
James Wood

Object -Or iented Programming
w i th ABAP Objects

vp- p R E S S

O b j e c t - O r i e n t e d P r o g r a m m i n g

I w i t h A B A P O b j e c t s I

Bonn • Boston

Introduction

With all of the hype surrounding object-oriented programming, it can be difficult
to separate the truth from fantasy. Ifyou have picked up this book, it is likely that
you have developed an interest in learning more about what the excitement is all
about. This book provides the answers that you are looking for.

The goal of this book is to teach you how to think about writing ABAP5" software
from an object-oriented point-of-view. After reading this book, you will be
equipped to work with many of the new and exciting ABAP-based technologies
based on ABAP Objects such as Web Dynpro, ABAP Object Services. SAP* Busi-
ness Workflow, and Web Services.

Target Group and Prerequisites

This book is intended for ABAP application developers that have some basic expe-
rience writing ABAP programs using the ABAP Development Workbench. Basic
ABAP language concepts are not covered in this book, so you have not worked
with ABAP before, read ABAP Objects - ABAP Programming in SAP NetWeaver
(SAP PRESS. 2007). Of course, in an introductory book such as this, no prior
object-oriented experience is expected.

The object-oriented extensions to the ABAP programming language (i.e., the
Objects part of ABAP Objects) were made available in SAP R/3 4.6C. Therefore,
you do not have to have the latest version of the SAP NetWeaver Application
Server ABAP (AS ABAP) to start working with most of the object-oriented con-
cepts described in this book. However, additions to the standard that were added
in subsequent releases are pointed out where appropriate.

I fyou want to reproduce the examples in the book and don't have access to an AS
ABAP instance, you can download a trial version from the SAP Developer Net-
work 0http:/ /sdn.sap.com) that you can install on your local PC. From the main
page, select DOWNLOADS • SOFTWARE DOWNLOADS • SAP NETWEAVER MAIN
RELEASES. There, you will find several versions of the AS ABAP that you can install
depending on your preferred operating system, and so on. Each download pack-

15

http://sdn.sap.com

Introduction

age comes with a set of instructions to help you get started. The SAP Developer
Network forums can also provide useful tips if you run into problems.

Structure of the Book

In many ways, this was a veiy difficult book to write. Doing a topic like this jus-
tice requires a healthy balance between theoretical and practical concepts, so
many practical examples are included that illustrate theoretical concepts.

The first part of the book helps get you started quickly by describing basic object-
oriented concepts using a series of simple object-oriented programs. The second
part of the book covers core object-oriented concepts such as encapsulation,
inheritance, and polymorphism. The final part of the book teaches you how to
apply these concepts using the tools and services available in the SAP NetWeaver
Application Server.

The end of each chapter includes a brief tutorial on the Unified Modeling Lan-
guage (UML). These tutorials show you how to express your object-oriented
designs using a graphical notation that is commonly used throughout the indus-
try.

In detail, the chapters provide the following content:

• Chapter 1: Introduction to Object-Oriented Programming
Object-oriented programming is steeped in theoiy. Therefore, before we delve
into the creation of classes, we need to review this theoiy so that you can
understand how eveiything fits together. The concepts described in this chap-
ter provide you with the foundation you need to start developing classes.

• Chapter 2: Working with Objects
This chapter reinforces the theoretical concepts covered in Chapter 1 by allow-
ing you to get your hands dirty by creating some simple object-oriented pro-
grams written in ABAP Objects. Here, we will spend a lot of time looking at the
ABAP Objects syntax for defining classes, methods, and so on. This syntax is
highlighted by a series of examples that illustrate how classes can be used in
practical situations.

• Chapter 3: Encapsulation and Implementation Hiding
This chapter introduces you to two important concepts in object-oriented
design: encapsulation and implementation hiding. First, the importance of
these concepts is demonstrated by observing some problems with code librar-

16

Introduction

ies developed using procedural methods. Then, you will learn how to avoid
these problems in class libraries through the use of access specifiers. Finally,
we will take a step back and look at ways to develop reusable classes using a
technique called design-by-contract.
Chapter 4: Object Initialization and Cleanup

This chapter walks you through the lifecycle of objects from creation to dele-
tion. Along the way. you will learn how to interact with this process to maxi-
mize performance and improve the integrity of your designs.
Chapter 5: Inheritance

One of the potential side effects of good object-oriented designs is the ability to
reuse code. In this chapter, you will learn how to reuse classes using the con-
cept of inheritance. We will also consider an alternative form of class reuse
known as composition.
Chapter 6: Polymorphism

This chapter shows you how to exploit inheritance relationships described in
Chapter 5 using a technique referred to as polymorphism. This discussion is
highlighted by the introduction of interfaces, which are pure elements of
design.

Chapter 7: Component-Based Design Concepts
After covering the basics of object-oriented programming in Chapters 1-6, this
chapter broadens the focus a bit by showing you how the ABAP Package Con-
cept can be used to organize your class libraries into coarse-grained develop-
ment components.

Chapter 8: Error Handling with Exceptions
This chapter explains how to deal with exceptions in your classes and pro-
grams using the ABAP class-based exception handling concept.
Chapter 9: Unit Testing with ABAP Unit

This chapter shows you how to develop automated unit tests using the ABAP
Unit test framework. These tests help you ensure that your classes deliver on
the functionality described in their API contracts.
Chapter 10: Working with the SAP List Viewer

This chapter is the first of three case study chapters that show you how ABAP
Objects classes can be used in many common development tasks. In this chap-
ter, you see how to create interactive reports using the new object-oriented

Introduction

ALV Object Model. This chapter also provides a practical example for working
with events in ABAP Objects.

• Chapter 11: ABAP Object Services
This chapter demonstrates the use of the services provided by the ABAP Object
Services framework. In particular, you will learn how to use these services to
develop persistent classes whose state can be stored in the database without
having to write a single line of SQL.

• Chapter 12: Working with XML
This chapter concludes the case study series by showing you how to work with
XML documents using the object-oriented iXML library provided with the SAP
NetWeaver Application Server. This discussion also provides you with an
opportunity to develop an abstract data type that uses most of the concepts
described throughout the course of the book.

• Chapter 13: Where to Go From Here
In this final chapter, we will look ahead to see how to apply the object-oriented
concepts learned in this book in real-world projects.

• Appendix: Debugging Objects
In this appendix, we will look at how to use the ABAP Debugger tool to debug
object-oriented programs.

Conventions

This book contains many examples demonstrating syntax, functionality, and so
on. Therefore, to distinguish these sections, we use a font similar to the one used
in many integrated development environments to improve code readability:

CLASS l c l . t e s t DEFINITION.
PUBLIC SECTION.

ENDCLASS.

As new syntax concepts are introduced, these statements are highlighted using a
bold listing font (i.e., the PUBLIC SECTION statement in the preceding code snip-
pet).

18

Introduction

Acknowledgments

I am a firm believer in the saying "you are what you read." As such, I am indebted
to so many great authors whose works have planted the seeds from which this
book took form. I have similarly been fortunate enough to have the opportunity
to work with so many talented software development professionals who have
taught me so much. It is my sincere hope that this work represents a small token
of my appreciation for all of their hard work and dedication to the field.

I would like to thank Dr. Stephen Yuan and Dr. Jason Denton for opening my
eyes to the world of software engineering. I would also like to thank Russell Sloan
at IBM and Colin Norton at SAP America for giving me a chance to spread my
wings.

Much of the inspiration from this book came during my time working on a
project at Raytheon. A special thanks to the good people there who allowed me to
play "mad scientist" with their development methodology. I am also grateful for
the fresh perspective offered by members of the OneAero development team at
Lockheed Martin. In particular, I would like to thank Greg Hawkins from SAP
America, who graciously offered valuable insight whenever I needed someone to
look at this from a different angle.

To my editor, Stefan, thank you so much for your support throughout this pro-
cess. I would not have been able to do this without you.

To my Dad. and my Mom who still corrects my grammar to this day, thanks for
always being there for me.

To my children, Andersen and Paige, thank you for all of your love and support.
I will always cherish our writing breaks playing on the floor in my office.

To my wife Andrea. I just want to say how much I feel loved and supported by
you. Without your influence on my life, I would not be where I am today. I con-
sider myself very fortunate to have met someone as special as you.

And finally, to Him who is, and was, and is to come again: Soli Deo Gloria.

James Wood

Principal SAP NetWeaver Software Consultant,
Bowdark Consulting, Inc.. Flower Mound. TX

19

PART I

Bas ics

I
This chapter provides an overview of object-oriented programming from a
conceptual point of view. The concepts described in this chapter lay the

foundation for the remainder of the book.

1 Introduction to Object-Oriented
Programming

Object-oriented programming (OOP) is a programming methodology that is used
to simplify software designs to make them easier to understand, maintain, and
reuse. Like procedural programming before it. OOP represents a different way of
thinking about writing software. The beauty of OOP lies in its simplicity. As you
will see, the expressiveness of OOP makes it easier to deliver quality software
components on time and under budget.

The purpose of this chapter is to introduce you to the basic concepts that you
need to understand to effectively design and develop object-oriented programs.
These concepts apply to most modern OOP languages such as C++, Java, and, of
course, ABAP Objects. This chapter also begins an introduction to the Unified
Modeling Language (UML), which is the de facto object modeling language used
in the industry today.

1.1 The Need for a Better Abstraction

The most important goal for any software development project is to deliver a
product that solves the problem(s) it was designed to address. To be effective in
this endeavor, developers must work collaboratively with business analysts to
formulate a good design approach. Many projects fail at this stage because it can
be very difficult for functional and technical team members to communicate in
terms that are well understood by their counterparts. A way to simplify complex
designs into a form that can be easily interpreted by all project stakeholders — a
common language — is needed. Over the years, numerous attempts have been
made to develop programming languages and development methodologies to

23

1 | Introduction to Object-Oriented Programming

bridge this communication gap. Most of these approaches failed because the lan-
guages and methods were either too hard to learn or not flexible enough to be
used to articulate all of the various viewpoints within the team.

In his book Thinking in Java (Prentice Hall, 2006), Bruce Eckel argues that "the
complexity of the programs you are tiying to solve is directly related to the kind
and quality of abstraction you are ttying to work with." Early programming lan-
guages (e.g., assembly languages) provided a thin layer of abstraction on top of
the underlying machine. Consequently, developers working with those languages
spent almost as much time worrying about "bit twiddling" as they did thinking
about the problem they were trying to solve.

The next-generation procedural programming languages were much more
expressive but still required a considerable amount of translation between the
conceptual problem domain and the physical solution space (i.e., the program
code). This conversion process is not only time consuming but also prone to error
because requirements can easily become lost in translation.

With an object-oriented approach, solutions are designed from the outset in
terms of real-world "objects" modeled from the problem domain. Therefore, it
becomes much easier for business analysts and programmers to exchange infor-
mation and ideas about a design that uses a common domain language as opposed
to one based on technical constructs such as integers, structured data types, pro-
cedures. and so on. The improvements in communication help to bring out hid-
den requirements, identify risks, and reduce confusion. At the end of the day, all
of this helps to improve the quality of the software being developed.

1.2 Classes and Objects

Students learning pure object-oriented languages such as Java are often taught
that "everything is an object." Although this is not necessarily the case in a hybrid
language such as ABAP Objects (where it is still possible to use procedural con-
structs). it is still a good way to start thinking about how to design programs using
an object-oriented approach. Of course, it helps if you know what an object is.

An object is a special kind of variable that has distinct characteristics and behav-
iors. The characteristics (or attributes) of an object are used to describe the state of
an object. For example a car object might have attributes to capture information
such as color, make, or current driving speed. Behaviors (or methods) represent

24

Classes and Objects

the actions performed by an object. In our car example, there might be methods
that can be used to drive, turn, and stop the car.

As you might expect, a considerable amount of the object-oriented design process
is focused on identifying the objects you will need to model a given problem
domain. This process is an inexact science that often requires some trial and error
before you get it right. One fairly typical approach for initiating this process is to
identify the nouns (i.e., a person, place, thing, or idea) used to describe various
aspects of the problem domain. The semantic meaning of these nouns provides a
basis for classifying and defining the objects you need to build a working pro-
gram model.

Early object-oriented researchers drew a parallel between this process and classi-
fication techniques used by biologists to identify and explain the relationships
between plants and animals. The term class was used to describe abstract data
types that could be created to simulate real-world phenomena. Consequently,
most object-oriented languages use the CLASS keyword to define these abstract
data types. A class declaration defines a blueprint that describes how to create
objects. Figure 1.1 shows an example of a class definition for the Car object
described previously.

Car

make Attributes
model
color
drivingSpeed

Methods
dnve()
t u rn ()
stop<)

Figure 1.1 Class Definit ion for the Car Class Example

One good analogy to explain the difference between a class and an object is to
think about the relationship between a set of architectural blueprints and the
houses that are built in reference to those blueprints. In this case, the blueprints
provide instructions that can be used as a guide for constructing new houses (e.g.,
the layout of the floor plan, room dimensions, what materials to use, etc.). Each
of the homes that are built will have its own unique street address along with spe-
cific customizations such as paint color (see Figure 1.2). This uniqueness gives a

25

1 | In t roduct ion to Object-Or iented Programming

home an identity unto itself. In other words, a home is referred to as an instance
of a particular set of blueprints. Of course, although each house is distinctive in its
own way, it also shares certain commonalities with all of the other houses that
have been built using the same set of blueprints. These commonalities are often
exploited by homebuilders looking to reuse materials and assembly expertise in
an effort to reduce costs. You will see how these same concepts can apply to
object-oriented software development in later chapters.

address
color

Address: 123 Main St

Color: Red

Address:

Color: Blue

Address:

Color:

777 Pine St

Yellow

House Object House Object House Object

Figure 1.2 Relationship Between Classes and Objects

Now that you have a basic understanding of the relationship between classes and
objects, let's briefly summarize these concepts in object-oriented parlance. A class
is a blueprint that can be used to construct object instances. Each object instance is
controlled by an object reference variable that is designed to point to objects of a
particular class type. A class's type defines an interface that describes how to com-
municate with object instances of that class. Objects communicate with one
another by sending messages to each other. In object-oriented terms, an object
sends a message to another object by calling a method on that object. In this sense,
you can think of methods as the services provided by a class/object. Because each
object maintains its own internal state information, it is self-aware and therefore
able to process these service requests in context.

Put another way, objects know how to do their job. This innate knowledge allows
you to delegate tasks to objects and trust that they will be carried out correctly.
For this reason. OOP pioneer Alan Kay described object-oriented programs as "a

26

Establishing Boundaries

bunch of objects telling each other what to do by sending messages [to each
other]."1

1.3 Establishing Boundaries

Every healthy relationship needs boundaries, and the relationship between
objects working together inside of a computer system is no different. As an
object-oriented design begins to take shape, each class assumes specific role
assignments within the system. This division of labor helps to simplify the overall
program model, allowing each class to specialize in solving a particular piece of
the problem at hand. Such classes are said to have high cohesion in the sense that
each of the class's operations are closely related in some intuitive way. Defining
boundaries within classes helps to maintain the integrity and cohesiveness of the
program model, making sure that classes are used correctly.

Object-oriented languages allow you to establish boundaries within a class using
the concept of visibility sections. Visibility sections clearly separate a class's inter-

face from its implementation — a process commonly referred to as encapsulation
or implementation hiding (see Figure 1.3).

Class components can be defined in public, private, or protected visibility sections
that control how these components are accessed. The private visibility section is
used to deny access to a class's components from outside of the class. Such com-
ponents can only be accessed from inside the class (e.g., in a method) — they are
completely hidden from the outside world. Components defined in the public
visibility section can be accessed from any context. We will discuss the protected
visibility section in Chapter 5, Inheritance.

1 Quote taken from Thinking in Java (Prentice Hall, 2006).

27

1 | In t roduct ion to Object-Or iented Programming

There are a couple of important reasons for hiding the implementation details of
a class using visibility sections:

• First of all, hiding implementation details makes life easier for clients wanting
to leverage existing classes in their programs. Here, clients only need to famil-
iarize themselves with the components defined in the public interface of a class
— eveiything else is just details. This significantly shortens the learning curve
for client developers wanting to understand how to work with a class by allow-
ing them to concentrate on the what and not the how.

• Secondly, implementation hiding significantly reduces the side effects associ-
ated with making changes to a class. After all, if the internal details of a class
are hidden to the outside world, then you can change the implementation of a
class without having to worry about affecting any client code currently using
that class.

Client developers accustomed to having total access to eveiything within their
programs often find this concept to be highly restrictive (or indeed punitive) at
first glance. However, the important thing to realize here is that the intent is not
to make the user's life more difficult but rather to hide the aspects of the class that
are most likely to change. You can think of a class's public interface as a service
contract between instances of the class (objects) and its clients. A developer of a
class is free to change the underlying implementation of that class in any way
(e.g., to make it run faster, use a different data source, etc.) as long as he does not
violate this contractual agreement. This design approach is commonly referred to
as design by contract2.

Encapsulated classes do not have a lot of dependencies to the outside world.
Moreover, the interactions that they do have with external clients are controlled
through a stabilized public interface. In other words, an encapsulated class and its
clients are loosely coupled. For the most part, classes with well-defined interfaces
can be plugged into another context without a lot of "re-wiring." Therefore, when
designed correctly, encapsulated classes become reusable software assets that
should be able to be leveraged in many contexts. We will investigate some best
practices for designing encapsulated classes in Chapter 3, Encapsulation and
Implementation Hiding.

2 This term was original ly coincd by Bcrtrand Meyer in a technical report entit led Design by Contract
(Interactive Software Engineering, 1986). Wc w i l l consider this design approach in more detail in
Chapter 3. Encapsulation and Implementat ion Hiding.

28

Reuse

Over time, the accumulation of these software assets makes it possible to quickly
compose solutions using quality components that have been proven to work
through exhaustive testing. This composition-based approach to solution design
is similar to various component-based approaches used in other engineering dis-
ciplines. For example, automotive manufacturers simplify the manufacturing pro-
cess by splitting up the design of a car into a series of discrete parts. These parts
compartmentalize various complexities into smaller units that are easier to under-
stand and maintain.

For instance, the intricacies related to properly mixing fuel and air in an internal
combustion engine can be encapsulated into a fuel injector part. The fuel injector
part can then be effortlessly integrated into the engine assembly by a mechanic
without detailed knowledge of complex injection schemes, and so on. Such parts,
when designed with common interfaces, also become interchangeable. This
touches several levels of economics, allowing manufacturers to reuse parts across
product lines and also to replace faulty parts with better ones without requiring
an engine overhaul. We will look at ways to perform component-based software
development in Chapter 7, Component-Based Design Concepts.

1.4 Reuse

One of the most compelling reasons for adopting an object-oriented approach to
program design is the significant capability for reusing code. Although it is easy to
allow yourself to become dazzled by promises of huge productivity gains, it is
important to keep things in perspective. Learning how to develop reusable classes
takes time and experience. The following subsections describe some basic tech-
niques for reusing classes. We will cover each of these topics at length in Chapter
5, Inheritance, and Chapter 6, Polymorphism.

1.4.1 Composition

The easiest way to reuse a class is to simply create an object instance and begin
calling its methods. Classes can also be reused as attributes of new classes that you
are building. This usage type is often referred to as composition, where new
classes are composed from existing classes whose types are used to define mem-
ber attributes, and so on. These classes are aggregates, using existing classes as
building blocks (think LEGO®) for constructing arbitrarily complex assemblies.

29

1 | In t roduct ion to Object-Or iented Programming

Designs based on composition are easy to understand and highly flexible.
Because member objects can be hidden just like any other attribute, it is easy to
change the way you use these objects both at design time and at runtime.

1.4.2 Inheritance

Another way to reuse a class is through inheritance. The concept of inheritance is
a continuation of the classification metaphor used to describe the nature of
classes and their relationships. Here, we are interested in defining specialization
relationships between families of related classes. These relationships begin to
reveal themselves as an object-oriented design matures.

The idea of inheritance is best explained by an example. Let's imagine that you
are working on an object-oriented design for a banking system. Initially, you
come up with a series of classes, including one to represent a bank account. After
studying the requirements further, you discover that there are certain peculiari-
ties unique to checking and savings accounts. At this point, you are faced with a
dilemma. On one hand, you could copy the code you have put together for the
account into new checking and savings account classes. However, this seems
wasteful because this would introduce a lot of redundant code. Another option
would be to use inheritance to describe this specialization relationship. In this
case, you still create new checking and savings account classes, but you create
them as subclasses derived from the original account class (which is the parent or
superclass). The checking and savings account subclasses are said to inherit the
attributes and behaviors (and indeed the type) of the account superclass (see Fig-
ure 1.4). Now, the relevant changes can be made to each of the subclasses inde-
pendently without having to reinvent the wheel.

Superclass

Subclasses

Account

Checking
Account

Savings
Account

Figure 1.4 Inheritance Tree for 8ank Accounts

30

Reuse

It is important to remember that inheritance describes a relationship; it is not
simply a fancy term for copying and pasting one piece of code into another. Ini-
tially, a subclass looks like a clone of the superclass. However, over time, a sub-
class can be extended to add new attributes and methods as needed. Additionally,
changes to the superclass are automatically applied to the subclass (you will see
exceptions to this rule in Chapter 5, Inheritance). It is possible to create class hier-
archies with arbitrarily deep inheritance relationships.

The connection between a subclass and its parent is often described using the
"is a" relationship. Looking at the preceding example, a checking account is an
account, and so on. The is-a relationship is a simple way of saying that the sub-
class and superclass share the same type. As you will recall, a class's type
describes how you can communicate with objects of that class. Therefore,
because objects of a superclass and subclass share the same type, it is possible to
communicate with both of them in the exact same way. Polymorphism exploits
this capability, allowing for code reuse in multiple dimensions.

1.4.3 Polymorphism

The definition of an inheritance relationship implies that a subclass is inheriting
both the type and the implementation of its superclass. In the subclass, however, it
is possible to redefine a method's implementation to further specialize certain
behavior. Redefining a method does not change the interface of the method (i.e.,
the way it is called); it simply changes the behavior inside the method in some
way.

Polymorphism allows you to work with subclasses in the exact same way that you
deal with superclasses. To show how this works, let's consider an example. Figure
1.5 depicts an Employee class hierarchy that might be used to model the types of
employees managed within a certain company. In this case, the Employee super-
class is used to describe the basic characteristics and behaviors for all types of
employees. The three specialized subclasses (HourlyEmployee, CommissionEm-
ployee, and Salar ied Employee) are used to represent employees paid by the
hour, employees working on commission, and salaried employees, respectively.
Also, for the purposes of this example, let's assume that the calculateWage
method has been redefined in each of the subclasses to properly calculate the
employee's wage based on the actual employee type.

31

1 | In t roduct ion to Object-Or iented Programming

Employee

• <at<uUteWage(>

5

HourlyEmploycc CommisslonEmploycc SalariedEmploycc

• ca!<ulateWage() • cakulateWage() » calculateWage()

Figure 1.5 Employee Class Hierarchy

Now, let's imagine that the company wants to use this Employee class hierarchy to
enhance its accounts payable (AP) system by automating the creation of monthly
paychecks. Listing 1.1 shows an example of the pseudo code for an enhancement
such as this.

For Each Employee
Call "calculateWage" to Calculate the Employee's wage
Print the Paycheck

End For
List ing 1.1 An Example of an Algor i thm Using Polymorphism

From an AP perspective, the logic really is that simple. The fact that monthly
wages are calculated differently for each employee type is mainly a problem for
the human resources (HR) department. Managing these concerns in two places
introduces a maintenance nightmare. Fortunately, the concept of polymorphism
provides a way to design the AP system to work with generic Employee types and
not get bogged down with a lot of HR-specific details.

The term polymorphism literally means many forms. In the preceding example,
each subclass represents a different form (or type) of Employee. However, because
the subclasses take part in an inheritance relationship with the Employee super-
class, each subclass is an Employee. In other words, because both the superclass
and subclass share the same public interface, any method that can be called on the
superclass can also be called on the subclass. The AP system can take advantage of
this feature by simply working with generic Empl oyee instances. At runtime, these
instances could be of type f mployee or any of its subclasses. The runtime system
takes care of making sure that the proper method implementation is called. This
is another example of how an object is "smart enough" to know how to do its job.

32

UML Tutorial: Class Diagram Basics

Polymorphism introduces a capability for creating reusable algorithms that are
designed to work on generic objects. In Chapter 6, Polymorphism, we will look at
how to take advantage of this functionality in your designs.

1.5 Object Management

An object-oriented program typically consists of a series of objects that call on
one another to perform various tasks. Because each object is depended on to ful-
fill a specific role within the system, it is important that the object has everything
it needs to do its job when called upon.

To ensure that an object is properly initialized, most object-oriented languages
allow you to create a special method called a constructor that is called whenever a
new object is created. The constructor's job is to make sure that the object is ini-
tialized in a consistent state before it is used.

The lifecycle of an object is typically quite different from traditional program
variables. Often, it is impossible to determine exactly how many instances of an
object you will need in a program until runtime. This presents a challenge to
object-oriented language designers needing to develop a mechanism for manag-
ing program resources. A common solution to this problem for many modern
object-oriented language implementations is to dynamically allocate objects from
a memory heap. This approach is beneficial for the programmer because it takes
the problem of memoiy management and places it squarely on the shoulders of
the runtime system. We will investigate the details of an object's lifecycle in
Chapter 4, Object Initialization and Cleanup.

1.6 UML Tutorial: Class Diagram Basics

Object-oriented software development places a considerable amount of emphasis
on design. Before you can start coding, it is imperative that you have a plan. For
instance, you must figure out what kind of objects you will need as well as how
those objects will interact with one another at runtime.

Object-Oriented Analysis and Design (OOAD) is a software development methodol-
ogy used to analyze system requirements and formulate a system design from an
object-oriented perspective. OOAD practitioners often use graphical modeling

33

1 | In t roduct ion to Object-Or iented Programming

techniques to communicate their designs more effectively. The Unified Modeling
Language (UML) contains a set of graphical notations for building diagrams that
depict various aspects of the system model. The UML is used extensively through-
out the software development industiy, so it is important that you understand
how to use UML diagrams to express and interpret object-oriented designs.

Throughout the remainder of this book, we will examine the usage types of vari-
ous UML diagrams at the end of each chapter. Our discussions will be based on
version 2.0 of the UML standard3. In this chapter, let's begin by looking at the
class diagram. For now, we will simply reinforce the concepts covered in this
introductoiy chapter. In Chapter 5, Inheritance, and Chapter 6, Polymorphism,
more advanced features of class diagrams will be considered.

A class diagram is used to illustrate the static architecture of an object-oriented
system. Here, you can depict the various classes used in the system, as well as
their relationships. Figure 1.6 shows a simple class diagram that describes a
scaled-down model of a sales order system used to process orders for an e-com-
merce website. In the following subsections, we will consider some of the basic
features of a UML class diagram.

1.6.1 Classes
The diagram in Figure 1.6 contains five classes: Order, Order Item, Product, Cus-
tomer, and Address. Classes are represented in class diagrams as rectangular boxes
partitioned into three sections: the top section contains the class name, the mid-
dle section contains the attributes associated with the class, and the bottom sec-
tion contains the operations (or methods) of the class (see Figure 1.7).

Of course, the rules here are not very strict. For example, in the diagram shown
in Figure 1.6, no operations are defined for class Address. This could be because
there were no operations identified for this class when it was designed, or the cre-
ator of this diagram thought that the operations were insignificant when describ-
ing the system architecture. The point is to not get too carried away with the
details because this can complicate the model to the point that the diagram is not
readable.

3 The UMI . standard is maintained by the Object Management Croup (OMG). For more informa-
t ion on the OMG. check out http://www.uml.org.

34

http://www.uml.org

U M L Tuto r ia l : Class D iag ram Basics

Class I
Order

number : Integer (r eadon l y)
c reat ionDate: Oate
t o t a l A m t : M o n e y

create ()
• genera teRece ip t ()
+ c o m p l e t e ()

o rder l tems

Customer

id: Str ing (r e a d o n l y)
f i r s tName: Str ing
las tName: Str ing

• ge tC red i tRa t i ng () (query)

Associat ion i a t i o n ^ j "

address

Orde r l t em

- Id: Integer (r eadon l y)
• q t y : Integer

• g e t S u b t o t a l () : M o n e y

A t t r i b u t e s

Address

Id: Integer (r e a d o n l y)
s t reet : Str ing
c i ty : Str ing
region: Str ing
coun t ry : Str ing

Product

- id: Str ing (r e a d o n l y)
- descr ip t ion : Str ing
- w e i g h t : Float

• g e t P r i c e () : M o n e y
• ge tSh ipp ingCost (in posta lCode: S t r i n g) : M o n e y

M e t h o d s

F igu re 1.6 Basic U M L Class O iagram

Customer

- id : Str ing (r e a d o n l y)
- f i r s tName: Str ing
- l as tName: Str ing

• ge tC red i tRa t i ng () (query)

F i gu re 1.7 U M L Class N o t a t i o n

35

1 | In t roduct ion to Object-Or iented Programming

Some developers new to UML fall into this trap, worrying that there isn't enough
information in their class diagram to start writing code. I fyou find yourself in this
position, remember that the UML provides a multitude of diagrams that can be
used to express the various aspects of your design; class diagrams only tell one
part of the stoiy.

1.6.2 Attributes

Attributes can be specified on the class diagram using the syntax shown in the fol-
lowing Listing 1.2.

v i s i b i l i t y name: type-expression - i n i t i a l - v a l u e
(property-str ing!

List ing 1.2 At t r ibute Notat ion for a UML Class Diagram

You are only required to provide the name when specifying an attribute in a class
diagram. However, the other syntax elements shown in Listing 1.2 can be used to
provide some additional information about the attribute:

• The v i s i b i l i t y of an attribute describes the accessibility of the attribute from
an external perspective. Possible values include + (plus) for public attributes,

(minus) for private attributes, and 0 (sharp) for protected attributes.

• The type expression is used to describe the attribute's type. The UML defines
some standard types such as integer or string, but you can also specify custom
types here. The type-express ion can also be used to express the cardinality of
an attribute (e.g., for an internal table), and the initial value of the attribute (if
one is assigned).

• The property s t r i ng is an optional element that can be used to describe certain
additional properties for an attribute. For example, in the Order I tern class from
Figure 1.6, the id attribute has the readonly property assigned to indicate that
an item's ID number never changes. Values for these properties can be defined
at the discretion of the person designing the class diagram. The primary pur-
pose here is to provide additional details that are helpful to the developer
responsible for actually implementing the class using an OOP language.

Listing 1.3 shows an example of the syntax described in Listing 1.2 using the id
attribute specified in the Order I ten class from Figure 1.6. This syntax declares id
as a private, read-only attribute of type Integer.

36

UML Tutorial: Class Diagram Basics

- id: Integer I readonly I
List ing 1.3 An Example of an At t r ibute Defini t ion

1.6.3 Operations
Operations can be expressed using the syntax shown in Listing 1.4.

v i s i b i l i t y name(parameter-list) : return-type
(property-str ing!

List ing 1.4 Operation Notat ion in a UML Class Diagram

For brevity's sake, developers will often just specify the name of an operation
when creating a class diagram. The remaining optional syntactical elements from
Listing 1.4 are typically used strategically to emphasize a certain aspect of the
operation:

• The v i s i b i l i t y of an operation defines its accessibility. Possible values include
+ (plus) for public operations, (minus) for private operations, and H (sharp)
for protected operations.

• The parameter 1 is t in parentheses can be used to specify a comma-separated
list of parameters for the operation. Each parameter is of the form shown in
Listing 1.5.

Here, kind signifies the type of parameter. Valid values include in for

inbound parameters passed by value, out for outbound parameters passed

by value, and inout for inbound parameters passed by reference.

The name token symbolizes the parameter name.

Each parameter can optionally have a type associated with it using the type
token. The type can be a generic type or a type specific to a particular pro-
gramming language.

Finally, you can specify an initial value for the parameter using the
default value expression.

kind name : type - default-value

List ing 1.5 Specifying the Parameters of an Operat ion

• The return - type element is used to specify the data type of values returned by
functional operations.

37

1 | In t roduct ion to Object-Or iented Programming

• The optional p roper ty -s t r ing indicates certain properties assigned to an oper-
ation. An example of this is the I query! property string assigned to the get-
Credi tRating operation of class Customer. Such operations are read-only oper-
ations that do not alter the state of the object. Applying these property strings
can give hints to aid the developer in implementing the class in a particular
programming language.

An example of the syntax described in Listing 1.4 is given in Listing 1.6. This
example declares a public operation called getShippingCost that receives a single
inbound parameter called postal Code (which is of type Str ing). The operation
returns a value of type Money to represent the derived shipping cost.

+ getShippingCostUn postalCode: S t r ing) : Money

List ing 1.6 An Example of an Operat ion Defini t ion

1.6.4 Associations

The lines drawn between classes in a class diagram represent a type of association.
You can think of an association as another way to specify an attribute for a class.
For example, the directed line drawn between the Customer and Address classes
in Figure 1.6 describes an attribute of type Address for class Customer. The arrow
in the association between classes Customer and Address indicates that instances
of class Address can be reached through an attribute defined in class Customer.

I f the association line had contained arrows pointing in both directions, then the
association would have been bidirectional. In this case, an attribute of type Cus-
tomer would also have been defined for class Address, making it possible to nav-
igate between attributes in both directions. The numbers affixed to each endpoint
represent the cardinality of the association from the perspective of the nearby
class (see Table 1.1). For example, in Figure 1.6, the association between classes
Order and Order Item denotes a one-to-many relationship between an order and its
items. In this case, an order can contain zero or more items, and any given item
can exist for exactly one order.

At this point, you might be wondering why you would need to build an associa-
tion when you could just use a simple attribute instead. There is no hard-and-fast
rule for using one approach instead of the other. However, a good rule of thumb
to apply here is to use an association whenever you are using composition to
reuse a class inside of another class. This illustrates the composition relationship

38

Summary

more clearly, and makes it easier to rework the diagram as you experiment with
your class model.

Cardinality Description

0 . . 1 Zero o r one instances o f a class

1 Exactly one instance o f a class

* Zero o r m o r e instances o f a class

m. . n A range o f instances w i t h l o w e r / u p p e r bounds (e.g., 2 . .4)

Table 1.1 UML Cardinality Notat ion

1.6.5 Notes

You can add comments to a UML diagram using notes. Notes are represented
using an element that resembles a sticky note that has been dog-eared in the top-
right corner (see Figure 1.8). These notes can be used in any kind of UML diagram
to include comments related to a particular element (linked via a dashed line) or
to the diagram as a whole. Notes are often used to help clarify a certain require-
ment that is too difficult to express using standard UML notation.

A U M L N o t e -

Figure 1.8 UML Note Notat ion

1.7 Summary

In this chapter, you learned that a class is a kind of blueprint that can be used to
describe how to create object instances. Classes combine attributes and methods
together to model real-world phenomena in a software setting. Rules and con-
straints for these models can be enforced inside visibility sections that control
how attributes and methods within the class are used. We also considered some
of the basic reuse capabilities associated with classes. Finally, we concluded this
introductoiy chapter by initiating our discussion of the UML and, specifically,
class diagrams.

39

1 | Introduction to Object-Oriented Programming

This chapter covered a lot of ground very quickly. I fyou are finding yourself a lit-
tle lost, don't worry; you will learn much more about each of these topics in the
coming chapters.

4 0

This chapter introduces you to some basic ABAP Objects syntax and
the relevant development tools that you will need to start building object-
oriented programs in ABAP.

2 Working with Objects

In this chapter, we will start getting our hands dirty by creating some simple
object-oriented programs using ABAP Objects. Because the primary unit of devel-
opment for object-oriented programs is the class, we will spend quite a bit of time
examining the ABAP Objects syntax for defining new class types. Classes can be
defined as global ABAP Repositoiy objects (class pools), or locally within an ABAP
program. Throughout the course of this chapter (and the rest of the book), you
will see how to create and use both types of classes through a series of examples.

2.1 Syntax Overview

Before you begin writing object-oriented programs in ABAP, you must first learn
about the syntax that is used to define ABAP Objects classes. An ABAP Objects
class definition consists of a declaration part and an implementation part.

• The declaration part of the class definition is used to define all of the compo-
nents of a class (i.e., attributes, methods, etc.).

• The implementation part of the class definition is used to provide implementa-
tions for the methods specified in the declaration part of the class definition.

In the following subsections, you will learn about the ABAP statements used to
define local classes in an ABAP program. However, as you study these statements,
keep in mind that the same syntax is being generated "behind the scenes" in the
Class Builder tool when you edit global classes. You will see evidence of this in
Section 2.4.5, Editing the Class Definition Section Directly.

41

2 | Work ing w i t h Objects

2.1.1 Defining Classes

Listing 2.1 demonstrates the syntax used to define a local class called
Icljnyclass. The CLASS DEFINITION statement is used to describe the properties
and structure of the class. This example only declares the properties of the compo-
nents of the class (e.g., attributes, method interfaces, etc.) — the implementation
part comes later. The components of a class can be created within three visibility
sections: the PUBLIC SECTION, the PROTECTED SECTION, or the PRIVATE SECTION. We
will discuss these visibility sections in much more detail in Chapter 3, Encapsula-
tion and Implementation Hiding. The discussion of the various [class_options]
that can be applied to the CLASS DEFINITION statement is deferred to Chapter 3.
Encapsulation and Implementation Hiding, Chapter 4, Object Initialization and
Cleanup, and Chapter 5, Inheritance, where these optional features are described
in context.

CLASS Icljnyclass DEFINITION [class_opt1ons].
PUBLIC SECTION.

[components]
PROTECTED SECTION.

[components]
PRIVATE SECTION,

[components]
ENDCLASS.

List ing 2.1 ABAP Class Definit ion Part Syntax

2.1.2 Declaring Components

The properties of a class are specified through its component definitions. You can
define two different types of components within a class: instance components and
class components.

• Instance components define the internal state and behavior of individual
object instances. For example, an Employee class might have an instance
attribute called id that uniquely identifies an employee within a company.
Each instance of class Employee maintains its own copy of attribute id, which
has a distinct value.

• A class component (or static component) is valid for all instances of a class. You
use class components whenever it makes sense to share a component across all
object instances.

42

Syntax Overview

All of the component names within a class belong to the same namespace. There-
fore, for example, it is not possible to define an attribute and a method using the
same name — even if they belong to different visibility sections. The following
subsections describe the types of components that can be created within an ABAP
Objects class.

Attributes

Attributes are used to describe the internal state of an object (or class). This state
is represented in the form of data fields that can be declared using any valid ABAP
data type.

• Instance attributes are declared using the familiar DATA keyword. These
attributes define the instance-specific state of the object.

• Class attributes can be declared using almost the exact same syntax as that used
to declare instance attributes. The only difference is the use of the CLASS-DATA
keyword in lieu of the normal DATA keyword. All object instances share a single
copy of a class attribute, which can come in handy in certain situations (see
Section 2.2.5, Working with Class Components, for more details).

• Within a class definition, you can also create special class attributes called con-
stants. Constants are declared using the CONSTANTS keyword. Constants must be
assigned an initial value when they are declared, and this value cannot be sub-
sequently changed. A constant is shared across all object instances just like nor-
mal class attributes. Constants should be named using the CO_<constant name>
convention.

To demonstrate how to declare various types of attributes, consider the definition
of local class lcl_customer in Listing 2.2. This class declares four private instance
attributes: id, customer_type, name, and address. Some native data types, as well
as some data elements and structures defined in the ABAP Dictionaty, are used to
declare these instance attributes. You can also create additional attributes using
more complex types (e.g., table types, reference types, etc.) to model other prop-
erties of a customer, but you get the basic idea.

CLASS lcl.customer DEFINITION.
PUBLIC SECTION.

CONSTANTS: CO_PERSON_TYPE TYPE C VALUE T .
C0_0RG_TYPE TYPE c VALUE '2'.
CO_GROUP_TYPE TYPE c VALUE ' 3 ' .

43

2 | Work ing w i t h Objects

PRIVATE SECTION.
OATA: id TYPE numclO.

customer_type TYPE c.
name TYPE str ing,
address TYPE adrc.

CLASS-OATA: next_id TYPE numclO.
ENDCLASS.

List ing 2.2 Declaring Attr ibutes in a Class Definit ion

The attribute next. id is a class attribute that keeps track of the next available cus-
tomer ID number. Because all instances of class lcl_customer share the same
copy of next_id, this attribute provides a convenient way for caching the cus-
tomer ID number range. Three public constants. C0_PERS0N_TYPE, C0_0RG_TYPE.
and C0_GR0UP_TYPE. represent the different types of customers supported in this
simple class definition. Constants improve the readability of the class, giving
semantic meaning to literal values that would otherwise have no significance to
the naked eye.

The basic ABAP variable naming rules apply when defining attributes (see the
context-sensitive help for the OATA keyword for more details). Of course, to
improve the readability of the code, it is a good idea to give attributes meaningful
names. Keep in mind that the semantic meaning of these attributes is defined in
terms of the surrounding object (or class), so it is not necessary to qualify each
and every attribute name.

• For instance, notice that the customer ID number attribute is not named
customer_1d. Whenever the id attribute is accessed, it is always accessed in the
context of an object instance of type lcl_customer, so there is no need for such
qualification.

• Also, notice that each of the attributes declared in Listing 2.2 were not given
names with prefixes such as G or L to identify global or local variable scope, and
so on. Because attributes are defined inside of an internal class namespace,
there is only one scope, so this convention is not needed.

• Finally, attribute names share the same namespace as method names. Conse-
quently, you should avoid the use of verbs in attribute names because this can
conflict with potential method names.

4 4

Syntax Overview

Methods

The behavior of an object is expressed through its methods. Typically, methods
are defined using the syntax shown in Listing 2.3.

METHODS my_metho<J
[IMPORTING parameters]
[EXPORTING parameters]
[CHANGING parameters]
[RETURNING VALUE(parameter)]
[EXCEPTIONS...].

List ing 2.3 General Me thod Declaration Syntax

This syntax defines a method called my_method that optionally supports various
types of parameters. You can define the parameter interface for a method using
the IMPORTING, EXPORTING, CHANGING, or RETURNING additions as shown in Listing
2.3. The IMPORTING addition is used to define input parameters that cannot be
changed inside the method. The EXPORTING addition is used to define output
parameters whose value is derived inside the method. Parameters defined using
the CHANGING addition are input/output parameters that can be changed inside the
method. We will explore parameters defined using the RETURNING addition
shortly when we look at functional methods.

Regardless of the type, the syntax for declaring a parameter pi is given in the fol-
lowing Listing 2.4.

I p i I VALUECpl)I TYPE type [OPTIONAL | IDEFAULT d e f l l]

List ing 2.4 Formal Parameter Declaration Syntax

Method parameters should be named according to the SAP naming conventions
shown in Table 2.1.

I P a r a m e t e r T y p e N a m i n g C o n v e n t i o n I

IMPORTING IM_<parameter name>

EXPORTING EX_<parameter name>

CHANGING CH_<parameter name>

RETURNING RE_<parameter name>

Table 2.1 SAP Me thod Parameter Naming Conventions

45

2 | Working wi th Objects

The name of a method, along with its parameter declarations, represents the
method's signature. The signature of a method defines how a method is invoked
(or called). When a method that contains parameters is invoked, the calling pro-
gram passes parameters by matching actual parameters (e.g., local variables in the
calling program, literal values, etc.) in the method call with the formal parameters
declared in the method signature (see Figure 2.1).

Parameters can either be passed into methods by reference (default behavior) or by
value. The VALUEC...) addition implies that a parameter is passed into the
method by value. This means that a copy of the actual parameter is created and
passed to the method. Changes made to value parameters inside the method only
affect the copy; the contents of the variable used as the actual parameter are not
disturbed. In Figure 2.1, the formal parameter a of method c is defined as a value
parameter. Therefore, when the calling program invokes method c. a copy of the
actual parameter x is made, and the value is assigned to the formal parameter a.

Reference parameters contain a reference (or pointer) to the actual parameter
(i.e., variable) that was used in the method call. Changes made to reference
parameters are reflected in the calling program. In Figure 2.1, the formal param-
eter b of method c is defined as a reference parameter. This means that b points
back to the actual parameter used in the method call in the calling program (y in
this case). Therefore, if we change the value of parameter b inside method c, the
change is actually made to the contents of variable y in the calling program.

By default, method parameters are defined as reference parameters. This
improves the performance of method calls because it can be expensive (computa-

46

Syntax Overview

tionally) to make copies of large data objects at runtime whenever a method is
called. In some programming languages, it is considered risky to pass parameters
by reference because it is not always obvious where changes are being made to a
given variable. ABAP Objects eliminates this subtle distinction by restricting
changes to reference parameters passed as IMPORTING parameters to a method. If
a calling program wants to directly manipulate the contents of a variable inside a
method, then it must declare its intentions explicitly by mapping the variable to
a CHANGING formal parameter. Note, however, that this does not apply to refer-
ence types such as object or data reference variables (more on these in Section
2.2.1, Object References).

It is also possible to define Junctional methods in classes. Functional methods are
used to compute a single value (hence the use of the term function). Listing 2.5
shows the syntax used to declare functional methods. Here, as before, you can
declare IMPORTING parameters to provide input to the method. However, notice
that CHANGING or EXPORTING parameters cannot be defined in functional methods
because the functional method only returns a single value - the RETURNING value
parameter. You will sec some interesting uses for functional methods in Section
2.2.6, Creating Complex Expressions Using Functional Methods.

METHODS funcjnethod
[IMPORTING parameters]
RETURNING VALUE(rval) TYPE type
[EXCEPTIONS...].

List ing 2.5 Functional Me thod Declaration Syntax

The math utility class lcl_math in Listing 2.6 declares four methods that demon-
strate the method definition syntax described in this section:

• Method max receives two input value parameters a and b (of type integer) and
returns the greater of the two values as a single exporting value parameter
called resu l t (also of type integer).

• Method round is used to round a floating-point parameter a to the nearest
whole number. In this case, the changing parameter a is passed by reference
and modified directly inside the method.

• Method log applies the logarithmic function to importing parameter x using
base b. Notice that parameter b was defined using the OPTIONAL addition. This
specification implies that callers are not required to pass a value for importing

47

2 | Work ing w i t h Objects

parameter b (which might be defaulted to base 10 inside the method imple-
mentation. for example).

• Method power is a functional method that receives two importing parameters
base and exponent and returns the value of the base raised to the exponent
(value parameter result). The importing parameter exponent is also specified
to contain a default value of 2.

The OEFAULT addition is similar to the OPTIONAL addition in the sense that they
both create optional parameters. However, in the event that a caller does not
pass a value for a DEFAULT parameter, the compiler will implicitly pass an actual
parameter containing the specified default value (e.g., 2 in this example).

CLASS lcl.math DEFINITION.
PUBLIC SECTION.

METHODS:
max IMPORTING VALUE(a) TYPE i

VALUE(b) TYPE i
EXPORTING VALUEtresult) TYPE i .

round CHANGING a TYPE f .
log IMPORTING x TYPE f

b TYPE 1 OPTIONAL
EXPORTING y TYPE f .

power IMPORTING base TYPE f
exponent TYPE f OEFAULT 2

RETURNING VALUE(result) TYPE f .
ENDCLASS.

List ing 2.6 Example Class Demonstrating Method Declarations

Class methods can be declared using almost the exact same syntax as that used to
declare instance methods. The only difference is the use of the CLASS-METHOOS
keyword in lieu of the METHODS keyword used for instance methods.

Method names typically begin with a verb to emphasize the type of behavior that
is being carried out in the method implementation. For example, a method used
to create a sales order in a class called lcl_sales_order might be called create.
Developers accustomed to creating verbose function module names might look at
this name and find it too generic. However, remember that method names belong
to the internal namespace of the class and are not subject to the potential naming
clashes of global Repository objects such as function modules. In class
lc l_sales_order, the method could have been named create_order, but this is

4 8

Syntax Overview

somewhat redundant because the create operation is being invoke on a sales
order object. Getting used to the reflexive relationship between objects and
methods takes a little time, so don't worty if it doesn't seem intuitive to you yet
— there will be plenty of examples that will help you understand this relationship
as we move forward.

Events

Classes can declare and trigger events that are handled by special event handler
methods. Event handler methods can be defined within the same class that
declared the event, or in a completely separate class. Events are defined within a
class using the syntax shown in Listing 2.7.

EVENTS evt
[EXPORTING parameters].

List ing 2.7 Instance Event Declaration Syntax

The syntax for defining EXPORTING formal parameters in events is identical to the
syntax used to define formal parameters for methods (refer to Listing 2.4). How-
ever, it should be noted that these EXPORTING parameters must always be passed
by value. Event parameters are used to pass additional information about the
event to event handler methods. Events also pass an implicit parameter called
sender that contains a reference to the sending object (i.e., the object that raised
the event).

Class events can be created using the CLASS-EVENTS keyword. Other than the dif-
ference in keywords, the syntax for declaring class events is identical to that of
regular instance events (see Listing 2.8).

CLASS-EVENTS e v t [EXPORTING p a r a m e t e r s] .

List ing 2.8 Class Event Declaration Syntax

Events are handled by special event handler methods that arc defined using the
syntax shown in Listing 2.9.

METHODS evt.handler
FOR EVENT evt of CLASS lc1_some_class
(IMPORTING pi p2 . . . [sender]].

List ing 2.9 Event Handler Me thod Declaration Syntax

49

2 | Working wi th Objects

The syntax shown in Listing 2.9 declares an event handler method called
evtj iandler for an event evt defined in class lc1_some_class. The names of the
importing parameters for an event handler method must match the signature of
the exporting parameters defined in the event itself. However, unlike normal
method declarations, you must not specify the types of importing parameters for
event handler methods because this has already been specified in the event dec-
laration.

In Chapter 10, Working with the SAP List Viewer, you will see how all of this fits
together in an example report program. In particular, you will see how to register
event handler methods to listen for events that are triggered using the RAISE
EVENT statement.

Types

Custom data types can be defined within a class using the ABAP TYPES statement.
These types are defined at the class level and are not specific to any object
instance. You can use these custom types to define local variables within meth-
ods, and so on. It is also possible to declare the use of global type pools defined
within the ABAP Dictionaiy using the TYPE POOLS statement.

The definition of class 1cl_person in Listing 2.10 provides an example that dem-
onstrates how types can be declared and used in a class definition. The custom
type ty_name is used to define the person's name attribute. Custom types have the
naming convention iY_<type name>. The class also declares the use of type group
SZADR from the ABAP Dictionaiy. This type group is defined within the SAP Busi-
ness Address Services (BAS) package and contains various types related to
addresses. BAS offers a streamlined API for working with addresses in applica-
tions. Here, type SZADR_ADDR1_C0MPLETE from the SZADR type group is used to
declare the address attribute for the lcl_person class.

CLASS lcl.person DEFINITION.
PRIVATE SECTION.

TYPES: BEGIN OF ty_name.
first_name TYPE char40.
middle_initial TYPE charl.
last_name TYPE char40.

END OF ty_name.
TYPE POOLS: szadr. "Business Address Services

5 0

Syntax Overview

OATA: name TYPE ty_name.
address TYPE szadr_addrl_complete.

ENOCLASS.

List ing 2.10 Defining and Work ing w i th Types

2.1.3 Implementing Methods

In Section 2.1.2, Declaring Components, you learned how to define the various
components of a class. If the declaration part of the class defined methods, then
you must also create an implementation part that provides implementations for
each of these methods to complete the class definition. The implementation part
essentially contains the source code for the methods defined in the declaration
part of the class. Listing 2.11 shows how to create the implementation part for the
lc1_math class defined in Listing 2.6.

CLASS lcl_math IMPLEMENTATION.
HETHOO max.

IF a > b.
result - a.

ELSE.
result - b.

ENOIF.
ENDMETHOD.
HETHOO round.

"Implementation goes here . . .
ENDMETHOD.
HETHOO log.

"Implementation goes here . . .
ENDMETHOD.
HETHOO power.

"Implementation goes here . . .
ENDMETHOD.

ENOCLASS.

List ing 2.11 Example Implementat ion for Class lcl_math

Each method defined in the declaration part of a class definition must be imple-
mented inside of a METHOD.. .ENDMETHOD processing block within the implementa-
tion part of the class definition. Notice that no parameter specifications are
included in the method processing block. These are not needed here because the
declaration part of the class has already specified the method interface. Inside the

51

2 | Working with Objects

method processing block, you can implement the behavior of the class using reg-
ular ABAP statements in much the same way you would implement a procedural
subroutine or function module. However, note that many obsolete/deprecated
statements cannot be used in ABAP Objects classes. Ifyou're not sure which state-
ments have become deprecated over the years, don't worry, the compiler will tell
you where you've gone wrong. Specific details concerning individual language
elements are also described in the online help documentation (http://help.
sap.com).

Method implementations can define local variables internally using the DATA key-
word. Local variables are used to support the implementation of the method (e.g.,
as counters, temporaiy value placeholders, etc.). A general convention for defin-
ing local variable names is to prefix the name with an i . For example, a counter
variable might have the name lv_counter. This naming convention is useful for
avoiding potential naming conflicts with attributes created in the declaration part
of the class definition. Although it is possible to create a local variable with the
same name as an attribute, this is considered bad form because the local variable
hides the attribute inside the scope of the method. Subtle scoping usages like this
are hard to read and often cause errors that are difficult to debug.

2.2 Creating and Using Objects

Now that you have learned how to define classes in ABAP Objects, let's take a
look at how you can create and use objects based on those class definitions. The
following subsections will show you how to declare object reference variables,
create object instances, and access components of those objects/classes. In Sec-
tion 2.3, Building Your First Object-Oriented Program, we will put all of these
pieces together to create a fully functional program.

2.2.1 Object References

The ABAP runtime environment does not allow direct access to objects inside a
program. Therefore, to obtain access to an object at runtime, you must first
declare an object reference variable. An object reference variable contains a refer-
ence (or pointer) to an object. When we examine the object creation process in
Chapter 4, Object Initialization and Cleanup, you will come to appreciate the

52

http://help

Creating and Using Objects | 2 . 2

need for this kind of indirection. For now. it is enough to know that you access
objects through object reference variables that are declared using the syntax
shown in Listing 2.12.

OATA: oref TYPE REF TO some_class.
List ing 2.12 Declaring Object References

The syntax in Listing 2.12 declares an object reference variable called oref that
refers (or points to) objects of type some.class. The REF TO extension to the TYPE
addition of the DATA statement designates that variable oref is an object reference
variable that has the static type some_class. Object reference variables can be
defined in any context where the declaration of variables is permitted (e.g., as
global variables, local variables in subroutines or methods, attributes in a class,
etc.).

2.2.2 Creating Objects

Object instances are created using the CREATE OBJECT statement. The code snippet
in Listing 2.13 creates an object instance of type some_cl ass and assigns a pointer
to that instance to the object reference variable oref. The object creation and
assignment process is completely controlled by the ABAP runtime environment.
In Chapter 4, Object Initialization and Cleanup, you will see how special methods
called constructors can be used to influence the creation process to perform
attribute initializations, and so on.

OATA: oref TYPE REF TO some_class.
CREATE OBJECT oref.
List ing 2.13 Syntax for Creating Objects

2.2.3 Object Reference Assignments

Object reference variables can be reassigned to point to different object instances
using the HOVE statement or the assignment (-) operator. When assigning object
reference variables, it is important to remember what you are assigning —
namely references. Figure 2.2 depicts the relationship between two object refer-
ence variables (Ref_l and Ref_2) and the objects they point to (Object_l and
0bject_2, respectively).

53

2 | Work ing w i t h Objects

Figure 2.2 Reassigning Object References - Part 1

If. for example, you assign the value of Ref_2 to Ref_l (see Figure 2.3), then both
reference variables will contain an address that points to the same object instance
(i.e., 0bject_2). In this case, if there are no other object reference variables point-
ing to Object_l , the object will be orphaned. In Chapter 4, Object Initialization
and Cleanup, you will see how the ABAP runtime environment automatically
cleans up these orphaned objects using a process known as garbage collection.

Figure 2.3 Reassigning Object References - Part 2

2.2.4 Working with Instance Components

To interact with an object instance in an ABAP program, you must use an object
reference variable that points to that object instance because direct access to the
object is strictly forbidden. One way to think about the relationship between an
object reference variable and the object instance it refers to is to consider the con-
nection between a remote control and a TV. Here, the remote control provides an
interface that can be used to communicate with the TV (e.g.. by pressing buttons).

54

Creating and Using Objects | 2.2

Similarly, you can use an object reference variable to access instance components.
This is achieved through the use of the object component selector operator. The
object component selector (->) allows you to access the instance components of
an object.

To demonstrate how to work with the object component selector, let's consider
an example of a Point object in a Cartesian coordinate system. Ifyou've slept since
your last high school geometiy class, a Cartesian coordinate system (or plane) is a
two-dimensional grid that contains a horizontal x-axis and vertical y-axis (see Fig-
ure 2.4). You can plot points on a graph by specifying an x-coordinate and a y-
coordinate, for example, point (1,2) in the graph of Figure 2.4.

H I I
-3 -2 -1

(U)

I I »
1 2 3

Figure 2.4 The Cartesian Coordinate System

The code in Listing 2.14 defines a class called 1cl_polnt that represents a single
point in a Cartesian coordinate system. The instance method get_di stance is
used to calculate the Euclidean distance between two points in the Cartesian
plane. Because get_distance is an instance method, it must be accessed using an
object reference variable. The object pointed to by this object reference variable
implicitly becomes the first point; the second point is provided via the importing
reference parameter im_point2.

CLASS lcl_point DEFINITION.
PUBLIC SECTION.

DATA: x TYPE i .
y TYPE i .

"X-Coordinate
"YCoordinate

METHODS get_distance IMPORTING im_point2
TYPE REF TO lc l .point

55

2 | Work ing w i t h Objects

EXPORTING ex_distance
TYPE f .

ENDCLASS.

CLASS ld_p0 in t IMPLEMENTATION.
METHOD get_distance.

* Method-Local Data Declarations:
DATA: 1v_dx TYPE 1. "Oi f f . X

1v_dy TYPE 1. "Di f f . Y

* Calculate the Euclidean distance between the points:
lv_dx - im_point2->x - me->x.
lv_dy - im_point2>y - me >y.
ex_distance -

SQRT((1v_dx * lv_dx) + (lv_dy * lv_dy)) .
ENDMETHOD.

ENDCLASS.

List ing 2.14 Using the Object Component Selector - Part 1

To perform the calculation, the x- andy-coordinates for both points must be eval-
uated. To clarify the use of the attributes associated with the implicit first point,
the self-reference variable me was used. Each object instance implicitly contains an
object reference attribute called me. The me reference variable contains a reference
to the object in which it is enclosed. The use of the self-reference variable is
optional for accessing attributes within a method; the system will quietly insert it
behind the scenes when omitted. The self-reference variable is primarily used for
emphasis but is also occasionally used to pass a reference of the current object to
another method, and so on.

The code snippet in Listing 2.15 shows how the object component selector is
used to access public attributes (e.g., x and y) and public methods of class
lcl_point using object reference variables. In this example, two object reference
variables (lr_point_a and lr_point_b, respectively) are instantiated, assigning
their x- andy-coordinates, and calculating the distance between the points. Meth-
ods are typically invoked in ABAP using the CALL METHOD statement, as evidenced
by the call that you see to method get_d1 stance.

* Local Data Declarations:
DATA: 1r_point_a TYPE REF TO lcl_point.

1r_point_a TYPE REF TO lc l .po in t .

5 6

Creat ing a n d Us ing Ob jec ts 2 . 2

lv_distance TYPE f .

* I n s t a n t i a t e both of the points:
CREATE 08JECT l r_po in t_a .
l r_point_a->x - 1.
l r_point_a->y - 1.

CREATE OBJECT l r_po in t_b .
l r_point_b->x - 3.
1r_point_b->y - 3.

* Calculate the distance and display the resu l ts :
CALL HETHOO 1r_point_a->get_distance

EXPORTING
im_point2 - l r_point_b

IMPORTING
ex_distance - lv_distance.

WRITE: "Distance between point a and point b I s :
lv_distance.

L i s t i n g 2.15 Us ing the O b j e c t C o m p o n e n t Selector - Part 2

2.2.5 Working with Class Components

During the analysis process, you wil l sometimes stumble across attributes and
behaviors that are only associated with a class and not necessarily any particular
instance of that class. Such components should be defined as class components. To
demonstrate the use of class components, the lc l_po in t class has been revised
from Listing 2.14 to make use of some class components (see Listing 2.16).

CLASS l c l . p o i n t DEFINITION.
PUBLIC SECTION.

CONSTANTS: CO_QUADRANT_l TYPE i VALUE 1.
C0_QUADRANT_2 TYPE i VALUE 2.
CO_QUADRANT_3 TYPE i VALUE 3.
C0_QUADRANT_4 TYPE i VALUE 4.

CLASS-DATA: next_point_no TYPE i . "Next Point Number

DATA: point_no TYPE i . "Point Number
x TYPE i . "XCoordinate

57

2 | W o r k i n g w i t h Ob je c t s

y TYPE i . "Y -Coord ina te

METHODS:
c o n s t r u c t o r .
get_point_number RETURNING va lue(re_number)

TYPE i .
get_quadrant RETURNING v a l u e (r e _ q u a d r a n t)

TYPE i .

CLASS METHODS:
g e t _ d i s t a n c e IMPORTING i m _ p o i n t l

TYPE REF TO l c l . p o i n t
im_point2

TYPE REF TO l c l . p o i n t
RETURNING v a l u e (r e _ d i s t a n c e)

TYPE f .
ENDCLASS.

CLASS 1C1_point IMPLEMENTATION.
METHOD c o n s t r u c t o r .

next_po in t_no - nex t_po in t_no + 1.
po int_no - n e x t _ p o i n t _ n o .

ENDMETHOD.

METHOD get_point_number .
re_number - p o i n t _ n o .

ENDMETHOD.

METHOD g e t _ q u a d r a n t .
IF x > 0.

IF y > 0.
re_quadrant - CO_QUADRANT_l.

ELSE.
re_quadrant - CO_QUADRANT_4.

ENDIF.
ELSE.

IF y > 0 .
re_quadrant - CO_OUADRANT_2.

ELSE.
re_quadrant - CO_QUADRANT_3.

ENDIF.
ENDIF.

5 8

Creating and Using Objects | 2 .2

ENDMETHOD.

HETHOO get.distance.
* Method-Local Data Declarations:

OATA: 1v_dx TYPE i . "D i f f . X
1v_dy TYPE i . "D i f f . Y

* Calculate the distance between the two points:
lv_dx - im_point2->x - im_pointl->x.
lv_dy - 1m_point2->y - im_pointl->y.

re_distance -
SQRT((1v_dx * 1v_dx) + (lv_dy * lv_dy)) .

ENDMETHOD.
ENOCLASS.

List ing 2.16 Revising Class IcLpoin t to Use Class Components

As you can see in Listing 2.16, class lc l .point has been enhanced to include sev-
eral different kinds of class components. The attribute next_point_no is a class
attribute that is used to keep track of the next available point number that can be
assigned to a point when it is created. To exploit this functionality, a special
method called constructor has been defined. This method is called automatically
by the ABAP runtime environment whenever an object of class lcl_point is cre-
ated (see Chapter 4, Object Initialization and Cleanup, for more details). Inside
the constructor method, the next available point number (i.e., next_point_no) is
incremented, and the value is assigned to the instance attribute point_no. The
value of the assigned point number can be retrieved using the get_point_number
method.

In this implementation of class icl_point, a new instance method has also been
created called get_quadrant to return the current quadrant location for the point.
Inside method get_quadrant, the public constant attributes CO_QUADRANT_x are
used to specify the quadrant values rather than using hard-coded literal values.
Within the bounds of class lcl_point, the use of the class attributes do not have
to be qualified. However, outside of class lcl_point, these public constant
attributes must be accessed using the class component selector (- » operator.

For example, to access the constant value for Quadrant 1 in the coordinate plane,
you could use the following expression: lcl_point->CO_QUAORANT_l. The class
component selector can be used to access any type of class component, including

59

2 | Working wi th Objects

methods, types, and so on. It is possible to use the class component selector in
conjunction with an object reference variable (i.e., oref->c1ass_component).
However, this syntax can become confusing as you will see later in the book.
Therefore, this book sticks to the convention of binding the class component
selector to the class name. This convention emphasizes the fact that the compo-
nents are related to the class itself rather than a particular instance of the class.

I f you look closely at class lcl_point, you will notice that the method
get_di stance has been redefined as a class method. Because get_distance is no
longer invoked on a particular instance of class lcl_point, the method signature
had to be changed to provide importing parameters for both points. Here, keep in
mind that class methods cannot implicitly access instance attributes or instance
methods within the class because there is no me self-reference associated with the
static context of the class. Rather, class methods can only access instance
attributes through object reference variables created locally or passed in as input
parameters. Class methods can, of course, access other class methods and
attributes without any such restrictions.

The example code shown in Listing 2.17 illustrates some of the updated features
of class lcl_point. First, four object instances have been created: lr_po1nt_a,
lr_point_b, 1 r_point_c, and 1 r_point_d. Each time an object is created, the con-
structor method is invoked, and a unique point number is assigned using the
class attribute next_point_no. This functionality is evidenced by the call to
method get_po1nt_number for the point referenced by 1 r_po1nt_c, which should
produce the expected value 3. Similarly, the call to method get_quadrant should
determine that the point referenced by 1 r_point_c is located in Quadrant 3 based
on the assigned x- and y-coordinate values. Finally, the call to class method
get_distance calculates the distance between the points referenced by
lr_point_c and 1 r_point_d. Here, notice the use of the class component selector
in the lcl_point->get_di stance method call.

OATA: 1r_point_a TYPE REF TO lc l_point .
1r_point_b TYPE REF TO lc l_point ,
1r_point_C TYPE REF TO lc l_point .
1r_point_d TYPE REF TO l c l . p o i n t .
1v_point_number TYPE numcl.
lv_quadrant TYPE numcl.
lv_distance TYPE f .

6 0

Creating and Using Objects | 2 . 2

* Create some sample point objects:
CREATE OBJECT lr_point_a.
lr_point_a->x - 2.
lr_point_a->y - 3.

CREATE OBJECT lr_point_b.
1r_point_b->x - 2.
lr_point_b->y " - 1 .

CREATE OBJECT lr_point_c.
1r_point_c->x - -3 .
lr_point_c->y - -4 .

CREATE OBJECT lr_point_d.
1r_point_d->x - -5 .
lr_point_d->y - 1.

* Determine the point number & quadrant of point C:
1v_point_number - 1r_point_c->get_point_number() .
lv_quadrant - 1r_point_c->get_quadrant() .
WRITE: / 'Point C has Point i f ' . 1 v_point_number.

'and resides in quadrant'. 1v_quadrant.

* Calculate the distance between points C and 0:
lv_distance -

lcl_point->get_distance(im_pointl - lr_point_c
1m_point2 - lr_point_d) .

WRITE: / "Distance between point C and point D is:
lv_distance.

List ing 2.17 Working w i th Class Components

2.2.6 Creating Complex Expressions Using Functional Methods
The use of the CALL METHOD statement is optional for functional methods. This
relaxed syntax supports the use of functional methods as operands in an expres-
sion. When used in an expression, functional methods are invoked, and the value
of the RETURNING parameter is substituted into the expression before it is evalu-
ated.

To demonstrate how this works in code, a simple class called lcl_material has
been created in Listing 2.18 that is used to represent a material that might be pro-
duced by a given manufacturer. For the purposes of this basic example, only two

61

2 | W o r k i n g w i t h O b j e c t s

attributes are defined that store the material's ID number and a flag that indicates
whether or not the material can be dangerous to handle. These instance attributes
are called material_number and hazardous_ind, respectively. The instance
method is_hazardous is a boolean method that returns the value o f the
hazardous_i nd flag in the returning value parameter re_resul t . Boolean methods
return a value of either true or false and should normally be named according to
the convention IS_<adjective>.

CLASS lc l_mater ia l DEFINITION.
PUBLIC SECTION.

TYPE-POOLS: abap.
DATA: material_number TYPE s t r i n g .

hazardous_ind TYPE abap_bool.
METHODS: is_hazardous RETURNING VALUE(re_result)

TYPE abap_bool.
ENDCLASS.

CLASS l c l j n a t e r i a l IMPLEMENTATION.
METHOD is_hazardous.

re_resul t - hazardous_1nd.
ENDMETHOD.

ENDCLASS.

L i s t i n g 2.18 De f in ing a Func t iona l M e t h o d for a M a t e r i a l Class

The sample test code in Listing 2.19 creates an object of type lc l_mater ia l and
assigns a reference to that object in object reference variable I m m a t e r i a l . After
the material object is created, some test values arc assigned to the instance
attributes material_number and hazardous_ind. In the IF statement, the
is_hazardous method is called to determine whether or not the material should
be handled with care. The results o f this method call are returned before the logi-
cal expression is evaluated. Thus, in the example, the logical expression evaluates
to t rue because the hazardous.ind attribute was initialized to true right before
the is_hazardous method was called. As you would expect, this causes the pro-
gram flow to branch to the IF processing block o f the IF statement.

