges, 226
single values, 226

Exclusive locks (write lock), 466
Executable programs, 145, 211, 260, 262, 571

background processing, 619
flows, 575

EXIT, 249
Exit message, 233
Explicit enhancement points, 961
Explicit enhancements, 961

Extended Binary Coded Decimal Interchange
Code (EBCDI), 118

Extends, 407
Extensible Stylesheet Language (XSL), 908
Extensible Stylesheet Language Transforma-

tions (XSLT), 908
Extensions, 46
External breakpoint, 702
External data, 107
External developers, 803
External program, 326

F

Fallback class, 951, 958
implement, 958

FIELD, 548
Field attributes, 463
Field catalog, 626, 631

components, 632
usage, 634

Field conversion, 843
Field exits, 938
Field help, 555, 556
Field labels, 134, 442
Field symbols, 664, 665, 671

assign data object, 674
assign internal table record, 677
assignment check, 677
define, 673
dynamic field assignment, 675
field positions, 676
filter functionality, 672
generic types, 673
making programs dynamic, 666
modifying an internal table record, 665
static assignment, 674
structure components, 673
structure fields, 676
unassign, 678

Fields
relationship with domains and data

elements, 135
File interfaces, 498
Filtering logic, 333
FINAL, 344

1032

Index

First normal form (1NF), 194
Fixed point arithmetic, 146
Fixture, 981
Flat structures, 153
Flow logic, 515, 541

tab, 523
FOR TESTING, 980
Foreground mode, 812
Foreground on error mode, 812
Foreign keys, 189, 191, 200, 398, 418, 472

create relationships, 420
field types, 421
relationships, 418
table, 418

FORM, 276
Form Builder, 751

draft page, 752
form styles, 769
SAP Interactive Forms by Adobe, 778, 785
smart forms, 750
text modules, 762

Form Painter, 727, 729
create window, 733
graphical, 731
page layout, 732
paragraph and character formatting, 734
SAPscripts, 725

Formal parameters, 275, 279
typed and untyped, 275

Forms, 47, 723, 729
address node, 789
addresses, 759
alternative node, 792
attributes, 753
commands, 768
create, 785
data node, 792
driver program, 774
elements, 743
global definitions, 755
graphic node, 788
graphics, 758
interface, 754
invoices, 723
loops, 768, 791
maintain elements, 756
print, 742

Forms (Cont.)
program lines, 767
SAPscripts, 725, 746
single-record node, 793
structure node, 790
styles, 769
tab positions, 746
tables, 764
templates, 760
text, 761
text node, 792
windows, 756

Free key, 179
Friends, 329, 331
FROM clause, 479
Function Builder, 77, 88, 90, 91, 145, 243,

284, 573, 627, 969
Attributes tab, 288
BAPI, 826, 829
Changing tab, 290
create web service, 884
Exceptions tab, 290
Export tab, 289
function module, 285, 829
function modules, 284
Import tab, 289
Source Code tab, 291
Tables tab, 290
update function modules, 489

Function groups, 211, 260, 284, 572, 603
create, 285

Function module exits, 937, 942
Function modules, 243, 256, 274, 284, 579

calling, 292
CLOSE_FORM, 742
CONVERSION_EXIT_MATN1_OUTPUT, 767
create, 285, 287
enhance interface, 964
F4IF_SHLP_EXIT_EXAMPLE, 464
FP_JOB_CLOSE, 799
function groups, 284
modify, 930
normal, 289
OPEN_FORM, 743
Pattern button, 292
remote-enabled, 289
REUSE_ALV_FIELDCATALOG_MERGE, 635

Index

1033

Function modules (Cont.)
REUSE_ALV_HIERSEQ_LIST_DISPLAY, 643
test in BTEs, 971
update modules, 289

Function pool, 243
Functional consultants, 37
Functional decomposition, 325

G

Garbage collector, 349
Gateway, 55, 58
General dynpros, 211, 212
General screen, 271, 510, 511
Generic types, 276
GET

<table> LATE, 266
BADI, 959
CURSOR, 586, 596
DATASET, 501
SBOOK, 267
table, 265

GET_SOURCE_position, 381
GetDetail(), 824
GetList(), 823
Getter method, 310, 318, 329

get_, 318
Global class, 294, 310
Global declarations, 108, 247
Global table type, 282
Graphic

elements, 758
node, 788

Graphical layout editor, 525, 542
Grid display, 626
GROUP BY clause, 476
GTTs, 409
GUI status, 513, 515, 550, 587

activate and load, 552
create, 550
maintain, 551

GUI title, 552
GUI_DOWNLOAD, 502
GUI_UPLOAD, 502

H

Hash algorithm, 169
Hash keys, 172, 174
Hashed tables, 169, 170

secondary keys, 173
HAVING clause, 476
Help documentation, 134
Help views, 426, 433
Hexadecimal data types, 118
HIDE, 592
Hide areas, 592
Hierarchical display, 627
Hierarchical sequential display, 640

field catalog, 640
Hierarchical sequential list

example, 643
Hierarchical sequential report, 643
Hierarchical structure, 989
High-priority updates, 489
Hints, 411
Hold data, 522
Hooks, 934
Host variables, 484
HTTP trace, 1000

I

I/O fields, 520, 527, 534
create/add, 535

IDocs, 844
assign basic types, 855
attributes, 863
create basic type, 851
create logical type, 854
create segment, 849
development and tools, 848
EDI, 838
inbound programs, 864, 865
master IDoc, 842
outbound program, 866, 867
records, 840
status codes, 865
structure, 846
system configuration, 856

1034

Index

IF_MESSAGE, 379
GET_LONGTEXT, 379
GET_TEXT, 379

Implementation, 52
Implementation hiding, 318, 332, 336
Implicit enhancement points, 963, 964
Implicit enhancements, 963
IMPORT/EXPORT, 580
Inbound interface, 44, 499
Inbound process code, 862
Inbound program, 864
Include programs, 145, 244, 245, 574
Include structures, 422
Include texts, 762
Index access, 166
Index tables, 170
Indexes, 399, 412

unique and nonunique, 412
INDX structures, 504
Information hiding, 305
Information message, 232
Inheritance, 305, 314, 315, 335, 337, 959

cl_child, 337
cl_parent, 337
inheriting from, 315

Inheritance relationship, 346
Inheritance tree, 344
INITIALIZATION, 255, 263, 265, 576
Injection, 979
Inline declarations, 140, 300, 483

assign value to data object, 301
avoid helper variables, 302
declare actual parameters, 302
table work areas, 301

Inner joins, 201, 202
Input fields, 607
Input help, 555, 556
INSERT statement, 175, 176, 177, 188

inserting a single row, 480
inserting multiple rows, 481
SY-DBCNT, 480
SY-SUBRC, 480

Insertion anomaly, 194
Instance component, 320, 321
Instance constructor, 315, 321
Instantiation operation, 683
int8, 115, 116

