rgl espresso
i1l tutorials

E e
(V| s

Kathi Kones = -~

SAP List Viewer (ALV)
- A Practical Guide for ABAP Developers

- » Learn how to write a basic -~ Walk through the control
~ SAP ALV program - framework and function modules

~» Get tips on adding sorting * Dive into how to add editable
and grouping features ~ fields, events, and layout variants

Kathi Kones

SAP® List Viewer (ALV)—A Practical
Guide for ABAP Developers

1‘][espresso
IN A tutorials

ISBN: 978-3-96012087-2 (ePUB)
Copy-editing: Lisa Jackson

Cover Design: Philip Esch, Martin Munzel

Cover Photo: Fotolia #71513853 © polygraphus
Interior Design: Johann-Christian Hanke

All rights reserved

1st Edition 2015, Gleichen

© 2015 Espresso Tutorials GmbH

URL: www.espresso-tutorials.com

All rights reserved. Neither this publication nor any part of it may be copied or
reproduced in any form or by any means or translated into another language
without the prior consent of Espresso Tutorials GmbH, Zum Gelenberg 11, 37130
Gleichen, Germany.

Espresso Tutorials makes no warranties or representations with respect to the
content hereof and specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose. Espresso Tutorials assumes no responsibility
for any errors that may appear in this publication.

Feedback:
We greatly appreciate any kind of feedback you have concerning this book.

Please mail us at info@espresso-tutorials.com.

http://www.espresso-tutorials.com/
mailto:info@espresso-tutorials.com

Thank you for purchasing this book
from Espresso Tutorials!

Like a cup of espresso coffee, Espresso Tutorials SAP books are concise and
effective. We know that your time is valuable and we deliver information in a
succinct and straightforward manner. It only takes our readers a short amount of
time to consume SAP concepts. Our books are well recognized in the industry for
leveraging tutorial-style instruction and videos to show you step by step how to
successfully work with SAP.

Check out our YouTube channel to watch our videos at
https://www.youtube.com/user/EspressoTutorials.

If you are interested in SAP Finance and Controlling, join us at http://www.fico-
forum.com/forum?2/
to get your SAP questions answered and contribute to discussions.

Related titles from Espresso Tutorials:

Boris Rubarth: First Steps in ABAP®
http://5015.espresso-tutorials.com

Antje Kunz: SAP® Legacy System Migration Workbench (LSMW)
http://5051.espresso-tutorials.com

Darren Hague: Universal Worklist with SAP NetWeaver® Portal
http://5076.espresso-tutorials.com/

Michal Krawczyk: SAP® SOA Integration
http://5077.espresso-tutorials.com

Shreekant Shiralkar & Deepak Sawant: SAP® BW Performance
Optimization

http://5102.espresso-tutorials.com

Dominique Alfermann, Stefan Hartmann, Benedikt Engel: SAP® HANA

Advanced Modeling
http://4110.espresso-tutorials.com

https://www.youtube.com/user/EspressoTutorials
http://www.fico-forum.com/forum2/
http://5015.espresso-tutorials.com
http://5051.espresso-tutorials.com
http://5076.espresso-tutorials.com/
http://5077.espresso-tutorials.com
http://5102.espresso-tutorials.com
http://4110.espresso-tutorials.com

r espresso
At tutorials

All you can read:

The SAP
eBook Library

http:/free.espresso-tutorials.com

| e T]
: = =
=

=y

» Annual online subscription
» SAP information at your fingertips
» Free 30-day trial

Table of Contents

Copyright / Imprint
Preface

1 SAP List Viewer (ALV) types

1.1 ALV predecessors

1.2 Function module techniques
1.3 Object-oriented techniques
1.4 Web Dynpro

1.5 Summary

2 Writing an ALV program using function modules
2.1 Create the ABAP program
2.2 Data declarations

2.3 Select-Options
2.4 Selection of data for ALV output

2.5 Main logic section
2.6 Building the field catalog table
2.7 Calling the ALV function module

2.8 Summary

3 Writing an ALV program using the ALV control framework
3.1 Create the ABAP program
3.2 Data declarations
3.3 Select-Options
3.4 Selection of data for ALV output
3.5 Main logic section
3.6 Building the field catalog table

3.7 Screen call

3.8 Process before output (PBO) and process after input (PAl) module logic
3.9 PF-status for screen

kindle:embed:0004?mime=image/jpg

3.10 Custom control on screen

3.11 Enabling background execution

3.12 Summary

4 Adding layout features to an ALV program

4.1 Training scenario

4.2 Layout features

4.3 Alternating shaded and non-shaded lines

4.4 Optimizing column widths

4.5 Displaying totals at the top

4.6 Displaying a title at the top

4.7 Previewing layout features
4.8 Summary

5 Adding sort features to an ALV program

5.1 Training scenario
5.2 Sort features

5.3 Configuring a sort group
5.4 Changing the sort field in a sort group

5.5 Changing column order to reflect sort order

5.6 Configuring a two-level sort

5.7 Populating the sort table from the selection screen

5.8 Summary

6 Adding more features to an ALV program

6.1 Passing hidden columns of data

6.2 Displaying totals and subtotals immediately

6.3 Adding record counts

6.4 Handling ALV report layout variants

6.5 Adding a top_of page event and a logo

6.6 Adding hotspot logic

6.7 Excluding buttons from the ALV application toolbar
6.8 Adding buttons to the ALV application toolbar

6.9 Summary

7 Solving challenges with handy features applicable to many program types

7.1 Retrieving the variant name during transaction code se38 background
execution

7.2 Modifying the selection screen for different user groups

7.3 Converting all currency values to a user-specified “report currency”

7.4 Summary

8 Adding edit capability to an ALV program

8.1 Training scenario

8.2 Enabling edit based on a selection screen checkbox

8.3 Enabling edit using toolbar button

8.4 Summary

9 Conclusion
Appendix

Comparison of some report types
Resources

A The Author

B Disclaimer
C Credits

More Espresso Tutorials eBooks

Preface

SAP List Viewer (ALV) for ABAP Developers provides examples of two techniques
used to display business data with an interface that lets users rearrange, sort,
total, and download the data. The techniques are:

A newer object-oriented ALV control framework
An older ALV function module (FM) REUSE_ALV_GRID_DISPLAY.

(ALV is an acronym for SAP List viewer, carried over from the former name, ABAP
List Viewer.)

Both of these techniques can be found in custom ALV programs, especially at
companies that have run SAP software for many years.

As a developer, you should use object-oriented techniques for new programs, but
you sometimes find yourself tasked with modifying legacy ALV programs that use
function module techniques. The function module examples are provided here to
help you quickly modify legacy ALV programs when work prioritization, time, or
cost prevents a re-write.

The alternating presentation of the two techniques in chapters 4, 5, 6, and 8
facilitates comparison. Information common to both techniques is found at the
beginning of sub-chapters or is repeated, in context, in both technique sections.
Figures relevant to the ALV control framework are denoted by CF. Figures
relevant to the function module technique are denoted by FM.

You should focus on the ALV control framework examples when working through
the training scenario.

Chapter 3 covers writing a basic ALV program
Chapter 4 shows how to add layout features
Chapter 5 covers adding sorting and grouping features

Chapter 6 highlights adding more features, such as events and layout variant
handling

Chapter 8 covers adding editable fields

Coding style varies from person to person, and personal experience influences
the inevitable tradeoff decisions you make when you write a program. The
examples in this book will guide you, but should not limit you to a single solution.
(The training scenario requirements will not match your own, but provide options
that can be adapted.)

Developers who wish to code and run the programs shown in this book will need
developer access to an SAP ECC environment that contains the SAP Flight
Application sample data. Those who don’t have access at work or school can
research other options available from the SAP Store (https://www.store.sap.com)
or from a provider of SAP Internet Demonstration and Evaluation Systems (IDES).
If the SAP Flight Application is not loaded, contact your Basis or IDES support
personnel.

Familiarity with SAP navigation and ABAP development tools such as the editor
and debugger is assumed, but developers without ABAP experience or access
will most likely be able to follow the examples in the book to learn the concepts.

The naming convention for the ABAPs used in this book begin with this pattern:

1. Z (SAP standard for custom ABAP programs)

2. KK (my initials, some companies use a mnemonic for the application area
such as Fl or SD or follow another convention)

3. CTRLFW or FM (to differentiate the ALV control framework program
examples from the function module program examples)

System variables are denoted SYST- and SY-. Both versions are acceptable and
interchangeable in the exercises.

We have added a few icons to highlight important information. These include:

Tips highlight information concerning more details about the
subject being described and/or additional background
information.

Attention notices draw attention to information that you should be

[| aware of when you go through the examples from this book on
- your own.

Finally, a note concerning the copyright: all screenshots printed in this book are
the copyright of SAP SE. All rights are reserved by SAP SE. Copyright pertains to

https://www.store.sap.com

all SAP images in this publication. For simplification, we will not mention this
specifically underneath every screenshot.

1 SAP List Viewer (ALV) types

The SAP List Viewer, also known as ALV, allows developers to display
business data together with a set of functions that are presented in an easy-
to-use interface. It has evolved over time, reflecting changes in software
engineering design theory.

In 1972, German company SAP was formed. Over time, the SAP development
environment changed to the mainframe-based R/2 platform (keyboard centric and
text based), then to the client-server R/3 platform (graphical displays and mouse-
aware screens). New development tools and techniques arrived with the
introduction of SAP NetWeaver. Today, companies are looking closely at SAP
S/4HANA, a revolutionary software platform for in-memory computing.

An SAP developer is exposed to much change during a career, but much remains
familiar. Older techniques remain functional in many cases, even when new
techniques are introduced.

New developers may be confused by the variety of options, not realizing that they
are viewing decades of progress. The appearance of the output has changed little
over time, but the code and the structures used by developers have changed.
Let’s take a look at the evolution of ALV.

1.1 ALV predecessors

1.1.1 Standard lists

Standard lists were the norm for reporting for many years (Figure 1.1). Developers
used WRITE statements to output the data to screen and/or paper. They could
add logic to sum amounts at control breaks and to print page headers or footers.
Line-processing and hotspot-branching logic could be added for online users, if
needed.

Developers had to consider page width limitations and take care to provide
enough space so that truncation of large numbers did not occur. Standard lists
were particularly well-suited for audit reports and for reports distributed via a third-
party output management system that needed predefined header regions to
determine printer destinations.

Standard List
Nbr Lency I Conn Date BookNbr Amount Curr
00000102 Hot Socks Trawel AZ 0789 02/0172012 00009659 1,469,585 AUD
00000102 Hot Socks Trawvel &Z 0789 02/0172012 00009693 696,26 AlD
00000102 Hot Socks Trawvel AZ 0789 02/0172012 00009723 696,26 AlD
00000102 Hot Socks Trawvel AZ 0789 02/0172012 00009751 750,41 A
00000107 Ben McCloskey Ltd. AZ 0789 0D2/0172012 00009653 L 7T aEE (e
00000107 Ben McCloskey Ltd. AZ 0789 02/0172012 00009757 575.06 GEP
00000109 Kangeroos &Z 0789 0D2/0172012 00009656 1,214.02 GEF
00000109 Kangeroos A7 0789 DE2s01/2012 00009654 6358.96 GEP
00000112 Super Agency &Z 0789 02/0172012 00009702 607.01 GEP
00000123 Aussie Trawel AZ 0789 0270172012 00009760 6358.96 GEP
00000295 The Ultimate Answer AZ 0789 02/0172012 00009671 6358.96 GEP
00000295 The Ultimate Answer AZ 0789 0D2/0172012 00009730 607.01 GEP
00000295 The Tltimate Answer &Z 0789 02/0172012 00009771 6358.96 GEP

Figure 1.1: Standard list

1.1.2 Dialog-oriented programs

Dialog-oriented programs may use module pools, table control functionality, and
screen flow logic to provide interactive data displays (Figure 1.2). The developer
writes the logic for each toolbar button and screen transfer and keeps the internal
table content synchronized with the screen view.

SAP
=R

Flights

D
IR
&4
a7
&7
&7
a7
OL
OL
OL
L

Fli...

17

B4

255
783
789
790
105

Depart, city

NEW YORE

SAN FEANCIZCO
ROME

ROME

TOEYO

ROME

NEW YORKE

1699 NEW ¥ORKE
1934 3AN FRANCISCO

407

TOEY0
1 b

Arrival city

SAN FEANCISCO
NEW ¥ORE
FEANEFURT
TOEYO

FOME

054
FEANEFURT
SAN FEANCISCO
NEW ¥ORE
FEANEFURT

Figure 1.2: Dialog output using table control

« » H

1.2 Function module techniques

1.2.1 ALV list display function modules

Developers began using the Reuse_ALv_LIsT_bpispPLAY function module to simplify the
coding of interactive reports (Figure 1.3). The report itself was similar to a
standard list, but the buttons were backed with pre-programmed logic and gave
users more opportunity to customize and extract the output. Though released only
for internal use by SAP, some developers wrote programs that called the
REUSE_ALV_LIST* function modules.

Test program ALV: Simple list flight model

@ AFF EBERFE JITATEH Has H W44
Heading list
Eey 1 Information text
Eey 2 Information text
Jtatus list
No. | ID|Date Airfare|Curr. |Pl.type |[Capacity|Occupied Total
EEk 11,842, 32 [U5D 5B
Wi Al 11,842,332 [U5D SIS
@ 17| Ad 5,921.16 (USD 3,424
17| &b |05/25/2011 422,94 |T5D 747-400 3585 369 |190,865.74
17| ad | 06/22/2011 422,94 |T5D 747-400 3585 367 |189,993.31
17| &b |07 /202011 422,94 |T5D 747-400 3585 367 | 189,189,749
17| 48|08/17/2011 422,94 |U3D 747-400 385 368 | 192,801, 55
17| 4d|09/14/2011 422,94 |T5D 747-400 3585 373 |194,649.54
17| ad|10/12/2011 422,94 |T5D 747-400 3585 366 | 190,957.61

Figure 1.3: ALV list using function module

1.2.2 ALV grid display function modules

A step forward in graphical appearance is evident with the
function module (Figure 1.4). Pre-programmed buttons made the use of the
REUSE_ALV_GRID_* function modules very attractive despite their status of not being
released for customer use.

=

&Y F = 0HIEH TG B

Ailire

A
A
A
b,
A
A

.

17
17
17
17
17
17

Flight: Date

05252011
06/22/2011
07202011
08f17f2011
09f14/2011
10/12/2011

Ajrfare

422,94
422,94
422,94
422,94
422,94
422,94

Curr.
LISD
LISD
LSO
LISD
LISD
LISD

Plare Type
F47-400

F47-400
F47-400
47400
F47-400
F47-400

Figure 1.4: ALV grid using function module

385
385
385
385
385
385

Capacity | Occupied

359
367
367
363
373
366

REUSE_ALV_GRID_DISPLAY

Total | Capacity | Occupied | Capacity | Ocoupied
190,268, 74
129,993,231
189,189.79
192,801.55
194 649,84
190,957 .61

21
a1
il
it
21
a1

31
30
28
30
31
30

21
21
21
21
21
21

19
20
21
21
21
21

1.3 Object-oriented techniques

1.3.1 ALV control framework

The application of object-oriented concepts resulted in the ALV control framework,
also called grid control (Figure 1.5). The ALV control framework was similar
enough to function-module ALVs that it served as a good introduction to object-
oriented programming. Developers used classes and methods instead of function
modules and gained knowledge of syntax and navigation that they could apply

later to non-ALV development efforts.

SAFP

Aitline

LA
LA
LA
LA
LA
LA

Mo,
17

17
17
17
17
17

Flight: Date
05/25/2011

06222011
07/20f2011
08/17/2011
09/14/2011
10/12/2011

Airfare
422,94

422.94
422.94
422.94
422.94
422.94

Curr,
UsD

Ush
Ush
Ush
UsD
UsD

Plane Type | Capacity | Occupied

747-400
747-400
747-400
747-400
747-400
747-400

Figure 1.5: Output using ALV control framework

1.3.2 ALYV object model

SAP has provided a more mature object-oriented ALV technique based on SALV
classes called ALV object model, also described as an “ALV wrapper” (Figure 1.6).

ALV Object Model

&

Agency Mo,

102
102
102
102
107
107
109
109
112
123
295

Figure 1.6:

Travel agency name

Hot Socks Travel
Hot Socks Travel
Hot Socks Travel
Hot Socks Travel
Een McCloskey Ltd.
Ben McCloskey Ltd.
Kangeroos
k.angeroos

Super Agency
Aussie Travel

alD
Al
AlD
aLD
GEP
GEP
GBEP
GEP
GEP
GEP

The Litimate Answer GBP

a7
a7
a7
a7
a7
a7
a7
a7
a7
a7
a7

SFTFE & @ BT H

789
789
789
789
789
789
789
789
789
789
789

Output using ALV object model

383
383
383
383
383
383

Currency | Aitline| Fight Mo, | Flight Date

02/01/2012
02/01/2012
02/01/2012
0z/01/2012
02/01/2012
02/01/2012
02/01/2012
02/01/2012
02/01/2012
02/01/2012
02/01/2012

1.3.3 ALV with integrated data access

369
367
367
368
373
366

Book. nio,

Total | Capacity | Occupied | Capacity | Qocupied

190,368.74
189,993.31
189,159.79
192,801.55
194,649.84
190,957.61

Armount
0559 1,469.83
0699 /96,26
o728 696.26
o751 | Fa0.41
0553 1,277.92
OFS7 575.005
o656 1,214.02
06384 G638.96
oF02 60701
OFo0 638.95
S571 638.95

31
31
31
31
31
31

=l
30
28
30
31
30

Currenicy | Aitline

AUD
AUD
AUD
AUD
GBP
GBP
GBP
GBP
GBP
GBP
GBP

Alitalia
Alitalia
Alitalia
Alitalia
Alitalia
Alitalia
Alitalia
Alitalia
Alitalia
Alitalia
Alitalia

21
21
21
21
21
21

Armount
1,957.00
Q27.00
Q27 .00
099,10
2,080,000
Q27 .00
1,957.00
1,030.00
078,50
1,030.00
1,030.00

19
20
21
21
21
21

CLirrency

ELIR.
ELIR
ELIR
ELIR
ELIR.
ELIR.
ELIR
ELIR
ELIR.
ELR.
ELR.

SAP S/4HANA has its own ALV functionality for customers wishing to use it
(Figure 1.7). It is called ALV with integrated data access (IDA), and it permits you
to provide the familiar ALV interface to users when displaying in-memory data.

IDA ALV Sample: Simplest Example - show data with one line of code

EFEL(EEF(E L EE

ID | No.
oAk
ol
sl
a8 17
AL
sk

Figure 1.7: Output using ALV with integrated data access (IDA)

Flight Date
05/25/2011

06/22/2011
07f20/2011
08f17/2011
09/14,/2011
101272011

Airfare
422,94

422,94
422,94
422,94
422,94
422,94

Cu_

LISD
LISD
LISD
LISD
LISD
LISD

Pl.type
F47-400

F47-400
F47-400
F47-400
F47-400
F47-400

Capac
385

385
385
385
385
385

Occupi
269

357
357
363
373
366

Total Capac Occupi

180,5863.74
189,993,321
189,189.79
192,801.55
194,549,584
180,957,651

31
31
31
31
31
31

a1
20
28
20
31
20

Capac
21

21
21
21
21
21

Occupi
19

20
21
21
21
21

1.4 Web Dynpro
SAP List Viewer for Web Dynpro is available for ABAP and Java platforms.

1.5 Summary

Business users have gained more flexibility when displaying and extracting data.
Developers have gained more powerful, re-usable tools that continue to evolve.

Be aware that the two ALV function module techniques described in Chapter 1.2
are not released by SAP for customer use. The ALV grid display function module
examples are included in this book to help you make the connection between a
technique you may already know and the objects-based technology you may be
learning. These examples may also help you modify a legacy ALV program that
uses one of the function module techniques when a re-write isn’t possible.

The SAP Community Network forums contain many questions across all the ALV
techniques. The responses are sometimes accurate for the ALV technique the
poster is using, but sometimes they are not. Because of similarities in the ALV
techniques, however, a wrong answer can sometimes be helpful—if you know
how to “transpose” it to your technique. (For instance, an incorrect response of
coLwipTH-0PTIMIZE might lead you to cwiptH_opT in your ALV layout structure.)

Key points:

New tools and techniques for SAP report development have been introduced
over time.

Older techniques often continue to function (to reduce the impact upon
existing programs) and are still appropriate for some situations. This concept
is called backwards compatibility.

For new SAP List Viewer programs, avoid using the unsupported, “not
released” function module techniques. Instead, use ABAP objects techniques
such as ALV control framework.

For more information about these techniques, including how to find SAP-provided
sample programs, refer to the Appendix.

2 Writing an ALV program using
function modules

In this chapter, you’ll learn how to write a report using an ALV function
module technique, specifically, the rReuse_ALv_GRiD_bisPLAY function module.
For the training scenario, you’ll retrieve data from the SAP Flight
Application tables in order to evaluate the amount of income that various
travel agencies have generated booking airline flights. The retrieved data
will include two currency amounts and three currency keys.

2.1 Create the ABAP program

A preview of the ALV output from this initial program is shown in Figure 2.1.

ALV Function Modile (Start)
& &% F =B i N Er R A O R ===

Aogency | Travel agency name | Cure | ID | Mo, | Flight Date Booking Arnount (for.currencyd | Cure, | Aidine Arnount (oc.currncy) | Cur,
123 Aussie Travel GBP | AA | 17 | 05/25/2011 113 2432.09 GBP | American Airlines 359.50 UsD
123 Aussie Travel GEP Aa 17 05/25/2011 230 28592 GBP | American Airlines 422,94 LSD
123 Aussie Travel GBP | AA | 17 | 05/25/2011 265 27168 GBP | American Airlines 401.79 UsSD
123 Aussie Travel GEP AA 17 05/25/2011 270 27162 GBP | American Airlines 401,79 UsD
123 Aussie Travel GBP | AA | 17 05/25/2011 279 28592 GBP | American Airlines 422,94 UsSD

123 Aussie Travel GEP AaA 17 05/25/2011 394 28592 GBP | American Aitlines 422,94 LSD

Figure 2.1: Preview (function module — FM)

Using transaction code se38 (or se80, if you prefer), type a name for the new
program, then click on the create button. (I have used the name ZKK_ALV_FM for
this initial program.) Complete the Type and Startus fields (Figure 2.2), then click
on the save button. When prompted for the Package, click on the LocaL OBJECT
button. This fills the Package field with $TMP and positions your cursor in the new
program.

[E ABAP: Program Attributes ZKK_ALY_FM Display
Title ALY Function Module (Start)
Criginal language EN English
Created EONES 01/28/2Z015
Last Changed EONES 02/19/2015
[:
Status
1=
Attributes
Type Executable pru:u'gr:arh' -
Status Test Program -
Application -

Authorization Group

Package §TMP Termporary Ohjects (never transported!)

Logical database

Selection screen

<
N
7]
A
%]

Figure 2.2: Program attributes (FM)

2.2 Data declarations

As shown in Figure 2.3, begin the data declarations section of the program by
listing the database tables used in the seLecT-opTIONs statement: sBook and
STRAVELAG (Figure 2.4). This will prevent a syntax error.

REEFORT zkk alwv fm NO 3ITANDARD PALGE HEADING.

TAELE3: shook, "hooklngs
straveladg. "trarel Fgencies

TYPES: BEGIN OF lty output,
agencynum TYPE stravelag-agencynun, “agency number

name TYPE stravelag-hate, "agency name

currency TYPE stravelag-currency, "agerncy currency

carrid TYPE shook-carrid, Thooked carrier

connid TYPE shook-connid, Thooked connection

fldate TYPE shook-fldate, T"hooked date

hookid TYPE shook-bookid, Thooking ID

forcursm TYPE shook-forcocuram, "price in foreign cuUirency
forcurkey TYPE shook-forcurkevy, "forelgh currency kev
carrhname TYPE scarr-carrhate, fogrrier name

logouram TYPE shook- loccuram, "price in Jirline curr
loccurkey TYPE shook-loccurkevw, "local currency of dirline

END OF 1ty output.
DATA: gs_output TYPE 1ty output, "local structure (line)
Ft_output TYFE STANDAERD TAELE OF lty output,

gt_fieldeat TYPE slis t fieldeat alw.

DATA: gv_lines TYPE 1.

Figure 2.3: Data declarations (FM)

A local TYPE called Lty_outpur lists the fields to be displayed in this ALV. A single-
line structure and matching internal tables (es_output and cT_ouTrPuT) are declared
next, based on the local TYPE Lty_outpur.

Local TYPE vs. data dictionary structure

Instead of defining your output structure as a local TYPE in your

.— program, you can define it as a structure in the data dictionary.

The technique you use may depend upon your employer’s or

client's standards and practices, the number of changes you

expect to make over time to the output structure, and the ease of making
those changes.

“Currency keys

Some types of data require a “partner’ field for clarity—for
r instance, currency amounts require currency keys, count and
weight amounts require units of measure, and texts that can be
stored in multiple languages require language keys. To facilitate

troubleshooting and flexibility, we will provide all of the applicable currency
keys in the ALV interface. In Chapter 6.1, you will see how you can hide fields
on initial display of the ALV.

Referring again to Figure 2.3, you'll see a global table called cT_rieLbcat. The field
catalog table is used to pass information (such as output length or data type)
about the fields included in the output structure.

Field catalog table (SLIS_T_FIELDCAT_ALV)

The field catalog table contains information about each of the
fields (or columns) in the ALV output. If your structure is not
already defined in the data dictionary, you will need to populate
this information into the field catalog table yourself. You will see
later in this chapter, though, that you can refer to metadata in the data
dictionary when populating your field catalog table.

.

The final data item declared in this simple program is a global variable Gv_LINES
that will be used to verify that records were found for display using the ALV
interface.

2.3 Select-Options

After the data declarations, type three seLect-opTions as shown in Figure 2.4.
Save, check, and activate your program.

SELECT-OFTIONS:! s agnum FOR stravelag-agencynum DEFRULT 1237,
g carid FOR sbook-carrid,
g Lldat FOR sbook~fldate.

Figure 2.4: Selection-options declaration (FM)

Change the seLecT-opTIONs labels that will be displayed to the user from question
marks to the texts stored in the data dictionary by using the menu path Goto °
Text ELEmENTs * SELECTION TEXTs. Check the checkboxes (Figure 2.5). Activate the
selection texts, then go back to your program source code.

ABAFP Text Elaments: Change Selection Texts Language English
F=2 | PREn| 1 £ 20 H

¥ a2
Program IEEE_ ALV P Active
= — |

Text Symbols / Selection Texts l List Headings

(EF{EIRET L/ 3
[arne Text Dictionary ...
S_AGNUM Travel Agency Number v
3_CARID Airline [v
3 _FLDAT Flight Date W

Figure 2.5: Copying selection texts from the data dictionary (FM)

The selection screen should look like Figure 2.6 when done.

ALV Function Module (Start)

@ [@
Travel Agency Nurnber 123 to =
Aitlire to 5
Flight Dat t T IS =
i ate] J |

Figure 2.6: Selection screen (FM)

2.4 Selection of data for ALV output

We will type placeholders for the inImiALIzATION and the AT SELECTION-SCREEN events,
but will leave them empty for this initial program (Figure 2.7).

INITIALIZATION.
AT SELECTION-SCREERN.
START-OF-SELECTION. "retrieve data

SELECT stravelag~agencynum stravelag~name stravelag-~currency
ghook~carrid shook-~connid sbook~fldate shook-~bookid
sbook~forcuram sbook~forcurkey
gcarr-carrname
shook~loccuram sbook~loccurkey

FROM stravelag joilin sbook

on stravelag~agencynum = sbook-agencynum
join scarr
on sbook~carrid = @Care~carrid

INTe TABLE gt output
WHERE stravelag~agencynum IN S agnum
AND sboock-~carrid IN = carid
AND sbock~fldate IN = fldat.

Figure 2.7: Retrieval of data for ALV output (FM)

Add the seLecT statement to your program’s sTArRT-oF-seLECTION event (Figure 2.7).
It joins three tables from the SAP Flight Application (using the selection choices
provided by the user) and directs that the selected data be put into the internal
table ct_outpuT. Note that the field order and the field formats are identical in the
seLEcT statement and in the local TYPE Lty_ouTtput defined earlier.

Tilde for joins

The symbol between the table names and field names in Figure
2.7 is a tilde ~. Use the tilde instead of the usual hyphen when
you are joining tables within a SELECT statement.

Optimization of SELECT statements

Optimizing a SELECT statement can make a tremendous

improvement in your program’s performance. Utilize SAP tools

such as runtime analysis (transaction codes sat or se30) and

performance frace (transaction code st05) to make
improvements.

End the StarT-0F-SELECTION section by adding the lines of code shown in Figure
2.8. If data was retrieved, you will sort the table using the fields of the internal
table that make each row unique. (Advanced sorting is covered in Chapter 5.) If
no data was retrieved, the program is ended here with a message to the user.

DESCRIBE TAELE gt output LINES gv_lines.
IF gwv_lines NE O. "data was retrieved
SORT gt _output BY agencynum
carrid
connid
fldate
hookid.
EL3E.
MESSAGE ID '0O0' TYPE 'I' NUMEER 001 WITH 'No data retriewved!'.
RETUERN.
ENDIF.
END-OF-SELECTICN.

Figure 2.8: Verify that data was retrieved (FM)

2.5 Main logic section

I'll use subroutines in this program to break the logic into smaller parts for
demonstration purposes, both for simplicity and because many of the programs
that you support use this older syntax.

(If your employer’s or client’s standards for new and/or modified programs require
the use of methods syntax, adjust the examples accordingly.)

Ak A A A CFart AfF main program _F_og_l'c i g g L g g g g L o o

PERFOBRM zf build fieldeatalog USING gt fieldcat[].

PERFORM zf display alwv.

Ak d A A T A F main program log_l'c g U L g o O

Figure 2.9: Two subroutines (FM)

In the first subroutine in Figure 2.9, you will populate the field catalog table with
information about the fields to be displayed. You may recall that this is necessary
because the internal table uses a local TYPE instead of a structure defined in the
data dictionary. The global table &T_riELDCAT is passed to the subroutine
ZF_BUILD_FIELDCATALOG, and it is returned to the main program with content.

With no field catalog information, the ALV will display the data records with blank
column headings and with none of the data dictionary features that provide
context for developers and users alike: check tables (F4 dropdowns), field help
(F1), and forward navigation within the data dictionary.

Use of data dictionary structure for ALV

If the internal table of data that you will be displaying corresponds
to a table or structure defined in the data dictionary, you can build
your field catalog by calling function module
REUSE_ALV_FIELDCATALOG_MERGE at the start of the
ZF_BUILD_FIELDCATALOG Subroutine, then update only those retrieved field
attributes that require a change. If none of your fields require a change (no
pre-summing, no hiding of fields, no hotspots, etc.), you can omit the building
of the field catalog entirely and pass the structure name to the
REUSE_ALV_GRID_DISPLAY function module in the |_sTRUCTURE_NAME parameter.

In the second subroutine, you will call the Reuse_aLv_GRiD_DbispLAY function module.

2.6 Building the field catalog table

Within this subroutine (Figure 2.10), first define a local structure called Ls_FIELDCAT.
LS_FIELDCAT iS based on structure sLis_FIELDCAT_ALv.

FORM zf build fieldcatalog USING 1t fieldcat TYPE slis t fieldcat alwv.
BATAES ls fieldocar TFPE slis fieldeat:.alve "single row

CLEAR ls fieldcat.

lz fieldcat-fieldname "AGENCYNUM' .

lz fieldcat-ref fieldname '"AGENCYNUM' . "data dict info
lz fieldcat-ref tabname = '"STRAVELAG'.

APPEND ls fieldcat TO 1t fieldcat.

CLEAR ls fieldcat.

ls fieldcat-fieldname "NAME" .

lz fieldcat-ref fieldname "NAME" .

ls fieldcat-ref tabname = '"STRAVELAG'.
APPEND. 1= fieldecat Td 1t fieldeat.

CLEABR 1s fieldcat.

lz fieldcat-fieldname = "CURRENCY'.
ls fieldcat=ref fieldname = *'CURRENCT'.
lz fieldcat-ref tabname = "STRAVELEG'

APPEND ls fieldcat TO 1t fieldcat.

Figure 2.10: Building the field catalog, part 1 (FM)

Table 2.1 shows how the naming convention frequently uses a “t” to differentiate
tables from their underlying structures.

Type-pool SLIS

Structure |slis_fieldcat_alv |Is_fieldcat (local)

Table slis_t_fieldcat_alv | It_fieldcat (local)
gt_fieldcat[] (global)

Table 2.1: Naming convention (FM)

For each of the fields in the output table cT_outpuT, complete the following steps:

1. Clear Ls_FIELDCAT.
2. Fill rELDNAME with the LTy _ouTtpuT fieldname.

3. Fill rRer_rieLbNnAME With the fieldname from our original data source. (Note: you
can omit Rer_FIELDNAME if the FIELDNAME from the internal table matches the
name of the field from the Rer_TaBNAME table, as it does in the program.)

4. Fill rer_taBNAME With the table name of our original data source.
5. Append Ls_FIELDCAT to the table LT_FIELDCAT.

In this program, the fieldnames from the local type Lty_outpur match the
fieldnames of the database data, but that is not a requirement. Under some
circumstances, you may decide to use names that are different. You may also
decide to create your own name for fields with a custom function (for example, a
counter or traffic light field).

Continue through the fields of local TYPE Lty_ouTtpuT, as shown in Figure 2.11.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = NCARRIDY .
ls fieldeat-ref fieldname = 'CLERID'.
ls fieldeat-ref tabname = 'ZBRO0E'.

APPEND 1= fieldeat To 1t fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = '"CONNID'.
ls fieldeat-ref fieldname = 'CONIID'.
ls fieldeat-ref tabname = 'SBOOK" .

LAPPEND 1= fieldeat ToO 1t fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = "FLDATE"'..
ls fieldeat-ref fieldname = 'FLDATE'.
ls fieldeat-ref tabname = 'SBOOK"Y. .

APPEND 1= fieldeat To 1t fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = VBOOKID:':
ls fieldeat-ref fieldname = 'EBOOEID'.
ls fieldeat-ref tabname = 'ZBRODE'.

APPEND 1= fieldeat To 1t fieldeat.

Figure 2.11: Building the field catalog, part 2 (FM)

The seLecT statement to fill the internal table cT_outpuT retrieved two amount fields
and three currency keys.

The two amount fields (Forcuram, Loccuram) need a pair of additional fields
populated into the field catalog: cFiELDNAME and cTABNAME as shown in Figure 2.12
and Figure 2.13.

CLEAR ls fieldcat.

lz fieldcat-fieldname = "FORCURAM'. "amount field !

Iz Fre ldeategr e Mdhians = '"FORCURKEY'. "associated currency key
lz fieldcat-ctabname = "SBOCK".

ls fieldeoat=ref fieldname = *FORCURAM";

lz fieldcat-ref tabname = TSEOOK" .,

APPEND ls fieldcat TO 1t fieldcat.

CLEAER 1= fieldcat.

ls fieldcat fieldname = 'FORCURKEY'.
1s fieldcat-ref fieldname = 'FORCURKEY'.
ls fieldcat-ref tabname = T3EO0E’ .,

APPEND 1s fieldcat TO 1t fieldcat.

CLEAER 1= fieldcat.

ls_fieldcat-fieldname = 'CARRNAME',
1s fieldcat-ref fieldname = 'CARRNAME'.
ls fieldcat-ref tabname = TECARR! .

APPEND 1s fieldcat TO 1t fieldcat.

Figure 2.12: Building the field catalog, part 3 (FM)

The three fields containing currency keys (CURRENCY, FORCURKEY, and LOCCURKEY)
do not need any additional attributes populated. (Chapter 5.1 contains more
information about the three currency key fields.)

CLEAR 1ls fieldcat.

ls fieldcat-fieldname = YLOCCURAM® . "amount field !

ls fieldcat-cfieldname = '"LOCCURKEY". "currency key here
ls fieldcat-ctabname = TEsELUEK!

ls fieldcat-ref fieldname = “LOCCUREM".

ls. Freldoat~=pes Fabname = TSHOOK" .

EPPEND ls fieldeat TO 1t fieldcats

CLEAR l1ls fieldcat.

ls fieldcat-fieldname = “LOCCUREEL &
1s fieldcat=ref fieldname = "LOCCURKEY'.
1z fieldcat-ref tabname = "BEDOOK’.

BFFEND ls fieldeat “I@ 1t fieldcat.

ENDFORIM.

Figure 2.13: Building the field catalog, final (FM)

2.7 Calling the ALV function module

The rReuse_ALv_GRID_DIsPLAY function module can accept many import parameters.
As shown in Figure 2.14, you can generate a simple ALV display by passing only
three items: the report name (sy-repip), the field catalog table just populated
(eT_FIELDCATALOG[]), and the internal table of data that was selected from three
joined database tables (cT_outrur).

FOREM =zf display alw.

CALL FUNCTICN 'REUSE ALV GRID DISPLAY'
EXPORTING
i callback program
it _fieldecat
TABELES
t_outtab
EXCEPTICONS
program error
OTHERS

sy-repid
gt_fieldoat[]

gt_output

IF =zy-subrc <> 0[O,
MESSAGE ID 'O0' TYPE 'I' NUMEER 001
WITH 'REUSE ALYV GRID DISFPLAY call error: ' sy-subrc.
RETUERN.
ENDIF.

ENDFORM.

Figure 2.14: Calling the ALV function module (FM)

Finally, include error-handling to send the user a pop-up message if the function
module call fails with a return code (sy-suBrc) other than 0.

Run the program to display the data (Figure 2.1).

2.8 Summary

In this chapter, an SAP List Viewer (ALV) report was generated by calling function
module rReuse_ALv_GRID_DIspLAY. With very little coding, data was presented with
an ALV application toolbar that lets the user reorganize the report (sort, filter,
change column order, sum, etc.), print it, or download it to another application.

Key points:

Data declaration, selection-screen definition, retrieval of data, creation of field
catalog, and ALV call

Local type instead of data dictionary structure
seLECT statement with multiple joins

For new SAP List Viewer programs, use an ABAP objects technique (Chapter
3)

In Chapter 3, you'll create a report similar to this chapter’s report, but instead of
using the unsupported function module technique shown in this chapter, you'll use
the ALV control framework, an ABAP objects technique.

3 Writing an ALV program using the
ALV control framework

In this chapter, you’ll learn to write a report using the ALV control
framework. As in Chapter 2, this program retrieves data from the SAP Flight
Application tables in order to evaluate the amount of income that various
travel agencies have generated booking airline flights. The retrieved data
will include two currency amounts and three currency keys.

3.1 Create the ABAP program

Much of the program code written in Chapter 2 can be re-used for this chapter’s
exercise, and vice versa. A simple way to copy your program is to use the copy
button from the initial screen of the ABAP editor, transaction code se38.

To create a new program, use transaction code se38 (or se80, if you prefer) to
type a name for the program, then click on the create button. (I have named this
program ZKK_ALV_CTRLFW.) Complete the Type and Status fields (Figure 3.1),
then click on the save button. When prompted for the Package, click on the LocaL
oBJECT button. This fills the Package field with $TMP and positions your cursor in
the new program.

[E &BAP: Program attributes ZKE_ALY _CTRLFW Display
Title ALy Control Framewark (Start)
Criginal language EN English
Created EONES 01/28/2Z015
Last Changed EONES 03/04/2015
I
Status
1=
Attributes
Type Executable program -
Status Test Program b
Application -

Authorization Group

Package & TMP Temporary Ohjects (never transported!)

Logical database
Selection screen
[CJEditor lock [¥IFixed point arithrmetic

[¥Unicode Checks Active [CIstart wsing wariant

Figure 3.1: Program attributes (CF)

Figure 3.2 is a preview of the ALV output from this first example program using the
ALV control framework.

= System

&

SAP

& (&)=L [E) 5% ---. (2z) (@)

Curr,

Agency
123
123
123
123
123
123
123
123

Help

-

Travel agency name
ALissie Travel

Aussie Travel
ALissie Travel
Aussie Travel
ALissie Travel
Aussie Travel
Aussie Travel
Apesie Trawel

de@@ LHRE ©DLo8 AR @ M@

GEP
GEP
GEP
GEP
GEP
GEP
GEP
GRF

ﬂu&
PISLS
8
pISLS
8
PISLS
PISLS
A4

1?
17
17
17
17
17
17
17

Figure 3.2: Preview (ALV control framework)

Flight Date
08/17/2011

0g/17f2011
05/17f2011
09/14f2011
09/14f2011
09/14f2011
12f07f2011
120782011

Eooking
1670

16735
1684
1789
1916
1951
3080
AnAg

Arnount (for.currency)
240,23

283.08
271.68
271.68
243.09
237,29
746,42
5739

Curr,

GEP
GBP
GEP
GBP
GEP
GBP
GBP
GRF

Airlire

Arnetican Airlines
Arnetican Airlines
Arnetican Airlines
Arnetican Airlines
Arnetican Airlines
Arnetican Airlines
Arnetican Airlines
Ampriran Airlines

3.2 Data declarations

As shown in Figure 3.3, begin the data declarations section of the program by
listing the database tables used in the seLecT-opTIONs statement: sBook and
SsTRAVELAG (Figure 3.4). This will prevent a syntax error.

FEFORT zkk alv ctrlfw.

TAELE3: shook, "hookings
stravelag. "trarel aFgencies

TYPES: BEGIN OF lty output,
agencynum TYPE stravelag-agencynun, "agency number

nane TYPE stravelag-hate, "agency name

currency TYPE stravelag-currency, "agerncy currency

carrid TYPE shook-carrid, Thooked carrier

connid TYPE shook-connid, Thooked connection

fldate TYPE shook-fldate, T"hooked date

hookid TYPE shook-bookid, Thooking ID

forcursm TYPE shook-forcuram, "price in foreign cuURrency
forcurkey TYPE shook-forcurkevw, "forelgh currency kew
carrhame TYPE scarr-carrhate, fogrrier name

logouram TYPE shook- loccuram, "price in Jirline curr
loccurkey TYPE shook-loccurkevw, "local currency of dirline

END OF 1ty output.

DATA: gs_output TYPE 1ty output, "local structure (line)
Ft_output TYFE STANDAERD TAELE oOF lty output,
gt_fieldoat TYPE lve t foat. "Eakhle

DATA: gv_lines TYPE: iy
ok_code LIEE sv-—ucomn,
¥_container TYPE scrfname VALUE 'ZIEE ALYV CTRLFW 2100 CONT1',
gridil TYFPE REF TO c©l gui alv grid,

g _custom container TYPE REF To ol gul custom container.

Figure 3.3: Data declarations (CF)

A local TYPE called Lty_output lists the fields to be displayed in this ALV. A
structure and matching internal table (es_output and ct_output) are declared
next, based on the local TYPE Lty_ouTtpuT.

Local TYPE vs. data dictionary structure

Instead of defining your output structure as a local TYPE in your
.- program, you can define it as a structure in the data dictionary.
The technique you use may depend upon your employer’s or
client’s standards and practices, the number of changes you
expect to make over time to the output structure, and the ease of making
those changes.

L

Some types of data require a “partner’ field for clarity—for

instance, currency amounts require currency keys, count and

weight amounts require units of measure, and texts that can be

stored in multiple languages require language keys. To facilitate
troubleshooting and flexibility, we will provide all of the applicable currency
keys in the ALV interface. In Chapter 6.1, you will see how you can hide fields
on initial display of the ALV.

Referring again to Figure 3.3, you'll see a field catalog table cT_FiELDCAT tO pass
information (such as output length or data type) about the fields of the output
structure. This time the table is based on the ALV control framework format
LVC_T_FCAT.

Field catalog table (LVC_T_FCAT)

The field catalog table contains information about each of the

fields (or columns) in the ALV output. If your structure is not

already defined in the data dictionary, you will need to populate

this information into the field catalog table yourself. You will see
later in this chapter, though, that you can refer to metadata in the data
dictionary when populating your field catalog table.

You'll use variable cv_LINEs to verify that records were retrieved for display.

The final four variables declared in Figure 3.3 are part of the ALV control
framework. You will use ok_cobe and G_coNTAINER to set up the output screen. The
screen setup is one of the biggest differences between this technique and the
function module technique. The text value for c_conTAINER iS a concatenation of
the program name, the screen number, and CONT1 for “container 1”. The text
value aligned with c_coNTAINER iS not as important as making sure that you match
the value exactly in the eLemenT LIsT tab of the screen that you'll build later. (Even
when you expect to only use one container, it is good practice to include a
number.)

GrRID1 and G_cusTtom_coNTAINER are declared with TYPE REF TO classes that are
part of the ALV control framework. You'll add the logic for the custom container in
Chapter 3.8.

3.3 Select-Options

After the data declarations, type three SELECT-OPTIONS as shown in Figure 3.4.
Save, check, and activate your program.

SELECT-OPTICHNE: 8 agnum FOR stravelag-agencynum DEFAEULT 1237
s jcarid POR ‘sbook=carrcidy
s fldat PFOR sbook-Fldates

Figure 3.4: SELECT-OPTIONS declaration (CF)

Change the seLecT-opTIONs labels that will be displayed to the user from question
marks to the texts stored in the data dictionary by using the menu path Goto °
Text ELemenTs ¢ SeLecTioN Texts. Check the checkboxes as shown in Figure 3.5.
Activate the selection texts then go back to your program source code.

ABAFP Text Elamments: Change Selection Texts Language English
= Pun | £ a2 0H

Prograrm TZIG(_AL‘EF_CTRLFW jﬂ«ctive
Text Syrmbols SeI;ctiDn Texts List Headings

EYENEY L/ 3
Marne Text Dictionary ...
S_AGNUM Travel Agency Murnber L
5 _CARID Airline 4
§_FLDAT Flight Date i

Figure 3.5: Copying selection texts from the data dictionary (CF)

The selection screen should look like Figure 3.6 when done.

ALV Controf Framework {Start)

Travel Agency Nurnber 123 to
Airlire to
i [1 =
Flight Date to _| -

Figure 3.6: Selection screen (CF)

3.4 Selection of data for ALV output

We will type placeholders for the inImiaLIzATION and the AT SELECTION-SCREEN events,
but will leave them empty for this initial program.

INITIALIZATION.
AT SsELECTION-=SCEEEN.
START-OF-SELECTION. "retrieve data

SELECT stravelag~agencynum stravelag-~name stravelag-~currency
shook~carrid sbook~connid sbook~fldate shkhook~bookid
shook~forcuram shook~forcurkey
scarr~carrname
sbook~1loccuram sbook~loccurkey

FROM strawvelag JOIN shook

ON stravelag-~agencynum = shook-~agencynum
JOIN scarr
ON sbook~carrid = scarr~carrid

INTO TAELE gt output
WHERE stravelag-agencynum IN = agnum
AND skook-~carrid IN' & carid
AND sbook-~fldate LW s.fldat,

END-OQF -SELECT TON .

Figure 3.7: Retrieval of data for ALV output (CF)

Add the seLecT statement to your program’s sTarRT-oF-seLECTION event (Figure 3.7).
It joins three tables from the SAP Flight Application (using the selection choices
provided by the user) and directs that the selected data be put into the internal
table ct_outpuT. Note that the field order and the field formats are identical in the
seLecT statement and in the local TYPE L1y_outpuT defined earlier.

Tilde for joins

The symbol between the table names and field names in Figure
3.7 is a tilde ~. Use the tilde instead of the usual hyphen when
you are joining tables within a SELECT statement.

Optimization of SELECT statements

Optimizing a SELECT statement can make a tremendous
improvement in your program’s performance. Utilize SAP tools
such as runtime analysis (transaction codes sat or se30) and

performance trace (transaction code st05) to make improvements.

3.5 Main logic section

Add the lines of code shown in Figure 3.8. If data was retrieved, sort the table
using the fields of the internal table that make each row unique. (Advanced sorting
is covered in Chapter 5.) Build the field catalog and then call the screen. Much of
the ALV control framework logic is aligned with the screen, as you will see.

(If your employer’s or client’s standards for new and/or modified programs require
the use of methods syntax instead of subroutines, adjust the examples
accordingly.)

DESCRIBE TAELE gt output LINES gv_lines.

IF g _lines NE 0. "data was retrieved
SORT grt_output BY agencynum
carrid
connid
fldate
hookid.

FERFORM =zf build fieldecatalog USING gt fieldeat[] .

CALL 3CREEN =100,

EL3E.
ME33AGE ID '00' TY¥PE 'I' NUMEER 001 WITH 'No data retriewved'.
RETTEI.

ENDIF.

Figure 3.8: Verify that data was retrieved and perform main program logic (CF)

If no data was retrieved, the program is ended here with a message to the user.

3.6 Building the field catalog table

Within this subroutine (Figure 3.9), first define a local structure called Ls_FIELDCAT.
We are only interacting with single lines of the field catalog table while inside this
subroutine so that is why we have declared the structure locally. Ls_FIELDCAT is
based on the ALV control framework structure Lvc_s_Fcar.

Use of data dictionary structure for ALV

If the internal table of data that you will be displaying corresponds

. toatable or structure defined in the data dictionary, you can build

your field catalog by caling function module

~ LVC_FIELDCATALOG_MERGE at the start of the zF_BuUILD_FIELDCATALOG

subroutine, then update only those retrieved field attributes that require a

change. If none of your fields require a change (no pre-summing, no hiding of

fields, no hotspots, etc.), you can omit the building of the field catalog entirely

and pass the structure name to the seT_TABLE_FOR_FIRST_DISPLAY method in the
|_STRUCTURE_NAME parameter.

FORM zf build fieldcatalog WSING 1t. fieldecat T¥PE lvc &£ fcat,
DETAL 1ls fieldecat TiPE lve = foat. "single row

CLEAR: ls: fieldecats

ls fieldcat-fieldndme = "AGENCYHUM' .
1s fieldcat-ref table = "STRAVELAG'.
APPEND 1s fieldcat TO 1t fieldcat.

