James Wood

Object-Oriented Programming
with ABAP" Objects

Object-Oriented Programming

with ABAP Objects

. ®
Galileo Press ’

Bonn « Boston

Introduction

With all of the hype surrounding object-oriented programming, it can be difficult
to separate the truth from fantasy. If you have picked up this book, it is likely that
you have developed an interest in learning more about what the excitement is all
about. This book provides the answers that you are looking for.

The goal of this book is to teach you how to think about writing ABAP™ software
from an object-oriented point-of-view. After reading this book, you will be
equipped to work with many of the new and exciting ABAP-based technologies
based on ABAP Objects such as Web Dynpro, ABAP Object Services, SAP* Busi-
ness Workflow, and Web Services.

Target Group and Prerequisites

This book is intended for ABAP application developers that have some basic expe-
rience writing ABAP programs using the ABAP Development Workbench. Basic
ABAP language concepts are not covered in this book, so you have not worked
with ABAP before, read ABAP Objects -~ ABAP Programming in SAP NetWeaver
(SAP PRESS, 2007). Of course, in an introductory book such as this, no prior
object-oriented experience is expected.

The object-oriented extensions to the ABAP programming language (i.e., the
Objects part of ABAP Objects) were made available in SAP R/3 4.6C. Therefore,
you do not have to have the latest version of the SAP NetWeaver Application
Server ABAP (AS ABAP) to start working with most of the object-oriented con-
cepts described in this book. However, additions to the standard that were added
in subsequent releases are pointed out where appropriate.

If you want to reproduce the examples in the book and don't have access to an AS
ABAP instance, you can download a trial version from the SAP Developer Net-
work (http://sdn.sap.com) that you can install on your local PC. From the main
page, select DOWNLOADS + SOFTWARE DOWNLOADS « SAP NETWEAVER MAIN
ReLEASES. There, you will find several versions of the AS ABAP that you can install
depending on your preferred operating system, and so on. Each download pack-

15

http://sdn.sap.com

Introduction

age comes with a set of instructions to help you get started. The SAP Developer
Network forums can also provide useful tips if you run into problems.

Structure of the Book

In many ways, this was a very difficult book to write. Doing a topic like this jus-
tice requires a healthy balance between theoretical and practical concepts, so
many practical examples are included that illustrate theoretical concepts.

The first part of the book helps get you started quickly by describing basic object-
oriented concepts using a series of simple object-oriented programs. The second
part of the book covers core object-oriented concepts such as encapsulation,
inheritance, and polymorphism. The final part of the book teaches you how to
apply these concepts using the tools and services available in the SAP NetWeaver
Application Server.

The end of each chapter includes a brief tutorial on the Unified Modeling Lan-
guage (UML). These tutorials show you how to express your object-oriented
designs using a graphical notation that is commonly used throughout the indus-

try.
In detail, the chapters provide the following content:

» Chapter 1: Introduction to Object-Oriented Programming
Object-oriented programming is steeped in theory. Therefore, before we delve
into the creation of classes, we need to review this theory so that you can
understand how everything fits together. The concepts described in this chap-
ter provide you with the foundation you need to start developing classes.

» Chapter 2: Working with Objects
This chapter reinforces the theoretical concepts covered in Chapter 1 by allow-
ing you to get your hands dirty by creating some simple object-oriented pro-
grams written in ABAP Objects. Here, we will spend a lot of time looking at the
ABAP Objects syntax for defining classes, methods, and so on. This syntax is
highlighted by a series of examples that illustrate how classes can be used in
practical situations.

» Chapter 3: Encapsulation and Implementation Hiding
This chapter introduces you to two important concepts in object-oriented
design: encapsulation and implementation hiding. First, the importance of
these concepts is demonstrated by observing some problems with code librar-

16

Introduction

ies developed using procedural methods. Then, you will learn how to avoid
these problems in class libraries through the use of access specifiers. Finally,
we will take a step back and look at ways to develop reusable classes using a
technique called design-by-contract.

Chapter 4: Object Initialization and Cleanup

This chapter walks you through the lifecycle of objects from creation to dele-
tion. Along the way, you will learn how to interact with this process to maxi-
mize performance and improve the integrity of your designs.

Chapter 5: Inheritance
One of the potential side effects of good object-oriented designs is the ability to
reuse code. In this chapter, you will learn how to reuse classes using the con-
cept of inheritance. We will also consider an alternative form of class reuse
known as composition.

Chapter 6: Polymorphism

This chapter shows you how to exploit inheritance relationships described in
Chapter 5 using a technique referred to as polymorphism. This discussion is
highlighted by the introduction of interfaces, which are pure elements of
design.

Chapter 7: Component-Based Design Concepts

After covering the basics of object-oriented programming in Chapters 1-6, this
chapter broadens the focus a bit by showing you how the ABAP Package Con-
cept can be used to organize your class libraries into coarse-grained develop-
ment components.

Chapter 8: Error Handling with Exceptions

This chapter explains how to deal with exceptions in your classes and pro-
grams using the ABAP class-based exception handling concept.

Chapter 9: Unit Testing with ABAP Unit

This chapter shows you how to develop automated unit tests using the ABAP
Unit test framework. These tests help you ensure that your classes deliver on
the functionality described in their API contracts.

Chapter 10: Working with the SAP List Viewer

This chapter is the first of three case study chapters that show you how ABAP
Objects classes can be used in many common development tasks. In this chap-
ter, you see how to create interactive reports using the new object-oriented

7

Introduction

ALV Object Model. This chapter also provides a practical example for working
with events in ABAP Objects.

Chapter 11: ABAP Object Services
This chapter demonstrates the use of the services provided by the ABAP Object
Services framework. In particular, you will learn how to use these services to
develop persistent classes whose state can be stored in the database without
having to write a single line of SQL.

» Chapter 12: Working with XML
This chapter concludes the case study series by showing you how to work with
XML documents using the object-oriented iXML library provided with the SAP
NetWeaver Application Server. This discussion also provides you with an
opportunity to develop an abstract data type that uses most of the concepts
described throughout the course of the book.

» Chapter 13: Where to Go From Here
In this final chapter, we will look ahead to see how to apply the object-oriented
concepts learned in this book in real-world projects.

» Appendix: Debugging Objects
In this appendix, we will look at how to use the ABAP Debugger tool to debug
object-oriented programs.

Conventions

This book contains many examples demonstrating syntax, functionality, and so
on. Therefore, to distinguish these sections, we use a font similar to the one used

in

many integrated development environments to improve code readability:

CLASS 1cl_test DEFINITION.

PUBLIC SECTION.

ENDCLASS.

As new syntax concepts are introduced, these statements are highlighted using a
bold listing font (i.e., the PUBLIC SECTION statement in the preceding code snip-
pev.

18

Introduction

Acknowledgments

Iam a firm believer in the saying “you are what you read." As such, I am indebted
to so many great authors whose works have planted the seeds from which this
book took form. I have similarly been fortunate enough to have the opportunity
to work with so many talented software development professionals who have
taught me so much. It is my sincere hope that this work represents a small token
of my appreciation for all of their hard work and dedication to the field.

I would like to thank Dr. Stephen Yuan and Dr. Jason Denton for opening my
eyes to the world of software engineering. I would also like to thank Russell Sloan
at IBM and Colin Norton at SAP America for giving me a chance to spread my
wings.

Much of the inspiration from this book came during my time working on a
project at Raytheon. A special thanks to the good people there who allowed me to
play “mad scientist” with their development methodology. I am also grateful for
the fresh perspective offered by members of the OneAero development team at
Lockheed Martin. In particular, I would like to thank Greg Hawkins from SAP
America, who graciously offered valuable insight whenever I needed someone to
look at this from a different angle.

To my editor, Stefan, thank you so much for your support throughout this pro-
cess. I would not have been able to do this without you.

To my Dad, and my Mom who still corrects my grammar to this day, thanks for
always being there for me.

To my children, Andersen and Paige, thank you for all of your love and support.
I will always cherish our writing breaks playing on the floor in my office.

To my wife Andrea, I just want to say how much I feel loved and supported by
you. Without your influence on my life, I would not be where I am today. I con-
sider myself very fortunate to have met someone as special as you.

And finally, to Him who is, and was, and is to come again: Soli Deo Gloria.

James Wood
Principal SAP NetWeaver Software Consultant,
Bowdark Consulting, Inc., Flower Mound, TX

19

PART |
Basics

This chapter provides an overview of object-oriented programming from a
conceptual point of view. The concepts described in this chapter lay the
foundation for the remainder of the book.

1 Introduction to Object-Oriented
Programming

Object-oriented programming (OOP) is a programming methodology that is used
to simplify software designs to make them easier to understand, maintain, and
reuse. Like procedural programming before it, OOP represents a different way of
thinking about writing software. The beauty of OOP lies in its simplicity. As you
will see, the expressiveness of OOP makes it easier to deliver quality software
components on time and under budget.

The purpose of this chapter is to introduce you to the basic concepts that you
need to understand to effectively design and develop object-oriented programs.
These concepts apply to most modern OOP languages such as C++, Java, and, of
course, ABAP Objects. This chapter also begins an introduction to the Unified
Modeling Language (UML), which is the de facto object modeling language used
in the industry today.

11 The Need for a Better Abstraction

The most important goal for any software development project is to deliver a
product that solves the problem(s) it was designed to address. To be effective in
this endeavor, developers must work collaboratively with business analysts to
formulate a good design approach. Many projects fail at this stage because it can
be very difficult for functional and technical team members to communicate in
terms that are well understood by their counterparts. A way to simplify complex
designs into a form that can be easily interpreted by all project stakeholders — a
common language — is needed. Over the years, numerous attempts have been
made to develop programming languages and development methodologies to

23

1 | Introduction to Object-Oriented Programming

bridge this communication gap. Most of these approaches failed because the lan-
guages and methods were either too hard to learn or not flexible enough to be
used to articulate all of the various viewpoints within the team.