Integrated development environment
(IDE), 77

Interactive reports, 592, 644
custom SAP GUI status, 645
TOP-OF-PAGE, 650
user actions, 649

Interface, 357
INTERFACE, 357
PUBLIC SECTION, 358

Interface pools, 573
Interface programs, 44, 45
Interface work area, 265
Interfaces, 803
Intermediate Documents (IDocs), 835
Internal tables, 151, 164, 167, 282

APPEND, 175
COLLECT, 178
define, 164
hashed tables, 169
INSERT, 175
modifying records, 181
processing data, 203
reading data, 179
small, 175
sorted tables, 168
usage, 175
work areas, 165

Internet Communication Framework
(ICF), 882

Internet Communication Manager (ICM), 53,
55, 56, 882

Internet Demonstration and Evaluation
System (IDES), 48

Internet Transaction Server (ITS), 53
INTO clause, 479, 484
Invoices, 723
iXML, 362
iXML library, 364, 366

J

JavaBeans, 630
JavaScript Object Notation (JSON), 911
Joins, 201, 426, 427

conditions, 428

Index

1035

JSON
transformation, 912

K

Key access, 166
Keywords, 111, 113

access, 113

L

Languages, 61
Lazy update, 174
LEAVE SCREEN, 557
LEAVE TO LIST-PROCESSING, 591
LEAVE TO SCREEN, 557
Legacy System Migration Workbench

(LSMW), 46, 804
LfgrpF01, 286
LIKE, 282

vs. TYPE, 217
Line type, 164
List display, 626
List dynpro, 212
List events, 270, 582

types, 582
List screens, 148, 270, 510, 569

list events, 582
practice, 598
program types, 570

List system, 591
Literals, 138
Local class, 310
Local declarations, 108, 247
Local exception classes, 386
Local objects, 69
Local structures, 152
Lock objects, 97, 465, 506

code example, 469
create, 465
function modules, 467
maintain, 466

Logical database, 265
Logical expressions, 480
Logical message type, 848, 854

Logical unit of work (LUW), 284, 472, 488
LOOP, 165, 179, 180, 550
LOOP AT SCREEN, 622
Loop node, 768
Low-priority updates, 489
LSWM, 867

field mapping, 875
getting started, 868
object attributes, 870
process steps, 869
recordings, 871
reusable rules, 876
source structure, 873

LZCB_FGTOP, 286
LZCB_FGUXX, 286

M

Macros, 244
Main program group, 579
Main window, 728, 752
Maintenance views, 414, 416, 426, 431

create, 431
maintenance status, 432
options, 433
view key, 432

Many-to-many relationship, 193
MAX, 478
Maximum, 478
Memory, 578, 581

allocation, 446
analysis, 995, 996
storage, 581
units, 138

Memory Inspector, 974, 995
compare memory snapshots, 996
memory snapshot, 995

Memory snapshots, 995
compare, 996
steps, 995

Menu bar, 515
Menu exits, 938, 944
Menu Painter, 77, 80, 95, 509

custom GUI status, 645
GUI status, 515
load custom SAP GUI status, 645

1036

Index

Menu Painter (Cont.)
modifications, 929
screen elements, 513

Message, 334
Message class, 235

IF_T100_DYN_MSG, 392
IF_T100_MESSAGE, 391
maintaining messages, 236
MSGTY, 392
TYPE, 393
using messages, 390
WITH, 393

Message server, 54, 55, 59
Messages, 231

assigning attributes, 392
dynamic, 237
maintenance, 235
message class, 235
placeholders, 238
statement, 231
tab, 235
text symbols, 233
translations, 238
types, 231, 232

Metadata, 395
Methods, 244, 256, 274, 293, 306, 308,

312, 313
abstract, 342
CALL METHOD, 313
calling, 299
cl_notification_api, 332
class, 294
create, 293
create global classes, 294
functional method, 313
maintain code, 298
me, 313
set_message, 332
static, 299

MIN, 478
Minimum, 478
Mock objects, 979, 980
Modification Assistant, 923, 924

ABAP Data Dictionary, 929
Class Builder, 927
function module, 930
insert, 926

Modification Assistant (Cont.)
modifications, 929
programs, 925
replace, 926
reset original, 931
Screen Painter, 928

Modification Browser, 923, 932
reset to original, 931

Modifications, 40, 921, 922, 923
programs, 925
registration, 924

MODIFY, 181
Modularization, 241

benefits, 242
include programs and macros, 244
local declarations, 108
processing blocks, 242

Modularization statements, 142
MODULE, 523, 548
Module pools, 145, 211, 243, 260, 270,

572, 603
flow, 576

Modules, 36
Multiline comment, 113
Multiple selection window, 223

tabs, 227

N

Named data objects, 682
Narrow cast

child->meth3, 351
parent->meth1, 351
parent->meth2, 351
parent->meth3, 351

Native SQL, 96, 187, 473, 1004
GTT, 401

Nested structure type, 158
Nested structures, 153
New Debugger, 205, 699, 714, 995

layout, 717
Memory Inspector, 995
sessions, 717
tools, 715
UI, 714

New projects, 39

Index

1037

NODES, 266
Non-catchable exceptions, 378
Nonnumeric data types, 121
Non-transportable package, 69
Non-unique index, 412
Normal function modules, 289
Normalization, 193
Numeric data types, 118, 120
Numeric literals, 139

O

Object Navigator, 69, 77, 88, 98, 514,
893, 948
ABAP messaging channel, 914
create screen, 520
create transaction, 558
form interface, 778
module pools, 572
navigation and tool areas, 98
web service consumer, 888

Object palette, 794, 795
Object reference variables, 310
Object view, 711
Object-oriented programming, 244
Objects, 305, 308

usage, 309
OData, 804, 895

data model definition, 897
READ, 905
service creation, 896
service implementation, 903
service maintenance, 901

ON COMMIT, 491
One-to-many relationship, 193
One-to-one relationship, 192
Online text repository (OTR), 387
OOP, 305

basics, 305
introduction, 305

Open Data Protocol (OData), 895
OPEN DATASET, 499
Open Specification Promise (OSP), 895
Open SQL, 96, 152, 187, 508, 1004

data in a database, 474
database, 189

Open SQL (Cont.)
database relationships, 192
DDL, 188
DELETE statement, 482
DML, 188, 474
GTT, 401
INSERT statement, 480
logical database, 265
MODIFY statement, 482, 490
persistent data, 471, 474
SELECT statement, 475
selecting data from database tables, 198
selecting data from multiple tables, 200
statements, 475
UPDATE statement, 481

OPEN_FORM, 741
Operands, 110
Operational statements, 142
Optimistic lock, 467
Oracle, 411
ORDER BY clause, 476
oref, 314
Outbound interface, 44, 499
Outbound process code, 861
Outbound program, 866
Outer joins, 201
Output length, 129
Output table, 626

P

Package Builder, 72, 73
Packages, 68

assign, 147
create, 72
encapsulation, 74
naming conventions, 71
nontransportable, 69
transportable, 68