DATA: I m m a t e r i a l TYPE REF TO l c l . m a t e r i a l .

CREATE OBJECT I m m a t e r i a l .
Immater ia l ->mater ia l_number - '1234567890' .
1mmaterial ->hazardous_ind - abap_true.

6 2

Creating and Using Objects | 2 .2

IF Immaterial->is_hazardous() EO abap_true.
WRITE: / 'Ma te r i a l ' . Immaterial->material_number.

'should be handled with caut ion! ' .
ELSE.

WRITE: / ' M a te r i a l ' . 1r_material->material_number.
'can be handled normally. ' .

ENOIF.

List ing 2.19 Using Functional Methods in Expressions

In the case of method is_hazardous from Listing 2.19, no parameters were
passed in because there were no importing parameters defined. Of course, if a
functional method does define importing parameters, these parameters must be
provided in the method call. However, the syntax rules for passing these param-
eters are somewhat flexible. For example, if the functional method only provides
a single importing parameter, you can simply provide the importing parameter
using the syntax shown in Listing 2.20.

method_name(actual_parameter) .
List ing 2.20 Functional Me thod Calls w i t h One Parameter

Similarly, if there is more than one importing parameter defined for a functional
method, you can pass the parameters using the form shown in Listing 2.21.

method_name(pi - f l . . . pn - fn) .
List ing 2.21 Functional Me thod Calls w i t h Mul t ip le Parameters

Obviously, the implementation of the isjiazardous method in Listing 2.19 is
extremely contrived. Nevertheless, even a simple example such as this demon-
strates the potential power in being able to wrap the result of a complex calcula-
tion neatly into an ABAP expression. Table 2.2 shows other places where you can
use functional methods in ABAP expressions.

ABAP Expression Where Used

MOVE In t he source f ie ld o f t he expression.

Example:

MOVE oref >meth() TO...

Table 2.2 Using Functional Methods in Expressions

63

2 | W o r k i n g w i t h O b j e c t s

ABAP Expression Where Used

COMPUTE In the arithmetic expressions.

Example:

COMPUTE c - oref ->get_a() +
oref ->get_b() .

or

C - oref ->get_a() +ore f ->ge t_b () .

Logical expressions

(e.g.. IF)

As an operand in a boolean expression.
Example:

IF oref ->get_weight() GT 100.

ENDIF.
CASE/WHEN As the operand in a CASE or WHEN statement.

Example:

CASE oref ->get_type() .
WHEN oref >get_valuel () .

ENDCASE.

LOOP AT/DELETE/MODIFY In the WHERE clause.

Example:

LOOP AT i t a b

WHERE f i e l d EO ore f ->get_va l () .

ENOLOOP.
Tab le 2.2 Us ing Func t iona l M e t h o d s in Expressions (con t .)

2.3 Building Your First Ob jec t -Or ien ted Program

In this section, we will create and test our first object-oriented program. In this
example, we will integrate a local class called lcl_date inside of an executable
program (i.e., a report program) named YDATE_DEMO. The lcl_date class encapsu-
lates the concept of a date, providing some utility methods for displaying the date
in various formats, and so on.

1. To create the test driver program, start up an SAP session, and open the Object
Navigator (Transaction SE80).

64

Building Your First Object-Oriented Program 2-3

2 . In the object list selection of the Repositoiy Browser, select the PROGRAM

option, enter the name of the program (see Figure 2 .5) . and press L"*3"!.

•ftMiME Repository
6BfrRepof too Browser
ĵftepo-.'tory Informal*.* System

QTJ9 »OWS*<

QT>HR»po-,ilory

|p;c<;r«n 3
|VDATE_0€M0

Figure 2.5 Creating a Test Driver Program

3. When prompted to create the new Repositoiy object, select the YES button (see
Figure 2.6).

Create 00(«Ct •
Program YDATE.DEMO ooes not «mt
Create Otxect?

Yes NO X Cancel |

N « •

Figure 2.6 Create Repository Object Confirmation Dialog Box

4. Next, in the CREATE PROGRAM dialog box (see Figure 2 .7) , you wil l be prompted
to determine whether or not you want to create a Top Include for your program.
Because we are only creating a simple report, you can de-select the WITH TOP

INCL. checkbox, and press Q -

G- C r* ifit P rojran E3 /
Program [mttJCHO

OWN TOP INCL

i l
Figure 2.7 Create Program Dialog Box

5. In the ABAP PROGRAM ATTRIBUTES dialog box (see Figure 2 .8) , you can confirm
the various attributes for the program. Here, program type EXECUTABLE PRO-

65

2 | Work ing w i th Objects

GRAM has been selected. INCLUDE PROGRAM, M O D U L E POOL, and so on could
also have been selected — local classes can be defined in many different types
o f programs. For now, accept the defaults, and click the SAVE button.

LE-ABAP Program MbiDules YDATE_DEMO C M n j e • 1

Tfle Test Drwer Progr»m to Demonstrate l i e Use of Local Classes

Original languag* EN English

Cre>4»4 06/03/2008 JttOOO

Last changed t *

Status

I AJJtioutes /

Typo p*ogr*n 3

SNfeM

Application

AirttiortrjBon Group

Logic* datafrase

S«-'«l>on Kreen U
• e « o f i o < k E Fet*4 port »nOtmtte
0 U m t « J « t n e c w *ctv« • Start using i-arurt

• E X A S E L ^ A 1

Figure 2.8 ABAP Program Attributes Dialog Box

6 . In the CREATE OBJECT DIRECTORY ENTRY dialog box (see Figure 2 . 9) , you can spec-
ify a package that you want to create the program in, or you can select LOCAL

OBJECT to create the program in the temporary objects ($TMP) package. Objects
created in this package are never transported, so this is a good place to work on
examples.

I & Cn»t» QOfrfl Curatory Entry B 7

OtjM wis pros r0ME_een0

MntxXM /

Package u i c E>
Potion RosponwU« Jf iQQ

Ortgnai System

Ongnal language E« Ertgksti

Figure 2.9 Create Object Directory Entry Dialog Box

6 6

Bu i l d i ng Your First O b j e c t - O r i e n t e d Program

7. Finally, you should be taken to an ABAP Editor screen where you can start cod-
ing. The source code for the example is given in Listing 2.22.

REPORT YDATEJJEMO.

CLASS l c l . d a t e DEFINITION.
PUBLIC SECTION.

METHODS:

s e t _ d a t e IMPORTING im_month TYPE numc2
im_day TYPE numc2
im_year TYPE numcl.

a s _ n a t i v e _ d a t e RETURNING v a l u e (r e _ d a t e)
TYPE sydatum.

d i s p l a y _ s h o r t _ f o r m a t RETURNING v a l u e (r e _ d a t e)
TYPE s t r i n g .

d i s p l a y _ l o n g _ f o r m a t RETURNING v a l u e (r e _ d a t e)
TYPE s t r i n g .

get_day_of_week RETURNING va lue (re_weekday)
TYPE s t r i n g .

get_month_name RETURNING va lue (re_month)
TYPE s t r i n g .

PRIVATE SECTION.
DATA: month TYPE numc2.

day TYPE numc2.
year TYPE numc4.

ENOCLASS.

CLASS l c l . d a t e IMPLEMENTATION.
METHOD s e t _ d a t e .

month - im_month.
day - im_day.
year - im_year .

ENDMETHOD.

METHOD a s _ n a t i v e _ d a t e .
CONCATENATE year month day INTO r e _ d a t e .

ENDMETHOD.

"Month: 1 -12
"Day: 1 - 3 1
"Year

METHOD d i s p l a y _ s h o r t _ f o r m a t .
CONCATENATE month day year INTO re_da te

SEPARATED BY ' / ' .

2 | W o r k i n g w i t h Ob jec ts

ENDMETHOD.

METHOD d i s p l a y _ 1 o n g _ f o r m a t .
Local Oata D e c l a r a t i o n s :
DATA: 1v_weekday TYPE s t r i n g . "Week Day (S t r i n g)

lv_month TYPE s t r i n g . "Month Name

Determine the day of the week & the month name:
lv_weekday - get_day_of_week() .
lv_month - get_month_name() .

Format the date s t r i n g i n longhand format :
CONCATENATE 1v_weekday \ 1

lv_month ' ' day ' year
INTO r e . d a t e

RESPECTING BLANKS.
ENDMETHOD.

METHOD get_day_of_week.
Local Data D e c l a r a t i o n s :
DATA: l v_da te TYPE sydatum. "Date in N a t i v e Fmt.

lv_day TYPE p. "Day I n t e g r a l Value
lt_day_names TYPE STANDARD TABLE

OF t ? 4 6 . "Day Names
ls_day_name TYPE t 2 4 6 . "Day Name

Use the f u n c t i o n a l i t y of the ABAP n a t i v e date type
"D" to determine the week day (as an i n t e g e r) :
l v _ d a t e - a s _ n a t i v e _ d a t e () .
1v_day - l v _ d a t e MOD 7.
IF 1v_day GT 1.

1v_day - lv_day - 1.
ELSE.

lv_day - lv_day + 6 .
ENDIF.

Use the standard f u n c t i o n module OAY_NAMES_GET to
determine the name of the d e r i v e d day v a l u e :
CALL FUNCTION 'DAY_NAMES_GET'

TABLES
day_names - l t_day_names

EXCEPTIONS

6 8

Bu i l d i ng Your First O b j e c t - O r i e n t e d Program 2-3

ddy_names_not_found - 1
OTHERS - 2 .

READ TABLE lt_day_names INTO ls_day_name
WITH KEY wotnr - l v_day .

IF sy-subrc EQ 0.
re_weekday - 1s_day_name- langt .

ENDIF.
ENDMETHOD.

METHOD get_month_name.
Local Data D e c l a r a t i o n s :
OATA: 1t_month_names TYPE STANDARO TABLE

OF t 2 4 7 . "Month Names
1s_month_name TYPE t 2 4 7 . "Month Name

Determine the month name:
CALL FUNCTION 'M0NTH_NAMES_6ET'

TABLES
month_names - lt_month_names

EXCEPTIONS
month_names_not_found - 1
OTHERS - 2 .

READ TABLE 1t_month_names INTO 1s_month_name
WITH KEY mnr - month.

IF sy-subrc EQ 0 .
re_month - ls_month_name- l tx .

ENDIF.
ENDMETHOD.

ENOCLASS.

Global Data D e c l a r a t i o n s :
OATA: g r_da te TYPE REF "Date Object Ref .

TO l c l _ d a t e .
gv_d isp lay TYPE s t r i n g . "Date D isp lay Value

START-OF-SELECT ION.
* Crea te an i n s t a n c e of c l a s s l c l _ d a t e :

CREATE OBJECT g r _ d a t e .

* I n i t i a l i z e the date to 9 / 1 3 / 2 0 0 9 :

6 9

2 | Working wi th Objects

CALL METHOD gr_date->set_date
EXPORTING

im_month - ' 9 '
im_day - '13 '
1m_year - '2009*.

* Display the date in shorthand format (e .g . mm/dd/yyyy):
gv_display - gr_date->display_short_format() .
WRITE: / 'Date in shorthand fo rmat : ' . gv_display.

* Display the date in longhand format:
gv_display - gr_date->display_long_format() .
WRITE: / 'Date in longhand fo rmat : ' . gv_display.

L i s t i n g 2.22 Program Y D A T E _ D E M O

As you can see in Listing 2.22, program VDATE_OEMO creates an instance of class
lc l_date, initializes the date value, and displays the date in a couple of different
formats. The output of this program is shown in Figure 2.10.

Test Driver Program to Demonstrate the Use of Local Classes]

Tost Cri¥«r Progra* to Dwonttrat* tha U*a of local Clatsot

5ate in shorthand foraat 99/13/2009
>at« in longhand TorMt Sunday. S«9tMMr 13. 2009

F igu re 2.10 O u t p u t o f Example Program Y D A T E _ D E M O

For demonstration purposes, the definition of class lc l_date is included inside
the main executable program shown in Listing 2.22. In a real-world scenario, you
would probably create an include program to define the local class just as you
would normally do for other type declarations. You should do this partly because
to avoid clutter in the main program, but the primary benefit comes from an
increased opportunity for reuse. Local classes are only visible in the context in
which they arc defined. Therefore, i f you define a local class in an include pro-
gram, then that class can be included in other executable programs, module
pools, and so on. So, i f you want to work with local classes in your programs, it
is highly recommended that you define them in a separate include program. O f
course, normally you should to define such classes as global Repositoiy objects.
You will see how to do that in the following section 2.4, Getting Started with the
Class Builder.

70

G e t t i n g S ta r ted w i t h t h e Class Bu i lder

2.4 Getting Started with the Class Builder

The Class Builder is a fully integrated development environment inside the ABAP
Workbench that can be used to edit global classes within the ABAP Repositoiy.
Most of the time, you will define your classes globally so that they can be reused
in other programs more easily. Therefore, it is important to get comfortable
working with the Class Builder because you will likely be spending a lot of time
there.

2.4.1 Class Pools

Global classes are stored within the ABAP Repositoiy inside of a class pool. A class
pool is a special ABAP program type that defines a single global Repository class
along with related local type definitions used to support the implementation of
the class. Class pools are similar to function groups in the sense that they cannot
be executed directly. Instead, runtime object instances are created in reference to
the global class type using the same CREATE OBJECT statement described in Section
2.2.2, Creating Objects.

2.4.2 Accessing the Class Builder

The Class Builder can be accessed via Transaction SE24, or using the menu path
T O O L S • A B A P W O R K B E N C H • D E V E L O P M E N T • SE24 - CLASS B U I L D E R , as s h o w n i n F i g -

ure 2.11.

TOO*
V G ABAP WorttWKh

t' tJ Oerview
v Q Development

0 SE11 -ABAPO«Mn*y
SOU -Oata Moflelei

l> • User Interface
0 3E38 • ABAP F6K*
0 SE37 • f uncton Bu6J*f

tSE2« • Class Bui<3«r
8E33-C '̂9u,ider

F igu re 2.11 Select ing t h e Class 8u i l de r in t h e SAP Easy Access M e n u

It is also possible to access the Class Builder from within the Object Navigator
(Transaction SE80). Here, you can select the CLASS/INTERFACE entry in the object
list selector drop-down list in the Repositoiy Browser, enter the name of the class
in the corresponding object type field, and click the DISPLAY button. This will load

2 | W o r k i n g w i t h Ob jec ts

the class inside an instance o f the Class Builder that is embedded inside the con-
tent area o f the Object Navigator (see Figure 2.12).

C t m Edit Goto UtilfieKMl Emironmwrt Spfetn Help
D B B g j J f

I O I © 0 © Q 3 Q C i ' Q O a

Class Builder: Display Class CL_ABAP_REGEX

«-Ei@®r«. H i i n a ©ft CD ^ 11 & V Local Twes j lbP implementation j l ^ - Macros j 11 CUss doc

[j ^w iMS Repository = 1 1 Class interface CL_ABAP_RE6EX impiemerted/Acdwe
^Repos i to ry B-owser

^Repos i to ry information System

j£jT33 Browser • i n n n i n j f f f j J , " J l c l E m I I n ? 1 a l 30I3&
^Transpor t Organcer [wsr.od Level tv<« |m [oescnplon

^ T e s t R e p o s e s ^ pOMSrWCTfiR I n t t a m P u b l i f t t Generator) of an Obiecl fo» a Regui.

DESTRUCTOR I n s t a n c P u b U ^ 0e4eie Machine (Internal Oestnjctor;

|Class /interface * * _C0HPILE Ins tancPr i v j (internal usage)

|CL_AB*P_REGEX • $£ CKMEJIATCHER I n s t a m P u b l i A.ss»jnment of a Char StrtngfTaW*

A'|121H|Q]| C3|
I I Object Name It**.

Q CL_ASAP_REOeX Reguu
^ Cj Aitnfrjw

• PATTERN
9 AiJTOHATON
9 LANOU

^ CQM*»IO«S

Patlern
Finite
Locals

• PATTERN
9 AiJTOHATON
9 LANOU

^ CQM*»IO«S

Patlern
Finite
Locals

• PATTERN
9 AiJTOHATON
9 LANOU

^ CQM*»IO«S

Patlern
Finite
Locals

O CONSTRUCTOR
• CREATE_KATCHER

Oenert
Assgn

O DESTRUCTOR D*«e
9 .COMPILE (intern;

I S B n E d 1 = T « 3 3

Figure 2.12 Accessing the Class Builder Inside the Object Navigator

2.4.3 Creat ing Classes

After starting the Class Builder via Transaction SE24, y o u w i l l be presented w i t h
the overv iew screen shown in Figure 2.13.

1. To create a new class in the ABAP Repository, enter the name o f the class in the
OBJECT TYPE field. Class names can be up to 30 characters long and should be
named according to the convent ion shown in Listing 2.23.

(Y | Z | N a m e s p a c e > C L _ < c l a s s _ n a m e >

L i s t i ng 2.23 General Syntax for Defining Global Classes

72

Getting Started with the Class Builder 2.4

OtwrtMx g« gate W K g EnywrnfH 9p»m HHp
0 « i) 0 J M

Class Builder: Initial Screen

ofHv | Own I f g Crm»

Figure 2.13 Class Builder - Initial Screen

Because classcs arc meant to represent some kind of real-world phenomena,
the class_name portion of the naming convention should be made up of
singular nouns. For example, a purchase order class might be called
ZCL_PURCHASE_OROER.

2. After entering the class name, click on the CREATE button. Next, you wi l l be
prompted with the CREATE CLASS dialog box shown in Figure 2.14. Here, you
can enter a short description of the class (DESCRIPTION), the instantiation type
(INSTANTIATION), and the class type (CLASS TYPE). We wi l l discuss the instantia-
tion type in Chapter 4, Object Initialization and Cleanup; for now, accept the
default PUBLIC value.

![?• CI*M* DILI ZCLHELLO_WC>FILD 0 /
CIM* ITL.KUO.WFTO M
0«t<rcOf> TCIICIMS
imianlttcr Put* a

ClMt
® Uw* CUM
O f a*f*e« CiMt

O P«fttiWnl class
OTntClnnAfiVlXi

D'rni

Figure 2.14 Create Class Dialog Box

3. Accept the default value for class type (e.g.. USUAL ABAP CLASS) as well. The
remaining class types are described in Chapter 8, Error Handling with Excep-

73

2 | Work ing w i th Objects

tions, Chapter 11, ABAP Object Services, and Chapter 9, Unit Testing with
ABAP Unit, respectively. The FINAL checkbox is related to inheritance, which is
covered in Chapter 5, Inheritance; for now, leave it de-selected.

4. Finally, the ONLY MODELED checkbox is used to exclude the class from the class
pool that gets saved to the ABAP Repository. This attribute can be used to make
sure that classes in the early stages of development (i.e., modeled classes) are
not used in the runtime environment. Such classes can be implemented later by
selecting CLASS • IMPLEMENT from the menu bar of the Class Editor.

5. When you click the SAVE button, you are prompted with the CREATE OBJECT
DIRECTORY ENTRY dialog box shown in Figure 2.9. Here, you can select the rel-
evant package name (or the local package $TMP) and click the SAVE button to
save the class.

After the class is saved, the new class is displayed in an inactive state in the
Class Editor screen (see Figure 2.15).

OKI Ml torn [MimH sptm mm»
© - y 0 0 © j m 0 0 0 a o s Qu-
ads* Builder: Change Class ZCL_HELLO_WORLO

«r. / u i , „ 1* — • M . < M » i ~
ctm ;ci.«uo.«cfiu ; iwm>nMrmtan

J EK«c*cm|'.| B|IOI->H fiiai^ullMNi 0 WtM llM. - I- Otutfttn B
E
B
E
-

33C

Figure 2.15 Class Editor Screen

2.4.4 Defining Class Components

You can define the components of a global class in the Class Editor part of the
Class Builder as shown in Figure 2.15. The following subsections describe how to
create various types of components within the Class Editor.

74

Get t ing Started w i t h the Class Bui lder

Attributes

Attributes are defined on the ATTRIBUTES tab of the Class Editor. This tab of the
Class Editor provides an entry table in which you can specify all of the various
attributes for a class (see Figure 2.16).

Class interface za_MEuo_¥0M.D H j lmH>n»mid / ln* i c
Properties interfaces , Frier* as ^ J , 1 - ! ! , ! : ! • Methods Events Types AJ.ases

ate te l sM l a w • f iner

iLWW rs'°"w 1
i»S6 instance AttnWePrrvaie

pwo.<jM]r|iypinf ^Associated i»e |
• Type STRIN6 m

Descnpcoo
Output Message VlelloWorV3|

n T

Figure 2.16 Def in ing At t r ibu tes in the Class Editor

The name of an attribute is specified in the ATTRIBUTE column. The LEVEL column
is used to define the declaration type of the attribute. Figure 2.17 shows a list of
possible declaration types available in the input value help for this column. As
you can see. global class attributes can be declared as an INSTANCE ATTRIBUTE, a
STATIC ATTRIBUTE , o r a CONSTANT.

IE" Description (1) 3 Entries found E

r

B a 3 " E 3 E 3 B B l
HUM j Description
0 instance Arnbute
1 Static Aoibute
2 Constant

3£nM«lbund ~~L. L L L . L L L ^

F igure 2.17 Sett ing the Declarat ion Type for an A t t r i bu te

The VISIBILITY column is used to define the visibility section assignment for an
attribute (for a list of possible values, see Figure 2.18).

The TYPING/ASSOCIATED TYPE columns are used to declare the data type for an
attribute. The TYPING field qualifies the type assigned to the attribute by specify-
ing the typing method (see Figure 2.19). These typing methods are described in
more detail in Table 2.3.

75

2 | Working with Objects

&D«5<re«on(l) 3En»*l found 0

r

• | B | M | M | U -
HUM DeKMptl |
2 Putnc
1 ProtMtod
0 PfMW

3 Era-** found

Figure 2.18 Setting the Visibility Area for a Component

l@-P«*tnpttofi<i) 3 EnWM fojr>d

1 r I

n n n n r a ^ ^ H l
HU*0««IK»on|
0 Uk»
1 Trt)«
3 Tip® R»f To

3Erm«itw>1

Figure 2.19 Setting the Typing Method for an Attribute

Typing M e t h o d Description

LIKE Defines an attribute's type by referencing the type associated
with a class attribute from any globally defined class.

TYPE Defines an attribute's type using an A8AP native type or a glo-
bal type defined in the ABAP Dictionary.

TYPE REF TO Defines an attribute's type in reference to an object type (i.e.,
another global class) or a data type (i.e., a data reference).

Table 2.3 ABAP Objects Typing Methods

It is also possible to define an attribute's type directly by clicking on the DIRECT

TYPE ENTRY button in the column to the right of the ASSOCIATED TYPE column. This
button brings you to an A B A P Editor screen where you can specify the attribute
type in the same way that you learned how to define attributes for local classes in
Section 2.1.2, Declaring Components.

In the DESCRIPTION column, you can enter a basic descriptive text that describes
the purpose of the attribute. The INITIAL VALUE column can be used to define an
initial value for elementary attributes in a class.

76

G e t t i n g S t a r t e d w i t h t h e Class B u i l d e r 2 . 4

M e t h o d s

Methods are defined on the M E T H O D S tab in the Class Editor. Here, much like you
saw on the A T T R I B U T E S tab, the Class Editor provides you with an input table for
defining the methods of a class (see Figure 2.20).

J 2 L 2 L
a e o o • » - a f c o a n o © t a

C lass Bu i l de r : C h a n g e C lass ZCL_HELLO_WORLO

SEUifrfrHfllW i I t f l l H H Wfl l l i r " "" -* lG£ j .y m>roi'|[0 CMII»I» i t ? C MKWtmm c i m

M s j a a jHUUi i A!

U I . X U I U lMtv<« W U f\»ll£ Rtfcmtew Htaowertl U m i
•
:

F i g u r e 2 .20 D e f i n i n g M e t h o d s in t h e Class Edi tor

The method name is entered in the M E T H O D column. The L E V E L column allows
you to specify whether the method is an instance method or a static method (see
Figure 2 . 2 1) . In the V I S I B I L I T Y column, you can determine which visibility section
that you want to assign the method to (refer to Figure 2.18 for a list o f possible
visibility section options). You can also enter an optional descriptive text for the
method in the D E S C R I P T I O N column.

l&Destr ip»on<1) 2 Entries found •

n n n r a r a

HUM Description

0 instance Method
1 State Method

2 Entries found

F i g u r e 2.21 Set t ing t h e D e c l a r a t i o n T y p e for a M e t h o d

After you have specified the basic attributes of the method, you can complete its
signature definition by declaring its parameter interface.

7 7

2 | Working wi th Objects

1. To define the parameters for a method, place your cursor on the name of the
method that you want to edit in the METHOD column.

2. Click on the PARAMETERS button in the toolbar above the method input table.
This will open up the METHOD PARAMETERS input screen for the selected method
(see Figure 2.22).

ICTMTOMFTF |
PropertW Incertj

2CI_HEL10_M0RLD ImplemertM I M t o <rc«ttd)

xes Fnenos Mnbtx?? ^fl'.T. T T i H Events Types "

I Momo<3 parameters I Momo<3 parameters 6ETJ*SSA6E S 3
MWiO«Ji I % E « « p t < - f i s ! a jJJBJ X l ^ l l 1

[pjrarrtHK |Type Pass tryvaiue[OMciai Itvp«W) »*EY.oo(Asso<AORT T«* [oefauR value LOTTTRTPOON
RE.RCSSAOE Returning 1 r Type STRIW Returning Waif ago 1

• • Type
• • Type

F igu re 2.22 De f in ing M e t h o d Parameters

3. In the METHOD PARAMETERS input table, you can specify the following:

The name of a parameter in the PARAMETER column; refer to Table 2.1 for a
list of naming conventions.

The TYPE column is used to specify whether the parameter is an importing,
exporting, changing, or returning parameter.

The PASS BY VALUE column contains a checkbox that indicates whether or
not the parameter should be passed by value or by reference.
The OPTIONAL column contains a checkbox that can be used to mark a
parameter as optional when the method is called. When selected, you can
optionally specify a default value for the parameter in the DEFAULT VALUE
column.

The TYPING METHOD/ASSOCIATED TYPE columns are used to define the type of
the parameter in the same way that attribute types are defined on the
ATTRIBUTES tab. You can also enter an optional descriptive text to describe
the parameter in the DESCRIPTION column.

4. After you have finished specifying the method parameters, you can click on the
METHODS button in the toolbar above the method parameters to return to the
normal method editor view.

5. To edit the method's implementation, you can either double-click on the
method name, or click on the SOURCE CODE button (see Figure 2.23).

78

Get t i ng Star ted w i t h t he Class Bui lder

C t t » * MMfeC* ZCl_HEUO>ORtD Impkrner f t

r i n n i s n i r i j . . . i . . i — j n i . u m w M e * * * *
Source Cod* Ed.10f — —

Parameters! Q» ^ B J B i o l 1

- — [leve l > * * ^ | v H i b i i t i ' |w«0-..>d t i p * loes<m*or»
6ETJ1E&SA611 I ns tance Bethoo P u b l i c ««mo. j Descn

Figure 2.23 Navigating to the M e t h o d Source Code Editor

6. In the source code editor, you can implement the method inside of a
METHOD... ENDMETHOO processing block within the ABAP Editor as per usual (see
Figure 2.24) .

Iff"
Method Edit Goto ErMtonmenl H«lp

a l a qq<q o i a a

Class Builder: Class ZCL_HELLO_WORLD Change

B E H S I A I E

T1 P j r u r i r t i r |Type«pe< Desctlplon

Pattern | [P H

VALUE* REJ*ESSAGE> TYPE STRING R t t j r r m g Message

frtt.BtSSAGf

B y « h o d O tT_HrS3AOI . 1
I
3

5

C<_M99<9C

m i t o r t l t o i l

Figure 2.24 Editing a Method Implementation in the ABAP Editor

Events

Events are defined on the EVENTS tab of the Class Editor. Here, y o u are provided

with an input table similar to the ones used to specify components on the

ATTRIBUTES and M E T H O D S tabs (sec Figure 2 . 2 5) .

Class WerTate ZCI .HELIO.WRIO Implemented 'Act * *

. _
m ^ B O x 1 G | \ [& \ DOliJei D F . n e .

I l f rn int | T « * | V M M » | [Oest r ipwn

HESSA6£_CH*R6E0 I n s t a t e Event P u b l i c Message Changed Evert

Figure 2.25 Defining Events in the Class Editor

7 9

2 | Work ing w i t h Objects

1. In the event input table, you can enter the following:

The name of an event in the EVENT column.

The TYPE column is used to specify the declaration type of the event (i.e..
instance event versus static event).

In the VISIBILITY column, you can assign the event to a visibility section in
the class (refer to Figure 2.18 for a list of possible visibility section
options).

The optional DESCRIPTION field can be used to enter a descriptive text about
the event.

2. To declare the parameters for the event, place your cursor on the name of the
target event in the EVENT column, and click the PARAMETERS button in the tool-
bar above the input table. This opens up the EVENT PARAMETERS input screen
shown in Figure 2.26.

Ever* parameters HESSA6£_CIUHSS0
!«• Everts I M B l S l X l ^ t 1
Parameters Optional jTypirtg |Assoc(ateiJType|Defai*vafcie loescnpewi
EX_PRIOft_HS$]Tw« STRIN6 Prior Message

• Type

Figure 2.26 Defining Event Parameters

3. Here, you can specify the exporting parameters of the event in much the same
way thatyou learned how to define method parameters in the previous section.

T y p e s

Custom data types can be defined on the TYPES tab of the Class Editor. As you can
see in Figure 2.27, the TYPES tab provides an input table thatyou can use to spec-
ify the details of the custom types.

1. In the TYPE column, you can enter type names according to the naming conven-
t i o n T Y _ < t y p e name>.

2. The VISIBILITY column is used to assign the custom type to a particular visibility
section with the class (refer to Figure 2.18 for a list of options).

3. The TYPING METHOD/ASSOCIATED TYPE fields arc used to define the type in the
same way that attribute types are defined on the ATTRIBUTES tab.

80

G e t t i n g S t a r t e d w i t h t h e Class B u i l d e r 2.4

P

I rAf.'. F3t Gov. WMjetAT) F

i® ! ^

Ciwlronmenl Oyrtwn HUp

a o q © y a o a o o a n r a © w

C B S

C l a s s B u i l d e r : C h a n g e C l a s s 2 C L _ H E L L O _ W O R L D

• • I (g ® I I S U D S) S I I * L o m T V x I I r t m w T l l D

Ctml r t t f fKe ZCL.HCLLO.MORLO wcMmerted I InKt i t
__ InlMne', frend', Aft-e-.tes Methods Ev«nt»

|TVP«
M c U a j doioei

fvHOiiMTypW Imkkimm
P im* Type

Type
Type

» u i r c c i

•qbeunpion
l\»meTw>e

Direct Type Entry
OF.I1W

Figure 2.27 Def in ing Custom Types in t h e Class Editor

As was the case wi th attributes, it is also possible to specify custom types directly
using the D I R E C T TYPE ENTRY button (see Figure 2 . 2 7) . Clicking on this button takes
you to an ABAP Editor screen that allows you to edit the declaration part o fyour
class for the related visibility area (e.g.. PUBLIC SECTION, PRIVATE SECTION, etc.).

In Figure 2.28, type TY_NAME is declared as a structure containing three compo-
nents to represent the first name, middle initial, and last name, respectively.

Prvi* Section Attn
B frirste ccapOfte.nta of d u i ZC!_Hill,0_KOM. I'
I *"« i » (j i K l i d f o t *»r «ource t i l t *

p r iva te acct lon.

Q types: begin o t TtJUJa.
f i r» t_n«w 'TP* eh*r40,
» l<kHe_ ln l t l a l type char t .
Ia9t_ba»e type char40,

end of ty_naae.

Figure 2.28 Def in ing Custom Types Using Direct Type Entry

Local types can also be defined outside of the class in the class pool. These types
are used to support the creation of local variables in method implementations,
and so on. To define these types, click on the L O C A L TYPES button in the top-level
toolbar of the Class Editor.

Local Inner Class Definitions

The Class Builder also allows you to create local helper classes inside the class
pool. These classes are useful for implementing internal details of the class and

8 1

2 | Working w i th Objects

should be used to simplify the interface of the global class by removing an over-
abundance of private helper methods.

You can edit local classes by clicking on the IMPLEMENTATION button in the top-
level toolbar of the Class Editor. This will take you to an ABAP Editor screen
where you can create local classes using the same local class definition syntax
described earlier in this chapter.

2.4.5 Editing the Class Definition Section Directly

As stated previously, the Class Builder tool quietly generates ABAP Objects class
definition syntax behind the scenes as you edit global classes. You can access the
definition sections of a global class by selecting the menu options GOTO • PUBLIC
SECTION, GOTO • PROTECTED SECTION, a n d GOTO • PRIVATE SECTION, respect ive ly , in

the Class Builder menu bar. For example, if you look closely at the ABAP Editor
screenshot shown in Figure 2.28, you will notice that the custom type TV_NAME is
being edited directly in the PRIVATE SECTION of the global class definition.

2.5 Case Study: Working with Regular Expressions

The demonstrative classes that we have reviewed thus far have been extremely
straightforward and uncomplicated. However, one of the beauties of object-ori-
ented programming is the fact that you can encapsulate complex logic inside of a
class that can be used by programmers who may or may not understand how it
works.

SAP provides many useful global classes in the standard distribution that can be
used right out of the box. An example of this is the regular expression API pro-
vided in classes CL_ABAP_REGEX and CL_ABAP_MATCHER. A regular expression is a
text string that is used to describe a search pattern in text. A regular expression
consists of literal characters and metacharacters. You can think of metacharacters
as a type of shorthand for describing certain character patterns — similar to the
use of the asterisk for representing one or more characters in a search help lookup
(see Figure 2.29). However, regular expressions are much more powerful, provid-
ing a more generalized syntax that can be used to express many different types of
complex text patterns.

82

C a s e S t u d y : W o r k i n g w i t h R e g u l a r E x p r e s s i o n s

Repository into System Fm«JCU*s*ntert*<e

Standard Seieibons

Classfl-rterface cl_abae>_reg'

S tw l Descriptor

Package
Application Component *

Se®ngs 7
ManmimNo o f n t s

. B T j J E ^ m a i a a

F i g u r e 2 . 2 9 U s i n g M e t a c h a r a c t e r s i n a S e a r c h H e l p Q u e r y

An example of a regular expression that could be used to match a telephone num-
ber in the (xxx)xxx-xxxx format is shown in Figure 2.30.

Parenthesis P a r S X s , * *

r l n X A

\ (\ d {3} \) \ d { 3 } - \ d { 4 }

^ T ^ ^ T ^
Match M a t c h Ma tch
Three Three Four

Characters Characters Characters
in the in the in the

Range 0 - 9 Range 0 - 9 Range 0 - 9

F i g u r e 2 . 3 0 R e g u l a r E x p r e s s i o n f o r M a t c h i n g P h o n e N u m b e r s

The report program YREGEX_DEMO shown in Listing 2.24 shows how to use the
ABAP regular expression class libraiy to validate a phone number entered as a
parameter on a selection screen.

REPORT yregex_demo.

SELECTION-SCREEN BEGIN OF BLOCK blk_main .
PARAMETERS:

p_phone TYPE a d _ t l n m b r l .
SELECTION-SCREEN ENO OF BLOCK blk_main .

AT SELECTION-SCREEN ON p_phone.
PERFORM check_phone_number.

83

2 | W o r k i n g w i t h O b j e c t s

START-OF-SELECT ION.
WRITE: / 'You entered: p_phone.

FORM check_phone_number.
* Local Data Declarat ions:

DATA: lr_regex TYPE REF TO cl_abap_regex.
lr_matcher TYPE REF TO cl_abap_matcher.

* Create the regular expression:
CREATE OBJECT 1r .regex

EXPORTING
pat tern - • \ (\ d l 3 l \) \ d l 3) - \ d l 4 | ' .

* Check to see i f the phone number matches the
* regular expression:

CREATE OBJECT lr_matcher
EXPORTING

regex - l r_regex
tex t - p_phone.

IF lr_matcher->match() NE abap_true.
MESSAGE 'Enter phone number in (xxx)xxx-xxxx format . '

TYPE ' E \
ENDIF.

ENDFORM.

L i s t i n g 2.24 Us ing G loba l Classes in A B A P Programs

As you can see in Listing 2.24, you can perform a fairly complex validation with
a handful of statements — the classes perform the heavy lifting. Therefore, even
if you are not yet an expert in creating classes, you can still put classes to work for
you immediately in your programs.

2.6 UAAL Tutor ia l : Ob jec t Diagrams

Section 1.6, UML Tutorial: Class Diagram Basics, showed how class diagrams can
be used to specify the static architecture of an object-oriented system. Most of the
time, these diagrams are straightforward and easy to interpret. However, some-
times the relationship between certain classes is not so intuitive. In these cases,
object diagrams can be used to depict a snapshot or simulation of the actual
objects created in reference to these classes at runtime. Often, just seeing an

84

U M L Tutorial: Object Diagrams

example of how the actual objects are configured at runtime can shed some light
on the nature of complex class relationships.

Figure 2.31 illustrates a portion of a class diagram that shows the recursive aggre-
gation relationship between a bill of material (BOM) document and its items. The
diamond on the Material BOH side of the association is used to indicate that the
BOM is an aggregate, containing 0 or more items.

MaterialBOM

- material
-plant

...
items items

?
Figure 2.31 Class Diagram Showing Material B O M Aggregation

A BOM contains a series of items (or components) that are used to assemble a fin-
ished product. In complex engineering scenarios, it is not uncommon for a BOM
to contain items that are also complex assemblies. Figure 2.32 demonstrates an
object diagram that shows a BOM object for a laptop computer that is being pro-
duced by a computer hardware manufacturer. The laptop object is comprised of
multiple components (e.g., a hard drive, motherboard, LCD display, etc.) The
motherboard object is also an aggregate, containing a CPU and chipset.

As you can see from Figure 2.32, object diagrams are vety similar to class dia-
grams in many respects. However, in an object diagram, the rectangular boxes
represent object instances instead of classes. Figure 2.33 shows the basic notation
for specifying objects in an object diagram. In the top box. you provide the name
of the object as well as the type of class the object is created in reference to. The
lower box is optional, allowing you to provide additional runtime details about
the object (i.e., its current state).

Object diagrams can display as many objects as needed to illustrate the class/
object relationships. The diagram is considered to be a viewport into the system
at a particular point in time. Objects are created and destroyed in programs all of
the time, so it is important not to get hung up on trying to illustrate eveiy possi-
ble object that will be created in the system at runtime. If one diagram cannot

85

2 | W o r k i n g w i t h Objects

fully describe the relationship, additional diagrams can be used to show the pro-
gression of the object configuration as the program continues to run.

Figure 2.32 Object Diagram Showing B O M for a Laptop Computer

Object Name: Class Type

a t t r ibu tes "value*
a t t r ibu tes "value"

Figure 2.33 Object Instance Nota t ion in Object Diagrams

2.7 Summary

At this point, you should have learned enough ABAP Objects syntax to begin
writing object-oriented programs in ABAP. However, although this chapter pro-
vided a nuts-and-bolts description of classes and objects, it only scratched the sur-
face with regards to the potential benefits that can be obtained by adopting an
object-oriented approach to your program designs.

In the next chapter, we will begin to explore some of these features by examining
the concepts of encapsulation and implementation hiding.

8 6

PART II

Core C o n c e p t s

Classes are abstractions that can be used to extend the functionality of a
programming language by introducing user-defined types. Encapsulation
and implementation hiding techniques are used to simplify the way devel-
opers interact with these types, making object-oriented programs easier to
understand, maintain, and enhance. In this chapter, you will learn how to
apply these techniques to your ABAP Objects classes.

3 Encapsulation and Implementation
Hiding

One of the most obvious ways to speed up the software development process is to
leverage pre-existing code. However, while most projects strive to build reusable
code libraries, few actually succeed in delivering modules that can be used out-
side of the context in which they were originally conceived. In most cases, this is
because the module is too lightly coupled with its surrounding environment. Of
course, without clairvoyance, it is difficult to anticipate how and when a given
module might be reused in other contexts. Instead of trying to predict future
usage types, pragmatic developers look for ways to build autonomous compo-
nents that can think and act on their own within a defined set of boundaries.

In this chapter, we will investigate ways to breathe life into objects by learning
how to exploit some of the potential benefits associated with encapsulating data
and behavior together within a class. Along the way, we will explore the use of
access control mechanisms that help to shape the interfaces of these classes to
make them easier to modify and reuse in other contexts.

3.1 Lessons Learned from the Procedural Approach

Contraiy to popular belief, many core object-oriented concepts are based on sim-
ilar notions that are rooted in the procedural programming paradigm. In both dis-
ciplines, the basic goal is to bring order and reliability to the software develop-
ment process. Clearly, there is a lot to be learned from procedural and structured

89

3 | Encapsulation and Implementation Hiding

programming techniques. However, as you will see in this section, there are cer-
tain limitations to the procedural approach that you must overcome to improve
the overall quality of your software designs.

3.1.1 Decomposing Functional Decomposition

Procedural developers typically formulate their program designs using a process
called functional decomposition. This term comes from the mathematics world,
where a mathematical function is broken down into a series of smaller functions
that are easier to understand. From a development perspective, functional
decomposition refers to the process of decomposing a complex program into a
series of smaller modules (or procedures). One common approach for discovering
these procedures is to scan through the verbs used to describe the actions of a pro-
gram within the functional requirements. These actions represent the steps a pro-
gram must take to meet its objectives. After all of the steps have been identified,
they must be composed into a main program that is responsible for making sure
that procedures are called in the right order, and so on. The process of organizing
and refining the main program is sometimes called step-wise refinement.

For small- to medium-sized programs, this strategy works pretty well. However,
as programs start to branch out and grow in complexity, the design tends to
become unwieldy as the main program becomes saddled with too many respon-
sibilities. Much of this burden stems from the fact that the main program must be
accountable for all of the data used by the various procedures.

Ideally, you want to be able to delegate some of these management duties to pro-
cedures, but for that to happen, the procedures need to be smart enough to figure
certain things out on their own — and that requires data. Of course, a main pro-
gram can pass instructions to a procedure via parameters, but the downside to
this approach is that cluttering up a procedure's parameter interface causes it to
be tightly coupled to the calling program that provides the data. These kinds of
dependencies cause all kinds of maintenance problems and also make it much
more difficult to reuse the procedures in other environments. On the other hand,
liberal use of global data within procedures is also dangerous. For example, think
about a program that has a series of procedures that all share and manipulate a
piece of global data. If you arc asked to change the sequence of the procedure
calls, can you be certain that this change will not result in some kind of unpredict-
able data corruption scenario?

90

Lessons Learned f rom the Procedural Approach

As you can see, although functional decomposition helps to break a program
down into smaller chunks (i.e., procedures) that are easier to understand, it does
not necessarily guarantee that a program will hold up to the changing require-
ments that inevitably creep in over time. Clearly, a better way of structuring soft-
ware is needed.

3.1.2 Case Study: A Procedural Code Library in ABAP

To demonstrate some of the problems associated with functional decomposition,
let's consider an example that shows how you might construct a Date utility
libraiy using procedural function groups written in ABAP. Prior to SAP R/3
Release 4.0, most reusable code libraries written in ABAP were built using func-
tion groups. In some respects, function groups are analogous to classes in the
sense thatyou can define global data (attributes) and function modules (methods)
centrally within a function pool inside the ABAP Repositoiy. However, this anal-
ogy breaks down when you consider the fact that you cannot load multiple
instances of a function group inside your program'. This limitation makes it diffi-
cult for function module developers to work with global data in the function
group because additional logic is required to partition the data into separate work
areas (i.e., instances).

The typical workaround for this shortcoming is to store the data locally within the
calling program and create a series of stateless function modules to operate on the
data. Stateless function modules do not have any recollection of prior invoca-
tions; each time thatyou call them, you must pass in all of the data that they will
need to perform their task(s).

Listing 3.1 shows a simple function group called ZOATE.AP ! that defines the Date
libraiy. Normally, this libraiy would contain many other function modules to
maintain the components of the date, display the date in various localized for-
mats, and so on. However, for the purposes of this discussion, it simply describes
a single function module called Z_DATE_SET_OAY that is used to assign the day
value for the date.

1 Whenever y o u call a funct ion module f rom a particular funct ion group inside your program, the
global data f rom the funct ion group are loaded into the memory o f the internal session o f you r
program. Any subsequent calls to funct ion modules w i th in that funct ion group w i l l share the
same global data allocated whenever the first funct ion module was called.

91

3 | Encapsu la t ion a n d I m p l e m e n t a t i o n H i d i n g

FUNCTION-POOL z d a t e . a p i .
FUNCTION z_date_set_month.

ENDFUNCTION.
FUNCTION z_date_set_day.

* Local I n t e r f a c e IMPORTING VALUE (iv_day) TYPE I
* CHANGING (c s . d a t e) TYPE SCALS_OATE

EXCEPTIONS inva l id_date
OATA: lv_month_end TYPE 1. "Last Oay of Month

CASE is_date-month.
WHEN 1.

lv_month_end - 31.
WHEN 2.

ENOCASE.
IF iv_day LT 1 OR iv_day GT 1v_month_end.

RAISE i n v a l i d _ d a t e .
ELSE.

cs_date-day - iv_day.
ENDIF.

ENDFUNCTION.

L i s t i n g 3.1 A S imp le Date Library Bu i l t w i t h Func t ion Croups

The logic inside function module Z_OATE_SET_DAY is pretty straightforward. First,
the value of importing parameter IV_DAY is examined to ensure that the DAY field
in structure CS_0ATE (see Figure 3.1) is not assigned an invalid value based on the
current month assignment (handling leap year situations, etc.). Assuming all of
the validations are passed, the DAY field is updated in the CS_DATE structure; oth-
erwise, an exception is thrown, and the update does not occur.

Now that we have established our simple Date library, let's think about how we
might handle a couple of maintenance scenarios that might pop up over time:

• First, imagine that you are asked to expand the functionality of the Date library
to also keep track of time. Here, you are faced with a dilemma. Changing the
representation of the date (i.e., switching to a structure containing both date
and time components) requires wholesale changes not only to the function
modules but also to the programs that call them.

9 2

Lessons Learned from the Procedural Approach

• Next, consider a program that is using the Date library to output a date in var-
ious formats. You are assigned a defect for this program because it is displaying
invalid date values (e.g., 02 /31/2009) . During your investigation, you discover
that the invalid day value was not set by function Z _ D A T E _ S E T _ D A Y , but rather
by an invalid assignment that was made to the DAY field in the local date struc-
ture maintained in the calling program.

& B B S
| Slrutftjre Edit Goto mim<W) Boat EtMconmert Sptem Help ^ m

o n ~ p m : © Q © • £ » « a o a a n a

Dictionary: Display Structure

• • I M A M . ^ C O G I M M D H I I H ^ ^ I R — Z Z]

Structure SCALS.OATE
Snort Descnpton Oenwal Oate Sfructure

m. v - 7 ' ; y components I Entry helprt reck CiriencQuantfrfleldt

I d I I _ _ |
{RTy [component type |o»> [Length [oecim TsnortOe*tnpt>on

r SC<L YEAR NUHC 4 0 Calendar Year
' r $t»L "CW MOBC 2 0 Calendar norm
' r~ SCAL PAT nunc 2 0 Calendar Day

SOL ccwnMHEft CHAR 20 0Data Container for Adationai Date Er**«

S B ' — m m m

F igu re 3.1 A B A P D ic t i ona ry S t ruc tu re SCALS_DATE

The previous maintenance scenarios demonstrate some serious flaws in our date
libraiy. Because the data object containing the date fields is managed outside of
the function group (i.e., in the calling programs), we cannot control the values
that are assigned to it externally. Within the SCALS_DATF structure definition, the
field DAY is simply a two-digit numeric character with a valid number range of 0 0 -
99; the semantic meaning o f the DAY component is defined within the logic of
function Z _ D A T E _ S E T _ D A Y . Given the amount of effort invested in getting the logic
for function Z_OATE_SET_DAY right, we want to make sure that all updates to the
OAY field pass through this function so that we can avoid data corruption and code
duplication. Moreover, we also need to figure out a way to simplify the function
interface so that changes to the internal data representation of the date do not
affect programs that are already using this Date libraiy in production.

9 3

3 | Encapsulation and Implementat ion Hiding

3.1.3 Moving Toward Objects

The function group ZDATE_API shown in Listing 3.1 is an example of an abstract
data type. An abstract data type defines a set of data along with the operations
that can be performed on that data. For the abstraction to be effective, you must
keep the data and operations as close to one another as possible. In our case
study, this was not the case because programs kept track of the date data locally.
This separation of data and behavior limited the usefulness of the abstraction,
making library use awkward and error prone. These problems become even more
pronounced as the size and complexity of a code library expands.

In many ways, all of the problems that we have encountered in this section can be
traced back to one common theme: poor support for data. This is problematic
because data is the foundation upon which we build our code. This is the reason
procedural programs eventually begin to break apart over time. In the following
sections, we will investigate ways that the OOP paradigm can be used to solve
these problems.

3.2 Data Abstraction with Classes

Recognizing many of the limitations outlined in Section 3.1, Lessons Learned
from the Procedural Approach, software researchers developed the OOP para-
digm from the ground up with a strong emphasis on data and behavior. As you
have already learned, classes encapsulate data (attributes) and behavior (methods)
together inside a self-contained package. Encapsulation improves the organiza-
tion of the code, making object-oriented class libraries much easier to understand
and use than their procedural counterparts.

Think about how clumsy our Date library was in Listing 3.1. Each time we called
function module Z_DATE_SET_DAY, we had to pass it an externally defined struc-
ture containing all of the date data it needed to work with. The interfaces for class
libraries (i.e., method signatures) are much more elegant because object instances
take care of keeping up with the relevant data objects that methods need to do
their jobs. In other words, you don't have to provide a lot of instructions to tell an
object how to do its job — it simply knows how to do it.

Objects created in reference to encapsulated classes take on their own identity,
allowing developers to start thinking about their designs in more conceptual

9 4

Defining Component Visibilities

terms. For example, a Date object would be responsible for maintaining internal
attributes such as month, day, and year. Inside the class definition, we might
choose to store those attributes in a structure of type SCALS_OATE, or as three dis-
tinct integer variables. In cither case, this is only a concern for the developer of a
class libraiy; clients should be blissfully unaware of these minute details. From a
user perspective, the Oate object is a black box that can be used to work with
dates more efficiently.

Using visibility sections (discussed in the next section), you can ensure that oper-
ations on a Date object (such as changing the day, etc.) can only be requested by
sending a message to the object. The message is realized as a method call on the
object. Inside the method implementation, you can apply all of the relevant busi-
ness rules to ensure that the internal state of the object is not compromised.
These business rules give meaning to primitive data types, allowing users of the
class library to concentrate on the abstraction as a whole instead of worrying
about the nitty-gritty details behind it.

Of course, objects arc not magical; it still takes a lot of coding effort to make the
abstraction work. The difference is that we have isolated this complexity inside of
a concept that is much easier to work with.

3.3 Defining Component Visibilities

The term encapsulation refers to the idea of enclosing something inside of a cap-
sule. In object-oriented terms, we are enclosing attributes and methods inside an
object. The verbal imagery associated with words such as capsule implies that we
are setting some kind of boundary between the internal components of a class
and the outside world. The purpose of this boundary is to protect (or hide) the
inner mechanisms of the object that are sensitive to change, and so on.

Most of the time, the most vulnerable parts of an object are its attributes (i.e., the
object's state). However, in this book, we will look at ways to hide any design
decisions that are subject to change. This section describes the ABAP Objects lan-
guage constructs that you can use to establish boundaries within your classes. In
the next section, we will consider how to use these boundaries to build robust
classes that can easily be adapted to ever-changing functional requirements.

95

3 | Encapsulation and Implementat ion Hid ing

3.3.1 Visibility Sections

ABAP Objects provides three visibility sections that can be used to control access
to the internal components of a class: the PUBLIC SECTION, the PROTECTED SECTION,
and the PRIVATE SECTION. Within a class definition, component declarations (e.g.,
attributes, methods, events, types, etc.) must be assigned to one of these three
visibility sections. Listing 3.2 shows a simple class called Icl_v1s1ble with
attributes defined in each of the three visibility sections.

CLASS l c l . v l s i b l e DEFINITION.
PUBLIC SECTION.

DATA: x TYPE i .
PROTECTED SECTION.

OATA: y TYPE i .
PRIVATE SECTION.

DATA: z TYPE i .
ENDCLASS.

List ing 3.2 Defining Class Components in Visibil ity Sections

Components defined within the PUBLIC SECTION of a class are accessible from any
context in which the class itself is visible (i.e., anywhere you can use the class type
to declare an object reference variable). These components make up the public
interface of the class. The P R I V A T E SECTION of a class is used to define components
that are only accessible from within the class itself. For example, if you were to
attempt to compile the code in Listing 3.3,you would receive a compilation error,
indicating that access to a private attribute is not allowed. Here, the private
attribute z can only be accessed inside methods of class l c l . v l s i b l e .

DATA: l r . v i s i b l e TYPE REF TO l c l . v i s i b l e .
CREATE OBJECT I n v i s i b l e .
WRITE: l r _ v i s i b l e - > z .
List ing 3.3 At tempt ing Access to Private Components of a Class

The PROTECTED SECTION defines components that are only accessible within a class
and its subclasses. You will learn more about protected components in Chapter 5,
Inheritance.

You can assign components of global classes to visibility sections using the VISI-
BILITY field on the Class Editor screen (see Figure 3.2).

96

Defining Component Visibi l i t ies

Cuts interface za_HEl.lO_KOM.Ci impteniefitad/AclNt

/ P n » l i r i i mmt»ct« I Fitwxtt Y VTtow Y H m m I

Figure 3.2 Setting the Visibilty of Components in Global Classes

When designing the visibility of class components, it is important thatyou keep
the public interface clean and concise. Users of your class should be on a "need-
to-know basis." In other words, if a user doesn't need direct access to a compo-
nent. there's no need for them to even be concerned with its existence. Declaring
such components with private visibility makes life easier for everyone because
client programmers can concentrate on working with a simplified public inter-
face, and developers can focus on improving the internal implementation of a
class without fear of breaking existing client code.

Most of the time, attributes should be defined within the PRIVATE SECTION of a
class. The primaiy reason for hiding data attributes is to ensure that the state of
the object cannot be tampered with haphazardly. If a client needs to update the
state of the object, then he can do so through a method defined in the public
interface. The advantage of this kind of indirection is that you can control the
assignment of the attribute using business rules that are defined inside the
method. This eliminates a lot of the guesswork in troubleshooting data-related
errors because you know that any and all changes to an attribute are made
through a single method. Methods that update the value of private attributes are
sometimes called setter or mutator methods. The syntax shown in Listing 3.4
demonstrates the general convention used for naming mutator methods.

SET_<attribute name>
List ing 3.4 Naming Convention for Muta tor Methods

9 7

3 | E n c a p s u l a t i o n a n d I m p l e m e n t a t i o n H i d i n g

I f read-only access for an attribute is needed, then you can also provide a getter or
accessor method for that attribute. Accessor methods should be named according
to the syntax shown in Listing 3.5.

G E T _ < a t t r i b u t e n a m e >

L i s t i n g 3 . 5 N a m i n g C o n v e n t i o n f o r A c c e s s o r M e t h o d s

ABAP Objects also allows you to define read-only attributes using the READ-ONLY
addition to the DATA keyword. Listing 3.6 shows how to use this addition to create
three public, read-only attributes for a class called 1 cl_time. Of course, this
option should be used sparingly because it exposes the internal implementation
details of your class to the outside world.

C L A S S l c l . t i m e D E F I N I T I O N .

P U B L I C S E C T I O N .

O A T A : h o u r T Y P E i R E A D O N L Y ,

m i n u t e T Y P E i R E A D - O N L Y ,

s e c o n d T Y P E i R E A D - O N L Y .

E N O C L A S S .

L i s t i n g 3 . 6 D e f i n i n g R e a d - O n l y A t t r i b u t e s i n C l a s s e s

You can define read-only attributes in global classes by clicking the R E A D - O N L Y

checkbox for the attribute on the A T T R I B U T E S tab of the Class Builder (see Figure
3.3).

JF
| C U t t Edfi Polo U&lO*MJp Enwonment System Hep

3 > 1 * ' A | < I B O 0 E Q 3 0 G I T T G I G I B ®

Class Builder: Change Class ZCL_TIME
a h ^ I M M j a u g n * ^

zcL .n rc Class interface

Aflnfrule [LOOI
HOUR Instance AB«ute Pubte
niWTE instance AJWW» Pubfce
SECOND Instance Aire**? PubK

mplerr*nSed*Ac»ve

0 iVpe MUtlC?
0 ttpe NUNC?

0 ^ y p e HUHC2

• |Typ»
• Type

[Associated r w

• flBM

C
DescnpOon
Moui

Second

F i g u r e 3 - 3 C r e a t i n g R e a d - O n l y A t t r i b u t e s in G l o b a l Classes

9 8

Def in ing Componen t Vis ib i l i t ies

3.3.2 Friends

In the previous section, you learned that components defined within the private
and protected sections of a class are not visible outside of that class (or subclasses
in the case of protected components). However, in some cases, it is advantageous
to grant special access to certain named classes. Such classes are called friends of
the class that grants them access. You can specify friendship relationships in the
class definition using the syntax shown in Listing 3.7.

CLASS some_class DEFINITION FRIENDS cl c2 13 14.
L is t i ng 3.7 Def in ing Friendship Relationships in Classes

Within the FRIENDS addition, you can specify multiple classes (separated by
spaces) as well as interfaces (covered in Chapter 6, Polymorphism). Listing 3.8
shows an example that demonstrates a friendship relationship between two
classes called lcl_parent and lc l_chi ld . Here, class lc l_chi ld is declared as a
friend of class lcl_parent. In method buy.toys, class l c l . c h i l d takes advantage
of this friendship relationship by accessing the private attribute credit_card_no
in class lcl_parent to purchase some new toys.

CLASS lc l_ch i Id DEFINITION DEFERRED.
CLASS lcl_parent DEFINITION FRIENDS l c l . c h i l d .

PRIVATE SECTION.
OATA: credit_card_no TYPE str ing.

ENDCLASS.
CLASS lc l_ch i Id DEFINITION.

PUBLIC SECTION.
METHODS buy_toys.

ENDCLASS.
CLASS lc l_ch i Id IMPLEMENTATION.

HETHOO buy_toys.
OATA: 1r_parent TYPE REF TO lc l .paren t .
CREATE OBJECT lr_parent.
WRITE: 1r_parent->cred1t_ca rd_no.

ENDMETHOD.
ENDCLASS.

L is t i ng 3.8 Bypassing Access Contro l Using Friends

9 9

3 | Encapsulation and Implementation Hiding

There are a couple things to consider when it comes to friendship relationships:

• First of all, it is important to note the direction and nature of the friendship
relationship. In Listing 3.8, class lcl_parent explicitly granted friendship
access to class lc l_chi ld . This relationship definition is not reflexive. For
example, class lcl_parent cannot access the private components of class
l c l_ch i ld without the lc l_ch i ld class granting friendship access to
lcl_parent first.

• Secondly, notice that classes cannot arbitrarily declare themselves as friends of
another class. For instance, class lc1_child cannot declare itself a friend of
class lcl_parent. I f this were the case, access control would be a waste of time
because any class could bypass this restriction by simply declaring itself a
friend of whatever class it is tiying to access.

The example shown in Listing 3.8 also introduced a new addition to the CLASS
statement that we have not discussed before: the D E F I N I T I O N OEFERRED clause in
the CLASS D E F I N I T I O N statement for class l c l . c h i l d . This addition is needed to
instruct the compiler of the existence of a class l c l . c h i l d that will be defined
later on in the program. Without this clause, the compiler would complain that
class lcl_ch11d was unknown whenever you tried to establish the friendship
relationship in the definition of class 1 cl .parent .

You can define friendship relationships for a global class on the FRIENDS tab of the
Class Editor (see Figure 3.4). To do so, both of the classes in the friendship rela-
tionship must be defined and implemented as global classes in the ABAP Reposi-
toiy. If the MODELED ONLY checkbox is selected, the friendship relationship can-
not be used at runtime.

[c lass interface ZCl_J£RRY implemented/Active J

L Y Fnends | Attributes Methods , Events Types , Aliases

Ifilfll
iFnend Modeled only |Descnption
K O i r f i i • Hey Buddy

•
F igure 3 .4 De f i n i ng Fr iendsh ip Relat ionships Be tween Globa l Classes

Many purists argue that the use of friends should not be allowed in object-ori-
ented languages because they bypass traditional access control mechanisms. Like

100

H i d i n g t h e I m p l e m e n t a t i o n

many hotbed topics of this nature, the truth lies somewhere in the middle, and
the best approach is to use friendship relationships sparingly in your designs. In
particular, you should only develop friendship relationships whenever they are
absolutely needed to fulfill a requirement. Most of the time, there are design
alternatives that can achieve the same results with more flexibility.

3.4 Hiding the Implementa t ion

Now that you have a nuts-and-bolts understanding of encapsulation techniques,
let's try to reimplement the Date library from Listing 3.1 using an object-oriented
approach. Here, function group ZDATE_API is replaced by class lcl_date, and
function Z_DATE_SET_OAY is replaced by method set_day (see Listing 3.9).

CLASS l c l . d a t e DEFINITION.
PUBLIC SECTION.

METHODS set_day IMPORTING VALUE(iv_day) TYPE i
EXCEPTIONS inva l1d_date .

PRIVATE SECTION.
DATA: date TYPE s c a l s . d a t e .

ENOCLASS.

CLASS l c l . d a t e IMPLEMENTATION.
HETHOO set_day.

OATA: lv_month_end TYPE 1. "Last Day of Month
CASE date-month.

WHEN 1.
lv_month_end - 31.

WHEN 2.

ENOCASE.
IF iv_day LT 1 OR iv_day GT lv_month_end.

RAISE Inva l1d_date .
ELSE.

date-day - iv_day.
ENOIF.

ENDMETHOD.
ENOCLASS.

L i s t i n g 3 .9 R e i m p l e m e n t i n g t h e Da te Library Using Classes

101

3 | Encapsulation and Implementation Hiding

As you can see in Listing 3.9, the code inside class 1 cl_date is almost identical to
that of function module Z_DATE_SET_DAY from Listing 3.1. However, one major
difference between the two approaches is the fact that method set_day works on
an internal date data object (i.e., private attribute date) rather than an external
one provided via its method interface. By encapsulating this data element inside
the class, we have eliminated the need for maintaining a local Date data structure
within the calling program. Now. programs can simply work with object refer-
ences of type lc l .date without having to worry about keeping up with other
related data objects (i.e., structures containing the date value). This also simplifies
the interface for method set_day because we no longer need to pass in a refer-
ence to a Date data structure for the method to have data to work on.

With our new class-based Date library in tow, let's now revisit some of the main-
tenance scenarios described in Section 3.1.2, Case Study: A Procedural Code
Library. Here, if we are asked to enhance the icl_date class to support time-
stamps, we can either change the type of attribute date or add an additional
attribute to keep track of the time component of the timestamp. Obviously, this
changes the implementation of class lcl_date, but it does so without disturbing
the existing interface.

In other words, because we are no longer passing Date data structures back and
forth, method calls from client programs are not affected by this change. Instead,
the public interface for the class can simply expand to incorporate additional
methods that can be used to manipulate the time element of the date. We have
also addressed data corruption problems by encapsulating the data inside the
boundaries of the object. The use of the private visibility section ensures that
these boundaries are upheld. By removing the Date structure from the method
interface and encapsulating it internally as a private attribute, we have effectively
hidden this implementation concern from the user. Separating the interface of a
class from its implementation is a very effective design technique that helps you
develop classes that are much more responsive to change.

3.5 Designing by Contract

Encapsulation and implementation hiding techniques can be used to define very
precise public interfaces for a class. These interfaces help to form a contract
between the developer of a class and users of that class. The contract metaphor is

102

UML Tutorial: Sequence Oiagrams

taken from the business world, where customers enter into contractual agree-
ments with suppliers providing goods or services.

In his book Object-Oriented Software Construction (Prentice-Hall, 2000), Bertrand
Meyer described how this concept could be adapted into object-oriented
software designs to improve the reliability of software components that are
"... implementations meant to satisfy well-understood specifications." In this con-
text, objects are subject to a series of invariants (or constraints) that specify the
valid states for the object. To maintain these invariants, methods are defined
using preconditions (what must be true before the method is executed) and post-
conditions (what must be true after the method is executed). In Chapter 8, Error
Handling with Exceptions, we will look at ways to deal with exceptions to these
rules.

The primary goal for using the design-by-contract approach in your software
designs is to produce components that deliver predictable results. The boundaries
set by the visibility sections ensure that loopholes arc not introduced into the con-
tract. For instance, we observed that the Date library from Listing 3.1 had many
loopholes that made it possible to bypass the business rules implemented inside
the function module(s). The encapsulation techniques applied in the class-based
implementation of the Date library in Listing 3.9 eliminated these loopholes by
encapsulating the data objects for the date as private attributes inside the bound-
aries of the class.

Client programmers using classes based on these principles know what to expect
from the class based on the provided public interface. Similarly, class developers
are free to change the underlying implementation as long as they continue to
honor the contract outlined in the public interface.

3.6 UML Tutorial: Sequence Diagrams

So far, our study of the UML has been focused on diagrams that are used to
describe the static architecture of an object-oriented system. This chapter intro-
duces the first of several behavioral diagrams that are used to illustrate the behav-
ior of objects at runtime. The sequence diagram depicts a message sequence chart
between objects that are interacting inside a software system. Some of the more
advanced features of sequence diagrams will be considered in Section 11.5, UML
Tutorial: Advanced Sequence Diagrams.

103

3 | Encapsulat ion and Imp lemen ta t i on H id ing

Figure 3.5 shows a simple sequence diagram that is used to illustrate a cash with-
drawal transaction in an A T M machine. A sequence diagram is essentially a graph
in two dimensions:

• The various objects involved in the interaction are aligned along the horizontal
axis.

• The vertical axis represents time.

Figure 3.5 Sequence Diagram for W i t h d r a w i n g Cash f rom an A T M

Sequence diagrams are initiated by a request message from some kind of external
source. In the example in Figure 3.5, the external source is a user interfacing with
the ATM. This initial message is called a found message. In object-oriented terms,
a message is analogous to a method call. Messages are sent to objects (depicted in

104

Summary

the familiar object boxes seen on the object diagrams described in Section 2.6,
UML Tutorial: Object Diagrams). The dashed line protruding from underneath
the object box represents the object's lifeline. In Chapter 11. ABAP Object Ser-
vices. we will examine situations where objects are created and destroyed within
the interaction; for now. we will only consider sequences where all of the objects
exist throughout the entire interaction.

The intersection of a message and an object's lifeline is depicted with a thin rect-
angular box called an activation bar. The activation bar shows when an object is
active during the interaction. Objects are activated via messages (i.e., method
calls). Messages can include parameters that help clarify the operation to be per-
formed by the object. However, it is not a good idea to try and fully specify the
method interface in a sequence diagram — that's what a class diagram is for.
Here, we only use parameters for emphasis or clarity. Synchronous method calls
can have a return message that can also have optional parameters.

In some cases, a method might need to call other local helper methods to com-
plete its task. In this case, a self call can be illustrated by drawing a circuitous
arrow to another activation bar that is stacked on top of the current activation
bar. For example, in Figure 3.5, messages dispenseCash and printReceipt are
both represented as self calls on the atm object inside method withdraw.

Sequence diagrams are veiy useful for explaining complex interactions where the
order of operations is difficult to follow. One of the reasons that sequence dia-
grams are so popular is that the notation is veiy intuitive and easy to read. To
maintain this readability, it is important to avoid cluttering a sequence diagram
with too many interactions. In the coming chapters, we will look at other types of
interaction diagrams that can be used to illustrate fine-grained behavior within an
object or more involved interactions that span multiple use cases.

3.7 Summary

In this chapter, you learned about the many advantages of applying encapsulation
and implementation hiding techniques to your class designs. Encapsulating data
and behavior in classes simplifies the way that users work with classes. Hiding the
implementation details of these classes strengthens the design even further, mak-
ing classes much more resistant to data corruption. The combination of these two
design techniques helps you to design intelligent classes that are highly self-suffi-

105

3 | Encapsulation and Implementation Hiding

cient. Such classes are easy to reuse in other contexts because they are loosely
coupled to the outside world.

In the next chapter, we will examine the basic lifecycle of an object. Here, we will
also learn about special methods called constructors that can be used to ensure
that object instances are always created in a valid state.