In his book Thinking in Java (Prentice Hall, 2006), Bruce Eckel argues that “the
complexity of the programs you are trying to solve is directly related to the kind
and quality of abstraction you are trying to work with." Early programming lan-
guages (e.g., assembly languages) provided a thin layer of abstraction on top of
the underlying machine. Consequently, developers working with those languages
spent almost as much time worrying about "bit twiddling" as they did thinking
about the problem they were trying to solve.

The next-generation procedural programming languages were much more
expressive but still required a considerable amount of translation between the
conceptual problem domain and the physical solution space (i.e., the program
code). This conversion process is not only time consuming but also prone to error
because requirements can easily become lost in translation.

With an object-oriented approach, solutions are designed from the outset in
terms of real-world “objects” modeled from the problem domain. Therefore, it
becomes much easier for business analysts and programmers to exchange infor-
mation and ideas about a design that uses a common domain language as opposed
to one based on technical constructs such as integers, structured data types, pro-
cedures, and so on. The improvements in communication help to bring out hid-
den requirements, identify risks, and reduce confusion. At the end of the day, all
of this helps to improve the quality of the software being developed.

1.2 Classes and Objects

Students learning pure object-oriented languages such as Java are often taught
that "everything is an object.” Although this is not necessarily the case in a hybrid
language such as ABAP Objects (where it is still possible to use procedural con-
structs), it is still a good way to start thinking about how to design programs using
an object-oriented approach. Of course, it helps if you know what an object is.

An object is a special kind of variable that has distinct characteristics and behav-
iors. The characteristics (or attributes) of an object are used to describe the state of
an object. For example a car object might have attributes to capture information
such as color, make, or current driving speed. Behaviors (or methods) represent

24

Classes and Objects

the actions performed by an object. In our car example, there might be methods
that can be used to drive, turn, and stop the car.

As you might expect, a considerable amount of the object-oriented design process
is focused on identifying the objects you will need to model a given problem
domain. This process is an inexact science that often requires some trial and error
before you get it right. One fairly typical approach for initiating this process is to
identify the nouns (i.e., a person, place, thing, or idea) used to describe various
aspects of the problem domain. The semantic meaning of these nouns provides a
basis for classifying and defining the objects you need to build a working pro-
gram model.

Early object-oriented researchers drew a parallel between this process and classi-
fication techniques used by biologists to identify and explain the relationships
between plants and animals. The term class was used to describe abstract data
types that could be created to simulate real-world phenomena. Consequently,
most object-oriented languages use the CLASS keyword to define these abstract
data types. A class declaration defines a blueprint that describes how to create
objects. Figure 1.1 shows an example of a class definition for the Car object
described previously.

Car

make Attributes
model k”

color
drivingSpeed

Methods
~_~o drive()
== | turn()

stop()

Figure 1.1 Class Definition for the Car Class Example

One good analogy to explain the difference between a class and an object is to
think about the relationship between a set of architectural blueprints and the
houses that are built in reference to those blueprints. In this case, the blueprints
provide instructions that can be used as a guide for constructing new houses (e.g.,
the layout of the floor plan, room dimensions, what materials to use, etc.). Each
of the homes that are built will have its own unique street address along with spe-
cific customizations such as paint color (see Figure 1.2). This uniqueness gives a

25

1 | Introduction to Object-Oriented Programming

home an identity unto itself. In other words, a home is referred to as an instance
of a particular set of blueprints. Of course, although each house is distinctive in its
own way, it also shares certain commonalities with all of the other houses that
have been built using the same set of blueprints. These commonalities are often
exploited by homebuilders looking to reuse materials and assembly expertise in
an effort to reduce costs. You will see how these same concepts can apply to
object-oriented software development in later chapters.

address

color

-~ -

~ |
e ad ™~ ~
-~ | ~
Lo ~
~ ‘ ~
Ao "
Address: 123 Main St Address: 234 Elm St. Address: 777 Pine St.
Color: Red Color: Blue Color: Yellow
House Object House Object House Object

Figure 1.2 Relationship Between Classes and Objects

Now that you have a basic understanding of the relationship between classes and
objects, let's briefly summarize these concepts in object-oriented parlance. A class
is a blueprint that can be used to construct object instances. Each object instance is
controlled by an object reference variable that is designed to point to objects of a
particular class type. A class's type defines an interface that describes how to com-
municate with object instances of that class. Objects communicate with one
another by sending messages to each other. In object-oriented terms, an object
sends a message to another object by calling a method on that object. In this sense,
you can think of methods as the services provided by a class/object. Because each
object maintains its own internal state information, it is self-aware and therefore
able to process these service requests in context.

Put another way, objects know how to do their job. This innate knowledge allows
you to delegate tasks to objects and trust that they will be carried out correctly.
For this reason, OOP pioneer Alan Kay described object-oriented programs as “a

26

Establishing Boundaries | 13

bunch of objects telling each other what to do by sending messages [to each
other]."

1.3 Establishing Boundaries

Every healthy relationship needs boundaries, and the relationship between
objects working together inside of a computer system is no different. As an
object-oriented design begins to take shape, each class assumes specific role
assignments within the system. This division of labor helps to simplify the overall
program model, allowing each class to specialize in solving a particular piece of
the problem at hand. Such classes are said to have high cohesion in the sense that
each of the class's operations are closely related in some intuitive way. Defining
boundaries within classes helps to maintain the integrity and cohesiveness of the
program model, making sure that classes are used correctly.

Object-oriented languages allow you to establish boundaries within a class using
the concept of visibility sections. Visibility sections clearly separate a class’s inter-
face from its implementation — a process commonly referred to as encapsulation
or implementation hiding (see Figure 1.3).

Figure 1.3 Encapsulation of Data and Behavior in a Class

Class components can be defined in public, private, or protected visibility sections
that control how these components are accessed. The private visibility section is
used to deny access to a class's components from outside of the class. Such com-
ponents can only be accessed from inside the class (e.g., in a method) — they are
completely hidden from the outside world. Components defined in the public
visibility section can be accessed from any context. We will discuss the protected
visibility section in Chapter 5, Inheritance.

1 Quote taken from Thinking in Java (Prentice Hall, 2006).

27

1 | Introduction to Object-Oriented Programming

There are a couple of important reasons for hiding the implementation details of
a class using visibility sections:

» First of all, hiding implementation details makes life easier for clients wanting
to leverage existing classes in their programs. Here, clients only need to famil-
iarize themselves with the components defined in the public interface of a class
— everything else is just details. This significantly shortens the learning curve
for client developers wanting to understand how to work with a class by allow-
ing them to concentrate on the what and not the how.

» Secondly, implementation hiding significantly reduces the side effects associ-
ated with making changes to a class. After all, if the internal details of a class
are hidden to the outside world, then you can change the implementation of a
class without having to worry about affecting any client code currently using
that class.

Client developers accustomed to having total access to everything within their
programs often find this concept to be highly restrictive (or indeed punitive) at
first glance. However, the important thing to realize here is that the intent is not
to make the user’s life more difficult but rather to hide the aspects of the class that
are most likely to change. You can think of a class’s public interface as a service
contract between instances of the class (objects) and its clients. A developer of a
class is free to change the underlying implementation of that class in any way
(e.g., to make it run faster, use a different data source, etc.) as long as he does not
violate this contractual agreement. This design approach is commonly referred to
as design by contract®.

Encapsulated classes do not have a lot of dependencies to the outside world.
Moreover, the interactions that they do have with external clients are controlled
through a stabilized public interface. In other words, an encapsulated class and its
clients are loosely coupled. For the most part, classes with well-defined interfaces
can be plugged into another context without a lot of “re-wiring.” Therefore, when
designed correctly, encapsulated classes become reusable software assets that
should be able to be leveraged in many contexts. We will investigate some best
practices for designing encapsulated classes in Chapter 3, Encapsulation and
Implementation Hiding.

2 This term was originally coined by Bertrand Meyer in a technical report entitled Design by Contract
(Interactive Software Engineering, 1986). We will consider this design approach in more detail in
Chapter 3, Encapsulation and Implementation Hiding.

28

Reuse

Over time, the accumulation of these software assets makes it possible to quickly
compose solutions using quality components that have been proven to work
through exhaustive testing. This composition-based approach to solution design
is similar to various component-based approaches used in other engineering dis-
ciplines. For example, automotive manufacturers simplify the manufacturing pro-
cess by splitting up the design of a car into a series of discrete parts. These parts
compartmentalize various complexities into smaller units that are easier to under-
stand and maintain.

For instance, the intricacies related to properly mixing fuel and air in an internal
combustion engine can be encapsulated into a fuel injector part. The fuel injector
part can then be effortlessly integrated into the engine assembly by a mechanic
without detailed knowledge of complex injection schemes, and so on. Such parts,
when designed with common interfaces, also become interchangeable. This
touches several levels of economics, allowing manufacturers to reuse parts across
product lines and also to replace faulty parts with better ones without requiring
an engine overhaul. We will look at ways to perform component-based software
development in Chapter 7, Component-Based Design Concepts.

1.4 Reuse

One of the most compelling reasons for adopting an object-oriented approach to
program design is the significant capability for reusing code. Although it is easy to
allow yourself to become dazzled by promises of huge productivity gains, it is
important to keep things in perspective. Learning how to develop reusable classes
takes time and experience. The following subsections describe some basic tech-
niques for reusing classes. We will cover each of these topics at length in Chapter
5, Inheritance, and Chapter 6, Polymorphism.