Parallelism, 197
Parameter table, 694, 695
PARAMETERS, 140, 148, 214, 239

effects, 215
SCREEN_OPTIONS, 218
TYPE_OPTIONS, 215
VALUE_OPTIONS, 221

1038

Index

Partner profile, 859
PC editor, 762
PDF, 648
PERFORM, 243, 255, 256, 264, 935
Performance trace, 975, 1000

activate and filter, 1001
with filter, 1002

Persistence mapping, 494
Persistence service, 492, 493
Persistent attributes, 493
Persistent classes, 492, 493

Class Builder, 495
create, 493
mapping tool, 496

Persistent data, 107, 471
security, 506
storage, 471

Persistent objects, 492, 498
working with, 498

Persistent program, 696
Picture control, 561, 562
Placeholders, 238
Polymorphism, 305, 315, 347, 362

dynamic types, 348
static types, 348

Pooled tables, 400
Port definition, 859
Predefined elementary ABAP types, 119
Predefined elementary data types, 115

use cases, 120
Predefined nonnumeric elementary data

types, 116
categories, 118

Predefined numeric elementary data
types, 116

Predefined types, 446
Presentation layer, 49, 50, 75, 246, 519

files, 501
GUI_DOWNLOAD, 502
GUI_UPLOAD, 502
SAP GUI, 52

Presentation server, 471
Primary index, 409
Primary key, 191, 447, 472
Procedural area, 109
Procedural exceptions, 370
Procedural programming, 108

Procedures, 243, 246, 255, 261, 272, 303
Process after input (PAI), 271, 512, 516, 534,

541, 548
Process analysis, 974, 992
Process before output (PBO), 271, 512, 517,

554, 563
selection screen, 604

Process interfaces, 967
Process on help request (POH), 272, 512, 555
Process on value request (POV), 272, 512,

555, 577
Processing blocks, 109, 142, 241, 242, 246,

254, 303, 571, 572
calling, 248
CHECK, 251
dynpro, 211
ending, 249
EXIT, 249
procedures, 243
RETURN, 252
sequence, 248, 249, 258
types, 243, 255
usage, 253
virtual (global data declarations), 253

Production client (PROD), 67
Production support, 39
Program

RMVKON00, 611
zdemo_prg, 623

Program attributes, 143, 570
maintain, 146
types, 145

Program constructor, 262
Program execution, 574
Program groups, 578
Program line elements, 767
Program types, 569, 570
Programming concepts, 107
Projection views, 426, 429

create, 429
Promote optimistic lock, 467
Pseudocomment, 989
Publish and subscribe interfaces, 967
Pure Java system, 54
Push buttons, 527, 533

Index

1039

Q

Quality assurance, 973
Quality assurance client (QTST), 67
Quantity fields, 405

R

R_ER, 380
Radio buttons, 219, 527, 531

groups, 219
RAISE, 290, 371

EVENT, 324
EXCEPTION, 376

Range field, 223
Range tables, 221

HIGH, 222
LOW, 222
OPTION, 222
SIGN, 222
values, 226

Ranges, 224
operator, 225

READ, 165, 173, 179
CURRENT LINE, 596
DATASET, 500
LINE, 596

Receiver, 842
Receiver determination, 842
Recording routine, 416
REDEFINITION, 338
Refactoring assistant, 346
Reference data types, 127, 439, 446
Reference objects, 310
Reference variables, 680

assignment, 684
upcast and downcast, 684

Referenced data types, 443
Relational database, 472
Relational database management system

(RDBMS), 51, 61, 187, 189
example, 61
foreign keys, 51, 191
primary key, 190
relational database design, 189
table, 190

Remote-enabled function modules, 289
Remove<subobject>(), 824
Replacement objects, 438
Report output

types, 626
Report transactions, 571
Reporting events, 262

END-OF-SELECTION, 267
GET <table> LATE, 266
GET table, 265
INITIALIZATION, 263
START-OF-SELECTION, 264

Reporting programs, 559
Reports, 576

background execution, 620
forms, 723
programs, 44
run in background, 619
scheduling, 619

Repository, 68
object, 40, 74
packages, 68

Repository Browser, 91
Representational State Transfer (REST), 895
REQUEST_LOC, 467
Request-response cycle, 519
Requests, 70
RESTful APIs, 895
RETCODE, 376
RETURN, 249, 252
Returning parameters, 297
REUSE_ALV_BLOCK_LIST_APPEND, 637
REUSE_ALV_BLOCK_LIST_INIT, 636
REUSE_ALV*, 626
RFC, 58, 261, 284

destination, 857
trace, 975, 1000, 1006

RFC/BOR interface, 898
ROLLBACK WORK, 486, 488
Row type, 167
Runtime analysis, 474, 975, 1009
Runtime Type Creation (RTTC), 685, 687

dynamic, 689
Runtime Type Information (RTTI), 685, 686

query, 687
Runtime Type Services (RTTS), 664, 685

1040

Index

S

Sales and Distribution (SD), 935
SAP

data structure, 40
Functional Modules, 36
history, 31
introduction, 36
modules, 36
systems, 39
technical modules, 37
users, 37

SAP Basis, 75
SAP Easy Access, 84

Favorites, 80
SAP Menu, 79
User Menu, 79

SAP ERP, 29, 946
SAP ERP Controlling (CO), 37
SAP ERP Financial Accounting (FI), 37
SAP Gateway, 895

activate/register an OData service, 902
READ, 905
Service Builder, 896

SAP GUI, 50, 52, 77, 78, 245
architecture, 53
for HTML (Web GUI), 53
for the Java environment, 52
for the Windows environment, 52
set status, 647
status, 645

SAP HANA, 51, 61, 189, 197, 426, 718
ABAP CDS views, 198
aggregate functions, 477
code pushdown, 197
parallelism, 197

SAP Interactive Forms by Adobe, 723, 777
address node, 789
alternative node, 792
context and layout, 785
Context tab, 787
currency/quantity fields, 784
data node, 792
development, 777
download as PDF, 799
driver program, 797, 798
form interface, 778

SAP Interactive Forms by Adobe (Cont.)
global definitions, 783
graphic node, 788
import form data, 800
layout, 794
Layout tab, 793
loop, 791
object palette, 794
single-record node, 793
structure node, 790

SAP List Viewer (ALV), 624, 625
SAP liveCache, 61
SAP LUW, 485, 487, 508

bundle with function modules, 489
bundle with RFC, 492
bundle with subroutines, 491
bundling techniques, 488
dialog steps, 488

SAP NetWeaver, 54, 313
SAP NetWeaver 7.5, 36, 858

debugging, 700
global temporary tables, 400
new SQL, 483

SAP Notes, 922
SAP script editor, 737, 739, 762

printing, 740
SAP Software Change Registration (SSCR), 924
SAP start service, 55, 59
SAP Support Portal, 924
SAP system

architecture, 49
enqueue server, 59
environment, 78
gateway, 58
instances, 55
layers, 63
logon, 78
message server, 59
SAP Web Dispatcher, 59
session, 84
user context, 60