CLEAR. 15 fieldcats

ls fieldcat-fieldname = 'NAME'.

la fieldcat-ref table = *STRAVELAG™ .
APPEND 1= fieldcat TO 1t fieldcat.

CLEAR: 1= fieldcats

s fieldcat-fieldname = "CUREREHCY".
1s fieldcat-ref table = "STHEAVELAG" .
BRREND ls fieldcat T@ lt fieldcat.

Figure 3.9: Building the field catalog, part 1 (CF)

Table 3.1 shows how the naming convention frequently uses a “t” to differentiate
tables from their underlying structures.

ALV control framework

Structure |lvc_s_fieldcat |Is_fieldcat (local)

Table Ivc_t fieldcat | It fieldcat (local)

| | | gt_fieldcat]] (global) |

Table 3.1: Naming convention (CF)

For each of the fields in the output table ct_outpuTt, complete the following steps:

1. Clear Ls_FIELDCAT.

2. Fill ELbNAME with the LTY_ouTtpuT fieldname.

3. Fill rer_taBLE with the table name of the original data source.
4. Append Ls_FIELDCAT to the table LT_FIELDCAT.

In this program, the fieldnames from the local type Lty_outputr match the
fieldnames of the database data, but that is not a requirement. Under some
circumstances, you may decide to use names that are different. You may also
decide to create your own name for fields with a custom function (for example, a
counter or traffic light field).

Continue through the fields of local TYPE Lty_outpuT, as shown in Figure 3.10.

CLEAR 1= fieldeat.

ls fieldeat-fieldname 'CARRID'
ls fieldeat-ref tahle 'SBOOK!' .
LPPEND 1z fieldeat TO 1t _fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldnams = 'CONIID'.
ls fieldeat-ref takle = 'SEO0OE'.
LPPEND 1z fieldeat TO 1t _fieldeat.

CLEAR ls fieldcocart.

ls fieldeat-fieldname YLD ATE
ls fieldeat-ref tahle 'SBOOKE!' .
LPPEND 1z fieldeat TO 1t _fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname 'BOOKID' .
ls fieldeat-ref tahle YSBOOE" .
LPPEND 1s fieldecat TO 1t _fieldcat.

Figure 3.10: Building the field catalog, part 2 (CF)

The seLecT statement to fill the internal table cT_ouTpPuT retrieved two amount fields
and three currency keys.

The two amount fields (FOorRcuram, LoccuramM) need one additional field populated
into the field catalog: cFiELDNAME as shown in Figure 3.11 and Figure 3.12.

CLEAR 1z fieldcat.

ls_fieldgat—fieldname = "FORCURAM ., "amount field !
Is fieldeat-cficldname. = "FUORCUREBET". "associated currency key
1s fieldcat-ref table = "SBOOK'.

AFPENE l1ls fieldcat TQ 1t fieldcat,

CLEAR l1ls fieldcat.

1s fieldcat-fieldname = 'FORCURKEY'.
ls: fieldeat=ref table = “SBUOK",
AFPPEND 1ls fieldcat TO 1t fieldcats

CLEAR ls fieldcat.

ls fieldcat-fieldname = *'CARRNAME" .
lo: fieldcat=~ref talle = ""3CEEE"
APPEND. 1s fieldeat: TO 1t fieldcat,

Figure 3.11: Building the field catalog, part 3 (CF)

The three fields containing currency keys (CURRENCY, FORCURKEY, and LOCCURKEY)
do not need any additional attributes populated. (Chapter 5.1 contains more
information about the three currency key fields.)

CLEAR 1s fieldcat.

ls rieldeat=fieldname = “LOCCUREM s "amount field !
Iz fieldcat—cfieldname = “LOCCURERY" . "ocurrency key here
1s fieldcat-ref table = 'TSBOOK'.

AFPENN 1s fieldecat 70 1t Fieldcat.

CLEER 135 fieldcat.

1s fieldcat-fieldname = 'LOCCURKEY'.
ls: fieldeat=ref table = "SEOOEY.
AFPEND 12 fieldecat TO AL freldcats

ENDFORM.
Figure 3.12: Building the field catalog, final (CF)

Order of remaining tasks

A number of tasks need to be done in order to use the ALV
. control framework. It may seem a bit confusing the first time, but
the tasks should be easier with the instructions in this chapter.
The order in which you perform many of these tasks is not rigid,
though some tasks have a natural order. For instance, you need to create the
ALV display screen before you can add the custom control or the PF-status to
that screen. If your ALV doesn’t display when you finish the exercise (Figure
3.27), use transaction code se80 to check the components of your program
against Figure 3.32, looking for any omissions—there is no need to delete and

start over.

3.7 Screen call

The last statement executed in the main program logic is the cALL Sscreen
command (Figure 3.8). To avoid conflicts with SAP-provided screens, it is
standard practice for developers to number their screens between 9000 and 9999.
(I have used 9100 for this program.)

Double-click on the number 9100 in the caLL scrReeN 9100 statement, then click YEs
when asked if you want to create the object (Figure 3.13).

[E Create Screen

@ Screen 9100 does not exist Create Object?

I Yies] Mo HE‘K Cancel I

Figure 3.13: Create the display screen (CF)

Forward navigation brings you into the SAP Screen Painter. On the AtTrRIBUTES tab,
provide a short description such as “ALV Initial Screen” (Figure 3.14).

Screen Painter: Change Screen for ZKK_ALV_CTRLFW
& 9@ .;.”u@ % & S H eyt

Screen number 9100 MewiRevised)

. Attributes - Element list ~ Flow logic

Short Description E‘«EJ Initial Screemn

Criginal Language EN English Package

Last Changed 0o:00:00

Last Generation 0o0:00:00
Screen Type Settings
(#Mormal [IHold Data
(T 15ubscreen [Switch Off Runtime Compress
IModal dialog box [Template - non-executable
(Selection screen [Hold Scroll Position

[Iwithout &pplication Toolbar

Other Attributes

Mext Screen 9100

CLrsar Position

Screen Group

Lines{Colurnns OccLupied 0

]
Mainten., |27 1z0

Cartext Menu FORM ON CTMENU = Properties

Figure 3.14: Screen attributes (CF)

Click the acTivate button in the toolbar. Highlight the object DYNP (dynpro) in the
list (Figure 3.15), then click the green checkmark.

[E Inactive Objects for KONES

Transportable Ohijects /V Local ohiects]

Ohject name
D.. Object Obj. name User
DYMNP ZFE ALY CTRLFW 9100 EONES
CUAD FEE_ALV _CTRLFW_SAVE KEONES
1) LI

VIEEEBEL overvew %]

Figure 3.15: Activate objects (CF)

Screen activation

You can activate your work multiple times, as you move from tab

- = to tab, or you can wait until you complete all the work, then
activate. Save frequently, however, by clicking on the save
(diskette) button in the top toolbar.

Click the eLemenT LisT tab next (Figure 3.16). Notice that you are provided with a
place to type the variable name we declared earlier: ok_cope (Figure 3.3). The
ok_cope will be used in this program’s zm_user_commanD_9100 module when the
user leaves the program (Figure 3.21).

&= PR o] Bopy gz 2 H =layout

2| Attributes T Elerment

"

B
Screen number 9100 | Active

Attributes /I Elernent list I/FIDW logic |

_/General attr, }’/Textzf I/O termplates [‘/Special attr, P'fDiSpIaﬁ; attr, P/Mud. groups | functions P/F{eferencez |

H.. W Name Typ... Li. Cooo Do (Voo [Hew Soo. Format L. (0., |Ou... |D... Dic... Property list |

=

0K 0 0 20 20 1[| DE -

Figure 3.16: Screen element list, before (CF)

After adding your variable, the eLemenT LIsT Wwill appear as it does in Figure 3.17.
You'll return to this screen to add one more element later.

(P s B s S =p Layout (Bl attributes I Elerment

Screen number 9100/ Inactivel
. Attributes < Element list l/FIDw logic |

’_/General attr, }/Textzf I)O termplates E‘/Special attr, I[‘/DiSD|EI'5.I' attr, P/Mud. groups | functions P/F{eferencez |

H... M Name [Ty |l |G D [Wesi [Hoie |56 [Format |L.. |©...|Ow..|B.. |Dic... |Property list |
0F CODE 0K o o 20| 20f 1{[]| oK O ['ilr Properties]

Figure 3.17: Screen element list, after (CF)

3.8 Process before output (PBO) and process after input (PAl) module logic

Click the FLow Locic tab next. By default, SAP will propose names for a process
before output (PBO) module and a process after input (PAl) module as shown in
Figure 3.18.

& ey g k|8 S = Layout Pretty Printer Pattern

Screen number {9100| Inactive

Attributes Element list

PEOCESS BEFOREE OQOUTFEUT.
B #* MODULE STATIHS 2100,
[o
PEOCESS AFTEERE INFUT.
5 * MODUTLE USER_CDM@ND_ Qidd,

L N R

Figure 3.18: Proposed module names (CF)

Code will be added to the ABAP

With the exception of the two module names on the FLow Loaic
.— tab (Figure 3.19), your code will reside in the main logic of your
ABAP. There is no need to create includes for these simple
exercises.

a

Remove the asterisks to uncomment these proposed module names, then type
zm_ in front of each as shown in Figure 3.19. This naming convention (Z for
custom, M for module) helps them stand out from SAP-provided modules in the
debugger.

Screen Painter: Change Screen for ZKK_ALV_CTRLFW
= Py o fh Do g B = Layout Pretty Printer Pattern

Screen number 9100| Active
~ Attributes P/Element list / Flowy logic]

PROCESS BEFORE CUTELT .,
MEBUEES =m s Eatis SO0

PEOCFESS LETHE THEUT.
MU RS =m iser eummend ST 00,

L e B N I

Figure 3.19: Modified module names (CF)

SE80 object navigator

The object navigator (transaction code se80) is an alternative to

forward navigation for accessing the various components of your

program. Click on the ReposiTorRY BROWSER bar near the top of

transaction se80’s left-hand navigation panel, then choose
PROGRAM from the first dropdown. Type your program name in the next box
down and press “Enter”. The components of your program will display
(Figure 3.32).

Double-click on zm_status_9100. Forward navigation will place you back into your
program source code. Type the content shown in Figure 3.20, then save. (You can
use the paTTERN button in the editor to insert text, if you wish.) PBO modules such
as zm_status_9100 run before the first ALV screen display and before each
subsequent re-display.

MODULE =zm status_ 2100 OUTPUT.

SET PF-3TATUS 'MALINS100'.
IF g _custom container IS INITIAL.
CREATE OBJECT g custom container
EXPORTING
container name = g container.
CREATE OBJECT gridil
EXPORTING
i parent = g custom contalner.

CALL METHOD gridl-:set_table for first display
EXPORTING

i structure name = 'LTY OUTFUT!
CHANGING
it fieldcatalog gt_fieldeat

it:nuttah
ENDIF.

gt_output.

ENDMODTLE.

Figure 3.20: Process before output (PBO) logic (CF)

The last items that we included in our data declarations (Figure 3.3) are used in
the PBO module: G_cusToMm_CONTAINER, G_CONTAINER, and Grip1. The CALL
METHOD serves the same purpose as the function module call in the Chapter 2
program (Figure 2.14). The seT_TABLE_FOR_FIRST_DISPLAY method will be using your
local type definition, the field catalog table you populated, and the data you
retrieved for output.

Running RS_ABAP_SOURCE_SCAN to find text strings

To find additional code examples within your SAP environment,
run program Rs_ABAP_SOURCE_SCAN. Use transaction code se38 or
sa38 to display the selection screen for this program, provide a
text string such as seT_TABLE_FOR_FIRST_DISPLAY, restrict the search

further if you wish, then run the program by clicking on the clock button (F8
key). You can click on any of the returned items to view the program code.

You'll create the PF-status for the 9100 screen in a later step. For now, return to
the FLow Loaic screen (Figure 3.19) to create your PAl module. There are several
ways to get there, depending upon your preference and how you reached your
current location in the program.

» Green BACK arrow

» Or double-click on 9100 in the caLL 9100 statement in the main logic section,
then click the FLow Loaic tab

» Or use the object navigator transaction code se80

Once there, double-click on zm_user_commanp_9100. This takes you back into
your program source code. Type the content shown in Figure 3.21, then save.

The PAI module reacts to user input. You will provide an exit from the ALV screen
when the user clicks the Back, Exit, or CANceL buttons. You will configure these
buttons later in the pr-sTaTUS called maN9100 (Figure 3.26).

MODULE zm user command 9100 INPUT.
CALL METHOD cl gui cfw=:dispatch.

CASE ok code.

WHEN 'BACK'
o TE T
OB TCANCT.

PERFORM zf exit program.
WHEN OTHERS.
s do nothing
ENDCASE.

CLEAR: ok .code;

ENDMODULE.

Figure 3.21: Process after input (PAl) logic (CF)

While you are still in the zv_user_commano_9100 PAI module, double-click on the
subroutine name zr_exiT_PRoGRAM. Type the content shown in Figure 3.22 into
your source code.

FOBM =z exit progran.

LEAVE PROGRAM.

ENDFORM.
Figure 3.22: Exit subroutine (CF)

Save, then click the acTivate button in the toolbar. Select all objects in the pop-up
window that are associated with this program, then click the green checkmark.

Only two tasks remain: creating the pr-sTtaTus and putting the custom control on
the screen.

3.9 PF-status for screen

Return again to the PBO module zm_status_9100 (Figure 3.20). Double-click on
MAIN9100, then click yEs when asked if you want to create this GUI status object
(Figure 3.23).

[E Create GUI Status

GUI Status MAIN9100 does not exist Create
Object?

i s | Mo “2@ Cancel l

Figure 3.23: Create PF-status (CF)

Type a description into the short text field on the attributes screen (Figure 3.24),
then click on the green checkmark. (Keep the default status type NORMAL SCREEN.)

[S Create Status

Prograrn ZKE_ALV_CTRLFW
Status ‘MAINS100
| Status Attributes]
——
Short Text Main Statuis|

-

| Status type

{®)Marmal Screen

(" \Dialog Box
(ICantext Menu

EEY
Figure 3.24: PF-status attributes (CF)

Remember the three ok_cope values that you included in the PAI module
zm_user_INPUT_9100 (Figure 3.21)? You'll now align those values with three
toolbar buttons in the FuncTion keys section of the PF-status.

(= User Interface Edit Goto Utlities Extras Erwironment Systemn Help

[V - 48 @@ CHE DDl BE @

Maintain Status MAINGIOO of Interface ZKK_ALV_CTRLFW
= Puhg s 8% aa20H KXEEEE

Tzer Interface ZFKE_ ALV CTELFW
Mernu Ear [f-l-_j: uﬁ E-Iain Status

Application Toolbar [f-l-_j: uﬁ Main Status

Function Eevsz [f-l-_j: uﬁ Main Status

Figure 3.25: Function keys dropdown (CF)

Click the open button shown in Figure 3.25 to display the configurable function
keys. In uppercase, type BACK, EXIT, and CANC (Figure 3.26). You only need to
type labels for the three buttons you are providing as exit points from the ALV
display screen. (The ALV control framework application toolbar will provide

additional functionality.)

Active (rewvized)

P& Function Code

(= User Interface Edit Goto Utlities Extras Erwironment Systerm Help

g @@ BRER 8008 EE @

Maintain Status MAINGIOO of Interface ZKK_ALV_CTRLFW

P a”um@ne» & 800

User Interface ZFE,_ALY _CTRLEFW
Mernu Ear uﬁ Main 3tatus

Application Toolbar uﬁ Main 3tatus

Function Eevys E uﬁ Main 3tatus

BB E R

Active (revized)

P4 Function Code

Standard Toolbar

Freely Azzigned Function Eevs
F5
F&

Figure 3.26: Button labels (CF)

BACE EXIT CANC
& | e & &] (il (i
Feconmended Function Eey Settings
10 B Choose §|
Fo - Select e
Shift-Fz T Delete i
Shift-F4d SEo Jave without check
Shift-F5 T Other <objects T ig

Save by clicking the save (diskette) button at the top, then activate.

Status labels must match PAlI module OK_CODE values

Be sure to match the values exactly in both places (Figure 3.26
and Figure 3.21), including the case (uppercase, lowercase, or
mixed case). Since our response to the user action is the same
(Leave ProGrRAM) regardless of which button is clicked, we can
repeat an identical label (for instance, exit) for all three buttons and include
only one ok_copke value (exit) in the PAl module’s case statement. As long as
we are consistent in both places, it will work as intended.

3.10 Custom control on screen

If you were to run your program now, without completing this final part, a blank
screen would display (Figure 3.27) instead of data records.

[program Edit Goto System Help

@ | B @@ CHE SDL0 AR @M

Figure 3.27: Missing custom control = no ALV data display (CF)

To finish the program, go to screen 9100 again, either by using the object
navigator (transaction code se80) or by double-clicking on the number 9100 in
your source code statement caLL screen 9100. Click the Lavout icon (Figure 3.28)
in the toolbar to launch the graphical portion of the SAP Screen Painter.

(5 Screen Edit Goto Utlities Erwironment System Help

& B @@ SHRE ohos BE @@

Screen Painter: Display Screen for ZKK_ALV_CTRLFW
& P g 3L S 0E = Layout Pretty Printer

C':'””EC”“W Browser | screen number 9100 Active

|% Repositary Brawser | Lttributes Elernent list Flaw logic
|@3Repusitury Information System |

| Program 7] A~ PROCESS EEECOER OLFFEPLET .
|ZKK_ALV_CTRLFW x| ¥ |G| v MODULE zm status 9100.

is
g PROCESS AFTER INPUT.

MOBUHLE zm Wser command 91000

Chiject Name

* FEE_ALY_CTRLFW ALY CC
| Dictionary Structures

OO Types

(T Fields

(1 Events

(1 PBO Modules

(3 AT Modules

(7 subroutines

~ & Screens
* 1000 SEL_SC
= 9100 ALY In

» [(1GUI Status

* T w w w w

Figure 3.28: Layout button (CF)

You are now in the graphical portion of the SAP Screen Painter (Figure 3.29). Find
the custom conTroL button on the left side of the screen. It is near the bottom of
the column of buttons and has a small C in the corner.

Screen Edit Goto Utilities(M) Environment Help

& B e oM 7> GEO @
Yoy o & 4 P &= Flowlogic 4= Attibutes 4= Element List

MName

T
—
X
@
(]
=

ARG

!

Custorm Caontrol

Figure 3.29: Custom control button (CF)

You will use this button to draw a large box on the canvas to indicate the space
available for your ALV data output (Figure 3.30).

1. Click once on the custom coNTROL button.

2. Position the mouse cursor in the upper left corner of the blank canvas. The
cursor changes to a new shape: a small rectangle with an upside-down L.

3. Hold the left mouse button down while dragging the mouse cursor to the

lower right corner of the canvas.

4. Release the mouse button. If your screen does not look like Figure 3.30,
delete the image with the scissors button and try again.

In the NnaME field above the canvas, type the value you aligned with c_coNTAINER at
the start of program (Figure 3.3). In the example program, it is called
ZKK_ALV_CTRLFW_9100_conT1.

Screen Edit Goto Utilities(M) Environment Help

] 8 e LM ¥mbm OEO ®
Yoy go) B85 4 P | 4= Flowlogc 4= Attibutes 4= ElementList | Tl Delete

Name |ZKK_ALV_CTHLFW_91EIU_CIJNH |

L EELEE DR

Figure 3.30: Custom control on the layout canvas (CF)

Save and activate. Use the green Back arrow to return to the ELEMENT LIsT tab
(Figure 3.31). Notice that the custom control name you provided on the layout
canvas screen has been added to the list that previously showed only ok_cope
(Figure 3.17).

Screen Painfer: Change Screen for ZKK_ALV_CTRLFW
& | oy loe B mEE =rLayaut [®] attributes T Element

|78 Cannectivity Browser | sereen rumber 9100 Active
&t Repositary Browser | sttributes Element st Flaw logic |
[HEeRepository Information System
|Program ﬂ ~ < General attr, } Texts/ [/O templates |+ Special attr. | Display attr. | Mad. groups / functions
[zZKK_ALV_CTRLAW =ligel ¥
- - H.. M Name Typ... Li..|C... D... %.. H.. S. Format L.. ... Ou.. D... Dic... Property list

&= [.)= |§||3| |ﬁ” ,||Q| * ||+ KK ALV CTRLFW 9100 CONTL CCrrl 1 1 120 120 27

Ohject Marme O... 0K_CODE 0E 00 20 z0 1

X ﬁZKK_AL\."_CTRLFW ALY CC

» O Dictionary Structures

v O Types

» (dFields

v [JEvents

v CIPBO Madules
» (IPAT Modules
3

[subroutines

~ 31 Screens
+ 1000 SEL_S¢
» 9100 ALY In

» [(1GUI Status

Figure 3.31: Element list, final (CF)

To verify that you have all the components, use the object navigator (transaction
code se80) to compare your program to the list in Figure 3.32.

Object Navigator
B [§YEdit Object

Cunnectivity Browser

|% Fepositary Browser

|@3Rep05itury Informmation Systemn

|F'rngram v

|ZKK_ALV_CTRLFW

& L=
Ohject Mame

- 0 Dictionary Structures
* SBOCE
* SFLIGHT
* STRAWELAG

* | el i

=)&) [mE]

Description

|Sifgle Flight Booking

Flight

Travel agency

= & Types
* LTY _QUTPUT
* S Fields
* GRID1
* G5 _OUTPUT
* GT_FIELDCAT
* GT_OUTPUT
+ Gy _LIMES
* i5_COMNTAIMER
* G _CUSTOM_COMTAIMER
+ QK_CODE
* 5_AGHLUM
* 5_CARID
* 5 FLDAT
* W Events
* AT SELECTIOMN-SCREEM
* EMD-OF-SELECTION
+ IMITIALIZATION
* START-OF-SELECTIONMN
* S PRO Maodules
* ZM_STATLIS 9100
* 5 pAl Modules
* ZM_USER_ComMMaRND 9100
* & Subroutines
+ ZF_BUILD_FIELDCATALCG
* ZF_EXIT _PROGRAM

* &1 Screens
+ 1000 SEL_SCREEM 1000 IMFC: 1700000300000000000000000000017 76035385
+ 9100 ALY Initial Screen

~ 2 GUT Status
* MAIMS100 User Interface Function Keys

Figure 3.32: All components in object navigator (CF)

You are now ready to run the program and display the data (Figure 3.2).

3.11 Enabling background execution

The ALV control framework can be run in the background with the addition of a
few lines of code (Figure 3.33). With this change, your ALV program can be
scheduled to run immediately, or at a future time, with the report output sent to the
SAP print spool. (The function module version of the ALV program does not
require this special coding in order to work in background or batch mode.)

MODULE =zm_status 5100 OUTFPUT.
IDATA: g:dnck_cantainer T¥FE EEF TO cl_gui_dncking_cnntainer1

SET PF-3TATUS 'MALINS100'.
IF g custom container IS INITIAL.

IF cl gui alv grid=:offline()} I3 INITIAL. "onlineSforeground
COEATE OOJECT {_CuUStom COntalner
EXPORTING
container name = g container.
CREATE OBJECT gridi
EXPORTING
1 parent = g Ccustom container.
ELZE. "hackground

CREATE OBJECT gridi
EXPORTING i_parent = g dock container.
ENDIF.

CALL METHOD gridl--set_table for first display

EXPORTING
i structure name = 'LTY OUTFUT!
CHANGING
it _fieldeatalog = gt_fieldecat
it _outtab = gt_output.
ENDIF.
ENDMODULE .

Figure 3.33: Enabling the program for background execution (CF)

G_DOCK_CoONTAINER should be defined in the main data area of the program, but it is
shown in the zm_status_9100 module for convenience. Figures in the remainder of
the book will omit the docking container logic, but feel free to add it to your
program and retain it as you add new features.

Anticipating background execution in advance of need

Some developers add these background execution lines of code
proactively even if there is no immediate requirement, avoiding
program changes later.

Without the additional code, an attempted background program run will be
cancelled (Figure 3.34).

Job log owerwiew for job: ZFF_ALV _CTRLFW_LAYOUT 30RT_MOR /4 ZZZ01z00

Date Time Meszage text

06/22/2015(22:20:12 | Job started

N6/22/28015) 22:20: 12| 3tep 001 started (program KK ALY CTRLFW _LAYOUT 3F0RT MOR, wariant DEEAM TRAVEL
06/22/2015| 22:20: 12 |Control Framework: Fatal error - GUI cannot be reached

06/22/28015) 22:20: 13| Internal session terminated with a runtime error RATSE EXCEPTION (see 3TZZ)
06/22/2015(22:20:13|Job cancelled

Figure 3.34: Background job log with error message (CF)

3.12 Summary

In this chapter, you generated an SAP List Viewer report using the ALV control
framework. With very little coding on your part (and a few additional screen setup
steps), you presented the data and an ALV application toolbar that lets the user
reorganize the report (sort, filter, change column order, sum, etc.), print it, and
download it to another application.

Key points:

Data declaration, selection-screen definition, retrieval of data, creation of a
field catalog, and ALV call

Additional components: screen call, custom control, PBO and PAI modules,
and PF-status

Local type instead of data dictionary structure
seLECT statement with multiple joins
Background execution

In Chapter 4, you'll explore ways to make the output more meaningful on initial
display, reducing the amount of reformatting the user must do. You'll also see how
to meet other requirements that may be presented.

4 Adding layout features to an ALV
program

The SAP List Viewer has great flexibility and can be configured in ways that
meet current needs and anticipate future needs. This chapter shows a few
ways to tailor the initial display using features provided at the layout level.
Example code will be shown for each of the two ALV types covered in this
book.

4.1 Training scenario

You may recall that the user of this report is retrieving data from the SAP Flight
Application tables in order to evaluate the amount of income that various travel
agencies have generated booking airline flights.

For the remaining examples, we will imagine that the owner of several travel
agencies in the United Kingdom has acquired an additional agency in Australia.
The owner wishes to evaluate the bookings made by all of her agencies (Figure
4.1) and has requested a monthly data extract.

AGEMCYMHUM | MAME COUMTRY | CURREMNCY
102 Hot Socks Travel Al ALD
107 Ben McCloskey Ltd, GB GBP
109 Kangeroos 5B GBF
112 Super Agency 5B GBF
123 Aussie Travel GB GEP
295 The Uitimate Answer GB GEP

Figure 4.1: Travel agencies

Selection screen variant

For convenience, you can add these travel agency numbers (102,

@;@ 107, 109, 112, 123, and 295) to your selection screen (Figure 2.6
or Figure 3.6), then save it as a selection screen variant using the
sAvE (diskette) button.

L

As you work through the sections of this chapter, you can incorporate the new
features into the program you've already begun or into a copy of that program.
Save and activate as you go. (My example programs are called
ZKK_ALV_FM_LAYOUT and ZKK_ALV_CTRLFW_LAYOUT.)

Extracting to Microsoft Excel and to local file formats

Depending upon your SAP environment and upon which

| techniques you are using to generate the SAP List Viewer, the

- ALV features seen on screen may or may not be available after

' ~ extract to Microsoft Excel (or to one of the local file formats). As a

developer, it is a good practice to check the behavior of your program and

communicate to the appropriate stakeholder early in order to manage
expectations about data extract behavior.

4.2 Layout features

Layout features are those that affect the overall appearance or behavior of the
ALV display.

Layout features vs. layout variants

The layout features described in this chapter are coded into the

| ALV program by the developer, based on specifications provided
— when the program was created. Layout variants, on the other
. :

hand, are configured and saved by the user or developer after the
display of an ALV report.

In order to enable layout features within the two types of programs we’ve covered
(function module and ALV control framework), you first perform three tasks.

» Declare an additional data structure
» Create a subroutine to populate the structure
» Pass the structure to the function module or ALV control framework method

4.2.1 Function module

For programs using the function module technique described in Chapter 2, first
add a layout data structure based on the type sLis_LAvouT_ALv (Figure 4.2).

DETE: gs output TYPE 1ty output, "local structure (line)
gt _output TYPE STANDERD TAELE OF lty ocutput,
gt fieldcat TYPE slis t fieldcat alw,
[gs_layout TYPE slis_layout_alv. |

Figure 4.2: Define the layout structure (FM)

View all the available layout features

Take a moment to double-click sLis_LAvout_ALv. Forward

r navigation will take you to the definition where you can see all the
options available to you as layout features. Return by clicking
once on the green Back arrow.

]
R

Second, add a perrorm statement (Figure 4.3). In subroutine zF_suiLp_LAvouT, you
will code the features to be enabled. For now, double-click on zF_BuiLD_LAYouT to
add the rorm and enprorm statements of the subroutine to this program (Figure
4.9).

PERFORM zf build layout USING gs layout.

PERFORM zf build fieldcatalog USING gt fieldcat[].

PERFORM zf display alv.

AaddAddddAddAd g AF main program _Eogﬁic L L g gL g g o g

Figure 4.3: Populate the layout structure (FM)

Finally, include the layout structure es_LAvout in the function module call (Figure
4.4).

FORM =zf display alw.

CALL FUNCTICH 'EREUSE ALV GRID DISPLAY!

EXPORTING

i callback program = sy-repid

|is_lagnut = gs_layout

it_Tieldcat = gt_Tieldcoat[]
TABELES

t_outtab = gt_output
EXCEPTICONS

brogram error I [

OTHERS Stz

IF =zy-subrc <> 0O,
MESSAGE ID 'O0' TYPE 'I' NUMEER 001
WITH 'REUSE ALV GRID DISPLAY call error: ' sy-subrc.
RETUERN.
ENDIF.

ENDFORM.

Figure 4.4: Pass the layout structure (FM)

Now that these elements have been added to your program, you can begin
adding individual layout features. For programs that «call the
REUSE_ALV_GRID_DIsPLAY function module, follow the “Function Module” examples in
each sub-section. The relevant figure captions are denoted (FM).

4.2.2 ALV control framework

For programs using the ALV control framework technique (Chapter 3), first add a
layout data structure based on the type Lvc_s_LAvo (Figure 4.5).

DATA: |g=_layout TYPE lvc s layo, "lavout params
gs_output TrRE [ty output, "local sftructure (line)
gt output TYPE STANDARD TABLE OF lty output,
gt: Fieldeat TY¥PE lvc t. feat, "table

Figure 4.5: Define the layout structure (CF)

View all the available layout features

Take a moment to double-click Lvc_s_LAvo. Forward navigation
will take you to the definition where you can see all the options
available to you as layout features. Return by clicking once on the
green BACK arrow.

Second, add a perrorm statement (Figure 4.6). In subroutine zr_BuiLp_LAyouT, you
will code the features to be enabled. For now, double-click on zF_BuiLD_LAYouT to
add the Form and enprorm statements of the subroutine to this program (Figure
4.11).

DESCRIBE TAELE gt output LINES gv_lines.

IF gw_lines NE 0. "data was retrieved
SORT gt _output BY agencynum
carrid
connid
fldate
hookid.
FERFORM =zf build layout USING g=_layout.

FERFORM =zf build fieldecatalog USING gt fieldeat[] .

CALL 3CREEN =100,

EL3E.
ME33AGE ID '00' TYPE 'I' NUMEER 001 WITH 'MNo data retriewved'.
ERETTEI.

ENDIF.

Figure 4.6: Populate the layout structure (CF)

Finally, include the layout structure es_LAavout in the method call in the
zm_sTAaTtus_9100 module (Figure 4.7).

MODULE =zm status_ 2100 OUTPUT.

SET PF-3TATUS 'MALINS100'.
IF g _custom container IS INITIAL.
CREATE OBJECT g custom container

EXPORTING
container name = ¢ container.
CREATE OBJECT gridi
EXPORTING
i parent = g custom contalner.

CALL METHOD gridl->set _table for first display
EXPORTING
i structure name
is_layout

IR I TR
gs_lagnut |

CHALNGING
it _fieldeatalogy = gt_fieldecat
it _outtab = gt_output.
ENDIF.
ENDMODULE .

Figure 4.7: Pass the layout structure (CF)

Now that these elements have been added to your program, you can begin
adding individual layout features. Follow the “ALV control framework” examples in
each sub-section. The relevant figure captions are denoted (CF).

4.3 Alternating shaded and non-shaded lines

The alternating shaded and non-shaded lines of Figure 4.8 and Figure 4.10 are
also known as zebra stripe. When turned on, the even rows are shaded slightly
darker than the odd rows, making it easier for readers to visually follow a line of
data from left to right.

4.3.1 Function module

To turn on the alternate row shading, fill the zeera field of the layout structure with
x as shown in Figure 4.9.

ALV Function Module {Layvout Changes)
@ &2FF B) <T@ TF 0y 08 BB

Agency | Travel agency name Curr. | I | Mo, |Fight Date Booking | Amount (for.currency) | Cure, | Birline
102 Hot Socks Travel a0 aA 17 05/25/2011 12 £57.828 AUD Ametican &idines
102 Hot Socks Travel aUD aA 17 05252011 52 1,038.77 &UD American Aidines
102 Hot Socks Travel sUD aA 17 05f25/2011 g2 328,94 AUD ametican Aidines
102 Hot Socks Travel aUD AA 17 05/25/2011 104 311.63 AUD Ametican Aidines
102 Hot Socks Travel sUD aA 17 05f25/2011 240 246,26 AUD Ametican Aidines

Figure 4.8: Example of alternating shading (FM)

FORM zf build layout USING ls layout TYPE slis layout alv.

* ghade every other line of the display table for readability
1s layout-zebra = "X'".

ENDEFORM.
Figure 4.9: Enable the zebra feature (FM)

4.3.2 ALV control framework

To turn on the alternate row shading, fill the zesra field of the layout structure with
x as shown in Figure 4.11.

SAFP

EY A - T

Agency | Travel agency name Curr | ID | Mo, | Flight Date Booking | Armount (for.currency) | Curr, | &irline
102 Hot Socks Travel AUD Aa 0 17 05/25/2011 1z 657.828 AUD American Ailines
102 Hot Socks Travel AUD An 17 052572011 52 1,038.77 AUD Ametican Aitlines
102 Hot Socks Travel AUD A 17 05f25/2011 02 328,94 AUD American Aitlines
102 Hot Socks Travel AUD Aa 17 05/25/2011 104 311.62 AUD American Ailines
102 Hot Socks Travel AUD A8 17 05f25/2011 240 346,26 AUD | American Aidines

Figure 4.10: Example of alternating shading (CF)

FORM zf build layout USING ls layout TYPE lvc = layo.

Iz layout—=zebra = "Ea

ENDEORM.

Figure 4.11: Enable the zebra feature (CF)

4.4 Optimizing column widths

By default, ALV columns are displayed at their full width, regardless of whether
any of the retrieved data requires a column that wide. Look again at Figure 4.8 or
Figure 4.10 to see displays with default column widths. When column optimization
is turned on, the columns will be displayed only as wide as necessary for the set
of data chosen for display (Figure 4.12 and Figure 4.14). This reduces left-right
scrolling by the online user.

Impact of optimized columns on heading texts

When you enable column width optimization, your column
heading text may be reduced to a shorter text from the data
dictionary, as shown in Figure 4.12 and Figure 4.14. In these
examples, we now have two fields called “Amount” on the screen.
A mouse hover over the column heading allows the user to see the longer
text, but other options for you to consider would be passing an explicit column
heading or explicit column width for those fields in the field catalog table.

4.4.1 Function module

To optimize the column widths of the ALV display, fill the coLwipTH_opTimizE field of
the layout structure with x as shown in Figure 4.13.

ALV Function Module (Layouf Changes)
® a¥V¥ &8 @ B Twln E O

Agency Mo, | Tryl agoy Currency | Carrier| Mo, | Flight Date Booking | Amount | Curr, Aitlire Arnount | Curr,
102 Hot Socks Trawvel AUD A 17 05/25/2011 1z 657,88 AUD Ametican Airlines 203.58 LsD
102 Hot Socks Travel ALD Al 17 05252011 52 103877 AUD Ametican Alines 1,268.82 USD
102 Hot Socks Travel ALUD A 17 05/25/2011 a2 32894 AUD American Airlines 401,79 LSD
102 Hot Socks Travel AUD A8 17 05252011 104 31163 AUD Arnerican Airlines 8065 USD

Figure 4.12: Example of optimized column widths (FM)

FORM zf build layout USING ls layout TYPE slis layout alvwv.

* shade every other line of the disgplay table for readability

15 lagioitcscbig = TR,

* optimize column-widths to save gpace on-screen
ls layvout=colwidth optimize = TE%;

ENDFORM.

Figure 4.13: Enable column optimization feature (FM)

4.4.2 ALV control framework

To optimize the column widths of the ALV display, fill the cwiptH_opT field of the

layout structure with x as shown in Figure 4.15.

SAP

(&) [&]FHEEEL [ELE [E]E @] R [E]

Agency Mo, | Trel agcy Currency | Carrier) Mo, | Flight Date Booking | Amount | Curr. Litline Arnount
102 Hot Socks Travel AUD A 17 05/25f2011 12 657.88 AUD Arnerican Airlines 203,58
102 Hot Socks Travel &UD AR 17 05/25/2011 52 1,038.7F7 alUD American Aitines 1,268.82
102 Hot Socks Travel AUD AR 17 05/25/2011 a2 328,94 ALD Armerican Airlines 401,79
102 Hot Socks Travel AUD A 17 05/25f2011 104 311,63 AUD Arnerican Airlines 220,65

Figure 4.14: Example of optimized column widths (CF)

Curr.
ISD

LSD
LISD
USD

FORM zf build layout USING ls layout TYPE lvc = layo.

1z layout-zebra e G

I's layout=cwidth opt = "& .

ENDEORM.

Figure 4.15: Enable column optimization feature (CF)

4.5 Displaying totals at the top

By default, ALV data is displayed at a detail (item) level with no totals. Without
additional coding, the user wishing to see totals can highlight a summable column
such as “Amount (for currency)” and click on the ToTaL button. One or more lines
of totals are appended to the bottom of the data display. To see the totals, the user
must scroll to the bottom of the data display.

For greater convenience for the user, you can add a layout feature that will show
totals at the top of the data display instead.

Other settings used to configure subtotals are specified in the sort table and will
be described in Chapter 5.

Take a moment to notice in Figure 4.16 and Figure 4.18 how SAP provides
separate totals for each of the currency keys associated with the column we’ve
summed: one total for bookings stored in Australian dollars (AUD), another total
for bookings stored in British pounds (GBP).

4.5.1 Function module

To move totals to the top of the ALV display, fill the TotaLs_BerFore_iTEms field of the
layout structure with x as shown in Figure 4.17.

ALV Function Module {Layouf Changes)
®q &TFF B % <L TGy B

agency Mo, | Trel agoy Currency | Cartier. Mo, | Flight Date Booking £ Armount | Curr. Aitline Armourt | Curt.
1,028, AUD
4,364,1. GBP

102 Hot Socks Trawel AUD A 17 05/25/2011 12 B57.22 aUD Ametican Aitlines 20358 USD

102 Hot Socks Travel ALD A 17 05/25/2011 52 1,038.77 ALD American Aitines 1,268.82 LUSD

102 Hot Socks Travel AUD A 17 05/25/2011 a2 328,94 ALD American Aitlines 401,79 LUSD

102 Hot Socks Travel ALD A 17 05/25/2011 104 31162 ALD American Airlines 28065 UsD

Figure 4.16: Example of totals on top (FM)

e e e e e e e e
FORM zf build Tayout: USING ls layout TYPE slis lavout alw.
ls layout-zebra = T
L& laviait~enlwidth: optiniize = R
1z layvout=totals before items = ‘E' i
ENDFORM.

Figure 4.17: Enable totals on top feature (FM)

4.5.2 ALV control framework

To move totals to the top of the ALV display, fill the TotaLs_BeF field of the layout

structure with x as shown in Figure 4.19.

SAP

&) [&]F)E)EFL (ELEL (B]E G =) ik |

Booking |E Amount

Agency MNo.

102
102
102
102

Figure 4.18: Example of totals on top (CF)

Trvl agcy

Hot Socks Travel
Hot Socks Travel
Hot Socks Travel
Hot Socks Travel

Currency Carrier

ALD
ALD
ALD
ALD

AR
AR
AR
AR

[+,

17
17
17
17

Flight Date

05/25/2011
05/25/2011
05/25/2011
05/25/2011

52
22
104

= 1,028,
4,364,1
£57.88
1,038.77
328.94
211.63

Curr.
AUD
GBP
AUD
AUD
AUD
AUD

Airline Aot

Arnetican Airlines 803.58
Ametican &ifines 1,268.82
Arnetican Airlines 401.79
Arnetican Airlines 320.65

ls layout-zebra
ls layout-cwidth opt

= L
T

L8 lavant~totals: bef

=

ENDEORM.

FORM zf build layout USING ls layout TYPE

lve = layo.

Figure 4.19: Enable totals on top feature (CF)

Curr,

UsD
UsD
UsD
UsD

4.6 Displaying a title at the top

You can control the 70-character title displayed at the top of your ALV screen
using a layout feature (Figure 4.20 and Figure 4.25). You can provide information
there that will be meaningful to the business user (and at the same time helpful to
developers and testers). For instance, the title can be used to differentiate periodic
runs (like quarterly) from ad hoc runs or can be used to denote the SAP system
used (sy-sysip).

For the training scenario, we’ll imagine that the owner of multiple travel agencies
wants to see the data two different ways: with and without her recent Australian
acquisition, Hot Socks Travel. We can manage this several ways, but let's also
imagine that the person running these reports is using selection screen variants
(sy-sLseT) and has been using a naming convention suffix of _Z to denote the
previous version of the selection screen variant.

4.6.1 Function module

By default, the system value sy-TiTLE appears at the top of the screen when you
run your function module program. The default title for the program was taken
from the attributes screen (Figure 4.16): ALV Function Module (Layout Changes).
To provide a custom and more dynamic title (Figure 4.20), use the layout feature
called wiNDOW_TITLEBAR.

Airfine Bookings: DREAM TRAVEL _Z (previous data view)
@ &a%F & @ 9 TEATHIn BH

Agency Mo, | Travel agency name | Currency | Cartier| Mo, | Flight Date Booking | Armount | Cure, | Aitline Arnount | Curt,
El llil?j Ben MoCloskey Ltd, GBP LYY 17 05252011 6 543.36 GBEP Arnetican Allines 803,58 LUSD
107 Ben McCloskey Ltd, GEP A4 17 05/25/2011 110 28592 GBP American Airlines 422,94 LSD

107 Ben McCloskey Ltd, GBP YLy 17 05252011 131 28598 GBP Arnetican Altlines 42294 USD

107 Ben McCloskey Ltd, GBP B8 17 | 05/25/2011 142 28598 GBP American Aiines 422,94 USD
Figure 4.20: Example of custom title (FM)

Add a variable to your program to contain the custom text (Figure 4.21).

DATA: gv lines TYPE 1,
gv . title TYFE syst=titles

Figure 4.21: Variable for new custom title (FM)

Create a new subroutine zr_sTarT to contain the logic for this one-time population
of the title variable (Figure 4.22).

ATART-OF-3ELECTICH.

FERFORM =zf start.

Figure 4.22: New subroutine for one-time population (FM)

Fill the variable with the desired text. In the example in Figure 4.23, the title
begins with static text (Airline Bookings:) followed by the variant name. If the
variant name contains the _Z naming convention described in the training
exercise, more static text (previous data view) is appended to signify that the older
variant content was used to select the data. (This example shows that titles can
be built during program execution; it is not a recommendation of this particular
naming convention.)

FOREM =zf start.

populate screen title using selection wariant name
CONCATENATE 'Rirline EBookings:' (001)
gyst-zlaet "rariant name

INTD gv_title SEPARATED BY space.
IF syst-slset C3 ' I'.

CONCATENATE gw_title

"[previous data wiew) ' [(002)

INTD gv_title SEPARATED BY space.

EMNDIF.

ENDFORM.

Figure 4.23: Fill the variable for the title (FM)

e

As a best practice to support language flexibility, store static texts

, on the text symbols tab of the program’s Text Elements area. You

can use forward navigation for this by double-clicking on the text,

then clicking the Save and AcTtivate buttons. This technique will

add the number of the text symbol to your source code as shown in Figure
4.23, in this example (001) and (002).

.

To display the custom title on the ALV screen, fill the winoow_TiTLEBAR field of the
layout structure with the variable as shown in Figure 4.24.

O S O S N S O S S R O U O P S
FORM zf build layout USING ls layout TYPE =lis layout alwv.
Is Tayout=zebra = M3
Is Adayoutzcolwicth optimize = "X'.
1s layout-totals before items = "X',
ls layout-window titlebar =gy bl
ENDFORM.

Figure 4.24: Fill the variable for the title (FM)

4.6.2 ALV control framework

By default, there is no title above the column headings when you run the ALV
control framework program (Figure 4.18). To provide a custom title as shown in
Figure 4.25, use the layout feature called GriD_TITLE.

SAP

(&) (&) =)0 3 [F 1) (BL)PE) (B .6) i) @)
Airline Bookings: DREAM TRAVEL Z (previous data view)

Agency Mo, | Travel agency name | Currency Cartier) Mo, | Flight Date Booking | Amount | Curr, | Airline Armount | Curt,
107 Ben McCloskey Ltd, GBEP B4 17 05/25/2011 6 943,36 GBP Armerican Airlines 203,58 Ush -
107 Ben McCloskey Ltd, GBEP A, 17 05/25/2011 110 233,98 GBEP Arnerican Airlines 422,94 UsD -
107 Ben McCloskey Ltd. GBP VLY 17 05/25/2011 131 28598 GBFP Armetican Sirlines 422,94 JSD
107 Ben McCloskey Ltd, GBEP B4 17 05/25/2011 142 232,93 GBP Armerican Airlines 422,94 USD

Figure 4.25: Example of custom title (CF)

Add a variable to your program to contain the custom text (Figure 4.26).

DATA: gv lines TX¥EE 1;
[gv_title TYPE syst-title, |
ok code LIKE sy-ucomm,
g container TYPE scrfname VALUE 'ZKK ALV CTRLFW 5100 CONT1',
gridl TYEE REF TQ cl gui. alv: gridg
g _custom container TYPE REF TO cl gui custom container.

Figure 4.26: Variable for new custom title (CF)

Create a new subroutine zr_sTarT to contain the logic for this one-time population
of the title variable (Figure 4.27).

ATART-OF-3ELECTICH.

FERFORM =zf start.

Figure 4.27: New subroutine for one-time population (CF)

Fill the variable with the desired text. In the example in Figure 4.28, the title
begins with static text (Airline Bookings:) followed by the variant name. If the
variant name contains the _Z naming convention described in the training
exercise, more static text (previous data view) is appended to signify that the older
variant content was used to select the data. (This example shows that titles can
be built during program execution; it is not a recommendation of this particular
naming convention.)

FOREM =zf start.

populate screen title using selection wariant name
CONCATENATE 'Rirline EBookings:' (001)
gyst-zlaet "rariant name

INTD gv_title SEPARATED BY space.
IF syst-slset C3 ' I'.

CONCATENATE gw_title

"[previous data wiew) ' [(002)

INTD gv_title SEPARATED BY space.

EMNDIF.

ENDFORM.

Figure 4.28: Fill the variable for the title (CF)

Sextsymools

As a best practice to support language flexibility, store static texts
.- on the text symbols tab of the program’s text elements area. You
can use forward navigation for this by double-clicking on the text,
then clicking the Save and AcTtivate buttons. This technique will
add the number of the text symbol to your source code as shown in Figure
4.28, in this example (001) and (002).

L

To display the custom title on the ALV screen, fill the crip_T1iTLE field of the layout
structure with the variable as shown in Figure 4.29.

FORM =T build layout USIHG 1s layout TIPE lvc s layos

ls layout-zebra = R
ls ‘layvonot~cwidth opt = "2,
52 JLayvolErtatals Dot ertg,

Iz lavout=grid title = gv titles

ENDFORM.
Figure 4.29: Enable custom title (CF)

4.7 Previewing layout features

You can preview some layout features prior to coding them by executing any ALV
program, then clicking on the cHANGE LAvouT button shown in Figure 4.30 and
Figure 4.31. This is handy for demonstrating the behavior to those writing the
program specification and can help you identify the structure component you need

to populate to enable one of these features by default.

Airfine Bookings: DREAM TRAVEL
T ST = < [TP Oy (1 | B

[Change Layout

Displayed Colurnns Sort Order Filtet Wi / Diisplay

Iwithout horizontal gridines

—IWithaut vertical gridlines

—IWithaut calumn headings

—Iwithaut cell merging during sorts

o | With aptirmurmn colurmn width

W with striped patt,
___F Display totals lines above the entries
[IPrintout with Date, Title, and Page Mumber

Figure 4.30: Layout features in change layout (FM)

One additional feature is available to the user in the ALV control framework

(Figure 4.31): WITH SMALL HEADING.

SAP

(=TI EY 3 Y =T

Airline Bookings: DREAM TRAVEL

[Change Layout

el ==

]

Displayed Colurnns «° Sort Order ¢ Filter ¢ wiew < Display

[Twith small heading

[Iwithout horizontal gridlines

[Iwithout vertical gridlines

[Iwithout colurmn headings

[Twithout cell merging during sarts
[v|vith optimumm column width
[]with striped patt,

[|Display totals ines above the entries

[IPrintout with Date, Title, and Page Mumber

Figure 4.31: Layout features in change layout (CF)

4.8 Summary

In this chapter, you saw how layout features affect the overall appearance and
behavior of the ALV display. You added several lines of code to both types of SAP
List Viewer programs covered in this book, then you populated the appropriate
predefined structure field to enable several layout features.

Even though the syntax varies by SAP List Viewer type, the coding is very similar.

Key points:

Shading alternate rows

Optimizing column widths

Putting totals at the top of the report
Adding a title

Previewing layout features

5 Adding sort features to an ALV
program

Just as you can enable various layout features prior to displaying the SAP
List Viewer output to the user, you can enable sort features that influence
the initial display. Grouping and subtotaling are also controlled by the
settings passed in the sort table.