1.4.1 Composition

The easiest way to reuse a class is to simply create an object instance and begin
calling its methods. Classes can also be reused as attributes of new classes that you
are building. This usage type is often referred to as composition, where new
classes are composed from existing classes whose types are used to define mem-
ber attributes, and so on. These classes are aggregates, using existing classes as
building blocks (think LEGO®) for constructing arbitrarily complex assemblies.

29

1 | Introduction to Object-Oriented Programming

Designs based on composition are easy to understand and highly flexible.
Because member objects can be hidden just like any other attribute, it is easy to
change the way you use these objects both at design time and at runtime.

1.4.2 Inheritance

Another way to reuse a class is through inheritance. The concept of inheritance is
a continuation of the classification metaphor used to describe the nature of
classes and their relationships. Here, we are interested in defining specialization
relationships between families of related classes. These relationships begin to
reveal themselves as an object-oriented design matures.

The idea of inheritance is best explained by an example. Let's imagine that you
are working on an object-oriented design for a banking system. Initially, you
come up with a series of classes, including one to represent a bank account. After
studying the requirements further, you discover that there are certain peculiari-
ties unique to checking and savings accounts. At this point, you are faced with a
dilemma. On one hand, you could copy the code you have put together for the
account into new checking and savings account classes. However, this seems
wasteful because this would introduce a lot of redundant code. Another option
would be to use inheritance to describe this specialization relationship. In this
case, you still create new checking and savings account classes, but you create
them as subclasses derived from the original account class (which is the parent or
superclass). The checking and savings account subclasses are said to inherit the
attributes and behaviors (and indeed the type) of the account superclass (see Fig-
ure 1.4). Now, the relevant changes can be made to each of the subclasses inde-
pendently without having to reinvent the wheel.

Account

1

| |

Checking Savings
Account Account

Superclass

Subclasses

Figure 1.4 Inheritance Tree for Bank Accounts

30

Reuse | 14

It is important to remember that inheritance describes a relationship; it is not
simply a fancy term for copying and pasting one piece of code into another. Ini-
tially, a subclass looks like a clone of the superclass. However, over time, a sub-
class can be extended to add new attributes and methods as needed. Additionally,
changes to the superclass are automatically applied to the subclass (you will see
exceptions to this rule in Chapter 5, Inheritance). It is possible to create class hier-
archies with arbitrarily deep inheritance relationships.

The connection between a subclass and its parent is often described using the
“is a" relationship. Looking at the preceding example, a checking account is an
account, and so on. The is-a relationship is a simple way of saying that the sub-
class and superclass share the same type. As you will recall, a class's type
describes how you can communicate with objects of that class. Therefore,
because objects of a superclass and subclass share the same type, it is possible to
communicate with both of them in the exact same way. Polymorphism exploits
this capability, allowing for code reuse in multiple dimensions.

1.4.3 Polymorphism

The definition of an inheritance relationship implies that a subclass is inheriting
both the type and the implementation of its superclass. In the subclass, however, it
is possible to redefine a method's implementation to further specialize certain
behavior. Redefining a method does not change the interface of the method (i.e.,
the way it is called); it simply changes the behavior inside the method in some
way.

Polymorphism allows you to work with subclasses in the exact same way that you
deal with superclasses. To show how this works, let's consider an example. Figure
1.5 depicts an Employee class hierarchy that might be used to model the types of
employees managed within a certain company. In this case, the Employee super-
class is used to describe the basic characteristics and behaviors for all types of
employees. The three specialized subclasses (HourlyEmployee, CommissionEm-
ployee, and SalariedEmployee) are used to represent employees paid by the
hour, employees working on commission, and salaried employees, respectively.
Also, for the purposes of this example, let's assume that the calculateWage
method has been redefined in each of the subclasses to properly calculate the
employee's wage based on the actual employee type.

3

1

Introduction to Object-Oriented Programming

Employee
+ calculateWage()
rlyEmploy C ploy SalariedEmployee
+ calculateWage() + calculateWage() + calculateWage()

Figure 1.5 Employee Class Hierarchy

Now, let’s imagine that the company wants to use this Employee class hierarchy to
enhance its accounts payable (AP) system by automating the creation of monthly
paychecks. Listing 1.1 shows an example of the pseudo code for an enhancement
such as this.

For Each Employee
Call "calculateWage" to Calculate the Employee's Wage
Print the Paycheck

End For

Listing 1.1 An Example of an Algorithm Using Polymorphism

From an AP perspective, the logic really is that simple. The fact that monthly
wages are calculated differently for each employee type is mainly a problem for
the human resources (HR) department. Managing these concerns in two places
introduces a maintenance nightmare. Fortunately, the concept of polymorphism
provides a way to design the AP system to work with generic Employee types and
not get bogged down with a lot of HR-specific details.

The term polymorphism literally means many forms. In the preceding example,
each subclass represents a different form (or type) of Employee. However, because
the subclasses take part in an inheritance relationship with the tmployee super-
class, each subclass is an Employee. In other words, because both the superclass
and subclass share the same public interface, any method that can be called on the
superclass can also be called on the subclass. The AP system can take advantage of
this feature by simply working with generic £mployee instances. At runtime, these
instances could be of type Employee or any of its subclasses. The runtime system
takes care of making sure that the proper method implementation is called. This
is another example of how an object is “smart enough” to know how to do its job.

32

UML Tutorial: Class Diagram Basics | 1.6

Polymorphism introduces a capability for creating reusable algorithms that are
designed to work on generic objects. In Chapter 6, Polymorphism, we will look at
how to take advantage of this functionality in your designs.

1.5 Object Management

An object-oriented program typically consists of a series of objects that call on
one another to perform various tasks. Because each object is depended on to ful-
fill a specific role within the system, it is important that the object has everything
it needs to do its job when called upon.

To ensure that an object is properly initialized, most object-oriented languages
allow you to create a special method called a constructor that is called whenever a
new object is created. The constructor's job is to make sure that the object is ini-
tialized in a consistent state before it is used.

The lifecycle of an object is typically quite different from traditional program
variables. Often, it is impossible to determine exactly how many instances of an
object you will need in a program until runtime. This presents a challenge to
object-oriented language designers needing to develop a mechanism for manag-
ing program resources. A common solution to this problem for many modern
object-oriented language implementations is to dynamically allocate objects from
a memory heap. This approach is beneficial for the programmer because it takes
the problem of memory management and places it squarely on the shoulders of
the runtime system. We will investigate the details of an object's lifecycle in
Chapter 4, Object Initialization and Cleanup.

1.6 UML Tutorial: Class Diagram Basics

Object-oriented software development places a considerable amount of emphasis
on design. Before you can start coding, it is imperative that you have a plan. For
instance, you must figure out what kind of objects you will need as well as how
those objects will interact with one another at runtime.

Object-Oriented Analysis and Design (OOAD) is a software development methodol-
ogy used to analyze system requirements and formulate a system design from an
object-oriented perspective. OOAD practitioners often use graphical modeling

33

1 | Introduction to Object-Oriented Programming

techniques to communicate their designs more effectively. The Unified Modeling
Language (UML) contains a set of graphical notations for building diagrams that
depict various aspects of the system model. The UML is used extensively through-
out the software development industry, so it is important that you understand
how to use UML diagrams to express and interpret object-oriented designs.

Throughout the remainder of this book, we will examine the usage types of vari-
ous UML diagrams at the end of each chapter. Our discussions will be based on
version 2.0 of the UML standard?. In this chapter, let's begin by looking at the
class diagram. For now, we will simply reinforce the concepts covered in this
introductory chapter. In Chapter 5, Inheritance, and Chapter 6, Polymorphism,
more advanced features of class diagrams will be considered.

A class diagram is used to illustrate the static architecture of an object-oriented
system. Here, you can depict the various classes used in the system, as well as
their relationships. Figure 1.6 shows a simple class diagram that describes a
scaled-down model of a sales order system used to process orders for an e-com-
merce website. In the following subsections, we will consider some of the basic
features of a UML class diagram.

1.6.1 Classes

The diagram in Figure 1.6 contains five classes: Order, OrderItem, Product, Cus-
tomer, and Address. Classes are represented in class diagrams as rectangular boxes
partitioned into three sections: the top section contains the class name, the mid-
dle section contains the attributes associated with the class, and the bottom sec-
tion contains the operations (or methods) of the class (see Figure 1.7).

Of course, the rules here are not very strict. For example, in the diagram shown
in Figure 1.6, no operations are defined for class Address. This could be because
there were no operations identified for this class when it was designed, or the cre-
ator of this diagram thought that the operations were insignificant when describ-
ing the system architecture. The point is to not get too carried away with the
details because this can complicate the model to the point that the diagram is not
readable.

3 The UML standard is maintained by the Object Management Group (OMG). For more informa-
tion on the OMG, check out http://www.uml.org.

34

http://www.uml.org

UML Tutorial: Class Diagram Basics | 1.6

Order Customer
- number: Integer {readOnly} 4 |- id: String {readOnly}
- creationDate: Date = - firstName: String
- totalAmt: Money - lastName: String
+ create() + getCreditRating() {query}
+ generateReceipt()
+ complete() 1
1
Association r-—--<>
orderitems| address 1
Orderitem Address
- id: Integer {readOnly} Attributes - id: Integer {readOnly}
- qty: Integer - street: String
+ getSubtotal() : Money . :lzoitr;r:'gms
i - country: String

1
Product

- id: String {readOnly}

- description: String

- weight: Float Methods |

+ getPrice() : Money e
+ getShippingCost(in postalCode: String) : Money

Figure 1.6 Basic UML Class Diagram

Customer

- id: String {readOnly}
- firstName: String
- lastName: String

+ getCreditRating() {query}

Figure 1.7 UML Class Notation

35

1 | Introduction to Object-Oriented Programming

Some developers new to UML fall into this trap, worrying that there isn’t enough
information in their class diagram to start writing code. If you find yourself in this
position, remember that the UML provides a multitude of diagrams that can be
used to express the various aspects of your design; class diagrams only tell one
part of the story.