106

Some of the most elusive bugs to detect in a program can be traced back
to missing or invalid variable initializations. This chapter explores how
classes can be enhanced to ensure that objects are properly initialized
prior to their use in programs.

4 Object Initialization and Cleanup

In the previous chapter, you learned how encapsulation and implementation hid-
ing techniques can be used to protect the integrity of an object. Such objects pro-
duce consistent and reliable results, freeing developers from constantly worrying
about data correctness issues in their programs. However, all of these measures
are wasted if we fail to properly initialize the object in the first place.

In this chapter, we will investigate how special methods called constructors can be
used to ensure that an object will always be created in a valid state. We will also
examine the overall object lifecycle, paying particular attention to how object
resources arc managed by the automatic mcmoiy management functionality built
into the ABAP runtime environment.

4.1 Creating Objects

One of the primary goals of the object-oriented design process is to identify ways
to delegate responsibilities to objects. This approach transfers complexity from
the main program into objects that are intelligent enough to handle the tasks they
are assigned. To coordinate these efforts, the main program needs to be able to
create and destroy objects on demand. As you can imagine, this dynamic alloca-
tion process can get pretty involved for complex object types. Fortunately, the
ABAP runtime environment takes care of most of the details, making it relatively
painless for developers to create and work with objects in their programs.

Of course, there arc costs associated with creating objects dynamically. To recog-
nize how these costs can affect the performance of your program, it is important

107

4 | Ob jec t In i t ia l izat ion and Cleanup

to understand what is going on behind the scenes whenever you request the cre-
ation of an object using the CREATE OBJECT statement.

To put all o f this in perspective, let's consider an example of a report program
running inside a SAP GUI window that needs to create an object at runtime. How-
ever, before we start investigating this particular scenario, we first need to under-
stand how memory is organized and used inside of an SAP NetWeaver Applica-
tion Server ABAP (AS ABAP) instance.

Figure 4.1 gives a high level overview of the memory architecture of the AS
ABAP. showing the local memoiy used by the individual work processes along
with the shared memoiy that is used throughout the application server. When-
ever you log on to the SAP system, it creates a user session (or context) inside the
roll buffer area of shared memoiy. This user session keeps track of administrative
items such as your assigned authorizations, and so on. It also keeps track of the
program(s) you are running along with the data objects that are being used by
those programs.

Figure 4.1 8asic M e m o r y Archi tecture of AS ABAP

Creating Objects

Each SAP GUI window that you open allocates a separate memory area inside the
user session called a main session. Whenever you execute a program in that win-
dow. the system creates yet another memoiy area called an internal session inside
this main session. The internal session manages the data objects of the program
that is running, as well as the data objects of other programs (e.g., function pools,
class pools, etc.) that are being used by that program. As you can see in Figure 4.2.
it is possible to have multiple internal sessions inside of a main session. Addi-
tional internal sessions are created whenever a program calls another program,
creating a type of program call stack inside of the main session.

Main Session

Internal Session-

Function
Croups

M.i in
Croups

Program Program
Class Pools

Internal Session 2

Internal Session 1

Figure 4.2 Logical Memory Areas in a Main Session

In an effort to optimize system resources, SAP decided to distribute the load of
executing programs on an application server by multiplexing work processes. The
basic idea here is to share a limited amount of work processes across a large num-
ber of users that are only interacting with the system part of the time. For exam-
ple, you might open up an SAP session, execute a report transaction, and then sit
there reviewing it for a few minutes while sipping a cup of coffee. Rather than tie
up a work process while you are sitting idle, the system will simply take a note of
where you are in your program (by storing information in your user session) and
then reassign the work process to another user that has made a request.

The process of assigning and unassigning work processes to a user is generally
described as a roll-in or roll-out. During a roll-in, the user session is loaded from
the roll buffer into the local memory of a work process (refer to Figure 4.1). Sim-
ilarly, when a roll-out occurs, information about the state of the currently cxecut-

109

4 | Object Init ial ization and Cleanup

ing program is copied back into the roll buffer. One of the ways the system
speeds up the roll-in/roll-out process is to keep the user session small by making
use of pointers. Pointers, as the name suggests, are special lightweight variables
that contain a memoiy address that is used to point to data objects that are stored
elsewhere. In the case of the AS ABAP, pointers typically point to data objects
stored in the extended memoiy area of the shared memoiy.

Now thatyou have a better appreciation for how the various memory areas of an
AS ABAP instance are used, let's get back to our report program example. Inside
of a processing block in the report program, you would request the creation of an
object using the CREATE OBJECT statement as shown in Listing 4.1.

DATA: oref TYPE REF TO lcl_some_class.
CREATE OBJECT oref.
List ing 4.1 Creating an Object Using the CREATE 08JECT Statement

At this point, the ABAP runtime environment uses the definition information
from class lcl_some_class to determine how much memory it needs to allocate
for an instance of this class type. After it knows how much memory it needs, the
runtime environment then needs to scan through the extended memoiy area to
find a chunk of memory large enough to store the object and its data. It also needs
to allocate some additional memory to store a header data structure that is used to
keep track of various administrative details about the object. After the memory is
allocated, the address of the header structure is returned to the object reference
variable oref (see Figure 4.3).

The primary consequence of this approach for dynamically generating objects is
the additional time required to allocate the proper amount of memory for an
object. As multiple programs create and destroy objects, the extended memory
area can start to become fragmented, making it difficult to locate a contiguous
chunk of memoiy large enough to hold an object. Skeptics sometimes point to
these performance costs as a reason for not using objects in their programs, claim-
ing that they can't afford the additional overhead at runtime. However, if you
look carefully at your existing programs, you will likely find thatyou are already
using many types of dynamic data objects1.

1 For an excellent description o f dynamic data objects, check out Horst Keller's blog entit led ABAP
Geek 12 — The Deep (https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/2016).

110

Control l ing Object Init ial ization w i t h Constructors

Figure 4-3 Memory Al location for Objects

For example, internal tables are dynamic data objects that require additional
memory to be dynamically allocated as additional rows are appended to them.
Most design decisions involve some kind of trade-off, and in the case of objects,
you might have to sacrifice a little bit of performance to realize the many benefits
of Object-Oriented Programming (OOP). Fortunately. SAP has optimized the per-
formance of the ABAP runtime environment so that these performance issues are
rarely a concern. We will investigate some basic guidelines for tuning perfor-
mance in Section 4.5, Tuning Performance.

4.2 Controlling Object Initialization with Constructors

Encapsulated objects rely on data stored in hidden attributes to keep track of their
internal state so that they can respond to method requests intelligently. There-

in

4 | Object Init ialization and Cleanup

fore, it is vitally important to come up with a way to reliably supply the object's
attributes with data. Otherwise, you end up back in a procedural mode where
each method has to receive data via parameters or derive it from an external data
source (e.g., a database lookup, etc.). In either of these cases, the method becomes
more complex because you have to validate and perhaps derive data before you
can do any useful work.

Obviously, you want to avoid this kind of situation. However, to do so, you must
figure out a way to guarantee that the attributes of a class are properly initialized
before any calls are made to methods that depend on these attributes. Of course,
we could try to be disciplined in our approach and make sure that we call all of
the appropriate setter methods before using the object, but then we have to
remember to do it eveiy time an object is instantiated. In the best case, a lot of
redundant code is introduced. In the worst case, forgetting to call a method here
and there creates an even bigger problem by making it more difficult to figure out
where things went wrong. Clearly, we need a better method for initializing
objects.

Normally, whenever you declare a variable in an ABAP program, you don't have
to worry about creating it at runtime because this is handled for you automatically
by the ABAP runtime environment. For example, if you declare a global variable
in a program using a structure data type, you can immediately begin assigning
values to the components of that structure without having to issue a CREATE state-
ment. and so on. As you have seen, this is not the case for anonymous data
objects such as object instances. Here, we must use the CREATE OBJECT statement
to request that an object be created dynamically by the ABAP runtime environ-
ment. Prior to that request, we cannot use object reference variables in our pro-
gram because they do not point to a valid object instance.

One of the benefits of this kind of indirection is that it lets the ABAP runtime
environment take complete control of the creation process. Class developers are
allowed to interact with this process by creating a special method called a con-
structor. Constructors are called automatically by the ABAP runtime environment
after the object has been created but before control is returned to the program.
Inside the constructor, you can initialize all of the attributes in your class to
ensure that the object is created in a valid state.

Constructors are defined using a similar syntax to the one thatyou have used to
define normal methods in a class (see Listing 4.2). The only restriction here is that

112

C o n t r o l l i n g O b j e c t I n i t i a l i za t i on w i t h Cons t ruc to rs 4 - 2

you can only define importing parameters in the method signature. I fyou think
about it, this makes sense because the constructor is called by the ABAP runtime
environment and not by the normal C A L L H E T H O O statement. In fact, it is not pos-
sible to call constructors directly in your programs.

METHODS c o n s t r u c t o r
IMPORTING [V A L U E (] i l i 2 . . . [)]

TYPE type [OPTIONAL] . . .
EXCEPTIONS e x l ex2.

L i s t i n g 4.2 Syntax fo r De f in ing an Instance Cons t ruc to r

Constructors can be created in global classes by clicking the CONSTRUCTOR button
in the Class Editor (see Figure 4.4).

Class Builder: Change Class ZCL_ACCOUNT

• E 1312X3 I S S S S D © ^ S / U [tf: KX»'Trtwt n i y w u i o i j : wy.ot^fQ" Contmxlcjjg CUMWrttnxttf

ZU_ACCOUKT tagMmMM/MM

M xl-d l M aoiaei

F igu re 4 . 4 Creat ing Const ruc tors fo r G loba l Classes

To demonstrate the usefulness of constructors, let's consider an example based
on an Account class that is used to represent various types of accounts at a bank.
In Listing 4.3, a class called icl_account has been created that provides a few
basic methods to view the current balance of the account as well as to withdraw
or deposit funds. The account details are stored in private attributes that do not
have associated setter methods. Instead, these attributes are initialized via a data-
base lookup inside the constructor method. Whenever a user instantiates an
object of type 1 cl_account, the user must provide a valid account number that is
used to lookup the relevant account details. In Chapter 8, Error Handling with
Exceptions, you will see how exceptions can be used to enforce this rule; for now.
you can simply assume that this is the case.

CLASS lc l_account DEFINITION.
TYPE POOLS: abap.
PUBLIC SECTION.

METHODS:

113

4 | O b j e c t I n i t i a l i za t i on a n d C leanup

c o n s t r u c t o r IMPORTING im_account_no
TYPE s t r i n g .

ge t_ba lance RETURNING V A L U E (r e b a l a n c e)
TYPE b a p i c u r r _ d .

d e p o s i t IMPORTING im_amount
TYPE b a p i c u r r _ d .

w i thdrawal IMPORTING im_amount
TYPE b a p i c u r r _ d

RETURNING VALUE(re_ resu l t)
TYPE abap_bool .

PRIVATE SECTION.
DATA: account_no TYPE s t r i n g .

balance TYPE b a p i c u r r _ d .
ENDCLASS.

CLASS l c l _ a c c o u n t IMPLEMENTATION.
METHOO c o n s t r u c t o r .

* Query database t a b l e s to r e t r i e v e account d e t a i l s :
* SELECT FROM . . .
* WHERE account_no - im_account_no.

ENDMETHOD.

METHOO g e t _ b a l a n c e .
re_ba lance - ba lance .

ENDMETHOD.

METHOO d e p o s i t .
balance - ba lance + im_amount.

ENDMETHOD.

METHOO w i t h d r a w a l .
IF im_amount LE ba lance .

ba lance - ba lance - im_amount.
r e _ r e s u l t - abap_ t ru e .

ELSE.
"Except ion hand l ing c o d e . . .

ENOIF.
ENDMETHOD.

ENDCLASS.

Listing 4.3 Initializing an Account Class Using a Constructor

114

Control l ing Object Init ial ization w i t h Constructors

As you look at the code in Listing 4.3. notice how the addition of method con
structor has effectively put a lock on the front door of class lcl_account. Clients
requesting objects in reference to this class must provide a valid account number,
so we don't have to woriy about which account we are working on inside the var-
ious methods in the public interface.

For example, notice how methods deposit and withdraw did not contain any
logic to determine which account to post the transactions against. Here, this is not
needed because we have guaranteed proper initialization of the object and
restricted access to the sensitive attributes of the class. The object lifecycle begins
by pulling up the latest account details from the database and can only be further
influenced through public methods containing business logic to ensure that users
do not compromise the integrity of the object in any way.

Most of the time, whenever we talk about constructors, we arc typically talking
about instance constructors that are used to initialize an instance of an object that
is being created. However, it is also possible to supply a class constructor for a
class. Class constructors provide a mechanism for initializing the class (or static)
attributes of a class. A class constructor is called implicitly by the system before
any accesses are made to the class inside your program. Class constructors are
defined using the syntax shown in Listing 4.4.

CLASS-METHODS class.constructor.
List ing 4.4 Syntax for Defining a Class Constructor

As you can see in Listing 4.4, you cannot specify any parameters for a class con-
structor because it is being called implicitly by the system. It is also worth men-
tioning here that you cannot access instance components within the class con-
structor because no instances of the class exist when it is being called. Of course,
it is possible to instantiate an object of the class at this point. Here, you simply
access the instance components of the object through a local object reference
variable just as you would in any normal method implementation.

Class constructors can be created for global classes by clicking the CLASS CON-
STRUCTOR button on the Class Editor screen (see Figure 4.5). The report program
ZC0UNTER_DEM0 shown in Listing 4.5 demonstrates how class constructors can be
used to initialize class attributes.

115

4 | Object Ini t ial izat ion and Cleanup

Class Builder: Change Class ZCL_ACCOUNT

l © 0 S © i @ I) D S H I I d c o n t t o K t t f j i

IZOJUXOIMT Class interface implemented I A<»v» (revised)

| H J . . . , . . T U L 2 K 2 3 \c LL - LIV K I P . I F ! F B I R

CONSTRUCTOR

|L 0-̂ E.I | v « i |M |u«scneoon

Ins t»ncPut>1 i$$ CONSTRUCTOR

Figure 4.5 Creating Class Constructors for Global Classes

REPORT zcounter_demo.

CLASS l c l . c o u n t e r DEFINITION.
PUBLIC SECTION.

CLASS-METHODS: c l a s s _ c o n s t r u c t o r .
METHODS: increment.

ge t .count RETURNING VALUE(re.count)
TYPE i .

PRIVATE SECTION.
CLASS-OATA: count TYPE i .

ENOCLASS.

CLASS l c l . c o u n t e r IMPLEMENTATION.
METHOD c ! a s s _ c o n s t r u c t o r .

count - 10.
ENDMETHOD.

METHOD increment.
count - count + 5.

ENDMETHOD.

METHOD g e t . c o u n t .
re_count - count .

ENDMETHOD.
ENDCLASS.

DATA: 1 r_coun te r l TYPE REF TO l c l . c o u n t e r .
l r _coun te r2 TYPE REF TO l c l _ c o u n t e r .
1v_count TYPE i .

116

Taking C o n t r o l o f t h e I ns tan t i a t i on Process

START-OF-SELECT ION.
CREATE OBJECT 1r_counterl.
lv_count - 1r_counterl->get_count().
WRITE: / 1v_count.

DO 10 TIMES.
1r_counterl->increment().

ENDDO.

lv_count - 1r_counterl->get_count().
WRITE: / 1v_count.

CREATE OBJECT 1r_counter2.
1r_counter2->increment().
lv_count - 1r_counter2->get_count().
WRITE: / 1v_count.

Listing 4.5 An Example Program Using a Class Constructor

If you run the ZCOUNTER_DEMO report, you wil l see that the class constructor has
taken care of pre-initializing the count class attribute to the value 10 prior to the
creation of the 1 r_counterl object. After the 1 r_counterl object is initialized, the
instance method increment is called 10 times, incrementing the value of the
counter by 5 each time. After this loop is completed, the value of the count
attribute wil l be 60. Next, another object named l r_counter2 is created. Here, the
class constructor is not called again, so the count attribute is not affected. Conse-
quently, whenever the call is made to increment for the lr_counter2 object,
count is incremented to 65.

As you can see in the example, class constructors provide a handy way to initialize
class attributes prior to the creation of object instances. Often, class constructors
are used to initialize common resources that arc used inside instance construc-
tors.

4.3 T a k i n g Cont ro l of t h e I n s t a n t i a t i o n Process

Until now, it has been possible to create instances of the classes we have devel-
oped anywhere that the class itself is visible using the CREATE OBJECT statement.
This is the default behavior for local and global classes. However, in certain cases,
it is useful to take control of the instantiation of objects within the class itself.

117

4 | O b j e c t I n i t i a l i z a t i o n a n d C l e a n u p

This kind of behavior can be specified using the CREATE addition of the CLASS
DEFINITION statement. This syntax is depicted in Listing 4.6.

CLASS lcl_some_class DEFINITION
CREATE {PUBLIC | PROTECTED | PRIVATE!.

ENDCLASS.
Listing 4.6 Specifying the Instantiation Context of a Class

You can set the instantiation context for global classes on the PROPERTIES tab of the
Class Editor (see Figure 4.6).

Class interface CL_A8AP_RAH00I1 .INT impiemen

A interfaces U Friends L Attributes U Methods ^

Undo inherltanc Change inherit

Description

Private 3
Private
Protected
Public
Abstract

Released internally

F l F c e d point anthmeat R Unicode checks actwe

r Shared Memory-Enabled

Figure 4.6 Setting the Instantiation Context for Global Classes

Table 4.1 describes each of the possible instantiation contexts that can be defined
for classes.

Instantiation Context Visibility

PUBLIC These classes can be instantiated anywhere that the
class itself is visible without restrictions.

PROTECTED These classes can only be instantiated inside methods
of the class itself and its subclasses.

PRIVATE These classes can only be instantiated inside methods
of the class itself.

Table 4.1 Instantiation Contexts for Classes

118

I n s t a n t i a t i o n

F Final

General Data

Taking Control o f the Instant iat ion Process

Perhaps the best way to illustrate the utility of controlled instantiation is to look
at how it might be used in a practical example. Let's imagine that you want to
build a class library that can be used to process XML documents. To maximize the
usefulness of your XMLDocument class, you want to be able to load XML documents
from a number of different types of data sources. For instance, you might want to
build the XML document using a file, a byte stream, a tree-like data structure, and
so on.

In many object-oriented languages, this problem can be solved by overloading the
constructor method to support different method signatures. Here, each over-
loaded constructor method has the same name but a different set of parameters.
Unfortunately, this is not a feature supported in ABAP Objects. One common
workaround for this limitation is to create multiple optional parameters in the
constructor's method signature and try to figure out which scenarioyou are deal-
ing with inside the constructor's implementation using conditional logic. Listing
4.7 shows an IF statement that uses the IS SUPPLIED option to determine if
parameter lm_paraml was supplied to the method during the method call.

IF im_paraml IS SUPPLIEO.

ENDIF.
List ing 4.7 Determining if Parameters Are Passed in a Me thod Call

The problem with this technique is that the signature of the constructor method
becomes quite large and difficult to work with. The logic in the constructor code
also becomes obscured by all of the various input permutations.

As you have seen, our typical approach for dealing with complexity is to figure
out a way to encapsulate (or hide) it. In this case, we want to encapsulate the
instantiation process to make it more straightforward and intuitive. One way to
encapsulate this process is to configure the XML document class to have a pro-
tected/private instantiation context. This implies that users will no longer have
the ability to directly instantiate XML document objects. Instead, they must work
with public creational class methods that arc customized to build XML documents
using various types of inputs (see Listing 4.8). These methods behave like a con-
structor, taking control of the initialization process. This is important because the
primary goal here is to simplify the initialization process so that a single construc-
tor is not responsible for supporting all of the various initialization variants that
we want to provide.

119

O b j e c t I n i t i a l i za t i on a n d C leanup

CLASS lcl_xm1_document DEFINITION
CREATE PRIVATE.

PUBLIC SECTION.
CLASS-METHODS:

c r e a t e _ f r o m _ s c r a t c h RETURNING VALUE(re_xml_doc)
TYPE REF TO lc1_xml_document

c r e a t e _ f r o m _ f i l e IMPORTING im_f i lename
TYPE s t r i n g

RETURNING VALUE(re_xml_doc)
TYPE REF TO lcl_xml_document

c rea te_ f rom_st ream IMPORTING im_stream
TYPE x s t r i n g

RETURNING VALUE(re_xml_doc)
TYPE REF TO lc l_xml_docunent

"Other C r e a t i o n a l M e t h o d s . . .
• U t i l i t y M e t h o d s . . .
a s . s t r i n g RETURNING v a l u e (r e _ s t r i n g)

TYPE s t r i n g .
PRIVATE SECTION.

METHODS: c o n s t r u c t o r .
ENDCLASS.

CLASS 1cl_xml_document IMPLEMENTATION.
METHOD c o n s t r u c t o r .

* D e f a u l t i n i t i a l i z a t i o n code goes h e r e . . .
ENDMETHOD.

METHOD c r e a t e _ f r o m _ s c r a t c h .
* Use the bas ic c o n s t r u c t o r l o g i c to c r e a t e
* an empty XML document:

CREATE OBJECT re_xml_doc.
ENDMETHOD.

METHOD c r e a t e _ f r o m _ f i l e .
* Use the p r i v a t e c o n s t r u c t o r to b u i l d a
* basic XML document:

CREATE OBJECT re_xml_doc.

* Read the g iven f i l e and load the XML
* document using u t i l i t y / s e t t e r methods:
* OPEN DATASET i m _ f i 1 e n a m e . . .

ENDMETHOD.

120

Garbage Collection

HETHOO create_from_stream.
* Use the private constructor to build a
* basic XHL document:

CREATE OBJECT re_xml_doc.

* Load the byte stream into the XML document:
*

ENDMETHOD.

METHOD as_string.
* re_string - . . .

ENDMETHOD.
ENOCLASS.
List ing 4.8 Control l ing Instantiation Through Creational Methods

Noticc that each of the creational methods shown in Listing 4.8 use the CREATE
OBJECT statement to create a base XML document object. As stated before, the pri-
vate instantiation context only restricts external users of the class from accessing
the constructor; internal methods are still free to use it. In the case of class
1cl_xml_document the basic initialization logic can still reside inside the private
constructor. The creational methods simply build on this base object to initialize
the XML document using the desired data source.

4.4 Garbage Collection

After you have finished using an object in your program, you need to make sure
that you restore its resources to the system. In some languages, it is the program-
mer's responsibility to make sure that objects are properly destroyed. Fortu-
nately. this is not the case with ABAP Objects because object resources are auto-
matically cleaned up by a special memoiy management feature of the ABAP
runtime environment called th e garbage collector. The garbage collector's job is to
scan through memoiy and delete objects that no longer have any references asso-
ciated with them (i.e., "orphans").

Much of the time, these references are destroyed automatically whenever an
object reference variable goes out of scope (i.e., when a subroutine or method ter-
minates). However, if you are done with an object, it is a good idea to explicitly
remove the reference using the CLEAR oref statement (see Figure 4.7).

121

4 | Object Initialization and Cleanup

Some programming languages allow you to create a special lifecycle method
called a destructor that gets called before an object is destroyed. This method can
be used to manage any internal resources for the object that need to be released
gracefully (e.g.. open file handles, etc.). Regrettably, this method is not used in
ABAP Objects, so it is important to remember to clean up any of these kinds of
internal object resources via an explicit method call before allowing the object to
be destroyed.

4.5 Tuning Performance

The advanced memory management features of the ABAP runtime environment
provide a safe environment for creating and destroying objects. However, it is

122

Tuning Performance

important to remember that these features will not prevent you from making
poor design decisions that consume excessive amounts of memory. In this sec-
tion, we will provide some basic tips that you can use to avoid these performance
traps.

4.5.1 Design Considerations

Even if you don't anticipate performance problems for a given class, it is always
a good idea to modularize the initialization logic of the class so that you can
implement performance tuning measures later without disturbing core function-
ality, and so on. The following list contains some basic modularization tips that
you should consider when developing your classes:

• Keep the logic inside the constructor method to a minimum by delegating ini-
tialization tasks to modularized private helper methods.

• Provide yourself a public reset method that can be used to clear the values of
a class's attributes.

• Tiy to avoid adding too many parameters to the constructor method's inter-
face. Instead, encapsulate the initialization process inside of a series of cre-
ational methods as shown in Section 4.3, Taking Control of the Instantiation
Process.

4.5.2 Lazy Initialization

Sometimes, you may have large composite objects that contain lower-level details
that are not frequently used. For example, let's imagine that you are tasked with
designing a purchasing system. One of the main classes for this system is a Pur
chaseOrder class that contains an internal table attribute of PurchaseOrderltem
objects that also in turn contain a table of ScheduleLine objects. Based on the
functional requirements, you observe that this class is primarily used to query
header level information such as the PO status, partner details, and so on.

In a situation such as this, it can be advantageous to delay the initialization of the
lower-level details until they are needed. Here, once again, you are protected by
encapsulation because you can control access to these lower-level attributes
through getter methods that initialize the attributes on demand whenever they
are first requested. This technique is referred to as lazy initialization. The basic

123

4 | Object Initialization and Cleanup

idea here is to avoid having to create (and ultimately garbage collect) objects that
may never be used.

For example, in the PurchaseOrder class analogy, you might choose to implement
the constructor method in such a way that purchase order header-level details are
only loaded when an object is created. If a user wants to access the line item
details of the purchase order, then he may do so at any time using an instance
method (e.g., get_i terns ()). At this point, the line item data is brought into con-
text on demand. Clearly, the first call to this instance method incurs a bit of a per-
formance hit. Still, keep in mind that this task would have to be carried out any-
way if you chose to initialize everything in the constructor. In the case of lazy
initialization, however, you can avoid this processing overhead altogether if the
user never accesses the lower-level details. This improves the performance of the
constructor and also keeps the size of the process order objects in check.

4.5.3 Reusing Objects

The easiest way to avoid the performance hits associated with creating/destroying
objects is to simply avoid this process altogether by recycling objects. Some typi-
cal candidates for recycling include temporary objects created inside loops, and
objects created in utility methods. You may discover thatyou could have created
an object in a higher scope that could be reused in the loop or method calls, you
might be working with a lightweight object in a loop that simply needs to be rein-
itialized based on the loop index, and so on. Rather than create a new object each
time, you might be able to call a reset method to reuse the object.

4 .5 .4 Using Class Attr ibutes

As you design your classes, you should think about whether or not each object
instance will require its own local copy of an attribute. If a local copy of an object
is not required for an object instance, defining the attribute as a class attribute can
help avoid the creation of a lot of redundant objects. Here, as you will recall, the
ABAP runtime environment will only create a single copy of the data object rep-
resented by a class attribute that is shared across all object instances. Therefore,
the potential reduction in memoiy usage can be exponential when you are creat-
ing many objects at runtime.

124

UML Tutorial: State Machine Oiagrams

4.6 UAAL Tutorial: State Machine Diagrams

The sequence diagrams introduced in the previous chapter are good for showing
the behavior of multiple objects interacting in a particular use case. Another type
of behavioral diagram in the UML is the state machine diagram, which are useful
for showing the behavior of a single object throughout its lifetime.

Figure 4.8 shows a state machine diagram for a class that could be used to repre-
sent a batch job that is created using the SAP Job Scheduler tool. Whenever a new
job object is created, it is initialized in the Scheduled status. This is depicted on
the diagram by an InitialPseudostate node that points to the S c h e d u l e d state box.
Each of the possible statuses of a job arc shown using rounded boxes called states.
Changes in state are represented with directed transition arrows. Transitions can
optionally be labeled with special transition label strings using the syntax shown
in Listing 4.9.

e v e n t (s) [g u a r d c o n d i t i o n s] / a c t i v i t y

L is t ing 4.9 Syntax Diagram for Oefining Transition Labels

Figure 4.8 UML State Diagram for an SAP Batch Job

125

4 | Object Initialization and Cleanup

The event(s) portion of the transition label is used to describe the event (or
events) that would trigger a change in state for the object. If guard condi tions arc
included in the transition label, then those conditions must be true for the transi-
tion to occur. The act iv i ty option can be used to specify some behavior that
takes place during the transition.

As an example, let's consider the transition between the Scheduled and Released
statuses in Figure 4.8. In this case, the triggering event occurs whenever a user
defines a start condition for the job in Transaction SM36. However, for the job to
be released in the system, it must first be saved.

If a job is deleted in the system, then the state machine (i.e., the object) will reach
its final state. In Figure 4.8 this is shown via the arrow that points to the circular
node with a dot in it.

Like many of the diagrams that you will see throughout this book, the state
machine diagram fulfills a distinct purpose. In this chapter, we investigated some
of the various ways that objects are created in the system. Most of the time, the
lifecycle of an object is pretty straightforward. However, for objects with complex
lifecycles, state machine diagrams can be veiy useful in showing how an object
will interact with the environment around it.

4.7 Summary

In this chapter, you learned how to use constructors to ensure that objects are
always properly initialized before they are used in a program. Combining the use
of constructors with the encapsulation techniques described in Chapter 3, Encap-
sulation and Implementation Hiding, helps you to build reliable and robust class
libraries.

In the next chapter, we will investigate ways for reusing these class libraries in
other contexts.

126

As your understanding of a problem domain matures, so also does your
comprehension of the relationships and responsibilities of the classes that
are being used to model software systems based on that domain. This
chapter begins our discussion of inheritance, which is a key object-oriented
concept that can be used to expand and refine your object model to evolve
with ever-changing functional requirements.

5 Inheritance

In Chapter 3, Encapsulation and Implementation Hiding, we examined how you
might tiy to construct a reusable code library using procedural design techniques.
During our investigation, we observed some of the problems that can make it dif-
ficult to reuse these libraries in other environments. In the past, whenever devel-
opers encountered these kinds of challenges, they typically either tried to
enhance/rework the library to accommodate the new requirements, or they cut
their losses and salvaged as much of the code as possible by copying and pasting
it into new development objects. Unfortunately, neither one of these approaches
works very well in practice:

• Modifying the code library to handle new requirements threatens the integrity
of pre-existing programs using the library because it is possible that errors
could be introduced into the system along with the changes.

• The copy-and-paste approach is less risky initially but ultimately increases the
cost of long-term maintenance efforts because redundant code makes the over-
all code footprint bigger, often requiring enhancements/bug fixes to be applied
in multiple places that can be difficult to locate.

The reusability predicaments described here are not unique to procedural pro-
gramming. In fact, just because a class has been well encapsulated does not mean
that it is immune to the types of errors that could be introduced whenever
changes are made to the code. However, there are measures that you can take in
your object-oriented designs to avoid these pitfalls.

127

5 | Inheritance

In this chapter, we will examine how the concept of inheritance can be used to
make copies of a class without disturbing the source class or introducing redun-
dant code. You will also learn about another technique called composition that
provides a way to reuse classes in situations where inheritance doesn't make
sense.

5.1 Generalization and Specialization

One of the most difficult parts of the object-oriented design process is tiying to
identify the classes thatyou will need to model a domain, what the relationships
between those classes should be, and how objects of those classes will interact
with one another at runtime. Even the most knowledgeable object-oriented
developers rarely get it all right the first time. Often developers new to Object-
Oriented Programming (OOP) are troubled by this, fearing the long-term conse-
quences of early design mistakes. Fortunately, the use of good encapsulation and
implementation hiding techniques should minimize the "ripple effects" normally
associated with changing modularized code.

Nevertheless, certain changes force us to look at the problem domain in a whole
new way. Here, for instance, you may discover that your original design was not
sophisticated enough to handle specialized cases. Frequently, during gap analysis,
you may realize that you have either failed to identify certain classes in the
domain or thatyou have defined particular classes too generically.

For example, let's say you take a first pass through a set of requirements for a
human resources system. During this analysis process, you discover a need for an
Employee class, among others. However, during the implementation cycle of the
project, more requirements come out that describe specific functionalities rele-
vant for certain types of employees. At this point, you could tiy and enhance the
original Employee class to deal with these added features, but this seems counter-
intuitive because it clutters the class with too many responsibilities. On the other
hand, abandoning the Employee class altogether in favor of a series of specialized
classes (e.g., HourlyEmployee, etc.) leads to the kind of code redundancy issues
that you want to avoid. Fortunately, object-oriented languages such as ABAP
Objects provide a better and more natural way for dealing with these kinds of
problems.

128

Generalization and Specialization

The concept of inheritance can be used to extend a class so that you can reuse
what is already developed (and hopefully tested) to expand the class metaphor to
better fit specialized cases. The newly created class is called a subclass of the orig-
inal class; the original class is called the superclass of the newly created class. As
the name suggests, subclasses inherit components from their superclass. These
relationships allow you to build a hierarchical inheritance tree with superclasses
as parent nodes and subclasses as child nodes (see Figure 5.1). In Chapter 6. Poly-
morphism. you will see how members of this inheritance tree can be used inter-
changeably. providing for some interesting generic programming options.

HourlyEmployee

• calculateWage()

Employee

• gct lDO
• gctNamc()
• getHireDateO
• calculateWage()

~ — s —

CommissionEmployee

+ calculateWage()

SalariedEmployee

+ calculate Wage ()

Figure 5.1 Inheritance Hierarchy for Employees

The root of every inheritance tree is the predefined empty class OBJECT; thus
every class that we have created so far has implicitly inherited from this class. To
demonstrate how to establish explicit inheritance assignments, let's consider the
example code shown in Listing 5.1.

REPORT zemployee_test.

CLASS lcl.employee DEFINITION.
PUBLIC SECTION.

OATA: id TYPE numclO READ-ONLY. "Oemo Purposes Only!!
ENOCLASS.

129

I nhe r i t ance

CLASS lc1_hour ly_employee DEFINITION
INHERITING FROM 1cl_emp1oyee.

PUBLIC SECTION.
METHODS:

c o n s t r u c t o r IMPORTING im_id TYPE numclO
im_wage TYPE b a p i c u r r _ d .

c a l c u l a t e _ w a g e .
PRIVATE SECTION.

CONSTANTS: CO_WORKWEEK TYPE i VALUE 40 .
DATA: hourly_wage TYPE b a p i c u r r _ d .

ENDCLASS.

CLASS 1cl_hour ly_employee IMPLEMENTATION.
METHOD c o n s t r u c t o r .

* Must c a l l the c o n s t r u c t o r of the superc lass f i r s t :
CALL METHOD s u p e r - > c o n s t r u c t o r (>.

* I n i t i a l i z e the i n s t a n c e a t t r i b u t e s :
id - im_ id .

hourly_wage - im_wage.
ENDMETHOD. " c o n s t r u c t o r

METHOD c a l c u l a t e _ w a g e .
* Method-Local Data D e c l a r a t i o n s :

DATA: lv_wages TYPE b a p i c u r r _ d . " C a l c u l a t e d Wages

* C a l c u l a t e the weekly wages fo r the employee:
lv_wages - CO_WORKWEEK * hourly_wage.

WRITE: / 'Employee # ' . i d .
WRITE: / 'Weekly W a g e : ' . lv_wages.

ENDMETHOD. " c a l c u l a t e . w a g e
ENDCLASS.

START-OF-SELECT ION.
* Crea te an ins tance of c lass 1 c l _ s a I a r i e d _ e m p l o y e e
* and c a l l method " c a l c u l a t e _ w a g e " :

DATA: gr_employee TYPE REF
TO l c l _ h o u r l y _ e m p l o y e e .

CREATE OBJECT gr_employee

130

Generalization and Specialization

EXPORTING
im_id - T
im_wage - ' 10 .00 ' .

CALL METHOD gr_employee->calculate_wage() .

List ing 5.1 Example Report Showing Inheritance Syntax

The report program 7EHPL0YEE_TEST in Listing 5.1 contains two simple classes:
lcl_employee and lcl_hourly_employee. In this example, class lcl_hourly_
employee is a subclass of class lcl_employee and therefore inherits its public id
attribute. Note that the id attribute is only defined in the PUBLIC SECTION of class
lcl_employee for the purposes of this demonstrative example. You will learn
about a better alternative for providing access to sensitive superclass components
in Section 5.2.1, Designing the Inheritance Interface.

The inheritance relationship is specified using the INHERITING FROM addition to
the CLASS DEFINITION statement that was used to define class lcl_hourly_
employee. Inside class lcl_hourly_employee, several references are made to the
id attribute from the lcl_employee superclass. Here, notice that we didn't have to
do anything special to access this component in the subclass because it has been
automatically inherited from the superclass.

You can define inheritance relationships in global classes by clicking on the CRE-
ATE INHERITANCE button on the CREATE CLASS dialog box (sec Figure 5.2). This adds
an additional SUPERCLASS input field that can be used to enter the superclass (see
Figure 5.3).

You can also maintain the inheritance relationship on the PROPERTIES tab of the
Class Editor (see Figure 5.4). Here, you can remove the relationship or define a
new superclass as well. Inheritance is more than just a fancy way of copying
classes into new classes. Inheritance defines a natural relationship that will likely
expand over time.

To appreciate the nature of this relationship, let's consider a situation where you
are asked to start keeping track of addresses for employees. Furthermore, let's
imagine that you have extended the class hierarchy from Listing 5.1 to include
various other subclass types. In this case, you need to maintain addresses for all
employees. You could add an address attribute to each of the subclasses, but that
would be redundant because every type of employee should have an address. The
logical place to create the address attribute is in the superclass lcl_employee.

131

Inheritance

& Create Class

Class ZCI_H0URLY_EHP10YEE j)
Description Hourly Emp loye^ >

instanoaton Public 3

C l a n Typ«

® Usua l A0AP C lass

O Exception C lass

T w i n Message C lass

O Pert lsterU c lass

O Test C lass (ABAP U«©

• Final

• O n v Modeled

Figure 5.2 Defining Inheritance for Global Classes — Part I

& Create Class 0 /

C lass ZCl_MOUfo.Y_EWLOrEE 1
Superclass 2CU_ERPL0YEE (t f i
Ovxcr ip)on H o u r * Emp<ov*» 1
instantiation PuMc a

Class T y p e /

® Usua l ABAP Class

OExcepQon Class

r With Message Class

O Persistent class

O T e t t C lass CABAP uni t)

• Final

• Onty Modeled

! • 8 J M | | X |

Figure 5.3 Defining Inheritance for Global Classes - Part II

I c ' i n m«A«t» Kl.HOUttY.EHftOYEE |lwpWm«.ri

U Prcp«*t«l T T T L . U W T T T n • • . .1..I - 1 — . . . I ! . ! - • ' I

|cZ> Ut»Sonh«Min<« | i C'->r>?» ivwnt |

tn uritnu DMootiMc.
Hturtr Empor»»

tniU'OKKn j r « * a l

(O r w i

Figure 5.4 Editing Inheritance Relationships for Global Classes

132

Inheriting Components

Making the change in the lcl_employee superclass ensures that the address
attribute is automatically inherited by each of the subclasses because of the inher-
itance relationship that they maintain with the superclass. However, i fyou make
changes in the subclasses (e.g., lcl_hour1y_employee), these changes are not
reflected in the superclass. This functionality allows you to expand your code
libraries with subclasses that do not jeopardize the integrity of their superclasses
and the production code that is depending on them.

5.2 Inheriting Components

So far, our discussions on the subject of component visibility have focused on
designing a class's public and private interface from an external user point-of-
view. However, inheritance adds a new dimension into the mix because we now
also need to consider how to define the interface between a superclass and its
subclasses. Sometimes, you might want to provide access to a component in sub-
classes without having to expose the component in the public interface.

For example, in Listing 5.1 shown earlier, if the id attribute of class lc l .employee
had been placed in the PRIVATE SECTION of the class, that attribute could not be
addressed inside the lcl_hourly_employee subclass. Therefore, id was exposed as
a public, read-only attribute. Of course, good implementation hiding techniques
would call for exposing access to that private attribute through a getter method,
but you get the idea.

5.2.1 Designing the Inheritance Interface

To address this middle ground, ABAP Objects provides another alternative by
allowing you to define components within the PROTECTED SECTION of a class defi-
nition.

The components defined within the PROTECTED SECTION of a class make up the
interface between a superclass and its subclasses. Subclasses can access compo-
nents defined in the PROTECTED SECTION of a superclass in the same way that they
would access components defined in the PUBLIC SECTION of that superclass. To the
outside world however, components defined in the PROTECTEO SECTION of a class
behave just like components defined in the PRIVATE SECTION of the class. Listing
5.2 redefines the lcl_employee class from Listing 5.1 to use the PROTECTEO SEC-
TION visibility area.

133

5 | I nhe r i t ance

CLASS lcl_employee DEFINITION.
PROTECTED SECTION.

DATA: id TYPE numclO.
hire_date TYPE sydatum.

ENOCLASS.

CLASS 1cl_hour1y_employee DEFINITION
INHERITING FROM 1cl.employee.

PUBLIC SECTION.
METHODS:

constructor IMPORTING im_id TYPE numclO
im_hire_date TYPE sydatum.

d isp lay .
ENDCLASS.

CLASS lcl_hourly_employee IMPLEMENTATION.
METHOD constructor .

* Must ca l l the constructor of the superclass f i r s t :
CALL METHOO super->constructor() .

* I n i t i a l i z e the instance a t t r i b u t e s :
* Notice that we can access these a t t r i b u t e s d i r e c t l y :

id - im_id.
hire_date - im_hire_date.

ENOMETHOD. "constructor

METHOO d isp lay .
WRITE: / 'Employee it', i d .

'was hired on ' . h i re_date .
ENOMETHOD. "display

ENDCLASS.

Listing 5.2 Defining and Accessing Protected Components

As you start to design your inheritance interfaces, it is important not to get car-
ried away with defining components in the PROTECTED SECT ION of the class. Some-
times, we tend to think of subclasses as having special privileges that should allow
them full access to a superclass. Here, it is essential that you employ the encapsu-
lation concept of least privilege when designing your subclasses.

The concept of least privilege implies that i f a subclass doesn't really need to
access a component, then it shouldn't be granted access to that component. For

134

Inheriting Components

example, imagine that you have defined some superclass that contains certain
components that you want to change in some way. I f these components are
defined in the protected visibility section of the superclass, it is quite possible that
these changes cannot be carried out without affecting all of the subclasses that
may be using these components. The general rule of thumb here is to always
define attributes in the private visibility section. I f a subclass needs to be granted
access to these components, then the access should be provided in the form of
getter/setter methods that are defined in the PROTECTED SECTION of the class. This
little bit of additional work ensures that a superclass is fully encapsulated.

5.2.2 Visibility of Instance Components in Subclasses

Subclasses inherit the instance components of all of the superclasses defined in
their inheritance tree. However, not all of these components are visible at the sub-
class level. A useful way of understanding how these visibility rules work is to
imagine that you have a special instance attribute pointing to an instance of the
superclass inside of your subclass. You can use this reference attribute to access
public components of the superclass, but access to private components is
restricted just as it would be for any normal object reference variable.

As it turns out, this imaginary object reference metaphor is not too far off from
what is actually implemented in subclasses behind the scenes. Subclasses contain
a special pseudo reference variable called super that contains a reference to an
instance of an object of the superclass's type. This reference is used to access com-
ponents of a superclass inside a subclass. The primaiy difference between the
super pseudo reference variable and a normal reference variable is that the super
pseudo reference can also be used to access components defined in the PROTECTED
SECTION of the superclass it points to.

The use of the super pseudo reference variable is optional (as was the case with
the me self-reference variable discussed in Chapter 2, Working with Objects) but
can be used in situations where explicit reference to superclass components is
needed. Normally, you will simply access the components of the superclass
directly, but it is important to remember that the compiler is implicitly plugging
in the super pseudo reference behind the scenes to properly address these com-
ponents. I f you operate in this mindset, the visibility rules for accessing super-
class components should be pretty intuitive.

135

5 | Inheritance

Public and protcctcd components of classes in an inheritance tree all belong to
the same internal namespace. This implies that you cannot create a component in
a subclass using the same name that was used to define a component in a super-
class. There is no such restriction on the naming of private components, however.
For example, if you define a private component called comp in a superclass, you
can reuse this same name to define components in subclasses without restriction.

5.2.3 Visibi l i ty of Class C o m p o n e n t s in Subclasses

Subclasses also inherit all of the class components of their superclasses. O f course,
as was the case with instance components, only those components that are
defined in the public or protected visibility sections of a superclass are actually
visible at the subclass level. However, in terms of inheritance, class attributes are
not associated with a single class but rather to the overall inheritance tree. The
change in scope makes it possible to address these class components by binding
the class component selector operator with any of the classes in the inheritance
tree.

This can be confusing because class components are defined in terms of a given
class and probably don't have a lot of meaning outside of their defining class's
context. To avoid this kind of confusion, it is recommended that you always
address class components by applying the class component selector to the defin-
ing class's name (e.g., lcl_superclass->cotnponent). That way. your intentions
are always clear.

5 .2 .4 Redef in ing M e t h o d s

Frequently, the implementation of an inherited method needs to be changed at
the subclass level to support more specialized functionality. You can redefine a
method's implementation by using the R E D E F I N I T I O N addition to the method def-
inition in your subclass.

The code example in Listing 5.3 shows how class lcl_hourly_emp1oyee is redefin-
ing the default (dummy) implementation of method calculate_wage from the
lcl_employee superclass. In Section 5.3.1, Abstract Classes and Methods, we will
demonstrate a better approach for defining methods like calculate_wage at a
generic superclass level.

136

I n h e r i t i n g C o m p o n e n t s

CLASS l c l . e m p l o y e e DEFINIT ION.
PROTECTED SECTION.

METHODS:
c a l c u l a t e . w a g e RETURNING VALUE(re .wage)

TYPE b a p 1 c u r r _ d .
ENDCLASS.

CLASS 1c1_employee IMPLEMENTATION.
METHOO c a l c u l a t e _ w a g e .

* Empty f o r n o w . . .
ENDMETHOD.

ENOCLASS.

CLASS l c l _ h o u r l y _ e m p l o y e e DEFINITION
INHERITING FROM l c l . e m p l o y e e .

PUBLIC SECTION.
METHODS:

c a l c u l a t e . w a g e REDEFINITION.
ENOCLASS.

CLASS 1 c l _ h o u r l y _ e m p l o y e e IMPLEMENTATION.
METHOD c a l c u l a t e . w a g e .

* re_wage - hours worked * h o u r l y r a t e . . .
ENDMETHOD.

ENDCLASS.

Listing 5.3 Redefining Methods in Subclasses

To redefine a method in a global class, place your cursor in the M E T H O D column
for the method that you want to redefine, and click on the REDEFINE button (see
Figure 5.5).

c m interface |ZCL_HOURiY_£nPLOY£E | tmp l>m»n t« i /A t»y I

Properties interfaces Friends Attributes Everts Types

• Parameters) D* E ^ o n s] ^ ^ \ fl]

Method [Level |v>sibifcty [Method type [Description |
' " S t a n c e nethod P u b l i c Calculate the weekly Wage

Figure 5.5 Redefining Methods in Global Classes

137

5 | Inheritance

Wheneveryou redefine a method, you are only allowed to redefine its implemen-
tation — the method interface (or signature) must remain the same. The redefini-
tion obscures the superclass's implementation in the subclass, which means that
whenever a call is made to the method for an object of the subclass type, the rede-
fined implementation will be used instead. Sometimes, the redefinition simply
needs to add on to what was previously implemented in the superclass. In this
case, you can use the super pseudo reference to invoke the superclass's method
implementation so that you don't have to reinvent the wheel.

5.2.5 Instance Constructors

Unlike other normal instance components, constructors are not inherited. I f you
think about it. this makes sense because each class only knows how to initialize
objects of its own type. To ensure that the instance attributes of its superclasses
are also properly initialized, a subclass is required to explicitly call the constructor
of its superclass before it starts to initialize its own instance attributes. This is
achieved using the syntax shown in Listing 5.4. Here, the use of parameters is
optional depending upon whether or not the constructor of the immediate super-
class requires them.

CALL METHOD super->constructor
[EXPORTING

im_paraml - valuel
im_param2 - va1ue2

List ing 5.4 Syntax for Calling the Constructor of a Superclass

Whenever you instantiate a subclass using the CREATE OBJECT statement, the
ABAP runtime environment will take care of recursively walking up the inherit-
ance tree to make sure that the constructor of each superclass is called. At each
level in the inheritance hierarchy, a superclass's constructor will only have visibil-
ity to its own components and those defined in its superclasses. This implies that
a method call inside the superclass constructor will be bound to the implementa-
tion defined for that superclass and not a redefined version defined at the sub-
class level.

This complex sequence of events is best demonstrated using an example. In List-
ing 5.5, the subclass l c l _ch i Id redefines the message method that was inherited

138

Inheriting Components

from class lcl_parent. As you can see, the message method is called in the con-
structors for both classes. However, i f you instantiate an object of type lc l .chi Id.
you wi l l see that the constructor o f the lcl_parent class called its own implemen-
tation rather than the redefined version in class lcl_child.

CLASS l c l _ p a r e n t DEFIN IT ION.
PUBLIC SECTION.

METHODS: c o n s t r u c t o r ,
message.

ENOCLASS.

CLASS l c l . p a r e n t IMPLEMENTATION.
METHOD c o n s t r u c t o r .

CALL METHOD me->message.
ENDMETHOD. " c o n s t r u c t o r

METHOD message.
WRITE: / ' I n p a r e n t . . . ' .

ENDMETHOD. "message
ENOCLASS.

CLASS l c l _ c h i I d DEFINITION
INHERITING FROM l c l _ p a r e n t .

PUBLIC SECTION.
METHODS: c o n s t r u c t o r .

message REDEFINITION.
ENOCLASS.

CLASS l c l _ c h i I d IMPLEMENTATION.
METHOD c o n s t r u c t o r .

CALL METHOD s u p e r - > c o n s t r u c t o r .
CALL METHOD me->message.

ENDMETHOD. " c o n s t r u c t o r

METHOO message.
WRITE: / ' I n c h i l d . . . ' .

ENDMETHOD. "message
ENOCLASS.

List ing 5.5 Example Showing Constructor Call Sequence and Scope

139

5 | Inheritance

5.2.6 Class Constructors

Each subclass is also allowed to define its own unique class constructor. This con-
structor gets called right before the class is addressed in a program for the first
time. However, before it is executed, the ABAP runtime environment walks up
the inheritance tree to make sure that the class constructor has been called for
each superclass in the inheritance hierarchy. These class constructor calls occur in
the proper order.

For example, let's imagine that you have a class hierarchy with four classes A, B. C,
and 0. When a program tries to access class D for the first time, the runtime envi-
ronment will first check to see if the class constructors have been called for classes
A, 8, and C. If the class constructor has already been called for class A, but not for
B and C, then the order of class constructor calls will be B, C, and 0. This ensures
that the class attributes of a superclass are always properly initialized before a
subclass is loaded.

5.3 The Abstract and Final Keywords

Occasionally, you may identify an occurrence where you need to define a class
whose functionality cannot be fully implemented on its own. Such classes must
be completed by subclasses that fill in the gaps.

5.3.1 Abstract Classes and Methods

A crude way of dealing with these gaps is to create "dummy" methods to com-
pletely define the class. However, this can be dangerous because often these
methods really don't make much sense in the context of a generic superclass. In
these situations, it is better to define an abstract class that explicitly delegates
unknown features to subclasses. Because their implementation is incomplete,
abstract classes cannot be instantiated on their own. Their purpose is to provide
a common template that makes it easier to implement specialized subclasses.

To understand how all this works, let's revisit the Employee example initially
shown in Listing 5.1. There, method ca1cu1ate_wage was not created at the
superclass level but rather at the subclass level (i.e., in class lcl_hour1y_
employee). However, if you think about it, this method is really applicable for all
types of employees. Of course, at the generic superclass level (i.e.. in class

140

The Abstract and Final Keywords

1 cl_empl oyee), we do not know how to calculate the wages of an employee. Nev-
ertheless, as you wil l see in Chapter 6, Polymorphism, it is advantageous to define
this behavior at the appropriate level in the inheritance hierarchy.

The code in Listing 5.6 shows how the class hierarchy has been reworked (or
refactored) by defining l cl.employee as an abstract class. Method calculate_wage
has also been defined as an abstract method inside class lcl_employee. These
changes force any subclasses of l e i .employee to either provide an implementa-
tion for method calcul ate_wage or be defined as abstract (thus further propagat-
ing the functionality down the inheritance hierarchy). In this case, method
calcul a te_wage has been fully implemented in class lcl_hourly_employee.

CLASS lcl .employee DEFINITION ABSTRACT.
PUBLIC SECTION.

METHODS:
constructor IMPORTING im_id TYPE numclO.
calculate_wage abstract .

PROTECTED SECTION.
OATA: id TYPE numclO.

ENOCLASS.

CLASS lcl_employee IMPLEMENTATION.
METHOO constructor .

id - im_id.
ENDMETHOD.

ENOCLASS.

CLASS 1c1_hour1y_emp1oyee DEFINITION
INHERITING FROM lcl_employee.

PUBLIC SECTION.
METHODS:

constructor IMPORTING im_id TYPE numclO
im_wage TYPE bapicurr_d.

calculate.wage REDEFINITION.

PRIVATE SECTION.
CONSTANTS: CO.WORKWEEK TYPE 1 VALUE 40.
OATA: hourly_wage TYPE bapicurr_d.

ENOCLASS.

CLASS 1c1_hour1y_emp1oyee IMPLEMENTATION.
METHOD constructor .

141

Inheri tance

* Must c a l l t h e c o n s t r u c t o r o f t h e s u p e r c l a s s f i r s t :
CALL METHOO s u p e r - > c o n s t r u c t o r (i m _ i d) .

* I n i t i a l i z e t h e i n s t a n c e a t t r i b u t e s :

h o u r l y _ w a g e - im_wage.

ENDMETHOD. ' c o n s t r u c t o r

METHOD c a l c u l a t e _ w a g e .

* Loca l Data D e c l a r a t i o n s :

DATA: lv_wages TYPE b a p i c u r r _ d . " C a l c u l a t e d Wages

* C a l c u l a t e t h e w e e k l y wages f o r t h e e m p l o y e e :
1v_wages - CO_WORKWEEK * h o u r l y _ w a g e .

WRITE: / ' E m p l o y e e i d .
WRITE: / ' W e e k l y W a g e : ' . l v _ w a g e s .

ENDMETHOD. " c a 1 c u l a t e _ w a g e

ENDCLASS.

L i s t i n g 5 . 6 D e f i n i n g A b s t r a c t C lasses a n d M e t h o d s

You can create abstract global classes by setting the instantiation type to ABSTRACT

on the PROPERTIES tab o f the Class Editor (see Figure 5 . 6) .

Class interface ZCL_EHPLOYEE Imp lemei

^ E Z f l P f t M d i n t e r f a c e s ^ Friends y Attributes y M e t h o d s ^

A Superclass Undo inheritance | Change inhenl

Descript ion

instantiation Public a

• Final f Prwate
Protected
Public

General DataV
Public

• Re leased i r l ^ m

P I Fixed potn 'antn dn icode checks actr.-e

• Shared Memory-Enabled

F i g u r e 5 . 6 C r e a t i n g A b s t r a c t G l o b a l C lasses

To create abstract methods for global classes in the Class Editor, place your cursor
in the M E T H O D column, and click on the DETAIL V I E W button. This opens up a dia-
log box that allows you to modi fy various attributes for the method. In this case,

1 4 2

The Abstract and Final Keywords

click the ABSTRACT- checkbox. This opens a prompt advising you that the method
implementation was deleted (see Figure 5.7).

Class interface Z t t . laP lO 'EE impto B t m M > AcflN*

Proc+fW Interface , Fntr&t Atr&A*%A v«mods m ^ T T W m r T T W f m T f T

o Pmmeters j ft} & n » p b c f i s | V j

wetf.es
CJU.CW.ATEJIA6E

D e t a i l V i e w 8 u t t o n

^ a l a l x\di 1 a | Miaa I 1
M |c**l<n|.>on

HSTAWPtftU CakulMe »n Eircoyve^ Wjges

| l P » Ctxnge Mtnod CALCU>TE JWWOC*~

C t w t t w e 2CL.ENPL0YEE

¥ *Tod CAICUIATEJ/AW

Oestrtptcn Calculate M Employee's W»jes
VisibiMr
®Pubfcc

OPtotecteo

OPfM*

wetnos

OSt»t»c

C*)liU»n<e

• Event h»noWfftn

CUs&ftrMrtxe

E»»nt

• Mosolcs

• Ed to r t xk

Cheated

•ZsNrrtcfmaicc Q /

1 a method C ^ C 0 i > t E «>.$£ seieieo

i n] ® . I 1

JMOOP

Last changes tn <Oe^)

LASt (hinged tr» <JW® > JMOOD

« miim

06/25/2908

l E s a p

Figure 5.7 Defining Abstract Methods for Global Classes

5.3.2 Final Classes

Sometimes, you may refine a class hierarchy to the point where it no longer
makes sense to extend it. At this stage, it is best to announce this situation for-
mally by marking the class's inheritance tree as complete using the F I N A L modi-
fier. Final classes cannot be extended in any way. effectively concluding a branch
of an inheritance tree. The syntax for creating final classes is shown in Listing 5.7.

CLASS 1 c) _ e n d e r DEF IN IT ION FINAL.

ENOCLASS.

Listing 5.7 Syntax for Defining Final Classes

143

5 | Inheritance

Global classes are marked as final by selecting the FINAL checkbox on the PROPER-
TIES tab in the Class Editor (see Figure 5.8).

Class interface CLJtBAPJMTH Implemen

interfaces Friends Altributes Melhods

I * Superdas inheritance

Description ABAP Mathematics Library

Prtyate a]

F i gu re 5 .8 M a r k i n g G loba l Classes as Final

You should exercise extreme caution when deciding to mark a class as final.
Although you may think that you have reached the end of the class hierarchy, it
is hard to know for certain. The bottom line is that if you have any doubts about
what you arc doing, it's probably best thatyou don't do it.

5.3.3 Final M e t h o d s

A less risky approach to finalizing a class is to mark individual methods as final.
This way, you still leave yourself the option for extending the class without allow-
ing users of that class to redefine specific methods that you believe to be com-
plete. The syntax for defining final methods is shown in Listing 5.8.

CLASS Icl.ender DEFINITION.
PUBLIC SECTION.

METHODS: complete F I N A L .

ENDCLASS.
L i s t i n g 5 .8 De f i n i ng Final M e t h o d s

You can mark the final indicator for methods in global classes in the same method
DETAIL VIEW screen shown in Figure 5.7. Here, you simply click the FINAL check-
box to mark the method as complete (see Figure 5.9).

144

I n h e r i t a n c e V e r s u s C o m p o s i t i o n

Change Method COMPLETE •

Obiect f ipe 2CL_SALAR IED_EHP10¥EE

M t i O d |C0HPtETE

Oescnpoon Completed Method

Vi&ibiHy Mettoo

® Public

0 Protected

O P r w a t e

O Statu

® Instance

• Abstract

BP] Final |

• Evenl handler for

Class/interface

Event

• Modeled

• Editor lock

P I Active

Created JWOOO 0 6 / 2 5 / 2 0 0 8

Last changed by (Deth)

Last changed by (Imp) JMOOO 0 6 / 2 5 / 2 0 0 8

m r n ' n

F i g u r e 5 . 9 D e f i n i n g F i n a l M e t h o d s f o r G l o b a l C l a s s e s

5.4 Inheritance Versus Composition

Developers sometimes get confused by the hype surrounding inheritance, assum-
ing that they must make extensive use of it in their designs to be true object-
oriented programmers. Note that while inheritance is powerful, it is not always
the best solution for reusing code from existing classes. In fact, one of the worst
mistakes you can make is to tiy to stretch classes to fit into some sort of loosely
formed inheritance relationship.

Whenever you are thinking of defining a new class in terms of some pre-existing
class, you should ask yourself whether or not the relationship between the sub-
class and superclass fits into the is-a relationship mold. To illustrate this, let's con-
sider an inheritance tree for various types of order objects (see Figure 5.10). At
each level of the tree, you should be able to apply the is-a relationship between a
subclass and its superclass, and it should make sense. For example, a SalesOrder is
an Order, and so on.

145

5 | Inheritance

Figure 5.10 Inheritance Tree for Order Types

Most of the time, the application of the is-a test should make inheritance relation-
ships between classes pretty obvious. For example, if we try to extend the Order
class in Figure 5.10 to create a Delivery subclass, the is-a relationship would not
make sense (i.e., a Delivery is not an Order).

Although this observation should be clear to even the novice developer, it is not
uncommon to encounter situations where developers have tried to create inher-
itance relationships like this in an effort to leverage classes that have useful fea-
tures or similarities to the ones they are trying to implement. Whenever you find
yourself stuck trying to figure out ways to define an inheritance relationship
between two classes, it is a good idea to take a step back and think about the rela-
tionship between the classes from a logical perspective. If you think about it, a
Delivery is not an Order, but an Order does have one or more Deliveries associated
with it. This has-a association is commonly referred to as a composition relation-
ship.

The term composition basically describes the reuse of existing functionality in
classes by integrating objects of those classes as attributes in your new class. You
can use these attributes in the same way that you have used ordinary attributes
based on elementary types, structures, and so on. Listing 5.9 shows how you
could define a composition relationship between an Order object and a Delivery
object.

CLASS lcl_delivery DEFINITION.
PUBLIC SECTION.

METHODS: constructor.

146

I nhe r i t ance Versus C o m p o s i t i o n

g e t _ d e l i v e r y _ d a t e RETURNING v a l u e (r e _ d a t e)
TYPE sydatum.

PRIVATE SECTION.
OATA: d e l i v e r y _ d a t e TYPE sydatum.

ENOCLASS.

CLASS 1 c l _ d e l i v e r y IMPLEMENTATION.
METHOD c o n s t r u c t o r .

del i v e r y _ d a t e - s y d a t u m .
ENDMETHOD.

METHOD g e t _ d e l i v e r y _ d a t e .
re_da te - d e l i v e r y _ d a t e .

ENDMETHOD.
ENOCLASS.

CLASS l c l . o r d e r DEFINITION.
PUBLIC SECTION.

METHODS: c o n s t r u c t o r IMPORTING 1m_id TYPE i .
r e l e a s e ,
t r a c k .

PRIVATE SECTION.
OATA: id TYPE i .

d e l i v e r y TYPE REF
TO l c l _ d e l i v e r y .

ENOCLASS.

CLASS 1 c l _ o r d e r IMPLEMENTATION.
METHOD c o n s t r u c t o r .

id - im_ id .
ENDMETHOD. " c o n s t r u c t o r

METHOD r e l e a s e .
* A r b i t r a r i l y c r e a t e a d e l i v e r y fo r the o r d e r . . .

CREATE OBJECT d e l i v e r y .
ENDMETHOD. " r e l e a s e

METHOD t r a c k .
* Local Data D e c l a r a t i o n s :

DATA: 1 v _ d e l i v e r y _ d a t e TYPE sydatun.

147

5 | Inheritance

1v_delivery_date - delivery->get_delivery_date() .
WRITE: / 'Order 0'. Id. 'was shipped on'.

1v_delivery_date.
ENDHETHOO. "track

ENOCLASS.
List ing 5.9 Reusing Classes w i t h Composit ion

You should favor the use of composition over inheritance unless the inheritance
relationships between classes are obvious. In Chapter 6. Inheritance, you will see
how inheritance can bring along some unwanted baggage that can lead to inflex-
ible designs ifyou are not careful.

5.5 Using the Refactoring Assistant

Inheritance provides a natural way for extending classes to adapt to changing
functional requirements. However, sometimes you may not discover inheritance
relationships until later on in the software development lifecycle. At that point, it
is likely that you have not defined classes at the right level of granularity.

For instance, let's revisit the Employee class hierarchy example that we have con-
sidered throughout this chapter. In this case, let's imagine that the initial set of
requirements only described functionality related to employees paid by the hour.
Based on the information available at the time, you might decide that you simply
need to create a single class called HourlyEmployee. At a later stage in the project,
you are confronted with new requirements that are related to salaried employees,
and so on. At this point, you realize that you probably need to incorporate a more
generic Employee class at the root of the inheritance tree. Such changes will cer-
tainly affect the internal structure of class HourlyEmployee (although hopefully
the use of encapsulation techniques will make these changes transparent to the
outside world). In any event, any time you make changes such as this, you run the
risk of introducing errors into the system. However, i fyou ignore these architec-
tural observations, the effectiveness of your design will ultimately deteriorate
over time.

In his famous book Refactoring: Improving the Design of Existing Code (Addison-
Wcsley, 1999), Martin Fowler describes a process called refactoring that can be
used to incorporate these kinds of structural changes into a design. The basic idea
here is to improve the underlying structure of a system without affecting its exter-
nal behavior. The Refactoring book describes a series of refactorings (or patterns)

148

Using t h e Re fac to r i ng Ass is tant

that can guide you toward making good design decisions whenever you alter the
structure of your classes. In many cases, these refactorings must be performed
manually and therefore require careful attention to detail to ensure that the
changes are propagated consistently throughout the system.

Fortunately. SAP has provided a useful tool inside the Class Builder to assist you
with your refactoring efforts for global classes. The Refactoring Assistant tool can
be used to automatically perform some of the most common refactorings. This
automation helps to ensure thatyou don't accidentally make a mistake by omit-
ting some of the manual steps involved with moving components between
classes, and so on.

To demonstrate the functionality of the Refactoring Assistant tool, let's tiy to per-
form a Move Method refactoring to move method CALCULATE_WAGE from class
ZCL_H0URLY_EMP10YEE to a newly derived superclass called ZCL.EMPLOYEE.

1. To start the Refactoring Assistant tool, select UTILITIES • REFACTORING ASSISTANT
from the top menu bar of the Class Editor screen (see Figure 5.11).

Class Edit Ooto UWrtiesO*) Environment System Help

Ilass Builder:

Emm

Settings C«rt*Sh.«.F8 1

Display ob|ed list CM*8M*FS "

WorW.it • L

Oisplay navigation vwndow CW*St*lt*F4 '

fMiME Reposflory Refactoring Assistant F 7

kRepos4ory Browser

|Repos4ory Intorma&or

)Tag Browser

Clean Up • .

Regenerate sections

Refresh display
^ a

F i gu re 5.11 O p e n i n g t h e Refac tor ing Assistant Too l

2. Inside the Refactoring Assistant tool, you are presented with a tree control con-
taining the subclass (ZCL_HOURLY_EMPLOYEE), its components (e.g., CALCULATE.
WAGE), and its superclass (ZCL.EMPLOYEE) as shown in Figure 5.12.

3. To move the CALCULATE.WAGE method up to the base class level, select and drag
the method name up onto the ZCL_EMPLOYEE node. Click on the SAVE button in
the Refactoring Assistant toolbar to save these changes. At this point, both
classcs need to be activated for the changes to be fully committed.

SAP has plans to expand the functionality of the Refactoring Assistant in future
releases, promising tighter integration with the new ABAP Editor. These features

149

5 | I nhe r i t ance

will make the process of refactoring even more reliable and efficient, helping to
ease the concerns of management types who fail to see the value in "fixing some-
thing that isn't broken."

lE-RefcalonngAssistarvt • D Q

B E J F I Q E I EG •] [! ! •
| Class |Oestrip4>on
I ^ CD ZCL_HOURLY_EMPl_OYEE

4. ZCL_EMPLOYEE d
^ C3 Motnods -

• CALCULATE _WAGE Calculate Vie weekly Wage »

I I M E
1

I . C o l L n 1 - L n l o f l Hnes

F igu re 5.12 The Refac tor ing Assistant Edi tor

5.6 UAAL Tutorial: Advanced Class Diagrams Part I

Section 1.6, UML Tutorial: Class Diagram Basics, introduced some of the basic
elements of a class diagram, showing you how to define rudimentary classes
along with their attributes and behaviors. In this chapter and the next one, we
will expand our discussion of class diagrams to incorporate some of the more
advanced concepts that have been described in the past few chapters.

5.6.1 Generalization

Most of the time, our discussions on inheritance tend to focus on specializations
at the subclass level. However, i fyou look up the inheritance tree, you see that
superclasses become more generalized as you make your way to the top of the
tree. Perhaps this is why the creators of the UML decided to describe the notation
used to depict inheritance relationships between classes in a class diagram as a
generalization relationship.

Figure 5.13 shows a basic class diagram that depicts a superclass called Account
along with two subclasses (CheckingAccount and SavingsAccount). Notice that
each subclass has a connector drawn upward toward their superclass. The triangle
at the top of the association identifies the relationship between the two classes as
a generalization.

150

U M L Tutor ial : Advanced Class Diagrams Part I |

F igure 5.13 U M L Class Diagram Nota t ion for Generalizations

5.6.2 Dependencies and Composition

In Section 5.4, Inheritance versus Composition, we described the concept of
inheritance in terms of a has-a relationship between two classes. In Chapter 1,
Introduction to Object-Oriented Programming, we looked at how associations
could be used to depict a composition relationship between classes. However, an
association depicts a fairly loose relationship between two classes. Sometimes,
you will want to define a composition relationship in more detail.