5.1 Training scenario

We’'ll continue working with the travel agency scenario described in Chapter 4.1.

Copy your in-progress program before continuing

In order to better compare the default sort behavior of your earlier

program to the sort-related code you'll be adding in this chapter,

consider copying your earlier program now (with all its

components such as saved variants). Save and activate changes
as you go. If you need to recreate the selection screen variant, refer to the tip
in Chapter 4.1. (I called my program copies ZKK_ALV_FM_LAYOUT_ SORT
and ZKK_ALV_CTRLFW_LAYOUT_SORT.)

Your program’s internal table of selected data includes three currency keys
(CURRENCY, FORCURKEY, and Loccurkey). The first of these is the currency key
associated with each travel agency. There is a one-to-one relationship between
the travel agency and the value in the currency field. It was selected from the
table of travel agency information (sTRAVELAG) and is considered master data. A
travel agency’s currency key rarely changes, but it sometimes does. An example
of this would be a country switching to or from the Euro.

To simplify the definition of groups for subtotals, you will move the travel agency
curreNcy field from the initial display of the transactional report, but will retain it in
the ALV. To hide the currency field, add the Nno_out setting to the field catalog

table (Chapter 6.1).

The rorcurkey and the Loccurkey currency keys, on the other hand, are
transactional data. Because you aligned these two currency keys with the
appropriate amount field (Forcuram, Loccuram) using the criELDNAME setting in the
field catalog (Chapter 2.6 and Chapter 3.6), totals and subtotals will be
automatically grouped by currency key.

5.2 Sort features

Sort features affect the order of the records displayed, how the records are
grouped, and how subtotals are shown.

» Record order is controlled by the sort table.
» Column order is controlled by the field catalog table.

Use of the sort table is optional. If you don’t pass grouping instructions using the
sort table, the program will display only grand totals when the user highlights an
amount column and clicks the TtotaL button. To provide additional insights to the
user in the training scenario, you will pass a sort table that contains groups for
subtotals.

Display totals on initial display

See Chapter 6.2 to see how to display totals on initial display
'- (without user action) using the po_sum feature in the field catalog.

Do not pass ‘X’ as the value for GROUP in sort table

Valid croup values include UL (underline) and * (page feed with
| underline), interchangeable for many programs. Avoid passing an
e invalid value such as X’ in the group field of the sort table.

Pass explicit sort direction values in sort table

Sort direction is an optional field in the sort table. For ease of
'- support and assurance of consistent behavior over time, do
include the appropriate UP or DOWN parameter for sorted fields

in the sort table.

As with the layout features, there are three elements to set up in your program in
order to use the sort features:

» Declare an additional table
» Create a subroutine to populate the table

» Pass the table to the function module or ALV control framework method

5.2.1 Function module

For programs using the function module technique described in Chapter 2, first
add a sort table based on the type sLis_1_sorTINFO_ALv (Figure 5.1).

DATA: gs_output TTRE 1ty output, "Ilocal structure (line)
gt _output TYPE STANDARD TABLE OF lty output,
[gt_sort TYPE Slig & gorbitito alv; |

gt fieldeat T¥PE slis £ Fieldeat alvg
gs_layout TYPE slis layout alw.

Figure 5.1: Define the sort table (FM)

View all the available sort table features

Take a moment to double-click sLis_T_sorTiNFO_ALv. Forward
r navigation will take you to the definition where you can see all the
options available to you as sort features. Return by clicking once
on the green BAck arrow.

{ i/
]
R

Second, add a perrorm statement (Figure 5.2). In subroutine zF_BUILD_SORT_TABLE,
you will code the features to be enabled. For now, double-click on
zF_BUILD_sORT_TABLE to add the form and endform statements of the subroutine to
this program (Figure 5.9).

ook Ak Start of main program logic AEkkkkskoksksk
FPERFORM =zf build layout USING gs layout.

FERFORM =zf build fieldeatalog MEING gt fieldeat[.].

FERFORM zf build sort table USING gt sortl]a

EERFORM zf display alva

AadddddkddAddd Fad AF main program logic ELg L g L g g o L

Figure 5.2: Populate the sort table (FM)

Finally, include the sort table ct_sorT in the function module call (Figure 5.3).

FORM =zf display alw.

CALL FUNCTICN 'REUSE ALV GRID DISPLAY'
EXPORTING
i callback program
is_layout
it fieldcat

!it_snrt
T =

t_outtab

EXCEPTICONS
pbrogram error
OTHERS

sy-repid
¥=_layout

gt fieldoat[]
gt_sSort[] I

gt_output

IF =zy-subrc <> [O.
MESSAGE ID '0O0' TYPE 'I' NUMEER 001
WITH 'REUSE ALV GRID DISFPLAY call error: ' sy-subrc.
RETUERN.
ENDIF.

ENDFORM.

Figure 5.3: Pass the sort table (FM)

Now that these elements have been added to your program, you can begin
adding individual sort features. For programs that call the REUSE_ALV_GRID_DISPLAY
function module, follow the “Function Module” examples in each sub-section. The
relevant figure captions are denoted (FM).

5.2.2 ALV control framework

For programs using the ALV control framework described in Chapter 3, first add a
sort table structure based on the type Lvc_1_sorT (Figure 5.4).

DATA: gs_ layout TYRE lvc 5 layo, "lavout params
gs_output TYFPE lty output, "local structure (Iline)
gt output TYPE STANDARD TABLE OF lty output,
gt Sort THEE Jve £ sott,
gt Fleldcat "ErFE lve E LCats Ttable

Figure 5.4: Define the sort table (CF)

View all the available sort features

Take a moment to double-click Lvc_t_sort. Forward navigation

ﬂﬂ will take you to the definition where you can see all the options
available to you as sort features. Return by clicking once on the
green BACK arrow.

_—

Second, add a perForm statement (Figure 5.5). In subroutine zrF_BuiLp_soRT, you
will code the features to be enabled. For now, double-click on zF_BuiLD_sorT to
add the rorm and enprorm statements of the subroutine to this program (Figure

5.12).

DESCRIBE TAELE gt output LINES gv_lines.

IF gwv_lines NE O. "data was retrieved
SORT grt_output BY agencynum
carrid
connid
fldate
hookid.
FERFORM =zf build layout USING g=_layout.

FERFORM =zf build fieldeatalog USING gt fieldeat[] .

FERFORM =zf build sort USING gt _sort[].

CALL 3CREEN =100,

EL3E.
ME33AGE ID '00' TY¥PE 'I' NUMEER 001 WITH 'MNo data retriewved'.
RETTEI.

ENDIF.

Figure 5.5: Populate the sort table (CF)

Finally, include the sort table cTt_sort in the method call in the zm_status_9100
module (Figure 5.6).

MODULE =zm status_ 2100 OUTPUT.

SET PF-3TATUS 'MALINS100'.
IF g _custom container IS INITIAL.
CREATE OBJECT g custom container

EXPORTING
container name = g container.
CREATE OBJECT gridi
EXPORTING
i parent = ¢ custom contalner.

CALL METHOD gridl--set table for first display

EXPORTING
i structure name = 'LTY OUTFUT!
is_layout = gs_layout

CHALNGING
it_fieldeatalog = gt _fieldecat
11E=snrt = gt=snrt |
it_outtab = gt_output.

ENDIF.
ENDMODULE .

Figure 5.6: Pass the sort table (CF)

Now that these elements have been added to your program, you can begin
adding the individual sort features. Follow the “ALV control framework” examples
in each sub-section for an ALV control framework program. The relevant figure
captions are denoted (CF).

5.3 Configuring a sort group

For the first sort example, you'll group the agency number (AGencynum) and

agency name (NAME) together, sorting by agency number.

5.3.1 Function module

With the sort table values passed in Figure 5.9, the data in the cells of this two-
column group will merge as shown in Figure 5.7 instead of repeating on every line
as they did in Figure 4.12. All fields of the group must be specified in the sort table
for the cell merge to act on all the columns of the group you have defined.

Airline Bookings: DREAM TRAVEL
@ =% ¥ = i <% [TP G [B

= Aogency Mo, | Trel agoy ™| carrier| Mo Flight Date Booking Arnount | Curr,
102 Hot Socks Travel A& 17 05/25/2011 12 627,828 ALD

a8 17 05/25/2011 92 1,028,777 AlD

B4 17 05f25/2011 B2 32894 ALD

LYY 17 05252011 104 31162 ALUD

a8 17 | 05/25/2011 240 246,26 ALD

Figure 5.7: Group defined in sort table, before user action (FM)

Airlire

Arnerican Airlines
Arnerican Airlines
Arnerican Airlines
Arnetican Ailines
Arnerican Ailines

AmoLnt
803,58
1,268.82
401,79
380.65
422,94

LT,
IS0

LISD
LIS
LISD
LISD

When the user selects the first amount column and clicks the ToTtaL button,

subtotals and totals are displayed (Figure 5.8).

Airfine Boolings: DREAM TRAVEL
& A&FF % DETHTH0 B H

* agency Mo, | Trl agoy 7| Cartier| Mo, Flight Date EDDkingI E ArnoLit ICurr.
Ty sn 1, , i AUD

4,364,153.15 GBP
= 1,028,775.04 AUD
856,941.48 GBP
081,205.58 GBP
848,529.40 GBP
836,886.68 GBP

102 Hot Socks Tr
107 BEen McCloske
109 Eangeroos
112 Super Agency
123 Aussie Travel

Aitline

Ammount | Curr.

0 =0 =0 =0 =0 =0

295 The Ultimate 840,590.01 GBP

Figure 5.8: Group defined in sort table, after user action (FM)
For both fields in Figure 5.9, provide:

spos: sort position, can be incremented rather than static (for instance,

Lv_SPos = Lv_spPos + 1)
FIELDNAME: from the internal table

TABNAME: the internal table name

For field(s) to be sorted, provide:

uP or bowN: ascending or descending sort direction

Because there is a one-to-one relationship between the agency number and the
agency name, we will only sort by AGENCYNUM.

FORM zf build sort table UBING lt sort TYPE slis t sortinfo alv.
DRTA: 1s sort TYEE slis sortinfo alv, "single row
CLEAR 1t sort.

CLEAR ls =ort.

s ;sort-spos st A
lz sort-fieldname = “AGENCYNUM" .
1z sort-tabname = LG COUTEUT
1s sort-up = TaAT.

BPREND 1s sort MO 1t sort.

CLEARR ls sort.

s sOEE-sSHUs =T

ls :sort-fieldname = "HAME",

ls sort-tabname = Mgl OIFTRUT®;

ls sort-group = TUL". "end of agencynum/name group

s soEk=Sulbtok = ¥, "sub-totald amounts at this group
ls sort-expa = TR "expandable to detail

APPEND 1s sort TQ 1t .sort.

ENDFORM.

Figure 5.9: Define group for subtotals (FM)

For the final field of the group (also known as the control break), provide:

» GRrRouP: either UL (underline) or * (page feed)
» suBToT: level at which the subtotal will be provided

» EXPA: expandable, groups are closed when totaled (Figure 5.8) then can be
expanded individually to view detail records

5.3.2 ALV control framework

With the sort table values passed in Figure 5.12, the data in the cells of this two-
column group will merge as shown in Figure 5.10 instead of repeating on every
line as they did in Figure 4.14. All fields of the group must be specified in the sort
table for the cell merge to act on all the columns of the group.

SAP

S E R - e) = (= W =T R
Airline Bookings: DREAM TRAVEL

Agency Mo, | Trel agoy
102 Hot Socks Travel A4

Catrier| Mo,

17
A 17
A 17
A 17

Flight Date

0s/25f2011
05252011
0s/25f2011
05252011

Booking
12

52

a2

104

Arnaunt | Curr,
657.88 ALD
1,038.77 AUD
328.94 ALD
311.63 AUD

Figure 5.10: Group defined in sort table, before user action (CF)

When the user selects the first amount column and clicks the

subtotals and totals are displayed (Figure 5.11).

SAF

B ETE R

Y

%

Airline Bookings: DREAM TRAVEL

* Agency Mo,
i

102
107
109
112
123
295

Trwl agoy

Hot Socks Tr
Ben MoCloske,
Kangeroos
Super Agency
Aussie Travel

The Ultimate

7| Carrier

0100 =010 0

[Jo.

Flight Date

Elcu:ukingl E

Aitlite

Ametican Airlines
Arnefican Airlines
American Airlines
Arnerican Airlines

Arnount I Curr.

«n 1,0028,f75.04 AUD
4,364,153.15 GBP

Figure 5.11: Group defined in sort table, after user action (CF)

For both fields in Figure 5.12, provide:

1,028,775.04 AUD
856,941.48 GBP
981,205.58 GBP
848,529.40 GBP
836,886.68 GBP
840,590.01 GBP

Arnount
203,58
1,268.82
401,79
280,65

Ailine

L,

USD =
USD]
UsD
LSO

TOTAL button,

Arnount | Curr,

spos: sort position, can be incremented rather than static (for instance,

Lv_SPos = Lv_spPos + 1)

FIELDNAME: from the internal table

For field(s) to be sorted, provide:

up or bowN: ascending or descending sort direction

Because there is a one-to-one relationship between the agency number and the
agency name, we will only sort by AGENcYNUM.

FORM =f build gsort USINS 1t sort TIAPE lvc £ s0rt,
DATRAz ls sort: TYPE lvc.s Sorts "single row
CLEAR 1t sort.

CLEAR ls sort.

158 Sortespos =i
ls. sort=fieldname = "AGENCTHUM® ,
lig isereup = 'X'.

APPEND 1ls sort TO 1t sort.

CLEAR 1s_sort.
ls s0rt=cpos = '2'.

ls sort-fieldname = "HAME®,

L8 Sortegroup = "UL'. "end of agencynum/name group

s SO E=Sugbor = RAt "eub-total amounts at this group
ls. sort=expa = "TH". "expandable fto detail

APPEND 1ls sort TO 1t sort.

ENDFORM.

Figure 5.12: Define group for subtotals (CF)

For the final field of the group (also known as the control break), provide:

» GRoOUP: either UL (underline) or * (page feed)
» suBToT: level at which the subtotal will be provided

» EXPA. expandable, groups are closed when totaled (Figure 5.11) then can be
expanded individually to view detail records

5.4 Changing the sort field in a sort group

Suppose you need to display the table in a different order, sorted by agency name
instead of agency number. Without changing the sort order or the field order in the
internal table, change the output using the ALV sort table.

5.4.1 Function module

With the sort table values passed in Figure 5.15, the data in the cells of this two-
column group will merge as shown in Figure 5.13 instead of repeating on every
line as they did in Figure 4.12. All fields of the group must be specified in the sort
table for the cell merge to act on all the columns of the group.

Airfine Bookings: DREAM TRAVEL
S a7 & @ 8LTHTHIy E

T agency Mo, | Trvlagoy | Carrier Mo, | Flight Date Booking | &rmount | Cure, | Airline Arnount | Curr,
123 Aussie Travel o8 17 05/25/2011 113 243.09 GBP Arnerican &irlines 359,50 USD

a8 17 05/25/2011 230 28598 GBFP Arnerican &itlines 42294 LSO

a8 17 05/25/2011 265 27168 GBFP Arnerican Airlines 401,79 LISD

a8 17 05/25/2011 270 27168 GBR Arnerican Aitlines 401,79 LIShD

Figure 5.13: Group defined in sort table, before user action (FM)
When the user selects the first amount column and clicks the TotaL button,
subtotals and totals are displayed (Figure 5.14).

Airfine Bookings: DREAM TRAVEL

A E2FF| &R G BITHRTHI B

Agency Mo, | Tewl agoy Catrier | Mo, | Fight Date Booking IE ArnaLint ICurr. Aitline Arnount | Curt,
== 1,028,775.04 AUD

4,364,153.15 GBP
123 Aussie Trav - B836,886.68 GBP
107 Ben McClos . B856,941.48 GBP
102 Hot Socks = 1,028,775.04 AUD

]

109 Kangeroos 981,205.58 GBP
112 Super Age_ 848,520.40 GBP
295 The Ultima_ 840,500.01 GBP

S IENENEIENE]

Figure 5.14: Group defined in sort table, after user action (FM)
For both fields in Figure 5.15, provide:

spos: sort position, can be incremented rather than static (for instance,
Lv_SPos = Lv_spPos + 1)

FIELDNAME: from the internal table

TABNAME: the internal table name

For field(s) to be sorted, provide:

» upP or bowN: ascending or descending sort direction

Because there is a one-to-one relationship between the agency name and the
agency number, we will only sort by NAME.

FORM zf build sort table USING 1lt sort TYPE slis t sortinfo alw.
DATA: 1s sort TYXPE slis sortinfo alw. "single row
CLERR. 1t sort.

CLEAR ls sorti

Is: sobt=spos =Tl

ls sort-fieldname "NAME" .

ls sort-tabname "GT _OUTEUT"..
Is sort-UP =] Ak

APPEND ls sort TO 1t sort.

CLEAR l1s sort.
ls sort-spos s N

ls sort-fieldname = 'AGENCYNUM'.

ls sort-tabname =. "GT OUTPUT".

lz sort-GROUP = "L "end of agencynum/name group

1s sort-subtot =i T3 "esub-tofal amounts at this group
ls sort-expa = g "expandable to detail

EFREND ls sort IO 1t sort.

ENDFORM.

Figure 5.15: Define group for subtotals (FM)

For the final field of the group (also known as the control break), provide:

» GRoOUP: either UL (underline) or * (page feed with underline)
» suBToT: X. level at which the subtotal will be provided

» EXPA: expandable, groups are collapsed when totaled (Figure 5.14) then can
be expanded individually to view detail records

5.4.2 ALV control framework

With the sort table values passed in Figure 5.18, the data in the cells of this two-
column group will merge as shown in Figure 5.16 instead of repeating on every
line as they did in Figure 4.14. All fields of the group must be specified in the sort
table for the cell merge to act on all the columns of the group.

SAP

& & FRERFL ELE [EE @ JE) @ 8]
Airline Bookings: DREAM TRAVEL

Agency Mo, | Trvl agoy Carrier| Mo, | Flight Date Booking | Amount | Cure, | Airline Arnount | Curr,
123 Aussie Travel &4 17 05/25/2011 113 243.09 GBP Arnerican Aitlines 359,50 LISD

LY 17 05/25f2011 230 28592 GBP American Airlines 42294 LISD

a8 17 05/25/2011 265 27168 GBEP Arnerican Aitlines 401,79 USD

LY 17 05/25/2011 270 271e8 GBRP American Airlines 401,79 LSD

Figure 5.16: Group defined in sort table, before user action (CF)

When the user selects the first amount column and clicks the ToTtaL button,
subtotals and totals are displayed (Figure 5.17).

SAP

&= E] 5 (L) (=P
Airline Bookings: DREAM TRAVEL

T Agency Mo. | Trvl agoy | Carrier| Mo, | Flight Date ElDDkingIE Amu:uuntl U, Aitline Armount | Curr,

o == 1,028,775.04 AUD

4,364,153.15 GBP
= 123 Aussie Trav = 836,886.68 GBP
= 107 Ben McClos = 836,941.48 GBP
= 102 Hot Socks = 1,028,775.04 AUD
= 103 Kangeroos] 981,205.58 GBP
= 112 Super Age . 848,529.40 GBP
= 295 The Ultima " 840,590.01 GBP

Figure 5.17: Group defined in sort table, after user action (CF)
For both fields in Figure 5.18, provide:

spos: sort position, can be incremented rather than static (for instance,
lv_spos = Iv_spos + 1)

FIELDNAME: from the internal table

For field(s) to be sorted, provide:

up or bowN: ascending or descending sort direction

Because there is a one-to-one relationship between the agency name and the
agency number, we will only sort by NAME.

FORM zf build seort USING lt sort TYPE lve L sort.
DATA: 15 sort TH¥PRE Ivc S sorts "single row
CLEAR 1t sort,

CLEAR 1ls sort.

ls sort-spos = 2]V
ls sort-fieldname = "NAME'.
ls sott=up = Tt

EPPEND 1S sort TO -1t Sorts

CLEAR 1s sort.

13 sort=spos = Y&

ls sort-fieldname = "AGENCYNUM'.

s sort=group = TUL". "end of agencynum/name group

1s: sort=subtot = %' "sub-total amounts at this group
ls sotts-expa = Tl "expandahle to detail

APPEMNE 1s sort TO 1t Sorts

ENDFORM.

Figure 5.18: Define group for subtotals (CF)

For the final field of the group (also known as the control break), provide:

» GRoUP: either UL (underline) or * (page feed with underline)
» suBTOoT: X, level at which the subtotal will be provided

» EXPA: expandable, groups are collapsed when totaled (Figure 5.17) then can
be expanded individually to view detail records

5.5 Changing column order to reflect sort order

Generally, it is a best practice to display data with the sorted columns ordered
from left to right. In Chapter 5.4, you changed the program to output the ALV
records in ascending order by agency name instead of by agency number. To
visually reinforce this sort order for the user, you will now change the field catalog
so that NnamME is output to the left of AGENcYNUM.

5.5.1 Function module

The original sort and column order is shown in Figure 5.8. The revised output,
reflecting the new agency name sort order, is shown in Figure 5.19.

Airline Bookings: DREAM TRAVEL
X AT 2% @ ATl H H

Travel agency narme Agency Mo, | Carrier. Mo, | Flight Date Booking |Z Arnount | Curr, Airline Arnount | Curr,
o = 1,028,775.04 AUD
4,364,153.15 GBP
836,886.68 GBP
1a7 856,941.48 GBP
102 1,028,775.04 AUD

123 .
109 . 081,205.58 GBP

Aussie Travel

Ben McCloskey Ltd.
Hot Socks Travel
Kangeroos

Super Agency

The Ultimate Answer

112 848,529.40 GBP
293 840,590.01 GBP

AN=01EDEDEDIED

Figure 5.19: Sorted column moved to the left (FM)

Since the field catalog controls column order, the change is made there. Simply
change the order of the two fields (Figure 5.20).

EORM=F g el Wea o ldeat ol ag dis s 1 Fs o ldeat iy B Scil 1o e Fae licleaime gl
EEAEE lsl sesbie dieeizhe TEGITIT ST ealisiielie s =il - Hisliplopii= Siaon;

ipiERE Sl s By ellde gk,

s faeldeat=fae cmname THAME .

s el deat=sre i Fa el cdrame ChAMET

sV e ideat—ret BEalhn me = "= TROVELAG .
AR ERNES s o lidie ar S e S el et elerai s

ElyERE S s g e lidealk,

151 it iele sheRal clislil=)is 'AGENCYNUM' .

ilsifrelldcat=rem i eldname " RS RRICEMIIREE Hoclioey obitions likag
s faelideat-rer REabname = ' =STRAVELAG® .

FEERNEe T elideaE s PO e el e e

FTERE S s Eielideai,

il e ldeat—Rneilcname = "CURRENCY".
s Feliaea b ref i ellidn ame = S e R BRI a0
sV elideat ~ e aln Jme = "STRAVELAG'.

1S iEa= e isEve e el =i e Choaes biie |
Af BRNES s e lldisa e BO e T e d e s,

Figure 5.20: Changing the order of the columns (FM)

Changing column order using COL_POS

You can also change column order by populating an explicit
-~ number in the coL_pos field for each record included in your field
b catalog.

i
A

If you have not yet hidden the travel agency currency field, consider doing so now
with the No_our setting (Figure 5.20).

5.5.2 ALV control framework

The original sort and column order is shown in Figure 5.11. The revised output,
reflecting the new agency name sort order, is shown in Figure 5.21.

SAP

SN E R AR Y = W =R
Airline Bookings: DREAM TRAVEL

Travel agency name ol Agency M Carrier. Mo, | Flight Date Bocking £ Arnount | Curr, Aitline Armount | Curr,
p == 1,028,775.04 AUD
4,364,153.15 GBP
Aussie Travel = 123 . 836,886.68 GBP
Ben McCloskey Ltd. = 107 " 856,941.48 GBP
Hot Socks Travel = 102 = 1,028,775.04 AUD
Kangeroos = 109 . 981,205.58 GBHP
Super Agency = 112 . 848.,52940 GBP
The Ultimate Answer &2 205 . 840,590.01 GBP

Figure 5.21: Sorted column moved to the left (CF)

Since the field catalog controls column order, the change is made there. Simply
change the order of the two fields (Figure 5.22).

FORME = Tl lel N Eiclicleiatalog HETHES 1 £ Vi lclea b T WEE S vo N E N Eeioss
[HETEE S = el e o e R R b el = = Cer merle me

CLERFE V=" i eldeas;

el e leliss= v Eiie]l sioe S e

e Eilclcdeat roE Brabil o=t B ELVELEG N
SEPEHDS T s Vo dleages o] B 0 ol dede:

ElEsE 1= Tieldeats,

Tl e leleatlnitin & el e S=AE A G IHE W,
lfe B clicleaka e Seinlc B (L E T |2 G
S PR = e el wianl TR G o el el

ELELE A Eicldeat;

L= Bicldeat=ic ledname = S CHREERNC Y S
el fitcldeakare p i ealyh eSS ST R LYELEGE,
=N i et el ek = Chid—r el

EFREHDN = B o icleasl Ton i el sl e

Figure 5.22: Changing the order of the columns (CF)

Changing column order using COL_POS

You can also change column order by populating an explicit
number in the coL_ros field for each record included in your field
catalog.

y

If you have not yet hidden the travel agency currency field, consider doing so now
with the No_ouT setting (Figure 5.22).

5.6 Configuring a two-level sort

Sometimes a single-level subtotal is adequate, but often data can be grouped
multiple ways and the ability to view subtotals across multiple levels is desirable.

The training scenario ALV program currently provides a subtotal by travel agency
and currency-specific totals for all the agencies specified in the selection screen
(Figure 5.19 and Figure 5.21). You'll now add a subtotal within each agency to

show the amount of income by airline.

5.6.1 Function module

The field that provides the desired subtotal by airline is the third column of your
output table: carriD (labeled ID in Figure 5.23). Comparing the single-level sort of
Figure 5.13 to the two-level sort of Figure 5.23, you'll notice that the third column
is now displayed with cell merge.

Airfine Bookings: DREAM TRAVEL

& Aa¥Y¥ B ¢

Tryl agcy Av:f-‘-u;uar'u:ﬁ; Mo, ID T Mo
ALissie Travel 123 AL 17

17
17
17

Flight Date
05/25/2011

03/25/2011
05/25/2011
03/25/2011

Boaoking
113

230
265
270

B <L ATl B

Arnount
243,09

285.93
271.68
271.68

Figure 5.23: Second sort group defined, before user action (FM)

CLIrr,

GEP
GEP
GEP
GEP

Aitline

Arnerican Airlines
Arnerican Alrlines
Arnerican Airlines
Arnerican Airlines

Arnovnt | Curr,
39950 LSD

422,94 LISD
401,79 LISD
401.79 LISD

With the two-level sort, the user will see airline subtotals within each travel agency
when selecting an amount column and clicking on the toTaL button (Figure 5.24).

Airfine Bookings: DREAM TRAVEL
J avYv¥|@% @ 8CHTHIY B

Tryl agcy Agency Mo, | ID Mo, | Flight Date Elu:uDkingI E I
T =n 1, 7 3

4,364,153.15
36,368.59
143,794.85
57,342.94
99,522.00
109,707.54
64,387.22
159,901.80
165,861.74
37,297.09
151,795.04

Aussie Tra 123 A4
AT
L
L
LH
JF
50
(WFiS
Ben McClo 107 &4
AT

sOlz0lE0EDEDED D ED D ED

Arnount | Curr,

Figure 5.24: Second sort group defined, after user action (FM)
To add an additional group for subtotals (Figure 5.25), add the field(s) that

comprise the next group and provide:

AUD
GBP
GBP
GBP
GBP
GBP
GBP
GBP
GBP
GBP
GBP
GBP

Birline

Arnount | Curr,

» sPos: sort position, can be incremented rather than static (for instance,
lv_spos =Ilv_spos + 1)

» FIELDNAME: from the internal table
» TABNAME: the internal table name

For field(s) to be sorted, provide:

» UP Or bowN: ascending or descending sort direction

For the final field of each group, provide:

» GRouP: either UL (underline) or * (page feed with underline)

For the final field of the final group, provide:

» suBTOT: X, level at which the subtotal will be provided

» EXPA. expandable, groups are collapsed when totaled (Figure 5.24) then can
be expanded individually to view detail records

FORM 2t build sort table USING 1t sort TYPE slis t© sortinfo alwvg

BATE: 1ls sort TYPE slis sortinfo alwy,
CLEAR 1t sort.

CLEAR ls sorts

ls sort-sposg =
ls sort-fieldname = 'NAME".
ls sort-tabname = 8T OUTPUT" .

1Is sertzup = ["explicit sort
EFFPEND 1s sort TO 1t sorts

CLEAR lz sort.

ls =ort=spos = rdte

ls sort-fieldname "AGENCYNUM' .

ls sort-tabname ‘el OUEPUT "«

g Sortagrolp = "UL'. "end of name/agencynum group
EPPEND 1= sort TO 1t sort.

CLEAR ls sort.
ls sert-spos =

lgs sort-fieldname = 'CARRID'.

ls sort-tabname = tEF OUTROT .

1s sort-=up = Ll "explicit sort

1Is sSort—-group = 'UL'. "end of carrid group

1Is sertmsubtet = "sub-total amounts at this group
ls sort-expa Sl "initially closed, expandable

EPPEND Jl= sort TO 1t Sort.

ENDFORM.

Figure 5.25: Defining a second group for subtotals (FM)

Because AGencynum is no longer part of the last group defined, the susToT and
EXPA settings move from AGencyYNum to cARRID (Figure 5.25). Acencynum is still the
last field of a group so it retains its Group setting for inclusion in the
NAME/AGENCYNUM group subtotal.

5.6.2 ALV control framework

The field that provides the desired subtotal by airline is the third column of your
output table: carrip (labeled ID in Figure 5.26). Comparing the single-level sort of
Figure 5.16 to the two-level sort of Figure 5.26, you'll notice that the third column
is now displayed with cell merge.

SAP

=R E N AR RN e =Y = [W == T D I]

Airline Bookings: DREAM TRAVEL

Trvlagsy © Agency Mo, ID T Mo, Flight Date Booking &rmount Cure, Aitline Arnount | Curr,

Auszie Travel 123 an 17 05/25/2011 113 243.09 GBP Arnerican Aitlines 359,50 LUSD
17 05/25/2011 230 28598 GBFP Arnerican Aitlines 42294 LSO
17 05/25/2011 265 27168 GBP Arnerican Aitlines 401,79 LISD
17 05/25/2011 270 27168 GBFR Arnerican Aitlines 401,79 LIShD

Figure 5.26: Second sort group defined, before user action (CF)

With the two-level sort, the user will see airline subtotals within each travel agency
when selecting an amount column and clicking on the ToTaL button (Figure 5.27).

SAFP

EY G EENERY =R 22D
Airline Bookings: DREAM TRAVEL

Trlagey © 7 Agency Mo, ID | Mo. | Flight Date Booking | = amount | Cure, | Airline Amount | Curr,
o == LU2G,7f2.04% AUD
4,364,153.15 GBP
Aussie Tra_ 123 28 = = 36,368.50 GBP
A7 =2 . 143,794.85 GBP
Bl " 57,342.94 GBP
1] A= " 09.,522.00 GBP
SR " 109,707.54 GBP
BIEEE= " 64,387.22 GBP
50 = . 159,001.80 GBP
8] A=l " 165,861.74 GBP
Ben McClo_ 107 ar = " 37,297.99 GBP
o = " 151,795.04 GBP

Figure 5.27: Second sort group defined, after user action (CF)

To add an additional group for subtotals (Figure 5.28), add the field(s) that
comprise the next group and provide:

spos: sort position, can be incremented rather than static (for instance,
lv_spos = Iv_spos + 1)

FIELDNAME: from the internal table

For field(s) to be sorted, provide:

uP or bowN: ascending or descending sort direction

For the final field of each group, provide:

Group: either UL (underline) or * (page feed with underline)

For the final field of the final group, provide:

» suBToT: X, level at which the subtotal will be provided

» EXPA: expandable, groups are collapsed when totaled (Figure 5.27) then can
be expanded individually to view detail records

FoRM: zf build sort WSING 1t sort TY¥PE lve t sorts

PEIAS. ..o sort T¥EE Ve & SOt
CLEAR 1t sort.

CLEAR 15 sorts

Is sort=spos = %l
ls sort-fieldname = "NAME'.
I3 sort=up = X', "explicit sort

ZPPEHD 15 sort TO 1t sort.

CLEAR ls sort.

ls sort-spos = Dera
ls sort-fieldname = TAGENCYNUM'.
I's Sort=group = "UL". "end of name/agencynumnm

APPEND 13 sort TO 1t sort.

CLEAR 1s sort.

LS SEirE=cpes = .
ls sort-fieldname = 'CARRID'.
1ls sort-up = TH". "explicit sort
lg sort=greup = "UL'. Yend of warrid group
Is sort-=zubtot = THT. "eub-total amounts at this group
ls sort-expa = X', "initially closed, expandable
APFRND 12 sort Tu 1T =ort.
ENDFORM.

Figure 5.28: Defining a second group for subtotals (CF)

Because AGencynum is no longer part of the last group defined, the susToT and
EXPA settings move from AGencyYNum to cArRrRID (Figure 5.28). Acencynum is still the
last field of a group so it retains its Group setting for inclusion in the
NAME/AGENCYNUM group subtotal.

5.7 Populating the sort table from the selection screen

If desired, you can populate the sort table based on a user preference from the
selection screen. For this exercise, you'll provide the user with a choice of two
subtotal groups coded earlier:

» By agency name
» By airline carrier within agency

Reorder columns to support subtotals options

If you provide a subtotal option that would be better supported

visually by a different column order, be sure to add an

statement to the field catalog to provide the alternative column

order. In this section, both of the subtotal options begin with an
agency name sort. The agency name is the leftmost column of the display so
the column order in the field catalog works for both options. If we were to
include a subtotal option of “by airline carrier, then by agency name”, we
would sort first by carriD when building the sort table and would list carrID as
the first field in the field catalog as described in Chapter 5.5.

5.7.1 Function module

The selection screen will provide the user with a choice between subtotals by
agency or by airline within each agency (Figure 5.29).

ALV Function Module (Layout & Sort Changes)

D R
L~
Travel Agency Nurnber loz to
Airlire to
Flight Date ta
Subtotals

(#1By Agency

By Agency, then Airline

Figure 5.29: Subtotal options for user selection (FM)

Add the code shown in Figure 5.30 to create the radio buttons on the selection
screen.

SELECT-OPTICNS: s agnum FOR stravelag-agencynum DEFAULT '1z237,
g..carid FOR: sbook-carrid;
g fldat FOR skook-fldate.
SELECTION-SCREEN: SKIP.
SELECTION-SCREEN: BEGIN OF BLOCK bl WITH FRAME TITLE text-0US3.
eRLECT ION-SCREENT BEGLN OF LINE, "Agency
PARRMETERS : rib 1 RADIOBUTTON GROUR radl DEFRULT "X°.
SELECTION-SCREEN COMMENT & (25) TEXT-004 FOR FIELD rb 1.
SELECTION-SCREEN: END OF LINE.

SELECTION-SCREEN: EEGIN OF LINE. "Agency, Airliine
PARAMETERS: rbh 2 BADIOBUTTON GROUP radl.
SELECTION-SCREEN COMMENT b (Z5) TEXT-U05 FOR FIELD rb 2.

SELECTION-SCEEEN: END OF LINE.

SELECTICN-SCREEN: END OF BLOCE bl.

Figure 5.30: Radio buttons for subtotal options (FM)

Provide new labels on the selection screen by double-clicking on each TexT-nnn in
Figure 5.30 to navigate to the Text symeoLs tab (Figure 5.31). Type the text, save,
and activate. Use the green Back arrow to return to your source code.

[TextElements Edit Goto Utiities Environment System Help

g | B C@e@ CHER fDos

ABAFP Text Elaments: Change Text Svinbols Language Engl
€3 yeg[i|e 4808 &

Pragram \Z¥F_ALY_FM_LAYOUT SORT | Active

Text Symbols]‘ Selection Texts © List Headings |

[][] [@-HHH[@] [B Mext Free Mumnber]

S... Text Lrgth Maz.
 lom Ajtline Bookings: 17 27
- ooz (previous data view) 20 40
 loos Subtotals 9 9
_DD4 By Agency 9 g
:DDE By &gency, then Liline 23 23

Figure 5.31: Radio button text symbols (FM)

Add an I statement to the zFr_BuiLD_sorT_1ABLE logic based on radio button 1
having been chosen. The code for this choice (Figure 5.32) matches the single-
level sort previously coded (Figure 5.15).

FORM zf build sort table USING 1t sort TYPE slis t sortinfo alvs

DATE: 1s sort TYRE s5lis sortinfo alwvs
CLEAR 1t sort.

S) o1 i "hy agency
CLEAR l1ls sort.
ls sort-spos =: Bl
ls sort-fieldname = "NAME'.
ls sort-tabname = "G OUTPUT"

1s sort-up S "explicift sorf
APPEND 1= sort TO 1t sort.

CLEAR 1s sort,

ls sert=spos - 2T

1s sort-fieldname = "AGENCYNUM'.

1ls sort-tabname = 16T OUTPUT .

1s sort-group = T "end of name/agencynum group

ls sort-subtot = "H'. "sub-total amounts at this group
ls sort-expa = "initially closed, expandable

AFPEND 1= sort TO 1t sort.

Figure 5.32: Logic for first subtotal option (FM)

For the eLse portion of the zF_BuiLb_sorT_T1ABLE logic based on radio button 2
having been chosen, add the code shown in Figure 5.33. This code matches the
two-level sort previously coded (Figure 5.25).

ELSE. "by agency, airline
CLERR ls sorta
1s: soct-spes =g
ls sort-fieldname = "NAME'.
ls sort-tabname = '"67 _OUTPUT".

13 sort=UP = K "explicit sort
EPPEND 1s sort TO@ 1t sott.

CLEAR ls_sort.

ls. sort=spos =t e
ls: sort=fieldname = "AGENCYNUM",
ls sort-tabname = NET_ DUTPLT .

15 Sort=GROUR = TUL". "end of name/agencynum group
APPEND l= =ort TO 1t sort.

CLEER. .1z sotta

Lsi sEcteshes =",

ls_sort-fieldname = 'CARRID'.

lz sort-tabname = 187 OUTPUT",

ls sOBC=uUp = 1o "explicit sort

Is Sort-group = VNI "end of carrid group

13 sort-subtot = TH". "sub-total amounts at this group
ls sort-expa b "initially closed, expandable

EPPEND ls sort TO 1t sort.
ENDIF.
ENDFORM.

Figure 5.33: Logic for second subtotal option (FM)

Execute the program with each of the radio button choices to see the difference. If
you have not yet added the po_sum setting to an amount field in the field catalog
(Chapter 6.2), you will need to highlight an amount column in the ALV display and
click on the ToTaL button to view the subtotal.

The displays with subtotals should match Figure 5.19 and Figure 5.24,
respectively.

5.7.2 ALV control framework

The selection screen will provide the user with a choice between subtotals by
agency or by airline within each agency (Figure 5.34).

ALV Control Framework (Lavout & Sorf Changes)

F@—I @
bt
Travel Agency Nurnber 123 to
Airlire to
Flight Date ta
Subtotals

(#1By Agency

By Agency, then Airline

Figure 5.34: Subtotal options for user selection (CF)

Add the code shown in Figure 5.35 to create the radio buttons on the selection
screen.

SELECT-OPTIONS: = agnum FOR stravelag-agencynum DEFRULT *123",
g ‘carid FOR sbook=carrid,
s fldat FOR sbhook-fldate.
SELECTION-SCREEN: 3SKIP.
SELECTICN-SCREEN: BEGIN OF BLOCK bl WITH FRAME TITLE TEXT-003.
SELECTION-SCREEN: BEGIHN OF LINWE. "Agency
PARAMETERS: rb 1 RADIOBUTTON GROUP radl LDEFAULT 'X'.
SELECTION-SCREEN COMMENT 5(Z5) TEXT-004 FOR FIELD rb 1.
SELECTION-SCREEN: END OF LINE.

SBELECTION-SCREEN: BEGIN OF LINHE. "Agency, Alirline
FARAMETERS: rb 2 RADIOBUTTON GROUP radl.
SELECTION-SCREEN COMMENT -5 (25) TEXT-005 FOR FIELD rb 2,

SELECTION-SCREEN: END OF LINE.

SELECTION-SCREEN: END OF BLOCK bl.

Figure 5.35: Radio buttons for subtotal options (CF)

Provide new labels on the selection screen by double-clicking on each Text-nnn in
Figure 5.35 to navigate to the Text symeoLs tab (Figure 5.36). Type the text, save,

and activate. Use the green Back arrow to return to your source code.

[TextElements Edit Goto Utiities Erwironment System Help

g | B |e@@ BHE G080 EHE @3

ABAP Text Elaments: Change Text Syinbols Language English
= | PRH|1|E a2 EH B

Program IZRK_AL?_CTRL FW_LAYOUT S0RET | active | rewised

Text Symbols I Selection Texts « List Headings

[][] [@-HHH[@] [B Mext Free Mumber] 1/5
S... |Text Lnigth Maz.
00l Ajdine Bookings: 17 27
002 (previous data view) 20 40
003 Subtotals 9 19
nod By Agency] 9
005 By Agency, then Aitline 23 23

Figure 5.36: Radio button text symbols (CF)

Add an I statement to the zr_BuiLD_sorT_1ABLE logic based on radio button 1
having been chosen. The code for this choice (Figure 5.37) matches the single-
level sort previously coded (Figure 5.18).

FORM ‘zf: build sort USING 1t sort TY¥PE lvc € sort.

DATH: 1s sort TYPE lvec 3 sort.
CLEME 1t sorth

LE el] e 25005 "By agency
CLEZE s sort,
15 isprt=spos i)
1s sort-fieldname 'NAME" .
13 Soct=UP = T Texplicit sort
APPEND 1= sort TO 1t sork.

cCLEAE. 15 sort,

s ssortespos =i N

1s sort-fieldname = "AGENCYNUM'.

ls sort-GROUP = L "end of name/agencynum group

1z =ort=Ssubtot = TN "sub-total amounts at this group
ls sort-expa = T3 . "initially closed, expandable

APPEND l= sort TO 1t sort.

Figure 5.37: Logic for first subtotal option (CF)

For the eLse portion of the zr_BuiLb_sorT_TABLE logic based on radio button 2
having been chosen, add the code shown in Figure 5.38. This code matches the
two-level sort previously coded (Figure 5.28).

ELSE. "by agency, airline
CLEAR 1s sort.

15 sort-spos -
1s sort-fieldname = 'HAME'.
L8 sortlp = TH'. "explicit sort

APPEND l1ls sort TO 1t sort.

CLEAR 1ls sort.

ls sort-spos = '2'.
ls sort-fieldname = "AGENCYNUM'.
ls sort-group = 'UL'". "end of name/agencynum group

APPEND ls sort TO 1t sort.

CLEAR 1= sort.
13 :sort-spos - S

1s sort-fieldname = TCABRID®.

1s sort-up = "H". "explicift sort

1ls sort-group = UL "end of carrid group

1s -sort=subtot = "H". "sub-total amounts at this group
ls sort-expa i G "initially closed, expandablie

APPEND 1= sort T 1t Ssort.
ENDIF.

ENDFORM.

Figure 5.38: Logic for second subtotal option (CF)

Execute the program with each of the radio button choices to see the difference. If
you have not yet added the po_sum setting to an amount field in the field catalog
(Chapter 6.2), you will need to highlight an amount column in the ALV display and
click on the ToTaL button to view the subtotal.

The displays with subtotals should match Figure 5.21 and Figure 5.27,
respectively.

5.8 Summary

In this chapter, you learned how to use the ALV sort table to control sorting,
grouping, and subtotal behavior. You added three foundational lines of code to
both types of SAP List Viewer programs covered in this book, then populated the
sort table to meet various requirements.

Key points:

Record order is controlled by the sort table

Column order is controlled by the field catalog table
More than one Group can be defined in the sort table
Valid values for croup are uL and * (not x)

ExPA displays subtotals with the detail lines hidden yet allows the user to
expand those lines to see the detail

The field catalog setting No_ouT can be used to hide nonessential fields and
provide a simpler group for subtotal display

The field catalog setting po_sum can be used to provide subtotals on initial
display

Best practices:

Populate the croup setting on the “rightmost” field of each grouping of related
fields.

Populate sustoT and Expa settings only on the final group.

|dentify the currency key field for each currency amount using cFIELDNAME
when populating the field catalog table.

|dentify the unit of measure field for each quantity in using aFiELDNAME When
populating the field catalog table.

6 Adding more features to an ALV
program

In this chapter, you’ll add even more features to the two types of ALV
programs. Some features activate additional functionality. Other features
configure the initial display of data so the user can gain insight with less
manual effort.

As before, you may wish to make a copy of your in-progress program and variants
now, then add the features described in this chapter to the new copy. This will
allow you to compare previous behavior to new behavior. Activate and save as
you go. (I called my program copies ZKK_ALV_FM_LAYOUT_ SORT_MORE and
ZKK_ALV_CTRLFW_LAYOUT_SORT_MOR.)

6.1 Passing hidden columns of data

Some fields that are included in ALV output can be useful for troubleshooting, for
special analysis, or for future use, but are not needed by most users. For the
training scenario, the master data currency key associated with each travel
agency (currency) can be hidden from the initial display of data. The currency
keys associated with the two transactional booking amounts (FORCURKEY and
LOCCURKEY) are essential for understanding and summing those amounts so they
must be retained.

Users of the ALV data can reveal hidden columns by using the cHANGE LAvout
button to change the displayed columns (Figure 6.1).

[Change Layout

/ Displayed Colurmns } Sort Order < Filker Wiew o Display

CEEaEIE

Displayed Columns Column Set

Column Marme = Column Marme

Travel Agency Nurnber Travel agency local currency
Travel agency name

Aitlire

Connection Murnber

Flight Date

Arnount (far, currency)]
Payment currency

Airline

Arnount (o, currncy)]

:.
:.

:.

:.

:.

:.

:.

:.

:.

:.

:.

:.

:.

Booking nurnber i
:.

:.

:.

:.

Aijtlirne local currency b
:.

:.

:.

:.

:.

:.

:.

:.

|

Figure 6.1: Users can re-display hidden fields

6.1.1 Function module

Comparing Figure 6.2 to Figure 4.20, you'll see that the currency column that had
appeared between the travel agency name and the carrier code is no longer
present.

Airfine Bookings: DREAM TRAVEL
& AYY 2 O @B ETHTHin B M

“ hgency Mo, | Trel agoy T Carrier| Mo. | Flight Date Booking | Armount | Cure, Aitline Armount | Curr,
102 Hot Socks Travel A 17 | 05/25/2011 12 657.82 ALD Arnerican Ailines 803.58 | USD

B4 17 05/25/2011 92 1,028.77 aAlD American Airlines 1,268.82 LSD

AA 17 05f25/2011 a2 328.94 ALD Ammerican Aitlines 401.79 LISD

A4 17 05/25/2011 104 311.62 ALD Arnerican Ailines 280,65 LUSD

Figure 6.2: Example of field hidden on initial display (FM)

To hide a field, fill the Nno_ourt field of the field catalog with x as shown in Figure
6.3.

CLEAR 1s fieldcata

ls fieldcat-fieldname = “CURBENCY®

1z fieldcat=ref fieldname = 'CURRENCY®.

ls fieldcat-ref tabname "STRLVELLG" .

Lg ddaeldeat=no ot = PE" . "hide field
ZPPENH 1= . Tieldeagt TO 1t fieldeats

Figure 6.3: Value to set for hidden field (FM)

6.1.2 ALV control framework

Comparing Figure 6.4 to Figure 4.25, you'll see that the currency column that had

appeared between the travel agency name and the carrier code is no longer
present.

SAP

&) (&[0 EFL) [ELE L (B¢ @ =) k) (0]
Airline Bookings: DREAM TRAVEL

Agency Mo, | Trel agoy Cartier, Mo, | Flight Date Booking | Amovnt | Curr, Bitline Arnovunt | CLrr,
102 Hot Socks Travel a8 17 05/25/2011 12 657.88 | AUD arnerican Airlines 203.58 | UsD
102 Hof Socks Travel A& 17 05/25/2011 92 1,038.77 AUD armerican airlines 1,268.82 LSD
102 Hot Socks Travel A& 17 05/25/2011 a2 328,94 AUD arnerican Airlines 401,79 LUsD
102 Hot Socks Trawvel &8 17 05/25/2011 104 31162 AUD Arnerican Airlines 380.65 USD

Figure 6.4: Example of field hidden on initial display (CF)

To hide a field, fill the Nno_our field of the field catalog with x as shown in Figure
6.5.

ELERR = fTieldcats

las.freldeat=Fieldname: = T EUKKENCTY .

ls :fieldecat=ref table = "STEAVELEG" .

1z fieldeat=no out =4 Thide fiedd
APPEND 15 fieldcat TO 1t fieldcat.

Figure 6.5: Value to set for hidden field (CF)

6.2 Displaying totals and subtotals immediately

In Chapter 5, we first displayed the ALV data grouped, but unsummed (Figure 5.7
and Figure 5.10). User action was necessary to display totals—an amount column
had to be selected and the ToTtaL button had to be clicked in order to view the
subtotals (Figure 5.8 and Figure 5.11).

For the training scenario, the owner of the Dream Travel group of agencies
prefers to see the data already summed by “Amount in foreign currency”
(Forcuram), the amount that corresponds to each travel agency’s working
currency. You can provide this automatic summing by enabling a setting in the
field catalog: po_sum.

“Not enabling” is different than disabling

The po_sum setting in the field catalog provides a default behavior

without disabling the ability of the user to over-ride it after display.

