

Kathi	Kones

SAP®	List	Viewer	(ALV)—A	Practical
Guide	for	ABAP	Developers

ISBN: 978-3-96012087-2	(ePUB)

Copy-editing: Lisa	Jackson

Cover	Design: Philip	Esch,	Martin	Munzel

Cover	Photo: Fotolia	#71513853	©	polygraphus

Interior	Design: Johann-Christian	Hanke

All	rights	reserved

1st	Edition	2015,	Gleichen

©	2015	Espresso	Tutorials	GmbH

URL:	www.espresso-tutorials.com

All	 rights	 reserved.	 Neither	 this	 publication	 nor	 any	 part	 of	 it	may	 be	 copied	 or
reproduced	 in	 any	 form	 or	 by	 any	 means	 or	 translated	 into	 another	 language
without	the	prior	consent	of	Espresso	Tutorials	GmbH,	Zum	Gelenberg	11,	37130
Gleichen,	Germany.

Espresso	 Tutorials	 makes	 no	 warranties	 or	 representations	 with	 respect	 to	 the
content	hereof	and	specifically	disclaims	any	implied	warranties	of	merchantability
or	fitness	for	any	particular	purpose.	Espresso	Tutorials	assumes	no	responsibility
for	any	errors	that	may	appear	in	this	publication.

Feedback:
We	 greatly	 appreciate	 any	 kind	 of	 feedback	 you	 have	 concerning	 this	 book.
Please	mail	us	at	info@espresso-tutorials.com.

http://www.espresso-tutorials.com/
mailto:info@espresso-tutorials.com

Thank	you	for	purchasing	this	book
from	Espresso	Tutorials!
Like	 a	 cup	 of	 espresso	 coffee,	 Espresso	 Tutorials	 SAP	 books	 are	 concise	 and
effective.	 We	 know	 that	 your	 time	 is	 valuable	 and	 we	 deliver	 information	 in	 a
succinct	and	straightforward	manner.	It	only	takes	our	readers	a	short	amount	of
time	to	consume	SAP	concepts.	Our	books	are	well	recognized	in	the	industry	for
leveraging	 tutorial-style	 instruction	and	videos	 to	 show	you	step	by	step	how	 to
successfully	work	with	SAP.

Check	out	our	YouTube	channel	to	watch	our	videos	at			
https://www.youtube.com/user/EspressoTutorials.

If	you	are	interested	in	SAP	Finance	and	Controlling,	join	us	at				http://www.fico-
forum.com/forum2/
to	get	your	SAP	questions	answered	and	contribute	to	discussions.

Related	titles	from	Espresso	Tutorials:

Boris	Rubarth:	First	Steps	in	ABAP®
http://5015.espresso-tutorials.com
Antje	Kunz:	SAP®	Legacy	System	Migration	Workbench	(LSMW)
http://5051.espresso-tutorials.com
Darren	Hague:	Universal	Worklist	with	SAP	NetWeaver®	Portal
http://5076.espresso-tutorials.com/
Michal	Krawczyk:	SAP®	SOA	Integration
http://5077.espresso-tutorials.com
Shreekant	Shiralkar	&	Deepak	Sawant:	SAP®	BW	Performance
Optimization
http://5102.espresso-tutorials.com
Dominique	Alfermann,	Stefan	Hartmann,	Benedikt	Engel:	SAP®	HANA
Advanced	Modeling
http://4110.espresso-tutorials.com

https://www.youtube.com/user/EspressoTutorials
http://www.fico-forum.com/forum2/
http://5015.espresso-tutorials.com
http://5051.espresso-tutorials.com
http://5076.espresso-tutorials.com/
http://5077.espresso-tutorials.com
http://5102.espresso-tutorials.com
http://4110.espresso-tutorials.com

Table	of	Contents
Cover

Title

Copyright	/	Imprint

Preface

1	SAP	List	Viewer	(ALV)	types

1.1	ALV	predecessors
1.2	Function	module	techniques
1.3	Object-oriented	techniques
1.4	Web	Dynpro
1.5	Summary

2	Writing	an	ALV	program	using	function	modules

2.1	Create	the	ABAP	program
2.2	Data	declarations
2.3	Select-Options
2.4	Selection	of	data	for	ALV	output
2.5	Main	logic	section
2.6	Building	the	field	catalog	table
2.7	Calling	the	ALV	function	module
2.8	Summary

3	Writing	an	ALV	program	using	the	ALV	control	framework

3.1	Create	the	ABAP	program
3.2	Data	declarations
3.3	Select-Options
3.4	Selection	of	data	for	ALV	output
3.5	Main	logic	section
3.6	Building	the	field	catalog	table
3.7	Screen	call
3.8	Process	before	output	(PBO)	and	process	after	input	(PAI)	module	logic
3.9	PF-status	for	screen

kindle:embed:0004?mime=image/jpg

3.10	Custom	control	on	screen
3.11	Enabling	background	execution
3.12	Summary

4	Adding	layout	features	to	an	ALV	program

4.1	Training	scenario
4.2	Layout	features
4.3	Alternating	shaded	and	non-shaded	lines
4.4	Optimizing	column	widths
4.5	Displaying	totals	at	the	top
4.6	Displaying	a	title	at	the	top
4.7	Previewing	layout	features
4.8	Summary

5	Adding	sort	features	to	an	ALV	program

5.1	Training	scenario
5.2	Sort	features
5.3	Configuring	a	sort	group
5.4	Changing	the	sort	field	in	a	sort	group
5.5	Changing	column	order	to	reflect	sort	order
5.6	Configuring	a	two-level	sort
5.7	Populating	the	sort	table	from	the	selection	screen
5.8	Summary

6	Adding	more	features	to	an	ALV	program

6.1	Passing	hidden	columns	of	data
6.2	Displaying	totals	and	subtotals	immediately
6.3	Adding	record	counts
6.4	Handling	ALV	report	layout	variants
6.5	Adding	a	top_of_page	event	and	a	logo
6.6	Adding	hotspot	logic
6.7	Excluding	buttons	from	the	ALV	application	toolbar
6.8	Adding	buttons	to	the	ALV	application	toolbar
6.9	Summary

7	Solving	challenges	with	handy	features	applicable	to	many	program	types

7.1	Retrieving	the	variant	name	during	transaction	code	se38	background
execution
7.2	Modifying	the	selection	screen	for	different	user	groups
7.3	Converting	all	currency	values	to	a	user-specified	“report	currency”
7.4	Summary

8	Adding	edit	capability	to	an	ALV	program

8.1	Training	scenario
8.2	Enabling	edit	based	on	a	selection	screen	checkbox
8.3	Enabling	edit	using	toolbar	button
8.4	Summary

9	Conclusion

Appendix

Comparison	of	some	report	types
Resources

A	The	Author

B	Disclaimer

C	Credits

More	Espresso	Tutorials	eBooks

Preface
SAP	List	Viewer	(ALV)	for	ABAP	Developers	provides	examples	of	two	techniques
used	 to	 display	 business	 data	 with	 an	 interface	 that	 lets	 users	 rearrange,	 sort,
total,	and	download	the	data.	The	techniques	are:

A	newer	object-oriented	ALV	control	framework
An	older	ALV	function	module	(FM)	REUSE_ALV_GRID_DISPLAY.

(ALV	is	an	acronym	for	SAP	List	Viewer,	carried	over	from	the	former	name,	ABAP
List	Viewer.)

Both	 of	 these	 techniques	 can	 be	 found	 in	 custom	 ALV	 programs,	 especially	 at
companies	that	have	run	SAP	software	for	many	years.

As	a	developer,	you	should	use	object-oriented	techniques	for	new	programs,	but
you	sometimes	find	yourself	tasked	with	modifying	legacy	ALV	programs	that	use
function	module	techniques.	The	function	module	examples	are	provided	here	to
help	 you	 quickly	modify	 legacy	ALV	programs	when	work	 prioritization,	 time,	 or
cost	prevents	a	re-write.

The	 alternating	 presentation	 of	 the	 two	 techniques	 in	 chapters	 4,	 5,	 6,	 and	 8
facilitates	 comparison.	 Information	 common	 to	 both	 techniques	 is	 found	 at	 the
beginning	of	sub-chapters	or	 is	 repeated,	 in	context,	 in	both	 technique	sections.
Figures	 relevant	 to	 the	 ALV	 control	 framework	 are	 denoted	 by	 CF.	 Figures
relevant	to	the	function	module	technique	are	denoted	by	FM.

You	should	focus	on	the	ALV	control	framework	examples	when	working	through
the	training	scenario.

Chapter	3	covers	writing	a	basic	ALV	program
Chapter	4	shows	how	to	add	layout	features
Chapter	5	covers	adding	sorting	and	grouping	features
Chapter	6	highlights	adding	more	features,	such	as	events	and	layout	variant
handling
Chapter	8	covers	adding	editable	fields

Coding	 style	 varies	 from	 person	 to	 person,	 and	 personal	 experience	 influences
the	 inevitable	 tradeoff	 decisions	 you	 make	 when	 you	 write	 a	 program.	 The
examples	in	this	book	will	guide	you,	but	should	not	limit	you	to	a	single	solution.
(The	training	scenario	requirements	will	not	match	your	own,	but	provide	options
that	can	be	adapted.)

Developers	who	wish	to	code	and	run	the	programs	shown	in	this	book	will	need
developer	 access	 to	 an	 SAP	 ECC	 environment	 that	 contains	 the	 SAP	 Flight
Application	 sample	 data.	 Those	 who	 don’t	 have	 access	 at	 work	 or	 school	 can
research	other	options	available	from	the	SAP	Store	(https://www.store.sap.com)
or	from	a	provider	of	SAP	Internet	Demonstration	and	Evaluation	Systems	(IDES).
If	 the	SAP	Flight	Application	 is	 not	 loaded,	 contact	 your	Basis	 or	 IDES	 support
personnel.

Familiarity	with	SAP	navigation	and	ABAP	development	 tools	such	as	 the	editor
and	 debugger	 is	 assumed,	 but	 developers	 without	 ABAP	 experience	 or	 access
will	most	likely	be	able	to	follow	the	examples	in	the	book	to	learn	the	concepts.

The	naming	convention	for	the	ABAPs	used	in	this	book	begin	with	this	pattern:

1.	 Z	(SAP	standard	for	custom	ABAP	programs)
2.	 KK	(my	initials,	some	companies	use	a	mnemonic	for	the	application	area

such	as	FI	or	SD	or	follow	another	convention)
3.	 _CTRLFW	or	_FM	(to	differentiate	the	ALV	control	framework	program

examples	from	the	function	module	program	examples)

System	variables	are	denoted	SYST-	and	SY-.	Both	versions	are	acceptable	and
interchangeable	in	the	exercises.

We	have	added	a	few	icons	to	highlight	important	information.	These	include:

Tips

Tips	 highlight	 information	 concerning	 more	 details	 about	 the
subject	 being	 described	 and/or	 additional	 background
information.

Attention

Attention	notices	draw	attention	to	information	that	you	should	be
aware	of	when	 you	go	 through	 the	examples	 from	 this	 book	on
your	own.

Finally,	a	note	concerning	 the	copyright:	all	screenshots	printed	 in	 this	book	are
the	copyright	of	SAP	SE.	All	rights	are	reserved	by	SAP	SE.	Copyright	pertains	to

https://www.store.sap.com

all	 SAP	 images	 in	 this	 publication.	 For	 simplification,	 we	 will	 not	 mention	 this
specifically	underneath	every	screenshot.

1			SAP	List	Viewer	(ALV)	types
The	 SAP	 List	 Viewer,	 also	 known	 as	 ALV,	 allows	 developers	 to	 display
business	data	together	with	a	set	of	functions	that	are	presented	in	an	easy-
to-use	 interface.	 It	 has	 evolved	 over	 time,	 reflecting	 changes	 in	 software
engineering	design	theory.

In	 1972,	German	 company	SAP	was	 formed.	Over	 time,	 the	SAP	 development
environment	changed	to	the	mainframe-based	R/2	platform	(keyboard	centric	and
text	based),	then	to	the	client-server	R/3	platform	(graphical	displays	and	mouse-
aware	 screens).	 New	 development	 tools	 and	 techniques	 arrived	 with	 the
introduction	 of	 SAP	 NetWeaver.	 Today,	 companies	 are	 looking	 closely	 at	 SAP
S/4HANA,	a	revolutionary	software	platform	for	in-memory	computing.

An	SAP	developer	is	exposed	to	much	change	during	a	career,	but	much	remains
familiar.	 Older	 techniques	 remain	 functional	 in	 many	 cases,	 even	 when	 new
techniques	are	introduced.

New	developers	may	be	confused	by	the	variety	of	options,	not	realizing	that	they
are	viewing	decades	of	progress.	The	appearance	of	the	output	has	changed	little
over	 time,	 but	 the	 code	 and	 the	 structures	 used	 by	 developers	 have	 changed.
Let’s	take	a	look	at	the	evolution	of	ALV.

1.1			ALV	predecessors

1.1.1			Standard	lists
Standard	lists	were	the	norm	for	reporting	for	many	years	(Figure	1.1).	Developers
used	WRITE	 statements	 to	 output	 the	 data	 to	 screen	 and/or	 paper.	 They	 could
add	logic	to	sum	amounts	at	control	breaks	and	to	print	page	headers	or	footers.
Line-processing	 and	 hotspot-branching	 logic	 could	 be	 added	 for	 online	 users,	 if
needed.

Developers	 had	 to	 consider	 page	 width	 limitations	 and	 take	 care	 to	 provide
enough	 space	 so	 that	 truncation	 of	 large	 numbers	 did	 not	 occur.	 Standard	 lists
were	particularly	well-suited	for	audit	reports	and	for	reports	distributed	via	a	third-
party	 output	 management	 system	 that	 needed	 predefined	 header	 regions	 to
determine	printer	destinations.

Figure	1.1:	Standard	list

1.1.2			Dialog-oriented	programs
Dialog-oriented	programs	may	use	module	pools,	 table	control	 functionality,	and
screen	flow	logic	to	provide	interactive	data	displays	(Figure	1.2).	The	developer
writes	the	logic	for	each	toolbar	button	and	screen	transfer	and	keeps	the	internal
table	content	synchronized	with	the	screen	view.

Figure	1.2:	Dialog	output	using	table	control

1.2			Function	module	techniques

1.2.1			ALV	list	display	function	modules
Developers	began	using	the	REUSE_ALV_LIST_DISPLAY	function	module	to	simplify	the
coding	 of	 interactive	 reports	 (Figure	 1.3).	 The	 report	 itself	 was	 similar	 to	 a
standard	 list,	but	 the	buttons	were	backed	with	pre-programmed	 logic	and	gave
users	more	opportunity	to	customize	and	extract	the	output.	Though	released	only
for	 internal	 use	 by	 SAP,	 some	 developers	 wrote	 programs	 that	 called	 the
REUSE_ALV_LIST*	function	modules.

Figure	1.3:	ALV	list	using	function	module

1.2.2			ALV	grid	display	function	modules
A	step	forward	in	graphical	appearance	is	evident	with	the	REUSE_ALV_GRID_DISPLAY
function	 module	 (Figure	 1.4).	 Pre-programmed	 buttons	 made	 the	 use	 of	 the
REUSE_ALV_GRID_*	function	modules	very	attractive	despite	their	status	of	not	being
released	for	customer	use.

Figure	1.4:	ALV	grid	using	function	module

1.3			Object-oriented	techniques

1.3.1			ALV	control	framework
The	application	of	object-oriented	concepts	resulted	in	the	ALV	control	framework,
also	 called	 grid	 control	 (Figure	 1.5).	 The	 ALV	 control	 framework	 was	 similar
enough	 to	 function-module	ALVs	 that	 it	served	as	a	good	 introduction	 to	object-
oriented	programming.	Developers	used	classes	and	methods	instead	of	function
modules	 and	 gained	 knowledge	 of	 syntax	 and	 navigation	 that	 they	 could	 apply
later	to	non-ALV	development	efforts.

Figure	1.5:	Output	using	ALV	control	framework

1.3.2			ALV	object	model
SAP	has	provided	a	more	mature	object-oriented	ALV	technique	based	on	SALV
classes	called	ALV	object	model,	also	described	as	an	“ALV	wrapper”	(Figure	1.6).

Figure	1.6:	Output	using	ALV	object	model

1.3.3			ALV	with	integrated	data	access
SAP	 S/4HANA	 has	 its	 own	 ALV	 functionality	 for	 customers	 wishing	 to	 use	 it
(Figure	1.7).	It	is	called	ALV	with	integrated	data	access	(IDA),	and	it	permits	you
to	provide	the	familiar	ALV	interface	to	users	when	displaying	in-memory	data.

Figure	1.7:	Output	using	ALV	with	integrated	data	access	(IDA)

1.4			Web	Dynpro
SAP	List	Viewer	for	Web	Dynpro	is	available	for	ABAP	and	Java	platforms.

1.5			Summary
Business	users	have	gained	more	flexibility	when	displaying	and	extracting	data.
Developers	have	gained	more	powerful,	re-usable	tools	that	continue	to	evolve.

Be	aware	that	the	two	ALV	function	module	techniques	described	in	Chapter	1.2
are	not	released	by	SAP	for	customer	use.	The	ALV	grid	display	function	module
examples	are	 included	 in	 this	book	 to	help	you	make	 the	connection	between	a
technique	you	may	already	know	and	the	objects-based	technology	you	may	be
learning.	These	examples	may	also	help	you	modify	a	 legacy	ALV	program	that
uses	one	of	the	function	module	techniques	when	a	re-write	isn’t	possible.

The	SAP	Community	Network	forums	contain	many	questions	across	all	the	ALV
techniques.	 The	 responses	 are	 sometimes	 accurate	 for	 the	 ALV	 technique	 the
poster	 is	 using,	 but	 sometimes	 they	 are	 not.	 Because	 of	 similarities	 in	 the	ALV
techniques,	 however,	 a	 wrong	 answer	 can	 sometimes	 be	 helpful—if	 you	 know
how	 to	 “transpose”	 it	 to	 your	 technique.	 (For	 instance,	 an	 incorrect	 response	of
COLWIDTH-OPTIMIZE	might	lead	you	to	CWIDTH_OPT	in	your	ALV	layout	structure.)

Key	points:

New	tools	and	techniques	for	SAP	report	development	have	been	introduced
over	time.
Older	techniques	often	continue	to	function	(to	reduce	the	impact	upon
existing	programs)	and	are	still	appropriate	for	some	situations.	This	concept
is	called	backwards	compatibility.
For	new	SAP	List	Viewer	programs,	avoid	using	the	unsupported,	“not
released”	function	module	techniques.	Instead,	use	ABAP	objects	techniques
such	as	ALV	control	framework.

For	more	information	about	these	techniques,	including	how	to	find	SAP-provided
sample	programs,	refer	to	the	Appendix.

2			Writing	an	ALV	program	using
function	modules
In	 this	 chapter,	 you’ll	 learn	 how	 to	 write	 a	 report	 using	 an	 ALV	 function
module	 technique,	 specifically,	 the	 REUSE_ALV_GRID_DISPLAY	 function	module.
For	 the	 training	 scenario,	 you’ll	 retrieve	 data	 from	 the	 SAP	 Flight
Application	 tables	 in	 order	 to	 evaluate	 the	 amount	 of	 income	 that	 various
travel	 agencies	 have	 generated	 booking	 airline	 flights.	 The	 retrieved	 data
will	include	two	currency	amounts	and	three	currency	keys.

2.1			Create	the	ABAP	program
A	preview	of	the	ALV	output	from	this	initial	program	is	shown	in	Figure	2.1.

Figure	2.1:	Preview	(function	module	–	FM)

Using	 transaction	 code	 se38	 (or	 se80,	 if	 you	 prefer),	 type	 a	 name	 for	 the	 new
program,	then	click	on	the	CREATE	button.	(I	have	used	the	name	ZKK_ALV_FM	for
this	 initial	program.)	Complete	 the	TYPE	and	STATUS	 fields	(Figure	2.2),	 then	click
on	 the	SAVE	 button.	When	prompted	 for	 the	Package,	 click	on	 the	LOCAL	OBJECT

button.	This	fills	the	Package	field	with	$TMP	and	positions	your	cursor	in	the	new
program.

Figure	2.2:	Program	attributes	(FM)

2.2			Data	declarations
As	 shown	 in	 Figure	 2.3,	 begin	 the	 data	 declarations	 section	 of	 the	 program	 by
listing	 the	 database	 tables	 used	 in	 the	 SELECT-OPTIONS	 statement:	 SBOOK	 and
STRAVELAG	(Figure	2.4).	This	will	prevent	a	syntax	error.

Figure	2.3:	Data	declarations	(FM)

A	local	TYPE	called	LTY_OUTPUT	lists	the	fields	to	be	displayed	in	this	ALV.	A	single-
line	structure	and	matching	internal	tables	(GS_OUTPUT	and	GT_OUTPUT)	are	declared
next,	based	on	the	local	TYPE	LTY_OUTPUT.

Local	TYPE	vs.	data	dictionary	structure

Instead	of	defining	your	output	structure	as	a	local	TYPE	in	your
program,	 you	 can	define	 it	 as	 a	 structure	 in	 the	data	 dictionary.
The	 technique	 you	 use	 may	 depend	 upon	 your	 employer’s	 or
client’s	 standards	 and	 practices,	 the	 number	 of	 changes	 you

expect	 to	 make	 over	 time	 to	 the	 output	 structure,	 and	 the	 ease	 of	 making
those	changes.

Currency	keys

Some	 types	 of	 data	 require	 a	 “partner”	 field	 for	 clarity—for
instance,	 currency	 amounts	 require	 currency	 keys,	 count	 and
weight	amounts	 require	units	of	measure,	and	 texts	 that	can	be
stored	 in	multiple	 languages	 require	 language	keys.	To	 facilitate

troubleshooting	 and	 flexibility,	 we	 will	 provide	 all	 of	 the	 applicable	 currency
keys	in	the	ALV	interface.	In	Chapter	6.1,	you	will	see	how	you	can	hide	fields
on	initial	display	of	the	ALV.

Referring	again	to	Figure	2.3,	you’ll	see	a	global	table	called	GT_FIELDCAT.	The	field
catalog	 table	 is	 used	 to	 pass	 information	 (such	 as	 output	 length	 or	 data	 type)
about	the	fields	included	in	the	output	structure.

Field	catalog	table	(SLIS_T_FIELDCAT_ALV)

The	 field	 catalog	 table	 contains	 information	 about	 each	 of	 the
fields	 (or	 columns)	 in	 the	 ALV	 output.	 If	 your	 structure	 is	 not
already	defined	 in	 the	data	dictionary,	 you	will	 need	 to	populate
this	 information	 into	 the	 field	catalog	 table	yourself.	You	will	 see

later	 in	 this	 chapter,	 though,	 that	 you	 can	 refer	 to	 metadata	 in	 the	 data
dictionary	when	populating	your	field	catalog	table.

The	 final	data	 item	declared	 in	 this	simple	program	 is	a	global	variable	GV_LINES
that	 will	 be	 used	 to	 verify	 that	 records	 were	 found	 for	 display	 using	 the	 ALV
interface.

2.3			Select-Options
After	 the	 data	 declarations,	 type	 three	 SELECT-OPTIONS	 as	 shown	 in	 Figure	 2.4.
Save,	check,	and	activate	your	program.

Figure	2.4:	Selection-options	declaration	(FM)

Change	the	SELECT-OPTIONS	 labels	that	will	be	displayed	to	the	user	from	question
marks	 to	 the	 texts	 stored	 in	 the	data	dictionary	by	using	 the	menu	path	GOTO	 •
TEXT	ELEMENTS	•	SELECTION	TEXTS.	Check	the	checkboxes	(Figure	2.5).	Activate	the
selection	texts,	then	go	back	to	your	program	source	code.

Figure	2.5:	Copying	selection	texts	from	the	data	dictionary	(FM)

The	selection	screen	should	look	like	Figure	2.6	when	done.

Figure	2.6:	Selection	screen	(FM)

2.4			Selection	of	data	for	ALV	output
We	will	type	placeholders	for	the	INITIALIZATION	and	the	AT	SELECTION-SCREEN	events,
but	will	leave	them	empty	for	this	initial	program	(Figure	2.7).

Figure	2.7:	Retrieval	of	data	for	ALV	output	(FM)

Add	the	SELECT	statement	to	your	program’s	START-OF-SELECTION	event	(Figure	2.7).
It	 joins	 three	 tables	 from	the	SAP	Flight	Application	(using	 the	selection	choices
provided	by	 the	user)	and	directs	 that	 the	selected	data	be	put	 into	 the	 internal
table	GT_OUTPUT.	Note	that	the	field	order	and	the	field	formats	are	identical	in	the
SELECT	statement	and	in	the	local	TYPE	LTY_OUTPUT	defined	earlier.

Tilde	for	joins

The	symbol	between	 the	 table	names	and	 field	names	 in	Figure
2.7	 is	a	 tilde	~.	Use	 the	 tilde	 instead	of	 the	usual	hyphen	when
you	are	joining	tables	within	a	SELECT	statement.

Optimization	of	SELECT	statements

Optimizing	 a	 SELECT	 statement	 can	 make	 a	 tremendous
improvement	 in	 your	 program’s	 performance.	 Utilize	 SAP	 tools
such	 as	 runtime	 analysis	 (transaction	 codes	 sat	 or	 se30)	 and
performance	 trace	 (transaction	 code	 st05)	 to	 make

improvements.

End	the	START-OF-SELECTION	section	by	adding	 the	 lines	of	code	shown	 in	Figure
2.8.	 If	 data	was	 retrieved,	 you	will	 sort	 the	 table	 using	 the	 fields	 of	 the	 internal
table	 that	make	each	row	unique.	(Advanced	sorting	 is	covered	 in	Chapter	5.)	 If
no	data	was	retrieved,	the	program	is	ended	here	with	a	message	to	the	user.

Figure	2.8:	Verify	that	data	was	retrieved	(FM)

2.5			Main	logic	section
I’ll	 use	 subroutines	 in	 this	 program	 to	 break	 the	 logic	 into	 smaller	 parts	 for
demonstration	purposes,	 both	 for	 simplicity	 and	because	many	of	 the	programs
that	you	support	use	this	older	syntax.

(If	your	employer’s	or	client’s	standards	for	new	and/or	modified	programs	require
the	use	of	methods	syntax,	adjust	the	examples	accordingly.)

Figure	2.9:	Two	subroutines	(FM)

In	 the	 first	subroutine	 in	Figure	2.9,	you	will	populate	 the	 field	catalog	 table	with
information	about	the	fields	to	be	displayed.	You	may	recall	that	this	is	necessary
because	the	internal	table	uses	a	local	TYPE	instead	of	a	structure	defined	in	the
data	 dictionary.	 The	 global	 table	 GT_FIELDCAT	 is	 passed	 to	 the	 subroutine
ZF_BUILD_FIELDCATALOG,	and	it	is	returned	to	the	main	program	with	content.

With	no	field	catalog	information,	the	ALV	will	display	the	data	records	with	blank
column	 headings	 and	 with	 none	 of	 the	 data	 dictionary	 features	 that	 provide
context	 for	 developers	 and	users	 alike:	 check	 tables	 (F4	 dropdowns),	 field	help
(F1),	and	forward	navigation	within	the	data	dictionary.

Use	of	data	dictionary	structure	for	ALV

If	the	internal	table	of	data	that	you	will	be	displaying	corresponds
to	a	table	or	structure	defined	in	the	data	dictionary,	you	can	build
your	 field	 catalog	 by	 calling	 function	 module
REUSE_ALV_FIELDCATALOG_MERGE	 at	 the	 start	 of	 the

ZF_BUILD_FIELDCATALOG	 subroutine,	 then	 update	 only	 those	 retrieved	 field
attributes	 that	 require	a	 change.	 If	 none	of	 your	 fields	 require	a	 change	 (no
pre-summing,	no	hiding	of	fields,	no	hotspots,	etc.),	you	can	omit	the	building
of	 the	 field	 catalog	 entirely	 and	 pass	 the	 structure	 name	 to	 the
REUSE_ALV_GRID_DISPLAY	function	module	in	the	I_STRUCTURE_NAME	parameter.

In	the	second	subroutine,	you	will	call	the	REUSE_ALV_GRID_DISPLAY	function	module.

2.6			Building	the	field	catalog	table
Within	this	subroutine	(Figure	2.10),	first	define	a	local	structure	called	LS_FIELDCAT.
LS_FIELDCAT	is	based	on	structure	SLIS_FIELDCAT_ALV.

Figure	2.10:	Building	the	field	catalog,	part	1	(FM)

Table	2.1	shows	how	the	naming	convention	frequently	uses	a	“t”	to	differentiate
tables	from	their	underlying	structures.

Type-pool	SLIS

Structure slis_fieldcat_alv ls_fieldcat	(local)
Table slis_t_fieldcat_alv lt_fieldcat	(local)

gt_fieldcat[]	(global)

Table	2.1:	Naming	convention	(FM)

For	each	of	the	fields	in	the	output	table	GT_OUTPUT,	complete	the	following	steps:

1.	 Clear	LS_FIELDCAT.
2.	 Fill	FIELDNAME	with	the	LTY_OUTPUT	fieldname.
3.	 Fill	REF_FIELDNAME	with	the	fieldname	from	our	original	data	source.	(Note:	you

can	omit	REF_FIELDNAME	if	the	FIELDNAME	from	the	internal	table	matches	the
name	of	the	field	from	the	REF_TABNAME	table,	as	it	does	in	the	program.)

4.	 Fill	REF_TABNAME	with	the	table	name	of	our	original	data	source.
5.	 Append	LS_FIELDCAT	to	the	table	LT_FIELDCAT.

In	 this	 program,	 the	 fieldnames	 from	 the	 local	 type	 LTY_OUTPUT	 match	 the
fieldnames	 of	 the	 database	 data,	 but	 that	 is	 not	 a	 requirement.	 Under	 some
circumstances,	 you	may	 decide	 to	 use	 names	 that	 are	 different.	 You	may	 also
decide	to	create	your	own	name	for	fields	with	a	custom	function	(for	example,	a
counter	or	traffic	light	field).

Continue	through	the	fields	of	local	TYPE	LTY_OUTPUT,	as	shown	in	Figure	2.11.

Figure	2.11:	Building	the	field	catalog,	part	2	(FM)

The	SELECT	statement	to	fill	the	internal	table	GT_OUTPUT	retrieved	two	amount	fields
and	three	currency	keys.

The	 two	 amount	 fields	 (FORCURAM,	 LOCCURAM)	 need	 a	 pair	 of	 additional	 fields
populated	into	the	field	catalog:	CFIELDNAME	and	CTABNAME	as	shown	in	Figure	2.12
and	Figure	2.13.

Figure	2.12:	Building	the	field	catalog,	part	3	(FM)

The	 three	 fields	 containing	 currency	 keys	 (CURRENCY,	 FORCURKEY,	 and	 LOCCURKEY)
do	 not	 need	 any	 additional	 attributes	 populated.	 (Chapter	 5.1	 contains	 more
information	about	the	three	currency	key	fields.)

Figure	2.13:	Building	the	field	catalog,	final	(FM)

2.7			Calling	the	ALV	function	module
The	REUSE_ALV_GRID_DISPLAY	function	module	can	accept	many	import	parameters.
As	shown	in	Figure	2.14,	you	can	generate	a	simple	ALV	display	by	passing	only
three	 items:	 the	 report	 name	 (SY-REPID),	 the	 field	 catalog	 table	 just	 populated
(GT_FIELDCATALOG[]),	 and	 the	 internal	 table	 of	 data	 that	 was	 selected	 from	 three
joined	database	tables	(GT_OUTPUT).

Figure	2.14:	Calling	the	ALV	function	module	(FM)

Finally,	 include	error-handling	to	send	the	user	a	pop-up	message	if	 the	function
module	call	fails	with	a	return	code	(SY-SUBRC)	other	than	0.

Run	the	program	to	display	the	data	(Figure	2.1).

2.8			Summary
In	this	chapter,	an	SAP	List	Viewer	(ALV)	report	was	generated	by	calling	function
module	REUSE_ALV_GRID_DISPLAY.	With	 very	 little	 coding,	 data	was	 presented	with
an	 ALV	 application	 toolbar	 that	 lets	 the	 user	 reorganize	 the	 report	 (sort,	 filter,
change	column	order,	sum,	etc.),	print	it,	or	download	it	to	another	application.

Key	points:

Data	declaration,	selection-screen	definition,	retrieval	of	data,	creation	of	field
catalog,	and	ALV	call
Local	type	instead	of	data	dictionary	structure
SELECT	statement	with	multiple	joins
For	new	SAP	List	Viewer	programs,	use	an	ABAP	objects	technique	(Chapter
3)

In	Chapter	3,	you’ll	create	a	report	similar	 to	 this	chapter’s	report,	but	 instead	of
using	the	unsupported	function	module	technique	shown	in	this	chapter,	you’ll	use
the	ALV	control	framework,	an	ABAP	objects	technique.

3			Writing	an	ALV	program	using	the
ALV	control	framework
In	 this	 chapter,	 you’ll	 learn	 to	 write	 a	 report	 using	 the	 ALV	 control
framework.	As	in	Chapter	2,	this	program	retrieves	data	from	the	SAP	Flight
Application	 tables	 in	 order	 to	 evaluate	 the	 amount	 of	 income	 that	 various
travel	 agencies	 have	 generated	 booking	 airline	 flights.	 The	 retrieved	 data
will	include	two	currency	amounts	and	three	currency	keys.

3.1			Create	the	ABAP	program
Much	of	the	program	code	written	in	Chapter	2	can	be	re-used	for	this	chapter’s
exercise,	and	vice	versa.	A	simple	way	 to	copy	your	program	 is	 to	use	 the	COPY
button	from	the	initial	screen	of	the	ABAP	editor,	transaction	code	se38.

To	create	a	new	program,	use	 transaction	code	se38	 (or	 se80,	 if	 you	prefer)	 to
type	a	name	for	the	program,	then	click	on	the	CREATE	button.	(I	have	named	this
program	ZKK_ALV_CTRLFW.)	Complete	the	TYPE	and	STATUS	 fields	(Figure	3.1),
then	click	on	the	SAVE	button.	When	prompted	for	the	Package,	click	on	the	LOCAL
OBJECT	button.	This	fills	the	Package	field	with	$TMP	and	positions	your	cursor	in
the	new	program.

Figure	3.1:	Program	attributes	(CF)

Figure	3.2	is	a	preview	of	the	ALV	output	from	this	first	example	program	using	the
ALV	control	framework.