1.6.2 Attributes

Attributes can be specified on the class diagram using the syntax shown in the fol-
lowing Listing 1.2.

visibility name: type-expression = initial-value
(property-string)
Listing 1.2 Attribute Notation for a UML Class Diagram

You are only required to provide the name when specifying an attribute in a class
diagram. However, the other syntax elements shown in Listing 1.2 can be used to
provide some additional information about the attribute:

» The visibility of an attribute describes the accessibility of the attribute from
an external perspective. Possible values include + (plus) for public attributes,
- (minus) for private attributes, and # (sharp) for protected attributes.

» The type-expression is used to describe the attribute’s type. The UML defines
some standard types such as integer or string, but you can also specify custom
types here. The type-expression can also be used to express the cardinality of
an attribute (e.g., for an internal table), and the initial value of the attribute (if
one is assigned).

» The property string is an optional element that can be used to describe certain
additional properties for an attribute. For example, in the OrderItem class from
Figure 1.6, the id attribute has the readOnly property assigned to indicate that
an item’s ID number never changes. Values for these properties can be defined
at the discretion of the person designing the class diagram. The primary pur-
pose here is to provide additional details that are helpful to the developer
responsible for actually implementing the class using an OOP language.

Listing 1.3 shows an example of the syntax described in Listing 1.2 using the id
attribute specified in the OrderIten class from Figure 1.6. This syntax declares id
as a private, read-only attribute of type Integer.

36

UML Tutorial: Class Diagram Basics | 1.6

id: Integer {readOnly}
Listing 1.3 An Example of an Attribute Definition

1.6.3 Operations
Operations can be expressed using the syntax shown in Listing 1.4.

visibility name(parameter-list) : return-type
[property-string}

Listing 1.4 Operation Notation in a UML Class Diagram

For brevity's sake, developers will often just specify the name of an operation
when creating a class diagram. The remaining optional syntactical elements from
Listing 1.4 are typically used strategically to emphasize a certain aspect of the
operation:

» The visibility of an operation defines its accessibility. Possible values include
+ (plus) for public operations, - (minus) for private operations, and # (sharp)
for protected operations.

» The parameter-1ist in parentheses can be used to specify a comma-separated
list of parameters for the operation. Each parameter is of the form shown in
Listing 1.5.

Here, kind signifies the type of parameter. Valid values include in for
inbound parameters passed by value, out for outbound parameters passed
by value, and inout for inbound parameters passed by reference.

The name token symbolizes the parameter name.

Each parameter can optionally have a type associated with it using the type
token. The type can be a generic type or a type specific to a particular pro-
gramming language.

Finally, you can specify an initial value for the parameter using the
default-value expression.

kind name : type = default-value

Listing 1.5 Specifying the P ters of an Op

» The return-type element is used to specify the data type of values returned by
functional operations.

37

1 | Introduction to Object-Oriented Programming

» The optional property-string indicates certain properties assigned to an oper-
ation. An example of this is the (query} property string assigned to the get-
CreditRating operation of class Customer. Such operations are read-only oper-
ations that do not alter the state of the object. Applying these property strings
can give hints to aid the developer in implementing the class in a particular
programming language.

An example of the syntax described in Listing 1.4 is given in Listing 1.6. This
example declares a public operation called getShippingCost that receives a single
inbound parameter called postalCode (which is of type String). The operation
returns a value of type Money to represent the derived shipping cost.

+ getShippingCost(in postalCode: String) : Money
Listing 1.6 An Example of an Operation Definition

1.6.4 Associations

The lines drawn between classes in a class diagram represent a type of association.
You can think of an association as another way to specify an attribute for a class.
For example, the directed line drawn between the Customer and Address classes
in Figure 1.6 describes an attribute of type Address for class Customer. The arrow
in the association between classes Customer and Address indicates that instances
of class Address can be reached through an attribute defined in class Customer.

If the association line had contained arrows pointing in both directions, then the
association would have been bidirectional. In this case, an attribute of type Cus-
tomer would also have been defined for class Address, making it possible to nav-
igate between attributes in both directions. The numbers affixed to each endpoint
represent the cardinality of the association from the perspective of the nearby
class (see Table 1.1). For example, in Figure 1.6, the association between classes
Order and OrderItem denotes a one-to-many relationship between an order and its
items. In this case, an order can contain zero or more items, and any given item
can exist for exactly one order.

At this point, you might be wondering why you would need to build an associa-
tion when you could just use a simple attribute instead. There is no hard-and-fast
rule for using one approach instead of the other. However, a good rule of thumb
to apply here is to use an association whenever you are using composition to
reuse a class inside of another class. This illustrates the composition relationship

38

Summary | 1.7

more clearly, and makes it easier to rework the diagram as you experiment with
your class model.

0..1 Zero or one instances of a class

1 Exactly one instance of a class

* Zero or more instances of a class

m..n A range of instances with lower/upper bounds (e.g., 2..4)

Table 1.4 UML Cardinality Notation

1.6.5 Notes

You can add comments to a UML diagram using notes. Notes are represented
using an element that resembles a sticky note that has been dog-eared in the top-
right corner (see Figure 1.8). These notes can be used in any kind of UML diagram
to include comments related to a particular element (linked via a dashed line) or
to the diagram as a whole. Notes are often used to help clarify a certain require-
ment that is too difficult to express using standard UML notation.

A UML Note...

Figure 1.8 UML Note Notation

1.7 Summary

In this chapter, you learned that a class is a kind of blueprint that can be used to
describe how to create object instances. Classes combine attributes and methods
together to model real-world phenomena in a software setting. Rules and con-
straints for these models can be enforced inside visibility sections that control
how attributes and methods within the class are used. We also considered some
of the basic reuse capabilities associated with classes. Finally, we concluded this
introductory chapter by initiating our discussion of the UML and, specifically,
class diagrams.

39

1 | Introduction to Object-Oriented Programming

This chapter covered a lot of ground very quickly. If you are finding yourself a lit-
tle lost, don’t worry; you will learn much more about each of these topics in the
coming chapters.

40

This chapter introduces you to some basic ABAP Objects syntax and
the relevant development tools that you will need to start building object-
oriented programs in ABAP.

2 Working with Objects

In this chapter, we will start getting our hands dirty by creating some simple
object-oriented programs using ABAP Objects. Because the primary unit of devel-
opment for object-oriented programs is the class, we will spend quite a bit of time
examining the ABAP Objects syntax for defining new class types. Classes can be
defined as global ABAP Repository objects (class pools), or locally within an ABAP
program. Throughout the course of this chapter (and the rest of the book), you
will see how to create and use both types of classes through a series of examples.

2.1 Syntax Overview

Before you begin writing object-oriented programs in ABAP, you must first learn
about the syntax that is used to define ABAP Objects classes. An ABAP Objects
class definition consists of a declaration part and an implementation part.

» The declaration part of the class definition is used to define all of the compo-
nents of a class (i.e., attributes, methods, etc.).

» The implementation part of the class definition is used to provide implementa-
tions for the methods specified in the declaration part of the class definition.

In the following subsections, you will learn about the ABAP statements used to
define local classes in an ABAP program. However, as you study these statements,
keep in mind that the same syntax is being generated "behind the scenes” in the
Class Builder tool when you edit global classes. You will see evidence of this in
Section 2.4.5, Editing the Class Definition Section Directly.

4

2

Working with Objects

2.1.1 Defining Classes

Listing 2.1 demonstrates the syntax used to define a local class called
1c1_myclass. The CLASS DEFINITION statement is used to describe the properties
and structure of the class. This example only declares the properties of the compo-
nents of the class (e.g., attributes, method interfaces, etc.) — the implementation
part comes later. The components of a class can be created within three visibility
sections: the PUBLIC SECTION, the PROTECTED SECTION, or the PRIVATE SECTION. We
will discuss these visibility sections in much more detail in Chapter 3, Encapsula-
tion and Implementation Hiding. The discussion of the various [c1ass_options)
that can be applied to the CLASS DEFINITION statement is deferred to Chapter 3,
Encapsulation and Implementation Hiding, Chapter 4, Object Initialization and
Cleanup, and Chapter 5, Inheritance, where these optional features are described
in context.

CLASS 1cli_myclass DEFINITION [class_options].
PUBLIC SECTION.
[components)
PROTECTED SECTION.
[components)
PRIVATE SECTION.
[components)
ENDCLASS.

Listing 2.1 ABAP Class Definition Part Syntax

2.1.2 Declaring Components

The properties of a class are specified through its component definitions. You can
define two different types of components within a class: instance components and
class components.

» Instance components define the internal state and behavior of individual
object instances. For example, an tmployee class might have an instance
attribute called id that uniquely identifies an employee within a company.
Each instance of class £mployee maintains its own copy of attribute id, which
has a distinct value.

» A class component (or static component) is valid for all instances of a class. You
use class components whenever it makes sense to share a component across all
object instances.

Syntax Overview

All of the component names within a class belong to the same namespace. There-
fore, for example, it is not possible to define an attribute and a method using the
same name — even if they belong to different visibility sections. The following
subsections describe the types of components that can be created within an ABAP
Objects class.

Attributes

Attributes are used to describe the internal state of an object (or class). This state
is represented in the form of data fields that can be declared using any valid ABAP
data type.

» Instance attributes are declared using the familiar DATA keyword. These
attributes define the instance-specific state of the object.

» Class attributes can be declared using almost the exact same syntax as that used
to declare instance attributes. The only difference is the use of the CLASS-DATA
keyword in lieu of the normal 0ATA keyword. All object instances share a single
copy of a class attribute, which can come in handy in certain situations (see
Section 2.2.5, Working with Class Components, for more details).