For example, often a composing class is highly dependent on a supplier class. In
that case, it is a good idea to depict this tight coupling by creating a dependency
relationship between the composing class and the supplier class. Figure 5.14
shows the dependency relationship between an Order class and a Del i very class
as described in Section 5.4, Inheritance versus Composition.

O r d e r De l i ve ry

Figure 5.14 Def ining a Dependency Relationship Between Classes

The UML also provides a specific notation for depicting composition relation-
ships. In Figure 5.15, this notation is used to show that an instance of class
Address can be embedded inside either class Customer or class Vendor, but not
both. This notation also implies that any instances of class Address will be deleted
whenever the instance of the composing Customer or Vendor class is deleted.

151

5 | Inheritance

Figure 5.15 Defining Composit ion Relationships in Class Diagrams

As you can see in Figure 5.15, the fillcd-in diamond in the association line
between the two classes in a composition relationship is always affixed to the
composing class. The direction and cardinality of the association lines further
describes the nature of the composition relationship. For example, in Figure 5.15,
classes Customer and Vendor can reference zero or more instances of class
Address.

Looking back at Section 5.4, Inheritance versus Composition, you can see that the
UML interpretation for composition relationships is much more specific than the
more common view of composition used in normal development scenarios. Con-
sequently, you should be careful to only use the UML composition notation
whenever you intend for composed objects to be completely managed by their
composing objects.

5.6.3 Abstract Classes and M e t h o d s

Figure 5.16 shows the UML notation for depicting abstract classes and methods.
The only requirement here is to italicize the class or method name to indicate that
the class or method is to be defined as abstract.

HourlyEmployee

+ calculateWage()

Employee

• g e t l d O
• ge tNameO
• getHi reDate()
• calculateWage()

CommissionEmployee

• calculateWage()

SalariedEmployee

+ calculateWage()

Figure 5.16 Defining Abstract Classes and Methods

152

Summary

Because italics are sometimes hard to read, you will often see developers tag
abstract classes using the « abstract >> keyword (see Figure 5.17).

« a b s t r a c t »
Employee

+ get ld<)
+ ge tName()
+ getHi reDate()
+ calculateWagcf)

I
HourlyEmployee CommissionEmployee SalarledEmployee

• calculateWage(> + calculateWage() + calculateWage()

Figure 5.17 Non-Normat ive Form for Defining Abstract Classes

5.7 Summary

In this chapter, you have learned how inheritance and composition techniques
can be used to quickly and safely reuse the implementations of existing classes. In
this chapter, we concentrated our focus on inheriting a class's implementation.

However, there is another dimension of the inheritance relationship that we have
not yet considered. In the next chapter, you will see how type inheritance can be
used to further exploit inheritance relationships to make your designs more flex-
ible.

153

The term polymorphism literally means "many forms." From an object-
oriented perspective, polymorphism works in conjunction with inheritance
to make it possible for various types within an inheritance tree to be used
interchangeably. In this chapter, you will learn how to implement flexible
designs in your ABAP Objects programs using polymorphism.

6 Polymorphism

In the previous chapter, you learned how to create inheritance relationships
between related classes. If you recall, the basic litmus test for identifying these
relationships is to ask whether or not a subclass is a type of a superclass. For exam-
ple, a Dog is a type of Mammal, and therefore shares common characteristics and
behaviors with other mammals. Subclasses can take advantage of this commonal-
ity by reusing the implementation of their superclasses. However, as it turns out.
there is another important dimension to an is-a relationship that we have not yet
considered.

Classes in an inheritance tree share a common public interface, making it possible
for a given subclass to respond to any request (i.e., method call) that could be sub-
mitted to its superclass. This aspect of an inheritance relationship is referred to as
interface inheritance. The ability for a subclass to redefine the implementation of
its inherited methods adds an interesting twist to this functionality, allowing sub-
classes to respond to requests in a specific way. In this chapter, we will investigate
how these features can be exploited to develop highly flexible designs.

6.1 Object Reference Assignments Revisited

In Chapter 2, Working with Objects, we learned how to use the HOVE statement
and the assignment operator (-) to assign the contents of one object reference
variable to another. As you may recall, object reference assignments copy the
pointer stored in the source reference variable into the contents of the target ref-
erence variable. After an assignment takes place, the target reference variable will

155

6 | Polymorphism

point to the same object pointed to by the source reference variable. Of course,
this kind of assignment only makes sense if the types of the two reference vari-
ables are compatible.

Strictly speaking, two variables are compatible if they share the same type. In
spite of this, we frequently make assignments between variables having incom-
patible types (e.g., between built-in types such as an integer and a floating-point
number, etc.). Such types are said to be convertible in the sense that there exists
some kind of conversion rule that tells the ABAP runtime environment how to
convert the contents of the source variable into a format compatible with the tar-
get variable.

However, conversions don't make sense for object reference assignments because
an object reference stores a pointer and not the object itself. Instead, an object
reference variable must be enhanced with additional type information that pro-
vides visibility to the components of the actual object that it points to. In this sec-
tion, you will learn how to perform object reference assignments between fami-
lies of related types. Understanding how these assignments work is a prerequisite
for learning how to implement generic designs using polymorphism.

6.1.1 Static and Dynamic Types

So far, we have only performed assignments between object reference variables
that have shared the same static type. The static type of an object reference vari-
able is the class type (or interface type, as you will see in Section 6.3, Interfaces)
used to define the object reference variable. For example, in Listing 6.1, the static
type of object reference variable 1 r_oref is the class type lc1_class.

DATA: 1r_oref TYPE REF TO Ic l .c lass .
List ing 6.1 Determining the Static Type of an Object Reference

Sometimes, you may want to perform assignments between object reference vari-
ables that do not share the same static type. For example, because instances of a
superclass and its subclasses are interchangeable, it should be possible to perform
an assignment between object reference variables that have these different static
types. The code snippet in Listing 6.2 shows an example of this kind of assign-
ment with the l r_parent - lr_child statement.

156

O b j e c t Re fe rence A s s i g n m e n t s Rev i s i t ed

CLASS l c l _ p a r e n t DEFINITION.
PUBLIC SECTION.

METHODS: a.
b.

ENOCLASS.

CLASS l c l _ p a r e n t IMPLEMENTATION.
METHOO a.

WRITE: / ' I n method a . ' .
ENDMETHOD.

METHOO b.
WRITE: / ' I n method b . \

ENDMETHOD.
ENOCLASS.

CLASS l c l _ c h i I d DEFINITION
INHERITING FROM l c l _ p a r e n t .

PU8LIC SECTION.
METHODS: C.

ENDCLASS.

CLASS l c l _ c h 1 I d IMPLEMENTATION.
HETHOD c.

WRITE: / ' I n method c . \
ENDMETHOD.

ENOCLASS.

OATA: 1r_parent TYPE REF TO l c l _ p a r e n t .
1 r_ch i Id TYPE REF TO l c l . c h i l d .

CREATE OBJECT 1r_parent .
CREATE OBJECT l r . c h i l d .
l r _paren t - l r _ c h i l d .

Listing 6.2 Performing a Cast with an Object Reference Assignment

To understand how this k ind of assignment works behind the scenes, let's take a

step back and think about what is happening from a logical perspective. In Chap-

ter 2, Work ing wi th Objects, we considered the relationship between a remote

control and a T V as a metaphor for describing the link between an object refer-

ence variable and the object it points to. W h e n you purchase a new TV, the pack-

157

6 | Polymorphism

age normally comes with a remote control that is able to interact with the TV out
of the box. In other words, the static type of that remote control is defined in
terms of the TV.

Now, imagine that you decide to purchase a universal remote to replace the
default remote that came with the TV. In this case, even though the static type of
the universal remote is more generic than the one provided by the manufacturer,
it is still compatible with the public interface provided by the TV (i.e., it has com-
mon operations such as Turn On, Adjust Volume, etc.). However, before you can
use the universal remote with the TV, it must first be reprogrammed with infor-
mation about the actual TV model it is interfacing with. Similarly, object refer-
ence variables that are reassigned to point to objects that do not have the same
static type must be reprogrammed with dynamic type information at runtime.

The dynamic type of an object reference variable refers to the class type of the
object pointed to by the reference variable. In the example shown in Listing 6.2,
the statement CREATE OBJECT 1 r.parent instantiates an object of type lcl_parent
and assigns a pointer to that object to the l r_parent object reference variable. At
this point, the static and dynamic type of the lr_parent reference is the same.
However, when you perform the assignment statement lr_parent - lr_child,
the dynamic type of the lr_parent reference is changed by the ABAP runtime
environment to refer to the l c 1 _chi 1 d class type. This information is crucial for
the ABAP runtime environment to interact with the compatible components of
the lcl_child object that is now being pointed to by the lr_parent reference
variable.

It is worth mentioning that you cannot arbitrarily set the dynamic type of an
object reference to an incompatible type. In other words, these kinds of assign-
ments don't make sense without some kind of an inheritance relationship
between the source and target object reference variables. Section 6.1.2. Casting,
explores the rules that govern how these assignments work.

6.1.2 Casting

If the static type of the source and target object reference variables is not the same
in an assignment operation, a special operation called a cast must occur for the
assignment to work. A cast operation is allowed whenever the static type of the
target object reference is the same as or more general than the dynamic type of

158

Objec t Reference Assignments Revisited

the source object reference. There are two different types of cast operations: a
narrowing cast and a widening cast.

Narrowing Casts

A narrowing cast occurs in an object reference assignment statement whenever
the static type of a target object reference variable is more generic than the static
type of the source object reference variable. The assignment statement in Listing
6.3 shows an example of a narrowing cast between the reference variables
1r.parent and lr_chi1d. This type of assignment is called a narrowing cast
because the class type lcl .parent is more general than lc l .chi Id. effectively nar-
rowing the scope of the components that can be accessed in the lcl_chi Id object
to those defined in the lcl .parent superclass.

OATA: lr_parent TYPE REF TO lcl_parent.
l r . ch i ld TYPE REF TO lcl_chi Id.

CREATE OBJECT 1r.parent.
CREATE OBJECT l r . c h i l d .
1r.parent - l r . c h i l d .
* CALL METHOD 1r_parent->c. "Syntax Error!
L is t ing 6.3 A t temp t ing t o Call a M e t h o d That Is Ou t of Scope

This reduction in scope prevents the target object reference variable (i.e.,
1 r.parent) from accessing components that are not defined in its static type def-
inition. For example, the method call that is commented out in Listing 6.3 would
cause a syntax error because method c is not defined for type lcl .parent. Of
course, this reduction in scope does not imply that the object itself is changed or
truncated in some way; the l c l . ch i ld object in Listing 6.3 is still a full-fledged
object of type lc l .ch i ld , for example.

It is also possible to use the TYPE addition of the CREATE OBJECT statement to per-
form an implicit narrowing cast during the instantiation process. For example,
the CREATE OBJECT statement in Listing 6.4 creates an object of type lc l . ch i ld
and assigns a pointer to this object to the 1 r.parent object reference, implicitly
performing a narrowing cast operation along the way.

OATA: 1r.parent TYPE REF TO lc l .parent .
CREATE OBJECT 1r.parent TYPE l c l . ch i ld .
L is t ing 6 .4 Performing a Narrowing Cast Dur ing Object Creation

159

6 | Polymorphism

Widening Casts

In cases where the static type of the target object reference is more specific than
the static type of the source object reference, a widening cast has to be applied for
an assignment statement to pass muster with the ABAP compiler. Widening casts
allow you to take control of the assignment process by telling the compiler that
you know what you are doing when you are performing your assignment.

Of course, this delegation docs not mean that a validity check never takes place;
it just means that it is deferred until runtime when the dynamic type of the source
object reference is known. Here, as we stated before, the static type of the target
object reference must be the same as or more general than the dynamic type of
the source object reference. Otherwise, an exception will occur. In Chapter 8,
Error Handling with Exceptions, we will look at how to recover from these types
of exceptions in your programs. Still, it is recommended that you use widening
casts carefully because they can be somewhat confusing (and dangerous).

Widening casts require you to use a special assignment operator called the casting
operator (?-). You can also perform widening casts using the ?T0 option of the
HOVE statement. This syntax effectively tells the compiler to bypass the static syn-
tax check on the assignment statement. Listing 6.5 shows how to perform a wid-
ening cast using both types of syntax.

DATA: Ir_parent TYPE REF TO lcl.parent.
1r_chiId TYPE REF TO lc l .ch i ld .

CREATE OBJECT lr_parent TYPE lc l .chf ld.
CREATE 08JECT lr_child.
1r_child ?- lr_parent.
MOVE lr_parent ?T0 lr_child.
List ing 6.5 Performing Widening Casts

6.2 Dynamic Method Call Binding

Now that you understand how to use casts to perform assignments between
related types, you are ready to start implementing designs using polymorphism.
The report program 2 POLY TEST in Listing 6.6 contains an abstract class
l c l .an ima l , two subclasses (l c l_ca t and lc l .dog) , and a test driver class called
lcl_see_and_say. The lcl_see_and_say class is modeled loosely after the Sce-n-
Say* educational toys manufactured by Mattel. Inc.

160

Dynamic Method Call Binding | 6 .2

REPORT z p o l y t e s t .

CLASS 1c1_anima 1 DEFINITION A8STRACT.
PUBLIC SECTION.

METHODS: g e t . t y p e ABSTRACT,
speak ABSTRACT.

ENOCLASS.

CLASS l c l . c a t DEFINITION
INHERITING FROM l c l . a n i m a l .

PUBLIC SECTION.
METHODS: g e t . t y p e REDEFINITION,

speak REDEFINITION.
ENOCLASS.

CLASS l c l . c a t IMPLEMENTATION.
METHOD g e t . t y p e .

WRITE: ' C a t ' .
ENDMETHOD.

METHOD speak.
WRITE: 'Meow'.

ENDMETHOD.
ENOCLASS.

CLASS l c l . d o g DEFINITION
INHERITING FROM l c l _ a n i m a l .

PUBLIC SECTION.
METHODS: g e t . t y p e REDEFINITION,

speak REDEFINITION.
ENOCLASS.

CLASS 1cl_dog IMPLEMENTATION.
METHOD g e t _ t y p e .

WRITE: ' D o g ' .
ENDMETHOD.

METHOD speak.
WRITE: ' B a r k ' .

ENDMETHOD.
ENOCLASS.

161

6 | P o l y m o r p h i s m

CLASS 1cl_see_and_say DEFINITION.
PUBLIC SECTION.

CLASS-METHODS:
p lay IMPORTING im_animal

TYPE REF TO l c l _ a n i m a l .
ENDCLASS.

CLASS lc l_see_and_say IMPLEMENTATION.
METHOO p l a y .

WRITE: ' T h e ' .
CALL METHOO im_an ima l ->ge t _ typ e .
WRITE: ' s a y s ' .
CALL METHOO im_animal ->speak.

ENDMETHOD.
ENDCLASS.

START-OF-SELECT I ON.
DATA: l r . c a t TYPE REF TO l c l . c a t .

1r_dog TYPE REF TO l c l _ d o g .

CREATE OBJECT l r . c a t .
CREATE OBJECT l r _ d o g .

CALL METHOD l c l _ s e e _ a n d _ s a y - > p l a y
EXPORTING

im_animal - l r _ c a t .
NEW-LINE.
CALL METHOD l c l _ s e e _ a n d _ s a y - > p l a y

EXPORTING
im_an1mal - l r _ d o g .

List ing 6 . 6 D y n a m i c B i n d i n g w i t h A t e t h o d Cal ls

In this implementation, the class method play allows you to play the sound made
by various types o f animals. If you look closely at the signature of method play,
you wi l l observe that it receives an importing parameter of type lcl_animal.
However, in the START-OF-SFlFCTION event o f program 7P0LYTEST, you wi l l
notice that this method is called at runtime with objects of type lcl_cat and
lcl_dog. In this case, the ABAP runtime environment performs an implicit nar-
rowing cast during the assignment of the importing parameter im_animal. This
subtle feature makes it possible for the code inside the play method to be imple-
mented generically.

162

Interfaces

T h e d y n a m i c t y p e i n f o r m a t i o n a s s o c i a t e d w i t h a n o b j e c t r e f e r e n c e v a r i a b l e a l l o w s

t h e A B A P r u n t i m e e n v i r o n m e n t t o d y n a m i c a l l y b i n d a m e t h o d ca l l w i t h t h e

i m p l e m e n t a t i o n d e f i n e d i n t h e o b j e c t p o i n t e d t o b y t h e o b j e c t r e f e r e n c e v a r i a b l e .

F o r e x a m p l e , t h e i m p o r t i n g p a r a m e t e r im_animal f o r m e t h o d play i n t h e

lcl_see_and_say c lass f r o m L i s t i n g 6 . 6 r e f e r s t o a n a b s t r a c t t y p e t h a t c o u l d n e v e r

b e i n s t a n t i a t e d o n i ts o w n . H o w e v e r , w h e n e v e r t h e m e t h o d is c a l l e d w i t h a c o n -

c r e t e subc lass i m p l e m e n t a t i o n s u c h as lcl_cat o r lcl_dog, t h e d y n a m i c t y p e o f

t h e im_animai r e f e r e n c e p a r a m e t e r is b o u n d t o o n e o f t h e s e c o n c r e t e t y p e s .

T h e r e f o r e , t h e ca l l s t o m e t h o d s get_type a n d speak r e f e r t o t h e i m p l e m e n t a t i o n s

p r o v i d e d i n t h e lcl_cat o r lcl_dog subc lasses r a t h e r t h a n t h e u n d e f i n e d a b s t r a c t

i m p l e m e n t a t i o n s p r o v i d e d i n c lass lcl_animal.

D y n a m i c b i n d i n g p r o v i d e s f o r t r e m e n d o u s flexibility i n d e s i g n s . T h e s i m p l e

e x a m p l e f r o m L i s t i n g 6 . 6 o n l y i m p l e m e n t e d f o r a c a t a n d a d o g . I n t h e f u t u r e ,

d e v e l o p e r s m a y d e c i d e t o i m p l e m e n t subc lasses f o r v a r i o u s o t h e r t y p e s o f

a n i m a l s s u c h as a h o r s e , a c o w , a p i g , a n d s o o n . H o w e v e r , b e c a u s e t h e

lcl_see_and_say c lass w o r k s w i t h t h e g e n e r i c lcl_animal t y p e , t h e y c a n i n t e -

g r a t e t h e s e n e w t y p e s i n t o t h e " S e e - n - S a y d e v i c e " s e a m l e s s l y . S u c h d e s i g n s a r e

s a i d t o b e extensible i n t h e sense t h a t w e c a n e a s i l y i n t r o d u c e n e w f u n c t i o n a l i t y b y

s i m p l y c r e a t i n g a n e w subc lass a n d p l u g g i n g i t i n t o t h e d e s i g n .

6.3 Interfaces

T h r o u g h o u t t h e c o u r s e o f t h i s b o o k , w e h a v e u s e d t h e t e r m interface t o d e s c r i b e

v a r i o u s i n t e r a c t i o n p o i n t s b e t w e e n c lasses a n d t h e i r c l i e n t s . F o r e x a m p l e , a

m e t h o d ' s s i g n a t u r e d e f i n e s a n i n t e r f a c e t h a t is u s e d b y c l i e n t s w a n t i n g t o ca l l t h a t

m e t h o d . F r o m a n o b j e c t - o r i e n t e d p e r s p e c t i v e , y o u c a n t h i n k o f a n i n t e r f a c e as a

t y p e o f protocol t h a t d e f i n e s r u l e s f o r c o m m u n i c a t i n g w i t h o b j e c t s .

T h i s a n a l o g y s h o u l d b e f a m i l i a r b e c a u s e w e i n t e r a c t w i t h m a n y t y p e s o f p r o t o c o l s

e v e r y d a y . F o r i n s t a n c e , t h e Hypertext Transfer Protocol (H T T P) d e f i n e s t h e r u l e s

t h a t c l i e n t s (i .e . , w e b b r o w s e r s s u c h as M i c r o s o f t I n t e r n e t E x p l o r e r) a n d w e b s e r v -

e rs m u s t a d h e r e t o i n o r d e r t o r e l i a b l y p u b l i s h a n d r e t r i e v e c o n t e n t o n t h e W o r l d

W i d e W e b . T h e s e r u l e s m a k e i t p o s s i b l e f o r y o u r w e b b r o w s e r t o r e q u e s t w e b

pages f r o m m a n y d i f f e r e n t t y p e s o f w e b s e r v e r i m p l e m e n t a t i o n s (e .g . , M i c r o s o f t ,

A p a c h e , SAP , e t c .) w i t h o u t h a v i n g t o w o r r y a b o u t h o w t h e s e s e r v e r s a r e i m p l e -

m e n t e d . S i m i l a r l y , y o u h a v e s e e n h o w p o l y m o r p h i s m c a n b e u s e d t o d y n a m i c a l l y

b i n d m a n y d i f f e r e n t t y p e s o f i m p l e m e n t a t i o n s t o a s i n g l e i n t e r f a c e .

163

6 | Polymorphism

Sometimes, it can be advantageous to define an interface independently of any
particular class. Such interfaces do not have an implementation associated with
them and consequently cannot be instantiated on their own. In this section, we
will look at how interfaces can be used expand a class's scope into multiple
dimensions.

6.3.1 Interface Inheritance Versus Implementat ion Inheritance

Some object-oriented languages support a multiple inheritance model, allowing
you to define several inheritance relationships within a given class. As you may
have guessed by now, ABAP Objects only supports a single inheritance model. This
is a design decision that has been employed by many modern object-oriented lan-
guages in an effort to avoid some of the ambiguity that can arise with complex
inheritance hierarchies.

To illustrate some of the potential problems associated with a multiple inherit-
ance model, let's consider an example. The class diagram in Figure 6.1 depicts a
diamond-shaped class hierarchy. In this case, let's imagine that classes B and C
have both redefined method someMethod from class A. I f class D does not redefine
method someMethod, from which implementation does it inherit: B or C? This
problem is known as the diamond problem.

A

+ s o m e M e t h o d

1

B C

+ s o m e M e t h o d + s o m e M e t h o d

D

+ s o m e M e t h o d

Figure 6.1 Class Diagram for Diamond-Shaped Inheritance Hierarchy

164

Interfaces

A single-inheritance model avoids these kinds of vagaries because a subclass
always inherits from a single superclass. However, interfaces can enhance this
model by providing a way to extend the type of a class without having to bring
along all of the implementation baggage associated with multiple inheritance. In
Section 6.3.4, Working with Interfaces, you will see how the implementation of
an interface allows a class to be used polymorphically wherever a reference of
that interface type is used.

6.3.2 Defining Interfaces

The syntax required to define an interface is veiy similar to the syntax that is used
in the declaration part of a class definition. Listing 6.7 shows an example of how
to define a local interface called 1 i f_ i face. Notice that none of the interface com-
ponents have been defined within a visibility section. This is because all compo-
nents of an interface are implicitly defined within the public visibility section. If
you think about it, this makes sense because the purpose of an interface is to
expand the public interface of implementing classes.

INTERFACE 1i f_ i face.
OATA: a TYPE string.
METHODS: m.
EVENTS: e.

ENOINTERFACE.

List ing 6.7 Syntax for Defining a Local Interface

Most of the time, you will just use interfaces to add additional methods to the
public interface of a class. However, you can technically define all of the same
types of components that you can define for classes in an interface (see Chapter 2,
Working with Objects, for more details on the types of components that you can
define for classes).

Interfaces can also be defined as global Repository objects in the Class Builder
tool. To illustrate how this works, let's create a new global interface called
ZI F_COMPARABLE that can be used to specify an ordering for implementing classes.
You will see an example of how to implement and use this interface in Sections
6.3.3, Implementing Interfaces, and 6.3.4, Working with Interfaces, respectively.

1. To create a global interface in the Class Builder, enter the name in the interface
in the OBJECT TYPE field, and click on the CREATE button (see Figure 6.2).

165

Polymorphism

Qt>l«IVPt E>1 Ooto W t » » (j p EfMioomtfii System M«lp

© • J :-: o o e a o a a a

Class Builder: Initial Screen

mmm h e p

0«9<*t

2[r.co»A«*eii| g)

ro cr>M» i Ctunp*

Figure 6.2 Creating a Global Interface — Part I

2. The use of the IF_ prefix convention causes the Class Builder to bring up the
CREATE INTERFACE dialog box where you can confirm the name of the interface
along wi th a short description of its purpose. Click the SAVE button to save your
changes to the ABAP Repositoiy (see Figure 6.3).

E-Cfeate interface 0 /

Interface Zlf_COnPAR*BU

Description interface for Defining an Ordor for Ob(o>

• On* Modeled

r A f f T n

Figure 6.3 Creating a Global Interface - Part II

3. After confirming the Repository details in the CREATE OBJECT DIRECTORY ENTRY

screen, you are navigated to the Class Editor screen where you can edit the
interface's components in the same way thatyou edit the components of a class
(sec Figure 6.4).

Iff
| y w r t K e Sort Ooto u w m q j) Enwcrmgni g p i e m HHe

OB ai vj a 0 0 © • ;A g ® ©ffl
Class Builder: Change Interface ZIF_COMPARABLE

ZIF.CONPARABIE lmpl«m«rt»a>AcS*»

I 0 Parameter*! ty Eu«pCont | S l S U fiMJ • FlS»r

MWOO mmm Oevcnptten I
J.0nPA«E_T0 Instance netnod Corrpare Two Otiectt To Oetermre Trie* Order

I

Figure 6.4 Editing a Global Interface in the Class Editor

166

Interfaces

4. The ZIF_COMPARABLE interface contains a single instance method callcd

C0MPARf_T0 that can be used to compare two objects to determine i f the source

object is greater than, less than, or equal to the target object. Here, def ine the

IM_0BJECT parameter w i th the generic OBJECT type (see Figure 6.5) . Because

every ABAP Objects class is implici t ly derived f rom this class, y o u can imple-

ment this interface for any class type.

Class Builder: Change Interface ZIF_COMPARABLE

1 9 S m m ® i | S ! [I I F ? l ItftUfi] V F D [WKFCCTDOTGMWTOHON j

interface ZIF.COHPAAABLC BMP>«N«CM<MRIM»
V U t i i H t l i f l ' l . ' . ' - ' u i ^ M ' l . ^ ' . ' l ' i r Methods

Method parameter* CC*PAFTE_TO - M
I * Methods | & } E t t e p o o o s | & H J Q J X L T T I
[P a r a m e t e r | r y p e |P» l o |r«NNGM [A s s o c i a t e d Type | DEIMJH value [O e s c n p O o n n
IH.OBJECT importrig • • Type Ref OBJECT ObiectwCompve
RE.PESULT Retum.no F r Type I Comparison Resu*

i r - • • ' y p *

Figure 6.5 Defining an Instance Method in an Interface

6.3.3 Implementing Interfaces

Interfaces arc not all that interesting unti l y o u start implement ing them in classes.

You can imp lement an interface in a local class using the INTERFACES keyword .

Listing 6 . 8 shows h o w a local class called l c l _ i m p l e i r e n t e r implements the

l i f _ i f a c e interface.

INTERFACE 1 1 f _ i f a c e .
METHODS: ml .

m2.
ENDINTERFACE.

CLASS 1c1_imp1ementer DEFINITION.
PUBLIC SECTION.

INTERFACES: 1 i f _ i f a c e .
ENDCLASS.

CLASS l c l j m p l e m e n t e r IMPLEMENTATION.
METHOD 1 i f _ 1 f a c e - m l .

WRITE: ' I n method 1 i f _ i f a c e - m l 1 .
ENDMETHOD.

1 6 7

6 | P o l y m o r p h i s m

METHOO I1f_1face~m2.
WRITE: ' I n method l i f _ i f a c e ~ m 2 ' .

ENDMETHOD.
ENDCLASS.

L i s t i n g 6 . 8 I m p l e m e n t i n g a n I n t e r f a c e i n a L o c a l Class

You can declare the implementation of interfaces in a global class by entering the
interface name in the I N T E R F A C E column on the I N T E R F A C E S tab of the Class Editor
screen (see Figure 6.6).

Class Interface ZCl.CUSTOHER

mrib'J*!

implemented/Actve

A Properties ^ B j i m i T T r ^ B friends mrib'J*! \ Methods Events Typ es Aliases

m tfBl Orm
I interface Iwretract |rman juooeie |Destnpbon

ZIF .COI IPMEIA • •
D • • • • •

F i g u r e 6 . 6 I m p l e m e n t i n g a n I n t e r f a c e i n a G l o b a l C lass

After you implement an interface in a class, you wil l see the components of that
interface show up as components for the implementing class. In Figure 6.7, class
ZCL_CUSTOMER has been defined that implements the ZIF_COMPARABLE interface.
On the M E T H O D S tab of the Class Editor, you can see that the ZIF_COMPARABLE~

C0MPARE_T0 method has been added to the list of methods defined for class
ZCL_CUSTOMER (see Figure 6.7).

| Class Interface ZCL.CUSTOHER imptemtnted / Actve

1

Im ' rT . ' .WETT L i U M - i T ? ! ? ! faf M S r a f f f i J Q J x I a T l a l M M | | n n *

Iwetftod |Levei |visl |m [Oescnpton
f 1 f _C0HP«tAH. E-COKP«E_TO InstancPufcli Compare Two Objects To Determine Thtlr 0»d»r

F i g u r e 6 . 7 I n h e r i t i n g I n t e r f a c e C o m p o n e n t s i n a G l o b a l Class

The implementation of the ZIF_COMPARABLE interface extends the scope of cus-
tomer objects, providing a means for sorting customers by their internal cus-
tomer ID number. Of course, this extension cannot be realized until an imple-
mentation for the COMPARE_TO method is provided. The code in Listing 6.9

1 6 8

Interfaces

provides an implementa t ion for the C0MPARE_T0 method for the ZCL_CUSTOHER

class. This method must be addressed using the ful ly qual i f ied interface compo-

nent name ZIF_COMPARABLE~COMPARE_TO rather than just s imply COMPAREJTO. The

ti lde (-) b e t w e e n the interface name and the interface component name is called

the inter/ace component selector operator .

METHOD z i f_comparable~compare_to .
* Method-Local Data D e c l a r a t i o n s :

DATA: l r _ o b j e c t TYPE REF TO zc l_cus tomer .

* Perform a widening cast on the comparison o b j e c t :
l r _ o b j e c t ? - im_ob jec t .

* Compare the two customers based on t h e i r ID number:
IF me->id GT 1 r _ o b j e c t - > i d .

r e _ r e s u l t - 1.
ELSEIF me->id LT 1 r _ o b j e c t - > i d .

r e _ r e s u l t - - 1 .
ELSE.

r e _ r e s u l t - 0 .
ENDIF.

ENOMETHOD.

Listing 6.9 Implementing an Interface Method in a Global Class

The comparison for class ZCL_CUSTOMER is based on the internal customer id

at tr ibute (see Figure 6 .8) . Here , notice that a w i d e n i n g cast on the comparison

object parameter IM_0BJECT is required to be able to access the id at tr ibute on the

customer comparison object because it is undef ined for objects o f type OBJECT.

| c i w i m m > f i z a j a s T O t C R] implemented / At live

^ m - J T T T , . . — u. l . T T T T — f , t r . ' - t y AftibUles r Events Types Aliases

M t e T B l B I I X l l Q I I A I U I U I D f m ,
Mntsrte I [l$v®l [visibility] Re iTypinaKsociatetjTypel Descneoon
NEXIJO Staec Aitribu* Privtfe • Type 1 E J He* Available Customer Number
ID Instance ASnbute PnvaSe • Type 1 E J Customer 10 Number
NME Instance « r * u t e Prrvane • Type : STRING E J Customer Name

• Type E J
• Type E J
• Type E J

Figure 6.8 Attribute Definitions for Class ZCL.CUSTOMER

169

6 | P o l y m o r p h i s m

The customer ID number is initialized in the CONSTRUCTOR method for class
ZCL_CUSTOMER. The definition and implementation of this method is shown in Fig-
ure 6.9 and Listing 6.10, respectively.

Ciws i«erf»ce

N Protwtot ffi

:ci_cusiowc> ~l imptwnenHd/ArtM

effaces Fne*>ds Aflnbutes Events Ty

Metiod parameters CONSTRUCTOR

i i * « * « « i EuetAons i m a i 3 i i x i 3 i I
|par»meter [Pa |o ImxngM [Associated Type |De£*ulvMue [Description
llt_NMt£ • • Type STRING [3)

• • Type

F i g u r e 6 . 9 O e f i n i n g t h e S i g n a t u r e o f M e t h o d C O N S T R U C T O R

METHOD constructor.
next_id - next_id + 1.
id - next_id.
name - im_name.

ENDMETHOD.

L i s t i n g 6 . 1 0 I m p l e m e n t i n g M e t h o d C O N S T R U C T O R

6.3.4 Work ing w i th Interfaces

At this point, you might be wondering why you would ever want to go to all of
the trouble of defining an interface and implementing it in a class. To demon-
strate the value of interfaces, let's look at how you might use the ZI F.COMPARABLE
interface defined in Section 6.3.2, Defining Interfaces, practically in a real-world
scenario.
ABAP Objects allows you to define the line type of an internal table using refer-
ence types. For example, we can define an internal table to hold customer objects
of type ZCL_CUST0MER using the syntax shown in Listing 6.11.

DATA: lt.customers TYPE STANOARD TABLE
OF REF TO zcl_customer.

L i s t i n g 6 .11 D e f i n i n g I n t e r n a l Tab les U s i n g R e f e r e n c e Types

Internal tables such as the one shown in Listing 6.11 are convenient for storing
and looping through object references. However, one thing that you can't easily
do with this kind of table is sort. After all, how do you sort a set of objects of type
ZCL.CUSTOMER, and so on? This is where interface ZIF_C0MPARABLE comes in.

1 7 0

In ter faces

Classes that implement the COMPARE_TO method of"interface Z I F_COHPARABLE have
a mechanism for determining a sort order. The only thing missing is the logic to
actually perform the sort operation. O f course, i f y o u go to the trouble of wr i t ing
the sort operation, you want to be able to reuse it again for other classes. There-
fore. it makes sense to wrap this logic inside o f a generic container that can store
objects, sort them, and so on. In many object-oriented language implementa-
tions. this type o f container is called a vector.

The global class ZCL_VECTOR shown in Figure 6.10 provides an example o f a basic
vector implementation in ABAP Objects. For now. the implementation simply
provides some methods to add and remove elements from the vector, sort the ele-
ments, and so on.

CUSS M M f X t ZCL.VECTOR Implemented/Actrw

Properties interfaces Frst n.butes Events . T»pe* , Afcases

I 0 Parameters!

Method Level
s n o t e
VtSlblitr

fiMJgyUSLMB J U n f , r

M | Descriptor!

CONSTRUCTOR instance nethod Publ ic & CONSTRUCTOR
w o Instance Bethod Publ ic Add an Element to t r * vector
RElWttl Instance nethod Publ ic Remove an Element »om the v e c w
SORT Instance nethod Publ ic So«t the Elements in the vectx
ITERATOR Instance Hetnod Publ ic Return an Iterate/ to Read r ie Elements in the vector

F i g u r e 6 . 1 0 U t i l i t y C lass Z C L _ V E C T O R

The actual vector elements are stored in a private attribute called ELEMENTS o f type
S W F _ U T L _ 0 B J E C T _ T A 8 (see Figure 6.11).

Class irttrface 2 C L - VECTOR imptemer«ed/A<twe

Friends Methods Events

Class irttrface 2 C L - VECTOR imptemer«ed/A<twe

Friends Methods Events * a s e s

p a i j M [! » ; • Filter

[AB-ibute |tevol fvisibiier |Road-Ont^Typing [Associated T(pe Description
ELEMENTS Instance AttibuSe Prrvate • Type SWF_UTl_08JECT_UB | <> "able T»e tor Runtime Obiects

F i g u r e 6 . 1 1 D e f i n i n g A t t r i b u t e E L E M E N T S i n C lass Z C L _ V E C T O R

The table type S W F _ U T L _ O B J E C T _ T A B has a reference line type point ing to objects
of type OBJECT (see Figure 6.12). Because eveiy ABAP Objects class implicit ly
inherits f rom type OBJECT, we can store any type of object inside o f our vector
container.

171

Polymorphism

Sr-erfte*
SW.UTL.08JtCT_T*e

Table tor R u i i m e Obie:ts

r L ' . T . T ' ^ F U n e T ^ e [inst igat ion and Access , Key

Data T,t>e

No of Characters 0 decimal Places 0

QBJESI

D M Type

lens* • C m n u i Places

Figure 6.12 Standard Table Type SWF_UTL_OBJECT_TA8

To add an object to the vector, we use the ADD method shown in Figure 6.13 and
Listing 6.12. This method s imply appends the IM_0BJECT parameter to the private
ELEMENTS attr ibute. Note that the type o f the IM_08JECT parameter is the generic
OBJECT type. This al lows callers to store any type o f object inside the vector.

CHH interface ZCL.VECIOR
Properties i rMrtKes Fnends Mr.tnAet

implemented/A:twe

Method paramewrs ADD

Methods E « e M o n » | ^ j [j

[Parameter lT.pc | p j] p [T.piog Vettod nflcd Type[o«t»utm»e [Oetcnplon

IH.OBJECI I n w n n g • • Type Per To OBJECT Ob i« t to Add to r e vector

Figure 6.13 Defining the Signature of Method ADD

METHOD add.
* Add an ob jec t to the v e c t o r :

APPEND im_object TO elements.
ENDMETHOD.

Listing 6.12 Implementing Method ADD

Elements can be removed f rom the vector using the REMOVE method shown in Fig-

ure 6.14 and Listing 6.13. Here, we s imply need to ver i ly that the prov ided index
is w i t h i n the bounds o f the internal table. I f it is, then the element can be
removed, and the vector remains in sorted order (provided it was sorted in the
first place).

172

I n t e r f a c e s

C u t % interface ZCLJrtCTOR implemented* Ac twe

Ptcpeiiet interfaces fnenas Everts Types

parameters |KOIOVE

» Mtrods I ty Eicepbons | r»] Hj J^QJ Xl-Cj 1
[Parameter |Ttpe [Pa |p [Typing M [Associated Type [Defaultvaue |Oescr<aor
ltn_INDEi vnporjng • • Type I Elementirow

F i g u r e 6 . 1 4 O e f i n i n g t h e S i g n a t u r e o f M e t h o d R E M O V E

METHOD remove.
* Remove the element a t the provided index .
* assuming 1t i s in bounds:

IF im_index GE 1 AND im_index LE l i n e s (elements) .
DELETE elements INDEX i m . i n d e x .

ENDIF.
ENOMETHOD.

L i s t i n g 6 . 1 3 I m p l e m e n t i n g M e t h o d R E M O V E

Af ter w e have populated the vector, w e can sort its e lements using the SORT

m e t h o d shown in Listing 6 . 1 4 . For demonstra t ion purposes, the simple (but inef-

f icient) Insertion Sort a lgor i thm is used to pe r fo rm the sort operat ion. This algo-

r i t h m operates in a similar fashion to the way y o u might sort a hand o f playing

cards. For example, after the dealer deals y o u y o u r cards, they arc laying face

d o w n on the table. As y o u pick up each card, y o u insert it into the proper posit ion

in y o u r hand (i.e., based 011 the value o f the card). I n the case o f method SORT, the

order ing o f the e lements in the vector is de te rmined by a class's imp lementa t ion

o f the COMPARE.TO method def ined in interface ZIF_C0MPARABLE. In other words,

this method assumes that the e lements o f the vector i m p l e m e n t the

ZIF.COMPARABLE interface.

METHOD s o r t .
* Method-Local Data D e c l a r a t i o n s :

DATA: 1r_key TYPE REF TO o b j e c t .
1r_element TYPE REF TO o b j e c t .
l r_compare TYPE REF TO z i f _ c o m p a r a b l e .
1r_temp TYPE REF TO o b j e c t .
1v_i TYPE 1.

l v _ j TYPE i VALUE 2 .
1v_index TYPE i .

173

6 | Polymorphism

* Sort the vec to r elements using the I n s e r t i o n Sor t
* a l g o r i t h m :

LOOP AT elements INTO l r _ k e y FROM 2 .
l v _ i - l v _ j - 1 .
READ TABLE elements INDEX l v _ i INTO l r _ e l e m e n t .
l r_compare ? - l r _ e l e m e n t .

WHILE 1v_i GT 0 ANO
lr_compare->compare_to(l r _ k e y) EQ 1.

REAO TABLE elements INDEX l v _ i INTO l r . t e m p .
l v_ index - l v _ i + 1.

MODIFY elements FROM l r_ temp INDEX l v j n d e x .

l v _ i - l v _ i - 1.

REAO TABLE elements INDEX l v _ i INTO l r _ e l e m e n t .
l r_compare ? - l r _ e l e m e n t .

ENOWHILE.

l v _ i n d e x - l v _ i + 1.
MOO I FY elements FROM l r _ k e y INDEX lv_1ndex.
l v _ j - l v _ j + 1.

ENDLOOP.
ENDMETHOO.

Listing 6.14 Implementing Method SORT

To use the functional i ty prov ided by the ZIF_COMPARABLE interface, w e must per-

fo rm a w i d e n i n g cast on the elements w e are compar ing because each e lement in

the vector has the generic type OBJECT. However , w e don ' t want to per fo rm the

cast in terms o f each o f the various classes because this w o u l d make our SORT

method too specific. Instead, w e per fo rm a w i d e n i n g cast using the lr_compare

reference variable. Here, notice that the static type o f the lr_compare reference

variable is the interface type ZIF_COMPARABLE. Reference variables such as

l r_compare are referred to as interface references. Interface reference variables can

be assigned to point to objects o f classes that i m p l e m e n t the interface type (i.e.,

static type) o f the interface reference.

Therefore, the assignment statement lr_compare ? - l r _ e l e m e n t is valid because

w e assume that the dynamic type o f the object po in ted to by l r_element provides

an imp lementa t ion o f the ZIF_COMPARABLE interface. Interface reference variables

are a l lowed to direct ly access the components def ined by the interface. Conse-

quent ly . as y o u can see in Listing 6 . 1 4 , the call to method C0MPARE_T0 does

4

Interfaces

not require the use of the interface component selector operator (e.g.,
ZIF_COMPARABLE~COMPARE_TO, etc.) that is required whenever we address interface
components using a regular object reference variable.

The ZCL_VECTOR class uses an iterator to provide access to its elements. You can
think of an iterator as a type of cursor that lets you traverse through the elements
of a collection. The method ITERATOR shown in Figure 6.15 and Listing 6.15 re-
turns an iterator object of type CL_SWF_UTL_ITERAT0R. Class CL_SWF_UTL_ITERAT0R
provides a series of methods that enable you to read elements from the vector
without having direct access to the private elements attribute hidden inside class
ZCL_VECTOR.

Class Interface ZCL ..VECTOR] implemented / Active

Method parameters ITERATOR -
Methods Exceptions | r B | | |

[parameter |Type |Pa lo [Typing Method [Associated Type Default value [Description
iRrTTWXTfftf Returning F Type Ret To CL_SYF_UTL_ITERATOR Iterator

• Type

Figure 6.15 Def in ing the Signature of M e t h o d ITERATOR

METHOO i t e r a t o r .
* Create an i t e ra to r object to provide access to the
* vector elements:

CREATE OBJECT r e . i t e r a t o r
EXPORTING

im_object_list - elements.
ENOHETHOO.

L is t i ng 6.15 Imp lement ing M e t h o d ITERATOR

As stated before, the implementation of an interface expands the scope of a class.
For instance, the class ZCL_CUSTOMER is a customer, but it is also comparable. Thus,
just because you can only inherit from a single superclass does not mean that you
can't expand the public interface of your class into additional dimensions using
interfaces. In fact, you are free to implement as many interfaces in a class as you
want.

Often, you can use a design technique known as forwarding to quickly implement
an interface using composition techniques. In this case, the methods of the inter-

175

P o l y m o r p h i s m

face are implemented in a class using functionality provided by composed
objects. The simple report program ZVECTORiESI shown in Listing 6.16 demon-
strates how to use the generic vector class developed in this section.

REPORT z v e c t o r t e s t .

DATA: gr_customer l TYPE REF TO zc l_cus tomer .
gr_customer2 TYPE REF TO zc l_cus tomer .
gr_customer3 TYPE REF TO zc l_cus tomer .
g r _ v e c t o r TYPE REF TO z c l _ v e c t o r .

START-OF-SELECT I ON.
* Crea te t h r e e sample customers:

CREATE OBJECT gr_customer l
EXPORTING

im_name - "Andrea ' .

CREATE OBJECT gr_customer2
EXPORTING

1m_name - ' A n d e r s e n ' .

CREATE OBJECT gr_customer3
EXPORTING

1m_name - ' P a i g e * .

* Add the customers to the vec tor c o n t a i n e r in
* random o r d e r :

CREATE OBJECT g r _ v e c t o r .

CALL METHOD g r _ v e c t o r - > a d d
EXPORTING

im_object - gr_customer2 .

CALL METHOD g r _ v e c t o r - > a d d
EXPORTING

im_object - gr_customer3 .

CALL METHOD g r _ v e c t o r - > a d d
EXPORTING

im_object - g r _ c u s t o m e r l .

* Show the customers b e f o r e the s o r t o p e r a t i o n :

17 6

In ter faces

PERFORM show_customers USING gr_vector .

* Now. sort the customers:
CALL METHOO gr_vector ->sor t () .

* Show the customers a f t e r the sort operat ion:
PERFORM show_customers USING gr_vector .

FORM show_customers USING im_vector TYPE REF TO zc l_vector .
* Local Data Declarat ions:

DATA: l r _ i t e r a t o r TYPE REF TO c l _ s w f _ u t l _ i t e r a t o r .
lv_count TYPE i .
l r . o b j e c t TYPE REF TO ob jec t .
lr_customer TYPE REF TO zcl_customer.

l r _ 1 t e r a t o r - im_vector -> i te ra tor () .
lv_count - 1 r_ i te ra tor ->get_count () .
DO 1v_count TIMES.

l r _ o b j e c t - l r _1 te ra to r ->ge t_cur ren t () .
lr_customer ? - l r _ o b j e c t .
l r_customer->display() .

l r _ U e r a t o r - > g e t _ n e x t () .
ENDDO.

ENDFORM.
L i s t i n g 6.16 Example Program Demons t ra t i ng Class ZCL_VECTOR

It is recommended thatyou make liberal use o f interfaces in your designs because
they are extremely flexible to work with. In the book Java Programming Language
(Addison-Wesley, 2006), James Gosling, the inventor o f the Java programming
language, suggests that" . . . every major class in an application should be an imple-
mentation of some interface that captures the contract o f that class." One can
argue as to whether or not position is too extreme for practical purposes, but
there is value to be gained in developing logic based on interfaces because you
can integrate any class that implements that interface seamlessly into your design.

6.3.5 Nesting Interfaces
So far, we have only considered simple, elementary interfaces. However, it is pos-
sible to nest interfaces inside of a compound or nested interface. Interfaces embed-
ded inside of a nested interface arc called component interfaces. Listing 6 .17 shows

177

6 | Polymorphism

an example of the syntax used to nest the component interface 1 i f_component
inside of the nested interface 11f_nested. As you can see, interfaces are nested
using the INTERFACES statement.

INTERFACE 1if_component.
METHODS: Cl .

c2.
ENDINTERFACE.

INTERFACE l i f . nes ted .
INTERFACES: 11f_COmponent.
METHODS: n l .

n2.
ENDINTERFACE.
L i s t i n g 6.17 Nes t ing Interfaces Example

You can assign component interfaces to a global nested interface by entering the
component interface name in the INCLUDES column on the INTERFACES tab of the
Class Editor (see Figure 6.16).

interface ZIF_NESTED Implemented/Inactv*

Properties Aonbutos Methods Event* Types Aliases

P H f | 1
[includes [MO iDescription
ZIF_C0W>0NENT| •

•
F igu re 6.16 Nest ing Interfaces in G loba l Inter faces

All of the components in a nested interface exist at the same level. I f a given com-
ponent interface happens to be nested more than one time, there will only be a
single instance of the components defined in that component interface inside the
nested interface.

Components of component interfaces are not directly visible in the nested inter-
face. However, you can make these components visible in a nested interface by
defining alias names for the components. Listing 6.18 shows how the ALIASES
statement was used to define aliases for the cl and c2 methods of component
interface 1if_component in nested interface l i f_nested. The class 1c1_

8

In ter faces

nested_impl is now able to implement the nested methods defined in the

1 i f .component component interface.

INTERFACE 1if_component.
METHODS: c l .

C 2 .

ENDINTERFACE.

INTERFACE l i f _ n e s t e d .
INTERFACES: 1if_component.
A L I A S E S : c l FOR 1 i f _ c o m p o n e n t - c l .

c2 FOR 1if_component~c2.
METHODS: n l .

n2.
ENDINTERFACE.

CLASS 1cl_nested_impl DEFINITION.
PUBLIC SECTION.

INTERFACES: l i f _ n e s t e d .
ENDCLASS.

CLASS lc l_nested_impl IMPLEMENTATION.
METHOD 1 i f _ n e s t e d ~ n l .
ENDMETHOD.

METHOO 1 i f _ n e s t e d - n 2 .
ENDMETHOD.

METHOD l i f_component~cl .
ENDMETHOD.

METHOD 11f_component-c2.
ENDMETHOD.

ENDCLASS.

L i s t i n g 6.18 W o r k i n g w i t h Al ias Names

M u c h like you saw in Section 6.1.2, Casting, y o u can also perform casts in assign-
ments between interface reference variables. For example, Listing 6 .19 shows an
example o f how y o u can perform a narrowing cast between interface reference
variables defined using the static types 1 i f_componem and 11 f_nested from List-
ing 6 .18. In this case, the narrowing cast is allowed because 1 i f_component is a
component interface of 1 i f_nested.

179

6 | P o l y m o r p h i s m

DATA: lr_component TYPE REF TO 11f_component.
1r_nested TYPE REF TO l i f .nes ted .

CREATE OBJECT lr_nested TYPE lc l .nes ted jmpl .
lr_component - lr_nested.
CALL METHOD 1r_component->cl.

L i s t i n g 6.19 Per fo rm ing N a r r o w i n g Casts Us ing In ter face References

6.4 UML Tutorial: Advanced Class Diagrams Part II

In this section, we will complete our discussion of the UML class diagram by
introducing the notation for working with interfaces and their components.

6.4.1 Interfaces

The notation for defining interfaces in a UML class diagram is almost identical
to the one used to define classes. The only difference is the addition of the
« interface » tag in the top name section of the interface notation (see Figure
6.17).

« i n t e r f a c e »
C o m p a r a b l e

• comparcTo(o: O b j e c t) : Integer

F i gu re 6.17 N o t a t i o n fo r De f i n i ng Interfaces

The relationship between a nested interface and its component interfaces is
shown using the same generalization notation used to depict inheritance relation-
ships. For example, in Figure 6.18. the Nested interface is inheriting the compo-
nents from interface Component.

F igure 6.18 N o t a t i o n for De f i n i ng Nes ted Interfaces

180

U M L Tutor ia l : Advanced Class Oiagrams Part II

6.4.2 Providing and Required Relationships wi th Interfaces

Figure 6.19 shows two kinds of relationships that a class can have with an inter-
face. The dashed line between class Customer and interface Comparable indicates
that class Customer provides (or implements) the Comparable interface. Notice how
the notation for this relationship is similar to the one you have seen for generali-
zation relationships. In this case, the interface Comparable represents one kind of
generalization for class Customer. Implicitly, this tells us that we can substitute
instances of class Customer in places where the interface Comparable is used. The
dashed arrow between class Vector and interface Comparable represents a depen-
dency, indicating that class Vector requires the Comparable interface in some way.
As you saw in Section 6.3.4, Working with Interfaces, this dependency exists in
method sor t , which performs comparisons between vector elements using the
compareTo method defined in interface Comparable.

i
C u s t o m e r

+ c o m p a r e T o (o : O b j e c t) : I n t e g e r

Figure 6.19 Def in ing Providing and Required Relationships

181

Prov ides
I n t e r f a c e

6 | Polymorphism

6.4.3 Static At t r ibutes and M e t h o d s

You can define static (class) attributes and methods by simply underlining them
in a class or interface icon. In Figure 6.20, class Point has four static attributes
QUADRANT1, 0UA0RANT2. QUADRANT3, and QUADRANT4 as well as a static method called
getOistance.

Po in t

+OUADRANT1 : Integer

• Q U A D R A N T 3 Integer
+QUADRANT4 Integer

...

Figure 6.20 Defining Static Attr ibutes and Methods

6.5 Summary

This chapter concludes our basic introduction to object-oriented programming.
In many ways, the powerful designs thatyou can implement with polymorphism
represent part of the big payoff for all of the hard work that goes into designing
families of abstract data types. In Section 6.3, Interfaces, we expanded our view
of abstract data types by introducing the concept of an interface. Interfaces are a
welcome addition to any developer's tool bag, providing tremendous flexibility
for defining complex type hierarchies.

In the next chapter, we will look at ways to organize and partition our class librar-
ies into high-level software components using the SAP package concept.

182

A component-based approach to software engineering breaks a system
down into a series of logical components that communicate using well-
defined interfaces. When designed properly, these components become
reusable software assets that can be used elsewhere in other projects or
systems. In this chapter, we will look at ways to implement component-
based designs in ABAP Objects.

7 Component-Based Design Concepts

Now that you have learned the basic principles of object-oriented software devel-
opment in ABAP Objects, we can begin to broaden our focus by looking at ways
to organize class libraries and their related resources into reusable software com-
ponents. This process begins with the assignment of an ABAP development object
to a modular software unit called a package. Packages bring structure to ABAP
development objects, transforming fine-grained code libraries into coarse-
grained development components.

In this chapter, you will learn how to create and work with packages. You will
also see how packages fit into the overall SAP component-based software logistics
model. These concepts will help you keep your software catalog organized as
your class libraries evolve over time.

7.1 U n d e r s t a n d i n g t h e SAP C o m p o n e n t M o d e l

To understand how to effectively implement component-based software designs
in an ABAP development environment, it is helpful to be familiar with the com-
ponent model that SAP uses to manage its own internal software logistics. As you
can see in Figure 7.1, SAP assembles its software products as aggregates using
high-level software units called software components. Software components are
composed of a series of packages that organize the development objects that pro-
vide the actual implementation part of the system (e.g., classes, function groups.

183

7 | Component-Based Design Concepts

ABAP Dictionary objects, etc.). You will learn more about packages in Section 7.2,
The Package Concept.

Figure 7 a The SAP Component Mode l for ABAP Software Logistics

All of the objects shown in Figure 7.1 exist in versions. For example, many cus-
tomers have release 6.0 of the SAP ERP product installed in their landscape. This
product is assembled using particular versions1 of the software components
SAP_HR, SAP_APPL , and so on. Each software component version is composed of a
series of packages that contain development objects whose versions are managed
inside the ABAP Repositoiy.

You can see a list of the installed software components in your SAP NetWeaver
Application Server system by selecting SYSTEM • STATUS from the menu bar and
clicking on the COMPONENT INFORMATION button (sec Figure 7.2). In addition to
the components shown in Figure 7.2, each ABAP system also contains two other
software components called HOME and LOCAL, which are used for customer and
local developments, respectively.

1 Software components actually have a release version as wel l as a support packagc level. For exam-
ple. noticc that the software component $AP_ABA shown in Figure 7.2 has a release version 700
(7.0) and support packagc level 15 (SP15).

184

T h e P a c k a g e C o n c e p t

E ' S r s t e m Suous

usagedata
Client 100
User JWOOC

Language EM

Previous logon
Logon
System time

88/01/2008 14 09 20

08/08/2888 09 30 31

09 3143

SAP M i

Repository data
Transaction

Program (screen)

SESSIOmjIMUW

SAPLSNTRJWVH

SAP System data

Component version SAPNetWe

S-System Component information

Software Compon [Release [Level Imghest Support |Short Oestnption of Software ComponQ
SAP.ABA 700 0015 SAPKA70015 Cross-ApeecatJon Component
SAP.8ASIS 700 0015 SAPK670015 SAP Basis Component
PI_8ASIS 2005J .706 0005 SAPKIPYK05 Basis Plug-in <PI_BASIS) 200»_1_
ST-PI 2005.1 .700 0006 SAPKITL0I6 SAP SoMton Toots Plug-in
SAP_8¥ 700 0017 SAPKW70017 SAP Nefweaver BI7 0

I E 0

>

0 ® ! !

F i g u r e 7.2 S h o w i n g t h e I n s t a l l e d S o f t w a r e C o m p o n e n t s i n a S y s t e m

Adopting a layered approach to system design has many advantages. First o f all,
it helps organize the software into logical pieces that are easier to work with. This
is particularly important for a large organization such as SAP because it has devel-
opers working on its software around the world. Secondly, it promotes reuse of
common components in other systems. For example, SAP reuses the SAP_BASIS
and SAP_ABA components in other SAP Business Suite solutions such as SAP Cus-
tomer Relationship Management (SAP CRM), SAP Supply Chain Management
(SAP SCM), and so on. Finally, it makes the software more extensible because
defined dependencies between components make it easier to determine how to
integrate new or revised components into the system.

7.2 The Package C o n c e p t

Prior to release 6.10 of the SAP Web Application Server (today named SAP
NetWeaver Application Server), all development objects within the ABAP Repos-
itory were grouped together into logical containers called development classes. The

1 8 5

7 | Component-Based Design Concepts

development class concept provided a simple way for categorizing related devel-
opment objects by functional area. In version 6.10 of the SAP Web Application
Server, SAP replaced the development class concept with the package concept. At
the time, the release of the package concept was not met with much fanfare
because many developers assumed that the term "package" was simply a new
name for a development class. However, as you will see in this section, the pack-
age concept represents a significant upgrade to the logistical capabilities provided
for developers interested in improving the organization of their ABAP-based soft-
ware development projects.

7.2.1 What Is a Package?

Packages are used to encapsulate related development objects together inside of a
logical container. We emphasize the term encapsulate here because packages do
more than arbitrarily assign a categoiy to a development object; they also allow
you to define boundaries that control how development objects are used outside
of their enclosing packagc. These boundaries extend the encapsulation concepts
you learned about for classes in Chapter 3, Encapsulation and Implementation
Hiding, to larger abstract development components that can be more easily
reused and integrated into other systems.

There are three types of packages you can use to organize your ABAP develop-
ment objects: structure packages, main packages, and sub-packages. These package
types are organized into the hierarchical structure shown in Figure 7.3. In the fol-
lowing subsections, you will learn about the function and purpose of each of
these three package types.

Structure Packages

Structure packages, as their name suggests, are used to provide structure around
the lower-level packages that define the various modules used to implement func-
tionality in the system. As such, structure packages are not extendable in the sense
that you cannot add development objects directly underneath them. Instead,
structure packages can only embed other packages. Because structure packages sit
at the top of the package hierarchy, they tend to be very general. For example,
SAP organizes all of its Basis-related development objects underneath the struc-
ture package BASIS.

186

The Package Concept

Figure 7-3 Structure of the ABAP Package Hierarchy

In the customer environment, structure packages tend to be used to organize all
of the development within a given project. Although this is a reasonable
approach, it is recommended that you avoid taking this relationship too literally
when you actually begin to define your structure packages. For example, many
projects tend to have strategic names based on catchy acronyms, release sched-
ules, and so on. Here, it is preferable to name the structure package according to
the functionality implemented by that project because it will have more semantic
meaning in the long term than the fleeting project name.

Main Packages

Underneath a structure package, you can organize your development into high-
level modules called main packages. Main packages are typically used to group
development objects by Junction. Development objects embedded inside a main
package are logically related in some way. Often, a main package is used to group
together modules related to the development of a complex application, and so on.
However, main packages, just like structure packages, cannot have development
objects embedded directly beneath them (refer to Figure 7.3).

187

7 | Component-Based Design Concepts

Sub-Packages

ABAP development objects can only be directly assigned to sub-packages. This
assignment occurs whenever you are prompted with the CREATE OBJECT DIREC-
TORY ENTRY dialog box shown in Figure 7.4. Here, we are assigning the class
ZCL_SOME_CLASS to a sub-package called ZSUBPKG.

I B 1 Cre»fr Object OwKtoiy Enfcy

Object R3TR CIAS ZCl_SO*_ClASS

Annbutes
Package jrSL'Bf>:6

Person Responsible V30DJR1

Ortglnai System M
Onginai language EN English

19 local Obiect „ & LockOvemew @ K

F igu re 7-4 Ass ign ing A 8 A P Repos i tory Ob jec t s t o Packages

You use sub-packages to organize closely related development objects. In some
cases, you might group an entire application such as a simple ALV report inside a
sub-package that is nested directly underneath a structure package.

However, most applications are much more complex. For example, let's imagine
that you are creating a new Web Dynpro ABAP (WDA) application. WDA uses the
Model-Vicw-Controllcr (MVC) design pattern for separating the user interface
from the underlying business/data model that is being manipulated. Here, it is
conceivable that you might have a separate sub-package for the WDA application,
the class library that implements the business model, and the ABAP Dictionary
elements that provide the persistence layer for the application. Partitioning the
elements of the application this way helps keep things organized. It also makes it
easier for multiple developers working on a single application to work within a
defined logistics area.

7.2.2 Creating and Organizing Packages Using the Package Builder

You can maintain packages using the Package Builder transaction (Transaction
SE21). Figure 7.5 shows the initial screen of the Package Builder.

188

The Package Concept

Or
Pack»ge*nt«rface Eort Goto Ut.lit*s<M) Ermronment System Help

© a <1 O H K I

Package Builder: Inital Screen

a 0 to

® Package Z«YPACKA&E| K)
O Package interface

0.splay 1 ^ Change • Create 1

F i g u r e 7 5 P a c k a g e B u i l d e r T r a n s a c t i o n : I n i t i a l S c r e e n

The Package Builder appl icat ion is also integrated in to the Object Navigator
(Transaction SE80) as y o u can see in Figure 7.6. Most o f the t ime, y o u w i l l want
to work w i t h packages inside the Object Navigator because its context-sensitive
features can be much easier to work w i th .

TO"

t Workbench Eat Opto Uti inesi jp Environment System I

© 5 1 < T O Q Q

Object Navigator

E H (H f i M a w o b i e d]
o'Repo

Repository

Repository Browser

^Repos i to ry info-maton System

j g T a g Browser

(^Transport Organizer

© T e s t Repository

Package

[BASIS

4 - 5 T m m m a
QCiect Name [Oescnpoon
v BASK S»uc"tuf7Patk'

t> C2i Package interfaces
^ C3 Embedded Packages

f C j fSAPDMC/LSMW Legacy System Migr
t> CD /SAPOUERYiDEMO SAP Query Package
t> d l /SAPRRR/SSAA System Admnistr.
t> Q/SAPSMOMf Joint Verdure HO

0
M i g r J l

l ag* I
itraticJ

F i g u r e 7 . 6 I n t e g r a t i o n o f t h e P a c k a g e B u i l d e r i n t h e O b j e c t N a v i g a t o r

1 8 9

7 | Component-Based Design Concepts

1. To create a new package,2 navigate to Transaction SE21.

2. Enter a packagc name, and click on the CREATE button (refer to Figure 7.5) to
open the CREATE PACKAGE dialog box shown in Figure 7.7.

|K-Pacfc»5*8uik)ei CitM Package

Package ZHYPACKAtE
Short D*KnpOon B
AOPK Comport**!
SolVrar* Compor** HOKE
Package Typ« Not a w*n Package "j

D K O Main P*ck»ge

Figure 7-7 Package Builder: Create Package Dialog Box

3 . I n the CREATE PACKAGE d i a l o g box , p r o v i d e a SHORT DESCRIPTION o f t h e package,

the PACKAGE TYPE, and the SOFTWARE COMPONENT to which it belongs to (typi-
cally HOME for customer development).

In addition, notice that packages can be assigned to an application component
within the SAP Application Hierarchy. The SAP Application Hierarchy (Trans-
action SE81) is used to organize SAP software from a logical or business per-
spective.

In Figure 7.8, you can sec that the BASIS structure packagc has been assigned to
the BC (i.e., Basis Components) application node of the SAP Application Hierar-
chy.

It is highly recommended that you align your packages closely with the SAP
Application Hierarchy because this makes it much easier for new team members
to locate custom development objects. For example, let's imagine that a new team
member is looking for a class library that works with purchase orders. Without
proper organization (and oftentimes documentation), a developer is forced to do
a ZCL* lookup to scan through all of the custom classes defined within the ABAP
Repositoiy. However, i f the purchase order class library has been added to a pack-
age that is assigned to the proper node in the SAP Application Hierarchy, a devel-

2 Packages are normally maintained by Basis administrators, so even i f y o u have the proper autho-
rizations to access these transactions, y o u w i l l want to check w i t h them before experimenting
w i th the creation o f a package. In particular, y o u w i l l want to work w i t h them to come up w i t h a
strategy for integrating your packages w i t h the Change and Transport System (e.g.. via the TRANS-
PORT LAYER s e t t i n g) .

190

The Package Concept

oper can narrow his search to classes defined in custom packages underneath the
mm-PUR node in the SAP Application Hierarchy.

w
Application node Edit Goto Utiift«5(M) Sett rig* Environment System Help

© a 0 a © < 3 € > • 3 0 3 6 Q ' Q a a

Application Hierarchy: Display

f* " 3 information system Set foe m

—a
—a
—a

PE
ev
tun
ec

Tra in ing and Event Hanageaent
SAP Business I n f o r e a t i o n Marenoui
Knowledge nanageaent
Basis Components

/SAPRRR/SSAA
/SAPSIKH1/

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

/SAPRRR/SSAA
/SAPSIKH1/

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

I$SA/
/SSF/

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

I$SA/
/SSF/

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

I$SA/
/SSF/

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

SAP_PROFIlEPARANETER

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

SAP_PROFIlEPARANETER

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

Systea Admin is t ra t ion Ass is t ;
Jo in t Venture HDH/SAP Media
Package Best Prac t ices Basel 1
Serv ice Software Addons
Serv ice SoTteare Fraaeeork
/iREPS/CE
BASIS S t ruc tu re Package
IR310 3 0 Del ta Rol l -Out Trai
A l l IN ONE developaents
P r o f i l e Parameters
Miscellaneous BASIS

F i g u r e 7 8 I n t e g r a t i n g P a c k a g e s i n t o t h e S A P A p p l i c a t i o n H i e r a r c h y

Another advantage of aligning your packages with the SAP Application Hierarchy
is that you force yourself to organize your development objects according to the
same criteria used by SAP. Often, a by-product of this categorization process is
the discoveiy of pre-existing development objects provided by SAP that may
already satisfy your requirements. Or. even i f you don't find an exact match for
your requirements, you might stumble onto functionality that can minimize your
development effort (e.g., via composition).

7.2.3 Embedding Packages

To build the kind of package hierarchy shown earlier in Figure 7.3, you must be
able to embed packages inside other packages as shown here:

1. Click on the PACKAGES INCLUDED tab of the Package Builder (see Figure 7.9).

2. Click the ADD button to create a new package underneath the current package,
or click on the A D D EXISTING PACKAGE button to add an existing package under-
neath the current packagc.

3. In either case, click the SAVE button in the Package Builder to save the changes
to the embedding package.

191

7 | Component-Based Design Concepts

re-
package Edit Goto t»io«(M> Enrtfonmw* Sftt»m Help

O a a © 0 © Q - Q i d o n 0 © a
Package Builder: Change Structure Package

o°o n o

Patuge fnypAC»:A6E Qjiued

Proposes

Add Delete Add exiting package

|PK*»M S«c«1 DMOMOn
II I
F i g u r e 7 9 E m b e d d i n g P a c k a g e s I n s i d e o f A n o t h e r P a c k a g e

7.2.4 Defining Package Interfaces

Typically, y o u w a n t to bui ld components (i.e., packages) like "black boxes." In

other words, y o u w a n t to be able to restrict access to the under ly ing development

objects inside a package so that only certain development objects o f your choos-

ing are visible. These visible development objects make up the package's inter-

face. You can create a package interface by fo l lowing these steps:

1. Select the PACKAGE INTERFACES tab in the Package Builder, and click on the ADD

button.

2. In the CREATE PACKAGE INTERFACE dialog box shown in Figure 7 .10 , enter the

name o f the package interface along w i th a short description, and click on the

APPLY VALUES but ton to add the package interface to the package (remember to

also save the package by clicking on the SAVE but ton in the Package Builder).

Packa* ZStAPtS $m>3

AM Remow

Pa:«»je i ra r t t t Syi! S--ort Oeicntten r
B-PKklO* Bj4Wt CreiteP*cM9tt«trfKe • / 12 _ t

— Pickage Mer(a:e KVim.API

12 _ t
S-«XtDescnt*cn irttrlxa

Package KUP1CS
— —

• K a —

F i g u r e 7 .10 C r e a t i n g a N e w P a c k a g e I n t e r f a c e

192

The Package Concept

3 . Af ter the package interface is created, double-click it to o p e n the CHANGE PACK-

AGE INTERFACE screen of the Package Builder (see Figure 7 . 1 1) . Click the A o n
bu t ton to add d e v e l o p m e n t objects f r o m the package into the package interface.