SAP Web Dispatcher, 55, 59
SAPscripts, 723, 725

align and print, 744
billing document, 725
change header, 730
composer, 725

Index

1041

SAPscripts (Cont.)
create form layout, 729
create standard text, 741
create window, 733
disadvantages, 749
driver program, 727, 747, 774
elements, 743
field entries, 737
formatting, 729, 737
graphics administration, 736
insert graphic, 739
layout, 725
layout designer, 730
maintain tab positions, 745
maintain window details, 736
paragraph and character formatting, 734
print logo, 736
printing, 743
process forms with function modules, 741
return_code, 748
subroutines, 727
us_screen, 748
windows, 727

SAPUI5, 1000
Schema, 188
Screen, 79, 515, 520

application toolbar, 81
attributes, 521, 523
command field, 82
create, 520
events, 271, 510, 512
exits, 938, 942
groups, 523
menu bar, 80
number, 521
processor, 511, 512
sequence, 556
standard toolbar, 81
status bar, 82
title bar, 81
Transaction codes, 82
types, 522

Screen elements, 510, 513, 515, 525, 528
basic screen elements, 529

Screen fields, 520
modifying dynamically, 553

Screen flow logic, 511, 513, 517, 518,
548, 928

Screen Painter, 77, 92, 93, 231, 509, 522, 560,
568
alphanumeric layout editor, 525
dynpro, 211
graphical layout editor, 94, 525, 530
modifications, 928
module pools, 572
screen elements, 513
subscreens, 545
tab, 525
tabs, 93

Screen structure, 554
components, 554, 621

SCREEN_OPTIONS, 218
AS CHECKBOX, 219
AS LISTBOX VISIBLE LENGTH vlen, 220
RADIOBUTTON GROUP, 219
VISIBLE LENGTH vlen, 218

SCREEN-OPTIONS
NO-DISPLAY, 218
OBLIGATORY, 218

Search helps, 134, 440, 455
assign, 463
change, 462
exit, 464
parameters, 460

Second normal form (2NF), 195
Secondary index, 410, 413

create, 411
Secondary keys, 172, 190, 447, 449, 472
Secondary list, 590
Secondary window, 752
Security, 506
Segment

add, 852
create, 849
definition, 850

Segment Editor, 848, 851
Segment filtering, 843
Segments, 847
SELECT, 177, 188
Select

ranges, 224
single values, 224

SELECT clause, 476

1042

Index

SELECT statement, 475
FROM clause, 479
INTO clause, 479
SELECT clause, 476
WHERE clause, 480

Selection screen events, 269
Selection screens, 148, 212, 510, 601

calling programs, 623
create variants, 609
define, 601, 602
dynamic date, 616
dynamic time, 617
dynamically display/hide screen elements, 621
events, 601, 604
fields, 213
PARAMETERS, 214
radio buttons, 607
standard, 602
standard and user-defined, 602
tasks, 212
user-specific variables, 618
variant attributes, 613
variants, 608

Selection texts, 230
SELECTION-SCREEN, 212, 229

BEGIN OF BLOCK, 229
SKIP, 229
ULINE, 229

Selectivity analysis, 974, 990
SELECT-OPTIONS, 185, 221, 228, 239

multiple selection window, 223
Semantic attributes, 439, 442
Separation of concerns, 978
Sequential data, 154
Serialization, 843
Service implementation, 896, 903
Service maintenance, 896, 901
SESSION, 813, 817

create manually, 818
Session breakpoint, 702
Sessions, 84, 717

components, 717
SET DATASET, 501
SET HANDLER, 323
SET SCREEN, 557
Setter method, 310, 318, 329

set_, 318

Setter method (Cont.)
set_message, 333

Shared lock (read lock), 466
Simple Object Access Protocol (SOAP), 881
Simple report

field catalog, 632
Simple reports, 627
Single inheritance, 357
Single-record node, 793
Singleton design pattern, 498
Single-transaction analysis, 975, 1014
Size category, 407
SKIP, 270
Smart forms, 723, 749, 778, 779, 787

addresses, 759
advantages over SAPscripts, 749
character formatting, 772
commands, 768
create templates, 760
create text elements, 763
draft page, 752
driver program, 774, 776
form attributes, 752, 753
form interface, 752, 754
Form Painter, 751
global definitions, 753, 755
graphics, 758
interface, 780
layout, 750
line type, 764
loops, 768
maintain elements, 756
maintain global settings, 753
maintenance area, 751
navigation area, 751
paragraph formatting, 771
program lines, 767
row type, 764
styles, 769, 773
tables, 764
text, 761
windows, 752, 756

SOAP, 882, 888
Sorted keys, 172
Sorted tables, 168, 170

secondary keys, 173
Special dynpros, 211, 212

Index

1043

Special screens, 271
Splitter containers, 562
SQL, 187
SQL optimizer, 410
SQL trace, 474, 975, 1000, 1004

display, 1005
use cases, 1004
views, 1005

SQLScript, 719
Standard reports, 626
Standard selection screens, 212
Standard tables, 167, 170

secondary key, 172
Standard toolbars, 515
Standardized BAPIs, 823
START-OF-SELECTION, 253, 255, 264
Statement

UNION, 198
Static attribute, 320
Static boxes, 444
Static components, 321
Static constructor, 321
Static enhancement points, 961
Status message, 232
Status records, 840
Status types, 550
Strict mode, 484
STRING, 120, 122
String literals, 139
Structure node, 790
Structure types, 151, 157
Structured Query Language (SQL), 187
Structures, 151, 152, 443

create global structure, 158
define, 154
global, 153
global structures, 158
local structures, 155
processing data, 203
types, 153
usage, 162
use cases, 163

Subclass, 326
SUBMIT, 218
SUBMIT (dobj), 691
Subproject, 868
Subroutine pools, 573, 579

Subroutines, 243, 256, 273, 274, 417
error handling, 375
input parameters that pass values, 279
local declaration, 153
output parameters that pass values, 280
parameters passed by reference, 278
passing internal tables, 280
passing parameters, 277
SAP LUW, 491
USING and CHANGING, 275

Subscreen, 545, 603
Subscreen area, 528
SUM, 478
Superclass, 383
Switch Framework, 31, 936, 961
SY-DBCNT, 480
Synchronous data update, 812
Syntax, 110

chained statements, 111
comment lines, 112
rules, 110

System fields, 177
SY-SUBRC, 375, 480

T

Table, 97, 266
cells, 766
EDID4, 846
EDIDC, 846
EDIDS, 847
fields, 429
ICON, 82
INDX, 504
IT_SFLIGHT, 182
IT_VBRP, 185
line, 765
MAKT, 63, 398
MARA, 63, 66, 419, 461
MARC, 63, 203
NAST, 749
PTAB, 695
SAPLANE, 419
SBOOK, 267
SFLIGHT, 155, 156, 419, 588
SPFLI, 411, 477, 588
T001W, 204