» Within a class definition, you can also create special class attributes called con-
stants. Constants are declared using the CONSTANTS keyword. Constants must be
assigned an initial value when they are declared, and this value cannot be sub-
sequently changed. A constant is shared across all object instances just like nor-
mal class attributes. Constants should be named using the CO_<constant name>
convention.

To demonstrate how to declare various types of attributes, consider the definition
of local class 1¢1_customer in Listing 2.2. This class declares four private instance
attributes: id, customer_type, name, and address. Some native data types, as well
as some data elements and structures defined in the ABAP Dictionary, are used to
declare these instance attributes. You can also create additional attributes using
more complex types (e.g., table types, reference types, etc.) to model other prop-
erties of a customer, but you get the basic idea.

CLASS 1cl_customer DEFINITION.
PUBLIC SECTION.
CONSTANTS: CO_PERSON_TYPE TYPE ¢ VALUE °'1°,
CO_ORG_TYPE TYPE ¢ VALUE '2°,
CO_GROUP_TYPE TYPE ¢ VALUE '3°'.

43

Working with Objects

PRIVATE SECTION.
DATA: id TYPE numclO,
customer_type TYPE c,
name TYPE string,
address TYPE adrc.
CLASS-DATA: next_id TYPE numclO.
ENDCLASS.

Listing 2.2 Declaring Attributes in a Class Definition

The attribute next_id is a class attribute that keeps track of the next available cus-
tomer ID number. Because all instances of class 1c1_customer share the same
copy of next_id, this attribute provides a convenient way for caching the cus-
tomer ID number range. Three public constants, CO_PERSON_TYPE, CO_ORG_TYPE,
and CO_GROUP_TYPE, represent the different types of customers supported in this
simple class definition. Constants improve the readability of the class, giving
semantic meaning to literal values that would otherwise have no significance to
the naked eye.

The basic ABAP variable naming rules apply when defining attributes (see the
context-sensitive help for the 0ATA keyword for more details). Of course, to
improve the readability of the code, it is a good idea to give attributes meaningful
names. Keep in mind that the semantic meaning of these attributes is defined in
terms of the surrounding object (or class), so it is not necessary to qualify each
and every attribute name.

» For instance, notice that the customer ID number attribute is not named
customer_id. Whenever the id attribute is accessed, it is always accessed in the
context of an object instance of type 1¢1_customer, so there is no need for such
qualification.

» Also, notice that each of the attributes declared in Listing 2.2 were not given
names with prefixes such as G or L to identify global or local variable scope, and
so on. Because attributes are defined inside of an internal class namespace,
there is only one scope, so this convention is not needed.

» Finally, attribute names share the same namespace as method names. Conse-
quently, you should avoid the use of verbs in attribute names because this can
conflict with potential method names.

Syntax Overview

Methods

The behavior of an object is expressed through its methods. Typically, methods
are defined using the syntax shown in Listing 2.3.

METHODS my_method
[IMPORTING parameters]
[EXPORTING parameters]
[CHANGING parameters]
[RETURNING VALUE(parameter)]
(EXCEPTIONS...].

Listing 2.3 General Method Declaration Syntax

This syntax defines a method called my_method that optionally supports various
types of parameters. You can define the parameter interface for a method using
the IMPORTING, EXPORTING, CHANGING, or RETURNING additions as shown in Listing
2.3. The IMPORTING addition is used to define input parameters that cannot be
changed inside the method. The £xPORTING addition is used to define output
parameters whose value is derived inside the method. Parameters defined using
the CHANGING addition are input/output parameters that can be changed inside the
method. We will explore parameters defined using the RETURNING addition
shortly when we look at functional methods.

Regardless of the type, the syntax for declaring a parameter p1 is given in the fol-
lowing Listing 2.4.

[pl | VALUE(pl)] TYPE type [OPTIONAL | (DEFAULT defl]]
Listing 2.4 Formal Parameter Declaration Syntax

Method parameters should be named according to the SAP naming conventions
shown in Table 2.1.

Parameter Type Naming Convention

IMPORTING IM_<parameter name>
EXPORTING EX_<parameter name>
CHANGING CH_<parameter name>
RETURNING RE_<parameter name>

Table 2.1 SAP Method Parameter Naming Conventions

45

21

2 | Working with Objects

The name of a method, along with its parameter declarations, represents the
method's signature. The signature of a method defines how a method is invoked
(or called). When a method that contains parameters is invoked, the calling pro-
gram passes parameters by matching actual parameters (e.g., local variables in the
calling program, literal values, etc.) in the method call with the formal parameters
declared in the method signature (see Figure 2.1).

Reference

—— —

Calling Program Method ¢

Figure 2.1 Mapping Actual P, ters to Formal Parameters

Parameters can either be passed into methods by reference (default behavior) or by
value. The VALUE(...) addition implies that a parameter is passed into the
method by value. This means that a copy of the actual parameter is created and
passed to the method. Changes made to value parameters inside the method only
affect the copy; the contents of the variable used as the actual parameter are not
disturbed. In Figure 2.1, the formal parameter a of method c is defined as a value
parameter. Therefore, when the calling program invokes method c, a copy of the
actual parameter x is made, and the value is assigned to the formal parameter a.

Reference parameters contain a reference (or pointer) to the actual parameter
(i.e., variable) that was used in the method call. Changes made to reference
parameters are reflected in the calling program. In Figure 2.1, the formal param-
eter b of method c¢ is defined as a reference parameter. This means that b points
back to the actual parameter used in the method call in the calling program (y in
this case). Therefore, if we change the value of parameter b inside method c, the
change is actually made to the contents of variable y in the calling program.

By default, method parameters are defined as reference parameters. This
improves the performance of method calls because it can be expensive (computa-

46

Syntax Overview | 22

tionally) to make copies of large data objects at runtime whenever a method is
called. In some programming languages, it is considered risky to pass parameters
by reference because it is not always obvious where changes are being made to a
given variable. ABAP Objects eliminates this subtle distinction by restricting
changes to reference parameters passed as IMPORTING parameters to a method. If
a calling program wants to directly manipulate the contents of a variable inside a
method, then it must declare its intentions explicitly by mapping the variable to
a CHANGING formal parameter. Note, however, that this does not apply to refer-
ence types such as object or data reference variables (more on these in Section
2.2.1, Object References).

It is also possible to define functional methods in classes. Functional methods are
used to compute a single value (hence the use of the term function). Listing 2.5
shows the syntax used to declare functional methods. Here, as before, you can
declare IMPORTING parameters to provide input to the method. However, notice
that CHANGING or EXPORTING parameters cannot be defined in functional methods
because the functional method only returns a single value — the RETURNING value
parameter. You will see some interesting uses for functional methods in Section
2.2.6, Creating Complex Expressions Using Functional Methods.

METHODS func_method
(IMPORTING parameters)
RETURNING VALUE(rval) TYPE type
[(EXCEPTIONS...].

Listing 2.5 Functional Method Declaration Syntax

The math utility class 1¢1_math in Listing 2.6 declares four methods that demon-
strate the method definition syntax described in this section:

» Method max receives two input value parameters a and b (of type integer) and
returns the greater of the two values as a single exporting value parameter
called result (also of type integer).

» Method round is used to round a floating-point parameter a to the nearest
whole number. In this case, the changing parameter a is passed by reference
and modified directly inside the method.

» Method 109 applies the logarithmic function to importing parameter x using
base b. Notice that parameter b was defined using the 0PTI0NAL addition. This
specification implies that callers are not required to pass a value for importing

47

2 | Working with Objects

parameter b (which might be defaulted to base 10 inside the method imple-
mentation, for example).

» Method power is a functional method that receives two importing parameters
base and exponent and returns the value of the base raised to the exponent
(value parameter result). The importing parameter exponent is also specified
to contain a default value of 2.

The DEFAULT addition is similar to the 0PTIONAL addition in the sense that they
both create optional parameters. However, in the event that a caller does not
pass a value for a DEFAULT parameter, the compiler will implicitly pass an actual
parameter containing the specified default value (e.g., 2 in this example).

CLASS 1cl_math DEFINITION.
PUBLIC SECTION.
METHODS :
max IMPORTING VALUE(a) TYPE i
VALUE(b) TYPE i
EXPORTING VALUE(result) TYPE i,
round CHANGING a TYPE f,
log IMPORTING x TYPE f
b TYPE i OPTIONAL
EXPORTING y TYPE f,
power IMPORTING base TYPE f
exponent TYPE f DEFAULT 2
RETURNING VALUE(result) TYPE f.
ENDCLASS.

Listing 2.6 Example Class D trating Method Declarations

Class methods can be declared using almost the exact same syntax as that used to
declare instance methods. The only difference is the use of the CLASS-METHODS
keyword in lieu of the METHODS keyword used for instance methods.

Method names typically begin with a verb to emphasize the type of behavior that
is being carried out in the method implementation. For example, a method used
to create a sales order in a class called 1¢)_sales_order might be called create.
Developers accustomed to creating verbose function module names might look at
this name and find it too generic. However, remember that method names belong
to the internal namespace of the class and are not subject to the potential naming
clashes of global Repository objects such as function modules. In class
1c1_sales_order, the method could have been named create_order, but this is

48

Syntax Overview | 22

somewhat redundant because the create operation is being invoke on a sales
order object. Getting used to the reflexive relationship between objects and
methods takes a little time, so don’t worry if it doesn't seem intuitive to you yet
— there will be plenty of examples that will help you understand this relationship
as we move forward.

Events

Classes can declare and trigger events that are handled by special event handler
methods. Event handler methods can be defined within the same class that
declared the event, or in a completely separate class. Events are defined within a
class using the syntax shown in Listing 2.7.

EVENTS evt
[(EXPORTING parameters].