PKkfjt irtwtK* Kt)6«6j»Pl M

& MO m ROTM a 0«4«*CoaM IJJ Mi PKkige lrteli<«

' O B*m»l» MMtt 0«v»Kom«fll tUnWi
Q From Mt package

Fiwn vrb+M*} M(k*g«t

Figure 7.11 Editing the Package Interface

4. Normal ly , however , y o u will w a n t to add e l emen t s by dragging and d r o p p i n g
d e v e l o p m e n t objects f rom the object list o n the lef t -hand side of the Object
Navigator o n t o the fo lder nodes ent i t led FROM THIS PACKAGE and FROM EMBED-

DED PACKAGES3 (see Figure 7.12).

Package Builder: Change Package Interface

r <d A i p i a D <K "to**
•tyVlVi Htoc-itlff rMrts
AR*f«i«v>ercwi«i
!£P>KI«CY IrKimtUn Off*™
lflT»B l lww

QTttl »«(.)«•» 14 *>l l a a
tWCt" * 1 MflWI

PKU»* a f~ D ra»m»i>Mton 4r*t]<<T>«nttt»<-*i*l
rSTBVCTFKO I • »rtmP.t rSTBVCTFKO

• * | E - a: a IS 2CL.P«»A0€0
CWKtNMM [iHI'tWl Q fnm p-MKifl PKIVJI:
" UZSTWJCTPKi Uls.K- P»:k>|«

" C3 EirMlM«4

" C32suee> o SUOPKOP

" OCimlMlY
CJCIM1M

Figure 712 Adding Elements to a Package Interface

3 Note that development objects from embedded packages must first be added to a package inter-
face of their enclosing packagc before they can be embedded in a parent packagc. You can also
add the entire packagc interface of a sub-package using the ADD PACKAGE INTERFACE button shown
in Figure 7.11.

193

7 | Component-Based Design Concepts

You should design your package interfaces using the least privilege principle
described in Chapter 5, Inheritance. In other words, only add the development
objects that outside packages will need to carry out their work. This way, you can
potentially use the use access functionality described in Section 7.2.5, Creating
Use Accesses, to ensure that no one can use development objects hidden within a
package. This gives you the flexibility to change or remove development objects
within a package without having to worry about what kind of problems it might
cause to other programs.

7.2.5 Creating Use Accesses

Frequently, development objects in one package depend on development objects
defined in another package. Prior to the release of the package concept, depen-
dencies between development objects could be created at whim by developers
without any restrictions whatsoever. From a logistics perspective, this was highly
problematic because it was next to impossible to prevent developers from using
development objects that they shouldn't be using for one reason or another.
Here, for example, developers might start using a "helper" class or function that
was not intended to be used publicly. Once this dependency exists, it is difficult
to modify (and remove) this helper module without causing widespread prob-
lems in the system.

This logistics problem can be solved by creating explicit use accesses between
packages. Technically, these dependency checks are only enforced whenever cer-
tain system settings are turned on (more on this in Section 7.2.6, Performing
Package Checks). A use access formally declares a client (or user) package's inten-
tions to use development objects defined in the package interface of a server (or
provider) package. To define a use access, follow these steps:

1 . Open the client package in the Package Builder, and click on the USE ACCESS tab.

2. Click on the CREATE button to open the CREATE USE ACCESS dialog box shown in
Figure 7.13. Choose the desired package interface defined in the provider pack-
age. In all but the most extraordinaiy situations, you should always select the
No RESPONSE option in the ERROR SEVERITY listbox (see the SAP online help doc-
umentation for more information about the other options). This option makes
sure that messages do not show up in the extended program check tool (Trans-
action SLIN) whenever a true permission exists. The other options allow you to
tune the severity of the messages as appropriate.

194

The Package Concept

Px«»9» tnmtitx PxUgot mtluflt-3 Haorttiy

C>m« r D«t»»
Patina irifrfy.o

|&Pxk»»»Omia«f ct»»wu»>Atc«»« _ B /
P»:og« iniwiac*
EnwSwiV

|B
No pont*

imcrmio&n
kVamtng
Eno«
ObH

*

Figure 7-13 Creating Use Accesses in Packages

3. Click the APPLY VALUES button to create the use access. Also remember to click
the SAVE button in the Package Builder to save the changes to the client pack-
age.

Even if your development organization is not ready for component-based soft-
ware development, it is still a good idea to create explicit use accesses so thatyou
can keep track of the dependencies that exist between various packages. To fully
appreciate the value of this practice, let's consider an example where knowledge
of these dependencies might come in handy.

Let's imagine that an organization is looking to expand its current SAP footprint
to include other products in the SAP Business Suite such as SAP CRM or SAP SRM.
Because all of these products run on the SAP NctWeaver Application Server, it is
quite possible that there might be common development objects thatyou want to
share across the landscape. However, without defined use accesses, it may be
veiy difficult to transport these common objects because it is next to impossible
to physically trace all of the possible dependencies that may exist between the
individual objects. In this case, just a little bit of preparation up-front can make all
the difference in avoiding many unpleasant logistical problems down the road.

7.2.6 Performing Package Checks

The creation of use accesses between packages requires some additional disci-
pline in the software development process. After all, it is much easier to simply
start using a development object without having to register its use beforehand. To

195

7 | Component-Based Design Concepts

save developers from themselves, SAP has provided a package check tool that is
integrated in the extended syntax check feature of the ABAP Workbench.

The package check tool can be used to assist you in finding places in your code
where you are using development objects in other packages without first declar-
ing a use access. By default, the package check tool is switched off in customer
systems, so you will need to work with your local Basis administration staff to
turn this setting on (see SAP Note 648898 for details on how to configure this set-
ting in your system). The SAP online help documentation walks through several
scenarios that demonstrate how the package check works based on various sys-
tem setting configurations.

7.2.7 Package Design Concepts

There are no hard-and-fast rules for designing packages and package interfaces.
For example, there is no law that states you must use structure or main packages
to organize your development objects; you can simply organize your develop-
ment objects into sub-packages. In fact, many projects simply create one big sub-
package to store eveiything. Conversely, it is also possible to overdesign package
hierarchies to the point that they are too granular to be of much use.

In his book UML Distilled (Addison-Wesley, 2004), Martin Fowler describes three
basic principles thatyou can use to help design your package architectures4:

• The Common Closure Principle says that development objects within the same
package should be changed for the same reasons.

• The Common Reuse Principle suggests that development objects within a pack-
age should all be reused together.

• The Static Dependencies Principle advises you to consider how stable your pack-
age is if there are many dependencies flowing into it.

For example, if 10 packages are dependent on a single package, it is important
for the interface of that package to be stable to avoid widespread rippling
affects whenever a change occurs. Here, it is often useful to define the interface
of that package in terms of interfaces and abstract classes because they provide
the flexibility that is needed to adapt to change.

4 Mr . Fowler credits Robert Cecil Martin's The Principles, Patterns, and Practices of Agile Software
Development (Prcnticc-Hall. 2003) when describing these principles.

196

UML Tutorial: Package Diagrams 73

The application of these principles to your package designs should help keep you
on track. Also, keep in mind thatyou are not locked into a particular design ifyou
eventually find that it is not working for your project. Package relationships, just
like classes, sometimes require refactoring. Fortunately, the ABAP Workbench
makes it easy for you to reassign development objects to other packages.

7.3 UML Tutorial: Package Diagrams

The component design process can become quite involved, being heavily influ-
enced by the subjective whims of developers that often have conflicting design
goals. Typically, this process evolves over several iterations that gradually reshape
the model to reflect the system that is being implemented. The UML supports the
documentation of this design process with the package diagram. A package dia-
gram allows you to group related classes and interfaces (and other development
objects) into higher-level units called packages.

Note that the overlap between the term "package" in the UML and the ABAP
packages you learned about in Section 7.2, The Package Concept, is purely coin-
cidental. A UML package is a logical concept that could be implemented in many
different ways by various programming languages. However, as you will see, the
ABAP package concept aligns veiy closely with the UML package construct.

Figure 7.14 shows an example of a package diagram for a simple online travel res-
ervation application built using the Web Dynpro ABAP framework. Each of the
folder-shaped icons in the diagram are packages. The dotted lines between pack-
ages depict dependencies. The direction of the line indicates the direction of the
dependency. For example, the Customer UI and Travel Agent ui packages both
depend on the WOA Framework and Travel Reservation Model packages. Similarly,
objects within the Travel Reservation Model package depend on ABAP Dictio-
naiy objects defined within the Travel Reservation Dictionary package.

The formal ABAP package names could have been used in this diagram, but as you
can see in Figure 7.14, this is optional in the UML. Like many diagrams in the
UML, there are not a lot of restrictions in terms of the notation for a package
diagram. For example, the package diagram in Figure 7.15 shows some of the
classes inside packages PI and P2. The familiar plus (+) and minus () visibility
tokens indicate whether or not the classes belong to the public or private inter-
face of the package. In this case, class B has been added to the package interface of

197

7 | Component-Based Design Concepts

p a c k a g e P I . T h e d e p e n d e n c y l i n e d r a w n b e t w e e n p a c k a g e P 2 a n d P I c o u l d b e u s e d

t o r e p r e s e n t a use access (i . e . . c lass C is u s i n g c lass B , e t c .) .

Figure 7-14 Package Diagram for Web Dynpro Appl icat ion

P1

- A +B

- C

Figure 7.15 Including Objects in a Package Diagram

198

Summary |

Packagc d i a g r a m s a re v e i y u s e f u l i n i l l u s t r a t i n g a s y s t e m d e s i g n i n t e r m s o f i ts

c o n s t i t u e n t c o m p o n e n t s . I f y o u f i n d t ha t t h e package d i a g r a m f o r y o u r s y s t e m

l o o k s l i k e a p la te o f spaghe t t i , i t is l i k e l y t ha t y o u r packages a re n o t w e l l encapsu -

l a ted . C o n s e q u e n t l y , u p d a t i n g y o u r package d i a g r a m s p e r i o d i c a l l y is a g o o d w a y

t o gauge t h e e f f ec t i veness o f y o u r c o m p o n e n t des igns o v e r t i m e .

7 . 4 S u m m a r y

I n t h i s c h a p t e r , w e l o o k e d at h o w t o p e r f o r m c o m p o n e n t - b a s e d s o f t w a r e d e v e l -

o p m e n t i n A B A P . A s y o u l e a r n e d , c o m p o n e n t - b a s e d s o f t w a r e d e v e l o p m e n t i n

A B A P is p r e d i c a t e d u p o n t h e package c o n c e p t , w h i c h goes b e y o n d t h e v i s i b i l i t y

c o n c e p t s o f classes t o e n c a p s u l a t e d e v e l o p m e n t o b j e c t s t o g e t h e r i n s i d e o f a l og i ca l

s o f t w a r e u n i t .

I n t h e n e x t c h a p t e r , w e w i l l e x p l o r e t h e A B A P c lass-based e x c e p t i o n h a n d l i n g

c o n c e p t , w h i c h enab les y o u to c l e a n l y i m p l e m e n t l og i c t o g r a c e f u l l y r e c o v e r f r o m

e x c e p t i o n s i t u a t i o n s t h a t can o c c u r w i t h i n p r o g r a m s .

199

Software programs operate in an environment based on rules. However,
as the saying goes, there's an exception to every rule. In this chapter, we
will explore ways to deal with exception situations that can arise in ABAP
Objects programs.

8 Error Handling with Exceptions

No matter how hard we may try to improve the quality of our code, there is sim-
ply no way to avoid every type of error that could occur during the execution of
an application. In fact, some errors are accidentally introduced by programmers
trying too hard to make their applications error-proof Here, for instance, the
error-handling logic obscures the main purpose of the program flow, making the
code harder to understand and maintain, and thus, more susceptible to errors.

Error-handling logic is a cross-cutting concern that becomes tangled within the
normal flow of the core application logic. Ideally, you want to de-tangle error-
handling logic from the main program flow so that these two orthogonal con-
cerns can be managed separately. In this chapter, you will learn how to apply the
ABAP class-based exception-handling concept to achieve this kind of separation of
concerns.

8.1 Lessons Learned from Prior Approaches

Prior to Release 6.10 of the SAP Web Application Server, there was no compre-
hensive strategy for dealing with exceptions within the ABAP Objects language.
Consequently, developers were forced to improvise, weaving custom exception-
handling code into their normal program flow. The code snippet in Listing 8.1
shows an example of some error-handling logic that has been added to a program
that is calling a series of subroutines to perform various tasks.

OATA: lv_retcode TYPE sy-subrc.
PERFORM sub_routinel CHANGING lv_retcode.

201

8 | Error Handl ing w i t h Exceptions

IF lv_retcode NE 0.
"Error Handling Logic

ENDIF.
PERFORM sub_routine2 CHANGING lv_retcode.
CASE lv_retcode.

WHEN 0.

W H E N 1 .

WHEN 2.

WHEN OTHERS.

ENDIF.
PERFORM sub_routine3 CHANGING 1v_retcode.
IF lv_retcode NE 0.

"Redundant Error Handling Logic???
ENDIF.

List ing 8.1 Example of a Manual Exception-Handling Approach

In a contrived example such as this, it is not hard to follow what the program is
doing. Still, notice that percentage-wise, many more lines of code are devoted to
dealing with exceptions than the actual program logic. In larger production pro-
grams, this problem becomes even more pronounced.

For the sake of brevity, the details of the exception-handling logic are omitted
from the example code shown in Listing 8.1. Nevertheless, common sense tells us
that there needs to be logic in here to correct the problem, identify a
workaround, or forward the error on to another exception handler or user (e.g.,
via some kind of message). To do this, we need to have detailed information
about the nature of the error. Frequently, a return code such as the one shown in
Listing 8.1 (i.e., lv_retcode) doesn't tell us eveiything we need to know. In this
case, we may need to enhance the interfaces of our subroutines, and so on, to
include additional data objects that collect more details about the errors that may
occur within the module.

However, this makes the process all the more cumbersome, especially if those
modules call other modules that don't share the same interface. For example,
most BAPI function modules return an error message table parameter that has the
line type BAP I R E T 2 . Internally, these BAPIs frequently call other standard function
modules or subroutines that do not maintain message table parameters of this

202

The Class-Based Except ion Hand l ing Concept

type. Consequently, additional code has to be writ ten in the BAPI function to
translate between the various message table types. In Section 8.5, Creating Excep-
tion Classes, you wil l see how to develop exception classes that encapsulate these
details more efficiently.

Another problem wi th ad-hoc exception handling strategies is the fact that it can

be very difficult to identify the types o f errors that can occur wi thin a given mod-

ule without having to first dig into the code. For instance, in Listing 8.1, how do

you determine the potential problems thatyou need to account for when you call

s u b _ r o u t i n e l , and so on? From a design perspective, you want the interface of

your modules to be more explicit about the types of errors that can occur within

them.

After all, exceptions are part o f the API contract for a module, too. To some

degree, certain previous concepts provide support for this requirement. For

example, you can create named exceptions for function modules using the EXCEP

HONS addition. However, these exceptions arc essentially static error codes that

have been assigned some semantic meaning inside the function module. The

meaning of these exceptions tends to become obscured outside o f the scope of

the function module, especially when new exceptions are added into the mix.

Recognizing this, SAP decided to implement a new class-based concept for deal-

ing wi th exceptions that could be used consistently in all ABAP contexts (i.e.. pro-

grams, processing blocks, etc.). You wi l l learn more about this concept in Section

8.2, The Class-Based Exception Handling Concept.

8.2 The Class-Based Exception Handling Concept

As the name suggests, the class-based exception handling concept uses special

classes called exception classes to encapsulate exception situations that can occur

within a program. These classes are integrated into a framework that makes it eas-

ier for you to separate the exception-handling aspects o f a program from the core

functional aspects o f the program. This framework is orchestrated by the TRY con-

trol structure whose form is shown in Listing 8.2.

TRY.

" A p p l i c a t i o n c o d i n g b l o c k

CATCH c x _ e x c e p t i o n _ t y p e

203

8 | Error Hand l ing w i t h Exceptions

"Exception handler block
CATCH c x _ . . .

"Exception handler block
CLEANUP.

"Cleanup block
E N D T R Y .

L is t i ng 8.2 Basic Form of the TRY...ENDTRY Contro l Structure

The TRY statement separates the normal application f low from the exception-

handling flow(s) by creating separate execution blocks. The TRY block contains

the normal application code that may trigger various types o f exceptions. These

exceptions are handled by special exception handler blocks called CATCH blocks

that contain code that is used to recover from a particular exception situation in

some application-specific kind of way. You also have the option o f adding a spe-

cial CLEANUP block to do any sort of cleanup work that might need to be done

before the TRY statement returns control to the normal program flow. This basic

flow o f a TRY statement is depicted in the diagram shown in Figure 8.1.

Figure 8.1 Act iv i ty Diagram for TRY...ENDTRY Contro l Statement

204

Dealing wi th Exceptions

Sometimes, developers see the class-based part of all this and assume that these
features can only be used in ABAP Objects classes. However, class-based excep-
tions were designed to be used in all ABAP contexts and should be taken advan-
tage of in procedural subroutines, event blocks, and so on.

8.3 Dealing with Exceptions

Two different types of exceptions can occur during the course of an ABAP pro-
gram: those that are raised programmatically using the RAISE EXCEPTION state-
ment, and those that are raised automatically by the ABAP runtime environment.
Exceptions that are raised by the ABAP runtime environment cannot always be
handled within the context of a running program. In this case, a runtime error
(i.e., a short dump) occurs, and the program abends (has an abnormal end). In fact,
all unhandled exceptions result in a runtime error because the problem condition
was never formally addressed in the program. In this section, we will look at how
to use the CATCH and CLEANUP statements to recover from exception situations that
can be handled programmatically.

8.3.1 Handling Exceptions

As you have seen, exceptions are dealt with inside of a CATCH block, CATCH blocks
are designed to handle exceptions of a particular type (or, as you will see, a family
of related types). The exception type is defined in terms of an exception class that
is part of an inheritance hierarchy based on the common CX_R00T superclass.
Many predefined exception classes are available out of the box in any AS ABAP
installation. It is also possible to define your own custom exception types (see
Section 8.5, Creating Exception Classes, for more details).

Whenever an exception of a particular type is raised, the system will search for a
corresponding CATCH block to handle that exception. To demonstrate how this
works, let's consider some example code that handles a class cast exception.

The TRY block in Listing 8.3 contains some code that performs an illegal widening
cast between the object reference variables l r_parent and l r_chi Id. At runtime,
the ABAP runtime environment will detect the invalid cast and raise an exception
of type CX_SY_M0VE_CAST_ERROR, which is handled in the corresponding CATCH
block. The ABAP keyword documentation describes the types of exceptions that

2 0 5

8 | Error Handling with Exceptions

may occur whenever an ABAP statement is executed. To figure out which excep-
tion class to use. a search was performed on the keyword MOVE, which showed
that an exception of type CX_SY_MOVE_CAST_ERROR can occur in an assignment
statement using object reference variables. The relevant logic needed to recover
from the error can be implemented inside the CATCH block. The code in Listing 8.3
generates a simple error report on the screen (see Figure 8.2).

CLASS 1 d _ p a r e n t DEFINITION.
PUBLIC SECTION.

METHODS: a . b.
ENDCLASS.

CLASS lc l_parent IMPLEMENTATION.
METHOD a.
ENDMETHOD.

METHOD b.
ENDMETHOD.

ENDCLASS.

CLASS lc1_ch i Id DEFINITION
INHERITING FROM l c l . p a r e n t .

PUBLIC SECTION.
METHODS: c.

ENDCLASS.

CLASS l c l . c h l l d IMPLEMENTATION.
METHOO c .
ENDMETHOD.

ENDCLASS.

l r_parent TYPE REF TO I c l . p a r e n t .
1 r_ch i Id TYPE REF TO l c l _ c h i I d .
l r_ex TYPE REF TO cx_sy_move_cast_error.
1v_progname TYPE syrepid.
1v_inclname TYPE syrepid .
1 v _ l i ne TYPE i .
l v _ t e x t TYPE s t r i n g .
1v_longtext TYPE s t r i n g .

206

Dealing w i th Exceptions 8.3

* A t t e m p t a w i d e n i n g c a s t where t h e dynamic t y p e o f t h e
* source o b j e c t r e f e r e n c e i s no t c o m p a t i b l e w i t h
* t h e s t a t i c t y p e o f t h e t a r g e t o b j e c t r e f e r e n c e :
TRY.

CREATE OBJECT 1 r . p a r e n t .
CREATE OBJECT 1 r _ c h i I d .
HOVE 1 r . p a r e n t ?TO l r _ c h i l d .

CATCH c x _ s y _ m o v e _ c a s t _ e r r o r INTO l r _ e x .
* Read i n f o r m a t i o n about t h e e x c e p t i o n :

CALL METHOD 1 r _ e x - > g e t _ s o u r c e _ p o s i t i o n

IMPORTING
program_name - lv_progname
i n c l u d e . n a m e - l v _ i n c l n a m e
s o u r c e _ l i n e - l v _ l i n e .

l v _ t e x t - l r _ e x - > g e t _ t e x t () .
l v _ l o n g t e x t - 1 r _ e x - > g e t _ l o n g t e x t () .
CONDENSE 1 v _ l o n g t e x t .

* O u t p u t an e r r o r r e p o r t about t h e e x c e p t i o n :
WRITE: / ' E r r o r R e p o r t ' .
ULINE.
WRITE: / 'P rogram N a m e : ' . l v_progname.
WRITE: / ' I n c l u d e N a m e : ' . l v _ i n c l n a m e .
WRITE: / ' L i n e N u m b e r : ' , l v j i n e .
WRITE: / ' S h o r t T e x t : ' . l v _ t e x t .
WRITE: / 'Long T e x t : ' , l v j o n g t e x t .

ENOTRY.

Listing 8.3 Handling a Class Cast Exception Using the TRY Statement

F

1 6 E fa o o e ^ u o f l A ^ A A B E © a

Program YEXCEPTIONTEST

P r o p * itXCtPTIOKIEST

Error Resort

f r o g r * <u*e ttlCCfll«ITI$T
I n c l u * y(IC(' I IOnTE*t
l i ne \u»:*r 4)
thor t T«.t Source type \MOtM l t> t t I t t r ! IONICSI tCUSt« l . a j «MNf h not coep»tible. tor tne purpose* «f *M l»<«r> t . e i t n u r g t t t j p e
l<ng fext
C-u-ir.; » -C*ST- operetton (•»•• Oder iKf»t » !©•)» type c o n f l i c t occurred r r * «oxce t>pe \ f M M M « i 1 X t l f T I 0 H 1 ($ T \ C U S M a t a f M I i n

Figure 8.2 Generating an Exception Report Using Exception Objects

207

8 | Error Handling with Exceptions

The details of the error report generated in the CATCH block in Listing 8.3 were
obtained via method calls made using the 1 r_ex object reference variable. The
lr_ex object reference variable is initialized using the optional INTO addition of
the CATCH statement1. Here, notice that the static type of the i r_ex object refer-
ence is compatible with the exception type CX_SY_MOVE_CAST_ERROR. As you can
see, an exception object can be used to obtain quite a bit of useful information
about the exception, including a short and long text description of the problem,
the line number in the program that triggered the exception, and so on.

You can include as many CATCH blocks as you want inside of a TRY statement. For
example, there might be certain types of exceptions that are raised from methods
of class l c l _pa ren t or l c l _ c h t l d . Whenever an exception is raised in a TRY state-
ment with multiple CATCH blocks, the system searches through the CATCH blocks to
find a suitable handler that can handle an exception of a given type. Sometimes,
it may be preferable to use a generic exception type in an exception handler block
to handle families of related exceptions. For example, rather than setting up a
specific exception handler block to handle exception types such as division by
zero and arithmetic overflow (which are defined in exception classes
C X _ S Y _ Z E R O D I V I O E and C X _ S Y _ A R I T H M E T I C _ 0 V E R F 1 0 W , respectively), you could
define a CATCH block using the C X _ S Y _ A R I T H M E T I C _ E R R 0 R superclass. However, if
you use generic exception types in your CATCH blocks, they must be declared after
any CATCH blocks that define exception handlers for subordinate classes. I f you
think about it, this makes sense as the more specific exception handlers would
never be reached because the system would first find a matching exception han-
dler for the superordinate class. I f all of this seems confusing, don't worry, the
compiler will cell you where you've gone wrong.

A tendency of some developers new to the class-based exception handling con-
cept is to create extremely large TRY statements that surround their entire pro-
gram logic. This is a very poor design practice that minimizes the effectiveness of
the exception handlers. A good rule of thumb is to create TRY statements that
encapsulate a single logical unit of work. Therefore, i fyou find that you are mix-
ing and matching many different types of exception classes in CATCH blocks, it is
likely that your TRY statement is too large. Smaller TRY statements are much easier
to follow and trace.

1 If the INTO addition of the CATCH statement is not used, an exception object will not be generated
to conserve system resources.

208

Dealing w i t h Exceptions

Similarly, it is also important to avoid cutting corners when defining CATCH blocks
by making the exception handlers too generic. For example, as you will see in
Section 8.5, Creating Exception Classes, the root of the exception type hierarchy
is class CX_R00T. You could create an all-encompassing CATCH block using this
exception type that would handle all of the possible exceptions that could be han-
dled in an ABAP program (see Listing 8.4). The problem with this approach is that
it makes it very difficult to implement custom exception handling logic for spe-
cific types of errors. Therefore, it is worth the additional effort to go ahead and
configure specific exception handlers to avoid the headaches associated with
refactoring the exception handling logic down the road.

TRY.
Statements. . .

CATCH cx_root INTO l r_ex .

ENDTRY.

List ing 8.4 Example of a Lazy Design Using Generic Exception Types

8.3.2 Cleaning up the Mess
After we have recovered from an exception situation in a CATCH block, it is likely
that we may need to perform some additional cleanup tasks before we hand con-
trol back over to the normal program flow. For example, let's imagine that you
are writing some code to output some data to a file. Inside the TRY block, you
open up a file and start writing records to it. However, at some point, an excep-
tion occurs, and processing halts in the TRY block before you get a chance to close
the file. In this case, you can use the optional CLEANUP block to close the file
because this block is guaranteed to be called by the ABAP runtime environment
before the TRY statement is exited. A simplified example of this scenario is shown
in Listing 8.5.

TRY.
* Open the extract f i l e for output:

OPEN OATASET l v . f i l e FOR OUTPUT IN TEXT MODE
ENCODING OEFAULT.

* Transfer the extract records to the f i l e :
LOOP AT l t . e x t r a c t INTO ls_record.

PERFORM sub_format_record CHANGING ls_record.

209

8 | Error H a n d l i n g w i t h Except ions

TRANSFER 1s_record TO lv_ f11e .
ENOLOOP.

* Close the output f i l e :
CLOSE OATASET l v _ f i l e .

CATCH cx_sy_f i le_access_error INTO 1 r _ f i l e _ e x .
* Process I /O e r r o r s . . .
CATCH lcx_format_error INTO 1r_format_ex.
* Process custom formatt ing e r r o r s . . .
CLEANUP.
* Clean up any used external resources:

CLOSE OATASET l v _ f i l e .
ENDTRY.

FORM sub_format_record CHANGING ps_record TYPE . . .
RAISING lcx_format_error .

RAISE EXCEPTION TYPE 1cx_ format_er ror . . .
ENOFORM.

L i s t i n g 8 .5 Releasing External Resources Us ing t h e CLEANUP Block

Note that the CLEANUP block in a TRY statement is guaranteed to be called when-
ever an exception occurs regardless of whether or not the system can actually
locate a suitable exception handler in that TRY statement. As you wil l see in Sec-
tion 8.4, Raising and Forwarding Exceptions, if an exception handler is not
found, the exception wil l be propagated up the call stack as the system continues
to search for a valid exception handler. Prior to exiting, the CLEANUP block is exe-
cuted to clean up any local resources used within the context of the current TRY
statement.

You should only use the CLEANUP block for its intended purpose because it does
not support statements that are used to alter the control flow of a program such
as R E T U R N , S T O P , and so on .

8 .4 Raising and Forward ing Exceptions

Exceptions can be raised by statements in various parts of any program. Some-
times, it is best to deal with these exceptions close to the point where they are
triggered; other times, it makes sense to forward these exceptions on to another
part of the program that is better suited to deal with the problem. In the follow-

210

Raising and Forwarding Exceptions

ing sections, we will look closely at how exceptions are triggered and consider
options for forwarding these exceptions up the call stack.

8.4.1 System-Driven Exceptions

As you saw in the example from Listing 8.3, it is possible for regular ABAP state-
ments to trigger an exception at runtime. These exceptions are triggered automat-
ically by the ABAP runtime environment. The types of exceptions that can be trig-
gered are predefined in the system, and their names begin with the CX_SY_ prefix.
To find out the possible exceptions that might be triggered for a particular ABAP
statement, consult the ABAP keyword documentation.

Most of the time, exceptions raised by the runtime environment are an indication
of some kind of error in your program logic. For example, an exception of type
CX_SY_ZERODIVIDE probably reveals a place in your code where you failed to
check the value of a divisor before performing a division operation. Conse-
quently, runtime exceptions such as these are said to be unchecked exceptions.
Here, it may or may not make sense to implement a CATCH block to handle these
errors because they should never occur in a valid program. You will learn more
about checked and unchecked exception types in Section 8.5.1, Understanding
Exception Class Types.

8.4 2 The RAISE EXCEPTION Statement
Most of the time, you shouldn't have to worry too much about system-driven
exceptions after your code has been thoroughly tested. However, this doesn't
mean that exception situations will not occur in your programs. For example,
imagine that you are tasked with writing a utility method to look up a customer's
credit rating. The input to this method is the customer's ID number; the output is
the customer's credit score. A simple scaffolding of this method is provided in
Listing 8.6.

CLASS lc1_customer DEFINITION.
PUBLIC SECTION.

METHODS:
get_credit_rating IMPORTING im_customer_id

TYPE bu_partner
RETURNING VALUE(re_rating)

TYPE i .

211

8 | Error Hand l ing w i t h Exceptions

ENOCLASS.

CLASS 1cl_customer IMPLEMENTATION.
METHOO get_credi t _ r a t i ng.

* Read the customer master record from the database:
SELECT SINGLE *

INTO . . .
FROM butOOO

WHERE partner EO im_customer_id.

IF sy-subrc NE 0.
r e . r a t l n g - - 1 .
RETURN.

ENDIF.

ENDMETHOD.
ENDCLASS.
L is t i ng 8 .6 Handl ing Errors in the Appl ica t ion Logic - Part 1

The first step in this method is to look up the customer master record using the
customer number provided in the importing parameter im_customer_id. How-
ever. look at what happens whenever the provided customer number is invalid.
Because it is not possible for the method logic to continue without a valid cus-
tomer number, a dummy credit rating (i.e., -1) is returned to the caller. Here, it is
assumed that the caller of the method will check the value of the credit rating to
determine i f it was valid.

The exception-handling technique shown in Listing 8.6 is not veiy intuitive. For
example, let's assume that the customer's credit score is calculated based on the
popular F1CO* credit score used within the United States. Based on this assump-
tion. users of method get_credi t_rat ing should expect to receive valid credit
scores in the range of 300 to 850. Passing back undefined values such as -1 can be
dangerous because unwitting developers may accidentally use this value incor-
rectly. From a design perspective, it is better to throw up a red flag so thatyou can
bring this exception situation to the attention of the caller. This can be achieved
using the RAISE EXCEPTION statement.

The RAISE EXCEPTION statement is used to explicitly trigger an exception of a par-
ticular type. The basic syntax for the RAISE EXCEPTION statement is given in Listing
8.7.

212

8 | Error H a n d l i n g w i t h Except ions

PUBLIC SECTION.
METHODS:

g e t _ c r e d i t _ r a t i n g IMPORTING im_customer_id
TYPE bu_partner

RETURNING VALUE(re_rat1ng)
TYPE i .

ENDCLASS.

CLASS lc l .customer IMPLEMENTATION.
METHOD g e t _ c r e d i t _ r a t i n g .

* Read the customer master record from the database:
SELECT SINGLE *

INTO . . .
FROM butOOO

WHERE par tner EO im_customer_id.

IF sy-subrc NE 0.
RAISE EXCEPTION TYPE 1cx_customer_not_found.

ENDIF.

ENDMETHOD.
ENDCLASS.

L i s t i n g 8 .9 Hand l i ng Errors in t h e A p p l i c a t i o n Logic — Part 2

I f y o u try to compile the code in Listing 8.9, you wil l receive a warning during the

syntax check that indicates that the exception type lcx_customer_not_found is

not caught or declared in the RAISING clause o f the ge t_cred1 t_ ra t ing method.

You have two options for dealing wi th exceptions that are triggered using the

RAISE EXCEPTION statement:

• You can deal w i th it directly via a TRY statement.

• I f y o u are in a procedure (i.e., a method, a function module, or a subroutine),
y o u can forward the exception on to the caller o f that procedure2 .

You have already seen how to handle exceptions in a TRY statement, and you wi l l

learn how to forward exceptions in Section 8.4.3, Propagating Exceptions.

2 The except ions t o th is ru le are class const ructors and event hand le r me thods . It is no t reasonable

t o f o r w a r d except ions f r o m these me thods because they arc cal led i m p l i c i t l y by the A B A P r u n t i m e

e n v i r o n m e n t .

214

Raising and Forwarding Exceptions

8.4 3 Propagating Exceptions
As you have seen, there are times when it simply doesn't make sense for a proce-
dure to deal with an exception directly. For example, the logic in the method
get_cred i t e ra t ing from Listing 8.9 is predicated on the fact that a valid customer
is provided in the importing im_customer_1d parameter. Therefore, if an invalid
customer ID is passed into the method, it makes no sense for the method to con-
tinue because it does not have the necessaiy information to do its job.

Rather than trying to force the issue, it is better for the method to explicitly trig-
ger an exception so that the caller of the method can deal with the problem. O f
course, a caller can only respond to exceptions that it knows about. Such informa-
tion is revealed in the signature of a procedure using the RAISING addition.

Listing 8.10 shows how the RAISING addition was added to the signature of
method get_credit_rat1ng. This addition ensures that callers of this method
know that they need to implement logic to account for exceptions of type
1cx_customer_not_found.

CLASS lcl.customer DEFINITION.
PUBLIC SECTION.

METHODS:
get_credi t_rat ing IMPORTING im_customer_id

TYPE bu_partner
RETURNING VALUE(re_rating)

TYPE i
RAISING lcx_customer_not_found.

ENOCLASS.

List ing 8.10 Defining a Me thod Using the RAISING Addi t ion

The basic form of the R A I S I N G addition for methods is given in Listing 8.11. The
same syntax pattern also applies to subroutines and function modules.

METHOD some.method RAISING c x _ . . . c x _ . . .
ENDMETHOO.

List ing 8.11 Basic Syntax of the RAISING Addi t ion

It is important to be careful not to abuse the use of the RAISING addition by clut-
tering a method signature with every possible exception type that might occur
within a method. For example, let's imagine that the get_credi t_rat ing method

215

8 | Error Handling with Exceptions

was calling a Web Service to obtain the customer's credit rating. In this case, there
could be many types of exceptions that could occur during the course of the
lookup process (e.g., network connectivity problems, etc.). However, these
exception types represent internal implementation details that should be hidden
from users. One way to deal with these exceptions is to wrap them inside of
another more generic exception object. This can be achieved using the PREVIOUS
importing parameter of an exception type's constructor.

In Listing 8.12, the get_credit_rating method has been redefined to raise an
exception of type lcx_lookup_fai led. Internally, the credit score lookup is now
being driven by a Web Service call brokered through SAP NetWeaver Process
Integration (SAP NetWeaver PI), the open integration and application platform
product offered by SAP. The details of this Web Service are omitted here for the
sake of brevity. Still, as you can see, this Web Service call can raise exceptions of
type CX_AI_SYSTEM_FAULT orCX_Al_APPLICATlON_FAULT, respectively. Rather than
declare these technical exception types explicitly within the method signature,
the method implementation wraps the exception object inside of a more user-
friendly exception object of type lcx_1ookup_failed at runtime using the PREVI-
OUS parameter. This technique shields users from the various internal exceptions
that might be triggered in the lookup process. Of course, users still have the
option of digging into the details of these triggering exception types via the public
attribute PREVIOUS, which is defined using the generic type CX_R00T.

CLASS lcx_lookup_fai1ed DEFINITION
INHERITING FROM cx_static_check.

ENDCLASS.

CLASS lcl_customer DEFINITION.
PUBLIC SECTION.

METHODS:
get_credit_rating IMPORTING im_customer_id

TYPE bu_partner
RETURNING VALUE(re.rating)

TYPE 1
RAISING 1cx_lookup_failed.

ENDCLASS.

CLASS lcl_cust0mer IMPLEMENTATION.
METHOD get .credI terat ing.

216

Raising and F o r w a r d i n g Except ions

* Method-Local Oata Dec lara t ions:
OATA: l r_sys_ex TYPE REF TO cx_a i_system_fau l t .

lr_app_ex TYPE REF TO c x _ a i _ a p p l i c a t i o n _ f a u l t .

TRY.
CALL . . .

CATCH cx_ai_system_faul t INTO l r_sys_ex .
RAISE EXCEPTION TYPE lcx_ lookup_fa i led

EXPORTING
previous - l r_sys_ex.

CATCH c x _ a i _ a p p l i c a t i o n _ f a u l t INTO lr_app_ex.
RAISE EXCEPTION TYPE lcx_ lookup_fa i led

EXPORTING
previous - l r_app_ex.

ENOTRY.
ENDMETHOD.

ENOCLASS.

L i s t i n g 8.12 Raising an Except ion w i t h an Exist ing Except ion Ob jec t

You can also dcclarc nonclass-bascd exceptions using the EXCEPTIONS addition.
For example, we could have defined method get_credi t _ r a t i n g using the syntax
shown in Listing 8 .13.

CLASS lc l .customer DEFINITION.
PUBLIC SECTION.

METHODS:
g e t _ c r e d i t _ r a t i n g IMPORTING im_customer_id

TYPE bu.par tner
RETURNING VALUE(re_rat1ng)

TYPE i
EXCEPTIONS customer_not_found.

ENOCLASS.

L i s t i n g 8.13 Dec lar ing Nonclass-8ased Except ions fo r M e t h o d s

However , as you saw in Section 8.1, Lessons Learned from Prior Approaches,
exceptions such as customer_not_found are nothing more than named error
codes. Therefore, it is highly recommended that you avoid using nonclass-based
exceptions when dcf in ingyour methods.

To specify specific exception types that are raised in methods of global classes,

you must explicitly select an indicator that declares the use of class-based excep-

tions as opposed to the default nonclass-based exceptions.

217

8 | E r r o r H a n d l i n g w i t h E x c e p t i o n s

1. To declare the exceptions that are raised in methods for global classes, open up
the class in the Class Builder, place your cursor on the name of the method you
want to edit, and click the E X C E P T I O N S button (see Figure 8 . 3) .

CTTTTHTTRTK* K l J r t C T M

^Promwt \'t*'M*l fMf.M V t,_v. 1 !«o»l A I . . H

O PutPWM L9* E««*<",l: d - J l x l d 1 a l M l » u
CWSIRUCIMI INTTTNTF UFCT 1 5 , CCNSTBIXTC*
L u o i M t m O u f t t l AM »n El«r«»t lo tw v«to<

In»t»n<fu6l1 P i m t w »iE«m*M»cmm»V*<l«
:SMT I r r t t tn t fue l l S o l r * E i r »>• VK»c<
ncKi rc* I f r t t tn t f iXM P«tur in IMIMX ID P»*J r « E<*mtnH * r « Vk»y

F i g u r e 8 . 3 O p e n i n g u p t h e M e t h o d E x c e p t i o n s E d i t o r

2. In the M E T H O D E X C E P T I O N S editor screen, click on the E X C E P T I O N C L A S S E S check-
box so that you can change the mode of the editor to support the configuration
of class-based exceptions (see Figure 8.4).

CU»»rfi»rtK« KL .V tC lM rnvvii*) intn (r f » iM l

v«nos r u « 6 x i i R tW j t
w«ro:-, | 0 P * i m « « f i ^ , . | a l [^ y j E « e W n ClJsiVt

J t l Z

F i g u r e 8 . 4 T u r n i n g o n C l a s s - B a s e d E x c e p t i o n s f o r a G l o b a l M e t h o d

3 . Enter the name of the exception class in the E X C E P T I O N column o f the excep-
tions table for the method (see Figure 8.5).

C I M 5 I J t t . v t t I O * ^©MmtrMMflnKtv*

M>7>:<] »K«pt<<-t «f»VE
* 1, a xi-a

|E«»J*Oo lp«i(tcton
«X.I»Ct l . l l lVM.! t t J j ,

F i g u r e 8 . 5 A d d i n g E x c e p t i o n s t o G l o b a l M e t h o d s

In Section 8.5.1, Understanding Exception Class Types, you wi l l see that you do
not always have to declare all of the exception types that are triggered in a proce-

2 1 8

Creating Exception Classes

dure using the RAISING addition. Of course, if the triggered exceptions are not
handled somewhere, a runtime error will occur. Consequently, exceptions cannot
be propagated from processing blocks that do not have a local data area such as a
subroutine, function module, or method.

For example, if you were to raise an exception inside the START-OF-SELECT ION
event of an executable report program, there would be no way to implement an
exception handler to deal with that exception. This rule is enforced by the com-
piler to protect you from implementing code that is guaranteed to generate a
runtime error. The same rule also applies to class constructors and event handler
methods that are called implicitly by the ABAP runtime environment.

8.5 Creating Exception Classes

Whenever an exception situation occurs, you want to be able to collect as much
information as you can so that the designated exception handler has all of the data
it needs to properly react and (hopefully) recover from the error gracefully. In the
class-based exception handling concept, this information is captured by an object
that is an instance of a class that inherits from CX_STATIC_CHECK, CX_DYNAMIC_
CHECK, or CX_NO_CHECK. Each of these three abstract classes are subclasses of the
root exception class CX_R00T (see Figure 8.6).

Figure 8.6 Class Diagram for CX.ROOT Inheritance Tree

219

8 | Error H a n d l i n g w i t h Except ions

As you can see in Figure 8.6, class CX_ROOT also implements the IF_
SERIAL 12ABLE_08J ECT and 1F_MESSAGE interfaces. The I F_SERIALIZA8LE_0BJECT
interface makes it possible to serialize (or compress) an object onto a file or net-
work stream, and so on. The I F_MESSAGE interface defines methods for extracting
a short and long text description o f the error message. Section 8.5.4, Defining
Exception Texts, includes more about these methods.

8.5.1 Understanding Exception Class Types

Each o f the three subclass types shown in Figure 8.6 are treated differently by the
class-based exception handling framework. When building a custom exception
class, it is important to understand the differences between these base types
because it impacts how they are used in your programs. These differences are out-
lined in Table 8.1.

Exception Class Usage Type

CX_STATIC_CHECK Exceptions of this type are used to represent checked error con-
ditions that may occur within the logic of an application pro-
gram. Such exceptions must either be explicitly declared in a
procedure's interface using the RAISING addition or handled
locally within a TRY statement. If an exception of this type is not
properly handled, the compiler will issue a warning during the
syntax check.

CX_DYNAM I C_CHECK Exceptions of this type are used to represent unchecked error
conditions that likely stem from errors in the program logic. For
example, the standard exception class CX_SY_ZERODIVIDE is
used to represent a situation where a division operation was
attempted with a divisor whose value is 0.
Realistically, this kind of error should not happen, and if it does,
it might not be possible to recover from it gracefully. Moreover,
because a mathematics-intensive program could produce this
kind of error in almost every statement, it is not practical to han-
dle all of the possible exceptions that might occur. Therefore,
exceptions of this type do not have to be explicitly handled and
are not subject to static syntax checks at compilation time. Of
course, failure to properly handle such an exception will ulti-
mately result in a runtime error.

Tab le 8.1 Di f ferences B e t w e e n Base-Level Except ion Types

220

Creating Exception Classes

E x c e p t i o n C lass U s a g e T y p e

CX_NO_CHECK Except ions o f th is t y p e are s imi lar t o ones de r i v i ng f r o m
CX_DYNAMIC.CHECK. The p r imary d i f fe rence is t ha t these k inds o f
except ions are au toma t i ca l l y f o r w a r d e d if t hey are no t exp l ic i t l y
hand led local ly in a TRY s ta temen t . In o t h e r wo rds , t he RAISING
clause o f a m e t h o d , sub rou t i ne , and so on imp l i c i t l y con ta ins t he
CX_NO_CHECK a d d i t i o n in its s ignature, so i t is n o t possib le t o
add add i t i ona l subo rd ina te classes o f th is t y p e t o t he s ignature o f
a p rocedure .

Table 8.1 Differences Between Base-Level Exception Types (cont.)

Most of the time, you will want to define custom exception types based on the
CX_STATIC_CHECK superclass. By using this base type, you are enlisting the aid of
the compiler in ensuring that exceptions are being dealt with correctly by users.
This practice also makes sure that potential exception situations are adequately
documented in the procedure's interface.

8.5.2 Local Exception Classes

Specific exceptions unique to a particular application can be defined locally in the
same way that we have defined various other local classes throughout the course
of this book. Listing 8.14 demonstrates the definition of a local class called
l c x _ l o c a l _ e x c e p t i o n .

CLASS 1 c x _ l o c a 1 . e x c e p t i o n DEF IN IT ION

INHERITING FROM c x _ s t a t i c _ c h e c k .

ENOCLASS.

L is t ing 8.14 Defining a Local Exception Class

Local exception classes can include the definition of a constructor and various
attributes. However, SAP recommends thatyou do not define additional methods
or redefine inherited methods in local exception classes.

8.5.3 Global Exception Classes

Most of the time, whenever you define an exception class, you will prefer to cre-
ate it globally in the ABAP Repository so that it can be reused in other programs/
contexts. Global exception classes, like other global classes, are defined using the

221

8 | Error Handling with Exceptions

Class Builder tool, which adjusts to the EXCEPTION BUILDER perspective whenever
you are editing an exception class.

As you can sec in Figure 8.7, the CREATE CLASS dialog box looks a bit different
whenever the EXCEPTION CLASS type is selected. Here, you enter a name for the
exception class, the superclass (which must be one of the three base exception
classes CX_STATIC_CHECK, C X _ D Y N A M ! C _ C H E C K , CX_N0_CHECK. or a subclass of those
types), as well as some familiar fields that have been used to define other global
classes. The WITH MESSAGE CLASS checkbox is used to include support for the inte-
gration of messages defined within a message class (i.e., in Transaction SE91). W e
will discuss this option more in Section 8.5.5, Mapping Exception Texts to Mes-
sage IDs.

E-Cr»*>»CU** CD,

Class fCX_a«TOHER_WOT_rOU«>
Supercim CX.SUTIC.CHECX
Ooscrtpton Custom*! Lookup ExepOon
nstarrtaoon Public 3

Class Type
O OlvM ABAP Class
QExepOon Class

• w r n Message Class
O Persistent cuts
O Test Class (W W

0 f w i
• On* Modeled

c z z a a

F igu re 8 .7 Creat ing a G loba l Except ion Class in t h e Except ion Bui lder

Exception classes must be named using the prefix C X _ ; the compiler will complain
i fyou try to name it otherwise. Of course, as you can see in Figure 8.7, exception
classes in the customer namespace can be defined as Z C X _ , and so on. For the
most part, the Exception Builder perspective looks almost identical to the normal
Class Builder perspective.

For example, in Figure 8.8, you can see that a custom class called Z C X _
C U S T 0 M E R _ N 0 T _ F 0 U N D contains three methods inherited from the base exception
class C X _ R 0 0 T . In addition, a default constructor method has also been created.
However, i f you attempt to edit the constructor, you will notice that the Excep-
tion Builder will not allow it. This is by design because the generated constructor

222

C r e a t i n g E x c e p t i o n Classes

method contains the proper interface and implementation to ensure that excep-
tions are always initialized correctly.

Class Interface ZCX_CUSIOHER_KDI_FOUHO tmplenxoted Mnartve

Property Wtterfaces Fnanrt". Tarts Fv»nlt Ttties MKK

0 Pa.amete.sl QJ E«epbons| ' . | H ! ^ S J S J X l ^ T l & 1 M I M ! (f i f ^ l CF.no,
|M«thod [Level fvisi |M [Oescnpbon
i T M E « x « ' - 6 E r f t r r 1 nst ancPuei 1 Returns message short ie«i
IF_nESSAfiC-6ET_L0«$TEXT InttantPubll Returns message w»g t w

,6£ T_S0URC£_P0S IT1 ON 1 nstamPi*! 1 Returns Porton in Souce Tea
CONSTRUCTOR INSTAMPUEII^ CONSTRUCTOR

F i g u r e 8 . 8 I n i t i a l V i e w o f t h e E x c e p t i o n 8 u i l d e r

In particular, this initialization process makes sure that text descriptions and pre-
vious exceptions are stored in context. This information is stored in the instance
attributes TEXT 10 and P R E V I O U S , respectively, which are inherited from C X _ R 0 0 T .
In the following Section 8 . 5 . 4 , Defining Exception Texts, you will see how to
define the exception texts that are stored in the TEXT I D attribute.

8.5.4 Defining Exception Texts

Ideally, whenever an exception occurs, we want to recover from it gracefully
using logic defined within an exception handler block. Unfortunately, this is not
always possible for every type of exception. Unexpected exception situations typ-
ically require human intervention of some kind. Sometimes, this intervention
comes in the form of an error message displayed on a screen; other times, a mes-
sage is written to an error log. In either case, we need to be able to produce a
meaningful descriptive text for someone to be able to investigate the problem.
The Exception Builder tool supports you in this endeavor by allowing you to con-
figure exception texts for global classes.

Exception texts are defined on the TEXTS tab of the Exception Builder (see Figure
8 . 9) . However, the actual text is stored in the Online Text Repository (O T R) . The
OTR is a central storage repository for texts that are defined within the AS ABAP,
providing support for internationalization, and so on.

Within the Exception Builder, each exception text is defined using a unique
exception text ID (i.e., READ_ERR0R in Figure 8 . 1 0) . The exception text ID corre-
lates to a constant attribute with the same name that has the data type S 0 T R _ C 0 N C .

2 2 3

8 | Error H a n d l i n g w i t h Except ions

Cl«s interface CI_$r_FllE .10 Implemented/Actve
A P'oportes înterfaces ^ Fnetids ÂJtnbutos Methods ̂ Everts^ Types ̂ Aliases

r 1 1301561 Lcng Ten |
|E«eptioniO
mwwr An exception occurred
CX.SY.FUE.ACCESS.ERROR Error accessing trie «e F̂ILENAMES'
CX.SY.FIIE_I0 Error wflh input'outpul 10 Ale ILENAME&'. OperMng sys*m error «ERRORCOD€fi (SERRORTEXTS)
READ.ERROR Could not read tne Ale «f LEtMME*'. operating system error 4ERRORCOOES (SERRORTEXTS)
KfilI£_£fiR0S The <ie '&f ILENAMES'could rtol be written Operating system error SERRORCODES (&ERRORTEXT6)

Figure 8.9 Defining Exception Texts in the Exception Builder

These constant attributes belong to the same namespace as normal attributes, so
it is a good idea to use the standard naming convention for constants (i.e., the C0_
prefix) when defining exception text IDs in the Exception Builder.

Class Werface CX_SY.FIIE.I0 Implement (AitMf
Proposes | Mettaces , Frwv» ^ ^ S i T M , Methods , Events , Tjpw , oasts

E T g L E I M I i a H E J I l m | Level hull 2 • [Tipmg [Associated T»« [Oewnpuyi [moai value
CI.R00I CMMMIK Type SO"R_COWC • a Exepson 10 Value tot AttC1 (AAftA3937A9B856E10OCOOCOA114476-
ITCXTID nstaocePuMc P Type SOTR_CC*C • a Key tor Access to Message
MtVICUS nstancePutic R Type ftef Cx.ftCOI E l Excepwn Mapped tt trie C
K E S W T L . E I W I P n»ta«x«i»utific p Type SJSStKSID • a InVrnM Name of Ewepoor
CX.ST.FIlE.ACttSS.tfCorvstanPuMc Type S0TR_CJ*C MM Excepton » value tot A»r4182174D03030063000000000A1551011

F I I E K M E instancePubic P Type STRIW Wra Name ofFiietvai Caused
CI.ST_FIIC.I0
•UftJMM
WRITf.ERJSK

CcnstanPut'ic —

ConsunPut'K
CorotanPut-ic T

Type SOTR.CCMC
Type SOTR.CCIC
Type SOTR.COMC

K J Exteplon C ValueSot Attrt)50Be8396F0S1547E1CICOOOXA114478
Ewepson© Value« • AttijBMBMBPBWBWBPKPB"
ExcepSonIO *luelor AttlT30B88396F05l547ElOOC<»COAI1447B-

CI.ST_FIIC.I0
•UftJMM
WRITf.ERJSK

CcnstanPut'ic —

ConsunPut'K
CorotanPut-ic T

Type SOTR.CCMC
Type SOTR.CCIC
Type SOTR.COMC

• Jk
ma

Exteplon C ValueSot Attrt)50Be8396F0S1547E1CICOOOXA114478
Ewepson© Value« • AttijBMBMBPBWBWBPKPB"
ExcepSonIO *luelor AttlT30B88396F05l547ElOOC<»COAI1447B-

PMWWI inita'rcePijS'K P Type 1 m-M Error f»jm&e« of Operating
EMSftTExT Instant ePi£>K P Type STRIM6 Error Ted Of Operating Sy»

Type mm

Figure 8.10 Reading the OTR Key in the Exception Builder

I f you look carefully, you will notice that each constant attribute defined in rela-
tion to an exception text ID is initialized with a hexadecimal string value. This
value is the globally unique key of the corresponding text object in the OTR. For
example, in Figure 8.10, the OTR key for the READ_ERR0R exception text is high-
lighted.

You can see the corresponding OTR text by opening up Transaction SOTR_EDIT.
Here, you can plug in the OTR key in the CONCI-PT field, select the desired I.AN-

224

Creating Exception Classes

G U A G E , and cl ick the DISPLAY b u t t o n (see Figure 8.11). Figure 8.12 shows the

CHANGE CONCEPT screen o f the OTR fo r the selected OTR key.

B -
Cootepi Edit Ooco W r t * i i M) S ^ t e m Help

O 3 vJ O 0 © J . V: 0 0 < 3 (1

OTR: Maintain Initial Screen

| 9 0 fmd

T««1 Typo

® S h o r t Ted

O L O n g T M

Te»l 7

Language iFEZ TJ
Ted •

M M •

Concept EJ06B833«f05154?E100000>»Al1447e

Display Q Create ; ^ Change

Figure 8.11 Looking up Texts in the OTR — Part 1

Figure 8.12 Looking up Texts in the OTR — Part 2

225

8 | Error Handl ing w i t h Exceptions

You can define text parameters in your exception texts by surrounding elemen-
tary attribute names between ampersands. For example, the exception text
REA0_ERR0R from exception class CX_SY_FILE_IO shown in Figure 8.9 contains
three text parameters: &FILENAME&. &ERR0RC0DE&, and &ERRORTEXT&. At runtime,
method GET_TEXT, which is defined in interface IF_MESSAGE and whose imple-
mentation is inherited through class CX_R00T, will replace these text parameter
tags with the values of the corresponding instance attributes defined in class
CX_SY_F 1 LE_10 to produce a message text that is more meaningful to the end user.

For exception classes to be able to support message parameters, there must be a
way to pass data to the exception object. However, if you recall from Section
8.5.3, Global Exception Classes, you are not allowed to edit the constructor of a
global class. In spite of this, it is possible to supplement the interface of the con-
structor by defining public instance attributes. The Class Builder will add import-
ing parameters using the same name and typing information used to define the
attribute. In addition, it will also augment the implementation of the constructor
method to include assignment statements to store the importing parameter
within the corresponding attribute. This allows you to create an exception object
with all of the relevant parameters needed to accurately define the exception sit-
uation.

For example, the code in Listing 8.15 shows how an exception of type
CX_SY_FILE_I0 can be raised whenever a read error occurs. In this case, the
optional FILENAME parameter was used to indicate the name of the file that could
not be read.

DATA: 1 r _ e x TYPE REF TO c x _ s y _ f i 1 e _ i o .

l v _ m s g TYPE s t r i n g .

TRY.

RAISE EXCPETION TYPE c x _ s y _ f i 1 e _ i o

EXPORTING

t e x t i d - c x _ s y _ f i l e _ i o - > r e a d _ e r r o r

f i l e n a m e - ' s o m e f i l e . t x t ' .

CATCH c x _ s y _ f i 1 e _ i o INTO l r _ e x .

l v _ m s g - l r _ e x - > g e t _ t e x t () .

MESSAGE 1 v_msg TYPE T .

ENDTRY.

List ing 8.15 Retrieving Explanatory Text from Exception Instances

226

C r e a t i n g E x c e p t i o n C lasses

8.5.5 Mapp ing Exception Texts to Message IDs

Beginning with the release 6.40 of the SAP NetWeaver Application Server, you
can now map exception texts to message IDs within a message class. You can
enable this functionality in your exception classes by choosing the W I T H M E S S A G E

C L A S S option in the C R E A T E C L A S S dialog box (asyou've already seen in Figure 8 . 7) .

To demonstrate how to map exception texts to message IDs, let's consider an
example of an exception class called Z C X _ U S E R _ C R E A T E _ F A I LEO that is used to han-
dle exceptions related to the creation of users in a custom user management API.

1. To provide information about the user in question, a public instance attribute
called USER_NAME has been provided that wil l be added to the parameter inter-
face of the CONSTRUCTOR method (see Figure 8 . 1 3) .

Class interface 2CX_USER_CR€ATE_FAIIE0 implemented/mac ttve

Properties interfaces Fnends m i - i m c s 1 Teas Metnods Events Types Aliases

Eflra M i s e r s i si cam • filter

|Aar.&uee |Levei Ivisi |Re Imping |AssooatedType Description initial value

IF_TtOO_HESSA6E-OEFAlCo«iStanPuWic *
I F_T 100_N£SSA6E-T 1 MHnstanctPuMK Type SCX_T160KEY T100 Key wrtti Parameters
CX.ROOT ConstanPubiK Type SOTR.COMC Excepfcon© value fw Afirri6AA9A3937
TEXTIO instancePubiic F Type SOTR.COMC Key for Access io Message
PREVIOUS instancePubix F Type fief CX_ROOT <• Exception Mapped to the C

KERKEl.ERfilO instancePubtx F Type S380ERftIC- O internal Nam® of EwepOor
C0_0UPL 1 CATE_0SER ConsianPubhc T Type SOTR_COKC
tfSER_NAHE| instancePubW • Type SYUHAHE O Jser Name

• Type O

F i g u r e 8 .13 D e f i n i n g P a r a m e t e r s i n Z C X _ U S E R _ C R E A T E _ F A I L E D

2. If you look carefully on the I N T E R F A C E S tab of the Exception Builder, you will
notice that this exception class is implementing interface I F _ T 1 0 0 _ M E S S A G E .

I F _ T 1 0 0 _ M E S S A G E is a nested interface that embeds the I F _ M E S S A G E interface
that you have normally seen used with exception classes. The I F _ T I 0 0 _ H E S S A G E

interface also defines some attributes that support the mapping of exception
texts to message IDs. These details are encapsulated inside the implementations
of methods I F _ M E S S A G E ~ G E T _ T E X T and I F _ M E S S A G E ~ G E T _ L O N G T E X T in the root
exception class C X _ R 0 0 T .

3. To map an exception text to a message ID, you can simply create a new excep-
tion text and click on the M E S S A G E T E X T button in the toolbar above the excep-
tion text input table. This wil l bring up the A S S I G N A T T R I B U T E S O F A N E X C E P T I O N

22 7

E r r o r H a n d l i n g w i t h E x c e p t i o n s

CLASS TO A MESSAGE dialog box shown in Figure 8.14. Here, we are assigning
message ID 088 f rom message class 01 to the exception text C O _ O U P L L C A T E _ U S E R .

Class »err>:s ZCX_UM*_CRCATt_rAIl.£P

Ma'.'-'-?I,-!!! W T ' . t m i ' 1 / . T . W 1 TMJ

H^ls«n*nMd/lnac»»e

Meffioas | e»wi» | Types , Aliases

[EneptOnC
ZCl.VUK.C

j j f l j LonoJ

ZCX_LLS£R_CFT£ATE_FAIL.£0

C O _ K * U C A T E _ U S £ R

J I 2 L

" O l - . W T r t I

l i r - A t f g n e< an E«e»on Class 10 a Metsaje Q /

Message Cuss I t ! ~1
Message Njrr ter 088

Message Ted Message Ted usei C easts

ajmhws Sx E««oon Class /
Aa-e. 1 "Ol

2
Alt'® 3 KERNEL.EWO

AO-e 4 I BU
I I
l E E E l l a l

Figure 8.14 Mapping a Message ID to an Exception Text

4. Figure 8.15 shows this message as def ined in message maintenance Transaction
SE91. As y o u can see. y o u also have the opt ion to map elementaiy attr ibutes
f rom the Z C X _ U S E R _ C R E A T E _ F A I L E D class to the message parameters.

re-
Message class Edit Goto UMittestM) Enyorenent System Help

e - <j o 0 0 e Q M k i a o a a D C T ® a

Message Maintenance: Display Message (Compressed)
J J Selected entries («§) tfjjg)

Message class |W] A»B»

•.'..•llfflfir Messages

1 f . y . i i' i] f f ? ? n ? T g ? ? i i C E H S I

m I I • l l I I laapei I I
iMessagejMessage short te»i

C * c i * a l f o rea t 4 i s i n v a l i d (Hot " , I or t)

Crea t ion s t a r t e d of user m cen t ra l systee

lse*e»pianary D

3 r a
P r o f i l e assignment fo r user t eas de le ted

Role ass ign ien t t o user l deleted
F
F

Figure 8.15 Displaying a Message in Message Maintenance

228

UML Tutorial: Act iv i ty Diagrams

The primary benefit for using the message mapping option with your exception
classes is that you can leverage a pre-existing message base that is being main-
tained across the development landscape. Such messages can be maintained with
long text and translated into other languages using the familiar tools provided in
Transaction SE91.

Another advantage of using the message mapping option is the fact that the MES-
SAGE statement in ABAP now provides direct support for exception classes that
implement the IF_T100_MESSAGE interface; this functionality was introduced with
the SAP NetWeaver 2004 release. The code snippet in Listing 8.16 shows how the
MESSAGE statement can be used to output an exception text to the screen. In the
past, we would have had to extract the message text into a string variable using
the GET_TEXT method before we could display it using the MESSAGE statement.

TRY.

CATCH c x _ s o m e _ e x c e p t i o n INTO l r _ e x .

MESSAGE l r _ e x TYPE ' E \

ENDTRY.

L is t ing 8.16 Displaying Exception Texts w i th the MESSAGE Statement

8.6 UAAL Tutorial: Activity Diagrams

The UML activity diagram is a behavioral diagram used to depict the high level
flow within a module or program. Activity diagrams are quite similar in nature to
flowcharts. However, as you will see. there are certain things you can do with an
activity diagram that you cannot do with a flowchart.

Figure 8.16 shows an example of an activity diagram that is being used to depict
the flow of a simple ABAP extract program. The flow begins at the initial node
action and proceeds to the very first action called Receive Queiy Parameters.
Notice that the action names used here are fairly generic. For example, in the
ABAP extract program, the Receive Queiy Parameters action would encompass
the generation of a selection screen and the entiy of selection parameters by a
user. You can trace the control flow of an activity diagram by following the
directed edges between actions. Eventually, the program flow will proceed all the
way down to the Activity Final action.

229

8 | Error Hand l ing w i t h Exceptions

One significant addition to activity diagrams in the UML 2.0 standard was the
specification of protected nodes and handler blocks. As you can see in Figure 8.16,
the action Extract Data from Database is a protected node that might trigger an
exception (i.e., Se lec t ion Fai led). If no data is found in the database for the
given selection criteria, control is transferred to the Display "No Data Found"
Message handler block. It is also possible to group together multiple actions
inside of a protected node. For example, all of the file I /O actions in Figure 8.16
were grouped together in a protected node that reacts to file I /O exceptions.

In the diagram shown in Figure 8.16, notice that flow from each handler block
leads into a diamond-shaped node called a merge. Merges provide a convenient
way of channeling multiple input flows into a common output flow.

230

Summary

I f you look carefully at the Write Record to File action in Figure 8.16, you will
notice that its boundaiy is depicted using a dotted line in lieu of the solid line
used with all of the other normal actions. This dotted line marks an expansion
region in the activity diagram. In the flow from Figure 8.16, the Write Record to
File expansion region (along with the inputting tokens shown as small pins along
the top of the action) represents a loop that takes the extract records from the
database lookup and iteratively writes them to the extract file. This kind of nota-
tion is much more elegant than the typical use of conditionals in flowcharts to
determine if there are more records to process, and so on.

One of the beauties of activity diagrams is that they are extremely easy to read,
often requiring little to no translation for nontechnical members of the team.
Consequently, they are an excellent communication tool for describing and refin-
ing a program flow with functional team members. Typically, after the process
flow within an activity diagram is agreed upon, the design can be put in more
technical terms in the form of interaction diagrams such as a sequence diagram,
and so on. We will discuss some more advanced features of activity diagrams in
Chapter 12, Working with XML.

8.7 Summary

The class-based exception handling concept greatly simplifies the process of deal-
ing with errors that can occur within an application. The definition of a common
framework for dealing with exceptions is essential for the development of reus-
able components because it provides a consistent model for propagating excep-
tions to users. In particular, the R A I S I N G addition described in Section 8.4.3,
Propagating Exceptions, helps complete the signature of methods by fully speci-
fying a method's API contract.

In the next chapter, we will look at ways to simplify the testing of these methods
to ensure that their implementation satisfies the conditions outlined in their API
contract.

231

Unit tests measure the correctness of individual software modules,
helping developers identify bugs earlier in the software development
lifecycle. Unit testing frameworks such as ABAP Unit assist developers in
writing quality unit tests. In this chapter, you will learn how to develop
and execute unit tests using the ABAP Unit testing framework.

9 Unit Testing with ABAP Unit

During the implementation phase of an SAP project, ABAP developers find them-
selves in a fairly consistent routine of coding, compiling, activating, running, and
testing their individual development objects. At this stage, the testing process is
fairly informal, providing developers with a quick checkpoint to make sure that
they are progressing on the right track. Of course, if errors are found, the code is
changed on the spot and tested again. After the code reaches a stable state, it is
ready for a more formalized unit test.

Unit tests verify the correctness of an individual software unit. In terms of ABAP
development, this generally refers to a single method in a class, a subroutine, a
function module, and so on. If you have ever worked with unit tests before, this
view of unit tests might seem a bit unorthodox because the individual unit tests
are so narrow in scope. This point of confusion likely stems from the IEEE defini-
tion, which broadly describes unit testing as "testing of individual hardware or
software units or groups of related units."1 As you will see, ABAP Unit supports
both views of unit testing by allowing you to flexibly group individual unit tests
together during test runs.

One of the main goals of eveiy unit test is to confirm that your individual mod-
ules are fulfilling the terms of their API contracts. Verifying this behavior early on
helps to eliminate the tedious module-level bugs that prohibit integration and

1 This explanat ion o f un i t testing scope was detailed i n the book JUnit in Action (Manning, 2004).

The actual de f in i t ion was taken f rom the IEEE Standard Computer Dictionary: A Compilation of IEEE

Standard Computer Glossaries (IEEE, 1990).

233

9 | Unit Testing w i th A8AP Unit

functional tests from running smoothly. In this chapter, you will learn how the
ABAP Unit test tool can support you in the process of developing and executing
unit tests.

9.1 ABAP Unit Overview

ABAP Unit is a testing framework that allows you to build automated tests of indi-
vidual units of software (e.g., function modules, class methods, etc.). In this sec-
tion, we will introduce the basic concepts of ABAP Unit in particular and unit test-
ing frameworks in general.

9.1.1 The Need for Unit Testing Frameworks

Frequently, unit tests are conducted by feel. For example, module pool applica-
tions are often tested by clicking buttons on the screen and seeing what happens.
If the screen doesn't blow up, and a record is written to the database (which you
can verify in Transaction SE16), then perhaps eveiything is working correctly.
However, more careful inspection might show that certain screen progressions or
inputs cause the database record to be written incorrectly, and so on.

In this case, developers often take the test to the next level by enlisting the aid of
the ABAP Debugger. Here, they can step through the code line-by-line to verify
that inputs are processed correctly, and so on. Occasionally, certain modules are
so difficult to test by hand that they require a special testing program to be writ-
ten. These makeshift programs usually contain logic to automate certain test tasks
that are too difficult to perform manually.