Figure	3.2:	Preview	(ALV	control	framework)

3.2			Data	declarations
As	 shown	 in	 Figure	 3.3,	 begin	 the	 data	 declarations	 section	 of	 the	 program	 by
listing	 the	 database	 tables	 used	 in	 the	 SELECT-OPTIONS	 statement:	 SBOOK	 and
STRAVELAG	(Figure	3.4).	This	will	prevent	a	syntax	error.

Figure	3.3:	Data	declarations	(CF)

A	 local	 TYPE	 called	 LTY_OUTPUT	 lists	 the	 fields	 to	 be	 displayed	 in	 this	 ALV.	 A
structure	 and	 matching	 internal	 table	 (GS_OUTPUT	 and	 GT_OUTPUT)	 are	 declared
next,	based	on	the	local	TYPE	LTY_OUTPUT.

Local	TYPE	vs.	data	dictionary	structure

Instead	of	defining	your	output	structure	as	a	local	TYPE	in	your
program,	 you	 can	define	 it	 as	 a	 structure	 in	 the	data	 dictionary.
The	 technique	 you	 use	 may	 depend	 upon	 your	 employer’s	 or
client’s	 standards	 and	 practices,	 the	 number	 of	 changes	 you

expect	 to	 make	 over	 time	 to	 the	 output	 structure,	 and	 the	 ease	 of	 making
those	changes.

Currency	keys

Some	 types	 of	 data	 require	 a	 “partner”	 field	 for	 clarity—for
instance,	 currency	 amounts	 require	 currency	 keys,	 count	 and
weight	amounts	 require	units	of	measure,	and	 texts	 that	can	be
stored	 in	multiple	 languages	 require	 language	keys.	To	 facilitate

troubleshooting	 and	 flexibility,	 we	 will	 provide	 all	 of	 the	 applicable	 currency
keys	in	the	ALV	interface.	In	Chapter	6.1,	you	will	see	how	you	can	hide	fields
on	initial	display	of	the	ALV.

Referring	again	 to	Figure	3.3,	you’ll	see	a	 field	catalog	table	GT_FIELDCAT	 to	pass
information	 (such	 as	 output	 length	 or	 data	 type)	 about	 the	 fields	 of	 the	 output
structure.	 This	 time	 the	 table	 is	 based	 on	 the	 ALV	 control	 framework	 format
LVC_T_FCAT.

Field	catalog	table	(LVC_T_FCAT)

The	 field	 catalog	 table	 contains	 information	 about	 each	 of	 the
fields	 (or	 columns)	 in	 the	 ALV	 output.	 If	 your	 structure	 is	 not
already	defined	 in	 the	data	dictionary,	 you	will	 need	 to	populate
this	 information	 into	 the	 field	catalog	 table	yourself.	You	will	 see

later	 in	 this	 chapter,	 though,	 that	 you	 can	 refer	 to	 metadata	 in	 the	 data
dictionary	when	populating	your	field	catalog	table.

You’ll	use	variable	GV_LINES	to	verify	that	records	were	retrieved	for	display.

The	 final	 four	 variables	 declared	 in	 Figure	 3.3	 are	 part	 of	 the	 ALV	 control
framework.	You	will	use	OK_CODE	and	G_CONTAINER	to	set	up	the	output	screen.	The
screen	 setup	 is	 one	 of	 the	 biggest	 differences	 between	 this	 technique	 and	 the
function	module	 technique.	The	 text	 value	 for	G_CONTAINER	 is	a	concatenation	of
the	 program	 name,	 the	 screen	 number,	 and	CONT1	 for	 “container	 1”.	 The	 text
value	aligned	with	G_CONTAINER	is	not	as	important	as	making	sure	that	you	match
the	value	exactly	in	the	ELEMENT	LIST	tab	of	the	screen	that	you’ll	build	later.	(Even
when	 you	 expect	 to	 only	 use	 one	 container,	 it	 is	 good	 practice	 to	 include	 a
number.)

GRID1	and	G_CUSTOM_CONTAINER	are	declared	with	TYPE	REF	TO	classes	that	are
part	of	the	ALV	control	framework.	You’ll	add	the	logic	for	the	custom	container	in
Chapter	3.8.

3.3			Select-Options
After	the	data	declarations,	type	three	SELECT-OPTIONS	as	shown	in	Figure	3.4.
Save,	check,	and	activate	your	program.

Figure	3.4:	SELECT-OPTIONS	declaration	(CF)

Change	the	SELECT-OPTIONS	 labels	that	will	be	displayed	to	the	user	from	question
marks	 to	 the	 texts	 stored	 in	 the	data	dictionary	by	using	 the	menu	path	GOTO	 •
TEXT	ELEMENTS	•	SELECTION	TEXTS.	Check	the	checkboxes	as	shown	in	Figure	3.5.
Activate	the	selection	texts	then	go	back	to	your	program	source	code.

Figure	3.5:	Copying	selection	texts	from	the	data	dictionary	(CF)

The	selection	screen	should	look	like	Figure	3.6	when	done.

Figure	3.6:	Selection	screen	(CF)

3.4			Selection	of	data	for	ALV	output
We	will	type	placeholders	for	the	INITIALIZATION	and	the	AT	SELECTION-SCREEN	events,
but	will	leave	them	empty	for	this	initial	program.

Figure	3.7:	Retrieval	of	data	for	ALV	output	(CF)

Add	the	SELECT	statement	to	your	program’s	START-OF-SELECTION	event	(Figure	3.7).
It	 joins	 three	 tables	 from	the	SAP	Flight	Application	(using	 the	selection	choices
provided	by	 the	user)	and	directs	 that	 the	selected	data	be	put	 into	 the	 internal
table	GT_OUTPUT.	Note	that	the	field	order	and	the	field	formats	are	identical	in	the
SELECT	statement	and	in	the	local	TYPE	LTY_OUTPUT	defined	earlier.

Tilde	for	joins

The	symbol	between	 the	 table	names	and	 field	names	 in	Figure
3.7	 is	a	 tilde	~.	Use	 the	 tilde	 instead	of	 the	usual	hyphen	when
you	are	joining	tables	within	a	SELECT	statement.

Optimization	of	SELECT	statements

Optimizing	 a	 SELECT	 statement	 can	 make	 a	 tremendous
improvement	 in	 your	 program’s	 performance.	 Utilize	 SAP	 tools
such	 as	 runtime	 analysis	 (transaction	 codes	 sat	 or	 se30)	 and

performance	trace	(transaction	code	st05)	to	make	improvements.

3.5			Main	logic	section
Add	 the	 lines	of	 code	 shown	 in	Figure	3.8.	 If	 data	was	 retrieved,	 sort	 the	 table
using	the	fields	of	the	internal	table	that	make	each	row	unique.	(Advanced	sorting
is	covered	in	Chapter	5.)	Build	the	field	catalog	and	then	call	the	screen.	Much	of
the	ALV	control	framework	logic	is	aligned	with	the	screen,	as	you	will	see.

(If	your	employer’s	or	client’s	standards	for	new	and/or	modified	programs	require
the	 use	 of	 methods	 syntax	 instead	 of	 subroutines,	 adjust	 the	 examples
accordingly.)

Figure	3.8:	Verify	that	data	was	retrieved	and	perform	main	program	logic	(CF)

If	no	data	was	retrieved,	the	program	is	ended	here	with	a	message	to	the	user.

3.6			Building	the	field	catalog	table
Within	this	subroutine	(Figure	3.9),	first	define	a	local	structure	called	LS_FIELDCAT.
We	are	only	interacting	with	single	lines	of	the	field	catalog	table	while	inside	this
subroutine	 so	 that	 is	 why	we	 have	 declared	 the	 structure	 locally.	 LS_FIELDCAT	 is
based	on	the	ALV	control	framework	structure	LVC_S_FCAT.

Use	of	data	dictionary	structure	for	ALV

If	the	internal	table	of	data	that	you	will	be	displaying	corresponds
to	a	table	or	structure	defined	in	the	data	dictionary,	you	can	build
your	 field	 catalog	 by	 calling	 function	 module
LVC_FIELDCATALOG_MERGE	 at	 the	 start	 of	 the	 ZF_BUILD_FIELDCATALOG

subroutine,	 then	 update	 only	 those	 retrieved	 field	 attributes	 that	 require	 a
change.	If	none	of	your	fields	require	a	change	(no	pre-summing,	no	hiding	of
fields,	no	hotspots,	etc.),	you	can	omit	the	building	of	the	field	catalog	entirely
and	pass	the	structure	name	to	the	SET_TABLE_FOR_FIRST_DISPLAY	method	in	the
I_STRUCTURE_NAME	parameter.

Figure	3.9:	Building	the	field	catalog,	part	1	(CF)

Table	3.1	shows	how	the	naming	convention	frequently	uses	a	“t”	to	differentiate
tables	from	their	underlying	structures.

ALV	control	framework

Structure lvc_s_fieldcat ls_fieldcat	(local)
Table lvc_t_fieldcat lt_fieldcat	(local)

gt_fieldcat[]	(global)

Table	3.1:	Naming	convention	(CF)

For	each	of	the	fields	in	the	output	table	GT_OUTPUT,	complete	the	following	steps:

1.	 Clear	LS_FIELDCAT.
2.	 Fill	FIELDNAME	with	the	LTY_OUTPUT	fieldname.
3.	 Fill	REF_TABLE	with	the	table	name	of	the	original	data	source.
4.	 Append	LS_FIELDCAT	to	the	table	LT_FIELDCAT.

In	 this	 program,	 the	 fieldnames	 from	 the	 local	 type	 LTY_OUTPUT	 match	 the
fieldnames	 of	 the	 database	 data,	 but	 that	 is	 not	 a	 requirement.	 Under	 some
circumstances,	 you	may	 decide	 to	 use	 names	 that	 are	 different.	 You	may	 also
decide	to	create	your	own	name	for	fields	with	a	custom	function	(for	example,	a
counter	or	traffic	light	field).

Continue	through	the	fields	of	local	TYPE	LTY_OUTPUT,	as	shown	in	Figure	3.10.

Figure	3.10:	Building	the	field	catalog,	part	2	(CF)

The	SELECT	statement	to	fill	the	internal	table	GT_OUTPUT	retrieved	two	amount	fields
and	three	currency	keys.

The	 two	amount	 fields	 (FORCURAM,	LOCCURAM)	need	one	additional	 field	populated
into	the	field	catalog:	CFIELDNAME	as	shown	in	Figure	3.11	and	Figure	3.12.

Figure	3.11:	Building	the	field	catalog,	part	3	(CF)

The	 three	 fields	 containing	 currency	 keys	 (CURRENCY,	 FORCURKEY,	 and	 LOCCURKEY)
do	 not	 need	 any	 additional	 attributes	 populated.	 (Chapter	 5.1	 contains	 more
information	about	the	three	currency	key	fields.)

Figure	3.12:	Building	the	field	catalog,	final	(CF)

Order	of	remaining	tasks

A	 number	 of	 tasks	 need	 to	 be	 done	 in	 order	 to	 use	 the	 ALV
control	framework.	It	may	seem	a	bit	confusing	the	first	time,	but
the	 tasks	 should	 be	 easier	 with	 the	 instructions	 in	 this	 chapter.
The	order	 in	which	you	perform	many	of	these	tasks	is	not	rigid,

though	some	tasks	have	a	natural	order.	For	instance,	you	need	to	create	the
ALV	display	screen	before	you	can	add	the	custom	control	or	the	PF-status	to
that	screen.	If	your	ALV	doesn’t	display	when	you	finish	the	exercise	(Figure
3.27),	use	 transaction	code	se80	 to	check	 the	components	of	 your	program
against	Figure	3.32,	looking	for	any	omissions—there	is	no	need	to	delete	and

start	over.

3.7			Screen	call
The	 last	 statement	 executed	 in	 the	 main	 program	 logic	 is	 the	 CALL	 SCREEN

command	 (Figure	 3.8).	 To	 avoid	 conflicts	 with	 SAP-provided	 screens,	 it	 is
standard	practice	for	developers	to	number	their	screens	between	9000	and	9999.
(I	have	used	9100	for	this	program.)

Double-click	on	the	number	9100	in	the	CALL	SCREEN	9100	statement,	then	click	YES
when	asked	if	you	want	to	create	the	object	(Figure	3.13).

Figure	3.13:	Create	the	display	screen	(CF)

Forward	navigation	brings	you	into	the	SAP	Screen	Painter.	On	the	ATTRIBUTES	tab,
provide	a	short	description	such	as	“ALV	Initial	Screen”	(Figure	3.14).

Figure	3.14:	Screen	attributes	(CF)

Click	the	ACTIVATE	button	in	the	toolbar.	Highlight	the	object	DYNP	(dynpro)	in	the
list	(Figure	3.15),	then	click	the	green	checkmark.

Figure	3.15:	Activate	objects	(CF)

Screen	activation

You	can	activate	your	work	multiple	times,	as	you	move	from	tab
to	 tab,	 or	 you	 can	 wait	 until	 you	 complete	 all	 the	 work,	 then
activate.	 Save	 frequently,	 however,	 by	 clicking	 on	 the	 SAVE

(diskette)	button	in	the	top	toolbar.

Click	the	ELEMENT	LIST	 tab	next	(Figure	3.16).	Notice	 that	you	are	provided	with	a
place	 to	 type	 the	 variable	 name	we	 declared	 earlier:	OK_CODE	 (Figure	 3.3).	 The
OK_CODE	will	be	used	in	this	program’s	ZM_USER_COMMAND_9100	module	when	the
user	leaves	the	program	(Figure	3.21).

Figure	3.16:	Screen	element	list,	before	(CF)

After	adding	your	variable,	the	ELEMENT	LIST	will	appear	as	 it	does	 in	Figure	3.17.
You’ll	return	to	this	screen	to	add	one	more	element	later.

Figure	3.17:	Screen	element	list,	after	(CF)

3.8			Process	before	output	(PBO)	and	process	after	input	(PAI)	module	logic
Click	 the	FLOW	LOGIC	 tab	next.	By	default,	SAP	will	propose	names	for	a	process
before	output	(PBO)	module	and	a	process	after	input	(PAI)	module	as	shown	in
Figure	3.18.

Figure	3.18:	Proposed	module	names	(CF)

Code	will	be	added	to	the	ABAP

With	 the	 exception	 of	 the	 two	module	 names	on	 the	 FLOW	 LOGIC
tab	(Figure	3.19),	your	code	will	 reside	 in	 the	main	 logic	of	your
ABAP.	 There	 is	 no	 need	 to	 create	 includes	 for	 these	 simple
exercises.

Remove	 the	 asterisks	 to	 uncomment	 these	 proposed	module	 names,	 then	 type
ZM_	 in	 front	 of	 each	 as	 shown	 in	 Figure	 3.19.	 This	 naming	 convention	 (Z	 for
custom,	M	 for	module)	helps	 them	stand	out	 from	SAP-provided	modules	 in	 the
debugger.

Figure	3.19:	Modified	module	names	(CF)

SE80	object	navigator

The	object	navigator	 (transaction	code	se80)	 is	an	alternative	 to
forward	navigation	for	accessing	the	various	components	of	your
program.	 Click	 on	 the	 REPOSITORY	 BROWSER	 bar	 near	 the	 top	 of
transaction	 se80’s	 left-hand	 navigation	 panel,	 then	 choose

PROGRAM	 from	 the	 first	 dropdown.	 Type	 your	 program	 name	 in	 the	 next	 box
down	 and	 press	 “Enter”.	 The	 components	 of	 your	 program	 will	 display
(Figure	3.32).

Double-click	on	ZM_STATUS_9100.	Forward	navigation	will	place	you	back	into	your
program	source	code.	Type	the	content	shown	in	Figure	3.20,	then	save.	(You	can
use	the	PATTERN	button	in	the	editor	to	insert	text,	if	you	wish.)	PBO	modules	such
as	 ZM_STATUS_9100	 run	 before	 the	 first	 ALV	 screen	 display	 and	 before	 each
subsequent	re-display.

Figure	3.20:	Process	before	output	(PBO)	logic	(CF)

The	last	 items	that	we	included	in	our	data	declarations	(Figure	3.3)	are	used	in
the	 PBO	 module:	 G_CUSTOM_CONTAINER,	 G_CONTAINER,	 and	 GRID1.	 The	 CALL
METHOD	serves	the	same	purpose	as	the	function	module	call	 in	the	Chapter	2
program	(Figure	2.14).	The	SET_TABLE_FOR_FIRST_DISPLAY	method	will	be	using	your
local	 type	 definition,	 the	 field	 catalog	 table	 you	 populated,	 and	 the	 data	 you
retrieved	for	output.

Running	RS_ABAP_SOURCE_SCAN	to	find	text	strings

To	 find	 additional	 code	 examples	within	 your	 SAP	 environment,
run	program	RS_ABAP_SOURCE_SCAN.	Use	transaction	code	se38	or
sa38	 to	display	 the	 selection	 screen	 for	 this	program,	provide	a
text	string	such	as	SET_TABLE_FOR_FIRST_DISPLAY,	restrict	the	search

further	 if	you	wish,	 then	 run	 the	program	by	clicking	on	 the	clock	button	 (F8
key).	You	can	click	on	any	of	the	returned	items	to	view	the	program	code.

You’ll	create	the	PF-status	for	the	9100	screen	in	a	later	step.	For	now,	return	to
the	FLOW	LOGIC	screen	(Figure	3.19)	to	create	your	PAI	module.	There	are	several
ways	 to	get	 there,	 depending	upon	 your	 preference	and	how	you	 reached	your
current	location	in	the	program.

Green	BACK	arrow
Or	double-click	on	9100	in	the	CALL	9100	statement	in	the	main	logic	section,
then	click	the	FLOW	LOGIC	tab
Or	use	the	object	navigator	transaction	code	se80

Once	 there,	 double-click	 on	 ZM_USER_COMMAND_9100.	 This	 takes	 you	 back	 into
your	program	source	code.	Type	the	content	shown	in	Figure	3.21,	then	save.

The	PAI	module	reacts	to	user	input.	You	will	provide	an	exit	from	the	ALV	screen
when	 the	user	clicks	 the	BACK,	EXIT,	or	CANCEL	buttons.	You	will	configure	 these
buttons	later	in	the	PF-STATUS	called	MAIN9100	(Figure	3.26).

Figure	3.21:	Process	after	input	(PAI)	logic	(CF)

While	you	are	still	in	the	ZM_USER_COMMAND_9100	PAI	module,	double-click	on	the
subroutine	 name	 ZF_EXIT_PROGRAM.	 Type	 the	 content	 shown	 in	 Figure	 3.22	 into
your	source	code.

Figure	3.22:	Exit	subroutine	(CF)

Save,	then	click	the	ACTIVATE	button	in	the	toolbar.	Select	all	objects	in	the	pop-up
window	that	are	associated	with	this	program,	then	click	the	green	checkmark.

Only	 two	 tasks	 remain:	creating	 the	PF-STATUS	and	putting	 the	custom	control	on
the	screen.

3.9			PF-status	for	screen
Return	again	 to	 the	PBO	module	ZM_STATUS_9100	 (Figure	3.20).	Double-click	on
MAIN9100,	then	click	YES	when	asked	if	you	want	 to	create	this	GUI	status	object
(Figure	3.23).

Figure	3.23:	Create	PF-status	(CF)

Type	a	description	 into	the	short	 text	 field	on	the	attributes	screen	(Figure	3.24),
then	click	on	the	green	checkmark.	(Keep	the	default	status	type	NORMAL	SCREEN.)

Figure	3.24:	PF-status	attributes	(CF)

Remember	 the	 three	 OK_CODE	 values	 that	 you	 included	 in	 the	 PAI	 module
ZM_USER_INPUT_9100	 (Figure	 3.21)?	 You’ll	 now	 align	 those	 values	 with	 three
toolbar	buttons	in	the	FUNCTION	KEYS	section	of	the	PF-status.

Figure	3.25:	Function	keys	dropdown	(CF)

Click	 the	OPEN	 button	 shown	 in	 Figure	 3.25	 to	 display	 the	 configurable	 function
keys.	In	uppercase,	type	BACK,	EXIT,	and	CANC	(Figure	3.26).	You	only	need	to
type	 labels	 for	 the	 three	 buttons	 you	 are	 providing	 as	 exit	 points	 from	 the	 ALV
display	 screen.	 (The	 ALV	 control	 framework	 application	 toolbar	 will	 provide
additional	functionality.)

Figure	3.26:	Button	labels	(CF)

Save	by	clicking	the	SAVE	(diskette)	button	at	the	top,	then	activate.

Status	labels	must	match	PAI	module	OK_CODE	values

Be	sure	 to	match	 the	values	exactly	 in	both	places	 (Figure	3.26
and	 Figure	 3.21),	 including	 the	 case	 (uppercase,	 lowercase,	 or
mixed	case).	Since	our	 response	 to	 the	user	action	 is	 the	same
(LEAVE	 PROGRAM)	 regardless	 of	 which	 button	 is	 clicked,	 we	 can

repeat	an	 identical	 label	 (for	 instance,	EXIT)	 for	 all	 three	buttons	and	 include
only	one	OK_CODE	value	(EXIT)	in	the	PAI	module’s	CASE	statement.	As	long	as
we	are	consistent	in	both	places,	it	will	work	as	intended.

3.10				Custom	control	on	screen
If	 you	were	 to	 run	your	program	now,	without	 completing	 this	 final	part,	 a	blank
screen	would	display	(Figure	3.27)	instead	of	data	records.

Figure	3.27:	Missing	custom	control	=	no	ALV	data	display	(CF)

To	 finish	 the	 program,	 go	 to	 screen	 9100	 again,	 either	 by	 using	 the	 object
navigator	 (transaction	 code	 se80)	 or	 by	 double-clicking	 on	 the	 number	 9100	 in
your	source	code	statement	CALL	SCREEN	9100.	Click	the	LAYOUT	icon	(Figure	3.28)
in	the	toolbar	to	launch	the	graphical	portion	of	the	SAP	Screen	Painter.

Figure	3.28:	Layout	button	(CF)

You	are	now	in	the	graphical	portion	of	the	SAP	Screen	Painter	(Figure	3.29).	Find
the	CUSTOM	CONTROL	button	on	the	 left	side	of	 the	screen.	 It	 is	near	 the	bottom	of
the	column	of	buttons	and	has	a	small	C	in	the	corner.

Figure	3.29:	Custom	control	button	(CF)

You	will	use	this	button	to	draw	a	 large	box	on	the	canvas	to	 indicate	the	space
available	for	your	ALV	data	output	(Figure	3.30).

1.	 Click	once	on	the	CUSTOM	CONTROL	button.
2.	 Position	the	mouse	cursor	in	the	upper	left	corner	of	the	blank	canvas.	The

cursor	changes	to	a	new	shape:	a	small	rectangle	with	an	upside-down	L.
3.	 Hold	the	left	mouse	button	down	while	dragging	the	mouse	cursor	to	the

lower	right	corner	of	the	canvas.
4.	 Release	the	mouse	button.	If	your	screen	does	not	look	like	Figure	3.30,

delete	the	image	with	the	SCISSORS	button	and	try	again.

In	the	NAME	field	above	the	canvas,	type	the	value	you	aligned	with	G_CONTAINER	at
the	 start	 of	 program	 (Figure	 3.3).	 In	 the	 example	 program,	 it	 is	 called
ZKK_ALV_CTRLFW_9100_CONT1.

Figure	3.30:	Custom	control	on	the	layout	canvas	(CF)

Save	 and	 activate.	 Use	 the	 green	 BACK	 arrow	 to	 return	 to	 the	 ELEMENT	 LIST	 tab
(Figure	 3.31).	 Notice	 that	 the	 custom	 control	 name	 you	 provided	 on	 the	 layout
canvas	 screen	has	been	added	 to	 the	 list	 that	 previously	 showed	only	OK_CODE
(Figure	3.17).

Figure	3.31:	Element	list,	final	(CF)

To	verify	that	you	have	all	the	components,	use	the	object	navigator	(transaction
code	se80)	to	compare	your	program	to	the	list	in	Figure	3.32.

Figure	3.32:	All	components	in	object	navigator	(CF)

You	are	now	ready	to	run	the	program	and	display	the	data	(Figure	3.2).

3.11				Enabling	background	execution
The	ALV	control	 framework	can	be	 run	 in	 the	background	with	 the	addition	of	a
few	 lines	 of	 code	 (Figure	 3.33).	 With	 this	 change,	 your	 ALV	 program	 can	 be
scheduled	to	run	immediately,	or	at	a	future	time,	with	the	report	output	sent	to	the
SAP	 print	 spool.	 (The	 function	 module	 version	 of	 the	 ALV	 program	 does	 not
require	this	special	coding	in	order	to	work	in	background	or	batch	mode.)

Figure	3.33:	Enabling	the	program	for	background	execution	(CF)

G_DOCK_CONTAINER	should	be	defined	in	the	main	data	area	of	the	program,	but	it	is
shown	in	the	ZM_STATUS_9100	module	for	convenience.	Figures	in	the	remainder	of
the	 book	 will	 omit	 the	 docking	 container	 logic,	 but	 feel	 free	 to	 add	 it	 to	 your
program	and	retain	it	as	you	add	new	features.

Anticipating	background	execution	in	advance	of	need

Some	developers	add	these	background	execution	 lines	of	code
proactively	 even	 if	 there	 is	 no	 immediate	 requirement,	 avoiding
program	changes	later.

Without	 the	 additional	 code,	 an	 attempted	 background	 program	 run	 will	 be
cancelled	(Figure	3.34).

Figure	3.34:	Background	job	log	with	error	message	(CF)

3.12				Summary
In	 this	 chapter,	 you	generated	an	SAP	List	Viewer	 report	 using	 the	ALV	control
framework.	With	very	little	coding	on	your	part	(and	a	few	additional	screen	setup
steps),	you	presented	 the	data	and	an	ALV	application	 toolbar	 that	 lets	 the	user
reorganize	 the	 report	 (sort,	 filter,	 change	 column	 order,	 sum,	 etc.),	 print	 it,	 and
download	it	to	another	application.

Key	points:

Data	declaration,	selection-screen	definition,	retrieval	of	data,	creation	of	a
field	catalog,	and	ALV	call
Additional	components:	screen	call,	custom	control,	PBO	and	PAI	modules,
and	PF-status
Local	type	instead	of	data	dictionary	structure
SELECT	statement	with	multiple	joins
Background	execution

In	Chapter	4,	 you’ll	 explore	ways	 to	make	 the	output	more	meaningful	 on	 initial
display,	reducing	the	amount	of	reformatting	the	user	must	do.	You’ll	also	see	how
to	meet	other	requirements	that	may	be	presented.

4			Adding	layout	features	to	an	ALV
program
The	SAP	List	Viewer	has	great	flexibility	and	can	be	configured	in	ways	that
meet	current	needs	and	anticipate	 future	needs.	This	chapter	shows	a	 few
ways	to	tailor	the	initial	display	using	features	provided	at	the	layout	level.
Example	code	will	be	shown	for	each	of	the	two	ALV	types	covered	in	this
book.

4.1			Training	scenario
You	may	recall	 that	 the	user	of	 this	 report	 is	 retrieving	data	 from	the	SAP	Flight
Application	 tables	 in	order	 to	evaluate	 the	amount	of	 income	 that	 various	 travel
agencies	have	generated	booking	airline	flights.

For	 the	 remaining	 examples,	 we	 will	 imagine	 that	 the	 owner	 of	 several	 travel
agencies	 in	 the	United	Kingdom	has	acquired	an	additional	agency	 in	Australia.
The	owner	wishes	to	evaluate	the	bookings	made	by	all	of	her	agencies	(Figure
4.1)	and	has	requested	a	monthly	data	extract.

Figure	4.1:	Travel	agencies

Selection	screen	variant

For	convenience,	you	can	add	these	travel	agency	numbers	(102,
107,	109,	112,	123,	and	295)	to	your	selection	screen	(Figure	2.6
or	Figure	3.6),	then	save	it	as	a	selection	screen	variant	using	the
SAVE	(diskette)	button.

As	 you	work	 through	 the	 sections	 of	 this	 chapter,	 you	 can	 incorporate	 the	 new
features	 into	 the	program	you’ve	already	begun	or	 into	 a	 copy	of	 that	 program.
Save	 and	 activate	 as	 you	 go.	 (My	 example	 programs	 are	 called
ZKK_ALV_FM_LAYOUT	and	ZKK_ALV_CTRLFW_LAYOUT.)

Extracting	to	Microsoft	Excel	and	to	local	file	formats

Depending	 upon	 your	 SAP	 environment	 and	 upon	 which
techniques	 you	 are	 using	 to	 generate	 the	 SAP	 List	 Viewer,	 the
ALV	 features	seen	on	screen	may	or	may	not	be	available	after
extract	to	Microsoft	Excel	(or	to	one	of	the	local	file	formats).	As	a

developer,	 it	 is	 a	 good	 practice	 to	 check	 the	 behavior	 of	 your	 program	 and
communicate	 to	 the	 appropriate	 stakeholder	 early	 in	 order	 to	 manage
expectations	about	data	extract	behavior.

4.2			Layout	features
Layout	 features	 are	 those	 that	 affect	 the	 overall	 appearance	 or	 behavior	 of	 the
ALV	display.

Layout	features	vs.	layout	variants

The	 layout	 features	described	 in	 this	chapter	are	coded	 into	 the
ALV	program	by	the	developer,	based	on	specifications	provided
when	 the	 program	 was	 created.	 Layout	 variants,	 on	 the	 other
hand,	are	configured	and	saved	by	the	user	or	developer	after	the

display	of	an	ALV	report.

In	order	to	enable	layout	features	within	the	two	types	of	programs	we’ve	covered
(function	module	and	ALV	control	framework),	you	first	perform	three	tasks.

Declare	an	additional	data	structure
Create	a	subroutine	to	populate	the	structure
Pass	the	structure	to	the	function	module	or	ALV	control	framework	method

4.2.1			Function	module
For	 programs	using	 the	 function	module	 technique	described	 in	Chapter	2,	 first
add	a	layout	data	structure	based	on	the	type	SLIS_LAYOUT_ALV	(Figure	4.2).

Figure	4.2:	Define	the	layout	structure	(FM)

View	all	the	available	layout	features

Take	 a	 moment	 to	 double-click	 SLIS_LAYOUT_ALV.	 Forward
navigation	will	take	you	to	the	definition	where	you	can	see	all	the
options	 available	 to	 you	 as	 layout	 features.	 Return	 by	 clicking
once	on	the	green	BACK	arrow.

Second,	add	a	PERFORM	statement	(Figure	4.3).	In	subroutine	ZF_BUILD_LAYOUT,	you
will	code	the	features	to	be	enabled.	For	now,	double-click	on	ZF_BUILD_LAYOUT	 to
add	 the	FORM	and	ENDFORM	 statements	 of	 the	 subroutine	 to	 this	 program	 (Figure
4.9).

Figure	4.3:	Populate	the	layout	structure	(FM)

Finally,	 include	the	 layout	structure	GS_LAYOUT	 in	 the	function	module	call	 (Figure
4.4).

Figure	4.4:	Pass	the	layout	structure	(FM)

Now	 that	 these	 elements	 have	 been	 added	 to	 your	 program,	 you	 can	 begin
adding	 individual	 layout	 features.	 For	 programs	 that	 call	 the
REUSE_ALV_GRID_DISPLAY	function	module,	follow	the	“Function	Module”	examples	in
each	sub-section.	The	relevant	figure	captions	are	denoted	(FM).

4.2.2			ALV	control	framework
For	programs	using	the	ALV	control	framework	technique	(Chapter	3),	first	add	a
layout	data	structure	based	on	the	type	LVC_S_LAYO	(Figure	4.5).

Figure	4.5:	Define	the	layout	structure	(CF)

View	all	the	available	layout	features

Take	 a	 moment	 to	 double-click	 LVC_S_LAYO.	 Forward	 navigation
will	 take	you	 to	 the	definition	where	you	can	see	all	 the	options
available	to	you	as	layout	features.	Return	by	clicking	once	on	the
green	BACK	arrow.

Second,	add	a	PERFORM	statement	(Figure	4.6).	In	subroutine	ZF_BUILD_LAYOUT,	you
will	code	the	features	to	be	enabled.	For	now,	double-click	on	ZF_BUILD_LAYOUT	 to
add	 the	FORM	and	ENDFORM	 statements	 of	 the	 subroutine	 to	 this	 program	 (Figure
4.11).

Figure	4.6:	Populate	the	layout	structure	(CF)

Finally,	 include	 the	 layout	 structure	 GS_LAYOUT	 in	 the	 method	 call	 in	 the
ZM_STATUS_9100	module	(Figure	4.7).

Figure	4.7:	Pass	the	layout	structure	(CF)

Now	 that	 these	 elements	 have	 been	 added	 to	 your	 program,	 you	 can	 begin
adding	individual	layout	features.	Follow	the	“ALV	control	framework”	examples	in
each	sub-section.	The	relevant	figure	captions	are	denoted	(CF).

4.3			Alternating	shaded	and	non-shaded	lines
The	alternating	shaded	and	non-shaded	 lines	of	Figure	4.8	and	Figure	4.10	are
also	known	as	zebra	stripe.	When	 turned	on,	 the	even	 rows	are	shaded	slightly
darker	than	the	odd	rows,	making	it	easier	for	readers	to	visually	follow	a	line	of
data	from	left	to	right.

4.3.1			Function	module
To	turn	on	the	alternate	row	shading,	fill	the	ZEBRA	field	of	the	layout	structure	with
X	as	shown	in	Figure	4.9.

Figure	4.8:	Example	of	alternating	shading	(FM)

Figure	4.9:	Enable	the	zebra	feature	(FM)

4.3.2			ALV	control	framework
To	turn	on	the	alternate	row	shading,	fill	the	ZEBRA	field	of	the	layout	structure	with
X	as	shown	in	Figure	4.11.

Figure	4.10:	Example	of	alternating	shading	(CF)

Figure	4.11:	Enable	the	zebra	feature	(CF)

4.4			Optimizing	column	widths
By	default,	ALV	columns	are	displayed	at	 their	 full	width,	 regardless	of	whether
any	of	the	retrieved	data	requires	a	column	that	wide.	Look	again	at	Figure	4.8	or
Figure	4.10	to	see	displays	with	default	column	widths.	When	column	optimization
is	turned	on,	the	columns	will	be	displayed	only	as	wide	as	necessary	for	the	set
of	data	chosen	 for	display	 (Figure	4.12	and	Figure	4.14).	This	 reduces	 left-right
scrolling	by	the	online	user.

Impact	of	optimized	columns	on	heading	texts

When	 you	 enable	 column	 width	 optimization,	 your	 column
heading	 text	 may	 be	 reduced	 to	 a	 shorter	 text	 from	 the	 data
dictionary,	 as	 shown	 in	 Figure	 4.12	 and	 Figure	 4.14.	 In	 these
examples,	we	now	have	two	fields	called	“Amount”	on	the	screen.