Listing 2.7 Instance Event Declaration Syntax

The syntax for defining £xPORTING formal parameters in events is identical to the
syntax used to define formal parameters for methods (refer to Listing 2.4). How-
ever, it should be noted that these £XPORTING parameters must always be passed
by value. Event parameters are used to pass additional information about the
event to event handler methods. Events also pass an implicit parameter called
sender that contains a reference to the sending object (i.e., the object that raised
the event).

Class events can be created using the CLASS-EVENTS keyword. Other than the dif-
ference in keywords, the syntax for declaring class events is identical to that of
regular instance events (see Listing 2.8).

CLASS-EVENTS evt [EXPORTING parameters].
Listing 2.8 Class Event Declaration Syntax

Events are handled by special event handler methods that are defined using the
syntax shown in Listing 2.9.

METHODS evt_handler
FOR EVENT evt of CLASS 1c¢1_some_class
[IMPORTING pl p2 ... [sender]].

Listing 2.9 Event Handler Method Declaration Syntax

49

2 | Working with Objects

The syntax shown in Listing 2.9 declares an event handler method called
evt_handler for an event evt defined in class 1¢1_some_class. The names of the
importing parameters for an event handler method must match the signature of
the exporting parameters defined in the event itself. However, unlike normal
method declarations, you must not specify the types of importing parameters for
event handler methods because this has already been specified in the event dec-
laration.

In Chapter 10, Working with the SAP List Viewer, you will see how all of this fits
together in an example report program. In particular, you will see how to register
event handler methods to listen for events that are triggered using the RAISE
EVENT statement.

Types

Custom data types can be defined within a class using the ABAP TYPES statement.
These types are defined at the class level and are not specific to any object
instance. You can use these custom types to define local variables within meth-
ods, and so on. It is also possible to declare the use of global type pools defined
within the ABAP Dictionary using the TYPE-POOLS statement.

The definition of class 1¢]_person in Listing 2.10 provides an example that dem-
onstrates how types can be declared and used in a class definition. The custom
type ty_name is used to define the person’s name attribute. Custom types have the
naming convention T¥_<type name>. The class also declares the use of type group
$ZADR from the ABAP Dictionary. This type group is defined within the SAP Busi-
ness Address Services (BAS) package and contains various types related to
addresses. BAS offers a streamlined API for working with addresses in applica-
tions. Here, type SZADR_ADDRI_COMPLETE from the SZADR type group is used to
declare the address attribute for the 1¢)_person class.

CLASS 1cl_person DEFINITION.
PRIVATE SECTION.
TYPES: BEGIN OF ty_name,
first_name TYPE char40,
middle_initial TYPE charl,
last_name TYPE chard0,
END OF ty_name.
TYPE-POOLS: szadr. "Business Address Services

50

Syntax Overview

DATA: name TYPE ty_name,
address TYPE szadr_addrl_complete.
ENDCLASS.

Listing 2.10 Defining and Working with Types

2.1.3 Implementing Methods

In Section 2.1.2, Declaring Components, you learned how to define the various
components of a class. If the declaration part of the class defined methods, then
you must also create an implementation part that provides implementations for
each of these methods to complete the class definition. The implementation part
essentially contains the source code for the methods defined in the declaration
part of the class. Listing 2.11 shows how to create the implementation part for the
1c1_math class defined in Listing 2.6.

CLASS 1cl_math IMPLEMENTATION.
METHOD max.
IF a > b.
result = a,
ELSE.
result = b.
ENDIF.
ENDMETHOD.
METHOD round.
"Implementation goes here...
ENDMETHOD.
METHOD log.
"Implementation goes here...
ENDMETHOD.
METHOD power.
"Implementation goes here...
ENDMETHOD.
ENDCLASS.

Listing 2.11 Example Impl tation for Class Icl_math

¥

Each method defined in the declaration part of a class definition must be imple-
mented inside of a METHOD. . . ENDMETHOD processing block within the implementa-
tion part of the class definition. Notice that no parameter specifications are
included in the method processing block. These are not needed here because the
declaration part of the class has already specified the method interface. Inside the

51

21

2 | Working with Objects

method processing block, you can implement the behavior of the class using reg-
ular ABAP statements in much the same way you would implement a procedural
subroutine or function module. However, note that many obsolete/deprecated
statements cannot be used in ABAP Objects classes. If you're not sure which state-
ments have become deprecated over the years, don’t worry, the compiler will tell
you where you've gone wrong. Specific details concerning individual language
elements are also described in the online help documentation (http://help.
sap.com).

Method implementations can define local variables internally using the DATA key-
word. Local variables are used to support the implementation of the method (e.g.,
as counters, temporary value placeholders, etc.). A general convention for defin-
ing local variable names is to prefix the name with an L. For example, a counter
variable might have the name 1v_counter. This naming convention is useful for
avoiding potential naming conflicts with attributes created in the declaration part
of the class definition. Although it is possible to create a local variable with the
same name as an attribute, this is considered bad form because the local variable
hides the attribute inside the scope of the method. Subtle scoping usages like this
are hard to read and often cause errors that are difficult to debug.

2.2 Creating and Using Objects

Now that you have learned how to define classes in ABAP Objects, let's take a
look at how you can create and use objects based on those class definitions. The
following subsections will show you how to declare object reference variables,
create object instances, and access components of those objects/classes. In Sec-
tion 2.3, Building Your First Object-Oriented Program, we will put all of these
pieces together to create a fully functional program.

2.2.1 Object References

The ABAP runtime environment does not allow direct access to objects inside a
program. Therefore, to obtain access to an object at runtime, you must first
declare an object reference variable. An object reference variable contains a refer-
ence (or pointer) to an object. When we examine the object creation process in
Chapter 4, Object Initialization and Cleanup, you will come to appreciate the

52

http://help

Creating and Using Objects

need for this kind of indirection. For now, it is enough to know that you access
objects through object reference variables that are declared using the syntax
shown in Listing 2.12.

DATA: oref TYPE REF TO some_class.
Listing 2.12 Declaring Object References

The syntax in Listing 2.12 declares an object reference variable called oref that
refers (or points to) objects of type some_class. The REF TO extension to the TYPE
addition of the DATA statement designates that variable oref is an object reference
variable that has the static type some_class. Object reference variables can be
defined in any context where the declaration of variables is permitted (e.g., as
global variables, local variables in subroutines or methods, attributes in a class,
etc.).

2.2.2 Creating Objects

Object instances are created using the CREATE 0BJECT statement. The code snippet
in Listing 2.13 creates an object instance of type some_c1ass and assigns a pointer
to that instance to the object reference variable oref. The object creation and
assignment process is completely controlled by the ABAP runtime environment.
In Chapter 4, Object Initialization and Cleanup, you will see how special methods
called constructors can be used to influence the creation process to perform
attribute initializations, and so on.

DATA: oref TYPE REF TO some_class.
CREATE OBJECT oref.

Listing 2.13 Syntax for Creating Objects

2.2.3 Object Reference Assignments

Object reference variables can be reassigned to point to different object instances
using the MOVE statement or the assignment () operator. When assigning object
reference variables, it is important to remember what you are assigning —
namely references. Figure 2.2 depicts the relationship between two object refer-
ence variables (Ref_1 and Ref_2) and the objects they point to (Object_1 and
Object_2, respectively).

53

2.2

2

Working with Objects

Figure 2.2 Reassigning Object References — Part 1

If, for example, you assign the value of Ref_2 to Ref_1 (see Figure 2.3), then both
reference variables will contain an address that points to the same object instance
(i.e., Object_2). In this case, if there are no other object reference variables point-
ing to Object_1, the object will be orphaned. In Chapter 4, Object Initialization
and Cleanup, you will see how the ABAP runtime environment automatically
cleans up these orphaned objects using a process known as garbage collection.

1]
L

Figure 2.3 Reassigning Object References — Part 2

2.2.4 Working with Instance Components

To interact with an object instance in an ABAP program, you must use an object
reference variable that points to that object instance because direct access to the
object is strictly forbidden. One way to think about the relationship between an
object reference variable and the object instance it refers to is to consider the con-
nection between a remote control and a TV. Here, the remote control provides an
interface that can be used to communicate with the TV (e.g., by pressing buttons).

54

Creating and Using Objects

Similarly, you can use an object reference variable to access instance components.
This is achieved through the use of the object component selector operator. The
object component selector (->) allows you to access the instance components of
an object.

To demonstrate how to work with the object component selector, let’s consider
an example of a Point object in a Cartesian coordinate system. If you've slept since
your last high school geometry class, a Cartesian coordinate system (or plane) is a
two-dimensional grid that contains a horizontal x-axis and vertical y-axis (see Fig-
ure 2.4). You can plot points on a graph by specifying an x-coordinate and a y-
coordinate, for example, point (1,2) in the graph of Figure 2.4.

Figure 2.4 The Cartesian Coordinate System

The code in Listing 2.14 defines a class called 1¢1_point that represents a single
point in a Cartesian coordinate system. The instance method get_distance is
used to calculate the Euclidean distance between two points in the Cartesian
plane. Because get_distance is an instance method, it must be accessed using an
object reference variable. The object pointed to by this object reference variable
implicitly becomes the first point; the second point is provided via the importing
reference parameter im_point2.

CLASS 1cl_point DEFINITION.
PUBLIC SECTION.
DATA: x TYPE i, *X-Coordinate
y TYPE i. *Y-Coordinate

METHODS get_distance IMPORTING im_point2
TYPE REF TO 1cl_point

55

2.2

Working with Objects

EXPORTING ex_distance

TYPE f.
ENDCLASS.
CLASS 1cl_point IMPLEMENTATION.
METHOD get_distance.