Having considered some of the various options for conducting unit tests, let's
take a step back and consider some of the problems associated with these kinds of
informal testing methods:

• "Feel tests" are basically just functional tests in disguise. Clearly, unit tests and
functional tests have a similar objective: to produce a working product or mod-
ule.

However, the approach is very different for each type of test. Functional tests
are "black box" tests designed by functional analysts that typically have little to

234

ABAP Uni t Overview

no understanding of the code used to implement the functionality under test.
Unit tests, on the other hand, should be "white box" tests designed by devel-
opers with intimate knowledge of the code used to implement the module in
question. This inside knowledge provides broader test coverage, testing hid-
den pieces of logic that are often difficult to analyze in a functional test.

• Each of the ad hoc techniques described earlier requires a fairly significant
amount of manual effort to set up the test and execute it. These efforts repre-
sent wasted time for developers that could be moving on to new development
tasks, projects, and so on.

• It is difficult to document and interpret the test results. After all, how do you
document a debugging session? Often, the documentation effort boils down to
the tedious process of capturing screenshots that must be accompanied with
step-by-step narrative text.

• Ad hoc tests are difficult to reproduce because it is too easy to neglect to per-
form some basic setup task or skip over a step in the overall test sequence.

Recognizing these types of problems, Kent Beck2 decided to develop a unit testing
framework that could be used to provide some of the common elements neces-
sary for building and running automated unit tests. The first incarnation of this
framework created for the Smalltalk language was called SUnit. Since that time,
this same testing model (colloquially known as xUnit these days) has been
adapted to create testing frameworks for other languages such as Java (JUnit),
.NET (NUnit), and with the SAP NetWeaver 2004 release, ABAP Objects. The SAP
implementation of the xUnit test framework is called ABAP Unit.

9.1.2 Unit Testing Terminology

To understand how to use ABAP Unit, it is important to define some of the basic
terms that are used throughout the framework (see Table 9.1). These terms (and
concepts they represent) are largely based on concepts outlined in the core xUnit
framework.

2 Kent Beck is the creator o f Extreme Programming, a software engineering methodology that,
among other things, advocates test-driven development using automated unit tests.

235

9 | U n i t Test ing w i t h A B A P U n i t

Term Description

Test Class A test class defines an environment for running multiple related unit
tests (implemented as test methods).

Test Method Test methods are special instance methods of a test class that can be
invoked to produce test results. In the xUnit framework, a test
method represents a single unit test.

Fixture A fixture defines an environment for running unit tests in the proper
context. Fixtures are configured in special callback methods defined
within a test class. You can insert code in these methods to obtain
and clean up the resources (e.g., file handles, connections, etc.) that
are used within the unit test methods.

Test Task A test task groups test classes together, allowing their methods to
be executed together in a single test run.

Test Run A test run controls the execution of a test task. Test runs produce
test results that can be viewed in the ABAP Unit result display.

Assertion Inside a test method, individual logical tests are made to assess the
correctness of a particular piece of functionality. Whenever these
tests are completed, the actual results of the test need to be com-
pared with expected results to determine whether or not the test
was successful. The ABAP Unit framework supports you in this com-
parison process by providing a common utility class called
CL_AUN I T_ASSERT. which has many useful methods for affirming the
correctness of a given logical test.

Tab le 9.1 Basic A B A P U n i t Te rm ino logy

9.1.3 Understanding How ABAP Unit Works

The ABAP Unit test framework is tightly integrated into the ABAP Workbench,

making it very easy to set up and execute tests for a given ABAP program. From

a development perspective, ABAP Unit tests are nothing more than local classes

defined wi th in an ABAP program (i.e., an executable (or reportl program, module

pools, class pools, function groups, etc.). These classes contain special parameter-

less instance methods that perform the actual tests, verifying their results w i th

util ity methods f rom class CL_AUNIT_ASSERT.

Tests can be run individually via various menu options in the ABAP Workbench,

or en masse via integration wi th the Code Inspector tool (Transaction SCI). In

236

Creat ing U n i t Test Classes

either case, the actual tests are grouped together inside of a test task that is exe-
cuted in a test run. During the test run, the individual test methods of the test
classes are executed separately by a test driver in the ABAP runtime environment.

However, before the test method is called, the runtime environment wil l search
for a special method called setup in the test class. I f the setup method exists, the
runtime environment wil l call it before it calls the test method to ensure that the
test is set up properly. Similarly, after the test method completes, the runtime
environment wil l execute the teardown method i f it exists. This important feature
of the framework makes sure that each test runs independently, helping you to
identify subtle bugs related to unforeseen dependencies between methods, and
so on.

The outcomes of the various tests are shown in the ABAP Unit results display. The
details shown in the ABAP Unit results display provide information about what
went wrong, and where. The details are context-sensitive, allowing you to navi-
gate within the ABAP Workbench to the source of the problem.

9.2 Creating Unit Test Classes

For the most part, you define and implement test classes in the same way thatyou
would build a regular ABAP Objects class. However, test classes and test methods
must be defined using the FOR TESTING addition. Listing 9.1 shows the basic form
of an ABAP Objects test class definition.

CLASS lcl_my_test_class DEFINITION '0AU Risk_Level Harmless
FOR TESTING. "#AU Duration Short

[. . .]
ENOCLASS.

L i s t i n g 9 .1 Basic Form of A B A P U n i t Test Classes

As we stated previously, you define test classes as local classes in your ABAP pro-
gram3. At first glance, this might not seem like a very safe practice because you
run the risk of transporting some potentially dangerous test code into a produc-

3 As o f Release 7 .0 o f the SAP Ne tWeaver A p p l i c a t i o n Server, y o u can also create g loba l test classes.

G loba l test classes must be d e f i n e d as abstract, arc no t a l l o w e d t o have f ix tures, and can o n l y be

used in local test classes. G i v e n these l im i ta t i ons , w e w i l l n o t invest igate the use o f g loba l test

classes i n th is b o o k .

237

9 | Uni t Testing w i t h A8AP Unit

tive environment. However, the FOR TESTING addition effectively divides the pro-
gram into two separate parts: testing code and production code. Test code is typ-
ically not even generated in production systems (controlled by the AS ABAP
profile parameter abap/test_generation). And, even if it is. the test framework
will not execute an ABAP Unit test run in a production client. So. developers can
rest easy knowing that their test code will not wreak havoc in a productive envi-
ronment.

9.2.1 Test Attributes
When defining a test class, you must specify a couple of attributes that are used
by the ABAP runtime environment during the execution of a test. In local classes,
these attributes arc not traditional attributes in the sense that they are defined
using the DATA statement. Instead, they are defined as special pseudo comments
added after the CLASS statement.

In Listing 9.1, you can see both pseudo comments added to the definition of local
test class lc l_my_test_class. The Risk_Level attribute describes the effects that
the test could have on the system. For example, it is possible that test methods
might invoke functionality in the programs under test that could result in changes
to the database, and so on. Test classes that introduce this kind of risk can be
restricted for execution based on client customizing settings (defined in the
Implementation Guide (IMG) or in Transaction SAUNIT_CLIENT_SLTUP). This
way, for example, you can protect a golden client from test side effects that could
impact other project efforts. The possible values for the Risk_Level attribute are
shown in Table 9.2.

Risk L e v e l P o t e n t i a l S i d e E f f e c t s

C r i t i c a l Cou ld a l ter system sett ings, cus tomiz ing , and so on .

Dangerous Cou ld change records in t he database.

H a r m l e s s N o side ef fects; t he test is i nnocuous .

Tab le 9.2 Risk Level At t r ibute Values

The Duration attribute specifies the expected execution duration of a test class.
This attribute helps the ABAP runtime environment to know when a test has run
too long (perhaps due to an error in the test code such as an infinite loop). The

238

Creating Uni t Test Classes

possible values of this attribute are Short, Medium, and Long, and they have default
values of 1 minute, 5 minutes, and an hour, respectively. These default values can
also be adjusted in Transaction SAUNIT_CLIENT_SETUP.

9.2.2 Test M e t h o d s

Test methods are defined as parameterless instance methods in a test class. The
signature of these methods also requires the FOR TESTING addition (see Listing
9.2).

CLASS l c l _ m y _ t e s t _ c l a s s DEF IN IT ION "#AU R i s k _ L e v e l H a r m l e s s

FOR TESTING. "#AU D u r a t i o n S h o r t

PRIVATE SECTION.

METHODS:

t e s t _ m e t h o d l FOR TESTING.

t e s t _ m e t h o d 2 FOR TESTING.

ENDCLASS.

L is t ing 9.2 Defining Test Methods

Each test method in a test class corresponds to a single unit test. Consequently, a
test method should concentrate on testing a single software unit (e.g., a method,
a function module, etc.) rather than testing an entire application. It is important
to keep unit tests granular so that we can focus in closely on potential bugs that
might creep into various parts of the program. Most of the time, the implementa-
tion of a test method will simply consist of a single call to a module of the pro-
gram under test followed by a status check using utility methods defined in class
CL_AUNIT_ASSERT.

I fyou look closely at the code in Listing 9.2, you will notice that the test methods
have been defined in the private section of the test class. This is by design because
test classes implicitly share a friendship relationship with the test driver of the
ABAP runtime environment. Consequently, you should prefer to define your test
methods in the private or protected sections of your test class.

9.2.3 M a n a g i n g Fixtures

Test classes group related test methods (i.e., unit tests) together into a logical unit.
In these classes, you can also define special fixture methods that help set up and
teardown unit tests. These methods have predefined names that are automatically

239

9 | U n i t Test ing w i t h A B A P U n i t

recognized by the ABAP runtime environment. Each method is defined in the pri-
vate section of the class and has no parameters. Table 9.3 describes the various
types of fixture methods that arc supported by the ABAP Unit framework.

I M e t h o d Name Usage Type I

setup This instance method is called prior to the invocation of every
test method in the test class.

teardown This instance method is called after every invocation of a test
method in the test class.

class_setup This class method is called once before any test methods are
called in the test class.

class_teardown This class method is invoked after all of the test methods in
the test class have been called.

Tab le 9 .3 F ix ture M e t h o d s and Their Usages

Fixture methods are an excellent place for defining common initialization code
that is relevant for all of the test methods in a test class. In particular, the instance
methods setup and teardown provide a useful hook for implementing code that
ensures that each test is executed independently using the proper runtime config-
uration.

9.2.4 Generating Test Classes for Global Classes

You can generate test classes for global classes using the test class generation tool
provided with the Class Builder. To access this generation tool, select the menu
path UTILITIES • TEST CLASS GENERATION in the Class Builder. This brings up the dia-
log box shown in Figure 9.1. Here, you are presented with options for specifying
the unit test class attributes, generating test methods, and so on. You can access
the generated test class by selecting GOTO • LOCAL TEST CLASSES in the menu path
of the Class Editor screen of the Class Builder.

240

Case S t u d y : C r e a t i n g a U n i t Tes t i n A B A P U n i t

cuss Interface ZCL.CUSTOKR |

P r o p e l s interfaces Friends Aai.tiulcs _

a P*ame«rs B J B I X I l a i m m I I rr*

ZIF_COHPARAfitE-COliPARC_T(ll»$TA»iCPUBll C o n p v i Two OWects To Deterrrw* The* Order
CONSTRUCTOR IHSTMiCPUBl I CONSTRUCTOR
AS.STRIH6 INSTANtPUBll OrtpUfthe CuSWrner

& M e n j d selection tw »est class generator

ioca< Test Class
Cuss Name A S A P J J W T . T E S T C L A S S

a
AS.STR1NO
Z)F_COMPARABLE -COMPARE.TO

• X

I B S

Options
@ Generate Method C « s
0 Generate Assert Equar

v*iditr Period Category a s s a 1

R.sk Lenil Harr ie ts 2

F i g u r e 9 . 1 G e n e r a t i n g a T e s t C lass i n t h e C lass B u i l d e r

9.3 Case Study: Creating a Unit Test in ABAP Unit

N o w t h a t y o u h a v e a basic u n d e r s t a n d i n g o f h o w to create u n i t test classes, let 's

cons ider an e x a m p l e . T h e p r o g r a m ZUNITTEST in L is t ing 9 . 3 de f ines a s i m p l e class

cal led 1c1_account that is used to r e p r e s e n t a b a n k account . It also de f ines a test-

i n g class cal led l c l _ a c c o u n t _ t e s t that conta ins a s ingle test m e t h o d cal led

t e s t _ t r a n s f e r that is used to test t h e b e h a v i o r o f t h e t r a n s f e r m e t h o d d e f i n e d i n

class l c l _ a c c o u n t . T h e e n v i r o n m e n t fo r this test m e t h o d is es tab l ished in the f ix-

t u r e m e t h o d se tup , w h i c h instant ia tes a n d in i t ia l i zes t w o account objects cal led

I r _ c h e c k i n g a n d l r _ s a v i n g s , respec t ive ly . I ns ide the test m e t h o d , w e a t t e m p t to

t ransfer $ 1 , 0 0 0 f r o m the c h e c k i n g account i n t o the savings account using the

t r a n s f e r m e t h o d . Because this m e t h o d can t h r o w an e x c e p t i o n o f t y p e

I c x _ i n s u f f i c i e n t _ f u n d s , th is m e t h o d call is w r a p p e d inside a TRY s t a t e m e n t . I f

th is t y p e o f e x c e p t i o n docs occur , it w o u l d be because the f i x t u r e w a s set u p

241

U n i t Test ing w i t h A B A P U n i t

incorrectly in the setup method. In this event , there is no point in proceeding

w i t h the test, so y o u use the F A I L me thod o f class C L _ A U N I T _ A S S E R T to te rminate

the test w i t h an error.

REPORT z u n i t t e s t .

CLASS 1 c x _ i n s u f f i c i e n t _ f u n d s DEFINITION
INHERITING FROM c x _ s t a t i c _ c h e c k .

ENDCLASS.

CLASS 1cl_account DEFINITION.
PUBLIC SECTION.

DATA: a c c o u n t j d TYPE numc5 READ-ONLY.
balance TYPE b a p i c u r r _ d READ-ONLY.

METHODS:
c o n s t r u c t o r IMPORTING im_acct_ id TYPE numc5.
depos i t IMPORTING im_amount TYPE b a p i c u r r _ d .
wi thdrawal IMPORTING im_amount TYPE b a p i c u r r _ d

RAISING l c x _ i n s u f f i c i e n t _ f u n d s .
t r a n s f e r IMPORTING im_amount TYPE b a p i c u r r _ d

im_to_account TYPE REF
TO l c l _ a c c o u n t

RAISING l c x _ i n s u f f i c i e n t _ f u n d s .
E N D C L A S S .
CLASS l c l . a c c o u n t IMPLEMENTATION.

METHOD c o n s t r u c t o r .
a c c o u n t e d - i m _ a c c t _ i d .

ENDMETHOD.

METHOD d e p o s i t .
balance - ba lance + im_amount.

ENDMETHOD.

METHOD w i t h d r a w a l .
IF balance LT im_amount.

RAISE EXCEPTION TYPE l c x _ i n s u f f i c i e n t _ f u n d s .
ENDIF.

balance - ba lance - im_amount.
ENDMETHOD.

METHOD t r a n s f e r .

2 4 2

Case S t u d y : C r e a t i n g a U n i t Test i n A B A P U n i t 9 - 3

IF balance IT im_amount.
RAISE EXCEPTION TYPE l c x _ i n s u f f i c i e n t . f u n d s .

ENDIF.

1m_to_account ->deposi t (im_amount) .
ENDMETHOD.

ENOCLASS.

CLASS 1 c l _ a c c o u n t _ t e s t DEFINITION
FOR TESTING.

PRIVATE SECTION.
DATA: l r . c h e c k i n g TYPE REF TO

l r . s a v i n g s TYPE REF TO

METHODS:
se tup .
t e s t _ t r a n s f e r FOR TESTING,
teardown.

ENOCLASS.

CLASS 1 c l _ a c c o u n t _ t e s t IMPLEMENTATION.
METHOD se tup .

CREATE OBJECT l r _ c h e c k i n g
EXPORTING

im_acct_ id - ' 1 0 0 0 0 ' .

CREATE OBJECT l r _ s a v i n g s
EXPORTING

im_acct_ id - ' 2 0 0 0 0 ' .

l r _ c h e c k i n g - > d e p o s i t (' 1 5 0 0 . 0 0 ') .
1 r _ s a v i n g s - > d e p o s i t (' 5 0 0 . 0 0 ') .

ENDMETHOD.

METHOD t e s t . t r a n s f e r .
TRY.

CALL METHOO 1 r _ c h e c k i n g - > t r a n $ f e r
EXPORTING

im_amount - ' 1 0 0 0 . 0 0 '
im_to_account - l r _ s a v i n g s .

CATCH l c x _ i n s u f f i c i e n t _ f u n d s .
CALL METHOO c l . a u n i t _ a s s e r t - > f a i 1

"i?AU Risk_Level Harmless
"#AU Dura t ion Short

l c l _ a c c o u n t .
l c l _ a c c o u n t .

2 4 3

9 | U n i t Test ing w i t h A B A P U n i t

EXPORTING
msg - ' I n s u f f i c i e n t f u n d s . . . ' .

ENDTRY.

CALL METHOO c l_aun1t_asser t ->asser t_equals
EXPORTING

act - 1r_savings->balance
exp - ' 1500 .00 '
msg - 'Savings account not c r e d i t e d c o r r e c t l y . ' .

CALL METHOO c l_auni t_asser t ->asser t_equa1s
EXPORTING

act - 1r_checking->balance
exp - ' 5 0 0 . 0 0 '
msg - 'Checking account not debi ted c o r r e c t l y . ' .

EN0METH0D.

METHOD teardown.
CLEAR: l r_check ing . l r_sav ings .

ENDMETHOD.
ENDCLASS.

L i s t i n g 9 .3 A S imple U n i t Test Example

Assuming the call to method t r a n s f e r does not raise an exception, y o u check the

results using the ASSERT_EQUALS utility method provided wi th class CL_AUNIT_

ASSERT. This method compares the actual value of the balance attribute o f each

account object w i th the value y o u would expect each account to have after a suc-

cessful transfer operation. In the fol lowing Section 9 .4 , Executing Unit Tests, you

wi l l see that this particular test discovers an error in the logic o f the t r a n s f e r

method. Also, notice that an implementation for the teardown fixture method is

provided in class lc l_account_ tes t . Here, the fixtures used in the t e s t _ t r a n s f e r

method are being cleaned up. N o w , i f y o u decide to add additional test methods,

y o u can be sure that the attributes 1 r_checking and 1 r .sav ings are properly ini-

tialized before they arc used in a unit test.

9.4 Executing Unit Tests

After y o u have created your unit tests in ABAP Unit, you can run them in several
different ways. In the fol lowing subsections, we wil l look at options for perform-

244

E x e c u t i n g U n i t Tests

ing unit tests individually using the ABAP Workbench and in batch via the Code

Inspector tool.

9.4.1 Integration with the ABAP Workbench

As we stated previously, the ABAP Unit test tool is tightly integrated into the

ABAP Workbench. Therefore, it is easy to start test runs using standard menu

options. For example, to initiate a test run for the ZUHITTEST program defined in

Listing 9.3, select PROGRAM • TEST • UNIT TEST from the menu bar (see Figure 9.2).

Similar menu options exist for the Function Builder and Class Builder tools.

&
Edit Goto Wiftes(M) Environment System Help

« Other Object srwt*F5

A Display «-» Change Ctrt*F1

Active «•» inactive Shirt'F8

* Enhance Shrt«F4

Check •

Generate

Activate CW*F3

Test

1 Prtnt Ctrt«P

Ent stmt* F 3

[l oca l Objects ^ J

© > Q © Q M 3 6 I 0 0 ® Q B

art ZUNITTEST
O : ' • - - ' "] ! P ' t f r Printer |

I Report ZUNITTESf

Direct Processing

Debugging

PZPORT z u n i t t e s t .
21
: B C L A S 3 l c x _ i n s u X X i c l e n t _ I u n d a DEf

HERITING f ROH CX s t a t i c F8

CW»Sh«t*F10 l a c c o u n t H E F I N I T I C N .
PTTBLTC'SECTICN.

* I I " ' 1 •>« TVPr n, r

F i g u r e 9 . 2 E x e c u t i n g a U n i t T e s t f r o m t h e A B A P W o r k b e n c h

Test runs initiated in the ABAP Workbench group together the test classes

defined in the program underneath a lest task that is automatically generated.

There is no predefined sequence in which the test methods are executed; after all,

they are meant to be run independently. I f the test(s) succeed, then a success mes-

sage wil l appear in the status bar at the bottom o f the screen. However , i f there

are errors in the unit test, then the ABAP Unit interface wi l l be displayed. W e wil l

look at the results o f a test run wi th errors in Section 9 .5 , Evaluating Uni t Test

Results.

9.4.2 Integration with the Code Inspector

You can also integrate ABAP Uni t tests inside the Code Inspector tool (Transaction

SCI). This tool is used to perform additional static checks for ABAP Repository

2 4 5

9 | Unit Testing w i t h A8AP Unit

objects. Examples of these checks include the verification of naming conventions
for variables, the proper use of ABAP statements, and so on. Although the config-
uration and use of this tool is outside of the scope of this book, it is a veiy useful
tool for implementing additional quality assurance steps in the development
cycle. The integration of ABAP Unit inside the Code Inspector allows developers
to automate the creation of the deliverables typically required by formal code
reviews (i.e.. proof of adherence to project coding standards and positive unit test
results), speeding up the overall development process.

9.5 Evaluating Unit Test Results

I f you execute the example test case defined in Listing 9.3, you will discover an
error in the transfer method defined for class lcl_account. In Figure 9.3, you
can see the results o f th is test r u n in the A B A P UNIT: RESULT DISPLAY screen.

0 =•! 0 © O ©

ABAP Unit: Result Display

I T,T* |M*tl*9*
TFTTUPROGRAMCTATAFTFROD SUKRL |FKM|CHXM|TO>I

® TASK.AVOCO.H)«06J9.21 »0r. a 0 1 0
~ 0 ZLMTTEST 9 0 1 0

" W LCL.ACCOWT.TIST 0 0 1 9
4 TEST TRAMSF£» 0 0 1 9

" 0Wf«r«nt VA1U*T
(i(«Ct*d [MO 00! UtMl | 1 ,'AO DOM |

Tut La_*C(OU»T_TEST.»TIST_TRM«*E»' M MM frc^rt* -ZUIIUEST-
• FISTKK

In ftHIMUl (lin* 9!)

Figure 9.3 Viewing Test Results in the ABAP Unit Result Display

Here, on the left-hand side of the screen, there is a tree structure that shows the
auto-generated test task, along with the associated program(s) and test classes/
methods. In Figure 9.3, you can see that there was a critical error detected in the
tes t_ t rans fe r method. I fyou double-click the method in the tree structure, the
top-right pane of the result display will contain the message associated with the
error. In this case, you will notice that the message Checking account not debited
correctly is the same one used in the call to method ASSERT.EQUALS to check the
balance of the checking account after the transfer operation.

246

M o v i n g Toward Test-Driven Deve lopment

In the bottom-right pane, you can see that we expected the balance of the check-
ing account after the funds transfer to be $500 in lieu of the actual balance of
$1,500. This tells us that we forgot to debit the checking account before we cred-
ited the savings account in method t ransfer of the 1cl_account class. If the test
task had been larger, there could have been more errors generated from other test
methods. Therefore, the stack information provided in the bottom-right pane can
be very useful in determining where a particular assertion failed.

In the example test in Listing 9.3, the default error severity defined in the
ASSERT_EQUALS method of class CL_AUNIT_ASSERT has been accepted. However,
the importing parameter level does support other severity levels such as Fatal or
Tolerable. Within your individual test methods, you will have to decide how
critical a given error truly is. You should spend some time browsing through the
documentation for class CL_AUNIT_ASSERT SO that you can get comfortable with
the various assertion methods and their parameters because this can increase the
usefulness of your unit tests.

9.6 Moving Toward Test-Driven Development

In his book Extreme Programming Explained: Embrace Change (Addison-Wesley,
1999), Kent Beck asserts that "Any program feature without an automated unit
test simply doesn't exist." This is an outlook shared by many developers who
have embraced a new software design technique called test-driven development
(TDD). TDD places a much higher emphasis on testing, requiring that unit tests be
written before development begins. After the unit tests are written in an auto-
mated testing framework such as ABAP Unit, developers can begin to iteratively
implement the functionality described by those unit tests while receiving contin-
uous feedback from the testing runs.

Although the full-blown use of TDD (and indeed the extreme programming meth-
odology from which it came) may be too controversial for your particular devel-
opment team, the value of quality automated unit tests cannot be underesti-
mated. It is imperative that you define your ABAP Unit tests as quickly as possible
so that you can incorporate them into your normal development process. These
tests will help keep you on target by providing immediate feedback whenever
your individual modules begin to deviate from the terms of their API contracts.
Unit tests will also shed light on areas of your design that need some work. For

247

9 | Unit Testing wi th A8AP Unit

example, if you find that a given module is difficult to test, there is likely some-
thing wrong with it.

Finally, unit tests should inspire you with the confidence to take "risks" in your
development. For instance, in Chapter 5, Inheritance, we discussed the concept
of refactoring to improve the design of some existing code. Without unit testing,
you might be hesitant to perform certain refactorings for fear of breaking some
unforeseen dependent code. Similarly, you might also be cautious about imple-
menting enhancements for the same reasons. However, with unit tests, you can
apply the changes and know immediately whether or not you broke something in
the system without having to conduct a full-scale regression test.

9.7 UML Tutorial: Use Case Diagrams

Even if you haven't spent much time working with the UML before, it is likely
thatyou may have heard the term use case used in various contexts at one time or
another. Use cases are an important part of the UML standard, although ironi-
cally, the UML specification has very little to say about how to actually define
one. Instead, it focuses on the use case diagram, which only tells a very small part
of the story.

In his book Writing Effective Use Cases (Addison-Wesley, 2001), Alistair Cockburn
defines a use case as something that "... captures a contract between the stake-
holders of a system about its behavior." In other words, you can think of a use
case as a method for capturing the functional requirements of a system or mod-
ule. A use case is fairly succinct, describing a single interaction scenario between
a requesting user or system (referred to as an actor) and the system under discus-
sion. Each use case defines a main success scenario that defines how an actor can
achieve its goal. At each step within the main success scenario, it is highly possi-
ble that something might occur to cause the flow of the use case to deviate. These
deviation scenarios are referred to as extensions. Separating these extension sce-
narios from the main success scenario makes the use case much easier to read.

Use case development is a collaborative process that requires a lot of communica-
tion within a project team. Most of the time, this process is driven heavily by
business analysts that may not be familiar with the UML. Therefore, use case sce-
narios are often best represented in text form. You will see an example of this
form in Section 9.7.2, An Example Use Case.

248

U M L Tutor ia l : Use Case Diagrams

9.7.1 Use Case Terminology

Before we proceed with the development of an example use case, it is important
to understand some basic terminology. Table 9.4 provides a description of some
of the most common terms used in use case parlance.

Term Descr ip t ion

Actor A user or system that interacts with the system under discus-
sion. From the perspective of the system under discussion, an
actor is defined in terms of the role(s) it plays in the system.

Primary Actor The primary actor is the actor that initiates the use case sce-
nario.

Scope The scope describes the system under discussion.

Precondition Preconditions describe what must be true before the use case
can begin. For example, a precondition of a web application
might be that the user has been properly authenticated. In this
case, the precondition simplifies the prose in the use case sce-
nario because you don't have to include steps to verify that a
user is authenticated before executing a given step, and so on.

Guarantee A guarantee describes the invariants maintained by the system
throughout a use case scenario. For example, a use case sce-
nario describing a transfer of funds between two accounts in a
banking system would have guarantees ensuring that both the
source and target account are debited/credited correctly, and
so on.

Ma in Success Scenario The primary scenario of the use case that describes how an
actor will reach its goal. You can think of this scenario as the
"sunny day" scenario for the use case.

Extension Scenario Extension scenarios are scenarios that describe alternative
behavior within the main success scenario.

Table 9.4 Some 8asic Use Case Terms

9.7.2 An Example Use Case

As stated previously, there are no hard-and-fast rules for defining use cases. The
use case example shown in Figure 9.4 highlights some of the more common ele-
ments used when defining use case documents .

2 4 9

Unit Testing w i th ABAP Unit

U s e C a s e : S t u d e n t R e g i s t e r i n g f o r a T r a i n i n g C l a s s O n l i n e

Primary Actor Student

Scope Online Course Registration website

Preconditions Student has logged onto course website.

M a i n S u c c e s s S c e n a r i o

1) Student browses the course catalog and selects the course
he wants to attend.

2) Student clicks a button to register for the class.

3) Student fills in basic contact information (i.e., name, email, etc.).

4) Student fills in payment information (e.g.. credit card, etc.).

5) Student submits the registration request.

6) System verifies that seats are available.

7) System verifies paymentiofotmatLon. authorizing the purchase.

8) System displays success confirmation on the screen.

9) System sends a follow-up email confirming the registration.

E x t e n s i o n s

6a) No seats are available.
• 1) System displays message indicating class is full.
• 2) Returns to main success scenario at step 1.

7a) Payment information is invalid.
• 1) Student can select another form of payment or cancel the

process.

Figure 9.4 An Example Use Case Document

Ideally, i f done correctly, the use case in Figure 9.4 should be veiy easy to read.
This is a use case for registering for a training class online. Initially, we define the
primary actor, the system under discussion, and some basic preconditions for
executing the use case. Next, we proceed into the main success scenario, which is
defined as a sequence o f numbered steps. As you can see, each step is described
using action words that are direct and to the point.

To keep things succinct, you can reference other use cases by simply underl ining
a particular bit o f action text. For example, in Step 1 o f the main success scenario,
the phrase browses the course catalog and selects the course he wants to attend has
been underlined to indicate that the search functionality o f the course catalog is
described in another use case. The use case in Figure 9.4 also contains a couple of

2 5 0

UML Tutorial: Use Case Oiagrams

extension scenarios. These scenarios describe what happens whenever the class is
full or if the provided payment details are invalid.

Keep in mind that the example shown in Figure 9.4 is just one way of document-
ing a use case. A use case is good as long as it accurately describes an interaction
with the system. When you read a use case document, you should be able to
quickly ascertain the who, what, when, where, and why of a particular interaction
within the system. When it comes to use case documentation, often less is more.

9.7.3 The Use Case Diagram

Figure 9.5 shows an example of a use case diagram for the use case outlined in
earlier in Figure 9.4. As you can see. the graphical notation for use cases in the
UML is fairly simple, basically showing the relationships between actors and use
cases. The use cases are drawn within a rectangular box that represents the
boundaries of the system. Internally, use cases can define include relationships
to depict their dependencies on other use cases.

In his book UML Distilled (Addison-Wesley, 2004), Martin Fowler suggests that
one way to look at use case diagrams is as a type of graphical table of contents for
a set of use case documents. For example, the use case diagram in Figure 9.5

251

9 | Unit Testing w i th A8AP Unit

shows a high-level overview of the course registration system, its use cases, and
the relevant actors interacting with those use cases. For more information about
any particular use case, you must consult detailed use case documentation such as
that shown in Figure 9.4.

9.7.4 Use Cases for Requirements Verification
Use cases are an excellent method for capturing functional requirements. Unfor-
tunately, they are not widely used in SAP projects. Consequently, as an ABAP
developer, you might be asking yourself why you should care about use cases.
After all, most of the time, the documentation of functional requirements falls
under the purview of the business analysts working on a project.

Typically, in most of the waterfall methodologies employed on SAP projects,
developers do not enter into the software development process until a functional
specification is written. Here, developers are often expected to simply read
through the functional specification and start the design process. However,
before proceeding too far down this path, the smart developer will check back
with the business analysts to make sure that his interpretation of the require-
ments is consistent with the vision of the business analysts so that nothing is lost
in the translation of the functional requirements. Use cases can be a very effective
tool for documenting such interpretations.

Moreover, by spending just a little bit of extra time documenting use cases, devel-
opers can make life much easier for themselves and others by distilling the
requirements into a form that is straightforward and easy to interpret. This docu-
mentation becomes a vital part of a technical design document, saving future
developers from having to try to interpret a complex functional design from
scratch.

9.7.5 Use Cases and Testing
Use cases can also come in handy when you are ready to start developing unit or
functional tests. Each action step in a main success or extension scenario probably
represents a unit of work that should be tested independently. At the very least,
it should give you an excellent start for narrowing down your test scenarios.
When compared with the alternative of trying to comb through a large functional
specification document in search of test scenarios, you can really see where the
effort of documenting use cases is justified.

252

Summary

9.8 Summary

Unit tests are the last quality assurance checkpoint a development object must
pass through before it is turned over to the wider project community. Conse-
quently, it is important thatyou get them right so you can deliver quality devel-
opment objects. The design of automated unit tests using the ABAP Unit testing
framework simplifies this endeavor by facilitating the creation of robust test cases
that produce repeatable results.

In the next chapter, we will shift gears and begin looking at some of the more typ-
ical places where ABAP Objects classes are used in common development efforts
within an SAP project.

253

PART III

Case Studies

The SAP Control Framework makes it possible to manage custom desktop
UI controls from an ABAP program running remotely on the SAP
NetWeaver Application Server. These controls greatly enhance the user
experience of working with the classic Dynpro UI by leveraging complex
controls that are already installed on a user's workstation. In this chap-
ter, you will learn how to develop interactive reports using the SAP List
Viewer control and the ALV Object Model.

10 Working with the SAP List Viewer

This chapter begins the first of several case studies that demonstrate how ABAP
Objects classes are used in some common ABAP development tasks. The SAP List
Viewer (commonly known as the ABAP List Viewer or ALV) is a flexible UI control
that can be used to display structured datasets in various formats. In the past, if
you wanted to work with the ALV toolset, you had one of two options:

• Use function modules from the Reuse Library (e.g., REUSE_ALV_GRID_DISPLAY).

• Interact with the grid control directly using the SAP Control Framework (e.g..

via proxy classes CL_GUI_ALV_GRID, etc.).

However, with SAP NetWeaver 2004. SAP has provided a unified API called the
ALV Object Model that is based purely on ABAP Objects classes.

Throughout the course of this chapter, you will see how to design and implement
a simple flight query report using ALV Object Model. Along the way, we will
revisit the concept of ABAP Objects events to see how to respond to events trig-
gered by users interacting with the ALV control on their frontend workstations.

10.1 Overview of the SAP Control Framework

In the early days of screen programming in the SAP R/3 environment, the list of
available screen elements that could be added to a classic Dynpro screen was lim-
ited to simple labels, input fields, buttons, and so on. These elements could be

257

10 | Working wi th the SAP List Viewer

used to develop screens that were functional, but it was veiy difficult to create
high fidelity screens with a look-and-feel that many users were accustomed to
working with in other popular desktop applications. Recognizing these shortcom-
ings, SAP introduced the SAP Control Framework in Release 4.5 of the Basis ker-
nel (which was the predecessor to the SAP Web AS).

At a high level, the SAP Control Framework makes it possible to manage custom
UI controls on a user's desktop client from an ABAP application running remotely
on the SAP Web AS. These custom controls are implemented using either
Microsoft's ActiveX* or Sun's JavaBeans™ component technologies depending on
the version of the SAP GUI client that is being used. Support for common indus-
try component models such as ActiveX or JavaBeans makes it possible to integrate
many types of complex controls into the classic Web Dynpro UI.

10.1.1 Control Framework Architecture

As you can see in Figure 10.1, the SAP Control Framework architecture exists in
two distributed parts:

• The server part of the framework is based on a scries of ABAP Objects classes
collectively referred to as the ABAP Objects Control Framework. This framework
contains some core classes that define the low-level interfaces between the
application server and the frontcnd, as well as a scries of proxy classes that
encapsulate the functionality of custom controls behind an ABAP Objects inter-
face. These proxy classes inherit from the base control class CL_GUI_C0NTR0L.

• The client side of this framework is managed by a special component inte-
grated into the SAP GUI client called the Automation Controller. The Automa-
tion Controller manages all of the custom control instances being used on the
SAP GUI frontcnd. It is also responsible for managing communication between
the custom controls and the ABAP Objects Control Framework. This RFC-based
communication includes the transfer of data between the ABAP program and
the custom controls as well as the propagation of events triggered on the front-
end to event handler methods registered on the backend. To maximize perfor-
mance, all communication is buffered inside of an Automation Queue on both
the client and the server.

One of the main advantages of working with the control framework is the fact
that much of the functionality in an application can be delegated to the frontcnd
client. For example, the ALV grid control is able to sort and filter the data it dis-

258

O v e r v i e w o f t h e SAP C o n t r o l F r a m e w o r k 10.1

plays without requiring an interaction with the server. This reduces the load on
the application server and also makes users happy because they get their results
much sooner than they would if they had to wait on a dialog step.

As you can see in Figure 10.1, the SAP Control Framework also keeps track of the
events that are triggered on the frontend client. These events are dispatched by
the framework to event handler methods defined in a custom ABAP Objects class.
The signature of these event handler methods provides information about the
event as well as a reference to the sender object (i.e., the proxy object for the cus-
tom control). This information allows you to react to the event in some applica-
tion-specific way. You will see an example of this in Section 10.4, Event Handling
with the ALV Object Model.

10.1.2 Survey of Available Controls

Besides the ALV grid control that we have discussed already, there are many
other useful custom controls in the SAP NetWeaver AS that are available out of
the box. Examples of these controls include special container types, a calendar

259

10 | Working wi th the SAP List Viewer

control, a control for embedding a web browser on a screen, and many others. It
is also possible to use the SAP Control Framework to design your own custom
controls based on ActiveX components, JavaBeans, or even .NET controls.

10.2 Overview of the ALV Object Model

Before we get started with our example report program, it will help to become
familiar with some of the more common elements of the ALV Object Model that
you will be working with. The example in this chapter will be using class
CL_SALV_TABLE to represent the flight query results. This class is used to render a
simple two-dimensional table in a classical ABAP list, a GUI container on a Web
Dynpro screen, or as a full screen table display. To keep things simple, we will
accept the default full screen table display type as we design our report.

I fyou look closely at the properties of class CL_SALV_TABLE, you will notice that it
is configured with the private instantiation type. As you will recall from Chapter
4, Object Initialization and Cleanup, private instantiation implies that we cannot
create instances of class CL_SALV_TABLE directly using the CREATE OBJECT state-
ment. Instead, SAP has provided a special class method called FACTORY that can be
used to obtain an instance of the ALV tool. Factory methods are provided to sim-
plify the creation of objects. In the case of class C L . S A L V . T A B L E , the FACTORY
method takes care of initializing the surrounding GUI environment, populating
data in the grid. and. perhaps most importantly, dynamically deriving the meta-
data the ALV tool needs to render the report. In the past, this metadata had to be
built by hand in a special internal table variable called a Jield catalog.

The ALV table object returned by the FACTORY method is fully functional and can
be displayed on the screen using the 01 SPLAY method. However, you will usually
want to tweak various aspects of the table before you hand it over to the users. In
the ALV Object Model, these settings have been encapsulated into distinct ABAP
Objects classes. These classes mostly contain getter and setter methods that you
can use to configure various settings that affect how the table is displayed or
interacted with. The UML class diagram shown in Figure 10.2 shows some of the
common getter methods provided in class CL_SALV_TABLE for accessing instances
of these properly classes. For more information about the details of an individual
property class, consult the SAP online help documentation (h t t p : / / h e l p . s a p . c o m) .

260

http://help.sap.com

Gett ing Started w i t h the Flight Query Report 1 0 . 3

Figure 10.2 UML Class Diagram for Class CL_SALV_TABLE

10.3 Getting Started with the Flight Query Report

Now thatyou have a basic understanding of the ALV Object Model, we can pro-
ceed with the development of our flight queiy report. The following subsections
show you how to implement various aspects of the report program in detail.

10.3.1 Understanding the Report Requirements

The general requirements for the flight query report are to allow users to display
a set of upcoming airline flights according to some basic selection criteria. The
data for this report will be driven out of the familiar Flight Data Model used in
many of the standard examples provided by SAP. The search results of the flight
queiy will be displayed in an ALV grid control. To demonstrate ABAP Objects
eventing, users will be able to double-click on a particular flight in the search
results to display a pop-up window showing the number of seats available on the
selected flight.

10.3.2 Report Design Using the M V C Design Pattern

To maximize reusability, you can isolate the various aspects of the report into sep-
arate layers. One common way of organizing GUI applications is to employ the
popular Model-View-Controller (MVC) design pattern. The MVC design pattern

261

10 | Work ing w i t h the SAP List Viewer

separates the user interface layer (or view) from the underlying business model
layer so that the two can vaiy independently. The "glue" component between
these two layers is referred to as a controller. Controllers act as traffic cops for the
application, managing the user experience by responding to user events, query-
ing and updating the business model, and selecting the appropriate view.

In keeping with this best practice for UI design, the flight query report will be
separated into the three layers prescribed by the MVC design pattern. However,
for the sake of brevity, we will bend the rules a little bit here and there so that we
can focus in on the aspects of the design that more closely pertain to the topics at
hand in this chapter. Where appropriate, these shortcuts will be identified so that
you will understand the areas of the design that need some additional work for a
report that is being used in a real-world setting.

10.3.3 Developing the Flight AAodel Class

Because the foundation of any application is based on the underlying business
model, it seems appropriate to begin the development of our example report by
first creating a model class to encapsulate our interactions with the SAP flight data
model. Normally, you will prefer to develop your model classes globally so that
they can be more easily reused. However, to keep things simple (and also to prac-
tice our ABAP Objects syntax), we will build a local model class called
l c l_ f l igh t_model inside of an include program called ZALVFLIGHT_CLASSES (see
Listing 10.1). The 1 c l _ f 11ght_mode1 class defines a single public instance method
called query_ f l igh ts that uses the standard BAPI function BAPI_FLIGHT_GETLIST
to query the flight database according to some basic search criteria.

*& *

*& I n c l u d e ZALVFLIGHT.CLASSES *
*& *

TYPES: t y _ f 1 1 g h t _ l 1 S t TYPE STANDARD TABLE

OF b a p i s f i d a t .

t y _ d a t e _ r a n g e TYPE STANDARD TABLE

OF b a p i s f l d r a .

CLASS l c l _ f l i g h t _ m o d e l D E F I N I T I O N .

PUBLIC SECTION.

METHODS:

q u e r y _ f l i g h t s

262

G e t t i n g Star ted w i t h t h e Fl ight Q u e r y Repor t | 10.3

IMPORTING im_from TYPE s _ a i r p o r t
im_depar t_date TYPE s_date
im_to TYPE s _ a i r p o r t
im_re tu rn_da te TYPE s_date

EXPORTING e x _ r e s u l t s TYPE t y _ f 1 i g h t j i s t .
ENOCLASS.

CLASS 1c1_f1 ight_model IMPLEMENTATION.
METHOO q u e r y _ f l i g h t s .

* Method-Local Data D e c l a r a t i o n s :
OATA: 1s_from_dest TYPE b a p i s f l d s t .

1s_to_dest TYPE b a p i s f l d s t .
1 t_date_range TYPE t y _ d a t e _ r a n g e .

FIELD-SYMBOLS:
<1fs_date_range> LIKE LINE OF 1 t _ d a t e _ r a n g e .

* Populate the f r o m / t o d e s t i n a t i o n s t r u c t u r e s :
1 s _ f r o m _ d e s t - a i r p o r t i d - im_from.
1 s _ t o _ d e s t - a i r p o r t i d - im_to.

* B u i l d the s e l e c t i o n date range - as necessary:
IF NOT im_depar t_date IS I N I T I A L .

APPENO INIT IAL LINE TO 1 t_date_range
ASSIGNING <1 fs_da te_ range> .

<1fs_date_range>-1ow - im_depar t_da te .

IF NOT im_re tu rn_da te IS I N I T I A L .
< 1 f s _ d a t e _ r a n g e > - s i g n - ' I ' .
< 1 f s _ d a t e _ r a n g e > - o p t i o n - ' B T ' .
< l f s _ d a t e _ r a n g e > - h i g h - i m _ r e t u r n _ d a t e .

ELSE.
< 1 f s _ d a t e _ r a n g e > - s i g n - " I * .
< l f s _ d a t e _ r a n g e > - o p t i o n - ' E Q ' .

ENDIF.
ENDIF.

Use the s tandard BAPI to per form the f l i g h t query:
CALL FUNCTION * BAPI_FLIGHT_GETLI ST'

EXPORTING
d e s t i n a t i o n _ f r o m - 1s_from_dest
d e s t i n a t i o n _ t o - l s _ t o _ d e s t

TABLES

2 6 3

10 | Work ing w i t h the SAP List Viewer

date_range
f l ight_11st

1t_date_range
ex_results.

ENDMETHOD.
ENOCLASS. - lcl_fl ight_model
List ing 10.1 The Flight Data Model Class

Normally, you would want to store the search results inside the model instance so
that you can define additional business methods to work on this data, and so on.
However, class CL_SALV_TABLE requires direct access to the internal table that it
displays so that it can sort the records in place. This requirement is difficult
because we prefer not to expose data attributes in the public interface of class
l c l _ f l ight_model. If there was more time, a framework could be developed in
the controller layer that seamlessly bound this data using getter and setter meth-
ods. This technique is used in the M V C framework associated with Business
Server Pages (BSPs) technology, for example. For now, to keep it simple, the
search results are exported in the ex_results parameter of method
query_fl ights so they can be cached locally in the controller class.

10.3.4 Developing the Report Controller Class
Initially, the controller class for our report should be veiy straightforward. The
only event that it needs to respond to is a request to display the report. Listing
10.2 shows our first pass at the controller class definition for our flight query
report. The class 1cl_query_ctrl, which is also part of the include program
ZALVFLIGHT_CLASSES. provides a public instance method called do_display_
report to handle requests to render the report on the screen.
*& *

*& Include ZALVFLIGHT_CLASSES *
*

CLASS lcl_flight_model IMPLEMENTATION.

ENOCLASS. "lcl_flight_model

CLASS lcl_query_ctrl DEFINITION.
PUBLIC SECTION.

METHODS:
constructor.
do_display_report

2 6 4

G e t t i n g Star ted w i t h t h e Fl ight Q u e r y Repor t | 1 0 . 3

IMPORTING im_from TYPE s _ a i r p o r t
im_depar t_date TYPE s_date
im_to TYPE s _ a i r p o r t
im_re tu rn_da te TYPE s_da te .

PRIVATE SECTION.
OATA: f l i g h t _ m o d e l TYPE REF TO 1 c l _ f 1 i g h t _ m o d e l .

f l i g h t j i s t TYPE t y _ f 1 i g h t _ l i s t .
g r i d TYPE REF TO c l _ s a l v _ t a b l e .

METHODS:
show_grid.

ENOCLASS.

CLASS 1 c l _ q u e r y _ c t r l IMPLEMENTATION.
METHOO c o n s t r u c t o r .

* I n i t i t a l i z e the f l i g h t model:
CREATE OBJECT f 1 i g h t _ m o d e l .

ENDMETHOD.

METHOO d o _ d i s p l a y _ r e p o r t .
* Use the model method " q u e r y _ f 1 i g h t s " to query the
* f l i g h t database:

REFRESH f l i g h t j i s t .
CALL METHOD f l i g h t _ m o d e l - > q u e r y _ f l i g h t s

EXPORTING
im_from - im_from
im_depart_date - im_depar t_date
im_to - im_to
im_re turn_date - im_re tu rn_da te

IMPORTING
e x _ r e s u l t s - f l i g h t _ l i s t .

* D i s p l a y the r e s u l t set in an ALV g r i d :
show_grid() .

ENDMETHOD.

METHOD show_gr id .
* Implementat ion d e f e r r e d f o r n o w . . .

ENDMETHOD.

ENOCLASS. - l c l _ q u e r y _ c t r l

Listing 10.2 Implementing the Flight Query Controller Class

265

1 0 | Wo rk i ng w i t h the SAP List V iewer

Normal ly , whenever an input event is triggered in the v iew, the control ler

responds to that event by not i fy ing the model and selecting the next appropriate

v iew for the user. In a typical ABAP report program, the initial v i ew shown to a

user is a selection screen. In the fl ight que iy report , w e w i l l provide users w i t h a

selection screen containing parameters that a l low them to fi lter the flight query

results by destination and date range. Af ter users enter this data, they can execute

the report by clicking on the EXECUTE but ton (see Figure 10 .3) .

I ® " .-.i cr. • sv-;t*fi H*U.
A " y o o e • . . B E ® a

ABAP 0 0 Flight Query Report

Figure 10.3 Defining Selection Criteria for the Flight Query Report

W h e n e v e r a user executes the report, the START-OF-SELECT I OH event block is trig-

gered. In Listing 1 0 . 3 , y o u can see that the ZALVFLIGHT report program is delegat-

ing this event to an instance o f our custom l c l _ q u e r y _ c t r 1 control ler class by

calling instance method do_d isp lay_repor t .

*& *

*& Report ZALVFLIGHT *
* * *

REPORT z a l v f l i g h t .

INCLUDE z a l v f l i g h t _ c l a s s e s .

DATA: l r _ c o n t r o l l e r TYPE REF TO l c l _ q u e r y _ c t r l .

SELECTION SCREEN BEGIN OF BLOCK b lk .ma in WITH FRAME.
SELECTION-SCREEN BEGIN OF LINE.

SELECTION-SCREEN COMMENT 1 (5) t e x t t 0 2 .
PARAMETERS p_from TYPE s _ a i r p o r t OBLIGATORY.
SELECTION SCREEN COMMENT 15 (15) t e x t t 0 3 .
PARAMETERS p_dptdat TYPE s_date .

266

Get t ing Started w i t h the Flight Query Report | 1 0 . 3

SELECTION-SCREEN END OF LINE.

SELECTION-SCREEN BEGIN OF LINE.
SELECTION-SCREEN COMMENT 1 (5) t e x t - t 0 4 .
PARAMETERS p_tO TYPE s_d i rpor t OBLIGATORY.
SELECTION-SCREEN COMMENT 15(15) t e x t - t 0 5 .
PARAMETERS p . r e t d a t TYPE s_date.

SELECTION-SCREEN END OF LINE.
SELECTION-SCREEN END OF BLOCK blk_main.

LOAD-OF-PROGRAM.
CREATE OBJECT 1 r_con t ro l 1 e r .

START-OF-SELECT ION.
CALL METHOD 1 r_cont ro l l e r ->do_d isp lay_repor t

EXPORTING
im_from - p_from
im_depart_date - p_dptdat
im_to - p_to
im_return_date - p_ re tda t .

Listing 10.3 Integrating the Controller into an Executable Report

Inside method do_display_report (refer to Listing 10.2), the provided selection

screen parameters are used to queiy the flight model. Here, as you saw in Listing

10.1, the q u e r y _ f l i g h t s method is calling the standard BAPI function

BAPI_FLIGHT_GETLIST to execute the flight query. The results are cached in the

private f l i g h t _ l i s t instance attribute defined in class l c l _ q u e r y _ c t r l .

After the flight model has been queried, the next task for the controller is to pro-

vide users wi th a v iew of the flight que iy list results. In this case, the v iew is

encapsulated inside of class CL_SALV_TABLE. The private helper method show_grid

of class l c l _ q u e r y _ c t r l is used to select this v iew for the users. W e wi l l look at

how to implement method show_grid in the fol lowing section.

10 .3 .5 I m p l e m e n t i n g t h e R e p o r t V i e w

The simplicity o f the ALV Object M o d e l makes the v iew selection task for control-

ler class l c l _ q u e r y _ c t r l ve iy straightforward. Listing 10.4 shows the implemen-

tation of the show_grid helper method that is used to display the flight query

results view.

267

1 0 | Wo rk i ng w i t h the SAP List V iewer

CLASS l c l _ q u e r y _ c t r l IMPLEMENTATION.

METHOO show_grid.
* Method-Local Data D e c l a r a t i o n s :

OATA: l r _ g r i d _ e x TYPE REF TO cx_salv_msg.
lv_message TYPE s t r i n g .
I r _ f u n c t i o n s TYPE REF TO c l _ s a 1 v _ f u n c t i o n s .

* Use the f a c t o r y method to c rea te an ins tance of the
* ALV g r i d :

TRY.
CALL METHOD c l _ s a l v _ t a b l e - > f a c t o r y

IMPORTING
r _ s a l v _ t a b l e - g r i d

CHANGING
t _ t a b l e - f i l g h t _ i 1 s t .

CATCH cx_salv_msg INTO l r _ g r i d _ e x .
lv_message - 1 r _ g r i d _ e x - > g e t _ t e x t () .
MESSAGE 1v_message TYPE ' I ' .
RETURN.

ENDTRY.

* Enable the standard ALV t o o l b a r :
1 r_ func t ions - g r i d - > g e t _ f u n c t i o n s () .
1 r _ f u n c t i o n s - > s e t _ a l 1 (abap_true) .

* D isp lay the ALV g r i d :
g r i d - > d i s p l a y () .

ENDMETHOD.
ENOCLASS.

Listing 10.4 Displaying the Flight Query Results View

As y o u can see in Listing 10.4 , the major i ty o f the work is handled by the afore-

ment ioned FACTORY method o f class CL_SALV_TABLE. TO s impl i fy the task o f calling

this method, do the fol lowing:

1. Click on the PATTERN but ton in the ABAP Editor to call up the Insert Statement

wizard shown in Figure 10.4 .

2. Select the A B A P OBJECTS PATTERNS button, and press Q -

268

G e t t i n g S t a r t e d w i t h t h e F l i g h t Q u e r y R e p o r t 1 0 . 3

©•ins

O CALL FUNCTION
® ABAP Obiocts Pan»ms
OMESSAOE
Q A B J E C T * FROM
O P E R F O R M
O AUTHORITY CHECK
O WRITE
O CASS lot ttMus
O Stinted Ditl 0fcn«t

® wfli flvklt *om ttructur*
OWFF.TYPEFC>-S1R\KT

O CALL DIAL00

OC9*fP««m

| M M

C*t E f*jrnb«f

Figure 10.4 Working with the ABAP Objects Pattern Generator — Part 1

3. This brings you to the 0 0 STATEMENT PATTERN dialog box shown in Figure 10.5.
This screen provides various options for generating method calls, raising
events, and so on1. Use the CALL M E T H O D pattern to bui ld the syntax needed to
call method FACTORY o f class CL_SALV_TABLE.

13'00 SUlgmffil P aflein

®C»»M«KK>
iMtMC*
CUftArftrfact CL_SJU.V_T*BLE
MMTiOd FACTORY

Oci«i»oe<»<t
lmur.ee
CUtt I I

O Raise EvwU
ClKSJQrttrfac* I I

O Raise wcwoon
Euepbon class

0 ®

Figure 10.5 Working with the ABAP Objects Pattern Generator - Part 2

1 Note that the ABAP Objects pattern generator tool can only work with global classes defined in

the ABAP Repositoty.

2 6 9

1 0 | W o r k i n g w i t h t h e S A P List V i e w e r

After the grid object is instantiated, you can enable the standard ALV toolbar by
invoking method S E T . A L L of class C L _ S A L V _ F U N C T I O N S . Figure 10.6 shows an
example of the report display generated by method s h o w _ g r i d .

t p
u t t Eat Goto Stmngi S p t w h»»

G ' J © Q © Q ft] m
ABAP 0 0 Flight Query Report

Ol & V V 2 O a a a 5 (to

A/r4fxan Art res
Ajr^rKin A r i m
A/r«ncan Artre?

IFUJ [FlQNOale | O f j Depart city |T» l A w f r U f T " l0f»artjr» |A#rt*al | *eOf |Curr» j lS
17 10/10/2007 JFK NEW YORK SFC SAN FRANC I5C0 000000 21 CO 00 1CU10QC07
17 11/07/2007 JFK NEW YORK SFC SAN FRANCISCO 000000 21COOO
17 12*05/2007 JFK NEW YORK SFC SAN FRANCISCO 00 00 00 210000

M U m f c a n A m — 17 [01 <02/2008 JFK I NEW YORK [Of 0|8AN FRANCISCO 'OOOOOO 21 CO 00
AA *A/r«fxanAr*r#s ' 17 01/3(1/2008 JFK*NEWYORK SFO* SAN FRANCISCO '00 00 00 21COOO A/r*ocan K f \ m

A/r««canArtffs
:an A r t r * j A/ntncJ

Amtncan Artr.e*
Umt f l fnAr tn—

17 03/26/2008 jFKjNCWYORK ISFOjSAN fRANttSCO 10000:00 p i oo.ool
w l w g g O O ^ J f K l N ^ r Y O ^

21 CO 00
an Artres
an Artres
an A n n * *

17 CW2ir2008 JFK NEW YORK S F O < 8 g l F ^ C g C ^ O O O O ^
5/18/2008 JFK NEW YORK

San Artre*
- B I M ARTFM

SmificsnArtris 17

07/16/2008 JFK NEW YORK SFO SAN FRANCISCO 00 00 00
06/13/2008 JFK NEW YORK SFO SAN FRANCISCO 00 00 00 21 0000

21 CO 00

09/10/2008 JFK NEW YORK SFC SAN FRANCISCO 00 00 00 21 00 00
10D8/2008 JFK NEW YORK SFC SAN FRANCISCO 00 00 00 2100 00
11105/2008 JFK NEW YORK SFO SAN FRANCISCO 00 00 00 21 0000

11A07/2C07
1205/2C07
01J02/2CC3
01/30f2CC3
02/27/2C03
0 3 W K 0 3
04/23*2008
05/21/21XS

07/I6f2i:03
08n*2 l»8
08/1CV2C08
10C8/2CC8
11XW2CC8

422 8400 USD
422 9400'USD
422 9400 USD
4229400 USO
422 9400 USO
<22 9400 USD
422 9400 USO
422 9400'USD
422 9400 USD
422 9400 USO
422 9400 *USO

422 9400 USO
422 9400 USO
422 9400 *USO
422 9400 USD

Ct
O t
ot
o t
o t
o t
o t
o t
o t
o t

OL

Delia Airlines
Delia Airlines

1893 11*05/2007
1649 12*03/2007

JFK NEW YORK SFC SAN FRANCISCO 17 1500 2037 00 11J05/2C07

Delia Airlines
Delia Airlines
Delia Airlines
'0enaA4rines
De«a Airtnes
Delia Airlines
Delia Afiines
Delia Airlines
Delia Airlines

11699112^1/2007
1699101/28/2008

[169919205/2008
1699 03/24/2008
1699 04/21/2008

JFK NEW YORK SFO SA.N FRANC ISCO 1 7 16 10 20 «7 00
JFK'NEWYORK SFO'SANFRANCISCO 17 15 DO 20 37 00

1699
1699

05/19/2008
06/16/2008

1699 07/14/2008
1699 OS/11/2008

JFK NEW YORK
JFK NEW YORK
JFK [NEW YORK
JFK NEW YORK*
JFK NEW YORK
JFK NEW YORK
JFK NEW YORK
JFK NEW YORK

SFOjSANFRANCISCO 17 1500 2037 00
TSfOjSANFRANCISCO 1715Q0 12037:001
jsFojsAN FRANCISCOM
'SFO'SANFRANCISCO
SFC SAN FRANCISCO

17 1500 2C37 00
171500
17:1500

r SAN FRANCISCO 171500
SFO SAN FRANCISCO 17 15 00
SFO* SAN FRANCISCO 17 1500

-2037:00
J-0 37 00

'20 37 00
20 37 00
2037 00

12XJ3/2C07
12/31/2CC7
01/20/2008
02/2V2C08

4229400 USO
422 9400 USD
422 9400 USD
422 8400 *USO
422 9400 USD

o y n v m x 4229400 uso use
04/21/2CC*

06*16/2008
07/14/3C08
08J11/2C08

422 9400 USO
422 9400 USO
422 9400 *USO
422 9400 USD
422 9400 ?USO

| use
use

Figure 10.6 Displaying t h e Flight Query Results in an ALV Table

As you can see in Listing 10.4, shown earlier, there are few dependencies
be tween the C L _ $ A L V _ T A B L E view class and the underlying data model . In the
past, the coupling between the data model and the grid control was much tighter
because developers were forced to provide view metadata (i.e., the ALV field cat-
alog). Fortunately, with the encapsulation techniques employed in the design of
the ALV Object Model , SAP has eliminated these dependencies to make report
development much more flexible.

2 7 0

Event Handling w i t h the ALV Object Mode l 1 0 . 4

10.4 Event Hand l ing w i t h t h e ALV O b j e c t M o d e l

We made a lot of progress with the flight query report in Section 10.3, Getting
Started with the Flight Query Report. However, one requirement that we still
have not implemented is the event handling logic needed to display the number
of available seats whenever the user double-clicks on a flight in the report list. In
this section, we will rework the flight query report to use ABAP Objects eventing
functionality to satisfy this requirement.

10.4.1 I n t e g r a t i n g Event Handler M e t h o d s in to the Contro l ler

I fyou recall from Chapter 2. Working with Objects. ABAP Objects events are han-
dled by event handler methods. These methods are defined in terms of the inter-
face specified for the triggering event and can be created in any class that has vis-
ibility to the class that defines the event. In our report example, the natural
location for an event handler method is in the controller class.

Listing 10.5 shows that an event handler method called on_double_cl ick has
been added to class lc l_query_ct r l . This event handler method will respond to
the double_cl ick event defined in class Ci._SALV_EVENTS_TABLE. YOU wil l see how
to handle this event later in Section 10.4.3, Responding to Events.

CLASS lc l_query_ctr l DEFINITION.
PUBLIC SECTION.

METHODS:
constructor.
do_display_report

IMPORTING im_from TYPE s_airport
im_depart_date TYPE s_date
im_to TYPE s_airport
im_return_date TYPE s_date.

on_doub1e_cl 1ck FOR EVENT double.cl lck
OF cl_salv_events_table

IMPORTING row
column
sender.

PRIVATE SECTION.
DATA: f l ight .model TYPE REF TO 1cl_f1ight_model.

f l i g h t j i s t TYPE t y _ f l i g h t _ l 1 s t .
grid TYPE REF TO c l . s a l v _ t a b l e .

271

W o r k i n g w i t h the SAP List V i e w e r

METHODS:
show_grid.

ENDCLASS.

Listing 10.5 Defining an Event Handler Method for the Report

10.4 2 Registering Event Handler M e t h o d s

Simply def in ing an event handler method as in Listing 10 .5 does not register o u r

control ler class as a l istener for the D0UBLE_CLICK event o f class

Cl_SAi V_EVENTS_TABl F. Instead, this registration must take place at r u n t i m e using

the SET HANDLER statement. Listing 1 0 . 6 shows h o w the control ler method

on_doub le_c l i ck has been registered to listen for events tr iggered in class

CL_SALV_EVENTS_TABLE using the SET HANDLER statement.

METHOD show_grid.
* Method-Local Data D e c l a r a t i o n s :

DATA: l r _ g r i d _ e x TYPE REF TO cx_salv_msg.
lv_message TYPE s t r i n g .
l r _ f u n c t i o n s TYPE REF TO c l _ s a l v _ f u n c t i o n s .
l r _ e v e n t s TYPE REF TO c l _ s a l v _ e v e n t s _ t a b l e .

* Use the f a c t o r y method to c r e a t e an ins tance of the
* ALV g r i d :

TRY.
CALL METHOO c l _ s a l v _ t a b l e - > f a c t o r y

IMPORTING
r _ s a l v _ t a b l e - g r i d

CHANGING
t _ t a b l e - f l i g h t j i s t .

CATCH cx_salv_msg INTO l r _ g r i d _ e x .
lv_message - 1 r _ g r i d _ e x - > g e t _ t e x t () .
MESSAGE 1v_message TYPE ' I ' .
RETURN.

ENDTRY.

* Enable the standard ALV t o o l b a r :
l r _ f u n c t i o n s - g r i d - > g e t _ f u n c t i o n s () .
1 r _ f u n c t i o n s - > s e t _ a l 1 (abap_true) .

* Register the event handler method "on_double_cl ick" so
* t h a t we can respond to d o u b l e - c l i c k events on the g r i d :

2 72

Event Hand l i ng w i t h t h e ALV O b j e c t M o d e l 1 0 . 4

l r _even ts - gr1d->get_event () .
SET HANDLER me->on_double_cl1ck FOR l r . e v e n t s .

* D isp lay the ALV g r i d :
g r i d - > d i s p l a y () .

ENDMETHOD.

Listing 10.6 Registering the Controller as an Event Handler

10.4.3 Responding to Events

N o w that w e have registered our on_doub le_c l ick event handler method , w e

need to i m p l e m e n t the logic necessary for displaying the n u m b e r o f available

seats o n the fl ight selected by the user. Listing 1 0 . 7 shows an example o f this

logic. Here, w e use the impor t ing row parameter prov ided by the event to deter-

m i n e wh ich flight the user has selected in the flight query results. Af ter w c have

this in format ion , w e can query table SFLIGHT to obtain addi t ional in format ion

about the flight. Here, w e use the SEATSMAX and SEATSOCC fields to calculate the

n u m b e r o f available seats on the flight and then display the results in a pop-up

using the MESSAGE statement.

METHOD o n _ d o u b l e _ c l i c k .
* Method-Local Data D e c l a r a t i o n s :

DATA: l s _ s e l e c t e d _ f l i g h t TYPE b a p i s f l d a t .
l s _ f l i g h t _ i n f o TYPE s f l i g h t .
1v_open_seats TYPE numc5.
lv_message TYPE s t r i n g .

* Read the s e l e c t e d f l i g h t record from the model
* using the "row" index provided by the e v e n t :

READ TABLE f l i g h t j i s t
INDEX row

INTO l s _ s e l e c t e d _ f l i g h t .

* Use the key of the s e l e c t e d f l i g h t record to e x t r a c t
* a d d i t i o n a l f l i g h t i n f o r m a t i o n from t a b l e SFLIGHT:

SELECT SINGLE *
INTO 1 s_f 1 i g h t J n f o
FROM s f l i g h t

WHERE c a r r i d EO 1 s _ s e l e c t e d . f 1 i g h t - a i r l i n e i d
AND connid EO 1 s _ s e l e c t e d _ f 1 i g h t - c o n n e c t i d
AND f l d a t e EO l s _ s e l e c t e d _ f l i g h t - f l i g h t d a t e .

273

1 0 | W o r k i n g w i t h the SAP List V i e w e r

* C a l c u l a t e the t o t a l number of a v a i l a b l e seats l e f t
* on the f l i g h t :

lv_open_seats -
l s _ f l i g h t _ i n f o - s e a t s m a x - l s _ f l i g h t _ i n f o - s e a t s o c c .

SHIFT lv_open_seats LEFT DELETING LEADING ' 0 ' .
SHIFT l s _ f l i g h t _ i n f o - c o n n i d LEFT DELETING LEADING ' 0 ' .

* D isp lay the r e s u l t s in a pop-up message:
CONCATENATE 'There a r e ' (O O l)

lv_open_seats
' s e a t s a v a i l a b l e on F l i g h t ' (0 0 2)
l s _ f l i g h t _ i n f o - c o n n i d

INTO lv_message
SEPARATED BY space.

MESSAGE 1 v_message TYPE T .

ENDMETHOD.

Listing 10.7 Implementing the Event Handler Method

10.4.4 Triggering Events on the Frontend

After w e have activated all o f the changes out l ined in this section, w e can execute

the report again to test the d o u b l e _ c l i c k event . Figure 1 0 . 7 shows the pop-up

message generated by double-cl icking on a fl ight record in the search result list.

Behind the scenes, the SAP Control F r a m e w o r k is propagating the double_cl ick

event on the f rontend A L V grid control back to the A B A P Objects Control

F r a m e w o r k . Internal ly , the event is captured inside an instance o f the

CL_SAiV_EVENTS_TABLE and fo rwarded to our event handler method via method

RAISE_DOUBLE_CLICK. Here, method RAISE_DOUBLE_CLICK uses the RAISE EVENT

statement to trigger the instance event . The syntax for the RAISE EVENT statement

is shown in Listing 10 .8 .