This is generally desirable, supporting both standardization and

flexibility. For some reports, however, it may be necessary to
prevent some user actions. “Not enabling” a feature (by omitting it from the
field catalog or by passing a blank value) may not be sufficient. In those
situations, the developer should look for an SAP-provided setting in the
structure that will truly disable the feature. Nno_sum is an example of a field
catalog setting that prevents the user from using the TtotaL button on a
specified amount column (Figure 6.6).

Airfine Bookings: DREAM TRAVEL
& F F @ BITRT Rl =

Travel agency name Av:f-‘-u;uar'u:y Mo, | ID | Mo, Date Booking Arnount | Curr, | &itline | Armoust §Curr,
ALssie Travel 123 A 17 05/ 113 243.09 GBP Ame | 359.50 |USD
A 17 05f 230 285.98 GBP Ame | 422.94 |LSD
A 17 05f 265 271.68 GBP Ame | 401.79 |LUSD
A 17 05f 270 27168 GBP Ame | 401.79 |LUSD
A 17 NSS! | 2R5.058 GRP O Ame 42204 |1)150

Desired operation cannot be performed for colurmn "Amount (loc.currncy)’

Figure 6.6: Use of no_sum to prevent manual summing (FM)

6.2.1 Function module

Your program provides a selection screen option (Figure 5.29.) for displaying
subtotals “By Agency” or “By Agency, then Airline”. The desired result for the “By
Agency” option is shown in Figure 6.7.

 Airfine Bookings: DREAM TRAVEL
QA AYTF E% @ BHITHThHI B B

Travel agency name A;vﬂ«gencﬁ; Mo, ID [fDate: Booking | = Arnouint LIrE, ?ﬂ«irline? Arnont ;Curr.
T == 1,028,775.04 JAUD
4,364,153.15 |GBP
Aussie Travel = 123 = 836,886.68 [GBP
Ben McCloskey Ltd. = 107 = 856,941.48 |GBP
Hot Socks Travel = 102 = 1,028,775.04 jAUD
Kangeroos = 109 " 081,205.58 BP
Super Agency = 112 " 848,529.40 BP
The Ultimate Answer = 2905 " 840,590.01 |GBP

Figure 6.7: Automating the display of totals, one level (FM)

The desired result for the “By Agency, then Airline” option is shown in Figure 6.8.
i Airfine Bookings: DREAM TRAVEL

G AT E% @ DSATLE E B

Travel agency name A|v»'-‘u;|er'u:ﬁ; Mo, |ID AiNu:u. |DateiBuuking|}E Arnout § Curr, Iﬂirlineiﬁmuunt L,
TP == 1,028,775.04 | AUD
4,364,153.15 | GBP
Aussie Travel 123 a8 =22 = 36,368.59 | GBP
A = . 143,794.85 | GBP
BlL.= . 57,342.94 | GBP
ik = . 99,522.00 | GBP
=t . 109,707.54 | GBP
alp = . 64,387.22 | GBP
S @ 159,901.80 | GBP
LA = . 165,861.74 | GBP
Ben McCloskey Ltd. 107 AL 2 . 37,297.99 | GBP
A = . 151,795.04 | GBP

Figure 6.8: Automating the display of totals, two levels (FM)

The initial display of subtotals for both of these groupings (previously coded into
the sort table based upon the user choice) was accomplished by adding the
po_sum setting for this amount field (Forcuram) in the field catalog (Figure 6.9).

CLEAR 1= fieldeat.

lz fieldoat-fieldname = 'FORCURAM' . Tamount f£ield !

lz fieldoat-cfieldname = YFORCUREEY ' "gzsocidted currency kKev
ls fieldeat-ctabname = I'SBOOK".

ls fieldeat-ref fieldname = 'FORCTRLM'.

lz fieldcocat-ref tabname = 'SEOOK".

Ils_fieldcat—dn_sum Saarle "dizplay =umned I
NI 1= fieldeat To 1t fieldcoat.

Figure 6.9: Value to set for automatic summing of an amount field (FM)

Know your data and the user needs

Take care not to overdo the use of po_sum. Identify the subtotals

that will provide value and meet user requirements. In Figure

6.10, both the foreign currency (associated with the travel

agency) and the local currency (associated with the airline) have
been totaled, providing a confusing display.

In Chapter 5.7, you learned how to obtain user preferences from the selection
screen and use IF statements to manage which settings were passed to the ALV
function module. To avoid the confusion of two summed amounts (Figure 6.10),
you can provide the user with the option of displaying amounts in foreign currency,
local currency, or a single “report currency” of their choice. Based on the user
choice, you can add Ir statements in the field catalog subroutine to set po_sum for
the chosen amount field, and hide the unneeded amount field and its associated
currency key (Chapter 7.3).

Airfine Bookings: DREAM TRAVEL
A EYFYTF &% ¢ BITHToly B

Travel agency narme i vﬁ'«gency Mo. |Carier | Mo, |Date Booking | £ Arnout §Curr, | Aitline E Arnount JCurr,
o == 1,028,775.04 |AUD == 501,583.25 JAUD
4,364,153.15 |GBP 2,599,334.96 EUR

109,448,450 JPY
2,589.878.80 SGD
2,369,495.63 USD

Aussie Travel 123 A4 =1] 36,368.59 |GBP . 53,785.39 USD
a7 =] 143,794.85 |GBP = 231,796.85 [EUR
DL = . 57,342.94 |GBP = 84,804.23 USD
AL =l . 099,522.00 |GBP = 17,740,622 pOPY
LH =] 109,707.54 |GBP = 176,847.48 [EUR
QF = . 64,387.22 |GBP . 77,.957.15 jAauD
=] = . 159,901.80 |GBP = 426,541.53 [SGD
LI, = . 165,861.74 |GBP = 24529196 USD

Ben McCloskey Ltd. 107 A4 =1] 37,297.99 |GBP . 55,159.89 USD
a7 =] 151,795.04 |GBP = 244,693.09 EUR

Figure 6.10: Example of excessive subtotals (FM)

6.2.2 ALV control framework

Your program provides a selection screen option (Figure 5.34) for displaying
subtotals “By Agency” or “By Agency, then Airline”. The desired result for the “By
Agency” option is shown in Figure 6.11.

SAP

g [&]=)0) 6% [Z5EL) (B @ . 0m) ([E]
Airline Bookings: DREAM TRAVEL

Travel agency name Aivﬂ«gencﬁ; Mo, | 10| Ma. | Date| Booking | £ Amount [Curr. | Aidine | Amount | Curr,
7 == 1,028,775.04 |AUD
4,364,153.15 |GBP
Aussie Travel = 123 = 836,886.68 |GBP
Ben McCloskey Ltd. = a7 . 856,941.48 |GBP
Hot Socks Travel = 102 = 1,028,775.04 |AUD
Kangeroos = 109 " 081,205.58 |GBP
Super Agency = 112 " 848,529.40 |GBP
The Ultimate Answer = 2905 " 840,590.01 |GBP

Figure 6.11: Automating the display of totals, one level (CF)
The desired result for the “By Agency, then Airline” option is shown in Figure 6.12.
SAP

&) 76 [F) (EL)%EL) ([B)& &)6
Airline Bookings: DREAM TRAVEL

Travel agency name Avﬂ«gencﬁ; Mo, |10 *|Mo. | Date Booking § £ Arnount | Cure, | Aitline | Arnount | Curr,
op == 1,028,775.04 | AUD
4,364,153.15 |GBP
Aussie Travel 123 a8 22 = 36,368.59 |GBP
Ar = = 143,794.85 |GBP
DL =2 = 57.,342.94 |GBP
1L e = 09,522.00 |GBP
LH =2 = 109,707.54 |GBP
QF =2 = 64,387.22 |GBP
SQ = = 159,901.80 |GBP
ua = = 165,861.74 |GBP
Ben McCloskey Ltd. 107 a4 = = 37,297.99 |GBP
Az = = 151,795.04 |GBP

Figure 6.12: Automating the display of totals, two levels (CF)

The initial display of subtotals for both of these groupings (previously coded into
the sort table based upon the user choice) was accomplished by adding the
po_sum setting for this amount field (Forcuram) in the field catalog (Figure 6.13).

CLEAR 1= fieldeat.

lz fieldeoat-fieldname = 'FORCURAN', "amount field !
lz fieldeoat-cfieldnsme = 'FORCUREEY'. "azsocidted currency key
lz fieldeat-ref tabhle = 'SEQOE'.,

Ils_fieldcat—dn_sum SEEAES "diaplay summedl
NI 1s fieldeat To 1t fieldcoat.

Figure 6.13: Value to set for automatic summing of an amount field (CF)

Know your data and the user needs

Take care not to overdo the use of po_sum. Identify the subtotals

that will provide value and meet user requirements. In Figure

6.14, both the foreign currency (associated with the travel

agency) and the local currency (associated with the airline) have
been totaled, providing a confusing display.

In Chapter 5.7, you learned how to obtain user preferences from the selection
screen and use IF statements to manage which settings were passed to the ALV
engine. To avoid the confusion of two summed amounts (Figure 6.14), you can
provide the user with the option of displaying amounts in foreign currency, local
currency, or a single “report currency” of their choice. Based on the user choice,
you can add Ir statements in the field catalog subroutine to set po_sum for the
chosen amount field and hide the unneeded amount field and its associated
currency key (Chapter 7.3).

(&)= 08)E)F.) (Z 2. (B)& .6 1) (@]
Airline Bookings: DREAM TRAVEL

Travel agency name == vﬂ«gencﬁ; Mo, I “ Mo, Date Booking | E Arnount | Curr, | Aitline E Arnount | Curr,
oy == 1,028,775.04 AUD == 501,583.25 AUD
4,364,153.15 GBP 2,599.33496 EUR

109,448,450 IJPY
2,589,878.89 S5SGD
2,369,495.63 USD

Aussie Travel 123 An =2 = 36,368.59 GBP] 53,785.39 USD
=] = 142,794.85 GBP = 231,796.85 EUR
oL = . 57,342.94 GBP] 84,804.23 USD
It = = 99,522.00 GBP = 17,740,622 1PY
LH = = 109,707.54 GBP = 176,847.48 EUR
QF = = 64,387.22 GBP . F7957.15 AUD
50 = = 159,901.80 GBP = 426,541.53 SGD
LIA =2 = 165,861.74 GBP = 24529196 USD

Ben McCloskey Ltd. 107 An =2 = 37,297.99 GBP] 55,159.89 USD
o] = 151,795.04 GBP = 244,693.09 EUR

Figure 6.14: Example of excessive subtotals (CF)

6.3 Adding record counts

Using two different techniques, record counts can be added to an ALV. Both
techniques update the totals if the user applies a filter to the displayed data.

1. Layout structure technique (the count option will be enabled in a menu or
toolbar button dropdown list, Figure 6.15 and Figure 6.27)

Pros: Users expose the record counts to view only if needed, no coding to
populate the count field (remains initial), no disabled options on the dropdown
list

Cons: Column heading is always “Count.” regardless of name you provide,
requires user action to expose it to view, count field is not populated for users
who export the data to spreadsheets

2. Field catalog technique (explicit count field on each record, Figure 6.23 and
Figure 6.34)

Pros: User action is not necessary to expose the record counts to view, the
count field for every record is populated with “1” which may be preferred by
users who export the data to spreadsheets, column heading other than
“Count.” can be defined

Cons: Requires coding to populate the count field for every record, the count
option on the dropdown list remains disabled

The technique you use may depend upon a business requirement or user
preference so both will be described here.

6.3.1 Function module

By default, the count functionality is disabled in the menu at the top of the ALV
screen (Figure 6.15). Select Epit » CaLcuLATE to see this.

= List § Edit | Goto Wiews Settings Systemn Help

ﬁ- Select al % oo e s @ @
Deselect al

Airlis et fiter Ctrl+FS
Dielete Filter

& & = B A
Sort in Ascending Crder Ctr+F4

Tryl agcy Sort in descending arder Ctr+-Shift+F4 ooking E Armount | Cure, | Aitline Arnount | Cure,

7 Calculate [3 Total CHrH-FE ; 2::3
Subtotals... Ctrl+Shift+F6 Mean value

Aussie 1 = - 8 GBP

Ben Ml Fird Ctrl4F MirirrLirn 8 GEBP

Hot Soc Cancel F1z Maxirmurm 4 AUD

Kangeroos = 109 8 GBP

Super Age 112 u 848,529.40 GBP

The Ultima__ = 295 " 840,590.01 GBP

Figure 6.15: Count menu option is disabled by default (FM)
For the layout structure count technique, you make two changes:

1. Add a new integer field at the end of the internal table structure
2. Specify the new field as a “count” field in the layout structure

After those two code changes, the Epit « CaLcuLAaTE * Count menu option is no
longer disabled and record counts can be displayed by the user (Figure 6.16).

Airfine Bookings: DREAM TRAVEL
QA AY V¥ &% ¢ HITEH TG0y E

Travel agency name il Agency Mo, .ID 'ND. 'Date ' Eooking |z Arnount 'Curr. 'ﬂ«irline ' Arnount 'Curr. E Count.
o7 == 1,028,775.04 AUD = n 10,262
4,364,153.15 GBP
Aussie Travel = 123 . 836,8860.68 GBP = 1,662
Ben McCloskey Ltd. = 107 . 856,941.48 GBP . 1,662
Hot Socks Travel = 102 = 1,028,775.04 AUD . 1,665
Kangeroos = 109 . 0981,205.58 GBP " 1,949
Super Agency = 112 . 848,529.40 GBP " 1,661
The Ultimate Answer = 205 . 840,500.01 GBP . 1,663

Figure 6.16: Record counts displayed by user (FM)

When you add the new integer field to the internal table structure type, place it at
the end of the structure (Figure 6.17). By doing so, you can continue to use the
seLEcT statement coded earlier. Even though you will not be populating this integer
field, it must be present with this technique to avoid a runtime error (short dump).
In the example, it is called “count”, but other names are acceptable.

TYPES: BEGIN OF lty output,
agencynum TYPE stravelag-agencynun, “agency number
name TY¥PE stravelag-namme, "agency name
currency TYPE stravelag-currency, "agerncy currency
carrid TYPE shook-carrid, Thooked carrier
connid TYPE shook-connid, "hooked connection
fldate TYPE shook-fldate, "hooked date
hookid TYPE sbook-bookid, "hooking ID
forcursm TYPE shook-forcocuram, "price in foreign cuUrrency
forcurkey TYPE shook-forcurkevw, "forelgh currency key
carrhame TYPE scarr-carrhate, Tfogrrier name
locouram TYPE shook- loccuram, fprice in Jirline curr
loccurkey TYPE shook-loccurkevw, "locadl currency of Firline
Icnunt TYPE i, "empty field for rec count, reguired I
END OF 1ty output.

Figure 6.17: Count field added to internal table structure (FM)

Next, pass the name of this new field in countFnAME Of the layout structure (Figure
6.18). The text you pass in single quotes:

» Does not have to be “Count”, but must match the name of the field you added
to the internal table structure

» Is not case sensitive

» Is not used for the column label (Count. will be displayed as the column label
regardless of the name you provide)

FOEM =zf build layout TIING 1= layout TYPE =slis layout_alw.

ls layout-zebra = R
ls layout-colwidth optimize = EES
ls layout-totals hefore items = 'I'.
lz layout-window titlebar = gv title.
internal table placeholder field Ffor menu-driven Counts
ls_ layout-countfname = LEguht
ENDFORM.

Figure 6.18: Specify the field to be used for menu-driven record counts (FM)

Instead of using the menu path, the user can click on the cHANGE LAYouT button
(Figure 6.19) to display this new count subtotal which is hidden on initial display.

Airfine Bookings: DREAM TRAVEL
T E&EFYFY &% g HITEHTHhix B O

[E Change Layout

Travel agency name

ﬁ

TR Displayed Colurnns Sort Order Filter Wi Display

Ben McCloskey Ltd.

Hot Socks Travel | E]E]E]E]
Kangeroos .
T Displayed Columns Column Set
The Ultimate Answer Colurmn Marne = Calurnn Marme
Travel agency name Travel agency local currency
Travel Agency Mumber
Lirline -
Connection Mumber 2
Flight Date 4

Booking nurmber
Arnount (far,currency)
Payment currency
Airline

Arnount (o, currncy)
Aijtline local currency

<]

Figure 6.19: Count field is also available in change layout (FM)

If the user of the report applies filtering criteria after displaying the data, the count
column will reflect the number of records matching the filter (Figure 6.20).

Airline Bookings: DREAM TRAVEL
H AYY E% O 8LHTwly H

Travel agency name |7 Agency Mo, 1D, Mo. Flight Date Bocking |E Armount | Curr, | Aitline Armount | Curr, |E Caunt,
5p == 197,038.40 AUD == 1,926
860,802.55 GBP
Aussie Travel o 123 | . 165,861.74 GBP . 311
Ua | 941 05/26/2011 10 1,070.85 GEP United Atlines | 1,583, USD
U | 941 05f26/2011 127 565.17 GBP United Aifines 835,83 LSD

Figure 6.20: Record counts after user filter action, detail (FM)

For the field catalog count technique, you make three changes:

1. Add a new integer field at the end of the internal table structure (Figure 6.17)
2. Add the field to the field catalog
3. Populate the count field on each record in the internal table with ‘1’

If you have already added the counteFNAME line of code to the layout while coding
the first technique (Figure 6.18), comment it or delete it now. You don’t need two
columns of record counts.

Add the new count field to the field catalog (Figure 6.21). Because this field was
not selected from an existing database table, you can’t reference an existing table

and field from the data dictionary. Supply short, medium, and long texts to avoid
displaying a blank column heading. Pass ‘I’ (integer) in the internal data type
structure component iNTTYp. Add the familiar bo_suwm line so that the record counts
display immediately at the group levels predefined in the sort table.

FOEM zf huild fieldeatalog UIING 1t fieldeat TYPE slis t fieldeat alw.

DATA: 1= fieldeat TYFPE slis fieldeat _alwv.
CLEAR lt fieldcat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = IAME!
ls fieldeat-ref fieldnsame = 'HNALNE'.
ls fieldeat-ref tabname = '3TRAVELLG'.

APPEND 1= fieldeat To 1t fieldeat.

gridding the counter field at the end of the fieldcatalog

CLEAR 1= fieldeat.
lz fieldoat-fieldname = COUNT" . "matches internal table
ls fieldeat-seltext 1 = RegiCodnt! . Tup to 40 chars
ls fieldeocat-seltext_m =1 RecCount’ . Tup o 20 chars
ls fieldeat-seltext = =4 BaziComnt" . fup o 10 chars
ls fieldocat-inttype R
ls fieldecat-do_sum = e
LPPEND 1z fieldeat TO 1t _fieldecat.

ENDFORN.

Figure 6.21: Adding a record count to the field catalog (FM)

Unlike the first technique, this technique requires that you populate the counr field
with ‘1’ for record. You can do that, without looping through the internal table, by
using a mobpIFY/TRANSPORTING command (Figure 6.22). The es_ouTtput structure is
based on local type Lty_output (Figure 2.3), but was not referenced until now.

DESCRIBE TAELE gt output LINES gv_lines.
IF g _lines NE 0. "data was retrieved

CLEAR g= output.
¥3_output-count = 1.

MODIFY gt _output FROM g=_ output
TRANSPORTING count WHERE NOT agencynwn IS INITILL.

SORT gt _output BY agencynum

carrid
connid
fldate
hookid.
ELSE.
MESSAGE ID '0O0' TYPE 'I' NUMEER 001 WITH 'No data retriewved!'.
EXIT.
ENDIF.

END-OF -3ELECTICH.

Figure 6.22: Populating the count field in the internal table (FM)

The report with record count totals provided using the second technique appears

in Figure 6.23.

Airfine Bookings: DREAM TRAVEL
& &5 FF B 3) <% [TF Oy [y | HH

Travel agency name Agency Mo, ID| Mo, | Date Booking | Arnount | Cure, | Aidine | Arount | Cure |2 RecCount
T == 1,028,775.04 AUD == 10,262
4,264,153.15 GBP
Aussie Travel = 123 = 836,886.68 GBP = 1,662
Ben McCloskey Ltd. = 107 = 856,941.48 GBP = 1,662
Hot Socks Travel = 102 = 1,028,775.04 AUD = 1,665
Kangeroos = 109 " 081,205.58 GBP " 1,949
Super Agency = 112 " 848,529.40 GBP " 1,661
The Ultimate Answer = 295 = 840,500.01 GBP = 1,663

Figure 6.23: Record counts display immediately (FM)

When the detail records are exposed, you can see the ‘1’ that you populated for
each table row (Figure 6.24). Compare this to the detail records in Figure 6.20.

Airline Bookings: DREAM TRAVEL
@ A9 Y &% ¢ OITEHTHIy E

Travel agency name Av:flu;uar'u:ﬁ; Mo, |10 Mo, | Date | Booking |E Arnount | Curr, | &itline | Amount | Cure, [RecCount

0P == 1,028,775.04 AUD =n 10,26
4,364,153.15 GBP

Aussie Travel = 123 . 836,880.68 GBP o 1,662

Ben McCloskey Ltd. L"ﬁ' 10?3 . 856,941.48 GBP « 1,662

A 17 05 a] 543.36 GBP Ame . 803.58 USD 1

A 17 09 110 28598 GBP Ame . 42294 USD 1

Figure 6.24: Detail records show count of 1 (FM)

The counTt option on the Epit * CALCULATE menu is grey again. The CHANGE LAYouT
pop-up reflects the label you provided and shows it in the list of displayed and
summed columns (Figure 6.25).

[Change Layout

Displayed Colurnns } Sort Order < Filker < Wiew -« Display

CIIESRAEIED

Displayed Columns Column Set

Colurnmn Marne & Colurnn Marne

Travel agency name Travel agency local currency
Travel Agency Nurnber

Airline

Connection Murnber

Flight Date

Booking nurmber
Arnount (far,currency)

Payment currency
Airlire

<

Arnount (o, currncy)
Aitline local currency
FecCount =]

Figure 6.25: Record count is visible in change layout (FM)

6.3.2 ALV control framework

By default, there is no count functionality in the dropdown list next to the ToTAL
button (Figure 6.26).

SAP

) (&) F)6EFL [ELEL B & @ =)) @
Airline Bookings: DREA Tt

Mean Walle

Travel agency name Agency [0 E Arnount | Cure, | Aidine | Arnount | Curr,
7 Minirur == 1,028,775.04 AUD
Maxirnurm 4,364,153.15 GBP
Aussie Travel = 123 = 836,886.68 GBP
Ben McCloskey Ltd. = 107 = 856,941.48 GBP
Hot Socks Travel = 102 = 1,028,775.04 AUD
Kangeroos = 109 " 081,205.58 GBP
Super Agency = 112 " 848,529.40 GBP
The Ultimate Answer = 205 " 840,590.01 GBP

Figure 6.26: Count menu option is absent (CF)

For the layout structure count technique, you make two changes:

1. Add a new integer field at the end of the internal table structure
2. Specify the new field as a count field in the layout structure

After those two code changes, count appears on the dropdown list next to the
ToTAL button and record counts can be displayed by the user (Figure 6.27).

SAP

G EY R I P

Airline Bookings: DREA Tnt

Travel agency name Agency I e ing & Arnount | Curr, | &itline | Amount | Curr, (B CoLnt.
P MinirALIrn == 1,028,775.04 AUD == 10,262

MaxinmLirm 4,364,153.15 GBP

Aussie Travel = 1 [count | . 836,886.68 GBP . 1,662
Ben McCloskey Ltd. = 107 " 856,941.48 GBP = 1,662
Hot Socks Travel = 102 « 1,028,775.04 AUD = 1,665
Kangeroos = 109 . 081,205.58 GBP " 1,949
Super Agency = 112 . 848,529.40 GBP " 1,661
The Ultimate Answer & 295 . 840,590.01 GBP = 1,663

Figure 6.27: Record counts displayed by user (CF)

When you add the new integer field to the internal table structure type, place it at
the end of the structure (Figure 6.28). By doing so, you can continue to use the
efficient seLect statement coded earlier. In the example, it is called “count”, but
other names are acceptable.

TYPES: BEGIN OF lty output,
agencynum TYPE stravelag-agencynun, “agency number
name TYPE stravelag-hate, "agency name
currency TYPE stravelag-currency, "agency currency
carrid TYPE shook-carrid, "hooked carrier
connid TYPE shook-connid, Thooked connection
fldate TYPE shook-fldate, T"hooked date
hookid TYPE sbook-bookid, "hooking ID
forcursm TYPE shook-forcuram, "price in foreign cuUrirency
forcurkey TYPE shook-forcurkevwy, "forelgh currency key
carrhame TYPE scarr-carrhate, Tfogrrier name
locouram TYPE shook- loccuram, "price in Jirline curr
loccurkey TYPE sbhook-loccurkevy, "local currency of dirline
|cnunt TYPE: 1, "For record count |
END OF lty output.

Figure 6.28: Count field added to internal table structure (CF)

Next, pass the name of this new field in countFname of the layout structure (Figure
6.29). The text you pass in single quotes:

» Does not have to be “Count”, but must match the name of the field you added
to the internal table structure

» |s not case sensitive

» |s not used for the column label (Count. will be displayed as the column label
regardless of the name you provide)

FOEM zf huild layout TSING ls layout TYPE lve s layo.

ls layout-zebra SR o
ls_ layout-cwidth opt = 'I'.
ls_ layout-totals hef = 'I'.
ls layout-grid title = gv_title.
ls layout-countfname = 'Count'. I

ENDFORM.

Figure 6.29: Field to be used for icon-driven record counts (CF)

Instead of using the button dropdown, the user can click the cHANGE LAYouT button
(Figure 6.30) to display this new count subtotal which is hidden on initial display.

[Change Layout

Displayed Colurnns } Sort Order - Filker - Wiew o Display

CIIERAEIED

Displayed Columns Column Set

Column Marme = Calurnn Marme

Travel agency name Travel agency local currency
Travel Agency Nurnber

Aitlire

Connection Murnber

Flight Date

Booking nurmber
Arnount (far, currency)
Payment currency
Ajrline

Arnount (o, currncy)
Aijtline local currency

g

Figure 6.30: Count field is also available in change layout (CF)

If the user of the report applies filtering criteria after displaying the data, the count
column will update to reflect the number of records matching the filter (Figure
6.31).

SAP

= [&] 708w [ZL]ZL) (2])=) 0 (]
Airline Bookings: DREAM TRAVEL

Travel agency narme "ﬂ«gencﬁ; Mo, |ID _|Mo. Date Booking E Arnount Curr, Ailine | Armount | Curr, | E Count,
o == 197,038.40 AUD =x 1,926
860,802.55 GBP
Aussie Travel I_"ﬁ 123 £ 165,861.74 GBP c 311
LA, BF S 10 1,070.85 GEP LUnit 1,583, LSD
LIA, Q. 05f. 127 265,17 GEP Unit . 835.83 LSD

Figure 6.31: Record counts after user filter action, detail (CF)

For the field catalog count technique, you make three changes:

1. Add a new integer field at the end of the internal table structure (Figure 6.28)
2. Add the field to the field catalog
3. Populate the count field for each record in the internal table with ‘1’

If you have already added the countrFnaME line of code to the layout while coding
the first technique (Figure 6.29), comment it or delete it now. You don’t need two
columns of record counts.

Add the new count field to the field catalog as shown in Figure 6.32. Because this
field was not selected from an existing database table, you won’t be able to
reference an existing table and field from the data dictionary. Supply short,
medium, and long texts to avoid displaying a blank column heading. Pass ‘I
(integer) in the internal data type structure component iNtTypr. Add the familiar
po_sum line so that the record counts display immediately at the group levels
predefined in the sort table.

FOEM =zf build fieldeatalog UIING 1t fieldeoat TYPE lve t foat.
DATA: 1s fieldeat TYPE lwc s foat. "single Iow

CLEAR 1= fieldeat.

ls fieldeat-fieldname 'NAME' .

lz fieldoat-ref tahle 'STRAVELAG' .
LPPEND 1z fieldeat TO 1t _fieldeat.

** gddipg counter Ffield at thke end of the fieldcatalog

CLEAR 1= fieldeat.

ls fieldeat-fieldname = 'COUNT'.

ls fieldeat-do_sum Skl

ls fieldocat-inttype Sl

ls fieldeat-scrtext_1 = 'EecCount'. Tup o 40 chars
ls fieldeat-scrtext_m = 'EecCount'. Tup o 20 chars
ls fieldeat-scrtext_s = 'EecCount'. Tup to 10 chars
LPPEND 1z fieldeat TO 1t _fieldeat.

ENDFORM.

Figure 6.32: Adding a record count to the field catalog (CF)

Unlike the first technique, this technique requires that we populate the counr field
with ‘1’ for every record. You can do that, without looping through the internal
table, by using a mobiFy/TRANSPORTING command (Figure 6.33). The Gs_outpuT
structure is based on local type Lty_output (Figure 3.3), but was not referenced
until now.

DESCRIBE TAELE gt output LINES gv_lines.
IF gwv_lines NE O. "data was retrieved

CLEAR g= output.
¥3_output-count = 1.

MODIFY gt _output FROM g=_ output
TRANSPORTING count WHERE NOT agencynwn IS INITILL.

SORT gt _output BY agencynum

carrid
connid
fldate
hookid.
FERFORM =zf build layout USING gs_layout.
FERFORM =zf build fieldecataloy UIING gt fieldeoat[].
FERFORM =zf build sort USING gt _sort[].
CALL 3SCEEEN S100.
EL3E.
MESSAGE ID '0O0' TYPE 'I' WNUMEER 001 WITH 'No data retriewved' (013).
RETUERN.
ENDIF.

Figure 6.33: Populating the count field in the internal table (CF)

The report with record totals provided using the second technique appears in
Figure 6.34.

SAP

&)[F)6)EFL) (E %L (B @)
Airline Bookings: DREAM TRAVEL

Travel agency name Agency Mo, | ID| Mo, |Date | Booking |2 Arnount | Cure, | Aidine | A&rmount | Cure |2 RecCount
T == 1,028,775.04 AUD == 10,262
4,3264,153.15 GBP
Aussie Travel = 123 = 836,886.68 GBP = 1,662
Ben McCloskey Ltd. = 107 = 856,941.48 GBP = 1,662
Hot Socks Travel = 102 = 1,028,775.04 AUD = 1,665
Kangeroos = 109 " 081,205.58 GBP " 1,949
Super Agency = 112 " 848,529.40 GBP " 1,661
The Ultimate Answer = 295 = 840,500.01 GBP = 1,663

Figure 6.34: Record counts display immediately (CF)

When the detail records are exposed, you can see the ‘1’ that you populated on
each table row (Figure 6.35). Compare this to the detail records in Figure 6.31.

SAP

(&][] G281 | (=5]
Airline Bookings: DREAM TRAVEL

Travel agency name e Agency Mo, | ID | Mo, | Date | Booking |2 Armount | Curr, | Airline | Ammount | Curr, | RecCount
o == 1,028,775.04 AUD == 10,262
4,364,153.15 GBP
Aussie Travel = 123 . 836,886.68 GBP . 1,662
Ben McCloskey Ltd. 5p 107 . 856,941.48 GBP = 1,662
A 17 05/ B 543,26 GBP Ame 803,58 USD 1
A 17 05/ 110 285,92 GBP Ame 42294 USD 1

Figure 6.35: Detail records show count of 1 (CF)

COUNT no longer appears on the dropdown list next to the TotaL button. The cHANGE
LAvouT pop-up reflects the label you provided and shows it in the list of displayed
and summed columns (Figure 6.36).

[E Change Layout

Displayed Colurnns } Sort Order < Filker < Wiew - Display

CIIESRAEIED

Displayed Columns Column Set

Colurnm Marne & Colurnmn Marne

Travel agency name Travel agency local currency
Travel Agency Nurnber

Ajrline

Connection Murnber

Flight Date

Booking nurmber
Arnount (far,currency)

7
Payment currency
Ajrline
Arnount (o, currncy) B
Aijtline local currency

| RecCount 'F'l

Figure 6.36: Record count is visible in change layout (CF)

6.4 Handling ALV report layout variants

So far, you have used a number of techniques to present the ALV report output in
exactly the format required for a particular training scenario requirement. a
particular summarization, visible counts, a predefined column order, a hidden
column, zebra-striped records, etc.

Once the output is displayed, users can use the standard ALV application toolbar
to change the appearance and can save their changes to an ALV report layout
variant for re-use. This is one of the strengths of the SAP List Viewer: the flexibility
it provides the user to re-format data layout without additional coding.

For the training scenario, let's imagine that the person running the report for the
owner of the travel agencies known collectively as Dream Travel has created a
layout that she uses for a quarterly export of the data to Microsoft Excel (Figure
6.37). The cell merge and subtotals are absent from this layout.

Airline Bookings: DREAM TRAVEL ¢
§ AFY 2% @ OSATHI @

Tryl agoy "Agency Mo, | Cartier | Mo, | Flight Date Booking £ Arnount | Cure, | Airline Armount | Cure, E RecCount
= 1,028775.04 AUD = 10,262

4,364,153.15 GBP
ALissie Travel 123 |an 17 05252011 113 243,09 GBP American Aitlines 359,50 | USD i
ALissie Travel 123 A 17 05/25/2011 230 285.98 GBP Ametican dirines 422,94 USD 1
ALissie Travel 123 |an 17 05252011 265 271.68 GBP American Aitlines 401,79 USD i

Figure 6.37: Custom variant with no cell merge, no subtotals (FM, CF)

Instead of requiring her to choose the desired layout after initial display of the
data, we will provide a parameter on the selection screen that will allow her to
override our default layout with this quarterly export layout (Figure 6.38).

@ &
Travel Agency Mumber 10z to |?|
Airline to | & |
Flightt Date to L= |
Subtotals
=By Agency

By &gency, then Liline

ALY Report Layout (optional)
Layout ANUARTERLY

Figure 6.38: Layout variant (FM, CF)

Because much of the coding for handling report layout variants is the same for
both ALV techniques covered here, we'll only distinguish between the two at the
very end (Chapter 6.4.1 and Chapter 6.4.2).

To start, add parameter p_vari at the end of the selection screen definition (Figure
6.39). It is shown within a new block labelled “ALV Report Layout (optional)”, but it
can be defined without being part of an on-screen block.

* ALV Eeport Lavout parameter

PARAMETERS: p_wari TYPE disvariant-variant.
SELECTION-3CREEN END OF BLOCE k2.

JELECTICN-3CREEN BEGIN OF ELOCE bZ WITH FRAME TITLE text-004.

Figure 6.39: Selection screen parameter for layout variant (FM, CF)

Edit, save, and activate the associated selection text (Figure 6.40) and text

symbol (Figure 6.41).

Program ' ZEF_ALV_FM LAYOUT S0RT MORE Active

Text Symbols /I/ Selection Texts I List Headings

arne Text Dictionary ...
{P_VARI Layout v
FE_1 By Agency ()
FE_Z By &gency, then Ailine £l
S_AGHNUM Travel Agency Mumber vl
3_CARID Ajrline []
3_FLDAT Flight Date [+]

Figure 6.40: Text element for the new parameter (FM, CF)

The default text for p_vari is “Layout” (Figure 6.40). If you prefer a different label,
omit the checkmark in the dictionary column and provide your own text.

Program ' ZEK_ALV_FM LAYOUT S0RT MORE | Artive

| Text Symbols I_"Seiectiun Texts | List Headings

|H] IEH[EH@ |@ Mext Free Mumber

|5 | Text [Lngth |[Max.
_ 001 Ailine Bookings: 17 |27
|002 (previous data view) 20 40
003 Subtotals g 9
004 By Agency 9 i
; 005 By Agency, then Aitine 23 23
IIZIIZIE ALY Report Layout {optional) 28 28

Figure 6.41: Text symbol for the new block’s frame title (FM, CF)

New variables and structures must be added to the data declarations area (Figure

6.42).
Ffopr mandgement of lavout variants
DATA: gs_wvariant TYPE diswvariant, "pazsed in ALV function call
g=_wariant temp TYPE disvariant, "user-specified lavout rvariant
ov_sSave TYRE-z;

ov_exitc THPE:

Figure 6.42: Data declarations for handling of layout variant (FM, CF)

Let’s look more closely at the structure pisvarianT (Figure 6.43) upon which we've
based pP_vARI, Gs_VARIANT, and Gs_VARIANT_TEMP. The only two components of the
structure pisvarianT that you will be filling and passing in the ALV call are ReporT
and VARIANT.

When the bpisvariaNT structure is passed with variant blank, the ALV report will
display the default layout you programmed. When passed with a valid user-
specified layout name in varianT, the ALV report will display as previously modified
and saved under that variant name.

|5tructure DIS?ARIAI-IT' Active
Short Description Layvout (External Lse)
Attributes . Components | Eritry helpfcheck Currency fgquartity fislds
e EIEE 1/7
Cornponent Data Type |[Length \Dedi... |[Short Description
EPDRT CHAR 40 0DABAP Program Marne |
HANDLE CHAR 4 Opgt, ID for repeated calls from the same program
LOG GROTTE CHAR, 4 OLogical group narme
USERNLME CHAR 1z Ollser name for user-specific storage
| VARTANT CHLR 12 L ayout |
TEXT CHAR: 40 0 Description for layout
DEFENDVARS CHAF: 10 0 Dependent variant entry wector

Figure 6.43: Disvariant structure components (FM, CF)

When adding parameters and select-options to a selection screen, it is a best
practice to provide these features:

» Validation of the user-provided value(s)
» Input help (F4 function key)
» Help (F1 function key)

Many features are provided automatically when we reference ABAP data
dictionary objects such as pisvARIANT and sBook-cARRID. Without our having to write
additional code, the user can use the F1 function key on the selection screen
fields (“Travel Agency Number’” and “Airline”) to see their definitions and
metadata.

We didn’t take time earlier to add selection screen validation of user-provided
values for “Travel Agency Number” or “Airline”, but we’ll do so for the new
parameter p_varl. We’ll also add code to display a list of available layout variants
when the user presses the F4 function key or clicks the possiBLE ENTRIES button
next to the Lavour input field (Figure 6.44).

@ G

Travel Agency Mumber 123 to o
Lirline to o
Flight Date to o
Subtotals [E Layout: Choose
(®1By Agency
By Agency, then Airline Layout Layout description | B 5| 43
_ | | /FLIGHTSUMS |Agency Totals by Flight o | o
ALY Report Layout (optional) | | /QUTARTERLY |Display with no subtotals, no merge o4
Lavout EONES No counts o | w o

Figure 6.44: List of possible entries for the layout (FM, CF)

Global vs. user-specific report layouts

Layouts that are global and available to all users must be
@;@ prefaced by a slash (/) when named. Layouts that are available
only to the user who created them have no leading slash in their
names. The values that we pass in the Gv_save variable can vary
throughout the program, depending upon our need.

. o

X indicates cross-user (global) layouts.
U indicates user-specific layouts.

A indicates cross-user (global) and user-specific layouts.

First, the validation logic. Add this code for p_vari (Figure 6.45) to your program,
after the empty INnimiaLizaTioN event and before the sTarT-oF-seLECTION event. |f you
wish, you can create and call a subroutine containing this logic rather than coding
it directly in the AT SELECTION SCREEN event.

AT SELECTICON-3CREEN ON p wari.
1Ff the user provided 3 report lavout rvariant name, verify it exists
IF NOT p wari I3 INITIAL.
CLEAR g= wariant Temp.

¥s_wvariant temp-report = sy3t-repid.
¥s_wvariant temp-variant = p vari.
ogv_sSave = 'L', "check A1l wariant tvypes

CALL FUNCTICNM 'RETUSE ALV VARTALNT EXTISTENCE'

EXPORTING

i zave = gv_save
CHALNGING

cs_variant = gs_wvariant temp
EXCEPTICONS

Wrong input =
not_found =iE
brogram error = 3
OTHERS =l
IF =zy-subrc <> 0.
L2 user will need to correct before proceeding

MESSAGE ID 'O0' TYPE 'W' NUMEER 001
WITH 'ALYV Beport Layout wvariant was not found' (007) .
ENDIF.
ENDIF.

Figure 6.45: Validation logic for the layout parameter (FM, CF)

If the user has proposed an alternate layout using the p_vari parameter, pass the
report name and the variant name to SAP function module
REUSE_ALV_VARIANT_EXISTENCE (Figure 6.45). If the parameter value is found, the
return code (sy-suBrc) is 0 and no further action is taken. If the parameter value is
not found, you want to display a status line message informing the user that the
layout variant was not found. (Remember to add text symbols for custom
messages by double-clicking on the message text and using forward navigation to
save and activate them.)

Next, the input help (F4 function key). Following the validation logic you just
added, add the code shown in Figure 6.46.

LT SELECTICN-SCREEN ON VALUE-REQUEST FOR p_wvari. "pick-li=t
CLEAR: g=_wvariant, gs_warlant temp, gv_exit.

¥ys_wvariant-report = syst-repid.
ov_save = 'h', "lizt 311 variants
CALL FUNCTICN 'REUIE ALV WVARIANWT F4'
EXPORTING
is_wariant = gs_wvariant "default bl ank
i zave = gv_save
IMFPORTING
e_exit = gv_exit "W for no cholce made

£3_wvariant
EXCEPTICONS
not_ found
program error
others= =3
IF =zy-subrc <> 0.
MESSAGE ID 'O0' TYPE 'I' NUMEER 001
WITH 'No ALYV Report Layout wariants have been created' (009) .
ELSE.
IF gv_exit <> 'XE'.
* display the user's Fd choice on the selection screen
b_wari = gs_wvariant temp-variant.
EL3E.
* do nothing, user opted out of the value-reguest process.
ENDIF.
ENDIF.

gs_wvariant temp "user's choice

Figure 6.46: Input help for the layout parameter (FM, CF)

To display a list of all variants available, pass the Gs_varianT structure to SAP
function module reuse_ALv_varIANT_F4 with only the report name specified (Figure
6.40).

The function module displays the list, then passes the name of the user-selected
variant back in the structure we've called Gs_VARIANT _TEMP.

The code following the function module call (Figure 6.46) addresses three
scenarios:

» No layouts were found for this program—display informational pop-up
message to the user

» The user selected a layout from the possible entries list—move that layout
name to the selection screen parameter

» The user exited the possible entries list without selecting a layout (ev_ExiT =
‘X’)—take no action

Use of “not released” SAP function modules

Both of the function modules used here
[| (REUSE_ALV_VARIANT_EXISTENCE and REUSE_ALV_VARIANT_F4) have
® been released by SAP for customer development. Two similar
function modules (LVC_VARIANT_EXISTENCE_CHECK and

LvCc_VARIANT_F4) are “not released” and are subject to change or removal
without warning. The release status is shown on every function module’s
attributes tab. Given the choice of using a released or a “not released”
function module in your development, it is better to use the released function
module.

The layout parameter handling within the selection screen is complete so you can
now populate the structure to be passed in the ALV call. In Chapter 4.6 you added
a subroutine zr_sTART to contain one-time activities such as customizing the title
text. That subroutine is where you will add the report layout variant information to
the Gs_vARIANT structure (Figure 6.47).

FORM =zf start.
populate the structure that passes an ALYV Report Lavout rvariant
CLEAR g= wariant.
¥s_wvariant-report = syst-repid.
IF NOT p _wari IS INITIAL.
* user-specified ALV lavout variant walidated AT SELECTION-ZCEEEN
¥s_wvariant-wvariant = p vari.
ELSE.
no user-specified ALV lavout variant, pass blank for defzult lavout
ENDIF.
ov_sSave SRl "zllows global and user-specific s3ves

Figure 6.47: Populate the structure passed in the ALV call (FM, CF)

Authority-check for ALV report layout saving

User authorization to save global, user-specific, or no ALV layouts
is often granted within security roles using security objects such
as s_ALV_LAYo or s_ALv_LAYR. For the ALV call in our example
program, we will pass ‘A’ in the gv_save variable to allow saving of
all layout types. Another approach would be to fill cv_save based on the
results of an AuTHoRITY-CHECK. For instance, you might fill cv_save with ‘A’ when
the authority-check return code (sy-suBrc) is 0, otherwise fill cv_save with ‘U’.

A allows saving of global and user-specific layouts.
U allows saving of only user-specific layouts.
X allows saving of only global layouts.

Leaving the field blank prevents any saving of layouts.

6.4.1 Function module
Two lines need to be added to the ALV call (Figure 6.48):

1. Gv_sAvE: to pass the level of layout saving authorization the user will have
after display of the ALV report

2. GS_VARIANT: to pass either the user-specified layout name or a blank for the
default layout

R e e P P P P e P S
FOREM =zf display alw.
CALL FUNCTICN 'REUIE ALV GRID DISPLAY'
EXPORTING
i callback program = sy-repid
is_layout = gs_layout
it_fieldecat = gt_fieldeat[]
it _sort = gt_sort[]
[T:Eave = gv:save
iz wariant = g2 wvariant
TABELES
t_outtab = gt_output
EXCEPTICONS
brogram error I [
OTHERS Stz

Figure 6.48: ALV call with layout variant information (FM)

6.4.2 ALV control framework
Two lines need to be added to the ALV call (Figure 6.49):

1. Gv_savE: to pass the level of layout saving authorization the user will have
after display of the ALV report

2. GS_VARIANT: to pass either the user-specified layout name or a blank for the
default layout

CALL METHOD gridl->set _table for first display
EXPORTING
i structure name = 'LTY OUTFUT!
is_wariant = gs_wvariant
i zave = gv:save
[:;jlagnut = gs_layout
CHANGING
it _fieldeatalog = gt _fieldecat
it _sort = gt_sort
it _outtab = gt_output.

Figure 6.49: ALV call with layout variant information (CF)

6.5 Adding a top_of_page event and a logo

SAP provides logic for various SAP List Viewer events such as USER_COMMAND,
CALLER_EXIT, and Top_oF_PAGE. In this chapter, we’ll add header text and a logo
using the Top_oF_PAGE event.

Screen space trade-offs

The ToP_OF_PAGE event takes up space on the user’s screen so
care should be taken to be concise. If the information is more
relevant to background processing (for spool display or other
distribution), consider using the Top_or_LIsT event instead.

6.5.1 Function module

When done, the header will appear between the toolbar and the column headings
(Figure 6.50).

Airfine Bookings: DREAM TRAVEL 7 {previous data view)
d 29 F B =] IAHTEly B w [

A

ET Data Services :é.r -
Report: ZKK_ALY_FM_LAYOUT_SORT_MORE U
Title: Airline Bookings: DREAM TRAVEL_Z (previous data view)

Variant: DREAM TRAVEL Z
Layout: /FLIGHTSUMS
Date: 2015 06 24

Trvl agcy *| Agency Mo, Carier™ ™ Flight Mo, Date | Booking Armount | Curk, | Aifline - Amount | Curr, E RecCount
[ﬁ‘ j == 4,364,153, GBP == 8,597
Aussie Travel f:¥:1 17 " 20,779.57 GBP u F0

54
555

15,589.02 GBP
5,181.62 GBP

51

Az 44

o [0 e M A

783 = 45,110.53 GBP . 66

789 = 47,583.33 GBP - 70

790 = 45,919.37 GBP . 73 =
DL 106 = 21,983.90 GBP . 51 =

Figure 6.50: Custom header text with logo (FM)

Two tables and a constant need to be declared (Figure 6.51):

1. e1_TtoP_TEXT: for the lines of text
2. oT_EVENTS: for the list of events

3. GC_FORMNAME_TOP: containing the name of the subroutine containing our
custom top_of page logic

DATA: gs_output TYFE 1ty output,

Ft_output TYFE STANDAED TAELE OF lty output,
gt_sSort TYPE slis_t sortinfo_alw,
gt_fieldeat TYPE slis t fieldeoat alw,
¥=_layout TYFE =slis_ layout_alwv,

gt:tnp_text TTPE slis:t_listﬁeader,

Ht_ewvents TYFE =sli=s_t_ewvent.

CONSTMNTS: go formname top TYPE =lis formnsame VALUE 'ZF TOP OF PALGE'.

Figure 6.51: Data declarations for top_of_page event (FM)

No need to create numbered text symbol for constants

Constants are hard-coded values listed in the data area of the
, program for transparency and maintainability. The value is used

as is within the program. (Forward navigation does not work if you

attempt to add the value as a numbered text symbol by double-
clicking it.) Because the value zr_top_oF_PAGE in Figure 6.51 is the name of
the subroutine in our program and would never be translated to a different
language, there is no need to create a numbered text symbol.

.

Next, create the zr_top_oF_prAaGce subroutine (Figure 6.52). You can place this
subroutine anywhere in the program that facilitates a chronological flow. (I put it
ahead of the other subroutines coded so far, immediately after the main program
logic.) You'll pass an SAP-provided logo and a table of text, not yet populated, to
function module REUSE_ALV_COMMENTARY_WRITE.

#hxEg kiR ktt Do of main program logic #fttstdsiiidisiiibniiihniiihnitsdns

FORM zf top of page. "dogs not need 3 corresponding PERFORM
CALL FUMNCTION 'REUSE ALV COMMENTARY WRITE'
EEZPORTING
i logo = 'ENJOYIAP LOGO!

it _list commehtary = gt_Top Text.
ENDFORM.

Figure 6.52: Top_of page subroutine (FM)

Add two perrorm statements to the main program logic area, before the ALV call
subroutine (Figure 6.53).

#hkER kiR td Dhaprt of mIin Program logio feEEsdsidsitdiiii ki kit d

FERFORM =zf build layout UIING gs_ layout.
FERFORM =zf build fieldeatalog USING gt fieldeat[] .
FERFORM =zf build sort takhle TSING gt _sort[] .

FERFORM =zf build ewvent table U3IING gt_ewvents[].

FERFORM =zf build top text tahle T3IING gt _top text[].

FERFORM =zf display_alwv.

Figure 6.53: Main program section with two new subroutine calls (FM)

The first of the two new subroutines is zr_suiLb_EvenT_taBLE (Figure 6.54). In it,
you retrieve a table of standard events wusing function module

REUSE_ALV_EVENTS_GET.