A	mouse	 hover	 over	 the	 column	 heading	 allows	 the	 user	 to	 see	 the	 longer
text,	but	other	options	for	you	to	consider	would	be	passing	an	explicit	column
heading	or	explicit	column	width	for	those	fields	in	the	field	catalog	table.

4.4.1			Function	module
To	optimize	the	column	widths	of	the	ALV	display,	fill	the	COLWIDTH_OPTIMIZE	field	of
the	layout	structure	with	X	as	shown	in	Figure	4.13.

Figure	4.12:	Example	of	optimized	column	widths	(FM)

Figure	4.13:	Enable	column	optimization	feature	(FM)

4.4.2			ALV	control	framework
To	optimize	 the	column	widths	of	 the	ALV	display,	 fill	 the	CWIDTH_OPT	 field	of	 the

layout	structure	with	X	as	shown	in	Figure	4.15.

Figure	4.14:	Example	of	optimized	column	widths	(CF)

Figure	4.15:	Enable	column	optimization	feature	(CF)

4.5			Displaying	totals	at	the	top
By	default,	ALV	data	 is	 displayed	at	 a	 detail	 (item)	 level	with	 no	 totals.	Without
additional	coding,	the	user	wishing	to	see	totals	can	highlight	a	summable	column
such	as	“Amount	(for	currency)”	and	click	on	the	TOTAL	button.	One	or	more	lines
of	totals	are	appended	to	the	bottom	of	the	data	display.	To	see	the	totals,	the	user
must	scroll	to	the	bottom	of	the	data	display.

For	greater	convenience	for	the	user,	you	can	add	a	layout	feature	that	will	show
totals	at	the	top	of	the	data	display	instead.

Other	settings	used	to	configure	subtotals	are	specified	 in	 the	sort	 table	and	will
be	described	in	Chapter	5.

Take	 a	 moment	 to	 notice	 in	 Figure	 4.16	 and	 Figure	 4.18	 how	 SAP	 provides
separate	 totals	 for	each	of	 the	currency	keys	associated	with	 the	column	we’ve
summed:	one	 total	 for	bookings	stored	 in	Australian	dollars	 (AUD),	another	 total
for	bookings	stored	in	British	pounds	(GBP).

4.5.1			Function	module
To	move	totals	to	the	top	of	the	ALV	display,	fill	the	TOTALS_BEFORE_ITEMS	field	of	the
layout	structure	with	X	as	shown	in	Figure	4.17.

Figure	4.16:	Example	of	totals	on	top	(FM)

Figure	4.17:	Enable	totals	on	top	feature	(FM)

4.5.2			ALV	control	framework
To	move	totals	to	the	top	of	the	ALV	display,	fill	the	TOTALS_BEF	 field	of	the	layout

structure	with	X	as	shown	in	Figure	4.19.

Figure	4.18:	Example	of	totals	on	top	(CF)

Figure	4.19:	Enable	totals	on	top	feature	(CF)

4.6			Displaying	a	title	at	the	top
You	 can	 control	 the	 70-character	 title	 displayed	 at	 the	 top	 of	 your	 ALV	 screen
using	a	layout	feature	(Figure	4.20	and	Figure	4.25).	You	can	provide	information
there	that	will	be	meaningful	to	the	business	user	(and	at	the	same	time	helpful	to
developers	and	testers).	For	instance,	the	title	can	be	used	to	differentiate	periodic
runs	(like	quarterly)	from	ad	hoc	runs	or	can	be	used	to	denote	the	SAP	system
used	(SY-SYSID).

For	the	training	scenario,	we’ll	imagine	that	the	owner	of	multiple	travel	agencies
wants	 to	see	 the	data	 two	different	ways:	with	and	without	her	 recent	Australian
acquisition,	Hot	Socks	Travel.	We	 can	manage	 this	 several	ways,	 but	 let’s	 also
imagine	 that	 the	person	 running	 these	 reports	 is	using	selection	screen	variants
(SY-SLSET)	 and	 has	 been	 using	 a	 naming	 convention	 suffix	 of	 _Z	 to	 denote	 the
previous	version	of	the	selection	screen	variant.

4.6.1			Function	module
By	default,	 the	system	value	SY-TITLE	appears	at	 the	top	of	 the	screen	when	you
run	 your	 function	module	 program.	 The	 default	 title	 for	 the	 program	was	 taken
from	the	attributes	screen	(Figure	4.16):	ALV	Function	Module	(Layout	Changes).
To	provide	a	custom	and	more	dynamic	title	(Figure	4.20),	use	the	layout	feature
called	WINDOW_TITLEBAR.

Figure	4.20:	Example	of	custom	title	(FM)

Add	a	variable	to	your	program	to	contain	the	custom	text	(Figure	4.21).

Figure	4.21:	Variable	for	new	custom	title	(FM)

Create	a	new	subroutine	ZF_START	to	contain	the	logic	for	this	one-time	population
of	the	title	variable	(Figure	4.22).

Figure	4.22:	New	subroutine	for	one-time	population	(FM)

Fill	 the	 variable	 with	 the	 desired	 text.	 In	 the	 example	 in	 Figure	 4.23,	 the	 title
begins	 with	 static	 text	 (Airline	 Bookings:)	 followed	 by	 the	 variant	 name.	 If	 the
variant	 name	 contains	 the	 _Z	 naming	 convention	 described	 in	 the	 training
exercise,	more	static	text	(previous	data	view)	is	appended	to	signify	that	the	older
variant	content	was	used	to	select	 the	data.	 (This	example	shows	that	 titles	can
be	 built	 during	 program	 execution;	 it	 is	 not	 a	 recommendation	 of	 this	 particular
naming	convention.)

Figure	4.23:	Fill	the	variable	for	the	title	(FM)

Text	symbols

As	a	best	practice	to	support	language	flexibility,	store	static	texts
on	the	text	symbols	tab	of	the	program’s	Text	Elements	area.	You
can	use	forward	navigation	for	this	by	double-clicking	on	the	text,
then	 clicking	 the	SAVE	 and	ACTIVATE	 buttons.	 This	 technique	 will

add	 the	number	of	 the	 text	 symbol	 to	your	 source	code	as	shown	 in	Figure
4.23,	in	this	example	(001)	and	(002).

To	display	the	custom	title	on	the	ALV	screen,	fill	the	WINDOW_TITLEBAR	field	of	the
layout	structure	with	the	variable	as	shown	in	Figure	4.24.

Figure	4.24:	Fill	the	variable	for	the	title	(FM)

4.6.2			ALV	control	framework

By	 default,	 there	 is	 no	 title	 above	 the	 column	 headings	when	 you	 run	 the	 ALV
control	 framework	program	 (Figure	4.18).	To	provide	a	custom	 title	as	shown	 in
Figure	4.25,	use	the	layout	feature	called	GRID_TITLE.

Figure	4.25:	Example	of	custom	title	(CF)

Add	a	variable	to	your	program	to	contain	the	custom	text	(Figure	4.26).

Figure	4.26:	Variable	for	new	custom	title	(CF)

Create	a	new	subroutine	ZF_START	to	contain	the	logic	for	this	one-time	population
of	the	title	variable	(Figure	4.27).

Figure	4.27:	New	subroutine	for	one-time	population	(CF)

Fill	 the	 variable	 with	 the	 desired	 text.	 In	 the	 example	 in	 Figure	 4.28,	 the	 title
begins	 with	 static	 text	 (Airline	 Bookings:)	 followed	 by	 the	 variant	 name.	 If	 the
variant	 name	 contains	 the	 _Z	 naming	 convention	 described	 in	 the	 training
exercise,	more	static	text	(previous	data	view)	is	appended	to	signify	that	the	older
variant	content	was	used	to	select	 the	data.	 (This	example	shows	that	 titles	can
be	 built	 during	 program	 execution;	 it	 is	 not	 a	 recommendation	 of	 this	 particular
naming	convention.)

Figure	4.28:	Fill	the	variable	for	the	title	(CF)

Text	symbols

As	a	best	practice	to	support	language	flexibility,	store	static	texts
on	the	text	symbols	tab	of	the	program’s	text	elements	area.	You
can	use	forward	navigation	for	this	by	double-clicking	on	the	text,
then	 clicking	 the	SAVE	 and	ACTIVATE	 buttons.	 This	 technique	 will

add	 the	number	of	 the	 text	 symbol	 to	your	 source	code	as	shown	 in	Figure
4.28,	in	this	example	(001)	and	(002).

To	display	the	custom	title	on	the	ALV	screen,	fill	the	GRID_TITLE	field	of	the	layout
structure	with	the	variable	as	shown	in	Figure	4.29.

Figure	4.29:	Enable	custom	title	(CF)

4.7			Previewing	layout	features
You	can	preview	some	layout	features	prior	to	coding	them	by	executing	any	ALV
program,	 then	 clicking	 on	 the	 CHANGE	 LAYOUT	 button	 shown	 in	 Figure	 4.30	 and
Figure	 4.31.	 This	 is	 handy	 for	 demonstrating	 the	 behavior	 to	 those	 writing	 the
program	specification	and	can	help	you	identify	the	structure	component	you	need
to	populate	to	enable	one	of	these	features	by	default.

Figure	4.30:	Layout	features	in	change	layout	(FM)

One	 additional	 feature	 is	 available	 to	 the	 user	 in	 the	 ALV	 control	 framework
(Figure	4.31):	WITH	SMALL	HEADING.

Figure	4.31:	Layout	features	in	change	layout	(CF)

4.8			Summary
In	 this	 chapter,	 you	 saw	 how	 layout	 features	 affect	 the	 overall	 appearance	 and
behavior	of	the	ALV	display.	You	added	several	lines	of	code	to	both	types	of	SAP
List	 Viewer	 programs	 covered	 in	 this	 book,	 then	 you	 populated	 the	 appropriate
predefined	structure	field	to	enable	several	layout	features.

Even	though	the	syntax	varies	by	SAP	List	Viewer	type,	the	coding	is	very	similar.

Key	points:

Shading	alternate	rows
Optimizing	column	widths
Putting	totals	at	the	top	of	the	report
Adding	a	title
Previewing	layout	features

5			Adding	sort	features	to	an	ALV
program
Just	as	you	can	enable	various	layout	features	prior	to	displaying	the	SAP
List	Viewer	output	 to	 the	user,	you	can	enable	sort	 features	 that	 influence
the	 initial	 display.	 Grouping	 and	 subtotaling	 are	 also	 controlled	 by	 the
settings	passed	in	the	sort	table.

5.1			Training	scenario
We’ll	continue	working	with	the	travel	agency	scenario	described	in	Chapter	4.1.

Copy	your	in-progress	program	before	continuing

In	order	to	better	compare	the	default	sort	behavior	of	your	earlier
program	to	the	sort-related	code	you’ll	be	adding	in	this	chapter,
consider	 copying	 your	 earlier	 program	 now	 (with	 all	 its
components	such	as	saved	variants).	Save	and	activate	changes

as	you	go.	If	you	need	to	recreate	the	selection	screen	variant,	refer	to	the	tip
in	Chapter	 4.1.	 (I	 called	my	 program	 copies	 ZKK_ALV_FM_LAYOUT_SORT
and	ZKK_ALV_CTRLFW_LAYOUT_SORT.)

Your	 program’s	 internal	 table	 of	 selected	 data	 includes	 three	 currency	 keys
(CURRENCY,	 FORCURKEY,	 and	 LOCCURKEY).	 The	 first	 of	 these	 is	 the	 currency	 key
associated	with	each	 travel	 agency.	There	 is	 a	one-to-one	 relationship	between
the	 travel	 agency	 and	 the	 value	 in	 the	 CURRENCY	 field.	 It	 was	 selected	 from	 the
table	 of	 travel	 agency	 information	 (STRAVELAG)	 and	 is	 considered	master	 data.	 A
travel	agency’s	currency	key	rarely	changes,	but	it	sometimes	does.	An	example
of	this	would	be	a	country	switching	to	or	from	the	Euro.

To	simplify	the	definition	of	groups	for	subtotals,	you	will	move	the	travel	agency
CURRENCY	field	from	the	initial	display	of	the	transactional	report,	but	will	retain	it	in
the	 ALV.	 To	 hide	 the	 CURRENCY	 field,	 add	 the	 NO_OUT	 setting	 to	 the	 field	 catalog
table	(Chapter	6.1).

The	 FORCURKEY	 and	 the	 LOCCURKEY	 currency	 keys,	 on	 the	 other	 hand,	 are
transactional	 data.	 Because	 you	 aligned	 these	 two	 currency	 keys	 with	 the
appropriate	amount	field	(FORCURAM,	LOCCURAM)	using	the	CFIELDNAME	setting	in	the
field	 catalog	 (Chapter	 2.6	 and	 Chapter	 3.6),	 totals	 and	 subtotals	 will	 be
automatically	grouped	by	currency	key.

5.2			Sort	features
Sort	 features	 affect	 the	 order	 of	 the	 records	 displayed,	 how	 the	 records	 are
grouped,	and	how	subtotals	are	shown.

Record	order	is	controlled	by	the	sort	table.
Column	order	is	controlled	by	the	field	catalog	table.

Use	of	the	sort	table	is	optional.	If	you	don’t	pass	grouping	instructions	using	the
sort	 table,	 the	program	will	display	only	grand	totals	when	the	user	highlights	an
amount	column	and	clicks	 the	TOTAL	button.	To	provide	additional	 insights	 to	 the
user	 in	 the	 training	 scenario,	 you	will	 pass	a	 sort	 table	 that	 contains	groups	 for
subtotals.

Display	totals	on	initial	display

See	 Chapter	 6.2	 to	 see	 how	 to	 display	 totals	 on	 initial	 display
(without	user	action)	using	the	DO_SUM	feature	in	the	field	catalog.

Do	not	pass	‘X’	as	the	value	for	GROUP	in	sort	table

Valid	GROUP	 values	 include	UL	 (underline)	and	 *	 (page	 feed	with
underline),	interchangeable	for	many	programs.	Avoid	passing	an
invalid	value	such	as	‘X’	in	the	GROUP	field	of	the	sort	table.

Pass	explicit	sort	direction	values	in	sort	table

Sort	 direction	 is	 an	 optional	 field	 in	 the	 sort	 table.	 For	 ease	 of
support	 and	 assurance	 of	 consistent	 behavior	 over	 time,	 do
include	the	appropriate	UP	or	DOWN	parameter	for	sorted	fields
in	the	sort	table.

As	with	the	layout	features,	there	are	three	elements	to	set	up	in	your	program	in
order	to	use	the	sort	features:

Declare	an	additional	table
Create	a	subroutine	to	populate	the	table

Pass	the	table	to	the	function	module	or	ALV	control	framework	method

5.2.1			Function	module
For	 programs	using	 the	 function	module	 technique	described	 in	Chapter	2,	 first
add	a	sort	table	based	on	the	type	SLIS_T_SORTINFO_ALV	(Figure	5.1).

Figure	5.1:	Define	the	sort	table	(FM)

View	all	the	available	sort	table	features

Take	 a	 moment	 to	 double-click	 SLIS_T_SORTINFO_ALV.	 Forward
navigation	will	take	you	to	the	definition	where	you	can	see	all	the
options	available	to	you	as	sort	features.	Return	by	clicking	once
on	the	green	BACK	arrow.

Second,	add	a	PERFORM	statement	(Figure	5.2).	In	subroutine	ZF_BUILD_SORT_TABLE,
you	 will	 code	 the	 features	 to	 be	 enabled.	 For	 now,	 double-click	 on
ZF_BUILD_SORT_TABLE	to	add	the	form	and	endform	statements	of	the	subroutine	to
this	program	(Figure	5.9).

Figure	5.2:	Populate	the	sort	table	(FM)

Finally,	include	the	sort	table	GT_SORT	in	the	function	module	call	(Figure	5.3).

Figure	5.3:	Pass	the	sort	table	(FM)

Now	 that	 these	 elements	 have	 been	 added	 to	 your	 program,	 you	 can	 begin
adding	individual	sort	features.	For	programs	that	call	the	REUSE_ALV_GRID_DISPLAY
function	module,	follow	the	“Function	Module”	examples	in	each	sub-section.	The
relevant	figure	captions	are	denoted	(FM).

5.2.2			ALV	control	framework
For	programs	using	the	ALV	control	framework	described	in	Chapter	3,	first	add	a
sort	table	structure	based	on	the	type	LVC_T_SORT	(Figure	5.4).

Figure	5.4:	Define	the	sort	table	(CF)

View	all	the	available	sort	features

Take	 a	 moment	 to	 double-click	 LVC_T_SORT.	 Forward	 navigation
will	 take	you	 to	 the	definition	where	you	can	see	all	 the	options
available	 to	you	as	sort	 features.	Return	by	clicking	once	on	the
green	BACK	arrow.

Second,	add	a	PERFORM	statement	 (Figure	5.5).	 In	subroutine	ZF_BUILD_SORT,	 you
will	 code	 the	 features	 to	 be	 enabled.	 For	 now,	 double-click	 on	 ZF_BUILD_SORT	 to
add	 the	FORM	and	ENDFORM	 statements	 of	 the	 subroutine	 to	 this	 program	 (Figure

5.12).

Figure	5.5:	Populate	the	sort	table	(CF)

Finally,	 include	 the	 sort	 table	GT_SORT	 in	 the	method	 call	 in	 the	 ZM_STATUS_9100
module	(Figure	5.6).

Figure	5.6:	Pass	the	sort	table	(CF)

Now	 that	 these	 elements	 have	 been	 added	 to	 your	 program,	 you	 can	 begin
adding	the	individual	sort	features.	Follow	the	“ALV	control	framework”	examples
in	 each	 sub-section	 for	 an	ALV	 control	 framework	 program.	 The	 relevant	 figure
captions	are	denoted	(CF).

5.3			Configuring	a	sort	group
For	 the	 first	 sort	 example,	 you’ll	 group	 the	 agency	 number	 (AGENCYNUM)	 and
agency	name	(NAME)	together,	sorting	by	agency	number.

5.3.1			Function	module
With	the	sort	 table	values	passed	in	Figure	5.9,	 the	data	 in	the	cells	of	 this	two-
column	group	will	merge	as	shown	in	Figure	5.7	instead	of	repeating	on	every	line
as	they	did	in	Figure	4.12.	All	fields	of	the	group	must	be	specified	in	the	sort	table
for	the	cell	merge	to	act	on	all	the	columns	of	the	group	you	have	defined.

Figure	5.7:	Group	defined	in	sort	table,	before	user	action	(FM)

When	 the	 user	 selects	 the	 first	 amount	 column	 and	 clicks	 the	 TOTAL	 button,
subtotals	and	totals	are	displayed	(Figure	5.8).

Figure	5.8:	Group	defined	in	sort	table,	after	user	action	(FM)

For	both	fields	in	Figure	5.9,	provide:

SPOS:	sort	position,	can	be	incremented	rather	than	static	(for	instance,
LV_SPOS	=	LV_SPOS	+	1)
FIELDNAME:	from	the	internal	table
TABNAME:	the	internal	table	name

For	field(s)	to	be	sorted,	provide:

UP	or	DOWN:	ascending	or	descending	sort	direction

Because	there	 is	a	one-to-one	relationship	between	the	agency	number	and	the
agency	name,	we	will	only	sort	by	AGENCYNUM.

Figure	5.9:	Define	group	for	subtotals	(FM)

For	the	final	field	of	the	group	(also	known	as	the	control	break),	provide:

GROUP:	either	UL	(underline)	or	*	(page	feed)
SUBTOT:	level	at	which	the	subtotal	will	be	provided
EXPA:	expandable,	groups	are	closed	when	totaled	(Figure	5.8)	then	can	be
expanded	individually	to	view	detail	records

5.3.2			ALV	control	framework
With	the	sort	table	values	passed	in	Figure	5.12,	the	data	in	the	cells	of	this	two-
column	group	will	merge	as	shown	 in	Figure	5.10	 instead	of	 repeating	on	every
line	as	they	did	in	Figure	4.14.	All	fields	of	the	group	must	be	specified	in	the	sort
table	for	the	cell	merge	to	act	on	all	the	columns	of	the	group.

Figure	5.10:	Group	defined	in	sort	table,	before	user	action	(CF)

When	 the	 user	 selects	 the	 first	 amount	 column	 and	 clicks	 the	 TOTAL	 button,
subtotals	and	totals	are	displayed	(Figure	5.11).

Figure	5.11:	Group	defined	in	sort	table,	after	user	action	(CF)

For	both	fields	in	Figure	5.12,	provide:

SPOS:	sort	position,	can	be	incremented	rather	than	static	(for	instance,
LV_SPOS	=	LV_SPOS	+	1)
FIELDNAME:	from	the	internal	table

For	field(s)	to	be	sorted,	provide:

UP	or	DOWN:	ascending	or	descending	sort	direction

Because	there	 is	a	one-to-one	relationship	between	the	agency	number	and	the
agency	name,	we	will	only	sort	by	AGENCYNUM.

Figure	5.12:	Define	group	for	subtotals	(CF)

For	the	final	field	of	the	group	(also	known	as	the	control	break),	provide:

GROUP:	either	UL	(underline)	or	*	(page	feed)
SUBTOT:	level	at	which	the	subtotal	will	be	provided
EXPA:	expandable,	groups	are	closed	when	totaled	(Figure	5.11)	then	can	be
expanded	individually	to	view	detail	records

5.4			Changing	the	sort	field	in	a	sort	group
Suppose	you	need	to	display	the	table	in	a	different	order,	sorted	by	agency	name
instead	of	agency	number.	Without	changing	the	sort	order	or	the	field	order	in	the
internal	table,	change	the	output	using	the	ALV	sort	table.

5.4.1			Function	module
With	the	sort	table	values	passed	in	Figure	5.15,	the	data	in	the	cells	of	this	two-
column	group	will	merge	as	shown	 in	Figure	5.13	 instead	of	 repeating	on	every
line	as	they	did	in	Figure	4.12.	All	fields	of	the	group	must	be	specified	in	the	sort
table	for	the	cell	merge	to	act	on	all	the	columns	of	the	group.

Figure	5.13:	Group	defined	in	sort	table,	before	user	action	(FM)

When	 the	 user	 selects	 the	 first	 amount	 column	 and	 clicks	 the	 TOTAL	 button,
subtotals	and	totals	are	displayed	(Figure	5.14).

Figure	5.14:	Group	defined	in	sort	table,	after	user	action	(FM)

For	both	fields	in	Figure	5.15,	provide:

SPOS:	sort	position,	can	be	incremented	rather	than	static	(for	instance,
LV_SPOS	=	LV_SPOS	+	1)
FIELDNAME:	from	the	internal	table
TABNAME:	the	internal	table	name

For	field(s)	to	be	sorted,	provide:

UP	or	DOWN:	ascending	or	descending	sort	direction

Because	 there	 is	 a	 one-to-one	 relationship	 between	 the	 agency	 name	 and	 the
agency	number,	we	will	only	sort	by	NAME.

Figure	5.15:	Define	group	for	subtotals	(FM)

For	the	final	field	of	the	group	(also	known	as	the	control	break),	provide:

GROUP:	either	UL	(underline)	or	*	(page	feed	with	underline)
SUBTOT:	X.	level	at	which	the	subtotal	will	be	provided
EXPA:	expandable,	groups	are	collapsed	when	totaled	(Figure	5.14)	then	can
be	expanded	individually	to	view	detail	records

5.4.2			ALV	control	framework
With	the	sort	table	values	passed	in	Figure	5.18,	the	data	in	the	cells	of	this	two-
column	group	will	merge	as	shown	 in	Figure	5.16	 instead	of	 repeating	on	every
line	as	they	did	in	Figure	4.14.	All	fields	of	the	group	must	be	specified	in	the	sort
table	for	the	cell	merge	to	act	on	all	the	columns	of	the	group.

Figure	5.16:	Group	defined	in	sort	table,	before	user	action	(CF)

When	 the	 user	 selects	 the	 first	 amount	 column	 and	 clicks	 the	 TOTAL	 button,
subtotals	and	totals	are	displayed	(Figure	5.17).

Figure	5.17:	Group	defined	in	sort	table,	after	user	action	(CF)

For	both	fields	in	Figure	5.18,	provide:

SPOS:	sort	position,	can	be	incremented	rather	than	static	(for	instance,
lv_spos	=	lv_spos	+	1)
FIELDNAME:	from	the	internal	table

For	field(s)	to	be	sorted,	provide:

UP	or	DOWN:	ascending	or	descending	sort	direction

Because	 there	 is	 a	 one-to-one	 relationship	 between	 the	 agency	 name	 and	 the
agency	number,	we	will	only	sort	by	NAME.

Figure	5.18:	Define	group	for	subtotals	(CF)

For	the	final	field	of	the	group	(also	known	as	the	control	break),	provide:

GROUP:	either	UL	(underline)	or	*	(page	feed	with	underline)
SUBTOT:	X,	level	at	which	the	subtotal	will	be	provided
EXPA:	expandable,	groups	are	collapsed	when	totaled	(Figure	5.17)	then	can
be	expanded	individually	to	view	detail	records

5.5			Changing	column	order	to	reflect	sort	order
Generally,	 it	 is	 a	 best	 practice	 to	 display	 data	with	 the	 sorted	 columns	 ordered
from	 left	 to	 right.	 In	 Chapter	 5.4,	 you	 changed	 the	 program	 to	 output	 the	 ALV
records	 in	 ascending	 order	 by	 agency	 name	 instead	 of	 by	 agency	 number.	 To
visually	reinforce	this	sort	order	for	the	user,	you	will	now	change	the	field	catalog
so	that	NAME	is	output	to	the	left	of	AGENCYNUM.

5.5.1			Function	module
The	 original	 sort	 and	 column	 order	 is	 shown	 in	 Figure	 5.8.	 The	 revised	 output,
reflecting	the	new	agency	name	sort	order,	is	shown	in	Figure	5.19.

Figure	5.19:	Sorted	column	moved	to	the	left	(FM)

Since	 the	 field	catalog	controls	column	order,	 the	change	 is	made	 there.	Simply
change	the	order	of	the	two	fields	(Figure	5.20).

Figure	5.20:	Changing	the	order	of	the	columns	(FM)

Changing	column	order	using	COL_POS

You	 can	 also	 change	 column	 order	 by	 populating	 an	 explicit
number	in	the	COL_POS	field	for	each	record	included	in	your	field
catalog.

If	you	have	not	yet	hidden	the	travel	agency	CURRENCY	field,	consider	doing	so	now
with	the	NO_OUT	setting	(Figure	5.20).

5.5.2			ALV	control	framework
The	original	sort	and	column	order	 is	shown	 in	Figure	5.11.	The	 revised	output,
reflecting	the	new	agency	name	sort	order,	is	shown	in	Figure	5.21.

Figure	5.21:	Sorted	column	moved	to	the	left	(CF)

Since	 the	 field	catalog	controls	column	order,	 the	change	 is	made	 there.	Simply
change	the	order	of	the	two	fields	(Figure	5.22).

Figure	5.22:	Changing	the	order	of	the	columns	(CF)

Changing	column	order	using	COL_POS

You	 can	 also	 change	 column	 order	 by	 populating	 an	 explicit
number	in	the	COL_POS	field	for	each	record	included	in	your	field
catalog.

If	you	have	not	yet	hidden	the	travel	agency	CURRENCY	field,	consider	doing	so	now
with	the	NO_OUT	setting	(Figure	5.22).

5.6			Configuring	a	two-level	sort
Sometimes	 a	 single-level	 subtotal	 is	 adequate,	 but	 often	 data	 can	 be	 grouped
multiple	ways	and	the	ability	to	view	subtotals	across	multiple	levels	is	desirable.

The	training	scenario	ALV	program	currently	provides	a	subtotal	by	travel	agency
and	currency-specific	 totals	 for	all	 the	agencies	specified	 in	 the	selection	screen
(Figure	 5.19	 and	Figure	 5.21).	You’ll	 now	add	 a	 subtotal	within	 each	 agency	 to
show	the	amount	of	income	by	airline.

5.6.1			Function	module
The	 field	 that	provides	 the	desired	subtotal	by	airline	 is	 the	 third	column	of	your
output	table:	CARRID	(labeled	ID	in	Figure	5.23).	Comparing	the	single-level	sort	of
Figure	5.13	to	the	two-level	sort	of	Figure	5.23,	you’ll	notice	that	the	third	column
is	now	displayed	with	cell	merge.

Figure	5.23:	Second	sort	group	defined,	before	user	action	(FM)

With	the	two-level	sort,	the	user	will	see	airline	subtotals	within	each	travel	agency
when	selecting	an	amount	column	and	clicking	on	the	TOTAL	button	(Figure	5.24).

Figure	5.24:	Second	sort	group	defined,	after	user	action	(FM)

To	 add	 an	 additional	 group	 for	 subtotals	 (Figure	 5.25),	 add	 the	 field(s)	 that
comprise	the	next	group	and	provide:

SPOS:	sort	position,	can	be	incremented	rather	than	static	(for	instance,
lv_spos	=	lv_spos	+	1)
FIELDNAME:	from	the	internal	table
TABNAME:	the	internal	table	name

For	field(s)	to	be	sorted,	provide:

UP	or	DOWN:	ascending	or	descending	sort	direction

For	the	final	field	of	each	group,	provide:

GROUP:	either	UL	(underline)	or	*	(page	feed	with	underline)

For	the	final	field	of	the	final	group,	provide:

SUBTOT:	X,	level	at	which	the	subtotal	will	be	provided
EXPA:	expandable,	groups	are	collapsed	when	totaled	(Figure	5.24)	then	can
be	expanded	individually	to	view	detail	records

Figure	5.25:	Defining	a	second	group	for	subtotals	(FM)

Because	AGENCYNUM	 is	 no	 longer	 part	 of	 the	 last	 group	 defined,	 the	 SUBTOT	 and
EXPA	settings	move	from	AGENCYNUM	 to	CARRID	 (Figure	5.25).	AGENCYNUM	 is	still	 the
last	 field	 of	 a	 group	 so	 it	 retains	 its	 GROUP	 setting	 for	 inclusion	 in	 the
NAME/AGENCYNUM	group	subtotal.

5.6.2			ALV	control	framework
The	 field	 that	provides	 the	desired	subtotal	by	airline	 is	 the	 third	column	of	your
output	table:	CARRID	(labeled	ID	in	Figure	5.26).	Comparing	the	single-level	sort	of
Figure	5.16	to	the	two-level	sort	of	Figure	5.26,	you’ll	notice	that	the	third	column
is	now	displayed	with	cell	merge.

Figure	5.26:	Second	sort	group	defined,	before	user	action	(CF)

With	the	two-level	sort,	the	user	will	see	airline	subtotals	within	each	travel	agency
when	selecting	an	amount	column	and	clicking	on	the	TOTAL	button	(Figure	5.27).

Figure	5.27:	Second	sort	group	defined,	after	user	action	(CF)

To	 add	 an	 additional	 group	 for	 subtotals	 (Figure	 5.28),	 add	 the	 field(s)	 that
comprise	the	next	group	and	provide:

SPOS:	sort	position,	can	be	incremented	rather	than	static	(for	instance,
lv_spos	=	lv_spos	+	1)
FIELDNAME:	from	the	internal	table

For	field(s)	to	be	sorted,	provide:

UP	or	DOWN:	ascending	or	descending	sort	direction

For	the	final	field	of	each	group,	provide:

GROUP:	either	UL	(underline)	or	*	(page	feed	with	underline)

For	the	final	field	of	the	final	group,	provide:

SUBTOT:	X,	level	at	which	the	subtotal	will	be	provided
EXPA:	expandable,	groups	are	collapsed	when	totaled	(Figure	5.27)	then	can
be	expanded	individually	to	view	detail	records

Figure	5.28:	Defining	a	second	group	for	subtotals	(CF)

Because	AGENCYNUM	 is	 no	 longer	 part	 of	 the	 last	 group	 defined,	 the	 SUBTOT	 and
EXPA	settings	move	from	AGENCYNUM	 to	CARRID	 (Figure	5.28).	AGENCYNUM	 is	still	 the
last	 field	 of	 a	 group	 so	 it	 retains	 its	 GROUP	 setting	 for	 inclusion	 in	 the
NAME/AGENCYNUM	group	subtotal.

5.7			Populating	the	sort	table	from	the	selection	screen
If	desired,	you	can	populate	 the	sort	 table	based	on	a	user	preference	 from	the
selection	 screen.	 For	 this	 exercise,	 you’ll	 provide	 the	 user	with	 a	 choice	 of	 two
subtotal	groups	coded	earlier:

By	agency	name
By	airline	carrier	within	agency

Reorder	columns	to	support	subtotals	options

If	 you	 provide	 a	 subtotal	 option	 that	 would	 be	 better	 supported
visually	 by	 a	 different	 column	 order,	 be	 sure	 to	 add	 an	 IF

statement	 to	 the	 field	 catalog	 to	 provide	 the	 alternative	 column
order.	 In	 this	 section,	both	of	 the	subtotal	 options	begin	with	an

agency	name	sort.	The	agency	name	is	the	leftmost	column	of	the	display	so
the	 column	 order	 in	 the	 field	 catalog	 works	 for	 both	 options.	 If	 we	 were	 to
include	 a	 subtotal	 option	 of	 “by	 airline	 carrier,	 then	 by	 agency	 name”,	 we
would	sort	first	by	CARRID	when	building	the	sort	table	and	would	list	CARRID	as
the	first	field	in	the	field	catalog	as	described	in	Chapter	5.5.

5.7.1			Function	module
The	 selection	 screen	 will	 provide	 the	 user	 with	 a	 choice	 between	 subtotals	 by
agency	or	by	airline	within	each	agency	(Figure	5.29).

Figure	5.29:	Subtotal	options	for	user	selection	(FM)

Add	 the	code	shown	 in	Figure	5.30	 to	create	 the	 radio	buttons	on	 the	selection
screen.

Figure	5.30:	Radio	buttons	for	subtotal	options	(FM)

Provide	new	labels	on	the	selection	screen	by	double-clicking	on	each	TEXT-nnn	in
Figure	5.30	to	navigate	to	the	TEXT	SYMBOLS	tab	(Figure	5.31).	Type	the	text,	save,
and	activate.	Use	the	green	BACK	arrow	to	return	to	your	source	code.

Figure	5.31:	Radio	button	text	symbols	(FM)

Add	 an	 IF	 statement	 to	 the	 ZF_BUILD_SORT_TABLE	 logic	 based	 on	 radio	 button	 1
having	been	chosen.	The	code	 for	 this	choice	(Figure	5.32)	matches	 the	single-
level	sort	previously	coded	(Figure	5.15).

Figure	5.32:	Logic	for	first	subtotal	option	(FM)

For	 the	 ELSE	 portion	 of	 the	 ZF_BUILD_SORT_TABLE	 logic	 based	 on	 radio	 button	 2
having	been	chosen,	add	the	code	shown	in	Figure	5.33.	This	code	matches	the
two-level	sort	previously	coded	(Figure	5.25).