* Method-Local Data Declarations:

DATA: 1v_dx TYPE i, "Diff. X

Tv_dy TYPE i. "Diff. Y

* Calculate the Euclidean distance between the points:

Iv_dx = im_point2->x - me->x.
Iv_dy = im_point2->y - me->y.
ex_distance =
SORT((lv_dx * lv_dx) + (lv_dy * lv_dy)).
ENDMETHOD.
ENDCLASS.

Listing 2.14 Using the Object Component Selector — Part 1

To perform the calculation, the x- and y-coordinates for both points must be eval-
uated. To clarify the use of the attributes associated with the implicit first point,
the self-reference variable me was used. Each object instance implicitly contains an
object reference attribute called me. The me reference variable contains a reference
to the object in which it is enclosed. The use of the self-reference variable is
optional for accessing attributes within a method; the system will quietly insert it
behind the scenes when omitted. The self-reference variable is primarily used for
emphasis but is also occasionally used to pass a reference of the current object to
another method, and so on.

The code snippet in Listing 2.15 shows how the object component selector is
used to access public attributes (e.g., x and y) and public methods of class
1c1_point using object reference variables. In this example, two object reference
variables (1r_point_a and 1r_point_b, respectively) are instantiated, assigning
their x- and y-coordinates, and calculating the distance between the points. Meth-
ods are typically invoked in ABAP using the CALL METHOD statement, as evidenced
by the call that you see to method get_distance.

* Local Data Declarations:
DATA: Ir_point_a TYPE REF TO lcl_point,
Ir_point_a TYPE REF TO 1cl_point,

56

Tv_distance TYPE f.

* Instantiate both of the points:
CREATE OBJECT 1r_point_a.
Ir_point_a->x = 1.
Tr_point_a->y = 1.

CREATE OBJECT 1r_point_b.
Tr_point_b->x = 3,
1r_point_b->y = 3.

Creating and Using Objects

* Calculate the distance and display the results:

CALL METHOD 1r_point_a->get_distance

EXPORTING

im_point2 = 1r_point_b
IMPORTING

ex_distance = lv_distance.

WRITE: *Distance between point a and point b is:

lv_distance.

Listing 2.15 Using the Object Component Selector — Part 2

2.2.5 Working with Class Components

During the analysis process, you will sometimes stumble across attributes and
behaviors that are only associated with a class and not necessarily any particular
instance of that class. Such components should be defined as class components. To
demonstrate the use of class components, the 1c1_point class has been revised

from Listing 2.14 to make use of some class components (see Listing 2.16).

CLASS 1cl_point DEFINITION.
PUBLIC SECTION.
CONSTANTS: CO_QUADRANT_1 TYPE
CO_QUADRANT_2 TYPE
CO_QUADRANT_3 TYPE
CO_QUADRANT_4 TYPE

i
i
i
i

VALUE 1,
VALUE 2,
VALUE 3,
VALUE 4.

CLASS-DATA: next_point_no TYPE i. "Next Point Number

DATA: point_no TYPE i,
x TYPE i,

"Point Number
"X-Coordinate

57

2.2

2 | Working with Objects

y TYPE i. "Y-Coordinate

METHODS :
constructor,
get_point_number RETURNING value(re_number)
TYPE 1,
get_quadrant RETURNING value(re_quadrant)
TYPE 1.

CLASS-METHODS:
get_distance IMPORTING im_pointl
TYPE REF TO 1cl_point
im_point2
TYPE REF TO 1cl_point
RETURNING value(re_distance)
TYPE f.
ENDCLASS.

CLASS 1cl_point IMPLEMENTATION.
METHOD constructor.
next_point_no = next_point_no + 1.
point_no = next_point_no.
ENDMETHOD.

METHOD get_point_number,
re_number = point_no.
ENDMETHOD.

METHOD get_quadrant,
IF x> 0.
IFy > 0.
re_quadrant = CO_QUADRANT_1.
ELSE.
re_quadrant = CO_QUADRANT_4.
ENDIF.
ELSE.
IFy > 0.
re_quadrant = CO_QUADRANT_2.
ELSE.
re_quadrant
ENDIF.
ENDIF.

CO_QUADRANT_3.

58

Creating and Using Objects

ENDMETHOD.

METHOD get_distance.

* Method-Local Data Declarations:
DATA: lv_dx TYPE i, "Diff. X
lv_dy TYPE i. "Diff. Y
* Calculate the distance between the two points:

Tv_dx = im_point2->x - im_pointl->x.
lv_dy = im_point2->y - im_pointl-D>y.

re_distance =
SORT((Tv_dx * lv_dx) + (lv_dy * lv_dy)).
ENDMETHOD.
ENDCLASS.

Listing 2.16 Revising Class Icl_point to Use Class Components

As you can see in Listing 2.16, class 1¢1_point has been enhanced to include sev-
eral different kinds of class components. The attribute next_point_no is a class
attribute that is used to keep track of the next available point number that can be
assigned to a point when it is created. To exploit this functionality, a special
method called constructor has been defined. This method is called automatically
by the ABAP runtime environment whenever an object of class 1¢1_point is cre-
ated (see Chapter 4, Object Initialization and Cleanup, for more details). Inside
the constructor method, the next available point number (i.e., next_point_no) is
incremented, and the value is assigned to the instance attribute point_no. The
value of the assigned point number can be retrieved using the get_point_number
method.

In this implementation of class 1¢1_point, a new instance method has also been
created called get_quadrant to return the current quadrant location for the point.
Inside method get_quadrant, the public constant attributes CO_QUADRANT _x are
used to specify the quadrant values rather than using hard-coded literal values.
Within the bounds of class 1¢1_point, the use of the class attributes do not have
to be qualified. However, outside of class 1¢1_point, these public constant
attributes must be accessed using the class component selector (~>) operator.

For example, to access the constant value for Quadrant 1 in the coordinate plane,
you could use the following expression: 1¢c1_point=>CO_QUADRANT_1. The class
component selector can be used to access any type of class component, including

59

2.2

2 | Working with Objects

methods, types, and so on. It is possible to use the class component selector in
conjunction with an object reference variable (i.e., oref=>class_component).
However, this syntax can become confusing as you will see later in the book.
Therefore, this book sticks to the convention of binding the class component
selector to the class name. This convention emphasizes the fact that the compo-
nents are related to the class itself rather than a particular instance of the class.

If you look closely at class 1cl_point, you will notice that the method
get_distance has been redefined as a class method. Because get_distance is no
longer invoked on a particular instance of class 1¢1_point, the method signature
had to be changed to provide importing parameters for both points. Here, keep in
mind that class methods cannot implicitly access instance attributes or instance
methods within the class because there is no me self-reference associated with the
static context of the class. Rather, class methods can only access instance
attributes through object reference variables created locally or passed in as input
parameters. Class methods can, of course, access other class methods and
attributes without any such restrictions.

The example code shown in Listing 2.17 illustrates some of the updated features
of class 1¢1_point. First, four object instances have been created: 1r_point_a,
Ir_point_b, 1r_point_c, and 1r_point_d. Each time an object is created, the con-
structor method is invoked, and a unique point number is assigned using the
class attribute next_point_no. This functionality is evidenced by the call to
method get_point_number for the point referenced by 1r_point_c, which should
produce the expected value 3. Similarly, the call to method get_quadrant should
determine that the point referenced by 1r_point_c is located in Quadrant 3 based
on the assigned x- and y-coordinate values. Finally, the call to class method
get_distance calculates the distance between the points referenced by
Ir_point_c and 1r_point_d. Here, notice the use of the class component selector
in the 1¢1_point=>get_distance method call.

DATA: Ir_point_a TYPE REF TO 1cl_point,
Ir_point_b TYPE REF TO 1cl_point,
Ir_point_c TYPE REF TO 1cl_point,
Ir_point_d TYPE REF TO Icl_point,
1v_point_number TYPE numcl,
1v_quadrant TYPE numcl,
lv_distance TYPE f.

60

* Create some
CREATE OBJECT
Ir_point_a->x
Ir_point_a->y

CREATE OBJECT
Ir_point_b->x
Tr_point_b->y

CREATE OBJECT
Ir_point_c->x
1r_point_c->y

CREATE OBJECT
1r_point_d->x
1r_point_d->y

* Determine the point number & quadrant of point C:

lv_point_number = 1r_point_c->get_point_number().

lv_quadrant = 1r_point_c->get_quadrant().

WRITE: / "Point C has Point #', lv_point_number,
*and resides in quadrant', lv_quadrant.

* Calculate the distance between points C and D:

lv_distance =

1¢)_point=>get_distance(im_pointl = Ir_point_c

WRITE: / *Distance between point C and point D is:

sample point objects:

1r_point_a.
- 2.
=- 3.

Tr_point_b.
- 2.
- -1.

1r_point_c.
- -3,
- -4,

1r_point_d.
- -5,
- 1.

Creating and Using Objects

im_point2 = 1r_point_d).

lv_distance.

Listing 2.47 Working with Class Components

2.2.6 Creating Complex Expressions Using Functional Methods

The use of the CALL METHOD statement is optional for functional methods. This
relaxed syntax supports the use of functional methods as operands in an expres-
sion. When used in an expression, functional methods are invoked, and the value
of the RETURNING parameter is substituted into the expression before it is evalu-

ated.

To demonstrate how this works in code, a simple class called 1¢1_material has
been created in Listing 2.18 that is used to represent a material that might be pro-
duced by a given manufacturer. For the purposes of this basic example, only two

61

2.2

2 | Working with Objects

attributes are defined that store the material's ID number and a flag that indicates
whether or not the material can be dangerous to handle. These instance attributes
are called material_number and hazardous_ind, respectively. The instance
method is_hazardous is a boolean method that returns the value of the
hazardous_ind flag in the returning value parameter re_result. Boolean methods
return a value of either true or false and should normally be named according to
the convention [S_<adjective>.