1044

Index

Table (Cont.)
T100, 235
TVARVC, 614
VBLOG, 491
VBRK, 185, 436, 595, 726
VBRP, 161, 185, 726

Table buffer trace, 975
Table call statistics, 975, 997

screen, 999
Table category, 167
Table controls, 528, 537

attributes, 540
create, 538
create with wizard, 542, 543
create without wizard, 538

Table display, 654
Table elements, 764

areas, 764
table line, 765

Table fields, 398
Table key, 171, 179

default key, 171
hash key, 172
secondary key, 172, 174
sorted key, 172

Table maintenance generator, 414, 415
Table Painter, 750
Table types, 446

global, 282
line types, 446
primary key, 448

Table view maintenance, 401
table_line, 173
Tabstrip controls, 528, 544

create, 544
wizard, 545

Tags, 362
Tasks, 70
Technical consultants, 37
Templates, 760

create, 760
Termination message, 232
Test classes, 980

define, 980, 982
fixtures, 981
implementation, 984
properties, 981

Testing, 973
results, 987

Text
elements, 761
modules, 761
node, 792

Text field literals, 139
Text fields, 527

create, 530
Text literals, 233
Text symbols, 141, 233

change, 233
Third normal form (3NF), 196
Three-tier architecture, 30, 49

application layer, 51
buffer, 63
database layer, 51
presentation layer, 50

TOP-OF-PAGE, 583, 584, 650
Total, 478
Transaction, 82

/*xxxx, 86
/h, 86
/i, 86
/IWFND/GW_CLIENT, 903, 906
/IWFND/MAINT_SERVICE, 901
/N, 85
/n, 86
/nend, 86
/nex, 86
/ns000, 86
/nxxxx, 86
/o, 85, 86
/oxxxx, 86
ABAPDOCU, 382
assign, 558
BAPI, 820
BD51, 863
BMV0, 807
CMOD, 939, 942
code, 518
command field, 86
create, 558
custom namespace, 559
DB05, 974, 990
FIBF, 967
FILE, 501

Index

1045

Transaction (Cont.)
FK02, 971
LSMW, 868
ME21N, 83, 943
ME21n, 577
ME22N, 83
ME23N, 83
MM01, 83, 806, 808, 872
MM02, 83
MM03, 83
MRKO, 575, 611, 612
NACE, 747, 799
navigating and opening, 83
opening, 85
RZ10, 58
S_MEMORY_INSPECT, 995
S_MEMORY_INSPECTOR, 975, 996
SA38, 575, 619
SAMC, 914
SAP Easy Access screen, 85
SAT, 474, 975, 1009
SAUNIT_CLIENT_SETUP, 980
SCC4, 68
SCII, 988
SE01, 70
SE03, 70
SE09, 70
SE10, 70
SE11, 86, 130, 156, 158, 282, 395, 574
SE13, 406
SE18, 948
SE19, 948, 956
SE21, 72
SE24, 92, 294, 310, 360, 383, 980
SE37, 91, 243, 284, 573, 627
SE38, 88, 143, 571, 701
SE41, 80, 513, 645
SE51, 513
SE71, 725, 727, 729
SE78, 736
SE80, 69, 88, 91, 92, 514, 948
SE91, 235
SE93, 69, 82, 514, 518
SE95, 931, 932
SEGW, 896, 897
SHDB, 813, 814
SICF, 882
SLDB, 145

Transaction (Cont.)
SM35, 818
SM37, 991
SM50, 57, 58, 974, 992, 994
SM59, 857
SM66, 974, 992, 994
SMARTFORMS, 750, 753, 769
SMOD, 938, 943
SNOTE, 922
SO10, 741
SOAMANAGER, 885, 890
SPACKAGE, 72
SPAU, 923
SPDD, 923
ST05, 474, 975, 1000, 1001, 1014
ST10, 975, 997, 998
ST12, 1014, 1016
ST22, 1017
STMS, 70
STVARV, 614, 616
SU3, 618
SWO1, 826, 834
VA01, 577
VF01, 83, 518
VF02, 83
VF03, 83, 511
WE20, 859
WE21, 859
WE30, 851
WE31, 848, 849
WE41, 861
WE42, 862, 864
WE81, 849, 854
WE82, 849, 855

Transaction Recorder, 813
create program from recording, 816
update modes, 814

Transactional RFC (tRFC), 859
TRANSFER, 500
Transient data, 107
Transient program, 695
Translations, 238
Transparent tables, 397
Transport Organizer, 70
Transportable package, 68
TRANSPORTING, 181
trigger_event, 324

1046

Index

Troubleshooting, 719
TRUNCATE DATASET, 501
TRY, 376
Two-dimensional arrays, 164
TYPE, 114, 216

c, 125
concept, 107, 114
d, 125
f, 120
i, 120
n, 121
p, 121
vs. LIKE, 217

Type classes, 686
Type conversions, 122, 124

with invalid content, 123
with valid content, 123

Type groups, 450
data types, 451

Type objects, 686
Type pools, 574
TYPE RANGE OF, 221
TYPE REF TO, 312
TYPE_OPTIONS, 214, 215

LIKE (name), 217
LIKE dobj, 216
TYPE data_type [DECIMALS dec], 216

Typed formal parameters, 275, 276
TYPE-POOLS, 451
TYPES, 156

U

ULINE, 270, 583
UNASSIGN, 678
Uncomment, 113
Undelete(), 824
Unique index, 412
Unit tests, 977

write and implement, 980
Universal Description, Discovery, and

Integration (UDDI), 882
Unnamed data objects, 138
Upcasting, 684
UPDATE, 188
Update anomaly, 193

Update function modules, 489
attributes, 490

Update modules, 284, 289
Update work process, 490
User actions, 649
User context, 60
User exits, 933, 935

SD, 935
User interaction, 211
User interface, 49
User-defined elementary data types, 115, 125
User-defined selection screens, 212, 602

define, 603
User-specific values, 618
USING, 277

input parameters, 279

V

VALUE, 279
Value ranges, 451, 454
Value tables, 420
VALUE_OPTIONS, 221
Variable window, 728
Variables, 140
Variants, 608

attributes, 611, 613
create, 609
dynamic date, 616
dynamic time, 617
for selection screen fields, 615
system variant, 611
user-specific variables, 618

Views, 97, 396, 426
ABAP CDS views, 434
database, 427
help, 433
maintenance views, 431
projection, 429
replacement objects, 438
type, 427

Virtual processing blocks, 253
Visibility, 152
Visibility section, 313

private, 327
protected, 327

Index

1047

Visibility section (Cont.)
public, 326

Visibility sections, 326

W

Warning message, 232
Watchpoints, 703, 720

create, 707
view, 707

Web Dynpro ABAP, 56, 78, 780
Web services, 804, 880

consume, 888, 894
create, 884
create ABAP program to consume, 893
maintain port information, 890

Web Services Description Language
(WSDL), 880

WebSockets, 913
WHERE clause, 475, 480
Windows, 756

WITH, 623
Work area, 164, 530
Work process, 53, 56, 511, 519

types, 58
WRITE, 125, 270, 599
WRITE_FORM, 741

X

XI Message interface, 882
XML, 911

array, 911
if_ixml_element, 364

XML Path Language (XPath), 908
XML schema-based interface, 780
XML transformations, 804
XSL transformation

deserialization, 910
serialization, 909

XSTRING, 120, 122

i

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do
recommend it. If you think there is room for improvement, please get in touch with
the editor of the book: editorial@rheinwerk-publishing.com. We welcome every
suggestion for improvement but, of course, also any praise!