Figure	5.33:	Logic	for	second	subtotal	option	(FM)

Execute	the	program	with	each	of	the	radio	button	choices	to	see	the	difference.	If
you	have	not	yet	added	the	DO_SUM	setting	to	an	amount	field	in	the	field	catalog
(Chapter	6.2),	you	will	need	to	highlight	an	amount	column	in	the	ALV	display	and
click	on	the	TOTAL	button	to	view	the	subtotal.

The	 displays	 with	 subtotals	 should	 match	 Figure	 5.19	 and	 Figure	 5.24,
respectively.

5.7.2			ALV	control	framework
The	 selection	 screen	 will	 provide	 the	 user	 with	 a	 choice	 between	 subtotals	 by
agency	or	by	airline	within	each	agency	(Figure	5.34).

Figure	5.34:	Subtotal	options	for	user	selection	(CF)

Add	 the	code	shown	 in	Figure	5.35	 to	create	 the	 radio	buttons	on	 the	selection
screen.

Figure	5.35:	Radio	buttons	for	subtotal	options	(CF)

Provide	new	labels	on	the	selection	screen	by	double-clicking	on	each	TEXT-nnn	in
Figure	5.35	to	navigate	to	the	TEXT	SYMBOLS	tab	(Figure	5.36).	Type	the	text,	save,

and	activate.	Use	the	green	BACK	arrow	to	return	to	your	source	code.

Figure	5.36:	Radio	button	text	symbols	(CF)

Add	 an	 IF	 statement	 to	 the	 ZF_BUILD_SORT_TABLE	 logic	 based	 on	 radio	 button	 1
having	been	chosen.	The	code	 for	 this	choice	(Figure	5.37)	matches	 the	single-
level	sort	previously	coded	(Figure	5.18).

Figure	5.37:	Logic	for	first	subtotal	option	(CF)

For	 the	 ELSE	 portion	 of	 the	 ZF_BUILD_SORT_TABLE	 logic	 based	 on	 radio	 button	 2
having	been	chosen,	add	the	code	shown	in	Figure	5.38.	This	code	matches	the
two-level	sort	previously	coded	(Figure	5.28).

Figure	5.38:	Logic	for	second	subtotal	option	(CF)

Execute	the	program	with	each	of	the	radio	button	choices	to	see	the	difference.	If
you	have	not	yet	added	the	DO_SUM	setting	to	an	amount	field	in	the	field	catalog
(Chapter	6.2),	you	will	need	to	highlight	an	amount	column	in	the	ALV	display	and
click	on	the	TOTAL	button	to	view	the	subtotal.

The	 displays	 with	 subtotals	 should	 match	 Figure	 5.21	 and	 Figure	 5.27,
respectively.

5.8			Summary
In	 this	 chapter,	 you	 learned	 how	 to	 use	 the	 ALV	 sort	 table	 to	 control	 sorting,
grouping,	 and	 subtotal	 behavior.	 You	 added	 three	 foundational	 lines	 of	 code	 to
both	types	of	SAP	List	Viewer	programs	covered	in	this	book,	then	populated	the
sort	table	to	meet	various	requirements.

Key	points:

Record	order	is	controlled	by	the	sort	table
Column	order	is	controlled	by	the	field	catalog	table
More	than	one	GROUP	can	be	defined	in	the	sort	table
Valid	values	for	GROUP	are	UL	and	*	(not	X)
EXPA	displays	subtotals	with	the	detail	lines	hidden	yet	allows	the	user	to
expand	those	lines	to	see	the	detail
The	field	catalog	setting	NO_OUT	can	be	used	to	hide	nonessential	fields	and
provide	a	simpler	group	for	subtotal	display
The	field	catalog	setting	DO_SUM	can	be	used	to	provide	subtotals	on	initial
display

Best	practices:

Populate	the	GROUP	setting	on	the	“rightmost”	field	of	each	grouping	of	related
fields.
Populate	SUBTOT	and	EXPA	settings	only	on	the	final	group.
Identify	the	currency	key	field	for	each	currency	amount	using	CFIELDNAME
when	populating	the	field	catalog	table.
Identify	the	unit	of	measure	field	for	each	quantity	in	using	QFIELDNAME	when
populating	the	field	catalog	table.

6			Adding	more	features	to	an	ALV
program
In	 this	 chapter,	 you’ll	 add	 even	 more	 features	 to	 the	 two	 types	 of	 ALV
programs.	 Some	 features	 activate	 additional	 functionality.	 Other	 features
configure	 the	 initial	 display	of	data	 so	 the	user	 can	gain	 insight	with	 less
manual	effort.

As	before,	you	may	wish	to	make	a	copy	of	your	in-progress	program	and	variants
now,	 then	 add	 the	 features	 described	 in	 this	 chapter	 to	 the	 new	 copy.	 This	will
allow	you	 to	 compare	previous	behavior	 to	 new	behavior.	Activate	and	 save	as
you	go.	(I	called	my	program	copies	ZKK_ALV_FM_LAYOUT_SORT_MORE	and
ZKK_ALV_CTRLFW_LAYOUT_SORT_MOR.)

6.1			Passing	hidden	columns	of	data
Some	fields	that	are	included	in	ALV	output	can	be	useful	for	troubleshooting,	for
special	 analysis,	 or	 for	 future	 use,	 but	 are	 not	 needed	 by	most	 users.	 For	 the
training	 scenario,	 the	 master	 data	 currency	 key	 associated	 with	 each	 travel
agency	 (CURRENCY)	 can	 be	 hidden	 from	 the	 initial	 display	 of	 data.	 The	 currency
keys	 associated	 with	 the	 two	 transactional	 booking	 amounts	 (FORCURKEY	 and
LOCCURKEY)	are	essential	 for	understanding	and	summing	those	amounts	so	they
must	be	retained.

Users	 of	 the	 ALV	 data	 can	 reveal	 hidden	 columns	 by	 using	 the	 CHANGE	 LAYOUT
button	to	change	the	displayed	columns	(Figure	6.1).

Figure	6.1:	Users	can	re-display	hidden	fields

6.1.1			Function	module
Comparing	Figure	6.2	to	Figure	4.20,	you’ll	see	that	the	currency	column	that	had
appeared	 between	 the	 travel	 agency	 name	 and	 the	 carrier	 code	 is	 no	 longer
present.

Figure	6.2:	Example	of	field	hidden	on	initial	display	(FM)

To	hide	a	 field,	 fill	 the	NO_OUT	 field	of	 the	field	catalog	with	X	as	shown	 in	Figure
6.3.

Figure	6.3:	Value	to	set	for	hidden	field	(FM)

6.1.2			ALV	control	framework
Comparing	Figure	6.4	to	Figure	4.25,	you’ll	see	that	the	currency	column	that	had
appeared	 between	 the	 travel	 agency	 name	 and	 the	 carrier	 code	 is	 no	 longer
present.

Figure	6.4:	Example	of	field	hidden	on	initial	display	(CF)

To	hide	a	 field,	 fill	 the	NO_OUT	 field	of	 the	field	catalog	with	X	as	shown	 in	Figure
6.5.

Figure	6.5:	Value	to	set	for	hidden	field	(CF)

6.2			Displaying	totals	and	subtotals	immediately
In	Chapter	5,	we	first	displayed	the	ALV	data	grouped,	but	unsummed	(Figure	5.7
and	Figure	5.10).	User	action	was	necessary	to	display	totals—an	amount	column
had	 to	 be	 selected	 and	 the	 TOTAL	 button	 had	 to	 be	 clicked	 in	 order	 to	 view	 the
subtotals	(Figure	5.8	and	Figure	5.11).

For	 the	 training	 scenario,	 the	 owner	 of	 the	 Dream	 Travel	 group	 of	 agencies
prefers	 to	 see	 the	 data	 already	 summed	 by	 “Amount	 in	 foreign	 currency”
(FORCURAM),	 the	 amount	 that	 corresponds	 to	 each	 travel	 agency’s	 working
currency.	 You	 can	 provide	 this	 automatic	 summing	 by	 enabling	 a	 setting	 in	 the
field	catalog:	DO_SUM.

“Not	enabling”	is	different	than	disabling

The	DO_SUM	setting	in	the	field	catalog	provides	a	default	behavior
without	disabling	the	ability	of	the	user	to	over-ride	it	after	display.
This	 is	 generally	 desirable,	 supporting	 both	 standardization	 and
flexibility.	 For	 some	 reports,	 however,	 it	 may	 be	 necessary	 to

prevent	 some	user	 actions.	 “Not	 enabling”	 a	 feature	 (by	 omitting	 it	 from	 the
field	 catalog	 or	 by	 passing	 a	 blank	 value)	 may	 not	 be	 sufficient.	 In	 those
situations,	 the	 developer	 should	 look	 for	 an	 SAP-provided	 setting	 in	 the
structure	 that	 will	 truly	 disable	 the	 feature.	 NO_SUM	 is	 an	 example	 of	 a	 field
catalog	 setting	 that	 prevents	 the	 user	 from	 using	 the	 TOTAL	 button	 on	 a
specified	amount	column	(Figure	6.6).

Figure	6.6:	Use	of	no_sum	to	prevent	manual	summing	(FM)

6.2.1			Function	module
Your	 program	 provides	 a	 selection	 screen	 option	 (Figure	 5.29.)	 for	 displaying
subtotals	“By	Agency”	or	“By	Agency,	then	Airline”.	The	desired	result	for	the	“By
Agency”	option	is	shown	in	Figure	6.7.

Figure	6.7:	Automating	the	display	of	totals,	one	level	(FM)

The	desired	result	for	the	“By	Agency,	then	Airline”	option	is	shown	in	Figure	6.8.

Figure	6.8:	Automating	the	display	of	totals,	two	levels	(FM)

The	initial	display	of	subtotals	for	both	of	 these	groupings	(previously	coded	into
the	 sort	 table	 based	 upon	 the	 user	 choice)	 was	 accomplished	 by	 adding	 the
DO_SUM	setting	for	this	amount	field	(FORCURAM)	in	the	field	catalog	(Figure	6.9).

Figure	6.9:	Value	to	set	for	automatic	summing	of	an	amount	field	(FM)

Know	your	data	and	the	user	needs

Take	care	not	to	overdo	the	use	of	DO_SUM.	Identify	the	subtotals
that	 will	 provide	 value	 and	 meet	 user	 requirements.	 In	 Figure
6.10,	 both	 the	 foreign	 currency	 (associated	 with	 the	 travel
agency)	and	the	local	currency	(associated	with	the	airline)	have

been	totaled,	providing	a	confusing	display.

In	Chapter	 5.7,	 you	 learned	 how	 to	 obtain	 user	 preferences	 from	 the	 selection
screen	and	use	 IF	statements	to	manage	which	settings	were	passed	to	the	ALV
function	module.	To	avoid	 the	confusion	of	 two	summed	amounts	 (Figure	6.10),
you	can	provide	the	user	with	the	option	of	displaying	amounts	in	foreign	currency,
local	 currency,	 or	 a	 single	 “report	 currency”	 of	 their	 choice.	 Based	 on	 the	 user
choice,	you	can	add	IF	statements	in	the	field	catalog	subroutine	to	set	DO_SUM	for
the	chosen	amount	field,	and	hide	the	unneeded	amount	field	and	its	associated
currency	key	(Chapter	7.3).

Figure	6.10:	Example	of	excessive	subtotals	(FM)

6.2.2			ALV	control	framework
Your	 program	 provides	 a	 selection	 screen	 option	 (Figure	 5.34)	 for	 displaying
subtotals	“By	Agency”	or	“By	Agency,	then	Airline”.	The	desired	result	for	the	“By
Agency”	option	is	shown	in	Figure	6.11.

Figure	6.11:	Automating	the	display	of	totals,	one	level	(CF)

The	desired	result	for	the	“By	Agency,	then	Airline”	option	is	shown	in	Figure	6.12.

Figure	6.12:	Automating	the	display	of	totals,	two	levels	(CF)

The	initial	display	of	subtotals	for	both	of	 these	groupings	(previously	coded	into
the	 sort	 table	 based	 upon	 the	 user	 choice)	 was	 accomplished	 by	 adding	 the
DO_SUM	setting	for	this	amount	field	(FORCURAM)	in	the	field	catalog	(Figure	6.13).

Figure	6.13:	Value	to	set	for	automatic	summing	of	an	amount	field	(CF)

Know	your	data	and	the	user	needs

Take	care	not	to	overdo	the	use	of	DO_SUM.	Identify	the	subtotals
that	 will	 provide	 value	 and	 meet	 user	 requirements.	 In	 Figure
6.14,	 both	 the	 foreign	 currency	 (associated	 with	 the	 travel
agency)	and	the	local	currency	(associated	with	the	airline)	have

been	totaled,	providing	a	confusing	display.

In	Chapter	 5.7,	 you	 learned	 how	 to	 obtain	 user	 preferences	 from	 the	 selection
screen	and	use	 IF	statements	to	manage	which	settings	were	passed	to	the	ALV
engine.	To	avoid	 the	confusion	of	 two	summed	amounts	 (Figure	6.14),	 you	can
provide	 the	user	with	 the	option	of	displaying	amounts	 in	 foreign	currency,	 local
currency,	or	a	single	“report	currency”	of	their	choice.	Based	on	the	user	choice,
you	 can	 add	 IF	 statements	 in	 the	 field	 catalog	 subroutine	 to	 set	 DO_SUM	 for	 the
chosen	 amount	 field	 and	 hide	 the	 unneeded	 amount	 field	 and	 its	 associated
currency	key	(Chapter	7.3).

Figure	6.14:	Example	of	excessive	subtotals	(CF)

6.3			Adding	record	counts
Using	 two	 different	 techniques,	 record	 counts	 can	 be	 added	 to	 an	 ALV.	 Both
techniques	update	the	totals	if	the	user	applies	a	filter	to	the	displayed	data.

1.			Layout	structure	technique	(the	COUNT	option	will	be	enabled	in	a	menu	or
toolbar	button	dropdown	list,	Figure	6.15	and	Figure	6.27)

Pros:	Users	expose	the	record	counts	to	view	only	if	needed,	no	coding	to
populate	the	count	field	(remains	initial),	no	disabled	options	on	the	dropdown
list
Cons:	Column	heading	is	always	“Count.”	regardless	of	name	you	provide,
requires	user	action	to	expose	it	to	view,	count	field	is	not	populated	for	users
who	export	the	data	to	spreadsheets

2.			Field	catalog	technique	(explicit	count	field	on	each	record,	Figure	6.23	and
Figure	6.34)

Pros:	User	action	is	not	necessary	to	expose	the	record	counts	to	view,	the
count	field	for	every	record	is	populated	with	‘1’	which	may	be	preferred	by
users	who	export	the	data	to	spreadsheets,	column	heading	other	than
“Count.”	can	be	defined
Cons:	Requires	coding	to	populate	the	count	field	for	every	record,	the	COUNT
option	on	the	dropdown	list	remains	disabled

The	 technique	 you	 use	 may	 depend	 upon	 a	 business	 requirement	 or	 user
preference	so	both	will	be	described	here.

6.3.1			Function	module
By	default,	 the	count	 functionality	 is	disabled	 in	 the	menu	at	 the	 top	of	 the	ALV
screen	(Figure	6.15).	Select	EDIT	•	CALCULATE	to	see	this.

Figure	6.15:	Count	menu	option	is	disabled	by	default	(FM)

For	the	layout	structure	count	technique,	you	make	two	changes:

1.	 Add	a	new	integer	field	at	the	end	of	the	internal	table	structure
2.	 Specify	the	new	field	as	a	“count”	field	in	the	layout	structure

After	 those	 two	 code	 changes,	 the	EDIT	 •	CALCULATE	 •	COUNT	menu	 option	 is	 no
longer	disabled	and	record	counts	can	be	displayed	by	the	user	(Figure	6.16).

Figure	6.16:	Record	counts	displayed	by	user	(FM)

When	you	add	the	new	integer	field	to	the	internal	table	structure	type,	place	it	at
the	end	of	 the	structure	(Figure	6.17).	By	doing	so,	you	can	continue	to	use	the
SELECT	statement	coded	earlier.	Even	though	you	will	not	be	populating	this	integer
field,	it	must	be	present	with	this	technique	to	avoid	a	runtime	error	(short	dump).
In	the	example,	it	is	called	“count”,	but	other	names	are	acceptable.

Figure	6.17:	Count	field	added	to	internal	table	structure	(FM)

Next,	pass	the	name	of	this	new	field	in	COUNTFNAME	of	the	layout	structure	(Figure
6.18).	The	text	you	pass	in	single	quotes:

Does	not	have	to	be	“Count”,	but	must	match	the	name	of	the	field	you	added
to	the	internal	table	structure
Is	not	case	sensitive
Is	not	used	for	the	column	label	(COUNT.	will	be	displayed	as	the	column	label
regardless	of	the	name	you	provide)

Figure	6.18:	Specify	the	field	to	be	used	for	menu-driven	record	counts	(FM)

Instead	of	using	 the	menu	path,	 the	user	 can	click	on	 the	CHANGE	 LAYOUT	 button
(Figure	6.19)	to	display	this	new	count	subtotal	which	is	hidden	on	initial	display.

Figure	6.19:	Count	field	is	also	available	in	change	layout	(FM)

If	the	user	of	the	report	applies	filtering	criteria	after	displaying	the	data,	the	count
column	will	reflect	the	number	of	records	matching	the	filter	(Figure	6.20).

Figure	6.20:	Record	counts	after	user	filter	action,	detail	(FM)

For	the	field	catalog	count	technique,	you	make	three	changes:

1.	 Add	a	new	integer	field	at	the	end	of	the	internal	table	structure	(Figure	6.17)
2.	 Add	the	field	to	the	field	catalog
3.	 Populate	the	count	field	on	each	record	in	the	internal	table	with	‘1’

If	you	have	already	added	the	COUNTFNAME	line	of	code	to	the	layout	while	coding
the	first	technique	(Figure	6.18),	comment	it	or	delete	it	now.	You	don’t	need	two
columns	of	record	counts.

Add	the	new	count	field	to	the	field	catalog	(Figure	6.21).	Because	this	field	was
not	selected	from	an	existing	database	table,	you	can’t	reference	an	existing	table

and	field	from	the	data	dictionary.	Supply	short,	medium,	and	long	texts	to	avoid
displaying	 a	 blank	 column	 heading.	 Pass	 ‘I’	 (integer)	 in	 the	 internal	 data	 type
structure	component	INTTYP.	Add	the	familiar	DO_SUM	line	so	that	the	record	counts
display	immediately	at	the	group	levels	predefined	in	the	sort	table.

Figure	6.21:	Adding	a	record	count	to	the	field	catalog	(FM)

Unlike	the	first	technique,	this	technique	requires	that	you	populate	the	COUNT	field
with	‘1’	for	record.	You	can	do	that,	without	looping	through	the	internal	table,	by
using	 a	MODIFY/TRANSPORTING	 command	 (Figure	 6.22).	 The	GS_OUTPUT	 structure	 is
based	on	local	type	LTY_OUTPUT	(Figure	2.3),	but	was	not	referenced	until	now.

Figure	6.22:	Populating	the	count	field	in	the	internal	table	(FM)

The	report	with	record	count	totals	provided	using	the	second	technique	appears

in	Figure	6.23.

Figure	6.23:	Record	counts	display	immediately	(FM)

When	the	detail	records	are	exposed,	you	can	see	the	‘1’	that	you	populated	for
each	table	row	(Figure	6.24).	Compare	this	to	the	detail	records	in	Figure	6.20.

Figure	6.24:	Detail	records	show	count	of	1	(FM)

The	COUNT	option	on	the	EDIT	•	CALCULATE	menu	is	grey	again.	The	CHANGE	LAYOUT
pop-up	 reflects	 the	 label	 you	 provided	 and	 shows	 it	 in	 the	 list	 of	 displayed	 and
summed	columns	(Figure	6.25).

Figure	6.25:	Record	count	is	visible	in	change	layout	(FM)

6.3.2			ALV	control	framework
By	default,	 there	 is	 no	 count	 functionality	 in	 the	 dropdown	 list	 next	 to	 the	 TOTAL
button	(Figure	6.26).

Figure	6.26:	Count	menu	option	is	absent	(CF)

For	the	layout	structure	count	technique,	you	make	two	changes:

1.	 Add	a	new	integer	field	at	the	end	of	the	internal	table	structure
2.	 Specify	the	new	field	as	a	count	field	in	the	layout	structure

After	 those	 two	 code	 changes,	 COUNT	 appears	 on	 the	 dropdown	 list	 next	 to	 the
TOTAL	button	and	record	counts	can	be	displayed	by	the	user	(Figure	6.27).

Figure	6.27:	Record	counts	displayed	by	user	(CF)

When	you	add	the	new	integer	field	to	the	internal	table	structure	type,	place	it	at
the	end	of	 the	structure	(Figure	6.28).	By	doing	so,	you	can	continue	to	use	the
efficient	 SELECT	 statement	 coded	 earlier.	 In	 the	 example,	 it	 is	 called	 “count”,	 but
other	names	are	acceptable.

Figure	6.28:	Count	field	added	to	internal	table	structure	(CF)

Next,	pass	the	name	of	this	new	field	in	COUNTFNAME	of	the	layout	structure	(Figure
6.29).	The	text	you	pass	in	single	quotes:

Does	not	have	to	be	“Count”,	but	must	match	the	name	of	the	field	you	added
to	the	internal	table	structure
Is	not	case	sensitive
Is	not	used	for	the	column	label	(COUNT.	will	be	displayed	as	the	column	label
regardless	of	the	name	you	provide)

Figure	6.29:	Field	to	be	used	for	icon-driven	record	counts	(CF)

Instead	of	using	the	button	dropdown,	the	user	can	click	the	CHANGE	LAYOUT	button
(Figure	6.30)	to	display	this	new	count	subtotal	which	is	hidden	on	initial	display.

Figure	6.30:	Count	field	is	also	available	in	change	layout	(CF)

If	the	user	of	the	report	applies	filtering	criteria	after	displaying	the	data,	the	count
column	 will	 update	 to	 reflect	 the	 number	 of	 records	 matching	 the	 filter	 (Figure
6.31).

Figure	6.31:	Record	counts	after	user	filter	action,	detail	(CF)

For	the	field	catalog	count	technique,	you	make	three	changes:

1.	 Add	a	new	integer	field	at	the	end	of	the	internal	table	structure	(Figure	6.28)
2.	 Add	the	field	to	the	field	catalog
3.	 Populate	the	count	field	for	each	record	in	the	internal	table	with	‘1’

If	you	have	already	added	the	COUNTFNAME	line	of	code	to	the	layout	while	coding
the	first	technique	(Figure	6.29),	comment	it	or	delete	it	now.	You	don’t	need	two
columns	of	record	counts.

Add	the	new	count	field	to	the	field	catalog	as	shown	in	Figure	6.32.	Because	this
field	 was	 not	 selected	 from	 an	 existing	 database	 table,	 you	 won’t	 be	 able	 to
reference	 an	 existing	 table	 and	 field	 from	 the	 data	 dictionary.	 Supply	 short,
medium,	 and	 long	 texts	 to	 avoid	 displaying	 a	 blank	 column	 heading.	 Pass	 ‘I’
(integer)	 in	 the	 internal	 data	 type	 structure	 component	 INTTYP.	 Add	 the	 familiar
DO_SUM	 line	 so	 that	 the	 record	 counts	 display	 immediately	 at	 the	 group	 levels
predefined	in	the	sort	table.

Figure	6.32:	Adding	a	record	count	to	the	field	catalog	(CF)

Unlike	the	first	technique,	this	technique	requires	that	we	populate	the	COUNT	field
with	 ‘1’	 for	 every	 record.	 You	 can	 do	 that,	 without	 looping	 through	 the	 internal
table,	 by	 using	 a	 MODIFY/TRANSPORTING	 command	 (Figure	 6.33).	 The	 GS_OUTPUT
structure	 is	based	on	 local	 type	LTY_OUTPUT	 (Figure	3.3),	but	was	not	 referenced
until	now.

Figure	6.33:	Populating	the	count	field	in	the	internal	table	(CF)

The	 report	 with	 record	 totals	 provided	 using	 the	 second	 technique	 appears	 in
Figure	6.34.

Figure	6.34:	Record	counts	display	immediately	(CF)

When	the	detail	records	are	exposed,	you	can	see	the	‘1’	 that	you	populated	on
each	table	row	(Figure	6.35).	Compare	this	to	the	detail	records	in	Figure	6.31.

Figure	6.35:	Detail	records	show	count	of	1	(CF)

COUNT	no	longer	appears	on	the	dropdown	list	next	to	the	TOTAL	button.	The	CHANGE
LAYOUT	pop-up	reflects	the	label	you	provided	and	shows	it	in	the	list	of	displayed
and	summed	columns	(Figure	6.36).

Figure	6.36:	Record	count	is	visible	in	change	layout	(CF)

6.4			Handling	ALV	report	layout	variants
So	far,	you	have	used	a	number	of	techniques	to	present	the	ALV	report	output	in
exactly	 the	 format	 required	 for	 a	 particular	 training	 scenario	 requirement:	 a
particular	 summarization,	 visible	 counts,	 a	 predefined	 column	 order,	 a	 hidden
column,	zebra-striped	records,	etc.

Once	the	output	is	displayed,	users	can	use	the	standard	ALV	application	toolbar
to	 change	 the	appearance	and	 can	 save	 their	 changes	 to	an	ALV	 report	 layout
variant	for	re-use.	This	is	one	of	the	strengths	of	the	SAP	List	Viewer:	the	flexibility
it	provides	the	user	to	re-format	data	layout	without	additional	coding.

For	 the	training	scenario,	 let’s	 imagine	that	 the	person	running	the	report	 for	 the
owner	of	 the	 travel	 agencies	 known	collectively	as	Dream	Travel	has	created	a
layout	 that	she	uses	for	a	quarterly	export	of	 the	data	to	Microsoft	Excel	(Figure
6.37).	The	cell	merge	and	subtotals	are	absent	from	this	layout.

Figure	6.37:	Custom	variant	with	no	cell	merge,	no	subtotals	(FM,	CF)

Instead	 of	 requiring	 her	 to	 choose	 the	 desired	 layout	after	 initial	 display	 of	 the
data,	we	will	 provide	 a	 parameter	 on	 the	 selection	 screen	 that	will	 allow	 her	 to
override	our	default	layout	with	this	quarterly	export	layout	(Figure	6.38).

Figure	6.38:	Layout	variant	(FM,	CF)

Because	much	of	 the	 coding	 for	 handling	 report	 layout	 variants	 is	 the	 same	 for
both	ALV	techniques	covered	here,	we’ll	only	distinguish	between	the	two	at	 the
very	end	(Chapter	6.4.1	and	Chapter	6.4.2).

To	start,	add	parameter	P_VARI	at	the	end	of	the	selection	screen	definition	(Figure
6.39).	It	is	shown	within	a	new	block	labelled	“ALV	Report	Layout	(optional)”,	but	it
can	be	defined	without	being	part	of	an	on-screen	block.

Figure	6.39:	Selection	screen	parameter	for	layout	variant	(FM,	CF)

Edit,	 save,	 and	 activate	 the	 associated	 selection	 text	 (Figure	 6.40)	 and	 text
symbol	(Figure	6.41).

Figure	6.40:	Text	element	for	the	new	parameter	(FM,	CF)

The	default	text	for	P_VARI	is	“Layout”	(Figure	6.40).	If	you	prefer	a	different	label,
omit	the	checkmark	in	the	dictionary	column	and	provide	your	own	text.

Figure	6.41:	Text	symbol	for	the	new	block’s	frame	title	(FM,	CF)

New	variables	and	structures	must	be	added	to	the	data	declarations	area	(Figure
6.42).

Figure	6.42:	Data	declarations	for	handling	of	layout	variant	(FM,	CF)

Let’s	look	more	closely	at	the	structure	DISVARIANT	(Figure	6.43)	upon	which	we’ve
based	P_VARI,	GS_VARIANT,	and	GS_VARIANT_TEMP.	The	only	 two	components	of	 the
structure	DISVARIANT	 that	you	will	be	 filling	and	passing	 in	 the	ALV	call	are	REPORT
and	VARIANT.

When	 the	 DISVARIANT	 structure	 is	 passed	 with	 VARIANT	 blank,	 the	 ALV	 report	 will
display	 the	 default	 layout	 you	 programmed.	 When	 passed	 with	 a	 valid	 user-
specified	layout	name	in	VARIANT,	the	ALV	report	will	display	as	previously	modified
and	saved	under	that	variant	name.

Figure	6.43:	Disvariant	structure	components	(FM,	CF)

When	 adding	 parameters	 and	 select-options	 to	 a	 selection	 screen,	 it	 is	 a	 best
practice	to	provide	these	features:

Validation	of	the	user-provided	value(s)
Input	help	(F4	function	key)
Help	(F1	function	key)

Many	 features	 are	 provided	 automatically	 when	 we	 reference	 ABAP	 data
dictionary	objects	such	as	DISVARIANT	and	SBOOK-CARRID.	Without	our	having	to	write
additional	 code,	 the	 user	 can	 use	 the	 F1	 function	 key	 on	 the	 selection	 screen
fields	 (“Travel	 Agency	 Number”	 and	 “Airline”)	 to	 see	 their	 definitions	 and
metadata.

We	 didn’t	 take	 time	 earlier	 to	 add	 selection	 screen	 validation	 of	 user-provided
values	 for	 “Travel	 Agency	 Number”	 or	 “Airline”,	 but	 we’ll	 do	 so	 for	 the	 new
parameter	P_VARI.	We’ll	also	add	code	to	display	a	list	of	available	layout	variants
when	 the	user	 presses	 the	F4	 function	 key	or	 clicks	 the	 POSSIBLE	 ENTRIES	 button
next	to	the	LAYOUT	input	field	(Figure	6.44).

Figure	6.44:	List	of	possible	entries	for	the	layout	(FM,	CF)

Global	vs.	user-specific	report	layouts

Layouts	 that	 are	 global	 and	 available	 to	 all	 users	 must	 be
prefaced	by	a	slash	(/)	when	named.	Layouts	that	are	available
only	to	the	user	who	created	them	have	no	leading	slash	in	their
names.	The	values	that	we	pass	in	the	GV_SAVE	variable	can	vary

throughout	the	program,	depending	upon	our	need.

X	indicates	cross-user	(global)	layouts.

U	indicates	user-specific	layouts.

A	indicates	cross-user	(global)	and	user-specific	layouts.

First,	the	validation	logic.	Add	this	code	for	P_VARI	(Figure	6.45)	to	your	program,
after	the	empty	 INITIALIZATION	event	and	before	the	START-OF-SELECTION	event.	If	you
wish,	you	can	create	and	call	a	subroutine	containing	this	logic	rather	than	coding
it	directly	in	the	AT	SELECTION	SCREEN	event.

Figure	6.45:	Validation	logic	for	the	layout	parameter	(FM,	CF)

If	the	user	has	proposed	an	alternate	layout	using	the	P_VARI	parameter,	pass	the
report	 name	 and	 the	 variant	 name	 to	 SAP	 function	 module
REUSE_ALV_VARIANT_EXISTENCE	 (Figure	 6.45).	 If	 the	 parameter	 value	 is	 found,	 the
return	code	(SY-SUBRC)	is	0	and	no	further	action	is	taken.	If	the	parameter	value	is
not	found,	you	want	to	display	a	status	 line	message	informing	the	user	that	the
layout	 variant	 was	 not	 found.	 (Remember	 to	 add	 text	 symbols	 for	 custom
messages	by	double-clicking	on	the	message	text	and	using	forward	navigation	to
save	and	activate	them.)

Next,	 the	 input	 help	 (F4	 function	 key).	 Following	 the	 validation	 logic	 you	 just
added,	add	the	code	shown	in	Figure	6.46.

Figure	6.46:	Input	help	for	the	layout	parameter	(FM,	CF)

To	 display	 a	 list	 of	 all	 variants	 available,	 pass	 the	 GS_VARIANT	 structure	 to	 SAP
function	module	REUSE_ALV_VARIANT_F4	with	only	the	report	name	specified	(Figure
6.46).

The	function	module	displays	the	list,	then	passes	the	name	of	the	user-selected
variant	back	in	the	structure	we’ve	called	GS_VARIANT_TEMP.

The	 code	 following	 the	 function	 module	 call	 (Figure	 6.46)	 addresses	 three
scenarios:

No	layouts	were	found	for	this	program—display	informational	pop-up
message	to	the	user
The	user	selected	a	layout	from	the	possible	entries	list—move	that	layout
name	to	the	selection	screen	parameter
The	user	exited	the	possible	entries	list	without	selecting	a	layout	(GV_EXIT	=
‘X’)—take	no	action

Use	of	“not	released”	SAP	function	modules

Both	 of	 the	 function	 modules	 used	 here
(REUSE_ALV_VARIANT_EXISTENCE	 and	 REUSE_ALV_VARIANT_F4)	 have
been	 released	 by	 SAP	 for	 customer	 development.	 Two	 similar
function	 modules	 (LVC_VARIANT_EXISTENCE_CHECK	 and

LVC_VARIANT_F4)	 are	 “not	 released”	 and	 are	 subject	 to	 change	 or	 removal
without	 warning.	 The	 release	 status	 is	 shown	 on	 every	 function	 module’s
attributes	 tab.	 Given	 the	 choice	 of	 using	 a	 released	 or	 a	 “not	 released”
function	module	in	your	development,	it	is	better	to	use	the	released	function
module.

The	layout	parameter	handling	within	the	selection	screen	is	complete	so	you	can
now	populate	the	structure	to	be	passed	in	the	ALV	call.	In	Chapter	4.6	you	added
a	subroutine	ZF_START	 to	contain	one-time	activities	such	as	customizing	 the	 title
text.	That	subroutine	is	where	you	will	add	the	report	layout	variant	information	to
the	GS_VARIANT	structure	(Figure	6.47).

Figure	6.47:	Populate	the	structure	passed	in	the	ALV	call	(FM,	CF)

Authority-check	for	ALV	report	layout	saving

User	authorization	to	save	global,	user-specific,	or	no	ALV	layouts
is	often	granted	within	security	 roles	using	security	objects	such
as	 S_ALV_LAYO	 or	 S_ALV_LAYR.	 For	 the	 ALV	 call	 in	 our	 example
program,	we	will	pass	‘A’	in	the	GV_SAVE	variable	to	allow	saving	of

all	 layout	 types.	 Another	 approach	 would	 be	 to	 fill	 GV_SAVE	 based	 on	 the
results	of	an	AUTHORITY-CHECK.	For	instance,	you	might	fill	GV_SAVE	with	‘A’	when
the	authority-check	return	code	(SY-SUBRC)	is	0,	otherwise	fill	GV_SAVE	with	‘U’.