CLASS 1cli_material DEFINITION.
PUBLIC SECTION.
TYPE-POOLS: abap.
DATA: material_number TYPE string,
hazardous_ind TYPE abap_bool.
METHODS: is_hazardous RETURNING VALUE(re_result)
TYPE abap_beol.

ENDCLASS.

CLASS 1cl_material IMPLEMENTATION.
METHOD is_hazardous.
re_result = hazardous_ind.
ENDMETHOD.
ENDCLASS.

Listing 2.48 Defining a Functional Method for a Material Class

The sample test code in Listing 2.19 creates an object of type 1¢c1_material and
assigns a reference to that object in object reference variable 1r_material. After
the material object is created, some test values are assigned to the instance
attributes material_number and hazardous_ind. In the IF statement, the
is_hazardous method is called to determine whether or not the material should
be handled with care. The results of this method call are returned before the logi-
cal expression is evaluated. Thus, in the example, the logical expression evaluates
to true because the hazardous_ind attribute was initialized to true right before
the is_hazardous method was called. As you would expect, this causes the pro-
gram flow to branch to the IF processing block of the I statement.

DATA: Ir_material TYPE REF TO 1cl_material.
CREATE OBJECT 1r_material.

Ir_material->material_number = *1234567890°'.
Ir_material->hazardous_ind = abap_true.

62

Creating and Using Objects

IF 1r_material->is_hazardous() EQ abap_true.
WRITE: / 'Material’, 1r_material->material_number,
‘should be handled with caution!’.
ELSE.
WRITE: / 'Material’', 1r_material->material_number,
‘can be handled normally."'.
ENDIF.

Listing 2.19 Using Functional Methods in Expressions

In the case of method is_hazardous from Listing 2.19, no parameters were
passed in because there were no importing parameters defined. Of course, if a
functional method does define importing parameters, these parameters must be
provided in the method call. However, the syntax rules for passing these param-
eters are somewhat flexible. For example, if the functional method only provides
a single importing parameter, you can simply provide the importing parameter
using the syntax shown in Listing 2.20.

method_name(actual_parameter).
Listing 2.20 Functional Method Calls with One Parameter

Similarly, if there is more than one importing parameter defined for a functional
method, you can pass the parameters using the form shown in Listing 2.21.

method_name(pl = f1 ... pn = fn).
Listing 2.21 Functional Method Calls with Multiple Parameters

Obviously, the implementation of the is_hazardous method in Listing 2.19 is
extremely contrived. Nevertheless, even a simple example such as this demon-
strates the potential power in being able to wrap the result of a complex calcula-
tion neatly into an ABAP expression. Table 2.2 shows other places where you can
use functional methods in ABAP expressions.

ABAP Expression Where Used

MOVE In the source field of the expression.
Example:
MOVE oref->meth() TO...

Table 2.2 Using Functional Methods in Expressions

63

2.2

2 | Working with Objects

ABAP Expression Where Used

COMPUTE In the arithmetic expressions.
Example:
COMPUTE ¢ = oref->get_a() +
oref->get_b().
or
C=oref->get_a() +oref->get_b().

Logical expressions As an operand in a boolean expression.
(e.g., IF) Example:
IF oref->get_weight() GT 100.

ENDIF.
CASE/WHEN As the operand in a CASE or WHEN statement.

Example:

CASE oref->get_type().
WHEN oref->get_valuel().

ENDCASE.
LOOP AT/DELETE/MODIFY In the WHERE clause.

Example:

LOOP AT itab
WHERE field EQ oref->get_val().

ENDLOOP.

Table 2.2 Using Functional Methods in Expressions (cont.)

2.3 Building Your First Object-Oriented Program

In this section, we will create and test our first object-oriented program. In this
example, we will integrate a local class called 1¢1_date inside of an executable
program (i.e., a report program) named YDATE_DEMO. The 1¢1_date class encapsu-
lates the concept of a date, providing some utility methods for displaying the date
in various formats, and so on.

1. To create the test driver program, start up an SAP session, and open the Object
Navigator (Transaction SE80).

64

Building Your First Object-Oriented Program] 2.3

2. In the object list selection of the Repository Browser, select the PROGRAM
option, enter the name of the program (see Figure 2.5), and press [<].

Repository

0p03t0ry Informaton System
a9 Browser
Transport Organase
@ Test Repository

[Frogam =
[YDATE_DEMO K

Figure 2.5 Creating a Test Driver Program

3. When prompted to create the new Repository object, select the Yes button (see
Figure 2.6).

& Croate Otject 5]

Program YOATE_DEMO coes not edst
Create Object?

ves | No X come |

| «

Figure 2.6 Create Repository Object Confirmation Dialog Box

4. Next, in the CREATE PROGRAM dialog box (see Figure 2.7), you will be prompted
to determine whether or not you want to create a Top Include for your program.
Because we are only creating a simple report, you can de-select the Wirn TOP
INCL. checkbox, and press (<.

Figure 2.7 Create Program Dialog Box

5. In the ABAP PROGRAM ATTRIBUTES dialog box (see Figure 2.8), you can confirm
the various attributes for the program. Here, program type EXECUTABLE PRO-

65

2 | Working with Objects

GRAM has been selected. INCLUDE PROGRAM, MODULE PooL, and so on could
also have been selected — local classes can be defined in many different types
of programs. For now, accept the defaults, and click the SAve button.

[ABAP. Program YDATE_DEMO Change @

Tae |Test Driver Program %o Demonstrate the Use of Local Classes]
Onginaltanguage [EN| Engish

Croated 0610312008 [W000]

3|

¥ Saw |[2 Q| X

Figure 2.8 ABAP Program Attributes Dialog Box

6. In the CREATE OBJECT DIRECTORY ENTRY dialog box (see Figure 2.9), you can spec-
ify a package that you want to create the program in, or you can select LocaL
OBJECT to create the program in the temporary objects ($TMP) package. Objects
created in this package are never transported, so this is a good place to work on
examples.

| Create Object Directory Entry 6]
Object [RITRIPROG| YOATE_0EMO]

B —

Figure 2.9 Create Object Directory Entry Dialog Box

66

Building Your First Object-Oriented Program | 2.3

7. Finally, you should be taken to an ABAP Editor screen where you can start cod-
ing. The source code for the example is given in Listing 2.22.

REPORT YDATE_DEMO.

CLASS 1cl_date DEFINITION.
PUBLIC SECTION.
METHODS:
set_date IMPORTING im_month TYPE numc2
im_day TYPE numc2
im_year TYPE numc4,
as_native_date RETURNING value(re_date)
TYPE sydatum,
display_short_format RETURNING value(re_date)
TYPE string,
display_long_format RETURNING value(re_date)
TYPE string,
get_day_of_week RETURNING value(re_weekday)
TYPE string,
get_month_name RETURNING value(re_month)
TYPE string.

PRIVATE SECTION.

DATA: month TYPE numc2, "Month: 1-12
day TYPE numc2, "Day: 1-31
year TYPE numcd. "Year
ENDCLASS.

CLASS 1cl_date IMPLEMENTATION.
METHOD set_date.
month = im_month.
day = im_day.
year = im_year.
ENDMETHOD.

METHOD as_native_date.
CONCATENATE year month day INTO re_date.
ENDMETHOD.

METHOD display_short_format.

CONCATENATE month day year INTO re_date
SEPARATED BY '/'.

67

Working with Objects

68

ENDMETHOD.

METHOD display_long_format.

Local Data Declarations:
DATA: lv_weekday TYPE string, "Week Day (String)
lv_month TYPE string. "Month Name

Determine the day of the week & the month name:
1v_weekday = get_day_of_week().
lv_month = get_month_name().

Format the date string in longhand format:
CONCATENATE 1v_weekday ", '
lv_month * ' day ', ' year
INTO re_date
RESPECTING BLANKS.

ENDMETHOD.

METHOD get_day_of_week.

Local Data Declarations:

DATA: 1v_date TYPE sydatum, "Date in Native Fmt.
1v_day TYPE p. "Day Integral Value
1t_day_names TYPE STANDARD TABLE

OF t246, "Day Names
Is_day_name TYPE t246. "Day Name

Use the functionality of the ABAP native date type
"D" to determine the week day (as an finteger):
lv_date = as_native_date().
1v_day = lv_date MOD 7.
[F lv_day GT 1.
lv_day = lv_day - 1.
ELSE.
lv_day = lv_day + 6.
ENDIF.

Use the standard function module DAY_NAMES_GET to
determine the name of the derived day value:
CALL FUNCTION 'DAY_NAMES_GET'
TABLES
day_names - 1t_day_names
EXCEPTIONS

*

Building Your First Object-Oriented Program

day_names_not_found = 1
OTHERS =- 2.

READ TABLE 1t_day_names INTO 1s_day_name
WITH KEY wotnr = lv_day.
IF sy-subrc EQ 0.
re_weekday = 1s_day_name-langt.
ENDIF.

ENDMETHOD.

METHOD get_month_name.

Local Data Declarations:
DATA: 1t_month_names TYPE STANDARD TABLE
OF t247, “"Month Names
Is_month_name TYPE t247. “"Month Name

Determine the month name:
CALL FUNCTION 'MONTH_NAMES_GET®

TABLES

month_names = 1t_month_names
EXCEPTIONS

month_names_not_found = 1

OTHERS - 2.

READ TABLE 1t_month_names INTO 1s_month_name
WITH KEY mnr = month.
IF sy-subrc EQ 0.
re_month = 1s_month_name-1tx.
ENDIF.

ENDMETHOD.

ENDCLASS.

* Global Data Declarations:

*

*

DATA: gr_date TYPE REF "Date Object Ref.

TO 1cl_date,
gv_display TYPE string. "Date Display Value

START-OF -SELECTION.
Create an instanc