You can also share your reading experience via Twitter, Facebook, or email.

Supplements

Supplements (sample code, exercise materials, lists, and so on) are provided in your
online library and on the web catalog page for this book. You can directly navigate
to this page using the following link: http://www.sap-press.com/3921. Should we
learn about typos that alter the meaning or content errors, we will provide a list
with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP
PRESS, please feel free to contact our reader service: support@rheinwerk-publishing.
com.

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand information
on our current publishing program. Here, you can also easily order all of our books
and e-books. Information on Rheinwerk Publishing Inc. and additional contact
options can also be found at http://www.sap-press.com.

mailto:editorial@rheinwerk-publishing.com
http://www.sap-press.com/3921
mailto:support@rheinwerk-publishing.com
mailto:support%40rheinwerk-publishing.com?subject=
%20http://www.sap-press.com
http://www.sap-press.com
http://www.sap-press.com

ii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation
rights are reserved by the author and Rheinwerk Publishing; in particular the right
of reproduction and the right of distribution, be it in printed or electronic form.

© 2017 by Rheinwerk Publishing, Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you
may print the e-book for personal use or copy it as long as you store this copy on
a device that is solely and personally used by yourself. You are not entitled to any
other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third
parties. Furthermore, it is not permitted to distribute the e-book on the Internet,
in intranets, or in any other way or make it available to third parties. Any public
exhibition, other publication, or any reproduction of the e-book beyond personal
use are expressly prohibited. The aforementioned does not only apply to the e-book
in its entirety but also to parts thereof (e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark
may not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy. If you, dear reader, are not this person, you are violating
the copyright. So please refrain from using this e-book and inform us about this
violation. A brief email to info@rheinwerk-publishing.com is sufficient. Thank you!

mailto:info@rheinwerk-publishing.com

iii

Trademarks

The common names, trade names, descriptions of goods, and so on used in this
publication may be trademarks without special identification and subject to legal
regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo,
ABAP, Ariba, ASAP, Duet, hybris, SAP Adaptive Server Enterprise, SAP Advantage
Database Server, SAP Afaria, SAP ArchiveLink, SAP Business ByDesign, SAP Business
Explorer (SAP BEx), SAP BusinessObjects, SAP BusinessObjects Web Intelligence,
SAP Business One, SAP BusinessObjects Explorer, SAP Business Workflow, SAP
Crystal Reports, SAP d-code, SAP EarlyWatch, SAP Fiori, SAP Ganges, SAP Global
Trade Services (SAP GTS), SAP GoingLive, SAP HANA, SAP Jam, SAP Lumira, SAP
MaxAttention, SAP MaxDB, SAP NetWeaver, SAP PartnerEdge, SAPPHIRE NOW,
SAP PowerBuilder, SAP PowerDesigner, SAP R/2, SAP R/3, SAP Replication Server,
SAP SI, SAP SQL Anywhere, SAP Strategic Enterprise Management (SAP SEM), SAP
StreamWork, SuccessFactors, Sybase, TwoGo by SAP, and The Best-Run Businesses
Run SAP are registered or unregistered trademarks of SAP SE, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs,
neither the publisher nor the author, editor, or translator assume any legal respon-
sibility or any liability for possible errors and their consequences.

	Acknowledgments
	Preface
	The Objective of this Book
	Target Audience
	Structure of this Book

	1 Introduction to ERP and SAP
	1.1 Historical Overview
	1.2 Understanding an ERP System
	1.2.1 What Is ERP?
	1.2.2 ERP vs. Non-ERP Systems
	1.2.3 Advantages of an ERP System

	1.3 Introduction to SAP
	1.3.1 Modules in SAP
	1.3.2 Types of Users
	1.3.3 Role of an ABAP Consultant
	1.3.4 Changing and Adapting the Data Structure

	1.4 ABAP Overview
	1.4.1 Types of Applications
	1.4.2 RICEF Overview

	1.5 System Requirements
	1.6 Summary

	2 Architecture of an SAP System
	2.1 Introduction to the Three-Tier Architecture
	2.2 SAP Implementation Overview
	2.2.1 SAP GUI: Presentation Layer
	2.2.2 Application Servers and Message Servers: Application Layer
	2.2.3 Database Server/RDBMS: Database Layer

	2.3 Data Structures
	2.3.1 Client Overview
	2.3.2 Client-Specific and Cross-Client Data
	2.3.3 Repository
	2.3.4 Packages
	2.3.5 Transport Organizer

	2.4 Summary

	3 Introduction to the ABAP Environment
	3.1 SAP Environment
	3.1.1 ABAP Programming Environment
	3.1.2 Logging On to the SAP Environment
	3.1.3 Elements of the SAP Screen
	3.1.4 Transaction Codes
	3.1.5 Navigating and Opening Transactions

	3.2 ABAP Workbench Overview
	3.2.1 ABAP Editor
	3.2.2 Function Builder
	3.2.3 Class Builder
	3.2.4 Screen Painter
	3.2.5 Menu Painter
	3.2.6 ABAP Data Dictionary
	3.2.7 Object Navigator

	3.3 Eclipse IDE Overview
	3.4 Summary

	4 ABAP Programming Concepts
	4.1 General Program Structure
	4.1.1 Global Declarations
	4.1.2 Procedural

	4.2 ABAP Syntax
	4.2.1 Basic Syntax Rules
	4.2.2 Chained Statements
	4.2.3 Comment Lines

	4.3 ABAP Keywords
	4.4 Introduction to the TYPE Concept
	4.4.1 Data Types
	4.4.2 Data Elements
	4.4.3 Domains
	4.4.4 Data Objects

	4.5 ABAP Statements
	4.6 Creating Your First ABAP Program
	4.7 Summary

	5 Structures and Internal Tables
	5.1 Defining Structures
	5.1.1 When to Define Structures
	5.1.2 Local Structures
	5.1.3 Global Structures
	5.1.4 Working with Structures
	5.1.5 Use Cases

	5.2 Internal Tables
	5.2.1 Defining Internal Tables
	5.2.2 Types of Internal Tables
	5.2.3 Table Keys
	5.2.4 Working with Internal Tables
	5.2.5 Control Break Statements