RAISE EVENT e v t
[EXPORTING

e l - f l
e2 - f2

Listing 10.8 Syntax Diagram for the RAISE EVENT Statement

274

U M L T u t o r i a l : C o m m u n i c a t i o n D i a g r a m s 1 0 . 5

List Eon Ooio Setups Sjslem Help

® 2 : - 3 C i i @ L3 33 i<i a t i o a a s 3 J i

ABAP OO Flight Query Report

e a GSrroii m

I . , . I . — . — — M i • ! II . ' 1 1 R / I I T R M —
AA American Ar ises

rug ' n j r c u w U t u?P i l (H | f
17 It t l0/2007 J fK NEWYORK sro SAN FRANCISCO • F ' T - T V K R - T V L

AA American Ar tne t 17 11107/2007 J fK NEWYORK sro SAN FRANCISCO [000000 21 OO 00
[AA AmericanArlnes 17 12WV2007 J fK NEWYORK SfO SAN FRANCISCO 000000 21 OO 00
AA [American Art r * t 1 7 010Z7008 JFK NEWYORK SFO SAN FRANCISCO OOOOOO 2 1 0 0 0 0

AA American Artr.es 17 01/3IV2008 J fK NEWYORK (SFOjSAN FRANCJSCO 000000 21 00 30
AA AmericanArirses |£-Wbrmat>on • / X>

X>

:o

oooooo
loooooo
oooooo

21.00 00
21 03 30
21 03 30

AA American A r l r * *
AA Amcncan Ar lne t O are 14 seati »v*iaoie on f lignt 1 f

X>
X>

:o

oooooo
loooooo
oooooo

21.00 00
21 03 30
21 03 30

AA American A r t r * s So oooooo 2100 00
AA American A r t r * s oooooo 1210000
AA American Art r * s (Tk *) oooooo 21 00 00
AA American Art r.e* / ; 0 oooooo 2100 00
AA AmencanArtnes 17 OSV1CV2008 J fK NEWYORK SFOlSAWfRANCISi CO COOOOO 2100 00
AA AmericanA*lr*s 17 1WW2008 J fK NEWYORK SFO, SAN FRANCISCO ,000000 21 00 00 J

Figure 10.7 Triggering the Double-Click Event in the Report

Note that the R A I S E EVENT requires actual parameters to be provided for each non-
opt ional formal parameter def ined in the event interface. The impl ic i t sender
parameter is mapped to the me self-reference variable described in Chapter 5,
Inheritance.

10.4.5 Timing of Event Handling

Events are processed synchronously. In other words, whenever an event is trig-
gered using the R A I S E EVENT statement, all o f the registered event handler meth-
ods w i l l be processed before the next statement is processed. The event handler
methods are processed in the order they were registered w i t h the system. There-
fore. y o u should not develop any dependencies between event handler methods
as y o u cannot guarantee that one event handler method w i l l run before the other,
and so on.

10.5 UML Tutorial: Communication Diagrams

One o f the most d i f f icul t stages o f the Object-Oriented Analysis and Design
(OOAD) process is the point in wh ich we begin to try to assign roles and respon-
sibil it ies to the classes ident i f ied dur ing the structural analysis phase. At this point

2 7 5

10 | Work ing w i t h the SAP List Viewer

in the process, all that we have to work with are high-level behavioral diagrams
(e.g., activity diagrams, use cases, etc.) as well as some class and object diagrams
that describe the classes we have modeled. Certainly, associations in class dia-
grams help us understand the relationships between these classes, but they aren't
vety useful in describing the behavior of a system in terms of these classes.

Frequently, this kind of detailed behavior is captured in a sequence diagram as
you saw in Section 3.6, UML Tutorial: Sequence Diagrams. Sequence diagrams
arc an example of an interaction diagram. Interaction diagrams emphasize the
flow of data and control between objects interacting in a system. In this section,
we will look at another type of interaction diagram in the UML called the commu-
nication diagram.

Communication diagrams (formerly known as collaboration diagrams in UML 1.x)
blend elements from class, object, sequence, and use case diagrams together in
the graph notation shown in Figure 10.8. This communication diagram depicts
the same Withdraw Cash interaction that we considered in Section 3.6, UML
Tutorial: Sequence Diagrams, when we looked at sequence diagrams. Here, as
you will recall, we arc depicting the interaction between objects collaborating in
an ATM cash withdrawal transaction.

Figure 10.8 Example UML Communication Oiagram

276

Summary I 1 0 . 6

As you can see, there are a lot of similarities between both of these diagrams. In
fact, whether you use one notation or the other is mainly a matter of preference.
However, many developers like to use communication diagrams to whiteboard
their ideas because they are easier to sketch than sequence diagrams due to the
fact that you do not need to organize your objects into a two-dimensional graph.
In fact, one way to develop communication diagrams is to begin overlaying an
object diagram with messages.

One challenge with working with communication diagrams is the nested decimal
numbering scheme shown in Figure 10.8. For this reason, it is important that you
keep a communication diagram small so that the message numbers don't become
too nested and hard to read.

Perhaps the most valuable aspect of a communication diagram is the fact that it
keeps static associations in focus as you begin to develop the interactions
between classes. This visualization is important because it helps you keep your
architectural vision intact as you begin to connect the dots between your classes
at runtime.

10.6 Summary

In this chapter, you saw how standard and customized ABAP Objects classes can
be used together to implement an interactive report program. For the most part,
we were able to minimize our use of report-specific event blocks by encapsulating
the various aspects of our report into layers as outlined in the M V C design pat-
tern. These layers help us to isolate specific changes so that maintenance and
enhancement efforts are greatly simplified.

We also saw how ABAP Objects eventing can be used to respond to user events in
a veiy flexible manner. Of course, the use of such events is not limited to GUI
development; ABAP Objects events can be used in any application that needs to
implement a distributed event handling system.

In the next chapter, we will look at ways to store objects persistently using ABAP
Object Services.

277

By default, instances of ABAP Objects classes are transient in nature. In
other words, whenever a program ends, these objects disappear. In this
chapter, we will look at how the ABAP Object Services framework can be
used to create persistent objects whose state is maintained in a persistent
data store long after a program ends.

11 ABAP Ob jec t Services

Throughout the course of this book, we have considered some of the various
types of relationships that you can establish between classes and interfaces. In
Chapter 6, Polymorphism, you learned how to use polymorphism to take advan-
tage of these relationships by substituting related objects interchangeably at run-
time. The flexibility afforded by polymorphism makes it possible to develop
sophisticated software frameworks.

Software frameworks provide a foundation for building solutions that solve a par-
ticular type of problem. Here, the framework provides the majority of the solu-
tion infrastructure; you only need to integrate a few strategic custom classes into
the framework to implement some desired customized behavior. One such exam-
ple of a software framework in the ABAP world is the ABAP Object Services frame-
work.

ABAP Object Services provide various services that allow you to create and work
with persistent objects. Persistent objects provide an abstraction on top of a persis-
tent data store, allowing you to work with a pure object-oriented data model in
your programs as opposed to a relational data model. In this chapter, you will
learn how to use the Class Builder tool to create persistent classes. You will also see
some examples that demonstrate how to use the generated persistent class API
methods to perform basic CRUD operations (Create, Remove, Update, and Dis-
play) on persistent objects without having to know how they are being persisted
behind the scenes.

279

11 | ABAP Object Services

11.1 Object -Relat ional M a p p i n g Concepts

Before delving into the details of the ABAP Object Services framework, it is
important to understand the concepts from which it was derived. The ABAP
Object Services framework is an ABAP-based implementation1 of an object-rela-
tional mapping (ORM) tool. ORM tools are used to encapsulate persistence details
inside persistent classes by mapping a persistence data model onto an object-ori-
ented data model. Conceptually, there's nothing magical about persistent classes;
behind the scenes. SQL statements still have to be issued to interact with a data-
base, and so on. However, the difference here is that the ORM tool takes care of
these details so that you don't have to.

There are several benefits to be gained by using ORM tools:

• First and foremost, they reduce the amount of program code you have to write
to implement persistent classes.

• Secondly, you work with persistent objects in the exact same way that you use
transient objects. This transparency frees you from having to worry about per-
sistence issues, allowing you to focus your design around a pure object model.

• Finally, the encapsulation of persistence details inside of a framework provides
the opportunity to improve performance through caching techniques, lazy ini-
tialization techniques, and so on.

11.2 Persistence Service Overview

As you learned in Chapter 4, Object Initialization and Cleanup, the lifecycle of an
object begins when it is created with the CREATE 08JECT statement and ends when
it is destroyed by the garbage collector. Along the way. data can be stored in
attributes, but the data inside these attributes is transient in nature. In other
words, after an object is destroyed, so also is the data stored inside its internal
attributes. Often, you will want to preserve this data after the object is destroyed
so that it can be retrieved again later. Normally, this implies that you store (or per-
sist) the data inside a database using SQL statements. You can then recreate the
object later by issuing SQL queries to extract the data (perhaps in the constructor
method, for instance).

1 ABAP Object Services were made available w i t h release 6.10 o f the SAP Web AS.

280

Persistence Service Overview 11.2

I f you are working with small entity objects, the effort involved in manually
building a persistence layer into your classes is probably not that big of a deal. On
the other hand, as the data model gets larger and more complex, the mapping
process becomes much more tedious, and many ABAP developers are tempted to
cut corners.

For example, consider an object model that is designed to encapsulate a transac-
tional document such as a sales order that has header and line item details stored
in ABAP Dictionaiy tables. Ideally, you would want to use composition tech-
niques to create an object model that has a sales order header object that maintains
a collection of sales order line item objects. However, after implementing all of the
code to map the sales order header table onto the header class, a developer may
decide to forego this same development effort at the line item level. Here, the
developer may prefer to store the line item details inside an internal table
attribute whose line type is already directly compatible with a line item table que-
ried with the SELECT statement. In this case, the effectiveness of the object model
begins to break down as more and more procedural elements creep into the
design.

To bridge the gap between object and persistence data models, SAP introduced
the Persistence Service as part of the ABAP Object Services framework. The Persis-
tence Service is a software layer designed to make it easier to work with persis-
tent objects. As you can see in Figure 11.1, the Persistence Service provides a
layer of abstraction between a persistent object and the underlying data store.

There is nothing fundamentally different between a persistent class and a normal
ABAP Objects class. In other words, instances of persistent classes are still tran-
sient in nature. However, when managed by the Persistence Service, these tran-
sient objects behave like persistent objects within an ABAP program. For example,
as you can see in Figure 11.1, the Persistence Service is extracting data from the
underlying AS ABAP database and initializing the persistent object on behalf of an
ABAP program. Similarly, the Persistence Service is brokering the persistence of
changes made to those objects from within the program. You will learn more
about the relationship between a persistent object and the Persistence Service in
the upcoming sections.

281

11 | ABAP Object Services

11.2.1 M a n a g e d Objects

The Persistence Service is designed to work with instances of persistent classes.
Persistent classes are created and maintained in the Class Builder tool. In addition
to the actual persistent class, the Class Builder also generates a couple of addi-
tional agent classes that manage all of the low-level interaction details between
objects of the persistent class and the Persistence Service. In the UML class dia-
gram shown in Figure 11.2, these agent classes are called C A _ P E R S I S T E N T and
C B _ P E R S I S T E N T , respectively. The methods of the agent classes are used to manage
the objects of persistent classes such as C L _ P E R S I STENT. Consequently, objects of
persistent classes are referred to as managed objects.

As the name implies, the lifecycle of a managed object is controlled by a separate
object. In the case of the Persistence Service, this separate object is an instance of
the agent class, which is patterned as a singleton. The term singleton refers to a
design pattern2 that is used to restrict the instantiation of a class to a single object.
In the class diagram shown in Figure 11.2, you can see that the singleton object
for class C A _ P E R S I S T E N T is stored in a class attribute called agent, which is instan-
tiated within the CLASS_CONSTRUCTOR method whenever the C A _ P E R S I S T E N T agent
class is first accessed within an ABAP program.

2 This design pattern was original ly introduced in the classic "Gang o f Four" design patterns text
entit led Design Patterns: Elements of Reusable Software (Addison-Wesley, 1994).

282

Persistence Service Overview 1 1 . 2

Figure 11.2 Class Diagram for a Persistent Class

At this po in t , y o u migh t be wonder ing w h y the Class Bui lder generated t w o agent

classes instead o f one. The short answer here is that SAP wanted to apply a lay-

ered approach fo r integrat ing custom persistent classes in to the Persistence Ser-

vice to separate concerns.

As y o u can see in Figure 11.2, the agent class C8_PERSISTENT is def ined as an

abstract class that inher i ts f r o m the c o m m o n abstract f ramework class Cl_

OS_CA_COMMON- Class CB.PERSISTENT is t ight ly integrated in to the Persistence Ser-

vice and defines the low- level persistence mapp ing funct iona l i ty for the persis-

tent class. This funct iona l i ty is inher i ted by the agent class CA_PERSISTEN . How-

ever, because the low- level details are def ined in the PROTECTFO SECTION o f class

CB_PERSISTENT,you have l im i ted access to them w i t h i n class CA_PERSISTENT. This

is impor tan t because it is possible to redef ine and extend the CA_PERS1 STENT

agent class to enhance its capabil i t ies. In this case, the layered approach prevents

2 8 3

11 | ABAP Object Services

developers from revealing too many of the low-level details through the class
agent API.

If all this seems confusing, rest assured that the actual usage of a class agent is not
all that complex. For the most part, developers always work with the C A _ . . .
agent class. Again, this is an example of a highly sophisticated framework being
exposed via a simple and intuitive public interface. You will see how to interact
with this interface in Section 11.4, Working with Persistent Objects.

11.2.2 Mapp ing Concepts

One of the prerequisites for defining a persistent class is to create a mapping
between the object model and the underlying persistence layer. Table 11.1 shows
the three different types of mapping strategies that you can employ in your per-
sistent classes. These mapping types provide you with the flexibility to tap into
pre-existing relational data models or generate new data models from scratch.

Mapping Type Description

By Business Key Can be used to map an existing table in the ABAP Dictionary
that has a semantic primary key. For example, the business key
for standard Table BUT000 is the Partner field.

By Instance-GUID Used to map tables that have a primary key that consists of a
single field of type 0S_GU1D. Here, the term CUID refers to a sys-
tem-generated Globally Unique Identifier.

By Instance-GUID This mapping type combines both techniques. In this case, the
and Business Key target table has a semantic primary key as well as a nonkey field

of type 0S_GU I D that is defined as part of a unique secondary
index. The combination of these keys makes it possible to access
a persistent object by a business key or an instance-GUID.

Table 11.1 Persistence Atapping Types

However, keep in mind that you must be able to represent these models using
ABAP Dictionary objects. These ABAP Dictionaiy objects must exist before you try
to create a mapping in the Class Builder; the ORM tools provided by SAP will not
generate these objects automatically.

Normally, your persistence map will be based on one or more relational database
tables. Keep in mind that the Persistence Service also supports other storage

284

Persistence Service Overview 11.2

media such as files. Irrespective of the underlying storage medium, you must use
an ABAP Dictionaiy object (i.e., a table, view, or structure) as the basis for your
mapping. The following list describes how various ABAP Dictionaiy objects can
be used to help you create your persistence maps:

• Single-table mapping
Most of the time, you will map the attributes of your persistent class to a single
ABAP Dictionary table. Here, you must map all of the fields from the table to
attributes in the persistent class. Of course, sometimes you may not want to
map all of the fields of a given table to your persistent class. For example, in a
large table with many fields, you might only be interested in a subset of fields
that have certain relevance to a particular usage scenario. In this case, you can
create a view that contains a subset of fields thatyou want to map and then use
the view to build your persistence mapping.

• Multiple-table mapping
It is also possible to map multiple tables onto a single persistent class. The only
requirement here is that each of the tables shares the exact same primaiy key.
At runtime, the Persistence Service is smart enough to connect the relevant
attributes used in the mapping with their associated tables so that the object
data is distributed across each of the tables correctly.

• Structure mappings
For more complex mappings, you can also use structure types. Structure types
are typically used to implement persistence mapping to files, and so on. How-
ever, they can also be used to map persistent classes that have a one-to-many
relationship to another persistent class type (e.g., a sales order and its line
items). Of course, because structure types do not refer to an actual database
table, the ORM tool will not be able to generate the code to persist the data.
Instead, you must implement your own logic for storing the persistent data in
persistent classes mapped from a structure.

11.2.3 Understanding the Class Agent API

After you finalize the persistence mapping for your class, the next step is to acti-
vate your changes in the Class Builder. Here, the Class Builder tool will use the
mapping details to construct the persistence class along with its associated agent
classes. The UML class diagram shown earlier in Figure 11.2 shows the relation-
ships between these classes. It also shows some of the more useful methods that
you can use to obtain and work with objects of your persistent class.

285

11 | A B A P O b j e c t Services

For the most part, the names of the methods are pretty self-explanatoiy (e.g., you

use method CREATE_PERSISTENT to create a persistent object, etc.). However, the

generation of some o f these methods varies depending upon the type of mapping

y o u chose to implement. For example, the base agent class CB_. . . wi l l not have

methods GET_PERSISTENT and OELETE_PERSlSTENT i f the persistent objects are not

managed by business keys. In this case, you must use methods implemented from

interfaces IF_0S_FACT0RY and 1F_0S_CA_PERSISTENCY instead.

You can find more information about these methods in the SAP online help doc-

umentation for ABAP Object Services (h t t p : / / h e l p . s a p . c o m) . You wi l l also see some

concrete examples o f these methods in Section 11.4, Work ing wi th Persistent

Objects.

11.3 Building Persistent Classes

At this point, y o u are probably eager to get started wi th some real-world exam-

ples. In the next several subsections, we wil l iteratively design a couple o f persis-

tent classes to model a portion o f a data model used to build an online course reg-

istration system. In particular, we wil l create two separate persistent classes called

ZCL_0S_PERS0N and ZCL_0S_ADDRESS, where instances o f class ZCL_0S_PERS0N can

optionally have an instance o f class ZCL_0S_ADDRESS associated wi th them. The

database tables upon which these persistent classes wi l l be based are shown in

Figure 11.3 and Figure 11.4, respectively.

Transp Table ZCA_P£RS0N Active

Short Description £>r*ne Registration System Person

Attributes Delivery and Maintenance | Entry help/check CixrencyfOuanoty Fields

ximsFff l Srch Help | Predefined T^pe

Field Key in* Data element |OataTy Length Decim jShortDescrtplion
1AN0T 0 0 CLNT 3 ©Client
6UIE P) 0 OS 60ID RAW 16 0Gioba»y Unique IdenMer
NAt1£ FIRST • • AP NMEFIR CHAR 40 ©First name

IMC LAST • n 4C H*nELA$ CHAR 4 0 ©Last name

CLASS • • OS 6UID RAW 16 ©Olobaty Unique IdenMer
ADDR REF • • OS 6UID RAW 16 ©Globafy Unique IdenMer

Figure 11.3 A8AP Dictionary Table Definition for Person Entity

286

http://help.sap.com

Bu i l d i ng Pers istent Classes 11.3

Transp Table ZCA_AD©RESS Acftve

Short Description pnline Registration System Address

AtlnOuIes Delivery and Maintenance jMR | Entry help/check CurrencyOuantrty Fields

w Tm m SrchHelp | Predefined Type |

Field Key [Info Data element DalaTy Length lOecim jShortDescriplKin
KNOT a 0 HAKQT CIHT 3 i

©Client
jUIO 0 0 3S 6U1P RAW 16) ©Globally unique identifier
5TREET1 • • M> STREET CHAR EO; 0 Street
STREETS • • M §TR$PP1 CHAR 40 0 Street 2
; I I Y n n »D CITY1 CHAR 40" 0City
3E6IOH • • =TE610 CHAR i 0 Region (State. Province. County)
:&UWTRY • • TAHPI CHAR 3 j 0 Country Key

W W COPE n n k p s T C P I CHAR 10 0 City postal code

W N E NLFLBER •
X X

•
- O -

I f f TLHFLBR ;HAS>
J l ©Telephone no dialling code^number

Figure 11.4 ABAP Dictionary Table Definition for Address Entity

For the purposes o f this contr ived example, w e wi l l m in imize the overall number

o f Fields used to represent a particular entity. For instance, the Table ZCA_PERSON

only contains a GUID-based key. fields to represent the first and last name o f the

person, and t w o reference fields used to associate a person w i t h an address. Sim-

ilarly, Table ZCA_ADORESS only contains a GUID-based key and some basic address

fields.

11.3.1 Creating a Persistent Class in the Class Builder

For the most part, y o u create persistent classes in the exact same way t h a t y o u cre-

ate other global classes in the Class Builder. The only difference is in the class type

t h a t y o u choose.

1. Select PERSISTENT CLASS as the CLASS TYPE (see Figure 11 .5) .

2 . Click SAVE. The Class Builder takes y o u to the Class Editor screen where y o u can

begin edit ing the persistent class.

Figure 1 1 . 6 shows class ZCL_0S_A0DRESS after it is init ially created. Here,

because y o u have not ye t mapped the persistent fields for this class, the class

only contains implementat ions for the methods def ined in interface

I F _ O S _ S T A T E .

2 8 7

A B A P O b j e c t S e r v i c e s

IE-Create Class •

Class fCL.OS.AC-DRESS

Description Addiess Persistent Obiett

mstanfctton Protected a

Class T y p e /

0 Usual ABAP Class

O Exception Class

r Wif t Message Class

|@Pers«4ient class)

0 Test Class (ASAP Unn>

0 Final

• Or.* Modeled

• 8_a*e] X

Figure 11.5 Creating Persistent Class ZCl_OS_ADDRESS

Local Types & implementation g Macros Persistence • Constructor 0 Class constructor Cla

Class interface ZCL_ DS_ADt>RESS Implemented/Actrne

Properties interfaces Friends Attnoutes ̂ I S i S S H Events Types AJiases

0 Parameters 0} Exceptions | r - i H : I Q | < * r 3 J & K J G I s i o a k a « • F«er

[Method Level Vtsi |M Description

HANDLE.EXCEPTION InstancPubll Handles Exception AJter Reading State
[6ET InstancPubH Obiect Services Prnrate. Copy Slate Obiect

INIT Instanc PU.11 initializes Transient Part of Object State
SET Instant Publl Obiect Services Prn-ate Replace State Objecl
INVALIDATE Instanc Publl invalidate Object State

1

Figure 11.6 Editing a Persistent Class

11.3.2 Defining Persistent Attr ibutes w i th the M a p p i n g Assistant

After you have created a persistent class, you can define its persistence represen-
tation:

1. Click on the PERSISTENCE button in the toolbar o f the Class Editor screen (see
Figure 11.6). This takes you to the Mapping Assistant tool shown in Figure
11.7.

2. Init ially, you are prompted to enter a table, view, or structure that w i l l be used
as the basis for the persistence representation. For example, in Figure 11.7, we

2 8 8

B u i l d i n g P e r s i s t e n t C lasses 1 1 . 3

are defining the persistence representation for class 2CL_OS_ADORESS using
Table 7CA_ADDRFSS (whose fields were shown earlier in Figure 11.4).

A A A Type
9 ZCL_OS_ADORESf

IE-CU44 ZCL_OS_AOOR6SS Add Ubla/ttrucbjro

Table

Table's* IK lure 2CA_A00ft£SS| ©

J B 0 0 Q C 100
a

3 FALSE 3 C 3

I F T j t e T [Ofricnpton

0

Figure 11.7 Defining Persistence with the Mapping Assistant

3. After you have selected the relevant ABAP Dictionary object, begin editing the
persistent attributes of the class by double-clicking on any of the fields in the
TABLES/FIELDS display in the bottom panel of the Mapping Assistant screen.

4. This loads the field into the editing area in the middle of the screen (see Figure
11.8). Edit the attribute name (which doesn't have to be the same as the table/
structure field), description, visibility, accessibility, and assignment type.

<>2CC_OS_ADORESS"
B E S E E M E B 2 3

ramc

a os.6uio
PiwatB * Read 0O OUID

Global* unique Meno tier

2)

I * TdbteS/FlfcWS
| ZCA_ADORESS

> OUID
o STREET1
o STREETJ
o cny
o REGION
o COUNTRY
o POSTAL.COOE
o PHONE NUMBER

Jt f OS.OUID
AO.STREET
AO_STRSPPI
AO_CITY1
REOIO
LANOI
AO.PSTCOI

oiobaiv unique Wertrte'
Sore«
Street!
Citr
Region (Slate. Province. Count/)
Country Key
Crtr postal code

A0_TLNM8R Telephone no dialling cod8»numb«r

Figure 11.8 Mapping Persistent Class Attributes

2 8 9

A B A P O b j e c t Serv ices

5. In most cases, the default propert ies def ined for a given field by the M a p p i n g

Assistant w i l l be correct. O f course, y o u may decide to restrict access to a par-

ticular f ield by customizing the visibi l i ty and accessibility properties. M o r e -

over , y o u may need to m o d i f y the assignment type for certain fields. Table 1 1 . 2

provides a description o f the assignment types that y o u can configure for a

given attr ibute.

Assignment Type M e a n i n g

Business Key Derived by the Mapping Assistant for primary key fields of an
ABAP Dictionary table that has a semantic primary key. You can-
not change this particular assignment type.

GUID Derived by the Mapping Assistant for the primary key field of an
ABAP Dictionary table that has a GUID-based primary key. You
cannot change this particular assignment type.

Value Attribute Used to define nonkey attributes of a given ABAP Dictionary
object.

Class Identifier Used in conjunction with another table/structure field to uniquely
identify an object reference. The table/structure field must be of
type OS.GUIO.

Object Reference Used in conjunction with another table/structure field to uniquely
identify an object reference. The table/structure field must be of
type 0S_GUID.

Table 11.2 Persistent Attribute Assignment Types

6. Figure 1 1 . 9 shows the completed persistence representation for class

ZCL_OS_ADDRESS. Af ter y o u have f inished mapping the attr ibutes, save y o u r

changcs. and return to the Class Editor screen to activate the changcs to y o u r

persistence class.

ClMtOttOit* U w !v I I U I I » I H I W |ciM»K>r»n I ' * * lD»l<np»c«
**CL.OVC©R£SS . .

(OOS.GUID O M GUC ZCA>C©RE8S GtcO»»Uf>")ut Wc'ttWf
3TREET1 O AO.STRf tT a STREET! ICA.AC0RE8S

T> STREET? • AO.STRSPR1 B 8TREET2 JCA_AIORESS
?>CfTY • «>.cnvi W CITY ZCAJCORESS C %

REWN O REOtO 3 REOtOM ZCA/CORESS R«gon auto. Pro«n<». C«jr«
COUNTRY O LANOt a COUNTRY Z C A J C O R t S S C o o t r i K n

t> POSTAL.COOC 0 o . r * STCCM a POST*L_COO€ ZCA/CORCSS CRTIR»W»ITOO«

PHOf£_NUMKR • AO.T1.NW8R a PVONE.WJMB ZCAJCORESS Ttkphyit no dm '.j tosc-romc.

Figure 11.9 Persistent Attribute Details for Class ZCL_OS_ADDRESS

290

B u i l d i n g P e r s i s t e n t C l a s s e s

7. I f th is is the f i rst t ime y o u have act ivated y o u r changes, y o u are asked w h e t h e r

o r not y o u w a n t to also act ivate the class actor (see Figure 1 1 . 1 0) . Select the YF.S

b u t t o n to generate the class actors fo r class ZCL_OS_ADDRESS (i.e., classes

ZCA_OS_ADDRESS a n d ZCB_OS_AODRESS) .

[B - A t State Persistent Classes B X

Shot*! the Class Aclor Also Be

Q Actuated?

I

Figure 11.10 Activating the Class Actor for a Persistent Class

Figure 11.11 shows the generated get ter and setter methods fo r class

ZCL_OS_ADDRESS a f ter it has been act ivated.

Class interface ZCL_OS_AOORESS implemented 1 Actwe

Properties interfaces Friend* Attributes ^ ' 1 1 . f . f . l M Events Types Mases

0 Parameters 0} Exceptions i E 3 1 ® ^ S I A F F I L A S A S S L • Filter

Method Level VTSI M Description
K r r f K j s r * T E >

HANOLE.EXCEPTION Instarx Publ Handles Exception After Reading State
6ET Instarx Publ Obiect Services Private Copy State Object
INIT Instarx Publ nitialnes Transient Pari of Object State
SET Instarx Publ Obiect Services Private Replace Slate Obiect
INVALIDATE Instarx Publ rrvalidate Object State

S€T_STREET2 Instarx Publ K > Sets Attribute STREET2
SET_STREET1 InstarxPubl • U Sets Attribute STREET1
S€T_RE6I0N Instarx Publ > U Sets Attribule REGION
S€T_P0STAL_C0[>E Instarx Publ > J Sets Attribute POSTAL.CODE
S€T_PHONE_NUHBER Instarx Publ K) Sets Attribute PHONE.NUMBER
SET_COUNTRY Instarx Publ • ' J Sets Altribule COUNTRY
SET.CITY Instarx Publ •O Sets Attribute e n v
&ET_STREET2 Instarx Publ a. Reads Attribute STREET2
6£T_STREET1 Instarx Publ a. Reads ABnbule STREETt
6£T_RE$I0N Instarx Publ Reads AOibuie REOtON
&ET_P0STAL_C0DE Instarx Publ a. Reads AGnbute POSTAL_CODE
6£T_PH0NE_NUHBER Instarx Publ y. Reads Attribute PHONE.NUMBER
SET_C00NTRY Instarx Publ 0 . Reads AOibuie COUNTRY
&ET_CITY Instarx Publ Reads Attribute CITY

Figure 11.11 GET and SET Methods for Class ZCl_OS_ADDRESS

2 9 1

11 | ABAP Object Services

11.3.3 W o r k i n g w i t h Ob jec t References

All of the attributes defined for class ZCL_0S_A0DRESS were based on simple, ele-
mentaiy table fields. However, there is a twist to class ZCL_0S_PERS0N. Here, as
you will recall, you want to provide the ability to associate an instance of class
ZCL_OS_ADDRESS with the ZCL_OS_PERSON instance. To achieve this kind of bind-
ing. you need to map two foreign key fields of type 0S_GUI0 to the
ZCL_OS_ADDRESS type.

1. Create a persistent class called ZCL_0S_PERS0N using the steps described in Sec-
tion 11.3.1, Creating a Persistent Class in the Class Builder.

2. Map the fields of Table ZCA_PERSON just as you did in Section 11.3.2, Defining
Persistent Attributes with the Mapping Assistant. However, be careful in the
way that you map the ADOR_CLASS and ADDR_REF database fields. These two
fields will be used together to uniquely define an object reference attribute
called AOORESS.

3. In Figure 11.12, notice that the CLASS IDENTIFIER assignment type has been used
to define the source field in Table ZCA_PERSON that will provide the GUID of the
persistent class pointed to by the object reference. This class GUID is quietly
assigned to every global class that is defined in the Class Builder. As you will
see, this low-level detail is transparent to users of the class agent API. Never-
theless, you still have to provide a mapping to this attribute for the object ref-
erence to be valid.

ADOfifSM
PuWlt Zi Chjfjo Class identity 3

TaW«SffieldS A TVP. 1 Des<npt»r>
fflZCA PERSON

1 ADOR.CLASS OS.GUO Globally Unique ld«nM*r
0 AOCP_REF OS.OUO Oiotoirr unique idenMef

Figure 11.12 Setting the Class Identifier for an Object Reference

4. Finally, map the source field in Table ZCA_PERSON that will store the instance
GUID of an actual persistent object of type ZCL_OS_AOORESS. Here, notice that
the object reference assignment is qualified with the ZCL_0S_A0DRESS class cre-
ated earlier. This information is needed for the Class Builder to properly gen-
erate SET_ and GET_ methods for this object reference attribute. Figure 11.13
shows how this field was configured for class ZCL_0S_PERS0N.

292

W o r k i n g w i t h P e r s i s t e n t O b j e c t s 11.4

TaM*i*iel<» |A |Type [Oescnpbon
[fflZCA^PtRSON

t ADOR.REF 08.0UID Oa»a* l«f««ei

WORESS Global*? Unique Mentrior
Pub* a CMftQta OetKKeferer.: •) ZCL_0$_M't>RESS|

Figure 11.13 Defining the Object Reference

Figure 11.14 shows the completed attribute details for the ADDRESS object ref-
erence. You can also see the signature o f the generated SEI_ADDRESS and
GET_ADDRESS methods in Figure 11.15 and Figure 11.16. respectively.

CiMM«ant>i» |L IA»M9T«<3 f«id ICiawiOFieW |Ta»e [Oeurifoon I
~ 9 ZCL.OS.PEPSON

<g> os.oue 0 0 G U O ZCA_P€RSCN Global* Unique Id prat* f
NMC.FRST O AO.NWEFR (j W M E J R 3 T ZCA.PCRSCN F f t * name

s> NAME.LAST O AO.UWEIAS 3 UMft.LAST ZCA.PCRSON Law nam*
*>A©0«£SS O ZCVjOQJCO 0AOC«_RtF AOC«_CLAS$ ZCA.PCRSON OlobaMr Unioua iderafar

Figure 11.14 Attribute Details for the ADDRESS Object Reference

Mettio«J parameter* SETJWRESS 3 0
Mett ioi i i E» Eweptont | a I . J M M

P a r a m o | T * « Pa«» by value Optional iTyprj jMeriod [Associated Trpe Defauii |Oes(r*oon
b « * E S g i-nporting Type ftef To K*._0S_M<*£SS M n M e v n u e

Type 1

Figure 11.15 Signature for M e t h o d SET_ADDRESS

Merioo parameters 6£i_A00R£SS

«=> K»T*>ds I QJ Excepbons | V 0 1

[Parameter [Type Pass By Vafc>e[Op«ionat Typing Memo<J [Associated T f l * [ce^nj l value Descriptor!
f t S U L r R«urninj Type Ref To ZCLJ»_ADDRESS Aflnbute Value

Type
ZCLJ»_ADDRESS

Figure 11.16 Signature for Method GET_ADDRESS

11.4 W o r k i n g w i t h Persistent Objects

Now that we have defined a couple o f persistent classes, let's look at ways to
interact w i th persistent objects o f these classes using the generated API methods
o f the associated class agents.

2 9 3

ABAP O b j e c t Services

11.4.1 Creat ing N e w Persistent Objects

The code required to create a n e w persistent object is remarkably straightfor-

w a r d . Listing 11 .1 shows h o w to create persistent objects o f type ZCL_0S_A0DRESS

and ZCL_0S_PERS0N.

OATA: 1r_address_agent TYPE REF TO zca_os_address.
l r _address TYPE REF TO zc1_os_address.
1r_person_agent TYPE REF TO zca_os_person.
l r _ p e r s o n TYPE REF TO zc l_os_person .

TRY.
* F i r s t , c r e a t e an address i n s t a n c e :

1r_address_agent - zca_os_address->agent .
CALL METHOO 1 r _ a d d r e s s _ a g e n t • > c r e a t e _ p e r s i s t e n t

EXPORTING
i _ c i t y - 'Mos E i s l e y '
i _ c o u n t r y - 'TAT'
i_phone_number - ' 9 9 9 - 5 5 5 - 5 5 5 5 '
i _pos ta l_code - ' 9 9 9 9 9 - 9 9 9 9 '
1 . r e g i o n - 'SKY'

i _ s t r e e t l - ' 123 M i l l e n n i u m Falcon Way'
RECEIVING

r e s u l t - l r _ a d d r e s s .

* Nex t , c r e a t e a person i n s t a n c e :
1r_person_agent - zca_os_person->agent .
CALL METHOD 1 r _ p e r s o n _ a g e n t - > c r e a t e _ p e r s i s t e n t

EXPORTING
i_address - l r _address
i _ n a m e _ f i r s t - 'Andersen'
i_name_last - 'Wood*

RECEIVING
r e s u l t - l r _ p e r s o n .

* Must execute COMMIT WORK to p e r s i s t the o b j e c t s :
COMMIT WORK.

CATCH c x _ o s _ o b j e c t _ e x i s t i n g .
ENDTRY.

Listing 11.1 Creating Persistent Objects

In both cases, a reference to the associated agent class had to be obta ined via the

AGENT class attr ibute def ined for the respective agent classes (i.e., classes

294

Working wi th Persistent Objects | 11.4

Z C A _ 0 S _ A 0 D R E S S and Z C A _ 0 S _ P E R S 0 N) . These references were then used to call the
C R E A T E _ P E R S I STENT method generated in the agent classes. Here, notice that the
interface of the method has been enhanced to allow you to initialize value and
reference attributes upon creation.

To actually store the objects in the database, the COMMIT WORK statement had to be
issued. Note that the Persistence Service will not check to see if a persistent object
that is mapped using business keys already exists before issuing an INSERT state-
ment behind the scenes. Consequently, it is possible that the COMMIT WORK state-
ment might generate an exception of type C X _ O S _ O B O E C T _ E X I S T I N G .

However, because this exception is triggered in an update module, this exception
type would never be caught in a CATCH block such as the one shown in Listing
11.1. Therefore, it is a good idea to get into the habit of checking to see if persis-
tent objects of this type already exist using the G E T _ P E R S I S T E N T method before
tiying to create a new persistent object with a particular business key.

11.4.2 Reading Persistent Objects Using the Query Service

If a persistence class is mapped using business keys, the Class Builder generates a
method called G E T _ P E R S I S T E N T in the agent class. The signature of the importing
parameters for this method will match the semantic primary key fields defined in
the target database table. Therefore, you can call this method to retrieve a partic-
ular persistent object using a business key.

Frequently, however, you might not have the full primary key at your disposal
when you need to look up a persistent object. Moreover, if you have mapped
your persistent classes by an instance-GUID, you need another way to access the
persistent objects because it is unlikely thatyou will happen to have a hexadeci-
mal key field just lying around. You can achieve this advanced kind of lookup
behavior by using the Query Service.

As part of the ABAP Object Services framework, the Query Service allows you to
search for and retrieve one or more persistent objects via queries based on logical
expressions. These logical expressions are similar in nature to the ones thatyou are
probably accustomed to using with the SQL SELECT statement. However, in terms
of the Queiy Service, these expressions are encapsulated inside an object that
implements the IF_OS_OUERV interface.

295

ABAP Objec t Services

Queries are created via a Query Manager object that can be retrieved via a call to
a class method called GET_QUERY_MANAGER in class CL_OS_SYSTEM. The Queiy Man-
ager object contains a single instance method called CREATE_OUERY thatyou use to
create the query instance. The CREATE_QUERY method provides parameters for
def iningyi / tm and an ordering o f the results. For more information about the var-
ious types of Filter and sort conditions that you can use in your queries, consult
the SAP online help documentation for the Queiy Service (http://help.sap.com).

The code snippet in Listing 11.2 shows how the Queiy Service can be used to look
up persistent objects of type ZCl_0S_PERS0N. This simple query contains a Filter on
the NAME_FIRST attribute of class ZCl_0S_PERS0N. This queiy is passed into the Per-
sistence Service via a call to the GET_PERSISTENT_BY_QUERY method (defined in
interface IF_0S_CA_PERSISTENCY). This method returns an internal table of type
OSREFTAB. The line type of this internal table is a reference to the generic type
OBJECT. Consequently, a widening cast had to be performed to interface with the
resultant persistent objects.

DATA: l r_agent TYPE REF TO zca_os_person.
l t_people TYPE o s r e f t a b .
1r_oref TYPE REF TO o b j e c t .
1r_person TYPE REF TO zcl_os_person.
lr_query_mgr TYPE REF TO if_os_query_manager.
l r_query TYPE REF TO i f_os_query .
1v_first_name TYPE s t r i n g .

TRY.
* Create a new query based on the f i r s t name a t t r i b u t e of
* the "Person" p e r s i s t e n t o b j e c t :

l r_agent - zca_os_person->agent.
lr_query_mgr - cl_os_system->get_query_manager() .
1r_query - 1r_query_mgr->create_query(

i _ f i 1 t e r - "NAME_FIRST - PARI*) .

* Ret r ieve the set of "Person" objects matching the f i l t e r
* condi t ion:

l t_peop le -
l r_agent -> i f_os_ca_pers is tency~get_pers is tent_by_query (

i_query - l r_query
i _ p a r l - 'Pa ige ') .

296

http://help.sap.com

W o r k i n g w i t h Persistent Ob jec ts 1 1 . 4

* D isp lay the r e s u l t s :
LOOP AT l t _ p e o p l e INTO l r _ o r e f .

l r _ p e r s o n ? - l r _ o r e f .
1v_ f i rs t_name - 1 r _ p e r s o n - > g e t _ n a m e _ f i r s t () .
l v_ las t_name - 1 r_person->get_name_ las t (>.
WRITE: / 'Name i s : ' . l v _ f i r s t _ n a m e . 1v_last_name.

ENDLOOP.
CATCH cx_os_ob jec t_not_ found .
CATCH cx_os_query_er ro r .
ENOTRY.

Listing 11.2 Looking Up Person Objects Using the Query Service

11.4.3 Updat ing Persistent Objects

After you have obtained a reference to a persistent object, you can begin making
changes to its persistent attributes by calling the generated setter methods. List-
ing 11.3 shows the updating o f the CITY attribute o f the ZCL_OS_ADDRESS persis-
tent object associated wi th a person object retrieved via some kind o f query.

OATA: 1r_agent TYPE REF TO zca_os_person.
l r _ p e r s o n TYPE REF TO zc l_os_person .
l r_address TYPE REF to zc l_os_address .

TRY.
* Execute a query to r e t r i e v e a person o b j e c t :

* R e t r i e v e the address assoc ia ted w i t h t h a t person:
l r _ a d d r e s s - 1 r_person->get_address () .

* Update the "CITY" a t t r i b u t e on the address o b j e c t :
l r _ a d d r e s s - > s e t _ c i t y (' F a r Far Away') .
COMMIT WORK.

CATCH cx_os_ob jec t_not_ found .
CATCH cx_os_query_er ro r .
ENDTRY.

Listing 11.3 Updating a Persistent Object

Here, as was the case when the persistent object was created originally, the
COMMIT WORK statement must be executed to actually trigger the Persistence Service
to propagate the changes to the database.

2 9 7

11 | ABAP Object Services

11.4.4 Delet ing Persistent Objects

You can delete a persistent object using the DELETE_PERSI STENT method defined
in the implemented interface IF_0S_FACT0RY. Listing 11.4 shows how to call this
method to delete a persistent object of type ZCL_0S_PERS0N. Here, once again, the
COMMIT WORK statement had to be executed to trigger the deletion within the Per-
sistence Service.

DATA: lr_agent TYPE REF TO zca_os_person.
lr_person TYPE REF TO zcl_os_person.

TRY.
* Execute a query to retr ieve a person object:

* Delete the person object:
lr_agent->if_os_factory~delete_persistent(lr_person) .
COMMIT WORK.

CATCH cx_os_object_not_found.
CATCH cx_os_query_error.
ENDTRY.

Listing 11.4 Deleting a Persistent Object

11.5 U M L Tutorial: Advanced Sequence Diagrams

In this section, we will look at some advanced features of the UML sequence dia-
gram. As a frame of reference for this discussion, the sequence diagram example
from Section 3.6, UML Tutorial: Sequence Diagrams, has been revised in Figure
11.17 to include some of the more advanced features that will be discussed in the
upcoming subsections.

11.5.1 Creating and Delet ing Objects

Within a given activation, it is not uncommon for a method to need to dynami-
cally create another object to carry out a particular task. As you can see in Figure
11.17, the creation of an object is initiated by a message. The message name is
optional, but the general convention is to name the message new. Here, notice
that the object box for the receipt object is aligned with the creation message.

298

U M L T u t o r i a l : A d v a n c e d S e q u e n c e D i a g r a m s 11.5

Figure 11.17 Sequence Diagram for Withdrawing Cash from an ATM

This notation helps to clarify the fact that the object did not exist whenever the
interaction began. After an object is created, you can send messages to it just like
any of the other objects in the sequence diagram.

I f the created object is a temporary object (e.g., a local variable inside a method,
etc.). then you can depict the deletion of the object by terminating the object life-
line with an X (see Figure 11.17). It is also possible for one object to explicitly

2 9 9

11 | ABAP Object Services

delete another object by mapping a message from the requesting object to an X
on the target object's lifeline.

11.5.2 Depicting Control Logic wi th Interaction Frames

As a rule, you typically do not want to depict a lot of control logic in a sequence
diagram. However, it is sometimes helpful to include some high-level logic so that
the interaction between the objects is clear. In UML 2.0, this control flow is
depicted using interaction frames. An interaction frame partitions off a portion of
the sequence diagram inside of a rectangular boundary. The functionality
depicted in an interaction frame is described by an operator that is listed in the
upper-left corner of the frame.

For example, the sequence diagram in Figure 11.17 shows an interaction frame
that is using the al t operator. The al t operator is used to depict conditional logic
such as an I F . . . ELSE or CASE statement. The branches of this conditional logic are
divided by a horizontal dashed line. Furthermore, each branch of the logic also
contains a conditional expression called a guard. As you would expect, guards
control whether or not the control flows to a particular branch of the conditional
logic. For instance, in the sequence diagram shown in Figure 11.17, the atm
object only dispenses cash if there arc sufficient funds in the account. Otherwise,
an error message is displayed on the console.

Table 11.3 describes some of the basic operators that can be used with interaction
frames. Again, note that interaction frames should be used veiy sparingly. I fyou
need to depict more complex logic, consider using an activity diagram or even
some basic pseudocode.

I Operator Usage Type

a l t Used to depict conditional logic such as an I F . . . ELSE or CASE statement.

opt Used to depict an optional piece of logic such as a basic IF statement.

par Used to depict parallel behavior. In this case, each fragment in the interac-
tion frame runs in parallel.

loop Used to depict various types of looping structures (i.e., LOOP, 00, etc.).

Table 11.3 Interaction Frame Operators

300

Summary

O p e r a t o r U s a g e T y p e

ref Used to reference an interaction defined on another sequence diagram.

sd Used to surround an embedded sequence diagram within the current
sequence diagram.

Table 11.3 Interaction Frame Operators (cont.)

11.6 Summary

In this chapter, you learned how the ABAP Object Services framework could be
used to develop a robust persistence layer based solely upon ABAP Object classes.
Here, once again, you saw the power of object-oriented programming with the
seamless integration of custom persistent classes into the Persistence Service
framework.

In many respects, we barely scratched the surface with regards to the functional-
ity provided by the ABAP Object Services framework. In particular, we did not
have time to consider the features of the Transaction Service that makes it possi-
ble to integrate your persistent objects with the SAP transaction concept. As you
play around with some persistent object examples, read through the online help
documentation to learn more about some of these advanced features.

In the next chapter, you will learn how to work with XML documents using ABAP
Objects classes.

301

XML is a meta-markup language used to define structured documents. In
its short history, XML has quickly become the "lingua franca"for infor-
mation exchange in the IT industry. In this chapter, you will learn how to
work with XML using the ABAP Objects-based iXML Library.

12 W o r k i n g w i t h X M L

The extensible markup language (XML) is a meta-markup language used to define
structured documents. Endorsed by the World Wide Web Consortium (http://
www.w3.org), XML evolved as a subset of the Standard Generalized Markup Lan-
guage (SGML) in the late 1990s to provide a standard for building structured doc-
uments that can be exchanged over the Internet. Since that time. XML use has
proliferated across many diverse application domains. These days, XML is every-
where.

In this chapter, you will learn how to work with XML using the object-oriented
iXML libraiy provided with the SAP NetWeaver Application Server. If you have
never worked with XML before, don't woriy; we will spend some time exploring
some basic XML concepts before diving into the XML programming model. To
demonstrate these concepts, we will develop a couple of examples that show you
how to create and consume XML documents within an ABAP program.

12.1 XAAL O v e r v i e w

When you take away all of the hype, XML is basically just a standard that can be
used to define the format of text-based documents. Initially, this may seem disap-
pointing as XML doesn't seem to do anything in and of itself. Nevertheless, XML
does serve a veiy important purpose in the Information Age that we live in today:
to structure and organize various types of data. This simple capability is part of
the foundation upon which many new and exciting applications are being devel-
oped.

303

http://www.w3.org

12 | Work ing w i t h XML

12.1.1 W h y Do W e Need XML?

Before we proceed too much further, it is important to clarify the positioning of
the XML so that you can understand what it is used for. As mentioned before,
XML is a meta-markup language. This definition is a mouthful that requires some
explanation. A markup language is used to mark up a document with instructions
that define how its content is organized, formatted, and so on. Typically, markup
languages use special annotations called tags for this purpose. Tags are used to
label and categorize information within a document.

If you have ever worked with HTML (Hypertext Markup Language) before, you
have already encountered a markup language that uses tags to format its content.
HTML is used to define the structure and format of Web pages. Figure 12.1 shows
an example of some HTML markup. Here, you can see that tags (or elements) are
escaped using the less-than and greater-than characters (< and >). For example,
the tags <head> and </head> define the heading section of the HTML document.

< h t m l > Start Tag

<h«ad>
<title>Welcorae to ABAP Obj«ct8«</title>

Element
</head> ^ Content

<body bgcolor="lightblu«">
x

w w W ^ Attr ibute </body>
_ < / h t m l > -M End Tag

Figure 12.1 An HTML Document Markup Example

As you will see in Section 12.1.2, Understanding XML Syntax, the syntax shown
in the HTML markup from Figure 12.1 is very similar to the syntax used to create
XML markup. However, as stated earlier, XML is a mew-markup language as
opposed to just a regular markup language. In essence, this implies that XML does
not define any particular markup (i.e., defined tags such as <head>, <body>, etc.).
Rather, it is used to define other markup languages such as XHTML.

To achieve this lofty goal, the XML standard was designed to be extremely flexi-
ble. This flexibility supports the creation of a wide variety of document formats,

3 0 4

XML Overview 12.1

allowing you to customize the format so that form follows function. In other
words, because the XML standard has very little to say about the elements and
content of a document, you don't have to try and bend an application data model
to fit within the confines of some ill-fitting standard. Instead, you can define the
document format using domain-specific terms that help to make the document
self describing. This characteristic of XML makes XML documents much easier to
read and interpret for humans and computers alike.

Much of the beauty of XML lies in its simplicity. Rather than defining a complex
or proprietary binary file format, the designers of the XML standard defined an
open, text-based format that provides support for multiple languages with Uni-
code. The openness of the XML standard simplifies the process of exchanging
information between heterogeneous systems. This is perhaps best evidenced by
the recent explosion of Web Service technologies that use XML to define proto-
cols for message exchange, and so on.

12.1.2 Understanding X M L Syntax

XML syntax is designed to be relatively straightforward and easy to learn. XML
documents are organized into a series of elements. The basic syntax for defining
an element in XML is shown in Listing 12.1.

<e1ement_name [attrtbute_name-"attr1bute_value'\ . .]>
<! - - Element Content -->

</element>
Listing 12.1 Basic Syntax for Defining an XML Element

You can also define empty elements (i.e., elements without any content) using the
syntax shown in Listing 12.2. As you can see, because these elements do not have
any content, there is no need for a closing tag. Instead, the element tag is marked
as complete with the /> characters.

<element_name [attr ibute_name-'attr ibute_value". . .] />
Listing 12.2 Syntax for Defining Empty Elements in XML

Elements can be nested. In other words, the content of an element can in turn
contain additional child elements. Consequently, XML documents form a tree-like
structure beginning with a single root element. As you would expect, root ele-
ments do not have a parent element.

3 0 5

12 | Wo rk i ng w i t h X M L

To demonstrate this concept, let's consider an X M L document that is used to rep-

resent a reading list. The document in Listing 12.3 contains a reading list for

developers interested in learning more about ABAP programming.

<?xml v e r s i o n - " 1 . 0 " encoding-"UTF-8"?>
< ! - - This is an XML comment. - - >
<ReadingList>

<Top1c>ABAP Programming</Topic>
<RecommendedBooks>

<Book isbn-"978-1 -59229-039-0">
<Ti t le>The O f f i c i a l ABAP Re fe rence< /T i t l e>
<Author>Horst Kel ler< /Author>
<Publisher>SAP PRESS</Publisher>

</Book>

<Book 1sbn-"978-1-59229-139-7">
<T1tle>Next Generation A8AP 0evelopment</T1t le>
<Author>R1ch Heilman</Author>
<Author>Thomas Jung</Author>
<Publisher>SAP PRESS</Publisher>

</Book>
</RecommendedBooks>

</ReadingList>

Listing 12.3 A Sample XML Document

The X M L document shown in Listing 12.3 begins wi th the optional X M L declara-

tion statement. The X M L declaration statement is used to provide some basic

information about the version of the X M L standard being used as wel l as the char-

acter encoding o f the actual content to assist X M L processors in interpreting the

data. The syntax for an X M L declaration statement is <?xml vers ion-" 1.0" encod -

ing-"_."?>. The next statement demonstrates how comments can be included in

an X M L document. The basic syntax for creating comments in X M L is <! - - Com-

ment Text - ->.

The root element o f the sample reading list document is appropriately called

<ReadingList>. The <ReadingL1st> element contains two child elements called

<Topic> and <RecommendedBooks>. Similarly, the <RecommendedBooks> element

can contain multiple <Book> elements (which are also complex elements in their

o w n right). W i th in a given element, y o u can see that plain text content or addi-

tional child elements are defined.

306

XML Overview 12.1

Another aspect of XML syntax shown in Listing 12.3 is the definition of an
attribute. An attribute is a name-value pair that describes a property of an XML
element. For example, in Listing 12.3, an attribute called isbn qualifies a <Book>
clement with an ISBN (.International Standard Book Number). The ISBN number
could have been captured inside of a child element just as easily. However, it is
often handy to have attribute details defined inline within the element itself
rather than having to traverse further down the document tree to find the infor-
mation.

Even in a basic XML document such as the one shown in Listing 12.3, it is easy to
see how deep and complex an XML document can become. Fortunately, comput-
ers are quite good at processing tree-like data structures such as the ones defined
in XML documents. You will see an example of this in Section 12.5, Case Study:
Reading an XML Document. Figure 12.2 shows the XML tree for the sample doc-
ument from Listing 12.3.

XML markup is case sensitive. For example, the element names <ReadingL1st>,
<REAO!NGLIST>. and <readingl ist> are all distinct within an XML document. The
typical convention is to define XML markup using camel case. With camel case,
you write compound words or phrases by capitalizing the first character in every
word (e.g., ReadingList).

12.1.3 Defining X M L Semantics

XML documents that follow the syntax rules described in Section 12.1.2, Under-
standing XML Syntax, are considered to be well-formed. Strict enforcement of

307

12 | Working wi th XML

XML syntax rules makes the job of interpreting documents much easier for an
XML processor because it eliminates a lot of guesswork. Still, to effectively
exchange documents encoded in XML. you need a way to describe the document
so that all parties involved in the message exchange know what format to expect.
Two of the most common methods for describing XML documents are Document
Type Definitions (DTDs) and XML Schema.

DTDs and XML Schema are examples of languages that are used to specify an
XML schema. Here, the term schema refers to the format or outline of the content
within an XML document. Schema languages are used to place constraints on a
document to make sure that the document is valid according to an agreed-upon
standard. For example, many industry sectors are using XML Schema languages
to define standard formats for various common document types (e.g., invoices,
sales orders, etc.).

Due to its more advanced capabilities, the XML Schema language has surpassed
DTDs as the standard for defining XML Schemas. Although the description of the
syntax of XML Schema documents is outside the scope of this book. Listing 12.4
provides an example of an XML Schema document for the reading list example
thatyou saw in Listing 12.3. This schema document places constraints on the
reading list, specifying the data types of particular elements, their cardinalities,
and so on. In a simple example such as this, few constraints are placed on the con-
tents of each element. For instance, only <Author> elements have been specified
to contain content of type xsd: string. In a real-world scenario, you might place
limitations on the length of the name, and so on.

<?xml verslon-' l .O" encoding-"UTF-8"?>
<xsd:schema xmlns:xsd-"http://www.w3.org/2001/XMLSchema"

xmlns:tns-"http://www.sap-press.com"
targetNamespace-"http://www.sap-press.com">

<!-- Definit ion of "ReadingList" root element -->
<xsd:element name-"ReadingList">

<xsd:complexType>
<xsd:sequence>

<xsd:element name-"Topic" type-"xsd:string"
minOccurs-"l" />

<xsd:element name-"Recorar)endedBook$"
type-"tns:RecommendedBooks" />

</xsd:sequence>

308

http://www.w3.org/2001/XMLSchema
http://www.sap-press.com
http://www.sap-press.com

X M L Processing Concep ts

</xsd:complexType>
</xsd:element>

<xsd:complexType name-"Recommended8ooks">
<xsd:sequence>

<xsd:element name-"Book" type-"tns:Book-
mi n0ccurs-"0" maxOccurs-'unbounded" />

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name-"Book">
< x s d : a t t r i b u t e name-"isbn" t y p e - " x s d : s t r i n g "

use-"requi red" />
<xsd:sequence>

<xsd:element name-"Ti t le" t y p e - " x s d : s t r i n g "
minOccurs-"l" />

<xsd:element name-"Author" t y p e - " x s d : s t r i n g "
minOccurs- ' l " maxOccurs-'unbounded" />

<xsd:element name-"Publisher" t y p e - " x s d : s t r i n g " />
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Listing 12.4 X M L Schema for Reading List Example D o c u m e n t

12.2 XAAL Processing Concepts

One of the many benefits o f developing a standard for document markup is the

fact that independent software vendors have the opportunity to develop power-

ful document processing tools that can be used to process any valid X M L docu-

ment. In this section, we wi l l look at how to process X M L using a parser. Along

the way. you wi l l also learn about the X M L processing tools available in the AS

ABAP.

12.2.1 Processing X M L Using a Parser

Whenever you work wi th an external data source such as a file, y o u must imple-

ment code to convert the raw content o f the file into data variables and vice versa.

Oftentimes, this conversion logic is hard coded into the program and therefore

cannot be easily reused. For example, to properly interpret a file w i th fixed-

309

12 | Working wi th XML

length data records, the code must be smart enough to understand which posi-
tions in a file record correspond with particular variables, and so on. In technical
terms, this conversion process is referred to as parsing. A parser receives input
from a data stream, verifies that the data has the correct syntax, and then copies
that data into a more user-friendly data structure.

The self-describing nature of XMI. makes it possible to define generic parsers that
can be used to parse any well-formed XMI. document. Two of the more popular
processing models for XML parsers are the Simple API for XML (SAX) and Docu-
ment Object Model (DOM) APIs. We will look at the DOM processing model in the
next section. For more information about SAX, read Learning XML (O'Reilly,
2003).

12.2.2 Model ing X M L with the D O M

The DOM represents an XML document as a tree-like data structure. Each ele-
ment in the XML document is represented as a node, beginning with the root
node. From the root node, the D O M API provides methods for traversing the
tree, reading child elements and their attributes, and so on. One of the nice fea-
tures of DOM is that the entire document is read into memory, allowing you to
manipulate the document as a whole. Of course, this can also be a detriment if
you are working with large documents. In this case, you may prefer to work with
the SAX API or another processing model.

12.2.3 Features of the iXML Library

The iXML library is an ABAP Objects-based API that provides ABAP developers
with access to an XML 1.0-compliant parser. This parser supports the DOM-based
processing model, allowing you to both consume and construct XML documents
using the DOM API. In addition, the iXML library also provides XML rendering
services that assist you in rendering (or converting) XML content into various for-
mats, encodings, and so on.

The iXML library was made available with the 4.6C release of the Basis kernel
(which was the predecessor of the SAP Web/SAP NetWeaver Application Server).
In the next three sections, we will use the iXML library to build and manipulate
some sample XML documents.

310

Case Study: Developing a Reading List ADT | 12.3

12.3 Case Study: Developing a Reading List ADT

Now thatyou have some understanding of what XML is all about, we can begin to
develop some examples that use the iXML libraiy. In this section, we will begin
by developing an abstract data type (ADT) class to represent the reading list exam-
ple described in Section 12.1.2, Understanding XML Syntax. Here, we want to
stay consistent with our object-oriented design principles by encapsulating the
XML details inside the class.

Throughout the course of this book, we have typically represented the internal
state of the classes using basic ABAP data types. However, while this approach is
often convenient, it is not a hard requirement. For example, in the case of our
Reading List class, we will prefer to store the list in a DOM-based data structure.
Of course, good object-oriented design principles will ensure that these details
are hidden from the end user.

The UML class diagram shown in Figure 12.3 shows the core iXML classes and
interfaces that we will be using to develop our Reading List class. As you can see.
the iXML library makes heavy use of interfaces. In fact, the iXML design is a clas-
sic example of the principle of programming to an interface. The basic idea here is
to provide an API based on generic interfaces rather than concrete implementa-
tions. This gives SAP the flexibility to change the way the iXML library is imple-
mented (perhaps by plugging in a different XML parser, etc.) without affecting
users of the API.

The starting point for working with the iXML libraiy is the core I F _ I XML interface.
You can obtain a reference to an object that implements this interface by calling
the class method CREATE of factory class C L _ I X M L . As you can see in Figure 12.3,
the I F_L XHL interface defines a series of factoiy methods that can be used to
obtain references to various objects and services within the iXML libraiy.

After you have a reference to the I F _ I XML factory object, you have two options for
creating a DOM-based XML document:

• If you want to load an XML document from an external data source (e.g.. a file),
you must first read that document into an input stream and then parse it using
the XML parser provided with the iXML library. You can obtain references to
the IF_IXML_ISTREAM and I F _ I X M L _ P A R S E R objects using the instance methods
CREATE_STREAM_FACTORY and CREATE_PARSER of interface I F _ I X M L .

311

1 2 | W o r k i n g w i t h X M L

• I f y o u want to create a new X M L document f rom scratch, y o u can call instance
method CREATE_DOCUHENT o f interface IF_IXML.

Factory
C l a n

C l I X M l

CREATEO CREATEO

« i n t e r f a c e »
I F . I X M l

CREATE STREAM FACTORYO
CREATE DOCUMENTO
CREATE PARSER*)
CREATE RENDERERO

• « U H t e » • « C ' N t t »

• « create »

- « create » -

« i n t e r f a c e »
I F J X M l . D O C U M E N T

CREATE_EIEMENT<)
CREATE SIMPLE E lEMENTO
GET ROOT E lEMENTO

« i n t e r f a c e »
IF_IXAAl_STREAM.FACTORY

CREATE JSTREAM J T A 8 L £ ()
CREATE OSTREAM ITABLEO

S

« create »
1

« i n t e r f a c e »
IF I X M l ELEMENT

F IND_FROM_NAME{)
APPEND C H I I O D
SET ATTRIBUTEO
CET_ATTRIBUT£()

7
« create »

J .
« interface »

I F J X M I J S T R E A M

« interface »
IF_IXMl_PARSER

PARSE<)

« create »

« i n t e r f a c e »
IF_IXMl_OSTREAM

« interface »
IF I X M l RENDERER

RENDERO

Figure 12.3 UML Class Diagram for Core iXML Classes and Interfaces

Regardless o f the approach, the result o f ei ther o f these creation operations is a
DOM-based X M L document instance that implements the I F _ I X M L _ O O C U M E N T
interface. From here, we can use the methods def ined in this interface to create
and manipulate the indiv idual elements o f the document. Elements in the DOM-
based document are represented as objects that implement the I F _ l X M L _ E L E M E N T
interface.

At this point , we should have enough o f a foundat ion to develop our R e a d i n g

L i s t class. The code in Listing 12.5 defines a local class called l c l _ r e a d i n g _ l i s t

that we w i l l use to represent our Reading List ADT. One o f the first things to point
out here is that the instant iat ion context for this class has been def ined using the
CREATE PRIVATE addi t ion. This restr ict ion forces users to create a new reading list
using the creational class methods c r e a t e _ n e w _ l i s t and c r e a t e _ f r o m _ f 1 l e .

Method c r e a t e _ n e w _ l i s t can be used to generate a new list w i thout any recom-
mended books. Me thod c r e a t e _ f r o m _ f i l e can be used to load a pre-existing
XML-based reading list into context.

312

Case S t u d y : D e v e l o p i n g a R e a d i n g List A D T 1 2 . 3

CLASS l c l _ r e a d i n g _ l i s t DEFINITION CREATE PRIVATE.
PUBLIC SECTION.

CLASS-METHODS:
c l a s s _ c o n s t r u c t o r .

c r e a t e _ n e w _ l i s t IMPORTING im_topic TYPE s t r i n g
RETURNING V A L U E (r e _ l i s t)

TYPE REF TO l c l _ r e a d i n g _ l i s t .
c r e a t e _ f r o m _ f i l e RETURNING V A L U E (r e _ l i s t)

TYPE REF TO l c l _ r e a d i n g _ l i s t
RAISING c x _ i x m l _ p a r s e _ e r r o r .

METHODS:
add_book IMPORTING im_isbn TYPE s t r i n g

i m _ t i t l e TYPE s t r i n g
im_authors TYPE s t r i n g _ t a b l e
im_publ isher TYPE S t r i n g .

d i s p l a y .
s e r i a l i z e RAISING c x _ s y _ f i l e _ i o .

PRIVATE SECTION.
TYPE-POOLS: I x m l .
TYPES: t y . x m l . l i n e (1 0 2 4) TYPE x .

CONSTANTS: CO_OPEN_OIALOG TYPE i VALUE 1.
CO_SAVE_DIALOG TYPE i VALUE 2 .

CLASS-DATA:
f a c t o r y TYPE REF TO i f j x m l .
s t r e a m _ f a c t o r y TYPE REF TO i f _ i x m l _ s t r e a m _ f a c t o r y .

OATA: xml_document TYPE REF TO i f _ i x m l . d o c u m e n t .
1 is t_node TYPE REF TO 1 f _ 1 x m l . e l e m e n t .
books_node TYPE REF TO i f _ i x m l _ e l e m e n t .

METHODS:
c o n s t r u c t o r .
u p l o a d _ l i s t _ f i l e RAISING c x _ i x m l _ p a r s e _ e r r o r .
g e t _ f i l e n a m e IMPORTING im_d ia log_ type TYPE i

RETURNING VALUE(re_f i lename)
TYPE s t r i n g .

ENOCLASS.

List ing 12.5 D e f i n i n g Loca l Class LCL_READING_L IST

313

12 | Working wi th XML

In addition to the creational methods, class lc l_reading_l ist also defines other
methods to add books to the reading list, display the reading list in a browser, and
store a revised reading list to an XML file. We will investigate these methods in
detail in the following sections.

Finally, you can see that a series of class and instance attributes have been defined
based on some of the iXML interface types shown in Figure 12.3. The creation
and usage of these interface reference attributes is also demonstrated in the fol-
lowing sections.

12.4 Case Study: Building an X M L Document

In this section, we will look at how to create a new XML document using the
iXML libraiy and the lcl_reading_l i st class defined in Listing 12.5. The process
is relatively straightforward:

1. Obtain a reference to the iXML factoiy object.

2. Use that factory object to create a new DOM-based XML document instance.

3. Manipulate that XML document by creating various elements.

This basic logic is demonstrated in the implementation part of class l c l _
reading_list shown in Listing 12.6.

CLASS lc1_reading_list IMPLEMENTATION.
METHOD class_constructor.

* Obtain a reference to the iXML factory object:
factory - cl_ixml->create() .

* Obtain a reference to the 1 XML stream factory:
stream_factory -

factory->create_stream_factory() .
ENDMETHOD.

METHOD constructor.
* Create an instance of the reading l i s t document:

xml_document - factory->create_document() .
ENDMETHOD.

METHOD create_new_list.

3 H

Case Study: Bu i l d i ng an X M L D o c u m e n t | 1 2 . 4

* Use the p r i v a t e c o n s t r u c t o r to c r e a t e an i n s t a n c e
* of a DOM-based XML document:

CREATE OBJECT r e . l i s t .

* B u i l d the " R e a d i n g L i s f r o o t e lement :
r e _ l i s t - > l i s t _ n o d e -

r e _ l i s t - > x m l _ d o c u m e n t - > c r e a t e _ s i m p l e _ e l e m e n t (
name - ' R e a d i n g L i s f
pa ren t - r e _ l i s t - > x m l _ d o c u m e n t) .

* B u i l d the "Topic" e lement :

r e _ l i s t - > x m l _ d o c u m e n t - > c r e a t e _ s i m p l e _ e l e m e n t (
name - ' Top ic *
va lue - im_top ic
paren t - r e _ l i s t - > l i s t _ n o d e) .

* B u i l d the "RecommendedBooks" e lement :
r e _ l i s t - > b o o k s _ n o d e -

r e _ l i s t - > x m l _ d o c u m e n t - > c r e a t e _ s i m p l e _ e l e m e n t (
name - 'RecommendedBooks*
paren t - r e _ l i s t - > l i s t _ n o d e) .

ENDMETHOD.

ENOCLASS.

Listing 12.6 Creating a New Reading List Document

In the i m p l e m e n t a t i o n code s h o w n in Listing 12 .6 , notice that a reference to the

i X M I . f a c t o r y at t r ibute is obta ined inside the c l a s s _ c o n s t r u c t o r m e t h o d as

opposed to the instance constructor m e t h o d . Here , it made sense to share the

f a c t o r y at t r ibute across all object instances. Simi lar ly , a reference to the i X M L

stream factory is obta ined in the s t r e a m _ f a c t o r y class at t r ibute . You w i l l see h o w

I / O streams are used a l i t t le bit later on .

Users can create a n e w reading list by call ing the class m e t h o d c rea te_new_ l i s t .

Th is m e t h o d defers the creat ion o f the IF_IXML_D0CUMENT instance (i .e. . a t t r ibute

xml.document) to the pr ivate c o n s t r u c t o r m e t h o d . A f t e r the D O M - b a s e d docu-

m e n t is created, y o u can create the <Read ingL is t> root e lement using the

instance m e t h o d CREATE_SIMPLE_ELEMENT o f interface IF_lXML_DOCUMENT. This

m e t h o d returns a reference to an I F_I X M L _ E L E M E N T object that is stored in the

1 i s t_node instance at tr ibute. F r o m here, y o u can recursively call the

315

W o r k i n g w i t h X M L

CREATE_SIMPLE_ELEMENT method to create the child elements <Topfc> and <Rec-
ommended6ooks> for the <Readi ngLi st> root node. The topic o f the reading list is
provided via the im_topic importing parameter of method create_new_1 ist.