FOEM zf huild ewvent table T3ING lt_events type sSlis t ewvent.
DATA: ls event TYPE =slis alv ewvent.

CALL FUNCTICHN 'REUSE ALV EVENTI GET!

EXPORTING
I LIST TYPE = 4 "for REUSE ALV GREID DISDPLAY
IMFORTING
ET _EVENTS = lt_ewvents.
FEEAD TAELE 1t _ewents WITH EEY name = sSlis ev _top of page

INTD 1= _ewvent.
IF =sy-subrec = 0.
MOVE go formname top to 1S event-form.
MODIFY 1t _ewents FROM 1= ewvent INDEX sy-tabix.
ENDIF.
ENDFORM.

Figure 6.54: Retrieve and modify the events table (FM)

The 1_uisTt_T1YPE parameter value in the function call should match the technique
used to display the ALV output (Table 6.1). Since this program calls
REUSE_ALV_GRID_DISPLAY, retrieve the events for list type 4.

Function module called for ALV display ALYV type
REUSE_ALV_LIST_DISPLAY simple list

REUSE_ALV_HIERSEQ_LIST_DISPLAY | hierarchical-sequential list
REUSE_ALV_BLOCK_LIST_APPEND simple block list
REUSE_ALV_BLOCK_LIST_HS_APPEND | hierarchical-sequential block list
REUSE_ALV_GRID_DISPLAY grid

A W|IN|I~O

Table 6.1: List types for events retrieval (FM)
The retrieved table of events contains a blank field (Form) for the name of your

subroutine. The new zr_BuiLb_EVENT_TABLE subroutine (Figure 6.54) adds the
ZF_TOP_OF_PAGE constant to the Lt_EvenTs table (Figure 6.55).

Tahles / Table Contents]

Table |LT_EVENTS
Attributes Standard [18x2(1207]
Insert Colurnn | i @
Rove MNAME [C(303] FORM [C(303]
1 CALLER_EXIT
2 T3ER_COMMAND
3 TOP_OF_PAGE ZF_TOF_OF PAGE
4 TOF_OF COVERFAGE
5 END_0OF COVERPAGE
it FOREIGN TOP_OF PAGE
7 FOREIGN END OF PAGE
= PF_STATUS 3ET
a LIST MODIFY
10 TOP_OF LIST
11 END_OF PAGE
12 END_OF LIST
13 AFTER_LINE_OUTFUT
14 EBEFORE_LINE_OUTPUT
15 REPREF_SEL_MODIFY
16 SUBTOTAL_TEXT
17 GROTPLEVEL CHANGE

18 CONTEXT_MENU
Figure 6.55: Events table with subroutine name populated (FM)

Now, create subroutine zr_suiLb_Ttop_TExT_TABLE (Figure 6.56 and Figure 6.57) to
populate the table of text lines to be output at the top of the screen (Figure 6.50)

Use typ = ‘H’ for bold larger font text strings (up to 60 characters).

Use typ = ‘S’ for standard detail lines that consist of two parts:

1. Key: a smaller bold description like “Report:” or “Date:” (up to 10 characters)
2. Info: a non-bold text (up to 60 characters)

FOBRM =zf lhuild top text table UIING 1t top text TYPE slis t listheader.

tvp iz 1 char, key is 20 chars, info is &0 chars
DATA: 1= textline TYFE slis listheader,
lv date(10] TYPE c.

CLEAR 1= textline.

ls _textline-typ = 'H'. "header, bold
* 1s textline-key (not applicable for H lines)
ls_textline-info = 'ET Data Jerwvices' (010).

APPEND 1= textline ToO 1t _top text.

CLEALR 1= textline.

ls _textline-typ = '3'. "standard line
ls _textline-key = 'Report:'(01l1).
ls _textline-info = sy-repid.

APPEND 1= textline To 1t _top text.

CLEAR 1= textline.

ls textline-typ = '3'. "standard 1ine
ls_textline-KEY = 'Titcle:' (01Z).

ls textline-info = gv_title.

APPEND 1= textline To 1t _top text.

CLEAR 1= textline.

ls _textline-typ = '3'. "standard line
ls textline-KEY = 'Wariant:' (013)].
ls textline-info = sy-slset.

APPEND 1= textline To 1t _top text.

Figure 6.56: Texts for top_of _page section, part 1 (FM)

Create numbered text symbols for explicit texts such as “Report.” and “Date:”. Use
system values (RePID, SLSET, DATUM, etc.) instead of hard-coding, where possible
(Figure 6.57).

CLEAR 1= textline.

ls textline-typ = '3'. "standard line
ls textline-KEY = 'Layout:' (01l4).
ls textline-info = p wvari.

APPEND 1= textline To 1t _top text.

* Format sy-—datum FYFyMMDD a3z FY¥Yy MM DD, then append to table
CLEAR 1w date.

lv date+0(4)] = sy-datum+0 (4] .

lv date+5(2] = sy-datum+i (2] .

lv date+S (2] = sy-datum+6 (2] .

CLEAR 1= textline.

ls textline-typ = '3'. "standard line
ls textline-key = 'Date:'(015).

ls_textline-info = lv_date.

APPEND 1= textline ToO 1t _top text.

EHDFOBRM.

Figure 6.57: Texts for top_of page section, part 2 (FM)

The last step is modification of the ALV function call to include the new events
table (Figure 6.58).

FORM =f display alw.

CALL FUNCTICN 'REUSE ALV GRID DISPLAY'
EXPORTING
i callback program
is_layout
it _fieldcat
it _sort
i zave

sy-repid
¥=_layout
gt_fieldoat[]
gt_sSort[]
ov_save

s wvariant
gt events[] |

iz wariant

|it events
TABELES

t_outtab
EXCEPTICONS

pbrogram error

OTHERS

gt_output

Figure 6.58: ALV function call with events table (FM)

The report displays as shown in Figure 6.50.

Check appearance and behavior in other formats

When adding new functionality to a program, it is wise to check
r the appearance and behavior in other ALV output formats
available to users. It will allow you to speak knowledgeably if
asked and can help you avoid surprises such as the one
described in Chapter 7.1: the actual variant name replaced by an alias like
&00000N when run in background from transaction code se38.

i

Click the button to generate “Excel in place” to view the Top_oF_PAGE layout in that
format (Figure 6.59, window is not maximized in this figure).

Airfine Bookings: DREAM TRAVEL _Z (previous data view)
]E?? &% ¢ SEaQTGmiln HEw A

Figure 6.59: Top_of page event with “Excel in place” (FM)

6.5.2 ALV control framework

When done, the custom container will have been split into an HTML section for
the header and an ALV grid section (Figure 6.60). The HTML section on top uses
dynamic document functionality, including a table of items that can be displayed

without borders (as shown) or with borders.

. = AR
ET Data Services ;-é.r .
Report: ZKK_ALV_FM_LAYOUT SORT_MORE I"
Title: Airline Bookings: DREAM TRAVEL_Z {previous data view)
Variant: DREAM TRAVEL_Z
Layout: /FLIGHTSUMS
Date: 2015 06 24
File:
S B
HOME IMEERT PAGE LAYOUT FORMULAS DATA, REWIEWS WIEM ADD-IMN%
slay X Avrial -0 | T == % General = E%ConditionalFormatting' E‘“Inser‘t 4 E 4 ’}-Tv
: [—LIEE] BT U- A A|[=== - $ - % » [ZFFormatas Table~ X Delete ~ | [¥]~ @~
a3ite ey
- o | D A &= 3= | - S8 28 (7 Cell Styles - =] Farmat - s
Clipboard = Font P Aligrrnent Gl Mumber & Styles Cells Editing
a1 = ﬁ Travel agency name
A B C] E F = H | J K L
1 |Travel agency |
2 4,364,153.15 GBP 8,597
=] 3 |Aussie Travel Ap 7 20,779.57 GBP 70
4 123 2508 113 243.09|GEF|Ameri| 359.5|USD 1
5 | 123 2508 230 285.95|GEF | Ameri] 422.94|U5D 1
3 | Format | Header | Pivot | Subl | Sub2 *® 1 »

SAFP

:

G

ET Data Services

Report: ZKE_ALV_CTRLPW_LAYOUT_SORT_MOR

Title: Airine Bookings: DREAM TRAVEL_Z (previous data view)
Variant: DREAM TRAVEL 7
Layout: /FLIGHTSUMS

Date: 2015 07 03

@ [&][FEEFL B L% (B3 J&E =) [k (&)
Airline Bookings: DREAM TRAVEL Z (previous data view)

Trvl agoy Agency Mo, | ID Mo, | Flight Date Bocking E Armount | Curr, | Aitline Armount | Curr, ERes
oy == 4,364,153.15 GBP aatl -
Aussie Travel aAf 17 " 20,¥79.57 GBP " -
= A4 o 15,589.02 GBP .
AZ =2 533 . 5,181.62 GBP :
= 788 . 45,110.53 GBP :
= 780 . 47,583.33 GBP .
= 790 - 45,919.37 GBP o
DL 77 108 . 21,983.00 GBP .
= 1699 . 13,695.79 GBP .
= 1954 5 21,663.25 GBP :
R . 52,584.00 GBP .
= 408 . 46,038.00 GBP :
LH = 400 . 27,867.24 GBP Z
= 401 o 21,847.59 GBP .
= 402 . 37,212.77 GBP o | P
o 2402 - 15,224.19 GBP R =
L 1 F

Figure 6.60: Custom header text with logo (CF)

Several additional data declarations are needed (Figure 6.61), including a splitter
container.

DATA: gv_lines TYPE 1,
ogv_title T¥FPE =sv=st-TITLE,
ok_code LIEE sv-ucomn,
¥_container TYPE scrfname VALUE 'ZIEEK ALYV CTRLFW 2100 CONT1',
gridil TYFPE REF TO c©l gui alv grid,
g _custom container TYPE REF To ol gul custom container,

g_dyndo u::id MDCME nt,

¥ _sSplitter TYFE REF TO cl gui splitter container,
¥_parent header TYFE REF TO cl gui container,
¥_barent report TYFE REF TO cl gui container.

Figure 6.61: Data declarations for the top_of page event (CF)

An event handler class must be defined and implemented with a method for the
ToP_OF_PAGE event (Figure 6.62).

o ok ob g g G g

CLASS lel event handler DEFINITICN.
PUBELIC SECTICH.
METHODS :
top of page FOR EVENT top_of page OF cl gui alv grid
IMPORTING e _dyndoc id.
ENDCLASS.

]

DATA: g event handler TYFE REF TO lcl event handler.
EEEE
CLAZE lel event handler IMPLEMENTATION.
METHOD top of page.
FERFORM zf top of page UIING e dyndoc id.
ENDMETHOD .
ENDCLASS.

Figure 6.62: Top_of page method in handler class (CF)

The revised zm_status_9100 module (Figure 6.63) begins and ends as it did
before, but contains logic to split the custom container into two rows (top and
bottom). If two side-by-side sections were desired, you would indicate that in the
CREATE OBJECT G_SPLITTER command by exporting rows = 1 and columns = 2.

In the two GeT_coNTAINER method calls, you provide names for the top and bottom
portions of the splitter container, G_PARENT_HEADER and G_PARENT_REPORT.

Set_row_height

Once you have populated the HTML header section using the
ﬂ@ dynamic document logic in the Top_oF_PAGE subroutine and you

have displayed it, you may find that the default header window is

too tall or too short (vertical scroll bar present). You can use the
SET_ROW_HEIGHT method to provide a more pleasing initial display (Figure
6.63). The user will still be able to resize the two sections using a drag-and-
drop technique, if desired.

o

MODULE =zm_status 5100 OUTFPUT.
SET PF-3TATUS 'MALINS100'.
IF g custom container IS INITIAL.
CREATE OBJECT g custom container
EXPORTING
container name = g container.

Zplit the custom contdiner into £ sections
CREATE OBJECT g splitter

EXPORTING
parent = g custom container
ROW3 =2 "top + ALV = =
columns = 1. "full-width = 1

* First container is Ffor HIML header from top of page
CALL METHOD g splitter->get_container
EXPORTING

row =
colunn = 1
RECEIVING
container = g parent header.
CALL METHOD g splitter->set_row_ height
EXPORTING
ID =l "top container (header)
height 30 "adjust, 33 needed
Fecond container is Ffor ALV grid
CALL METHOD g splitter->get_container
EXPORTING
row =2
colunn = 1
RECEIVING
container = g parent report.

Figure 6.63: Splitter_container provides two sections (CF)

Continuing with the zm_status_9100 changes, change the crReEATE OBJECT GRID1
command from 6_custom_coNTAINER tO the new destination of the report output:
G_PARENT_REPORT (Figure 6.64) and add the additional logic shown. Notice the
references to Grip1, the object of the seT_T1aBLE_FOR_FIRST_bDIsPLAY method call.

Align the ALV grid and the top of page event with gridl

CRELTE OBJECT gridl S
EXPORTING

i parent =|g parent report.

CREATE OBJECT g ewvent handler.
SET HAMMNDLER g ewvent handler->top of page FOR gridl.

Dvnamic document that will contain the HTML content for header
CREATE OBJECT g dyndoc_ id
EXPORTING
style = 'ALLWV GRID'.

CALL METHOD gridil->list processing events

EXPORTING
i_ewvent name
i dyndoc_id

'TOP_COF PALGE'
g_dyndos_ id.

CALL METHOD gridl--set_table for first display

EXPORTING
i structure name = 'LTY OUTFUT!
is_wariant = gs_wvariant
i zave = gv_save
is_layout = gs_layout

CHANGING
it _fieldeatalog = gt _fieldecat
it _sort = gt_sort
it _outtab = gt_output.

ENDIF.
ENDMODULE .

Figure 6.64: Dynamic document and top_of _page (CF)

Next, create the zr_top_oF_prAaGce subroutine (Figure 6.65). You can place this
subroutine anywhere in the program. (I put it ahead of the other subroutines
coded so far, immediately after the main program logic.) Declare the local data
items shown, then initialize c_pynpboc_Ip by calling the iNnITiALIzE_pocumMeNT method
of class cL_DD_DOCUMENT.

An overall header text “ET Data Services” and the EnjoySAP logo will be the first
items displayed with a horizontal gap between them (Figure 6.65).

FORM =zf top of page UIING lo_dyndoc id TYPE REF TO cl dd document.
DATA: lt_tab TYPE REF TO cl dd table element,

lv eoll TYPE REF TO ol dd ares, "label, bhold
lv eolz TYPE REF TO ol dd ares, "space
lv eol3 TYPE REF TO ol dd ares, fralue

lv_text(255) TYPE C.
CALL METHOD lo_dyndoc id->initialize document.

* putput the kheader and logo
CALL METHOD lo_dyndoc id->add text

EXPORTING
TEXT = AET Data’ Services! (014)
sap style = ol dd area=:heading
Sap color = £l dd ares=:list heading int
sap fontsize = cl_dd area=:medium
Sap_emphasis = cl_dd ares=-strong
style class = space.

CALL METHOD lo_dyndoc id--add gap
EXPORTING width = 120.

CALL METHOD lo_dyndoc id->add picture
EXPORTING picture_id = 'ENJOYSAP LOGO',

Figure 6.65: Top_of page logic, part 1 (CF)

How to view dynamic document formatting options

To view the many text formatting options available, display class
'- CL_DD_AREA uUsing transaction code se24, then click on the
attributes tab. The values are listed in the attributes column, and
the usage is found in the description column. A few frequently
used values are shown in Table 6.2.

—

method parameter values ‘

set_column_style |sap_emphasis | STRONG
NORMAL

set_column_style | sap_align LEFT
CENTER
RIGHT

set_column_style | sap_valign TOP
CENTER
BOTTOM

set_column_style | sap_color LIST_KEY
KEY

add_text sap_style HEADING
TABLE_HEADING
KEY

SUCCESS
WARNING

add_text sap_fontsize |LARGE
MEDIUM
SMALL

add_text sap_emphasis | STRONG (bold)

| | | EMPHASIS (italic) |

Table 6.2: Text formatting examples (CF)

Because the remainder of the header information consists of several rows of
labels and values, a tabular approach works well (Figure 6.66). The table column
width percentages are relative to the table width, not to the entire screen width,
and do not need to be exact.

Use 20% for the labels in column 1 and 78% for the values in column 3. Define an
empty column of 2% for column 2 to improve readability. If you wish, you can use
the set_coLumn_styLE method for column 1 to bold the labels and right-align the
colons (Figure 6.66).

gredte a3 table and divide it into columns for remdining headder info
CALL METHOD lo_dyndoc id--add table
EXPORTING
ho of columns = 3
horder ==0m ! "d for none, 1 for cell borders
IMPORTING
TAELE lt_tab.
CALL METHOD 1t tsh-radd column "oolume 1 For labels
EXPORTING
width = '20%!
IMPORTING
column = 1lv ecoll.
CALL METHOD 1t tslh-radd column "ocolumn Z for spacinkg
EXPORTING
width = '2%!
IMPORTING
column = lv_ecolZ.
CALL METHOD 1t tsh-radd column "ocolumn 3 Ffor rvalues
EXPORTING
width = '78%!
IMPORTING
column = 1lv_ecolid.
Right-align and bold the labels in column 1 of the table
(Fopr values in column 3, defzults will suffice.)
CALL METHOD 1t tsh-r»set_column style
EXPORTING
zol no =1
Sap_ emphasis ' 3TRONG!
Sap_align VBTGHT" .

Figure 6.66: Top_of page logic, part 2 (CF)

Add the header information in columns 1 and 3 of the table (Figure 6.67). The
variable wv_text (Figure 6.65) is used each time to ensure that the data is
consistent with the format required for the Abp_Text method.

e Jine 1 of takle -——————-——-—---——
CALL METHOD lv _coll-:add text "label in col 1
EXPORTING TEXT = 'EReport:' (007).

CLEAR 1w text.

lv _text = sy-repid.

CALL METHOD lv _col3i-:add text "ralue in col 3
EXPORTING TEXT = 1lv_text.

CALL METHOD 1t tab-rnew row. "use new row for table £ill
I et line 2 of table ——————
CALL METHOD lwv _coll-:add text "label in col 1
EEXPORTING TEXT = 'Title:' (003).

CLEAR 1w text.

lv _text = gv_title.

CALL METHOD lv _col3i-:>add text "ralue in col 3
EXPORTING TEXT = lv_text.

CALL METHOD 1t tab->new row. "use new row Ffor table £33
it B e o il et ettt
CALL METHOD lv _coll-:add text "label in col 1

EEXPORTING TEXT = 'Variant:' (0092).

CLEAR 1w text.

lv _text = sy-slset.

CALL METHOD lv _col3i-:add text "ralue in col 3
EXPORTING TEXT = 1lv_text.

CALL METHOD 1t tab->new row. "use new row Ffor table £33

Figure 6.67: Top_of _page logic, part 3 (CF)

New_line vs. new_row for dynamic document creation

Use NEw_LINE to insert space between elements of the dynamic
document (not needed in this program). Within a table, use

.
— NEW_Row to start the new row (Figure 6.67 and Figure 6.68).

Two more rows of text are added to the header table (Figure 6.68). Create
numbered text symbols for explicit texts like “Report:” and “Date:”. Use system
values (RePID, SLSET, DATUM, etc.) instead of hard-coding, where possible.

M T Fine 4 0f Lable ——————-—-oooooTooToooooToToTTToToo
CALL METHOD lv _coll-:add text "label in col 1
EXPORTING TEXT = 'Layout:' (010).

CLEAR 1w text.

lv text = p wvari.

CALL METHOD lv _col3i-:add text "ralue in col 3
EXPORTING TEXT = 1lv_text.

CALL METHOD 1t tab-rnew row. "use new row for table £ill
#omm e line & of table ————————————
CALL METHOD lv _coll-:add text "label in col 1
EEZPORTING TEXT = 'Date:' (011).

* Format sy-—datum FYFyMMOD as FY¥Yy MM DD, then append to table
CLEAR 1w text.

lv_text+0(4)] = sy-datum+0 (4] .
lv_text+5(2] = sy-datum+i (2] .
lv text+8 (2] = sy-datum+o (2] .
CALL METHOD lv _col3i-:add text "ralue in col 3

EEFORTING TEET = lv_text.

Figure 6.68: Top_of _page logic, part 4 (CF)

The final part of the zr_top_oF_prace logic is the calling of two methods:
MERGE_DOCUMENT and bpisPLAY_DOCUMENT (Figure 6.69).

CALL METHOD lo_dyndoc id--merge document.

CALL METHOD lo_dyndoc id->display document

EXPORTING
reuse control = 'I
parent = g_parent header
EXCEPTICONS
html display error = 1.
IF sy-subrc <> 0. "status line message

MESSAGE ID '0O0' TYPE 'I' NUMEER 001
WITH 'ALV Header section output error, top of page' (01Z).
ENDIF.
EHDFORM.

Figure 6.69: Top_of page logic, part 5 (CF)

6.6 Adding hotspot logic

It is possible to configure ALV columns or rows as hotspots and execute custom
logic when the user clicks on them. Hotspots and user command logic are
overlapping concepts. Hotspots are used to trigger user command logic when the
user clicks on a predefined area of the data output.

For the training scenario, let’'s provide three hotspots in the ALV output.

» Travel agency name—display agency master data from table sTRAVELAG
» Agency number—display agency master data from table sTRAVELAG
» Flight number—display connection master data from table sprL

Hotspot for transaction calls

A hotspot can be used to call a transaction code when the user

clicks on it. In the hotspot logic, set one or more parameter IDs

based on field content from the clicked record: set parameter id

‘xxx’ field value. Next, call the transaction: call transaction
‘tcode’ and skip first screen. Include the with authority-check clause on
the call statement, if appropriate.

6.6.1 Function module

When detail records are displayed, the underline that indicates a hotspot is visible
in the detail row (Figure 6.70).

Airline Bookings: DREAM TRAVEL (@
S AFYF E X HITEThing BEcw H

{

ET Data Services

Report: ZKK_ALV_FM_LAYOUT_SORT_MORE U
Title: Airline Bookings: DREAM TRAVEL Q

Variant: DREAM TRAVEL Q
Layout: /QUARTERLY
Date: 2015 07 07

:

Trvl agoy Avﬂ\gency Mo, | Carrier | Mo, Flight Date Booking £ Arnount | Curr, | Aitline Arnount | Curr, E RecCount
« 1,028,775.04 AUD « 10,262

4,364,153.15 GBP
ALssie Travel 123 An 17 |25.05.2011 113 243.09 GBP American Airlines 359,50 USD it
Assie Travel 123 AA 17 |25.05.2011 230 285,98 GBP American Airlines 422,94 LISD i

Figure 6.70: Hotspots on detail output (FM)

When summarized data is displayed, it may be necessary to use the ExpanD
SELECTION button to expose a hotspot (Figure 6.71).

Airline Bookings: DREAM TRAVEL _Z (previous data view)
S Y F 2% @ 8LTEHTSHIL B

;

ET Data Services

Report: ZKK_ALY_FM_LAYOQUT_SORT_MORE - I)
Title: Airline Bookings: DREAM TRAVEL Z (previous data view)
Variant: DREAM TRAVEL_Z

Layout: [FLIGHTSUMS
Date: 2015 07 08

Tryl agoy *| Agency Mo. Carrier™ ™ Flight Mo. | Flight Date | Booking |E Arnount | Curr, | Airline Arnount | Curr, |E RecCount
o == 4,364,153. GBP == 8,597
Aussie Travel f: e il " 20,779.5F7 GBP . 70
o 64 = 15,589.02 GBP : 51

123 / 27052011 4047 77216 GBP Ame_ 1,141.95 USD 1

122 27.05.2011 416 271602 GBP Ame 401,79 USD 1

Figure 6.71: Hotspots on summarized output (FM)

A pop-up window will be used to display the master data record retrieved from
table sTrAVELAG (Figure 6.72).

[Travel &gency Details

Aoency No. |Travel agency name Street PO Box Fo
123 duszsie Trawvel fueens Road Juts]
¢y] H— i

7 & B B b %)

Figure 6.72: Travel agency data from stravelag in pop-up (FM)

A pop-up window will be used to display the master data record(s) retrieved from
table sprui (Figure 6.73).

[Connection Details (&l Aitlines)

I No.|Ctr|Depart. city Depart|Ctr|Arrival city Apt|(FlghtTime (D
Al 64| T3 [5AN FRAWNCISCO 5F0 5 [NEW TORK JFE SHEL 0
L L

e e =)

Figure 6.73: Flight data from spfii in pop-up (FM)

A new constant is needed for the events table population (Figure 6.74). To review
a previous event-handling exercise, see Chapter 6.5 (Tor_oF_PAGE event).

CON3ITANTS: go formhstne top TYPE =slis formnsme WALUE 'ZF TOR OF PLGE',
|gc_fnrmname_cnm TYFE =slis formname VALUE 'ZF_USER_COHHAND'.'

Figure 6.74: Data for hotspot (user_command) event (FM)

In the zF_BuiLD_EVENT_TABLE subroutine, add the constant for the new subroutine
zF_user_coMMAND to the LT_EvenTs table (Figure 6.75).

FOEM =zf huild ewvent table T3ING lt _events TYFE slis t ewvent.
DATA: ls ewvent TYPE =slis alv ewvent.

CALL FUNCTICHN 'REUSE ALV EVENTI GET!

EXPORTING
i _list_type = 4 "for REUSE ALV GRID DISPLAY
IMPORTING - B
EL_EWVEnts = lt_ewvents.

FEEAD TAELE 1t _ewents WITH EEYT name = s5lis ev_user contand
INTD 1= _ewent.

IF =zy-subrec = 0.
MOVE go formname com TO ls event-form.
MODIFY 1t_ewents FROM 1ls ewvent INDEX sy-tabix.

ENDIF.

REEAD TABELE 1t _ewents WITH EEY name = sSlis ev _top of page
INTD 1= _ewvent.
IF =zy-subrec = 0.
MOVE go formname top TO ls event-form.
MODIFY 1t _ewents FROM 1ls ewvent INDEX sy-tabix.
ENDIF.
ENDFORM.

Figure 6.75: Inclusion of user_command subroutine name in events table (FM)

The Lt_evenTs table will include zr_user_commanD in the Form field after execution
of zr_BuiLb_EVENT_TABLE (Figure 6.76).

" Tahles ./ Table Contents |

Table LT_EVENTS
Attributes Standard [18x2(1207]
Insert Calumn | | @
Row NAME [C(30)] FORM [C(30)]
| 1 CALLER EXIT
| 2 usER_commamp ZF_USER_COMMAND
3 TOP_OF_PAGE ZF_TOP_OF_PAGE
4 TOP_OF_COVERPAGE
5 END_OF_COVERPAGE
|5 FOREIGN_TOP_OF PAGE
7 FOREIGN END_OF PAGE
|p [F_sTaTus seT
= LIST MODIFY

ho o P_OF LIST

11 END_OF PAGE

12 END_OF_LIST

13 AFTER_LINE_OUTPUT
14 BEFORE_LINE_OUTPUT
15 REPREF_3SEL_MODIFY
16 SUBTOTAL_TEXT

17 GROUPLEVEL_CHANGE
!_.ilEl CONTEXT_MENU

Figure 6.76: Subroutine name added to events table (FM)

|_callback_user_command vs. events table

Instead of populating the subroutine names in the events table
(Figure 6.76), you can pass them directly to the
REUSE_ALV_GRID_DIsPLAY function module by using the optional
parameters: |_CALLBACK_USER_COMMAND and
|_CALLBACK_TOP_OF _PAGE. In Chapter 6.8.1, you'll use the
|_CALLBACK_PF_STATUS_SET parameter to pass the subroutine name instead of
using the events table. Both approaches are fine.

v

Create a new subroutine called zr_user_commanp with two parameters based on
sy-ucomm and sLis_seLFIELD (Figure 6.77). Sy-ucomm contains ‘&ic1’ when the user
clicks a hotspot.

The suis_seLFiELD structure contains information about where the user clicked; for
instance, the field name, the value in the field, etc. (Figure 6.80).

Slis_selfield-tabindex problematic with summarized output

For summarized output reports generated with the
REUSE_ALV_GRID_DISPLAY function module, the sLIS_SELFIELD-TABINDEX
value is sometimes 0 instead of the row number of the desired
data record. As a result, the index cannot be used reliably in a
READ statement to obtain the values in other fields on the row clicked. A work-
around for this limitation is used for the flight number hotspot (Figure 6.78).

In the zr_user_commanp subroutine, define the local data items shown (Figure
6.77). Add an Ir statement to immediately leave the subroutine if the user clicked
somewhere in a hotspot column that didn’t populate the vaLue component of the
SLIS_SELFIELD Structure.

Using case statements allows for easy expansion over time and further
modularization. The first case statement evaluates the ucomm value and provides
logic for hotspots (&ic1). The second case statement evaluates the field that was
clicked and provides logic for displaying data using function module
REUSE_ALV_POPUP_TO_SELECT.

Because there is a one-to-one relationship between the agency name, the agency
number, and the master data record being retrieved from table sTrRAVELAG, the pop-
up returns an identical single record regardless of which of those two hotspots
was clicked (Figure 6.72).

Two seLecT statements are shown for the single record retrieval (Figure 6.77):

» SELECT SINGLE...: (syntax for retrieval from sTRAVELAG using key field AGENCYNUM)

» SELECT... UP TO 1 ROWS. ENDSELECT.. (Syntax for retrieval from sTRAVELAG using
non-key field NAME)

Use of asterisk wildcard in select statements

For the training scenario hotspot logic, you will be retrieving and

displaying all the fields of the requested master data record. It is

acceptable to use the seLecT * and seLEcT SINGLE * syntax for this.

Follow your employer’s or client’s standards for seLect statements
for other situations.

FORM zf user command T3ING lv_ucomm LIEE =sv-ucomm
ls selfield TYPE =lis selfield.
DATA: 1= stravelag TY¥FPE =straveladq,
lt_stravelay T¥FE TAELE OF s=stravelad,
lt =apfli TYPE TAEBLE OF spfli,
lt_output_temp TYFE TAEBLE OF lty output.

do not display popup if user clicks where no identifiable data value
IF 1= _selfield-wvalue I3 INITIAL.
RETUERN.
EMNDIF.

CASE 1wv_ucomm.
WHEN '&£IC1'. "hotapot w3z clicked
CASE 1z selfield-fieldname.
WHEN ' AGEMNCYIUM!'

OR 'MNAME'. "dizplay STRAVELAS details
CLEAR: 1= stravelay, lt stravelagq.
IF ls selfield-fieldname = 'AGENCYNUN'.

SELECT SINGLE * FROM stravelag Ttable key

INTD 1= _stravelaq
WHERE agencynum = 1ls selfield-value.
EL3E. "HAME
SELECT * FROM strawvelag UP TO 1 ROWS "not table key
INTD 1= _stravelaq
WHERE nsme = ls selfield-value.
ENDSELECT.
ENDIF.
APPEND 1= stravelag To 1t stravelaq.
CALL FUNCTICON 'REUSE ALV POPUP_ ToO SELECT!
EXPORTING
i ticle = 'Trawvel Agency Details' (017)
i selection Sk -3 "dizplay onlyv
i tabname =v R
i structure name = ' STRAVELLG!
TAELEZ
t_outtab = lt_stravelay
EXCEPTICONS
brogram error =l
others= Sz
IF =zy-subrc <> 0.
MESSAGE ID 'O0' TYPE 'I' NUMBER 001 WITH 'Fopup error' (015).
RETUERN.
ENDIF.

Figure 6.77: Hotspot logic, part 1 (FM)

For the flight number hotspot (connip), you need to know the airline (carriD) on the
row that the user clicked in order to retrieve the specific master data record. From
the warning box above, you know that sLis_seLFIELD-TABINDEX iS not a reliable way
to identify the clicked row in a summarized data display created with the
REUSE_ALV_GRID_DIsPLAY function module. However, the number of instances in our
training database in which the same flight number has been used by multiple
airlines is few to none, making a work-around suitable (Figure 6.78). We will code
for multiples with the awareness that rarely will more than one record appear in
the pop-up window (Figure 6.73).

We can narrow the airlines to be included in our pop-up by starting with the data
selected by the user from the selection screen (eT_output). Delete the records
from a copy of that table (Lt_output_1EMP) Where the flight numbers (connip) don'’t
match the hotspot value passed to the subroutine. Sort and then delete adjacent
duplicates to reduce the copied table to one record per airline/flight number
combination. Select the relevant master data record(s) from table sprLi, then
display them using the rReuse_ALv_popup_To_seLEcT function module (Figure 6.78).

WHER ' CONINID' . "dizplay SDFLY details, code for more tham 1
CLEAR: 1t _spfli.
ywill display 311 selected carriers that use connection ID clicked
lt_output_temp[] = gt_output[].
DELETE 1t_output_ temp WHERE connid <> 1z selfield-walue.
IF 1t _output temp[] IS INITIAL.
unlikelv, but verify tabkle has content prior to FOR ALL ENTRIES
RETUERN.
ENDIF.
SORT 1t _output temwp BY carrid connid.
DELETE ADJACENT DUPLICATES FREOM 1t output temp
COMPARING carrid connid.
SELECT * FROM spfli
INTCO TAELE 1t spfli
FOR ALL ENTEIES IN lt ocutput temp
WHERE carrid = lt_output temp-carrid
AND connid = lt_output temp-connid.
CALL FUNCTICN 'REUIE ALV POPUP To SELECT!
EXPORTING
i ticle = 'Connection Details (ALll Rirlines)' (019)
i selection =ap | "dizplay onlv
i tebname =l
i structure name 'SPFLI
TABELES
t_outtab
EXCEPTICONS
brogram error S

lt spfli

others= =2

IF =zy-subrc <> 0.
MESSAGE ID 'O0' TYPE 'I' NUMBER 001 WITH 'Fopup error' (013).
RETUERN.

ENDIF.

EHDCASE.
ENDCASE.
ENDFORM.

Figure 6.78: Hotspot logic, part 2 (FM)

To enable hotspots, fill the HotspoT field of the field catalog with X in the
ZF_BUILD_FIELDCATALOG Subroutine (Figure 6.79).

FOEM zf huild fieldeatalog UIING 1t fieldeat TYPE slis t fieldeat alw.

DATA: 1= fieldeat TYFPE slis fieldeat _alwv.
CLEAR lt fieldcat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = 'NAME!'-.
ls fieldeat-ref fieldnsame = 'NALNE'.
ls fieldeat-ref tabname = '"STEAVELAG' .

Ils_fieldcat—hntgpnt =T g, |
APPEND 1= fieldecat T lt_fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = ' AGEMNCYNUM' .
ls fieldeat-ref fieldname = 'AGENCYNUHM' .
ls fieldeat-ref tabname = '3TRAVELLG'.

Ils_fieldcat—hntgpnt = BE" . |
LAPPEND 1= fieldecat TO lt_fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = 'CURRENEY".
ls fieldeat-ref fieldname = 'CURRENCY'.
ls fieldeat-ref tabname = 'ZTRAVELAG'.
ls fieldcat-no out S Thide fisld

APPEND 1= fieldeat To 1t fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = ICARRID" -
ls fieldeat-ref fieldname = 'CLRERID'.
ls fieldeat-ref tabname = 'SBOOK! .

APPEND 1= fieldeat To 1t fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = 'CONNID'.
ls fieldeat-ref fieldname = 'CONIMID'.
lz fieldeoat-ref tabname = 'SBOOK! :

ls_fieldcat—hntgpnt = Lo, |
LPPEND 1= fieldecat TO lt_fieldeat.

Figure 6.79: Field catalog additions for three hotspots (FM)

Alternative approach using fieldcat-key and layout-key hotspot

Instead of using the field catalog HoTtspot functionality (Figure
6.79), you can combine the field catalog option key with the layout

| option KEY_HOTSPOT.

The full structure of sLis_seLFIELD is shown in Figure 6.80.

Structures FId. list

Problematic with j
S LS _SELFIELD summarized ALV data

Struc, Type Structure: flat, not

Exp. (Component ... |Technical Type
TABMAME & (30
TABINDEX 2 &I
SUMINDEX 0 & 1(4)
EMDSUM &
SEL_TAE_FIELD 1-AGENCYNUM &7 C(60)
| waLUE 123 | # ciem
BEFORE_ACTION & i)
AFTER_ACTION &
REFRESH & C(1)
IGNORE_MULTI &
COL_STAEBLE & C(1)
ROW_STABLE & Ci1)
EXIT # (1)
| FIELDMNAME AGENCYNUM | &7 C(30)
GROUPLEWEL 0 & 1(4)
COLLECT _FROM] &I
COLLECT_TO 0 & 1(4)

Figure 6.80: Slis_selfield structure used with hotspot (FM)

6.6.2 ALV control framework

When detail records are displayed, the underline that indicates a hotspot is visible
in the detail row (Figure 6.81).

AR

A 1

e
ET Data Services U

Report: ZKK_ALV_CTRLFW_LAYOUT_SORT_MOR
Title: Airline Bookings: DREAM TRAVEL Q
Variant: DREAM TRAVEL Q
Layout: /QUARTERLY
Date: 2015 07 0B

EEEREED ELED Be)@ J=
Airline Bookings: DREAM TRAVEL Q

Trelagey 7 Agency Mo, Carrier Mo, | Flight Date Booking |E Armount | Curr, | Airline Armount | Curr, | ERecCount
« 1,028,775.04 AUD « 10,262

4,364,153.15 GBP
ALssie Travel 123 | AA 17 |25.05.2011 113 242,09 GEP American Ailines 299,50 LUSD i
ALssie Travel 123 | AA 17 |25.05.2011 230 285,98 GBP Ametican Aitlines 42294 LSD il

Figure 6.81: Hotspots on detail output (CF)

When summarized data is displayed, it may be necessary to use the ExpanD
SELECTION button to expose a hotspot (Figure 6.82). Using your program, if the user
clicks on a hotspot cell in a detail line (even if cell merging prevents the display of
the value there), the desired action will occur. If the user clicks on a sub-total line,

a pop-up message will appear advising them to click a detail line cell. Other
behavior can also be coded.

ARG

i B

el
ET Data Services \I)

Report: ZKK_ALV_CTRLPW_LAYOUT_SORT_MOR

Title: Airline Bookings: DREAM TRAVEL_Z (previous data view)
Variant: DREAM TRAVEL Z
Layout: [FLIGHTSUMS

Date: 2015 07 08

& (&[T EFL (S [E]E & = (1) (O]
Airline Bookings: DREAM TRAVEL Z (previous data view)

Trvl agcy * Bgency Mo, [ID 4 Mo, | Flight Date | Booking (£ Aot | Curr, | Aitline Armount | Curr, |E RecCount
Ty == 4,364,153.15 GBP == 8,597
Aussie Travel Al == IV " 20,779.5¢ GBP [70
: L'_ﬁ ﬂ—' . 15,589.02 GBP . 51
123 ,_‘:(// 27.05.2011 4047 772,16 GBP American . 1,141.95 LSD i
1ZE 27.05.2011 4164 271.68 GBP American 401.79 USD it

Figure 6.82: Hotspots on summarized output (CF)

A pop-up window will be used to display the master data record retrieved from
table sTrAVELAG (Figure 6.83).

[Travel &gency Details

Aoency No. |Travel agency name Street PO Box Fo
123 duszsie Trawvel fueens Road Juts]
L L

Figure 6.83: Travel agency data from stravelag in pop-up (CF)

A pop-up window will be used to display the master data record retrieved from
table sprLi (Figure 6.84). SAP’s cL_cui_ALv_GRID class provides more information
than does the sLis_seLFiELD structure (Figure 6.80) we used in the function module
version of this program (Chapter 6.6.1). Since we can identify the specific detail
row clicked by the user, we can return a single record in the pop-up by using
multiple fields from the record.

[Connection Details

I No.|Ctr|Depart. city Depart|Ctr|Arrival city Apt|(FlghtTime (D
Al 64| T3 [5AN FRAWNCISCO 5F0 5 [NEW TORK JFE SHEL 0
L LI

Figure 6.84: Flight data from spfli in pop-up (CF)

For the ALV control framework program, you used an event handler class rather
than an events table (Chapter 6.5.2). Add method HoTtspoT_cLick to the
LCL_EVENT_HANDLER class (Figure 6.85). Two of the available parameters, E_row_ID
and e_corumn_lip, will be suitable (Figure 6.90 and Figure 6.91).

In method HoTtsPoT_cLick (Figure 6.85), we evaluate whether the user has clicked
on a summary line (where e_rRow_ID-ROWTYPE has content) or a detail line (where
E_ROW_ID-ROWTYPE is initial).

Check need for subroutine call prior to calling it

Whenever possible, evaluate whether conditions have been met
for any subroutine call prior to calling it rather than inside the
subroutine itself. For the ALV control framework technique (Figure
6.85), E_Row_ID-ROWTYPE iS checked prior to performing
zF_HoTsTPOT_cLick. For the function module technique (Figure 6.77), the
SLIS_SELFIELD-VALUE evaluation has to be done inside zr_USER_COMMAND
because the developer does not expressly call the subroutine and has no
opportunity to evaluate before it is executed.

o

Continuing with method HoTspPoT_cLick (Figure 6.85), if the user has clicked on a
hotspot cell on a detail line (E_row_ip-rRowTYPE is initial), use the INDEX value from
E_Row_ID to read the output table. Pass the retrieved record and the name of the
field clicked to a new subroutine called zF_HOTSTPOT_CLICK.

Writing code in the method vs. in a called subroutine

You can code the Top_oF_PAGE and HOTsSPOT_cLIck logic entirely in
ﬂ@ the respective method, but to improve readability and simplify
support where the code is lengthy, developers sometimes move it
to a subroutine as we’ve done with zF_ToP_oF PAGE and
zF_HotspoT_cLick in the ALV control framework program. Follow your
employer’s or client’s standard if provided.

o

EEEE R
CLASS lel event handler DEFINITICN.
PUBELIC SECTICH.
METHODS :
top of page FOR EVENT top_of page OF &l gui alv grid
IMFPORTING e dyndoc id,
hotspot click FOR EVENT hotspot _click OF cl gui alv grid
INPORTING e _row_id
e column id.

ENDCLLSS.
L KK XK

DATA: g event handler TYFE REF TO lcl ewvent handler.
EEE R R
CLAZE lel event handler IMPLEMENTATION.
METHOD top of page.
FERFORM zf top of page UIING e dyndoc id.
ENDMETHOD .
METHOD hotspot click.
IF & row id-rowtype IS INITIAL. "hlank rowtvpe = detgil line
FEEAD TABELE gt _output INTO gs_output INDEX e row id-INDEX.
IF =sy-subrc = 0.
FERFORM =zf hotspot click UIING gs_output
e column id-fieldname.

ENDIF.
ELSE. "aummarized line
MESSAGE ID 'O0' TYPE 'I' NUMEER 001
WITH 'Hotspot available. Click cell on detail line.' (017).
ENDIF.
ENDMETHOD .
ENDCLASS.

Figure 6.85: Hotspot_click method added to handler class (CF)

The ser HANDLER command for the new event must be added to module
zm_status_9100 (Figure 6.86).

CREATE OBJECT g ewvent handler.
S3ET HANDLEER g ewvent handler->top of page FOE gridl.
ISET HINDLER g event handler->hotspot click FOR gridl.l

Figure 6.86: Hotspot _click aligned with ALV grid (CF)

Next, create the zr_HoTtspoT_cLick subroutine called from method HoTsTPOT_cLICK
(Figure 6.87). The two parameters provide the output table detail record retrieved
in method HoTtspoT_cLick and the fieldname from e_coLumn_ip. Define the local
data structures and the tables needed for the Reuse_ALv_popup_To_seLECT function
module. Using case statements for the Ls_FiELDNAME evaluation allows for easy
expansion over time and further modularization.

Because there is a one-to-one relationship between the agency name, the agency
number, and the master data record being retrieved from table sTrRAVELAG, the pop-
up will return an identical single record regardless of which of those two hotspots
was clicked (Figure 6.83). Since the key for the table read (sTRAVELAG-AGENCYNUM)
is available in the record passed in Ls_ouTpuT, use the seLECT sINGLE syntax (Figure
6.87).

FOEM zf hotspot_click U3IING ls output TYFE 1ty output
ls fieldname TYPE lve s col-fieldname.

DATA: 1= strawvelag TY¥PE =straveladq,
lt_stravelay T¥FE TAELE OF stravelad,
ls spfli T¥PE =pfli,
lt =apfli TYPE TAELE OF spfli.

CASE 1=z fieldname.
WHEN ' AGENCYIUM!'
OR 'MNAME'. "dizplay STRAVELAS details
CLEAR: 1= stravelay, lt stravelagq.
SELECT SINGLE * FROM stravelag "tabkle key
INTD 1= stravelaq
WHERE agencynum = 15 output-agencynum.
APPEND 1= stravelag To 1t stravelaq.
CALL FUNCTICN 'REUIE ALV POPUP ToO SELECT!
EXPORTING
i title
i selection =hed "dizplay onlv
i tebname o
i structure name 'STRAVELALG!
TABELES
t_outtab
EXCEPTICONS
pbrogram error =
OTHERS =
IF =zy-subrc <> 0.
MESSAGE ID 'O0' TYPE 'I' NUMBER 001 WITH 'Fopup error' (015).
ENDIF.

'Travel Agency Details' (020)

lt_stravelay

Figure 6.87: Hotspot _click logic, part 1 (CF)

For the flight number hotspot (connib), use both of the sprui table key fields
(CARRID, CONNID) in the record passed in Ls_output for the seLEcT sINGLE retrieval
(Figure 6.88) before displaying the master data record to the user (Figure 6.84).

WHEH ' CONMID!' . "diaplay SDFLT details

CLEAR: 1= spfli, lt spfli.
SELECT S3IWNGLE * FROM spfli

INTO l= =spfli

WHERE carrid = ls output-carrid

AND connid = ls_output-conhid.

LPPEND 1z spfli To lt _spfli.
CALL FUNCTICN 'REUIE ALV POPUP To SELECT!
EXPORTING

i ticle = 'Connection Details' (019)

i selection Skt "dizplay onlyv
i tabname o
i structure name = 'SPFLIY

TABELES
t_outtab = lt_spfli

EXCEPTICONS
brogram error =
OTHERS =5

IF =zy-subrc <> 0[O,
MESSAGE ID 'O0' TYPE 'I' NUMBER 001 WITH 'Fopup error' (015).

ENDIF.

EHDCASE .
ENDFORM.

Figure 6.88: Hotspot_click logic, part 2 (CF)

To enable the hotspots, fill the HoTspoT field of the field catalog with x in the
ZF_BUILD_FIELDCATALOG Subroutine (Figure 6.89).

FOEM =zf build fieldeatalog UIING 1t fieldeat TYPE lve t foat.
DATA: 1s fieldeat TYPE lwc s foat. "single Iow

CLEAR 1= fieldeat.

ls fieldeat-fieldname 'NAME' .

ls fieldeat-ref table 'STRAVELAG' .
Ils_fieldcat—hntspnt_ =g |
LPPEND 1z fieldeat TO 1t _fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname "AGENCYNUM' |
ls fieldeat-ref table 'STRAVELAG' .
|ls fieldocat-hotspot - 'X'.l

LPPEND 1z fieldeat TO 1t _fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname 'CURRENEY" .

lz fieldoat-ref tahle 'STRAVELAG' .

ls fieldcat-no out it L "hide fisld
LPPEND 1s fieldecat TO 1t _fieldcat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname "EARRIDY
ls fieldeat-ref takle = 'SEOCE'.
LPPEND 1z fieldeat TO 1t _fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname 'CONMID'..
lz fieldoat-ref table LSBODE " .
lz fieldoat-hotspot = Vi,
APPEND 1= fieldecat TG lt_fieldeat.

Figure 6.89: Field catalog additions for three hotspots (CF)

The cL_cui_ALv_GRID structure e_coLumn_ip contains the fieldname for the hotspot
(Figure 6.90).

Structures . Fldlist |

Struct, 'E_COLUMN_ID
Struc, Type Structure: flat, charlike(Ba)

Exp. Component Wal.,. Wal.
FIELOMAME CONNID
HIERLEWEL

Figure 6.90: Fieldname identifies the cell clicked (CF)

The cL_cui_ALv_GRiD structure e_RrRow_ip contains a blank rowtype when the
hotspot field is on a detail line. The index value can be used to retrieve the entire
output record clicked even if the user has filtered or re-sorted the data after initial
display (Figure 6.91).

Structures Fldlist |

Struct, |[E_ROW_ID
Struc, Type Structure: flat, charlike(Ba)
Exp. Component Wal... Wal.
ROWTYPE
INDEX oooooooo? 1l

Figure 6.91: Index for blank rowtype matches detail in table (CF)

When the E_row_Ip-ROWTYPE iS non-blank, the index cannot be used to retrieve a
detail record (Figure 6.92).

Structures . Fldlist |

Struct, E_RIjIJ_ID

Struc, Type Structure: flat, charlike(Ba)

Exp. Component Wal... Wal.
ROWTYPE 3 0103 0000000001
INDEX goooooooog

Figure 6.92: Index for summary line rowtype not suitable for table read for detail record (CF)

6.7 Excluding buttons from the ALV application toolbar

On occasion, you are asked to remove buttons from the standard ALV application
toolbar. This can be done easily. (In Chapter 6.8, you will see how to add toolbar
buttons—a more complex activity in programs using an ALV function module
technique.)

6.7.1 Function module

Two buttons have been identified for removal in the training scenario: ABC
AnALysis and GrarHic (Figure 6.93).
Airfine Bookings: DREAM TRAVEL

& &% F =T 3 ¥ < (B TP In | BB 48 &

ET Data Services

Report: ZKE_ALY_FM_LAYOUT_SORT_MORE
Title: Ajrline Bookings: DREAM TRAVEL
Variant: DREAM TRAVEL

Layout: /FLIGHTSUMS

Date: 2015 07 09

Figure 6.93: Standard toolbar showing unneeded buttons (FM)

Identifying button function codes

Since the function codes for the ALV buttons vary by ALV

technique, one way to obtain that information is to view them in

the debugger. To activate the debugger after displaying the data,

type /h in the command field at the top of the SAP screen, press
enter, then click the button you need to exclude.