A	allows	saving	of	global	and	user-specific	layouts.

U	allows	saving	of	only	user-specific	layouts.

X	allows	saving	of	only	global	layouts.

Leaving	the	field	blank	prevents	any	saving	of	layouts.

6.4.1			Function	module
Two	lines	need	to	be	added	to	the	ALV	call	(Figure	6.48):

1.	 GV_SAVE:	to	pass	the	level	of	layout	saving	authorization	the	user	will	have
after	display	of	the	ALV	report

2.	 GS_VARIANT:	to	pass	either	the	user-specified	layout	name	or	a	blank	for	the
default	layout

Figure	6.48:	ALV	call	with	layout	variant	information	(FM)

6.4.2			ALV	control	framework
Two	lines	need	to	be	added	to	the	ALV	call	(Figure	6.49):

1.	 GV_SAVE:	to	pass	the	level	of	layout	saving	authorization	the	user	will	have
after	display	of	the	ALV	report

2.	 GS_VARIANT:	to	pass	either	the	user-specified	layout	name	or	a	blank	for	the
default	layout

Figure	6.49:	ALV	call	with	layout	variant	information	(CF)

6.5			Adding	a	top_of_page	event	and	a	logo
SAP	 provides	 logic	 for	 various	 SAP	 List	 Viewer	 events	 such	 as	 USER_COMMAND,
CALLER_EXIT,	 and	 TOP_OF_PAGE.	 In	 this	 chapter,	 we’ll	 add	 header	 text	 and	 a	 logo
using	the	TOP_OF_PAGE	event.

Screen	space	trade-offs

The	TOP_OF_PAGE	 event	 takes	up	 space	on	 the	user’s	 screen	 so
care	 should	 be	 taken	 to	 be	 concise.	 If	 the	 information	 is	 more
relevant	 to	 background	 processing	 (for	 spool	 display	 or	 other
distribution),	consider	using	the	TOP_OF_LIST	event	instead.

6.5.1			Function	module
When	done,	the	header	will	appear	between	the	toolbar	and	the	column	headings
(Figure	6.50).

Figure	6.50:	Custom	header	text	with	logo	(FM)

Two	tables	and	a	constant	need	to	be	declared	(Figure	6.51):

1.	 GT_TOP_TEXT:	for	the	lines	of	text
2.	 GT_EVENTS:	for	the	list	of	events
3.	 GC_FORMNAME_TOP:	containing	the	name	of	the	subroutine	containing	our

custom	top_of_page	logic

Figure	6.51:	Data	declarations	for	top_of_page	event	(FM)

No	need	to	create	numbered	text	symbol	for	constants

Constants	 are	 hard-coded	 values	 listed	 in	 the	 data	 area	 of	 the
program	 for	 transparency	and	maintainability.	The	value	 is	used
as	is	within	the	program.	(Forward	navigation	does	not	work	if	you
attempt	 to	add	 the	value	as	a	numbered	 text	symbol	by	double-

clicking	 it.)	Because	 the	value	ZF_TOP_OF_PAGE	 in	Figure	6.51	 is	 the	name	of
the	 subroutine	 in	 our	 program	 and	 would	 never	 be	 translated	 to	 a	 different
language,	there	is	no	need	to	create	a	numbered	text	symbol.

Next,	 create	 the	 ZF_TOP_OF_PAGE	 subroutine	 (Figure	 6.52).	 You	 can	 place	 this
subroutine	anywhere	 in	 the	program	that	 facilitates	a	chronological	 flow.	 (I	put	 it
ahead	of	the	other	subroutines	coded	so	far,	immediately	after	the	main	program
logic.)	You’ll	pass	an	SAP-provided	logo	and	a	table	of	text,	not	yet	populated,	to
function	module	REUSE_ALV_COMMENTARY_WRITE.

Figure	6.52:	Top_of_page	subroutine	(FM)

Add	two	PERFORM	statements	to	the	main	program	logic	area,	before	the	ALV	call
subroutine	(Figure	6.53).

Figure	6.53:	Main	program	section	with	two	new	subroutine	calls	(FM)

The	 first	 of	 the	 two	new	subroutines	 is	 ZF_BUILD_EVENT_TABLE	 (Figure	6.54).	 In	 it,
you	 retrieve	 a	 table	 of	 standard	 events	 using	 function	 module
REUSE_ALV_EVENTS_GET.

Figure	6.54:	Retrieve	and	modify	the	events	table	(FM)

The	 I_LIST_TYPE	 parameter	 value	 in	 the	 function	call	 should	match	 the	 technique
used	 to	 display	 the	 ALV	 output	 (Table	 6.1).	 Since	 this	 program	 calls
REUSE_ALV_GRID_DISPLAY,	retrieve	the	events	for	list	type	4.

List	type Function	module	called	for	ALV	display ALV	type
0 REUSE_ALV_LIST_DISPLAY simple	list
1 REUSE_ALV_HIERSEQ_LIST_DISPLAY hierarchical-sequential	list
2 REUSE_ALV_BLOCK_LIST_APPEND simple	block	list
3 REUSE_ALV_BLOCK_LIST_HS_APPEND hierarchical-sequential	block	list
4 REUSE_ALV_GRID_DISPLAY grid

Table	6.1:	List	types	for	events	retrieval	(FM)

The	 retrieved	 table	of	events	contains	a	blank	 field	 (FORM)	 for	 the	name	of	 your
subroutine.	 The	 new	 ZF_BUILD_EVENT_TABLE	 subroutine	 (Figure	 6.54)	 adds	 the
ZF_TOP_OF_PAGE	constant	to	the	LT_EVENTS	table	(Figure	6.55).

Figure	6.55:	Events	table	with	subroutine	name	populated	(FM)

Now,	create	subroutine	ZF_BUILD_TOP_TEXT_TABLE	(Figure	6.56	and	Figure	6.57)	to
populate	the	table	of	text	lines	to	be	output	at	the	top	of	the	screen	(Figure	6.50)

Use	TYP	=	‘H’	for	bold	larger	font	text	strings	(up	to	60	characters).

Use	TYP	=	‘S’	for	standard	detail	lines	that	consist	of	two	parts:

1.	 Key:	a	smaller	bold	description	like	“Report:”	or	“Date:”	(up	to	10	characters)
2.	 Info:	a	non-bold	text	(up	to	60	characters)

Figure	6.56:	Texts	for	top_of_page	section,	part	1	(FM)

Create	numbered	text	symbols	for	explicit	texts	such	as	“Report:”	and	“Date:”.	Use
system	 values	 (REPID,	 SLSET,	DATUM,	 etc.)	 instead	 of	 hard-coding,	where	 possible
(Figure	6.57).

Figure	6.57:	Texts	for	top_of_page	section,	part	2	(FM)

The	 last	 step	 is	modification	 of	 the	ALV	 function	 call	 to	 include	 the	 new	events
table	(Figure	6.58).

Figure	6.58:	ALV	function	call	with	events	table	(FM)

The	report	displays	as	shown	in	Figure	6.50.

Check	appearance	and	behavior	in	other	formats

When	adding	new	 functionality	 to	a	program,	 it	 is	wise	 to	check
the	 appearance	 and	 behavior	 in	 other	 ALV	 output	 formats
available	 to	 users.	 It	 will	 allow	 you	 to	 speak	 knowledgeably	 if
asked	 and	 can	 help	 you	 avoid	 surprises	 such	 as	 the	 one

described	 in	Chapter	 7.1:	 the	 actual	 variant	 name	 replaced	 by	 an	 alias	 like
&00000N	when	run	in	background	from	transaction	code	se38.

Click	the	button	to	generate	“Excel	in	place”	to	view	the	TOP_OF_PAGE	layout	in	that
format	(Figure	6.59,	window	is	not	maximized	in	this	figure).

Figure	6.59:	Top_of_page	event	with	“Excel	in	place”	(FM)

6.5.2			ALV	control	framework
When	done,	 the	custom	container	will	have	been	split	 into	an	HTML	section	 for
the	header	and	an	ALV	grid	section	(Figure	6.60).	The	HTML	section	on	top	uses
dynamic	document	 functionality,	 including	a	 table	of	 items	 that	can	be	displayed
without	borders	(as	shown)	or	with	borders.

Figure	6.60:	Custom	header	text	with	logo	(CF)

Several	additional	data	declarations	are	needed	(Figure	6.61),	including	a	splitter
container.

Figure	6.61:	Data	declarations	for	the	top_of_page	event	(CF)

An	event	handler	class	must	be	defined	and	 implemented	with	a	method	for	 the
TOP_OF_PAGE	event	(Figure	6.62).

Figure	6.62:	Top_of_page	method	in	handler	class	(CF)

The	 revised	 ZM_STATUS_9100	 module	 (Figure	 6.63)	 begins	 and	 ends	 as	 it	 did
before,	 but	 contains	 logic	 to	 split	 the	 custom	 container	 into	 two	 rows	 (top	 and
bottom).	If	two	side-by-side	sections	were	desired,	you	would	indicate	that	in	the
CREATE	OBJECT	G_SPLITTER	command	by	exporting	rows	=	1	and	columns	=	2.

In	the	two	GET_CONTAINER	method	calls,	you	provide	names	for	the	top	and	bottom
portions	of	the	splitter	container,	G_PARENT_HEADER	and	G_PARENT_REPORT.

Set_row_height

Once	 you	 have	 populated	 the	 HTML	 header	 section	 using	 the
dynamic	 document	 logic	 in	 the	 TOP_OF_PAGE	 subroutine	 and	 you
have	displayed	it,	you	may	find	that	the	default	header	window	is
too	tall	or	 too	short	(vertical	scroll	bar	present).	You	can	use	the

SET_ROW_HEIGHT	 method	 to	 provide	 a	 more	 pleasing	 initial	 display	 (Figure
6.63).	The	user	will	still	be	able	to	resize	the	two	sections	using	a	drag-and-
drop	technique,	if	desired.

Figure	6.63:	Splitter_container	provides	two	sections	(CF)

Continuing	 with	 the	 ZM_STATUS_9100	 changes,	 change	 the	 CREATE	 OBJECT	 GRID1
command	 from	G_CUSTOM_CONTAINER	 to	 the	 new	 destination	 of	 the	 report	 output:
G_PARENT_REPORT	 (Figure	 6.64)	 and	 add	 the	 additional	 logic	 shown.	 Notice	 the
references	to	GRID1,	the	object	of	the	SET_TABLE_FOR_FIRST_DISPLAY	method	call.

Figure	6.64:	Dynamic	document	and	top_of_page	(CF)

Next,	 create	 the	 ZF_TOP_OF_PAGE	 subroutine	 (Figure	 6.65).	 You	 can	 place	 this
subroutine	 anywhere	 in	 the	 program.	 (I	 put	 it	 ahead	 of	 the	 other	 subroutines
coded	 so	 far,	 immediately	 after	 the	main	 program	 logic.)	Declare	 the	 local	 data
items	shown,	then	initialize	G_DYNDOC_ID	by	calling	the	 INITIALIZE_DOCUMENT	method
of	class	CL_DD_DOCUMENT.

An	overall	header	text	“ET	Data	Services”	and	the	EnjoySAP	logo	will	be	the	first
items	displayed	with	a	horizontal	gap	between	them	(Figure	6.65).

Figure	6.65:	Top_of_page	logic,	part	1	(CF)

How	to	view	dynamic	document	formatting	options

To	view	the	many	text	 formatting	options	available,	display	class
CL_DD_AREA	 using	 transaction	 code	 se24,	 then	 click	 on	 the
attributes	tab.	The	values	are	listed	in	the	attributes	column,	and
the	 usage	 is	 found	 in	 the	 description	 column.	 A	 few	 frequently

used	values	are	shown	in	Table	6.2.

method parameter values
set_column_style sap_emphasis STRONG

NORMAL
set_column_style sap_align LEFT

CENTER
RIGHT

set_column_style sap_valign TOP
CENTER
BOTTOM

set_column_style sap_color LIST_KEY
KEY

add_text sap_style HEADING
TABLE_HEADING
KEY
SUCCESS
WARNING

add_text sap_fontsize LARGE
MEDIUM
SMALL

add_text sap_emphasis STRONG	(bold)

EMPHASIS	(italic)

Table	6.2:	Text	formatting	examples	(CF)

Because	 the	 remainder	 of	 the	 header	 information	 consists	 of	 several	 rows	 of
labels	and	values,	a	tabular	approach	works	well	(Figure	6.66).	The	table	column
width	percentages	are	 relative	 to	 the	 table	width,	not	 to	 the	entire	screen	width,
and	do	not	need	to	be	exact.

Use	20%	for	the	labels	in	column	1	and	78%	for	the	values	in	column	3.	Define	an
empty	column	of	2%	for	column	2	to	improve	readability.	If	you	wish,	you	can	use
the	SET_COLUMN_STYLE	method	 for	column	1	 to	bold	 the	 labels	and	 right-align	 the
colons	(Figure	6.66).

Figure	6.66:	Top_of_page	logic,	part	2	(CF)

Add	 the	 header	 information	 in	 columns	 1	 and	 3	 of	 the	 table	 (Figure	 6.67).	 The
variable	 LV_TEXT	 (Figure	 6.65)	 is	 used	 each	 time	 to	 ensure	 that	 the	 data	 is
consistent	with	the	format	required	for	the	ADD_TEXT	method.

Figure	6.67:	Top_of_page	logic,	part	3	(CF)

New_line	vs.	new_row	for	dynamic	document	creation

Use	NEW_LINE	 to	 insert	 space	 between	 elements	 of	 the	 dynamic
document	 (not	 needed	 in	 this	 program).	 Within	 a	 table,	 use
NEW_ROW	to	start	the	new	row	(Figure	6.67	and	Figure	6.68).

Two	 more	 rows	 of	 text	 are	 added	 to	 the	 header	 table	 (Figure	 6.68).	 Create
numbered	 text	 symbols	 for	 explicit	 texts	 like	 “Report:”	 and	 “Date:”.	 Use	 system
values	(REPID,	SLSET,	DATUM,	etc.)	instead	of	hard-coding,	where	possible.

Figure	6.68:	Top_of_page	logic,	part	4	(CF)

The	 final	 part	 of	 the	 ZF_TOP_OF_PAGE	 logic	 is	 the	 calling	 of	 two	 methods:
MERGE_DOCUMENT	and	DISPLAY_DOCUMENT	(Figure	6.69).

Figure	6.69:	Top_of_page	logic,	part	5	(CF)

6.6			Adding	hotspot	logic
It	 is	possible	to	configure	ALV	columns	or	rows	as	hotspots	and	execute	custom
logic	 when	 the	 user	 clicks	 on	 them.	 Hotspots	 and	 user	 command	 logic	 are
overlapping	concepts.	Hotspots	are	used	to	trigger	user	command	logic	when	the
user	clicks	on	a	predefined	area	of	the	data	output.

For	the	training	scenario,	let’s	provide	three	hotspots	in	the	ALV	output.

Travel	agency	name—display	agency	master	data	from	table	STRAVELAG
Agency	number—display	agency	master	data	from	table	STRAVELAG
Flight	number—display	connection	master	data	from	table	SPFLI

Hotspot	for	transaction	calls

A	hotspot	can	be	used	 to	call	a	 transaction	code	when	 the	user
clicks	on	 it.	 In	 the	hotspot	 logic,	set	one	or	more	parameter	 IDs
based	on	field	content	from	the	clicked	record:	set	parameter	id
‘xxx’	 field	 value.	 Next,	 call	 the	 transaction:	 call	 transaction

‘tcode’	and	skip	first	screen.	Include	the	with	authority-check	clause	on
the	call	statement,	if	appropriate.

6.6.1			Function	module
When	detail	records	are	displayed,	the	underline	that	indicates	a	hotspot	is	visible
in	the	detail	row	(Figure	6.70).

Figure	6.70:	Hotspots	on	detail	output	(FM)

When	 summarized	 data	 is	 displayed,	 it	 may	 be	 necessary	 to	 use	 the	 EXPAND
SELECTION	button	to	expose	a	hotspot	(Figure	6.71).

Figure	6.71:	Hotspots	on	summarized	output	(FM)

A	pop-up	window	will	 be	 used	 to	 display	 the	master	 data	 record	 retrieved	 from
table	STRAVELAG	(Figure	6.72).

Figure	6.72:	Travel	agency	data	from	stravelag	in	pop-up	(FM)

A	pop-up	window	will	be	used	to	display	the	master	data	record(s)	retrieved	from
table	SPFLI	(Figure	6.73).

Figure	6.73:	Flight	data	from	spfli	in	pop-up	(FM)

A	new	constant	is	needed	for	the	events	table	population	(Figure	6.74).	To	review
a	previous	event-handling	exercise,	see	Chapter	6.5	(TOP_OF_PAGE	event).

Figure	6.74:	Data	for	hotspot	(user_command)	event	(FM)

In	 the	ZF_BUILD_EVENT_TABLE	 subroutine,	add	 the	constant	 for	 the	new	subroutine
ZF_USER_COMMAND	to	the	LT_EVENTS	table	(Figure	6.75).

Figure	6.75:	Inclusion	of	user_command	subroutine	name	in	events	table	(FM)

The	LT_EVENTS	table	will	include	ZF_USER_COMMAND	in	the	FORM	field	after	execution
of	ZF_BUILD_EVENT_TABLE	(Figure	6.76).

Figure	6.76:	Subroutine	name	added	to	events	table	(FM)

I_callback_user_command	vs.	events	table

Instead	 of	 populating	 the	 subroutine	 names	 in	 the	 events	 table
(Figure	 6.76),	 you	 can	 pass	 them	 directly	 to	 the
REUSE_ALV_GRID_DISPLAY	 function	 module	 by	 using	 the	 optional
parameters:	 I_CALLBACK_USER_COMMAND	 and

I_CALLBACK_TOP_OF_PAGE.	 In	 Chapter	 6.8.1,	 you’ll	 use	 the
I_CALLBACK_PF_STATUS_SET	 parameter	 to	pass	 the	subroutine	name	 instead	of
using	the	events	table.	Both	approaches	are	fine.

Create	a	new	subroutine	called	ZF_USER_COMMAND	with	 two	parameters	based	on
SY-UCOMM	and	SLIS_SELFIELD	(Figure	6.77).	SY-UCOMM	contains	‘&IC1’	when	the	user
clicks	a	hotspot.

The	SLIS_SELFIELD	structure	contains	information	about	where	the	user	clicked;	for
instance,	the	field	name,	the	value	in	the	field,	etc.	(Figure	6.80).

Slis_selfield-tabindex	problematic	with	summarized	output

For	 summarized	 output	 reports	 generated	 with	 the
REUSE_ALV_GRID_DISPLAY	function	module,	the	SLIS_SELFIELD-TABINDEX
value	 is	 sometimes	 0	 instead	 of	 the	 row	 number	 of	 the	 desired
data	 record.	As	 a	 result,	 the	 index	 cannot	 be	 used	 reliably	 in	 a

READ	statement	to	obtain	the	values	in	other	fields	on	the	row	clicked.	A	work-
around	for	this	limitation	is	used	for	the	flight	number	hotspot	(Figure	6.78).

In	 the	 ZF_USER_COMMAND	 subroutine,	 define	 the	 local	 data	 items	 shown	 (Figure
6.77).	Add	an	IF	statement	to	immediately	leave	the	subroutine	if	the	user	clicked
somewhere	 in	a	hotspot	column	that	didn’t	populate	 the	VALUE	component	of	 the
SLIS_SELFIELD	structure.

Using	 CASE	 statements	 allows	 for	 easy	 expansion	 over	 time	 and	 further
modularization.	The	first	CASE	statement	evaluates	the	UCOMM	value	and	provides
logic	for	hotspots	(&IC1).	The	second	CASE	statement	evaluates	the	field	that	was
clicked	 and	 provides	 logic	 for	 displaying	 data	 using	 function	 module
REUSE_ALV_POPUP_TO_SELECT.

Because	there	is	a	one-to-one	relationship	between	the	agency	name,	the	agency
number,	and	the	master	data	record	being	retrieved	from	table	STRAVELAG,	the	pop-
up	 returns	 an	 identical	 single	 record	 regardless	 of	 which	 of	 those	 two	 hotspots
was	clicked	(Figure	6.72).

Two	SELECT	statements	are	shown	for	the	single	record	retrieval	(Figure	6.77):

SELECT	SINGLE…:	(syntax	for	retrieval	from	STRAVELAG	using	key	field	AGENCYNUM)
SELECT…	UP	TO	1	ROWS.	ENDSELECT.:	(syntax	for	retrieval	from	STRAVELAG	using
non-key	field	NAME)

Use	of	asterisk	wildcard	in	select	statements

For	the	training	scenario	hotspot	 logic,	you	will	be	retrieving	and
displaying	all	the	fields	of	the	requested	master	data	record.	It	 is
acceptable	to	use	the	SELECT	*	and	SELECT	SINGLE	*	syntax	for	this.
Follow	your	employer’s	or	client’s	standards	for	SELECT	statements

for	other	situations.

Figure	6.77:	Hotspot	logic,	part	1	(FM)

For	the	flight	number	hotspot	(CONNID),	you	need	to	know	the	airline	(CARRID)	on	the
row	that	the	user	clicked	in	order	to	retrieve	the	specific	master	data	record.	From
the	warning	box	above,	you	know	that	SLIS_SELFIELD-TABINDEX	 is	not	a	reliable	way
to	 identify	 the	 clicked	 row	 in	 a	 summarized	 data	 display	 created	 with	 the
REUSE_ALV_GRID_DISPLAY	function	module.	However,	the	number	of	instances	in	our
training	 database	 in	 which	 the	 same	 flight	 number	 has	 been	 used	 by	 multiple
airlines	is	few	to	none,	making	a	work-around	suitable	(Figure	6.78).	We	will	code
for	multiples	with	 the	awareness	 that	 rarely	will	more	 than	one	 record	appear	 in
the	pop-up	window	(Figure	6.73).

We	can	narrow	the	airlines	to	be	included	in	our	pop-up	by	starting	with	the	data
selected	 by	 the	 user	 from	 the	 selection	 screen	 (GT_OUTPUT).	 Delete	 the	 records
from	a	copy	of	that	table	(LT_OUTPUT_TEMP)	where	the	flight	numbers	(CONNID)	don’t
match	the	hotspot	value	passed	to	the	subroutine.	Sort	and	then	delete	adjacent
duplicates	 to	 reduce	 the	 copied	 table	 to	 one	 record	 per	 airline/flight	 number
combination.	 Select	 the	 relevant	 master	 data	 record(s)	 from	 table	 SPFLI,	 then
display	them	using	the	REUSE_ALV_POPUP_TO_SELECT	function	module	(Figure	6.78).

Figure	6.78:	Hotspot	logic,	part	2	(FM)

To	 enable	 hotspots,	 fill	 the	 HOTSPOT	 field	 of	 the	 field	 catalog	 with	 X	 in	 the
ZF_BUILD_FIELDCATALOG	subroutine	(Figure	6.79).

Figure	6.79:	Field	catalog	additions	for	three	hotspots	(FM)

Alternative	approach	using	fieldcat-key				and	layout-key_hotspot

Instead	 of	 using	 the	 field	 catalog	 HOTSPOT	 functionality	 (Figure
6.79),	you	can	combine	the	field	catalog	option	KEY	with	the	layout
option	KEY_HOTSPOT.

The	full	structure	of	SLIS_SELFIELD	is	shown	in	Figure	6.80.

Figure	6.80:	Slis_selfield	structure	used	with	hotspot	(FM)

6.6.2			ALV	control	framework
When	detail	records	are	displayed,	the	underline	that	indicates	a	hotspot	is	visible
in	the	detail	row	(Figure	6.81).

Figure	6.81:	Hotspots	on	detail	output	(CF)

When	 summarized	 data	 is	 displayed,	 it	 may	 be	 necessary	 to	 use	 the	 EXPAND
SELECTION	button	to	expose	a	hotspot	(Figure	6.82).	Using	your	program,	if	the	user
clicks	on	a	hotspot	cell	in	a	detail	line	(even	if	cell	merging	prevents	the	display	of
the	value	there),	the	desired	action	will	occur.	If	the	user	clicks	on	a	sub-total	line,

a	 pop-up	 message	 will	 appear	 advising	 them	 to	 click	 a	 detail	 line	 cell.	 Other
behavior	can	also	be	coded.

Figure	6.82:	Hotspots	on	summarized	output	(CF)

A	pop-up	window	will	 be	 used	 to	 display	 the	master	 data	 record	 retrieved	 from
table	STRAVELAG	(Figure	6.83).

Figure	6.83:	Travel	agency	data	from	stravelag	in	pop-up	(CF)

A	pop-up	window	will	 be	 used	 to	 display	 the	master	 data	 record	 retrieved	 from
table	SPFLI	 (Figure	6.84).	SAP’s	CL_GUI_ALV_GRID	 class	provides	more	 information
than	does	the	SLIS_SELFIELD	structure	(Figure	6.80)	we	used	in	the	function	module
version	of	 this	program	(Chapter	6.6.1).	Since	we	can	 identify	 the	specific	detail
row	 clicked	 by	 the	 user,	 we	 can	 return	 a	 single	 record	 in	 the	 pop-up	 by	 using
multiple	fields	from	the	record.

Figure	6.84:	Flight	data	from	spfli	in	pop-up	(CF)

For	the	ALV	control	 framework	program,	you	used	an	event	handler	class	rather
than	 an	 events	 table	 (Chapter	 6.5.2).	 Add	 method	 HOTSPOT_CLICK	 to	 the
LCL_EVENT_HANDLER	class	(Figure	6.85).	Two	of	the	available	parameters,	E_ROW_ID
and	E_COLUMN_ID,	will	be	suitable	(Figure	6.90	and	Figure	6.91).

In	method	HOTSPOT_CLICK	(Figure	6.85),	we	evaluate	whether	the	user	has	clicked
on	a	summary	line	(where	E_ROW_ID-ROWTYPE	has	content)	or	a	detail	 line	(where
E_ROW_ID-ROWTYPE	is	initial).

Check	need	for	subroutine	call	prior	to	calling	it

Whenever	possible,	evaluate	whether	conditions	have	been	met
for	 any	 subroutine	 call	 prior	 to	 calling	 it	 rather	 than	 inside	 the
subroutine	itself.	For	the	ALV	control	framework	technique	(Figure
6.85),	 E_ROW_ID-ROWTYPE	 is	 checked	 prior	 to	 performing

ZF_HOTSTPOT_CLICK.	 For	 the	 function	 module	 technique	 (Figure	 6.77),	 the
SLIS_SELFIELD-VALUE	 evaluation	 has	 to	 be	 done	 inside	 ZF_USER_COMMAND
because	 the	 developer	 does	 not	 expressly	 call	 the	 subroutine	 and	 has	 no
opportunity	to	evaluate	before	it	is	executed.

Continuing	with	method	HOTSPOT_CLICK	 (Figure	6.85),	 if	 the	user	has	clicked	on	a
hotspot	cell	on	a	detail	line	(E_ROW_ID-ROWTYPE	 is	initial),	use	the	 INDEX	value	from
E_ROW_ID	to	read	the	output	table.	Pass	the	retrieved	record	and	the	name	of	the
field	clicked	to	a	new	subroutine	called	ZF_HOTSTPOT_CLICK.

Writing	code	in	the	method	vs.	in	a	called	subroutine

You	can	code	the	TOP_OF_PAGE	and	HOTSPOT_CLICK	logic	entirely	in
the	 respective	 method,	 but	 to	 improve	 readability	 and	 simplify
support	where	the	code	is	lengthy,	developers	sometimes	move	it
to	 a	 subroutine	 as	 we’ve	 done	 with	 ZF_TOP_OF_PAGE	 and

ZF_HOTSPOT_CLICK	 in	 the	 ALV	 control	 framework	 program.	 Follow	 your
employer’s	or	client’s	standard	if	provided.

Figure	6.85:	Hotspot_click	method	added	to	handler	class	(CF)

The	 SET	 HANDLER	 command	 for	 the	 new	 event	 must	 be	 added	 to	 module
ZM_STATUS_9100	(Figure	6.86).

Figure	6.86:	Hotspot_click	aligned	with	ALV	grid	(CF)

Next,	create	 the	ZF_HOTSPOT_CLICK	 subroutine	called	 from	method	HOTSTPOT_CLICK
(Figure	6.87).	The	two	parameters	provide	the	output	table	detail	record	retrieved
in	 method	 HOTSPOT_CLICK	 and	 the	 fieldname	 from	 E_COLUMN_ID.	 Define	 the	 local
data	structures	and	the	tables	needed	for	the	REUSE_ALV_POPUP_TO_SELECT	function
module.	 Using	 CASE	 statements	 for	 the	 LS_FIELDNAME	 evaluation	 allows	 for	 easy
expansion	over	time	and	further	modularization.

Because	there	is	a	one-to-one	relationship	between	the	agency	name,	the	agency
number,	and	the	master	data	record	being	retrieved	from	table	STRAVELAG,	the	pop-
up	will	return	an	identical	single	record	regardless	of	which	of	those	two	hotspots
was	clicked	(Figure	6.83).	Since	the	key	for	the	table	read	(STRAVELAG-AGENCYNUM)
is	available	in	the	record	passed	in	LS_OUTPUT,	use	the	SELECT	SINGLE	syntax	(Figure
6.87).

Figure	6.87:	Hotspot_click	logic,	part	1	(CF)

For	 the	 flight	 number	 hotspot	 (CONNID),	 use	 both	 of	 the	 SPFLI	 table	 key	 fields
(CARRID,	CONNID)	 in	 the	 record	 passed	 in	 LS_OUTPUT	 for	 the	 SELECT	 SINGLE	 retrieval
(Figure	6.88)	before	displaying	the	master	data	record	to	the	user	(Figure	6.84).

Figure	6.88:	Hotspot_click	logic,	part	2	(CF)

To	 enable	 the	 hotspots,	 fill	 the	 HOTSPOT	 field	 of	 the	 field	 catalog	 with	 X	 in	 the
ZF_BUILD_FIELDCATALOG	subroutine	(Figure	6.89).

Figure	6.89:	Field	catalog	additions	for	three	hotspots	(CF)

The	CL_GUI_ALV_GRID	structure	E_COLUMN_ID	contains	the	fieldname	for	the	hotspot
(Figure	6.90).

Figure	6.90:	Fieldname	identifies	the	cell	clicked	(CF)

The	 CL_GUI_ALV_GRID	 structure	 E_ROW_ID	 contains	 a	 blank	 rowtype	 when	 the
hotspot	field	is	on	a	detail	line.	The	index	value	can	be	used	to	retrieve	the	entire
output	record	clicked	even	if	the	user	has	filtered	or	re-sorted	the	data	after	initial
display	(Figure	6.91).

Figure	6.91:	Index	for	blank	rowtype	matches	detail	in	table	(CF)

When	the	E_ROW_ID-ROWTYPE	 is	non-blank,	the	index	cannot	be	used	to	retrieve	a
detail	record	(Figure	6.92).

Figure	6.92:	Index	for	summary	line	rowtype	not	suitable	for	table	read	for	detail	record	(CF)

6.7			Excluding	buttons	from	the	ALV	application	toolbar
On	occasion,	you	are	asked	to	remove	buttons	from	the	standard	ALV	application
toolbar.	This	can	be	done	easily.	(In	Chapter	6.8,	you	will	see	how	to	add	toolbar
buttons—a	 more	 complex	 activity	 in	 programs	 using	 an	 ALV	 function	 module
technique.)

6.7.1			Function	module
Two	 buttons	 have	 been	 identified	 for	 removal	 in	 the	 training	 scenario:	 ABC
ANALYSIS	and	GRAPHIC	(Figure	6.93).

Figure	6.93:	Standard	toolbar	showing	unneeded	buttons	(FM)

Identifying	button	function	codes

Since	 the	 function	 codes	 for	 the	 ALV	 buttons	 vary	 by	 ALV
technique,	one	way	 to	obtain	 that	 information	 is	 to	view	 them	 in
the	debugger.	To	activate	the	debugger	after	displaying	the	data,
type	/h	in	the	command	field	at	the	top	of	the	SAP	screen,	press

enter,	then	click	the	button	you	need	to	exclude.

After	the	coding	changes,	the	two	buttons	will	no	longer	appear	(Figure	6.94).

Figure	6.94:	Buttons	no	longer	visible	(FM)

A	new	table	must	be	declared	(Figure	6.95).	Table	type	SLIS_T_EXTAB	 is	based	on
structure	SLIS_EXTAB	which	contains	a	single	field	called	FCODE.

Figure	6.95:	Table	for	function	codes	to	be	excluded	from	display	(FM)

Add	a	new	PERFORM	statement	to	the	main	program	logic	area	to	populate	the	new
table	(Figure	6.96).

Figure	6.96:	Build	table	of	excluded	function	codes	(FM)

Add	the	function	code	of	each	button	to	be	excluded	to	the	FCODE	field	of	the	new
table	(Figure	6.97).

Figure	6.97:	Population	of	function	codes	in	the	table	(FM)

Add	the	table	to	the	function	module	call	(Figure	6.98).

Figure	6.98:	Exclusion	table	is	passed	in	the	ALV	call	(FM)

6.7.2			ALV	control	framework
One	 button	 (DISPLAY	GRAPHIC)	 will	 be	 removed	 for	 this	 training	 scenario	 (Figure
6.99).

Figure	6.99:	Standard	toolbar	showing	unneeded	button	(CF)

Two	ways	to	identify	cl_gui_alv_grid	function	codes

One	way	to	identify	the	function	code	for	an	ALV	button	is	to	step
through	 the	 code	 in	 the	 debugger	 after	 clicking	 the	 button.
Another	way	is	to	check	the	attributes	tab	of	the	CL_GUI_ALV_GRID
class	 (using	 transaction	 code	 se24	 or	 double-clicking

CL_GUI_ALV_GRID	 in	 the	program).	Choose	from	the	 list	attributes	that	have	an
“Associated	 Type”	 of	 UI_FUNC;	 these	 typically	 have	 names	 beginning	 with
MC_FC.

After	the	coding	changes,	the	button	will	no	longer	appear	(Figure	6.100).

Figure	6.100:	Button	no	longer	visible	(CF)

A	new	table	is	declared	(Figure	6.101)	based	on	UI_FUNCTIONS.	It	contains	a	single
field	called	UI_FUNC.

Figure	6.101:	Table	for	function	codes	to	be	excluded	from	the	display	(CF)

Add	a	new	PERFORM	statement	to	the	main	program	logic	area	to	populate	the	new
table	(Figure	6.102).