	5.3 Introduction to Open SQL Statements
	5.3.1 Database Overview
	5.3.2 Selecting Data from Database Tables
	5.3.3 Selecting Data from Multiple Tables

	5.4 Processing Data from Database via Internal Tables and Structures
	5.5 Introduction to the Debugger
	5.6 Practice
	5.7 Summary

	6 User Interaction
	6.1 Selection Screen Overview
	6.1.1 PARAMETERS
	6.1.2 SELECT-OPTIONS
	6.1.3 SELECTION-SCREEN
	6.1.4 Selection Texts

	6.2 Messages
	6.2.1 Types of Messages
	6.2.2 Messages Using Text Symbols
	6.2.3 Messages Using Message Classes
	6.2.4 Dynamic Messages
	6.2.5 Translation

	6.3 Summary

	7 Modularization Techniques
	7.1 Modularization Overview
	7.2 Program Structure
	7.2.1 Processing Blocks
	7.2.2 Event Blocks
	7.2.3 Dialog Modules
	7.2.4 Procedures

	7.3 Events
	7.3.1 Program Constructor Events
	7.3.2 Reporting Events
	7.3.3 Selection Screen Events
	7.3.4 List Events
	7.3.5 Screen Events

	7.4 Procedures
	7.4.1 Subroutines
	7.4.2 Function Modules
	7.4.3 Methods

	7.5 Inline Declarations
	7.5.1 Assigning Values to Data Objects
	7.5.2 Using Inline Declarations with Table Work Areas
	7.5.3 Avoiding Helper Variables
	7.5.4 Declaring Actual Parameters

	7.6 Summary

	8 Object-Oriented ABAP
	8.1 Introduction to Object-Oriented Programming
	8.1.1 Classes
	8.1.2 Methods
	8.1.3 Instance and Static Components
	8.1.4 Events

	8.2 Encapsulation
	8.2.1 Component Visibility
	8.2.2 Friends
	8.2.3 Implementation Hiding

	8.3 Inheritance
	8.3.1 Inheriting Components
	8.3.2 Abstract Classes and Methods
	8.3.3 Final Classes and Methods
	8.3.4 Composition
	8.3.5 Refactoring Assistant

	8.4 Polymorphism
	8.4.1 Static and Dynamic Types
	8.4.2 Casting
	8.4.3 Dynamic Binding with the CALL Method
	8.4.4 Interfaces

	8.5 Working with XML
	8.5.1 XML Overview
	8.5.2 XML Processing Concepts

	8.6 Summary

	9 Exception Handling
	9.1 Exceptions Overview
	9.2 Procedural Exception Handling
	9.2.1 Maintaining Exceptions Using Function Modules
	9.2.2 Maintaining Exceptions Using Methods
	9.2.3 Maintaining Exceptions for Local Classes

	9.3 Class-Based Exception Handling
	9.3.1 Raising Exceptions
	9.3.2 Catchable and Non-Catchable Exceptions
	9.3.3 Defining Exception Classes Globally
	9.3.4 Defining Exception Classes Locally

	9.4 Messages in Exception Classes
	9.4.1 Using the Online Text Repository
	9.4.2 Using Messages from a Message Class
	9.4.3 Using the MESSAGE Addition to Raise an Exception

	9.5 Summary

	10 ABAP Data Dictionary
	10.1 Database Tables
	10.1.1 Creating a Database Table
	10.1.2 Indexes
	10.1.3 Table Maintenance Generator
	10.1.4 Foreign Keys
	10.1.5 Include Structure
	10.1.6 Append Structure

	10.2 Views
	10.2.1 Database Views
	10.2.2 Projection Views
	10.2.3 Maintenance Views
	10.2.4 Help Views
	10.2.5 ABAP CDS Views

	10.3 Data Types
	10.3.1 Data Elements
	10.3.2 Structures
	10.3.3 Table Types

	10.4 Type Groups
	10.5 Domains
	10.6 Search Helps
	10.6.1 Elementary Search Helps
	10.6.2 Collective Search Helps
	10.6.3 Assigning a Search Help
	10.6.4 Search Help Exits

	10.7 Lock Objects
	10.8 Summary

	11 Persistent Data
	11.1 Working with Data in Databases
	11.1.1 Open SQL
	11.1.2 Logical Unit of Work

	11.2 ABAP Object Services
	11.2.1 Persistence Service Overview
	11.2.2 Building Persistent Classes
	11.2.3 Working with Persistent Objects

	11.3 File Interfaces
	11.3.1 Working with Files in the Application Server
	11.3.2 Working with Files in the Presentation Layer

	11.4 Data Clusters
	11.4.1 Exporting Data Clusters to Databases
	11.4.2 Importing Data Clusters

	11.5 Security Concepts
	11.6 Summary

	12 Dialog Programming
	12.1 Screen Events
	12.2 Screen Elements and Flow Logic
	12.2.1 Components of a Dialog Program
	12.2.2 Screens
	12.2.3 Screen Elements

	12.3 Basic Screen Elements
	12.3.1 Text Fields
	12.3.2 Checkboxes and Radio Buttons
	12.3.3 Push Button

	12.4 Input/Output Fields
	12.5 List Box
	12.6 Table Controls
	12.6.1 Create a Table Control without a Wizard
	12.6.2 Create a Table Control with a Wizard

	12.7 Tabstrip Controls
	12.8 Subscreens
	12.9 Working with Screens
	12.9.1 Screen Flow Logic
	12.9.2 GUI Status
	12.9.3 GUI Title
	12.9.4 Modifying Screen Fields Dynamically
	12.9.5 Field Help and Input Help
	12.9.6 Screen Sequence
	12.9.7 Assigning Transaction Codes

	12.10 Control Framework
	12.10.1 Using Container Controls
	12.10.2 Implementing Custom Controls

	12.11 Practice
	12.11.1 Application Flow
	12.11.2 Delete Functionality
	12.11.3 Validations and Autofills

	12.12 Summary

	13 List Screens
	13.1 Program Types
	13.1.1 Executable Programs
	13.1.2 Module Pool Programs
	13.1.3 Function Groups
	13.1.4 Class Pools
	13.1.5 Interface Pools
	13.1.6 Subroutine Pools
	13.1.7 Type Pools
	13.1.8 Include Programs

	13.2 Program Execution
	13.2.1 Executable Program Flow
	13.2.2 Module Pool Program Flow
	13.2.3 Calling Programs Internally

	13.3 Memory Organization
	13.4 List Events
	13.4.1 TOP-OF-PAGE
	13.4.2 END-OF-PAGE
	13.4.3 AT LINE-SELECTION
	13.4.4 AT USER-COMMAND

	13.5 Basic Lists and Detail Lists
	13.6 Classical Reports
	13.7 Interactive Reports
	13.7.1 HIDE
	13.7.2 READ LINE
	13.7.3 GET CURSOR
	13.7.4 DESCRIBE LIST