After the coding changes, the two buttons will no longer appear (Figure 6.94).
Airfine Bookings: DREAM TRAVEL
E &FTF =% i <T [T OB o

ET Data Services

Report: ZKE_ALY_FM_LAYOUT_SORT_MORE
Tithe: Ajrline Bookings: DREAM TRAVEL
Variant: DREAM TRAVEL

Layout: /FLIGHTSUMS

Date: 2015 07 09

Figure 6.94: Buttons no longer visible (FM)

A new table must be declared (Figure 6.95). Table type sLis_T_ExTaB is based on
structure suis_extaB which contains a single field called Fcobk.

DATA: gs_output TYFE 1ty output,

Ft_output TYFPE STANDARD TAELE OF lty output,
¥t_sSort TYFPE =slis_t sortinfo_alw,
gt_fieldeoat TYPE slis t fieldeat alw,
¥=_layout TYFE =slis layout_alwv,
gt_top text TYPE =1is t listheader,
gt events T¥PE =li=s €t ewvent,

|gt_exclude TYPE slis_t_extab. |

Figure 6.95: Table for function codes to be excluded from display (FM)

Add a new perrorm statement to the main program logic area to populate the new
table (Figure 6.96).

EEEEEEEREEEEE Dpapt of main program logio FEEEESLEEELEELEEEEEE S
FERFORM =zf build layout UIING gs layout.
FERFORM =zf build fieldeatalog USING gt fieldeat[] .
FERFORM =zf build sort takle T3ING gt _sort[] .
FERFORM =zf build ewvent table UIING gt_ewvents[].
FERFORM zf build top text tahle T3ING gt _top text[].

FERFORM =zf build exclude table UIING gt exclude[] .

FERFORM =zf display_alwv.
EEEEEEERE LA Bl of main program loglo #EFfffssdsddiiidiid ittt

Figure 6.96: Build table of excluded function codes (FM)

Add the function code of each button to be excluded to the Fcobe field of the new
table (Figure 6.97).

FOREM =zf bhuild exclude takle TIING 1t _exclude type slis t extsh.

DATA: 13 exclude TYFE slis extab.

ls exclude-feode = ' ELEC!.
APPEND 1= exclude TO lt _exclude.
ls exclude-feode = ' eGRAPH'.

APPEND 1= exclude TO lt exclude.

ENDFORM.

Figure 6.97: Population of function codes in the table (FM)
Add the table to the function module call (Figure 6.98).

FORM =zf display alw.

CALL FUNCTICN 'REUSE ALV GRID DISPLAY'
EXPORTING
i callbhack program = sy-repid
is_layout ¥=_layout
it fieldcat gt fieldoat[]

it_excluding gt_exclude[]
1E_san E_SDrE

o

i zave = gv_save

is_wariant = gs_wvariant

it_ewvents = gt_ewvents[]
TABELES

t_outtab = gt_output
EXCEPTICONS

brogram error =kl

OTHERS =i

Figure 6.98: Exclusion table is passed in the ALV call (FM)

6.7.2 ALV control framework

One button (DispLAY GrapHIC) will be removed for this training scenario (Figure
6.99).

ET Data Services

Report: ZKK_ALYV _CTRLAW _LAYOQUT_SORT_MOR
Title: Airline Bookings: DREAM TRAVEL
Variant: DREAM TRAVEL
Layout: /FLIGHTSUMS
Date: 2015 07 10

&) [&)F)(60)E L) (E)EEL) [B)E J@ J=E.) |18
Airline Bookings: DREAM TRAVEL

Figure 6.99: Standard toolbar showing unneeded button (CF)

Two ways to identify cl_gui_alv_grid function codes

One way to identify the function code for an ALV button is to step

W through the code in the debugger after clicking the button.

Another way is to check the attributes tab of the cL_cui_ALv_GRiD

class (using transaction code se24 or double-clicking

cL_Gul_ALv_GRID in the program). Choose from the list attributes that have an

“Associated Type” of Ul_FUNC; these typically have names beginning with
MC_FC.

o

After the coding changes, the button will no longer appear (Figure 6.100).

ET Data Services

Report: ZKK_ALYV _CTRLAW _LAYOQUT_SORT_MOR
Title: Airline Bookings: DREAM TRAVEL
Variant: DREAM TRAVEL
Layout: /FLIGHTSUMS
Date: 2015 07 10

&) (&)F)0)EFL) (B2 (B)E)@)=, (@)
Airline Bookings: DREAM TRAVEL

Figure 6.100: Button no longer visible (CF)

A new table is declared (Figure 6.101) based on ui_FuncTions. It contains a single
field called ui_Func.

DATA: g=s_ layout TYFE 1lwvec = layo, "layvout params
¥S_output TYFE 1ty output, "local structure (line)
Ft_output TYFE STANDAERD TAELE OF lty output,
¥t_sSort TYFE lwvc t sort,
gt fieldcat TYPE lwve t foat, ftable

Igt_exclude TYFE ui_ functions. I

Figure 6.101: Table for function codes to be excluded from the display (CF)

Add a new perrorm statement to the main program logic area to populate the new
table (Figure 6.102).

EEEEEEEREEEEE Dpapt of main program logio FEEEESLEEELEELEEEEEE S
FERFORM =zf build layout UIING gs layout.
FERFORM =zf build fieldeatalog USING gt fieldeat[] .
PERFORM =f build sort table T3ING gt sort[].
FERFORM =zf build ewvent table UIING gt_ewvents[].
FERFORM zf build top text tahle T3ING gt _top text[].

FERFORM =zf build exclude table UIING gt exclude[] .

FERFORM =zf display_alwv.
EEEEEEERE LA Bl of main program loglo #EFfffssdsddiiidiid ittt

Figure 6.102: Build table of excluded functions (CF)

Add the function code of each button to be excluded to the table using the
associated attribute name from class cL_cui_aALv_cRrib (Figure 6.103). The function
value for “Display Graphic” is MC_FC_GRAPH.

FOEM =zf huild exclude takle TSING 1t _exclude TYPE ui functions.
DATA: 13 exclude TYFPE ui_ func.

ls exclude = cl gui alv grid=-MC FC GRLFH.
APPEND 1= exclude TO lt exclude.

ENDFORM.

Figure 6.103: Exclusion table populated (CF)

Add the table to the method call (Figure 6.104).

CALL METHOD gridl--set _table for first display
EXPORTING

i structure name = LT OWTRTT
is_wariant = gs_wvariant
i zave = gv_save
iz layout = g2 lavyout
it _toolbar excluding = gt_exclude I
CHANGING
it _fieldeatalog = gt_fieldcat
it _sort = gt_sort
it _outtab = gt_output.

Figure 6.104: Exclusion table is passed in the ALV call (CF)

6.8 Adding buttons to the ALV application toolbar

Adding buttons to the ALV application toolbar is a bit more complex than
excluding them (Chapter 6.7), especially if you are using the
REUSE_ALV_GRID_DISPLAY function module technique, since that requires copying
and modifying the default GUI status.

Another difference between the ALV control framework and the ALV function
module techniques is apparent in this chapter. In the ALV function module
program, the hotspot logic and the custom button logic share the
ZF_USER_coMMAND subroutine. In the ALV control framework program, the hotspot
logic is in the HoTspoT_cLick method while the custom button logic is in the
user_commMmAND method (coupled with a TooLBAR_ADD method).

Copy your program before continuing

This is a good time to copy your in-progress program(s), making
| the next changes in a copy. Save and activate, as usual. An error
- during the GUI status change exercise (only relevant for the ALV

~ function module program example) could put your in-progress
program at risk.

In the training scenario, we have identified a need to add a button with an icon
image to the ALV application toolbar. It will use the icon named ICON_ANNOTATION
with a text label that reads “Edit Comment”. When the user hovers the mouse
over the new button, the pop-up instruction will say “Add note to record”. The
function code will be ‘NOTE’, and the buttons that were previously excluded
(Chapter 6.7) will remain hidden.

How to display a list of all icons

To see all the icons that SAP provides, use transaction code se38
@;@ or sa38 to run the program called sHowicon (Figure 6.105). For
the ALV control framework, you will provide the icon name in the
TOOLBAR event. For the REUSE_ALV_GRID_DISPLAY program, you will
provide the icon name during the customization of the GUI status.

.

Display Icons in Lists

=]

Icon | Icon name Comment Longth|Printabh.| internal|b
EA ICON ALYV _VARIANTS Layouts 2 LT |VARIAN| 2
o ICON ALYV _VARIANT CHOOSE Choose Layout z DM |VARCHO| 2
e ICON ALV VARIANT SAVE Save Layout z DN | VARSAV| 2
ICON_ANNOTATION s Note; remark z v | 07|B_aMNo|1
ICON_ANY DOCTUMENT Mnknown document class 2 09 | ANYDOC) &

Figure 6.105: SHOWICON program shows each icon with its image

Logic for the new button will be added in Chapter 8 so, for now, a placeholder
comment will be shown.

6.8.1 Function module

After making these changes, the toolbar will display with the new Epir CommeENT
button and without the ABC AnALysis and GrapHic buttons (Figure 6.1006).

Airfine Bookings: DREAM TRAVEL 7 (previous data view)
& FF I EHR @ BT E TIRedt comment || B8 < & | H

ET Data Services

Report: ZKE_ALY_FM_LAYOUT_SORT_MORE

Title: Airline Bookings: DREAM TRAVEL 7 (previous data view)
Variant: DREAM TRAVEL_Z

Layout: /FLIGHTSUMS

Date: 2015 07 22

Trvl agoy Agency Mo, | Carrier Flight Mo, | Date | Booking |E Arnount | Curr, | Aitline | Arnount | Cure, | E RecCount
0P = 4,364,153. GBP =n 8,597
Aussie Travel Al = 17 . 20,779.57 GBP = 70

= 54 = 15,589.02 GBP c 51

Figure 6.106: New toolbar button (FM)

Before making source code changes in the function module program, you need to
replace the existing GUI status of your program with a full copy to be modified.
There are a lot of steps, but it is not complicated. (By copying an existing status,
you can add a button and avoid having to re-create all the buttons formerly
available.)

How to identify the default GUI status

Numerous GUI statuses can be copied to replace the default in
your program, but if you want to continue with the same set of
buttons used so far, you can obtain the details (the program name
and GUI status name) using the ABAP debugger. To do this,

display your ALV as usual, type /h in the command line, then click on any
button in the ALV application toolbar. Write down the program name at the top
of the debugger screen. Display the value in sy-pFkey and write that down, as
well—it is the name of the default GUI status used in your program (Figure
6.107).

ABAFP Debugger(s) (Exclusive){sapoi-

bz LE = +E | S®Step Sie @ [watchpoint =
T=||$APLSLVC_FULLSCREEN | / |L3L¥C_FULLSCRE
% FORM 7 |PAI
Desktop 1 Desktop 2 Desktop 3 Standard -
Structures < Fldlist |
Struct, SVET

Struc, Type Structure: flat, not charlke(4612)

Exp. Component Wal.,. Wal.
CPSYS Windows T
| PFKEY STANDARD_FULLSCREEN |

Figure 6.107: Program name and GUI status name (FM)

Type the program name and status name into the selection screen of transaction
code se41 (Menu Painter), then click on the copy status button (Figure 6.108). You
can also do this from other transaction codes such as se80 (object navigator).

Meani Painter: Initial Screan

g 1 o [l T user Interface T Status [lUser Interface | [Status | BfeUser Interface

Program JAPLALVC_FULL3ICREEN

Subobjects
PR =]
[(®)Status |, | STANDARD_FULLSCREEN = Test

“nterface Objects
IStatus List
“IMenu bars
“IMenu list

TIF-Key Settings
~IFunction list

"I Title List

G Display | |7 Change | O3 Create |

&3"-”;' SE41 ¥ | sap01-205 | IMS

Figure 6.108: Copy the current GUI status, part 1 (FM)

In the pop-up window, provide your program name and a new name for the status
(Figure 6.109), then click the Copy button.

[Copy Status
Frm
Program |$APLSLYC_FULLSCREEN
Status |STANDARD FULLSCREEN |
to
Program \Z¥K_ALV FM_LAYOUT SORT MORE |
I~ =]
Status .I ZCUSTOML |I

¥ comr %)

Figure 6.109: Copy the current GUI status, part 2 (FM)

No changes are needed on the informational pop-up so click the Copy button
again (Figure 6.110).

[= Copy Status

When copying, the following objects will be recreated G
¥ou can change the short texts for the new objects

Etatus
Etandard for General List Dutput in Fullscreen Grid

Meru Bar
dtandard Interface JTANDARD FULL3ICREEN

Merm

Li=t

STANDARD FULL3SCREEN List
Export

STANDARD Sawve

Fend Tao

Edit
STANDARD

Figure 6.110: Copy the current GUI status, part 3 (FM)

Save and activate your custom GUI status. To add the new button to the custom
GUI status, re-start transaction code se41 with the Status LisT radio button
selected (Figure 6.111). Click on the CHanGe button. (You do not need to include
the name of the custom status on the selection screen; all available GUI statuses
will display.)

xr
[& User Interface Edit Goto Utilities w

g vdHICOG SMHE B5”

Meani Painter: Initial Screan

»

4o i Dé’ O | O user Interface T Status [TJUser Interface

Program |ZKE_ALV_FM_LAYOUT_SORT MORE (3]
Subobjects
(I5tatus 'ZCUSTOML =] Test

i Interface Chiects

IMenu bars

IMenu list

i IF-Key Settings
{IFunction list
O Title List

1'53::" Diisplay I Ié’ hange I ID Create I

Y B SE41 v | sap01-205 | INS | 4)

Figure 6.111: Add button to custom GUI status, part 1 (FM)

Double-click the name of your custom GUI status to continue (Figure 6.112).

x>
[& User Interface Edit Goto Utlities Extras W

& B @@ ERE §Hhaoa F”7

Maintain Status Texts of Inferface ZKK_ ALV _FM _LAYOUT ...
= | Pug o) 8L R EDR @0 TODES 7

Tzer Interface ZKE_ ALV FM LAYOUT 30RT MORE Active
Jtatus / Short Documehtation
/ I . . =]
ZCUSTOML Ita‘tandard iyl === el e hie el 0w ol o5l b b Bl 2 = Grld_l
F
-
4 F 4 F
E* ? B SE41 ~ =ap01-205 | IMS [f']

Figure 6.112: Add button to custom GUI status, part 2 (FM)

Click on the expanDp button next to “Application Toolbar”, then put your cursor in an
unused cell. Click the App button on the toolbar, then type the function code

chosen earlier: NoTE (Figure 6.113).

[& User Interface Edit Goto Utlities Extras Erwironment Systern Help 7

& ~dBC@@ DHR TTL8 BHE @@

Maintain Status ZCUSTOMI of Interface ZKK_ALV_FM _LAYOUT SORT_M..
& g o B AaE20H ¥ B ER|IE] ®Brunctoncode [07

Tzer Interface ZKE_ ALV FM LAYOUT 30RT MORE Active
-
Menu Bar g Standard Interface STANDARD FULL3CREEN

ipplication Toolbar |5 g8 STANDARD FULLSCREEN

Items 1 - 7 ETA <EE9Q <FEFEESH sALL &5AL
& i 8 | El g
Items 8 - 14 FANLN 0D ILT ILD =TMC
Ttems 15 - Z1 sENT_PREV SVEXCEL SROT $PC
| & 8 |2 &
Trems 22 - 28 SAEC &GRATH HOTE i &0L0 & 04D
A7) 115 23] o
Items 29 - 35 < INFO
|
Function Eeys g8 Standard Maximum Interaction $TANDARD FULLSCREEN
FY
-
i i
|y [SE41 ~ sap01-205 | INS [ﬁa

Figure 6.113: Add button to custom GUI status, part 3 (FM)

A pop-up window will appear, prompting you to provide function text. Retain the
default radio button value (Static Text) and click the green checkmark (Figure
6.114).

[Enter Function Text

Function NOTE
There is nio text assigned to this function

Create a Function Text

Choose Text Type
(®)Static Text

iDynamic Text

%)

Figure 6.114: Add button to custom GUI status, part 4 (FM)

Provide the values shown, then click the green checkmark (Figure 6.115). (You
can complete the function text, the icon name, or both as shown.)

» FUNCTION TEXT: Label visible on the button itself
» 1coN NAME: Official icon name from the sHowicon program (Figure 6.105)

» INFo. TEXT: Instructional information that appears when mouse hovers over the
button

[E Enter Function Text

%
Function code I|_I-II:|TE|

Function text \Edit Carment |
Icon name |ICON_ANNOTATION

Info. text \&dd note to record |

Figure 6.115: Add button to custom GUI status, part 5 (FM)

In the pop-up window, choose any of the function keys presented as available,
then click the green checkmark (Figure 6.116).

[= &szign Function to Function key

NOTE

% Edit Note

iz not assigned to a function key
Choose a Function Eey

g

Fa
Shift-Fl

Shift-Fz

Shift-F4

Shift-F5

Shift-F5

Shift-F7

Shift-Fg

Shift-Fo

Shift-Ctrl-0

Shift-Fl1l

Shift-Flz

Ctrl-Fz

Ctrl-F3 -

Ctrl-Fl1
[]
LI LI

via

Figure 6.116: Add button to custom GUI status, part 6 (FM)

In order to add a text label to the button double-click on the cell just added (Figure
6.117). This returns you to an input screen with more options including the “Icon
Text” input field.

[& User Interface Edit Goto Utlities Extras Erwironment Systern Help -

& ~dBC@E@ DHER TTL8 BHE @@

Maintain Status ZCUSTOMI of Interface ZKK_ALV_FM _LAYOUT SORT_M..
& PRl o B A20DH ¥ BERERE | ®rnctoncocde 0 07

Tzer Interface ZKE_ ALV FM LAYOUT 30RT MORE Active(revised)
-
Menu Bar o Standard Interface STANDARD FULL3CREEN

ipplication Toolbar [=| g8 STANDARD FULLSCREEN

Items 1 - 7 ETA <EE9Q <FEFEESH sALL &SAL
& T 8 | & g
Items 8 - 14 PANLN 0D ILT ILD =TMC
Items 15 - 21 sENT_PREV SVEXCEL SAQT $PC
I_. =
Items 22 - 28 &AEC &GRAPH NOTE s0L0 &0AD
@ I | FE =
Items 29 - 35 < INFO
|
Function Eeys g8 Standard Maximum Interaction $TANDARD FULLSCREEN
il
-
4 '

[=oaty

SAP. B | SE41 ¥ | s3p01-205 | NS '

Figure 6.117: Add button to custom GUI status, part 7 (FM)

Add the text for the button in the Icon TexT field and click on the green checkmark
(Figure 6.118).

[= Function Attributes

Furnction Code

Functional Type

lnoTE i

[Application Function

Switch | |Reaction >
Static Function Texts
Function Text Edlit Comment |
Icon Marme | ICON_ANNOTATION -
Icon Text E:J]t Carrent I |
Info, Text \Add note to record |
Fastpath []

Figure 6.118: Add button to custom GUI status, part 8 (FM)

Change Text Type I:XEI

Save and activate, then exit transaction code se41 (Figure 6.119).

Help -
COQ@ CHE Do BE @

Maintain Status ZCUSTOMI of Interface ZKK_ALV._FM_LAYOUT_SORT_...
o ved ai|@s BETH X BEEBE (Ghnctncds | 07

e

[& User Interface Edit

& *| 4

Goto Utilities

=l

Extras Erwironment System

Tzer Interface ZFKE_ ALV FM LAYOUT 30RT MORE Active

-

Menu Bar g Standard Interface STANDARD FULL3CREEN
ipplication Toolbar [=) g8 STANDARD FULLSCREEEN
Items 1 - 7 ETA <EE9Q <FEFEESH sALL &SAL

] 8 | El 5
Items 8 - 14 PANLN 0D ILT ILD =TMC
Items 15 - 21 &ENT_PREV SVEXCEL SAQT $PC

| & 8 |& &
Items 22 - 28 sAEC &GRAPH HOTE s0L0 &OAD

7S i1} Edit C|| EH o
Items 29 - 35 < INFO

| :

-

4 4
Interface ZKK_ALY FM_LAYOUT _SORT_MORE activ,.,. w=i:* [» SE41 = sap01-205 | INS ﬁa

- T~

Figure 6.119: Add button to custom GUI status, part 9 (FM)

Now change the source code to add logic for the new button in the custom GUI
status. For variety, we'll use a callback parameter (I_cALLBACK_PF_STATUS_SET) this

time instead of repeating the events table approach used for the Top_oF_PAGE
(Chapter 6.5.1) and HoTspoT (Chapter 6.6.1) logic. Either approach is fine.

Define a constant with the name of the subroutine that will set the GUI status.
Because the ser pr-sTATus command has a built-in excluding clause, you can
delete the cT_ExcLupe table from the data area (Figure 6.120).

DATA: gs_output TYFE 1ty output,
Ft_output TYFPE STANDARD TAELE OF lty output,
¥t_sSort TYFPE =slis_t sortinfo_alw,
gt_fieldeoat TYPE slis t fieldeat alw,
¥=_layout TYFE =slis layout_alwv,
gt_top text TYPE =l1is t listheader,
gt events TY¥PE =li=s € ewvent.
2 gt exclude TYDE sli;_ﬁ_extab. "delaete, no longer needed

CONSTMNTS: go formname top TYPE =lis formnsame VALUE 'ZF TOP OF PAGE',
¢ formhatme com TYPE slis formnamwe VALUE 'ZF USEER COMMAND '
rgc_fnrmname_pf TYFE slis formname VALUE 'ZF SET FFETATUS! .

Figure 6.120: Data changes for button addition (FM)

The content of zr_suiLp_excLupe_taBLE Will be moved from its own subroutine to
the new zr_seT_PFsTATUS. subroutine so the explicit PERFORM statement can be
deleted (Figure 6.121).

EEEEEE LS L AL Dpapt of main program logic FEEEEESEEELsSdsE s RS L EEES
FERFORM =zf build layout UIING gs_ layout.
FERFORM =zf build fieldecatalog USING gt fieldeat[] .
FERFORM =zf build sort takhle TSING gt _sort[] .
FERFORM =zf build ewvent table UIING gt_ewvents[].
FERFORM zf build top text tahle T3IING gt _top text[].

4 DERFORM zi_build_exclud@_table USING gt exclude[]. flelate

FERFORM =zf display_alwv.
EEEEEEERE LA Bl of main progrdam loglo fFEEfELssssdsiiddsdtiiiiiisst

Figure 6.121: Delete the perform statement of the excluding table build (FM)

Create a new subroutine called zr_set_pFsTaTus (Figure 6.122). The name must
match the constant you declared (Figure 6.120). Copy the content from
ZF_BUILD_EXCLUDE_TABLE into the new zr_set_PFsTATUS subroutine, then add the ser
PF-STATUS command with your custom GUI status zcustom1.

(Each time the zr_set_pPFsTATUS subroutine is executed, SAP’s standard table of
function-codes-to-be-excluded is presented anew. The function codes that you
want to exclude from the ALV application toolbar must be re-appended to the SAP
list on every pass.)

FOREM zf set pfstatus USING 1t _exclude TYPE =lis t extsb.
DATA: 1= exclude TYPE slis extab.

* godad to the exclude table pre-populated by SAPR on edch pass

ls exclude-feode = ' ELEBC!.
APPEND 1= exclude TO lt exclude.
ls exclude-feode = ' eGRAPH'.

APPEND 1= exclude TO lt exclude.

SET PF-3TATUZ 'ZCUSTOM1' EZCLUDING 1t exclude.

ENDFORM.

Figure 6.122: New subroutine to update the table of buttons to be excluded and set the custom GUI status
(FM)

Now that you have moved the logic from the zr_BuiLb_ExcLUDE_TABLE subroutine to
the zr_seT_PFsTATUS subroutine, delete zr_suiLb_ExcLupe_TABLE (Figure 6.123).

*FORM zf_build_exclude_table USING 1t exclude tyre 5_1_1'5_ t extab.

logic movred to z2f set pfstatus

DATA: 13 exclude TY¥PE sli;_extab.
* 1z exclude-fcode = "LABCT.

APPEND 1= exclude TO 1t exclude.
1z exclude-fcoode = "LGRAPH'.

ADPPEND 1= exclude TO 1t exclude.
*ENDFORM,

Figure 6.123: Delete the former subroutine (FM)

The logic to execute when the user clicks the new button on the ALV application
toolbar (function code = NOTE) will be added to the existing zF_user_commAND
subroutine in Chapter 8.3.1. A placeholder can be added now (Figure 6.124).

FORM zf user command T3ING lv_ucomm LIEE =v-ucomm
ls selfield TYPE =lis selfield.
DATA: 1= strawvelag TY¥FPE =straveladq,
lt_stravelay T¥FE TAELE OF stravelad,
lt =apfli TYPE TAEBELE OF spfli,
lt_output_temp TYFE TABLE OF lty output.

do nothing if user clicks where no identifiable data value
IF 1= selfield-wvalue I3 INITIAL.
RETUERN.
EMNDIF.

CASE 1w ucomm.

WHEN 'LIOTE'. Tftoolbar button clicked
= Jogic will bhe added here later
WHEN '&£IC1'. "hotapot wis clicked

CASE 1=z selfield-fieldname.
WHEH ' LGENCYIUM!'
OF 'NAME'. "dizplay STREAVELAG details

Figure 6.124: Placeholder for new button logic (FM)

The final changes are made in the rReuse_ALv_GRID_pIsPLAY call (Figure 6.125). Add

the constant containing the name of the zr_set_pFsTaTus subroutine and remove
the exclude table reference since the exclude table is now being passed via the
|_CALLBACK_PF_STATUS_SET parameter.

FORM =f display alw.

CALL FUNCTICH 'REUSE ALV GRID DISPLAY!

EXPORTING
i callback program = zy-repid
| i eallback pf status set = go formname pf |

1s_layout
it fieldcat

¥y=_layouc
gt fieldoat[]

k it excluding = gt exclude[] "delete, not neededl
1t;§nrt = gt;EDrt[]
i zave = gv_save

iz wariant
it ewvents

TABELES

t_outtab = gt_output
EXCEPTIONS

brogram error = il

OTHERS =2

¥s_wvariant
gt_ewvents[]

Figure 6.125: Two changes for the function module call (FM)

6.8.2 ALV control framework

After making these changes, the toolbar will display with the new Epir CommeENT
button and without the GrapHic button (Figure 6.126).

ET Data Services
Report:
Title:
Variant:

Layout:
Date:

ZKK_ALV_CTRLFW_LAYOUT_SORT_MOR

Airine Bookings: DREAM TRAVEL_Z (previous data view)
DREAM TRAVEL 7

JFLIGHTSUMS

2015 07 22

& [&] =Pl (=2 [B]E JE .
Airline Bookings: DREAM TRAVEL_Z (previous data view)

||

| @Edit Comment |

Tryl agcy = Agency Mo, | ID o Mo, | Flight Date | Booking (£ Amount | Curr, | Airline Amount | Curr, | ERecCount
] == 4,364,153.15 GBP == 8,597
Aussie Travel A = il u 20,779.57 GBP u 0

= 54 c 15,589.02 GBP . 51

Figure 6.126: New application toolbar button (CF)

Two events are associated with the additional button on the ALV application
toolbar: TooLBAR and user_commanD (Figure 6.127). (The method names | used are
TOOLBAR_ADD and USER_COMMAND_ALV, but you can choose other names, if you

wish.)

EEE R
CLASS lel event handler DEFINITICN.
PUBELIC SECTICH.
METHODS :
toolhar add FOR EVENT toolbar OF &l gui alv grid
IMPORTING e _ohject
e _interactiwve,
user command alv FOR EVENT user commanhd OF ol gui alv grid
IMPORTING &_uconn,
top of page - FOR EVENT top of page oF cl gui alv grid
IMPORTING e _dyndoc id,
hotspot_click FOR EVENT hotspot_click OF ol gui alv grid
INPORTING e _row_id
e column id.

ENDCLAZS.

]

DATA: g event handler TYFE REF TO 1lcl ewvent handler.

]

Figure 6.127: Two new events (CF)

For each of these methods, you can call a separate subroutine (Figure 6.128) or
you can write the code directly in the method implementation.

o ok ok g g G

CLAL3S lel ewvent handler IMPLEMENTATICHN.
METHOD toolbar add.

FERFORM =zf toolhbar add TIING e object.
ENDMETHOD .

METHOD user commahd alwv.
FERFORM =zf user command alv T3ING e ucomtm.
ENDMETHOD .

METHOD top of page.
FERFORM =zf top of page UIING e dyndoc id.
ENDMETHOD .

METHOD hotspot click.
IF & row id-rowtype IS INITIAL. "hlank rowtvpe = detail line
FEAD TABELE gt _output INTO gs_output INDEX e row id-index.
IF =sy-subrc = 0.
FERFORM =zf hotspot click UIING g=s_output
e column id-fieldname.
ENDIF.
ELSE. "aummarized line
MESSAGE ID 'O0' TYPE 'I' NUMEER 001
WITH "Hetspet availsble. Click cell on detail line. " [(017)..
ENDIF.
ENDMETHOD .
ENDCLASS.

Figure 6.128: Two new methods for new button (CF)

In zF_tooLBAR_ADD, set the attributes of the new button (Figure 6.129). The
BUTN_TYPE values include:

» 0: Button (normal)
» 1: Menu and default button
» 2: Menu

» 3: Separator

» 4: Radio button
» 5: Checkbox

» 6: Menu entry

FOREM zf toolbar add TU3IING lo ohject
TYFE REF TO cl _alv event toolbar set.

DATA: 1= toolhar TYFE sth_lhutton.
CLEAR 1= toolhar.

ls_toolbar-function = 'NOTE'. "owmr foode for logic

ls toolbar-icon = icon _annotation. "from ITCON include

1=z _toolbar-gquickinfo = 'Add note to record'.

ls _toolbar-hutn type = 0. "hasic button, not menu
ls_toolbar-disshled = ' '.

l=s_toolbar-text = 'Edit Comment'. flakel on button

APPEND 1= toolbar TO lo_object->mt_toolbar.

ENDFORM.

Figure 6.129: New subroutine with toolbar button details (CF)

The logic to execute when the user clicks the new button on the ALV application
toolbar (function code = NOTE) will be added to the existing zF_USER_COMMAND_ALV
subroutine in Chapter 8.3.2. A placeholder can be added now (Figure 6.130).

FORM zf user command alv TIING 1v ucomm TYPE sy-ucobmm.

CASE l1wv_ucom.
WHEN 'NOTE'.
Jogic will be added here later
ENDCAIE.
ENDFOERHM.

Figure 6.130: New subroutine for user command logic (CF)

zf_user_command_alv and zm_user_command_9100

Don’t be confused by the two similarly named sections of code in
| this example program. The PAI module called
— zm_user_commanD_9100 manages the top row of function keys we
configured as Back, Exit, and CanceL in Figure 3.26. The new
subroutine zr_user_commanD_ALv Wwill contain logic related to the ALV
application toolbar buttons.

The final changes are made in the zm_staTtus_9100 module (Figure 6.131): Setting
handlers for the new TooLBAR and user_commanp events, calling the
SET_TOOLBAR_INTERACTIVE method.

CREATE OBJECT g ewvent handler.

SET HMDLER g ewvent handler->toolbar add FOR gridl.
SET HAMDLER g ewvent handler->user commahd alv FOR gridl.

SET HAMNDLER g ewvent handler->top of page FOR gridl.
SET HAMMNDLER g ewvent handler--hotspot click FOR gridl.

CALL METHOD gridl-:>set_toolbar interactiwve.

Figure 6.131: Zm_status_9100 module changes (CF)

No change is needed for the zr_BuiLb_ExcLupe_TaBLE subroutine (Figure 6.103).
The exclude table will continue to be passed to the seT_TABLE_FOR_FIRST_DISPLAY
method for the removal of the DispLay GrapHic button from the ALV application
toolbar.

6.9 Summary

In this chapter you learned how to customize the ALV output to meet a number of
requirements you may encounter.

Key points:

Hiding columns
Displaying sub-totals immediately

Providing record counts using a layout structure technique and a field catalog
technique

Handling report layout variants from the selection screen including validation,
on-value-request lookup logic, and variant-saving authorization concepts

Using TOP_OF_PAGE, USER_COMMAND, HOTSPOT_CLICK, and TOOLBAR events

Displaying top_of page content (text and logo), including use of a splitter
container to divide the screen and use of dynamic document functionality to
output report parameters

Customizing the ALV application toolbar by removing or adding buttons,
including how to copy and modify the default GUI status for the function
module technique

In Chapter 7, you'll see examples of code that can be used in ALV and non-ALV
programs.

In Chapter 8, you’ll add edit capability to an ALV to support small volumes of data
changes.

7 Solving challenges with handy
features applicable to many program

types

The information in this chapter may be useful for solving challenges you
face. With adaptations, the concepts can be applied to a wide range of
program types, not just SAP List Viewer programs.

7.1 Retrieving the variant name during transaction code se38 background
execution

In Chapter 6.5, you added a top_of page event to display text and a logo at the
top of the screen (Figure 6.50 and Figure 6.60). If you were to run the program
with the same variant in background using transaction code sm36 (Schedule
Background Job), the top_of page output in the print spool would look like Figure
7.1. The background output matches the foreground output, without the logo.

Graphical display of spool regurest 63623 in system

SISl E &3 .2 4 » | Settings.. Srcraphical & Graphic Without ©
30rt criteria Azcdg|Dezcnd [Subtotal

Trawvel agency name x

Airline x

Connection Number x X

Data statistics Nunber of

Fecords passed G,5597

Calculated total records 131

ET Data Serwvices

Feport: EZKK ALY FM LAYOUT S0RT_MORE

Title: Airline Bookings: DEEAM TRAVEL Z (previous data wiew)
Wariant: DREAM TRAVEL Z

Layout: FFLIGHTIUMS

Date: 2015 06 30
Trwl ageoy Aoency No. | ID| No.|Date Booking Amount [Curr.
g 4,364,155.15 (GEP
* hussie Trawvel AR 17 20,779,.57 |GEP
* hussie Trawvel AR 64 15,589.02 |GEP
* hussie Trawvel AZ| 555 5,181.62 |GEP

Figure 7.1: Actual variant name in background top _of page

Sometimes, though, developers execute programs in the background from
transaction code se38, sending the report to the spool. It is helpful in those cases
to have a record of the variant that generated the report. Unfortunately, a variant
alias is substituted in the sy-sLseT field when run that way (Figure 7.2).

ET Data Serwvices

Report: ZKK_ALV FM_LAYOUT SORT_MORE

Title: Airline BDDkings:I&DDDDDDDDDDDDZI
Wariant:] «0000000000002

Layout: FFLIGHTIUMS
Date: 2015 06 24

Figure 7.2: Alias for variant name during se38 > background

If you need a solution to this problem (that only impacts those making a
transaction code se38 switch from foreground to background mode), one work-
around is to store the variant name in a selection screen parameter field (Figure
7.3). (It is hidden from view using No_bispLAY because it requires no user
interaction.)

PARAMETERS: p_slsert TYPE sy-slset NO-DISFPLAY. "for SE38 » backgrnd

Figure 7.3: Hidden parameter to hold the variant name

After adding the parameter, add a new global variable (Figure 7.4). Use of this
variable will reduce the number of IF statements and simplify the code.

DATA: gv_lines TYPE i,
gv_title TYFE syst-title,

Igv:slset TY¥FE sgst—slset.l

Figure 7.4: Variable to hold the variant name

Add the At seLecTion-scREEN ouTpuT logic shown in Figure 7.5. This logic is
executed multiple times while the user or developer interacts online (in foreground
mode) with the selection screen. Each time, it moves the variant name from the
sy-sLseT system field to the new hidden parameter field. The IF statement prevents
the alias from overwriting the actual variant name stored in p_sLset during the final
pass through the At seLecTioN-scREEN ouTPUT logic when switching from foreground
to background mode.

AT ZELECTICHN-ZCREEN OQUTPUT.
IF =v-bhatch = 'X'.
RETTEI. "arolid orerlay by L0000 mame with se38 > bkgrnd
EMNDIF.
p_slset = sy-slset.

Figure 7.5: Populate hidden parameter

Add an IF statement to the zr_starRT subroutine coded earlier (Figure 7.6).
(Subroutine zr_sTarT executes for both foreground and background runs.) If the
hidden parameter field has been filled, move it to the new variable. If not, move
the sy-sLset value to the new variable. Modify the title logic in zF_sTArRT to use
Gv_sLsET instead of sy-sLseT (Figure 7.6).

FORM =zf =tart.
* mare the variant name from either the pseudo-parameter £illed in

* AT SELECTION-ZCREEEN OUTDUT or from system variazhle
IF NOT p_slset IS INITIAL.

ogv_sSlset = p slset. "Fforeground, SEIF > background
EL3E.

ov_slset = sy-slset. "EMIA bhackground
ENDIF.

£111 title variagble using variant variabhle from abore
CONCATENATE 'Airline Bookings:' (0O01)
INTD ogw title 3IEPARATED EY =pace.
IF| gv_=slsec jC3 ' I,
00 NATE gv_title
"'[previous data wiew) ' [(002)

INTD gv_title SEPARATED BY space.

ENDIF.

Figure 7.6: Populate the new variable and modify the title build

Another place that requires a change from sy-sLset to the new variable Gv_sLsET is
in the subroutine zr_BuiLb_top_TexT_TABLE (Figure 7.7). Adapt this for other
top_of page text fill techniques.

CLEAR 1= textline.

ls textline-typ L "standard line
ls textline-key = 'Wariant:' (013)].

ls_textline-info =

APPEND 1= textline To 1t _top text.

Figure 7.7: Pass the variable to the text table for top_of _page (FM)

With these changes, you will see the actual variant name rather than the alias in
your configured top_of page header for all methods of execution.

7.2 Modifying the selection screen for different user groups

An ABAP selection screen can be modified dynamically to accommodate more

than one user group: one with display authorization and one with change
authorization.

Approaches might include checking standard or custom authorization objects or
creating separate transaction codes for each group.

This chapter describes how to use a mobiF ID to hide or disable (gray out) a
selection screen element.

Using the editable ALV exercise from Chapter 8.2 as a starting point, a mobIF D
called zkk has been declared (Figure 7.8) for the checkbox parameter called
p_ebiT. An authority-check can be executed to fill variable cv_epit_FLAG for
evaluation in the AT SELECTION-SCREEN OUTPUT lOgiC. (zF_AUTHORITY_CHECK content is
not shown for this example.)

JELECTICHN-3CREEN EBEGIN OF LINE.
FARAMETERS: p_edit A5 CHECEEOQX DEFAULT ' 'IHODIF ID zkk.l

text-100 contains "Display in edit mode for comment changes™
SELECTION-3CREEN COMMENT S(40) text-100 FOR FIELD p edit.
SELECTICOHN-3CEEEN END OF LINE.

INMITIALIZATIOHN.
FERFORM =zf suthority check UIING gv_edit flag.

T FELECTION-3ICEEEN OUTRUT.
IF gv_edit flag = ' '. "no edit Futhority

* gltermative to edit flag IF could be sy-tcode = displayv-only tcode
LoopP AT SCREEN.

CHECE screen-groupl = 'ZEE'.

screen—active = '0'., "hide the edit checkbox param
screen—-input = '0'. "rigible, but greved-out
MODIFY 3CREEN.
EMNDLOOP .

ENDIF.

Figure 7.8: MODIF ID example

In the example (Figure 7.8), if the user has display authorization, the selection
screen will be modified to hide the selection screen elements aligned with the
mopiF b (Figure 7.9).

Travel Agency Nurnber 123 to ' ' =&

&itline ' to |
. 1 1

Fight Date to

Figure 7.9: Screen-active = 0 hides the field

If the user has change authorization, no modification of the selection screen is
needed. The user will still have the option of specifying edit mode or non-edit
mode using the p_ebit checkbox (Figure 8.3).

A few of the choices available to you when changing the selection screen using
LOOP AT SCREEN:

» scReeN-AcTIVE = 0 hides the field (Figure 7.9)
» scREEN-INPUT = O disables (grays out) the field without hiding it (Figure 7.10)

£
Travel Agency Murnber 123 to |E|
Lirline ta |i|
Flight Date to | i |

Display in edit mode for comment changes

Figure 7.10: Screen-input = 0 grays out the field without hiding

Another option: If separate transaction codes, managed through security roles,
have been created for the edit users and for the display-only users, the Ir
statement in AT SELECTION-SCREEN OUTPUT can be written instead to evaluate which
transaction code (sy-tcope) was being run by the user.

7.3 Converting all currency values to a user-specified “report currency”

In a global business environment, financial transactions are often executed and
saved in multiple currencies. For reporting, it is sometimes helpful to display the
data in a single currency that we’ll call a “report currency”. This chapter will show
you one way to do that, using the training scenario. Adapt the concepts for your
real-life requirements.

Each booking in the SAP Flight Application is stored in the sBook table in foreign
currency (matching the travel agency’s currency) and local currency (matching the
airline’s currency). In the training scenario, the owner of Dream Travel is based in
Great Britain, but had recently acquired an Australia-based agency called Hot
Socks Travel. When records are summed, the ALV provides a separate total for
each currency—here shown in Australian dollars and British pounds (Figure 7.11).

Agency Mo, | Travel agency name “/cur_ |ID | Mo |Fight Date | EBook. no. |2 Amount (for.currency) | Cure, | Aidine Arnount | Curr,
o am 1,028,775.04 AUD
4,364,153.15 GBP
836,886.68 GBP
856,941.48 GBP
1,028,775.04 AUD
081,205.58 GBP
848,529.40 GBP
840,590.01 GBP

Alssie Travel

Ben MoCloskey Ltd,
Hot Socks Travel
Kangeroos

Super Agency

The Ultirate Answer

clis0E0ED =0 a0

293 GEBP A& 17 0Sf25/2011 24 543.36 GBP | American Ailines 803.58 LUSD
295 GBP AA 17 05/25/2011 a3 28598 GBP || American Airlines 422,94 LISD
293 GEBP A& 17 0Sf25/2011 124 25739 GBP | Amertican Ailines 380.65 LSD

Figure 7.11: ALV grid before conversion to a single currency

The report would be more useful to the Dream Travel owner if all the records were
reported in a single currency (GBP, British pounds) for easier comparison of
agency performance (Figure 7.12).

Agency Travel agency name 1D | Mo, Flight Date Book. no. | Ailine E Rptamount | RptCurr
O =« 4,804,675.06 GBP
Aussie Travel = = 836,886.68 GBP
Ben McCloskey Ltd, = . 856,941.48 GBP
Hot Socks Travel = " 440,521.91 GBP
Kangeroos = " 081,205.58 GBP
Super Agency = " 848,529.40 GBP
The Ultirmate aAnswer T . 840,590.01 GBP
295 A 17 05/25/2011 24 American Airlines 543,36 GBEP
205 AL 17 05f25/2011 22 American Airlines 283,98 GBP
295 A 17 05/25/2011 124 Arnerican Airlines 237,39 GBEP

Figure 7.12: ALV grid after conversion to a single currency

The selection screen block provides enough information for a user to understand
how and when to use the “Report Currency” parameter (Figure 7.13).

@ &

Travel Agency Murnber | loz to =
Aitlire to
Flight Date to =

 Optional: Convert amounts from travel agency currency to currency below for report

Feport Currency

Figure 7.13: Parameter on selection screen

The frame title “Optional: Convert amounts from travel agency currency to
currency below for report” has been saved as text symbol Text-002 (Figure 7.14).
The parameter label “Report Currency” has been saved as a selection text.

SELECT-OPTICONS: = _aghum FOR stravelag-agencynuwnm DEFATULT '1z23°',
£ _carid FOR shook-carrid,
£ _fldat FOR shook-fldate.

SELECTION-3CEEEN SEIP.

SELECTION-3CREEEN BEEGIN ©OF BLOCE bl WITH FRAME TITLE TEET-00Z.
PARAMETERS: p_curr TYPE tourc-waers.

SELECTICN-3CREEN END OF EBLOCE hil.

Figure 7.14: Selection screen block for new parameter

The SAP master data table that stores all valid currencies is TCURC and the code
values are stored in field WAERS. By specifying type Tcurc-waers for the p_Curr
parameter, the F4 input help and F1 help functionality are enabled (Figure 7.14).

Currency exchange rates change often and financial postings are time specific. To
ensure that our conversions use the conversion rate that was in effect at the time
of the booking, orberR_DATE Will be retrieved from sBook for each record (Figure
7.15). Add rpTcuram and RPTCURKEY to the local type Lty_output. The table type
TT_ouTpPuT is defined for use later (Figure 7.18).

TYPES: BEGIN OF lty output,
agencynum TYPE stravelag-agencynun, "sgency number
name TY¥PE stravelag-nsamme, "agency name
CUrrency TYPE stravelag-currency, "agerncy currency
carrid TYPE shook-carrid, Thooked carrier
connid TYPE shook-connid, Thooked connection
fldate TYFPE shook-fldate, T"hooked date
hookid TYPE shook-bookid, Thooking ID
forcuram TY¥PE shook-forcuram, "price in foreign cuUrrency
forcurkey TYPE sbhbook-forcurkevy, "forelgh currency kKev
Carrhame TYPE scarr-carrhname, Tfogrrier name
loccuram TYPE shook-lococursam, "price in Jirline curr
lozcurkey TYPE sbhook-lococurkey, "local currency of airline
order date TYEE ghook-order date, Ttransaction date
rptourarm T¥FPE shook-forcuram, "amount in report curr
rpteurkey TYPE shook-forcurkey, "report currency
END OF lty output.
TYFES: tt_output TYFE STANDAERD TAELE OF lty output.

Figure 7.15: Data additions for currency conversion logic

By adding the new retrieved field orber_bATE before the non-selected fields
RPTCURAM and RPTCURKEY (Figure 7.15), it is possible to continue using the efficient
seLecT statement already in place (Figure 7.16). The new subroutine
ZF_FILL_REPORT_CURRENCY is only executed when a report currency has been
requested using the p_curr parameter.

START-OF-3ELECTICH. fretriaere data
FJELECT stravelag-agencynun stravelag-hatme stravelag-currency
shook~carrid sbook~connid sbook~fldate shook~bookid
shook~forcuramn shook~forcurkey
SCAarr-~Ccarrname
shook~loccuratn shook~loccurkey
|shnnk~nrder=date |
FROM =stravelag join shbook
on stravelag-agencynun = shook~agencynum
join scarr
on shook~carrid = goarr~carrid
INTD TAELE gt output
WHERE stravelag-agencynun IN = agnum
AND shook-~carrid IN = _carid
AND shook~fldate IN = _fldat.

DESCRIBE TAELE gt output LINES gv_lines.
IF gwv_lines NE 0. "data was retrieved

IF NOT p curr IS INITIAL.
FERFORM =zf fill report currency CHANGING gt output[].
ENDIF.

SORT gt _output BY agencynum

carrid
connid
fldate
hookid.
EL3E.
MESSAGE ID '0O0' TYPE 'I' NUMEER 001 WITH 'No data retriewved!'.
RETUERN.

ENDIF.

Figure 7.16: Inclusion of transaction date and parameter-driven logic

The three new output fields are only applicable when the user requests that
amounts be converted to a report currency. The fields can be added at the end of
the existing field catalog using an IF statement (Figure 7.17). orber_DATE Will be
included in the ALV report for troubleshooting, but will be hidden using the no_out
field catalog setting. Depending upon user preference and requirements, you can
hide the five other fields related to currency (CURRENCY, FORCURAM, FORCURKEY,
LOCCURAM, and LOCCURKEY) using a mobiry statement. (The field catalog fieldnames
shown are for sLis_FiELDCAT_ALv. Adjust these when using other field catalog
structures such as Lvc_s_Fcart.)

IF NOT p curr IS INITIAL.
CLEAR 1= fieldeat.

ls fieldeat-fieldname = 'ORDER_DATE'.
ls fieldeat-ref fieldname = 'ORDER DATE'.
ls fieldeat-ref tabname =SB0OE!.

ls fieldeat-no_out T

APPEND 1= fieldeat ToO 1t _fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname = 'REPTCURAN'.

lz fieldoat-cfieldname sUCRPTCUREEY! « "currency key here
ls fieldeat-ctabname =i NG QTR ..

ls fieldeat-seltext 1 = !'BEptlmount'. Tup £o 40 chars

ls fieldeocat-seltext _m = !'BEptlmount'. Tup o 20 chars

ls fieldeat-seltext = = !'BEptlmount'. "up o 10 chars

APPEND 1= fieldeat To 1t fieldeat.

CLEAR 1= fieldeat.

ls fieldeat-fieldname SUCRPTCURKEY! @

ls fieldeat-seltext 1 =- "RpECure".. "up to 40 chars
lz fieldoat-seltext_m = EREICHEE "up to 20 chars
ls fieldeat-seltext = = T RpECuEE" o "up o 10 chars
ls fieldeat-ref fieldname = 'TCURC'.

ls fieldeat-ref tabname = 'TAERS'.

APPEND 1= fieldeat To 1t fieldeat.

CLEAR 1= fieldeat.
ls fieldecat-no out = 'X'. "hide fields
MODIFY lt_fieldcat FEROHM ls_fieldcat TERANIPORTING ho_out

WHERE fieldname = 'CURRENCTY'
OF fieldname = 'FORCURALM!
OF fieldname = 'FORCUREEY!
OF fieldname = 'LOCCTRALM!
OF fieldname = 'LOCCUREEY'.
ENDIF.
ENDFORM.

Figure 7.17: Field catalog changes for report currency

Always display the currency key for financial amounts

Report users should always be able to tell the currency of all the
-~ amounts shown in a report. Cross-reference the currency key
field using crieLbnAME and display the field on the report.

Subroutine ZF_FILL_REPORT_CURRENCY uses function module
CONVERT_TO_LOCAL_CURRENCY (Figure 7.18) to convert the amounts using time-
specific exchange rates from the Tcurr table. Three outcomes are possible when
looping through the table of retrieved data.