Figure	6.102:	Build	table	of	excluded	functions	(CF)

Add	 the	 function	 code	 of	 each	 button	 to	 be	 excluded	 to	 the	 table	 using	 the
associated	attribute	name	from	class	CL_GUI_ALV_GRID	(Figure	6.103).	The	function
value	for	“Display	Graphic”	is	MC_FC_GRAPH.

Figure	6.103:	Exclusion	table	populated	(CF)

Add	the	table	to	the	method	call	(Figure	6.104).

Figure	6.104:	Exclusion	table	is	passed	in	the	ALV	call	(CF)

6.8			Adding	buttons	to	the	ALV	application	toolbar
Adding	 buttons	 to	 the	 ALV	 application	 toolbar	 is	 a	 bit	 more	 complex	 than
excluding	 them	 (Chapter	 6.7),	 especially	 if	 you	 are	 using	 the
REUSE_ALV_GRID_DISPLAY	 function	 module	 technique,	 since	 that	 requires	 copying
and	modifying	the	default	GUI	status.

Another	 difference	 between	 the	 ALV	 control	 framework	 and	 the	 ALV	 function
module	 techniques	 is	 apparent	 in	 this	 chapter.	 In	 the	 ALV	 function	 module
program,	 the	 hotspot	 logic	 and	 the	 custom	 button	 logic	 share	 the
ZF_USER_COMMAND	subroutine.	 In	 the	ALV	control	 framework	program,	 the	hotspot
logic	 is	 in	 the	 HOTSPOT_CLICK	 method	 while	 the	 custom	 button	 logic	 is	 in	 the
USER_COMMAND	method	(coupled	with	a	TOOLBAR_ADD	method).

Copy	your	program	before	continuing

This	is	a	good	time	to	copy	your	in-progress	program(s),	making
the	next	changes	in	a	copy.	Save	and	activate,	as	usual.	An	error
during	the	GUI	status	change	exercise	(only	relevant	for	the	ALV
function	 module	 program	 example)	 could	 put	 your	 in-progress

program	at	risk.

In	 the	 training	scenario,	we	have	 identified	a	need	 to	add	a	button	with	an	 icon
image	 to	 the	ALV	application	 toolbar.	 It	will	 use	 the	 icon	named	 ICON_ANNOTATION
with	 a	 text	 label	 that	 reads	 “Edit	 Comment”.	When	 the	 user	 hovers	 the	mouse
over	 the	 new	 button,	 the	 pop-up	 instruction	 will	 say	 “Add	 note	 to	 record”.	 The
function	 code	 will	 be	 ‘NOTE’,	 and	 the	 buttons	 that	 were	 previously	 excluded
(Chapter	6.7)	will	remain	hidden.

How	to	display	a	list	of	all	icons

To	see	all	the	icons	that	SAP	provides,	use	transaction	code	se38
or	 sa38	 to	 run	 the	 program	 called	 SHOWICON	 (Figure	 6.105).	 For
the	ALV	control	framework,	you	will	provide	the	icon	name	in	the
TOOLBAR	 event.	For	 the	REUSE_ALV_GRID_DISPLAY	 program,	 you	will

provide	the	icon	name	during	the	customization	of	the	GUI	status.

Figure	6.105:	SHOWICON	program	shows	each	icon	with	its	image

Logic	 for	 the	 new	button	will	 be	 added	 in	Chapter	 8	 so,	 for	 now,	 a	 placeholder
comment	will	be	shown.

6.8.1			Function	module
After	making	 these	changes,	 the	 toolbar	will	 display	with	 the	new	EDIT	COMMENT

button	and	without	the	ABC	ANALYSIS	and	GRAPHIC	buttons	(Figure	6.106).

Figure	6.106:	New	toolbar	button	(FM)

Before	making	source	code	changes	in	the	function	module	program,	you	need	to
replace	 the	existing	GUI	status	of	 your	program	with	a	 full	 copy	 to	be	modified.
There	are	a	lot	of	steps,	but	it	is	not	complicated.	(By	copying	an	existing	status,
you	 can	 add	 a	 button	 and	 avoid	 having	 to	 re-create	 all	 the	 buttons	 formerly
available.)

How	to	identify	the	default	GUI	status

Numerous	GUI	statuses	can	be	copied	 to	 replace	 the	default	 in
your	 program,	 but	 if	 you	want	 to	 continue	with	 the	 same	 set	 of
buttons	used	so	far,	you	can	obtain	the	details	(the	program	name
and	 GUI	 status	 name)	 using	 the	 ABAP	 debugger.	 To	 do	 this,

display	 your	 ALV	 as	 usual,	 type	 /h	 in	 the	 command	 line,	 then	 click	 on	 any
button	in	the	ALV	application	toolbar.	Write	down	the	program	name	at	the	top
of	the	debugger	screen.	Display	the	value	in	SY-PFKEY	and	write	that	down,	as
well—it	 is	 the	name	of	 the	default	GUI	 status	used	 in	 your	program	 (Figure
6.107).

Figure	6.107:	Program	name	and	GUI	status	name	(FM)

Type	the	program	name	and	status	name	into	the	selection	screen	of	transaction
code	se41	(Menu	Painter),	then	click	on	the	COPY	STATUS	button	(Figure	6.108).	You
can	also	do	this	from	other	transaction	codes	such	as	se80	(object	navigator).

Figure	6.108:	Copy	the	current	GUI	status,	part	1	(FM)

In	the	pop-up	window,	provide	your	program	name	and	a	new	name	for	the	status
(Figure	6.109),	then	click	the	COPY	button.

Figure	6.109:	Copy	the	current	GUI	status,	part	2	(FM)

No	 changes	 are	 needed	 on	 the	 informational	 pop-up	 so	 click	 the	COPY	 button
again	(Figure	6.110).

Figure	6.110:	Copy	the	current	GUI	status,	part	3	(FM)

Save	and	activate	your	custom	GUI	status.	To	add	the	new	button	to	the	custom
GUI	 status,	 re-start	 transaction	 code	 se41	 with	 the	 STATUS	 LIST	 radio	 button
selected	(Figure	6.111).	Click	on	the	CHANGE	button.	(You	do	not	need	to	include
the	name	of	the	custom	status	on	the	selection	screen;	all	available	GUI	statuses
will	display.)

Figure	6.111:	Add	button	to	custom	GUI	status,	part	1	(FM)

Double-click	the	name	of	your	custom	GUI	status	to	continue	(Figure	6.112).

Figure	6.112:	Add	button	to	custom	GUI	status,	part	2	(FM)

Click	on	the	EXPAND	button	next	to	“Application	Toolbar”,	then	put	your	cursor	in	an
unused	 cell.	 Click	 the	 ADD	 button	 on	 the	 toolbar,	 then	 type	 the	 function	 code

chosen	earlier:	NOTE	(Figure	6.113).

Figure	6.113:	Add	button	to	custom	GUI	status,	part	3	(FM)

A	pop-up	window	will	appear,	prompting	you	 to	provide	 function	 text.	Retain	 the
default	 radio	 button	 value	 (Static	 Text)	 and	 click	 the	 green	 checkmark	 (Figure
6.114).

Figure	6.114:	Add	button	to	custom	GUI	status,	part	4	(FM)

Provide	 the	 values	 shown,	 then	 click	 the	green	 checkmark	 (Figure	6.115).	 (You
can	complete	the	function	text,	the	icon	name,	or	both	as	shown.)

FUNCTION	TEXT:	Label	visible	on	the	button	itself
ICON	NAME:	Official	icon	name	from	the	SHOWICON	program	(Figure	6.105)
INFO.	TEXT:	Instructional	information	that	appears	when	mouse	hovers	over	the
button

Figure	6.115:	Add	button	to	custom	GUI	status,	part	5	(FM)

In	 the	 pop-up	window,	 choose	 any	 of	 the	 function	 keys	 presented	 as	 available,
then	click	the	green	checkmark	(Figure	6.116).

Figure	6.116:	Add	button	to	custom	GUI	status,	part	6	(FM)

In	order	to	add	a	text	label	to	the	button	double-click	on	the	cell	just	added	(Figure
6.117).	This	returns	you	to	an	input	screen	with	more	options	including	the	“Icon
Text”	input	field.

Figure	6.117:	Add	button	to	custom	GUI	status,	part	7	(FM)

Add	the	text	for	the	button	in	the	ICON	TEXT	field	and	click	on	the	green	checkmark
(Figure	6.118).

Figure	6.118:	Add	button	to	custom	GUI	status,	part	8	(FM)

Save	and	activate,	then	exit	transaction	code	se41	(Figure	6.119).

Figure	6.119:	Add	button	to	custom	GUI	status,	part	9	(FM)

Now	change	the	source	code	to	add	 logic	 for	 the	new	button	 in	 the	custom	GUI
status.	For	variety,	we’ll	use	a	callback	parameter	(I_CALLBACK_PF_STATUS_SET)	this

time	 instead	 of	 repeating	 the	 events	 table	 approach	 used	 for	 the	 TOP_OF_PAGE
(Chapter	6.5.1)	and	HOTSPOT	(Chapter	6.6.1)	logic.	Either	approach	is	fine.

Define	 a	 constant	with	 the	 name	 of	 the	 subroutine	 that	will	 set	 the	GUI	 status.
Because	 the	 SET	 PF-STATUS	 command	 has	 a	 built-in	 excluding	 clause,	 you	 can
delete	the	GT_EXCLUDE	table	from	the	data	area	(Figure	6.120).

Figure	6.120:	Data	changes	for	button	addition	(FM)

The	content	of	ZF_BUILD_EXCLUDE_TABLE	will	 be	moved	 from	 its	own	subroutine	 to
the	 new	 ZF_SET_PFSTATUS.	 subroutine	 so	 the	 explicit	 PERFORM	 statement	 can	 be
deleted	(Figure	6.121).

Figure	6.121:	Delete	the	perform	statement	of	the	excluding	table	build	(FM)

Create	a	new	subroutine	called	 ZF_SET_PFSTATUS	 (Figure	6.122).	The	name	must
match	 the	 constant	 you	 declared	 (Figure	 6.120).	 Copy	 the	 content	 from
ZF_BUILD_EXCLUDE_TABLE	into	the	new	ZF_SET_PFSTATUS	subroutine,	then	add	the	SET
PF-STATUS	command	with	your	custom	GUI	status	ZCUSTOM1.

(Each	 time	 the	 ZF_SET_PFSTATUS	 subroutine	 is	 executed,	SAP’s	 standard	 table	 of
function-codes-to-be-excluded	 is	 presented	 anew.	 The	 function	 codes	 that	 you
want	to	exclude	from	the	ALV	application	toolbar	must	be	re-appended	to	the	SAP
list	on	every	pass.)

Figure	6.122:	New	subroutine	to	update	the	table	of	buttons	to	be	excluded	and	set	the	custom	GUI	status
(FM)

Now	that	you	have	moved	the	logic	from	the	ZF_BUILD_EXCLUDE_TABLE	subroutine	to
the	ZF_SET_PFSTATUS	subroutine,	delete	ZF_BUILD_EXCLUDE_TABLE	(Figure	6.123).

Figure	6.123:	Delete	the	former	subroutine	(FM)

The	logic	to	execute	when	the	user	clicks	the	new	button	on	the	ALV	application
toolbar	 (function	 code	 =	 NOTE)	 will	 be	 added	 to	 the	 existing	 ZF_USER_COMMAND
subroutine	in	Chapter	8.3.1.	A	placeholder	can	be	added	now	(Figure	6.124).

Figure	6.124:	Placeholder	for	new	button	logic	(FM)

The	final	changes	are	made	in	the	REUSE_ALV_GRID_DISPLAY	call	(Figure	6.125).	Add

the	constant	containing	 the	name	of	 the	ZF_SET_PFSTATUS	subroutine	and	 remove
the	exclude	table	reference	since	the	exclude	table	 is	now	being	passed	via	 the
I_CALLBACK_PF_STATUS_SET	parameter.

Figure	6.125:	Two	changes	for	the	function	module	call	(FM)

6.8.2			ALV	control	framework
After	making	 these	changes,	 the	 toolbar	will	 display	with	 the	new	EDIT	COMMENT

button	and	without	the	GRAPHIC	button	(Figure	6.126).

Figure	6.126:	New	application	toolbar	button	(CF)

Two	 events	 are	 associated	 with	 the	 additional	 button	 on	 the	 ALV	 application
toolbar:	TOOLBAR	and	USER_COMMAND	(Figure	6.127).	(The	method	names	I	used	are
TOOLBAR_ADD	 and	 USER_COMMAND_ALV,	 but	 you	 can	 choose	 other	 names,	 if	 you
wish.)

Figure	6.127:	Two	new	events	(CF)

For	each	of	these	methods,	you	can	call	a	separate	subroutine	(Figure	6.128)	or
you	can	write	the	code	directly	in	the	method	implementation.

Figure	6.128:	Two	new	methods	for	new	button	(CF)

In	 ZF_TOOLBAR_ADD,	 set	 the	 attributes	 of	 the	 new	 button	 (Figure	 6.129).	 The
BUTN_TYPE	values	include:

0:	Button	(normal)
1:	Menu	and	default	button
2:	Menu

3:	Separator
4:	Radio	button
5:	Checkbox
6:	Menu	entry

Figure	6.129:	New	subroutine	with	toolbar	button	details	(CF)

The	logic	to	execute	when	the	user	clicks	the	new	button	on	the	ALV	application
toolbar	(function	code	=	NOTE)	will	be	added	to	the	existing	ZF_USER_COMMAND_ALV
subroutine	in	Chapter	8.3.2.	A	placeholder	can	be	added	now	(Figure	6.130).

Figure	6.130:	New	subroutine	for	user	command	logic	(CF)

zf_user_command_alv	and	zm_user_command_9100

Don’t	be	confused	by	the	two	similarly	named	sections	of	code	in
this	 example	 program.	 The	 PAI	 module	 called
ZM_USER_COMMAND_9100	manages	the	top	row	of	function	keys	we
configured	 as	BACK,	EXIT,	 and	CANCEL	 in	 Figure	 3.26.	 The	 new

subroutine	 ZF_USER_COMMAND_ALV	 will	 contain	 logic	 related	 to	 the	 ALV
application	toolbar	buttons.

The	final	changes	are	made	in	the	ZM_STATUS_9100	module	(Figure	6.131):	Setting
handlers	 for	 the	 new	 TOOLBAR	 and	 USER_COMMAND	 events,	 calling	 the
SET_TOOLBAR_INTERACTIVE	method.

Figure	6.131:	Zm_status_9100	module	changes	(CF)

No	 change	 is	 needed	 for	 the	 ZF_BUILD_EXCLUDE_TABLE	 subroutine	 (Figure	 6.103).
The	exclude	 table	will	 continue	 to	be	passed	 to	 the	SET_TABLE_FOR_FIRST_DISPLAY
method	 for	 the	 removal	 of	 the	DISPLAY	GRAPHIC	 button	 from	 the	 ALV	 application
toolbar.

6.9			Summary
In	this	chapter	you	learned	how	to	customize	the	ALV	output	to	meet	a	number	of
requirements	you	may	encounter.

Key	points:

Hiding	columns
Displaying	sub-totals	immediately
Providing	record	counts	using	a	layout	structure	technique	and	a	field	catalog
technique
Handling	report	layout	variants	from	the	selection	screen	including	validation,
on-value-request	lookup	logic,	and	variant-saving	authorization	concepts
Using	TOP_OF_PAGE,	USER_COMMAND,	HOTSPOT_CLICK,	and	TOOLBAR	events
Displaying	top_of_page	content	(text	and	logo),	including	use	of	a	splitter
container	to	divide	the	screen	and	use	of	dynamic	document	functionality	to
output	report	parameters
Customizing	the	ALV	application	toolbar	by	removing	or	adding	buttons,
including	how	to	copy	and	modify	the	default	GUI	status	for	the	function
module	technique

In	Chapter	7,	you’ll	see	examples	of	code	that	can	be	used	in	ALV	and	non-ALV
programs.

In	Chapter	8,	you’ll	add	edit	capability	to	an	ALV	to	support	small	volumes	of	data
changes.

7			Solving	challenges	with	handy
features	applicable	to	many	program
types
The	 information	 in	 this	 chapter	may	 be	 useful	 for	 solving	 challenges	 you
face.	 With	 adaptations,	 the	 concepts	 can	 be	 applied	 to	 a	 wide	 range	 of
program	types,	not	just	SAP	List	Viewer	programs.

7.1			Retrieving	the	variant	name	during	transaction	code	se38	background
execution
In	Chapter	6.5,	you	added	a	top_of_page	event	to	display	text	and	a	 logo	at	 the
top	of	 the	screen	 (Figure	6.50	and	Figure	6.60).	 If	you	were	 to	 run	 the	program
with	 the	 same	 variant	 in	 background	 using	 transaction	 code	 sm36	 (Schedule
Background	Job),	the	top_of_page	output	in	the	print	spool	would	look	like	Figure
7.1.	The	background	output	matches	the	foreground	output,	without	the	logo.

Figure	7.1:	Actual	variant	name	in	background	top_of_page

Sometimes,	 though,	 developers	 execute	 programs	 in	 the	 background	 from
transaction	code	se38,	sending	the	report	to	the	spool.	It	is	helpful	in	those	cases
to	have	a	record	of	the	variant	that	generated	the	report.	Unfortunately,	a	variant
alias	is	substituted	in	the	SY-SLSET	field	when	run	that	way	(Figure	7.2).

Figure	7.2:	Alias	for	variant	name	during	se38	>	background

If	 you	 need	 a	 solution	 to	 this	 problem	 (that	 only	 impacts	 those	 making	 a
transaction	 code	 se38	 switch	 from	 foreground	 to	 background	mode),	 one	work-
around	is	to	store	the	variant	name	in	a	selection	screen	parameter	field	(Figure
7.3).	 (It	 is	 hidden	 from	 view	 using	 NO_DISPLAY	 because	 it	 requires	 no	 user
interaction.)

Figure	7.3:	Hidden	parameter	to	hold	the	variant	name

After	 adding	 the	 parameter,	 add	 a	 new	global	 variable	 (Figure	 7.4).	Use	 of	 this
variable	will	reduce	the	number	of	IF	statements	and	simplify	the	code.

Figure	7.4:	Variable	to	hold	the	variant	name

Add	 the	 AT	 SELECTION-SCREEN	 OUTPUT	 logic	 shown	 in	 Figure	 7.5.	 This	 logic	 is
executed	multiple	times	while	the	user	or	developer	interacts	online	(in	foreground
mode)	with	 the	selection	screen.	Each	 time,	 it	moves	 the	variant	name	from	the
SY-SLSET	system	field	to	the	new	hidden	parameter	field.	The	IF	statement	prevents
the	alias	from	overwriting	the	actual	variant	name	stored	in	P_SLSET	during	the	final
pass	through	the	AT	SELECTION-SCREEN	OUTPUT	logic	when	switching	from	foreground
to	background	mode.

Figure	7.5:	Populate	hidden	parameter

Add	 an	 IF	 statement	 to	 the	 ZF_START	 subroutine	 coded	 earlier	 (Figure	 7.6).
(Subroutine	ZF_START	 executes	 for	 both	 foreground	and	background	 runs.)	 If	 the
hidden	parameter	 field	has	been	filled,	move	 it	 to	 the	new	variable.	 If	not,	move
the	 SY-SLSET	 value	 to	 the	 new	 variable.	 Modify	 the	 title	 logic	 in	 ZF_START	 to	 use
GV_SLSET	instead	of	SY-SLSET	(Figure	7.6).

Figure	7.6:	Populate	the	new	variable	and	modify	the	title	build

Another	place	that	requires	a	change	from	SY-SLSET	to	the	new	variable	GV_SLSET	is
in	 the	 subroutine	 ZF_BUILD_TOP_TEXT_TABLE	 (Figure	 7.7).	 Adapt	 this	 for	 other
top_of_page	text	fill	techniques.

Figure	7.7:	Pass	the	variable	to	the	text	table	for	top_of_page	(FM)

With	these	changes,	you	will	see	the	actual	variant	name	rather	than	the	alias	in
your	configured	top_of_page	header	for	all	methods	of	execution.

7.2			Modifying	the	selection	screen	for	different	user	groups
An	ABAP	 selection	 screen	 can	 be	modified	 dynamically	 to	 accommodate	more
than	 one	 user	 group:	 one	 with	 display	 authorization	 and	 one	 with	 change
authorization.

Approaches	might	 include	checking	standard	or	 custom	authorization	objects	or
creating	separate	transaction	codes	for	each	group.

This	 chapter	 describes	 how	 to	 use	 a	 MODIF	 ID	 to	 hide	 or	 disable	 (gray	 out)	 a
selection	screen	element.

Using	 the	editable	ALV	exercise	 from	Chapter	8.2	as	a	starting	point,	a	MODIF	 ID
called	 ZKK	 has	 been	 declared	 (Figure	 7.8)	 for	 the	 checkbox	 parameter	 called
P_EDIT.	 An	 authority-check	 can	 be	 executed	 to	 fill	 variable	 GV_EDIT_FLAG	 for
evaluation	 in	 the	AT	SELECTION-SCREEN	OUTPUT	 logic.	 (ZF_AUTHORITY_CHECK	content	 is
not	shown	for	this	example.)

Figure	7.8:	MODIF	ID	example

In	 the	 example	 (Figure	 7.8),	 if	 the	 user	 has	 display	 authorization,	 the	 selection
screen	 will	 be	 modified	 to	 hide	 the	 selection	 screen	 elements	 aligned	 with	 the
MODIF	ID	(Figure	7.9).

Figure	7.9:	Screen-active	=	0	hides	the	field

If	 the	 user	 has	 change	 authorization,	 no	modification	 of	 the	 selection	 screen	 is
needed.	 The	 user	 will	 still	 have	 the	 option	 of	 specifying	 edit	 mode	 or	 non-edit
mode	using	the	P_EDIT	checkbox	(Figure	8.3).

A	 few	of	 the	choices	available	 to	you	when	changing	 the	selection	screen	using
LOOP	AT	SCREEN:

SCREEN-ACTIVE	=	0	hides	the	field	(Figure	7.9)
SCREEN-INPUT	=	0	disables	(grays	out)	the	field	without	hiding	it	(Figure	7.10)

Figure	7.10:	Screen-input	=	0	grays	out	the	field	without	hiding

Another	 option:	 If	 separate	 transaction	 codes,	 managed	 through	 security	 roles,
have	 been	 created	 for	 the	 edit	 users	 and	 for	 the	 display-only	 users,	 the	 IF
statement	in	AT	SELECTION-SCREEN	OUTPUT	can	be	written	 instead	to	evaluate	which
transaction	code	(SY-TCODE)	was	being	run	by	the	user.

7.3			Converting	all	currency	values	to	a	user-specified	“report	currency”
In	a	global	 business	environment,	 financial	 transactions	are	often	executed	and
saved	 in	multiple	currencies.	For	reporting,	 it	 is	sometimes	helpful	 to	display	 the
data	in	a	single	currency	that	we’ll	call	a	“report	currency”.	This	chapter	will	show
you	one	way	to	do	that,	using	the	training	scenario.	Adapt	the	concepts	for	your
real-life	requirements.

Each	booking	in	the	SAP	Flight	Application	is	stored	in	the	SBOOK	table	in	foreign
currency	(matching	the	travel	agency’s	currency)	and	local	currency	(matching	the
airline’s	currency).	In	the	training	scenario,	the	owner	of	Dream	Travel	is	based	in
Great	 Britain,	 but	 had	 recently	 acquired	 an	 Australia-based	 agency	 called	 Hot
Socks	Travel.	When	records	are	summed,	 the	ALV	provides	a	separate	 total	 for
each	currency—here	shown	in	Australian	dollars	and	British	pounds	(Figure	7.11).

Figure	7.11:	ALV	grid	before	conversion	to	a	single	currency

The	report	would	be	more	useful	to	the	Dream	Travel	owner	if	all	the	records	were
reported	 in	 a	 single	 currency	 (GBP,	 British	 pounds)	 for	 easier	 comparison	 of
agency	performance	(Figure	7.12).

Figure	7.12:	ALV	grid	after	conversion	to	a	single	currency

The	selection	screen	block	provides	enough	information	for	a	user	to	understand
how	and	when	to	use	the	“Report	Currency”	parameter	(Figure	7.13).

Figure	7.13:	Parameter	on	selection	screen

The	 frame	 title	 “Optional:	 Convert	 amounts	 from	 travel	 agency	 currency	 to
currency	below	for	report”	has	been	saved	as	text	symbol	TEXT-002	(Figure	7.14).
The	parameter	label	“Report	Currency”	has	been	saved	as	a	selection	text.

Figure	7.14:	Selection	screen	block	for	new	parameter

The	SAP	master	data	table	that	stores	all	valid	currencies	is	TCURC	and	the	code
values	are	stored	in	field	WAERS.	By	specifying	type	TCURC-WAERS	for	the	P_CURR
parameter,	the	F4	input	help	and	F1	help	functionality	are	enabled	(Figure	7.14).

Currency	exchange	rates	change	often	and	financial	postings	are	time	specific.	To
ensure	that	our	conversions	use	the	conversion	rate	that	was	in	effect	at	the	time
of	 the	 booking,	ORDER_DATE	will	 be	 retrieved	 from	 SBOOK	 for	 each	 record	 (Figure
7.15).	Add	RPTCURAM	 and	RPTCURKEY	 to	 the	 local	 type	 LTY_OUTPUT.	 The	 table	 type
TT_OUTPUT	is	defined	for	use	later	(Figure	7.18).

Figure	7.15:	Data	additions	for	currency	conversion	logic

By	 adding	 the	 new	 retrieved	 field	 ORDER_DATE	 before	 the	 non-selected	 fields
RPTCURAM	and	RPTCURKEY	(Figure	7.15),	it	is	possible	to	continue	using	the	efficient
SELECT	 statement	 already	 in	 place	 (Figure	 7.16).	 The	 new	 subroutine
ZF_FILL_REPORT_CURRENCY	 is	 only	 executed	 when	 a	 report	 currency	 has	 been
requested	using	the	P_CURR	parameter.

Figure	7.16:	Inclusion	of	transaction	date	and	parameter-driven	logic

The	 three	 new	 output	 fields	 are	 only	 applicable	 when	 the	 user	 requests	 that
amounts	be	converted	to	a	report	currency.	The	fields	can	be	added	at	the	end	of
the	existing	 field	catalog	using	an	 IF	 statement	 (Figure	7.17).	ORDER_DATE	will	 be
included	in	the	ALV	report	for	troubleshooting,	but	will	be	hidden	using	the	NO_OUT
field	catalog	setting.	Depending	upon	user	preference	and	requirements,	you	can
hide	 the	 five	 other	 fields	 related	 to	 currency	 (CURRENCY,	 FORCURAM,	 FORCURKEY,
LOCCURAM,	and	LOCCURKEY)	using	a	MODIFY	statement.	(The	field	catalog	fieldnames
shown	 are	 for	 SLIS_FIELDCAT_ALV.	 Adjust	 these	 when	 using	 other	 field	 catalog
structures	such	as	LVC_S_FCAT.)

Figure	7.17:	Field	catalog	changes	for	report	currency

Always	display	the	currency	key	for	financial	amounts

Report	users	should	always	be	able	to	tell	the	currency	of	all	the
amounts	 shown	 in	 a	 report.	 Cross-reference	 the	 currency	 key
field	using	CFIELDNAME	and	display	the	field	on	the	report.

Subroutine	 ZF_FILL_REPORT_CURRENCY	 uses	 function	 module
CONVERT_TO_LOCAL_CURRENCY	 (Figure	 7.18)	 to	 convert	 the	 amounts	 using	 time-
specific	exchange	rates	from	the	TCURR	table.	Three	outcomes	are	possible	when
looping	through	the	table	of	retrieved	data.

The	amount	is	already	stored	in	the	requested	currency—move	existing
amount	over	to	the	new	field.
The	amount	needs	to	be	converted	to	the	requested	currency	and	the
conversion	is	successful—move	converted	amount	to	new	field.
The	amount	needs	to	be	converted	to	the	requested	currency	and	the
conversion	fails—leave	the	new	amount	field	initial	and	move	“error”	to	the
new	currency	key	field.

Figure	7.18:	Conversion	to	report	currency	has	3	possibilities

Type	of	rate	for	conversion	function	module

SAP	uses	exchange	rate	type	M	for	many	financial	postings,	but	it
is	a	good	practice	 to	verify	during	design	 that	 this	 is	appropriate
for	the	program	you	are	coding.

If	there	is	conversion	failure	on	any	record,	other	options	include	interrupting	the
program	 or	 populating	 the	 original	 amount	 into	 the	 new	 amount	 field	 with	 the
original	currency.	In	the	case	of	conversion	failure,	you	should	not	populate	a	zero
amount	aligned	with	 the	 report	 currency	because	 it	may	not	 be	apparent	 to	 the
user	 that	 some	 data	 failed	 to	 convert,	 especially	 when	 it	 is	 summarized.	 The
approach	shown	here	populates	“error”	into	RPTCURKEY	for	greater	visibility	(Figure

7.19).

Figure	7.19:	Population	of	error	to	ensure	it	is	not	overlooked

Foreign	vs.	local	parameters	of	this	function	module

The	 CONVERT_TO_LOCAL_CURRENCY	 function	 module	 can	 also	 be
used	to	change	the	local	currency	amount	LOCCURAM	 to	 the	user-
requested	 report	 currency.	 When	 working	 with	 these	 function
module	 parameters,	 think	 of	 “foreign_”	 as	 source	 data	 and

“local_”	 as	 target	 data,	 irrespective	of	 how	 the	 fields	are	named	 in	 the	data
dictionary.

7.4			Summary
This	 chapter	 contains	 a	 few	 examples	 of	 challenges	 solved	 by	 using	 standard
SAP	functionality.	The	examples	can	be	adapted	for	other	program	types,	not	just
SAP	List	Viewer	programs.	You	may	or	may	not	encounter	these	exact	situations,
but	exposure	to	the	examples	may	be	helpful.

Key	points:

Replacing	an	SAP-generated	alias	with	the	actual	transaction	variant	name	in
the	top_of_page	output
Using	MODIF	ID	to	meet	the	needs	of	different	user	audiences	using	a	shared
program	and	to	provide	a	selection	screen	tailored	to	each	audience
Converting	transaction	amounts	to	a	single	“report	currency”	specified	by	the
user	from	the	selection	screen

8			Adding	edit	capability	to	an	ALV
program
In	 this	 chapter,	 you’ll	 see	 how	 to	 enable	 editing	 for	 the	 user	 of	 an	 ALV
report.	 Editing	 can	 be	 enabled	 across	 an	 entire	 grid	 or	 selectively.	 The
edited	content	can	be	used	to	update	database	tables,	but	can	also	be	used
for	applications	that	require	no	persistence	of	the	data	beyond	a	printout	or
an	exported	file	(for	example,	for	“what	if”	analysis).	Editable	ALV	is	not	the
best	tool	for	performing	large	volume	data	updates,	but	may	be	appropriate
for	some	applications.

This	 chapter	will	 show	you	how	 to	 save	modifications	 to	a	database	 table	each
time	 the	user	changes	an	editable	cell.	 It	 is	a	merely	an	 introduction	 to	editable
ALV	 and	 does	 not	 cover	 functionality	 such	 as	 multi-row	 updates	 or	 toggling
between	edit/display	modes	using	the	READY_FOR_INPUT	method.	Another	technique
used	 to	create	editable	ALV	 reports	uses	REUSE_ALV_GRID_DISPLAY_LVC,	a	 function
module	not	released	for	customer	use	and	not	included	in	this	book.

8.1			Training	scenario
For	the	training	scenario,	we	will	address	a	new	requirement	to	allow	the	user	to
add	a	brief	comment	to	a	detail	record	and	save	the	comment	to	a	custom	table.
Existing	comments	will	be	selected	from	the	database	table	and	displayed	in	the
ALV	report	whenever	it	is	run.

No	authorization	or	desire	to	create	a	table	for	the	exercise?

If	you	do	not	have	authorization	or	a	desire	to	create	a	table	in	the
ABAP	data	dictionary	for	this	exercise,	you	can	still	complete	the
exercises	ahead.	Omit	 the	 logic	 that	updates	the	database	table
and	 use	 a	 function	 module	 such	 as	 POPUP_TO_DISPLAY_TEXT	 to

simulate	the	logic	flow.

The	new	table	is	called	ZKKDEMO	(Figure	8.1),	maintainable	using	transaction	code
sm30	 in	 function	 group	 ZKKTEMP.	 Its	 key	 fields	 are	 the	 fields	 from	our	ALV	 local
type	 that	ensure	a	unique	 record:	AGENCYNUM,	CARRID,	CONNID,	 FLDATE,	 and	BOOKID.
The	 field	 to	 hold	 a	 comment	 text	 is	 called	 ZCOMMENT,	 based	 on	 data	 element
CHAR0128.	 Only	 one	 comment	 will	 be	 saved	 so	 there	 is	 no	 effective	 date	 or
sequence	number	key	field	in	the	table	to	permit	saving	a	series	of	comments.

Figure	8.1:	New	table	to	capture	comments

Since	the	editing	occurs	at	the	detail	level,	and	our	in-progress	program	displays
summarized	 levels,	 I’ve	 provided	 two	 examples	 in	 this	 chapter	 using	 different
starting	 points	 for	 the	 data	 display:	 detail	 and	 summary	 (Table	 8.1).	 Before
proceeding	 with	 each	 one,	 make	 a	 copy	 of	 your	 existing	 program	 (and	 its
components),	save,	and	activate.

Exercise Copy	from	(starting	point) Copy	to
8.2.1
(detail	start)

Chapter	2	end:	zkk_alv_fm zkk_alv_fm_selscrn

8.2.2
(detail	start)

Chapter	2	end:	zkk_alv_ctrlfw zkk_alv_ctrlfw_selscrn

8.3.1
(summary	start)

Chapter	6	end:	zkk_alv_fm_layout
_sort_more

zkk_alv_fm_edit
_button

8.3.2
(summary	start)

Chapter	6	end:	zkk_alv_ctrlfw_layout
_sort_more

zkk_alv_ctrlfw_edit
_button

Table	8.1:	Suggested	starting	points	for	next	exercises

For	 illustration,	 not	 by	 requirement,	 the	 first	 pair	 of	 exercises	 use	 a	 selection
screen	parameter	to	indicate	that	the	report	should	display	with	edit	capability.	The
second	 pair	 of	 exercises	 use	 the	EDIT	COMMENT	 button	 created	 earlier	 (Chapter
6.8.1	and	Chapter	6.8.2)	to	make	the	grid	editable.	Depending	upon	requirements,
many	different	approaches	can	be	used.

8.2			Enabling	edit	based	on	a	selection	screen	checkbox
For	this	example,	you	are	starting	with	an	ALV	program	that	already	displays	the
detail	data	with	no	summing,	no	grouping,	no	subtotaling,	and	no	cell-merging.