	13.8 Practice
	13.9 Summary

	14 Selection Screens
	14.1 Defining Selection Screens
	14.2 Selection Screen Events
	14.3 Input Validations
	14.4 Selection Screen Variants
	14.4.1 Creating a Variant
	14.4.2 Variant Attributes
	14.4.3 Table Variables from Table TVARVC
	14.4.4 Dynamic Date Calculation
	14.4.5 Dynamic Time Calculation
	14.4.6 User-Specific Variables

	14.5 Executing Programs in the Background
	14.6 Displaying and Hiding Screen Elements Dynamically
	14.7 Calling Programs via Selection Screens
	14.8 Summary

	15 ALV Reports
	15.1 Standard ALV Reports Using the Reuse Library
	15.1.1 List and Grid Display: Simple Reports
	15.1.2 Block Display
	15.1.3 Hierarchical Sequential Display

	15.2 Interactive Reports
	15.2.1 Loading a Custom SAP GUI Status
	15.2.2 Reacting to User Actions
	15.2.3 Printing TOP-OF-PAGE

	15.3 ALV Reports Using the Control Framework
	15.4 ALV Object Model
	15.4.1 Table Display
	15.4.2 Hierarchical Display
	15.4.3 Tree Object Model

	15.5 Summary

	16 Dynamic Programming
	16.1 Field Symbols
	16.1.1 Using Field Symbols to Make Programs Dynamic
	16.1.2 Defining Field Symbols
	16.1.3 Assigning a Data Object
	16.1.4 Checking if a Field Symbol is Assigned
	16.1.5 Unassigning a Field Symbol
	16.1.6 Casting

	16.2 Data References
	16.2.1 Defining Reference Variables
	16.2.2 Getting Data References
	16.2.3 Anonymous Data Objects
	16.2.4 Assignment between Reference Variables

	16.3 Runtime Type Services
	16.3.1 Runtime Type Information
	16.3.2 Runtime Type Creation

	16.4 Dynamic Token Specification
	16.5 Dynamic Procedure Calls
	16.6 Dynamic Program Generation
	16.7 Summary

	17 Debugging
	17.1 Classic Debugger
	17.1.1 Activating and Using the Classic Debugger
	17.1.2 Field View
	17.1.3 Table View
	17.1.4 Breakpoints View
	17.1.5 Watchpoints View
	17.1.6 Calls View
	17.1.7 Overview View
	17.1.8 Settings View
	17.1.9 Additional Features

	17.2 New Debugger
	17.2.1 UI and Tools
	17.2.2 Layout and Sessions

	17.3 AMDP Debugger
	17.4 Using the Debugger to Troubleshoot
	17.5 Using the Debugger as a Learning Tool
	17.6 Summary

	18 Forms
	18.1 SAPscripts
	18.1.1 Overview and Layout
	18.1.2 Creating the Form Layout
	18.1.3 Maintaining Window Details
	18.1.4 Processing Forms with Function Modules

	18.2 Smart Forms
	18.2.1 Overview and Layout
	18.2.2 Maintaining the Global Settings
	18.2.3 Maintaining Elements
	18.2.4 Driver Program

	18.3 SAP Interactive Forms by Adobe
	18.3.1 Form Interface
	18.3.2 Form Context and Layout
	18.3.3 Driver Program
	18.3.4 Downloading the Form as a PDF

	18.4 Summary

	19 Interfaces
	19.1 Batch Data Communication
	19.1.1 Direct Input
	19.1.2 Batch Input

	19.2 Business Application Programming Interface
	19.2.1 Business Object Types and Business Components
	19.2.2 BAPI Development via BAPI Explorer
	19.2.3 Standardized BAPIs
	19.2.4 Standardized Parameters
	19.2.5 Implementing BAPIs

	19.3 EDI/ALE/IDocs
	19.3.1 Electronic Data Interchange
	19.3.2 Application Link Enabling
	19.3.3 Intermediate Documents
	19.3.4 System Configurations
	19.3.5 Inbound/Outbound Programs

	19.4 Legacy System Migration Workbench
	19.4.1 Getting Started
	19.4.2 Migration Process Steps

	19.5 Web Services
	19.5.1 Creating a Web Service
	19.5.2 Consuming Web Services

	19.6 OData Services
	19.6.1 Data Model Definition
	19.6.2 Service Maintenance
	19.6.3 Service Implementation
	19.6.4 READ

	19.7 XSL Transformations
	19.7.1 Serialization
	19.7.2 Deserialization

	19.8 XML and JSON Data Representation
	19.9 WebSockets (ABAP Channels and Messages)
	19.9.1 Creating an ABAP Messaging Channel
	19.9.2 Creating a Producer Program
	19.9.3 Creating a Consumer Program

	19.10 Summary

	20 Modifications and Enhancements
	20.1 Customization Overview
	20.2 Modification Overview
	20.3 Using Modification Assistant
	20.3.1 Modifications to Programs
	20.3.2 Modifications to Class Builder
	20.3.3 Modifications to Screen Painter
	20.3.4 Modifications to Menu Painter
	20.3.5 Modifications to ABAP Data Dictionary
	20.3.6 Modifications to Function Modules
	20.3.7 Resetting to Original

	20.4 Using Modification Browser
	20.5 Enhancements Overview
	20.6 User Exits
	20.7 Customer Exits
	20.7.1 Create a Customer Exit
	20.7.2 Function Module Exits
	20.7.3 Screen Exits
	20.7.4 Menu Exits

	20.8 BAdIs
	20.8.1 Overview
	20.8.2 Defining a BAdI
	20.8.3 Implementing a BAdI
	20.8.4 Implementing a Fallback Class
	20.8.5 Calling a BAdI

	20.9 Enhancement Points
	20.9.1 Explicit Enhancements
	20.9.2 Implicit Enhancements

	20.10 Business Transaction Events
	20.10.1 Implementing a BTE
	20.10.2 Testing a Custom Function Module

	20.11 Summary

	21 Test and Analysis Tools
	21.1 Overview of Tools
	21.2 ABAP Unit
	21.2.1 Eliminating Dependencies
	21.2.2 Implementing Mock Objects
	21.2.3 Writing and Implementing Unit Tests

	21.3 Code Inspector
	21.4 Selectivity Analysis
	21.5 Process Analysis
	21.6 Memory Inspector
	21.6.1 Creating Memory Snapshots
	21.6.2 Comparing Memory Snapshots

	21.7 Table Call Statistics
	21.8 Performance Trace
	21.8.1 Activating and Filtering a Performance Trace
	21.8.2 SQL Trace
	21.8.3 RFC Trace
	21.8.4 Enqueue Trace
	21.8.5 Buffer Trace

	21.9 ABAP Trace/Runtime Analysis
	21.9.1 Running ABAP Trace
	21.9.2 Analyzing the Results

	21.10 Single-Transaction Analysis
	21.11 Dump Analysis
	21.12 Summary

	The Author
	Index
	Service Pages
	Legal Notes