The amount is already stored in the requested currency—move existing
amount over to the new field.

The amount needs to be converted to the requested currency and the
conversion is successful—move converted amount to new field.

The amount needs to be converted to the requested currency and the
conversion fails—leave the new amount field initial and move “error” to the
new currency key field.

FORM =zf fill report currency CHANGING 1t output TYPE tt_output.
DATA: ls output TYPE lty output,
lv rptamt TYPE lty output-rptoursm,
lv tabix TYPE sy-tabix.

LOoP AT lt _output into ls output.
lv _tabix = sy-tabix.
IF 1= output-forcurkey = p curr.

ls _output-rptouram = 1S _output-forcursm.
ls output-rptourkey = p curr.
EL3E.
CALL FUNCTION 'CONVERT T LOCAL CURRENCY!
EXPORTING
date = ls_output-order date
foreign amount = ls_output-forcuram
foreign currency = ls_output-forcurkey
local currency = p_curr
type_of rate =e
read tourr R
IMFPORTING
local amount = lv rptamt
EXCEPTICONS

ho_rate found =
owverflow =
ho_factors found =
no_spread found =
derived Z times =
others= .
IF =sy-subrec = 0.
ls _output-rptoursm = lv_rptamt.
ls _output-rptourkey = p curr.
EL3E.
ls output-rptourkey = 'error' (003 .
ENDIF.
ENDIF.
MODIFY 1t _output FROM 1= output INDEX lv tekhix
TRANSPORTING rptourstn rptourkey.
ENDLOOP .
ENDFORM.

[= T O JRY - 4% B u I

Figure 7.18: Conversion to report currency has 3 possibilities

Type of rate for conversion function module

SAP uses exchange rate type M for many financial postings, but it
@;@ is a good practice to verify during design that this is appropriate
for the program you are coding.

L

If there is conversion failure on any record, other options include interrupting the
program or populating the original amount into the new amount field with the
original currency. In the case of conversion failure, you should not populate a zero
amount aligned with the report currency because it may not be apparent to the
user that some data failed to convert, especially when it is summarized. The
approach shown here populates “error” into rRpTcurkEY for greater visibility (Figure

7.19).

Agency Mo, ETWI agcy AE:&irlir‘uai Mo, EFIight Date EBDDkir'II;I i;‘-‘«irline E RptAmount EF{ptCurr
= 427,603.50 GBP
| 0.00 error |
102 Hot Socks Travel A4 17 05/25/2011 12 Ametican Airlines 281.70 GBP
102 Hot Socks Travel A4 17 05/25/2011 52 Ametican Ailines 444,80 GBP
102 Hot Socks Travel A& 17 03f25/2011 82 Amefican Airines | 0.00 error |
102 Hot Socks Travel A4 17 05/25/2011 104 Ametican Aitlines 133.44 GBP
102 Hot Socks Travel A4 17 05/25/2011 240 American Airlines 148,27 GBP
102 Hot Socks Travel A4 17 05/25/2011 293 American Ailines 140,85 GBP

Figure 7.19: Population of error to ensure it is not overlooked

Foreign vs. local parameters of this function module

The coNveERT_To_LocAL_curreNcY function module can also be
r used to change the local currency amount Loccuram to the user-
requested report currency. When working with these function
module parameters, think of “foreign ” as source data and
‘local_” as target data, irrespective of how the fields are named in the data
dictionary.

7.4 Summary

This chapter contains a few examples of challenges solved by using standard
SAP functionality. The examples can be adapted for other program types, not just
SAP List Viewer programs. You may or may not encounter these exact situations,
but exposure to the examples may be helpful.

Key points:

Replacing an SAP-generated alias with the actual transaction variant name in
the top_of page output

Using mobirF Ip to meet the needs of different user audiences using a shared
program and to provide a selection screen tailored to each audience

Converting transaction amounts to a single “report currency” specified by the
user from the selection screen

8 Adding edit capability to an ALV
program

In this chapter, you’ll see how to enable editing for the user of an ALV
report. Editing can be enabled across an entire grid or selectively. The
edited content can be used to update database tables, but can also be used
for applications that require no persistence of the data beyond a printout or
an exported file (for example, for “what if’ analysis). Editable ALV is not the
best tool for performing large volume data updates, but may be appropriate
for some applications.

This chapter will show you how to save modifications to a database table each
time the user changes an editable cell. It is a merely an introduction to editable
ALV and does not cover functionality such as multi-row updates or toggling
between edit/display modes using the REaDY_For_INPUT method. Another technique
used to create editable ALV reports uses REUSE_ALV_GRID_DISPLAY_LvC, a function
module not released for customer use and not included in this book.

8.1 Training scenario

For the training scenario, we will address a new requirement to allow the user to
add a brief comment to a detail record and save the comment to a custom table.
Existing comments will be selected from the database table and displayed in the
ALV report whenever it is run.

If you do not have authorization or a desire to create a table in the

ABAP data dictionary for this exercise, you can still complete the

exercises ahead. Omit the logic that updates the database table

and use a function module such as pPoPuP_TO DISPLAY_TEXT toO
simulate the logic flow.

The new table is called zkkpemo (Figure 8.1), maintainable using transaction code
sm30 in function group zkktemp. Its key fields are the fields from our ALV local
type that ensure a unique record: AGENCYNUM, CARRID, CONNID, FLDATE, and BOOKID.
The field to hold a comment text is called zcommenT, based on data element
cHAR0128. Only one comment will be saved so there is no effective date or
sequence number key field in the table to permit saving a series of comments.

Dictionary: Change Table
== | 7% H | go | = e 2B ER Technical Settings Indexes... Append Structure...

Transparent Table ZKKDEMO Artive
Short Description Derno Table for SAP List Yiewer Application
Attributes Delivery and Maintenance Figlds Entry helpfcheck Currency fQuantity Fields

EIEE]=] S =2 LF] srchHen | | Predefined Tyre | 1
Fieldl key Ini... Data elerment Data Type |Length |Deci... |Short Description
MANDT v [5 MANDT CLNT g 0 Cliert
AGENCTYNUM v V| 3 AGNCYNIIHM NITMC g OTravel Agency Nurnber
CARRID | [+ §_CARR ID CHLR 3 0 Airline Code
CONNID ¥ [« & CONN ID HUMC 4 0Flight Connection Humber
FLDATE ¥| [+ 5 _DATE DATS g DFlight date
BOOKID V| [« & EOOE ID NUMC & 0 Booking nurmber
ZCOMMENT CHAROLZS CHAR, 1z8 DCharacter String - 128 Lser-Defined Characters
'
pvii st SE11 ¥

Figure 8.1: New table to capture comments

Since the editing occurs at the detail level, and our in-progress program displays
summarized levels, I've provided two examples in this chapter using different
starting points for the data display: detail and summary (Table 8.1). Before
proceeding with each one, make a copy of your existing program (and its
components), save, and activate.

Exercise Copy from (starting point) Copy to

8.2.1 Chapter 2 end: zkk_alv_fm zkk_alv_fm_selscrn
(detail start)

8.2.2 Chapter 2 end: zkk_alv_ctrlfw zkk_alv_ctrifw_selscrn
(detail start)

8.3.1 Chapter 6 end: zkk_alv_fm_layout |zkk_alv_fm_edit
(summary start) | sort_more _button

8.3.2 Chapter 6 end: zkk_alv_ctrlfw_layout | zkk_alv_ctrlfw_edit
(summary start) | _sort_more _button

Table 8.1: Suggested starting points for next exercises

For illustration, not by requirement, the first pair of exercises use a selection
screen parameter to indicate that the report should display with edit capability. The
second pair of exercises use the Epir CommenT button created earlier (Chapter
6.8.1 and Chapter 6.8.2) to make the grid editable. Depending upon requirements,
many different approaches can be used.

8.2 Enabling edit based on a selection screen checkbox

For this example, you are starting with an ALV program that already displays the
detail data with no summing, no grouping, no subtotaling, and no cell-merging.

You'll provide a checkbox parameter on the selection screen. If the user leaves
the checkbox blank, the report grid will be presented without edit functionality. To
enable edit functionality, the user will click the checkbox before executing the
report. (Chapter 7.2 shows how to modify a selection screen based on a user’s
authorization.)

Several activities are identical for both the function module and the ALV control
framework technique, including syntax.

1. Add a checkbox parameter p_epiT to the selection screen so the user can
display the grid in edit mode (Figure 8.2).

2. Create a text symbol for the checkbox label (Figure 8.3).
3. Add the comment field to the local type Lty_outpurt (Figure 8.4).

SELECT-OFPTICNS: = _aghum FOR stravelag-agencynuwn DEFATLT '1z23°',
£ _carid FOR shook-carrid,
£ _fldar FOR shook-fldate.

SELECTION-3CEEEN EEGIN OF LINE.
PARAMETERS: p_edit A3 CHECEEOQX DEFAULT ' !
text-100 contains "Display in edit mode for comment changes™
SELECTION-3CREEN COMMENT S (40) TEXT-100 FOR FIELD p edit.
SELECTION-3CEEEN END OF LINE.

Figure 8.2: Checkbox for selection screen

After defining the new parameter in the selection screen, create a text symbol with
“‘Display in edit mode for comment changes” (Figure 8.3). You can use forward
navigation (by double-clicking on Text-100) to add this text, then save and
activate.

D &

Travel Agency Murnber 10z to |E|
Airling to |i|
Flight Date to | i |

|_ Display in edit mode for cormment changes |

Figure 8.3: Selection screen with edit checkbox

If you will not be creating and updating the custom table for this exercise, you can
use cHAR0128 as the type when you add the new field zcommenT at the end of
LTY_ouTpuT (Figure 8.4).

TYPES: BEGIN OF lty output,
agencynum TYPE stravelag-agencynun, "agency number
nane TYPE stravelag-hate, "agerncy name
currency TYPE stravelag-currency, "agerncy currency
carrid TYPE shook-carrid, Thooked carrier
connid TYPE shook-connid, Thooked connection
fldate TYPE shook-fldate, "hooked date
hookid TYPE sbook-bookid, "hooking ID
forcursm TYPE shook-forcuram, "price in foreign cUrrency
forcurkey TYPE shook-forcurkevwy, "forelgh currency key
carrhame TYPE scarr-carrhate, Tfogrrier name
logouram TYPE shook- loccuram, "price in Jirline curr
loccurkey TYPE shook-loccurkevy, "local currency of dirline
|zcnmment TYPE zkkdemo-zcoimnent, "or TYPE chardlzsd I
END OF 1ty output.

Figure 8.4: Comment field added to local type Ity output

Since the syntax varies for the remaining steps, continue with Chapter 8.2.1 for
the function module program or Chapter 8.2.2 for the ALV control framework
program.

8.2.1 Function module

By simply adding the new comment field to the field catalog table in this program
with an eoir value of x, (Figure 8.9), the user can display the ALV grid, can type
text into the comment field, and can scroll through the grid with temporary
retention of those comments within the internal table ct_output. To do more than
that, we need to decide whether our goal (the zkkpemo table update) is better
served by grid-level or cell-level processing.

» Grid-level processing: &bATA_sAvE user command event, triggered by the user
clicking on the Save (diskette) icon

» Cell-level processing: bATA_cHANGED event, triggered when the user moves
the cursor away from an editable cell

With the grid-level approach, we would need to also decide whether to update all
the comments (changed or not) to the zkkpemo table or whether to update the
zKkDEMO table selectively after comparing all the comments in the ALV grid to a
copy of the ALV table as it was first displayed. (If comparing, we would need to
overwrite our copy of the initial table to reflect the revised grid content for the next
comparison-on-save—unless we force a program exit at the end of the
&DATA_SAVE logic.)

With the cell-level approach, we can reduce some of the coding and complexity.
The grid-level approach is suitable for some applications, but for the training
scenario example, we will use the cell-level approach.

The data additions for the current program (Figure 8.5) include table type

TT_ouTPuT based on type Lty_output. This table type will be used in a new
DATA_CHANGED event subroutine (Figure 8.12). The eT_gvenTs internal table first
introduced in Chapter 6.5 reappears. An internal table and structure matching the
database table zkkpemo are added for retrieval of existing comments. The
GV_EDIT_FLAG Variable will be used to communicate whether the user has chosen
edit or display mode. Finally, to enable cell-level processing, declare structure
Gs_cGLAY which will be passed in the ALV call using the I_GRID_SETTINGS parameter
(Figure 8.16).

TYPES: tt_output TYPE STANDARD TAELE OF lty output.
DATA: gs_output TYFE 1ty output,
Ft_output TYFE STANDAED TAELE oOF lty output,
gt_fieldcat TYFPE slis_t_ fieldecat_alw,
gt:Events TTPE slis:E:Event, -
gt_ezkkdemo TYPE STALANDARD TAEBLE OF =zkkdemwo,
¥=_zkkdemo TY¥PE =zkkdemo.
DATA: gv_lines T¥PE i,
gv:Edit_flag TTPE Ci
¥s_glay TYFE 1lwvc = glay.

Figure 8.5: Data additions for edit exercise (FM)

To retrieve any existing comments from the zkkpemo table and display them in the
ALV grid, you'll need to add logic after the population of ct_output (Figure 8.6).
The FOrR ALL ENTRIES IN syntax can be used because you have first verified that
GT_ouTpPuT has lines of content.

If relevant records are retrieved into GT_zkkbpemo, you loop through 6T_zkkpemo to
modify ¢T_outpuT. (6T_zKkDEMO most likely has fewer records so is used for the
Loop statement.) If no relevant comments were retrieved from zkkpemo, no
messaging is required (Figure 8.6).

DESCRIBE TAELE gt output LINES gv_lines.

IF gwv_lines NE 0. "data was retrieved
SORT gt _output BY agencynum
carrid
connid
fldate
hookid.

SELECT * FROM =zkkdemo
INTD TAELE gt zkkdemo
FOR ALL ENTRIEZ IN gt output
WHERE agencynum = gt _OUutput-agencynum

AMND carrid = gt_output-carrid
AMND connid = gt_output-conhid
AND fldate = gt_output-fldate
AND bookid = gt_output-bookid.
IF =sy-subrec = 0. "ocomments Found
SORT gt _zkkdemo BY agencynum
carrid
connid
fldate
hookid.
LooP AT gt zkkdemo INTO gs_ zkkdemo. famaller table

FEEAD TAELE gt _output INTO gs_output
WITH EEY agencynum = gs_zkkdemo-agencynum

carrid = g=s_czkkdemo-carrid
connid = g=_zkkdemo-connid
fldate = gs_czkkdemo-fldate
bookid = g=_czkkdemo-bookid.
IF =zy-subrc = 0.
¥S_output-zcomnent = g zkkdemo- Zcontient .

MODIFY gt_output FROM g=s output INDEX sy-tabix
TREANSPORTING =zoomnent.
ENDIF.
ENDLOOP .
ENDIF.

EL3E.
ME33AGE ID '00' TYPE 'I' NUMBER 001 WITH 'MNo data retriewved' (00Z).
RETTEI.

ENDIF.

Figure 8.6: Retrieval of comments from zkkdemo table (FM)

After the data selection, you'll set two flags to match the selection screen
checkbox value for p_epit: X for edit mode and blank for display mode (Figure
8.7). By populating the ev_ebpit_FLAG now, you can use it in other parts of the
program, such as in zrF_BUILD_FIELDCATALOG, reducing the use of IF/ELsE/ENDIF logic
there. The second flag being filled from the p_epit parameter is a component of
the Lvc_s_cLAy structure called ebt_cLL_cB (ALV control: Callback when leaving an
edited cell).

EEkER kiR td Dhaprt of MIIn Program 1ogic fEEESdsit ittt bk it h ko ko

gv_edit flag = p_edit. "N for edit, space for displav
¥s_glay-edt_cll ch = p edit.

FERFORM =zf build ewvent table TUTIING gt _events[] .

FERFORM =zf build fieldecatalog T3ING gt fieldcat[]
I ov_edit flag. I

FERFORM =zf display_alwv.

Figure 8.7: Flag setting and additions (FM)

Update the using parameter on the zr_BuiLp_FIELDCATALOG subroutine (Figure 8.8).

FORM =zf lhuild fieldeatalog UIING 1t fieldeat TYPE slis t fieldeat alw
Ilv_edit_flag TYFE c.l

Figure 8.8: Use new flag when building the field catalog (FM)

Add the new zcomment field to the end of the field catalog table in
zr_BuILD_FIELDCATALOG (Figure 8.9). To provide a more meaningful label on the ALV,
populate the bpATaTYPE, ouTPUTLEN, and seLTExT values instead of providing a
REF_TABNAME Value of zkkpemo. The variable Lv_epit_rLAG will manage the Eebit
setting for this column based on how the p_Ebit parameter was set (X for edit,
blank for display).

CLEAR 1= fieldeat.
ls fieldeat-fieldname = ! ZCOMMENT' .
ls fieldeocat-outputlen = 128
lz fieldeoat-seltext 1 = !'Commwent' (001) . "up to 40 chars
lz fieldoat-seltext_m = !'Comwent' (001) . "up to 20 chars
lz fieldcat-seltext = = !'Comment' (001). "up to 10 chars
ls fieldecat-datatype = VCHAR"'..
ls fieldeocat-edit = lv_edit_flagy.
LPPEND 1z fieldeat TO 1t _fieldecat.

EHDFORM.

Figure 8.9: New field added to field catalog and edit value set (FM)

In Chapter 6.6.1, you saw that the subroutine names for some events can be
passed to the REuse_ALv_GRID_bDIsPLAY function module using an I_CALLBACK
parameter and other event subroutine names can be passed using the events
table. Since this program is not yet using any events and only one of the two
events being added has an 1_caLLBack parameter (user_commanDp), add both
events to the events table using a new subroutine called zr_BuUILD_EVENT_TABLE
(Figure 8.10). This is the first of three new subroutines in this program related to
event-handling.

FOEM zf build ewvent table T3ING lt_events TYFE slis t ewvent.
DATA: ls ewvent TYPE =slis alv ewvent.

CALL FUNCTICN 'REUSE ALYV EVENTI GET!

EXPORTING
i_list_type = 4 "for REUSE ALV GRID DISPLAY
IMPORTING - B
EL_EWVENt:s = lt_ewvents.

FEEAD TABELE 1t _ewents WITH EEYT name = s5lis ev_user conwand
INTD 1= _ewent.
IF =sy-subrec = 0.

ls _event-form = 'ZIF UIER COMMAND'.
MODIFY 1t _ewents FROM 1ls ewvent INDEX sy-tabix.
ENDIF.

g incremental event to tabkle Ffor focus change Ffunctionality
CLEALR 1= ewvent.

ls _event-name = slis_ev_data changed.

ls _event-form = 'ZIF DATA CHALNGED'.

APPEND 1= ewvent TO lt events.
ENDFORM.

Figure 8.10: Populate two subroutine names in the event table (FM)

After the rReuse_ALv_EVENTs_GET function call (Figure 8.10), LT_EVENTS contains 18
records. In zF_BuILD_EVENT_TABLE, populate your program’s subroutine name for
the provided event user_commanDp, then add a new record for event bATA CHANGED.
LT_EVENTS now contains 19 records (Figure 8.11), two of which will execute your
custom code.

.~ Tables / Table Contents]

Table |LT_EVENTS

Attributes Standard [19x2(1207]

Irnsert _Cu:ulurnn | | @
Row MAME [C(30)] FORM [£(30)]
CALLER_EXIT

USER._COMMAND ZF USER_COMMAND
TOP_OF PAGE

TOP_OF COVERPAGE

END _OF COVERPAGE

FOREIGN TOP_OF PAGE
FOREIGN END OF PAGE

PF_STATUS SET

LIST MODIFY

TOP_OF LIST

END_OF PAGE

END_OF LIST

AFTER_LINE OUTPUT
EEFORE_LINE_OUTPUT
REPREP SEL MODIFY

SUBTOTAL_TEXT

GROUPLEVEL CHANGE

CONTEXT MENT

10 DATA_CHANGED ZF DATA CHANGED

(T U 'w R (e A R A TS A

[y =y =gy =y ey =y ey preyy pre=—s
[e R) [S T I 0 R o |

Figure 8.11: Data_changed is an incremental event (FM)

Ivc_s_glay-edt_cll_cb must be X for data_changed logic

With the function module technique, the DATA_CHANGED
functionality is only accessible and triggered when Lvc_s_GLAY-
epT_cLL_cB is set to X (Figure 8.7) and passed in the
I_GRID_SETTINGS parameter in the ALV call (Figure 8.16).

i m

Create another subroutine called zr_pbata_cHanGep (Figure 8.12) to access the
ABAP objects class cL_ALvV_CHANGED_DATA_PROTOCOL. The FIELD-sYMBOL and ASSIGN
statement are used to access the content of modified rows of the ALV. In our
program, only single rows are modifiable so there will only be one row to process,
the row whose comment field the user just left (Figure 8.13). Loop through
<rT_ouTtput> and populate a structure that matches the database table zkkpemo.
Use the mobiFy command to write the work area record to table zkkpemo. (MobDIFY
will update an existing record or add a record if not found.)

FORM zf data changed T3ING lo_data changed
TYFE REF TO cl alv changed data protocol.

DATA: 1= output TYFE lty output,
1=z zkkdemo TYFPE zkkdemo.

FIELD-3TMEOLI: <frt_output> TYPE £t output.
A33IGN lo_data changed->wp mod rows->+% TO <ft output>.

LooP AT <ft_output: INTO ls output.
CLEAR 1= zkkdemo.
1= =zkkdemo-agencynum
ls_ =zkkdemo-carrid
ls_ =zkkdemo-connid
ls zkkdemo-fldate
1= =zkkdemo-hookid
1= =zkkdemo-zcomment

lz output-agencynum.
ls output-carrid.

ls output-connid.

ls output-fldate.

ls _output-bookid.
ls_output-zcontment .

MODIFY zkkdemo FROM 1= zkkdemo.
MODTIFY will update an existing record of insert 3 new record
IF =zy-subrc NE 0.
ME33AGE ID '0O0' TYPE 'I' WUMEER 0OO1
WITH 'The comnent was not saved to table ZEEDEMO. ' (004) .
EMNDIF.
EMDLOOP .
EMNDFORHM.

Figure 8.12: Data_changed subroutine called when cell focus changes (FM)

The record layout of <rT_output> matches Lty_output with the exception of a first
field called row (Figure 8.13).

Is|[z¥K_ALV FM SELSCRN | 7 |ZKK_ALV_FM_SELSCEN /288
s ||FORM |/ | ZF_DATA_CHANGED | EF

Desktop 1 | Desktop 2 Desktop 3 P/Standard P/Structurez / Tahles KC
 Tahles . Table Contents]

Table \<FT_OUTPUT> |

Attributes Standard [1x13(454)] Vil

Insert Calumn | | [@Culumnz... IJ] | |

‘ Row | AGEMCYMUM [M(S)] MAME [C(25)] |CURREMCY [C(S)] |CARRID [C(3)]] | [ZCOMMENT [C(128)]| |
r_.l 0000010z Hot Sockzs Trawel AUD b NEW COMMENT

Figure 8.13: User-modified row in debugger (FM)

Refresher on previous FM exercise with user_command

Refer back to Chapter 6.6.1 to refresh your memory regarding
r how user_commanD event logic was used in an earlier ALV
function module exercise. In that exercise, hotspot logic was
added in order to display master data information.

The Save button is enabled on screen when we run the program in edit mode, so
in the training scenario, we will provide a pop-up message to inform the user that
changes were saved if they click it.

Create a third subroutine called zr_user_commanp (Figure 8.14) using the standard
parameters of sy-ucomm and sLis_seLFiELD. Add a case statement that includes the
Lv_ucomm value &paTa_save. Call the function module popuP_T1o_conFIrRm to inform
the user that the comments have been saved and give the option to continue or
leave the program (Figure 8.15). (With proper error-handling in the
ZF_DATA_CHANGED subroutine, any table update errors should have been
communicated already.)

FOREM zf user command T3ING lv_ucomm LIEE =v-ucomm
ls selfield TYPE =lis selfield.
DATA: lv answer TYPE c.

CASE 1wv_ucomm.
WHEN '&£IC1'. "double-click
* for i1llustration, do nothing

WHEN '&DATAL SAVE'. Muzepr clicked Save icon
CALL FUNCTICN 'POPUP_To CONFIRM!
EXPORTING
titlehar =
'Comments Javed to the ZEEDEMO Tabhle!' (007)
text_fguestion =
'DIo you want to exit the program or continue working?' (003)
text _button 1 = LExit" (0099
text _button 2 'Continue' [(010)
default hutton i
display cancel button o
IMFPORTING
answer

lv_answer.
IF 1v_answer = '1'.
LELVE PROGRALM.
ENDIF.
ENDCASE.
ENDFORM.

Figure 8.14: User command with save button logic (FM)

If the user clicks exit, the LEAVE PROGRAM command executes. If the user clicks
CONTINUE, the user remains where they were in the grid (Figure 8.15).

[Comments Saved to the ZEKKDEMC Table

Do you want to exit the program or continue
working?

I Exit] Continue]

Figure 8.15: User command pop-up for &data_save action (FM)

The final change is to pass the Gs_cLAy structure and the events table to the ALV

call (Figure 8.16).

FOEM =zf display alw.

CALL FUNCTICHN 'REUSE ALV GRID DISPLAY!
EEFORTING

i callback program = sy-repid
it_fieldecat = gt_fieldcat[]
i grid settings = gs-glag

it_ewvents
TAELES

t_outtab
EXCEPTICONS

program error

OTHERS

gt ewvents[]

gt_output

Figure 8.16: ALV call with |_grid_settings structure passed (FM)

In edit mode, the ALV grid displays with these changes: Save button enabled, new
RerFresH button on the ALV application toolbar, row selection column added, and
editable field(s) ready for input (Figure 8.17). None of the buttons need to be
excluded from display for our application.

g I qa|eaee BEE 51048

ALV Function Module (Edit_Simp/le)
FE a9 ¥ & @ HITEHATWIL H

Curr, WCamment
LIS

Figure 8.17: Screen changes due to use of lvc_s_glay (FM)

8.2.2 ALV control framework

The additions below will permit the user to make changes to the comment cells in
the ALV grid and update the zkkpemo database table as each record is changed.

For this exercise, start from a simple earlier version of the ALV control framework
program (Table 8.1), then incorporate some new logic as well as add back some
features that you used in Chapter 6 in other programs.

The data additions for the current program (Figure 8.18) include table type
TT_ouTpuT based on type Lty_output. This table type will be used in a new
DATA_CHANGED method (Figure 8.24). The oT_ExcLupE internal table first introduced
in Chapter 6.7 reappears. An internal table and structure matching the database
table zkkpemo are added for retrieval of existing comments. The Gv_EDIT_FLAG
variable will be used to communicate whether the user has chosen edit or display
mode.

ITYPES: tt_output TYPE ITANDALRD TAELE OF lty output.

DATA: gs_output T¥FE
Ft_output TY¥FE
gt_fieldeocat TYPE

lty output, "local structure (line)
STANDARD TAELE OF lty output,
lve t foat, ftakle

gt:ExcludE TY¥FE
gt_zkkdemo TYPE

ui functions,
STLANDARD TABLE of =zkkdemwo,

scrfnsmwe VALUE 'ZIEK ALV CTRELFW 2100 CONTL',

g=_zkkdemo TYPE zkkdemo.
DATA: gv_lines TYPE - i,
|gv:Edit_flag TTPE Ci |
ok _code LIEE Sy-—-uContn,
¥_container TY¥FE
gridil TYFE REF TO c©l gui alv grid,

¥_custom container TYPE

FEF T =l gui custom container.

Figure 8.18: Data additions for edit exercise (CF)

To retrieve any existing comments from the zkkpemo table and display them in the
ALV grid, you’ll need to add logic after the population of cT_output (Figure 8.19).
The For ALL ENTRIES IN syntax can be used because you have first verified that

GT_ouTpPuT has lines of content.

If relevant records are retrieved into GT_zkkpemo, you loop through 6T_zkkpemo to
modify 6T_ouTtpPuT. (6T_zkkpEmo most likely has fewer records so is used as the
loop driver.) If no relevant comments were retrieved from zkkpemo, N0 messages

will be displayed (Figure 8.19).

DESCRIBE TAELE gt _output LINES gv_ lines.
IF g _lines NE 0. "data was retrieved
SORT grt_output BY agencynum
carrid
connid
fldate
hookid.

SELECT * FROM =zkkdemo
INTD TAELE gt zkkdemo
FOR ALL ENTRIEZ IN gt output
WHERE agencynum = gt _OoUutput-agencynum

AMND carrid = gt_output-carrid
AMND connid = gt_output-conhid
AND fldate = gt_output-fldate
AND bhookid = gt_output-bookid.
IF =sy-subrec = 0. "ocomments Found
SORT gt _zkkdemo BY agencynum
carrid
connid
fldate
hookid.
LooP AT gt zkkdemo INTO gs_ zkkdemo. famaller table

FEEAD TAELE gt _output INTO gs_output
WITH EEY agencynum = gs_zkkdemo-agencynum

carrid = g=s_czkkdemo-carrid
connid = g=_zkkdemo-connid
fldate = gs_czkkdemo-fldate
bookid = g=_czkkdemo-bookid.
IF =sy-subrec = 0.
¥S_output-zcomment = g5 zkkdemo- Zcontnent .

MODIFY gt _output FROM g=s output INDEX sy-tabix
TEANSPORTING =zoomnent.
ENDIF.
ENDLOOP .
ENDIF.

Figure 8.19: Retrieval of comments from zkkdemo table (CF)

After the data selection, set a flag to match the selection screen checkbox value
for p_epiT. X for edit mode and blank for display mode (Figure 8.20). By populating
the Gv_EDIT_FLAG now, you can use it in other parts of the program, such as in
ZF_BUILD_FIELDCATALOG, reducing the use of IF/eLse/enpiF logic there. Add a PERFORM
statement for new subroutine zF_BuILD_EXCLUDE_TABLE.

ov_edit flagy = p_edit.

PERFOEM =zf build fieldeocatalog UIING gt fieldoat[]
ov_editc_ flag.
FERFORM =zf build exclude table UIING gt _exclude[].

CALL 3CREEN =100,

EL3E.
ME33AGE ID '00' TYPE 'I' NUMBER 001 WITH 'MNo data retriewved' (001).
RETTEI.

ENDIF.

Figure 8.20: Flag setting and additions (CF)

The using parameter will need to be updated on the zF_BuILD_FIELDCATALOG
subroutine (Figure 8.21).

FORM =zf lhuild fieldeatalog U3IING 1t fieldoat TYFE lve t foat
| lv_edit_flag TYPE c. |

Figure 8.21: Use new flag when building the field catalog (CF)

Add the new zcomment field to the end of the field catalog table in
zr_BuiLD_FIELDCATALOG (Figure 8.22). To provide a more meaningful label on the
ALV column than the one associated with cHAR0128, populate the ouTPUTLEN,
DATATYPE, and coLTexTt values instead of providing a Rer_taBLE value of zkkpemo.
The variable Lv_epiT_FLAG manages the ebit setting for this column based on how
the p_ebiT parameter was set (X for edit, blank for display).

CLEAR 1= fieldeat.

ls fieldeat-fieldname
ls fieldecat-outputlen
ls fieldeat-datatype
ls fieldoat-coltext ' Comnent ' .

ls fieldocat-editc lv edit flag.
LPPEND 1z fieldeat TO 1t _fieldecat.

EHDFORM.

' ZCOMMENT' .
123.
VECHALR"..

Figure 8.22: New field added to field catalog and edit value set (CF)

Instead of an events table, we’ll use the ALV control framework’s event handler to
provide logic for the event pata_cHaNGep (Figure 8.23). Everything we need is
present in the ER_DATA_CHANGED object.

EEE
CLAZS lel ewvent handler DEFINITION.
PUBELIC SECTICH.
METHODS :
data_changed FOR EVENT data changed OF cl gui alv grid
IMPORTING er_data changed.
ENDCLASS.

]

DATA: g event handler TYFE REF TO 1lcl ewvent handler.
EE R

Figure 8.23: Method to handle data_changed event, part 1 (CF)

In method pata_cHaNGED (Figure 8.24), process the information about the row just
edited by looping through the field symbol <rt_outpPut> to populate a structure that
matches the database table zkkpemo. Use the mobiry command to write the record
to table zkkpemo. (mopiFy will update an existing record or add a record if not
found.) In this program, the pata_cHaNGeD event will be triggered when the user
changes an editable comment cell (Figure 8.29) so there will be only one row to
process at a time.

At the end of the pata_cHanGgep method (Figure 8.24) is an example of how to
populate and display a message using the Abpb_proTocoL_ENTRY and
pIsPLAY_PRoTOocoL methods. (In Figure 8.24, all the logic is typed into the method

implementation. If you prefer, you can call a subroutine containing the processing
logic.)

EEEE R
CLAZS lel event handler IMPLEMENTATION.
METHOD data changed.
* triggered bv Check Entries, Refresh icons, and user leaving cell
DATA: 1= output TYFE lty output,
ls zkkdemo TYFPE zkkdemo,
ls modif TYFE lwvec = modi.

FIELD-3TMEOLI: <frt_output> TYPE £t output.

A33IGN er_data changed->mwp mod rows->+% TO <ft output>.
LOoP AT <ft_output:> INTO ls output.

CLEAR 1= zkkdemo.

ls =zkkdemo-agencynum

ls output-agencynum.

ls zkkdemo-carrid = ls_output-carrid.
ls =zkkdemo-connid = ls_output-connhid.
ls =zkkdemo-fldate = ls_output-fldate.
ls_ =zkkdemo-hookid = ls_output-bookid.

1= =zkkdemo-zcomment ls_output-zcontment .
MODIFY zkkdemo FROM 1= zkkdemo.
* MODTIFY will update an existing record oF imnsert 3 new recoid
IF =y-subrc NE 0.
LOoP AT er dats changed-:mt_mod cells INTO ls modif.
CALL METHOD er data changed->add protocol entry

EXPORTING
i megid = '00' i msgno = '001° i msgry = 'Y
i msgwl = 'The comment was not saved to takble ZKEDEMO:!
i megvi = ls mwodif-value
i fieldname = 15 modif-fieldname.
ENDLOOP .
CALL METHOD er data changed->display protocol.
ENDIF.
ENDLOOP .
ENDMETHOD .
ENDCLASS.

Figure 8.24: Method to handle data_changed event, part 2 (CF)

The record layout of <rt_ouTtput> matches Lty_output with the exception of the
first field called row (Figure 8.25).

=] Z¥K_ALV _CTRLFW SELSCRN |/ | ZKK_ALV_CTRLFW_SELSCEN |/ [s7
% METHOD |/ DATA_CHAMGED (LCL_EVEMT _HANDLER) E3 @
Deskiop 1 Deskiop 2 Desktop 3 Standard Structures / Tables

Tables . Table Contents |

Table \<FT_OUTPFUT> liii|

Attributes Standard [1x13(4547] -

Insert Colummin ' ' IECDIumns ||u]
Row | AGEMCYMUM [M(B)] MAME [C(25)] CURREMCY [C(5)] CARRID [C(3)] ZOOMMENT [C(128)]
1 00000102 Hot Socks Travel ATD AL NEW COMMENT

Figure 8.25: User-modified row in debugger (CF)

In edit mode, the ALV grid displays with these changes: row selection column
added, editable field(s) ready for input, and new application toolbar buttons
appear (Figure 8.26).

» CHeck ENTRIES and RErFRESH buttons

» Cell-focused buttons: Cut, Copy TexT, INSeErRT, and UNDO

» Row-focused buttons: AprpEND Row, INSERT Row, DELETE Row, and DuPLICATE
Row

@ [l ~dEIee@ BHE fDo0 BR m

SAP l cell .

& @B [C]EEw] (&)) (@)% -

Aitline Arnount (oo, currncy) | Cure, | Cornrment
Arnerican Airlines B03.58 LSD

Figure 8.26: Screen changes including row edit buttons (CF)

Since this program will not be used to remove records from zkkpemo or to insert
records, the row-focused buttons need to be excluded (Figure 8.27).

@ | B /e@@ CHE 9D AR Qm

Y EI R - 1R

Aitlire Arnount (oc.curency) | Cure, | Commett
Arnerican Airlines 202,58 Ush

Figure 8.27: Toolbar without row edit buttons (CF)

Exactly as was done in Chapter 6.7.2, you can build a table of buttons to be
omitted from the ALV application toolbar (Figure 8.28).

FOREM =zf build exclude takble TSING 1t _exclude TYPE ui functions.
DATA: 1z exclude TYPE ui_ func.

pestrict user to changes, ko Fow adds or deletes
ls exclude = cl gui alv grid=-MC FC LOC COPY ROTW.
APPEND 1= exclude TO lt exclude.
ls exclude = cl gui alv grid=-MC _FC LOC DELETE ROTW.
APPEND 1= exclude TO lt exclude.
ls exclude = cl gui alv grid=:-MC_FC LOC APPEND ROTW.
APPEND 1= exclude TO lt exclude.
ls exclude = cl gui alv grid=-MC _FC LOC TN3ERT ROTW.
APPEND 1= exclude TO lt _exclude.
ls exclude = cl gui alv grid=-MC FC LOC MOWVE ROTW.
APPEND 1= exclude TO lt _exclude.

SORT 1t _exclude.
DELETE ADJACENT DUPLICATES FROM 1t exclude COMPARING table line.
ENDFORM.

Figure 8.28: Exclude row-focused toolbar buttons (CF)

The pata_cHANGED event is triggered by default when the user clicks on the CHeck
EnTRIES button or on the RerFresH button on the application toolbar. We can register
other triggers, as well (Figure 8.29):

» MC_EVT_MODIFIED When cursor is moved from the modified cell

» mc_EVT_ENTER for user pressing “Enter” on keyboard

In module zm_staTus_9100, we have registered only the modified cell edit event
(Figure 8.29). The final changes include creating the event handler object
(because this program did not yet have event logic), setting the handler, and
passing the table of toolbar functions to be excluded.

MODULE =zm status_ 2100 OUTPUT.

SET PF-3TATUS 'MALINS100'.
IF g _custom container IS INITIAL.
CREATE OBJECT g custom container

EXPORTING
container name = ¢ container.
CREATE OBJECT gridi
EXPORTING
i parent = g custom contalner.

CALL METHOD gridil-:register edit event
EXPORTING
i event id = cl gui alv grid=:mc_evt modified. "oa2ll learve
* can repeatfreplace previous method call with mc evt enter

CREATE OBJECT g ewvent handler.
SET HMDLER g ewvent handler->data changed FOR gridl.

CALL METHOD gridl->set_table for first display
EXPORTING
i structure name
rTE_tDDlhar_Excluding

'LTY OUTPUT!
gt_E;cludE |

CHANGING
it _fieldeatalog = gt_fieldcat
it _outtab = gt_output.
ENDIF.
ENDMODULE .

Figure 8.29: Changes for ALV call (CF)

Enabling the save button in the ALV control framework programs

Unlike the function module versions of the edit programs in this

.— chapter, the Save button is not enabled by default when using the

. ALV control framework technique. If you do wish to enable the

SavE button, use transaction code se80 to edit the GUI status,

adding a label to the diskette function key (Figure 3.26). After saving and

activating, add your custom logic within the case statement in the
zm_user_commanD_9100 module (Figure 3.21).

8.3 Enabling edit using toolbar button

In Chapter 8.2, you started with a program that was already presenting ALV
content at a detail level, then you added a parameter on the selection screen for
the user to request an editable ALV output. Instead of making the ALV editable all
the time for all users, you provided two modes, display or edit, driven by the
selection screen checkbox.

In this chapter, the training scenario will start from a later version of the program
(Table 8.1), a version with events, summarization on initial display, and a custom
ALV application toolbar button (coded in Chapter 6.8). You’ll add some of the logic
used in Chapter 8.2 and new logic that will modify the output format after the user
clicks on the Epir Comment button. You'll again save comments to the zkkpemo
database table each time the user leaves a modified cell.

Copying code sections from other programs

If you worked through the Chapter 8.2 exercises, you’ll see

opportunities to copy some code from those programs into this

chapter’s programs. Do this, but take care to re-number copied

texts when they overlap existing text symbols in the destination
program.

If you want to refresh your memory regarding the training scenario requirements,
review Chapter 8.1.

8.3.1 Function module

If you have chosen not to create and update the custom table zkkpemo for this
exercise, you can use cHAR0128 as the type when you add the new field zcommeNT
at the end of Lty_output (Figure 8.30). Other data additions include table type
TT_ouTpuT based on type Lty_output. This table type will be used in a new
ZF_DATA_CHANGED subroutine (Figure 8.36). An internal table and structure
matching the database table zkkpemo are added for retrieval of existing
comments. The cv_eEpiT_FLAG variable will be used this time to indicate when the
Eoir CommenT button has been clicked so that the button can be excluded from the
toolbar. Finally, to enable cell-level processing, declare structure es_cLAY which
will be passed in the ALV call using the I_GriD_seTTINGs parameter (Figure 8.43).

agencynuwn TYPE

nare T¥FE
currency TYPE
carrid TY¥FE

connid TYFPE
fldate TYPE
hookid TYPE
forcurasm TYPE
forcurkey TYPE
carrhname TYPE
loccursm TYPE
loccurkey TYPE
count TYPE

TYPES: BEGIN OF lty output,

strave lag-agencynuam,
strave lag-name,
stravelag-currency,
shook-carrid,
shook-connid,
shook-fldate,
shook-bookid,
shook-forcuram,
shook-forcurkey,
SCarr-carrname,
shook-loccuram,
shook-loccurkey,

i.r

"agency number

"agency name

Tagency Ccurrency

Thooked carrier

Thooked connection

T"hooked date

"hooking ID

"price in foreign cuUirency
"forelgh currency kev
fogrrier name

"price in Firline curr
"local currency of dirline

|zcnmment TY¥FE

zkkdemo- zocomment

"or TYEE charfizZa |

END OF 1ty output.

hYPES: tt_output TYPE ITANDALRD TAELE of lty output.

gv_edit flag TYFE
gt_zkkdemo TY¥FE
g=_zkkdemo TY¥FE

Cr

ATAWDARD TABLE OF zkkdemo,

zkkdemo.

DATA: gs_output TYFE 1ty output,
Ft_output TYFPE STANDARD TAELE OF lty output,
gt_sSort TYFPE =slis_t sortinfo_alw,
gt_fieldeat TYPE slis t fieldeoat alw,
¥s_layout TYFE =slis_ layout_alwv,
gt_top text TYPE =slis t listheader,
gt events T¥PE =li=s € ewvent,
¥s_glay TYFE 1lwvec = glavy,

Figure 8.30: Data additions for edit exercise (FM)

To retrieve any existing comments from the zkkpemo table and display them in the
ALV grid, you’ll need to add logic after the population of T_output (Figure 8.31).
The FoOrR ALL ENTRIES IN syntax can be used because you have first verified that
GT_oupruT has content by evaluating the result of the pescriIBE TABLE command.

If relevant records are retrieved into GT_zkkpemo, you loop through 6T_zkKkpemo to
update 6T_output (Figure 8.31). (6T_zkkpemo is most likely the smaller of the two
tables.) If no relevant comments were retrieved from zkkpemo, no messages will

be displayed.

DESCRIBE TAELE gt output LINES gv_lines.
IF gwv_lines NE 0. "data was retrieved

CLEAR g= output.
¥S_output-count = 1.

MODIFY gt _output FROM g=_ output
TRANSPORTING count WHERE NOT agencynwn IS5 INITILL.

SORT gt _output BY agencynum
carrid
connid
fldate
hookid.

SELECT * FROM =zkkdemo
INTD TAELE gt zkkdemo
FOR ALL ENTRIEZ IN gt output
WHERE agencynum = gt _OUutput-agencynum

AMND carrid = gt_output-carrid
AND connid = gt_output-conhid
AND fldate = gt_output-fldate
AND bhookid = gt_output-bookid.
IF =sy-subrec = 0. "ocomments Found
SORT gt zkkdemo BY agencynum
carrid
connid
fldate
hookid.
LooP AT gt zkkdemo INTO gs_ zkkdemo. famaller table

FEEAD TAELE gt _output INTO gs_output
WITH EEY agencynum = gs_zkkdemo-agencynum

carrid = g=_czkkdemo-carrid
connid = g=_zkkdemo-connid
fldate = gs_czkkdemo-fldate
bookid = g=_czkkdemo-bookid.
IF =sy-subrec = 0.
¥S_output-zcomnent = gs_ zkkdemo- Zzcontnent .

MODIFY gt _output FROM g=s output INDEX sy-tabix
TEANSPORTING =zoomnent.
ENDIF.
ENDLOOP .
ENDIF.

Figure 8.31: Retrieval of comments from zkkdemo table (FM)

After the data selection, set two flags (Figure 8.32). The cv_ebpit_FLAG will be set to
a blank space to signify that the user starts the report in display mode. Unlike the
simpler edit program with the selection screen parameter (Chapter 8.2.1), this flag
will not be used to influence layout, sort, or field catalog settings for initial display.
It will only be used to indicate that the Epit CommenT button can be hidden after its
first use.

The second flag is a component of the Lvc_s_cLAy structure called ebT_cLL_cB
(ALV control: Callback when leaving an edited cell). You can set it now and pass it
to the ALV call in the 1I_cRriD_seTTINGS parameter. Its effect won'’t be felt until at least
one field in the field catalog has an epit value of x (Figure 8.32).

Atk kAR LE LA LS Dpapt of Ml program logic EEESLELLELEEL LA LR LA LAL LA
gv_edit flag I "start in display mode, X for edit
gs_glay-edt cll ch = '"X'. "no effect until fieldecat-edit set

FERFORM =zf build layout UIING gs layout.

FERFORM =zf build fieldecatalog USING gt fieldeat[] .
FERFORM =zf build sort takhle TSING gt _sort[] .

FERFORM =zf build ewvent table UIING gt_ewvents[].
FERFORM =zf build top text tahle T3IING gt _top text[].
FERFORM =zf display_alwv.

Figure 8.32: Flag setting for cell edit awareness (FM)

The new zcommenT field needs to be added to the end of the field catalog table in
zr_BuiLD_FIELDCATALOG (Figure 8.33). To provide a more meaningful label on the
ALV column than the one associated with cHAR0128, populate the DATATYPE,
OUTPUTLEN, and seLTEXT values instead of providing a REF_TABNAME value of
zkkDemo. Provide the ebir parameter with a blank space value because the ALV
grid will not be editable on initial display.

CLEAR 1= fieldeat.
ls fieldeat-fieldname = L ZCONMERT!. .
ls fieldeocat-outputlen = 12180
lz fieldeoat-seltext 1 = !'Comwent' (020) . "up to 40 chars
lz fieldoat-seltext_m = !'Comment' (020 . "up to 20 chars
lz fieldoat-seltext s = !'Commwent' (020 . "up to 10 chars
ls fieldecat-datatype SIS HARY S
ls fieldecat-edit ShAl "display mode ipitizlly
LPPEND 1z fieldeat TO 1t _fieldeat.

ENDFORM.

Figure 8.33: New field added to field catalog with edit parameter set for display (FM)

In this in-progress program, event logic is coded in several subroutines whose
names are passed to the rReuse-ALv_GRID_DIsPLAY function module either via an
i_callback parameter or the events table parameter (Table 8.2).

Event (FM) Our setup Activities handled

top_of page events table | text and logo

user_command events table | hotspot pop-ups
Save button (new)
Edit Comment button (new)

data_changed (new) | events table | database table updates

pf_status i_callback |button exclusions

Table 8.2: New event and several event revisions (FM)

Add the new event bDATA cHANGED to the events table wusing the
zF_BUILD_EVENT_TABLE subroutine (Figure 8.34). Because DATA_CHANGED is not one
of the events retrieved by the rReuse_aLv_EVeNTs_GeT function call at the beginning
of the subroutine, it will need to be appended as shown. To maintain consistency
with the current program conventions, the subroutine name zr_DATA_CHANGED can
be declared as a constant such as Gc_FORMNAME_CHG.

FOEM zf huild ewvent table T3ING lt _events TYFE slis t ewvent.
DATA: ls ewvent TYPE =slis alv ewvent.

CALL FUNCTICN 'REUSE ALV EVENTI GET!

EXPORTING
i_list_type = 4 "for REUSE ALV GRID DISPLAY
IMPORTING - B
EL_EWVEnts = lt_ewvents.

FEEAD TAELE 1t _ewents WITH EEYT name = s5lis ev_user contand
INTD 1= _ewvent.
IF =zy-subrec = 0.
MOVE go formname com TO ls event-form.
MODIFY 1t_ewents FROM 1ls ewvent INDEX sy-tabix.
ENDIF.
REEAD TAELE 1t _ewents WITH EEY name = s5lis ev_top of page
INTD 1= _ewent.
IF =zy-subrc = 0.
MOVE go formname top TO ls event-form.
MODIFY 1t _ewents FROM 1= ewvent INDEX sy-tabix.
ENDIF.

2dd incremental event to takle for focus change Ffunctionality
CLEAR 1= ewvent.

ls _event-name = slis ev_data changed.

lz_event-FORM = 'ZF DATA CHANGED'.

APPEND 1= ewvent TO lt events.
ENDFORMN, B

Figure 8.34: Add data_changed to existing event table (FM)

After the rReuse_ALv_EVENTsS_GET function call (Figure 8.34), Lt_EVENTs contains 18
records. In zF_BUILD_EVENT_TABLE, populate your program’s subroutine names for
USER_COMMAND and TopP_ofF_PAGE, then add a new record for event DATA_CHANGED.
LT_EVENTS now contains 19 records (Figure 8.35), three of which will execute your
custom code.