You’ll	 provide	a	checkbox	parameter	on	 the	selection	screen.	 If	 the	user	 leaves
the	checkbox	blank,	the	report	grid	will	be	presented	without	edit	functionality.	To
enable	 edit	 functionality,	 the	 user	 will	 click	 the	 checkbox	 before	 executing	 the
report.	 (Chapter	7.2	shows	how	 to	modify	a	selection	screen	based	on	a	user’s
authorization.)

Several	activities	are	 identical	 for	both	 the	 function	module	and	 the	ALV	control
framework	technique,	including	syntax.

1.	 Add	a	checkbox	parameter	P_EDIT	to	the	selection	screen	so	the	user	can
display	the	grid	in	edit	mode	(Figure	8.2).

2.	 Create	a	text	symbol	for	the	checkbox	label	(Figure	8.3).
3.	 Add	the	comment	field	to	the	local	type	LTY_OUTPUT	(Figure	8.4).

Figure	8.2:	Checkbox	for	selection	screen

After	defining	the	new	parameter	in	the	selection	screen,	create	a	text	symbol	with
“Display	 in	 edit	mode	 for	 comment	 changes”	 (Figure	8.3).	You	 can	use	 forward
navigation	 (by	 double-clicking	 on	 TEXT-100)	 to	 add	 this	 text,	 then	 save	 and
activate.

Figure	8.3:	Selection	screen	with	edit	checkbox

If	you	will	not	be	creating	and	updating	the	custom	table	for	this	exercise,	you	can
use	CHAR0128	 as	 the	 type	when	 you	 add	 the	 new	 field	 ZCOMMENT	 at	 the	 end	 of
LTY_OUTPUT	(Figure	8.4).

Figure	8.4:	Comment	field	added	to	local	type	lty_output

Since	 the	syntax	varies	 for	 the	 remaining	steps,	continue	with	Chapter	8.2.1	 for
the	 function	 module	 program	 or	 Chapter	 8.2.2	 for	 the	 ALV	 control	 framework
program.

8.2.1			Function	module
By	simply	adding	the	new	comment	field	to	the	field	catalog	table	in	this	program
with	an	EDIT	value	of	X,	 (Figure	8.9),	 the	user	can	display	 the	ALV	grid,	can	type
text	 into	 the	 comment	 field,	 and	 can	 scroll	 through	 the	 grid	 with	 temporary
retention	of	those	comments	within	the	internal	table	GT_OUTPUT.	To	do	more	than
that,	 we	 need	 to	 decide	 whether	 our	 goal	 (the	 ZKKDEMO	 table	 update)	 is	 better
served	by	grid-level	or	cell-level	processing.

Grid-level	processing:	&DATA_SAVE	user	command	event,	triggered	by	the	user
clicking	on	the	SAVE	(diskette)	icon
Cell-level	processing:	DATA_CHANGED	event,	triggered	when	the	user	moves
the	cursor	away	from	an	editable	cell

With	the	grid-level	approach,	we	would	need	to	also	decide	whether	to	update	all
the	 comments	 (changed	 or	 not)	 to	 the	 ZKKDEMO	 table	 or	 whether	 to	 update	 the
ZKKDEMO	 table	selectively	after	 comparing	all	 the	comments	 in	 the	ALV	grid	 to	a
copy	of	 the	ALV	 table	as	 it	was	 first	displayed.	 (If	comparing,	we	would	need	 to
overwrite	our	copy	of	the	initial	table	to	reflect	the	revised	grid	content	for	the	next
comparison-on-save—unless	 we	 force	 a	 program	 exit	 at	 the	 end	 of	 the
&DATA_SAVE	logic.)

With	the	cell-level	approach,	we	can	reduce	some	of	 the	coding	and	complexity.
The	 grid-level	 approach	 is	 suitable	 for	 some	 applications,	 but	 for	 the	 training
scenario	example,	we	will	use	the	cell-level	approach.

The	 data	 additions	 for	 the	 current	 program	 (Figure	 8.5)	 include	 table	 type

TT_OUTPUT	 based	 on	 type	 LTY_OUTPUT.	 This	 table	 type	 will	 be	 used	 in	 a	 new
DATA_CHANGED	 event	 subroutine	 (Figure	 8.12).	 The	 GT_EVENTS	 internal	 table	 first
introduced	in	Chapter	6.5	reappears.	An	internal	table	and	structure	matching	the
database	 table	 ZKKDEMO	 are	 added	 for	 retrieval	 of	 existing	 comments.	 The
GV_EDIT_FLAG	variable	will	be	used	to	communicate	whether	the	user	has	chosen
edit	 or	 display	 mode.	 Finally,	 to	 enable	 cell-level	 processing,	 declare	 structure
GS_GLAY	which	will	be	passed	in	the	ALV	call	using	the	 I_GRID_SETTINGS	parameter
(Figure	8.16).

Figure	8.5:	Data	additions	for	edit	exercise	(FM)

To	retrieve	any	existing	comments	from	the	ZKKDEMO	table	and	display	them	in	the
ALV	grid,	you’ll	need	 to	add	 logic	after	 the	population	of	GT_OUTPUT	 (Figure	8.6).
The	 FOR	 ALL	 ENTRIES	 IN	 syntax	 can	 be	 used	 because	 you	 have	 first	 verified	 that
GT_OUTPUT	has	lines	of	content.

If	relevant	records	are	retrieved	into	GT_ZKKDEMO,	you	loop	through	GT_ZKKDEMO	to
modify	GT_OUTPUT.	 (GT_ZKKDEMO	most	 likely	 has	 fewer	 records	 so	 is	 used	 for	 the
LOOP	 statement.)	 If	 no	 relevant	 comments	 were	 retrieved	 from	 ZKKDEMO,	 no
messaging	is	required	(Figure	8.6).

Figure	8.6:	Retrieval	of	comments	from	zkkdemo	table	(FM)

After	 the	 data	 selection,	 you’ll	 set	 two	 flags	 to	 match	 the	 selection	 screen
checkbox	 value	 for	 P_EDIT:	 X	 for	 edit	mode	 and	 blank	 for	 display	mode	 (Figure
8.7).	 By	 populating	 the	 GV_EDIT_FLAG	 now,	 you	 can	 use	 it	 in	 other	 parts	 of	 the
program,	such	as	 in	ZF_BUILD_FIELDCATALOG,	 reducing	 the	use	of	 IF/ELSE/ENDIF	 logic
there.	The	second	 flag	being	 filled	 from	 the	P_EDIT	parameter	 is	a	component	of
the	LVC_S_GLAY	structure	called	EDT_CLL_CB	(ALV	control:	Callback	when	leaving	an
edited	cell).

Figure	8.7:	Flag	setting	and	additions	(FM)

Update	the	USING	parameter	on	the	ZF_BUILD_FIELDCATALOG	subroutine	(Figure	8.8).

Figure	8.8:	Use	new	flag	when	building	the	field	catalog	(FM)

Add	 the	 new	 ZCOMMENT	 field	 to	 the	 end	 of	 the	 field	 catalog	 table	 in
ZF_BUILD_FIELDCATALOG	(Figure	8.9).	To	provide	a	more	meaningful	label	on	the	ALV,
populate	 the	 DATATYPE,	 OUTPUTLEN,	 and	 SELTEXT	 values	 instead	 of	 providing	 a
REF_TABNAME	 value	 of	 ZKKDEMO.	 The	 variable	 LV_EDIT_FLAG	 will	 manage	 the	 EDIT
setting	 for	 this	 column	 based	 on	 how	 the	 P_EDIT	 parameter	was	 set	 (X	 for	 edit,
blank	for	display).

Figure	8.9:	New	field	added	to	field	catalog	and	edit	value	set	(FM)

In	Chapter	 6.6.1,	 you	 saw	 that	 the	 subroutine	 names	 for	 some	 events	 can	 be
passed	 to	 the	 REUSE_ALV_GRID_DISPLAY	 function	 module	 using	 an	 I_CALLBACK
parameter	 and	 other	 event	 subroutine	 names	 can	 be	 passed	 using	 the	 events
table.	 Since	 this	 program	 is	 not	 yet	 using	 any	 events	 and	 only	 one	 of	 the	 two
events	 being	 added	 has	 an	 I_CALLBACK	 parameter	 (USER_COMMAND),	 add	 both
events	 to	 the	 events	 table	 using	 a	 new	 subroutine	 called	 ZF_BUILD_EVENT_TABLE
(Figure	8.10).	This	is	the	first	of	three	new	subroutines	in	this	program	related	to
event-handling.

Figure	8.10:	Populate	two	subroutine	names	in	the	event	table	(FM)

After	 the	REUSE_ALV_EVENTS_GET	 function	call	 (Figure	8.10),	LT_EVENTS	contains	18
records.	 In	 ZF_BUILD_EVENT_TABLE,	 populate	 your	 program’s	 subroutine	 name	 for
the	provided	event	USER_COMMAND,	then	add	a	new	record	for	event	DATA_CHANGED.
LT_EVENTS	now	contains	19	 records	 (Figure	8.11),	 two	of	which	will	execute	your
custom	code.

Figure	8.11:	Data_changed	is	an	incremental	event	(FM)

lvc_s_glay-edt_cll_cb	must	be	X	for	data_changed	logic

With	 the	 function	 module	 technique,	 the	 DATA_CHANGED
functionality	 is	 only	 accessible	 and	 triggered	 when	 LVC_S_GLAY-
EDT_CLL_CB	 is	 set	 to	 X	 (Figure	 8.7)	 and	 passed	 in	 the
I_GRID_SETTINGS	parameter	in	the	ALV	call	(Figure	8.16).

Create	 another	 subroutine	 called	 ZF_DATA_CHANGED	 (Figure	 8.12)	 to	 access	 the
ABAP	objects	class	CL_ALV_CHANGED_DATA_PROTOCOL.	The	FIELD-SYMBOL	and	ASSIGN
statement	 are	 used	 to	 access	 the	 content	 of	 modified	 rows	 of	 the	 ALV.	 In	 our
program,	only	single	rows	are	modifiable	so	there	will	only	be	one	row	to	process,
the	 row	 whose	 comment	 field	 the	 user	 just	 left	 (Figure	 8.13).	 Loop	 through
<FT_OUTPUT>	and	populate	a	structure	 that	matches	 the	database	 table	ZKKDEMO.
Use	the	MODIFY	command	to	write	 the	work	area	record	to	 table	ZKKDEMO.	 (MODIFY
will	update	an	existing	record	or	add	a	record	if	not	found.)

Figure	8.12:	Data_changed	subroutine	called	when	cell	focus	changes	(FM)

The	record	layout	of	<FT_OUTPUT>	matches	LTY_OUTPUT	with	the	exception	of	a	first
field	called	ROW	(Figure	8.13).

Figure	8.13:	User-modified	row	in	debugger	(FM)

Refresher	on	previous	FM	exercise	with	user_command

Refer	 back	 to	 Chapter	 6.6.1	 to	 refresh	 your	 memory	 regarding
how	 USER_COMMAND	 event	 logic	 was	 used	 in	 an	 earlier	 ALV
function	 module	 exercise.	 In	 that	 exercise,	 hotspot	 logic	 was
added	in	order	to	display	master	data	information.

The	SAVE	button	is	enabled	on	screen	when	we	run	the	program	in	edit	mode,	so
in	the	training	scenario,	we	will	provide	a	pop-up	message	to	inform	the	user	that
changes	were	saved	if	they	click	it.

Create	a	third	subroutine	called	ZF_USER_COMMAND	(Figure	8.14)	using	the	standard
parameters	of	SY-UCOMM	and	SLIS_SELFIELD.	Add	a	CASE	statement	that	includes	the
LV_UCOMM	value	&DATA_SAVE.	Call	 the	function	module	POPUP_TO_CONFIRM	 to	 inform
the	user	that	 the	comments	have	been	saved	and	give	the	option	to	continue	or
leave	 the	 program	 (Figure	 8.15).	 (With	 proper	 error-handling	 in	 the
ZF_DATA_CHANGED	 subroutine,	 any	 table	 update	 errors	 should	 have	 been
communicated	already.)

Figure	8.14:	User	command	with	save	button	logic	(FM)

If	 the	 user	 clicks	 EXIT,	 the	 LEAVE	 PROGRAM	 command	 executes.	 If	 the	 user	 clicks
CONTINUE,	the	user	remains	where	they	were	in	the	grid	(Figure	8.15).

Figure	8.15:	User	command	pop-up	for	&data_save	action	(FM)

The	final	change	is	to	pass	the	GS_GLAY	structure	and	the	events	table	to	the	ALV

call	(Figure	8.16).

Figure	8.16:	ALV	call	with	i_grid_settings	structure	passed	(FM)

In	edit	mode,	the	ALV	grid	displays	with	these	changes:	SAVE	button	enabled,	new
REFRESH	button	on	the	ALV	application	toolbar,	 row	selection	column	added,	and
editable	 field(s)	 ready	 for	 input	 (Figure	 8.17).	 None	 of	 the	 buttons	 need	 to	 be
excluded	from	display	for	our	application.

Figure	8.17:	Screen	changes	due	to	use	of	lvc_s_glay	(FM)

8.2.2			ALV	control	framework
The	additions	below	will	permit	the	user	to	make	changes	to	the	COMMENT	cells	in
the	ALV	grid	and	update	the	ZKKDEMO	database	table	as	each	record	is	changed.

For	this	exercise,	start	from	a	simple	earlier	version	of	the	ALV	control	framework
program	(Table	8.1),	then	incorporate	some	new	logic	as	well	as	add	back	some
features	that	you	used	in	Chapter	6	in	other	programs.

The	 data	 additions	 for	 the	 current	 program	 (Figure	 8.18)	 include	 table	 type
TT_OUTPUT	 based	 on	 type	 LTY_OUTPUT.	 This	 table	 type	 will	 be	 used	 in	 a	 new
DATA_CHANGED	method	(Figure	8.24).	The	GT_EXCLUDE	internal	table	first	introduced
in	Chapter	6.7	reappears.	An	 internal	 table	and	structure	matching	the	database
table	 ZKKDEMO	 are	 added	 for	 retrieval	 of	 existing	 comments.	 The	 GV_EDIT_FLAG
variable	will	be	used	to	communicate	whether	the	user	has	chosen	edit	or	display
mode.

Figure	8.18:	Data	additions	for	edit	exercise	(CF)

To	retrieve	any	existing	comments	from	the	ZKKDEMO	table	and	display	them	in	the
ALV	grid,	you’ll	need	to	add	logic	after	the	population	of	GT_OUTPUT	(Figure	8.19).
The	 FOR	 ALL	 ENTRIES	 IN	 syntax	 can	 be	 used	 because	 you	 have	 first	 verified	 that
GT_OUTPUT	has	lines	of	content.

If	relevant	records	are	retrieved	into	GT_ZKKDEMO,	you	loop	through	GT_ZKKDEMO	to
modify	GT_OUTPUT.	 (GT_ZKKDEMO	most	 likely	 has	 fewer	 records	 so	 is	 used	 as	 the
loop	driver.)	 If	no	relevant	comments	were	retrieved	from	ZKKDEMO,	no	messages
will	be	displayed	(Figure	8.19).

Figure	8.19:	Retrieval	of	comments	from	zkkdemo	table	(CF)

After	the	data	selection,	set	a	flag	to	match	the	selection	screen	checkbox	value
for	P_EDIT.	X	for	edit	mode	and	blank	for	display	mode	(Figure	8.20).	By	populating
the	GV_EDIT_FLAG	 now,	 you	 can	 use	 it	 in	 other	 parts	 of	 the	 program,	 such	 as	 in
ZF_BUILD_FIELDCATALOG,	reducing	the	use	of	 IF/ELSE/ENDIF	logic	there.	Add	a	PERFORM
statement	for	new	subroutine	ZF_BUILD_EXCLUDE_TABLE.

Figure	8.20:	Flag	setting	and	additions	(CF)

The	 USING	 parameter	 will	 need	 to	 be	 updated	 on	 the	 ZF_BUILD_FIELDCATALOG
subroutine	(Figure	8.21).

Figure	8.21:	Use	new	flag	when	building	the	field	catalog	(CF)

Add	 the	 new	 ZCOMMENT	 field	 to	 the	 end	 of	 the	 field	 catalog	 table	 in
ZF_BUILD_FIELDCATALOG	 (Figure	 8.22).	 To	 provide	 a	more	meaningful	 label	 on	 the
ALV	 column	 than	 the	 one	 associated	 with	 CHAR0128,	 populate	 the	 OUTPUTLEN,
DATATYPE,	 and	COLTEXT	 values	 instead	 of	 providing	 a	REF_TABLE	 value	 of	 ZKKDEMO.
The	variable	LV_EDIT_FLAG	manages	the	EDIT	setting	for	this	column	based	on	how
the	P_EDIT	parameter	was	set	(X	for	edit,	blank	for	display).

Figure	8.22:	New	field	added	to	field	catalog	and	edit	value	set	(CF)

Instead	of	an	events	table,	we’ll	use	the	ALV	control	framework’s	event	handler	to
provide	 logic	 for	 the	 event	 DATA_CHANGED	 (Figure	 8.23).	 Everything	 we	 need	 is
present	in	the	ER_DATA_CHANGED	object.

Figure	8.23:	Method	to	handle	data_changed	event,	part	1	(CF)

In	method	DATA_CHANGED	(Figure	8.24),	process	the	information	about	the	row	just
edited	by	looping	through	the	field	symbol	<FT_OUTPUT>	to	populate	a	structure	that
matches	the	database	table	ZKKDEMO.	Use	the	MODIFY	command	to	write	the	record
to	 table	 ZKKDEMO.	 (MODIFY	 will	 update	 an	 existing	 record	 or	 add	 a	 record	 if	 not
found.)	 In	 this	program,	 the	DATA_CHANGED	 event	will	 be	 triggered	when	 the	user
changes	an	editable	COMMENT	 cell	 (Figure	8.29)	so	 there	will	 be	only	one	 row	 to
process	at	a	time.

At	 the	 end	 of	 the	 DATA_CHANGED	 method	 (Figure	 8.24)	 is	 an	 example	 of	 how	 to
populate	 and	 display	 a	 message	 using	 the	 ADD_PROTOCOL_ENTRY	 and
DISPLAY_PROTOCOL	methods.	 (In	Figure	8.24,	all	 the	 logic	 is	 typed	 into	 the	method

implementation.	If	you	prefer,	you	can	call	a	subroutine	containing	the	processing
logic.)

Figure	8.24:	Method	to	handle	data_changed	event,	part	2	(CF)

The	 record	 layout	 of	<FT_OUTPUT>	matches	 LTY_OUTPUT	with	 the	 exception	 of	 the
first	field	called	ROW	(Figure	8.25).

Figure	8.25:	User-modified	row	in	debugger	(CF)

In	 edit	 mode,	 the	 ALV	 grid	 displays	 with	 these	 changes:	 row	 selection	 column
added,	 editable	 field(s)	 ready	 for	 input,	 and	 new	 application	 toolbar	 buttons
appear	(Figure	8.26).

CHECK	ENTRIES	and	REFRESH	buttons
Cell-focused	buttons:	CUT,	COPY	TEXT,	INSERT,	and	UNDO

Row-focused	buttons:	APPEND	ROW,	INSERT	ROW,	DELETE	ROW,	and	DUPLICATE

ROW

Figure	8.26:	Screen	changes	including	row	edit	buttons	(CF)

Since	this	program	will	not	be	used	to	remove	records	from	ZKKDEMO	or	 to	 insert
records,	the	row-focused	buttons	need	to	be	excluded	(Figure	8.27).

Figure	8.27:	Toolbar	without	row	edit	buttons	(CF)

Exactly	 as	 was	 done	 in	 Chapter	 6.7.2,	 you	 can	 build	 a	 table	 of	 buttons	 to	 be
omitted	from	the	ALV	application	toolbar	(Figure	8.28).

Figure	8.28:	Exclude	row-focused	toolbar	buttons	(CF)

The	DATA_CHANGED	event	is	triggered	by	default	when	the	user	clicks	on	the	CHECK

ENTRIES	button	or	on	the	REFRESH	button	on	the	application	toolbar.	We	can	register
other	triggers,	as	well	(Figure	8.29):

MC_EVT_MODIFIED	when	cursor	is	moved	from	the	modified	cell
MC_EVT_ENTER	for	user	pressing	“Enter”	on	keyboard

In	module	ZM_STATUS_9100,	we	have	 registered	only	 the	modified	cell	 edit	event
(Figure	 8.29).	 The	 final	 changes	 include	 creating	 the	 event	 handler	 object
(because	 this	 program	 did	 not	 yet	 have	 event	 logic),	 setting	 the	 handler,	 and
passing	the	table	of	toolbar	functions	to	be	excluded.

Figure	8.29:	Changes	for	ALV	call	(CF)

Enabling	the	save	button	in	the	ALV	control	framework	programs

Unlike	 the	 function	module	versions	of	 the	edit	 programs	 in	 this
chapter,	the	SAVE	button	is	not	enabled	by	default	when	using	the
ALV	 control	 framework	 technique.	 If	 you	 do	 wish	 to	 enable	 the
SAVE	 button,	 use	 transaction	 code	 se80	 to	 edit	 the	 GUI	 status,

adding	 a	 label	 to	 the	 diskette	 function	 key	 (Figure	 3.26).	 After	 saving	 and
activating,	 add	 your	 custom	 logic	 within	 the	 CASE	 statement	 in	 the
ZM_USER_COMMAND_9100	module	(Figure	3.21).

8.3			Enabling	edit	using	toolbar	button
In	 Chapter	 8.2,	 you	 started	 with	 a	 program	 that	 was	 already	 presenting	 ALV
content	at	a	detail	level,	then	you	added	a	parameter	on	the	selection	screen	for
the	user	to	request	an	editable	ALV	output.	Instead	of	making	the	ALV	editable	all
the	 time	 for	 all	 users,	 you	 provided	 two	 modes,	 display	 or	 edit,	 driven	 by	 the
selection	screen	checkbox.

In	this	chapter,	the	training	scenario	will	start	from	a	later	version	of	the	program
(Table	8.1),	a	version	with	events,	summarization	on	initial	display,	and	a	custom
ALV	application	toolbar	button	(coded	in	Chapter	6.8).	You’ll	add	some	of	the	logic
used	in	Chapter	8.2	and	new	logic	that	will	modify	the	output	format	after	the	user
clicks	 on	 the	EDIT	COMMENT	 button.	 You’ll	 again	 save	 comments	 to	 the	 ZKKDEMO
database	table	each	time	the	user	leaves	a	modified	cell.

Copying	code	sections	from	other	programs

If	 you	 worked	 through	 the	 Chapter	 8.2	 exercises,	 you’ll	 see
opportunities	 to	 copy	 some	 code	 from	 those	 programs	 into	 this
chapter’s	 programs.	Do	 this,	 but	 take	 care	 to	 re-number	 copied
texts	when	 they	 overlap	 existing	 text	 symbols	 in	 the	 destination

program.

If	you	want	to	refresh	your	memory	regarding	the	training	scenario	requirements,
review	Chapter	8.1.

8.3.1			Function	module
If	 you	 have	 chosen	 not	 to	 create	 and	 update	 the	 custom	 table	 ZKKDEMO	 for	 this
exercise,	you	can	use	CHAR0128	as	the	type	when	you	add	the	new	field	ZCOMMENT
at	 the	 end	 of	 LTY_OUTPUT	 (Figure	 8.30).	 Other	 data	 additions	 include	 table	 type
TT_OUTPUT	 based	 on	 type	 LTY_OUTPUT.	 This	 table	 type	 will	 be	 used	 in	 a	 new
ZF_DATA_CHANGED	 subroutine	 (Figure	 8.36).	 An	 internal	 table	 and	 structure
matching	 the	 database	 table	 ZKKDEMO	 are	 added	 for	 retrieval	 of	 existing
comments.	The	GV_EDIT_FLAG	variable	will	be	used	this	 time	to	 indicate	when	the
EDIT	COMMENT	button	has	been	clicked	so	that	the	button	can	be	excluded	from	the
toolbar.	 Finally,	 to	 enable	 cell-level	 processing,	 declare	 structure	GS_GLAY	which
will	be	passed	in	the	ALV	call	using	the	I_GRID_SETTINGS	parameter	(Figure	8.43).

Figure	8.30:	Data	additions	for	edit	exercise	(FM)

To	retrieve	any	existing	comments	from	the	ZKKDEMO	table	and	display	them	in	the
ALV	grid,	you’ll	need	to	add	logic	after	the	population	of	GT_OUTPUT	(Figure	8.31).
The	 FOR	 ALL	 ENTRIES	 IN	 syntax	 can	 be	 used	 because	 you	 have	 first	 verified	 that
GT_OUPUT	has	content	by	evaluating	the	result	of	the	DESCRIBE	TABLE	command.

If	relevant	records	are	retrieved	into	GT_ZKKDEMO,	you	loop	through	GT_ZKKDEMO	to
update	GT_OUTPUT	(Figure	8.31).	(GT_ZKKDEMO	 is	most	 likely	the	smaller	of	the	two
tables.)	 If	no	 relevant	comments	were	 retrieved	 from	ZKKDEMO,	no	messages	will
be	displayed.

Figure	8.31:	Retrieval	of	comments	from	zkkdemo	table	(FM)

After	the	data	selection,	set	two	flags	(Figure	8.32).	The	GV_EDIT_FLAG	will	be	set	to
a	blank	space	to	signify	that	the	user	starts	the	report	in	display	mode.	Unlike	the
simpler	edit	program	with	the	selection	screen	parameter	(Chapter	8.2.1),	this	flag
will	not	be	used	to	influence	layout,	sort,	or	field	catalog	settings	for	initial	display.
It	will	only	be	used	to	indicate	that	the	EDIT	COMMENT	button	can	be	hidden	after	its
first	use.

The	 second	 flag	 is	 a	 component	 of	 the	 LVC_S_GLAY	 structure	 called	 EDT_CLL_CB
(ALV	control:	Callback	when	leaving	an	edited	cell).	You	can	set	it	now	and	pass	it
to	the	ALV	call	in	the	I_GRID_SETTINGS	parameter.	Its	effect	won’t	be	felt	until	at	least
one	field	in	the	field	catalog	has	an	EDIT	value	of	X	(Figure	8.32).

Figure	8.32:	Flag	setting	for	cell	edit	awareness	(FM)

The	new	ZCOMMENT	field	needs	to	be	added	to	the	end	of	the	field	catalog	table	in
ZF_BUILD_FIELDCATALOG	 (Figure	 8.33).	 To	 provide	 a	more	meaningful	 label	 on	 the
ALV	 column	 than	 the	 one	 associated	 with	 CHAR0128,	 populate	 the	 DATATYPE,
OUTPUTLEN,	 and	 SELTEXT	 values	 instead	 of	 providing	 a	 REF_TABNAME	 value	 of
ZKKDEMO.	Provide	 the	EDIT	 parameter	with	a	blank	space	value	because	 the	ALV
grid	will	not	be	editable	on	initial	display.

Figure	8.33:	New	field	added	to	field	catalog	with	edit	parameter	set	for	display	(FM)

In	 this	 in-progress	 program,	 event	 logic	 is	 coded	 in	 several	 subroutines	 whose
names	 are	 passed	 to	 the	 REUSE-ALV_GRID_DISPLAY	 function	 module	 either	 via	 an
i_callback	parameter	or	the	events	table	parameter	(Table	8.2).

Event	(FM) Our	setup Activities	handled
top_of_page events	table text	and	logo
user_command events	table hotspot	pop-ups

Save	button	(new)
Edit	Comment	button	(new)

data_changed	(new) events	table database	table	updates
pf_status i_callback button	exclusions

Table	8.2:	New	event	and	several	event	revisions	(FM)

Add	 the	 new	 event	 DATA_CHANGED	 to	 the	 events	 table	 using	 the
ZF_BUILD_EVENT_TABLE	subroutine	 (Figure	8.34).	Because	DATA_CHANGED	 is	not	one
of	the	events	retrieved	by	the	REUSE_ALV_EVENTS_GET	function	call	at	the	beginning
of	the	subroutine,	it	will	need	to	be	appended	as	shown.	To	maintain	consistency
with	the	current	program	conventions,	the	subroutine	name	ZF_DATA_CHANGED	can
be	declared	as	a	constant	such	as	GC_FORMNAME_CHG.

Figure	8.34:	Add	data_changed	to	existing	event	table	(FM)

After	 the	REUSE_ALV_EVENTS_GET	 function	call	 (Figure	8.34),	LT_EVENTS	contains	18
records.	 In	ZF_BUILD_EVENT_TABLE,	 populate	 your	 program’s	 subroutine	names	 for
USER_COMMAND	and	TOP_OF_PAGE,	 then	add	a	new	 record	 for	event	DATA_CHANGED.
LT_EVENTS	now	contains	19	records	(Figure	8.35),	three	of	which	will	execute	your
custom	code.

Figure	8.35:	Data_changed	is	an	incremental	event	(FM)

lvc_s_glay-edt_cll_cb	must	be	X	to	use	data_changed

With	 the	 function	 module	 technique,	 the	 DATA_CHANGED
functionality	 is	 only	 accessible	 and	 triggered	 when	 LVC_S_GLAY-
EDT_CLL_CB	 is	 set	 to	 X	 (Figure	 8.32)	 and	 passed	 in	 the
I_GRID_SETTINGS	parameter	in	the	ALV	function	module	call	(Figure

8.43).

Create	 a	 new	 subroutine	 called	 ZF_DATA_CHANGED	 (Figure	 8.36)	 to	 access	 the
ABAP	objects	class	CL_ALV_CHANGED_DATA_PROTOCOL.	The	FIELD-SYMBOL	and	ASSIGN
statements	 are	 used	 to	 access	 the	 content	 of	modified	 rows	 of	 the	ALV.	 In	 our
program,	only	single	rows	are	modifiable	so	there	will	only	be	one	row	to	process,
the	row	whose	comment	field	the	user	 just	changed	(Figure	8.37).	Loop	through
<FT_OUTPUT>	and	populate	a	structure	 that	matches	 the	database	 table	ZKKDEMO.
Use	 the	 MODIFY	 command	 to	 write	 the	 record	 to	 the	 database	 table	 ZKKDEMO.
(MODIFY	updates	an	existing	record	or	adds	a	record	if	it	is	not	found.)

Figure	8.36:	Data_changed	subroutine	called	when	cell	focus	changes	(FM)

The	 record	 layout	 of	<FT_OUTPUT>	matches	 LTY_OUTPUT	with	 the	 exception	 of	 the
first	field	called	ROW	(Figure	8.37).

Figure	8.37:	User-modified	row	in	debugger	(FM)

You	may	recall	that	we	activated	column	width	optimization	in	the	layout	structure
of	 this	 program	 (Chapter	 4.4).	 When	 this	 ALV	 grid	 is	 initially	 displayed,	 it	 is
summarized.	 The	 COMMENT	 column	 has	 no	 content	 at	 a	 summary	 level	 so	 the
narrow	display	 is	desirable	 (Figure	8.38).	Unfortunately,	when	 the	user	clicks	on
the	EDIT	COMMENT	button	to	switch	to	a	detail	display,	 the	Comment	column	does
not	 widen.	 Fix	 that	 by	 re-specifying	 the	 Comment	 field	 output	 length	 in
ZF_USER_COMMAND	(Figure	8.39).

Figure	8.38:	Default	column	width	optimization	is	not	a	problem	until	switched	to	detail	display	(FM)

Edit	 the	 ZF_USER_COMMAND	 subroutine,	 adding	 the	 new	 local	 data	 declarations
(Figure	8.39).	The	function	code	of	the	EDIT	COMMENT	toolbar	button	is	NOTE	(Figure
6.115)	so	add	the	WHEN	‘NOTE’	logic	to	the	CASE	statement.	Set	the	GV_EDIT_FLAG	to
X,	 indicating	 that	 the	 user	 has	 switched	 to	 edit	mode.	For	 this	 exercise,	 code	a
one-time	 transition	 from	display	 to	edit	mode.	 (If	 required,	you	can	 instead	write
code	 that	 allows	 the	 user	 to	 toggle	 back	 and	 forth	 between	 edit	 and	 display
modes.)

The	REUSE_ALV_GRID_LAYOUT_INFO_GET	function	call	(Figure	8.39)	is	used	to	retrieve
the	current	ALV	settings.	It	returns	any	changes	the	user	made	after	the	grid	was
displayed	(changes	in	sorting,	filtering,	column	order,	etc.).	Many	parameters	are
available,	but	limit	retrieval	to	the	parameters	that	you	will	be	changing	using	the
REUSE_ALV_GRID_LAYOUT_INFO_SET	function	module:	field	catalog	and	grid	scroll.	The
LS_SCROLL	 values	 retrieved	 are	 applicable	 to	 the	 summarized	 display.	 Replace
those	values	so	the	user	can	continue	from	their	last	position	instead	of	having	to
scroll	to	it	in	the	re-displayed	detail	list.

GRID	or	LIST	versions	of	GET/SET	function	modules?

When	 using	 REUSE_ALV_GRID_DISPLAY	 for	 an	 ALV	 call,	 use
REUSE_ALV_GRID_LAYOUT_INFO_GET/SET.	 When	 using
REUSE_ALV_LIST_DISPLAY	 for	 an	 ALV	 call,	 use
REUSE_ALV_LIST_LAYOUT_INFO_GET/SET.

“Layout”	in	these	function	module	names

The	 GET/SET	 function	 modules	 described	 here	 can	 be	 used	 to
access	many	properties	of	the	ALV	grid	(layout,	field	catalog,	sort,
filter,	variant,	grid	scroll,	etc.)	not	 just	 layout	settings.	The	usage
of	 the	word	 “layout”	 in	 the	 function	module	name	should	not	be

taken	 literally.	This	varies	 from	the	ALV	control	 framework	program	(Chapter

8.3.2)	where	separate	method	calls	are	used	for	each	set	of	properties.

Three	field	catalog	table	settings	will	be	populated	and	passed	in	the	set	function
module:	DO_SUM,	OUTPUTLEN,	 and	 EDIT.	 To	 re-display	 the	 data	 at	 a	 detail	 level	 for
editing,	clear	 the	 field	catalog	DO_SUM	 setting	on	any	 fields	set	 for	summing,	not
just	 the	 ones	 set	 by	 the	 developer	 (Figure	 8.39).	 On	 only	 the	 editable	 field
ZCOMMENT,	set	 the	EDIT	 flag	 to	X	and	 the	OUTPUTLEN	 to	128.	By	passing	 the	output
length	 again,	 you	 fix	 the	 too-narrow	 comment	 column,	 a	 result	 of	 optimization
done	for	the	initial	summarized	display	(Figure	8.38).