The method create_new_l ist returns an instance of type lcl_reading_l ist . Ini-
tially, this reading list is empty. To add books to the reading list, users must call
the instance method add_book whose implementation is shown in Listing 12.7.

CLASS l c ! _ r e a d i n g _ I i s t IMPLEMENTATION.

METHOO add_book.
* Method-Local Data D e c l a r a t i o n s :

DATA: 1r_book_node TYPE REF TO i f _ i x m l _ e l e m e n t .
l v_author TYPE s t r i n g .

* 8 u i l d the new "Book" e lement:
lr_book_node -

xml_document->create_element(n a m e - 'Book*) .

1 r _ b o o k _ n o d e - > s e t _ a t t r i bute(
name - ' i s b n ' value - im_isbn) .

xml_document->create_simple_element(
name - ' T i t l e '
va lue - i m _ t i t l e
parent - lr_book_node) .

xml_document->create_simple_element(
name - ' P u b l i s h e r '
va lue - im_publ isher
parent - lr_book_node) .

LOOP AT im_authors INTO l v _ a u t h o r .
xml_document->create_s1mple_element(

name - 'Au thor '
value - l v_author
parent - lr_book_node) .

ENDLCOP.

* Add the "Book" element to the book c o l l e c t i o n :
books_node->append_child(lr_book_node) .

316

Case Study: Bu i l d i ng an X M L D o c u m e n t | 1 2 . 4

ENDMETHOD.

ENDCLASS.

Listing 12.7 Adding Books to the Reading List

This method starts o f f by generating a new <Book> element using the
CREATE.ELEMENT method of interface IF_IXML_DOCUMENT. At this point, this is a
standalone element that is not associated with the reading list. However, before
appending the <Book> element to the list, the relevant attribute and child ele-
ments need to be generated for the book. Here, the isbn attribute is set using the
instance method SET_ATTRIBUTE defined in interface IF_IXML_ELEMENT. Next, the
< T i t l e > , <Publ isher> , a n d <Author> e l e m e n t s are set u s i n g m e t h o d CREATE.

SIMPLE.ELEMENT. Finally, after the <8ook> element is constructed, it is appended
to the <RecommendedBooks> node by calling instance method APPEND_CHI LD on the
books.node instance attribute.

After the reading list has been generated, we want to be able to save the list as an
XML file on the user's workstation. Listing 12.8 shows how a public instance
method called serial ize has been defined for this purpose.

CLASS l c l _ r e a d i n g _ l i s t IMPLEMENTATION.

METHOD s e r i a l i z e .
* Method-Local Data D e c l a r a t i o n s :

OATA: l r _ o s t r e a m TYPE REF TO i f _ i x m l _ o s t r e a m .
I t_xml TYPE TABLE OF t y _ x m l _ l i n e .
l r _ r e n d e r e r TYPE REF TO i f _ i x m l _ r e n d e r e r .
l v _ r e t c o d e TYPE i .
I v _ f i l e s i z e TYPE i .
I v _ f i l e n a m e TYPE s t r i n g .

* Prompt the user fo r the name of the output f i l e :
l v _ f i l e n a m e - g e t . f i l e n a m e (C0_SAVE_DIAL0G) .

* Crea te an XML output stream:
l r _ o s t r e a m -

s t r e a m _ f a c t o r y - > c r e a t e _ o s t r e a m _ i t a b l e (
t a b l e - l t_xml) .

* Render the XML document i n t o the XML output stream:

317

12 | W o r k i n g w i t h X M L

l r _ r e n d e r e r -
f a c t o r y - > c r e a t e _ r e n d e r e r (

ostream - l r _ o s t r e a m
document - xml_document >.

l v _ r e t c o d e - 1 r _ r e n d e r e r - > r e n d e r () .
IF 1v_retcode NE 0.

R A I S E E X C E P T I O N TYPE c x _ s y _ f t 1 e _ i o
E X P O R T I N G

t e x t i d - c x _ s y _ f i l e _ i o - > w r i t e _ e r r o r
f i l ename - l v _ f i l e n a m e .

ENOIF.

Download the XML f i l e to the u s e r ' s w o r k s t a t i o n :
l v _ f i l e s i z e - 1 r_ost ream->get_num_wr i t ten_raw() .

CALL METHOD c l _ g u i _ f r o n t e n d _ s e r v i c e s - > g u i _ d o w n l o a d
EXPORTING

b i n _ f i l e s i z e - l v _ f i l e s i z e
f i l ename - l v _ f i l e n a m e
f i l e t y p e - 'B IN-

CHANGING
d a t a _ t a b - l t_xml

EXCEPTIONS
o thers - 24 .

IF sy-subrc NE 0.

RAISE EXCEPTION TYPE c x _ s y _ f i l e _ i o
EXPORTING

t e x t i d
c x _ s y _ f i 1 e _ i o ->cx_sy_f i 1 e _ a c c e s s _ e r r o r

f i l ename - l v _ f i l e n a m e .
ENDIF.

ENDMETHOD.

METHOD g e t _ f i l e n a m e .
Method-Local Data D e c l a r a t i o n s :
DATA: 1 t _ f i l e s TYPE f i l e t a b l e .

1v_retcode TYPE i .
1v_path TYPE s t r i n g .
1 v _ f u l 1 path TYPE s t r i n g .

Let the user s e l e c t a f i l e from h is w o r k s t a t i o n :

318

Case Study: Bui ld ing an X M L Documen t

CASE im_dia1og_type.
WHEN C0_0PEN_DIAL0G.

CALL METHOD
c l_gu i_ f ron tend_serv ices -> f i l e_open_d ia log

CHANGING
f i l e _ t a b l e - 1 t _ f i l e s
rc - lv_retcode

EXCEPTIONS
others - 5 .

READ TA8LE 1 t _ f i l e s INDEX 1 in to re_ f i lename.
WHEN C0_SAVE_DIAL0G.

CALL METHOD
c l _ g u i _ f r o n t e n d _ s e r v i c e s - > f i l e _ s a v e _ d i a l o g

CHANGING
f i lename - re_f i lename
path - lv_path
f u l l path - l v _ f u l l p a t h

EXCEPTIONS
others - 4 .

ENDCASE.
ENDMETHOD.

ENOCLASS.

Listing 12.8 Serializing the Reading List to an XML File

The first task of method s e r i a l i z e is to create an output stream instance. The

term stream refers to a sequence of bytes. Therefore, an i X M L output stream

refers to a sequence of bytes that are being rendered as an ABAP data object. In

method s e r i a l i z e , the raw X M I . content is bound into an internal table variable

called l t_xml. After the output stream is created, the next step is to render (or con-

vert) the DOM-based X M L document into that output stream object. This is

achieved via an X M L renderer object that implements the IF_lXML_RENDERER

interface. This interface defines an instance method called RENDER that is used to

serialize the X M L document into the l t_xml internal table variable. Finally, the

standard CL_GUI_FRONTEND_SERVICES class features are used to allow users to save

the X M L file to their local workstations.

The report program ZIXMLWRITER shown in Listing 12 .9 demonstrates how to

use the l c l _ r e a d i n g _ l i s t class to create and serialize a reading list document.

It begins by creating a new ABAP Programming reading list using the create_

319

12 | Wo rk i ng w i t h X M L

n e w j i s t creational method. Next, the title ABAP Basics is added to the list by

calling method add_book. Finally, the reading list is saved to a file by calling

method s e r i a l i / e . In the next section, you wi l l learn how to parse this X M L file

using the parser provided wi th the i X M L library.

REPORT z i x m l w r i t e r .

INCLUDE: z x m l l i b . "Reading L i s t ADT
DATA: gr_read ing_1 is t TYPE REF TO l c l _ r e a d i n g _ l i s t .

1t_authors TYPE s t r i n g _ t a b l e .

START-OF-SELECT ION.
* Create a new "ABAP Programming" reading l i s t :

g r_read ing_ l1s t -
l c l _ r e a d i n g _ l i s t - > c r e a t e _ n e w _ l i s t (

'ABAP Programming') .

* Add a book to the 11st :
APPEND 'Guenther Faerber* TO l t _ a u t h o r s .
APPEND ' J u l i a Ki rchner ' TO l t _ a u t h o r s .

CALL METHOD gr_reading_l ist ->add_book
EXPORTING

im_isbn - ' 9 7 8 - 1 - 5 9 2 2 9 - 1 5 3 - 3 '
i m _ t i t l e - 'ABAP Basics*
im_authors - l t _au thors
im_publisher - 'SAP PRESS'.

* S e r i a l i z e the generated XML f i l e :
g r _ r e a d i n g _ l i s t - > s e r i a l i z e () .

Listing 12.9 Sample Program to Test the Creation of a Reading List

12.5 Case S t u d y : R e a d i n g an XAAL D o c u m e n t

In the previous section, y o u learned how to interact w i th the D O M API to gener-

ate a brand new X M L document. You also saw how to serialize the X M L docu-

ment into an output file. Frequently, y o u may want to read and/or modify that

file again later. To read the X M L File back into context, y o u must enlist the aid o f

the X M L parser. Listing 12 .10 shows how to implement this logic inside o f the

320

Case S t u d y : R e a d i n g a n X M L D o c u m e n t 1 2 - 5

crcational class method c r e a t e _ f r o m _ f i l e , which delegates much of the heavy
lift ing to the private helper method u p l o a d j i s t _ f i l e .

CLASS l c l _ r e a d i n g _ l i s t IMPLEMENTATION.

METHOD c r e a t e _ f r o m _ f i l e .
* C r e a t e an i n s t a n c e o f t h e r e a d i n g l i s t :

CREATE OBJECT r e j i s t .

* Upload a p r e - e x i s t i n g r e a d i n g l i s t f i l e i n t o c o n t e x t :
r e _ l i s t - > u p l o a d _ l i s t _ f i l e () .

* O b t a i n r e f e r e n c e s t o t h e i n d e x nodes:
r e _ l i s t - > l i s t _ n o d e -

r e _ l i s t - > x m l _ d o c u m e n t - > g e t _ r o o t _ e l e m e n t () .

r e _ l i s t - > b o o k s _ n o d e -
r e _ l l s t - > 1 i s t _ n o d e - > f i n d _ f r o m _ n a m e (

name - 'RecommendedBooks') .
ENDMETHOD.

METHOD u p l o a d j i s t _ f l i e .
* Me thod-Loca l Data D e c l a r a t i o n s :

DATA: l t . f i l e s TYPE f i l e t a b l e .

1 v _ r e t c o d e TYPE i .
l v _ f i l e n a m e TYPE s t r i n g .
1 v _ f i l e s i z e TYPE i .
1 t_xml TYPE TABLE

OF t y _ x m l _ l i n e .
l r _ i s t r e a m TYPE REF TO i f _ 1 x m l _ 1 s t r e a m .
l r _ p a r s e r TYPE REF TO i f _ i x m l _ p a r s e r .

1 r _ p a r s e _ e r r o r TYPE REF TO i f _ i x m l _ p a r s e _ e r r o r .
1 v _ e r r o r _ c o d e TYPE i .
l v _ r e a s o n TYPE s t r i n g ,
l v j i n e TYPE i .

1v_column TYPE i .

* Le t t h e user s e l e c t a f i l e on h i s w o r k s t a t i o n :
1 v _ f i l e n a m e - g e t _ f i l e n a m e (C0_0PEN_DIAL06) .

* Upload t h e f i l e f rom t h e c l i e n t ' s w o r k s t a t i o n :
CALL METHOD c l _ g u i _ f r o n t e n d _ s e r v i c e s - > g u i _ u p l o a d

321

1 2 | W o r k i n g w i t h X M L

EXPORTING
f i l e n a m e - l v _ f i l e n a m e
f i l e t y p e - ' B I N '

IMPORTING
f i l e l e n g t h - l v _ f i l e s i z e

CHANGING
d a t a _ t a b - l t _ x m l

EXCEPTIONS
o t h e r s - 19 .

C o n v e r t t h e raw XML c o n t e n t i n t o an XML i n p u t s t r e a m :
l r _ i s t r e a m -

s t r e a m _ f a c t o r y - > c r e a t e _ i s t r e a m _ i t a b l e t
t a b l e - l t . x m l

s i z e - l v _ f i l e s i z e) .
I F 1 r _ i s t r e a m IS I N I T I A L .

RAISE EXCEPTION TYPE c x _ i x m l _ p a r s e _ e r r o r
EXPORTING

t e x t i d -
c x _ i x m l _ p a r s e _ e r r o r - > c x _ i x m l _ p a r s e _ e r r o r

code - s y - s u b r c
reason - ' C o u l d not read t h e XML l i s t f i l e ! ' .

ENOIF.

Parse t h e XML f i l e i n t o a DOM-based XML document:
l r _ p a r s e r -

f a c t o r y - > c r e a t e _ p a r s e r (
s t r e a m _ f a c t o r y - s t r e a m _ f a c t o r y
i s t r e a m - l r _ i s t r e a m
document - xml_document) .

Check t h e r e s u l t s :
l v _ r e t c o d e - 1 r _ p a r s e r - > p a r s e () .
IF 1 v _ r e t c o d e NE 0 .

P r o p a g a t e t h e p a r s e e x c e p t i o n t o t h e c a l l e r :
1 r _ p a r s e _ e r r o r - 1 r _ p a r s e r - > g e t _ e r r o r (0) .
1 v _ e r r o r _ c o d e - 1 r _ p a r s e _ e r r o r - > g e t _ n u m b e r () .
l v _ r e a s o n - 1 r _ p a r s e _ e r r o r - > g e t _ r e a s o n () .
l v _ l i n e - 1 r _ p a r s e _ e r r o r - > g e t _) i n e () .
lv_co)umn - 1 r _ p a r s e _ e r r o r - > g e t _ c o l u m n () .

322

Case Study: Reading an XML Document 12 .5

RAISE EXCEPTION TYPE cx_ixml_parse_error
EXPORTING

textid -
cx_ixml_parse_error->cx_ixml_parse_error

code - lv_error_code
reason - lv_reason
l ine - lv_line
column - lv_column.

ENOIF.
ENDMETHOD.

ENOCLASS.
List ing 12.10 Parsing an XML-8ased Reading List File

Listing 12.10 again uses the standard class CL_GUI_FRONTEND_SERVICES to read the
XML file into an internal table variable called I t_xml. Next, an input stream object
is created that will be used to feed the raw input from the XML file into the XML
parser. After that, a reference to an XML parser instance is obtained that imple-
ments the IF_IXML_PARSER interface. Finally, the PARSE method defined in the
IF_IXHL_PARSER interface is used to parse the XML document. This method pro-
duces a return code that indicates whether or not the parser was able to success-
fully parse the document. In the event that there are parsing errors (due to mal-
formed XML content, for instance), you can call the GET_ERROR method to obtain
a reference to an object that implements the I F_IXML_PARSE_ERROR interface. This
object provides various methods that provide details about the error such as the
line number/column where the error occurred, a text-based description of the
error, and so on.

If there are no errors during the parsing process, the generated DOM-based XML
document will be stored in the xml_document instance attribute. For convenience,
the create_from_f i le method also looks up the <ReadingList> and <Recommended
Books> elements and stores references to them inside the instance attributes
l ist_node and books_node, respectively. Caching this information makes it easier
to modify the XML document later via public instance methods, and so on.

To verify that the XML document is parsing correctly, a di spl ay method has been
implemented that can be used to display the derived XML document in a browser
window. This display functionality is driven by the standard function module
SDI XML_DOM_TO_SCREEN (see Listing 12.11).

323

12 | W o r k i n g w i t h X M L

CLASS 1c1_read1ng_ l1s t IMPLEMENTATION.

METHOO d i s p l a y .
* D isp lay the XHL document i n a browser:

CALL FUNCTION 'SOIXML_DOM_TO_SCREEN'
EXPORTING

document - xml_document
EXCEPTIONS

no_document - 1
o thers - 2 .

ENDMETHOD.

ENDCLASS.

Listing 12.11 Displaying the Reading List File in a 8rowser

The report program ZIXMLREADER s h o w n in Listing 1 2 . 1 2 shows h o w the updated

l c l _ r e a d i n g _ l i s t class can be used to read a pre-existing X M L file into m e m o i y .

Af ter the D O M - b a s e d X M L document is loaded, the public add_book method can

be called to add addi t ional books to the list. The updated document is displayed

in a browser w i n d o w via the call to method d i s p l a y (see Figure 12.4) .

REPORT z i x m l r e a d e r .

INCLUDE: z x m l l i b . "Reading L i s t ADT
DATA: g r _ r e a d i n g _ l i s t TYPE REF TO l c l _ r e a d i n g _ 1 i s t .

l t _ a u t h o r s TYPE s t r i n g _ t a b l e .

START-OF-SELECT ION.
* Read an e x i s t i n g read ing l i s t document i n t o c o n t e x t :

g r _ r e a d i n g _ l i s t -
l c l _ r e a d i n g _ l i s t - > c r e a t e _ f r o m _ f i l e () .

* Add another book to the l i s t :
APPEND 'Hors t K e l l e r ' TO l t _ a u t h o r s .

CALL METHOD g r _ r e a d i n g _ l i s t - > a d d _ b o o k
EXPORTING

im_isbn - ' 9 7 8 - 1 - 5 9 2 2 9 - 0 3 9 - 0 '
i m _ t i 1 1 e - 'The O f f i c i a l ABAP Reference '
im_authors - l t _ a u t h o r s

3 2 4

U M L T u t o r i a l : A d v a n c e d A c t i v i t y D i a g r a m s

im_pub1isher - 'SAP PRESS*.

* Display the updated document i n a browser:

g r_ read ing_ l i s t ->d isp lay () .

Lis t ing 12.12 Sample Program to Read a n Existing List

Edit Goto SYStem Help

" " H o © 0 © o

version=*l .O* e n c o d e = ' u t f - 8 * ?>
- <R<?adingList>

<ToptC ABAP P r o g r a m m i n g </Top>C>
- <Recommen<JedBooks>

<Book t s b n - ' 9 7 8 - 1 - 5 9 2 2 9 - 1 5 3 - 3 * >
<Tit)e >ABAP B a s i c s </T i t ie>
<Publisher SAP PRESS </Publisher>
<Authcr : G u e n t h e r F a e r b e r < / A u t h o r >
<Author >Jul la K l r c h n e r < / A u t h o r >

</Book>
<8©0k » s b n = ' 9 7 8 - 1 - 5 9 2 2 9 - 0 3 9 0 ' >

<Ti t le>Tl ie O f f i c ia l ABAP Ro fe rence< /T 'Oe>
<Publisher >SAP PRESS</Publ>sher>
<Authcr : Mors t Ko l lo r - : /Author >

</BOOk>
</R«comm«ndedBooks >

</ReadingList>

Figure 12.4 Displaying t h e Revised X M L D o c u m e n t in a Browser

12.6 UAAL Tutorial: Advanced Activity Diagrams

In Section 8.6, UML Tutorial: Activity Diagrams, you learned how to model basic
process flows using activity diagrams. In this section, we wi l l expand upon these
basic capabilities and look at some o f the more advanced f low control elements
provided for activity diagrams in the UML 2 standard.

The activity diagram shown in Figure 12.5 depicts an employee leave request
work f low process. To effectively trace this process across all o f the relevant par-
ties/systems, the diagram is split into rectangular swim lanes called partitions.
Partitions can be labeled to depict a class, a person/role, a system, an organiza-
tion. and so on. The basic idea here is to show who does what in the process f low.

3 2 5

12 | W o r k i n g w i t h X M L

In this case, an Employee initiates the workf low process by creating a leave
request. However, in this action (i.e.. Create Leave Request).you wi l l notice that
there is a little "fork-like" icon in the left-hand side of the action icon. This nota-
tion indicates that the Create Leave Request action is actually a sub-activity
whose details are described in another activity diagram.

Figure 12.5 A n Advanced U M L A c t i v i t y D iagram

Tracing the flow in Figure 12.5, you wil l notice that after the leave request is cre-
ated, the next action is to submit the request to a workflow engine. This submis-
sion process is depicted using special action types called signals. The use of signals

3 2 6

Summary 1 2 . 7

here helps to signify the fact that the workflow process receives the request from
an external process. Signals can also be used to depict other complex synchronous
and asynchronous messaging scenarios.

After the leave request is received by the workflow engine, it is forwarded to the
employee's supervisor (via email, for instance). At this point in time, the work-
flow process is in a holding pattern as it waits on a couple of potential outcomes.
This holding pattern is depicted using a fork element. Here, one of two things can
happen.

• Ideally, the supervisor will receive the request (again via a signal action), pro-
cess it. and send a response back to the workflow engine.

• However, if the supervisor hasn't responded within 24 hours, the process
should terminate. This 24-hour watch period is depicted using a time signal
(i.e., the "bow-tie" icon shown in Figure 12.5).

In cither case, the process comes together again in a join clement. From here, an
email response message (favorable or otherwise) is forwarded back to the initiat-
ing employee, and the process terminates as per usual.

Another element of the activity diagram that we have not yet considered is the
diamond-shaped decision node shown in Figure 12.5. This node looks just like the
merge node described in Section 8.6, UML Tutorial: Activity Diagrams. However,
in this case, there is one input and multiple outputs as opposed to multiple inputs
and a single output. Each of the outputs of a decision node is marked with a spe-
cial guard text (e.g.. [Approved] or [Rejected]) that describes the condition(s) in
which that particular output path is selected. As you might expect, decision nodes
are veiy good for depicting an IF/ELSE or CASE statement in a flow.

In many ways, even the advanced elements described in this section barely
scratch the surface with regards to the types of things you can model using activ-
ity diagrams. To learn more about activity diagrams, see Martin Fowler's UML
Distilled (Addison-Wesley. 2004).

12.7 Summary

In this chapter, you applied the object-oriented skills that you have gained
throughout the course of this book to learn how to work with the object-oriented
iXML library. The design techniques used in this chapter have been consistent

327

12 | Working with XML

with one of the main themes of this book: to encapsulate complexity behind the
boundaries of a class. In this case, you wrapped XML processing details inside of
an interface that is more closely aligned with the concept of a reading list. Users of
class lc1_reodlng_list can take advantage of this abstraction without under-
standing how the iXML library is being used behind the scenes.

This brief introduction to XML provided the foundation necessary for you to
begin branching out and looking at other XML-based technologies such as XSLT,
Web Services, and so on. If you are interested in learning more about some of
these concepts, read XML Data Exchange Using ABAP (SAP PRESS Essentials,
2006).

328

13 W h e r e t o Go From Here

By now. you should feel equipped to begin applying object-oriented program-
ming techniques in your next project assignment. Often, this transition period
can be difficult in an environment where the majority of your peers operate in a
procedural mindset. Here, it is more important than ever to stick to the basics and
develop well-encapsulated classes with high cohesion.

After all, objects should be easy to use even if they weren't so easy to implement.
Such objects are excellent teaching aids that typically spark a lot of interest within
the project as more and more developers begin interfacing with your classes. In
other words, ifyou build it, they will come.

In many respects, this book only reveals a very small part of the world of object-
oriented programming. Clearly, understanding object-oriented syntax and basic
theoretical concepts is important. However, to maximize your effectiveness as an
object-oriented programmer, you need to train your mind to think in object-ori-
ented terms. This process takes time and experience.

One way to accelerate the learning curve is to spend time looking at quality
object-oriented designs created by seasoned object-oriented developers. A good
place to start is to look at the catalog of designs outlined in Design Patterns: Ele-
ments of Reusable Object-Oriented Software (Addison-Wesley, 1994). Also, for an
ABAP-centric perspective of some of these design patterns, see Design Patterns in
Object-Oriented ABAP (SAP PRESS, 2006).

I hope that you feel that your investment in this book has been worthwhile. Hav-
ing a good foundation in object-oriented skills should position you well as SAP
continues to migrate away from procedural ABAP. For a glimpse into the future,
I highly recommend the book Next Generation ABAP Development (SAP PRESS,
2007).

329

Append ix

A D e b u g g i n g Ob jec ts

B The A u t h o r

A Debugg ing O b j e c t s

As you start working with objects in your programs, it is useful to be able to inter-
actively step through a program to see the values assigned to various attributes
and trace through the program flow logic. In this appendix, we will look at how
to use the ABAP Debugger tool to debug ABAP Objects classes. The material in
this appendix is presented assuming thatyou have some familiarity for debugging
programs using the ABAP Debugger tool. If you have not used this tool before,
you should read through the SAP online help documentation (http://help.sap.com)
because basic concepts are not covered in this section.

Prior to Release 6.40 of the SAP Web AS, there was only one debugger tool avail-
able to developers. However, over time, certain limitations in this tool prompted
SAP to implement the New ABAP Debugger tool using a different and more flex-
ible architecture. Although the details of the differences between these two
debugger types are beyond the scope of this book, the discussion of debugging
objects has been separated into two sections so that you will understand how to
use both tools to debug objects.

A.1 Debugging Objects Using the Classic ABAP Debugger

For the most part, you will find that dealing with objects in a debugger session is
quite similar to working with normal data objects, procedures, and so on. Never-
theless, there are elements of the debugging process that are unique to objects.
This section highlights some of these particular concepts.

A.1.1 Displaying and Editing Attributes

You can display an object in ABAP Objects in a debugging session by performing
the following steps:

1. If you are not already in the FIKLDS display mode, select this display mode by
clicking on the FIELDS button underneath the application toolbar.

333

http://help.sap.com

Debugg ing Objects

2. Select the object reference variable that points to the object you want to inspect
by double-clicking the reference variable name in the ABAP program code dis-
play. Alternatively, you can enter the reference variable name in the F IELD

N A M E S section and press the (3 key (see Figure A. l) .

ABAP D e b u g g e r

IS3IB3 E «] { • Watthpoint |

Fields Table | BreaHwr.ls | Watchpo nts | Calls \ Overview! Settings
Main Program

Source code of

ZALVFLI6HT

ZALVFlISHT_CLASSES 157

METHOO SHOW_ORO (LCL_OUERY_CTRL)
CHAK6IN6

t . t a b i e = f l i g h t J 1st
CATCH CX_»a1v_i$g
ENDTRY.

Enable the standard ALV toolbar
l r_ func t lons = grld->get_funct1ons() .
lr_Tunctlons->s«t_a11(abap.true)

Register the event handler «ethod "0N_D0UBLE_CLIW so
tha t »e can respond t o double-c l ick events on the g r i d
lr_event$ = grid->get_ov»nt() .
SET HANDLER »e->on_double_cllck FOR l r_events.

Display the ALV g r i d :
gr id->di$p1ay()

ENDUETHOD

31 Field names Field contents
g r id {0 15"\CLASS=Cl_SALV_TABLE}

SY-SUBRC 0 SY-TABIX 2 SY-D6CNT 14 SY-DYNNR 1006

Figure A.1 Selecting an Object Reference Variable for Display

3. As you can see in Figure A.1, the F IELD CONTENTS display for an object reference
variable only shows the internal object ID of the object pointed to by the object
reference variable. To view the values of the attributes in this object, you must
double-dick on the object I D . This opens up the OBJECT display mode view
shown in Figure A.2.

334

Debugging Objects Using the Classic ABAP Debugger

A B A P D e b u g g e r

B I S S B

r f»ms i TaMe 1 Breakpoints | Waictipo»nK [Ca« stack 1 [CWrview 1 Settings
Mam Program ZALVFLI6HT
Source code of IZM.VFLI6HT.CL ASSES 1 w na

CHANGING
t_tat>le

CATCH cx_salv_»sg.
= f l i g h t j m

Obi«ctfCla«s
interface

Static alrtbutes
0 O Public

HO 1 5 ' \ C L A S S = C L _ S A L V _ T A 8 1 E J

I
0 < £ instance attributes
0 a Protected 0 9 Private

M E

A

N0| UsributetAnt* (faces T "iLncitn Tcontems n
1 o nODEL 4 11 *

2 o C.FUHCTIOHS.NOKE 4 0
3 <8> a C.FUHCTIONS.OEFAUIT 4 1 j
4 • C.FUHCTIOKS.AU 4 2
5 A R.CONTROllER r 8 {o i6'\ctASs»a_SAiv_coNT

8 <*> A R.FUKCT10HS 8 {0 18'\aASS«CL_SAlV_FUHC

7 & R.F00TER 8 {0 63*\CtASS=CL_SALV_FOOT
8 <J> £ R_HEA0ER 8 {0 60* \Cl.ASS=Cl_SALV_HEA0
9 c> a SCflEEN_END_C0t.lM1N 4 0

10 <$> & SCREEN_ENt>_LINE 4 8
11 & SCft£EN_START_COLUHN 4 0

12 & SCREEN_START_LINE 4 0

13 <3> SCREEN_STATUS_PFSTATUS C 20
-

14 A SCREEN_STATUS_REPORT C 40 -

•-ir- r

Figure A.2 Displaying the Attributes of an Object/Class

4. In the OBJECT display mode, you can edit individual pr imit ive attributes by dou-
ble-clicking their names in the ATTRIBUTES/ INTERFACES column. Similarly, you
can edit complex types by dr i l l ing into structures, internal tables, and embed-
ded objects.

5. You also can fi l ter the display to specific types o f attributes. For example, in Fig-
ure A.2, notice that both the static and instance attributes are displayed for an
object o f type C L _ S A L V _ T A B L E . Y O U can also filter attributes based on visibi l i ty
section assignment (e.g.. public, private, or protected).

6. Finally, i f the class o f the object in question implements an interface, you can
filter the attribute list to just those fields defined w i th in the interface.

3 3 5

A | Debugg ing Objects

A.1.2 Tracing Through Methods

The process of tracing method logic is no different from tracing through a subrou-
tine or function module. Prior to a method invocation, you can select the SINGLE

STEP button to debug the method's implementation code. Inside the method, you
can continue to step into or step over individual lines of code as usual.

Similarly, i f you want to exit from the method and resume debugging after the
method call, you can select the RETURN button. O f course, i f you want to step over
the method implementation entirely, you can select the EXECUTE button to exe-
cute the method.

One thing to note is that constructor methods do not behave in the same way as
normal methods in the debugger. I f y o u step into the CREATE OBJECT statement,
the debugger will begin tracing through the constructor method. This is not the
case, however, with class constructors. Here, you must explicitly set a breakpoint
to debug the class constructor logic.

A.1.3 Displaying Events and Event Handler Methods

To display the registered events for an object/class:

1. Open the OBJECT display mode in the debugger.

2. Click on the EVENTS button to switch from object mode to events mode (see Fig-
ure A.3).

ABAP Debugger

Fields | Table | Breakpoints | Watchooints | Call stack | Oveiview T Se»ngs |
wain Program ZAIVFU6HT • O S
Source code of ZAtVFLI6HT_CLASSES A mm n i *
METHOO SHOW.ORID (LCL_OOERY_CTRU

CHANGING
t . t a b i e * f l i g n t _ l i 8 t

CATCH C*_*»lv_wg.

o m o c n w l|0:S2'\CU>SS"a_SAlV_SV£NTS_TABLS) ~ \)
interface /

• Static attnbutes instance aUnbutes
0 O Public • a Protected • 9 Private

® 1

Figure A.3 Displaying the Registered Events for an Object — Part 1

336

D e b u g g i n g O b j e c t s U s i n g t h e C lass i c A B A P D e b u g g e r

3. This view shows you all o f the events defined for the object/class as well as any
registered handling objects for the events. You can navigate to the objects
shown in the H A N D L I N G O B J E C T column to set breakpoints in the event handler
methods to debug event handling scenarios. This can be sometimes useful in
frameworks when you are not real clear about where event handlers are regis-
tered, and so on.

ABAP Debugger

E E E E
Fields | Tatxe Breakpoints | WaKhpoints | Call stack [(* e r w w I Settings

Main Program ZALVFL I6HT ^ m n m
Source cod* of |ZALVFL I6HT_ClASSES K S D F
METHOD SH0W_GRID (LCL_QUERY_CTRL) 7

CHAN6IN6

t . t a b l e = f l i g h t j m

CATCH ex_salv_»sg

Ob|«CVCia*$ {0 52,\CLASS«CL_SALV_EVEHTS_TABLE>

No. I | lEvenVHandlingmemod handl ing ot>,*ct •
1 O • IF_SALV_EV£HTS_FWICTI(MS-eEFOft{
2 <t O I F_$ALV_EVEMTS_FUNCT 1ONS-AF TER_

3 <r O I F_SALV_EVEHTS_FUHCT 1 OHS-ADOED.

4 <r • IF_SALV_EVEHTS_LIST-TOP_OFJ>A6S

5 O Q IF_SALV_EVENTS_LIST-EN0_0F_PA6J

6 <f O IF_SALV_EVENTS_ACTI0NS_TA8LE-D<

7 w t O OM_OCOBtE_ClICK {0 1 •\PR0SRAH=ZA».VFLI6HT\Ct.AS$M.CL_QU£

8 « O IF_SALV_EVEMTS_ACTI0NS_TA8LE-LI

F i g u r e A . 4 D isp lay ing t h e Regis tered Events for a n O b j e c t — Part 2

A.1.4 V i e w i n g Reference A s s i g n m e n t s for an O b j e c t

You may encounter situations where an object is manipulated in ways that you
didn't expect. Here, it is possible that more than one reference to the object
exists. To view reference assignments for an object:

1. You can identify the set of references to an object by selecting G O T O • S Y S T E M •

F I N D R E F E R E N C E in the menu area.

2. This menu option opens a dialog box showing you all of the references to the
object in question in the system (see Figure A.5). For instance, you can see that

337

A | Debugg ing Objects

the object o f type CL_SALV_TABLE has four references, including the attr ibute

g r i d f rom class 1 c l _ q u e r y _ c t r l as wel l as the kernel reference.

ABAP Debugger

E E E E
1 fwm | THW | tnwowi | wwwowi | cnwtk | (Wrtw | swm
Wan Program ZALVruSHl
&xrta<od»of ?«.Vfll6Ht_Cm«S
M6THOO 8M0W_0«10 CLCL_OUf RV.CTRU

fnOTRr

Crtabl* tha standard N.V toolbar

OtgMttttM
irtarlKf
• ,'v State ai
F

10 15,\tt*S$«Cl_6M.V_TMU)

M«t«K« MnM*l

[no | [1 [wHiWt^w^aa
(J> O KO€L

i 3L

—
{&C**f**ir1lm»rK*t tQjnO

[0 lS,\CUSS«a._SM».I«tEJ
NO 0»ft«1tr*r<*%

1 \K£f*l«(0 15*\CUSS»Cl_SJU-*_tm£)
: to 16'\aJW«a_SAlV_C0MR0UER_T«U 1 \0ATA. IF_SM.V_WIITRCUI
3 co ie*\cus$ra.$ALv.co«ti>oi.iEft.tAi«.Ei\Mi*i».imE
4 (0 1,\PR05SAH.ZaLVFlI6HI\Cl*SS»LCl.OOUrr_CIH.>Vt'*IA«6«IO

s i a i B i B i n i s i a i a e

Figure A.5 Showing the Reference Assignments for an Object

A.1.5 Troubleshooting Class-Based Exceptions

W h e n e v e r a statement triggers an exception dur ing a debugging session, the

ABAP debugger traces the exception propagation process back to the exception

handler block that captures the exception — assuming there was one. Often, y o u

wi l l encounter debugging scenarios where a developer chose not to capture the

exception situation in an exception object. This informat ion can be crucial for

debugging complex exception situations. Therefore, y o u can m o d i f y the debug-

ger session settings to dynamical ly generate an exception object that y o u can use

to troubleshoot an error. To configure this setting, fo l low these steps:

1. Select the SETTINGS display mode, and click on the ALWAYS CREATE EXCEPTION

OBJECT checkbox (see Figure A .6) .

2. Af ter the exception is triggered, the cursor is placed at the beginning o f the

CATCH block def ined to handle the exception. I f this CATCH block is not def ined

using the INTO addit ion, then y o u can display the exception object by clicking

on the DISPLAY EXCEPTION OBJECT but ton (see Figure A.7) . Otherwise, y o u can

double-click on the exception object reference just as y o u w o u l d for any nor-

mal object reference variable.

338

D e b u g g i n g O b j e c t s U s i n g t h e Classic A B A P D e b u g g e r I A . 1

ABAP Debugger

Fields Table] Breakpoints] Watchpoints | Call slack \ Overview | Settings

YEXCEPTIONTEST Main Program

Source code of YEXCEPTIONTEST

EVENT START-OF-SELECTION

OATA gv_dividend TYPE i value 4.
gv .dtv i tor TYPE i value 0.
gv_result TYPE 1

fTTfel

Settings
f 1 CudlAm 1 iSr>.em debugging • update debugging

• Memoiy monfloring Always Create Excepton Obtect |

• Shared Obiects: D e b u g automatic area structuring

• Check Sorting Before READ BINARY S E A R C H

• Check Sorting Before PROVIDE

• Automation Controller Always process requests synchronously

• ESF Debugging

• m background task D o not process

Transaction ©

Figure A.6 Turning on the Automatic Creation of Exception Objects

ABAP Debugger

S3 E E QJ • Watchpomt

Fields Table | Breakpoints | Watchpoints [Call stack | Overview J Seangs

Mam Program YEXCEPTIONTEST V] D O
Source code of YEXCEPTIONTEST 3

E V E N T S T A R T - O F - S E L E C T I O N

DATA gv_dividend TYPE i value 4.

gv_divisor TYPE i value 0.

gv_result TYPE 1.

START-OF-SELECT 10M

O TRY

gv_result = gv_dlvidend I gv_divisor

WRITE gv . resu l t

CATCH cx_sy_zerodivide.

ENOTRY

Exception Tnggered

9 Field N a m e s

CX_SY ZERODIV IDE

I - 4 F i e l d C o n t e n t s

Figure A.7 Displaying an Exception Object - Part 1

3 3 9

A | D e b u g g i n g Ob jec ts

3. The exception object is displayed in the OBJECT display mode just l ike any other

object type. Here, y o u can trace the exception chain via the PREVIOUS attr ibute

in addit ion to any custom attributes that further define the exception situation

(sec Figure A.8) .

ABAP Debugger

B E E E
i

Fields | Table | Breakpoints | Watcbpoints | Call stack | Overview 1 Sellings J
Main Program YEXCEPTIONTEST • C I
Source code of YEXCEPTIONTEST A wmnwl
EVENT START-OF-SELECTION

OATA: gv_d1videi>d TYPE 1 value 4.

g v . d l v i s o r TYPE 1 value 0.

gv_resul t TYPE 1.

| Oq+CtfCIW |(Q:3,\CU8S«C)L8V_ZEROP1V10€)

interface oa
3 • (>> Stake aanbutes 0 $ > instance attributes

0 • Public Protected Private

oa
3

INO I | I IAttributes/Interfaces |T luioth Iconlents •
1 O TEXTIO C 32 15SF873M85CE619E100809660

2 <$> O PREVIOUS r 8 { 0 : I n i t i a l } E
(J> O KERNEL.ERRID C 38 COHPUTEJNT.ZEROOIVIOE

4 (J> • OPERATION g 8 / | - |

Figure A.8 Displaying an Exception Object - Part 2

A.2 D e b u g g i n g O b j e c t s Us ing t h e N e w A B A P D e b u g g e r

In most respects, the process o f debugging objects in the N e w A B A P Debugger is

quite similar to the process o f debugging objects in the Classic A B A P Debugger.

The pr imary difference f rom a functional perspective is in the layout o f the

OBJECT display area. Context-sensitive access to this v iew is provided in all o f the

various variable display sections w i t h i n the debugger w i n d o w . For example, by

double-clicking the object I D in the VALUE co lumn shown in Figure A . 9 , y o u are

taken to the OBJECT display shown in Figure A . 1 0 .

3 4 0

Debugging Objects Using the New ABAP Debugger

(1) • A B A P D e b u g g e r C o n t r o l s S e s s i o n 1 (E x c l u s i v e)

m a e a
V ?«J H I ttaT

t
/ ttof.CiUAAA I 111

a n
t t
r r t a n

14%
14<
144
M T
I 4 K
I O
I W
i t i !
m
I IS
I V *
l U
l l «

;

l • '»
14©
U I

u s

I H

144
1 4 *
I W
I
H O
m
112

lit

B 7 1 M J * _ M I I M i m
m n r v A .

9 '

»««« N c i u i f j c s u :
I A T A I L I (W L L M F T T ? T » I R T O « 1 M > V (M R T L T M .

i r . m M i n n »xr ro c i . M i v . m ^ M t o i

I V * > M f K ' W V M U M V# a « l f « U J M ' M C * Of '
T r r .

(U l U I M c i ^ t ^ i v ^ t t © ; * * x *c<orr
I R K * ? ! * !

• M l v • p l 4

ocS'Tvr.

I » « l j * (M I f f tW* /<J 4*V (M J f l f l
l l (I M I I U U • 4114 (« M I M f l } •

I * « l f l « ' M • ' « • » M f M V f . K W I ,
*K4 ' H« •« ' l l ' * ' f » * M 4
u . m M i • 4(14 m . m M I I .

Q
0
i l

4 l " f I t T I I -
-

l l -
U H 1 M I

m
* V

m

CAI: to t s - N C u v ^ a U i t ?•*.< •

• •

•

•

Figure A.9 Basic Layout of t h e New ABAP Debugger

(1) • ABAP Debugger Controls Session 1 (Exclusive)

f f t i i i

O
*

w
w
w

M X t r
o . u v . v f i i

O n x t i

A » C t t T t t U P
a ^ R V . V M l . U I I

o C J W U M
u c . r iM(r iMS j< r<MT
O C W I I U * i l
^ » . r N c n « « t
A
A • < • » < •
A i d f n ^ D . M I M
A K m i . i w . i m
A (O C C l . S t t f i T . C M
A A U F R A J U * T . I 1 *
j t u) i a a » i i i m a f f t t u i
A K H I I . J 1 A 1 V I . P & T O I '

D . U » . w m i _ j t « t

» ^
(f 14* »CUS4*TT C * ¥ Cftf HUCT TA*C1

1
ft
(f I N A A U » Q . U I V _ N « R T R N % * _ I H T J
I f K ' l l U U U „ l H v „ » W t t «)
(f f f M C u M - a « * C »)

Figure A.10 Viewing Ob jec t s in t h e New ABAP Debugger

341

A | D e b u g g i n g Ob jec ts

As y o u can see in Figure A . 1 0 , the OBJECT display in the N e w ABAP Debugger is

much more streamlined. Here, by default , y o u can see the attributes o f the object /

class in question arranged hierarchically according to the inheritance hierarchy.

You can turn this feature o f f by selecting the SUPERCLASSES ON/OFF but ton direct ly

above the attr ibute display. Events and their registered event handler methods

are displayed using the EVENTS but ton. References to the object in question can be

v iewed using the DISPLAY REFERENCES but ton.

In addi t ion to all o f the standard features carried over f r o m the Classic A B A P

Debugger, the N e w A B A P Debugger also provides a funct ion to display the inher-

itance hierarchy o f a g iven object at runt ime. This funct ion can be accessed b y

clicking on the DISPLAY INHERITANCE HIERARCHY but ton. Figure A . 1 1 shows the

INHERITANCE RELATIONSHIP v i e w for an object o f type C L _ S A L V _ T A B L E .

(1) - ABAP Debugger Controls Session 1 (Exclusive)
R R R R l f P l l O UWH|

% ZALVFLI6HT / ZALVFU6HT.CUSSCS M / f f l P I [SY-S

f METHOO / 8HOW.OR© y Q SV-1

OetMopi I Desfctop 7 I Oesfctop3 , Standard , Stwrture* , Tahu*

[y S> IndwOisptay

Obiect ' (0 15 • \ CLASS:CL_SAIV_T»BIE)
v»w i Ea
t i • &
V c i inheritance Relationship

4 OBJECT
CL_SALV_MODEL
CL_SALV_MOOEL_BASE

^ CL_SALV_MOOEL_LIST
Q> CL_SALV_TABLE

Figure A.11 Showing the Inheritance Hierarchy of an Object

342

B The Author

James Wood is the founder and principal consultant of
I Bowdark Consulting, Inc., an SAP NetWeaver consulting
I and training organization. With more than seven years of

W * ^ I experience as a software engineer, James specializes in cus-
I torn development in the areas of ABAP Objects, Java/J2EE,

SAP NetWeaver Process Integration, and the SAP
^ ^ H ^ ^ ^ H j NetWeaver Portal.

Before starting Bowdark Consulting. Inc. in 2006, James was
an SAP NetWeaver consultant for SAP America, Inc. and

IBM Corporation where he was involved in multiple SAP implementations. He
holds a master's degree in software engineering from Texas Tech University. To
learn more about James and the book, please check out his website at http://
www. bowda rkconsulting. com.

343

Index

A

ABAP Debugger tool 333
ABAP Editor

Insert Statement wizard 268
ABAP List Viewer — SAP List Viewer
ABAP Object Services 279

Persistence Senice 281
Query Service 295

ABAP Objects 23

Obsolete statement 52
ABAP Objects class

Declaration part 41
Implementation part 41
Syntax overview 41

ABAP Unit 233
ABAP Workbench 236. 245
Automating test run 245
Code Inspector 245
Controlling test generation 238
Creating test class 237
Error severity 247
Evaluating unit test result 246
Example 241
Executing unit test 244
Fixture 239

Generating test class for global class 240
Overview 234
Profile parameter abap/testgeneration 238
Release version 235
Result display screen layout 246
SAUNIT_CLIENTJETUP 238

ABAP visibility section 42. 96
Global class assignment 96
PRIVATE SECTION 42 ,96
PROTECTED SECTION 42. 96. 133
PUBLIC SECTION 42 .96

Abstract class 140
Defining in global class 142
Defining in local class 141
Delegation 140

Problem with dummy method 140

Abstract class (cont.)
Template 140
Usage scenario 141

Abstract data type 25
Class example 101
Function group example 94
Icljate 67
Reading list ADT 311

Abstract method 140
in global class 142
in local class 141

Addition

RAISING 215
ALV Object Model 257. 260

CL_SALV_EVENTS_TAB1.E 271
CL_SALV_TABLE 260
Event handling 271
Example program 261
Overview 260
Release 257

ALV — SAP List Viewer
Assertion

CL_AUNIT_ASSERT 236
Attribute 43

CLASS-DATA keyword 43
Constant 43
CONSTANTS keyword 43
DATA keyword 43
Defining class attribute 43
Defining instance attribute 43
Definition example 43
Naming 44

READ-ONLY keyword 98
Automation Controller

Eventing 258
Function 258

B

BAPI FLIGHT CETLIST function 262
Business Address Services 50

345

Index

c
C++ 23
Casting

HO option 160
Bask rule 158
Casting operator (?=) 160
Defined 158
Dynamic type 158
Example 156
Implicit narrowing cast example 159
Incompatible type 158
Narrowing cast 159
Static type 156
Widening cast 160

CATCH statement 204
Best practices 208
INTO addition 208

CLSALV.TABLE

Instantiation context 260
CL_SALV_TABLE Class

UML class diagram 260
CLASS

Keyword 25
Class 25

Attribute 24
Comparison to function group 91
Extending 129
Inheriting component 129
Method 24
OBJECT 129
Private interface 96
Public interface 96
Syntax overview 41
Visibility section 27

Class agent API
Agent class relationship 283
Architecture 282
CREATE PERSISTENT method 295
GET_PERSISTENT method 295
IF_OS_CAPERSISTENCY interface 286, 296
IF_OS_FACTORY interface 286
Useful method 285

Class Builder 71
ABAP Workbench 71
C/ass Editor screen 74

Class Builder (cont.)
Creating class 72
Declaring and using types 80
Defining attribute 75
Defining class component 74
Defining event 79
Defining method 77
Exception Builder view 222
Mapping Assistant 288
Object Navigator 71

Class component 42, 57
Context 57
Defined 42
Selector 59
Selector operator 59
SMf/c component 42
Usage example 57

CLASS DEFINITION statement 42
ABSTRACT addition 141
CREATE addition 118
DEFERRED addition 100
FINAL addition 143
TO/? TESTING addition 237
/JV//£ tf /1TNG FROM addition 131

CI.ASS IMPLEMENTATION statement 51
Class pool

Defined 71
Class-based exception handling concept 203

CATCH block 205
CLEANUP block 209
Exception class 203
Propagating exception 215
Propagation rule 219
RA/5E EXCEPTION statement 211
Scope- 205

System-driven exception 211
TRY control structure 203

CLASS-DATA keyword 43
Classic ABAP Debugger tool 333

Debugging object 333
Fields display mode 333
Filtering the object display 335

CLEANUP statement 204
Call sequence 210
Forbidden control statement 210
Usage example 209

346

Index

Cohesion 27
Component 41

Class component 42
Declaring 42
Defining 42
Instance component 42
Namespace 43
Visibility 95

Component-based design 183
Composition 29.145

Defined 146
Example 146

Favoring over inheritance 148
Forwarding 175
Has-a relationship 146

Constant
Naming convention 43
Readability 44
Usage example 59

CONSTANTS keyword 43
Constructor 111

Call sequence 112
Class constructor 115
Guaranteed initialization 112
Initializing class attribute with class construc-

tor 115
Instance constructor 111

Coupling

Loose coupling 28
CREATE OBJECT statement 53

TYPE addition 159
Creating objcct 107

CREATE OBJECT statement 53. 108
Memory management concept 108

D

DATA keyword 43
Data object

Analogy to remote control 157
Conversion 156
Dynamic data object 110
Dynamic type 158
Static type 156

DATA statement
TYPE REF TO addition 53

Data type
Abstract data type 25. 67. 94, 101. 311

Debugging objcct 333
Create Exception Object option 338
CREA TE OBJECT statement 3 36
Displaying and editing attribute 333
Displaying event and registered handler

method 336
New ABAP Debugger 340
Tracing through method 336
Troubleshooting class-based exception 338
Viewing reference assign ment 337

Design by contract 28, 102
Invariant 103
Postcondition 103
Precondition 103

Development class 186
Diamond problem 164
Document Object Model DOM
DOM 310

Format 310
Dynamic object allocation

Performance costs 107
Dynamic type 156

E

Encapsulation 27. 89
Combining data and behavior 94
Least privilege concept 134
Purpose 95

Event 49
Class event declaration syntax 49
CLASS-EVENTS keyword 49
Debugging 336
Event handler method 49
Event handling example 259. 271
EVENTS Keyword 49
EXPORTING parameter 49
Implementing event handler method 271
Instance EVENT Declaration syntax 49
Processing behavior 275
RAISE EVENT statement 50. 274
Registering handler method 272
Sending object 49
SET HANDLER statement 272

347

Index

Event (cont.)
Triggering 274

Event handler method
Declaration scope 49
Declaration syntax 49
Example 273
Implementing 273
Importing parameter interface 50

Exception 201
CX_ROOT 219
Debugging 338
Defining exception class 219
Defining exception in the global class method

218

Defining exception text 223
Defining global exception class 221
Defining local exception class 221
Exception Builder tool 222
Exception class type 220
Exception class with message class 222
Non-class-based exception 203
RAISE EXCEPTION statement 212
Runtime error 205
Showing exception details example 206
Unchecked exception 211

Exception class
Class hierarchy 219
Customer namespace 222
CXjM.APPLICATION_EAULT 216
CX_A!_SYSTEM_FAULT 216
CX .DYNAMIC_CHECK 219. 220
CX_NO_CHECK 219,221
CX STATIC_CUECK 219,220
CX_SYARITHMETIC_ERROR 208
CXJYARITHMETIC.OVERFLOW 208
CXJY_FILEJO 226
CX_SY_MOVF._CAST_F.RROR 205
CX_SY_ZERODIVIDE 208
Global exception class 226
Local exception class 221
PREVIOUS attribute 216
Standard exception type 206, 211
Superclass CX_ROOT 205
With Message C/ass api/on 227

Exception handling
Ad-Hoc exception handling example 201

Exception handling (cont.)
Cross-cutting concern 201
Message table parameter 202
Return code parameter 202
Strategy 202

Exception text 223
As constants 223
Mapping to message ID 227
MESSAGE statement support 229
Text parameter 226
Viewing in the OTR 224

Extensible Markup Language -» XML

F

Factoiy pattern 260
Final class 143

Completing an inheritance tree 143
Marking global class as final 144
Marking local class as final 143

Final method 144
Defining final method in global class 144
Defining final method in local class 144

Friend 99
Argument against 100
Defning relationship 99
Example 99

Relationship behavior 100
Syntax 99

Function group 91
Example 91
Function module 91
Global data 91
Limitation 91
Stateless function module 91

Function module
SDIXML_DOM_TO_SCREEN 323

Functional method 47
CALL METHOD statement 61
CASE statement 64
COMPUTE statement 64
Creating expression 61
Declaration syntax 47
DELETE statement 64
Expression 63
IMPORTING parameter syntax 63

348

Index

Functional method (corn.)
Logical expression 64
LOOP statement 64
MODIFY statement 64
MOVE statement 63
Operand 61
Syntax example 63
Usage example 61

G

Garbage collcction 121
ABAP runtime environment 121
CLEAR statement 121
Destructor method 122

Global class 41
Class pool 41
Defining read only attribute 98
Definition section 82
Direct type entry 81
Local inner class definition 81
Method implementation 78
Naming convention 72
Only Modeled option 74

H

HTML 304

I

IF statement
IS SUPPLIED option 119

IF.MESSAGE interface 220
IF_SERIALIZABLE_OBJECT interface 220
IF_T100_MESSAGE interface 227
Implementation hiding 27. 89

Approach 95
Example 101
Getter method 98
Hiding data 97
Responding to cha nge 102
Setter method 97

Inheritance 30, 127
Abstract class 140
Basic example 129

Inheritance (cont.)
Class component in subclass 136
Class component scope 136
Class constructor belui vior 140
Comparison with composition 145
Component namespace 136
Copy a nd paste approach 131
Defining relationship in global class 131
Defining relationship in local class 129
Defining the inheritance interface 133
Diamond problem 164
Eliminating redundant code 127
Final class 140

Generalization and specialization 128
Implementation inheritance 155
Instance component in subclass 135
Instance constructor behavior 138
Interface example 133
Interface inheritance 155
Interface inheritance versus implementation

inheritance 164
Is-a relationship 31
Is-a versus has-a relationship 145
Multiple inheritance 164
Public interface inheritance 155
Redefining method 136
Relationship behavior 131
Single inherit a nee 164
Subclass 30. 129
Super pseudo reference 135
Superclass 30. 129
Superclass method implementation 138
Tree example 129

Insert Statement wizard 268
ABAP Objects pattern 268
Statement pattern 269

Instance component 42. 54
Defined 42

Object component selector operator 55
Instantiation context 117

CREATE addition 118
Creational class method 119
Defining 118
Defining for global class 118
Option 118
Pattern example 119

349

Index

Interaction frame 300
alt Operator 300
common operator 300
Example 300
Guard 300
loop Operator 300
Notation 300
Operator 300
opt Operator 300
par Operator 300
ref Operator 301
sd Operator 301

Interface 26.163
Contract of a class 177
Defining a local interface 165
Defining alias name 178
Defining component 165
Defining global interface 165
Defining in ABAP Objects 165
Elementary interface 165
Generic basic definition 163
IFJAESSAGE 220
IFJERIALIZABLE_OBJECT 220
IFJ100JAESSAGE 227
Implementing in a global class 168
Implementing in a local class 167
Implementing in class 167
Interface component selector operator 169
INTERFACES keyword 167
Nesting interface 177
Public visibility section 165
Scope 165
Syntax 165
Using interface 170

Interface reference variable 174
Casting example 174
Using references polymorphically 174

Is-a relationship 31
Iterator 175

CLJWFJJTLJTERATOR 175
iXML library 303

A rchitecture of API 311
CLJXML factory class 311
DOM-based XML document 311
Feature 310
IFJXML interface 311

iXML library (cont.)
IFJXML_DOCUMENT interface 312
IFJXMl._ELEMENT interface 312
IFJXMLJSTREAM interface 311
IF_IXML_PARSE_ERROR interface 323
IFJXML_PARSER interface 311. 323
IFJXML_RENDERER interface 319
Interface 311
Release 310
Usage example 311

Java 23

K

Keyword
CLASS 25
CLASS-DATA 43
CONSTANTS 43
DATA 43

L

Local class 41
INCLUDE program 70
Including in program 64
Visibility 70

Local variable
Hiding attribute 52
Naming 52
Usage 52

Loose coupling 28

AA

Mapping Assistant 288
Assignment type 290
Business Key assignment type 290
Class Identifier assignment type 290
GUID assignment type 290
Object Reference assignment type 290
Tables/Fields display 289
Value Attribute assignment type 290

350

Index

Markup language 304
Element 304
Tag 304

Meta-markup language
Definition 304

Method 45
ABSTRACT addition 141
Boolean 62
CALL METHOD statement 56
CHANGING parameter 45
Class method declaration syntax 48
CLASS-METHODS keyword 48
Declaration example 47
DEFAULT addition 48
Defining parameter 45
EXCEPTIONS addition 203
EXPORTING parameter 45
FOR TESTING addition 239
Functional method 47
Implementing 51
IMPORTING parameter 45
Instance method declaration syntax 45
Method signature 46
METHOD...ENDMETHOD statement 51
METHODS Keyword 45
Naming convention 48
OPTIONAL addition 47
Parameter 45
RAISING addition 215
Redefining 136
Redefining method in global class 137
Redefining method in local class 136
REDEFINITION addition 136
RETURNING parameter 47
Ife/ng /oca/ variable 52

Method signature
Defined 46

Model-ViewController — MVC
MVC 261

ABAP reports 266
Controller 262
Coupling 270
Data binding 264
Model 262
Report 262
View 262

N

Narrowing cast
Definition 159
Implicit cast for importing parameter 162

Nested interface 177
A/ias name 178
ALIASES statement 178
Component interface 177
Component scope 178
Defining alias in local interface 178
Defining component interface in global inter-

face 178
Defining component interface in local interface

178
INTERFACES statement 178

New ABAP Debugger tool 333
Displaying inheritance hierarchy 342
Layout 340
fofcflse 333

Nonclass-based exception
Example 217

o
Object 24.41

.Autonomy 94
CREATE OBJECT statement 53
Debugging 333
Dynamic allocation 107
Header data 110
Identity 94
Initialization and cleanup 107
Object instance 26
Object lifecycle 107
Performance tuning 122
Self reference (me) 56
SWF_UTL_OBJECT_TAB table type 171

OBJECT class 129
Objcct component selector 55

I/sage example 55
Objcct instance 26
Object reference assignment

Assignment operator (=) 53
Illustrated example 53
A10V£" statement 53

351

Index

Objcct reference variable 26. 52
Advanced assignment 155
Assignment 53
Assignment between families of related types

156
Compatible type 156
Declaration context 53
Declaration syntax 53
Defined 52
Pointing to object 110
Relationship to object 54
Self-reference (me) 56
Super pseudo reference variable 135

Object-Oriented Analysis and Design -»
OOAD

Object-oriented programming — OOP
Object-relational mapping 280

Benefit 280
Concept 280
Tool 280

Online Text Repository — OTR
OOAD 33 .275

Defining class relationship 128
Delegating responsibilities to objects 107
Domain modeling 128

OOP 23

Emphasis on data and behavior 94
OSREFTAB table type 296
OTR 223

P

Package
Assignment to SAP Application Hierarchy

190
Assignment to software component 190
Common closure principle 196
Common reuse principle 196
Local Object 66
Package type 190
Static dependency principle 196

Package Builder
Adding package 191
Defining a package interface 192
Defining use access 194
Editing a package interface 193

Package Builder (cont.)
Object Navigator 189
Package Interfaces tab 192
Packages Included tab 191
Transaction 188

Package check tool 196
ABAP Workbench 196

Package concept 185
Crea ting use access 194
Defining package interface 192
Definition 186
Design tip 196
Embedding package 191
Main package 186.187
Package Builder 188
Package check 195
Package versus development class 185
Release version 185
SAP Application Hierarchy 190
Structure package 186
Sub-package 186, 188

Parameter 45
Actual parameter 46
CHANGING 45
Default behavior 46
EXPORTING 45
Formal parameter 46
IMPORTING 45
Pass-by-reference 46
Pass-by-value 46
RETURNING 47
Syntax 45

Performance tuning 122
Class attribute usage 124
Design consideration 123
Lazy initialization 123
Reusing object 124

Persistence mapping 284
By business key 284
By instance-GUID 284
Example 288
Mapping Assistant 288
Multiple-table mapping 285
Single-table mapping 285
Strategy 284
Structure mapping 285

352

I n d e x

Persistence Service
Architecture 281
CX_OS_OBJECT_EXISTlNC, 295
Deleting persistent object 298
Layered agent class approach 283
Managed object 282
Managing persistent object 281
Mapping concept 284
Mapping strategy' 284
Overview 280
Persistent class 282
Updating persistent object 297

Persistent class 279
Agent class 282
Architecture 282
Building a persistence layer 281
Class agent API 285
Class Builder 2 8 7 . 2 9 2
D«Y»N/WG 2 8 6

IF_OS_STATE interface 287
Mapping to a persistence model 280
Object reference 292

Persistent object 279
COMJM/T W E M statement 295
Creating new instance 294
Deletion example 298
Managed object 282
Transient object 280
Updating example 297
Working with 293

Pointer 110

Defined 110
Polymorphism 31. 155

Dynamic method call binding 160
Example 160
Extensibility 163
Flexibility 163

Procedural programming 89
ABAP example 91
Comparison to OOP 94
DDTA support 94
Functional decomposition 90
Limitation 90
Procedure 90
K T W 1 2 7

Step-wise refinement 90

Procedural programming (cont.)
Structured programming 90
Tight coupling with main program 90

Q
Queiy Service 295

CL_OS_SYSTEM 296
Filter 296
IF_OS_QUERY interface 295
Logical expression query 295
QUF»Y M (I NAGER 2 9 6

Results ordering 296
Usage example 296

R

RAISE EVENT statement 50. 274
Parameter usage 275
Syntax 274

RAISE EXCEPTION statement 212
Behavior 213
Exception object 213
Syntax 212
Usage example 213

RAISING addition
Syntax 215
Usage example 215

Reading list ADT 312
Basic structure 314
CL_OUI_FRONTEND_SERVICES 319
Class constructor method 315
Example program ZIXMLREADER 324
Example program ZIXMLWRITER 319
Method add_book 316
Method create JromJile 321
Method create_new_list 314
Method display 323
Method serialize 317
New A";VI/. document 314
Private instantiation context 312
XML document 320

Refactoring 148
Example 148
Move method example 149

353

Index

Refactoring assistant 149
Accessing 149
Example 149
Expansion 149

Reference parameter
Defined 46
Example 46

Reference variable 26
Regular expression 82

CL ABAP MATCHER 82
CL_ABAP_REOEX 82
Defined 82
Example 83
Literal character 82
Metacharacter 82
Search pattern 82
Selection screen input 83
Telephone number example 83

Reuse 29
Reuse Libraiy 257

RE USE _AL V_GRID_DISPLA Y 257

s
SAP component model 183

Hierarchy 183
Package 183
Product 183
Software component 183

SAP Control Framework
ABAP Objects control framework 258
ALV grid control 259
Architecture 258
Automation controller 258
Automation queue 258
Basis release 258
Calendar control 260
CL_GUI_CONTROL 258
Custom container 259
Custom control 258
Distributed processing 258
HTML viewer control 260
Microsoft ActiveX control 258
Overview 257
Proxy class 258

SAP Control Framework (cont.)
Sun JavaBeans control 258
User-defined control 260

SAP flight data model 262
SAP List Viewer 257

Field catalog 260
SAP NetWeaver Application Server

ABAP instance 108
ABAP runtime environment 107
Extended memory 110
Internal session 109
Main session 109
Memory architecture 108
M iduplexing work process 109
Performance optimization 111
Program call stack 109
Roll buffer 108
Shared memory 108
User session 108
Work process 108

SAX 310

SDIXMI._DOM_TO_SCREKN function module
323

Self-reference variable 56
SFT HANDLER statement 272
SGML 303
Simple API for XML — SAX
Singleton design pattern 282

Implemented in persistent class 282
Software component

HOME 184
Installed component 184
LOCAL 184
Version 184

Software framework 279
ABAP Object Services 279

Sorting
Insertion sort algorithm 173

Standard Generalized Markup Language -»
SGML

Statement
CATCH 204,208
CLASS DEFINITION 42.100.118,131, 141,

143.237
CLASS IMPLEMENTATION 51

354

I n d e x

Statement (cont.)
CLEANUP 2 0 4 . 2 0 9 , 2 1 0
CREATE OBJECT 53,159
DATA 53
IF 119
RAISE EVENT 50, 274, 275
RAISE EXCEPTION 212 .213
SET HANDLER 272
TRY 2 0 3 . 2 0 4 , 2 0 5 . 2 0 8
TYPE-POOLS 50

Static type 156

T

Test class
Attribute 238
Basic form 237
CLJ[UNITJ\SSERT 239
Creating 237

Defining fixture method 239
Defining test method 239
Duration attribute 238
Example 241
RiskJLevel attribute 238

Test-driven development 247
Transaclion

SAUNIT_CLIENT_SETUP 238
SE24 71

TRY statement
CATCH block 204
CATCH block organization 208
CATCH statement selection process 205
CLEANUP block 204
Control flow 204
Defined 204
Syntax 203

Type 50
Naming convention 50
Scope 50

TYPES statement 50
(/sage 50
Ifoigf example 50

TYPE-POOLS statement 50

u
UML 34
UML activity diagram 229

Action 229
Activity final node 229
Decision node 327
Decision node guard 327
Expansion region 231
Fork 327
Handler block 230
/n/tra/ node 229
Join 327
Merge node 230
Notation 229
Partition 325
Protected node 230
Signal 326
Sub-activity 326
Time signal 327

UML class diagram 34
Abstract class and method notation 152
Association 38
Attribute notation 36
Class notation 35
Composition notation 151
Dependency notation 151
Depicting nested and component interface

180

Generalization notation 150
Generalization notation for interface 180
Interface notation 180
Non-normative notation for abstract class

153
Notation for relationship with interface 181
Notation for static attribute and method 182
Operation notation 37

UML communication diagram 275
Collaboration diagram 276
Ease of use 277
Interaction diagram 276
Notation 276
Numbering scheme 277

UML communication diagrams
Object diagram 277

355

Index

UMI. diagram 34 Unit testing (cont.)
Behavioral diagram 103 Informal testing process 234
Cardinality notation 39 Problem with ad hoc test 234
Interaction diagram 105 Scope 233

UMI. diagram (cont.) Terminology 235
Note 39 Test class 236

UML object diagram 84 Test method 236
Defined 84 Test run 236
Notation 86 Test task 236
Object box notation 85 Test-driven development 247

UMI. packagc diagram 197 Unit testing framework 234
Defining visibility of component 197 Validating API contract 233
Dependency notation 197 White box test 235
Notation 197 Unit testing framework 234
Package 197 ABAP Unit 235
Relaxed notation 197 Automated testing 235

UML sequence diagram 103 JUnit 235
Deleting an object lifeline 299 M/m'f 235
Found message 104 Stffl/f 235
Interaction frame 300 xUnit 235
Message 104, 105 Use case 248
New message 298 /\cft»r 248 ,249
Notation 104 ZV/me</ 248
Object activation bar 105 Extension 248
Objcct lifeline 105 Extension scenario 249
Return message 105 Guarantee 249
Self call 105 Identifying test case 252

UML state machine diagram 125 Main success scenario 248, 249
Final state 126 Precondition 249
Initial pseudostate 125 Primary actor 249
Notation 125 Requirements verification 252
State 125 SCO/JC 249
Transition 125 Terminology 249
Transition label syntax 125

UML use case diagram 248 V
Notation 251
Usage 251 Value parameter

Unified Modeling Language -» UML Defined 46
Unit testing 233 Example 46

ABAP Unit 233 Vector 171
Assertion 236 Defining an iterator 175
Black box test 234 Global class ZCL_VECTOR 171
Fixture 236 Ifrage example 176
IEEE definition 233

356

Index

w
W3C 303
Web Dynpro

Screen programming 257
Widening cast

Compiler check 160
Danger of using 160
Definition 160

World Wide Web Consortium -» W3C

X

XML 303
Attribute syntax 307
Case sensitivity 307
Data modeling 305
Element syntax 305
Empty element syntax 305
Format 305
Markup convention 307
Meta-markup language 304
Openness 305
Overview 303
Parser 309
Processing concept 309
Purpose 304

Self describing document 305

XML (cont.)
Semantic 307
Syntax overview 305
Web service 328
XSLT 328

XML attribute 307
XML document

Comment syntax 306
Declaration statement syntax 306
DTD 308
Root element 305
Tree structure 307
Validity 308
Well-formed 307
XML Schema 308

XML element 305

Nesting 305
XML parser 309

DOM processing model 310
Function 310
SAX processing model 310

XML Schema 308
Constraint 308
Standard 308

z
ZIF_COMPARABLE Interface 165

357