Tahles / Table Contents

Table
Attributes

Insert Colurnmn

LT _EVENTS
Standard [19x2(1207]

[

Row MAME [C(30)] FORM [Ci307]

[V T R e VIR B N P R W

[=V =gy ey ey gy preny prergy ey
[o R o) [S T Y 0 R o |

CALLER_EXIT
USER_COMMAND ZF_USER_COMMAND
TOP_OF_PAGE ZF_TOP_OF_PAGE
TOP_OF_COVERPAGE

END_OF COVERPAGE

FOREIGH TOP_OF PAGE

FOREIGH END _OF PAGE

PF_STATUS_SET

LIST MODIFY

TOP_OF_LIST

END_OF PAGE

END_OF LIST

AFTER_LINE_OUTPUT
EEFORE_LINE_OUTPUT

REFREF SEL_MODIFY

SUBTOTAL_TEXT

GROUPLEVEL CHANGE

CONTEXT_MENU

19 DATL CHANGED ZF DATA CHANGED

Figure 8.35: Data_changed is an incremental event (FM)

Ivc_s_glay-edt_cll_cb must be X to use data_changed

8.43).

With the function module technique, the DATA_CHANGED
functionality is only accessible and triggered when Lvc_s_GLAY-
epT_cLL_cB is set to X (Figure 8.32) and passed in the
I_GRID_SETTINGS parameter in the ALV function module call (Figure

Create a new subroutine called zr_pata_cHanGep (Figure 8.36) to access the
ABAP objects class cL_ALV_CHANGED_DATA_PROTOCOL. The FIELD-sYMBOL and ASSIGN

statements are used to access the content of modified rows of the ALV. In our

program, only single rows are modifiable so there will only be one row to process,
the row whose comment field the user just changed (Figure 8.37). Loop through
<rT_ouTtput> and populate a structure that matches the database table zkkpemo.
Use the mobiry command to write the record to the database table zkkpemo.
(mopIFY updates an existing record or adds a record if it is not found.)

FORM zf data changed T3ING lo_data changed
TYFE REF TO cl alv changed data protocol.

DATA: 1= output TYFE lty output,
1=z zkkdemo TYFPE zkkdemo.

FIELD-3TMEOLI: <fr_output> TYPE £t output.
A33IGN lo_data changed->mwp mod rows->+% TO <ft output>.
LooP AT <ft_output:> INTO ls output.

CLEAR 1= zkkdemo.

ls zkkdemo-agencynum
ls_ zkkdemo-carrid

ls output-agencynum.

ls output-carrid.

ls_ =zkkdemo-connid
ls zkkdemo-fldate
ls_ =zkkdemo-hookid
ls_ =zkkdemo-zcomment

ls output-connid.
ls output-fldate.
ls _output-bookid.
ls_output-zcontment .

MODIFY zkkdemo FROM 1= zkkdemo.
MODTIFY will update an existing recoprd of insert 3 new record
IF =y-subrc NE 0.
MEZZAGE ID '0O0' TYPE 'I' WNUMEER 0OO1
WITH 'The comnent was not saved to table ZEEDEMO. ' (021) .
EMNDIF.
EMNDLOOP .
ENDFOERHM.

Figure 8.36: Data_changed subroutine called when cell focus changes (FM)

The record layout of <rt_ouTtput> matches Lty_output with the exception of the
first field called row (Figure 8.37).

s |ZKE_ALY FM EDIT EUTTON / |ZEE_ALY FM EDIT BUTTON /389 |:
% [FORM / |ZF_DATA_CHANGED | g :
Desktop 1 Desktop 2 Desktop 3 Standard Structures . Tables ki

Tahles / Table Contents]

Tahle <FT_OUTPUT: i

Attributes Standard [1x14(460)] o

Insert Calumn |@Culumn5 oo e
Row | AGEMCYMUM [M(B)] |MAME [C(25)] |CURREMCY [C(S)] |(CARRID [C(3)] o 1 JZCOMMENT [C{128)]
1 00000123 hussie Trawel GBF Ak 00l NEW COMMENT

Figure 8.37: User-modified row in debugger (FM)

You may recall that we activated column width optimization in the layout structure
of this program (Chapter 4.4). When this ALV grid is initially displayed, it is
summarized. The comment column has no content at a summary level so the
narrow display is desirable (Figure 8.38). Unfortunately, when the user clicks on
the Epit CommeNT button to switch to a detail display, the Comment column does
not widen. Fix that by re-specifying the Comment field output length in
zF_user_commAND (Figure 8.39).

Airline Bookings: DREAM TRAVEL Z (previous data view)
2 5 F | B @ T A T Predt Comment 2Rt |

ET Data Services

Report: ZKK_ALY_FM_EDIT_BUTTON

Tithe: Airline Bookings: DREAM TRAVEL_Z (previous data view)
Variant: DREAM TRAVEL_Z

Layout: /FLIGHTSUMS

Date: 201507 22

Trawvel agency name LAgency Mo, | ID Ma. |Date|Booking |E Arnount | Curr, | &irine | &rount | Curr, £ RecCount SComment
[ﬁ‘] « 4,364,153.15 GBP = 8,597
Aussie Travel an = 17 20,779.57 GBP " 70

= [GE 15,589.02 GBP . 51

Figure 8.38: Default column width optimization is not a problem until switched to detail display (FM)

Edit the zF_user_commanp subroutine, adding the new local data declarations
(Figure 8.39). The function code of the Epit CommenT toolbar button is NnoTE (Figure
6.115) so add the wHeN ‘NoTE’ logic to the case statement. Set the Gv_EDIT_FLAG tO
X, indicating that the user has switched to edit mode. For this exercise, code a
one-time transition from display to edit mode. (If required, you can instead write
code that allows the user to toggle back and forth between edit and display
modes.)

The REUSE_ALV_GRID_LAYOUT_INFO_GET function call (Figure 8.39) is used to retrieve
the current ALV settings. It returns any changes the user made after the grid was
displayed (changes in sorting, filtering, column order, etc.). Many parameters are
available, but limit retrieval to the parameters that you will be changing using the
REUSE_ALV_GRID_LAYoUT_INFO_SET function module: field catalog and grid scroll. The
Ls_scroLL values retrieved are applicable to the summarized display. Replace
those values so the user can continue from their last position instead of having to
scroll to it in the re-displayed detail list.

GRID or LIST versions of GET/SET function modules?

When using Reuse_ALv_GRID_DIsPLAY for an ALV call, use
REUSE_ALV_GRID_LAYOUT_INFO_GET/SET. When using
REUSE_ALV_LIST_DISPLAY for an ALV call, use
REUSE_ALV_LIST_LAYOUT_INFO_GET/SET.

“Layout” in these function module names

The cet/ser function modules described here can be used to
access many properties of the ALV grid (layout, field catalog, sort,
filter, variant, grid scroll, etc.) not just layout settings. The usage
of the word “layout” in the function module name should not be
taken literally. This varies from the ALV control framework program (Chapter

-f"'

8.3.2) where separate method calls are used for each set of properties.

Three field catalog table settings will be populated and passed in the set function
module: po_sum, ouTpuTLEN, and ebiT. To re-display the data at a detail level for
editing, clear the field catalog po_sum setting on any fields set for summing, not
just the ones set by the developer (Figure 8.39). On only the editable field
zcommeNT, set the ebit flag to x and the outpuTLEN to 128. By passing the output
length again, you fix the too-narrow comment column, a result of optimization
done for the initial summarized display (Figure 8.38).

Transporting and where clauses in the modify statement

Use the TRANSPORTING and WwHERE clauses in your MODIFY
statements to change only the particular fields you need to
change. Other values will remain as they were.

The user’s cursor position in the ALV grid when they clicked on the Epit CommENT
button is available to us in the sLis_seLFIELD structure. If they were on a detail line,
you can move that detail row to the top of the re-displayed grid (Figure 8.39). Take
care when transferring tabindex (row number) and fieldname from Ls_SELFIELD to
Ls_scroLL (a nested structure). The syntax to reach the lower level of the nested
structure Ls_scroLL requires two hyphens: Ls_scroLL-s_ROW_INFO-INDEX and
Ls_scroLL-s_coL_INFO-FIELDNAME. (Note: if the user’s cursor was on a summary line,
the grid will re-display on the first record.)

The last two pieces of the whHen ‘NoTE’ logic are the
REUSE_ALV_GRID_LAYOUT_INFO_seT function call with the two parameters that we
changed (field catalog and grid scroll) and the setting of the Row_sTABLE,
coL_sTABLE, and RerrEsH fields of the seLFiELD structure (Figure 8.39).

FORM zf user command T3ING l1v_ucomm LIEE =sv-ucomm
ls selfield TYPE =lis selfield.
DATA: 1= stravelag TY¥FPE =straveladq,
lt_stravelay T¥FE TAELE OF s=stravelad,

lt =apfli TYPE TAEBLE OF spfli,
lt output temp TYPE TAELE OF lty output.
DATA: 1t fieldecat TYPE =slis t fieldecat _alw,
ls fieldcat TYFE =slis fieldeat_alwv,
lv_answer TYPE .,
ls scroll TYFE 1lwvc s scrl. "rested structure

CASE 1wv_ucomm.

WHEH 'IIOTE'. Ttoolbar button clicked
ogv_edit flag = 'X'. "flag to hide button after use
CALL FUNCTICN 'REUIE ALV GRID LAYOUT INFO GET!

IMFPORTING

ET FIELDCAT
ES_GRID SCROLL

lt_fieldcat
ls scroll

EECEFTICHS
NO INFOS ot |
FROGEALN ERROR S
OTHER3 SUoEn

IF =zy-subrc <> [O.
MESSAGE ID '0O0' TYPE 'I' NUMEER 001
WITH 'REUSE ALV GRID LAYOUT INFO GET error' (D27).
ENDIF.

ls fieldeat-do_sum = ' .
MODIFY 1t _fieldeat FROM ls fieldeat TRANSPORTING do sSum
WHERE do sum = 'X'. Ty summed field
ls fieldeocat-edit =i- AR 2
ls fieldeat-outputlen = 1:25.
MODIFY 1t _fieldeat FROM 1ls fieldeoat TRANSPORTING edit outputlen

WHERE fieldname = 'ZCOMMENT'.

b R R e L e e L e e L e L E e e L e L L et L L e L L ey L L By L Ly ey L e E Ly L E Ly L B L L R L L E LY L T L L T e G T L GV T LT G ST TR LT R P L
zlear ls scroll. Timportant to cledr rowtvbe content
ls _scroll-s row _info-index = ls selfield-tabindex.
ls scroll-s col info-fieldname = ls_selfield-fieldname.

CALL FUNCTIONM 'REUSE ALV GRID LAYOUT INFO SET!

EXPORTING
IT FIELDCAT = 1lt_fieldecat
I3 GRID 3CROLL = ls_scroll.
ls selfield-col stable = X',
ls selfield-row_stable = 'IX'.
ls selfield-refresh ==l

Figure 8.39: User command logic for edit button (FM)

It would be disruptive to inform the user every time they leave a comment cell that
the change has been saved so that won’t be done in the training scenario.
Instead, you'll use the Save button (to provide a pop-up message to inform the
user that changes were saved.

Add wHEN ‘&DATA_sAVE’ logic to zr_user_commanp subroutine (Figure 8.40). Call the
function module popup_to_conFirm to inform the user that the comments have
been saved and to give the option to continue or leave the program (Figure 8.41).
(With proper error-handling in the zr_bATA_cHANGED subroutine, any table update

errors should have been communicated already.)

WHEH ' &DATL SAVE'. "uzepr clicked Save icon
CALL FUNCTICN 'POPUP_To CONFIRM'
EXPORTING
TITLEBALR =
'Comments 3aved to the ZEEDEMO Table' (022)
text_fguestion =
'DIo yvou want to exit the program or continue working?' (023)
text_button 1 =B it (102
text_button 2 'Continue' [(025)
default hutton o
display cancel button IETRl
IMFPORTING
answer
IF 1v_answer = '1'.
LELVE PROGRALM.
ENDIF.

1w answer.

WHEH '&IcCi'. "hotapot was clicked

do nothing 1f user clicks where ko iderntifiable data value
IF 1= _=selfield-VALUE I3 INITIAL.

FETUERN.
EMNDIF.
CASE 1z selfield-fieldname.

WHEN 'AGENCYNUM'

OFR 'NAME'. "dizplay STREAVELAG details

Figure 8.40: Save button logic and selfield logic move in zf_user_command (FM)

If the user clicks exiT, the LEAVE PROGRAM command executes. If the user clicks
CONTINUE, the user can continue working in the ALV (Figure 8.41).

[Comments Saved to the ZEKKDEMC Table

Do you want to exit the program or continue
working?

i
[Exit] Continue
=

Figure 8.41: User command pop-up for &data_save action (FM)

One last change in zr_user_commaND (Figure 8.40) is moving the evaluation of
sLis_SELFIELD-VALUE from outside the case statement to inside the wHeN ‘&ic1’ case
statement since it is only relevant to the hotspot logic.

The zr_set_PrFsTATUS subroutine is executed before every re-display of the ALV
grid (Figure 8.42). Because the Epir CommenT button is being used only for a one-
time switch to edit mode, it could be confusing to users to retain the button on the
toolbar after that has occurred. You can easily hide the button by checking the
GV_EDIT_FLAG variable that was set in zr_user_commanp (Figure 8.39) and
appending the function code notE to the exclude table.

FOEM zf set pfstatus USING 1t _exclude TYPE =lis t extsb.
DATA: 1= exclude TYPE slis extab.

* godad to the exclude table pre-populated by SAPR on edch pass

ls exclude-feode = ' ELEC!.
APPEND 1= exclude TO lt exclude.
ls exclude-feode = ' eGRAPH'.

APPEND 1= exclude TO lt exclude.

IF gv_edit flag = 'X'. "anlit mode
ls exclude-feode = 'HNOTE'.
APPEND 1= exclude TO lt exclude.

ENDIF.

SET PF-3TATUS 'ZCUSTOM1' EZCLUDING lt exclude.

ENDFORM.

Figure 8.42: Remove new edit button from toolbar after switch (FM)

The only change needed in zr_pispLAY_ALv is the addition of the Gs_gGLAy structure
to the ALV call (Figure 8.43).

FORM =zf display alw.

CALL FUNCTICH 'REUSE ALV GRID DISPLAY!

EXPORTING
i callback program = zy-repid
i callback pf status_set = go formname pf
is_layout = gs_layout
it _fieldcat = gt_fieldecat[]
rT:Erid_settings = gs:glag |
1t_Sort = gt_sort[]
i zave = gv_save
iz_wariant = gs5_wariant
it_ewvents = gt_ewvents[]
TABELES
t_outtab = gt_output
EXCEPTICONS
brogram error =il
OTHERS = a

IF =zy-subrc <> [O.
MESSAGE ID 'O0' TYPE 'I' NUMEER 001
WITH 'REUSE ALV GRID DISPLAY call error—-' (008) sy-subrc.
RETUERN.
ENDIF.
ENDFORM.

Figure 8.43: ALV call with i_grid_settings structure passed (FM)

In edit mode, the ALV grid displays with these changes: Save button enabled,
RerFresH button added to the ALV application toolbar, Epir Comment button
removed, row selection column added, and editable field(s) ready for input (Figure
8.44).

& I dg|ecea CHE ST a8 BEE @B

Airfine Bookings: DREAM TRAVEL 7 (previous data view)
=T Z @ HMIEET BeEw O

ET Data Services

Report: ZKK_ALY _FM_EDIT_BUTTON

Title: Ajirline Bookings: DREAM TRAVEL_Z (previous data view)
Variant: DREAM TRAVEL_Z

Layout: /FLIGHTSUMS

Date: 2015 07 24

Curr, | RecCount |Comment
LIS 1

Figure 8.44: Comment column widened and button absent (FM)

8.3.2 ALV control framework

If you have chosen not to create and update the custom table zkkpemo for this
exercise, you can use cHAR0128 as the type when you add the new field zcommeNT
at the end of Lty_output (Figure 8.45). Other data additions include table type
TT_ouTPuT based on type Lty_output. This table type will be used in a new
DATA_CHANGED method (Figure 8.47). An internal table and structure matching the
database table zkkpemo are added for retrieval of existing comments. The
GV_EDIT_FLAG Variable will be used this time to indicate when the Epir ComMENT
button has been clicked so that we stop adding it to the application toolbar on
subsequent re-displays.

TYPEZ: BEGIN OF lty output,
agencynum TYPE stravelag-agencynun, “agency number

name TYPE stravelag-hate, "agency name

currency TYPE strawvelag-CURRENCTY, "Igency currency

carrid TYPE shook-carrid, Thooked carrier

connid TYPE shook-connid, Thooked connection

fldate TYPE shook-fldate, T"hooked date

hookid TYPE shook-bookid, Thooking ID

forcursm TYPE shook-forcocuram, "price in foreign cUrrency
forcurkey TYPE shook-forcurkevwy, "forelgh currency key
carrhame TYPE scarr-carrhate, Tfogrprier name

logouram TYPE shook- loccuram, "price in Jirline curr
lozcurkey TYPE shook-loccurkevw, "local currency of dirline
count TYPE. I, "for record count
|zcnmment TYPE zkkdemo-zcomment, "For notes up to 1258 chars |

END OF lty output.

TYFES: tt_output TYFE STANDAERD TAELE OF lty output.

DATA: g=s_ layout TYFE 1lwvec = layo, "lavout params
g=_output TYPE 1ty output, "local structure (line)
Ft_output TYFE STANDARD TAELE ©OF lty output,

Ft_sSort TYFE lwvc t sort,
gt_fieldeat TYPE lve t foat, "Eakhle
gt_exclude TYFE ui_ functions,

gt_ezkkdemo TYPE STALNDARD TAELE OF =zkkdemwo,
¥=_zkkdemo TY¥PE =zkkdemo,
gv_edit_flag TYFE e.

Figure 8.45: Data additions for edit exercise (CF)

Five events will be handled in this revised program (Table 8.3), but only
DATA_CHANGED iS new. The methods for user_commanp and TooLBar Wwill be
changed, as well. (If you wish to compare to the REUSE_ALV_GRID_DISPLAY exercise,
see Table 8.2.)

Event (CF) Our setup Activities handled ‘
top_of page event_handler | text and logo

hotspot_click event_handler | hotspot pop-ups
user_command event_handler | Edit Comment button (new)
toolbar event_handler | button addition (conditional)
data_changed (new) | event_handler | database table updates

Table 8.3: New event and several event revisions (CF)

Define a new method based on event bpata_cHancep (Figure 8.46). The
DATA_CHANGED event is triggered when the user clicks on the CHeck ENTRIES button
or on the RerFresH button on the application toolbar. Later, you'll see how to
register other triggers for this event (Figure 8.57).

o ok ok g g G

CLASS lel event handler DEFINITICN.
PUBLIC SECTICH.

METHODS :
datsa_changed FOR EVENT data changed OF cl gui alv grid
IMPORTING er_data changed,
toolhar add T FOR EVENT toolbar oF o 1l gui alv grid

INPORTING e _obhject
& _interactiwve,
user command alv FOR EVENT user commanhd OF ol gui alv grid
ITMPORTING &_ucontn,

top of page FOR EVENT top_of page OF]l gui alv grid
IMPORTING e _dyndoc id,
hotspot_click FOR EVENT hotspot_click OF ol gui alv grid

INPORTING e _row_id
e column id.

ENDCLAZS.

Figure 8.46: Data_changed method, part 1 (CF)

In the implementation of the new method pata_cHanGep (Figure 8.47), the FieLD-
symBoL and AssiGN statements are used to access the content of modified rows of
the ALV. In our program, only single rows are modifiable so there will only be one
row to process, the row whose comment field the user just changed (Figure 8.48).
Loop through <rt_ouTtput> and populate a structure that matches the database
table zkkpemo. Use the mobiry command to write the record to the database table
zkkpemo. (mopIFy will update an existing record or add a record if not found.)

EEEE R
CLAZS lel event handler IMPLEMENTATION.
METHOD data changed.
* triggered bv Check Entries, Refresh icons, and user leaving cell
DATA: 1= output TYFE lty output,
ls zkkdemo TYFPE zkkdemo,
ls modif TYFE lwvec = modi.

FIELD-3TMEOLI: <frt_output> TYPE £t output.

A33IGN er_data changed->mwp mod rows->+% TO <ft output>.
LOoP AT <ft_output:> INTO ls output.
CLEAR 1= zkkdemo.
ls =zkkdemo-agencynum
ls zkkdemo-carrid
ls =zkkdemo-connid
ls =zkkdemo-fldate
ls_ =zkkdemo-hookid
1= =zkkdemo-zcomment

lz output-agencynum.
ls output-carrid.

ls output-connid.

ls _output-fldate.

ls _output-bookid.
ls_output-zcontment .

MODIFY zkkdemo FROM 1= zkkdemo.
* MODTIFY will update an existing record oF imnsert 3 new recoid
IF =y-subrc NE 0.
LOoP AT er dats changed-:mt_mod cells INTO ls modif.
CALL METHOD er data changed->add protocol entry

EXPORTING
i megid = '00' i msgno = '001° i msgry = 'Y
i msgwl = 'The comment was not saved to table ZKEDEMO:' (0Z1)
i megvi = ls modif-VALUE
i fieldname = 15 modif-fieldname.
ENDLOOP .
CALL METHOD er data changed->display protocol.
ENDIF.
ENDLOOP .
ENDMETHOD .

Figure 8.47: Data_changed method, part 2 (CF)

The record layout of <rt_ouTtput> matches Lty_output with the exception of the
first field called row (Figure 8.48).

f=| ZRK_ALV_CTRLFW EDIT BUTTON | /| ZKK_ALV_CTRLFW_EDIT BUTTON /|83 -

% |METHOD |/ DATA_CHAMGED (LCL_EVEMT_HAMDLER) ERE
Desktop 1 Desktop 2 Desktop 3 Standard - Structures / Tables ok

Tables - Table Contents |

Tahle [<FT_ouTruT> | liii

Attributes Standard [1x14(460)] 7 o
Insert Calumn . , Iﬁ[ulumnz 2"1]

Rowy | AGEMNCYMUM [M{B)] |I'%.I.-'-‘n.l"-'1E [C(253] |CUF{F{ENCY [C(53] |C.-'3.F{F{ID [C(33] ZCOMMENT [C(1287]
rl 00000123 iussie Travel GBP Ak NEW COMMENT

Figure 8.48: User-modified row in debugger (CF)
You may recall that we activated column width optimization in the layout structure

of this program (Chapter 4.4). When the ALV grid is initially displayed, it is
summarized (Figure 8.49). The comment column has no content at a summary

level so the narrow display is desirable. Unfortunately, when the user clicks on the
Epir CommenT button to switch to a detail display, the comment column does not
widen. You'll fix that by re-specifying the comment field output length in the
user_commMAND_ALV method (Figure 8.52).

el
ET Data Services U

Report: ZKK_ ALY _CTRLRW_EDIT_BUTTON

Title: Airline Bookings: DREAM TRAVEL_Z (previous data view)
Variant: DREAM TRAVEL_Z
Layout: JFLIGHTSUMS

Date: 2015 08 27

(&[0 08 (1) (B)%= [B]& J@)= .
Airline Bookings: DREAM TRAYEL Z (previous data view)

Trvl agoy Agency | ID Mo, |Date Booki | Amount | Curr, | Airline | Amount | Curr, | E RecCount | Comment
o7 == 4,364,153.15 GBP == B,597
Aussie Travel aAf = 17 " 20,779.57 GBP " 70

=2 64 . 15,580.0¢2 GBEP = 51

Figure 8.49: Default custom width optimization is not a problem until switched to detail display (CF)

To retrieve any existing comments from the zkkpemo table and display them in the
ALV grid, you’ll need to add logic after the population of T_output (Figure 8.50).
The For ALL ENTRIES IN syntax can be used because you have first verified that
GT_ouTpuT has content by evaluating the result of the pescriBE TABLE command.

If relevant records are retrieved into GT_zkkpemo, you loop through 6T_zkkpemo to
update eT_output (Figure 8.50). (6T_zkkpemo is most likely the smaller of the two
tables.) If no relevant comments were retrieved from zkkpemo, no messaging is
required.

Set the ev_EDIT_FLAG to a blank space to signify display mode for initial display
(Figure 8.50). The flag will be used in zF_user_commAND_ALv and zF_TOOLBAR_ADD
to hide the Epir CommenT button after its first use.

DESCRIBE TAELE gt output LINES gv_lines.
IF gwv_lines NE O. "data was retrieved

CLEAR g= output.
¥s_output-COUNT = 1.
MODIFY gt _output FROM g=_ output
TRANSPORTING COUNT WHERE NOT agencynum I3 INITILL.
SORT gt _output BY agencynum
carrid
connid
fldate
hookid.

SELECT * FROM =zkkdemo
INTD TAELE gt zkkdemo
FOR ALL ENTRIEZ IN gt output
WHERE agencynum = gt_OoUutput-agencynum

AMND carrid = gt_output-carrid
AMND connid = gt_output-conhid
AND fldate = gt_output-fldate
AND bookid = gt_output-bookid.
IF =sy-subrec = 0. "ocomments Found
SORT gt _zkkdemo BY agencynum
carrid
connid
fldate
hookid.
LooP AT gt zkkdemo INTO gs_ zkkdemo. famaller table

FEEAD TAELE gt _output INTO gs_output
WITH EEY agencynum = gs_zkkdemo-agencynum

carrid = g=_czkkdemo-carrid
connid = g=s_zkkdemo-connid
fldate = gs_czkkdemo-fldate
bookid = g=_czkkdemo-bookid.
IF =sy-subrec = 0.
¥S_output-zcomnent = g5 zkkdemo- Zzcontment .

MODIFY gt _output FROM g=s output INDEX sy-tabix
TRANSPORTING =zoomnent.
ENDIF.
ENDLOOP .
ENDIF.
gv_edit flag = ' '. "indicates display mode for start

Figure 8.50: Retrieval of comments from zkkdemo table (CF)

The ALV application toolbar was set as interactive using SeT_TOOLBAR_INTERACTIVE
in Chapter 6.8.2 so the zr_tooLBAR_ADD subroutine is executed on each re-display
of the ALV grid (Figure 8.51). Because the Epitr CommenT button is being used in
this exercise for a one-time switch to edit mode, it could be confusing to users to
retain the button on the toolbar after that has occurred. You can easily hide the
button by checking the cv_EbpiT_FLAG variable set in zrF_user_commanp_ALv (Figure
8.52).

Sometimes removing means “not adding”

control framework, the standard toolbar is being re-created with the new
button on each re-display because we have set it interactive (Figure 8.57). By
adding the IF statement (Figure 8.51), you will stop adding the button to the
toolbar after the user has clicked it once, as needed in the training scenario. If
you prefer, you can change the position of the IF statement so that the button
continues to be added, but is grayed out (disabled = X’).

Use break-points in the ABAP debugger to familiarize yourself
with the behavior of your programs. You might think that once you
have added a button to the toolbar, you must call a separate
method to remove it or must change the exclude table. In the ALV

FOREM zf toolbar add U3IING lo ohject

DATA: 1= toolhar TYFE sth_hutton.

TYFE REF TO cl_alv ewvent toolbar set.

F

gv_ed?t_flag S "flag iz set once iR 2f user command a1v
2dd button on edch re-display UNLESS user has already used it

ENDFORM.

CLEAR 1= toolbar.

ls_toolbar-function = 'NOTE'. "owmr Ffoode for logic
ls _toolbar-icon = igon snnotation. "from ICON include
ls _toolbar-gquickinfo = 'Add note to record' [0ZZ).

ls _toolbar-hbutn type = 0. "hasic button, not menu
ls toolbar-disshled = 5

lz toolbar-text = 'Edit Comment' (023) . "lakel on button

APPEND 1= toolbar TO lo_object-:mt_toolbar.

Figure 8.51: Stop adding new button after first use (CF)

In

Chapter 6.8.2, you inserted a placeholder into a subroutine called

zF_User_coMmmAND_ALv for a new toolbar button (Figure 6.130). Now, you will add

the

1.
2.
3.

logic that should execute when that button is clicked.

Fill a variable to indicate that the button has been clicked.
GeT the current field catalog and cursor settings.

Modify a few of the retrieved settings in order to present detail records with
the desired appearance.

seT the changes, including the cursor position.
Refresh the table display.

Method user_command_alv and zm_user_command_9100

Don’t be confused by the two similarly named sections of code in
this program. The PAI module called zm_user_commano_9100
manages the top row of function keys you configured as Back,
Exit, and CaNceL in Figure 3.26. The user_commAND event logic

coded in zr_user_commMAND_ALV relates to the ALV application toolbar buttons.

Add the local data declarations to the zrF_user_commaND_ALv subroutine (Figure
8.52). The function code of the Epit CommenT toolbar button is noTE (Figure 6.129).
In the wHEN ‘NOTE’ portion of the case statement, set the ev_EDIT_FLAG tO X tO
denote that the user has switched to edit mode. (For this exercise, you will code a
one-time transition from display to edit mode.)

The methods GET_FRONTEND_FIELDCATALOG and GET_SELECTED_CELLS are used to
retrieve the ALV settings of interest to us (Figure 8.52). Other Get/seT methods are
available, but these will meet our needs. The returned Lt_friELbcaT table will
include any changes that the user may have made after the grid was displayed
and will give us a starting point for our modifications. The LT_ceLLs table will allow
us to re-display the editable grid so that the user can continue from their last
position instead of having to scroll to it in the detail list.

ALV FM and ALV control framework are different

Don’'t assume that code you use in a function module ALV
program is also necessary in an ALV control framework program
(or vice versa). Test and use the debugger as you write your
code, then take appropriate action based on your observations.

Three field catalog table settings will be populated and passed in the set function
module: po_sum, EpiT, and ouTpuTLEN. To re-display the data at a detail level for
editing, clear the field catalog po_sum setting on any fields set for summing, not
just the ones set by the developer (Figure 8.52). On only the editable field
zcomMmENT, set the eoit flag to x and the outpuTLEN tOo 128. By passing the output
length again, you will fix the too-narrow comment column, a result of optimization
done for the initial summarized display (Figure 8.49).

FORM zf user command alv TIING 1v ucommn TYPE sy-ucobmm.
DATA: 1t fieldeat TYPE lwve t foat,
ls fieldeat TYPE lvc s foat,
ls stable TYFE 1lwvec s sthl,
lt_cells TYFE 1lwvec t cell,
lz cells TYPE 1lvec = cell, "nested structure
ls row_id TYFE lwve = row,
ls col id TYFE lwe = col.

CASE 1wv_ucomm.
WHEN 'NOTE'. T"oply executes once, then we omdit button
gv_edit flag = 'I'. "flag to prevent button re-add after use

CALL METHOD gridil--get frontend fieldeatalog
IMFORTING
et _fieldeataloyg = 1t fieldeat.

CALL METHOD gridl--get selected cells
IMFPORTING
et_cell = 1t cells.

ls fieldeat-do_sum SpAl g
MODIFY 1t _fieldeat FROM ls fieldeat TRANSPORTING do sSum
WHERE do _sum = 'X'. "y summed field

ls fieldcocat-edit Sel

ls fieldeat-outputlen = 1:25.

MODIFY 1t _fieldeat FROM 1s fieldeoat TRANSPORTING edit outputlen
WHERE fieldnaswe = 'ZCOMMENT' .

Figure 8.52: User command logic for edit button, part 1 (CF)

Now that the field catalog settings have been retrieved and modified, they are set
by calling method seT_FRONTEND_FIELDCATALOG (Figure 8.53).

The user’s cursor position in the ALV grid when they clicked on the Epit ComMENT
button was retrieved into LT_ceLLs (one row was retrieved) and can now be used
to move that detail row to the top of the re-displayed grid using the
SET_SCROLL_INFO_VIA_ID method (Figure 8.53). Take care when transferring the
index (row number) and fieldname from Ls_ceLLs (nested structure Lvc_s_ceLL) to
Ls_Row_ID and Ls_coL_Ip. The syntax to reach the lower level of the nested
structure Ls_cEeLLs requires two hyphens: Ls_CELLs-ROW_ID-INDEX and LS_CELLS-
COL_ID-FIELDNAME.

Finally, signify that this column and row should be retained (by passing xx in
Ls_sTABLE) and refresh/re-display the grid (Figure 8.53).

f Ry QT STy Y QT Ty Y QT STy T QT ST YT QAT STy T QT SRy T QAT STy T QT ST T QAT SNy S QT ST T QTSR ST QT ST QT QT ST ST QTS UT ST QT ST QT QT ST QT QT YT QT QT ST QT QT ST QT QAT ST QT QT PUT YT SRRy
CALL METHOD gridl-->set frontend fieldeatalog
EXPORTING
it _fieldeatalog = 1lt_fieldecat.
READ table lt cells INTO 13 cells INDEX 1.
IF =sy-subrec = 0.
ls row_id-index = ls ecells-row_id-index.
ls ool id-fieldname = 15 cells-col id-fieldname.
CALL METHOD gridl->set _scroll info wia id
EXPORTING
is_row_info = 1s row_id
iz col _info = 1z col id.
ENDIF
- I T I I R T EE————————————,
ls stable-row = 'X'.
ls _stable-col = 'E'.
CALL METHOD gridil->refresh table display
EXPORTING
is_stable = 1z stable.
ENDCASE.
ENDFORM.

Figure 8.53: User command logic for edit button, part 2 (CF)

The new zcommenT field needs to be added to the end of the field catalog table in
zr_BuUILD_FIELDCATALOG (Figure 8.54). To provide a more meaningful label on the
ALV column, populate the coLtext instead of providing a RrRer_taBLE value of
zkkDemo. Provide the ebit parameter with a blank space value because the ALV
grid will not be editable on initial display.

CLEAR 1= fieldeat.

ls fieldeat-fieldname 'ZCOMMENT' .

ls fieldeat-outputlen 128

lz fieldocat-datatype = 'CHAR',

ls fieldocat-coltext ' Comment ' .

ls fieldcocat-editc i

LPPEND 1z fieldeat TO 1t _fieldeat.
ENDFORM.

Figure 8.54: New field added to field catalog with edit parameter set for display (CF)

In edit mode, the ALV grid displays with these changes: row selection column
added, editable field(s) ready for input, and new ALV application toolbar buttons
visible (Figure 8.55).

» CHeck ENTRIES and RErFRESH buttons
» Cell-focused buttons: Cut, Copy TexT, INSerT, and UNDpo

» Row-focused buttons: AppEND Row, INSERT Row, DELETE Row, and DuPLICATE
Row

& | ~dEIee@ BHE fDo0 BR m

SAP l cell .

= HEEL)| CEEw] &) EEL) (B

&irline Armount floc.curmmcy) | Curr, | Cormment
Armetican Airlines g03.58 LsD

Figure 8.55: Row-focused buttons to be excluded (CF)

Since this program will not be used to remove records from zkkpemo or to insert
records, the row-focused buttons need to be excluded (Figure 8.58). Exactly as
was done in Chapter 6.7.2, add the buttons to be omitted from the ALV application
toolbar to an exclusion table (Figure 8.56).

FOREM zf huild exclude takle T3ING 1t _exclude TYPE ui functions.
DATA: 1= exclude TYFPE ui_ func.
pestrict user to changes, ko Fow adds or deletes
ls exclude = cl gui alv grid=-MC FC LOC COPY ROTW.
APPEND 1= exclude TO lt exclude.
ls exclude = cl gui alv grid=:-MC _FC LOC DELETE ROTW.
APPEND 1= exclude TO lt exclude.
ls exclude = cl gui alv grid=:-MC_FC LOC APPEND ROTW.
APPEND 1= exclude TO lt _exclude.
ls exclude = cl gui alv grid=-MC_FC LOC TN3ERT ROTW.
APPEND 1= exclude TO lt exclude.
ls exclude = cl gui alv grid=-MC FC LOC MOWE ROTW.
APPEND 1= exclude TO lt exclude.
SORT 1t _exclude.
DELETE ADJACENT DUPLICATES FROM 1t exclude COMPARING table line.
ENDFORM.

Figure 8.56: Exclude table for ALV method call (CF)

The pATA_cHANGED event is triggered by default when the user clicks on the CHECck
EnTRIES button or the RerFresH button in the ALV application toolbar. We can
register other triggers, as well (Figure 8.57):

» mc_EVT_MobIFiIED When cursor is moved from the modified cell

» mc_EVT_ENTER for user pressing enter on the keyboard

In the zm_staTus_9100 module, we have registered only the modified cell edit
event (Figure 8.57). The final change is to set the handler for the new
DATA_CHANGED event.

CALL METHOD gridil-:register edit event
EXPORTING
i event_id = cl gui alv grid=:me_evt modified. "oell leave
* can repeatfreplace previous method call with mc evt enter

CREATE OBJECT g ewvent handler.

SET HMDLER g ewvent handler->top of page FOR gridl.
SET HAMNDLER g ewvent handler--hotspot click FOR gridl.
SET HMDLER g ewvent handler-rtoolbar add FOR gridl.

SET HMDLER g ewvent handler-:user commahd alv FOR gridl.

| SET HANDLER g_event:hand1er—>datafchanged' FOR gridi. |

= to raise the toolbar event [our method toclbar add)
CALL METHOD gridl-:set_toolbar interactive.

Figure 8.57: Module zm_status_9100 additions (CF)

After the user clicks on the Epir CommenT button, the ALV grid displays as shown
(Figure 8.58).

ET Data Services \I),

Report: ZKK_ALY_CTRLFW_EDIT_BUTTON

Title: Airline Bookings: DREAM TRAVEL_Z (previous data view)
Variant: DREAM TRAVEL_Z
Layout: /FLIGHTSUMS

Date: 2015 08 27

[][[o] [][2 P L] [s]| (][][5] (] (T
Airline Bookings: DREAM TRAVEL Z (previous data view)

[Ep Trvl agcy “ agen_ DN Date |Booki_ | Amount | Curr. Aiine | Amount | Curr, | Rec | Comment

| Aussie Travel 123 AA 17 05/25/2 113 243.09 GBP Ame. 35950 USD 1 |INCREASE IN BOOKINGS THIS QUAR
| Bussie Travel 123 AA 17 05/25(2 230 285908 GBP Ame. 42294 USD 1 -
|| Aussie Travel 123 af 17 0O5/25/2 | 265 27168 GEP Ame 401,79 USD 1 =

Figure 8.58: Comment column widened and buttons absent (CF)

Enabling the Save button in the ALV control framework programs

Unlike the function module versions of the programs in this

.— chapter, the Save button is not enabled by default when using the

ALV control framework technique. If you do wish to enable the

Save button, use transaction code se80 to edit the GUI status,

adding a label to the diskette function key (Figure 3.26), as you did for Back,

CancEeL, and Exit. After saving and activating, add your custom logic within the
cAsk statement in the zm_user_commano_9100 module (Figure 3.21).

Source code for final ALV control framework program

The source code of the final example program
.— (ZKK_ALV_CTRLFW_EDIT_BUTTON) is available at
https://espresso-tutorials.com/ ABAP_ALV.php

https://espresso-tutorials.com/_ABAP_ALV.php

8.4 Summary

Chapter 8 introduced techniques that make an SAP List Viewer editable.

Key points:

» Writing cell-level edit logic

» Adding logic to insert or modify records in a table based on user input

» Retrieving grid configuration information (layout and sort state, for instance)
after initial display in order to modify it for re-display

» Retaining the user’s cursor position

» Enabling the edit functionality two different ways: based on selection-screen
choice or on toolbar button click

» Working with the set_toolbar_interactive method

Table 8.4 provides a comparison.

Function Module
reuse_alv_grid_display

ALV Control Framework

set_table_for_first_display

_info_set function modules

Column edit = X in field catalog edit = ‘X’ in field catalog, ready_for_input
editability method (optional, 1 for yes, 0 for no)
Change i_grid_settings parameter (lvc_s_glay- data_changed event, register_edit_event
awareness edt_cll_cb), data_changed event method (optional)

and values

Re-display of | pf_status_set event toolbar event, set_toolbar_interactive
toolbar method

Toolbar it_excluding parameter, pf_status_set event it_toolbar_excluding parameter, toolbar
exclusions event

Toolbar GUI status copy/modification toolbar event

additions

Change from |do_sum = space in field catalog do_sum = space in field catalog
summary to

detail

Format reuse_alv_grid_layout get_frontend_* and set_frontend_*
changes _info_get, reuse_alv_grid_layout methods

Retain cursor
position

slis_selfield and is_grid_scroll parameter

get_selected_cells and
set_scroll_info_via_id methods

Refresh grid

slis_selfield-col_stable = ‘X’ slis_selfield-
row_stable = ‘X, slis_selfield-refresh = X’ in
user_command event

is_stable-row = ‘X', is_stable-col = ‘X',
refresh_table_display method in
user_command event

Table 8.4: Editable ALV, comparison

9 Conclusion

Now, with greater awareness of how the SAP List Viewer has evolved over time
and with examples of frequently requested features, you can approach
assignments with more confidence. When coding a new ALV program, it is
important to know how the report will be used. For instance, if it will be used
primarily for strategic analysis, you might provide summarized views initially. If it
will be used primarily for updating data, you might choose to display detail records
initially. Using the examples in this book for guidance, you can accommodate both
views with a single program.

When creating new SAP List Viewer programs, use object-oriented techniques
rather than function module techniques. This book provides an introduction to
object-oriented ALV featuring the ALV control framework technique.

Appendix

Comparison of some report types

The two bold report types are covered in this book.

Report Type Sample Programs Terminology

ALV with integrated SALV_IDA* In-memory database, ABAP objects, CL_SALV_GUI

data access (IDA) _TABLE_IDA

ALV object model SALV_DEMO* ABAP objects, ALV wrapper, OM, CL_SALV_TABLE,
CL_SALV_HIERSEQ
_TABLE, CL_SALV_TREE

ALYV control BCALV* ABAP objects, grid control, SET_TABLE_FOR

framework _FIRST_DISPLAY, CL_GUI_ALV_GRID, LVC

ALV grid FMs (not BALV* REUSE_ALV_GRID

released) _DISPLAY, fullscreen grid, SLIS

ALV list FMs (not BALV* REUSE_ALV_LIST

released) _DISPLAY, REUSE_ALV_HIERSEQ
_LIST_DISPLAY

Standard list DEMO_LIST WRITE

_OUTPUT

Dialog-oriented

DEMO_DYNPRO-
_TABCONT_LOOP
TAT*

CONTROLS...TYPE TABLEVIEW/TABSTRIP, table
controls, Screen Painter, module pools

Dynamic

DEMO_FREE-
_SELECTIONS

field-symbols, CL_SALV_TABLE=>
FACTORY, CL_ABAP_TYPEDESCR

Note—ALYV is also available for Web Dynpro developers (ABAP and Java).

Resources
SAP Note 551605: ALV FAQ and release status.

Demo programs

DEMO*
BALV*
BCALV*
SALV_DEMO*

Programs

SHOWICON (display symbols and names of icons used on SAP screens)
RS_ABAP_SOURCE_SCAN (search programs for a text string)

Transactions

ABAPDOCU (ABAP keyword documentation)

BIBS (style guide and examples of user interface design elements, branches
to “reuse library” and “controls library”)

DWDM (ABAP workbench demos)

Function modules

REUSE_ALV*
POPUP*

Sites

help.sap.com (SAP Help Portal)
scn.sap.com (SAP Community Network)

Acronyms

ABAP—Advanced Business Application Programming
ALV—ABAP List Viewer, SAP List Viewer
CF—Control Framework

FM—Function Module

GUI—Graphical User Interface

HTML—HyperText Markup Language

IDA—Integrated Data Access

IDES—Internet Demonstration and Evaluation System
OM—Object Model

SAP—Systems, Applications, and Products in data processing

‘I ESDI'ES.SO
(1! tutorials

Our Newsletter

Our newsletter will inform you about new publications and

& exclusive free downloads.
Subscribe today!

newsletter.espresso-tutorials.com

http://newsletter.espresso-tutorials.com/

A The Author

Kathi Kones has been working with SAP software since 1995.

After completing her computer science degree at Minnesota State University,
Mankato, she was hired by General Mills, Inc., a global corporation that developed
in-house talent and encouraged job changes within the company. She gained SAP
R/2 and R/3 experience in the roles of functional analyst, ABAP developer, project
manager, Finance master data migration specialist, and integration manager. She
participated in four SAP implementations and worked in eight countries.

Kathi has most recently worked on SAP master data management projects as a
consultant for ThreeBridge Solutions, LLC, Minneapolis, Minnesota.

B Disclaimer

This publication contains references to the products of SAP SE.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObijects
Explorer, StreamWork, and other SAP products and services mentioned herein as
well as their respective logos are trademarks or registered trademarks of SAP SE
in Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal
Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other Business
Objects products and services mentioned herein as well as their respective logos
are trademarks or registered trademarks of Business Objects Software Ltd.
Business Objects is an SAP company.

Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other
Sybase products and services mentioned herein as well as their respective logos
are trademarks or registered trademarks of Sybase, Inc. Sybase is an SAP
company.

SAP SE is neither the author nor the publisher of this publication and is not
responsible for its content. SAP Group shall not be liable for errors or omissions
with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein should be
construed as constituting an additional warranty.

C Credits

Vemuru, V. (2010, March 11). How to get the variant name when running the
report in background from selection screen [Online forum].

Retrieved from http://wiki.scn.sap.com/wiki/display/
ABAP/How+to+get+the+variant+tname+when+running+
the+report+in+background+from+selection+screen

http://wiki.scn.sap.com/wiki/display/ABAP/How+to+get+the+variant+name+when+running+the+report+in+background+from+selection+screen

More Espresso Tutorials eBooks

Boris Rubarth:
First Steps in ABAP®

P Step-by-Step instructions for beginners
P Comprehensive descriptions and code examples
P A guide to create your first ABAP application

¥ Tutorials that provide answers to the most commonly asked
programming questions

Antje Kunz:
SAP® Legacy System Migration Workbench (LSMW)

Universal Worklist with

SAP NetWeaver' Portal

P Data Migration (No Programming Required)

P SAP LSMW Explained in Depth

P Detailed Practical Examples

P Tips and Tricks for a Successful Data Migration

Darren Hague:
Universal Worklist with SAP® NetWeaver Portal

P Learn to Easily Execute Business Tasks Using Universal Worklist
P Explore Expert Insights to Help You Configure UWL Functionality

P Find In-Depth Advice on how to Make SAP Work-flows and Alerts
Available

P Learn how to Include 3rd Party Workflows in SAP NetWeaver Portal

Michat Krawczyk:
SAP® SOA Integration - Enterprise Service Monitoring

P Tools for Monitoring SOA Scenarios

P Forward Error Handling (FEH) and Error Conflict Handler (ECH)
P Configuration Tips

P SAP Application Interface Framework (AlF) Customization Best

http://5015.espresso-tutorials.com/
http://5051.espresso-tutorials.com/
http://5076.espresso-tutorials.com/
http://5077.espresso-tutorials.com/

Practices
P Detailed Message Monitoring and Reprocessing Examples

Shreekant Shiralkar & Deepak Sawant
SAP® BW Performance Optimization

Use BW statistics effectively

Leverage tools for extraction, loading, modeling and reporting
P Monitor performance using the Work-load Monitor & database statistics

P Use indexes to understand key ele-ments of performance

Dominique Alfermann, Stefan Hartmann, Benedikt Engel:
SAP® HANA Advanced Modeling

P Data modeling guidelines and common test approaches

P Modular solutions to complex requirements
P Information view performance optimization

P Best practices and recommendations

B i e
SAP HANA
Advanced Modeling

http://5102.espresso-tutorials.com/
http://4110.espresso-tutorials.com/

	Title
	Copyright / Imprint
	Table of Contents
	Preface
	1 SAP List Viewer (ALV) types
	1.1 ALV predecessors
	1.2 Function module techniques
	1.3 Object-oriented techniques
	1.4 Web Dynpro
	1.5 Summary

	2 Writing an ALV program using function modules
	2.1 Create the ABAP program
	2.2 Data declarations
	2.3 Select-Options
	2.4 Selection of data for ALV output
	2.5 Main logic section
	2.6 Building the field catalog table
	2.7 Calling the ALV function module
	2.8 Summary

	3 Writing an ALV program using the ALV control framework
	3.1 Create the ABAP program
	3.2 Data declarations
	3.3 Select-Options
	3.4 Selection of data for ALV output
	3.5 Main logic section
	3.6 Building the field catalog table
	3.7 Screen call
	3.8 Process before output (PBO) and process after input (PAI) module logic
	3.9 PF-status for screen
	3.10 Custom control on screen
	3.11 Enabling background execution
	3.12 Summary

	4 Adding layout features to an ALV program
	4.1 Training scenario
	4.2 Layout features
	4.3 Alternating shaded and non-shaded lines
	4.4 Optimizing column widths
	4.5 Displaying totals at the top
	4.6 Displaying a title at the top
	4.7 Previewing layout features
	4.8 Summary

	5 Adding sort features to an ALV program
	5.1 Training scenario
	5.2 Sort features
	5.3 Configuring a sort group
	5.4 Changing the sort field in a sort group
	5.5 Changing column order to reflect sort order
	5.6 Configuring a two-level sort
	5.7 Populating the sort table from the selection screen
	5.8 Summary

	6 Adding more features to an ALV program
	6.1 Passing hidden columns of data
	6.2 Displaying totals and subtotals immediately
	6.3 Adding record counts
	6.4 Handling ALV report layout variants
	6.5 Adding a top_of_page event and a logo
	6.6 Adding hotspot logic
	6.7 Excluding buttons from the ALV application toolbar
	6.8 Adding buttons to the ALV application toolbar
	6.9 Summary

	7 Solving challenges with handy features applicable to many program types
	7.1 Retrieving the variant name during transaction code se38 background execution
	7.2 Modifying the selection screen for different user groups
	7.3 Converting all currency values to a user-specified “report currency”
	7.4 Summary

	8 Adding edit capability to an ALV program
	8.1 Training scenario
	8.2 Enabling edit based on a selection screen checkbox
	8.3 Enabling edit using toolbar button
	8.4 Summary

	9 Conclusion
	Appendix
	Comparison of some report types
	Resources

	A The Author
	B Disclaimer
	C Credits
	More Espresso Tutorials eBooks