Transporting	and	where	clauses	in	the	modify	statement

Use	 the	 TRANSPORTING	 and	 WHERE	 clauses	 in	 your	 MODIFY

statements	 to	 change	 only	 the	 particular	 fields	 you	 need	 to
change.	Other	values	will	remain	as	they	were.

The	user’s	cursor	position	in	the	ALV	grid	when	they	clicked	on	the	EDIT	COMMENT

button	is	available	to	us	in	the	SLIS_SELFIELD	structure.	If	they	were	on	a	detail	line,
you	can	move	that	detail	row	to	the	top	of	the	re-displayed	grid	(Figure	8.39).	Take
care	when	 transferring	 tabindex	(row	number)	and	 fieldname	from	LS_SELFIELD	 to
LS_SCROLL	(a	nested	structure).	The	syntax	to	reach	the	lower	level	of	the	nested
structure	 LS_SCROLL	 requires	 two	 hyphens:	 LS_SCROLL-S_ROW_INFO-INDEX	 and
LS_SCROLL-S_COL_INFO-FIELDNAME.	(Note:	if	the	user’s	cursor	was	on	a	summary	line,
the	grid	will	re-display	on	the	first	record.)

The	 last	 two	 pieces	 of	 the	 WHEN	 ‘NOTE’	 logic	 are	 the
REUSE_ALV_GRID_LAYOUT_INFO_SET	 function	 call	 with	 the	 two	 parameters	 that	 we
changed	 (field	 catalog	 and	 grid	 scroll)	 and	 the	 setting	 of	 the	 ROW_STABLE,
COL_STABLE,	and	REFRESH	fields	of	the	SELFIELD	structure	(Figure	8.39).

Figure	8.39:	User	command	logic	for	edit	button	(FM)

It	would	be	disruptive	to	inform	the	user	every	time	they	leave	a	comment	cell	that
the	 change	 has	 been	 saved	 so	 that	 won’t	 be	 done	 in	 the	 training	 scenario.
Instead,	 you’ll	 use	 the	SAVE	 button	 (to	 provide	 a	 pop-up	message	 to	 inform	 the
user	that	changes	were	saved.

Add	WHEN	‘&DATA_SAVE’	logic	to	ZF_USER_COMMAND	subroutine	(Figure	8.40).	Call	the
function	 module	 POPUP_TO_CONFIRM	 to	 inform	 the	 user	 that	 the	 comments	 have
been	saved	and	to	give	the	option	to	continue	or	leave	the	program	(Figure	8.41).
(With	proper	error-handling	 in	 the	ZF_DATA_CHANGED	 subroutine,	any	 table	update

errors	should	have	been	communicated	already.)

Figure	8.40:	Save	button	logic	and	selfield	logic	move	in	zf_user_command	(FM)

If	 the	 user	 clicks	 EXIT,	 the	 LEAVE	 PROGRAM	 command	 executes.	 If	 the	 user	 clicks
CONTINUE,	the	user	can	continue	working	in	the	ALV	(Figure	8.41).

Figure	8.41:	User	command	pop-up	for	&data_save	action	(FM)

One	 last	 change	 in	 ZF_USER_COMMAND	 (Figure	 8.40)	 is	 moving	 the	 evaluation	 of
SLIS_SELFIELD-VALUE	from	outside	the	case	statement	to	inside	the	WHEN	‘&IC1’	case
statement	since	it	is	only	relevant	to	the	hotspot	logic.

The	 ZF_SET_PFSTATUS	 subroutine	 is	 executed	 before	 every	 re-display	 of	 the	 ALV
grid	(Figure	8.42).	Because	the	EDIT	COMMENT	button	is	being	used	only	for	a	one-
time	switch	to	edit	mode,	it	could	be	confusing	to	users	to	retain	the	button	on	the
toolbar	 after	 that	 has	 occurred.	You	 can	 easily	 hide	 the	 button	 by	 checking	 the
GV_EDIT_FLAG	 variable	 that	 was	 set	 in	 ZF_USER_COMMAND	 (Figure	 8.39)	 and
appending	the	function	code	NOTE	to	the	exclude	table.

Figure	8.42:	Remove	new	edit	button	from	toolbar	after	switch	(FM)

The	only	change	needed	in	ZF_DISPLAY_ALV	is	the	addition	of	the	GS_GLAY	structure
to	the	ALV	call	(Figure	8.43).

Figure	8.43:	ALV	call	with	i_grid_settings	structure	passed	(FM)

In	 edit	 mode,	 the	 ALV	 grid	 displays	 with	 these	 changes:	SAVE	 button	 enabled,
REFRESH	 button	 added	 to	 the	 ALV	 application	 toolbar,	 EDIT	 COMMENT	 button
removed,	row	selection	column	added,	and	editable	field(s)	ready	for	input	(Figure
8.44).

Figure	8.44:	Comment	column	widened	and	button	absent	(FM)

8.3.2			ALV	control	framework
If	 you	 have	 chosen	 not	 to	 create	 and	 update	 the	 custom	 table	 ZKKDEMO	 for	 this
exercise,	you	can	use	CHAR0128	as	the	type	when	you	add	the	new	field	ZCOMMENT
at	 the	 end	 of	 LTY_OUTPUT	 (Figure	 8.45).	 Other	 data	 additions	 include	 table	 type
TT_OUTPUT	 based	 on	 type	 LTY_OUTPUT.	 This	 table	 type	 will	 be	 used	 in	 a	 new
DATA_CHANGED	method	(Figure	8.47).	An	internal	table	and	structure	matching	the
database	 table	 ZKKDEMO	 are	 added	 for	 retrieval	 of	 existing	 comments.	 The
GV_EDIT_FLAG	 variable	 will	 be	 used	 this	 time	 to	 indicate	 when	 the	EDIT	 COMMENT

button	 has	 been	 clicked	 so	 that	 we	 stop	 adding	 it	 to	 the	 application	 toolbar	 on
subsequent	re-displays.

Figure	8.45:	Data	additions	for	edit	exercise	(CF)

Five	 events	 will	 be	 handled	 in	 this	 revised	 program	 (Table	 8.3),	 but	 only
DATA_CHANGED	 is	 new.	 The	 methods	 for	 USER_COMMAND	 and	 TOOLBAR	 will	 be
changed,	as	well.	(If	you	wish	to	compare	to	the	REUSE_ALV_GRID_DISPLAY	exercise,
see	Table	8.2.)

Event	(CF) Our	setup Activities	handled
top_of_page event_handler text	and	logo
hotspot_click event_handler hotspot	pop-ups
user_command event_handler Edit	Comment	button	(new)
toolbar event_handler button	addition	(conditional)
data_changed	(new) event_handler database	table	updates

Table	8.3:	New	event	and	several	event	revisions	(CF)

Define	 a	 new	 method	 based	 on	 event	 DATA_CHANGED	 (Figure	 8.46).	 The
DATA_CHANGED	event	is	triggered	when	the	user	clicks	on	the	CHECK	ENTRIES	button
or	 on	 the	 REFRESH	 button	 on	 the	 application	 toolbar.	 Later,	 you’ll	 see	 how	 to
register	other	triggers	for	this	event	(Figure	8.57).

Figure	8.46:	Data_changed	method,	part	1	(CF)

In	 the	 implementation	of	 the	new	method	DATA_CHANGED	 (Figure	8.47),	 the	 FIELD-
SYMBOL	and	ASSIGN	statements	are	used	to	access	the	content	of	modified	rows	of
the	ALV.	In	our	program,	only	single	rows	are	modifiable	so	there	will	only	be	one
row	to	process,	the	row	whose	comment	field	the	user	just	changed	(Figure	8.48).
Loop	 through	<FT_OUTPUT>	 and	 populate	 a	 structure	 that	matches	 the	 database
table	ZKKDEMO.	Use	the	MODIFY	command	to	write	the	record	to	the	database	table
ZKKDEMO.	(MODIFY	will	update	an	existing	record	or	add	a	record	if	not	found.)

Figure	8.47:	Data_changed	method,	part	2	(CF)

The	 record	 layout	 of	<FT_OUTPUT>	matches	 LTY_OUTPUT	with	 the	 exception	 of	 the
first	field	called	ROW	(Figure	8.48).

Figure	8.48:	User-modified	row	in	debugger	(CF)

You	may	recall	that	we	activated	column	width	optimization	in	the	layout	structure
of	 this	 program	 (Chapter	 4.4).	 When	 the	 ALV	 grid	 is	 initially	 displayed,	 it	 is
summarized	 (Figure	8.49).	 The	 comment	 column	has	no	 content	 at	 a	 summary

level	so	the	narrow	display	is	desirable.	Unfortunately,	when	the	user	clicks	on	the
EDIT	COMMENT	button	 to	switch	 to	a	detail	display,	 the	comment	column	does	not
widen.	 You’ll	 fix	 that	 by	 re-specifying	 the	 comment	 field	 output	 length	 in	 the
USER_COMMAND_ALV	method	(Figure	8.52).

Figure	8.49:	Default	custom	width	optimization	is	not	a	problem	until	switched	to	detail	display	(CF)

To	retrieve	any	existing	comments	from	the	ZKKDEMO	table	and	display	them	in	the
ALV	grid,	you’ll	need	to	add	logic	after	the	population	of	GT_OUTPUT	(Figure	8.50).
The	 FOR	 ALL	 ENTRIES	 IN	 syntax	 can	 be	 used	 because	 you	 have	 first	 verified	 that
GT_OUTPUT	has	content	by	evaluating	the	result	of	the	DESCRIBE	TABLE	command.

If	relevant	records	are	retrieved	into	GT_ZKKDEMO,	you	loop	through	GT_ZKKDEMO	to
update	GT_OUTPUT	(Figure	8.50).	(GT_ZKKDEMO	 is	most	 likely	the	smaller	of	the	two
tables.)	 If	 no	 relevant	 comments	were	 retrieved	 from	 ZKKDEMO,	 no	messaging	 is
required.

Set	 the	GV_EDIT_FLAG	 to	 a	 blank	 space	 to	 signify	 display	mode	 for	 initial	 display
(Figure	8.50).	The	flag	will	be	used	in	ZF_USER_COMMAND_ALV	and	ZF_TOOLBAR_ADD
to	hide	the	EDIT	COMMENT	button	after	its	first	use.

Figure	8.50:	Retrieval	of	comments	from	zkkdemo	table	(CF)

The	ALV	application	toolbar	was	set	as	interactive	using	SET_TOOLBAR_INTERACTIVE
in	Chapter	6.8.2	so	the	ZF_TOOLBAR_ADD	subroutine	is	executed	on	each	re-display
of	the	ALV	grid	(Figure	8.51).	Because	the	EDIT	COMMENT	button	 is	being	used	 in
this	exercise	for	a	one-time	switch	to	edit	mode,	it	could	be	confusing	to	users	to
retain	 the	button	on	 the	 toolbar	after	 that	has	occurred.	You	can	easily	hide	 the
button	by	checking	the	GV_EDIT_FLAG	variable	set	 in	ZF_USER_COMMAND_ALV	 (Figure
8.52).

Sometimes	removing	means	“not	adding”

Use	 break-points	 in	 the	 ABAP	 debugger	 to	 familiarize	 yourself
with	the	behavior	of	your	programs.	You	might	think	that	once	you
have	 added	 a	 button	 to	 the	 toolbar,	 you	 must	 call	 a	 separate
method	to	remove	it	or	must	change	the	exclude	table.	In	the	ALV

control	 framework,	 the	 standard	 toolbar	 is	 being	 re-created	 with	 the	 new
button	on	each	re-display	because	we	have	set	it	interactive	(Figure	8.57).	By
adding	 the	 IF	 statement	 (Figure	8.51),	 you	will	 stop	adding	 the	button	 to	 the
toolbar	after	the	user	has	clicked	it	once,	as	needed	in	the	training	scenario.	If
you	prefer,	you	can	change	the	position	of	the	 IF	statement	so	that	the	button
continues	to	be	added,	but	is	grayed	out	(disabled	=	‘X’).

Figure	8.51:	Stop	adding	new	button	after	first	use	(CF)

In	 Chapter	 6.8.2,	 you	 inserted	 a	 placeholder	 into	 a	 subroutine	 called
ZF_USER_COMMAND_ALV	 for	a	new	 toolbar	button	(Figure	6.130).	Now,	you	will	add
the	logic	that	should	execute	when	that	button	is	clicked.

1.	 Fill	a	variable	to	indicate	that	the	button	has	been	clicked.
2.	 GET	the	current	field	catalog	and	cursor	settings.
3.	 Modify	a	few	of	the	retrieved	settings	in	order	to	present	detail	records	with

the	desired	appearance.
4.	 SET	the	changes,	including	the	cursor	position.
5.	 Refresh	the	table	display.

Method	user_command_alv	and	zm_user_command_9100

Don’t	be	confused	by	the	two	similarly	named	sections	of	code	in
this	 program.	 The	 PAI	 module	 called	 ZM_USER_COMMAND_9100
manages	 the	 top	 row	 of	 function	 keys	 you	 configured	 as	BACK,
EXIT,	 and	CANCEL	 in	 Figure	 3.26.	 The	 USER_COMMAND	 event	 logic

coded	in	ZF_USER_COMMAND_ALV	relates	to	the	ALV	application	toolbar	buttons.

Add	 the	 local	 data	 declarations	 to	 the	 ZF_USER_COMMAND_ALV	 subroutine	 (Figure
8.52).	The	function	code	of	the	EDIT	COMMENT	toolbar	button	is	NOTE	(Figure	6.129).
In	 the	 WHEN	 ‘NOTE’	 portion	 of	 the	 CASE	 statement,	 set	 the	 GV_EDIT_FLAG	 to	 X	 to
denote	that	the	user	has	switched	to	edit	mode.	(For	this	exercise,	you	will	code	a
one-time	transition	from	display	to	edit	mode.)

The	 methods	 GET_FRONTEND_FIELDCATALOG	 and	 GET_SELECTED_CELLS	 are	 used	 to
retrieve	the	ALV	settings	of	interest	to	us	(Figure	8.52).	Other	GET/SET	methods	are
available,	 but	 these	 will	 meet	 our	 needs.	 The	 returned	 LT_FIELDCAT	 table	 will
include	any	changes	 that	 the	user	may	have	made	after	 the	grid	was	displayed
and	will	give	us	a	starting	point	for	our	modifications.	The	LT_CELLS	table	will	allow
us	 to	 re-display	 the	 editable	 grid	 so	 that	 the	 user	 can	 continue	 from	 their	 last
position	instead	of	having	to	scroll	to	it	in	the	detail	list.

ALV	FM	and	ALV	control	framework	are	different

Don’t	 assume	 that	 code	 you	 use	 in	 a	 function	 module	 ALV
program	is	also	necessary	in	an	ALV	control	framework	program
(or	 vice	 versa).	 Test	 and	 use	 the	 debugger	 as	 you	 write	 your
code,	then	take	appropriate	action	based	on	your	observations.

Three	field	catalog	table	settings	will	be	populated	and	passed	in	the	set	function
module:	DO_SUM,	 EDIT,	 and	OUTPUTLEN.	 To	 re-display	 the	 data	 at	 a	 detail	 level	 for
editing,	clear	 the	 field	catalog	DO_SUM	 setting	on	any	 fields	set	 for	summing,	not
just	 the	 ones	 set	 by	 the	 developer	 (Figure	 8.52).	 On	 only	 the	 editable	 field
ZCOMMENT,	set	 the	EDIT	 flag	 to	X	and	 the	OUTPUTLEN	 to	128.	By	passing	 the	output
length	again,	you	will	fix	the	too-narrow	comment	column,	a	result	of	optimization
done	for	the	initial	summarized	display	(Figure	8.49).

Figure	8.52:	User	command	logic	for	edit	button,	part	1	(CF)

Now	that	the	field	catalog	settings	have	been	retrieved	and	modified,	they	are	set
by	calling	method	SET_FRONTEND_FIELDCATALOG	(Figure	8.53).

The	user’s	cursor	position	in	the	ALV	grid	when	they	clicked	on	the	EDIT	COMMENT

button	was	retrieved	into	LT_CELLS	(one	row	was	retrieved)	and	can	now	be	used
to	 move	 that	 detail	 row	 to	 the	 top	 of	 the	 re-displayed	 grid	 using	 the
SET_SCROLL_INFO_VIA_ID	 method	 (Figure	 8.53).	 Take	 care	 when	 transferring	 the
index	(row	number)	and	fieldname	from	LS_CELLS	(nested	structure	LVC_S_CELL)	 to
LS_ROW_ID	 and	 LS_COL_ID.	 The	 syntax	 to	 reach	 the	 lower	 level	 of	 the	 nested
structure	 LS_CELLS	 requires	 two	 hyphens:	 LS_CELLS-ROW_ID-INDEX	 and	 LS_CELLS-
COL_ID-FIELDNAME.

Finally,	 signify	 that	 this	 column	 and	 row	 should	 be	 retained	 (by	 passing	 XX	 in
LS_STABLE)	and	refresh/re-display	the	grid	(Figure	8.53).

Figure	8.53:	User	command	logic	for	edit	button,	part	2	(CF)

The	new	ZCOMMENT	field	needs	to	be	added	to	the	end	of	the	field	catalog	table	in
ZF_BUILD_FIELDCATALOG	 (Figure	 8.54).	 To	 provide	 a	more	meaningful	 label	 on	 the
ALV	 column,	 populate	 the	 COLTEXT	 instead	 of	 providing	 a	 REF_TABLE	 value	 of
ZKKDEMO.	Provide	 the	EDIT	 parameter	with	a	blank	space	value	because	 the	ALV
grid	will	not	be	editable	on	initial	display.

Figure	8.54:	New	field	added	to	field	catalog	with	edit	parameter	set	for	display	(CF)

In	 edit	 mode,	 the	 ALV	 grid	 displays	 with	 these	 changes:	 row	 selection	 column
added,	editable	 field(s)	 ready	 for	 input,	and	new	ALV	application	 toolbar	buttons
visible	(Figure	8.55).

CHECK	ENTRIES	and	REFRESH	buttons
Cell-focused	buttons:	CUT,	COPY	TEXT,	INSERT,	and	UNDO

Row-focused	buttons:	APPEND	ROW,	INSERT	ROW,	DELETE	ROW,	and	DUPLICATE

ROW

Figure	8.55:	Row-focused	buttons	to	be	excluded	(CF)

Since	this	program	will	not	be	used	to	remove	records	from	ZKKDEMO	or	 to	 insert
records,	 the	 row-focused	buttons	need	 to	be	excluded	 (Figure	8.58).	Exactly	as
was	done	in	Chapter	6.7.2,	add	the	buttons	to	be	omitted	from	the	ALV	application
toolbar	to	an	exclusion	table	(Figure	8.56).

Figure	8.56:	Exclude	table	for	ALV	method	call	(CF)

The	DATA_CHANGED	event	is	triggered	by	default	when	the	user	clicks	on	the	CHECK

ENTRIES	 button	 or	 the	 REFRESH	 button	 in	 the	 ALV	 application	 toolbar.	 We	 can
register	other	triggers,	as	well	(Figure	8.57):

MC_EVT_MODIFIED	when	cursor	is	moved	from	the	modified	cell
MC_EVT_ENTER	for	user	pressing	enter	on	the	keyboard

In	 the	 ZM_STATUS_9100	 module,	 we	 have	 registered	 only	 the	 modified	 cell	 edit
event	 (Figure	 8.57).	 The	 final	 change	 is	 to	 set	 the	 handler	 for	 the	 new
DATA_CHANGED	event.

Figure	8.57:	Module	zm_status_9100	additions	(CF)

After	the	user	clicks	on	the	EDIT	COMMENT	button,	the	ALV	grid	displays	as	shown
(Figure	8.58).

Figure	8.58:	Comment	column	widened	and	buttons	absent	(CF)

Enabling	the	Save	button	in	the	ALV	control	framework	programs

Unlike	 the	 function	 module	 versions	 of	 the	 programs	 in	 this
chapter,	the	SAVE	button	is	not	enabled	by	default	when	using	the
ALV	 control	 framework	 technique.	 If	 you	 do	 wish	 to	 enable	 the
SAVE	 button,	 use	 transaction	 code	 se80	 to	 edit	 the	 GUI	 status,

adding	a	label	to	the	diskette	function	key	(Figure	3.26),	as	you	did	for	BACK,
CANCEL,	and	EXIT.	After	saving	and	activating,	add	your	custom	logic	within	the
CASE	statement	in	the	ZM_USER_COMMAND_9100	module	(Figure	3.21).

Source	code	for	final	ALV	control	framework	program

The	 source	 code	 of	 the	 final	 example	 program
(ZKK_ALV_CTRLFW_EDIT_BUTTON)	 is	 available	 at
https://espresso-tutorials.com/_ABAP_ALV.php

https://espresso-tutorials.com/_ABAP_ALV.php

8.4			Summary
Chapter	8	introduced	techniques	that	make	an	SAP	List	Viewer	editable.

Key	points:

Writing	cell-level	edit	logic
Adding	logic	to	insert	or	modify	records	in	a	table	based	on	user	input
Retrieving	grid	configuration	information	(layout	and	sort	state,	for	instance)
after	initial	display	in	order	to	modify	it	for	re-display
Retaining	the	user’s	cursor	position
Enabling	the	edit	functionality	two	different	ways:	based	on	selection-screen
choice	or	on	toolbar	button	click
Working	with	the	set_toolbar_interactive	method

Table	8.4	provides	a	comparison.

	 Function	Module ALV	Control	Framework
	 reuse_alv_grid_display set_table_for_first_display
Column
editability

edit	=	‘X’	in	field	catalog edit	=	‘X’	in	field	catalog,	ready_for_input
method	(optional,	1	for	yes,	0	for	no)

Change
awareness
and	values

i_grid_settings	parameter	(lvc_s_glay-
edt_cll_cb),	data_changed	event

data_changed	event,	register_edit_event
method	(optional)

Re-display	of
toolbar

pf_status_set	event toolbar	event,	set_toolbar_interactive
method

Toolbar
exclusions

it_excluding	parameter,	pf_status_set	event it_toolbar_excluding	parameter,	toolbar
event

Toolbar
additions

GUI	status	copy/modification toolbar	event

Change	from
summary	to
detail

do_sum	=	space	in	field	catalog do_sum	=	space	in	field	catalog

Format
changes

reuse_alv_grid_layout
_info_get,	reuse_alv_grid_layout
_info_set	function	modules

get_frontend_*	and	set_frontend_*
methods

Retain	cursor
position

slis_selfield	and	is_grid_scroll	parameter get_selected_cells	and
set_scroll_info_via_id	methods

Refresh	grid slis_selfield-col_stable	=	‘X’,	slis_selfield-
row_stable	=	‘X’,	slis_selfield-refresh	=	‘X’	in
user_command	event

is_stable-row	=	‘X’,	is_stable-col	=	‘X’,
refresh_table_display	method	in
user_command	event

Table	8.4:	Editable	ALV,	comparison

9			Conclusion
Now,	with	greater	awareness	of	how	the	SAP	List	Viewer	has	evolved	over	time
and	 with	 examples	 of	 frequently	 requested	 features,	 you	 can	 approach
assignments	 with	 more	 confidence.	 When	 coding	 a	 new	 ALV	 program,	 it	 is
important	 to	 know	 how	 the	 report	 will	 be	 used.	 For	 instance,	 if	 it	 will	 be	 used
primarily	 for	strategic	analysis,	you	might	provide	summarized	views	 initially.	 If	 it
will	be	used	primarily	for	updating	data,	you	might	choose	to	display	detail	records
initially.	Using	the	examples	in	this	book	for	guidance,	you	can	accommodate	both
views	with	a	single	program.

When	 creating	 new	 SAP	 List	 Viewer	 programs,	 use	 object-oriented	 techniques
rather	 than	 function	 module	 techniques.	 This	 book	 provides	 an	 introduction	 to
object-oriented	ALV	featuring	the	ALV	control	framework	technique.

Appendix
Comparison	of	some	report	types
The	two	bold	report	types	are	covered	in	this	book.

Report	Type Sample	Programs Terminology
ALV	with	integrated
data	access	(IDA)

SALV_IDA* In-memory	database,	ABAP	objects,	CL_SALV_GUI
_TABLE_IDA

ALV	object	model SALV_DEMO* ABAP	objects,	ALV	wrapper,	OM,	CL_SALV_TABLE,
CL_SALV_HIERSEQ
_TABLE,	CL_SALV_TREE

ALV	control
framework

BCALV* ABAP	objects,	grid	control,	SET_TABLE_FOR
_FIRST_DISPLAY,	CL_GUI_ALV_GRID,	LVC

ALV	grid	FMs	(not
released)

BALV* REUSE_ALV_GRID
_DISPLAY,	fullscreen	grid,	SLIS

ALV	list	FMs	(not
released)

BALV* REUSE_ALV_LIST
_DISPLAY,	REUSE_ALV_HIERSEQ
_LIST_DISPLAY

Standard	list DEMO_LIST
_OUTPUT

WRITE

Dialog-oriented DEMO_DYNPRO-
_TABCONT_LOOP
_AT*

CONTROLS…TYPE	TABLEVIEW/TABSTRIP,	table
controls,	Screen	Painter,	module	pools

Dynamic DEMO_FREE-
_SELECTIONS

field-symbols,	CL_SALV_TABLE=>
FACTORY,	CL_ABAP_TYPEDESCR

Note—ALV	is	also	available	for	Web	Dynpro	developers	(ABAP	and	Java).

Resources
SAP	Note	551605:	ALV	FAQ	and	release	status.

Demo	programs

DEMO*
BALV*
BCALV*
SALV_DEMO*

Programs

SHOWICON	(display	symbols	and	names	of	icons	used	on	SAP	screens)
RS_ABAP_SOURCE_SCAN	(search	programs	for	a	text	string)

Transactions

ABAPDOCU	(ABAP	keyword	documentation)
BIBS	(style	guide	and	examples	of	user	interface	design	elements,	branches
to	“reuse	library”	and	“controls	library”)
DWDM	(ABAP	workbench	demos)

Function	modules

REUSE_ALV*
POPUP*

Sites

help.sap.com	(SAP	Help	Portal)
scn.sap.com	(SAP	Community	Network)

Acronyms

ABAP—Advanced	Business	Application	Programming
ALV—ABAP	List	Viewer,	SAP	List	Viewer
CF—Control	Framework
FM—Function	Module
GUI—Graphical	User	Interface

HTML—HyperText	Markup	Language
IDA—Integrated	Data	Access
IDES—Internet	Demonstration	and	Evaluation	System
OM—Object	Model
SAP—Systems,	Applications,	and	Products	in	data	processing

Our	Newsletter

Our	 newsletter	 will	 inform	 you	 about	 new	 publications	 and
exclusive	free	downloads.	

Subscribe	today!					
newsletter.espresso-tutorials.com

http://newsletter.espresso-tutorials.com/

A			The	Author

Kathi	Kones	has	been	working	with	SAP	software	since	1995.

After	 completing	 her	 computer	 science	 degree	 at	 Minnesota	 State	 University,
Mankato,	she	was	hired	by	General	Mills,	Inc.,	a	global	corporation	that	developed
in-house	talent	and	encouraged	job	changes	within	the	company.	She	gained	SAP
R/2	and	R/3	experience	in	the	roles	of	functional	analyst,	ABAP	developer,	project
manager,	Finance	master	data	migration	specialist,	and	integration	manager.	She
participated	in	four	SAP	implementations	and	worked	in	eight	countries.

Kathi	has	most	recently	worked	on	SAP	master	data	management	projects	as	a
consultant	for	ThreeBridge	Solutions,	LLC,	Minneapolis,	Minnesota.

B			Disclaimer
This	publication	contains	references	to	the	products	of	SAP	SE.

SAP,	R/3,	SAP	NetWeaver,	Duet,	PartnerEdge,	ByDesign,	SAP	BusinessObjects
Explorer,	StreamWork,	and	other	SAP	products	and	services	mentioned	herein	as
well	as	their	respective	logos	are	trademarks	or	registered	trademarks	of	SAP	SE
in	Germany	and	other	countries.

Business	 Objects	 and	 the	 Business	 Objects	 logo,	 BusinessObjects,	 Crystal
Reports,	 Crystal	 Decisions,	 Web	 Intelligence,	 Xcelsius,	 and	 other	 Business
Objects	products	and	services	mentioned	herein	as	well	as	their	respective	logos
are	 trademarks	 or	 registered	 trademarks	 of	 Business	 Objects	 Software	 Ltd.
Business	Objects	is	an	SAP	company.

Sybase	and	Adaptive	Server,	iAnywhere,	Sybase	365,	SQL	Anywhere,	and	other
Sybase	products	and	services	mentioned	herein	as	well	as	their	respective	logos
are	 trademarks	 or	 registered	 trademarks	 of	 Sybase,	 Inc.	 Sybase	 is	 an	 SAP
company.

SAP	 SE	 is	 neither	 the	 author	 nor	 the	 publisher	 of	 this	 publication	 and	 is	 not
responsible	for	 its	content.	SAP	Group	shall	not	be	liable	for	errors	or	omissions
with	 respect	 to	 the	materials.	 The	 only	warranties	 for	SAP	Group	 products	 and
services	 are	 those	 that	 are	 set	 forth	 in	 the	 express	 warranty	 statements
accompanying	 such	 products	 and	 services,	 if	 any.	 Nothing	 herein	 should	 be
construed	as	constituting	an	additional	warranty.

C			Credits
Vemuru,	 V.	 (2010,	 March	 11).	 How	 to	 get	 the	 variant	 name	 when	 running	 the
report	in	background	from	selection	screen	[Online	forum].

Retrieved	from	http://wiki.scn.sap.com/wiki/display/
ABAP/How+to+get+the+variant+name+when+running+
the+report+in+background+from+selection+screen

http://wiki.scn.sap.com/wiki/display/ABAP/How+to+get+the+variant+name+when+running+the+report+in+background+from+selection+screen

More	Espresso	Tutorials	eBooks
Boris	Rubarth:
First	Steps	in	ABAP®

Step-by-Step	instructions	for	beginners
Comprehensive	descriptions	and	code	examples
A	guide	to	create	your	first	ABAP	application
Tutorials	that	provide	answers	to	the	most	commonly	asked
	programming	questions

Antje	Kunz:
SAP®	Legacy	System	Migration	Workbench	(LSMW)

Data	Migration	(No	Programming	Required)
SAP	LSMW	Explained	in	Depth
Detailed	Practical	Examples
Tips	and	Tricks	for	a	Successful	Data	Migration

Darren	Hague:
Universal	Worklist	with	SAP®	NetWeaver	Portal

Learn	to	Easily	Execute	Business	Tasks	Using	Universal	Worklist
Explore	Expert	Insights	to	Help	You	Configure	UWL	Functionality
Find	In-Depth	Advice	on	how	to	Make	SAP	Work-flows	and	Alerts
Available
Learn	how	to	Include	3rd	Party	Workflows	in	SAP	NetWeaver	Portal

Michał	Krawczyk:
SAP®	SOA	Integration	-	Enterprise	Service	Monitoring

Tools	for	Monitoring	SOA	Scenarios
Forward	Error	Handling	(FEH)	and	Error	Conflict	Handler	(ECH)
Configuration	Tips
SAP	Application	Interface	Framework	(AIF)	Customization	Best

http://5015.espresso-tutorials.com/
http://5051.espresso-tutorials.com/
http://5076.espresso-tutorials.com/
http://5077.espresso-tutorials.com/

Practices
Detailed	Message	Monitoring	and	Reprocessing	Examples

Shreekant	Shiralkar	&	Deepak	Sawant
SAP®	BW	Performance	Optimization

Use	BW	statistics	effectively
Leverage	tools	for	extraction,	loading,	modeling	and	reporting
Monitor	performance	using	the	Work-load	Monitor	&	database	statistics
Use	indexes	to	understand	key	ele-ments	of	performance

Dominique	Alfermann,	Stefan	Hartmann,	Benedikt	Engel:
SAP®	HANA	Advanced	Modeling

Data	modeling	guidelines	and	common	test	approaches
Modular	solutions	to	complex	requirements
Information	view	performance	optimization
Best	practices	and	recommendations

http://5102.espresso-tutorials.com/
http://4110.espresso-tutorials.com/

	Title
	Copyright / Imprint
	Table of Contents
	Preface
	1 SAP List Viewer (ALV) types
	1.1 ALV predecessors
	1.2 Function module techniques
	1.3 Object-oriented techniques
	1.4 Web Dynpro
	1.5 Summary

	2 Writing an ALV program using function modules
	2.1 Create the ABAP program
	2.2 Data declarations
	2.3 Select-Options
	2.4 Selection of data for ALV output
	2.5 Main logic section
	2.6 Building the field catalog table
	2.7 Calling the ALV function module
	2.8 Summary

	3 Writing an ALV program using the ALV control framework
	3.1 Create the ABAP program
	3.2 Data declarations
	3.3 Select-Options
	3.4 Selection of data for ALV output
	3.5 Main logic section
	3.6 Building the field catalog table
	3.7 Screen call
	3.8 Process before output (PBO) and process after input (PAI) module logic
	3.9 PF-status for screen
	3.10 Custom control on screen
	3.11 Enabling background execution
	3.12 Summary

	4 Adding layout features to an ALV program
	4.1 Training scenario
	4.2 Layout features
	4.3 Alternating shaded and non-shaded lines
	4.4 Optimizing column widths
	4.5 Displaying totals at the top
	4.6 Displaying a title at the top
	4.7 Previewing layout features
	4.8 Summary

	5 Adding sort features to an ALV program
	5.1 Training scenario
	5.2 Sort features
	5.3 Configuring a sort group
	5.4 Changing the sort field in a sort group
	5.5 Changing column order to reflect sort order
	5.6 Configuring a two-level sort
	5.7 Populating the sort table from the selection screen
	5.8 Summary

	6 Adding more features to an ALV program
	6.1 Passing hidden columns of data
	6.2 Displaying totals and subtotals immediately
	6.3 Adding record counts
	6.4 Handling ALV report layout variants
	6.5 Adding a top_of_page event and a logo
	6.6 Adding hotspot logic
	6.7 Excluding buttons from the ALV application toolbar
	6.8 Adding buttons to the ALV application toolbar
	6.9 Summary

	7 Solving challenges with handy features applicable to many program types
	7.1 Retrieving the variant name during transaction code se38 background execution
	7.2 Modifying the selection screen for different user groups
	7.3 Converting all currency values to a user-specified “report currency”
	7.4 Summary

	8 Adding edit capability to an ALV program
	8.1 Training scenario
	8.2 Enabling edit based on a selection screen checkbox
	8.3 Enabling edit using toolbar button
	8.4 Summary

	9 Conclusion
	Appendix
	Comparison of some report types
	Resources

	A The Author
	B Disclaimer
	C Credits
	More Espresso Tutorials eBooks

